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Preface

The AAECC symposium was started in June 1983 by Alain Poli (Toulouse),
who, together with R. Desq, D. Lazard, and P. Camion, organized the first con-
ference. The meaning of the acronym AAECC changed from “Applied Algebra
and Error Correcting Codes” to “Applied Algebra, Algebraic Algorithms, and
Error Correcting Codes.” One reason was the increasing importance of complex-
ity, particularly for decoding algorithms. During the AAECC-12 symposium the
Conference Committee decided to enforce the theory and practice of the coding
side as well as the cryptographic aspects. Algebra is conserved as in the past,
but slightly more oriented to algebraic geometry codes, finite fields, complexity,
polynomials, and graphs.

For AAECC-16 the main subjects covered were:

– Block codes.
– Algebra and codes: rings, fields, AG codes.
– Cryptography.
– Sequences.
– Algorithms, decoding algorithms.
– Iterative decoding: code construction and decoding algorithms.
– Algebra: constructions in algebra, Galois group, differential algebra, polyno-

mials.

Four invited speakers characterize the outlines of AAECC-16:

– C. Carlet (“On Bent and Highly Nonlinear Balanced/Resilient Functions
and their Algebraic Immunities”).

– S. Gao (“Grobner Bases and Linear Codes”).
– R.J. McEliece (“On Generalized Parity Checks”).
– T. Okamoto (“Cryptography Based on Bilinear Maps”).

Except for AAECC-1 (Discrete Mathematics, 56, 1985) and AAECC-7 (Dis-
crete Mathematics, 33, 1991), the proceedings of all the symposia have been
published in Springer’s Lecture Notes in Computer Science series (vol. 228, 229,
307, 356, 357, 508, 673, 948, 1255, 1719, 2227, 2643). It is a policy of AAECC
to maintain a high scientific standard. This has been made possible thanks to
the many referees involved. Each submitted paper was evaluated by at least two
international researchers.

AAECC-16 received 32 submissions; 25 were selected for publication in these
proceedings while 7 additional works contributed to the symposium as oral pre-
sentations. In addition to the four invited speakers, five invited papers also con-
tributed to these proceedings.

The symposium was organized by Marc Fossorier, Shu Lin, Hideki Imai and
Alain Poli, with the help of the ‘Centre Baudis’ in Toulouse.



VI Preface

We express our thanks to Springer staff, especially to Alfred Hofmann and
Anna Kramer, as well as to the referees.

November 2005 M. Fossorier
S. Lin

H. Imai
A. Poli
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On Bent and Highly Nonlinear
Balanced/Resilient Functions and Their

Algebraic Immunities

Claude Carlet�

INRIA, Projet CODES, BP 105 - 78153, Le Chesnay Cedex, France
claude.carlet@inria.fr

Abstract. Since the introduction of the notions of nonlinearity in the
mid-70’s (the term has been in fact introduced later), of correlation im-
munity and resiliency in the mid-80’s, and of algebraic immunity recently,
the problem of efficiently constructing Boolean functions satisfying, at
high levels, one or several of these criteria has received much attention.
Only few primary constructions are known, and secondary construc-
tions are also necessary to obtain functions achieving or approaching
the best possible cryptographic characteristics. After recalling the back-
ground on cryptographic criteria and making some general observations,
we try to give a survey of all these constructions and their properties.
We then show that a nice and simple property of Boolean functions
leads to a general secondary construction building an n-variable function
from three known n-variable functions. This construction generalizes sec-
ondary constructions recently obtained for Boolean bent functions and
also leads to secondary constructions of highly nonlinear balanced or re-
silient functions, with potentially better algebraic immunities than the
three functions used as building blocks.

Keywords: stream cipher, Boolean function, algebraic degree, resiliency,
nonlinearity, algebraic attack.

1 Introduction

Boolean functions, that is, F2-valued functions defined on the vector space Fn
2 of

all binary words of a given length n, are used in the S-boxes of block ciphers and
in the pseudo-random generators of stream ciphers. They play a central role in
their security. The generation of the keystream consists, in many stream ciphers,
of a linear part, producing a sequence with a large period, usually composed of
one or several LFSR’s, and a nonlinear combining or filtering function f which
produces the output, given the state of the linear part. The main classical cryp-
tographic criteria for designing such function f are balancedness (f is balanced
if its Hamming weight equals 2n−1) to prevent the system from leaking statisti-
cal information on the plaintext when the ciphertext is known, a high algebraic
� Also member of the University of Paris 8 (MAATICAH).

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 1–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 C. Carlet

degree (that is, a high degree of the algebraic normal form of the function) to
prevent the system from Massey’s attack by the Berlekamp-Massey algorithm,
a high order of correlation immunity (and more precisely, of resiliency, since
the functions must be balanced) to counter correlation attacks (at least in the
case of combining functions), and a high nonlinearity (that is, a large Hamming
distance to affine functions) to withstand correlation attacks (again) and linear
attacks.

The recent algebraic attacks have led to further characteristics of Boolean
functions. These attacks recover the secret key by solving an overdefined system
of multivariate algebraic equations. The scenarios found in [26], under which low
degree equations can be deduced from the knowledge of the nonlinear combining
or filtering function, have led in [48] to a new parameter, the (basic) algebraic
immunity, which must be high. This condition is itself not sufficient, since a
function can have sufficiently high algebraic immunity and be weak against fast
algebraic attacks [25]. A further criterion strengthening the basic notion of al-
gebraic immunity can be defined accordingly.

The problems of designing numerous bent functions (that is, functions with
highest possible nonlinearity) and of efficiently constructing highly nonlinear bal-
anced (or, if necessary, resilient) functions with high algebraic degrees have been
receiving much attention for several years. They are relevant to several domains:
mainly cryptography, but also combinatorics, design theory, coding theory ...
Few primary constructions (in which the functions are designed ex nihilo) are
known, and secondary constructions (which use already defined functions to de-
sign new ones) are also necessary to obtain functions, on a sufficient number of
variables, achieving or approaching the best possible cryptographic characteris-
tics. We can say that research has obtained limited but non-negligible success
in these matters. However, the problem of meeting all of these characteristics
at sufficient levels and, also, achieving high algebraic immunities, with functions
whose outputs can be fastly computed (this is also a necessary condition for
using them in stream ciphers) shows some resistance. The most efficient primary
construction in this matter has been obtained in [29] (the authors present their
result as a secondary construction, but as they observe themselves, their con-
struction is just a direct sum of a function taken as a building block, with a
function that they design and which corresponds to a primary construction). It
leads to functions in any even numbers of variables and with optimal algebraic
immunities. And as shown in [19], their algebraic degrees are very high and their
output can be very fastly computed. They are not balanced, but any function!
can be made balanced by adding one variable. The remaining problem is in their
insufficient nonlinearities, which makes them unusable in cryptosystems. Used
as a secondary construction, their method does not give full satisfaction either,
for the same reason. Hence, this secondary construction represents a very nice
but still partial step towards a good tradeoff between nonlinearity, resiliency and
algebraic immunity.

Most classical primary or secondary constructions of highly nonlinear
functions seem to produce insufficient algebraic immunities. For instance, the
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10-variable Boolean function used in the LILI keystream generator (a submis-
sion to NESSIE European call for cryptographic primitives) is built following
[56] by using classical constructions; see [59]. It has algebraic immunity 4 and is
responsible for the lack of resistance of LILI to algebraic attacks, see [26].

As shown in [48], taking random balanced functions on sufficiently large num-
bers of variables could suffice to withstand algebraic attacks on the stream ci-
phers using them. It would also withstand fast algebraic attacks (this can be
checked with the same methods as in [48]). As shown in [49], it would moreover
give reasonable nonlinearities. But such solution would imply using functions
on large numbers of variables, whose outputs would be computable in much
too long time. This would not allow acceptable efficiency of the corresponding
stream ciphers. It would not allow nonzero resiliency orders either.

The present paper tries to present the state of the art on Boolean crypto-
graphic functions and to suggest several directions for further research. At the
end of the paper, a construction (first presented in [17]) of functions on Fn

2 from
functions on Fn

2 is presented, which combined with the classical primary and
secondary constructions can lead to functions achieving high algebraic degrees,
high nonlinearities and high resiliency orders, and which also allows attaining
potentially high algebraic immunity. The same principle allows constructing bent
functions too.

2 Preliminaries and General Observations

In some parts of this paper, we will deal in the same time with sums modulo
2 and with sums computed in Z. We denote by ⊕ the addition in F2 (but we
denote by + the addition in the field F2n and in the vector space Fn

2 , since
there will be no ambiguity) and by + the addition in Z. We denote by

⊕
i∈...

(resp.
∑

i∈...) the corresponding multiple sums. Let n be any positive integer.
Any Boolean function f on n variables admits a unique algebraic normal form
(A.N.F.):

f(x1, . . . , xn) =
⊕

I⊆{1,...,n}
aI

∏
i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The algebraic
degree d◦f of a Boolean function f equals the maximum degree of those mono-
mials with nonzero coefficients in its algebraic normal form. Affine functions are
those Boolean functions of degrees at most 1.

Another representation of Boolean functions is also very useful. The vec-
tor space Fn

2 can be endowed with the structure of the field F2n , since this
field is an n-dimensional F2-vector space. The function (u, v) �→ tr(u v), where
tr(u) = u + u2 + u22

+ · · · + u2n−1
is the trace function, is an inner product

in F2n . Every Boolean function can be written in the form f(x) = tr(F (x))
where F is a mapping from F2n into F2n , and this leads to the trace repre-
sentation: f(x) = tr

(∑2n−1
i=0 βi x

i
)
, where βi ∈ F2n . Thanks to the fact that

tr(u2) = tr(u) for every u ∈ F2n , we can restrict the exponents i with nonzero
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coefficients βi so that there is at most one such exponent in each cyclotomic
class {i× 2j [ mod (2n − 1)] ; j ∈ N}.

The Hamming weight wH(f) of a Boolean function f on n variables is the size
of its support {x ∈ Fn

2 ; f(x) = 1}. The Hamming distance dH(f, g) between two
Boolean functions f and g is the Hamming weight of their difference f ⊕ g. The
nonlinearity of f is its minimum distance to all affine functions. Functions used
in stream or block ciphers must have high nonlinearities to resist the attacks
on these ciphers (correlation and linear attacks, see [4, 40, 41, 58]). The nonlin-
earity of f can be expressed by means of the discrete Fourier transform of the
“sign” function χf (x) = (−1)f(x), equal to χ̂f (s) =

∑
x∈F n

2
(−1)f(x)⊕x·s (and

which is called the Walsh transform, or Walsh-Hadamard transform): the dis-
tance dH(f, l) between f and the affine function l(x) = s ·x⊕ ε (s ∈ Fn

2 ; ε ∈ F2)
and the number χ̂f (s) are related by:

χ̂f (s) = (−1)ε(2n − 2dH(f, l)) (1)

and the nonlinearity Nf of any Boolean function on Fn
2 is therefore related to

the Walsh spectrum of χf via the relation:

Nf = 2n−1 − 1
2

max
s∈F n

2

|χ̂f (s)|. (2)

It is upper bounded by 2n−1−2n/2−1 because of the so-called Parseval’s relation∑
s∈F n

2
χ̂f

2(s) = 22n.
A Boolean function is called bent if its nonlinearity equals 2n−1 − 2n/2−1,

where n is necessarily even. Then, its distance to every affine function equals
2n−1 ± 2n/2−1, according to Parseval’s relation again and to (1).

A Boolean function f is bent if and only if all of its derivatives Daf(x) =
f(x)⊕f(x+a) are balanced, (see [53]). Hence, f is bent if and only if its support
is a difference set (cf. [30]).

If f is bent, then the dual Boolean function f̃ defined on Fn
2 by χ̂f (s) =

2
n
2 χf (s) is bent. The dual of f̃ is f itself. The mapping f �→ f̃ is an isometry

(the Hamming distance between two bent functions is equal to that of their
duals).

The notion of bent function is invariant under linear equivalence and it is in-
dependent of the choice of the inner product in Fn

2 (since any other inner product
has the form 〈x, s〉 = x · L(s), where L is an auto-adjoint linear isomorphism).

Rothaus’ inequality [53] states that any bent function has algebraic degree
at most n/2. Algebraic degree being an important complexity parameter, bent
functions with high degrees are preferred from cryptographic viewpoint.

The class of bent functions, whose determination or classification is still an
open problem, is relevant to cryptography (cf. [47]), to algebraic coding theory
(cf. [45]), to sequence theory (cf. [51]) and to design theory (any difference set
can be used to construct a symmetric design, cf. [1], pages 274-278). More infor-
mation on bent functions can be found in the survey paper [10] or in the more
recent chapter [18].



On Bent and Highly Nonlinear Balanced/Resilient Functions 5

The class of bent functions is included in the class of the so-called plateaued
functions. This notion has been introduced by Zheng and Zhang in [62]. A func-
tion is called plateaued if its Walsh transform takes at most three values 0 and
±λ (where λ is some positive integer, that we call the amplitude of the plateaued
function). Because of Parseval’s relation, λ must be of the form 2r where r ≥ n

2 ,
and the suppport {s ∈ Fn

2 / χ̂f(s) 	= 0} of the Walsh transform of a plateaued
function of amplitude 2r has size 22n−2r.

Bent functions cannot be balanced, i.e. have uniformly distributed output.
Hence, they cannot be used without modifications in the pseudo-random gen-
erator of a stream cipher, since this would leak statistical information on the
plaintext, given the ciphertext1. Finding balanced functions with highest known
nonlinearities is an important cryptographic task, as well as obtaining the best
possible upper bounds on the nonlinearities of balanced functions. A nice way of
designing highly nonlinear balanced functions is due to Dobbertin [33]: taking a
bent function f which is constant on an n/2-dimensional flat A of Fn

2 and replac-
ing the values of f on A by the values of a highly nonlinear balanced function on
A (identified to a function on Fn/2

2 ). The problem of similarly modifying bent
functions into resilient functions (see definition below) has been studied in [46].

After the criteria of balancedness, high algebraic degree and high nonlinear-
ity, which are relevant to all stream ciphers, another important cryptographic
criterion for Boolean functions is resiliency. It plays a central role in their se-
curity, at least in the case of the standard model – the combination generator
(cf. [57]). In this model, the vector whose coordinates are the outputs to n lin-
ear feedback shift registers is the input to a Boolean function. The output to
the function during N clock cycles produces the keystream (of length N , the
length of the plaintext), which is then (as in any stream cipher) bitwise xored
with the message to produce the cipher. Some divide-and-conquer attacks exist
on this method of encryption (cf. [4, 40, 41, 58]). To withstand these correlation
attacks, the distribution probability of the output to the function must be unal-
tered when any m of its inputs are fixed [58], with m as large as possible. This
property, calledm-th order correlation-immunity [57], is characterized by the set
of zero values in the Walsh spectrum [61]: f is m-th order correlation-immune
if and only if χ̂f (u) = 0, for all u ∈ Fn

2 such that 1 ≤ wH(u) ≤ m, where wH(u)
denotes the Hamming weight of the n-bit vector u, (the number of its nonzero
components). Balanced m-th order correlation-immune functions are called m-
resilient functions. They are characterized by the fact that χ̂f (u) = 0 for all
u ∈ Fn

2 such that 0 ≤ wH(u) ≤ m.
The notions of correlation immune and resilient functions are not invariant

under linear equivalence; they are invariant under translations x �→ x+ a, since,
if g(x) = f(x+ a), then χ̂g(u) = χ̂f (u)(−1)a·u, under permutations of the input
coordinates, and when n is even, under an additional involution (see [38]).

Siegenthaler’s inequality [57] states that any m-th order correlation immune
function on n variables has degree at most n−m, that any m-resilient function

1 However, as soon as n is large enough (say n ≥ 20), the bias 2n/2−1

2n−1 between their
weights and the weight of balanced functions is quite small.
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(0 ≤ m < n−1) has algebraic degree smaller than or equal to n−m−1 and that
any (n− 1)-resilient function has algebraic degree 1. We shall call Siegenthaler’s
bound this property.

Sarkar and Maitra have shown that the Hamming distance between any m-
resilient function and any affine function is divisible by 2m+1 (this divisibility
bound is improved in [11, 23] for functions with specified algebraic degrees). This
leads to an upper bound on the nonlinearity of m-resilient functions (also partly
obtained by Tarannikov and by Zhang and Zheng): the nonlinearity of any m-
resilient function is smaller than or equal to 2n−1 − 2m+1 if n

2 − 1 < m+ 1, to
2n−1−2

n
2 −1−2m+1 if n is even and n

2 −1 ≥ m+1 and to 2n−1−2m+1
⌈
2n/2−m−2

⌉
if n is odd and n

2 − 1 ≥ m + 1. We shall call this set of upper bounds Sarkar
et al.’s bound. A similar bound exists for correlation immune functions, but we
do not recall it since non-balanced correlation immune functions present little
cryptographic interest.

Two kinds of constructions, providing resilient functions with degrees and
nonlinearities approaching or achieving the known bounds, can be identified.
Some constructions give direct definitions of Boolean functions. There are few
such primary constructions and new ideas for designing them are currently lack-
ing. Except for small values of the number of variables, the only known primary
construction of resilient functions which leads to a wide class of such functions,
the Maiorana-McFarland’s construction, does not allow designing balanced or
resilient functions with high degrees and high nonlinearities (see e.g. [12, 13]),
for which the trade-off between these parameters achieve the bounds recalled
above. Moreover, the stream ciphers using the constructed functions are subject
to the time-memory-data trade-off attack (see [42]). Modifications and gener-
alizations of this construction have been proposed (see e.g. [12, 16, 50, 55]), but
these generalizations lead to classes with roughly the same properties as the
original class. Secondary constructions use previously defined functions (that we
shall call “building blocks”) to build new ones. Most of them design n-variable
functions fromm-variable functions with m < n and lead in practice to recursive
constructions.

Until recently, these criteria were the only requirements needed for the de-
sign of the function f used in a stream cipher as a combining function or as a
filtering one (in the filter model, a single LFSR of greater length is used and
the input to the n-variable Boolean function is given by a subset of n positions
in this LFSR). The recent algebraic attacks [25, 26] have changed this situation
by adding new criteria of considerable importance to this list. Algebraic attacks
exploit multivariate relations involving key/state bits and output bits of f . If one
such relation (or, better, several) is found that is of low degree in the key/state
bits, algebraic attacks are very efficient. It is demonstrated in [26] that low de-
gree relations and thus successful algebraic attacks exist for several well known
constructions of stream ciphers that are immune to all previously known attacks.
These low degree relations are obtained by multiplying the Boolean function f
by a well chosen low degree nonzero function g, such that the product function
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fg (that is, the function which support equals the intersection of the supports
of f and g) has also low degree.

The scenarios found in [26], under which functions g 	= 0 and h of degrees at
most d exist such that fg = h, have been simplified in [48] into two scenarios:
(1) there exists a nonzero Boolean function g of degree at most d whose support
is disjoint from the support of f , i.e. such that fg = 0 (such a function g is called
an annihilator of f); (2) there exists a nonzero annihilator, of degree at most d,
of f ⊕ 1 (we write then: g � f).

The (basic) algebraic immunity AI(f) of a Boolean function f is the minimum
value of d such that f or f⊕1 admits a nonzero annihilator of degree d. Obviously,
AI(f) is upper bounded by the degree d◦f . It should be high enough (at least
equal to 7).

When the total number 1 + . . . +
(
n
d

)
of monomials of degrees at most d is

strictly greater than 2n−1, these monomials and their products with f cannot
be linearly independent. This proves, as observed in [26], that the algebraic
immunity of any function f satisfies AI(f) ≤ �n/2
. This implies that Boolean
functions used in stream ciphers must have at least 13 variables. In fact, 13 is
very probably insufficient.

Another upper bound on AI(f), which involves the nonlinearity of f , has been
proved in [28]:

∑AI(f)−2
i=0

(
n
i

)
≤ Nf . It is a consequence of the double inequality∑AI(f)−1

i=0

(
n
i

)
≤ wH(f) ≤

∑n−AI(f)
i=0

(
n
i

)
, which also implies that a function f

such that AI(f) = n+1
2 (n odd) must be balanced.

There is more generally a relationship between AI(f) and the minimum dis-
tanceN (r)

f between f and all Boolean functions of degrees at most r (the so-called
Reed-Muller code of order r), that we shall call the r-th order nonlinearity of f .
We have

∑AI(f)−r−1
i=0

(
n
i

)
≤ N (r)

f (see [19]). Moreover:

Proposition 1. If AI(f) ≤ r and if f is balanced, then we have N
(r)
f

≤ 2n−1 − 2n−r.

Proof. By hypothesis, there exists a nonzero function g of degree at most r such
that g � f or g � f ⊕ 1. Since g is nonzero and belongs to the Reed-Muller
code of order r, it has weight at least the minimum distance of this code, that is
2n−r. If g � f , then dH(f, g) = wH(f ⊕ g) = wH(f) − wH(g) ≤ 2n−1 − 2n−r. If
g � f⊕1, then dH(f, g⊕1) = wH(f⊕g⊕1) = wH(f⊕1)−wH(g) ≤ 2n−1−2n−r.
This implies in both cases that N (r)

f ≤ 2n−1 − 2n−r. �
This observation opens a direction for research: finding balanced functions with
r-th order nonlinearity strictly greater than 2n−1−2n−r for some high value of r.
A combinatorial argument shows that such functions exist almost surely as soon
as r ≤ .17×n. Indeed, the number of n-variable Boolean functions of algebraic de-
grees at most r equals 21+n+(n

2)+...+(n
r). Such a function h being given, the num-

ber of those Boolean functions f such that the Hamming distance dH(f, h) sat-

isfies dH(f, h) ≤ 2n−1−R for some positive number R equals
∑

0≤i≤2n−1−R

(
2n

i

)
.

It is known (see [45], page 310) that, for every integer N and every δ < 1/2,
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the number
∑

0≤i≤δN

(
N

i

)
is upper bounded by 2NH2(δ), and it is noticed in [15]

that 2NH2(δ) < 2N−2N( 1
2−δ)2 log2 e. Hence,

∑
0≤i≤2n−1−R

(
2n

i

)
is upper bounded

by 22n−2−n+1R2 log2 e, and the number of those Boolean functions such that
N

(r)
f ≤ 2n−1 − R is therefore smaller than 21+n+(n

2)+...+(n
r)+2n−2−n+1R2 log2 e.

According to [45] again, we have: 1+n+
(
n
2

)
+ . . .+

(
n
r

)
≤ 2nH2(r/n). The proba-

bility that a random n-variable Boolean function f satisfies N (r)
f ≤ 2n−1 − 2n−r

is then smaller than 22nH2(r/n)−2n(1−2r/n)+1 log2 e. It is a simple matter to show
that, when r/n ≤ .17, this probability tends to 0 when n tends to infinity.

A high value of AI(f) is not a sufficient property for a resistance to al-
gebraic attacks, because of fast algebraic attacks [25], in which h can have
a greater degree than g. Indeed, while the complexity of the standard alge-
braic attack is roughly O

((
n

AI(f)

)3), the complexity of the fast algebraic at-
tack, when functions g 	= 0 and h have been found such that fg = h, is
roughly O

((
n

d◦g

)(
n

d◦h

)
log2

((
n

d◦h

))
+
(

n
d◦g

)3 +
(

n
d◦h

)
log2

2 (( n
d◦h

)))
[36]. Similarly

as above, when the number of monomials of degrees at most e, plus the number
of monomials of degrees at most d, is strictly greater than 2n – that is, when
d◦g + d◦h ≥ n – there exist g 	= 0 of degree at most e and h of degree at most
d such that fg = h. An n-variable function f is then optimal with respect to
fast! algebraic attacks if there do not exist two functions g 	= 0 and h such that
fg = h and d◦g + d◦h < n. Very little research in this direction has been done
already.

3 The Known Constructions of Bent Functions and of
Resilient Functions and the Corresponding Degrees,
Nonlinearities and Algebraic Immunities

3.1 Primary Constructions

Maiorana-McFarland Constructions. Maiorana-McFarland class (cf. [31])
is the set of all the (bent) Boolean functions on Fn

2 = {(x, y), x, y ∈ F
n
2

2 } (n
even) of the form :

f(x, y) = x · π(y) ⊕ g(y) (3)

where π is any permutation on F
n
2

2 and g is any Boolean function on F
n
2

2 .
The dual of f is then f̃(x, y) = y ·π−1(x)⊕ g(π−1(x)). Notice that the degree

of f can be n/2, i.e. be optimal.
In [3] is introduced a generalization leading to balanced and resilient functions:

let m and n = r + s be any integers such that r > m ≥ 0, s > 0, g any Boolean
function on F s

2 and φ a mapping from F s
2 to F r

2 such that every element in φ(F s
2 )

has Hamming weight strictly greater than m, then the function:
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f(x, y) = x · φ(y) ⊕ g(y), x ∈ F r
2 , y ∈ F s

2 (4)

is m-resilient, since we have

χ̂f (a, b) = 2r
∑

y∈φ−1(a)

(−1)g(y)⊕b·y. (5)

The degree of f (which is upper bounded by s + 1) and its nonlinearity have
been studied in [12, 13]. The functions of the form (4), for n

2 − 1 < m + 1, can
have high nonlinearities. However, optimality or sub-optimality with respect to
Siegenthaler’s and Sarkar et al’s bounds could be obtained with this construction
only with functions in which r was large and s was small. These functions having
then low degrees, they are not suitable for practical use. In the case n

2−1 ≥ m+1,
no function belonging to Maiorana-McFarland’s class and having nearly optimal
nonlinearity could be constructed, except in the limit case n

2 − 1 = m+ 1.
It has been shown in [22] that, under an assumption on φ which seems highly

probable, unless r is much greater than s (case that we must exclude for degree
reasons), every highly nonlinear function (4) satisfies AI(f) ≤ s. This has been
also checked by computer experiment. Table 1, from [22], gives the AI of some
resilient functions built by the Maiorana-McFarland. The notation ’Const’ is for
the type of construction used: the classical construction of [3] is denoted by ’a’,
the case where exactly two elements of F s

2 have the same image of weight at
least w but with different values for the function g is denoted by ’b’.

Generalizations of Maiorana-McFarland’s functions have been studied in [12,
16]. They have the respective forms f(x, y) =

⊕�r/2	
i=1 x2i−1x2i ψi(y)⊕ x · φ(y)⊕

Table 1. Computation of some characteristics for Boolean functions built by the
Maiorana-McFarland construction

n r s degree Const. w resiliency nonlinearity alg. immunity
8 4 4 5 b 2 2 112 3
9 5 4 5 b 3 3 224 3
9 5 4 5 a 3 2 240 4
10 5 5 6 b 3 3 480 4
10 6 4 5 a 4 3 480 4
11 6 5 6 b 4 4 960 4
11 6 5 6 a 3 2 992 5
12 6 6 7 b 4 4 211 − 26 5
12 7 5 6 a 4 3 211 − 26 5
13 7 6 7 a 4 3 211 − 26 5
13 7 6 7 b 4 4 212 − 27 5
13 8 5 6 a 5 4 212 − 27 5
14 7 7 8 b 4 4 213 − 27 5
14 8 6 7 b 6 6 213 − 28 5
14 8 6 7 a 5 4 213 − 27 5
14 8 6 7 a 5 4 213 − 27 5
14 9 5 6 a 7 6 213 − 28 5
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g(y) and f(x, y) =
∏ϕ(y)

i=1 (x · φi(y) ⊕ gi(y) ⊕ 1)⊕x·φ(y)⊕g(y). The first one has
more or less the same behavior with respect to resiliency and nonlinearity as the
original construction, but allows achieving some particular tradeoffs that seemed
impossible to achieve before. Its degree is upper bounded by s + 2, and, under
the same reasonable assumption on ψ as the one evoked above for φ, we have
AI(f) ≤ s+ 1. The degree and the algebraic immunity of the second form have
potential better behavior. Further work on this subject will have to be made in the
future. Modifications have also been proposed (see e.g. [52], in which some affine
functions, at least one, are replaced by suitably chosen nonlinear functions) but
it is shown in [48] that the algebraic immunities of these functions are often low.

Effective Partial-Spreads Constructions. In [31] is also introduced the class
of bent functions called PSap (a subclass of the so-called Partial-Spreads class),
whose elements are defined the following way:
F

n
2

2 is identified to the Galois field F2
n
2

and Fn
2 is identified to F2

n
2
×F2

n
2
; PSap

(or more precisely an extended version of the original one given by Dillon) is the
set of all the functions of the form f(x, y) = g(x y2

n
2 −2) (i.e. g(x

y ) with x
y = 0 if

x = 0 or y = 0) where g is a balanced Boolean function on F
n
2

2 . We have then
f̃(x, y) = g( y

x). The degree of f is optimal, even if g is affine (see e.g. [21]).
An alternative representation of these functions is as follows. F2n equals

F2n/2 +ωF2n/2 , where ω ∈ F2n \F2n/2 . A function f belongs to PSap if and only
if it has weight 2n−1 ± 2n/2−1 and satisfies f(βx) = f(x), for every β ∈ F ∗

2n/2 .
This last condition is equivalent to f(α2n/2+1x) = f(x), where α is a primitive
element of F2n . Indeed, α2n/2+1 is a primitive element of F2n/2 .

It is proved in [35] that, almost surely, any function in this class satisfies
AI(f) = d◦(f) = n/2.

The idea of this construction is used in [9] to obtain a construction of
correlation-immune functions:
Let s and r be two positive integers and n = r + s, g a function from F2r

to F2, φ a linear mapping from F s
2 to F2r and u an element of F2r such that

u+φ(y) 	= 0, ∀y ∈ F s
2 . Let f be the function from F2r×F s

2 ∼ Fn
2 to F2 defined by:

f(x, y) = g
(

x

u+φ(y)

)
⊕ v · y, (6)

where v ∈ F s
2 . If, for every z in F2r , φ∗(z)⊕ v has weight greater than m, where

φ∗ : F2r �→ F s
2 is the adjoint of φ, then f is m-resilient.

The same observations as for Maiorana-McFarland’s construction on the abil-
ity of these functions to have nonlinearities near Sarkar-Maitra’s bound can be
made. This construction generates a small number of functions (compared to the
Mariorana-McFarland construction). But it may be able to reach better algebraic
immunities and it should be studied further for this reason.

Functions with Few Terms in Their Trace Representation. The so-called
Gold function tr

(
αx2r+1

)
(r ∈ N, n even) is bent if and only if α 	∈ {x2r+1; x ∈
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F2n}. The Dillon function tr
(
αx2n/2−1

)
is bent if and only if the Kloosterman

sum
∑

x∈F
2n/2

(−1)trn/2(1/x+αx) is null, where trn/2 is the trace function on F2n/2 ,
see [30]. Recent results prove the bentness of other functions with few terms in
their trace representation. Namely, the functions:

– tr
(
αx4k−2k+1

)
, where (k, n)=1, n is not divisible by 3 and α 	∈ {x3; x ∈

F2n}, cf. [32];
– tr

(
αx2n/2+2n/4+1+1

)
, where n ≡ 4 [mod 8], α = β5, β4 + β + 1 = 0, cf. [44];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

3(2n/2−1)+1
)
, where n ≡ 4 [mod 8],

(
α1 + α1

2n/2
)2

= α2
2n/2+1 and α2 ∈ {x5; x ∈ F ∗

2n}, cf. [34];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

3(2n/2−1)+1
)
, where

(
α1 + α1

2n/2
)2

= α2
2n/2+1,

α2 ∈ F ∗
2n and n ≡ 0 or 2 or 6 [mod 8], cf. [34];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

(2n/2−1+2n/2−2+1)(2n/2−1)+1
)
, where n ≡ 2 [mod 4],(

α1 + α1
2n/2
)2

= α2
2n/2+1, cf. [34];

– tr
(
α1x

2n−1+2n/2−1
+ α2x

2n/2−1+1
3 (2n/2−1)+1

)
, where n is divisible by 4 and(

α1 + α1
2n/2
)2

= α2
2n/2+1, cf. [34].

A last function, with more terms in its trace representation, and that we do not
recall, is given in [43].

Computer experiment has been reported in [22] giving highly nonlinear bal-
anced functions having high AI’s. In Table 2, is computed the algebraic immunity
of the function tr(x2n−2) (recall that the inverse function x2n−2 is used as S-box
in the AES) for 7 ≤ n ≤ 14. This table shows that this fonction, even if good, is
not optimal.

In Table 3 are listed balanced functions of three types: (1) balanced functions
equal to the traces of power functions; (2) functions, denoted by *, obtained

Table 2. Computation of the nonlinearity and algebraic immunity for the inverse
function for 6 ≤ n ≤ 14

n d weight degree nonlinearity alg. immunity
6 -1 32 5 24 3
7 -1 64 6 54 4
8 -1 128 7 112 4
9 -1 256 8 234 4
10 -1 512 9 480 5
11 -1 1024 10 980 5
12 -1 2048 11 1984 5
13 -1 4096 12 4006 6
14 -1 8192 13 8064 6
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Table 3. Computation of the nonlinearity, algebraic degree and algebraic immunity
for certain power functions tr(xd)

n d weight degree nonlinearity alg. immunity
8 31 128 5 112 4
8 39 (Kasami) 128∗ 6 114 4
9 57 (Kasami) 256 4 224 4
9 59 256 5 240 5
9 115 256 5 240 5
10 241 (Kasami) 512 5 480 5
10 362 512 5 480 5
10 31 (Dillon) 512∗ 9 486 5
10 339 (Dobbertin) 512∗ 9 480 5
11 315 1024 6 992 6
12 993 (Kasami) 2048∗ 11 2000 6
12 63 (Dillon) 2048∗ 11 2000 6
12 636 2048∗ 11 2000 6
13 993 (Kasami) 4096 6 4032 6
13 939 4096∗∗ 12 4030 7
14 4033 (Kasami) 8192 7 8064 7
14 127 (Dillon) 8192∗∗ 13 8088 7

from traces of power functions, which are not balanced (they have weight 2n−1−
2n/2−1) and which are made balanced by replacing the first 2n/2−1 0’s by 1’s
(usually this construction leads to a function with a higher algebraic degree
than the starting function); (3) functions, denoted by **, of the same kind as
the previous ones, but for which were additionally inverted a small number of
bits from 0 to 1 and reciprocally from 1 to 0 (this small modification does not
affect too much the nonlinearity but may increase the AI by 1 in the case when
the dimension of the annihilator of the Boolean function f or 1 + f is small).

3.2 Secondary Constructions

We shall call constructions with extension of the number of variables those con-
structions using functions on Fm

2 , with m < n, to obtain functions on Fn
2 .

General Constructions with Extension of the Number of Variables.
All known secondary constructions of bent functions are particular cases of a
general construction given in [8]:
Let m and r be two positive even integers. Let f be a Boolean function on Fm+r

2
such that, for any element x′ of F r

2 , the function on Fm
2 :

fx′ : x→ f(x, x′)

is bent. Then f is bent if and only if for any element u of Fm
2 , the function

ϕu : x′ → f̃x′(u)

is bent on F r
2 .
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A particular case of the general construction of bent functions given above is
a construction due to Rothaus in [53]. We describe it because it will be related
to the construction studied at the end of the present paper: if f1, f2, f3 and
f1⊕ f2⊕ f3 are bent on Fm

2 (m even), then the function defined on any element
(x1, x2, x) of Fm+2

2 by:
f(x1, x2, x) =

f1(x)f2(x)⊕f1(x)f3(x)⊕f2(x)f3(x)⊕ [f1(x)⊕f2(x)]x1⊕ [f1(x)⊕f3(x)]x2⊕x1x2

is bent.
The classical secondary constructions of resilient functions are the following:

Direct Sums of Functions: if f is an r-variable t-resilient function and if g is an
s-variable m-resilient function, then the function:

h(x1, . . . , xr, xr+1, . . . , xr+s) = f(x1, . . . , xr)⊕ g(xr+1, . . . , xr+s)

is (t +m+ 1)-resilient. This comes from the easily provable relation χ̂h(a, b) =
χ̂f (a) × χ̂g(b), a ∈ F r

2 , b ∈ F s
2 . We have also d◦h = max(d◦f, d◦g) and, thanks

to Relation (2), Nh = 2r+s−1− 1
2 (2r −2Nf)(2s−2Ng) = 2rNg +2sNf −2NfNg.

We clearly have max(AI(f), AI(g)) ≤ AI(h) ≤ AI(f) + AI(g), since the re-
striction to an affine subspace E of the annihilator of a function is the annihilator
of the restriction to E of the function (note that in the present case, at least
one restriction is actually nonzero if the annihilator is nonzero), and since every
product of an annihilator of f + ε with an annihilator of g + η (ε, η ∈ F2) is an
annihilator of h+ ε+η (and, here, the direct product of a nonzero r-variable an-
nihilator of f with a nonzero s-variable annihilator of g is nonzero since the two
annihilators depend on disjoint sets of variables). The question seems open of de-
termining general conditions under which the inequality AI(h) ≤ AI(f)+AI(g)
can be proved to be an equality (which is clearly false in some cases, e.g. when
AI(f) +AI(g) > max(d◦(f), d◦(g))).

Note that, when the sum is not direct, the inequality AI(f ⊕ g) ≤ AI(f) +
AI(g) can be false: let h be an n-variable Boolean function and let l be an n-
variable nonzero linear function, then the functions f = hl and g = h(l⊕1) have
algebraic immunities at most 1, since f(l⊕ 1) = gl = 0, and their sum equals h.
If AI(h) > 2, we obtain a counter-example. However, it involves non-balanced
functions. A counter-example with balanced functions is as follows: let h be an
n-variable balanced Boolean function and let l and l′ be two distinct n-variable
nonzero linear functions, such that the functions hll′, hl(l′ ⊕ 1), h(l ⊕ 1)l′ and
h(l ⊕ 1)(l′ ⊕ 1) are balanced. Then the functions f = hll′ ⊕ (h ⊕ 1)l(l′ ⊕ 1) +
(l⊕ 1)(l′ ⊕ 1) and g = l(l′ ⊕ 1) + h(l⊕ 1)l′ + (h⊕ 1)(l⊕ 1)(l′ ⊕ 1) have algebraic
immunities at most 2, since f(l ⊕ 1)l′ = gll′ = 0, they are balanced and their
sum equals h. If AI(h) > 4, we obtain a counter-example.

The secondary construction recently introduced in [29] consists in the direct
sum of the starting function f and of a function gk on 2k variables.

Siegenthaler’s Construction: Let f and g be two Boolean functions on F r
2 . Con-

sider the function

h(x1, . . . , xr, xr+1) = (xr+1 ⊕ 1)f(x1, . . . , xr) ⊕ xr+1g(x1, . . . , xr)
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on F r+1
2 . Then:

χ̂h(a1, . . . , ar, ar+1) = χ̂f (a1, . . . , ar) + (−1)ar+1 χ̂g(a1, . . . , ar).

Thus, if f and g are m-resilient, then h is m-resilient; moreover, if for every
a ∈ F r

2 of Hamming weight m+1, we have χ̂f (a)+ χ̂g(a) = 0, then h is (m+1)-
resilient. And we have: Nh ≥ Nf + Ng. If f and g achieve maximum possible
nonlinearity 2r−1 − 2m+1 and if h is (m + 1)-resilient, then the nonlinearity
2r − 2m+2 of h is the best possible. If the supports of the Walsh transforms
of f and g are disjoint, then we have Nh = 2r−1 + min(Nf , Ng); thus, if f
and g achieve maximum possible nonlinearity 2r−1− 2m+1, then h achieves best
possible nonlinearity 2r − 2m+1.

The algebraic immunity of h has been studied in [29]:

– If AI(f) 	= AI(g) then AI(h) = min{AI(f), AI(g)} + 1.
– If AI(f) = AI(g) = d, then d ≤ AI(h) ≤ d+ 1, and AI(h) = d if and only if

there exist f1, g1 ∈ Bn of algebraic degree d such that {f ∗f1 = 0, g ∗g1 = 0}
or {(1 + f) ∗ f1 = 0, (1 + g) ∗ g1 = 0} and deg(f1 + g1) ≤ d− 1.

We cannot say that Siegenthaler’s construction is good or is bad in terms of
algebraic immunity, since:

– a good construction is supposed to gain 1 (resp k) for the algebraic immunity
when we add 2 (resp 2k) variables, here we add only one;

– the construction is very general since every function can be obtained from it.

In practice, we could not obtain good algebraic immunity with it.
Siegenthaler [57] proposed, as a particular case of its (iterated) construction,

to add to a given function f a linear function on disjoint variables for increasing
its resiliency order. This does not allow achieving good algebraic immunity, since
adding a linear function to f can increase the AI at most by one (an annihilator
of f , multiplied by l + 1 gives an annihilator of f + l).

Tarannikov’s Construction: Let g be any Boolean function on F r
2 . Define the

Boolean function h on F r+1
2 by

h(x1, . . . , xr, xr+1) = xr+1 ⊕ g(x1, . . . , xr−1, xr ⊕ xr+1).

The Walsh transform χ̂h(a1, . . . , ar+1) is equal to∑
x1,...,xr+1∈F2

(−1)a·x⊕g(x1,...,xr)⊕arxr⊕(ar⊕ar+1⊕1)xr+1

where we write a = (a1, . . . , ar−1) and x = (x1, . . . , xr−1); it is null if ar+1 = ar

and it equals 2 χ̂g(a1, . . . , ar−1, ar) if ar = ar+1 ⊕ 1. Thus: Nh = 2 Ng; If g is
m-resilient, then h is m-resilient. If, additionally, χ̂g(a1, . . . , ar−1, 1) is null for
every vector (a1, . . . , ar−1) of weight at most m, then h is (m+ 1)-resilient.
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Generalizations: Tarannikov in [60], and after him, Pasalic et al. in [54] used
this construction to design a more complex one, that we call Tarannikov et
al.’s construction, and which allowed maximum tradeoff between resiliency, al-
gebraic degree and nonlinearity. This construction uses two (n− 1)-variable m-
resilient functions f1 and f2 achieving Siegenthaler’s and Sarkar et al.’s bounds
to design an (n + 3)-variable (m + 2)-resilient function h also achieving these
bounds, assuming that f1 + f2 has same degree as f1 and f2 and that the sup-
ports of the Walsh transforms of f1 and f2 are disjoint. The two restrictions
h1(x1, . . . , xn+2) = h(x1, . . . , xn+2, 0) and h2(x1, . . . , xn+2) = h(x1, . . . , xn+2, 1)
have then also disjoint Walsh supports, and these two functions can then be used
in the places of f1 and f2. This leads to an infinite class of functions achieving
Sarkar et al.’s and Siegenthaler’s bounds. It has been proved in [2] that the n-
variable functions constructed by this method attain Ω(

√
n) algebraic immunity

(which is unfortunately bad).
Tarannikov et al.’s construction has been in its turn generalized (see [14]):

Theorem 1. Let r, s, t and m be positive integers such that t < r and m < s.
Let f1 and f2 be two r-variable t-resilient functions. Let g1 and g2 be two s-
variable m-resilient functions. Then the function h(x, y) = f1(x)⊕ g1(y)⊕ (f1⊕
f2)(x) (g1 ⊕ g2)(y), x ∈ F r

2 , y ∈ F s
2 is an (r + s)-variable (t +m + 1)-resilient

function. If f1 and f2 are distinct and if g1 and g2 are distinct, then the algebraic
degree of h equals max(d◦f1, d◦g1, d◦(f1 ⊕ f2)+ d◦(g1 ⊕ g2)); otherwise, it equals
max(d◦f1, d◦g1). The Walsh transform of h takes value

χ̂h(a, b) =
1
2
χ̂f1(a) [χ̂g1(b) + χ̂g2(b)] +

1
2
χ̂f2(a) [χ̂g1(b) − χ̂g2(b)] . (7)

If the Walsh transforms of f1 and f2 have disjoint supports as well as those of g1
and g2, then

Nh = min
i,j∈{1,2}

(
2r+s−2 + 2r−1Ngj + 2s−1Nfi −NfiNgj

)
. (8)

In particular, if f1 and f2 have (optimum) nonlinearity 2r−1 − 2t+1 and have
disjoint Walsh supports, if g1 and g2 have (optimum) nonlinearity 2s−1 − 2m+1

and have disjoint Walsh supports, if f1 + f2 has degree r − t − 1 and if g1 + g2
has degree s − m − 1, then h has degree r + s − t − m − 2 and nonlinearity
2r+s−1 − 2t+m+2, and thus achieves Siegenthaler’s and Sarkar et al.’s bounds.

Note that function h, defined this way, is the concatenation of the four functions
f1, f1⊕1, f2 and f2⊕1, in an order controled by g1(y) and g2(y). The proof of this
theorem and examples of such pairs (f1, f2) (or (g1, g2)) can be found in [14].
This construction being very general since it generalizes all known secondary
constructions, it is difficult to give bounds on the algebraic immunity of the
resulting functions.

Other Constructions: There exists a secondary construction of resilient functions
from bent functions (see [9]): let r be a positive integer,m a positive even integer
and f a function such that, for any element x′, the function: fx′ : x → f(x, x′)
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is bent. If, for every element u of Hamming weight at most t, the function
ϕu : x′ → f̃x′(u) is (t − wH(u))-resilient, then f is t-resilient (the converse is
true).

Rothaus’ construction has been modified in [9] into a construction of resilient
functions: if f1 is t-resilient, f2 and f3 are (t−1)-resilient and f1⊕f2⊕f3 is (t−2)-
resilient, then f(x1, x2, x) is t-resilient (the converse is true). This construction
does not seem able to produce functions with higher algebraic immunities than
the functions used as building blocks.

Constructions Without Extension of the Number of Variables. Such
constructions, by modifying the support of highly nonlinear resilient functions
without decreasing their characteristics, may be appropriate for trying to in-
crease the algebraic immunities of such functions, previously obtained by clas-
sical constructions. There exist, in the literature, four such constructions.

Modifying a Function on a Subspace: Dillon proves in [31] that if a binary func-
tion f is bent on Fn

2 (n even) and if E is an n
2 -dimensional flat on which f is

constant, then, denoting by 1E the indicator (i.e. the characteristic function) of
E, the function f ⊕ 1E is bent too. This is generalized in [6]:

Let E = b⊕E′ be any flat in Fn
2 (E′, the direction of E, is a linear subspace

of Fn
2 ). Let f be any bent function on Fn

2 . The function f� = f ⊕ 1E is bent if
and only if one of the following equivalent conditions is satisfied :

1. for any x in Fn
2 \ E′, the function: y �→ f(y)⊕ f(x⊕ y) is balanced on E;

2. for any a in Fn
2 , the restriction of the function f̃(x)⊕ b ·x to the flat a⊕E′⊥

is either constant or balanced.

If f� is bent, then E has dimension greater than or equal to r = n/2 and the
degree of the restriction of f to E is at most dim(E)− r+1. If E has dimension
r, then this last condition (i.e., the fact that the restriction of f to E is affine)
is also sufficient and the function f̃�(x) is equal to :

f̃(x) ⊕ 1E′⊥(u⊕ x),

where u is any element of Fn
2 such that for any x in E : f(x) = u · x⊕ ε.

This construction has been adapted to correlation-immune functions in [9]: let
t, m and n any positive integers and f a t-th order correlation-immune function
from Fn

2 to Fm
2 ; assume there exists a subspace E of Fn

2 , whose minimum nonzero
weight is greater than t and such that the restriction of f to the orthogonal of E
(i.e. the subspace of Fn

2 : E⊥ = {u ∈ Fn
2 | ∀x ∈ E, u · x = 1}) is constant. Then

f remains t-th order correlation-immune if we change its constant value on E⊥

into any other one.

Hou-Langevin Construction: X.-D. Hou and P. Langevin have made in [39] a
very simple observation: Let f be a Boolean function on Fn

2 , n even. Let σ =
(σ1, · · · , σn) be a permutation on Fn

2 such that
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dH

(
f,

n∑
i=1

ai σi

)
= 2n−1 ± 2

n
2 −1; ∀a ∈ Fn

2 .

Then f ◦ σ−1 is bent.
A case of application of this fact, pointed out in [37], is when f belongs to

Maiorana-McFarland class (3), with π = id and when the coordinate functions
of σ are all of the form xi1yj1 ⊕ . . .⊕ xik

yjk
⊕ l(x, y)⊕ h(y), where k < n/2 and

il < jl for every l ≤ k; the function h is any Boolean function on Fn/2
2 and l is

affine.
Another case of application is given in [39] when f has degree at most 3:

assume that for every i = 1, · · · , n, there exists a subset Ui of Fn
2 and an affine

function hi such that:

σi(x) =
∑
u∈Ui

(f(x) ⊕ f(x⊕ u)) ⊕ hi(x).

Then f ◦ σ−1 is bent.
Only examples of potentially new bent functions have been deduced by Hou

and Langevin from these results.
This idea of construction can be adapted to resilient functions:

If dH(f,
∑n

i=1 ai σi) = 2n−1 for every a ∈ Fn
2 of weight at most k, then f ◦

σ−1 is k-resilient. This secondary construction needs strong hypothesis on the
function used as buiding block to produce resilient functions. Further work seems
necessary for designing functions for stream ciphers by using it.

Two Recent Constructions have been introduced in [24]. They will be recalled
at Subsection 4.3.

4 A New Secondary Construction of Boolean Functions

4.1 A Modification of Rothaus’ Construction

Rothaus’ construction was the first non-trivial construction of bent functions
to be obtained in the literature. It is still one of the most interesting known
constructions nowadays, since the functions it produces can have degrees near
n/2, even if the functions used as building blocks don’t. But the constructed
functions have a very particular form. It is possible to derive a construction
having the same nice property but having not the same drawback, thanks to the
following observation.

Given three Boolean functions f1, f2 and f3, there is a nice relationship be-
tween their Walsh transforms and the Walsh transforms of two of their elemen-
tary symmetric related functions:

Lemma 1. Let f1, f2 and f3 be three Boolean functions on Fn
2 . Let us denote

by σ1 the Boolean function equal to f1 ⊕ f2 ⊕ f3 and by σ2 the Boolean function
equal to f1f2 ⊕ f1f3 ⊕ f2f3. Then we have f1 + f2 + f3 = σ1 + 2σ2. This implies

χ̂f1 + χ̂f2 + χ̂f3 = χ̂σ1 + 2χ̂σ2 . (9)
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Proof. The fact that f1+f2+f3 = σ1+2σ2 (recall that these sums are calculated
in Z and not mod 2) can be checked easily and directly implies χf1 +χf2 +χf3 =
χσ1 +2χσ2 , thanks to the equality χf = 1−2f (valid for every Boolean function).
The linearity of the Fourier transform with respect to the addition in Z implies
then Relation (9). �

4.2 Deduced Constructions of Resilient Functions

We begin with resilient functions because the application of Lemma 1 is easy in
this case. In the following theorem, saying that a function f is 0-order correlation
immune does not impose any condition on f and saying it is 0-resilient means it
is balanced.

Theorem 2. Let n be any positive integer and k any non-negative integer such
that k ≤ n. Let f1, f2 and f3 be three k-th order correlation immune (resp. k-
resilient) functions. Then the function σ1 = f1⊕f2⊕f3 is k-th order correlation
immune (resp. k-resilient) if and only if the function σ2 = f1f2 ⊕ f1f3 ⊕ f2f3 is
k-th order correlation immune (resp. k-resilient). Moreover:

Nσ2 ≥
1
2

(
Nσ1 +

3∑
i=1

Nfi

)
− 2n−1 (10)

and if the Walsh supports of f1, f2 and f3 are pairwise disjoint (that is, if at
most one value χ̂fi(s), i = 1, 2, 3 is nonzero, for every vector s), then

Nσ2 ≥
1
2

(
Nσ1 + min

1≤i≤3
Nfi

)
. (11)

Proof. Relation (9) and the fact that for every nonzero vector a of weight at
most k we have χ̂fi(a) = 0 for i = 1, 2, 3 imply that χ̂σ1(a) = 0 if and only
if χ̂σ2(a) = 0. Same property occurs for a = 0 when f1, f2 and f3 are resilient.
Relation (9) implies the relation

max
s∈F n

2

|χ̂σ2(s)| ≤
1
2

(
3∑

i=1

(
max
s∈F n

2

|χ̂fi(s)|
)

+ max
s∈F n

2

|χ̂σ1(s)|
)

and Relation (2) implies then Relation (10). If the Walsh supports of f1, f2 and
f3 are pairwise disjoint, then Relation (9) implies the relation

max
s∈F n

2

|χ̂σ2(s)| ≤
1
2

(
max
1≤i≤3

(
max
s∈F n

2

|χ̂fi(s)|
)

+ max
s∈F n

2

|χ̂σ1(s)|
)

and Relation (2) implies then Relation (11). �
Remark: We have σ2 = f1⊕(f1⊕f2)(f1⊕f3). Hence, another possible statement
of Theorem 2 is: if f1, f1⊕f2 and f1⊕f3 are k-th order correlation immune (resp.
k-resilient) functions, then the function f1 ⊕ f2 ⊕ f3 is k-th order correlation
immune (resp. k-resilient) if and only if the function f1 ⊕ f2f3 is k-th order
correlation immune (resp. k-resilient).
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We use now the invariance of the notion of correlation-immune (resp. resilient)
function under translation to deduce an example of application of Theorem 2.

Proposition 2. Let n be any positive integer and k any non-negative integer
such that k ≤ n. Let f and g be two k-th order correlation immune (resp. k-
resilient) functions on Fn

2 . Assume that there exist a, b ∈ Fn
2 such that Daf ⊕

Dbg is constant. Then the function h(x) = f(x) ⊕ Daf(x)(f(x) ⊕ g(x)), that

is, h(x) =
{
f(x) if Daf(x) = 0
g(x) if Daf(x) = 1 is k-th order correlation immune (resp. k-

resilient). Moreover:

Nh ≥ Nf +Ng − 2n−1 (12)

and if the Walsh support of f is disjoint of that of g, then

Nh ≥ min (Nf , Ng) . (13)

Note that finding hihgly nonlinear resilient functions with disjoint supports is
easy, by using Tarannikov et al.’s construction.

Proof. Let Daf ⊕Dbg = ε. Taking f1(x) = f(x), f2(x) = f(x+ a) and f3(x) =
g(x), the hypothesis of Theorem 2 is satisfied, since σ1(x) = Daf(x)⊕ g(x) =
Dbg(x) ⊕ ε ⊕ g(x) = g(x + b) ⊕ ε is k-th order correlation immune (resp. k-
resilient). Hence, h(x) = f(x) ⊕Daf(x)(f(x) ⊕ g(x)) is k-th order correlation
immune (resp. k-resilient). Relation (12) is a direct consequence of Relation
(10). Note that the Walsh support of f2 equals that of f1 = f , since we have
χ̂f2(s) = (−1)a·sχ̂f (s) and that the Walsh support of σ1 equals that of f3 = g.
Hence, if the Walsh support of f is disjoint of that of g, then Relation (9)
implies the relation

max
s∈F n

2

|χ̂h(s)| ≤ max
(

max
s∈F n

2

|χ̂f (s)|, max
s∈F n

2

|χ̂g(s)|
)

and Relation (2) implies then Relation (13). �
Remarks:

1. The notion of resilient function being also invariant under any permutation
of the input coordinates x1, . . . , xn, Proposition 2 is also valid if we re-
place Daf by f(x1, . . . , xn)⊕ f(xτ(1), . . . , xτ(n)) and Dbg by g(x1, . . . , xn)⊕
g(xτ ′(1), . . . , xτ ′(n)), where τ and τ ′ are two permutations of {1, . . . , n}.

2. Computer experiment shows that the secondary construction of Theorem
2 and its particular case given in Proposition 2 can increase the algebraic
immunity, while keeping the same resiliency order and the same nonlinearity.
The reason is in the fact that the support of σ2 (resp. h) is, in general, more
complex than those of f1, f2 and f3 (resp. f and g). It would be nice finding
a provable result illustrating this.
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A Deduced Primary Construction of Resilient Functions

Proposition 3. let t and n = r + s be any positive integers (r > t > 0, s > 0).
Let g1, g2 and g3 be any boolean functions on F s

2 and φ1, φ2 and φ3 any mappings
from F s

2 to F r
2 such that, for every element y in F s

2 , the vectors φ1(y), φ2(y),
φ3(y) and φ1(y) ⊕ φ2(y) ⊕ φ3(y) have Hamming weights greater than t. Let us
denote f1(x) = x · φ1(y) ⊕ g1(y), f2(x) = x · φ2(y) ⊕ g2(y) and f3(x) =
x · φ3(y) ⊕ g3(y). Then the function:

f(x, y) = f1(x) f2(x) ⊕ f1(x) f3(x) ⊕ f2(x) f3(x)

is t-resilient.

Note that, if the sets φ1(F s
2 ), φ2(F s

2 ), and φ3(F s
2 ) are disjoint, Relation (5)

implies that the Walsh supports of f1, f2 and f3 are disjoint. Relation (11)
of Theorem 2 is then satisfied. This implies that f can be (nearly) optimum
with respect to Siegenthaler’s and Sarkar et al.’s bounds. We have seen that a
Maiorana-McFarland (nearly) optimum function has low degree and still lower
AI. But here, the algebraic degree of f and its algebraic immunity may be higher
than those of Maiorana-McFarland’s (nearly) optimum functions. For instance,
we obtained in [22] a balanced 14-variable function with algebraic degree 7,
nonlinearity 7808, order of resiliency 5 and AI 6 by considering φ1, φ2, φ3 from
F 6

2 to F 8
2 such that for any i ∈ {1, 2, 3} and any x ∈ F 6

2 : wH(φi(x)) ≥ 6 and
such that wH(φ1(x) + φ2(x) + φ3(x)) ≥ 6.

Remark: We can also apply Theorem 2 to the class of resilient functions derived
from the PSap construction: Let n and m be two positive integers, g1, g2 and g3
three functions from F2m to F2, φ a linear mapping from Fn

2 to F2m and a an
element of F2m such that a⊕ φ(y) 	= 0, ∀y ∈ Fn

2 .
Let b1, b2 and b3 ∈ Fn

2 such that, for every z in F2m , φ∗(z) ⊕ bi, i = 1, 2, 3
and φ∗(z) ⊕ b1 ⊕ b2 ⊕ b3 have weight greater than t, where φ∗ is the adjoint of
φ, then the function

f(x, y) =(
g1

(
x

a⊕ φ(y)

)
⊕ b1 · y

)(
g2

(
x

a⊕ φ(y)

)
⊕ b2 · y

)
⊕(

g1

(
x

a⊕ φ(y)

)
⊕ b1 · y

)(
g3

(
x

a⊕ φ(y)

)
⊕ b3 · y

)
⊕(

g2

(
x

a⊕ φ(y)

)
⊕ b2 · y

)(
g3

(
x

a⊕ φ(y)

)
⊕ b3 · y

)
is t-resilient. The complexity of the support of this function may permit getting
a good algebraic immunity.

4.3 Constructing Bent Functions by Using Lemma 1

Applying Lemma 1 to the construction of bent functions is slightly less simple
than for resilient functions. Nevertheless, we will deduce here again a secondary
construction (we shall see that it generalizes a secondary construction obtained
recently) and a primary construction.
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Theorem 3. Let n be any positive even integer. Let f1, f2 and f3 be three
bent functions. Denote by σ1 the function f1 ⊕ f2 ⊕ f3 and by σ2 the function
f1f2 ⊕ f1f3 ⊕ f2f3. Then:
1. if σ1 is bent and if σ̃1 = f̃1⊕f̃2⊕f̃3, then σ2 is bent and σ̃2 = f̃1f̃2⊕f̃1f̃3⊕f̃2f̃3;
2. if σ2 is bent, or if more generally χ̂σ2(a) is divisible by 2n/2 for every a (e.g.
if σ2 is plateaued), then σ1 is bent.

Proof. By hypothesis, we have for i = 1, 2, 3 and for every vector a: χ̂fi(a) =
(−1)fi(a) 2n/2.
1. If σ1 is bent and if σ̃1 = f̃1 ⊕ f̃2 ⊕ f̃3, then we have:

χ̂σ1(a) = (−1)f1(a)⊕f2(a)⊕f3(a) 2n/2.

Relation (9) implies:

χ̂σ2(a) =
[
(−1)f1(a) + (−1)f2(a) + (−1)f3(a) − (−1)f1(a)⊕f2(a)⊕f3(a)

]
2(n−2)/2

= (−1)f1(a)f2(a)⊕f1(a)f3(a)⊕f2(a)f3(a)2n/2.

2. If χ̂σ2(a) is divisible by 2n/2 for every a, then the number χ̂σ1(a), equal to[
(−1)f1(a) + (−1)f2(a) + (−1)f3(a)

]
2n/2 − 2χ̂σ2(a), is congruent with 2n/2 mod

2n/2+1 for every a. This is sufficient to imply that σ1 is bent, according to Lemma
1 of [7]. �
Remark: Here again, it is possible to state Theorem 3 slightly differently. For
instance, if f1, f1 ⊕ f2 and f1 ⊕ f3 are three bent functions such that f1 ⊕ f2f3
has Walsh spectrum divisible by 2n/2, then σ1 = f1 ⊕ f2 ⊕ f3 is bent. Notice
that a sufficient condition for f1 ⊕ f2f3 having Walsh spectrum divisible by
2n/2 is that f2f3 = 0 or that f2 � f3 (i.e. that the support of f3 includes that
of f2). In particular, if f is a bent function and if E and F are two disjoint
(n/2)-dimensional flats on which f is affine, the function f ⊕ 1E ⊕ 1F is bent.

Theorem 3 and Lemma 1 imply as particular cases two secondary construc-
tions of bent functions, recently obtained in [24]:

Corollary 1. [24] Let f and g be two bent functions on Fn
2 (n even). Assume

that there exists a ∈ Fn
2 such that Daf = Dag. Then the function f(x) ⊕

Daf(x)(f(x) ⊕ g(x)) is bent and has dual f̃(x) ⊕ (a · x)(f̃(x) ⊕ g̃(x)).
Indeed, taking f1(x) = f(x), f2(x) = f(x+ a) and f3(x) = g(x), the hypothesis
of Alinea 1 of Theorem 3 is satisfied: σ1(x) = Daf(x)⊕ g(x) = Dag(x)⊕ g(x) =
g(x+a) is bent and we have σ̃1(x) = a ·x⊕ g̃(x) = f̃1(x)⊕ f̃2(x)⊕ f̃3(x). Hence,
σ2(x) = f(x) ⊕ Daf(x)(f(x) ⊕ g(x)) is bent (note that the dual of f2 equals
f̃1 ⊕ a · x). �
Remarks:

1. Applying Corollary 1 to the duals of f and g gives that, if f and g are two
bent functions on Fn

2 such that there exists a ∈ Fn
2 such that Daf̃ = Dag̃,

then the function f(x) ⊕ (a · x)(f(x) ⊕ g(x)) is bent.
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2. More generally than in Corollary 1, let L be an affine automorphism of Fn
2 .

We know that, for every bent function f , the function f◦L is bent and admits
as dual f̃ ◦L∗, where L∗ is the adjoint operator of L−1 (such that, for every
x, y ∈ Fn

2 , we have x ·L−1(y) = L∗(x) ·y). Then if f and g are two bent func-

tions such that
{
f(x) ⊕ f ◦ L(x) ⊕ g(x) ⊕ g ◦ L(x) = 0, ∀x ∈ Fn

2

f̃(x) ⊕ f̃ ◦ L∗(x) ⊕ g̃(x) ⊕ g̃ ◦ L∗(x) = 0, ∀x ∈ Fn
2 ;

, then

the function fg⊕(f⊕g)(f ◦L) is bent and its dual equals f̃ g̃⊕(f̃⊕ g̃)(f̃ ◦L∗).
Indeed, taking f1 = f, f2 = f ◦L and f3 = g, we have σ1 = g◦L and therefore
σ̃1 = g̃ ◦ L∗ = f̃1 ⊕ f̃2 ⊕ f̃3 and σ2 = fg ⊕ (f ⊕ g)(f ◦ L).

Proposition 4. [24] Let n be any positive even integer. Let f and g be two
plateaued functions of the same amplitude 2n/2+1, whose Walsh transform’s sup-
ports Sf and Sg are two distinct cosets of the same vector subspace E of Fn

2 . Let
a be an element of Fn

2 such that the cosets a + Sf and a+ Sg are both distinct
of Sf and Sg. Then the function f(x) ⊕ (a · x)(f(x) ⊕ g(x)) is bent.

Proof. Set f1(x) = f(x), f2(x) = f(x) ⊕ a · x and f3(x) = g(x). We have:
σ1(x) = a · x ⊕ g(x). Hence, f1, f2, f3 and σ1 are four plateaued functions of
amplitude 2n/2+1, whose Walsh transform’s supports equal Sf , a + Sf , Sg and
a + Sg . The cosets Sf , Sg, a + Sf and a + Sg constituting a partition of Fn

2
(note that E has necessarily co-dimension 2), Relation (9) implies that σ2(x) =
f(x) ⊕ (a · x)(f(x) ⊕ g(x)) is bent. �

An Example Related to Proposition 4: The Kerdock Code. Partially-
bent functions (see [5]) give a way of constructing plateaued functions2; they are
defined as follows: two vector subspaces E (of even dimension) and F are chosen
in Fn

2 such that their sum is direct and equals Fn
2 ; for every x ∈ E and every

y ∈ F , we define f(x + y) = g(x) ⊕ l(y), where g is bent on E and l is linear
on F . All quadratic functions (that is, functions of algebraic degrees at most 2)
are of this type (F is then the kernel of their associated symplectic form; see
[45, 5]). If F (often called the kernel of f) has dimension 2, then f is plateaued
with amplitude 2n/2+1 and its Walsh transform’s support Sf is a flat (of co-
dimension 2) whose direction equals F⊥. Hence, we can choose two vectors a
and b such that {Sf , a+Sf , b+Sf , a+b+Sf} is a partition of Fn

2 . We define then
f1(x) = f(x), f2(x) = f(x)⊕ a · x, and f3(x) = f(x) ⊕ b · x. We have (f1 ⊕ f2 ⊕
f3)(x) = f(x)⊕(a+b) ·x and the hypothesis of Lemma 1 (that is, the hypothesis
of Proposition 4 with g(x) = f(x)⊕b·x) is satisfied. We deduce that the function
f(x)⊕ (a · x)(b · x) is bent. In the sequel, we shall call Kerdock-like construction
this construction (f, a, b) �→ σ2. The fact that it always provides bent functions
is not new, but this is exactly how the bent functions in the Kerdock code are
constructed (see [45]). We show now how (revisiting an observation from [24]).
Denoting m = n − 1 = 2t + 1, the elements of Fn

2 are identified to ordered
pairs (x, ε) with x ∈ F2m and ε ∈ F2. Then we define f(x, ε) = tr(

∑t
i=1 x

2i+1),
where tr is the trace function from F2m to F2. This function is quadratic and
its kernel F (more precisely here, the kernel of its associated symplectic form)
2 Another way is by using Maiorana-McFarland construction (4) with φ injective.
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equals (see [45]) the vector space {(x, ε) ∈ F2m × F2/ x+ tr(x) = 0} = {0,1} ×
F2, where 0,1 ∈ F2m . This kernel has dimension 2 and the Walsh transform’s
support Sf of f is therefore a flat of dimension n − 2 (whose direction equals
F⊥). So we can apply Kerdock-like construction. Recall that the notion of bent
function is independent of the choice of the inner product. So we can choose
(x, ε) · (y, η) = tr(xy) ⊕ εη. The choice of a = (0, 1), b = (1, 0) in the Kerdock-
like construction shows that the function σ2(x, ε) = tr(

∑t
i=1 x

2i+1) ⊕ εtr(x) is
bent. Obviously, for every u ∈ F ∗

2m , the function (x, ε) �→ σ2(ux, ε) is also bent
(note that it is obtained through the Kerdock-like construction from fu(x, ε) =
tr(
∑t

i=1(ux)
2i+1), a = (0, 1) and b = (u, 0)). A property which is specific to

Kerdock codes (and that could not be obtained with non-quadratic functions
until now) is that the sum (x, ε) �→ σ2(ux, ε) ⊕ σ2(vx, ε) of two distinct such
functions is still bent. Let us check this: the quadratic function fu⊕fv has kernel
{(x, ε) ∈ F2m ×F2/ (u2 + v2)x+utr(ux)+ vtr(vx) = 0} = Eu,v ×F2, where Eu,v

has dimension at most 2 (since the equation (u2 + v2)x+ utr(ux) + vtr(vx) = 0
has at most 4 solutions). Since we know that the kernel of a quadratic function
must have even co-dimension (and hence, here, even dimension), the dimension
of Eu,v must equal 1. The function σ2(ux, ε) ⊕ σ2(vx, ε) can then be obtained
through the Kerdock-like construction from the function fu⊕fv and the vectors
a = (0, 1) and b = (u+ v, 0). The hypothesis of Proposition 4 is satisfied thanks
to the fact that b does not belong to E⊥

u,v (this can be checked by showing that
E⊥

u,v = {(u2 + v2)y + utr(uy) + vtr(vy); y ∈ F2m}).

A Primary Construction of Bent Functions Deduced from Theorem 3

Proposition 5. Let n be any positive even integer. Let π1, π2, π3 be three per-
mutations on Fn/2

2 such that π1 ⊕ π2 ⊕ π3 is also a permutation and such that
the inverse of π1 ⊕ π2 ⊕ π3 equals π−1

1 ⊕ π−1
2 ⊕ π−1

3 . Then the function

f(x, y) = [x · π1(y)] [x · π2(y)] ⊕ [x · π1(y)] [x · π3(y)] ⊕ [x · π2(y)] [x · π3(y)]

is bent.

The proof is a direct consequence of the first alinea of Theorem 3 and of the
properties of Maiorana-McFarland’s class recalled above. Note that the result is
still valid if an affine function g in y is added to the x · πi(y)’s in the expression
of f(x, y).

It is also easy to apply Theorem 3 to class PSap: the condition on the dual of
σ1 is automatically satisfied if σ1 is bent. But this does not lead to new functions,
since if fi(x, y) = gi(x y2

n
2 −2) for i = 1, 2, 3, then σ1 and σ2 have the same forms.

4.4 A Generalization of Lemma 1

Lemma 1 can be generalized to more than 3 functions. This leads to further
methods of constructions.
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Proposition 6. Let f1, . . ., fm be Boolean functions on Fn
2 . For every positive

integer l, let σl be the Boolean function defined by

σl =
⊕

1≤i1<...<il≤m

l∏
j=1

fij if l ≤ m and σl = 0 otherwise.

Then we have f1 + . . .+ fm =
∑

i≥0 2i σ2i . Denoting by f̂ the Fourier transform

of f , that is, f̂(s) =
∑

x∈F n
2
f(x)(−1)x·s, this implies f̂1+. . .+f̂m =

∑
i≥0 2i σ̂2i .

Moreover, if m+ 1 is a power of 2, say m+ 1 = 2r, then

χ̂f1 + . . .+ χ̂fm =
r−1∑
i=0

2i χ̂σ2i
. (14)

Proof. Let x be any vector of Fn
2 and j =

∑m
k=1 fk(x). According to Lucas’

Theorem (cf. [45]), the binary expansion of j is
∑

i≥0

[
2i
((

j
2i

)
[mod 2]

)]
. It is

a simple matter to check that
(

j
2i

)
[mod 2] = σ2i(x). Thus, f1 + . . . + fm =∑

i≥0 2i σ2i . The linearity of the Walsh transform with respect to the addition

in Z implies then directly f̂1 + . . .+ f̂m =
∑

i≥0 2i σ̂2i .
If m + 1 = 2r, then we have m =

∑r−1
i=0 2i. Thus, we deduce χf1 + . . . +

χfm =
∑r−1

i=0 2i χσ2i
from f1 + . . . + fm =

∑r−1
i=0 2i σ2i . The linearity of the

Walsh transform implies then relation (14). �

Corollary 2. Let n be any positive integer and k any non-negative integer such
that k ≤ n. Let f1, . . ., f7 be k-th order correlation immune (resp. k-resilient)
functions. If two among the functions σ1 = f1⊕ . . .⊕f7, σ2 = f1f2⊕f1f3⊕ . . .⊕

f6f7 and σ4 =
⊕

1≤i1<...<i4≤7

l∏
j=1

fij is k-th order correlation immune (resp. k-

resilient) then the third one is k-th order correlation immune (resp. k-resilient).

The proof is similar to the proof of Theorem 2.

Corollary 3. Let n be any positive even integer and f1, . . ., fm (m ≤ 7) be bent
functions on Fn

2 .

– Assume that σ1 is bent, and that, for every a ∈ Fn
2 , the number χ̂σ4(a) is

divisible by 2n/2. Then:
• if m = 5 and σ̃1 = f̃1 ⊕ . . .⊕ f̃5 ⊕ 1 then σ2 is bent;
• if m = 7 and σ̃1 = f̃1 ⊕ . . .⊕ f̃7, then σ2 is bent;

– Assume that m ∈ {5, 7} and that, for every a ∈ Fn
2 , the number χ̂σ4(a) is

divisible by 2n/2−1 and the number χ̂σ2(a) is divisible by 2n/2, then σ1 is
bent.

Proof. By hypothesis, we have for i = 1, . . ., m and for every vector a 	= 0:
χ̂fi(a) = −2f̂i(a) = (−1)fi(a) 2n/2.
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– If σ1 is bent and, for every a ∈ Fn
2 , the number χ̂σ4(a) is divisible by 2n/2,

then χ̂σ2(a) is congruent with
[
(−1)f1(a) + . . .+ (−1)fm(a) − (−1)σ1(a)

]
2n/2−1 modulo 2n/2+1, for every a 	= 0.

If m = 5 and σ̃1 = f̃1 ⊕ . . . ⊕ f̃5 ⊕ 1 then, denoting by k the Hamming
weight of the word (f̃1(a), . . . , f̃5(a)), the number χ̂σ2(a) is congruent with
[5 − 2k + (−1)k] 2n/2−1 modulo 2n/2+1.

If m = 7 and σ̃1 = f̃1 ⊕ . . . ⊕ f̃7 then, denoting by k the Hamming
weight of the word (f̃1(a), . . . , f̃7(a)), the number χ̂σ2(a) is congruent with
[7− 2k− (−1)k] 2n/2−1 modulo 2n/2+1. So, in both cases, we have χ̂σ2(a) ≡
2n/2 [mod 2n/2+1], and σ2 is bent, according to Lemma 1 of [7] (which is
equivalent to saying that a Boolean function f is bent if and only if χ̂f (a)
is congruent with 2n/2 modulo 2n/2+1, for every a 	= 0; indeed, a 	= 0 is
sufficient thanks to Parseval’s relation).

– If, for every a ∈ Fn
2 , the number χ̂σ4(a) is divisible by 2n/2−1 and the

number χ̂σ2(a) is divisible by 2n/2, then, for every a 	= 0, the number χ̂σ1(a)
is congruent with

[
(−1)f1(a) + . . .+ (−1)fm(a)

]
2n/2 mod 2n/2+1. Since m ∈

{5, 7}, it is then congruent with 2n/2 mod 2n/2+1 and σ1 is bent, according
to Lemma 1 of [7]. �
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Abstract. An ordinary parity-check is an extra bit p appended to a
block (x1, . . . , xk) of k information bits such that the resulting codeword
(x1, . . . , xk, p) is capable of detecting one error. The choices for p are

p0 = x1 + · · · + xk (mod 2) (even parity)

p1 = x1 + · · · + xk + 1 (mod 2) (odd parity)

In this paper we consider defining a parity-check if the underlying alpha-
bet is nonbinary. The obvious definition is of course

p = x1 + · · · + xk + α (mod q).

We shall show that this obvious choice is the only choice for q = 2, and
up to a natural equivalence the only choice for q = 3. For q ≥ 4, however,
the situation is much more complicated.

Notation.

X : a set with q elements
Xk: The set of k-tuples of elements of X ,
dH(x,y) The Hamming distance between x and y.
B(u) = {x : dH(u,x) ≤ 1}. The unit ball with center u.
SX The set of all permutations of the set X .
F (n, k) the set of all (k, q) Generalized Parity Checks.

1 Introduction. Existence

Let X be a finite set with q elements. A function p : Xk → X such that p(x) 	=
p(y) whenever x and y are adjacent, i.e., dH(x,y) = 1 is called an (k, q) gen-
eralized parity check. Alternatively, p(x) is the “color” assigned to x, with the
requirement that two adjacent vertices must be assigned distinct colors. The fol-
lowing theorem establishes a link to classical combinatorial coding theory.

Theorem 1.1. p(x) is an (k, q) GPC iff
{
(x, p(x)) : x ∈ Xk

}
is an (k+1, qk, 2)
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Proof. Immediate. ��

For q = 2 it is presumably well known that the only generalized parity checks are
the ordinary even and odd parity checks p0(x1, . . . , xk) = x1 + · · ·+ xk (mod 2)
and p1(x1, . . . , xk) = x1 + · · ·+xk +1 (mod 2). However, for q > 2 the situation
is much more interesting. As a start, the next theorem guarantees the existence
of at least one GPC for every (k, q).

Theorem 1.2. If X = G is a finite group, written multiplicatively,

pG(x) = x1 · · ·xk

is an (k, q)-GPC. In particular, if X = Zq, the cyclic group of order q, written
additively, then

pq(x) = x1 + · · · + xk (mod q)

is a (k, q) GPC.

Proof. Suppose dH(x,y) = 1 but x1 · · ·xk = y1 · · · yk. If x1 = y1, the can-
cellation law implies x2 · · ·xk = y2 · · · yk and the proof proceeds by induc-
tion on k. If x1 	= y1, then xk = yk and again applying the cancellation law,
x1 · · ·xk−1 = y1 · · · yk−1 and the proof proceeds as before. ��

Example 1.1. For q = 4 there are two nonisomorphic groups, viz., the cyclic
group Z4 and the elementary Abelian group E4. The corresponding addition
tables are given below. Thus there are (at least) two essentially different ways
of assigning parity if the underlying alphabet has size 4.

Z4 =

⎛⎜⎜⎝
0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

⎞⎟⎟⎠ E4 =

⎛⎜⎜⎝
0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

⎞⎟⎟⎠
Example 1.2. For q = 5 there is only one group, viz., Z5. But there exist a
nonnassociative algebraic structure called a loop, which can also be used to
construct GPC’s.

L5 =

⎛⎜⎜⎜⎜⎝

1 2 3 4 5
1 1 2 3 4 5
2 2 4 1 5 3
3 3 5 4 2 1
4 4 1 5 3 2
5 5 3 2 1 4

⎞⎟⎟⎟⎟⎠
2 Equivalent GPC’s

Given one GPC, it is easy to manufacture more. A quite general method is to
use a monomial transformation. A monomial transformation ofXk is of the form

Mx = (π1(x1), . . . , πk(xk))P,
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k = 1 2 3 4

q = 2 1 1 1 1
√

3 1 1 1 1
√

4 1 4 43 3460
5 1 56 40246
6 1 9408

mk,q–isotopy classes
(N(k, q)/q(q − 1)!k)

k = 1 2 3 4

q = 2 1 1 1 1
√

3 1 1 1 1
√

4 1 2 4 7
5 1 2
6 1 12

Mk,q–equivalence classes
(Nonisomorphic GPCs)

Fig. 1. Summary of Results. A checkmark indicates a pattern that continues indefi-
nitely.

where P is an k×k permutation matrix and π1 . . . , πk ∈ SX . The set of all k!q!k

monomial transformations forms a group under the composition operation and
is denoted by Mk,q .

Theorem 2.1. If p(x) is an (k, q) GPC, and M is a monomial transformation
of Xk, then

p′(x) = p(Mx)

is a (k, q)-GPC. If q(x) = p(Mx) for some M , we say that p and q are mono-
mially equivalent.

Proof. If p′(x) = p′(y), then dH(Mx,My) ≥ 2. But It is easy to see that every
monomial transformation is an isometry, i.e., dH(x,y) = dH(Mx,My). ��

As we shall see below, for q = 2 and q = 3 all GPC’s are monomially equivalent,
but the next theorem guarantees that for most values of q, there exist more than
one monomial equivalence class.

Theorem 2.2. If G and H are nonisomorphic groups of order q, then for k ≥ 2,
pG and pH are not monomially equivalent.

Proof. Omitted. ��

Let us denote by N(k, q) the number of nonisomorphic (k, q) GPC’s. The fol-
lowing table summarizes what we know about this number.

3 Reduced GPC’s

A reduced monomial transformation of Xk is of the form

mx = (π1(x1), . . . , πk(xk)) π1(0) = · · · = πk(0).

The set of all q(q−1)!k reduced monomial transformations is a subgroup of Mk,q

denoted by mk,q. mn,q is the symmetry group of the unit ball B(u) (see Fig. 2).
Alternatively, it is the stabilizer of B(u) in the group Mk,q.
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Theorem 3.1. Let f, g ∈ F (k, q), u ∈ Xk. Then there exists a unique α ∈ mk,q

such that f(α−1x) = g(x) for all x ∈ B(u).

Proof. Let B(u) = {bi,j(u)}k
i=1

q−1
j=0 , i.e., bi,j(u) is the k-vector whose ith com-

ponent is j, all other components match u. Since {bi,0, . . . , bi,q−1} is a clique,
{f(bi,0), . . . , f(bi,q−1)} = {g(bi,0), . . . , g(bi,q−1)} = {0, 1, . . . , q − 1}, and we can
define a permutation πi(j) as follows.

g(bi,πi(j)) = f(bi,j)

Then π(bi,j) = bi,πi(j), so f(π−1bi,j) = g(bi,j) for all i and j. ��

Corollary 3.1. Every GPC in F (k, q) is equivalent to one that satisfies

f(x) = x for all x of weight ≤ 1.

This is called a reduced GPC.

Fig. 2. The n = 4, q = 4 unit ball. There are 4 3!4 ways to 4-color it. By appropriately
choosing π1, π2, π3, and π4 from S4, one can convert any one of these colorings to any
other.

4 Uniqueness

Theorem 1.2 guarantees the existence of GPC’s for all q and k. In this section
we will show that these GPC’s are unique for q = 2 and unique (up to monomial
equivalence) for q = 3.

Theorem 4.1. Let X = {0, 1}. The only two (k, 2) GPCs are given by

f0(x) = x1 + · · ·+ xk (mod 2)
f1(x) = x1 + · · ·+ xk + 1 (mod 2).
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Proof. Let (x0,x1, . . . ,xM−1) be a Gray Code, i.e., a list of theM = 2k elements
ofXk such that x0 = 0 and dH(xi,xi+1) = 1 for i = 0, 1, . . . ,M−2. If f(x0) = 0,
then f(x1) = 1 etc., and f = f0. Otherwise f(x0) = 1, f(x1) = 0 etc., and
f = f1. ��

Theorem 4.2. Let X = {0, 1, 2}. Every (k, 3) GPC is monomially equivalent to

f0(x) = x1 + · · ·+ xk (mod 3).

Alternatively, every (k, 3) GPC is of the form

f(x) = a1x1 + · · · + akxk + b,

where a1, . . . , ak are from GF (3)∗, and b ∈ GF (3).

Proof. We will show that if f(x) ∈ F (k, 3), and f(x) = f0(x) for all x ∈ B(0),
that f(x) = f0(x) for all x ∈ Xk. We will induct on wH(x), the cases w = 0
and w = 1 being the hypothesis.

Let w(x) = j + 1. Then x has j + 1 neighbors of weight j., viz., the vectors
y obtained from x by changing one nonzero component to zero. By induction,
f(y) = f0(y) for each of these neighbors, so f(x) 	= f0(y) = f0(x) − xi. This
determines f(x) except when x is a two-valued vector, say x = (1111000).
But then x belongs to a clique {(0111000), (1111000), (2111000)} in which every
vector except x itself is already colored, either because it has weight j or because
it has weight j + 1 and is three-valued. ��

5 GPC’s and Latin Squares

A Latin square of order q is a q × q matrix with entries from X , such that
every element of X appears exactly once in each row and column [3]. It is a
classically difficult combinatorial problem to determine the number and type of
Latin squares. Thus the following theorem demonstrates that the GPC problem,
being essentially the Latin hypercube problem, is even harder.

Theorem 5.1. There is a one-to-one correspondence between (2, q) GPC’s and
q × q Latin Squares.

Proof. Let p(x, y) be a (2, q) GPC. Then the matrix whose (x, y)th entry is
p(x, y) is a Latin square. ��

Example 5.1. Here are the inequivalent Latin squares of orders 2, 3, 4, and 5;
alternatively the inequivalent (2,2), (2,3), (2,4), and (2,5) GPC’s.

The 2 × 2 Latin square (the addition table for the cyclic group Z2).

Z2 =
[
0 1
1 0

]
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The 3 × 3 Latin square (the addition table for the cyclic group Z3).

Z3 =

⎡⎣0 1 2
1 2 0
2 0 1

⎤⎦
The two inequivalent 4 × 4 Latin squares (the addition table for the cyclic

group Z4 and the elementary Abelian group E4).

Z4 =

⎡⎢⎢⎣
0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

⎤⎥⎥⎦ E4 =

⎡⎢⎢⎣
0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

⎤⎥⎥⎦
The two inequivalent 5 × 5 Latin squares (the addition table for the cyclic

group Z5 and the loop L5).

Z5 =

⎡⎢⎢⎢⎢⎣
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3

⎤⎥⎥⎥⎥⎦ L5 =

⎡⎢⎢⎢⎢⎣
0 1 2 3 4
1 3 0 4 2
2 4 3 1 0
3 0 4 2 1
4 2 1 0 3

⎤⎥⎥⎥⎥⎦
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Abstract. The bilinear mapping technique that uses the (Weil and
Tate) pairings over elliptic (or hyperelliptic) curves represents a great
breakthrough in cryptography. This paper surveys this new trend in cryp-
tography, and emphasizes the design of efficient cryptographic primitives
that are provably secure in the standard model (i.e., without the random
oracle model).

1 Introduction

Elliptic curves have been applied to practical cryptographic designs for two
decades. The advantage of elliptic curve based cryptosystems, ECC, over other
public-key cryptosystems is their short key size, high processing throughput, and
low bandwidth. For example, the typical key size of ECC that guarantees the
security comparable to that of 1024 bit key size with the RSA cryptosystems is
considered to be just 160 bits. Therefore, several of the most efficient public-key
encryption schemes and digital signatures are ECC such as EC-ElGamal (the
elliptic curve version of ElGamal) and EC-DSA.

The reason why ECC has such short key lengths is that the index calculus
technique is considered to be ineffective for computing the discrete logarithm
(DL) of the elliptic curve group over finite fields, while it can effectively compute
integer factoring and DL of the multiplicative group of a finite field.

However, the mathematical features that are specific to elliptic curve groups
compared with multiplicative groups are not only the inapplicability of the index
calculus. The most characteristic property of an elliptic curve group is its group
structure, which is isomorphic to the product of two cyclic groups.

The pairing on an elliptic curve to be introduced in this paper employs this
group structure, and is specific to elliptic curve groups (and the generalizations
such as hyperelliptic curve groups). In this sense, two decades after we started
applying elliptic curves to cryptography, we have finally reached the application
of the pairing to cryptographic design, the most essential and natural application
of elliptic curves in cryptography.

2 Elliptic Curve Cryptosystems

The application of elliptic curves to cryptography uses elliptic curves defined
over finite fields.

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 35–50, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



36 T. Okamoto

We now introduce some notations. E(Fq) is a set of Fq-rational points of
elliptic curve E over finite field Fq. That is, E(Fq) is a set of points satisfying
y2 = x3 + ax+ b (other equations are used for finite field Fq with characteristic
2 and 3) and the special point O called the infinity point.

A group operation is defined over E(Fq) and O is the identity. We now express
the group operation by +. The discrete logarithm (DL) problem of E(Fq) is to
compute x ∈ N, given (G, Y ), where G is a base point of E(Fq) and Y = xG,
which is G + · · · + G (G is added x times). (After Section 5, we will use the
multiplicative form for the group operations in place of the conventional additive
form here.)

Elliptic curve cryptosystems (ECC) are constructed on the group of E(Fq).
The security of ECC depends on the difficulty of computing the DL problem of
E(Fq). An ECC scheme can be designed in a manner similar to that of a scheme
based on the multiplicative DL problem. For example, EC-DH, EC-ElGamal
and EC-DSA are constructed over E(Fq) in a manner analogous to that of DH,
ElGamal and DSA.

Cryptosystems based on bilinear maps (of elliptic curves) are a class of elliptic
curve cryptosystems, but have very different features than the conventional ECC.

3 Pairing

The Weil pairing is defined over elliptic curves as follows: Let E/Fq be an elliptic
curve defined over Fq and m be an integer coprime to q. Let E[m] be the set of
m torsion points of E/Fq (i.e., E[m] = {P | P ∈ Fq ∧ mP = O}). E[m] is
isomorphic to Z/mZ × Z/mZ. The Weil pairing, em(P,Q) ∈ F

∗
q , is defined for

two points, P and Q, in E[m], and has the following properties:

(1) For any P,Q ∈ E[m], (em(P,Q))m = 1.
(2) For all P ∈ E[m], em(P, P ) = 1.
(3) Bilinear: for any P,Q, P1, P2, Q1, Q2 ∈ E[m],

em(P1 + P2, Q) = em(P1, Q)em(P2, Q),
em(P,Q1 +Q2) = em(P,Q1)em(P,Q2).

(4) Alternating: for any P,Q ∈ E[m], em(P,Q) = em(Q,P )−1.
(5) Non-degenerate: if em(P,Q) = 1 for any P ∈ E[m], then Q = O.

That is, em(P,Q) bilinearly maps two points, P and Q, in E[m] to an m-th
root of unity in F

∗
q .

Note that there exists an extension field, Fqk , such that E(Fqk ) includes E[m].
Then em(P,Q) is an m-th root of unity in F∗

qk .
The Weil pairing can be efficiently calculated by Miller’s algorithm. The Tate

pairing also has similar properties, and is often employed in cryptographic ap-
plications, since it is faster to compute a Tate pairing than a Weil pairing in
typical implementations.
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Historically, bilinear mapping was first used to attack elliptic curve cryptosys-
tems on supersingular curves in the early 1990’s [29] (the attack is often called
the MOV reduction). However, in the recent application of bilinear maps to cryp-
tography, they are used not for a negative purposes (i.e., attacking cryptographic
schemes) but for positive purposes (i.e., designing cryptographic schemes).

4 Variant of the Weil/Tate Pairing

When we apply the Weil/Tate pairing to a general elliptic curve, we have to use
an extension field Fqk with huge extension degree k (in general k is exponentially
large in |q|). One of the most suitable curves for the application of Weil/Tate
pairing to cryptography is supersingular curves, since the extension degree is at
most 6 for supersingular curves. (It is ironical that supersingular curves were
considered to be unsuitable for application to cryptography as evidenced by the
MOV reduction.)

There is another merit of supersingular curves when employing bilinear maps
for cryptography. That is, a supersingular curve has (efficiently computable)
isomorphism, φ, called the distortion map.

Let E be a supersingular curve over Fq and the order of point G1 ∈ E(Fq)
be m. Then, there exists an extension degree k(≤ 6) and G2 ∈ E(Fqk) such
that E[m] ∼= 〈G1〉 × 〈G2〉, and φ is the isomorphism from 〈G1〉 to 〈G2〉, where
G2 = φ(G1). We can then define a variant of the Weil pairing êm over two points,
P and Q, in E(Fq) as follows:

êm(P,Q) = em(P, φ(Q)) ∈ F∗
qk .

Here note that êm(P, P ) 	= 1 and êm(P,Q) = êm(Q,P ), while em(P, P ) = 1 and
em(P,Q) = em(Q,P )−1. So, this variant of Weil pairing êm is called a symmetric
pairing, while the original Weil pairing em is called an asymmetric pairing.

The advantage of this Weil pairing variant êm : 〈G1〉 × 〈G1〉 → F∗
qk is that it

is defined over two points in E(Fq) (two elements in 〈G1〉), while em is defined
over a point in E(Fq) and another point in E(Fqk). (For example, if the size
of an element of Fq is 200 bits and extension degree k is 6, then the size of an
element of Fqk and the size of êm(P,Q) and em(P,Q′) are 1200 bits.)

In some applications, however, a general curve (not a supersingular curve)
may be more suitable, since a general curve offers more freedom in selecting the
extension degree and other properties. Some methods have been proposed to
efficiently select a general curve that has a low extension degree applicable to
the pairing [28, 31].

5 Cryptography Based on Bilinear Maps

5.1 Bilinear Groups

Hereafter, we will consider only this symmetric variant of Weil pairing (not the
original Weil pairing) as a bilinear map, but almost all schemes that we will
introduce in this paper can be also realized with the original Weil pairing.
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For simplicity of description, we express the symmetric pairing êm : 〈G1〉 ×
〈G1〉 → F∗

qk by bilinear map e from a multiplicative group, G, to another mul-
tiplicative group, GT , i.e., e : G × G → GT such that:

1. G is a cyclic group of prime order p,
2. g is a generator of G,
3. e is a non-degenerate bilinear map e : G × G → GT , where |G| = |GT | = p,

and
4. e and the group action in G and GT can be computed efficiently.

5.2 Brief Overview of Bilinear-Map-Based Cryptography

Around 2000, application of the bilinear maps to cryptography was initiated by
Verheul [35], Joux [27], and Sakai, Ohgishi and Kasahara [33]. Verheul introduced
the above-mentioned Weil pairing variant, and Joux proposed a key distribution
system among three parties (three party version of the Diffie-Hellman key distri-
bution) by using the Weil pairing variant. Sakai, Ohgishi and Kasahara solved
the problem on the identity-based encryption (IBE) that had been open since
1984 when Shamir proposed the concept of IBE.

Following these pioneer works, Boneh and others drastically exploited the
possibility of applying bilinear maps to cryptography. Boneh and Franklin [11]
formalized the security of IBE as the IND-ID-CCA2 (indistinguishable against
adaptively chosen-ciphertext attacks under chosen identity attacks) security and
proposed an IND-ID-CCA2 secure IBE scheme in the random oracle model [4].
Boneh, Lynn and Shacham [13] proposed a new signature scheme whose signa-
tures are shorter than those of any previous scheme. The security proof is also
based on the random oracle model.

Then, more than two or three hundred papers on bilinear-map-based cryp-
tography have been published for the last few years, and they cover very broad
areas of cryptography [2].

One of the most interesting applications of bilinear maps to cryptography is
to construct practical encryption/signature schemes that are proven to be secure
in the standard model (without the random oracle model). Previously only a few
such schemes (e.g., Cramer-Shoup schemes [20, 21, 22]) were proposed.

Interestingly IBE plays a key role of constructing practical secure schemes
in the standard model. That is, a secure IBE scheme in the standard model
can be used to construct secure public-key encryption/signature schemes in the
standard model. (In addition, hierarchical IBE (HIBE) [25] is used to construct
forward-secure public-key encryption schemes and CCA2 secure IBE schemes
[18, 19].)

Hereafter we will introduce how bilinear maps are applied to constructing
secure IBE/encryption/signature schemes in the standard model.

6 Computational Assumptions

Let G be a bilinear group of prime order p and g be a generator of G. Here
we review several computational assumptions on the bilinear maps, which are
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assumed in the bilinear-map-based cryptographic schemes to be introduced in
this paper.

6.1 Bilinear Diffie-Hellman Assumption

The Bilinear Diffie-Hellman (BDH) problem [11, 27] in G is as follows: given
a tuple g, ga, gb, gc ∈ G as input, output e(g, g)abc ∈ GT . The advantage of
adversary A for the BDH problem is

Pr[A(g, ga, gb, gc) = e(g, g)abc].

Similarly, the advantage of adversary B for the Decisional BDH (DBDH)
problem is

|Pr[B(g, ga, gb, gc, e(g, g)abc) = 0]− Pr[B(g, ga, gb, gc, T ) = 0]|,

where T is randomly selected from GT .

Definition 1. We say that the (Decisional) BDH assumption holds in G if any
probabilistic polynomial time adversary has negligible advantage for the (Deci-
sional) BDH problem.

6.2 Bilinear Diffie-Hellman Inversion Assumption

The q Bilinear Diffie-Hellman Inversion (q-BDHI) problem [7] is defined as fol-
lows: given the (q + 1)-tuple (g, gx, gx2

, . . . , gxq

) ∈ (G)q+1 as input, compute
e(g, g)1/x ∈ GT . The advantage of an adversary A for q-BDHI is

Pr[A(g, gx, gx2
, . . . , gxq

) = e(g, g)1/x].

Similarly, the advantage of adversary B for the Decisional q-BDHI (q-DBDHI)
problem is

|Pr[B(g, gx, gx2
, . . . , gxq

, e(g, g)1/x) = 0]− Pr[B(g, gx, gx2
, . . . , gxq

, T ) = 0]|,

where T is randomly selected from GT .

Definition 2. We say that the (Decisional) q-BDHI assumption holds in G if
any probabilistic polynomial time adversary has negligible advantage for the (De-
cisional) q-BDHI problem.

It is not known if the q-BDHI assumption, for q > 1, is equivalent to BDH.
In this paper, we often drop the q and refer to the (Decisional) BDHI

assumption.
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6.3 Strong Diffie-Hellman Assumption

The q Strong Diffie-Hellman (q-SDH) problem [8] is defined as follows: given
the (q + 1)-tuple (g, gx, gx2

, . . . , gxq

) ∈ (G)q+1 as input, compute (g1/(x+c), c) ∈
G × N. The advantage of an adversary A for q-SDH is

Pr[A(g, gx, gx2
, . . . , gxq

) = (g1/(x+c), c)].

Definition 3. We say that the q-SDH assumption holds in G if any probabilistic
polynomial time adversary has negligible advantage for the q-SDH problem.

In this paper, similarly to the BDHI assumption, we often drop the q and refer
to the SDH assumption.

7 Identity-Based Encryption (IBE)

Identity-based encryption (IBE) [34] is a variant of public-key encryption (PKE),
where the identity of a user is employed in place of the user’s public-key. In this
concept,

Setup: A trusted party (authority) generates a pair of secret-key x (master
secret key) and public-key y (system parameter).

Extract: The trusted party also generates A’s secret decryption key, sA, from
the identity of A and securely sends sA to A.

Encrypt: When B encrypts a message m to A, B utilizes A’s identity, IDA (in
place of A’s public-key in PKE). Let cA be a ciphertext of m encrypted by IDA.

Decrypt: A can decrypt ciphertext cA by using A’s decryption key sA.

Although IBE itself is a very useful primitive in cryptography, here we will
review IBE as a building block of designing practical secure PKE/signature
schemes in the standard model.

7.1 Security of IBE

Boneh and Franklin [11] define the security, IND-ID-CCA2 (indistinguishable
against adaptively chosen-ciphertext attacks under chosen identity attacks), for
IBE systems. We now informally introduce the definition as follows:

Definition 4. (Security of IBE: IND-ID-CCA2) Let us consider the following
experiment between an adversary, A, and the challenger, C.

1. First, C generates a system parameter of IBE and sends it to A.
2. A is allowed to ask two types of queries, extraction queries and decryption

queries, to C. Here, an extraction query is an identity, IDi, to which C replies
the corresponding decryption key, di, and a decryption query is a ciphertext,
cj, along with an identity, IDj, to which C replies with the corresponding
plaintext, mj.
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3. A is also allowed to adaptively choose an identity, ID∗, and two messages,
m0 and m1, that C wishes to attack, then C replies with a ciphertext, c∗, of
mb (b is randomly chosen from {0, 1}) with respect to identity ID∗.

4. Finally A outputs a bit, b∗. Let Advantage be |2 Pr[b = b∗]− 1|.

An IBE scheme is IND-ID-CCA2 if, for any probabilistic polynomial-time A,
Advantage is negligibly small.

In the above-mentioned definition of IND-ID-CCA2, A is allowed to adaptively
choose the challenge identity, ID∗, that it wishes to attack.

Canetti, Halevi, and Katz [18, 19] define a weaker notion of security in which
the adversary A commits ahead of time to the challenge identity ID∗ it will
attack. We refer to this notion as selective identity adaptively chosen-ciphertext
secure IBE (IND-sID-CCA2). In addition, they also define a weaker security
notion of IBE, selective-identity chosen-plaintext secure IBE (IND-sID-CPA).

7.2 Boneh-Franklin IBE Scheme

The Boneh-Franklin IBE scheme [11] is proven to be secure in the random oracle
model (not in the standard model). We now introduce this scheme as a typical
example of bilinear-map-based secure cryptosystems in the random oracle model
(and as a bench mark to evaluate the efficiency of secure IBE schemes in the
standard model).

Setup: Given (G,GT , p, k (k = |p|), a trusted party randomly selects a gener-
ator g in G as well as four hash functions, H1, . . . , H4. The trusted party also
randomly selects x ∈ (Z/pZ)∗, and computes y = gx. The system parameter is
(g, y,H1, . . . , H4) and the (secret) master key is x.

Extract: Given IDA of user A, IDA is mapped (through H1) to an element of
G, hA, and A’s secret key, sA = hx

A is computed.

Encrypt: To encrypt a message m ∈ {0, 1}k under IDA, randomly select σ ∈
{0, 1}k, and compute

C = (gr, σ ⊕H2(e(hA, y)r),m⊕H4(σ)),

where r = H3(σ,m).

Decrypt: Let C = (C1, C2, C3) be a ciphertext encrypted using IDA. To decrypt
C, compute

σ = C2 ⊕H2(e(sA, C1)), and m = C3 ⊕H4(σ).

Set r = H3(σ,m) and check whether C1 = gr holds. If not, rejects the decryp-
tion. Otherwise, output m.

Security: The Boneh-Franklin IBE scheme is IND-ID-CCA2 in the random
oracle model (i.e., assuming H1, . . . , H4 are truly random functions) under the
BDH assumption.
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7.3 Boneh-Boyen IBE Scheme

There are three Boneh-Boyen IBE schemes that are secure in the standard model
(two are in [7] and one is in [9]).

One of the two schemes in [7] is IND-sID-CPA secure, and the other is IND-
sID-CCA2 secure. The IND-sID-CCA2 secure scheme [7] is constructed by con-
verting from the IND-sID-CPA secure basic scheme through the conversion tech-
nique of [19]. The scheme in [9] is fully secure (IND-ID-CCA2 secure) (through
the conversion technique of [19]).

The IND-sID-CPA secure scheme in [7] is much more efficient than the others.
Since an IND-sID-CPA secure IBE scheme is sufficient as a building block to
construct an IND-CCA2 PKE (Section 8.1), we now introduce the IND-sID-
CPA secure IBE scheme in [7] as follows (another reason why we introduce this
scheme is that it is closely related to the Boneh-Boyen signature scheme [8] in
Section 9.1):

Setup: Given (G,GT , p, k) (k = |p|), a trusted party randomly selects a gener-
ator g in G and x, y ∈ (Z/pZ)∗, and computes X = gx and Y = gy. The system
parameter is (g,X, Y ) and the (secret) master key is (x, y).

Extract: Given v ∈ (Z/pZ)∗ as IDA of user A, pick a random r ∈ Z/pZ,
compute K = g1/(v+x+ry) ∈ G, and set A’s secret key dA = (r,K).

Encrypt: To encrypt a message m ∈ GT under IDA (i.e., v), pick a random
s ∈ Z/pZ and output the ciphertext

C = (gsvXs, Y s, e(g, g)sm).

Decrypt: Let C = (C1, C2, C3) be a ciphertext encrypted using IDA. To decrypt
C using dA = (r,K), compute

C3

e(C1Cr
2 ,K)

,

which is m when C is valid.

For a valid ciphertext we have

C3

e(C1Cr
2 ,K)

=
C3

e(gsvXsY sr , g1/(v+x+ry))

=
C3

e(gs(v+x+ry), g1/(v+x+ry))
=

C3

e(g, g)s
= m.

Security: The above-mentioned Boneh-Boyen IBE scheme is IND-sID-CPA
(selective-identity chosen-plaintext secure) under the Decisional BDHI (DBDHI)
assumption.

7.4 Waters IBE Scheme

The Waters IBE scheme [36] is the most efficient IND-ID-CCA2 secure IBE in
the standard model. Similarly to the Boneh-Boyen IBE scheme [9], the Waters
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IBE scheme is converted from the IND-ID-CPA secure basic scheme (the Waters
basic IBE scheme) through the conversion technique of [19].

Efficient secure (IND-CCA2) PKE and secure (EUF-CMA) signatures in the
standard model are constructed from the Waters basic IBE scheme (Sections 8.2
and 9.2). The Waters basic IBE scheme is as follows:

Setup: Given (G,GT , p, k) (k = |p|), a trusted party randomly selects genera-
tors, g and g2, in G and α ∈ Z/pZ, and computes g1 = gα. Additionally the
party randomly selects u′ ∈ G and k-length vector (u1, . . . , uk) ∈ Gk, The public
parameter is (g, g1, g2, u′, u1, . . . , uk). The master secret key is gα

2 .

Extract: Let v be an k bit string representing an identity IDA of user A, vi
denote the i-th bit of v, and V ⊆ {1, . . . , k} be the set of all i for which vi = 1. A’s
secret key, dA, for identity v is generated as follows. First, a random r ∈ Z/pZ
is chosen. Then the secret key is constructed as:

dA = (gα
2 (u′

∏
j∈V

uj)r, gr).

Encrypt: To encrypt a message m ∈ GT under IDA (i.e., v), pick a random
s ∈ (Z/pZ)∗ and output the ciphertext

C = ((u′
∏
j∈V

uj)s, gs, e(g1, g2)sm).

Decrypt: Let C = (C1, C2, C3) be a ciphertext encrypted using IDA (i.e., v).
To decrypt C using dA = (d1, d2), compute

C3
e(d2, C1)
e(d1, C2)

which is m when C is valid.

For a valid ciphertext we have

C3
e(d2, C1)
e(d1, C2)

= (e(g, g)sm)
e(gr, (u′

∏
j∈V uj)s)

e(gα
2 (u′

∏
j∈V uj)r, gs)

= (e(g, g)sm)
e(g, (u′

∏
j∈V uj))rs

e(g1, g2)se((u′
∏

j∈V uj), g)rs
= m.

Security: The Waters basic IBE scheme is IND-ID-CPA under the Decisional
BDH (DBDH) assumption.

8 Public-Key Encryption

The desirable security of a public-key encryption (PKE) scheme is formulated as
semantic security against adaptively chosen-ciphertext attacks (IND-CCA2) [3].
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Although there are several ways to construct practical IND-CCA2 secure PKE
schemes in the random oracle model [4], only a few practical schemes such as
the Cramer-Shoup PKE scheme [20, 22] were proven to be secure in the standard
model.

Bilinear maps are exploiting a new methodology to design a practical IND-
CCA2 secure PKE schemes in the standard model. The new methodology uses
transformation from an IBE scheme to a PKE scheme.

8.1 Canetti-Halevi-Katz Construction

Canetti, Halevi and Katz [19] have shown how to construct an IND-CCA2 secure
PKE scheme from any IND-sID-CPA secure IBE scheme. In the construction, a
one-time signature scheme is also employed. Since this construction is efficient,
we can construct an efficient IND-CCA2 secure PKE scheme in the standard
model using the Boneh-Boyen IBE scheme [7].

We now show the construction of a PKE scheme as follows:

Key Generation: Run the setup process of IBE to obtain a pair of system
parameter and master key. The public key, PK, is the system parameter and
the secret key, SK, is the master key.

Encrypt: To encrypt message m using public key PK (IBE’s system parame-
ter), the sender first generates a pair of verification key vk and signing key sk
of a one-time signature scheme. The sender then computes IBE’s ciphertext C
of message m with respect to identity vk, and signature σ of C by using signing
key sk. The ciphertext is (vk, C, σ).

Decrypt: To decrypt ciphertext (vk, C, σ) using secret key SK (IBE’s master
key), the receiver first checks whether σ is a valid signature of C with respect
verification key vk. If not, the receiver outputs ⊥. Otherwise, the receiver com-
putes IBE’s decryption key dvk for identity vk, and output m decrypted from
C by dvk.

Security: If the underlying IBE scheme is IND-sID-CPA and the one-time sig-
nature scheme is strongly unforgeable (see [8] for the definition of strong un-
forgeability) then the Canetti-Halevi-Katz construction of PKE is IND-CCA2.

If the underlying one-time signature scheme is efficient, the Canetti-Halevi-
Katz PKE scheme from the Boneh-Boyen IBE scheme [7] is relatively as effi-
cient as (but less efficient than) Cramer-Shoup. The major advantage of this
construction over Cramer-Shoup is that the validity of a ciphertext can be veri-
fied publicly, while a ciphertext should be verified secretly (i.e., the verification
requires the secret key) in Cramer-Shoup. This property is useful in constructing
a threshold PKE scheme like [10].

Boneh and Katz [12] improved the Canetti-Halevi-Katz construction by using
a message authentication code in place of a one-time signature. The Boneh-Katz
construction however is not publicly verifiable.
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8.2 Boyen-Mei-Waters PKE Scheme

Boyen, Mei and Waters [14] presented a new way (inspired by [19]) of construct-
ing IND-CCA2 secure PKE schemes in the standard model. Their construction
is based on two efficient IBE schemes, the Boneh-Boyen and Waters basic IBE
schemes. Unlike the Canetti-Halevi-Katz and Boneh-Katz constructions that use
IBE as a black box, the Boyen-Mei-Waters construction directly uses the under-
lying IBE structure, and requires no cryptographic primitive other than the IBE
scheme itself. In addition, the validity of ciphertexts can be checked publicly.

We now introduce the Boyen-Mei-Waters PKE scheme based on the Waters
basic IBE scheme.

Key Generation: A user’s public/private key pair generation algorithm pro-
ceeds as follows. Given (G,GT , p, k) (k = |p|), randomly select a generator g
in G and α ∈ Z/pZ, and computes g1 = gα and z = e(g, g1) = e(g, g)α. Next,
choose a random y′ ∈ Z/pZ and a random k-length vector (y1, . . . , yn), whose
elements are chosen at random from Z/pZ. Then calculate u′ = gy′

and ui = gyi

for i = 1 to k. Finally, an injective encoding H0 : G × GT → {0, 1}k is chosen.
The published public key is

(z = e(g, g1), u′ = gy′
, u1 = gy1 , . . . , uk = gyk , H0),

and the private key is
(g1 = gα, y′, y1, . . . , yk).

Encrypt: A message m ∈ GT is encrypted as follows. First, a value s ∈ Z/pZ
is randomly selected. Then compute C2 = gs and C3 = zsm = e(g, g1)sm =
e(g, g)αsm. Next, compute w = H0(C2, C3) and w1w2 . . . wk denote the binary
expansion of w, where each bit wi ∈ {0, 1}. Let W ⊆ {1, . . . , k} be the set of all
i for which wi = 1. Finally compute C1 = (u′

∏k
i=1 u

wi

i )s. The ciphertext is

C = (C1, C2, C3) = ((u′
∏

j∈W
uj)s, gs, e(g, g1)sm).

Decrypt: Given ciphertext C = (C1, C2, C3), first compute w = H0(C2, C3),
expressed in binary as w1w2 . . . wk. Next, compute w′ = y′ +

∑k
i=1 yiwi mod p,

and check whether (C2)w′
= C1. If not, output ⊥. Otherwise, the ciphertext is

valid, and decrypt the message as

C3

e(C2, g1)
= m.

The Boyen-Mei-Waters PKE scheme is almost as efficient as the Cramer-
Shoup PKE and the variants, and the validity of a ciphertext is publicly verifi-
able, where the check of (C2)w′

= C1 using private information w′ is replaced by
the equivalent check with using the bilinear map and public information. Due
to the public verifiability, an efficient threshold PKE scheme in the standard
model can be constructed on this PKE scheme [10]. Therefore, this scheme is
considered to be the most practical PKE scheme in the standard model.
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Security: Let H0 be an efficiently computable injection. Then the Boyen-
Mei-Waters PKE scheme is IND-CCA2 under the Decisional BDH (DBDH)
assumption.

9 Digital Signatures

The current status on designing secure digital signatures in the standard model
is fairly similar to that on designing secure PKE schemes in the standard model.

The desirable security of a digital signature scheme is formulated as existen-
tial unforgeability against adaptively chosen-message attacks (EUF-CMA) [26].
Although there are several ways to construct practical EUF-CMA secure signa-
ture schemes in the random oracle models [5, 6, 13], only a few practical schemes
were proven to be secure in the standard model (the Cramer-Shoup signature
scheme etc. [16, 21, 24]).

Similarly to PKE, bilinear maps are exploiting a new methodology to design
practical EUF-CMA secure signature schemes in the standard model. There
are two ways in the new methodology; one is to directly design (and prove the
security of) a signature scheme from bilinear maps (the Boneh-Boyen signature
scheme etc. [8, 32, 37]), and the other is to convert an IND-ID-CPA secure IBE
scheme to a signature scheme (e.g., the Waters signature scheme [36]).

The Boneh-Boyen signature scheme may be considered to be converted from
the Boneh-Boyen IBE scheme [7] in Section 7.3, but it is a bit different from
the case of the Waters signature scheme. Since the Waters basic IBE scheme is
IND-ID-CPA, the converted signature scheme is EUF-CMA under the same as-
sumption as that for the IBE scheme. On the other hand, since the Boneh-Boyen
IBE scheme is IND-sID-CPA, the converted signature scheme is not guaranteed
to be EUF-CMA under the same assumption. Actually, the assumption (SDH)
for the Boneh-Boyen signature scheme is different from that (DBDHI) for the
Boneh-Boyen IBE scheme.

9.1 Boneh-Boyen Signature Scheme

Boneh and Boyen presented a very practical signature scheme that is EUF-CMA
secure in the standard model. Signatures in their scheme are much shorter and
simpler than the previous secure signature schemes in the standard model.

The Boneh-Boyen signature scheme [8] is as follows:

Key Generation: Given (G,GT , p, k) (k = |p|), randomly select a generator g
in G and x, y ∈ (Z/pZ)∗, and computes u = gx and v = gy. The public key is
(g, u, v). The secret key is (x, y).

Sign: Given a secret key (x, y) and a message m ∈ (Z/pZ)∗, pick a random
r ∈ (Z/pZ)∗ and compute

σ = g1/(x+m+yr).

Here 1/(x+m+ yr) is computed modulo p. The signature is (σ, r).
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Verify: Given a public key (g, u, v), a message m ∈ (Z/pZ)∗, and a signature
(σ, r), verify that

e(σ, ugmvr) = e(g, g).

If the equality holds the result is valid; otherwise the result is invalid.

Security: The Bone-Boyen signature scheme is EUF-CMA under the strong
DH (SDH) assumption.

9.2 Waters Signature Scheme

The Waters signature scheme is converted from the Waters basic IBE scheme.

Key Generation: Given (G,GT , p, k) (k = |p|), randomly select generators, g
and g2, in G and α ∈ Z/pZ, and compute g1 = gα. Randomly select u′ ∈ G and
k-length vector (u1, . . . , uk) ∈ Gk. The public key is (g, g1, g2, u′, u1, . . . , uk).
The secret key is gα

2 .

Sign: Let m be an k-bit message to be signed and mi denotes the ith bit of
m, and M ⊆ {1, . . . , k} be the set of i for which mi = 1. A signature of
m is generated as follows. First, a random r is chosen. Then the signature is
constructed as:

σ = (gα
2 (u′

∏
j∈M

uj)r, gr).

Verify: Given a public-key (g, g1, g2, u′, u1, . . . , uk), a message m ∈ {0, 1}k, and
a signature σ = (σ1, σ2), check

e(σ1, g)
e(σ2, u′

∏
j∈M uj)

= e(g1, g2).

If it holds, the verification result is valid; otherwise the result is invalid.

Security: The Waters signature scheme is EUF-CMA under the Decisional
BDH (DBDH) assumption.

10 Concluding Remarks

This paper introduced how bilinear maps are used to design efficient IBE/PKE/
signatures that are provably secure in the standard model. The methodology of
using bilinear maps will be applied to more wide areas of secure cryptosystems
and protocols. For example, it is applied to more protocol-oriented primitives like
group signatures [1, 15], blind signatures [32], threshold PKE [10] and verifiable
random functions [23].
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Abstract. Binary sequences with small aperiodic correlations play an
important role in many applications ranging from radar to modulation
and testing of systems. In 1977, M. Golay introduced the merit factor
as a measure of the goodness of the sequence and conjectured an up-
per bound for this. His conjecture is still open. In this paper we survey
the known results on the Merit Factor problem and comment on the re-
cent experimental results by R.A.Kristiansen and M. Parker and by P.
Borwein,K.-K.S.Choi and J. Jedwab.

1 Introduction

Let x0, x1 . . . , xN−1 be a sequence of N elements of value +1 or −1. The aperiodic
correlations are defined by

ck =
N−k−1∑

j=0

xjxj+k k = 1, . . . , N − 1 (1)

and the merit factor of the sequence introduced by M. Golay [1] is defined by

M =
N2

2
∑N−1

k=1 c2k
(2)

The significance of the merit factor comes from the relation between the merit
factor and the spectral properties of the signal corresponding to the sequence.
Let

Q(eiω) =
N−1∑
j=0

xje
ijω (3)

be the Fourier transform of the sequence xj . An easy calculation gives

2
N−1∑
k=1

c2k =
1
2π

∫ 2π

0
(
∣∣Q(eiω)

∣∣2 −N)2dω. (4)

Hence the denominator in the merit factor measures — in terms of power — how
much the amplitude spectrum of the signal deviates from the constant value N,
and a sequence with maximal merit factor M gives a signal with maximally flat
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spectrum for a fixed N . The problem is then to find sequences with large merit
factors.

We also get from the above expression

2
N−1∑
k=1

c2k +N2 =
1
2π

∫ 2π

0

∣∣Q(eiω)
∣∣4 dω (5)

This means that finding sequences with large merit factor is the same as finding
sequences with small L4 norm. In this setting the problem have been discussed
by Littlewood [24] and by Newmann and Byrness [2].

In [14] M. Golay used what he called the “ergodicity postulate” saying that
for asymptotic results the aperiodic correlations can be treated as independent
random variables to arrive at the formula ( see below) for Legendre sequences.
He also used this to conjecture that for every length N > 13 the merit factor is
bounded by 12.32, and that this is the maximal asymptotic value.

For lenghts N up to 40 a complete search was carried out by Lindner [24].
Except for N = 11 and N = 13, the maximal merit factor is in the interval from
3.3 to 9.85. For N = 11 one gets 12.1 and for N = 13 the maximum is 14.08. In
both cases these sequences are Barker sequences (binary sequences for which all
aperiodic corellations are either 0, +1, or −1). It is known that Barker sequences
do not exist for odd lenghts > 13 and for even lenghts there is a lot of evidence
for their nonexistence for N > 4, see e.g. Pott and Jungnickel [4].

There are a number of results of partial searches for larger N [1], [8], [5], [6],
[7], [19] and [20] but for N larger than 300 these give a merit factor of at most 5.

The survey in [23] contains most of the known results up to 1999.
Recently R. Kristiansen and M.Parker [21] and P.Borwein, K.-K.S. Choi and

J. Jedwab [18] constructed sequences by rotation of Legendre sequences and
appending approximately a part of it to obtain long seqences with merit factor
greater than 6.34.

A new survey by J.Jedwab [22] contains a list of challenges concerning the
merit factor problem.

In this paper we will briefly recall what is known and discuss the possibility
of proving some of the new experimental results.

2 The Known Results

In this section we recall the known results on the merit factor problem.

2.1 The Merit Factor of a Random Sequence

Theorem 1. If
xj , j = 0, . . . , N − 1

is a random sequence then

E(M) = 1 +
1

N − 1
.
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Here E(M) denotes the expected value of the merit factor, for a proof see
[2] or [23]. This result somehow indicates why it is so difficult to find sequences
with large ( significantly larger than 1 ) merit factor.

2.2 A Class of Sequences Where the Merit Factor Can Be
Explicitely Calculated

Define a sequence of length N = 2m recursively by

x0 = 1

x2i+j = (−1)j+f(i)x2i−j−1, 0 ≤ j ≤ 2i − 1, i = 0, 1, . . . ,m− 1,

where f is any function mapping the natural numbers into {0, 1}.
This was treated in [9] and if f(0) = f(2k − 1) = 0 and f(2k) = 1, k > 0, we

get the first 2m elements of the Rudin-Shapiro sequence [10].
If M(m) denotes the meritfactor of the sequence we have

M(m) = 3/
(

1 −
(
−1

2

)m)
so as m→∞, M(m) → 3.

2.3 A General Method

In [13] we presented a general method for calculation of the merit factor for
sequences of odd length. Since this is still the only such method known we recall
it. The method uses the discrete Fourier transform of the sequence, i.e.

Q(εj) =
N−1∑
k=0

xkε
k
j

where εj = exp(j2πi/N). A straight forward calculation yields

|Q(εj)|2 = N + c1(εj + ε−1
j ) + c2(ε2j + ε−2

j )

+ · · ·+ cN−1(εN−1
j + ε−(N−1)

j )

= N +
N−1∑
k=1

Θk(εkj )

and therefore
N−1∑
j=0

|Q(εj)|4 = N3 + 2N
N−1∑
k=1

ckcN−k + 2N
N−1∑
k=1

c2k

so if N is odd we get

2
N−1∑
k=1

c2k =
1

2N

⎛⎝N−1∑
j=0

|Q(εj)|4 +
N−1∑
j=0

|Q(−εj)|4
⎞⎠−N2.
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We put S =
∑N−1

j=0 |Q(εj)|4 +
∑N−1

j=0 |Q(−εj)|4 and obtain

1
M

=
S

2N3 − 1.

One way to treat the second part of the sum S is to use a well-known inter-
polation formula [15–p. 89] which gives

Q(−εj) =
2
N

N−1∑
k=0

εj
εj + εk

Q(εk)

and therefore

N−1∑
k=0

|Q(−εj)|4 =
16
N4

N−1∑
k=0

∣∣∣∣∣∣
N−1∑
j=0

εj
εj + εk

Q(εj)

∣∣∣∣∣∣
4

.

It turns out, see [13], that

N−1∑
k=0

∣∣∣∣∣∣
N−1∑
j=0

εj
εj + εk

Q(εj)

∣∣∣∣∣∣
4

= A+B + C +D

where

A =
1
16

(
1
3
N4 +

2
3
N2
)N−1∑

a=0

|Q(εa)|4

B =
N2

8

∑
a,b=0
a�=b

2|Q(εa)|2(Q(εa)Q(εb)εb +Q(εa)Q(εb)εa)
(
εa + εb

(εa − εb)2

)

C = −N
2

4

∑
a,b,c=0
b�=a�=c

2|Q(εa)|2
(
Q(εb)Q(εc)εaεb +Q(εb)Q(εc)εaεc

(εb − εa)(εc − εa)

)

−N
2

4

∑
a,b,c=0
b�=a�=c

Q2(εa)Q(εb)Q(εc)ε2a +Q
2
(εa)Q(εb)Q(εc)εbεc

(εb − εa)(εc − εa)

D = −N
2

2
· 1
2

∑
a,b=0
a�=b

(4|Q(εa)|2|Q(εb)|2εaεb +Q2(εb)Q
2
(εa)ε2b

+Q2(εa)Q
2
(εb)ε2a)/(εa − εb)2.

This at first hand looks very unpleasent but it turns out that one can estimate
these sums in a number of cases, in particular for sequences from difference sets
where |Q(εa)|2, a 	= 0 is a constant.
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2.4 Sequences from Difference Sets

We recall the definition of a cyclic difference set [11]: A set D = {i1, i2, . . . , ik}
of k residues modulo v is called a (v, k, λ)-difference set, if the equation x−y ≡ j
(mod v) has exactly λ solutions (x, y) ∈ D ×D for each j ∈ {1, 2, . . . , v − 1}. If
D is a difference set, we construct a binary sequence xj , j = 0, . . . , v − 1 by

xj =
{

+1 if n ∈ D
−1 if n /∈ D.

The periodic correlations, Θj =
∑v−1

l=0 xlxl+j , where the indices are calculated
modulo v, are given by

Θj =
{
v if j = 0
v − 4(k − λ) if j ∈ {1, . . . , v − 1}.

Thus the periodic correlations take on only two values. This in fact characterizes
the sequences coming from cyclic difference sets [11].

The periodic correlations are connected to the aperiodic correlations by Θj =
Cj + CN−j , so there is no obvious reason why sequences where the magnitudes
of the periodic correlations are small should give sequences with small aperiodic
correlations and therefore a large merit factor, but this however turns out to be
the case for some sequences from cyclic difference sets and for closely related
sequences.

2.5 Legendre Sequences

Let N be an odd prime. A Legendre sequence of length N is defined by the
Legendre symbols

xj =
(
j

N

)
, j = 0, 1, . . . , N − 1

which gives

x0 = 1, xj =
{

1 if j is a square (mod N)
−1 if j is a nonsquare (mod N).

An “offset” sequence is one in which a function f of its length is chopped off at
one end of the sequence and appended at the other, in other words, a cyclic shift
of t = fN places. For Legendre sequences it is known that Q(1) = 1 and

Q(εj) =

{
1 + xj

√
N if N ≡ 1 (mod 4)

1 + ixj

√
N if N ≡ 3 (mod 4)

so if N ≡ 3 (mod 4), |Q(εj)| is independent of j = 1, 2, . . . , N−1 corresponding
to the fact that the quadratic residues form a difference set. If we denote by
Qt(εj) the discrete Fourier transform of the sequence cyclic shifted t places we
have Qt(εj) = ε−t

j Q(εj).



56 T. Høholdt

The fact that |Q(εj)| is independent of j = 1, 2, . . . , N − 1 in the case N ≡ 3
(mod 4) greatly faciliates the calculation of the sums A,B,C, and D, and it turns
out that the case N ≡ 1 (mod 4) can be treated asymptotically in the same
manner.

In [13] it was proved that if M is the merit factor for N → ∞ of an offset
Legendre sequence corresponding to the fraction f , then

1
M

=
2
3
− 4|f |+ 8f2, |f | ≤ 1

2
.

This gives the highest merit factorM = 6 for |f | = 1
4 , a result earlier conjectured

by M. Golay [14].

2.6 Maximal Length Shift Register Sequences

Let α be a primitive element of the finite field F2m and β a fixed element of F2m .
A maximal length shift register sequence — an ML sequence — can be defined as

xj = (−1)tr(βαj), j = 0, 1, . . . , N − 1 = 2m − 2

where tr(x) denotes the trace map from F2m to F2. For the basic facts of these
sequences see [16]. It is known that these sequences arise from Singer difference
sets with parameters (2m − 1, 2m−1 − 1, 2m−2 − 1) and hence it follows that
Q(1) = 1 and |Q(εj)|2 = 2m = N + 1, j = 0, 1, . . . , N − 1. These two properties
alone are not sufficient to determine the merit factor using the method of section
2.3. We have to also use the shift-and-add-property of these sequences. This
states [16–Th. 10.6] that there exists a permutation π of {1, 2, . . . , N − 1} such
that xmxm+s = xm+π(s) for all m ∈ {0, 1, . . . , N − 1} and s 	= 0. Moreover this
permutation satisfies

απ(s) = αs + 1 for s ∈ {1, . . . , N − 1}

so π(s) is what is sometimes called the Zech logarithm. Using this and some
character sum estimates we proved in [12] the following result.

Theorem 2. The asymptotic merit factor of an ML sequence is 3.

2.7 Jacobi Sequences

Let p and q be different primes and N = pq. The Jacobi symbol
(

j
N

)
is defined by(

j

N

)
=
(
j

p

)(
j

q

)
where the factors on the right hand side are Legendre symbols.

A Jacobi sequence Z = z0z1 . . . zN−1 of length N = pq is defined by

zl =
(
l

N

)
, l = 0, 1, . . . , N − 1.

The Jacobi sequences are a special case of a more general construction, namely
the product construction of [24] which we recall here.
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Definition 1. Let X = x0, x1, . . . , xN1−1 and Y = y0, y1, . . . , yN2−1 be two bi-
nary sequences with gcd(N1, N2) = 1. The product sequence Z = z0, z1, . . . ,
zN−1 of length N = N1N2 is defined by

zl = xl1yl2 , l = 0, 1, . . . , N − 1,

where l1 = l (mod N1) and l2 = l (mod N2).

The nice properties of a product sequence are that

– 1. The period correlations satisfy

Θj(z) = Θj1(x)Θj2 (y), j = 0, 1, . . . , N − 1

where j1 = j (mod N1) and j2 = j (mod N2) and
– 2.

Qz(εj) = Qx (εtN2j1)Qy (εsN1j2)

where J1 and J2 are as above and s, t are integers such that sN1 + tN2 = 1.

Based on this and the result for the Legendre sequences one can prove [12].

Theorem 3. Let N = pq, where p and q are different primes, goto infinity
such that (p + q)5 log4N/N3 → 0. Then the asymptotic merit factor M of the
corresponding Jacobi sequence shifted t places is given by the formula

1
M

=
2
3
− 4|f |+ 8f2, |f | ≤ 1

2
where f = t/N .

This implies that the maximal asymptotic merit factor is 6 as for Legendre
sequences.

3 The Recent Results

The idea of Kristiansen and Parker [21] and of Borwein, Choi and Jedwab [18]
based on observations by Kirilusha and Narayanaswamy [25] is to take a se-
quence with known good merit factor and append a fraction of it. If Xr denote a
Legendre sequence rotated rN places (X)t the first tN elements of the sequence
(X), where r and t are real numbers in the interval [0, 1] extensive numerical
calculations suggest that:

1. For large N the merit factor of the sequence X 1
4
;(X 1

4
)t is greater than 6.2

when t ≈ 0.03.
2. For large N the merit factor of Xr;(Xr)t is greater than 6.34 for r ≈ 0.22

and r ≈ 0.72 when t ≈ 0.06.

The lengths of the considered sequences are 20.000 to 260.000 indicating that
there is hope that the maximal asymptotic merit factor is indeed larger than
6.34 ( or maybe even 7). To date there is no proof of this but [18] give a relation
between the merit factor of the appended sequence and the merit factor of the
truncated sequences (Xr))t and (Xr+t)1−t). One could however hope that a
suitable adaption of the method described in section 2.3 eventually will give a
proof.
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15. G.Polya and G.Szegö : Aufgeben und Lehrsätze aus der Analyse II , Berlin: Springer
1925.

16. R.J.McEliece : Finite Fields for Computer Scientists and Engineers. Boston: Kluwer
Academics, 1987.
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firstname.lastname@oeaw.ac.at

Abstract. We consider the problem of determining the period of a bi-
nary sequence. For sequences with small autocorrelation we prove the
existence of a polynomial time quantum algorithm for the above prob-
lem based on an algorithm of Hales and Hallgren. We apply this result to
several concrete examples for which the autocorrelation can be estimated
using known bounds on character sums.

Keywords: Period finding, quantum algorithm, binary sequences, auto-
correlation, finite fields.

1 Introduction

According to Kerckhoff’s principle, the security of a cryptosystem shall not be
based on keeping the encryption algorithm secret but solely on keeping the en-
cryption key secret. The security of many cryptographic sequences is only based
on a secret period. Investigating the vulnerability of the secret key is of great
importance for their choice.

We focus on the most important case of binary sequences and consider the
problem of recovering the period T of a periodic sequence S = (sn)n≥0 over
IF2 = {0, 1} using a quantum algorithm.

Since the mapping n �→ sn, 0 ≤ n < T , is not bijective, T cannot be recovered
by the well-known algorithm of Shor [9]. Here we show that a result of Hales
and Hallgren [4] is quite adequate for our purpose if the given sequence S has a
small autocorrelation, which is an essential feature of cryptographic sequences.

We apply our result to several concrete examples:
– Generalisations of Legendre sequences;
– Generalisations of Sidelnikov sequences;
– Generalisations of trace sequences;
– Elliptic curve trace sequences.

As far as the authors are aware of, no classical algorithms are known that
tackle with the above problems. We remark, however, that most of the results
of this paper can be generalised to nonbinary sequences, see [10].

The main mathematical result of this paper is given in the proof of Theorem 1
in Section 3 and states that if the autocorrelation of a binary sequence is small
then its distance from any sequence of smaller period is large.

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 60–67, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Preliminary Results

2.1 Autocorrelation

We recall the definition of the autocorrelation of a periodic binary sequence.
Let S = (sn)n≥0 be a sequence over IF2 and let T > 1 be the period of S.

The autocorrelation function AC of the sequence S with respect to the shift t is
defined by the following relation:

AC(S, t) =
1
T

T−1∑
n=0

(−1)sn+sn+t , 1 ≤ t < T.

We need the following simple lemma.

Lemma 1. Let S = (sn)n≥0 be a sequence over IF2, T the period of S, and let
B ≥ 0 be fixed, such that

max
1≤t<T

|AC(S, t)| ≤ BT−1.

For a given t, 1 ≤ t < T , we denote with Nt the cardinality of the set

{sn | sn = sn+t, 0 ≤ n < T }.

Then, for any t, 1 ≤ t < T , we have∣∣∣∣Nt −
T

2

∣∣∣∣ ≤ B

2
.

Proof. We clearly have that

|2Nt − T | = T · |AC(S, t)| ≤ B,

and the result of the lemma follows immediately.

2.2 Quantum Period Finding Algorithm

Given two periodic sequences S1 = (s1n)n≥0 and S2 = (s2n)n≥0 with periods T
and t, respectively, we denote byD(S1,S2) the number of integers n ∈ [0, T t−1]
with s1n 	= s2n. The following result can be immediately obtained from
[4–Theorem 2].

Lemma 2. For any constant c > 0, there is a quantum algorithm which com-
putes in polynomial time, with probability at least 3/4, the period of any sequence
S1 of period T satisfying

D(S1,S2) ≥ T t

(logT )c
,

for any sequence S2 of period t < T .
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3 Reconstruction of the Period

In this section we state and prove the main theorem of this paper. Given a peri-
odic binary sequence, the theorem below gives a condition which, when fulfilled,
ensures the existence of a quantum algorithm for the reconstruction of the binary
sequence’s period.

Theorem 1. Let S = (sn)n≥0 be a sequence over IF2 and T the period of S, for
which

max
1≤t<T

|AC(S, t)| ≤ 1 − 4
(logT )c

for some c > 0. Then there exists a quantum algorithm which computes T in
polynomial time, with exponentially small probability of failure.

Proof. Let S1 = (s1n)n≥0 be a sequence of period t < T and let Kt be the set

{sn | sn = s1n and sn+t = s1n+t, 0 ≤ n ≤ T t− 1}.
Considering the definition of D(S,S1) we know that

T t− 2D(S,S1) ≤ |Kt|.
Also, for each n ∈ Kt we can write sn = s1n = s1n+t = sn+t and thus sn = sn+t.
Using the result of Lemma 1 with the bound B = T (1− 4(logT )−c), we get

|Kt| ≤ tNt ≤
tT

2

(
2 − 4

(logT )c

)
.

We have now the following sequence of inequalities

T t− 2D(S,S1) ≤ |Kt| ≤
tT

2

(
2 − 4

(logT )c

)
.

From here, we arrive at

D(S,S1) ≥ T t

(log T )c
.

The result of the theorem follows, then, from the application of Lemma 2.

The above theorem ensures us that a quantum algorithm for computing the
period of a binary sequence exists, provided that the maximum autocorrelation
of the sequence is small enough. The concrete description of the actual quantum
algorithm and a proof of its correctness are not in the scope of this paper. We
direct the interested reader to consult [4].

4 Applications

In this section we give some examples how Theorem 1 can be used to give the
existence of quantum algorithms for recovering the period of special families of
binary sequences. For each sequence in the examples below we give a bound for
the maximum autocorrelation of the given sequence and then the condition for
the existence of the quantum algorithm. Each of the corollaries formulated below
follow immediately from Theorem 1.
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4.1 Legendre and Related Sequences

We recall that a Legendre sequence L = (ln)n≥0 is defined by

ln =

{
1 if

(
n
p

)
= −1,

0 otherwise,
n ≥ 0,

where p is an odd prime and
(

.
p

)
denotes the Legendre symbol.

Now, given an odd prime p and a polynomial f(X) over IFp, we define the
generalised Legendre sequence L = (ln)n≥0 of period p, with the polynomial f(X)
as follows:

ln =

{
1, if

(
f(n)

p

)
= −1,

0, otherwise,
n ≥ 0.

The following lemma can be immediately proved using Weil’s bound for mul-
tiplicative character sums; see [6–Theorem 5.41].

Lemma 3. For a generalised Legendre sequence L with a polynomial f(X) ∈
IFp[X ] and period p such that, for any 1 ≤ t < p, f(X)f(X + t) is not a square
we have

max
1≤t<p

|AC(L, t)| ≤ (2 deg(f) − 1)p−1/2 + 2 deg(f)p−1.

Proof. Note that

(−1)ln =
(
f(n)
p

)
if f(n) 	= 0

and we have f(n) = 0 or f(n + t) = 0 for at most 2 deg(f) different n, with
0 ≤ n < p. Hence, for 1 ≤ t < p and using the multiplicativity of the Legendre
symbol, we have

p|AC(L, t)| ≤
∣∣∣∣∣
p−1∑
n=0

(
f(n)f(n+ t)

p

)∣∣∣∣∣+ 2 deg(f)

and the result follows using the Weil bound.

The above lemma naturally holds for the classical case of Legendre sequences.
This can be easily checked by instantiating the polynomial f(X) with f(X) = X .

We state now the following existence result.

Corollary 1. Let L = (ln)n≥0 be a generalised Legendre sequence of period p,
with the polynomial f(X) ∈ IFp[X ] of degree at most

p1/2

2

(
1 − 4

(log p)c

)
for some c > 0, such that, for any 1 ≤ t < p, f(X)(f(X+ t)) is not a square for
any 1 ≤ t < p. Assume that we are given a black-box that outputs ln for every
input integer n. Then there exists a quantum algorithm which computes p with
an exponentially small probability in polynomial time.

The result in the above corollary is an immediate consequence of Theorem 1.



64 F. Piroi and A. Winterhof

In the currently available literature, some generalised Legendre sequences for
particular polynomials f have been studied. For example, in the case f(X) =
X + s, where s is a shift, quantum algorithms for finding the period p and the
shift s are given in [2]. In the case p is known then f(X) can be recovered in the
general case using an algorithm of quantum query complexity O(deg(f)); see [8].

For considerations on the autocorrelation for extensions of Legendre sequences
of period q, with q an odd prime power, which are defined over the field IFq which
a special, somewhat natural, ordering of the elements and the quadratic character
of IFq, see [7]. For sequences of period pq with two primes p and q see [1, 3].

4.2 Generalised Sidelnikov Sequences

Classically, a Sidelnikov sequence S = (sn)n≥0 is defined by

sn =
{

1 if η(gn + 1) = −1,
0 otherwise, n ≥ 0,

where g is a primitive element and η denotes the quadratic character of the finite
field IFq of odd order q.

Let q be an odd prime power, f(X) a polynomial over the finite field IFq of
q elements, and g ∈ IFq an element of order T . Then a generalised Sidelnikov
sequence S = (sn)n≥0 of period T , with an element g of order T and a polynomial
f is defined by

sn =
{

1, if η(f(gn)) = −1,
0, otherwise, n ≥ 0,

where η is, as before, the quadratic character of the field IFq.
The following result is again based on the Weil bound.

Lemma 4. Let S be a generalised Sidelnikov sequence of period T , with an el-
ement g ∈ IFq of order T and a polynomial f(X) ∈ IFq[X ] such that, for any
1 ≤ t < T , f(X)f(gtX) is, up to a constant, not a square. Then we have

max
1≤t<T

|AC(S, t)| < 2 deg(f)(q1/2 + 1)T−1.

Proof. The conclusion of the lemma follows immediately from the Weil’s theo-
rem. Namely, we have

T |A(S, t)|

≤
∣∣∣∣∣
T−1∑
n=0

η(f(gn)f(gtgn))

∣∣∣∣∣+ 2 deg(f)

≤ T

q − 1

⎛⎝∣∣∣∣∣∣
∑

x∈IFq

η(f(x(q−1)/T )f(gtx(q−1)/T ))

∣∣∣∣∣∣+ 1

⎞⎠+ 2 deg(f)

≤ T

q − 1
(2 deg(f)(q − 1)/T − 1)q1/2 + 2 deg(f)

< 2 deg(f)(q1/2 + 1).
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As it was the case for Legendre sequences, Lemma 4 holds also for the classical
case of Sidelnikov sequences. In order to check this we have to take f(X) = X+1.

Corollary 2. Let S = (sn)n≥0 be a generalised Sidelnikov sequence of period T ,
with g ∈ IFq of order T and a polynomial f(X) ∈ IFq[X ] of degree at most

T

2(q1/2 + 1)

(
1 − 4

(log T )c

)
for some c > 0, such that, for any 1 ≤ t < T , f(X)(f(gtX)) is, up to a constant,
not a square. Assume that we are given a black-box which, for every integer
n, outputs sn. Then there exists a quantum algorithm which computes T in
polynomial time with an exponentially small probability of failure.

4.3 Generalised Trace Sequences

Let us now look at generalisations of trace sequences. A trace sequence T =
(tn)n≥0 is defined by

tn = Tr (gn), n ≥ 0,

where g is a primitive element of IF2r and Tr denotes the absolute trace of IF2r ,
for some r ≥ 1.

Let f(X) ∈ IF2r [X ], and g ∈ IF2r an element of order T . We define the
generalised trace sequence T = (tn)n≥0 of period T , with the polynomial f and
element g by

tn = Tr (f(gn)), n ≥ 0.

The following result is based on Weil’s bound for additive character sums;
see, e.g., [6–Theorem 5.38].

Lemma 5. For any generalised trace sequence T = (tn)n≥0 of period T , with
g ∈ IF2r of order T and any polynomial f(X) ∈ IF2r [X ] such that f(X)+f(gtX)
is not of the form h(X)2 + h(X) + c for any 1 ≤ t < T , we have

max
1≤t<T

|AC(T , t)| < deg(f)2r/2T−1.

Corollary 3. Let T = (tn)n≥0 be a generalised trace sequence of period T , with
g ∈ IF2r of order T and any polynomial f(X) ∈ IF2r [X ] of degree at most

T

2r/2

(
1 − 1

(logT )c

)
,

for some c > 0 and such that f(X)+f(gtX) is not of the form h(X)2+h(X)+c,
for any 1 ≤ t < T . Assume that we are given a black-box which, for every
integer n, gives tn. Then there exists a quantum algorithm which computes T in
polynomial time with an exponentially small probability of failure.
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For some certain cases of trace sequences we can recover the period T also
by combining the Berlekamp-Massey and the Shor algorithm. The Berlekamp-
Massey algorithm delivers the coefficients c0, . . . , cL ∈ IF2 of the shortest linear
recurrence relation

L∑
l=0

cltn+l = 0, n ≥ 0,

satisfied by T . For example, if f(X) = X this leads to

Tr

(
gn

L∑
l=0

clg
l

)
= 0, n ≥ 0.

We denote the sum above with b. If g is a defining element of IF2r , i.e.,
{1, . . . , gr−1} is a basis of IF2r , then by the linearity of the trace Tr (bgn) = 0,
0 ≤ n < r, we know that Tr (bx) = 0, x ∈ IF2r , and thus b = 0. A root
finding algorithm can be used to determine g and, finally, Shor’s algorithm can
be applied to calculate T .

4.4 Elliptic Curve Trace Sequences

Let E be an elliptic curve over IF2r and P a rational point on E of order T . For
a function f in the function field IF2r(E) the sequence E = (en)n≥0 defined by
en = Tr (f(nP )), n ≥ 0, has the period T .

The following result follows from [5–Corollary 1].

Lemma 6. For any function f in the function field IF2r (E) such that f(nP )−
f((n+ t)P ) is not constant for 1 ≤ t < T and n ≥ 0, the sequence E = (en)n≥0
satisfies

max
1≤t<T

|AC(E , t)| ≤ 4 deg(f)2r/2T−1.

For example, the function f(Q) = x(Q), where x(Q) is the first coordinate ofQ =
(x(Q), y(Q)) ∈ E, satisfies the condition that sn − sn+t = f(nP )− f((n+ t)P )
is not constant, for 1 ≤ t < T .

Corollary 4. Let E = (en)n≥0 be a sequence of period T defined as in Lemma 6
with deg(f) at most

T

4 · 2r/2

(
1 − 4

(log 2r)c

)
for some c > 0. Assume that we are given a black-box which for every inte-
ger n outputs en. Then there exists a quantum algorithm which computes T in
polynomial time with an exponentially small probability of failure.
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Abstract. We introduce the vector key equation for cyclic codes with
more than one set of consecutive roots. Using the lattice basis reduction
multisequence shift register synthesis algorithm [7, 8], we find the mini-
mal solution to the vector equation key and also give an important pa-
rameter of the multiple sequences, that is, characteristic sequence. Using
it, we give a simpler sufficient and necessary condition for the uniqueness
of the minimal polynomial of multiple sequences than that in [7]. The
new approach enables us not only to decode cyclic codes up to HT and
Roos bounds and but also to find out certain error patterns which can
be decoded beyond the two bounds.

1 Introduction

The central computation in decoding alternant codes (including BCH, RS and
1-variable Goppa codes) is to solve the so-called key equation, i.e.,

C(x)s(x) ≡ D(x) mod x−N−1, (1)

where s(x) is the corresponding formal negative power series of the syndrome se-
quence with length N , C(x),D(x) represent the error-locator and error-evaluator
polynomials, respectively, they are relatively prime and deg(D(x)) <
deg(C(x)) ≤ N .

In this paper we consider the cyclic codes with more than one set of consec-
utive roots. The reader is referred to [2] for notations and background.

Let C be a cyclic code of length n over a finite field Fq generated by a poly-
nomial g(x). Let dBCH, dHT and dRoos denote the BCH bound, the HT bound and
Roos bound, respectively, on the minimum distance d of the code. Let β be a
primitive nth root of unity in Fql with g.c.d.(n, q) = 1. If βb+ir1+hr2 are roots of
g(x) for i = 1, 2, . . . , N , h = 1, 2, . . . ,m, where (r1, n) = (r2, n) = 1, then

d ≥ dHT = N +m. (2)

When m = 1, the HT bound reduces to the BCH bound. It is Hartmann and
Tzeng’s original generalization of the BCH bound [3].

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 68–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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If βb+ir1+jhr2 are roots of g(x) for i = 1, 2, . . . , N , h = 1, 2, . . . ,m, where
1 = j1 < j2 < · · · < jm, (jm −m) < N , and (r1, n) = (r2, n) = 1, then

d ≥ dRoos = N +m. (3)

It is noted that the above Roos bound reduces to the HT bound when jh = h
for h = 1, 2, . . . ,m.

Let c(x) be a codeword polynomial, e(x) an error polynomial and r(x) a
received polynomial such that r(x) = c(x)+e(x). Let s(h)

i be syndrome defined by

s
(h)
i = r(βb+ir1+jhr2) = e(βb+ir1+jhr2), for i = 1, 2, . . . , N, h = 1, 2, . . . ,m. (4)

Our vector key equation has the form

C(x)(s(1)(x), s(2)(x), . . . , s(m)(x)) = (D1(x), D2(x), . . . , Dm(x)) mod x−N−1.
(5)

where C(x) is the monic error-locator polynomial, Di(x) ∈ Fq[x], 1 ≤ i ≤ m,
are the error-evaluator polynomial, and

s(h)(x) =
N∑

i=1

s
(h)
i x−i, 1 ≤ h ≤ m

is the formal negative power series of syndrome sequences.
When m = 1, it is the famous key equation.
In [2] the authors generalized the famous Berlekamp-Massey algorithm and

applied this generalized algorithm to decoding cyclic codes up to HT and Roos
bounds. However, the proof about the uniqueness of the error-locator polynomial
is very complicated.

Using a lattice basis reduction algorithm, in [7] we proposed a new multise-
quence shift register synthesis algorithm (LBRMS algorithm) and in [8] we gave
its refined algorithm. In this paper we propose a new definition of characteris-
tic sequence of the multiple sequences. By means of the new concept, we give
a simpler sufficient and necessary condition for the uniqueness of the minimal
polynomial of multiple sequences than that in [7]. The new approach enables us
not only to decode cyclic codes up to HT and Roos bounds easily and but also
to find out certain error patterns which can be decoded beyond the two bounds.
Finally, we give such an example.

2 The Vector Key Equation

In this section our goal is to write the series s(h)(x) described in the Introduction
as a quotient of two relatively prime polynomials and so we introduce the vector
key equation.

Let t be the number of errors and aμ, Yμ for μ = 1, 2, . . . , t be the locations
and the values of the errors, where 0 ≤ aμ < n, Yμ 	= 0 and Yμ ∈ Fq. Then

e(x) =
t∑

μ=1

Yμx
aμ . (6)
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Let Xμ = βaμ , we have

s
(h)
i =

t∑
μ=1

YμX
b+ir1+jhr2
μ , for i = 1, 2, . . . , N, h = 1, 2, . . . ,m. (7)

The problem of decoding cyclic codes is to determine Yμ’s and Xμ’s from the
multiple syndrome sequences. Let

C(x) =
t∏

μ=1

(x−Xr1
μ ) = xt + ct−1x

t−1 + · · · + c1x+ c0 (8)

be the error-locator polynomial. Then

s
(h)
j + ct−1s

(h)
j−1 + · · · + c0s(h)

j−t = 0
for j = t+ 1, t+ 2, . . . , N, and h = 1, 2, . . . ,m. (9)

Let s = (s(1), . . . , s(m)) be an m-fold multisequence over a finite field Fq

such that each single sequence s(h) = (s(h)
1 , s

(h)
2 , . . . , s

(h)
N ) for h = 1, 2, . . . ,m.

A polynomial is called a characteristic polynomial of s if (9) holds. A minimal
polynomial of s is defined by the characteristic polynomial with least degree.
Thus C(x) is a minimal polynomial of s and its degree is called the joint lin-
ear complexity of the given m sequences, denoted by LC(s). So the problem
of decoding cyclic codes is reduced to finding the minimal polynomial of the
syndrome sequences s.

Next we see the expression of s(h)(x). We have

1
x−Xr1

μ
=

x−1

1 −Xr1
μ x−1 = x−1 +Xr1

μ x
−2 +X2r1

μ x−3 + · · · (10)

Multiplying YμX
b+r1+jhr2
μ on (10), then

t∑
μ=1

YμX
b+r1+jhr2
μ

x−Xr1
μ

= s
(h)
1 x−1 + s(h)

2 x−2 + · · ·+ s(h)
N x−N + · · · (11)

For h, h = 1, ...,m, set

Dh(x) =
t∑

μ=1

YμX
b+r1+jhr2
μ

t∏
k = 1
k �= μ

(x−Xr1
k ) (12)

Then it is straightforward to obtain the following lemma.

Lemma 1. For each h, h = 1, ...,m, we have

Dh(x)
C(x)

= s(h)
1 x−1 + s(h)

2 x−2 + · · ·+ s(h)
N x−N + · · · . (13)
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Theorem 1. (Vector key equation) For each h, h = 1, ...,m, we have
1) deg(Dh(x)) < deg(C(x)).
2) g.c.d.(C(x), Dh(x)) = 1.
3)

Yμ =
Dh(Xr1

μ )

Xb+r1+jhr2
μ

∏t
k = 1
k �= μ

(Xr1
μ −Xr1

k )
, μ = 1, . . . , t.

4) C(x)(s(1)(x), s(2)(x), . . . , s(m)(x)) = (D1(x), D2(x), . . . , Dm(x)) mod x−N−1.

The polynomial C(x) with least degree is called a minimal solution of the vector
key equation.

3 The LBRMS Algorithm

In this section we first review the LBRMS algorithm briefly and then give a
simpler sufficient and necessary condition about the uniqueness of the minimal
polynomial of multiple sequences than that in [7].

We will identify the sequence s(h) with the formal power series s(h)(x) =∑∞
i=1 s

(h)
i x−i for 1 ≤ h ≤ m and so need to introduce the Laurent series field

K = Fq((x−1)) =

{ ∞∑
i=i0

aix
−i| i0 ∈ Z, ai ∈ Fq

}
.

Clearly, there is a valuation υ on K, that is, for α =
∑∞

i=i0
aix

−i ∈ K, υ(α) =
min{i ∈ Z| ai 	= 0} if α 	= 0, and υ(α) = ∞ if α = 0.

The following two mappings (order function and projection) on the vector
space Km+1 will be used in the description of the LBRMS algorithm.

V : Km+1 → Z ∪ {∞} : γ = (αi)1≤i≤m+1 �→{
∞, if γ = 0,

min{υ(αi)| 1 ≤ i ≤ m+ 1}, otherwise,

θk : Km+1 → Fm+1 : γ = (αi)1≤i≤m+1 �→ (a1,k, . . . , am+1,k)T , for k ∈ Z,
where αi =

∑∞
j=j0

ai,jx
−j , 1 ≤ i ≤ m+1, T denotes the transpose of a vector.

In the sequel θV (γ)(γ) is often used and simply denoted by θ(γ).
A subset Λ of Km+1 is called an Fq[x]-lattice if there exists a basis ω1, . . . ,

ωm+1 of Km+1 such that

Λ =
m+1∑
i=1

Fq[x]ωi =

{
m+1∑
i=1

fi ωi | fi ∈ Fq[x], i = 1, . . . ,m+ 1

}
.

In this situation we say that ω1, . . . , ωm+1 form a basis for Λ and we often denote
the lattice by Λ(ω1, . . . , ωm+1). A basis ω1, . . . , ωm+1 is reduced if θ(ω1), . . . ,
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θ(ωm+1) are linearly independent over Fq. The determinant of the lattice is
defined by det(Λ(ω1, . . . , ωm+1)) = v(det(ω1, . . . , ωm+1)).

Next we construct a special lattice Λ(ε1, · · ·, εm, α) in Km+1 spanned by
the vectors ε1 = (1, 0, . . . , 0), . . . , εm = (0, . . . , 0, 1, 0), α = (s(1)(x), . . . , s(m)(x),
x−N−1).

Let πi, i = 1, . . . ,m+ 1, denote the ith component of a vector in Fm+1, and
Γ the set of all characteristic polynomials of s.

The mapping η : Λ(ε1, . . . , εm, α) → F[x] is given by γ = D1(x)ε1 + · · · +
Dm(x)εm + C(x)α �→ C(x). Put

S(Λ(ε1, . . . , εm, α)) = {γ ∈ Λ(ε1, . . . , εm, α)| πm+1(θ(γ)) = 1}.

By Theorem 1, a mapping ϕ : S(Λ(ε1, . . . , εm, α)) → Γ is well defined by γ �→
η(γ). Likewise, a mapping ψ : Γ → S(Λ(ε1, · · ·, εm,α)) given by C(x) �→ σ(C(x))
is well-defined. It is easy to verify that ϕψ = 1Γ and ψϕ = 1S(Λ(ε1,...,εm,α)). Hence
ϕ is a bijection. Furthermore, we define two natural total orderings, namely,
S(Λ(ε1, . . . , εm, α)) is ordered by the orders of elements and Γ by the degrees
of polynomials. For any two elements γ1, γ2 ∈ S(Λ(ε1, . . . , εm, α)) with V (γ1) ≤
V (γ2), we have deg(ϕ(γ1)) ≥ deg(ϕ(γ2)).

Thus we have proved the following theorem.

Theorem 2. (cf. [7], Theorem 2) The mapping ϕ is an inverse-order preserving
one-to-one correspondence between S(Λ(ε1, . . . , εm, α)) and Γ .

So far, the problem about minimal polynomials of the given sequences is reduced
to finding an element γ of S(Λ(ε1, . . . , εm, α)) such that its order is maximum.

By means of a lattice basis reduction algorithm [6], we can transform a basis
for the lattice Λ(ε1, · · ·, εm, α) into a reduced one ω1, ω2, . . . , ωm+1.

Especially, in the LBRMS algorithm the reduced basis satisfies the following
properties [8].

1. θ(ω1), . . . , θ(ωm) are linearly independent over F and πm+1(θ(ωi)), i = 1, . . . ,
m, is zero.

2. πm+1(θ(ωm+1)) = 1.
3.
∑m+1

i=1 V (ωi) = det(Λ(ε1, . . . , εm, α)) = N + 1.

Therefore η(ωm+1) is a minimal polynomial of s and V (ωm+1) = N + 1
− LC(s), see [7, 8] for details.

If ω1, . . . , ωm, ωm+1 form a reduced basis for any lattice Λ, the set {V (ω1), . . . ,
V (ωm+1)} is completely determined by the lattice and does not depend on the
particular choice of reduced basis ω1, . . . , ωm, ωm+1 [6]. For the lattice Λ(ε1, . . . ,
εm, α), it means that the set is completely determined by the prescribed multiple
sequences and so we give a new definition.

Definition 1. The sequence π(s) = {V (ω1), . . . , V (ωm)} is called the char-
acteristic sequence of the multiple sequences s, where ω1, . . . , ωm, ωm+1 is a
reduced basis for the lattice Λ(ε1, . . . , εm, α), V (ω1) ≥ V (ω2) ≥ · · · ≥ V (ωm)
and V (ωm+1) = N + 1 − LC(s).
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By property 3, we have

Theorem 3. For any multiple sequences s, we have∑
a∈π(s)

a = LC(s).

In the following theorem we simplify a sufficient and necessary condition about
the uniqueness about minimal polynomials in [7].

Theorem 4. The minimal polynomial of s is unique if and only if the first
element of π(s) is less than N + 1 − LC(s), where N is the length of these
sequences.

Proof. Let ω1, ω2, . . . , ωm+1 be a reduced basis of Λ(ε1, . . . , εm, α) obtained from
the LBRMS algorithm satisfying the above three properties. It is easily seen from
Theorem 2 that it suffices to show the shortest length vector in S(Λ(ε1, . . . , εm,
α)) is unique if and only if V (ωm+1) > V (ωi), for all 1 ≤ i ≤ m. Suppose there
exists a vector γ = f1(x)ω1 + · · · + fm+1ωm+1 ∈ S(Λ(ε1, . . . , εm, α)) such that
V (γ) = V (ωm+1). Since the basis ω1, . . . , ωm+1 is reduced, we get γ = fm+1(x) ·
ωm+1. Because of V (γ) = V (ωm+1) and πm+1(θ(γ)) = πm+1(θ(ωm+1) = 1, we
know fm+1(x) = 1, i.e., γ = ωm+1. Therefore the minimal polynomial is unique.
Conversely, suppose that there exists some j, 1 ≤ j ≤ m, such that V (ωm+1) ≤
V (ωj). Setting γ = xV (ωj)−V (ωm+1)ωj +ωm+1, then γ ∈ S(Λ(ε1, . . . , εm, α)) and
V (γ) = V (ωm+1). But since γ 	= ωm+1, then η(γ) 	= η(ωm+1), a contradiction
to the uniqueness of minimal polynomial. �

Because of π(s) = {LC(s)} when m = 1, the following two conditions are equiv-
alent.

1. LC(s) < N + 1 − LC(s).
2. 2LC(s) ≤ N .

So the above theorem is the famous condition about the uniqueness of the
minimal polynomial in the case of single sequence.

In addition, we give an upper bound about the errors number in decoding
such codes using multisequence linear feedback shift register technique.

Corollary 1. If the minimal polynomial of s is unique, then

LC(s) <
m

m+ 1
(N + 1).

Proof. By Theorem 4, we have

N + 1 − LC(s) > a, for any a ∈ π(s).

By Theorem 3, we get

m(N + 1 − LC(s)) >
∑

a∈π(s)

a = LC(s).
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and so
m(N + 1 − LC(s)) > LC(s).

Thus we get the desired results. �

Usually we assume m ≤ N , so we have

Corollary 2.

2m
m+ 1

(N + 1) > N +m− 1.

Proof. If we want to have this result, then we need to show that

⇐ 2m(N + 1) > (m+ 1)(N +m− 1)
⇐ (m− 1)N > (m+ 1)(m− 1)− 2m

⇐ N > m− 1 − 2
m− 1

⇐ N ≥ m− 1.

So the result holds. �

From Corollary 2, this upper bound is absolutely greater than the HT bound
and the Roos bound, which makes it possible to decode the cyclic codes beyond
the two bounds.

4 Decoding BCH Codes Using Multiple Syndrome
Sequences

In [2] the authors proved the uniqueness about the error-locator polynomial up
to HT and Roos bounds with additional requirement for the latter by matrix
theory. In this section we simply solve the uniqueness of decoding problem by
a new viewpoint. However, we have to add the condition, i.e. V (ωi) > 0 for
1 ≤ i ≤ m.

Theorem 5. If 2 t ≤ N +m−1, where t is the number of errors and V (ωi) > 0
for 1 ≤ i ≤ m, then the minimal polynomial of the syndrome sequences s is
unique.

Proof. Let ω1, ω2, . . . , ωm+1 be a reduced basis obtained by the LBRMS al-
gorithm. Because of t = LC(s) and V (ωm+1) = N + 1 − t ≥ t − m + 2,
V (ωi) ≤ t−m+ 1 for 1 ≤ i ≤ m, by Theorem 4 we have the conclusion. ��

Finally, we give a special kind of error patterns which can be decoded beyond the
above two bounds. From Theorem 4, it is straightforward that an error pattern
can be decoded beyond HT and Roos bounds if the characteristic sequence of
its syndrome sequences satisfies the condition in Theorem 4.
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The following is such an example.

Example 1. Let n = 31, g(x) = m1(x)m3(x)m5(x)m11(x). We have two consec-
utive roots β, β2, . . . , β6, and β8, β9, . . . , β13, where β is a primitive element in
F25 such that β5 + β2 + 1 = 0. Here the BCH bound is 7, the HT bound is 8,
and the actual minimum distance is 11.

Assume we obtain two syndrome sequences

s(1) = (β12, β24, β20, β17, β, β9)
s(2) = (β3, β8, β2, β13, β18, β21)

Using the refined LBRMS algorithm, we have V (ω1) = 2, V (ω2) = 2, and
ω3 = 3. So we obtain a unique minimal polynomial C(x) = x4 +β12x3 +β21x2 +
β8x+ β = (x − 1)(x− β)(x− β3)(x − β5). Hence the error polynomial is

e(x) = 1 + x+ x3 + x5.

So we can correct 4 errors beyond HT and BCH bounds.
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Abstract. We show herein that a pattern based on FGLM techniques
can be used for computing Gröbner bases, or related structures, associa-
ted to linear codes. This Gröbner bases setting turns out to be strongly
related to the combinatorics of the codes.

1 Introduction

It is well known that the complexity of Gröbner bases computation heavily
depends on the term orderings, moreover, elimination orderings often yield a
greater complexity. This remark led to the so called FGLM convertion problem,
i.e., given a Gröbner basis with respect to a certain term ordering, find a
Gröbner basis of the same ideal with respect to another term ordering. One of
the efficient approaches for solving this problem, in the zero-dimensional case,
is the FGLM algorithm (see [11]).

The key ideas of this algorithm were successfully generalized in [12] with
the objective of computing Gröbner bases of zero-dimensional ideals that are
determined by functionals. In fact, the pioneer work of FGLM and [12] was
the Buchberger-Möller’s paper (cf. [9]). Authors of [1] used the approach of [9]
and some ideas of [11] for an efficient algorithm to zero-dimensional schemes
in both affine and projective spaces. In [4] similar ideas of using a generalized
FGLM algorithm as a pattern algorithm were presented in order to compute
Gröbner basis of ideals of free finitely generated algebras. In particular, it is
introduced the pattern algorithm for monoid and group algebras . In [3, 13] a
more general pattern algorithm which works on modules is introduced, many
things behind of this idea of using linear algebra are formalized, notions like
“Gröbner technology” and “Gröbner representations” are used. There are other
approches which also generalized similar ideas to some settings, behind of all
these works is the essential fact of using linear algebra techniques to compute in
“Gröbner bases schemes”.
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The main goal of this paper is to show the application of techniques to linear
codes like the ones in FGLM and subsequent works, which comes from an spec-
ification of the pattern algorithm for monoid algebras given in [4], i.e. by taking
an algebra associated to a linear code.

2 Preliminaries

The case of the algebra associated to a linear code we are going to introduce
is connected with an ideal of a free commutative algebra; therefore, we will
restric ourselves to the formulation of a pattern algorithm for a free commutative
algebra. Similar settings can be performed in a free associated algebra or over
modules (see [4, 3, 13]).

Let X := {x1, . . . , xn} be a finite set of variables, [X ] the free commutative
monoid on X , K a field, I an ideal of K[X ], I(F ) the ideal of K[X ] generated
by F ⊂ K[X ], K[X ]/I the residue class algebra of K[X ] module I. Let us
denote by 1 the empty word in [X ], L(u) the length of the word u ∈ [X ],
and Card(C) the cardinal of the set C. Let now ≺ be a semigroup total well
ordering on [X ] (such an ordering is also called admissible), then for f ∈ K[X ] \
{0}, T≺(f) is the maximal term of f with respect to ≺, LC≺(f) is the leading
coefficient of f with respect to ≺. Similarly, for F ⊂ K[X ], T≺{F} is the set
of maximal terms of non-zero polynomials in F , T≺(F ) is the semigroup ideal
generated by T {F}. Moreover, for the sake of simplicity in notation, U≺(F ) will
be used instead of U(T≺(F )), where U lies in {G,N,B, I}. Of course, given an
ideal I and two different admissible orderings ≺1 and ≺2, in general we have
U(T≺1(I)) 	= U(T≺2(I)). Notwithstanding this strong dependency on ≺, while
a single admissible ordering ≺ is considered, so that no confusion arise, we will
often simply write U(F ) for U≺(F ).

Let τ ⊂ [X ] be a semigroup ideal of [X ], i.e., for u ∈ [X ] and t ∈ τ , tu ∈ τ .
Then, it is well known that τ has a unique subset G(τ) of irredundant generators
(probably infinite). In the case of I a zero-dimensional ideal, for τ = T (I), G(τ)
is always finite. We are going to introduce for τ some notation and terminology,
which are similar to those introduced in [12].

Pred(w) := {u ∈ [X ] | ∃ x ∈ X (w = ux)} (the set of predecessors of w),
N(τ) := {s ∈ [X ] | s /∈ τ} (outside of τ),
B(τ) := {w ∈ τ | Pred(w) ⊂ N(τ)} (border of τ),
I(τ) := τ \B(τ) (interior of τ).

We remark that w ∈ τ lies in G(τ) if and only if all its proper divisors are
in N(τ) (that is if Pred(w) ⊂ N(τ)). In the following proposition, some basic
results concerning τ and its regions are summarized. Although they are very
easy to prove, their importance is crucial for FGLM techniques.

Proposition 1 (Properties of the semigroup ideal regions).

i. For each w ∈ τ there exist u ∈ [X ] and v ∈ B(τ) s.t. w = vu.
ii. For x ∈ X:
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(a) If u ∈ N(τ), then ux ∈ N(τ) ∪B(τ).
(b) If u ∈ B(τ), then ux ∈ B(τ) ∪ I(τ).
(c) If u ∈ I(τ), then ux ∈ I(τ).

iii. N(τ), N(τ)∪G(τ), N(τ)∪B(τ) are order ideals, i.e., if u belongs to one of
these subsets and v divides u, then v also belongs to the corresponding sets.

Theorem 1 (The vector space of canonical forms modulo an ideal). Let
SpanK(N≺(I)) be the K-vector space whose basis is N≺(I). Then the following
holds:

i. K〈X〉 = I⊕SpanK(N≺(I)) (this sum is considered as a direct sum of vector
spaces).

ii. For each f ∈ K[X ] there is a unique polynomial of SpanK(N≺(I)), denoted
by Can(f, I,≺) such that f − Can(f, I,≺) ∈ I; moreover:
(a) Can(f, I,≺) = Can(g, I,≺) if and only if f − g ∈ I.
(b) Can(f, I,≺) = 0 if and only if f ∈ I.

iii. There is aK-vector space isomorphism between K[X ]/I and SpanK(N≺(I))
(the isomorphism associates the class of f modulo I with the canonical form
Can(f, I,≺) of f modulo I).

Can(f, I,≺) is called the canonical form of f modulo I. We use simply Can(f, I)
if the ordering used is clear from the context.

We assume the reader to be familiar with definition and properties of Gröbner
bases (see [2] for an easy to read introduction to Gröbner bases).

Proposition 2 (Characterization of zero-dimensional ideals). Let G be
a Gröbner basis of I with respect to ≺. Then, I is a zero-dimensional ideal (i.e.
dimKK[X ]/I < ∞) if and only if N≺(G) is finite. Moreover, in such a case,
dimKK[X ]/I = Card(N≺(G)).

Definition 1 (Border basis). The border basis of I with respect to ≺ is the
subset B(I,≺) ⊂ I defined by:

B(I,≺) := {w − Can(w, I,≺) | w ∈ B≺(I)} (the B-basis of I).

Note that the B-basis of I is a Gröbner basis of I that contains the reduced
Gröbner basis.

2.1 Matphi Matrices and Gröbner Representation

The word Matphi appears by the first time in [11] to denote a procedure that
computes a set of matrices (called matphi matrices) s.t. there is one matrix for
each variable in X and they describe the multiplication structure of the quotient
algebra K[X ]/I, where I is a zero dimensional ideal. We often refer to this set
of matrices as the matphi structure.

Definition 2 (Gröbner representation, Matphi structure). Let I be a
zero-dimensional ideal of K[X ], let s = dim(K[X ]/I). A Gröbner representation
of I is a pair (N,φ) consisting of
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i. N = {N1, . . . , Ns} s.t. K[X ]/I = SpanK(N), and
ii. φ := {φ(k) | 1 ≤ k ≤ n}, where φ(k) are the square matrices φ(k) := (ak

ij)ij

s.t. for all 1 ≤ i ≤ s, Nixk ≡I

∑
j a

k
ijNj.

φ is called the matphi structure and the φ(k)’s the matphi matrices.

See [3, 13] for a more general treatment of these concepts. Note that the matphi
structure is indepent of the particular set N of representative elements of the
quotient K[X ]/I. In addition, the matphi matrices allow to obtain the class of
any product of the form Nixk as a combination of the representative elements
(i.e. as a linear combination of the basis N for the vector space K[X ]/I).

3 The FGLM Pattern Algorithm

In this section we present a generalization of the FGLM algorithm for free com-
mutative algebras, which allows to solve many different problems and not only
the clasic FGLM convertion problem. The procedure we are presenting is based
on a sort of black box pattern: in fact, the description of the steps 5 and 6 is
only made in terms of their input and output. More precisely, we are assuming
that a term ordering ≺1 is fixed on [X ], I is a zero-dimensional ideal (without
this restriction the algorithm does not terminate), and that the K-vector space
SpanK(N≺1(I)) is represented by giving

• a K-vector space E which is endowed of an effective function

LinearDependency[v, {v1, . . . , vr}]

which, for each finite set {v1, . . . , vr} ⊂ E of linearly independent vectors
and for each vector v ∈ E, returns the value defined by{

{λ1, . . . , λr} ⊂ K if v =
∑r

i=1 λivi,
False if v is not a linear combination of {v1, . . . , vr}.

• an injective morphism ξ : SpanK(N≺1(I)) �→ E.

This informal approach allows a free choice of a suitable representation of the
space SpanK(N≺1(I)) regarding an efficient implementation of these techniques
and a better complexity. Moreover, as an aside effect, it enables us to present this
generalization in such a way that it can be applied on several more particular
patterns and helps to make key ideas behind the FGLM algorithm easier to
understand. Let us start making some references to some subroutines of the
algorithm.

InsertNexts[w,List,≺] inserts properly the products wx (for x ∈ X) in List
and sorts it by increasing ordering with respect to the ordering ≺. The reader
should remark that InsertNexts could count the number of times that an ele-
ment w is inserted in List, so w ∈ N≺(I) ∪ T≺{G} if and only if this number
coincide with the number of variables in the support of w, otherwise, it means
that w ∈ T≺(I) \ T≺{G}, see [11], this criteria can be used to know the boolean
value of the test condition in Step 4 of the Algorithm 1.
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NextTerm[List] removes the first element from List and returns it.

Algorithm 1 (FGLM pattern algorithm)
Input: ≺2, a term ordering on [X ]; ξ : SpanK(N≺1(I)) �→ E.
Output: rGb(I,≺2), the reduced Gröbner basis of I w.r.t. the ordering ≺2.
1. G := ∅; List := {1}; N := ∅; r := 0;
2. While List 	= ∅ do
3. w := NextTerm[List];
4. If w /∈ T≺2(G) (if w is not a multiple of any element in G) then
5. v := ξ(Can(w, I,≺1));
6. Λ := LinearDependency[v, {v1, . . . , vr}];
7. If Λ 	= False then G := G∪{w−

∑r
i=1 λiwi} (where Λ = (λ1, . . . , λr))

8. else r := r + 1;
9. vr := v;
10. wr := w; N := N ∪ {wr};
11. List := InsertNexts[wr, List,≺2];
12. Return[G].

Remark 1.

i. A key idea in algorithms like FGLM is to use the relationship between
membership to an ideal I and linear dependency modulo I, namely ∀ ci ∈
K, si ∈ K[X ] we have

∑r
i=1 cisi ∈ I \ {0} ⇐⇒ {s1, . . . , sr} is linearly

dependent modulo I. This connection with linear algebra was used for the
firts time in Gröbner bases theory since the very begining (see [8]).

ii. Since each element of N≺2(I)∪B≺2(I) belongs to List at some moments of
the algorithm and List ⊂ N≺2(I)∪B≺2(I) at each iteration of the algorithm,
it is clear that one can compute B(I,≺2) or the Gröbner representation
(N≺2(I), φ) of I just by eliminating Step 4 of the algorithm and doing from
Step 5 to Step 11 with very little changes in order to built those structures
instead of rGb(I,≺2).

iii. Note that Step 5 and 6 depends on the particular setting. In Step 5 it is
necessary to have a way of computing Can(w, I,≺1) and the corresponding
element in E, while in Step 6 we need an effective method to decide linear
dependency.

iv. Complexity analysis of this pattern algorithm can be found in [4] for the
more general case of free associative algebras, and for a more general setting
in [3, 13]. Of course, having a pattern algorithm as a model, it is expected
that for particular applications, one could do modification and specification
of the steps in order to improve the speed and decrease the complexity of
the algorithm by taking advantage of the particular structures involved.

3.1 The Change of Orderings: A Particular Case

Suppose we have an initial ordering ≺1 and the reduced Gröbner basis of I
for this ordering, now we want to compute by the FGLM algorithm the new
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reduced Gröbner basis for a new ordering ≺2. Then the vector space E is Ks,
where s = dim(K[X ]/I). In Step 5, Can(w, I,≺1) can be computed using the
reduced Gröbner basis rGb(I,≺1) and the coefficients of this canonical form
build the vector of E corresponding to this element (the image by the morphism
ξ). Then Step 6 is perfomed using pure linear algebra.

4 FGLM Algorithm for Monoid Rings

The pattern algorithm is presented in [4] for the free monoid algebra, we will
restrict here to the commutative case. Let M be a finite commutative monoid
generated by g1, . . . , gn; ξ : [X ] → M , the canonical morphism that sends xi to
gi; σ ⊂ [X ]× [X ], a presentation ofM defined by ξ (σ = {(w, v) | ξ(w) = ξ(v)}).
Then, it is known that the monoid ringK[M ] is isomorphic to K[X ]/I(σ), where
I(σ) is the ideal generated by P (σ) = {w − v | (w, v) ∈ σ}; moreover, any
Gröbner basis G of I(σ) is also formed by binomials of the above form. In addi-
tion, it can be proved that {(w, v) | w − v ∈ G} is another presentation of M .

Note thatM is finite if and only if I = I(σ) is zero-dimensional. We will show
that in order to compute rGb(I), the border basis or the Gröbner representation
of I, one only needs to have M given by a concrete representation that allows
the user to multiply words on its generators; for instance: M may be given by
permutations, matrices over a finite field, or by a more abstract way (a com-
plete or convergent presentation). Accordingly, we are going to do the necessary
modifications on Algorithm 1 for this case.

We should remark that in this case ≺1=≺2, then at the begining of the algo-
rithm the setN≺1(I) is unkown (which is not the case of the change of orderings).
It could be precisely a goal of the algorithm to compute a set of representative
elements for the quotient algebra.

Now consider the natural extension of ξ to an algebra morphism (ξ : K[X ] �→
K[M ]), note that the restriction of ξ to SpanK(N≺1(I)) ( ξ : SpanK(N≺1(I)) �→
K[M ]) is an injective morphism; moreover, ξ(w) = ξ(Can(w, I,≺1)), for all
w ∈ [X ]. Therefore, the image of Can(w, I,≺1) can be computed as ξ(w), and
the linear dependency checking will find out whether w is a new canonical form
(i.e. w ∈ N≺1(I)) or not (i.e. w ∈ T≺1(rGb(I,≺1))). Hence, Step 5 will be

v := ξ(u)gi, where u ∈ Pred(w) and uxi = w.

Moreover, let w1, . . . , wr be elements of N≺1(I) and vi = ξ(wi), for 1 ≤ i ≤ r.
Then LinearDependency[v, {v1, . . . , vr}] can be computed as{

vj if v = vj , for some j ∈ [1, r],
False otherwise.

Finally, Step 7 changes into If Λ 	= False then G := G ∪ {w − wj}.

Remark 2.

i. This example shows that the capability of the K-vector space E w.r.t. Lin-
earDependency, that is demanded in the Algorithm 1, is required only on
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those sets of vectors {v1, . . . , vr, v} that are built in the algorithm, which
means in this case that LinearDependency is reduced to the Member
checking, i.e., v is linear dependent of {v1, . . . , vr} if and only if it belongs
to this set.

ii. When a word w is analyzed by the algorithm, all the elements in Pred(w)
have been already analyzed (ξ(u) is known for any u ∈ Pred(w)), this is the
case whenever ≺1 is an admissible ordering. Therefore, the computation of
ξ(w) is immediate.

We will show the case of linear codes as a concrete setting for an application
of the FGLM pattern algorithm for monoid rings, where the monoid is given by
a set of generators and a way of multiply them.

5 FGLM Algorithm for Linear Codes

For the sake of simplicity we will stay in the case of binary linear codes, where
more powerfull structures for applications are obtainned as an output of the
corresponding FGLM algorithm (for a general setting see [5, 7]). From now on
we will refer to linear codes simply as codes.

Let F2 be the finite field with 2 elements. Let C be a binary code of dimension
k and length n (k ≤ n), so that the n× (n−k) matrix H is a parity check matrix
(c · H = 0 if and only if c ∈ C). Let d be the minimum distance of the code,
and t the error-correcting capability of the code (t =

[
d−1
2

]
, where [x] denotes

the greater integer less than x). Let B(C, t) = {y ∈ Fn
2 | ∃ c ∈ C (d(c, y) ≤ t)},

it is well known that the equation eH = yH has a unique solution e with
weight(e) ≤ t, for y ∈ B(C, t).

Let us consider the free commutative monoid [X ] generated by the n variables
X := {x1, . . . , xn}. We have the following map from X to Fn

2 : ψ : X → Fn
2 ,

where xi �→ ei (the i-th coordinate vector). The map ψ can be extended
in a natural way to a morphism from [X ] onto Fn

2 , where ψ(
∏n

i=1 x
βi

i ) =
(β1 mod 2, . . . , βn mod 2).

A binary code C defines an equivalence relation RC in Fn
2 given by (x, y) ∈ RC

if and only if x − y ∈ C. If we define ξ(u) := ψ(u)H , where u ∈ [X ], the above
congruence can be translated to [X ] by the morphism ψ as u ≡C w if and only
if (ψ(u), ψ(w)) ∈ RC , that is, if ξ(u) = ξ(w). The morphism ξ represents the
transition of the syndromes from Fn

2 to [X ]; therefore, ξ(w) is the “syndrome”
of w, which is equal to the syndrome of ψ(w).

Definition 3 (The ideal associated with a binary code). Let C be a binary
code. The ideal I(C) associated with C is I(C) :=〈{w−u | ξ(w)=ξ(u)}〉⊂K[X ].

The Algorithm for Binary Codes. The monoid M is set to be Fn−k
2 (where

the syndromes belong to). Doing gi := ξ(xi), note thatM = Fn−k
2 = 〈g1, . . . , gn〉.

Moreover, σ := RC , hence I(σ) = I(C). Let ≺ be an admissible ordering. Then
the FGLM algorithm for linear codes can be used to compute the reduced
Gröbner basis, the border basis, or the Gröbner representation for ≺.
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Algorithm 2 (FGLM for binary codes)
Input: n,H the parameters for a given binary code, ≺ an admissible ordering.
Output: rGb(I(C),≺).

1. List := {1}, N := ∅, r := 0, G = {};
2. While List 	= ∅ do
3. w := NextTerm[List];
4. If w /∈ T (G);
5. v := ξ(w);
6. Λ := Member[v, {v1, . . . , vr}];
7. If Λ 	= False then G := G ∪ {w − wj};
8. else r := r + 1;
9. vr := v′;

10. wr := w, N := N ∪ {wr};
11. List := InsertNext[wr, List];
12. Return[G].

In many cases of FGLM applications a good choice of the ordering ≺ is a
crucial point in order to solve a particular problem. In the following theorem
it is shown the importance of using a total degree compatible ordering (for
example the Degree Reverse Lexicographic). Let us denote by <T a total degree
compatible ordering.

Theorem 2 (Canonical forms of the vectors in B(C, t)). Let C be a code
and let GT be the reduced Gröber basis with respect to <T . If w ∈ [X ] satisfies
weight(ψ(Can(w,GT ))) ≤ t then ψ(Can(w,GT )) is the error vector correspon-
ding to ψ(w). On the other hand, if weight(ψ(Can(w,GT ))) > t then ψ(w)
contains more than t errors.

Proof. If we assume that weight(ψ(Can(w,GT ))) ≤ t then, we can infer at
once that ψ(w) ∈ B(C, t) and ψ(Can(w,GT )) is its error vector (notice that
ξ(w) = ξ(Can(w,GT )) and the unicity of the error vector).

Now, if weight(ψ(Can(w,GT ))) > t, we have to prove that ψ(w) /∈ B(C, t). It
is equivalent to show that weight(ψ(Can(w,GT ))) ≤ t if ψ(w) ∈ B(C, t). Let
ψ(w) be an element ofB(C, t) and let e be its error vector then, weight(e) ≤ t. Let
we be the squarefree representation of e. Note that weight(e) coincides with the
total degree of we; accordingly, L(we) ≤ t. On the other hand, Can(w,GT ) <T

we, which implies that L(Can(w,GT )) ≤ L(we) (because <T is degree compa-
tible). Hence, weight(ψ(Can(w,GT ))) ≤ L(Can(w,GT )) ≤ t. ��

The computation of the error-correcting cability of the code t can be done in the
computing process of Algorithm 2 (see Example 1 and [5]). The previous theorem
allows us to use the computed reduced Gröbner basis for solving the decoding
problem in general binary codes, but also with such a powerful tool available, it is
expected to be able to study the structure of the codes, like some combinatorics
properties. Some possible examples are the permutation-equivalence of codes
(see [5]), and some problems related with binary codes associated with the set
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of cycles in a graph (finding the set of minimal cycles and a minimal cycle basis
of the cycles of a graph), see [6].

To generalize Theorem 2 for non binary linear codes have some conflicts with
the needed ordering; however, the FGLM algorithm can be still used to compute
the border basis or a Gröbner representation for the ideal I(C) and it will be
possible to solve the problems that one can solve with the reduced Gröbner basis
in the case of binary codes. Those problems are explained in [5]. In addition,
[5] contains some results and examples about the application of this setting to
general linear codes and, in binary codes, for studying the problems of decoding
and the permutation-equivalence.

Remark 3 (Complexity considerations). In contrast with a brute-force syndrome
decoding method, which enumerates the 2n elements in Fn

2 , computes their ima-
ges by the parity check matrix and stores the word of smallest weight for each
image, Algorithm 2 computes a reduced Gröbner basis associated with a given
binary code (also a Gröbner representation or the border basis) by analyzing
2n−kn candidates (the numbers of elements that belong to List) in Fn

2 for the
2n−k representative elements of the quotient K[X ]/I(C). Each iteration of the
Algorithm can be arranged to be linear in the number of variables; thus, Algo-
rithm 2 performs O(2n−kn2) operations.

Regarding the computation of the canonical form, it is known that the border
basis or matphi gives a very efficient reduction algorithm, in the case of codes,
the canonical form can be obtained at most after n reductions. However, the
border basis or matphi needs a memory space proportional to O(2n−kn). A re-
duced Gröbner basis can be substantially smaller than the border basis although
in general no better bound can be given. It is kown to be non efficient the com-
putation of the canonical form using the reduced Gröbner basis, although in
the case associeted with binary codes, a better result could be achieved. For a
detailed complexity analysis see [5, 7].

Example 1. Let C be the linear code over F6
2 determined by the parity check

matrix HT =

∣∣∣∣∣∣
1, 1, 0, 1, 0, 0
1, 0, 1, 0, 1, 0
1, 1, 1, 0, 0, 1

∣∣∣∣∣∣ The minimum distance is d = 3, so, t = 1, the

numbers of variables is 6, <T is set to be the Degree Reverse Lexicographic
ordering with xi+1 >T xi.

Application of Algorithm 2. (Only essential parts of the computation will be de-
scribed.) List := {1}; N := {}; r := 0; w := 1; ξ(1) = (0, 0, 0); N := N ∪ {1} =
{1}; ξ(N) := {(0, 0, 0)};List := {x1, x2, x3, x4, x5, x6}; w := x1; ξ(x1) = (1, 1, 1);
N := {1, x1}; ξ(N) := {(0, 0, 0), (1, 1, 1)};
After analyzing x6 we are at the following stage:

N := {1, x1, x2, x3, x4, x5, x6}, and List = {x2
1, x1x2, x1x3, x1x4, x1x5, x1x6, x

2
2,

x2x3, x2x4, x2x5, x2x6, x
2
3, x3x4, x3x5, x3x6, x

2
4, x4x5, x4x6, x

2
5, x5x6, x

2
6}.

There is still one element left in N because there are 7 elements in N of
a total of 8 (26−3). Taking the elements of List from x2

1 to x1x5 they are a
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linear combination of elements already in N (their syndromes are in the list of
syndromes computed ξ(N)). Therefore, G := {x2

1−1, x1x2−x5, x1x3−x4, x1x4−
x3, x1x5 − x2}, for example x1x2 − x5 is obtained, bacause when w = x1x2, first
note that Pred(w) ⊂ N , which means that it is either a new irreducible element
or a head of a binomial of the reduced basis. Then ξ(x1x2) is computed and
we got that ξ(x1x2) = ξ(x5). This means that x1x2 − x5 belongs to G. Also
x1x2 is the first minimal representation which is not in N , this implies that
t = weight(ψ(x1x2)) − 1 (see [5]). The next element in List, w = x1x6, is the
last element that will be included in N and the corresponding multiples will be
included in List. From this point, the algorithm will just take elements from List
and it analyzes in each case whether it is in T {rGb(I(C), <T )} (like x2x3) or in
T (rGb(I(C), <T )\T {rGb(I(C), <T )} (like x1x2x6), this process is executed until
the List is empty when the last element x1x

2
6 of the list is analyzed. Finally, the

reduced Gröbner basis for <T is

G := {x2
1 − 1, x1x2 − x5, x1x3 − x4, x1x4 − x3, x1x5 − x2, x

2
2 − 1, x2x3 − x1x6,

x2x4 − x6, x2x5 − x1, x2x6 − x4, x
2
3 − 1, x3x4 − x1, x3x5 − x6, x3x6 − x5,

x2
4 − 1, x4x5 − x1x6, x6x4 − x2, x

2
5 − 1, x5x6 − x3, x

2
6 − 1}.

Assume the vector y = (1, 1, 1, 0, 1, 0) is received, the corresponding word is
w = x1x2x3x5. Compute we = Can(w,G) = x3. As weight(ψ(we)) = 1 the error
vector is e = (0, 0, 1, 0, 0, 0), and the codeword is c = (1, 1, 0, 0, 1, 0).
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bases by FGLM techniques in a non-commutative setting. J. Symb. Comp. 30(4),
p. 429–449, 2000.

5. M. Borges-Quintana, M. Borges-Trenard and E. Mart́ınez-Moro. On a Gröbner
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Gröbner bases and combinatorics for binary codes. Submitted to Appl. Algebra
Engrg. Comm. Comput., 2005.

7. M. Borges-Quintana, F. Winkler, and M. Borges-Trenard. FGLM Techniques Ap-
plied to Linear Codes – An Algorithm for Decoding Linear Codes. Techn. Rep.,
RISC-Linz, RISC - 00-14, J. Kepler Univ., Linz, Austria, 2000.

8. B. Buchberger. An Algorithmic Criterion for the Solvability of a System of Alge-
braic Equations (German). Aequationes Mathematicae 4, p. 374-383, 1970. (English
translation in [10]).
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Abstract. Highly nonlinear functions are important as sources of low-
correlation sequences, high-distance codes and cryptographic primitives,
as well as for applications in combinatorics and finite geometry.

We argue that the theory of such functions is best seen in terms of
splitting factor pairs. This introduces an extra degree of freedom, through
the pairing of a normalised function φ : G → N between groups with a
homomorphism � : G → Aut(N).

From this perspective we introduce a new definition of equivalence for
functions, relative to �, and show it preserves their difference distribu-
tions. When � ≡ 1 it includes CCZ and generalised linear equivalence,
as well as planar and linear equivalence.

More generally, we use splitting factor pairs to relate several impor-
tant measures of nonlinearity. We propose approaches to both linear
approximation theory and bent functions, and to difference distribution
theory and perfect nonlinear functions, which encompass the current ap-
proaches.

The purpose of this paper is to argue that the proper context in which to set
the general theory of nonlinearity for functions of significance in combinatorics,
finite geometry, coding, sequences or cryptography is the splitting factor pairs.

Factor pairs generalise the family of functions known as cocycles. The sim-
plest class of factor pairs — the splitting factor pairs — generalise the simplest
class of cocycles — the coboundaries — in a way which allows us to study all
normalised functions between arbitrary (not necessarily abelian) groups. In Sec-
tion 1 this fundamental relationship between functions defined on groups and
splitting factor pairs is demonstrated. Each pair consisting of a normalised func-
tion φ : G→ N between groups and a homomorphism � from G to Aut(N), the
group of automorphisms of N , defines a splitting factor pair, and vice versa. The
�-twisted homomorphisms between groups are introduced and orthogonality for
a factor pair is defined.

In Section 2, we use equivalence of transversals to to determine equivalence
classes (bundles) of splitting factor pairs, generalising Theorem 3.2 of [8]. These
in turn define equivalence classes of normalised functions, relative to �, which
we also call bundles (Definition 7).

We argue that these bundles are the natural equivalence classes for functions,
for several reasons. For instance, the difference distribution of a function, from
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which important measures of its nonlinearity are derived, is an invariant of its
bundle (Theorem 4).

Only the bundles for the case � ≡ 1 are likely to be of practical interest for
some time. They are specified in Theorem 3. When � ≡ 1 the underlying equiv-
alence relation includes the expected cases of equivalence of planar functions [5]
and linear equivalence of cryptographic functions, as well as CCZ equivalence [3]
and generalised linear equivalence [1] of functions. In particular, a permutation
and its inverse are in the same bundle (Corollary 3).

However, by considering non-trivial homomorphisms �, a framework for un-
derstanding the nature and interrelationships of many different measures of non-
linearity may be constructed.

Perera and Horadam [15] proved that orthogonal cocycles, central semiregular
relative difference sets, cocyclic generalised Hadamard matrices and divisible
designs with a regular group of automorphisms in which a central subgroup acts
class regularly, are all equivalent. These four structures are shown by Hughes
[10] also to be equivalent to a type of low correlation function he calls a base
sequence. Under these equivalences, an orthogonal coboundary corresponds to
a perfect nonlinear, or planar, or bent function, depending on the particular
groups employed.

Galati [7] has extended the work of Perera and Horadam maximally, proving
that orthogonal factor pairs, semiregular relative difference sets, coupled cocyclic
generalised Hadamard matrices and class regular divisible designs with a regular
group action, are all equivalent. Similarly, the author [9–Chapter 7] has extended
Hughes’ base sequences to this most general case. These five mutual equivalences
are called the Five-fold Constellation.

In Section 3, we describe this Five-fold Constellation in the simplest (splitting)
case. The object corresponding to a base sequence is a perfect nonlinear function
φ : G → N , relative to a homomorphism � : G → Aut(N) (Theorem 5). A
consequence for combinatorial applications is a better understanding of what
‘splitting’ really means for relative difference sets (Definition 10) than that which
follows from the traditional definition.

With this perspective, in Section 4 we develop a framework for a general
theory of nonlinearity for normalised functions between groups. This theory is
based on observation in numerous contexts of the relationship between perfect
nonlinear, planar and bent functions, and the rows of a group-developed gener-
alised Hadamard matrix. In particular, new definitions are proposed whereby a
normalised function φ : G→ N between groups is bent, or maximally nonlinear,
or a flat perfect array, relative to �.

The following conventions are observed. Groups G of order v and N of order
w are written multiplicatively unless otherwise specified. For a ∈ N , a denotes
the inner automorphism a(n) = ana−1 for all n ∈ N . For σ1, σ2 ∈ Aut(N),
multiplication σ1σ2 is given by the “opposite” action nσ1σ2 = σ1(σ2(n)), n ∈ N .

We will restrict our study of nonlinearity to functions φ : G → N which are
normalised; that is, φ(1) = 1. The group of normalised functions {φ : G →
N, φ(1) = 1} under pointwise multiplication is denoted C1(G,N).
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We begin with a brief summary of the cohomological background, necessary
to describe splitting factor pairs and their properties. For more details, see [7]
or [9].

Definition 1. A (normalised) factor pair of N by G is a pair (ψ, ε) of functions
ψ : G ×G → N (the factor set) and ε : G → Aut(N) (the coupling) satisfying,
for all x, y, z ∈ G,

ε(x)ε(y) = ψ(x, y)ε(xy), (1)
ψ(x, y)ψ(xy, z) = ψ(y, z)ε(x)ψ(x, yz), (2)

ψ(x, 1) = 1 = ψ(1, x). (3)

The set of all factor pairs of N by G is denoted F 2(G,N).

For each φ ∈ C1(G,N) and (ψ, ε) ∈ F 2(G,N) there is an equivalent factor pair
(ψ′, ε′) ∼φ (ψ, ε) ∈ F 2(G,N).

Definition 2. A factor pair (ψ′, ε′) of N by G is equivalent to (ψ, ε) via φ,
written (ψ′, ε′) ∼φ (ψ, ε), if there exists a function φ ∈ C1(G,N) such that, for
all x, y ∈ G,

ε′(x) = φ(x)ε(x), and (4)
ψ′(x, y) = φ(x)φ(y)ε(x)ψ(x, y)φ(xy)−1. (5)

The equivalence class containing (ψ, ε) is denoted [ψ, ε].

Each factor pair (ψ, ε) in F 2(G,N) determines a canonical extension N
ι�

E(ψ,ε)
κ� G of N by G, where the underlying set of the extension group E(ψ,ε)

is N ×G, where ι(a) = (a, 1) and κ(a, x) = x, and where the multiplication in
E(ψ,ε) is

(a, x)(b, y) = (abε(x)ψ(x, y), xy), a, b ∈ N, x, y ∈ G. (6)

Conversely, if N
ı� E

π� G is an extension of N by G, every transversal
T = {tx : x ∈ G} of ı(N) in E determines a factor pair (ψ

T
, ε

T
) in F 2(G,N)

εT (x) = ı−1 ◦ tx ◦ ı (7)
ψT (x, y) = ı−1(txtyt−1

xy ). (8)

Every factor pair in [ψ
T
, ε

T
] derives from such a transversal.

In particular, T = {tx = (1, x) : x ∈ G} ⊆ E(ψ,ε) is a transversal of ι(N) =
N × {1} in E(ψ,ε) with (ψT , εT ) = (ψ, ε), and if (ψ′, ε′) ∼φ (ψ, ε), there is an
isomorphism β : E(ψ′,ε′) → E(ψ,ε) defined by

β((a, x)) = (aφ(x), x). (9)



90 K.J. Horadam

1 Splitting Factor Pairs

If (ψ, ε) is a factor pair and ψ ≡ 1 then by (1) the coupling ε is a group homo-
morphism �, and any factor pair equivalent to (1, �) is called splitting.

The splitting factor pairs are the focus of this paper. The coupling � brings
an extra degree of freedom to the study of normalised functions φ : G→ N .

Definition 3. (ψ, ε) ∈ F 2(G,N) is a splitting factor pair if there exist φ ∈
C1(G,N) and a homomorphism � : G → Aut(N) such that (ψ, ε) ∼φ (1, �). It
has the form (ψ, ε) = (∂φ−1, φ�), where

(φ�)(x) = φ(x)�(x) (10)
∂φ−1(x, y) = φ(x)φ(y)�(x) φ(xy)−1, x, y ∈ G. (11)

In particular, splitting factor pairs determine split extensions of N by G and split
transversals. The corresponding extension groups E(ψ,ε) are semidirect products.

Lemma 1. Let φ ∈ C1(G,N), let � : G→ Aut(N) be a homomorphism and let
(ψ, ε) ∈ F 2(G,N).

Then (ψ, ε) ∼φ (1, �) ⇔ E(∂φ−1,φ�)
∼= E(1,�) = N��G. In particular, (ψ, ε) ∼φ

(1, 1) ⇔ E(ψ,ε)
∼= N ×G.

In this case if β : E(∂φ−1,φ�)
∼= E(1,�) is the isomorphism of (9) and T =

{(1, x) : x ∈ G} ⊆ E(∂φ−1,φ�) then β(T ) = {(φ(x), x) : x ∈ G} ⊆ N �� G.

For each homomorphism � : G → Aut(N) there is a surjection ∂� : C1(G,N)
� [1, �] ⊂ F 2(G,N) defined by

∂�(φ) = (∂φ−1, φ�). (12)

The preimage of (1, �) under ∂� is a group which is important for our analysis.
It is a generalisation of the group of homomorphisms Hom(G,N), which is the
preimage of (1, 1); that is, the case � ≡ 1. (In the special case that G is abelian
with exponent m and N is the cyclic group of complex mth roots of unity,
Hom(G,N) is the character group of G.)

Definition 4. Let � : G → Aut(N) be a homomorphism. Then χ ∈ C1(G,N)
is a �-twisted homomorphism if χ� = � and χ(xy) = χ(x)χ(y)�(x), x, y ∈ G.
Denote the subgroup of �-twisted homomorphisms in C1(G,N) by Hom�(G,N).

Though Hom�(G,N) may not be a normal subgroup of C1(G,N), its (left)
cosets φHom�(G,N) are the preimages of the distinct elements in [1, �]. The
coset mapping ∂̂�(φ Hom�(G,N)) = ∂�(φ) induced by (12) is a set isomorphism,

∂̂� : {φHom�(G,N) : φ ∈ C1(G,N)}
∼=� [1, �]. (13)

However, if N is abelian, factor pairs are the rather more familiar functions
known as cocycles, and Hom�(G,N) is a normal subgroup of the abelian group
C1(G,N).
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Lemma 2. Let N be abelian. Then a factor pair (ψ, ε) is a cocycle ψ ∈ Z2
ε (G,N)

with coefficients in the G-module (N, ε). If (ψ, ε) ∼φ (1, �), then ε = φ� = �, ψ =
∂φ−1 = (∂φ)−1 ∈ B2

�(G,N) is a coboundary, and ∂̂� : C1(G,N)/Hom�(G,N) �
[1, �] = B2

�(G,N) is a group isomorphism.

The final notion, orthogonality, introduced in this section will subsequently be
shown (Theorem 5) to correspond to perfect nonlinearity for normalised func-
tions. Galati [7–Definition 4.1] defines (ψ, ε) ∈ F 2(G,N) to be (v, w, k, λ)-
orthogonal with respect to a k-subset D of G if, for each x ∈ G\{1}, in the
group ring ZN ∑

y∈D∩x−1D

ψ(x, y) = λ
∑
a∈N

a. (14)

In this case, D is an ordinary (v, k, wλ)-difference set in G. When k = v, so
D = G and λ = v/w, (ψ, ε) is termed orthogonal. When N is abelian, ε ≡ 1 and
k = v, this specialises to the original definition of an orthogonal cocycle due to
the author and Perera [15]. Orthogonality is the property of factor pairs which
characterises the corresponding transversals as semiregular relative difference
sets (RDSs).

2 Bundles of Factor Pairs and Equivalence of Functions

Equivalence between transversals is defined from that for RDSs. Here we use it
to derive equivalence classes in C1(G,N) which we claim are the natural classes
for studying functions of interest as S-box functions, low-correlation sequences,
planar functions or high-distance codes.

Definition 5. [8–Definition 2.1] Let T , T ′ be transversals of the isomorphic
normal subgroups K, K ′, respectively, in E. Then T and T ′ are equivalent if
there exist α ∈ Aut(E) and e ∈ E such that α(K) = K ′ and α(T ) = e T ′.

Every transversal is equivalent to a normalised one (i.e. containing 1).
In [8] the author maps equivalent normalised transversals T , T ′ of isomorphic

central subgroups C, C′ in E, to a corresponding pair of cocycles, thereby defin-
ing an equivalence relation between cocycles. The resulting equivalence classes
of cocycles are termed bundles. For equivalent transversals of normal subgroups
we have to do the same for the corresponding factor pairs.

Theorem 1. Let E be an extension group of N by G and let T and T ′ be nor-
malised transversals in E of the normal subgroups K ∼= K ′(∼= N), respectively,
for which E/K ∼= E/K ′ ∼= G. Let (ψ, ε), (ψ′, ε′) ∈ F 2(G,N) be the factor pairs
corresponding to T, T ′, respectively.

There exist α ∈ Aut(E) and e ∈ E such that α(K ′) = K and α(T ′) = e T if
and only if there exist γ ∈ Aut(N), θ ∈ Aut(G) and s ∈ G such that

1. (ψ′, ε′) =
(
γ ◦ (ψ · s) ◦ (θ × θ), γ ◦ ((ε · s) ◦ θ) ◦ γ−1

)
, where

2.
(
ψ · s, ε · s

)
∼ψ|s (ψ, ε) and where
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3. ψ|s ∈ C1(G,N) is defined by

ψ|s(x) = ψ(s, s−1)−1ψ(s, s−1x), x ∈ G. (15)

Proof. Straightforward adaptation of [8–Theorem 3.2] to the normal subgroup
case applies, on writing e = k ts uniquely for k ∈ K, ts ∈ T and s ∈ G, using (6)
and showing by normalisation that k = ι(ψ(s, s−1)−1).

Definition 6. Let (ψ, ε) ∈ F 2(G,N). The bundle B((ψ, ε)) of (ψ, ε) is the set

B((ψ, ε))=
{(
γ◦(ψ·s)◦(θ×θ), γ◦((ε·s)◦θ)◦γ−1) : γ∈Aut(N), θ∈Aut(G), s∈G

}
.

The splitting case of Theorem 1 may now be extracted without much difficulty.

Theorem 2. Let φ ∈ C1(G,N) and let � : G → Aut(N) be a homomorphism.
Suppose (ψ, ε) = (∂φ−1, φ�) ∼φ (1, �). Let s, θ and γ be as in Theorem 1, and
let (ψ′, ε′) =

(
γ ◦ (ψ · s) ◦ (θ × θ), γ ◦ ((ε · s) ◦ θ) ◦ γ−1

)
. Define

(φ · s)(x) =
(
φ(s−1)−1φ(s−1x)

)�(s)
, x ∈ G (16)

φ′(x) = (γ ◦ (φ · s) ◦ θ)(x), x ∈ G. (17)

Then φ · s, φ′ ∈ C1(G,N) and

1. (ψ · s, ε · s) = (∂(φ · s)−1, (φ · s) �) ∼φ·s (1, �) ;
2. (ψ′, ε′) = (∂(φ′)−1, (φ′) �′) ∼φ′ (1, �′), where �′ : G→ Aut(N) is the homo-

morphism defined by �′(x) = γ ◦ �(θ(x)) ◦ γ−1, x ∈ G.

Proof. Since (ψ, ε) ∼φ (1, �) and (ψ ·s, ε ·s) ∼ψ|s (ψ, ε) by Theorem 1, it follows
that (ψ · s, ε · s) ∼ψ|sφ (1, �) and by (11), (ψ|sφ)(x) = (φ(s−1)−1φ(s−1x))�(s) =
(φ · s)(x), giving part 1. Then part 2 follows because φ′(x) = γ ◦ (φ · s)(θ(x))
= γ ◦ φ(θ(x)) ◦ γ−1.

It follows from Definition 6 that the bundle of a splitting factor pair consists
entirely of splitting factor pairs: B((∂φ−1, φ�)) ={(
∂(φ′)−1, φ′ (γ◦�(θ)◦γ−1)

)
: φ′ = γ◦(φ·s)◦θ, γ ∈ Aut(N), θ ∈ Aut(G), s ∈ G

}
(18)

Thus the set of splitting factor pairs partitions into disjoint bundles. However,
it is important to recognise that a bundle of splitting factor pairs cuts across
equivalence classes of splitting factor pairs, and vice versa. In fact, for a particular
homomorphism � : G→ Aut(N) we have∨

θ,γ

[1, γ ◦ �(θ) ◦ γ−1] =
∨
φ

B(∂�(φ)).

These bundles are the heavy machinery we use, together with (13), to arrive
at a natural definition of equivalence of functions φ ∈ C1(G,N) relative to �.

Two mappings ϕ, φ ∈ C1(G,N) are equivalent relative to � if there exist
θ ∈ Aut(G) and γ ∈ Aut(N) such that B(∂�′(ϕ)) = B(∂�(φ)), where �′ = γ ◦
�(θ)◦γ−1; that is, by (12), if and only if there exist θ ∈ Aut(G) and γ ∈ Aut(N)
such that (∂ϕ−1, ϕ�′) ∈ B((∂φ−1, φ�)), where �′ = γ ◦ �(θ) ◦ γ−1. By (18) and
(13), we obtain the following more convenient definition.
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Definition 7. Let � : G → Aut(N) be a homomorphism. Two mappings ϕ, φ
∈ C1(G,N) are equivalent relative to � if there exist θ ∈ Aut(G), γ ∈Aut(N),
f ∈Homγ◦�(θ)◦γ−1(G,N) and s ∈ G such that

ϕ = (γ ◦ (φ · s) ◦ θ) f. (19)

The function φ ·s in (19) is termed the shift of φ by s. The equivalence class of φ
relative to �, denoted b(φ, �), is called its bundle relative to �. That is, b(φ, �) ={
(γ ◦ (φ · s) ◦ θ) f : f ∈ Homγ◦�(θ)◦γ−1(G,N), θ ∈ Aut(G), γ ∈ Aut(N), s ∈ G

}
.

(20)
In particular, if � ≡ 1, so γ ◦ �(θ) ◦ γ−1 ≡ 1, the bundle b(φ) = b(φ, 1) of φ is

b(φ) =
{
(γ ◦ (φ · s) ◦ θ) f : f ∈ Hom(G,N), θ ∈ Aut(G), γ ∈ Aut(N), s ∈ G

}
.

(21)

Corollary 1. Let � : G → Aut(N) be a homomorphism and let φ ∈ C1(G,N).
For every s ∈ G, θ ∈ Aut(G) and γ ∈ Aut(N),

b(φ, �) = b(φ · s, �),
b(φ, �) = b(γ ◦ φ ◦ θ, γ ◦ �(θ) ◦ γ−1).

For each homomorphism � : G→ Aut(N), the group of all normalised functions
C1(G,N) therefore partitions into disjoint bundles relative to �

C1(G,N) =
∨
φ

b(φ, �).

Corollary 2. Let � : G→ Aut(N) be a homomorphism. The mapping � defined
on bundles by � (b(φ, �)) = B(∂�(φ)) is a set isomorphism

� : {b(φ, �) : φ ∈ C1(G,N)}
∼=→ { � (b(φ, �)) = B(∂�(φ)) : φ ∈ C1(G,N)}.

Next, we give the case � ≡ 1 of Theorem 2 and Corollary 2. These are the only
bundles which are likely to be of practical interest for some time. In this case,
by Lemma 1 we have an isomorphism β : E(∂φ−1,φ) → N × G, under which
the transversal {(1, x) : x ∈ G} of N × {1} in E(∂φ−1,φ) maps to transversal
T = {(φ(x), x) : x ∈ G} of N×{1} in N×G. By (7) and (8), the splitting factor
pair determined by T is (∂φ−1, φ), and (∂φ−1, φ) ∼φ (1, 1).

Theorem 3. (The case � ≡ 1.) The following statements are equivalent:

1. The functions φ, ϕ ∈ C1(G,N) are equivalent;
2. b(φ) = b(ϕ);
3. there exist s ∈ G, θ ∈ Aut(G), γ ∈ Aut(N), f ∈ Hom(G,N) such that

ϕ = (γ ◦ (φ · s) ◦ θ) f, where

(φ · s)(x) = φ(s−1)−1φ(s−1x), x ∈ G,
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4. the transversals Tϕ = {(ϕ(x), x) : x ∈ G} and Tφ = {(φ(x), x) : x ∈ G} of
N × {1} in N ×G are equivalent; that is, there exist α ∈ Aut(N ×G) and
s ∈ G such that

α(N × {1}) = N × {1} and

α(Tϕ) = (φ−1(s), s)Tφ.

We illustrate with an application in the case � ≡ 1 and G = N .

Corollary 3. Let � ≡ 1, G = N and suppose φ ∈ C1(G,G) is a permutation
with inverse inv(φ). Then φ and inv(φ) are equivalent; that is, b(φ) = b(inv(φ)).

Proof. Clearly, Tφ = {(φ(x), x) : x ∈ G} is a normalised transversal of G×{1} in
G×G and T ′ = {(x, φ(x)) : x ∈ G} is a normalised transversal of {1}×G inG×G.
The splitting factor pair determined by Tφ is (∂φ−1, φ). Let τ(x, y) = (y, x) for
all x, y ∈ G. Then τ ∈ Aut(G × G), τ({1} × G) = G × {1} and τ(T ′) = Tφ,
so T ′ and Tφ are equivalent. By Theorem 1 and Definition 6, the corresponding
splitting factor pairs lie in the same bundle B((∂φ−1, φ)). But as a transversal
of G×{1} in G×G, T ′ = Tinvφ = {(inv(φ)(x), x) : x ∈ G}, so it determines the
splitting factor pair (∂(inv(φ))−1, inv(φ)). By Theorem 3, b(φ) = b(inv(φ)).

To support our contention that bundles are the natural equivalence classes for
functions, we will present three arguments.

Firstly, consider the (difference) distribution of φ relative to �, which is sig-
nificant in several measures of nonlinearity. Of fundamental importance is its
invariance within b(φ, �) and under ∂�.

The distribution of φ ∈ C1(G,N) relative to � is the multi-set of all frequencies
D(φ, �) = {n(φ,�)(x, a) = |{y ∈ G : φ(y)�(x)φ(xy)−1 = a}| : x ∈ G, a ∈ N}.
Similarly, the distribution of (ψ, ε) ∈ F 2(G,N) is the multi-set of all frequencies
D((ψ, ε)) = {N(ψ,ε)(x, a) = |{y ∈ G : ψ(x, y) = a}| : x ∈ G, a ∈ N}.

Theorem 4. For each � : G → Aut(N), the distribution of a function is an
invariant of its bundle relative to �. If φ ∈ C1(G,N) is a homomorphism and
b(φ, �) = b(ϕ, �′), then D(φ, �) = D(ϕ, �′). Furthermore, D(φ, �) = D(∂�(φ)).

Proof. If ϕ = φf , where f ∈ Hom�(G,N), then n(ϕ,�)(x, a) = n(φ,�)(x, f(x) a).
If ϕ = φ · s for s ∈ G, then

n(ϕ,�)(x, a) = n(φ,�)(s−1xs, φ(s−1)�(s−1xs)a�(s−1)φ(s−1)−1).

The other statements are straightforward to substantiate.

Secondly, we demonstrate that bundle equivalence is familiar when � ≡ 1 and
G = N . It includes equivalence of planar functions and linear equivalence of
cryptographic functions.

We specialise to the case � ≡ 1 and G = N = (GF (pn),+), written additively.
Every φ ∈ C1(G,G) is the evaluation map of some polynomial φ(x) ∈ GF (pn)[x]
of degree less than pn, with φ(0) = 0. The homomorphisms Hom(G,G) are the
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linearised polynomials. The elements of C1(G,G)/Hom(G,G) (see Lemma 2)
are represented by those φ(x) ∈ GF (pn)[x] with no linearised summand.

Bundle equivalence is known implicitly to finite geometers, because planar
functions equivalent by Definition 7 will determine isomorphic planes [5]. Pla-
narity of φ(x) is preserved by the operations of linear transformation, addition
of a linearised polynomial of G or pre- or post-composition with a linearised
permutation polynomial, all of which are bundle equivalences. (In particular, if
s ∈ G, then the linear transformation φ(x + s)− φ(s) is the shift (φ · s)(x).)

Bundle equivalence includes the linear equivalence used in cryptography and
probably in other contexts as well. Two functions φ, ϕ ∈ C1(G,G) are linearly
equivalent [1–p. 80] if there exist invertible linear transformations β, γ of G and
f ∈ Hom(G,G) such that

ϕ(x) = (γ ◦ φ ◦ β)(x) + f(x).

The nature of equivalence for cryptographic functions has attracted considerable
attention recently, and competing definitions have been proposed [3, 1, 2]. These
have been prompted by the observation that if φ is invertible, then inv(φ) has the
same cryptographic robustness as φ, so the inverse of a function is also quoted
as being equivalent to it.

Both [3–Proposition 3] for p = 2 (as cited in [2]) and [1] appear to have arrived
independently at the same extension of linear equivalence which will include
permutations and their inverses in the same equivalence class. Both extensions
are the case E = G × G of Definition 5. In [2] the transversal T = {(φ(x), x) :
x ∈ G} is called the graph of φ and translation is on the right. In [1] it is called
the implicit embedding and no translation is included. By Corollary 3, bundle
equivalence explains and unifies these ideas.

Thirdly, in the next section we argue that bundle equivalence is indeed the
fundamental equivalence relation on functions, by virtue of the number of related
equivalences.

3 The Splitting Five-Fold Constellation

The splitting factor pairs define the optimal generalisation of group developed
(or, equally, group-invariant) matrices with entries in a group (c.f. [7–Theorem
10.1]).

Definition 8. Let M be a v×v matrix with entries in N . Then M is a coupled
G-developed matrix over N if there is an ordering G = {x1, . . . , xv}, a mapping
φ ∈ C1(G,N) and a homomorphism � : G → Aut(N) such that M = M(φ,�)
where

M(φ,�) = [φ(xixj)�(x−1
i ) ]1≤i,j≤v . (22)

If the coupling � ≡ 1, we say M is G-developed. The row of M indexed by 1
(without loss of generality, the top row) is always (φ(x1), φ(x2), . . . , φ(xv)).
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Such top rows determine an important equivalence. The perfect binary arrays
PBA and their quaternary counterparts PQA, defined for abelian groups G and
for N = {±1} and N = {±1,±i}, respectively, are used for signal array correla-
tion. The existence of a PBA is equivalent to the existence of a Menon-Hadamard
difference set in G and to the existence of a Menon Hadamard matrix with the
PBA as top row. The existence of a PQA is equivalent to the existence of a G-
developed complex Hadamard matrix with the PQA as top row. The top rows of
G-developed generalised Hadamard matrices GH(4, v/4) are the flat PQAs [11].

When G and N are abelian, the top rows of G-developed generalised
Hadamard matrices over N are also familiar to cryptographers, where, follow-
ing Nyberg, the defining functions G → N are called PN (perfect nonlinear).
Her original definition [14–Def. 3.1] of PN functions has G = Zn

r and N = Zm
r ,

n ≥ m, and for r = 2 they are precisely the vectorial bent functions.
It is obvious that the function defining the top row of a coupled G-developed

generalised Hadamard matrix GH(w, v/w) is a most interesting object for study.

Definition 9. Suppose w|v and let φ, � and M(φ,�) be as in Definition 8.
The function φ is perfect nonlinear (PN) relative to � if M(φ,�) is a GH(w,

v/w) over N . If � ≡ 1 we say φ is perfect nonlinear (PN).
Let R be a ring with unity for which char R does not divide v, N ≤ R∗ and∑
u∈N u = 0 in R. The sequence (φ(x), x ∈ G) is a flat perfect array (FPA)

over R relative to � if φ is PN relative to �. If � ≡ 1 we say it is a flat perfect
array (FPA) over R.

Next, we combine Definition 9 with the well-known equivalence between relative
difference sets (RDS) and divisible designs. It has been traditional to call an
RDS in E relative to N ‘splitting’ if E ∼= N ×G, so that any splitting RDS with
N abelian necessarily has N central in E. However, Lemma 1 shows that the
following definition coincides with the traditional definition in the central case
and provides a more general interpretation for splitting RDSs in the non-central
case.

Definition 10. [7–p. 287] An RDS R in E relative to N is a splitting RDS if E
splits over N , that is, if there is a subgroup H � E with E = NH and N ∩ H =
{1} (equivalently, if E is isomorphic to a semidirect product N �ρ E/N).

We derive the important splitting case of the Five-fold Constellation.

Theorem 5. (Splitting Five-fold Constellation) Suppose w|v. Let N
ı� E

π� G
be a split extension of N by G with associated equivalence class [1, � ] of factor
pairs, so E ∼= E(1,�)

∼= N �� G. The following five statements are equivalent:

1. the function φ : G→ N is PN relative to �;
2. the splitting factor pair (∂φ−1, φ�) ∼φ (1, �) is orthogonal;
3. the transversal Rφ = {(φ(x), x) : x ∈ G} ⊆ E(1,�) is a splitting (v, w, v, v/w)-

RDS in E(1,�) relative to N × {1};
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4. the (v, w, v, v/w)-divisible design dev(Rφ), class regular with respect to ı(N),
has regular group N �� G;

5. the coupled G-developed matrix M(φ,�) =[φ(xy)�(x−1) ]x,y∈G is a GH(w, v/w)
over N .

Proof. 1 ⇔ 5 is Definition 9. 5 ⇔ 2 is the splitting case of [7–Theorem 10.1].
2 ⇔ 3 is the semiregular splitting case of [7–Theorem 5.1 and Corollary 5.1].
3 ⇔ 4 is an application of [12–Theorem 2.7].

When � ≡ 1, the splitting equivalences 3 ⇔ 4 ⇔ 5 of Theorem 5 are the original
G-developed case of Jungnickel [12], using the traditional definition of splitting
RDS. As we now see, Definition 10 is more appropriate.

There are pre-existing definitions of equivalence for factor pairs (Definition
2), for transversals (Definition 5), and for matrices with entries from a group,
all arising naturally from theoretical considerations in each area. Even when
comparison is possible, as with the items in Theorem 5, the types of equivalence
do not coincide.

For instance, Theorem 2 shows that a bundle of splitting factor pairs is not,
in general, contained in an equivalence class of splitting factor pairs.

However, it is relatively easy to verify that functions in the same bundle
determine coupled G-developed matrices over N in the same equivalence class.
That is,

b(φ, �) = b(ϕ, �′) ⇒M(φ,�) ∼M(ϕ,�′). (23)

The equivalence operations on M(φ,�) determined by bundle action on ∂�(φ) are
restricted (for instance, not all possible row or column permutations are applied)
so that a single equivalence class of coupled G-developed matrices over N could
contain the images of two, or more, distinct bundles of functions in C1(G,N).

The critical equivalence relation for our purposes is that for transversals.
Theorem 1 and Corollary 2 then give us the following one-to-one mapping of
bundles around four ‘stars’ of the Splitting Five-fold Constellation.

Corollary 4. Under the conditions of Theorem 5, the mappings

b(φ, �) ↔ B(∂�(φ)) ↔ [Rφ] ↔ {dev(Rϕ) : ϕ ∈ b(φ, �)}

define one-to-one correspondences between the corresponding sets of bundles
of PN functions relative to �, bundles of orthogonal splitting factor pairs in
F 2(G,N), equivalence classes of semiregular RDSs in E relative to N , and equiv-
alence classes of semiregular divisible designs with regular group E, class regular
with respect to N .

4 A Theory of Nonlinear Functions

The purpose of this section is to relate Definition 9 to the literature on PN and
other nonlinear functions, and expand it to a framework for developing a general
theory of nonlinear functions.
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The situation for abelian PN functions (G and N = C are abelian) is sur-
veyed in [4] and [16]. The equivalence of abelian PN functions and G-developed
generalised Hadamard matrices over C was first observed by de Launey [6].

In the binary case, when PN functions exist, they are also characterised by
bentness, that is, they are maximally distant (in a specific sense) from linear
functions. The measuring instrument is the Walsh-Hadamard Transform (WHT),
and the function φ : V (n, 2) → V (m, 2), with even n ≥ 2m, is PN if and only
if for each c 	= 0 ∈ V (m, 2) the component φc is bent; that is, if and only if
for each c 	= 0 ∈ V (m, 2) the WHT φ̂c of component φc takes only the values
±2n/2. The analogue of this result holds for abelian PN functions φ : G → C,
if the rôle of the WHT is taken by the Fourier Transform (FT) for the abelian
group C and if, for each c ∈ C, the component φc is defined to be φc = χc ◦ φ.

Definition 11. [13] Let C be a finite abelian group and suppose ϕ : C → C
takes values in the complex unit circle. Then ϕ is bent if its FT ϕ̂ has constant
magnitude |ϕ̂(x)| =

√
|C| for every x ∈ C.

Pott [16] extends the definition of maximal nonlinearity from the binary case to
the abelian case. As for bentness, this is a character-theoretic definition, which
Pott gives in terms of the characters of a transversal of C in C ×G.

Definition 12. Let G and C be finite abelian groups, let Ĉ ×G be the character
group of C × G, let φ : G → C and let Tφ = {(φ(x), x) : x ∈ G} ⊂ C × G.
The maximum nonlinearity of φ is L(φ) = max{|χ(Tφ)| : χ 	= χ0 ∈ Ĉ ×G} and
φ is maximally nonlinear if it attains the minimum possible value for L(φ) for
functions from G to C.

Pott shows that L(φ) ≥
√
|G|. When |C| divides |G|, he shows that func-

tions with maximum nonlinearity coincide with PN functions by proving the
transversal Tφ is a splitting abelian RDS. His proof invokes the dual definition,
in terms of its characters, of an abelian RDS. He concludes that the transversal
Tφ = {(φ(x), x) : x ∈ G} is the correct instrument for measuring the nonlinear
behaviour of any φ : G→ C between abelian groups.

Theorem 6. Let G and C be abelian groups of orders v and w, respectively,
where w|v, and φ ∈ C1(G,C). The following are equivalent:

1. φ is PN;
2. [4–Theorem 16] for every c 	= 1 ∈ C the component φc = χc ◦ φ is bent; that

is, its FT φ̂c has magnitude φ̂c(x) =
√
v for every x ∈ G;

3. [16–Theorem 8] φ is maximally nonlinear with maximal nonlinearity
√
v .

These two characterisations of abelian PN functions (additional to Theorem 5)
should still somehow hold true for our most general form of PN function. By
(14) and Theorem 5.2, φ is PN relative to � if and only if, in the group ring ZN ,

∀ x 	= 1 ∈ G,
∑
y∈G

φ(y)�(x)φ(xy)−1 = (v/w)
∑
a∈N

a, (24)
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that is, if and only if, for every x 	= 1 ∈ G and a ∈ N , the frequency

n(φ,�)(x, a) = |{y ∈ G : φ(y)�(x)φ(xy)−1 = a}| = v/w. (25)

However, if φ is a �-twisted homomorphism, the left-hand side of (25) takes
only two values: 0 (if φ(x)−1 	= a) and v (if φ(x)−1 = a), so the frequency
distributions, as x 	= 1 runs through G, are at opposite extremes: a sequence of
delta-functions for twisted homomorphisms but of uniform distributions for PN
functions.

How are we to capture this optimal difference of PN functions with respect
to � from �-twisted homomorphisms?

Character theoretic techniques begin to falter when N is nonabelian, but we
can replace the character group by Hom�(G,N) and test function φ : G → N
directly against all the �-twisted homomorphisms χ : G → N . In matrix terms
(c.f. (22)), we would compute [χ(xy)�(x−1)][φ(y)−1]�.

Definition 13. Let w|v, let � : G → Aut(N) be a homomorphism and let φ ∈
C1(G,N). Then φ is bent relative to � if, for all x 	= 1 ∈ G and χ ∈ Hom�(G,N),
〈χ, φ〉(x) =

∑
y∈G χ(xy)�(x−1)φ(y)−1 = (v/w)

∑
a∈N a.

However the advantages of Fourier inversion and Transform may be lost if there
is not a set of mutually orthogonal �-twisted homomorphisms to work with.

Research Problem 1. Develop the linear approximation (LA) theory of func-
tions φ relative to �, with bentness defined in Definition 13. How consistent is it
with other approaches to this problem?

Theorem 5 and Pott’s approach suggest that maximal nonlinearity could reason-
ably be defined by existence of a splitting RDS, with the set to be measured for
nonlinearity being the transversal Tφ = {(φ(x), x) : x ∈ G} of N in an appropri-
ate split extension of N by G. Then the optimal cases are given by [7–Theorem
5.1 and Corollary 5.1] (and Theorem 5 when k = v).

Definition 14. Let φ ∈ C1(G,N) and let � : G→ Aut(N) be a homomorphism.
Then φ is maximally nonlinear relative to � if for some k > 1 there exists a k-
subset D of G such that Rφ = {(φ(x), x) : x ∈ D} ⊂ E(1,�) is a splitting
(v, w, k, λ)-RDS relative to N × {1} lifting D.

Research Problem 2. Develop the difference distribution (DD) theory of func-
tions φ relative to �, with maximality defined in Definition 14. How consistent
is it with other approaches to this problem?

Acknowledgement. My thanks are due to the editors, who recommended en-
larging the paper to make it more self contained, and to Alexander Pott, whose
request for clarification of the relation between bundles and equivalent transver-
sals when � ≡ 1 led to inclusion of Theorem 3.
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Abstract. We will completely describe the solutions of the equation
(x + 1)d =xd + 1 in the field GF (q2), where q=pk and d is of Niho type,
i.e., d≡1 (mod q−1). Our results have applications in the theory of cross-
correlation functions of m-sequences and in the theory of cyclic codes.

1 Introduction

For the theory of finite fields in general we refer to [10]. For background in
m-sequences and cyclic codes the reader should consult e.g. [7] and [13].

The finite field of order q = pk, where p is a prime, will be denoted by GF (q).
The multiplicative group of GF (q) will be denoted by GF (q)×.

In this paper, we will deal with the equation

(x+ 1)d = xd + 1 (1)

in finite fields GF (q2). We will assume that d is of Niho type, i.e., it satisfies the
so called Niho condition

d ≡ 1 (mod q − 1).

Cross-correlation functions of m-sequences corresponding to this type of decima-
tions were first studied by Niho in his thesis [11], and hence the name. Recently,
this kind of decimations (and exponents and corresponding power functions)
have attracted great attention. For instance a new family of four-valued cross-
correlation functions corresponding to Niho type decimations was found in [9]. In
[2] it was proved that binary cyclic codes of length 2n−1 with two non-zeros α−1

and α−d, where α is a primitive element of GF (2n) and d is of Niho type, have
at least four non-zero weights. As the last example we mention that properties of
Niho type power functions were exploited in construction of bent functions in [6].

1.1 Motivation

To justify the study of the equation (1), we show how it is related to cross-
correlation of m-sequences and cyclic codes. Many more examples can be given;
� Research supported by the Academy of Finland, grant 108238.
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see e.g. [5] for a connection to non-linearity properties of power functions and
[4] for a connection to difference sets.

The polynomial (x+ 1)d − xd − 1 (1) has been studied before, especially in
the binary case. However, not very many results of general nature are known.
The interested reader should see e.g. [1] and [3].

Cross-Correlation of m-Sequences. The cross-correlation function Cd(τ) of
two p-ary m-sequences ui and udi, i = 0, 1, 2, . . ., of period pn − 1 that differ by
a decimation d is defined for τ = 0, 1, . . . , pn − 2 by

Cd(τ) =
pn−2∑
i=0

ζui−ud(i+τ) ,

where ζ is a complex primitive p-th root of unity.
To calculate the function Cd(τ) is essentially the same as to evaluate the

character sums
∑

x∈GF (pn)× χ(x + yxd), where χ is the well known canonical
additive character of the field GF (pn). This connection leads to the following
result, which is useful in finding the distribution of the values. For a proof we
refer to [11] and [7].

Theorem 1. We have

(i)
∑pn−2

τ=0 (Cd(τ) + 1) = pn

(ii)
∑pn−2

τ=0 (Cd(τ) + 1)2 = p2n

(iii)
∑pn−2

τ=0 (Cd(τ) + 1)3 = p2nb,

where b is the number of x ∈ GF (q) such that

(x+ 1)d = xd + 1.

Thus the equation (1) occurs naturally in this context.

Cyclic Codes. Assume that a binary cyclic code of length 2n − 1 has a parity
check matrix (

1 α α2 · · · α2n−2

1 αd α2d · · · α(2n−2)d

)
,

where α is a primitive element of the field GF (2n).
The equation (1) is related to the number of codewords of weight three in

the following way. Assume we have a codeword of weight three and shift it
cyclically in such way that the first coordinate is 1. Now a codeword with 1 in
the coordinates 1, i, and j occurs if and only if we have both 1+αi +αj = 0 and
1 + αid + αjd = 0. To have a solution here is the same as to have a non-trivial
solution for the equation (1).
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1.2 Preliminary Facts and Notation

From now on we concentrate on the equation

(x+ 1)d = xd + 1. (2)

We will assume that d is of Niho type, i.e.,

d ≡ 1 (mod q − 1),

and we wish to find the solutions in the field GF (q2), where q = pk for a prime
p. No further assumptions are made, that is, p is arbitrary and we do not assume
gcd(d, q2 − 1) = 1 (as one would in the context of m-sequences).

The conjugate of an element x ∈ GF (q2) over GF (q) will be denoted by x,
i.e.,

x = xq.

The conjugation operation has properties similar to ordinary complex conjuga-
tion. We have for example x+ y = x+ y.

An important role will be played by the set

S = {x ∈ GF (q2) : xx = 1}.

Note that S is a cyclic group of order q + 1.

2 The Third Power Sum for Niho Type Exponents

In what follows, we will give a complete solution to the equation (2). The tech-
niques we use were essentially developed in [8] and [12], where some special cases
of our main result were presented.

The first thing we note is that if x is in the subfield GF (q) then it automat-
ically satisfies (2). This is because xq−1 = 1 for x ∈ GF (q)×.

Lemma 2. Assume that d = (q− 1)s+1 and that x ∈ GF (q2)× is a solution to

(x+ 1)d = xd + 1.

Then z = xq−1 satisfies zs = 1 or zs−1 = 1.

Proof. Since
(x+ 1)d = xd + 1,

we also have
(x+ 1)d = xd + 1.

Multiplying these equations gives

(xx+ x+ x+ 1)d = (xx)d + xd + xd + 1. (3)
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Clearly xx, x+ x ∈ GF (q) and therefore also xx+ x+ x+ 1 ∈ GF (q). Since for
a ∈ GF (q) we have ad = a, (3) implies

x+ x = xd + xd.

Divided by x this becomes

1 + xq−1 = xd−1 + xqd−1.

Let z = xq−1. Since zq+1 = 1, we get

1 + z = zs + z1−s,

which is equivalent to
(zs − 1)(zs−1 − 1) = 0, (4)

from which the claim follows.

The key idea here is that z is an element of S. Therefore (4) implies in fact that
zgcd(s,q+1) = 1 or zgcd(s−1,q+1) = 1.

Lemma 3. Assume that q is fixed.

(i) Let x ∈ GF (q2) \ {0,−1}, and denote z = xq−1 and w = (x+ 1)q−1. Then
x is a solution to (2) if and only if zs = ws = 1 or zs−1 = ws−1 = 1.

(ii) The set of solutions to (2) depends only on the pair {gcd(s, q+ 1), gcd(s−
1, q+1)}, not on the specific choice of s. More precisely, let e = (q−1)t+1
and assume that either{

gcd(s, q + 1) = gcd(t, q + 1)
gcd(s− 1, q + 1) = gcd(t− 1, q + 1)

or {
gcd(s, q + 1) = gcd(t− 1, q + 1)

gcd(s− 1, q + 1) = gcd(t, q + 1).

Then x ∈ GF (q2) is a solution to (2) if and only if x satisfies (x+ 1)e =
xe + 1.

Proof. (i) If x 	= 0 is a solution to (2), then by the previous lemma zs = 1 or
zs−1 = 1.

Assume first that zs = 1. Then xd = xzs = x and we get from (x+1)d =
xd + 1 that ws = 1.

If in turn zs−1 = 1, we have xd = xzs−1 = x. Therefore (x+1)d = xd +1
implies (x+ 1)d−q = 1, i.e., ws−1 = 1.

If zs = ws = 1 or zs−1 = ws−1 = 1, then obviously x satisfies (2).
(ii) This follows easily from (i) and the fact that both z and w are elements

of S. As an illustration, assume that gcd(s, q + 1) = gcd(t, q + 1) and
gcd(s−1, q+1) = gcd(t−1, q+1). If x 	= 0,−1 satisfies (2) then zs = ws = 1
or zs−1 = ws−1 = 1. We then have zt = wt = 1 or zt−1 = wt−1 = 1,
because of the assumption on the greatest common divisors. From (i) we
deduce (x+ 1)e = xe + 1. The remaining details are left to the reader.
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Lemma 4. If x ∈ GF (q2) \ GF (q) satisfies the equation (2) then x can be
represented as

x =
w − 1
z − w

for some z, w ∈ S \ {1} such that

(i) either zs = ws = 1 or zs−1 = ws−1 = 1
(ii) z 	= w

Proof. We denote xq−1 = z and (x+ 1)q−1 = w. Then clearly x = xz and

x+ 1 = (x+ 1) · w,

which implies x = wx + w − 1. Equating the two forms for x we get xz =
wx+ w − 1. Solving x gives the desired form.

The condition (i) is obvious because of Lemma 3. Also, z = w would imply
z = w = 1 and then x ∈ GF (q) contrary to assumption.

The latter part of Lemma 3 says that s and s− 1 are in symmetrical roles. Thus
we consider s only in what follows.

Lemma 5. Let w, z ∈ S \ {1}, z 	= w and assume zs = ws = 1. Set

x0 =
w − 1
z − w

Then x0 is a solution to the equation (2) and x0 /∈ GF (q).

Proof. We have

x0 =
w − 1
z − w =

w−1 − 1
z−1 − w−1 =

z − zw
w − z = x0z,

and hence xq−1
0 = z.

Now let
x1 = x0 + 1 =

z − 1
z − w.

A similar computation as above shows that

xq−1
1 = w.

Now
xd

0 = x
s(q−1)+1
0 = x0 · zs = x0

and similarly xd
1 = x1. Hence

(x0 + 1)d = xd
1 = x1 = x0 + 1 = xd

0 + 1,

which shows that x0 satisfies (2).
To end the proof we only have to note that x0 	∈ GF (q), but this is clear

from xq
0 = x0z since z 	= 1.
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Lemma 6. The elements of the form

x =
w − 1
z − w

are distinct whenever z, w ∈ S \ {1} and z 	= w.

Proof. Assume that we have

x =
w − 1
z − w =

v − 1
u− v (5)

for some z, w, u, v ∈ S \ {1} with z 	= w and u 	= v.
Then

x =
1
w − 1
1
z − 1

w

=
zw − z
z − w ,

and similarly

x =
uv − u
u− v .

We now calculate the element x/x in two ways. Firstly,

x

x
=
zw − z
z − w · z − w

w − 1
= z

and similarly
x

x
= u.

Hence we have z = u.
By cross-multiplying we get from (5) that

uw − u− vw + v = zv − z − vw + w,

and using z = u we get immediately that w = v.

We are now ready to state the main result of the paper.

Theorem 7. Let d = (q − 1) ·s+1, r0 = gcd(s, q+1), and r1 = gcd(s−1, q+1).
Consider the equation

(x+ 1)d = xd + 1

in the field GF (q2).

(i) The solutions to the equation are exactly the elements of the subfield GF (q)
and the elements of the form

x =
w − 1
z − w,

where w, z ∈ S \ {1} satisfy z 	= w and either zs = ws = 1 or zs−1 =
ws−1 = 1.
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(ii) The number of solutions to the equation is

b = q + (r0 − 1) (r0 − 2) + (r1 − 1) (r1 − 2) .

Proof. The first part is already proven. The second part is an elementary count-
ing argument. We only have to mention that zs = 1 (resp. zs−1 = 1) implies
zr0 = 1 (resp. zr1−1 = 1), and that the equations zs = 1 and zs−1 = 1 have no
common solutions other than 1.

A similar result holds of course when d ≡ pi (mod q − 1) for some i. In fact the
solutions remain the same, only their multiplicities change.
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On Constructing AG Codes Without Basis
Functions for Riemann-Roch Spaces
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Abstract. The standard construction of linear error-correcting codes
on algebraic curves requires determining a basis for the Riemann-Roch
space L(G) associated to a given divisor G, often a hard problem. Here
we consider the problem of constructing the code without any knowledge
of such a basis. We interpret the columns of a generator matrix as points
on an embedded copy of the curve, and show that in certain cases these
points can be realized in principle as the images of a set of vector bundles
under a standard map to a class of repartitions.

1 Introduction

Let C denote a smooth projective algebraic curve of genus γ defined over a finite
field k. Fix a divisor D = P1 + · · · + Pn on C, where each point Pi is rational
(over k), and let G be another divisor of degree α with rational support disjoint
from that of D. The algebraic-geometric (AG) code given by these two divisors
is defined to be

C(D,G) = {(f(P1), . . . , f(Pn)) : f ∈ L(G)} .

The code is linear over k, and if α ≥ 2γ − 1 then it has dimension α− γ + 1
by the Riemann-Roch theorem. The minimum distance is at least n − α, since
a non-zero function in L(G) has at most α zeros. AG codes were discovered by
Goppa [5] in the early 1980s, and since that time many important practical and
theoretical advances have been made, including efficient decoding algorithms
(surveyed, for example, in [8]) and polynomial-time constructable codes that
beat the Gilbert-Varshamov bound [15, 6, 13].

Usually the divisor G is taken as a multiple of a single point, and here as
well we let G = αQ for a rational point Q ∈ C. We assume α > 2γ so that the
rational map ϕ : C → IPm (m = α − γ) given by the complete linear system
|αQ| is an embedding [12–Ch. III, Sect. 6.6].

In practice, a linear code is constructed by computing a generator matrix for
it. If {fi} is a basis for L(G), then we get the rows of a generator matrix for
C(D,G) by computing the linearly independent codewords (fi(P1), . . . , fi(Pn)).
Equivalently, we can view the points ϕ(Pi) as columns of this matrix.

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 108–117, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Computing a basis for a Riemann-Roch space, however, is often a difficult
problem. This note describes the theoretical framework for an alternative method
of one-point AG code construction. It applies only for certain choices of the point
Q, but from a coding standpoint the choice ofQ is immaterial since the dimension
and distance of an AG code depend only on the degree of the divisors used.

The basic idea is to map extensions of lines bundles determined by Q and the
points Pi into a class of repartitions via standard sheaf cohomology; elements
of the class can be uniquely expressed as a linear combination of certain fixed
repartitions of a very simple form, and the coefficients in that combination are
precisely the coordinates of ϕ(Pi).

The next section reviews some background material and establishes notation.
After proving the main result in the third section, we point out that it can be
used to determine the Weierstrass non-gaps at Q, and we demonstrate this fact
with an example on the Klein curve. The last section looks at computational
aspects of the cohomology maps used in the main result and the algorithmic
details that would need to be worked out for an explicit implementation.

2 Background and Notation

Fix a smooth projective curve C of genus γ over a finite field k for the rest of
the paper. Let k̄ denote the algebraic closure of k. We refer to k-rational points
simply as rational points for brevity.

Fix a rational point Q ∈ C and an integer α > 2γ, and let ϕ denote the
embedding of the curve determined by the complete linear system |αQ|. The
goal is to compute ϕ(P ) for rational points P 	= Q on the curve without knowing
a basis for L(αQ). In that way, we get the columns of a generator matrix for
C(D,αQ), where as usual D is the formal sum of all rational points other than
Q. The code has length n = |Supp(D)|, and we assume n > α.

For f ∈ k̄(C) and P ∈ C, νP (f) denotes the order of f at P , and OP denotes
the local ring at P .

We enumerate the Weierstrass non-gaps at Q by μ0, μ1, μ2, . . .

2.1 Extension Spaces

For any rank-2 vector bundle E → C of degree at least γ, there is line bundle
L such that the sequence 0 → OC → E → L → 0 is exact. Here E is called an
extension of L by OC . Another such extension E′ is isomorphic to E if there is
an isomorphism of exact sequences

0 �� OC
�� E ��

∼=
��

L �� 0

0 �� OC
�� E′ �� L �� 0.

We denote by Ext(L,OC) the space of extension classes of L by OC . This has
the structure of a linear space over k̄ [3–Sect. 5.7].
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An extension E ∈ Ext(L,OC) corresponds to an element of H1(L−1) as
follows: twist by L−1 to get an exact sequence 0 → L−1 → E⊗L−1 → OC → 0,
form the associated long exact sequence and take the image of the identity
element in H0(OC). Some authors actually define first cohomology directly in
terms of extensions, and there is a geometric way of defining a group operation
on them [3–Sect. 5.7].

Now H1(L−1) ∼= H0(ωC⊗L)∗ by Serre duality, so we have identified the space
Ext(L,OC) (modulo scalers) with projective space IP(H0(ωC ⊗ L)∗).

2.2 The Segre Invariant and Secant Varieties

The s-invariant of a non-split rank-2 vector bundle E on a smooth projective
curve is defined by

s(E) = degE − 2 max{degM : M ↪→ E},

where M runs over all line subbundles of E. Let (e) denote the rank-2 extension
E viewed as a point of projective space IP. Lange and Narasimhan [10], following
Atiyah [1], showed that s(E) is determined by the smallest integer j such that
(e) is contained in the j-secant variety of the curve in IP. This picture was also
described by Bertram [2], and later Trygve Johnsen observed that it leads to an
interpretation of decoding AG codes in terms of vector bundles on the underlying
curve [9].

It turns out that (e) = ϕ(P ) if and only if OC(P ) is a quotient line bundle
of E. This fact is really just a special case of [10–Proposition 1.1], made more
explicit by [9–Proposition 2.5]. Summarizing with the notation established at
the beginning of this section, we have:

Proposition 1. Let L = OC(αQ−K). For any point P ∈ C, there is a unique
extension E ∈ Ext(L,OC) with quotient line bundle OC(P ), and E corresponds
to ϕ(P ) as a point of projective space with respect to the embedding ϕ determined
by |αQ|.

2.3 Repartitions

A repartition r associates to each point P ∈ C a function rP ∈ k̄(C), with
rP ∈ OP for all but finitely many points. R denotes the ring of repartitions, and
k̄(C) is viewed as a subring by identifying f ∈ k̄(C) with the repartition that
assigns f to each point of the curve. If f ∈ k̄(C) and Q ∈ C, then we write f/Q
for the repartition that assigns f to Q and zero to every other point.

Given a divisor A, R(A) denotes the additive subgroup of repartitions r ∈ R
satisfying νP (rP ) + νP (A) ≥ 0 for every point P ∈ C. There is a canonical
isomorphism

H1(OC(A)) ∼= R/
(
R(A) + k̄(C)

)
.

Serre proves this fact [14–Proposition II.3] and uses it to prove the duality the-
orem for curves.
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For a divisor G, we therefore have

H0(OC(G))∗ ∼= H1(OC(K −G)) ∼= R/
(
R(K −G) + k̄(C)

)
When G is a multiple of a single point, there is a basis for R/(R(K−G)+ k̄(C))
consisting of repartitions of an especially simple form; using our notation, this
result can be stated as:

Proposition 2. For a local parameter t at Q, define the differential ω = dt in
a neighborhood of Q and let K = (ω). Then the set {tμi−1/Q : 0 ≤ i ≤ m} is a
basis for the vector space R/(R(K − αQ) + k̄(C)) over k̄.

This was used to compute a transition matrix for the rank-2 extension that cor-
responds as a point in projective space to the syndrome of a corrupted codeword
[4–Proposition 1]. The proof is repeated in the appendix of this paper.

3 Constructing a Generator Matrix

Recall that the columns of a generator matrix for C(D,αQ) are given explicitly
by the points ϕ(D), where ϕ is the embedding of C determined by |αQ|.

Theorem 1. For a local parameter t at Q, define the differential ω = dt in a
neighborhood of Q and let K = (ω). Suppose there is a basis S = {f1, . . . , fγ}
for L(K) consisting of functions that have a single non-zero term of degree less
than α when expanded in powers of t. Then for any point P 	= Q on the curve,
ϕ(P ) = (c0 : · · · : cm) if and only if the repartition (c0tμ0−1 + · · ·+ cmtμm−1)/Q
corresponds to the unique extension E ∈ Ext(OC(αQ − K),OC) with quotient
line bundle OC(P ).

Proof. Since ω is regular and non-zero atQ by definition, any function in L(K) is
regular at Q. Distinct functions fi, fj ∈ S have distinct orders atQ, for otherwise
νQ(fi − fj) ≥ α by the hypothesized property of elements of S, which would not
be possible since fi − fj ∈ L(K) can have at most 2γ − 2 < α zeros.

Let ni = νQ(fi). We will show that tni/Q ∈ R(K−αQ)+ k̄(C) for 1 ≤ i ≤ γ.
Multiplying each fi by a constant if necessary, we can write

fi = ti +
∞∑

j=α

bij · tj

with uniquely determined coefficients bij ∈ k̄. Now for each function fi ∈ S, we
define a repartition ri by

(ri)P =
{
fi − tni : P = Q

−fi : P 	= Q.

We have νQ((ri)Q) ≥ α, and since fi ∈ L(K) it follows that ri ∈ R(K −αQ).
Now ri + fi = tni/Q, so tni/Q ∈ R(K − αQ) + k̄(C) as claimed.
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Let A = {ti/Q : 0 ≤ i ≤ α}. We have just shown that there are γ elements
of A that are zero in the space R/R(K − αQ) + k̄(C)), namely each tni/Q.
On the other hand, Proposition 2 provides a basis for this space consisting of
the remaining m + 1 = α − γ + 1 elements of A. Consequently, any element of
R/R(K−αQ)+ k̄(C)) can be uniquely expressed as a linear combination of the
particular m+ 1 elements of A specified in the proposition.

By Proposition 1, there is a unique extension E ∈ Ext(OC(αQ − K),OC)
with quotient bundle OC(P ); the extension corresponds via Serre duality to the
point ϕ(P ) ∈ IP(H0(OC(αQ))∗), and the isomorphism

H0(OC(αQ))∗ ∼−→ R/
(
R(K − αQ) + k̄(C)

)
is realized by (c0, . . . , cm) �→

(
c0t

μ0−1 + · · · + cmtμm−1
)
/Q. ��

3.1 Computing Weierstrass Non-gaps

Suppose that for some fixed positive integer i < α, the repartition corresponding
to a given point ϕ(P ) is simply ti/Q. This means that ϕ(P ) has a single non-
zero coordinate. But we do not know which coordinate is non-zero unless we also
happen to know where the integer i lies among the exponents μ0−1, . . . , μm−1,
or in other words, unless we know the Weierstrass non-gaps at Q.

Consider, however, the set of all points ϕ(P1), . . . , ϕ(Pn). It is not possible
that all of them are zero at the same coordinate, for otherwise there would exist
a non-zero function in L(αQ) that vanishes at n > αQ points. We can therefore
think of Theorem 1 as determining the non-gaps at Q. This is illustrated below.
Of course, this observation does not translate directly into an effective algorithm
for computing the non-gaps at certain points since the cohomology maps that
we are using have been described in a completely abstract fashion. Section 4
discusses the algorithmic aspects of Theorem 1.

3.2 Illustration

Let C denote the Klein curve of genus 3 defined by x3y + y3z + z3x = 0. We
will use Theorem 1 with α = 5 (the highest possible non-gap) to compute the
Weierstrass non-gaps at Q1 = (1 : 0 : 0). Let Q2 = (0 : 1 : 0) and Q3 = (0 : 0 : 1).
These latter two points also lie on the curve. Computing the intersection divisors
of the three lines xyz = 0 with the curve, we have:

div(x) = 3Q3 +Q2

div(y) = 3Q1 +Q3

div(z) = 3Q2 +Q1

We can use this information to obtain the order of a monomial at any of the
points Qi. In particular, we see that t = z/x is a local parameter at Q1.

Define the differential ω = dt in the open set U = {(x : y : z) ∈ C : x 	= 0},
and let K = (ω).
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Lemma 1. K = 3Q3 +Q2.

Proof. A point P ∈ U has the form P = (1 : b : c). Note that t′ = (z + cx)/x is
a local parameter at P , and dt′ = dt. It follows that ω has no zeros on U , so the
support of K must be contained in C \ U = {Q2, Q3}. A canonical divisor on
a plane quartic is the intersection divisor of a line with the curve, and the only
such divisor supported by Q2 and Q3 is the intersection divisor of the line x = 0
with the curve; that is, 3Q3 +Q2. ��

Lemma 2. The set {1, z/x, y/x} is a basis for L(K).

Proof. The dimension of L(K) is 3 (genus), and we see that the given functions
are contained in L(K) by checking the intersection divisors of the lines xyz = 0
with the curve. For linear independence, note that the functions have distinct
orders at Q1. ��

We want to verify that the basis given by the preceding lemma satisfies the
hypothesis of Theorem 1; that is, the basis functions have a single non-zero term
of degree less than α = 5 when expanded in powers of t = z/x. Obviously, we
only need to look at y/x, which vanishes at Q1 with order 3. The first term in
the expansion of y/x is t3, and to determine the next term we compute

y/x− t3 = (x3y + xz3)/x4 = y3z/x4.

Since νQ1(y3z/x4) = 10, the expansion of y/x in powers of t has exactly one
non-zero term of degree less than α. The basis functions therefore satisfy the
hypothesis of Theorem 1. They vanish at Q1 with orders 0, 1 and 3, and the
proof of Theorem 1 show that in this case

{1/Q1, t/Q1, t
3/Q1} ⊂ R/R(K − 5Q1) + k(C)).

On the other hand, {tμi−1 : 0 ≤ i ≤ 2} is a basis for R/(R(K − 5Q) + k(C))
according to Proposition 2, and the values 0, 1 and 3 have been excluded as
possible values for μi−1, leaving -1, 2 and 4. The non-gaps μi at Q1 are therefore
0, 3 and 5.

Indeed, the set {1, x/y, xz/y2} is a basis for L(5Q1), and the functions in
this basis have pole orders 0, 3, and 5 at Q1.

4 Algorithmic Questions

Theorem 1 provides the theoretical framework for computing the points ϕ(P )
via cohomology maps, but three main computational problems must be solved
to apply the theorem in practice:

1. Compute a concrete representation of the unique extension

E ∈ Ext(OC(αQ−K),OC)

with quotient bundle OC(P ) for each rational point P 	= Q.
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2. Compute the image of E under the map

ψ : Ext (OC(K − αQ),OC) ∼−→ R/
(
R(K − αQ) + k̄(C)

)
.

3. If ψ(E) ∈ R/(R(K − αQ) + k̄(C)) is not of the form
∑α

i=0 cit
μi−1/Q, then

translate it into the unique representative of its equivalence class having that
form.

We look briefly at each of these questions in turn.

4.1 Concrete Representations of Rank-2 Extensions

The problem is to find the extension E ∈ Ext(OC(αQ−K),OC) with quotient
line bundle OC(P ), or equivalently with line subbundle OC(αQ−K −P ). Here
we quickly review the idea of a vector bundle as an abstract algebraic variety,
and a subbundle as an embedding of varieties. The basic facts can be looked up
in Shafarevich [12–Chap. VI]. Then following the definitions, we translate the
problem of finding the desired rank-2 bundle into a search for rational functions
on the curve satisfying a certain linear relation.

Consider a line bundle L → C, say L = OC(A) for a divisor A. Since the
base space C is a curve, there is a covering by two open sets with L trivial
over each. Fix such a covering (U1, U2), and let U12 = U1 ∩ U2. Then L is
realized as an abstract algebraic variety by glueing the two affine varieties Ui× k̄
along their intersection. In particular, it is represented by a transition function
h ∈ OC(U12)∗ that for each x ∈ U12 identifies the point (x, a) ∈ U1 × k̄ with the
point (x, h(a)) ∈ U2 × k̄. If A has local equations hi in Ui, then we may take
h = h2/h1. Then an extension E ∈ Ext(L,OC) is represented by a transition
matrix

M =
(

1 0
g h

)
,

where g ∈ k̄(C) depends on the class of E. This matrix determines the glueing
relation for the affine varieties U1 × k̄2 and U2 × k̄2.

Considering vector bundles as abstract algebraic varieties, an embedding

ϕ : L→ E

is a regular map of varieties that preserves fibers, and on each fiber induces a
linear map k̄→ k̄2. This means that there are regular functions ri and si on Ui

(i = 0, 1) such that ϕ|Ui×k : (x, a) �→ (x, ri(x) · a, si(x) · a), and these functions
preserve the gluing relation of E; in our case, it means

f · (r2, s2) =
(

1 0
g h

)(
r1
s1

)
on the intersection U12, where f is a transition function for L = OC(αQ−K−P ).
We may take f = hp−1, where p is a transition function for OC(P ). Note that for
suitable choices of the trivializing cover {Ui}, it is easy to obtain local equations
for the rational points of the curve, or for any divisor with rational support.
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In summary, we get a transition matrix for E ∈ Ext(OC(αQ−K),OC) with
quotient line bundle OC(P ) by finding g ∈ k̄(C) and ri, si ∈ OC(Ui) that

f · r2 = r1

f · s2 = g · r1 + h · s1

on the intersection U12.

4.2 Cohomology Maps

Our map ψ is a composition of three maps

Ext(OC(αQ−K),OC) −→ Ext(OC ,OC(K − αQ)) (1)

−→ H1(OC(K − αQ)) (2)
−→ R/(R(K − αQ) + k̄(C)) (3)

The first map takes an extension of the form 0 → OC → E → OC(αQ−K) → 0
and twists by OC(K−αQ) to obtain 0 → OC(K−αQ) → E′ → OC → 0. What
this means concretely, in terms of transition matrices, is multiplying each entry
of a transition matrix for E by a transition function for OC(αQ−K) to obtain
a transition matrix for E′.

The second map arises by forming the associated long exact sequence and
taking the image of the identity element under H0(OC) → H1(OC(K − αQ)).
But here the picture seems too abstract for direct computation. It may simplify
matters to use the Cech cohomology, but care is needed to choose a suitable open
cover so that the Cech cohomology agrees with the derived functor cohomology;
see Hartshorne [7–Chap. III] on this point.

The map to repartitions (3) is described by Serre [12–Proposition II.3], and
there also one may need to recast the details in terms of Cech cohomology for a
more computationally concrete picture.

4.3 Translating Repartitions

Let us define the support of a repartition r to be the set of points P at which
rP 	= 0. We begin by noting that for any divisor A, a repartition with infinite
support is equivalent modulo R(A) to one with finite support: for example, if
r′ ∈ R is defined by

r′P =
{
rp : P 	∈ Supp (A) and νP (rp) ≥ 0
0 : otherwise

then r − r′ ≡ r has finite support. Recall that we identify f ∈ k̄(C) with the
repartition that assigns f to every point. If we take f = rQ, then r − f does
not have Q in its support and it is equivalent to r modulo R(K − αQ) + k̄(C).
We may therefore assume that a given repartition r, viewed as an element of
R/(R(K − αQ) + k̄), is supported by finitely many points, Q not among them.
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Proposition 1 says that any r ∈ R is equivalent modulo R(K − αQ) + k̄(C)
to a linear combination of the repartitions tμi−1/Q for 0 ≤ i ≤ m. This means
that there are unique coefficients ci ∈ k̄ and a function f ∈ k̄(C) such that

r − f +

(∑
i

cit
μi−1/Q

)
∈ R(K − αQ).

Equivalently, assuming rQ = 0 as discussed above, the coefficients ci and the
function f must satisfy:

1. νP (rP − f) ≥ −νP (K) for all P 	= Q;
2. νQ(

∑
i cit

μi − f) ≥ α.

The existence of f satisfying (1) is guaranteed by the Strong Approximation
Theorem [11–Chap. 12]; moreover, since α > m, (2) implies that f is regular at
Q and the coefficients ci can be obtained from the initial part of its expansion
in powers of t.
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A The Proof of Proposition 2

This comes directly from [4], with minor rewording.
Applying Serre’s proof of the duality theorem for curves [14–Proposition II.3]

to our situation, we note that Ω1(K − αQ) ∼= H0(αQ) is put in duality with
R/(R(K − αQ) + k̄(C)) by the pairing

〈ω, r〉 =
∑
P∈C

ResP (rP · ω). (4)

Fix a basis {fi} for L(αQ). We may assume νQ(fi) = μi (the i-th Weierstrass
non-gap at Q). Let a(i, j) ∈ k̄ denote the coefficient of tj in the expansion of fi

in powers of t; that is,

fi =
∞∑

r=−μi

a(i, r) · tr.

Now suppose for a moment that there are distinct indices i and j for which
a(i,−μj) 	= 0. Thus while fj has a pole of order μj at Q, there is a non-zero
coefficient of t−μj in the expansion of some other function fi with a higher
pole order at Q. Since νQ(fi − a(i,−μj) · fj) = −μi, we may replace fi with
fi − a(i,−μj) · fj to obtain another basis for L(αQ); moreover, the coefficient of
t−μj in the expansion of this new function is zero. We may therefore assume that
a(i,−μj) = 0 if and only if i 	= j. Letting ωi = fi · dt in an open neighborhood
of Q, we can write ResQ(tnj−1 · ωi) = a(i,−nj); that is,

ResQ(tnj−1 · ωi) = 0 ←→ i 	= j.

Combining this with (4), we have

〈ωi, t
nj−1/Q〉 = 0 ←→ i 	= j.

Referring again to (4), we see that every differential ω ∈ Ω1(K −αQ) defines
a linear functional 〈ω, ·〉 on R/(R(K − αQ) + k̄(C)). Indeed, 〈ω, r〉 = 0 for all
r ∈ R(K −αQ) since rP ·ω has no poles for any point P ∈ C, and 〈ω, r〉 = 0 for
all repartitions r ∈ k̄(C) by the Residue Theorem.

We have contructed a basis {tμj−1/Q} in the standard way for the space
R/(R(K − αQ) + k̄(C)) in terms of a basis {ωi} for the dual space. That is,
〈ωi, t

nj−1〉 = 0 if and only if i 	= j. ��
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Abstract. We present an algorithm to compute a Gröbner basis for the
vanishing ideal of a finite set of points in an affine space. For distinct
points the algorithm is a generalization of univariate Newton interpo-
lation. Computational evidence suggests that our method compares fa-
vorably with previous algorithms when the number of variables is small
relative to the number of points. We also present a preprocessing tech-
nique that significantly enhances the performance of all the algorithms
considered. For points with multiplicities, we adapt our algorithm to
compute the vanishing ideal via Taylor expansions.

1 Introduction

Suppose P1, . . . , Pn are distinct points in the m-dimensional vector space over
a field IF. The set of polynomials in IF[x1, . . . , xm] that evaluate to zero at each
Pi form a zero-dimensional ideal called the vanishing ideal of the points. The
problem that we consider is how to compute the reduced Gröbner basis for the
vanishing ideal of any finite set of points under any given monomial order. This
problem arises in several applications; for example, see [16] for statistics, [13] for
biology, and [18, 11, 12, 6] for coding theory.

A polynomial time algorithm for this problem was first given by Buchberger
and Möller (1982) [2], and significantly improved by Marinari, Möller and Mora
(1993) [14], and Abbott, Bigatti, Kreuzer and Robbiano (2000) [1]. These al-
gorithms perform Gauss elimination on a generalized Vandermonde matrix and
have a polynomial time complexity in the number of points and in the number of
variables. O’Keeffe and Fitzpatrick (2002) [9] studied this problem from a cod-
ing theory point of view. They present an algorithm that is exponential in the
number of variables, and the Gröbner basis which they compute is not reduced.

We present here a variation of the O’Keeffe-Fitzpatrick method. Our approach
does, though, compute the reduced Gröbner basis and is essentially a generaliza-
tion of Newton interpolation for univariate polynomials. Even though the time
complexity of our algorithm is still exponential in the number of variables, its
practical performance improves upon both the O’Keeffe-Fitzpatrick algorithm
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and the linear algebra approach if the number of variables is relatively small
compared to the number of points.

The rest of the paper is organized as follows. In Section 2, we present our
algorithm for distinct points. We also show how multivariate interpolation is
a special case of computing vanishing ideals. Section 3 presents experimental
time comparisons along with a sorting heuristic for the points. Finally, Section 4
shows how to handle the case for points with multiplicity. Some of the material
presented here is surveyed in our recent paper [7], which gives a broader view
on how Gröbner basis theory can be used in coding theory.

2 Distinct Points

Throughout this section we fix an arbitrary monomial order (also called term
order by some authors) on the polynomial ring IF[x1, . . . , xm]. Then each polyno-
mial f ∈ IF[x1, . . . , xm] has a leading term, denoted by LT(f), and each ideal has
a unique reduced Gröbner basis. For any subset G ⊂ IF[x1, . . . , xm], we define

B(G) = {xα : α ∈ INm and xα is not divisible by LT(g) for any g ∈ G},

where IN = {0, 1, 2, . . .} and xα = xα1
1 · · ·xαm

m for α = (α1, . . . , αm). A basic
theorem in Gröbner basis theory tells us that, for each ideal I ⊂ IF[x1, . . . , xm],
the monomials in B(I) form a basis for the quotient ring IF[x1, . . . , xm]/I as a
vector space over IF (see Section 3 in [4]). This basis is called a monomial basis,
or a standard basis, for I under the given monomial order. For V ⊆ IFm, let I(V )
denote the vanishing ideal of V ; that is,

I(V ) = {f ∈ IF[x1, . . . , xm] : f(P ) = 0, for all P ∈ V }.

If V = {P1, . . . , Pn}, I(V ) is also written as I(P1, . . . , Pn).

Lemma 1. For g1, . . . , gs ∈ I = I(P1, . . . , Pn), {g1, . . . , gs} is a Gröbner basis
for I if and only if |B(g1, . . . , gs)| = n.

Proof. By definition g1, . . . , gs ∈ I form a Gröbner basis for I if and only if
B(g1, . . . , gs) = B(I). One can show by interpolation that dim IF[x1, . . . , xm]/I =
n. But the monomials in B(I) form a basis for the quotient ring IF[x1, . . . , xm]/I
viewed as a vector space over IF. The lemma follows immediately. ��

Lemma 2. Suppose G = {g1, . . . , gs} is a Gröbner basis for I(V ), for a finite
set V ⊂ IFm. For a point P = (a1, . . . , am) /∈ V , let gi denote the polynomial in
G with smallest leading term such that gi(P ) 	= 0, and define

g̃j := gj −
gj(P )
gi(P )

· gi, j 	= i, and

gik := (xk − ak) · gi, 1 ≤ k ≤ m.

Then
G̃ = {g̃1, . . . , g̃i−1, g̃i+1, . . . , g̃s, gi1, . . . , gim}

is a Gröbner basis for I(V ∪ {P}).



120 J.B. Farr and S. Gao

Proof. At least one polynomial in G must be nonzero when evaluated at P since
P /∈ V ; hence, a suitable gi exists.

Certainly, G̃ ⊆ I(V ∪ {P}) as the new and modified polynomials evaluate to
zero at all points in V ∪ {P}. Denote LT(gi) by xα. We claim that

B(G̃) = B(G) ∪ {xα}. (1)

By the choice of i, LT(g̃j) = LT(gj), for all j 	= i. Also, since gi was replaced in
G̃ by gi1, gi2, . . . , gim, whose leading terms are xαx1, xαx2, . . . , xαxm, we know
that xα is the only monomial not in B(I(V )) that is in B(I(V ∪ {P})). Thus,
(1) is satisfied, and |B(G̃)| = |B(G)|+1. Since G is a Gröbner basis for I(V ), we
have |B(G)| = |V |, and the conclusion follows from Lemma 1. ��

Notice that some of the LT(gik) may be divisible by the leading term of another
polynomial in G̃. In such a case, gik may be omitted from G̃ and G̃\{gik} is still
a Gröbner basis. In fact, we can check for this property before computing gik
so that we save ourselves needless computation. In so doing, we also guarantee
that the resulting G̃ is a minimal Gröbner basis for I(V ∪ {P}).

To get a reduced Gröbner basis, we still need to reduce the new polynomials
gik. We order the variables in increasing order, say x1 < x2 < . . . < xm, and
reduce the polynomials from gi1 up to gim . Thus, in Algorithm 1 the polyno-
mials in G are always stored so that the leading terms of its polynomials are in
increasing order. This will make sure that each gik need only be reduced once.
Also, Reduce(h,G) is the unique remainder of h when reduced by polynomials
in G.

Algorithm 1

1 Input: P1, P2, . . . , Pn ∈ IFm, and a monomial order
We assume that the variables are labelled so that x1 < . . . < xm.

2 Output: G, the reduced Gröbner basis for I(P1, . . . , Pn), in increasing order.
3
4 G := {1}; /* the ith polynomial in G is denoted gi */
5 FOR k from 1 to n DO
6 Find the smallest i so that gi(Pk) 
= 0;
7 FOR j from i + 1 to |G| DO gj := gj − gj(Pk)

gi(Pk) · gi; END FOR;
8 G := G \ {gi};
9 FOR j from 1 to m DO

10 IF xj · LT(gi) not divisible by any leading term of G THEN
11 Compute h := Reduce((xj − aj) · gi, G);
12 Insert h (in order) into G;
13 END IF;
14 END FOR;
15 END FOR;
16
17 RETURN G.
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Lemma 2 and the subsequent remarks imply the following theorem.

Theorem 1. For a finite set V ⊆ IFm and a given monomial order, Algorithm 1
returns the reduced Gröbner basis for I(V ).

A related question is multivariate interpolation, and it can easily be solved using
Algorithm 1. The interpolation problem is: given the points P1, . . . , Pn ∈ IFm

and any values r1, . . . , rn ∈ IF, find a “smallest” f so that

f(Pi) = ri, 1 ≤ i ≤ n. (2)

Multivariate polynomial interpolation has been extensively studied in the past
30 years (see the survey [10]). The property of being “smallest” is addressed
by introducing an appropriate monomial order on IF[x1, . . . , xm]. Then there is
a unique polynomial f ∈ SpanIF(B) satisfying (2), and it will be the smallest
such polynomial under the given monomial order. One strategy for finding this
polynomial f is given in [17] that uses separator polynomials. The following
theorem, which follows directly from Lemma 1, tells us that any algorithm for
computing vanishing ideal can be easily used to solve the interpolation problem.

Theorem 2. Let G be the reduced Gröbner basis for I = I(P1, . . . , Pn) under the
fixed monomial order < on IF[x1, . . . , xm], and let B = B(I) be the corresponding
monomial basis. Introduce a new variable z and an elimination order for z that
extends <. Then the reduced Gröbner basis for I((P1, r1), . . . , (Pn, rn)), is of the
form G∪{z− f}, where f is the unique polynomial in SpanIF(B) satisfying (2).

One can easily generalize Theorem 2 to the case when there are more than one
z-coordinate. Also, in the case when m = 1 Theorem 2 appears in the literature
as the “Shape Lemma” (see Exercise 16 in Section 2.4 in [5]).

This same strategy can be modified for multivariate rational function interpo-
lation. In this case the Gröbner basis computation is performed for a submodule
of rank two rather than for an ideal. The major hurdle that has to be overcome
before applying a modified Algorithm 1 is the selection of an appropriate term
order. We refer the reader to [6] for more details.

3 Time Complexity

3.1 The Cost of Reduction

All the steps in Algorithm 1 are straightforward to analyze except the reduction
step in line 11. We use standard Buchberger reduction (i.e., repeated division).
This reduction has a worst-case time complexity that may be exponential in the
number m of variables. It is possible to make this step polynomial time by using
the border-basis reduction technique introduced in [8]. The border Gröbner basis
computed, however, is quite large in general. For example, the reduced Gröbner
basis for the vanishing ideal of a random set of 500 points from IF10

2 under lex
order usually contains around 100 polynomials, while the border basis typically
contains over 2000. So the running time and memory usage of Algorithm 1 using
border-basis reduction are much worse than the original. For these reasons we
ignore the theoretical “improvements” that border-basis reduction provides.
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3.2 Running Time Comparison

As we mentioned earlier, the methods in [1, 2, 14] are based on Gauss elimination
and have a polynomial time complexity O(n3m2). We compare our Algorithm 1
particularly with the algorithm (MMM) of Marinari, Möller and Mora [14]. Al-
though the algorithm of [1] has an excellent implementation in the computer
algebra system CoCoA, it is not appropriate for us to compare this compiled
code with our interpreted code (see specs below).

The Gröbner basis found via the algorithm (O’K-F) of O’Keeffe and Fitz-
patrick [9] is minimal in the sense that the number of polynomials in the basis
is the smallest, but the length of the polynomials computed may grow exponen-
tially in the number m of variables. So, most of the computing time in O’K-F
is taken up with dealing with large polynomials, and most of the time in Algo-
rithm 1 involves the reduction step, i.e., computing Reduce(gij , G).

Table 1 presents running times for the algorithms for various point sets. We
have chosen three high-dimensional vector spaces and three low-dimensional vec-
tor spaces to highlight the significance of the dimension. The times are the
average running times in seconds for randomly chosen point sets from the spec-
ified vector space (based on 100 experiments for n = 250, 10 experiments for

Table 1. Average running times for 250, 500 and 1000 random points from IFm
q

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 2.440 1.404 1.182 0.356 1.006 0.705
31 3 2.762 1.481 1.418 0.312 1.213 0.395
101 3 2.867 1.423 1.512 0.220 1.289 0.218
2 10 2.542 1.321 2.201 1.142 3.015 9.832
2 12 4.954 1.894 4.207 2.381 4.037 14.43
2 15 7.568 2.875 7.592 7.565 8.066 22.54

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 14.72 10.50 5.726 1.789 5.126 9.547
31 3 19.33 10.53 9.357 1.688 8.236 3.043
101 3 20.08 10.66 11.16 1.141 9.467 1.371
2 10 12.10 7.773 8.849 4.314 18.81 332
2 12 24.43 11.62 21.68 13.49 31.90 367
2 15 64.69 16.79 63.74 33.42 53.38 522

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

31 3 143 80.98 71.04 10.80 68.05 39.59
101 3 149 86.05 107 6.852 92.92 11.52
2 12 173 75.62 146 74.36 307 10321
2 15 315 117 312 218 471 16609
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n = 500, 1000). The algorithms were implemented in Magma version 2.11 and
run on an Apple Power Macintosh G5 computer, 2.5 GHz CPU, 2 GB RAM.

The timings indicate that Algorithm 1 is faster than MMM—by a factor
of two for grlex, a factor approaching ten for lex—if the dimension m (the
number of variables) is small relative to the number n of points. In compar-
ison to O’K-F, Algorithm 1 takes roughly the same time for small m and n,
but O’K-F slows down somewhat when n increases and slows down quickly
when m increases.

3.3 Sorting the Points

A clever ordering of the points can improve the running time of Algorithm 1,
O’K-F and, somewhat surprisingly, MMM. The significance of improvement de-
pends on both the chosen monomial order and the geometric structure of the
points.

The details of this ordering are quite simple. If x1 < . . . < xm, then group the
points first according to the x1-coordinate; these groups are ordered by the num-
ber of elements, largest to smallest (specifically, nonincreasingly). Within each

Table 2. Running times for 250, 500 and 1000 random points (sorted) from IFm
q

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 2.004 0.714 1.066 0.277 0.890 0.286
31 3 2.735 0.956 1.418 0.273 1.189 0.264
101 3 2.867 1.076 1.516 0.206 1.277 0.193
2 10 1.557 0.746 1.363 0.575 1.534 0.646
2 12 3.342 1.131 3.257 1.091 2.544 1.158
2 15 5.061 1.802 5.360 3.689 5.283 2.118

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

11 3 10.31 3.558 4.978 1.277 4.426 1.421
31 3 19.017 5.693 9.298 1.418 8.184 1.406
101 3 20.11 6.996 11.158 1.049 9.394 0.962
2 10 5.461 2.498 4.534 1.681 6.308 2.426
2 12 13.70 5.250 13.34 6.022 16.19 7.850
2 15 46.06 8.058 53.42 11.16 34.39 12.39

q m MMM Algorithm 1 O’K-F
grlex lex grlex lex grlex lex

31 3 139 34.41 70.66 8.754 70.35 9.041
101 3 149 47.38 107 6.037 91.97 5.471
2 12 90.44 22.45 88.74 23.63 121 45.02
2 15 169 40.91 182 71.13 217 114
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of the groups, repeat the process, but according to the x2-coordinate. Continue
for x3, . . . , xm.

A comparison of Table 2 with Table 1 indicates the sizable impact of reorder-
ing. Essentially, this sorting decreases the amount of reduction that Algorithm 1
needs to do. Further, although O’K-F does not involve reduction, it is also helped
since the Gröbner basis remains comparatively small. In MMM, reordering the
points corresponds to a favorable reordering of the columns in an implicit matrix
to which Gauss elimination is applied.

Gröbner bases under lex order experience the greatest benefit since they typ-
ically require the most reduction and are prone to exponential growth without
reduction. Gröbner bases under grlex order with points from a low-dimensional
vector space experience little or no speedup.

4 Points with Multiplicities

We now consider the case in which some points in the vanishing set have mul-
tiplicity. A general notion of algebraic multiplicity is described in [14] and [15].
We will adopt a special form used by Cerlienco and Mureddu [3] that is general
enough for most applications.

Let v = (v1, . . . , vm) ∈ ZZm. We define a differential operator Dv by

Dv =
1

v1! · · · vm!
· ∂v1+...+vm

∂x1
v1 · · ·∂xm

vm
.

We note that Dv is a linear map on functions with the m variables x1, . . . , xm.
Let P ∈ IFm and f be any function on x1, . . . , xm. We employ the notation

[Dvf ](P ) = Dvf |x=P , (3)

where P = (a1, . . . , am) ∈ IFm. Then, under reasonable conditions (analytic or
algebraic) on f , we have

f(x + P ) =
∑

v∈INm

[Dvf ](P ) · xv. (4)

We call the right-hand side of (4) the Taylor expansion of f at P , denoted by
T (f, P ). Note that (4) is equivalent to

f(x) =
∑

v∈INm

[Dvf ](P ) · (x−P )v =
∑

v∈INm

[Dvf ](P ) · (x1 − a1)v1 · · · (xm − am)vm ,

which is the more typically referred to form of Taylor expansion.
A subset Δ ⊆ INm is called a delta set (or a Ferrers diagram, or an order

ideal), if it closed under the division order; that is, if u ∈ Δ then v ∈ Δ for all
v = (v1, . . . , vm) < u = (u1, . . . , um) componentwise. Define

T (f, P,Δ) =
∑
v∈Δ

[Dvf ](P ) · xv. (5)
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T (f, P ) denotes the full (possibly infinite if f is not a polynomial) Taylor ex-
pansion of f , while T (f, P,Δ) is truncated to consider only those coefficients
corresponding to monomials with exponents in Δ. For any nonzero polynomial
f ∈ IF[x1, . . . , xm] = IF[x], a point P ∈ IFm and a delta set Δ ⊂ INm, f is said
to vanish at P with multiplicity Δ if T (f, P,Δ) = 0.

On the other hand, f is said to have arithmetic multiplicity m0 at P if
[Dvf ](P ) = 0 for all v with |v| = v1 + v2 + . . . + vm < m0. In terms of the
algebraic definition, this implies that the multiplicity set Δ is restricted to a
triangular shape. The algebraic definition clearly subsumes the arithmetic one.

With the algebraic definition of multiplicity in mind, we generalize Algo-
rithm 1 to compute the vanishing ideal of a set of points {P1, . . . , Pn}, each
point having multiplicity defined by the sets Δ1, . . . , Δn. Denote this ideal by

I ((P1, Δ1), . . . , (Pn, Δn)) = {f ∈ IF[x1, . . . , xm] : T (f, Pi, Δi) = 0, 1 ≤ i ≤ n}.

Since the Δi’s are delta sets, one can show that this set is indeed an ideal in
IF[x1, . . . , xm]. (This is not true if the Δi’s are not all delta sets.)

Algorithm 2 varies from Algorithm 1 in the following way. Instead of evalu-
ating each f ∈ G at Pi, we need to compute the truncated Taylor expansion
T (f, Pi, Δi); we denote the set of these expansions by T . The points in each Δi

must be ordered in nondecreasing order to ensure that these Taylor expansions
may be computed efficiently and to ensure that G at each iteration (i.e., at the
start of line 8) is a Gröbner basis for the vanishing ideal of the points P1, . . . , Pk

with multiplicities Δ1, . . . , Δk−1 and the subset of points in Δk up to v.
Like Algorithm 1, Algorithm 2 is an iterative method; in fact, not only does

the algorithm build the Gröbner basis for the vanishing ideal “one point at a
time” but it also builds it “one multiplicity at a time.” That is, when a new point
is introduced, the algorithm updates the Gröbner basis by stepping through the
corresponding multiplicity set element by element. Of course if each multiplicity
set is trivial (|Δi| = 1), then Algorithm 2 is equivalent to Algorithm 1.

The following analogue to Lemma 1 is necessary to establish the correctness
of Algorithm 2. We omit the proof, noting only that the key step that established
Algorithm 1 is the same for this algorithm. Namely, at each step in the algorithm,
we add exactly one element from a multiplicity set and exactly one element to
the monomial basis. This ensures that our basis G is always Gröbner.

Lemma 3. Fix a monomial order on IF[x], and let V = {(P1, Δ1), . . . , (Pn,
Δn)}, where Pi ∈ IFm are distinct and Δi ⊂ INm are delta sets. Then {g1, . . . , gs}
⊂ I(V ) is a Gröbner basis for I if and only if |B(g1, . . . , gs)| =

∑n
j=1 |Δj |.

Proof. We know (Lemma 3.8 in [14]) that g1, . . . , gs ∈ I(V ) form a Gröbner basis
if and only if |B(g1, . . . , gs)| = dim IF[x1, . . . , xm]/I(V ). We just need to show that
the latter has dimension equal to

∑n
j=1 |Δj |. To see this, let Ij = I(Pj , Δj), the

vanishing ideal of Pj with multiplicity Δj . Then I(V ) = I1 ∩ · · · ∩ In and

IF[x1, . . . , xm]/I(V ) ∼=
n⊕

j=1

IF[x1, . . . , xm]/Ij ,
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Table 3. Algorithm for computing the reduced Gröbner basis for the vanishing ideal
of a set of points with multiplicities

Algorithm 2

1 Input: P1, . . . , Pn ∈ IFm; Δ1, . . . , Δn ⊂ INm; and a monomial order.
2 Output: G, the reduced Gröbner basis for I((P1, Δ1), . . . , (Pn, Δn)),

in increasing order.
3
4 G := {1}; /* gi is the ith polynomial in G, in increasing order */
5 Order the variables so that x1 < x2 < . . . < xm;
6 Order the elements in each Δk in nondecreasing order under the

division order;
7 FOR k from 1 to n DO
8 Compute T = {Tj = T (gj, Pk, Δk) : gj ∈ G}, the set of

(truncated) Taylor expansions;
9 FOR v in Δk DO

10 Find the smallest i so that coeff(Ti,xv) 
= 0;
11 FOR j from i + 1 to |G| DO
12 δ := coeff(Tj ,xv) / coeff(Ti,xv);
13 gj = gj − δ · gi;
14 Tj = Tj − δ · Ti;
15 END FOR;
16 G := G \ {gi} and T := T \ {Ti};
17 FOR j from 1 to m DO
18 IF xj · LT(gi) not divisible by any LT of G THEN
19 Compute h := Reduce((xj − aj) · gi, G);
20 Th := xj · Ti (truncated);
21 Insert (in order) h into G and Th into T ;
22 END IF;
23 END FOR;
24 END FOR;
25 END FOR;
26
27 RETURN G.

as rings over IF. Note that {xα : α ∈ Δj} forms a basis for IF[x1, . . . , xm]/Ij as a
vector space over IF, so its dimension is |Δj |. The lemma follows immediately. ��

5 Final Remarks

Algorithm 1 is included in Maple10 under the command VanishingIdeal in
the PolynomialIdeals package. Maple code for the application of this algo-
rithm to multivariate polynomial and rational function interpolation may be
downloaded from [19]. A GAP implementation of Algorithm 1 by Joyner [20]
is also available.
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functionals with an application to ideals of projective points. Appl. Algebra Engrg.
Comm. Comput. 4 (1993), no. 2, 103-145
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Abstract. In this paper we introduce the class of semiprimitive Fermat
curves, for which Weil-Serre’s bound can be improved using Moreno-
Moreno p-adic techniques. The basis of the improvement is a technique
for giving the exact divisibility for Fermat curves, by reducing the prob-
lem to a simple finite computation.

1 Summary of p-Adic Bounds for Curves

In this paper we are going to present new curves satisfying Theorem 1 below
and using it we obtain our improved Weil-Serre’s bound.

In the present section we recall how O. Moreno and C. Moreno combine
Serre’s techniques with the Moreno-Moreno improved Ax-Katz estimate (see
[3])to produce a p-adic version of Serre’s estimate. For Fermat curves con-
sidered here, we can formulate the best possible Moreno-Moreno type p-adic
Serre Bound.

Let
aXd + bY d = cZd, (abc 	= 0) (1)

be a Fermat curve over Fpf and let |N | be the number of affine points of aXd +
bY d = cZd over Fpf . Note that the Fermat curves are nonsingular curves. Hence
we can apply to them the Weil’s Theorem.

Now we apply the p-adic estimate of [1] to the curve (1). Note that the genus
of a Fermat equation is less than or equal to (d − 1)(d − 2)/2, where d is the
degree of the Fermat equation.

Theorem 1. Let aXd + bY d = cZd be an equation over Fpf and let μ be a
positive integer satisfying |N(Fpfm)| ≡ 0 mod pμm ∀ m > 0. Then the num-
ber of solutions |Ñ | of aXd + bY d = cZd in P2(Fpmf ) satisfies the following
bound:

| |Ñ | − (pmf + 1)| ≤ 1
2
(d − 1)(d − 2)pμm[2pmf/2p−μm].

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 128–135, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Remark 1. Note that in order to obtain in the above theorem a non-trivial im-
provement, m and f must both be odd. That is the reason why throughout the
paper, and in particular in Tables 1, 2 and 3, f and m are always odd.

Also note that in order to apply Theorem 1 we need curves where the divisibility
grows upon extensions or |N(Fpfm)| ≡ 0 mod pμm ∀ m > 0.

Remark 2. In general, it is difficult to find curves satisfying the property of
divisibility of Theorem 1. This is to find curves C over Fq and μ > 0 such that
pm μ divides the number of rational points of C over Fqm for m = 1, 2 . . . (Artin-
Schreier’s curves satisfy this property.).

In the following section we are going to present new families of curves satisfy-
ing Remark 2. Hence we obtain an improved p-adic bound for their number of
rational points.

2 Divisibility of Fermat Curves

In this section we are going to reduce the estimation of the divisibility of Fermat
curves to a computational problem. Let |N | be the number of solutions of the
Fermat curve aXd + bY d = cZd over the finite field Fpf . Note that that if
(pf − 1, d) = k, then the number of solutions of aXd + bY d = cZd is equal to
the number of solutions of aXk + bY k = cZk over Fpf . Hence, we assume that d
divides pf − 1.

Let n be a positive integer n = a0 + a1p + a2p
2 + · · ·+ alp

l where 0 ≤ ai < p
we define the p-weight of n by σp(n) =

∑l
i=0 ai.

Following the techniques of [3, Theorem 22], we associate to equation (1) the
following system of modular equations:

dj1 ≡ 0 mod pf − 1
dj2 ≡ 0 mod pf − 1 (2)
dj3 ≡ 0 mod pf − 1

j1 + j2 + j3 ≡ 0 mod pf − 1,

where 1 ≤ j1, j2, j3 ≤ q − 1.
This modular system of equations determines the p-divisibility of |N |, i.e., if

μ = min
(j1,j2,j3)

is solution of (2)

{σp(j1) + σp(j2) + σp(j3)
p− 1

} − f, (3)

then pμ divides |N |. This implies that any solution of the modular equation
dji ≡ 0 mod pf − 1 is of the form ci · pf−1

d where 1 ≤ ci ≤ d. We are going to
use the following results of [3]: for any positive integer k

σp((pf − 1)k) ≥ σp(pf − 1) = (p − 1)f. (4)

Now we state one of the main theorem of [3, Theorem 25],
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Theorem 2. Consider the family of polynomial equations:

G = {aXd + bY d = cZd | a, b, c ∈ F×pf }.

Then there exists a polynomial G ∈ G such that the number of solutions of G is
divisible by pμ but not divisible by pμ+1, where μ is defined in (3).

Now we consider 3-tuples (c1, c2, c3) ∈ N3 satisfying:

c1

d
+

c2

d
+

c3

d
(5)

is a positive integer, where 1 ≤ ci ≤ d. The following Lemma gives a simpler
way to compute μ of (3).

Lemma 1. Let q = pf and d be a divisor of q − 1. Let aXd + bY d = cZd be a
polynomial over Fq. Then μ defined in (3) satisfies

μ = min
(c1,c2,c3)
satisfies (5)

∑3
i=1 σp(ci(q − 1)/d)

p − 1
− f. (6)

Proof. We know that the solutions of (2) are of the form (c1(pf − 1)/d, c2(pf −
1)/d, c3(pf − 1)/d). We obtain from the last congruence of (2) the following:

c1(pf − 1)
d

+
c2(pf − 1)

d
+

c3(pf − 1)
d

= (
c1

d
+

c2

d
+

c3

d
)(pf − 1) = k(pf − 1).

Therefore c1
d + c2

d + c3
d is positive integer.

The following Lemma is the one that allows us to apply Theorem 1.

Lemma 2. Let q be power of a prime and d divides q−1. Then σp(c(qm−1)/d) =
m σp(c(q − 1)/d), where 1 ≤ c ≤ d− 1.

Proof. Note that c(qm − 1) = c(q − 1)(qm−1 + · · ·+ q + 1). Hence

σp(c(qm − 1)/d) = σp(c q−1
d (qm−1 + · · ·+ q + 1))

= m σp(
c(q−1)

d )

Combining the above two lemmas, we obtain the following proposition.

Proposition 1. Let q = pf and d be a divisor of q−1. Let aXd +bY d = cZd be
a polynomial over Fqm . Then μ defined in (3) satisfies

μ=( min
(c1,c2,c3)
satisfies (5)

∑3
i=1 σp(ci(qm−1)/d)

p− 1
− f)=m( min

(c1,c2,c3)
satisfies (5)

∑3
i=1 σp(ci(q−1)/d)

p− 1
− f).
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Remark 3. Note that using Proposition 1, we only need to do one computation
to estimate the divisibility of (1), the smallest q − 1 such that d divides q − 1.
Consequently we have reduced the problem of finding the divisibility of Fermat
Curves to a finite computation. Proposition 1 gives the exact divisibility in the
sense that there are coefficients a′, b′, c′ in Fqm such that the number of solutions
of aXd + bY d = cZd over Fqm is divisible by pμ but not by pμ+1. In some sense
this theorem completely solves the problem of divisibility for Fermat curves.
Furthermore, the property of Lemma 1 is very important since from it we obtain
a best possible Moreno-Moreno’s p-adic Serre bound (see Theorem 1).

Our next theorem shows how or system of modular equations (2) can in some
cases be reduced to a single equation. This considerably lowers the complexity
of our computational problem.

Proposition 2. Let d be a divisor of pf − 1. Consider the diagonal equation
aXd + bY d = cZd over Fpmf . Let

λ = min
1≤c≤d−1

σp(c(pf − 1)/d).

Then p( 3λ
p−1−f)m divides the number of solutions of aXd +bY d = cZd over Fpfm .

Proof. Note that if σp(c(pf − 1)/d) ≥ λ for 1 ≤ c ≤ d. Then σp(j1) + σ2(j2) +
σ(j3) ≥ 3λ.

Remark 4. In many cases we have that min1≤c≤d−1 σp(c(pf − 1)/d) = σp((pf −
1)/d).

Example 1. Let d = 23 and F2f = F211 . In this case we compute

min
1≤c≤22

σ2(c(211 − 1)/23).

We have that σ2(c(211−1)/23) = 4 for c ∈ {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. Hence
min1≤ci≤22 σ2(c1(211 − 1)/23) + σ2(c2(211 − 1)/23)) + σ2(c2(211 − 1)/23)) = 12
since c1 = 1, c2 = 4 and c3 = 18 gives a solution of (5). Applying Proposition
1 and Theorem 2, we obtain the best divisibility for the families curves G =
{aX23 + bY 23 = cZ23 | a, b, c ∈ F×211m}. Hence there is an equation a0X

23 +
b0Y

23 = c0Z
23 ∈ G with exact divisibility 2m.

Example 2. Let d = 151 and F2f = F215 . In this case we compute

min
1≤c≤150

σ2(c(215 − 1)/151).

We have that σ2(c(215 − 1)/151) = 5. Hence min1≤ci≤150 σ2(c1(215 − 1)/151) +
σ2(c2(215 − 1)/151)) + σ2(c2(215 − 1)/151)) = 15 since c1 = 57, c2 = 19 and
c3 = 4(σ2(ci(215 − 1)/151) = 5 for i = 1, 2, 3) gives a solution of (5). Applying
Proposition 1 and Theorem 2, we obtain the best divisibility for the families
curves G = {aX151 + bY 151 = cZ151 | a, b, c ∈ F×215m}. Hence there is an equation
a0X

151 + b0Y
151 = c0Z

151 ∈ G where 2 does not divide its number of solutions
over F215m .
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Example 3. Let d = 232 = 529 and F2f = F2253 (The first finite field of charac-
teristic 2 satisfying that 529 divides 2f − 1 is F2253). In this case we compute

min
1≤c≤528

σ2(c(2253 − 1)/529).

We have that σ2(c(2253 − 1)/151) = 92. We have that σ2(c(2253 − 1)/529) = 92
for

c ∈ {23, 46, 69, 92, 138, 184, 207, 276, 299, 368, 414, 500}.

Hence min1≤ci≤529 σ2(c1(2253 − 1)/529) + σ2(c2(2253 − 1)/529)) + σ2(c2(2253 −
1)/259)) = 276 since c1 = 23, c2 = 92 and c3 = 414(σ2(ci(2253 − 1)/529) = 5
for i = 1, 2, 3) gives a solution of (5). Applying Proposition 1 and Theorem
2, we obtain the best divisibility for the families curves G = {aX529 + bY 529 =
cZ529 | a, b, c ∈ F×2253m}. Hence there is an equation a0X

529+b0Y
529 = c0Z

529 ∈ G
with exact divisibility 223m.

Example 3 is an example where min1≤c≤d−1 σp(c(pf − 1)/d) 	= σp((pf − 1)/d).
Also note that in Example 3 we computed μ for a large finite field.

3 Tables

In the following tables, we are going to calculate μ for the curves aXd + bY d =
cZd over Fpf ,where f is odd, in order to apply Theorem 1.

In Table 1 we compute μ for the first f such that d divides 2f − 1. Recall
that if we know μ for the first f such that d divides 2f − 1, the we know μ for
all the extensions of F2f (see Proposition 1). Note that we can assume that d is
odd since the characteristic of F2f is 2.

Table 1. Best Divisibility of aXd + bY d = cZd over F2f

d smallest f such that d divides 2f − 1. μ

23 11 1
47 23 4
71 35 7
529 253 23

Table 2. Best Divisibility of aXd + bY d = cZd over F3f

d smallest f such that d divides 3f − 1. μ

11 5 1
23 11 1
46 11 1
47 23 4
59 29 10
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In Table 2 we compute μ for the first f such that d divides 3f −1. Recall that
if we know μ for the first f such that d divides 3f − 1, then we know μ for all
the extensions of F3f (see Proposition 1). Note that we can assume that d is not
divisible by 3 since the characteristic of F3f is 3.

Theorem 3. Let aXd + bY d = cZd be a Fermat curve of the tables. Then
aXd + bY d = cZd satisfies Theorem 1, where μ is given by the table.

4 Semiprimitive Fermat Curves

In this section we obtain a general family of Fermat curves satisfying Theorem 1,
generalizing the results of Tables 1,2,3.

Now we are going to consider odd primes l for which p is of order exactly
(l − 1)/2, i.e., the smallest positive integer k for which pk ≡ 0 mod l. We
call p a semiprimitive root for such l. Note that 2 is a semiprimitive root for
l = 7, 23, 47, 71. We would obtain a new family of Fermat curves that satisfy
Theorem 1.

Let g(j) be the Gauss sum defined by:

g(j) =
∑
x∈F×

q

χ−j(x)ψ(x),

where χ is multiplicative character of order q − 1 and ψ is an additive character
of Fq. In [2], Moreno-Moreno proved that

S(l) =
∑
x∈Fq

(−1)Tr(xl) =
l − 1

2
{g(

q − 1
l

) + g(q − 1 − q − 1
l

)}. (7)

This implies that 2λ divides S(l), where l = min{σ2((q−1)/l), σ2((q−1)− ((q−
1)/l))}. They proved the above identity for finite fields of characteristic 2. The
proof for arbitrary characteristic follows from their proof using g(j) = g(paj).

Table 3. Best Divisibility of aXd + bY d = cZd over Fpf

d smallest f such that d divides pf − 1. μ

11 F55 1
38 F59 2
20 F77 2
31 F715 3
37 F79 3
58 F77 1
43 F117 2
23 F1311 1
46 F1311 1
53 F1353 5
19 F179 3
38 F199 2
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Lemma 3. Let q = p(l−1)/2 and let p be a prime for which p is a semiprimitive
root for l. Given aX l + bY l = cZl over Fqm , the μ of (3) is such that μ > 0,
whenever 3 does not divide (l − 1)(p− 1)/2.

Proof. Using Proposition 1, we need only estimates μ of (3) for the finite field
Fq. Let f = (l − 1)/2. First we consider the solutions of aX l + bY l = cZl over
Fq. We have the following modular system associated to aX l + bY l = cZl:

lj1 ≡ 0 mod q − 1
lj2 ≡ 0 mod q − 1 (8)
lj3 ≡ 0 mod q − 1

j1 + j2 + j3 ≡ 0 mod q − 1

By the identity (7), we have that σ2(c(q − 1)/l)) = σ2((q − 1)/l) or σ2(q −
1 − ((q − 1)/l)). Note that σ2((q − 1)/l) + σ2(q − 1 − ((q − 1)/l)) = f(p − 1).
If σ2(jk1 ) 	= σ2(jk2), then σ2(jk1 ) + σ2(jk2 ) + σ2(jk3 ) > (p − 1)f . Hence we
can assume that the minimal solution of (8) satisfies σ2(j1) = σ2(j2) = σ2(j3).
Applying the function σ2 to the last modular equation of (8), we obtain σ2(j1)+
σ2(j2) + σ2(j3) ≥ f(p − 1). Therefore

μ = min σ2(j1) + σ2(j2) + σ2(j3) = 3 minσ2(j1) ≥ f(p− 1).

Hence μ ≥ 1 whenever 3 does not divide (l − 1)(p − 1)/2. Hence at least pμ

divides |N(Fq)|. Then by Lemma 2, we obtain that pμm divides |N(Fqm)|.

Now we state a p-adic Serre bound for the Fermat curves of Lemma 3.

Theorem 4. Let q = p(l−1)/2 and let l be an odd prime for which p is a
semiprimitive root for l. Let μ be as defined in (3) for the curve aX l +bY l = cZl

over Fqm . Then

||Ñ | − (qm + 1)| ≤ (p− 1)(p− 2)
2

pμm[qm/2p1−μm],

whenever 3 does not divide (l − 1)(p− 1)/2.
Futhermore, we have μ ≥ 1 by Lemma 3 .

Proof. Combining Lemma 3 and Theorem 1, we obtain the result.

We apply Theorem 4 to some semiprimitive primes.

Example 4. Note 2 is a semiprimitive root for 23 and μ = 1. Applying Theorem 4,
we obtain

||Ñ | − (211m + 1)| ≤ 231× 2m[2(9m+2)/2].

Example 5. Note 2 is a semiprimitive root for 47 and μ = 4. Applying Theorem 4,
we obtain

||Ñ | − (223m + 1)| ≤ 1035× 24m[2(15m+2)/2].

In particular, for the finite field F269 , Serre improvement to Weil’s bound gives
1035 × [2 × 269/2] = 50292728269650 and our improvement gives 1035 × 212 ×
[247/2] = 50292727418880.
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Example 6. Note 2 is a semiprimitive root for 71 and μ = 7. Applying Theorem 4,
we obtain

||Ñ | − (235m + 1)| ≤ 2415× 27m[2(21m+2)/2].

Remark 5. Using our computations of Table 1 we have obtained the above best
bounds. Notice that each example of μ gives a family of bounds.

5 Conclusion

The main result of this paper is obtaining a general class(the semiprimitive case
presented in the last section) of Fermat curves for which Weil-Serre’s bound
can be improved using Moreno-Moreno p-adic techniques. We also prove that
for each particular case, the best bound μ is computed in a simple computation
which is presented in the second section.
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Abstract. The extreme sensitivity of quantum information to ambient
noise has prompted the study of quantum error-correcting codes. In this
paper two families of quantum error-correcting codes are constructed
based on Hermitian curves. Unlike the case of classical codes, it is a
difficult, sometimes impossible, task to puncture a quantum stabilizer
code. The puncture code of Hermitian codes is computed that allows one
to determine the admissible puncturings. A large number of punctured
Hermitian codes are derived by exploiting known facts about the weight
distribution of these puncture codes.

1 Introduction

Since the discovery of powerful quantum algorithms, most notably a polynomial
time algorithm for factorization by Shor and a quantum search algorithm by
Grover, quantum computing has received a lot of interest. While a practical
implementation of these algorithms is far away, it has nonetheless become clear
that some form of error correction is required to protect quantum data from
noise. This was the motivation for the development of quantum error-correcting
codes. Many quantum codes can be derived from classical linear codes using
the quantum stabilizer code formalism. Therefore, it is natural to use algebraic
geometric codes to develop quantum codes. Quantum algebraic geometric codes
have been studied, for instance, in [2, 11, 12].

In this paper, we consider quantum stabilizer codes that are derived from
Hermitian codes (see [3, 14, 15, 16] for some background on classical Hermitian
codes). Quantum codes derived from Hermitian curves for the binary case have
been investigated in [12] and for prime alphabets in [11].

We hope to present a more elementary treatment of nonbinary Hermitian
quantum codes, taking advantage of the approach developed in [9] for classical
Hermitian codes. We present a new family of quantum Hermitian codes that are
derived from classical codes which are self-orthogonal with respect to a Hermi-
tian inner product. Furthermore, we study the puncturing of Hermitian quan-
tum codes and derive, in closed form, the so-called puncture code. The puncture
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code is a combinatorial object that contains the information about the admis-
sible lengths to which one can shorten a quantum stabilizer code. A result by
Stichtenoth on the weight distribution of classical Hermitian codes enables us to
derive numerous punctured Hermitian codes.

The paper is organized as follows. After reviewing briefly the essentials of
quantum codes, we review the classical Hermitian codes. Following this we pro-
ceed with the construction of the quantum codes. In section 4 we shall take up
the task of puncturing these quantum codes.

Notation: The euclidean inner product of two vectors x and y in Fn
q is denoted

by 〈x|y〉 = x1y1 + · · ·xnyn while the Hermitian inner product of two vectors
x and y in Fn

q2 is denoted by 〈x|y〉h = x1y
q
1 + · · ·xny

q
n. We write C⊥ for the

euclidean dual of a code C ⊆ Fn
q , and D⊥h for the Hermitian dual of a code

D ⊆ Fn
q2 .

2 Preliminaries

2.1 Quantum Codes

In this section we quickly review the essentials of quantum stabilizer codes. The
reader is referred to [4] and [7] for an introduction to quantum error correction;
all necessary background on nonbinary stabilizer codes is contained in [1, 10, 13].
Every quantum stabilizer code is a subspace in the qn-dimensional complex
vector space Cqn

. Let G denote all the matrix operators on Cqn

. A quantum
stabilizer code is given by a joint +1 eigenspace of a finite abelian subgroup of G.
This subgroup is called the stabilizer of the code, whence the name stabilizer
codes.

For the purposes of this paper, it is sufficient to know that a stabilizer code
can be associated with a self-orthogonal classical code. In the next two lemmas,
we recall two simple constructions of quantum stabilizer codes. Essentially, these
lemmas show that the existence of certain classical codes ensures the existence
of quantum stabilizer codes. A stabilizer code which encodes k q-ary bits into n
q-ary bits is denoted by [[n, k, d]]q. It is a qk-dimensional subspace of Cqn

and
is able to detect < d errors. The first construction makes use of a pair of nested
linear codes over Fq.

Lemma 1 (CSS Construction). Let C1 and C2 be linear codes over the finite
field Fq respectively with parameters [n, k1, d1]q and [n, k2, d2]q. If C1 ⊂ C2 and
d = min wt{(C2 \C1)∪(C⊥

1 \C⊥
2 )}, then there exists an [[n, k2−k1, d]]q quantum

code, which is pure if wt(C2 \ C1) = wt(C2) and wt(C⊥
1 \ C⊥

2 ) = wt(C⊥
1 ).

Proof. See [4] for the CSS construction of binary codes and for q-ary generaliza-
tions see [6, Theorem 3] or [10]. For details on the definition of pure quantum
codes see [4] or [7].

In the above Lemma the code C = C1⊕C⊥
2 is self-orthogonal with respect to the

symplectic product [10]. The second construction makes use of a classical code
over Fq2 that is self-orthogonal with respect to the Hermitian inner product.
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Lemma 2. Let C be a linear [n, k]q2 contained in its Hermitian dual, C⊥h , such
that d = min{wt(C⊥h \C)}. Then there exists an [[n, n− 2k, d]]q quantum code.

Proof. See [6, Corollary 2].

2.2 Hermitian Codes

We will give a brief description of the classical Hermitian codes (cf. [9]). Con-
sider the Hermitian curve h(x, y) = xq+1 − yq − y, where x, y are in Fq2 . Let
{P1, P2, . . . , Pn} denote the zeros of h(x, y) = 0. It can be shown that n = q3

[9, page 152]. Now let xayb be an element in Fq2 [x, y]. Then we define the order
of xayb as ρ(xayb) = aq + b(q + 1). Given a function f(x, y) =

∑
i,j fijx

iyj in
Fq2 [x, y] we define the order of f(x, y) as

ρ (f(x, y)) = max
fij �=0

{ρ(xiyj)}. (1)

Let M(s) = {xiyj | 0 ≤ i, 0 ≤ j ≤ q − 1, 0 ≤ ρ(xiyj) ≤ s} and let L(s) be the
Fq2 subspace spanned by the monomials in M(s).

The q2-ary Hermitian code of order s denoted by Hq2(s) is an [n, k(s), d(s)]q2

code defined as

Hq2(s) = {(f(P1), f(P2), . . . , f(Pn)) | f ∈ L(s)}. (2)

Let s̃ be defined as follows.

s̃ = max{l | l = iq + j(q + 1) ≤ s, 0 ≤ i, 0 ≤ j ≤ q − 1}. (3)

Then the dimension and the distance of the Hermitian code for various values
of s are given in the following table [17].

s k(s) d(s)
0 ≤ s ≤ q2 − q − 2

s̃ = aq + b
0 ≤ b ≤ a ≤ q − 1

a(a+ 1)/2 + b+ 1 n− s̃

q2 − q − 2 < s < n− q2 + q s+ 1 − q(q − 1)/2 n− s
n− q2 + q ≤ s < n
s = n− q2 + aq + b

0 ≤ a, b ≤ q − 1
s+ 1 − q(q − 1)/2

n− s if a < b
n− s+ b if a ≥ b

n ≤ s ≤ n+ q2 − q − 2
s⊥ = n+ q2 − q − 2 − s

s̃⊥ = aq + b
0 ≤ b ≤ a ≤ q − 1

n− a(a+ 1)/2 − b− 1
a+ 2 if b = a
a+ 1 if b < a

(4)

Further, the dual code is also a Hermitian code. Let s⊥ be the order of the dual
code defined as

s⊥ = n+ q2 − q − 2 − s. (5)

Then the dual code of Hq2(s) is given by [3], [9, page 154]

Hq2(s)⊥ = Hq2(s⊥) = Hq2(n+ q2 − q − 2 − s). (6)
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3 Quantum Hermitian Codes

In this section we will construct some quantum codes from the classical Hermi-
tian codes.

Theorem 3. For 0 ≤ s1 < s2 ≤ n+q2−q−2, there exists an [[n, k(s2)−k(s1),≥
min{d(s2), d(s⊥1 )}]]q2 quantum code of length n = q3, where k(s) and d(s) are
given by equation (4).

Proof. From the definition of the Hermitian codes we can see that if s1 ≤ s2
C1 = Hq2(s1) ⊆ Hq2(s2) = C2. We can see that wt(C2\C1) ≥ d(s2) and wt(C⊥

1 \
C⊥

2 ) ≥ d(s⊥1 ). By Lemma 1 we have an [[n, k(s2)−k(s1),≥ min{d(s2), d(s⊥1 )}]]q2

quantum code, where k(s) and d(s) are dimension and distance of Hq2(s) re-
spectively as given by equation (4).

For certain values of s1, s2 we can be more precise about the distance of the
quantum code and also the purity of the quantum code.

Corollary 4. If 2q2 − 2q − 2 < s1 < s2 < n − q2 + q then there exists a pure
[[n, s2 − s1,min{n− s2, 2 + s1 + q − q2}]]q2 quantum code, with n = q3.

Proof. If q2 − q − 2 < s < n − q2 + q, then the distance of the Hermitian code
is given by n − s. Further if s1 < s2, then d(s2) < d(s1) which implies that
wt(C2 \C1) = d(s2). Since 2q2 − 2q − 2 < s1 < n− q2 + q, 2q2 − 2q − 2 < s⊥1 <
n−q2 +q, which implies d(C⊥

1 \C⊥
2 ) = d(s⊥1 ). Further k(s2) = s2 +1−(q2−q)/2

and k(s1) = s1 + 1− (q2 − q)/2. Thus from Lemma 1 we see that there exists a
pure [[n, s2 − s1,min{n− s2, 2 + s1 + q − q2}]]q2 quantum code.

Remark. The previous work on Hermitian codes restricts the range of s1, s2. We
have been able to extend this using the results of [17].

Our next goal will be to construct quantum codes from self-orthogonal codes
over Fq2 . First we need the following result on the order functions.

Lemma 5. Suppose that f(x, y) and g(x, y) are two arbitrary functions in
Fq2 [x, y]. We have

ρ(f(x, y)g(x, y)) ≤ ρ(f(x, y)) + ρ(g(x, y))

for all zeros (x, y) of the curve xq+1 − yq − y = 0.

Proof. Let f(x, y) =
∑

i,j fi,jx
iyj , such that ρ(f(x, y)) = s1 and g(x, y) =∑

a,b ga,bx
ayb, such that ρ(g(x, y)) = s2. Let xayb, xiyj be any two monomials

such that xayb is inM(s1) and xiyj is inM(s2). Then we have aq+b(q+1) ≤ s1,
iq+ j(q+1) ≤ s2, where 0 ≤ i, a and 0 ≤ b, j ≤ q−1. We can find ρ(xaybxiyj) =
ρ(xa+iyb+j) as follows. If b+j ≤ q−1, then ρ(xa+iyb+j) = q(a+i)+(q+1)(b+j) ≤
s1 + s2. If on the other hand q ≤ b+ j ≤ 2q− 2, then because we are evaluating
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on the curve xq+1− yq − y = 0, we can write yb+j = yq+β = (xq+1 − y)yβ, where
0 ≤ β ≤ q − 2. Then

ρ(xa+iyb+j) = ρ(xa+i(xq+1 − y)yβ) = ρ(xa+i+q+1yβ − xa+iyβ+1),
= max{q(a+ i+ q + 1) + β(q + 1), q(a+ i) + (β + 1)(q + 1)},
= max{q(a+ i) + (β + q)(q + 1), q(a+ i) + (β + 1)(q + 1)},
= q(a+ i) + (β + q)(q + 1) = q(a+ i) + (q + 1)(b + j),
= ρ(xayb) + ρ(xiyj) ≤ s1 + s2 = ρ(f(x, y)) + ρ(g(x, y)). (7)

We have f(x, y)g(x, y) =
∑

i,j

∑
a,b fi,jga,bx

i+ayj+b, hence

ρ(f(x, y)g(x, y)) = ρ(
∑
i,j

∑
a,b

fi,jga,bx
i+ayj+b),

≤ max
(i,j);(a,b)

ρ(xi+ayj+b),

≤ ρ(f(x, y)) + ρ(g(x, y)),

where the last inequality is due to equation (7).

Corollary 6. If f(x, y) is in L(s1) and g(x, y) is in L(s2), then f(x, y)g(x, y)
is in L(s1 + s2).

Lemma 7. For 0 ≤ s ≤ q2 − 2 the Hermitian codes are self-orthogonal with
respect to the Hermitian inner product.

Proof. Consider any monomial xiyj inM(s). Then by Lemma 5, ρ((xiyj)q) ≤ qs.
So for any monomial xiyj in M(s), its conjugate xqiyqj is present in M(s⊥) if
ρ(xqiyqj) ≤ s⊥. This means

qs ≤ s⊥ = q3 + q2 − q − 2 − s,
s ≤ q2 − 2.

Let ev be the evaluation map on f , so that ev f= (f(P1), f(P1), . . . , f(Pn)). For
any two monomials xi1yj1 , xi2yj2 in M(s) we have

〈ev xi1yj1 | ev xi2yj2〉h = 〈ev xi1yj1 | ev xqi2yqj2 〉 = 0,

where the inner product vanishes because ev xqi2yqj2 is in Hq2(s)⊥ for s ≤ q2−2.
Since the monomials span L(s), Hq2(s) is self-orthogonal with respect to the
Hermitian inner product for 0 ≤ s ≤ q2 − 2.

Theorem 8. For 0 ≤ s ≤ q2 − 2 there exist quantum codes [[n, n − 2k(s),≥
d(s⊥)]]q, where n = q3 and k(s), d(s) are given by equation (4).

Proof. From Lemma 7 we know that Hq2(s) is self-orthogonal with respect to
the Hermitian product when 0 ≤ s ≤ q2−2. The minimum distance of Hq2(s)⊥h

is the same as that of Hq2(s)⊥. From Lemma 2 we can conclude that there exists
an [[n, n − 2k(s),≥ k(s⊥)]]q quantum code where d(s⊥) and k(s) are given by
equation (4).

Remark. None of the previously cited work make use of the Hermitian inner
product to derive quantum codes from Hermitian curves.
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4 Puncturing the Hermitian Codes

In this section we will show how to reduce the length (and the dimension) of the
previously constructed quantum codes while preserving the minimum distance.
In the literature on quantum codes it is common to refer to this operation as
puncturing or shortening, though strictly speaking these are distinct operations
in classical coding theory. The key tool for finding when puncturing is possible
is determined by the puncture code proposed by Rains [13]. Here we will briefly
review the idea of puncture code.

Given a code C ⊆ F2n
q such that C = C1 ⊕ C⊥

2 we define the puncture code
of C as [6, Theorem 7]

P (C) = {(aibi)n
i=1 | a ∈ C1, b ∈ C⊥

2 }⊥. (8)

Curiously, the weight distribution of P (C) determines the lengths to which we
can puncture the quantum code formed from C1, C2 using the CSS construction.
In general we are hampered by the fact that P (C) is not known in closed form
and even if it is known its weight distribution is not known in general. For the
Hermitian codes however we are able to compute a subcode of P (C). Finding
the weight distribution of any code in general is a difficult. In a short paper
on Hermitian codes [14] Stichtenoth discovered a rather curious result on the
allowable weights in Hermitian codes. These two results will allow us to derive
many punctured Hermitian codes.

Lemma 9. The Hermitian code Hq2(s) has a vector of weight r ≥ d(s) if n−r ≤
min{n − q2, s} can be expressed as n − r = iq or n − r = iq + j(q + 1), where
0 ≤ i, 0 ≤ j ≤ q − 1.

Proof. See propositions 2,3 in [14].

Theorem 10. For 0 ≤ s1 < s2 ≤ n+ q2 − q− 2 and 0 ≤ σ ≤ s2 − s1, if Hq2(σ)
has a vector of weight r, then there exists an [[r,≥ (k(s2) − k(s1) − (n − r)),≥
d]]q2 quantum code, where n = q3 and d = min{d(s2), d(s⊥1 )}. It is possible to
puncture to a length r = d(σ) and all r such that n − r ≤ min{n − q2, σ} and
n− r = iq + j(q + 1) where 0 ≤ i, 0 ≤ j ≤ q − 1.

Proof. Let Ci = Hq2(si) with 0 ≤ s1 ≤ s2 < n + q2 − q − 2, where n = q3. An
[[n, k(s2) − k(s1), d]]q quantum code Q, with d = min{d(s2), d(s⊥1 )} exists by
Lemma 3. Define C to be the direct sum of C1, C

⊥
2 viz. C = C1 ⊕C⊥

2 . Then the
puncture code P (C) is given by

P (C) = {(aibi)n
i=1 | a ∈ C1, b ∈ C⊥

2 }⊥. (9)

By Corollary 6 we see that P (C)⊥ = Hq2(s1 + s⊥2 ), so

P (C) = Hq2(n+ q2 − q − 2 − s1 − s⊥2 ) = Hq2(s2 − s1). (10)

If there exists a vector of weight r in P (C), then there exists a quantum code
of length r and distance d′ ≥ d obtained by puncturing Q (cf. [6]). Since
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P (C)=Hq2(s2 − s1)⊇Hq2(σ) for all 0≤σ≤ s2 − s1, the weight distributions
of Hq2(σ) give all the lengths to which Q can be punctured. By Lemma 9
vectors with weight r exist in Hq2(σ), provided n−r = iq+j(q+1) ≤ min{n−
q2, σ} and 0 ≤ i, 0 ≤ j ≤ q − 1. In particular P (C) will contain codewords
whose weight r = d(σ) which is equal to the minimum weight of Hq2(σ).
Thus there exist punctured quantum codes with the parameters [[r,≥(k(s2)−
k(s1) − (n− r)),≥d]]q2 .

Slightly redefining the puncture code allows us to puncture quantum codes con-
structed via Theorem 8.

Theorem 11. Let C = Hq2(s) with 0 ≤ s ≤ q2 − 2 and (q + 1)s ≤ σ ≤
n + q2 − q − 2. If the puncture code P (C) ⊇ Hq2(σ)⊥|Fq contains a vector of
weight r, then there exists an [[r,≥ (n − 2k(s) − (n − r)),≥ d(s⊥)]]q quantum
code.

Proof. For a linear code C ⊆ Fn
q2 , the puncture code P (C) is given as

[6, Theorem 13]

P (C) = {trq2/q(aib
q
i )

n
i=1 | a, b ∈ C}⊥. (11)

Let us first consider the code D given by

D = {(aib
q
i )

n
i=1 | a, b ∈ C}. (12)

If C = Hq2(s), then by Corollary 6 we can see that D ⊆ Hq2(σ) for (q + 1)s ≤
σ ≤ n+ q2 − q− 2 and P (C)⊥ = trq2/q(D) ⊆ Hq2(σ). By Delsarte’s theorem [5]
the dual of the trace code is the restriction of the dual code. That is

trq2/q(D)⊥ = D⊥|Fq (13)

P (C) = D⊥|Fq ⊇ Hq2 (σ)⊥|Fq (14)

P (C) ⊇ Hq2 (σ)⊥|Fq = Hq2(n+ q2 − q − 2 − σ)|Fq (15)

From Theorem 8 there exists an [[n, n− 2k(s), d(s⊥)]] quantum code Q for 0 ≤
s ≤ q2 − 2. By [6, Theorem 11] Q can be punctured to all lengths which have
nonzero distribution in P (C). Thus if P (C) ⊇ Hq2 (σ)|Fq contains a vector of
weight r, then there exists an [[n − (n − r),≥ (n − 2k(s) − (n − r)),≥ d(s⊥)]]q
code.

Remark. It is possible to extend the above theorem by making use of Lemma 9
as in Theorem 10.
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Abstract. A genetic algorithm for finding cocyclic Hadamard matrices
is described. Though we focus on the case of dihedral groups, the algo-
rithm may be easily extended to cover any group. Some executions and
examples are also included, with aid of Mathematica 4.0.

1 Introduction

Over the past decade considerable effort has been devoted to computations of
cocycles and (Hadamard) cocyclic matrices. On one hand, using classical meth-
ods involving the Universal Coefficient Theorem, Schur multipliers, inflation and
transgression, two algorithms for finding 2-cocycles representing 2-dimensional
cohomology classes and their correspondent cocyclic matrices have been worked
out. The first one constitutes the foundational work on the subject [6, 7], and
is applied over abelian groups. The second one [8] is applied over groups G for
which the word problem is solvable.

On the other hand, Homological Perturbation Theory [12, 13, 16] provides
computational short-cuts in a straightforward manner, by means of the so-called
(co)homological models. This technique has been exploited in [11] from a coho-
mological point of view and more recently in [1, 2, 3] from a homological point
of view.

From past literature it is evident that the search of Hadamard (cocyclic)
matrices inherits high computational difficulty. In fact, though the use of the
cocyclic construction of Hadamard matrices has permitted cut-downs in the
search time, the search space still grows exponentially.

The work in [4] attempts to make an adaptation of image-processing tech-
niques for the restoration of damaged images for the purpose of sampling the
search space systematically. As a matter of fact, this approximation reveals to
work whenever enough Hadamard cocyclic matrices are already known, from
which the performance is then feasible.

Our aim is to provide a tool for generating Hadamard cocyclic matrices in an
easy and (hopefully) fast way, which will complement in turn the work in [4]. Here
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we look at an adaptation of classical Genetic Algorithms [14, 15] for this purpose.
Though it actually works on any group, we will focus on an improved version
running on dihedral groups. Both of the genetic algorithms and all the executions
and examples of the last section have been worked out with aid of Mathematica
4.0, running on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB. It is a
remarkable fact that, as far as we know, none of the algorithms already known
has produced some Hadamard cocyclic matrices of large order (say 4t ≥ 40).
The examples in Section 6 include some Hadamard cocyclic matrices of order
52. This way, our method seems to provide some cocyclic Hadamard matrices of
larger order than those previously obtained with other algorithms.

We organize the paper as follows. Section 2 summarizes the classical meth-
ods already known for finding (Hadamard) cocyclic matrices. Section 3 is a
brief introduction to Genetic Algorithms. The genetic algorithm itself for find-
ing Hadamard cocyclic matrices is described in Section 4. The following section
includes an improved version of the algorithm for the case of dihedral groups.
As a matter of fact, both the search time and the search space are substantially
optimized thanks to the work of the authors in [2, 3]. The last section is devoted
to some examples.

2 Generating Cocyclic Matrices

The foundational work on cocyclic matrices is [6, 7], where a basis for 2-cocycles
is codified in terms of a development table. Horadam and de Launey’s method
is based on an explicit version of the well-known Universal Coefficient Theorem,
which provides a decomposition of the second cohomology group of G into the
direct sum of two summands,

H2(G,C) ∼= Ext(G/[G,G], C) ⊕Hom(H2(G), C).

The Ext(G/[G,G], C) factor is referred as the symmetric part, and is completely
determined from a presentation of G and the primary invariant decomposition
of the abelianization G/[G,G]. The Hom(H2(G), C) factor is referred as the
commutator part and turns out to be the difficult one to compute. The case
of abelian groups is described in [6, 7]. Once a set of generators for both the
symmetric and commutator parts is determined, it suffices to add a basis for
2-coboundaries of G, so that a basis for 2-cocycles is finally achieved.

Another method is described in [8], whenever the word problem is solvable
in G. This method has already been implemented in [10], using the symbolic
computational system MAGMA. Flannery calculates H2(G;C) ∼= I ⊕ T as
the images of certain embeddings (called inflation, I, and transgression, T )
which are complementary. Calculation of representative 2-cocycles associated
to Ext(G/[G,G], C) (inflation) is again canonical. However, calculation of a
complement of the image by the embeddings of inflation I in H2(G,C) as the
image of transgression is usually not canonical. As a matter of fact, it depends on
the choice of a Schur complement of I inH2(G;C). If |I| and |T | are not coprime,
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there will be more than one complement of I in H2(G;C). This is a potential
source of difficulties in computation of representative 2-cocycles associated with
elements of Hom(H2(G), C). The case of dihedral groups and central extensions
is described in [8, 9, 10].

Using the proper techniques of Homological Perturbation Theory [12, 13, 16],
Grabmeier and Lambe present in [11] alternate methods for calculating repre-
sentative 2-cocycles for all finite p–groups. They compute H2(G;C) straightfor-
wardly from a cohomological model K of G. That is, a structure K such that
H2(G;C) ∼= H2(K;C) and the computation of H2(K;C) is much simpler than
that of H2(G;C).

One more approximation to this question, the so-called homological reduction
method, is developed in another work of the authors [1, 2, 3]. Here homological
models K for G are determined instead of cohomological models, in the sense
that H∗(K) ∼= H∗(G) and H∗(K) is computed substantially more easily than
H∗(G). The method developed in these papers covers any iterated product of
central extensions and semidirect product of groups, so that dihedral groups D4t

are included. The genetic algorithm to be described in Section 4 is performed
upon the calculations that the homological reduction method provides when it
is applied over D4t.

3 Preliminaries in Genetic Algorithms

Genetic algorithms (more briefly, GAs in the sequel) are appropriate for search-
ing through large spaces, where exhaustive methods cannot be employed.

The father of the original Genetic Algorithm was John Holland who invented
it in the early 1970’s [14]. We next include a brief introduction to the subject.
The interested reader is referred to [15] for more extensive background on GAs.

The aim of GAs is to mimic the principle of evolution in order to find an opti-
mum solution for solving a given optimization problem. More concretely, starting
from an initial “population” of potential solutions to the problem (traditionally
termed chromosomes), some transformations are applied (may be just to some
individuals or even to the whole population), as images of the “mutation” and
“crossover” mechanisms in natural evolution. Mutation consists in modifying a
“gene” of a chromosome. Crossover interchanges the information of some genes
of two chromosomes.

Only some of these individuals will move on to the next generation (the more
fit individuals, according to the optimization problem, in terms of the measure of
an “evaluation function”). Here “generation” is a synonymous of iteration. The
mutation and crossover transformations are applied generation through genera-
tion, and individuals go on striving for survival. After some number of iterations,
the evaluation function is expected to measure an optimum solution, which solves
the given problem. Although no bounds are known on the number of iterations
which are needed to produce the fittest individual, it is a remarkable fact that
GAs usually converge to an optimum solution significantly faster than exhaustive
methods do. Indeed, GAs need not to explore the whole space.
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4 Finding Hadamard Cocyclic Matrices by Means of GAs

We now set the directives for a genetic algorithm looking for Hadamard cocyclic
matrices over a group G. In the following section we improve the design of the
algorithm in the particular case of the dihedral group D4t.

Let G be a group and B = {δ1, . . . , δc, β1, . . . , βs, γ1, . . . , γt} a basis for 2-
cocycles (according to the Hadamard pointwise product • of matrices). Here δi
denote 2-coboundaries, βi denote representative symmetric 2-cocycles (coming
from inflation, i.e. factor Ext(G/[G,G], ZZ2)) and γi denote representative not
symmetric 2-cocycles (coming from transgression, i.e. factor Hom(H2(G), ZZ2)).
Notice that in these circumstances the whole space of 2-cocycles consists of
2c+s+t elements, and precisely 2c of them are 2-coboundaries. Moreover, every 2-
cocycle f may be uniquely expressed as a binary (c+s+t)-tuple (f1, . . . , fc+s+t)B
such that

f = δf1
1 • . . . • δfc

c • βfc+1
1 • . . . • βfc+s

s • γfc+s+1
1 • . . . • γft

t

A genetic algorithm for finding Hadamard cocyclic matrices may be designed
as follows.

The population consists of the whole space of normalized cocyclic matri-
ces over G, Mf = (f(gi, gj)), f being a 2-cocycle. The term “normalized”
means that the first row is formed all by 1. Each of the individuals f of the
population (i.e. potential solutions to the problem) is identified to a binary
(c + s + t)-tuple (f1, . . . , fc+s+t)B, the coordinates of the 2-cocycle f with re-
gards to the basis B. This way, the coordinates fk are the genes of the individual
f = (f1, . . . , fc+s+t)B.

The initial population P0 is formed by some binary (c+s+t)-tuples randomly
generated. Assuming that |G| = 4t (remember that only 2×2 Hadamard matrices
exist whose sizes are not multiple of 4), we consider 4t individuals for instance.
Special care must be taken in generating the population, so that the population
space does not grow exponentially with the order of the group G.

The population is expected to evolve generation through generation until
an optimum individual (i.e. a Hadamard cocyclic matrix) is located. We now
describe how to form a new generation Pi+1 from an old one Pi:

1. Firstly, we must evaluate the fitness of every individual (i.e. 2-cocycle f)
of Pi. It is common-knowledge that a computationally cheap test exists [7]
to check if f gives rise to a Hadamard cocyclic matrix Mf . Concretely, it
suffices to check whether the sum of every row in Mf but the first is zero.
Define a Hadamard row to be a row whose summation is zero.

From the property above an evaluation function for individuals is derived
immediately: the fitness ofMf grows with the number of its Hadamard rows.
Thus, the more fit an individual is, the more Hadamard rows it possess, and
vice versa. The optimum is reached when all the rows but the first (i.e. rows
from 2 to 4t) are Hadamard rows. That is, whenever Mf reveals to be a
Hadamard cocyclic matrix itself.
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2. Once the evaluation is finished, the crossover comes into play. All individuals
are paired at random, so that crossover combines the features of two par-
ent chromosomes to form two similar offspring by swapping corresponding
segments of the parents. Each time, the break point n is chosen at random,
so that two couples of different parents are swapped with possibly different
break points.

jth-individual
n︷ ︸︸ ︷

• • • · · · • ••
4t−n︷ ︸︸ ︷
• · · · •

(j + 1)th-individual
n︷ ︸︸ ︷

◦ ◦ ◦ · · · ◦ ◦◦
4t−n︷ ︸︸ ︷
◦ · · · ◦

⎫⎪⎬⎪⎭⇒

children⇒

⎧⎪⎨⎪⎩
n︷ ︸︸ ︷

• • • · · · • ••
4t−n︷ ︸︸ ︷
◦ · · · ◦

n︷ ︸︸ ︷
◦ ◦ ◦ · · · ◦ ◦◦

4t−n︷ ︸︸ ︷
• · · · •

3. Next we apply the mutation operator. Mutation arbitrarily alters just one
gene of a selected individual (i.e. just one coordinate of the corresponding
(c + s + t)-tuple, swapping 0 to 1 or 1 to 0, as it is the case), by a random
change with a probability equal to the mutation rate (for instance, 1%).

4. Now individuals strive for survival: a selection scheme, biased towards fitter
individuals (according to the number of their hadamard rows), selects the
next generation. In case that an optimum individual exists, the algorithm
stops. Otherwise the population Pi+1 is constructed from a selection of 4t
of the fittest individuals, in the following sense. Assume that nk indicates
the number of individuals in Pi which consists of exactly k Hadamard rows.
Furthermore, assume that the fittest individuals in Pi consist of precisely r
Hadamard rows (so that every individual in Pi possess at most r Hadamard
rows, possibly less). The selection scheme firstly selects the nr individuals
with r Hadamard rows. If nr < 4t, then all nr−1 individuals with exactly
r − 1 Hadamard rows are selected. And so on. This process continues un-
til at least 4t individuals have been selected. Eventually, if the number of
selected individuals exceeds from 4t, some of the last individuals to be incor-
porated must be randomly deleted, in order to keep exactly 4t individuals
in generation Pi+1.

The process goes on generation through generation until an optimum is
reached. In spite of its simplicity, the method has surprisingly shown to work
over several groups, though the number of required generations grows signifi-
cantly with the size of the matrices. We next discuss the case of dihedral groups,
where some significant improvements are introduced.

5 Genetic Algorithm on Dihedral Groups

Denote by D4t the dihedral group ZZ2t ×χ ZZ2 of order 4t, t ≥ 1, given by the
presentation

< a, b|a2t = b2 = (ab)2 = 1 >



A Genetic Algorithm for Cocyclic Hadamard Matrices 149

and ordering

{1 = (0, 0), a = (1, 0), . . . , a2t−1 = (2t− 1, 0), b = (0, 1), . . . , a2t−1b = (2t− 1, 1)}

In [9] a representative 2-cocycle f of [f ] ∈ H2(D4t, ZZ2) ∼= ZZ3
2 is written inter-

changeably as a triple (A,B,K), where A and B are the inflation variables and
K is the transgression variable. All variables take values ±1. Explicitly,

f(ai, ajbk) =
{
Aij , i+ j < 2t,
AijK, i+ j ≥ 2t,

f(aib, ajbk) =
{
AijBk, i ≥ j,
AijBkK, i < j,

Let β1, β2 and γ denote the representative 2-cocycles related to (A,B,K) =
(1,−1, 1), (−1, 1, 1), (1, 1,−1) respectively.

A basis for 2-coboundaries is described in [3]. Let ∂x : D4t → IF2 denote
the characteristic set map associated to x, such that ∂x(y) = 1 for y 	= x
and ∂x(x) = −1. Let δx denote the 2-coboundary naturally associated to ∂x,
such that δx(s, t) = ∂x(s)∂x(t)∂x(s · t). According to the ordering above, a ba-
sis for 2-coboundaries may be constructed straightforwardly. It suffices to drop
coboundaries δ1, δa2t−2b, δa2t−1b from the whole set of coboundaries naturally as-
sociated to the elements in D4t, as it is shown in [3]. Consequently, there are
24t−3 different 2-coboundaries. Furthermore, there are 24t different 2-cocycles,
and B = {δa, . . . , δa2t−3b, β1, β2, γ} is a basis for 2-cocycles.

Once a basis for 2-cocycles over D4t has been determined, we turn towards
cocyclic Hadamard matrices.

A condition for the existence of a cocyclic Hadamard matrix over D4t is
detailed in [9]. Cocyclic Hadamard matrices developed over D4t can exist only
in the cases (A,B,K) = (1, 1, 1), (1,−1, 1), (1,−1,−1), (−1, 1, 1) for t odd. We
focus in the case (A,B,K) = (1,−1,−1), since computational results in [9, 3]
suggest that this case contains a large density of cocyclic Hadamard matrices.
Anyway, the techniques presented in this paper can be adapted easily for other
cases of (A,B,K), or even other finite groups rather than D4t, as the examples
in Section 6 illustrate.

At this time, we may assume that individuals of our population consists of
binary (4t− 3)-tuples (better than 4t-tuples), corresponding to generators from
the basis for 2-coboundaries. Furthermore, computational results in [3] suggest
that tuples formed from 2t − 1 to 2t + 1 ones gives rise to a significantly large
density of cocyclic Hadamard matrices.

So that we may assume that individuals of our initial population consists
of tuples that meet these bounds. That is, tuples of length 4t− 3 which con-
sists of k ones and 4t− 3− k zeros, for 2t− 1 ≤ k ≤ 2t+ 1. Consequently, the

search space reduces in turn, from 24t−3 =
4t−3∑
i=0

(
4t− 3
i

)
individuals to pre-

cisely
(

4t− 3
2t− 1

)
+
(

4t− 3
2t

)
+
(

4t− 3
2t+ 1

)
individuals. We do not care about
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missing many potential solutions (from among those tuples which do not meet
the impossed bounds). Computational evidences of this fact are discussed in
[3]. Anyway, crossover and mutation operators will eventually introduce indi-
viduals out from the impossed bounds, which will also strive for survival, so
that good behaviuors outside the reduced search space may be ocassionally
incorporated.

In these circumstances, the evaluation function for fitness may be
redesigned to check precisely rows from 2 to t. This is a straightforward conse-

quence of a result in [3]: a cocyclic matrix over D4t of the type

(∏
i∈I

δi

)
β1γ is

Hadamard if and only if rows from 2 to t are Hadamard rows. Consequently,
the Hadamard test runs 4 times faster each time. This way, when the genetic
algorithm runs on D4t we are able to reduce not only the search space but
also the search time.

6 Examples

Both of the genetic algorithms and all the executions and examples of this section
have been worked out with aid of Mathematica 4.0, running on a Pentium IV
2.400 Mhz DIMM DDR266 512 MB. We include here some Hadamard cocyclic
matrices of order 4t for 6 ≤ t ≤ 13. Apparently, our method seems to provide
some cocyclic Hadamard matrices of larger order than those previously obtained
with other algorithms.

Calculations in [5, 9, 2] suggest that Gt
1 = ZZt × ZZ2

2 and Gt
2 = D4t give rise

to a large number of Hadamard cocyclic matrices.
This behavior has also been observed on a third family of groups [2],

Gt
3 = (ZZt ×f ZZ2)×χ ZZ2

Here f denotes the normalized 2-cocycle f : ZZ2 × ZZ2 → ZZt such that

f(−1,−1) = � t
2

+ 1

And χ : ZZ2 × (ZZt ×f ZZ2) → ZZt ×f ZZ2 denotes the dihedral action, such that
χ(−1, x) = −x. Notice that Gt

3 is a slight modification of Gt
2 = D4t, since f

becomes a 2-coboundary precisely for odd t = 2k+ 1. Thus G2k+1
3 = G2k+1

2 and
G2k

3 	= G2k
2 .

However the search space for cocyclic Hadamard matrices over the families
Gt

i above grows exponentially with t (according to the dimensions of the basis
Bi for 2-cocycles), so that exhaustive search is only possible in low orders (up
to t = 5). Each of the matrices is represented as a tuple with regards to some
basis Bi = {δk|βj |γn} for 2-cocycles over Gt

i. At this point, we only indicate how
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many generators of each type (coboundaries, inflation and transgression) appear
in Bi (see [2, 3] for details):

– For odd t, B1 consists of 4t− 3 coboundaries δk, 2 cocycles βj coming from
inflation and 1 cocycle γ coming from transgression. For even t, B1 consists
of 4t−4 coboundaries δk, 3 cocycles βj coming from inflation and 3 cocycles
γn coming from transgression.

– B2 is the basis B described at Section 5, which consists of 4t− 3 cobound-
aries δk, 2 cocycles βj coming from inflation and 1 cocycle γ coming from
transgression.

– B3 coincides with B2 for odd t. We have not identified a general behavior for
even t, so we analyze the cases t = 2, 4, 6, 8 independently:
• If t = 2, B3 consists of 4 coboundaries δk, 3 cocycles βj coming from

inflation and 3 cocycles γn coming from transgression.
• If t = 4, B3 consists of 13 coboundaries δk, 2 cocycles βj coming from

inflation and 1 cocycle γ coming from transgression.
• If t = 6, B3 consists of 20 coboundaries δk, 3 cocycles βj coming from

inflation and 3 cocycles γn coming from transgression.
• If t = 8, B3 consists of 29 coboundaries δk, 2 cocycles βj coming from

inflation and 1 cocycle γ coming from transgression.

Now we show some executions of the genetic algorithm (in its general ver-
sion) running on these families. The tables below show some Hadamard co-
cyclic matrices over Gt

i, and the number of iterations and time required (in
seconds) as well. Notice that the number of generations is not directly related
to the size of the matrices. Do not forget about randomness of the genetic al-
gorithm.

t iter. time product of generators of 2-cocycles over Gt
1

1 0 0′′ (1, 0, 0, 0)
2 0 0′′ (1, 0, 0, 1, 0, 1, 0, 0, 1, 1)
3 1 0.14′′ (0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1)
4 7 1.89′′ (0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1)
5 30 17.08′′ (1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1)
6 3 3.69′′ (0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1)
7 584 21′33′′ (1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1)
8 239 14′33′′ (0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1)

t iter. time product of generators of 2-cocycles over Gt
2

1 0 0′′ (0, 1, 1, 1)
2 0 0′′ (1, 0, 1, 1, 1, 1, 0, 0)
3 3 0.25′′ (1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1)
4 0 0′′ (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1)
5 3 1.42′′ (0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1)
6 31 34.87′′ (1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1)
7 102 5′17′′ (1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1)
8 98 6′27′′ (0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)
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t iter. time product of generators of 2-cocycles over Gt
3

1 0 0′′ (0, 1, 1, 1)
2 0 0′′ (1, 1, 0, 0, 0, 0, 1, 0, 0, 0)
3 0 0′′ (0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1)
4 6 1.20′′ (0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0)
5 18 10.33′′ (1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0)
6 15 19.49′′ (1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1)
7 6 12.39′′ (0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1)
8 153 9′45′′ (1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0)

As it is expected, the improved version of the genetic algorithm for Gt
2 = D4t

provides not only faster outputs but also larger sizes on the matrices.

t iter. time product of generators of 2-cocycles over D4t (improved version)
6 0 0′′ (1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1)
7 4 0.69′′ (0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1)
8 3 1.18′′ (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1)
9 7 5.09′′ (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,

0, 1, 0, 1)
10 43 48.03′′ (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,

0, 1, 0, 1, 0, 1, 1, 1, 0, 1)
11 471 13′15′′ (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1)
12 279 11′16′′ (0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,

0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1)
13 970 53′44′′ (0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1)

The authors are convinced that improved versions of the algorithm are still
to be implemented, attending to refinements on the crossover operator. We are
yet to find a systematic way of doing crossover more suitably for our purposes.
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Abstract. A chaffing-and-winnowing is a cryptographic scheme
which does not require encryption but instead use a message authen-
tication code (MAC) to provide the same function as encryption. In
this paper, we discuss and introduce some new insights in the rela-
tionship between unconditionally secure authentication codes (A-code)
and unconditionally secure encryption schemes through observing the
mechanisms of chaffing-and-winnowing. Particularly, we show through
chaffing-and-winnowing that an A-code with a security level consid-
erably low stands equivalently for an encryption scheme with perfect
secrecy, and a fully secure authentication scheme implies both perfect
secrecy and non-malleability for an encryption scheme in the uncon-
ditionally secure setting.

1 Introduction

1.1 Background and Motivation

In 1998, Rivest proposed a novel and interesting cryptographic technique called
“chaffing-and-winnowing” [15]. Remarkable property of this cryptographic tech-
nique is that it can provide data confidentiality by using authentication when
sending data over an insecure channel. In other words, chaffing-and-winnowing
is an encryption scheme without encryption. As Rivest also made a point that,
as chaffing-and-winnowing is not categorized as an encryption, this may be one
solution to getting a way around existing encryption legislation. Realistically,
though, the efficiency of chaffing-and-winnowing still remains to be a problem,
and if we leave out the merit of being able to bypass the law enforcement,
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chaffing-and-winnowing, for this moment, does not measure up to what conven-
tional encryption schemes offer especially regarding its practicality. However, to
the extent that encryption export regulations are going to be a long-term issue,
chaffing-and-winnowing is still marked as an interesting development methodol-
ogy which uses authentication mechanisms to send confidential data, and if you
dig down a bit more, interesting relations between encryption and authentication
through chaffing-and-winnowing can be found.

In our paper, we discuss and introduce some new insights in the relation-
ship between an authentication scheme and an encryption scheme through
observing the mechanism of chaffing-and-winnowing. Particularly, we consider
the case in which the security is guaranteed for unbounded computational re-
sources (i.e. unconditionally-secure setting). Namely, we show through
chaffing-and-winnowing, in an unconditionally secure setting, an authentica-
tion scheme with a security level considerably low, in fact, stands equiv-
alently for an encryption scheme with perfect secrecy, and a fully secure
authentication scheme implies security of a much higher level (i.e. satisfies
both perfect secrecy and non-malleability). In addition, we compare the con-
structions of encryption and authentication schemes and show some interest-
ing relationships between the two schemes and see how closely the security
for an impersonation attack for authentication, and perfect secrecy for en-
cryption are related to each other. We follow then by comparing the rela-
tionship between the security for substitution attack for authentication and
non-malleability for encryption as well.

1.2 Related Works

Bellare and Boldyreva analyzed the security for chaffing-and-winnowing from
a computationally-secure context [1]. They have shown in their paper that,
with a message authentication code (MAC) based on pseudo-random func-
tion (PRF) as an authentication scheme, combining an appropriately chosen
all-or-nothing transform (AONT) [14] (e.g., OAEP [4, 5]) gives a semanti-
cally secure encryption scheme [9]. It should be noticed that any PRF is
a good MAC [8, 3] and not vice versa. In contrast, in our paper, we look
into the relation from an information-theoretically perspective, and show that
with an authentication code (A-code) [7, 18] (which corresponds to MAC in the
computationally-secure setting), it gives an encryption scheme with perfect se-
crecy even for a weak A-code. If we have a stronger (fully-secure) A-code, then in
an information-theoretically-secure setting, an even stronger encryption scheme
(i.e. with perfect secrecy and non-malleability) can be constructed. There has
been a proposal of combining an A-code with information-theoretically secure
encryption called A-code with secrecy [7, 17], and also, the secrecy property of
A-code has been discussed in [18, 19], however, it is novel and never been dis-
cussed before through observing the mechanism of chaffing-and-winnowing to
show the correspondence relationship of the security requirement of an A-code
and an encryption.
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2 Preliminaries

2.1 Unconditionally Secure Authentication Code (A-code)

In an A-code [7, 18], there are three participants, a sender S, a receiver R and
a trusted initializer TI. TI generates secret information u and v for R and S,
respectively. In order to send a plaintext m to R, S generates an authenticated
message (m,α) from m by using u and transmits (m,α) to R. R verifies the
validity of α using m and v. We note that S and/or R may generate u and v
themselves to remove TI.

Definition 1. Let U ,V ,M and A denote the random variables induced by
u, v,m and α, respectively. We say that (U ,V ,M,A) is p-impersonation secure
(p-Imp) if

1. Any outsiders (which do not include S, R or TI) can perform impersonation
with probability at most p. Namely,

max
(m,α)

Pr[R accepts (m,α)] ≤ p,

it is also p-substitution secure (p-Sub) if

2. Any set of outsiders can perform substitution with probability at most p.
Namely, letting (m′, α′) be an authenticated message generated by S,

max
(m′,α′)

max
(m,α)( �=(m′,α′))

Pr[R accepts (m,α)|(m′, α′)] ≤ p.

We say that (U ,V ,M,A) is p-impersonation&substitution secure (p-Imp&Sub)
if it is both p-Imp and p-Sub secure.

Construction methods for A-codes are given in, for example, [7, 18, 10, 16]. In
the rest of the paper, for simplicity, we let f : M× U → A denote a mapping
such that f(m,u) = α.

2.2 Unconditionally Secure Encryption

In the model of unconditionally secure encryption, there are three participants,
a senders S, a receiver R and a trusted initializer TI. TI generates an encryption
key e for S, and a decryption key d for R. TI, after distributing these keys,
deletes them from his memory. To send a plaintext m to R with confidentiality,
S encrypts m by using e and transmits the ciphertext c to R. R decrypts c by
using d and recovers m. We note that in order to remove TI, S and/or R may
generate e and d themselves. Throughout this paper, we let a random variable
be X and H(X ) denote the entropy of X . For X , let X := {x|Pr[X = x] > 0}.
|X | is the cardinality of X .

Definition 2. Let E , D, M and C denote the random variables induced by e,
d, m and c, respectively. We say that (E ,D,M, C) has perfect secrecy (PS) if
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1. R correctly decrypts m from c, that is, H(M|C,D) = 0.
2. No outsider obtain any information on m from c, that is, H(M|C) = H(M).

It will also satisfy perfect non-malleablity (NM) if

3. No outsider generate a ciphertext whose plaintext is meaningfully related to
m, that is,

H(M̂|C, Ĉ,M) = H(M̂|C,M),

where ĉ(	= c) be another ciphertext which can be generated by S instead
of c, m̂(	= m) be a plaintext corresponding ĉ, and Ĉ and M̂ denote random
variables induced by ĉ and m̂, respectively.

Then, we say that (E ,D,M, C) has PS&NM if it satisfies both PS and NM.

The notion of “non-malleability” is a concept proposed by Dolev, Dwork and
Naor [6]. The discussion that followed after their original proposal was mainly
given from a computationally secure perspective [2]. The first formalization of an
information-theoretically secure scheme with non-malleability was given recently
in [11] by Hanaoka, Shikata, Hanaoka and Imai, and the idea was then extended
by McAven, Safavi-Naini and Yung [13]. It is obvious that a classical one-time
pad does not provide perfect non-malleability.

2.3 Chaffing-and-Winnowing

In brief, chaffing-and-winnowing can be constructed as follows. Start by each
sender S and receiver R prepare themselves each a key for message authentica-
tion. When S sends a plaintext m to R, S adds “dummy” plaintext m′ (with
an invalid authentication tag) so that “dummy” m′ obscure the intended mes-
sage m, so that only the authorized receiver R can distinguish the “real” from
the “dummy”. On receiving the message, R removes the dummy m′ by check-
ing its tag. As long as an adversary do not distinguish a valid tag from the
invalid tag, adversary cannot tell which one of m and m′ is real and not real.
Chaffing-and-winnowing is a technique which consists of adding dummy mes-
sages to a message, so that it becomes unintelligible for anyone to distinguish
the message except for the authorized receiver. Chaffing-and-winnowing is not
an encryption and is not a technique which tries to hide the plaintext itself (like
encryption).

3 Unconditionally Secure Chaffing-and-Winnowing

Here, we show the construction of an unconditionally secure chaffing-and-
winnowing (USCW) which is secure against any adversary with unlimited
computational power by using an A-code. Take notice that straightforward con-
struction (i.e. if the dummy is not generated appropriately) will not be secure
and the information on the plaintext will be more likely to leak. We give careful
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consideration on this point when we construct our scheme. We first show that
we can construct an USCW with PS from a p-Imp A-code.

Unconditionally Secure Chaffing-and-Winnowing with PS

Key Generation. For a given A-code (U ,V ,M,A), TI generates u ∈ U and
v ∈ V as an encryption key and a decryption key, respectively. Let the
plaintext space be M . TI gives u and v to S and R, respectively.

Encryption. Let a plaintext bem∗∈M . S sets αm∗ :=f(m∗, u). S picks |M |−1
distinct keys (u′m)m∈M\{m∗} from U\{u} and sends c :=(m||αm)m∈M to R,
where αm := f(m,u′m) for m ∈M\{m∗}.

Decryption. On receiving c′, R parses c′ as c′ := (m||αm)m∈M and selects m′

such that m′ is accpeted as valid (by using v). Finally, R outputs m′.

Next, we show that p-Imp A-codes imply USCW with PS. For simplicity, we
consider only an optimal p-Imp A-code such that p = 1/|A| = 1/|U |. It should
be noticed that if an A-code is p-Imp, then it is |A| ≥ 1/p and |U | ≥ 1/p [12].
Many of such optimal A-codes have been known so far.

Theorem 1. Suppose (U ,V ,M,A) is 1/|M |-Imp A-code. Then, the above
USCW is PS.

Proof. Due to symmetric property of u and (u′m)m∈M\{m∗}, it is sufficient to
prove that for all m ∈M\{m∗}, R rejects (m,αm) as invalid (by v).

For each m ∈ M , there exists only one α ∈ A which will be accepted by R
since p = 1/|A|. This means that it is sufficient to prove that f(m,u) 	= f(m,u′)
for all u, u′(	= u) ∈ U and m ∈M . We prove this by contradition.

Assume that there exist u, u′ andm such that f(m,u) = f(m,u′)(= α). Then,
an adversary can launch an impersonation attack by sending (m,α). In this case,
R accepts (m,α) as valid if S’s key is either u or u′. Hence, the attack succeeds
with probability 2/|U | = 2p. This is a contradiction. ��

We next show p-Imp&Sub A-codes imply USCW with PS&NM. For simplicity,
we consider only an optimal p-Imp&Sub A-code such that p = 1/|A| = 1/|U |1/2.
It should be noticed that if an A-code is p-Imp&Sub, then |A| ≥ 1/p and |U | ≥
1/p2 [12]. Many of such optimal A-codes have been known.

Unconditionally Secure Chaffing-and-Winnowing with PS&NM

Key Generation. For a given A-code (U ,V ,M,A), TI generates u ∈ U and
v ∈ V as an encryption key and a decryption key, respectively. Let the
plaintext space be M . TI gives u and v to S and R, respectively. S picks
|M | distinct keys u1, ..., u|M| from U\{u} such that

∀ui, uj(	= ui), ∀m ∈M, f(m,ui) 	= f(m,uj).
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Encryption. Let a plaintext be m∗ ∈ M . S sets α := f(m∗, u) and finds
ui such that f(m∗, ui) = α. Then, S sends c := (m||αm)m∈M to R, where
αm := f(m,ui).

Decryption. On receiving c′, R parses c′ as c′ := (m||αm)m∈M and selects m′

such that m′ is accpeted as valid (by using v). Finally, R outputs m′.

Before we begin the security proof, we first show that the above u1, ..., u|M|
in fact always exist if the given A-code is 1/|M |-Imp&Sub.

Lemma 1. If (U ,V ,M,A) is 1/|M |-Imp&Sub, then, for all u ∈ U there exist
u1, ..., u|M| ∈ U\{u} such that for all ui, uj(	= ui) ∈ {u1, ..., u|M|} and m ∈ M ,
f(m,ui) 	= f(m,uj).

Proof. Here, we show how {u1, ..., u|M|} is chosen for any given u. First, pick u1
from U\{u} randomly, and set U1,m := {u|f(m,u1) = f(m,u)} for all m ∈ M .
Since the given A-code is 1/|M |-Imp&Sub, it is clear that |U1,m| ≤ |M |. This
implies that

|U\ ∪m∈M U1,m| ≥ |M | − 1.

Next, pick distinct u2, ..., u|M| ∈ U\ ∪m∈M U1,m, and set Ui,m := {u|f(m,ui) =
f(m,u)} for i = 2, ..., |M | and m ∈ M . Assume that there exist ui0 , ui1(	=
ui0) ∈ {u2, ..., u|M|} such that f(m0, ui0) = f(m0, ui1) for some m0 ∈ M , i.e.
Ui0,m0 = Ui1,m0 . This implies that | ∪2≤i≤|M| Ui,m0 | ≤ (|M | − 2)|M |. On the
other hand, it is obvious that U = ∪α∈A{u|f(u,m0) = α}, and consequently, we
have

|U | = | ∪α∈A {u|f(u,m0) = α}| = | ∪1≤i≤|M| Ui,m0 | ≤ (|M | − 1)|M |.

This is a contradiction since |U | = |M |2. Hence, for all i0, i1(	= i0) and m,
f(m0, ui0) 	= f(m0, ui1). ��

Next, we prove for such u1, ..., u|M| and any m ∈M , only one ui exists, such
that f(m,u) = f(m,ui).

Lemma 2. For any u ∈ U , any u1, ..., u|M| chosen as in above, and any m ∈M ,
|{ui|f(m,ui) = f(m,u), ui ∈ {u1, ..., u|M|}}| = 1.

Proof. Assume this lemma is false. Then, there exist ui0 , ui1 ∈ {u1, ..., u|M|} such
that f(m,ui0) = f(m,ui1) which is a contradiction. ��

Lemma 1 and 2 guarantee that the proposed USCW will always work properly
for any u and m.

Finally, we prove the security.

Lemma 3. The proposed USCW has PS, i.e. H(M∗) = H(M∗|C), where M∗

is a random variable induced by m∗.
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Proof. Let Ui denote a random variable induced by ui such that f(m∗, u) =
f(m∗, ui). Then, it is clear that H(C|Ui) = 0. Consequently, we have that

H(M∗|Ui) −H(M∗|C,Ui) = H(M∗|Ui)−H(M∗|Ui) = 0.

If H(M∗|Ui) = H(M∗), then we have

H(M∗) −H(M∗|C) ≤ H(M∗)−H(M∗|C,Ui)
= H(M∗|Ui) −H(M∗|C,Ui)
= 0.

This means that to prove the lemma, it will be sufficient to prove H(M∗|Ui) =
H(M∗).

For a given ui, we have only that u 	∈ {u1, ..., u|M|} and f(m∗, u)=f(m∗, ui)
for some m∗, and therefore, u∈{u|∃m∈M, f(m,u)= f(m,ui), u∈U\{ui}} =
∪m∈MUi,m\{ui}. Since |Ui,m| = |M | for all m ∈M ,

max
m∗,ui

max
m′

Pr[m′ = m∗|ui] =
|Ui,m′\{ui}|

| ∪m∈M Ui,m\{ui}|
=

|M | − 1
|M |(|M | − 1)

=
1

|M | .

Hence, H(M∗|Ui) = H(M∗). ��

Lemma 4. The proposed USCW has NM, i.e. H(M̂|C, Ĉ,M∗) = H(M̂|C,M∗),
where ĉ(	= c) is another ciphertext which can be generated by S instead of c,
m̂(	= m∗) be a plaintext underlying ĉ, and Ĉ and M̂ denote random variables
induced by ĉ and m̂, respectively.

Proof. From m∗ and c, an adversary only knows that u ∈ Ui,m∗\{ui}. Now,
we prove that all m̃ ∈ M\{m∗} are equally possible even if it is known that
u ∈ Ui,m∗\{ui}.

Let ĉ := (m||f(m,uj))m∈M , j 	= i, then m̃ ∈ M can be the plaintext only if
|Ui,m∗ ∩ Uj,m̃| 	= 0.

Claim 1. For any m̃ ∈M\{m∗}, |Ui,m∗ ∩ Uj,m̃| = 1.

Proof. Assume that |Ui,m∗ ∩ Uj,m̃| = 0. Then, for an authenticated message
(m∗, α∗) where α∗ = f(m∗, ui), an adversary can launch a substitution attack
by generating (m̃, α̃) where α̃ is randomly chosen from A\{f(m̃, uj)}. Notice
that the adversary can generate (m̃, α̃) if he knows only (m∗, α∗). It is clear that
f(m̃, uj) is not the correct authentication tag for m̃, and consequently, we have

Pr[R accepts (m̃, α̃)|(m∗, α∗)] ≥ 1
|M | − 1

.

Since the given A-code is 1/|M |-Imp&Sub, this is a contradiction.
Next, assume that |Ui,m∗ ∩ Uj,m̃| ≥ 2. Then, for an authenticated message

(m∗, α∗) where α∗ = f(m∗, ui), an adversary can launch a substitution attack
by generating (m̃, α̃) where α̃ = f(m̃, uj). It is clear that there exist at least two
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keys in Ui,m∗ such that the correct authentication tag for m̃ is determined as
f(m̃, uj), and consequently, we have

Pr[R accepts (m̃, α̃)|(m∗, α∗)] ≥ 2
|M | ,

which is a contradiction. Hence, |Ui,m∗ ∩ Uj,m̃| = 1. ��
Claim 2. For any m̃0, m̃1(	= m̃0) ∈M\{m∗}, Uj,m̃0 ∩ Uj,m̃1 = {uj}.
Proof. It is obvious that uj ∈ Uj,m̃0 ∩ Uj,m̃1 , and hence, it is sufficient to prove
that |Uj,m̃0 ∩ Uj,m̃1\{uj}| = 0. Assume that there exists u ∈ U\{uj} such that
f(m̃0, u) = f(m̃0, uj) and f(m̃1, u) = f(m̃1, uj). Then, for an authenticated
message (m̃0, α̃0) where α̃0 = f(m̃0, uj), an adversary can launch a substitution
attack by generating (m̃1, α̃1) where α̃1 = f(m̃1, ũ) and ũ is randomly chosen
from Uj,m̃0 . It is clear that there exist at least two keys in Uj,m̃0 such that the
correct authentication tag for m̃1 is determined as f(m̃1, uj), and consequently,
we have

Pr[R accepts (m̃1, α̃1)|(m̃0, α̃0)] ≥
2

|M | ,

which is a contradiction. ��
From Claims 1 and 2, we have that

max
m̂,m∗,ui

max
m̃

Pr[m̃ = m̂|m∗, ui] =
|Uj,m̂\{uj}|

| ∪m∈M\{m∗} Uj,m\{uj}|

=
|M | − 1

(|M | − 1)(|M | − 1)
=

1
|M | − 1

,

which proves the lemma. ��

4 An Observation

The above results show a new insight in the relationship between impersonation
security of an A-code and perfect secrecy of an unconditionally-secure encryp-
tion, and also substitution security of an A-code and non-malleability of an
unconditionally-secure encryption.

Here, in this section, we look at this from another angle as well. To give an
actual example of an unconditionally secure encryption with perfect secrecy, we
like to consider here, a classical one-time pad. Let GF (q) be a finite field with q
elements, k ∈ GF (q) be a shared key between S and R, and c := m + k where
m ∈ GF (q). Obviously, (m, c) can also be used as a 1/q-Imp secure A-code. Next,
similarly, we consider an example of an unconditionally secure encryption with
perfect secrecy and non-malleability [11]. Let (k1, k2) ∈ GF (p)\{0}×GF (p) be a
shared key between S and R, and c := k1m+k2. Hence, this can also be used as
a 1/(q− 1)-Imp&Sub secure A-code. What these observations are telling is that,
impersonation security and perfect security, as well as, substitution security and
non-malleability, are deeply related to each other.
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Abstract. This paper describes a linearizing attack with fast calculus
for higher order differential attack. The linearizing attack, proposed by
Shimoyama et al. [13], [15], linearizes the attack equation and determines
the key by Gaussian elimination. The cost of calculating the coefficient
matrix is dominant overhead in this attack. We improve the algorithm
used to calculate the coefficient matrix by applying a bit-slice type im-
plementation [3]. We apply this method to five-round KASUMI and show
that it need 227.5 chosen plaintexts and 234 KASUMI encryptions.

1 Introduction

Higher order differential attack is a well-known attack against block ciphers. It
exploits the properties of the higher order differentials of functions and derives
an attack equation to determine the key. Jakobsen et al. applied it to KN cipher
[8]. They used exhaustive search to solve the attack equation. Shimoyama et al.
proposed an effective method of solving the attack equation [15] and Moriai et
al. generalized it for the attack on CAST cipher [13]. Their method, which we
call linearizing attack in this paper, linearizes the attack equation and solves the
key by using Gaussian elimination. Hatano et al. proposed an optimization for
linearizing attack [6] that is based on linear dependency between unknowns in
the attack equation; it decreases the number of independent variables.

In the linearizing attack, the major computational cost is estimated to be the
cost of calculating the coefficient matrix of unknown variables.1 In this paper, we
propose a fast calculus for an enhanced linearizing attack. We apply the bit-slice
type implementation proposed by Biham [3] to the attack equation to calculate
the coefficient matrix. We analyze elements of the coefficient matrix of unknown
variables and calculate it using the T function proposed in this paper instead of
a round function.

We apply the fast calculus to attack the 64-bit block cipher KASUMI. KA-
SUMI [1] is based on the known block cipher MISTY1 [11] and is optimized for

1 If the size of coefficient matrix is small, this computational cost ignores the com-
plexity of solving the system of equations [13].

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 163–172, 2006.
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Table 1. Comparison to previous attacks on KASUMI

Cipher Rounds Complexity Comments
Data Time

KASUMI 4∗1 210.5 222.11 Higher Order Differential Attack [18]
5 239.4 2117 Higher Order Differential Attack [19]
5 222.1 260.7 Higher Order Differential Attack [16]
5 227.5 239.9 Higher Order Differential Attack [20]
5 227.5 234 This paper

*1-this attack is on a version of the cipher without FL functions.
Time complexity is measured in encryption units.

implementation in hardware. It is used in the confidentiality and integrity algo-
rithm of 3GPP mobile communications. Table 1 lists the known attacks on KA-
SUMI. Our method needs 227.5 chosen plaintexts and 234 KASUMI encryptions.

2 Preliminaries

2.1 Higher Order Differential [10]

Let F (·) be an encryption function as follows.

Y = F (X ;K) (1)

where X ∈ GF(2)n, Y ∈ GF(2)m, and K ∈ GF(2)s. X , K, and Y denote
a plaintext, a key and a ciphertext, respectively. Let {A1, · · · , Ai} be a set of
linearly independent vectors in GF(2)n and V (i) be the sub-space spanned by
these vectors. The i-th order differential is defined as follows.

Δ
(i)
V (i)F (X ;K) =

⊕
A∈V (i)

F (X ⊕A;K) (2)

In the following, Δ(i) denotes Δ(i)
V (i) , when it is clearly understood.

In this paper, we use the following properties of the higher order differential.

Property 1. If the degree of F (X ;K) with respect to X equals N , then

degX{F (X ;K)} = N ⇒
{
Δ(N+1)F (X ;K) = 0
Δ(N)F (X ;K) = const

(3)

Property 2. The higher order differential has linear property on Exclusive-OR
sum.

Δ(N){F (X1;K1) ⊕ F (X2;K2)} = Δ(N)F (X1;K1)⊕Δ(N)F (X2;K2) (4)
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2.2 Attack of a Block Cipher

Consider an R-round block cipher. Let HR−1(X) ∈ GF(2)m be a part of the
(R−1)-th round output and C(X) ∈ GF(2)m be the ciphertext for the plaintext
X ∈ GF(2)n. HR−1(X) is described as follows.

HR−1(X) = FR−1(X ;K1, · · · ,KR−1) (5)

Let Ki be an i-th round key and Fi(·) be a function of GF(2)n × GF(2)s×i →
GF(2)m.

If the degree of FR−1(·) with respect to X is N − 1, we have

Δ(N)HR−1(X) = 0 (6)

Let F̃ (·) be a function that outputs HR−1(X) from the ciphertext C(X) ∈
GF(2)m.

HR−1(X) = F̃ (C(X);KR) (7)

where KR ∈ GF(2)s denotes the round key to decode HR−1(X) from C(X).
From Eq. (6), (7) and Property 1, the following equation holds.

0 = Δ(N)F̃ (C(X);KR) (8)

In the following, we refer to Eq. (8) as the attack equation.

2.3 Linearizing Attack

Shimoyama et al. proposed an effective method of solving attack Eq. (8) [13],
[15]. This method, called linearizing attack in this paper, linearizes the attack
equation by treating every higher order variable like kikj with new independent
variables like kij . In the following, we use the term linearized attack equation to
refer to an attack equation that is regarded as a linear equation.

Let L be the number of unknowns in the linearized attack equation of Eq. (8).
Since the attack Eq. (8) is derived by using an m-bit sub-block, we can rewrite
it as follows.

Ak = b , k = t(k1, k2, . . . , k1k2, . . . , k1k2k3, · · ·) (9)

where A, b, and k are the m × L coefficient matrix, the m-dimensional vec-
tor, and the L-dimensional vector over GF(2), respectively. k denotes linearized
unknowns that are expressed as monomials of the R-th round key KR.

We can obtain m linearized attack equations from one N -th order differential
because Eq. (8) is an m-bit equation. Therefore, we need )L/m* sets of the N -th
order differential to determine a unique solution.

Since one set of N -th order differential requires 2N chosen plaintexts, the
number of plaintexts, M , needed to determine the key is estimated as

M = 2N ×
⌊
L

m

⌋
(10)
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If we use the same technique shown in [13], [15], Eq. (9) requires 2N × (L + 1)
times F̃ (·) calculations. Since we have to prepare )L/m* sets of N -th order
differentials to determine k, the computational cost is estimated as

T = 2N × (L+ 1)×
⌊
L

m

⌋
(11)

3 Fast Calculus for the Linearizing Attack

Each element of the matrix A and the vector b in Eq. (9) can be expressed as
a Boolean expression of ciphertext C(X) = (c1, c2, . . . , cm) like c1 + · · ·+ c1c2 +
· · ·+ c1c2c3 + · · ·. Let aj (j = 1, 2, · · · , L+ 1) be a m-dimensional column vector
of A and b. aj is calculated by using N -th order differentials, and is defined as
follows.

aj = Δ(N)Ajc , c = t(c1, · · · , c1c2, · · · , c1c2c3, · · ·) (12)

where Aj is an m×D constant matrix determined from Eq. (8) and c is a D-
dimensional vector. The elements of c are ciphertext monomials which include
higher order degrees. We can rewrite Eq. (12) as follows.

aj = AjΔ
(N)c (13)

c is determined from ciphertexts. Since we calculate Δ(N)c for each set of N -th
order differential, we are able to determine aj by calculating Eq. (13) without
using the F̃ (·) function. Therefore, we can determine coefficient matrix A and
vector b from Eq. (13).

Consider the derivation of c by using T function to calculate ciphertexts. We
take T to be a D-bit output function that outputs elements of c and implement
T by using the bit-slice method [3]. Since S-boxes are generally implemented as
tables in an encryption function, we embed T as a table in the same way. If we
implement it on a 32-bit processor, we need )D/32* table look-ups to retrieve
D-bit elements. In this paper, we consider that the computational costs of table
S-box and T function look-ups as being the same.

In the following, we introduce an algorithm for key derivation and estimate
the necessary number of chosen plaintexts and the computational cost.

Algorithm for key derivation
Step 0: Prepare )L/m* sets of N -th order differentials.
Step 1: Calculate Δ(N)c using one set of N -th order differential and repeat the
calculation for )L/m* sets.
Step 2: Calculate aj (j = 1, 2, · · · , L+ 1) from Eq. (13).
Step 3: Determine the key by solving Eq. (9) with a method such as Gaussian
elimination.

The necessary number of chosen plaintexts M ′ for key derivation is the same
as Eq. (10).

M ′ = 2N ×
⌊
L

m

⌋
(14)
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We estimate the computational cost for each step of the algorithm for key deriva-
tion as follows.

Step 1: It needs 2N × )D/32* table look-ups to calculate Δ(N)c for each N -th
order differential. Thus Step 1 has computational cost of T ′

Step1 as follows.

T ′
Step1 = 2N ×

⌊
D

32

⌋
×
⌊
L

m

⌋
(15)

Step 2: In calculating Eq. (13), we calculate inner products of m sets of row
vectors of Aj andΔ(N)c. This needs 2×)D/32*×m×(L+1) table look-ups. Since
we prepare )L/m* sets of N -th order differentials, the necessary computational
cost of Step 2 is estimated to be

T ′
Step2 = 2 ×

⌊
D

32

⌋
×m× (L+ 1)×

⌊
L

m

⌋
≈ 2 ×

⌊
D

32

⌋
× L2 (16)

Step 3: Solving Eq. (9) with a method such as Gaussian elimination is generally
estimated to cost about L3. In this paper, since we evaluate computational cost
assuming the use of a 32-bit processor, Step 3 costs T 1Step3 as follows.

T ′
Step3 =

⌊
L3

32

⌋
(17)

Therefore the necessary computational cost, T ′, of this algorithm is evaluated
as follows.

T ′ = T ′
Step1 + T ′

Step2 + T ′
Step3 (18)

4 Higher Order Differential Attack on KASUMI

4.1 KASUMI

KASUMI is a Feistel type block cipher with 64-bit data block and 128-bit se-
cret key. It is based on MISTY1 [11] which has provable security against linear
and differential cryptanalysis [4], [12]. In 2000, the 3rd Generation Partnership
Project (3GPP)2 selected KASUMI as the mandatory cipher in Wideband Code
Division Multiple Access (W-CDMA). It is used in the confidentiality and in-
tegrity algorithm of 3GPP mobile communications. Fig. 1 outlines its block
diagrams with equivalent FO and FI functions; we call it KASUMI hereafter.

4.2 Previous Results

Tanaka et al. proposed the first attack on 5-round KASUMI with a 32-nd or-
der differential by using a bijective round function feature [19]. Sugio et al.
searched for an effective chosen plaintext by computer simulations and reduced
2 3GPP is a consortium that standardize the 3rd Generation Mobile System.
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Fig. 1. KASUMI

the necessary number of plaintexts and computational cost by using a 16-th
order differential [16]. In the following, we introduce the outline of [16].

Let Hi = (hi4, hi3, hi2, hi1) where hi4, hi2 ∈ GF(2)7 and hi3, hi1 ∈ GF(2)9 are
the right half of the i-th round output. With KASUMI, plaintext X is divided
into eight sub-blocks as follows.

X = (X7, X6, . . . , X0) Xi ∈
{

GF(2)9 (i = odd)
GF(2)7 (i = even) (19)

The following plaintext, obtained by computer simulations, is the effective chosen
plaintext that enables us to reduce the necessary number of chosen plaintexts
and computational cost.

X ∈ (C, C, C, C,X2,X1, C, C) X1,X2 : variable, C : fixed sub-block (20)

Using the above chosen plaintext, we have a constant value that denotesΔ(16)h33
= 0 ∈ GF(2)9. Accordingly, we derive the attack equation as follows.

Δ(16){FO9
5(FL5(CL;KL5);KO5) ⊕ C9

R} = 0, (21)
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where CL and CR denote the left and right 32-bit ciphertext, respectively, and
FO9

5(·) and C9
R denote the 9-bits corresponding to h33. Eq. (21) has 82-bit equiv-

alent keys3. Sugio et al. estimated the key by combining exhaustive search with
the linearizing attack [16]. It needs 222 chosen plaintexts and 263 (FO+FL) func-
tion operations.

Nambu et al. analyzed unknown variables L = 26, 693 in linearized attack
equations using the computer software REDUCE. They estimated 82 equivalent
key bits by the linearizing attack. It needs 227.5 chosen plaintexts and 242.2

(FO+FL) function operations [20].

4.3 Application of Fast Calculus to an Attack on KASUMI

In the following, we will demonstrate an application of fast calculus to an attack
on KASUMI. We linearize Eq. (21) and express it as follows.

Ak = b (22)

where A, b, and k are the 9 × 26, 693 coefficient matrix, the 9-dimensional
vector, and the 26, 693-dimensional vector, respectively. If we determine the co-
efficient matrix A and the vector b by calculating Eq. (13), we need to analyze
the constant matrixes Aj and the vector c. Therefore, we analyzed Aj and c
by expanding the Boolean expressions of Eq. (21) with the computer software
REDUCE. We show the number of elements of c in Table 2.

Table 2. Analysis of the number of elements of c

bit position # of elements of c
16-th bit 6537
17-th bit 6686
18-th bit 6237
19-th bit 6433
20-th bit 6419
21-th bit 6713
22-th bit 6569
23-th bit 6493
24-th bit 6854

all 9109

’all ’ denotes the number of all elements of c in 9-bits.

As a result, we determined Aj (j = 1, 2, . . . , 26, 694) as the 9 × 9109 ma-
trixes and c as the 9109-dimensional vector. In the following, we estimate the
number of chosen plaintexts needed and the computational cost for the fast
calculus.

3 KL5 = (KL51, KL52) 32 bits and KO5 = (k511, k512, k513, k521, k522, k523) 50 bits.
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Estimation of Complexity
Since unknown variables L = 26, 693 exist in the linearized system of equa-
tions, we need )26, 693/9* sets of 16-th order differentials to determine the key.
Therefore, the necessary number of chosen plaintexts is estimated as follows.

M ′ = 216 ×
⌊

26, 693
9

⌋
≈ 227.5 (23)

We can estimate the computational cost, T ′, by calculating Eq. (15),· · ·,(18).

T ′
Step1 = 216 ×

⌊
9109
32

⌋
×
⌊

26, 693
9

⌋
≈ 235.69 (24)

T ′
Step2 ≈ 2 ×

⌊
9109
32

⌋
× 26, 6932 ≈ 238.56 (25)

T ′
Step3 =

⌊
26, 6933

32

⌋
≈ 239.11 (26)

T ′ = T ′
Step1 + T ′

Step2 + T ′
Step3 = 239.94 (27)

We compare Eq. (27) to the previous results. In Eq. (27), we estimate the
computational cost as the number of table look-ups of the T function and matrix
calculations. According to Fig. 1, each FI function has two S9-boxes and two S7-
boxes and so each FO function has (S9 × 2 + S7 × 2) × 3 = 12 S-boxes.
Therefore, we regard the computational cost of Eq. (27) as 239.94/12 ≈ 236.4

(FO+FL) function operations and this is equivalent to 236.4/5 ≈ 234 KASUMI
encryptions.4 We summarize the results of this fast calculus in Table 1.

5 Conclusion

In this paper we applied higher order differential attack to five-round KASUMI.
We proposed a linearizing attack with fast calculus that can reduce the com-
plexity incurred in calculating the coefficient matrix A and the vector b. Our
attack requires 227.5 chosen plaintexts and 234 encryptions.

In the linearizing attack, we solve the system of linearized equations by using
Gaussian elimination. If the number of unknown variables L is large, we can’t
ignore the computational cost of Gaussian elimination. Therefore, if we decrease
the number of unknown variables, we can diminish the total computational cost,
T ′. We outlined a technique that eliminates unknown variables for the fast cal-
culus in the appendix. We will be able to reduce the computational cost for the
key derivation by using this elimination technique.

4 We discuss here an attack on a 5-round variant.
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A A Technique for Eliminating Unknown Variables for
the Fast Calculus

We will outline an elimination technique of unknown variables for the fast cal-
culus by using lots of the linearized attack equation.

We linearize the attack equation in the same way as Eq. (9) and divide un-
known variables L into L′ and L′′. Let aj (j = 1, 2, . . . , L+1) be am-dimensional
column vector of A and b, and let the elements of aj (j = 1, 2, . . . , L′) be D′

ciphertext monomials which include higher order degrees and elements of aj

(j = L′ + 1, . . . , L + 1) be the same as those of c. Therefore, we can rewrite
Eq. (13) as

aj =
{

AjΔ
(N)c′i (i = 1, 2, . . . , j = 1 ∼ L′)

AjΔ
(N)ci (i = 1, 2, . . . , j = L′ + 1 ∼ L+ 1),

(28)

where c′i is a D′-dimensional vector that is composed of a part of the elements
of D-dimensional vector ci. Therefore, if we prepare Q(> D′) sets of N -th or-
der differentials and calculate each Δ(N)c′i (i = 1, 2, . . . , Q), we can determine
Δ(N)c′i = 0 (i = D′ + 1, . . . , Q) by using linear dependency of Δ(N)c′i. In Eq.
(28), if Δ(N)c′i equals 0, we can determine aj = 0. Since aj (j = 1, 2, . . . , L′) that
correspond to unknown variables L′ equals 0, it is not necessary to estimate L′.

If many unknown variables L exist in the linearized attack equation, we will
be able to reduce the computational cost for the key derivation by using this
elimination technique.
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Abstract. Perfect decryption has been always assumed in the research
of public key encryption, however, this is not true all the time. For some
public key encryption primitives, like NTRU [9] or Ajtai-Dwork [1], the
decryption process may not obtain the corresponding message even the
encryption and decryption are run correctly. Furthermore, such a kind
of decryption errors will lead to some dangerous attacks against the un-
derlying primitive. Another interesting point is that, those primitives are
not based on the factoring, nor the discrete log problem which are sub-
ject to the Shor’s algorithm [18] with quantum computers. This kind of
primitives may be promising in the post-quantum cryptography. There-
fore, the decryption errors deserve much attention and should be coped
with carefully.

In this paper, our main technique is not to use any error-correcting
codes to eliminate the errors, but to use some padding (transform) to
hide “bad” errors from attacker’s control. We 1) efficiently enhance these
error-prone public key encryption primitives to the chosen ciphertext se-
curity, even in the presence of the decryption errors, and 2) show that
the solution is more generic, rather than some specific padding meth-
ods previously presented, to thwart the decryption errors based attacks
successfully.

1 Introduction

Public key encryption (PKE) is a crucial building block in cryptography, widely
used in many security protocols and schemes. Whilst various PKEs are pro-
posed to fulfill with the requirement in different scenarios, one property of PKE
is always assumed, which is the perfect decryption. It means that any validly en-
crypted ciphertext will lead to the same message corresponding to the ciphertext
for certainty. However, there exists a family of PKE that has good performance
in the implementation, but fails to have perfect decryption sometime, such as
NTRU [9] and Ajtai-Dwork [1] etc.

Even though their decryption errors do not occur often, they do have been
affected greatly. Indeed the decryption errors we care about are not only possible
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to reduce the efficiency of PKE, but might also give additional useful information
to potential attackers, thus lead to a fatal attack, such as secret key exposure [16].

Given a PKE (a randomly generated public and secret key pair), for some
message and randomness pair, the encryption algorithm may lead to a mapping
which is not injective. This would be inevitable if some specific message pairs are
chosen, and further it gives the opportunity for the attacker to know the truth -
some ciphertexts are corresponding to decryption error message, which is never
desired to be known by the attacker with strong power, such as adaptively chosen
ciphertext attacker [17].

Although perfect decryption has not been achieved, this kind of PKE is so
meaningful after the Shor’s factoring algorithm [18]. Its significance lies in that
they are not based on the common number-theoretic problems of factoring or
discrete log, like RSA or ElGamal, but on the lattice problem which is believed
hard to be solved even that the quantum computer is built in the future. Addi-
tionally, since the fast implementation of them can be compared with RSA, this
family may be a promising replacement of the commonly used PKE, if it could
be made immune to the decryption errors.

1.1 Related Work

There are some related work in this context, Goldreich et al [7] proposed a solu-
tion to the decryption problem of Ajtai-Dwork [1], but failed to make the scheme
secure [12]. Later, Dwork et al [5] generalized the theoretical solution to solve
any infrequent decryption errors, using several totally impractical techniques as
parallel repetition, hard core bit and direct product. By these only theoretically
meaningful techniques, the error probability could be found with only a tiny prob-
ability, i.e. the attack using decryption errors is made impossible to run efficiently.

Although some efficient work by Howgrave-Graham et al. [10] provided an
exclusive use padding scheme for NTRU, called NAEP, to enhance the security
of NTRU even in the presence of decryption errors, it was especially designed
and thus not useful for any other PKE. As NAEP did, in the random oracle
model [2] 1, an efficient solution in [5] also used a padding to enhance the secu-
rity practically. However, this transform appears a little complex and not good
at bandwidth overhead, having several padding schemes together, like Fujisaki-
Okamoto [6] combined with PSS-E [4], where a symmetric encryption is also
required.

1.2 Main Contributions

From a practical viewpoint, we expect the padding methods be generic so that
it could deal with many other PKEs, no matter whether there exist decryption
errors or not. In addition, the efficiency is also important, otherwise it will be
too expensive for this kind of error-prone encryptions.
1 A useful tool to design and analyze the cryptosystem, is widely used in both the-

ory and practice.
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Our main method is not to correct the errors, but to hide the errors from
the attacker’s control. We point out that actually, some existed generic padding
may help deterministic primitive immunize the attack from the decryption errors,
such as 3-round OAEP [14]. And we provide a new variant of it to cope with
probabilistic primitive as well. Note that both of them are generic to adapt to
many other PKEs, and very efficient, especially in bandwidth.

Next, we will first explain the security notions and the attack by Proos, then
show that some error-prone PKEs could be enhanced to chosen ciphertext secu-
rity provably when decryption failures occur.

2 Notions and Notations

In the following paper, we define M, R as the message and randomness space
respectively, and C is the ciphertext space, where C = M×R. Pr[operation|·]
represents the probability of event “·” under the corresponding operation. And
we say that negl(k) is negligible, if for any constant c, there exists k0 ∈ N, s.t.
negl(k) < (1/k)c for any k > k0.

2.1 Public Key Encryption

Definition 1. Public key encryption Π is defined by a triple of algorithms, (K,
E, D):

– the key generation algorithm K: on a secret input 1k (k ∈ N), in polyno-
mial time in k, it produces a pair of keys (pk, sk), public and secret known
respectively.

– the encryption algorithm E: on input of messagem∈M and public key pk, the
algorithm E(m, r) produces the ciphertext c of m, c∈C. (random coins r∈R).

– the decryption algorithm D: By using a ciphertext c and the secret key sk, D
returns the plaintext m, s.t.

Pr[Dsk(Epk(m, r)) = m] = 1

or when it is an invalid ciphertext, outputs⊥. This algorithm is deterministic.

Definition 2. Error-prone Public key encryption Π ′ = (K′, E ′,D′)

– K′ is equivalent to K, except that there may exist such a pair (pk, sk), cor-
responding to the D′ but not to D.

– E ′ is equivalent to E, except that there may exist pairs (m, r) which do not
fit the algorithm D.

– D′ decrypt the ciphertext c ∈ C with overwhelming probability, though,

Pr[Dsk(Epk(m, r)) 	= m] ≤ negl(k)

Definition 3. A public key encryption scheme is said to be OW-PCA secure,
if any polynomial-time adversary A, with the public data and the help of the
plaintext-checking oracle Opca, can get the whole preimage of the ciphertext with
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at most q queries to Opca, in a time bound t and a winning probability no more
than negligible:

Pr

⎡⎣ (pk, sk) ← K(1k)
m←M, r

R← Ω m′ = m
c← Epk(m; r),m′ ← AOpca(c)

⎤⎦ ≤ negl(k)

Remark. Naturally, the security of OW-PCA primitive is dependent on the in-
verting the cipher even with the help of plaintext-checking oracle, which is a
polynomial-time turing machine able to decide whether a cipher and a mes-
sage is the corresponding encryption pair, or not, which is firstly introduced by
Okamoto and Pointcheval [13]. The reason why we introduce the notion hereby
is, some famous padding like REACT [13] has been used to enhance the security
of error-prone primitive, e.g. NTRU, without concerning the decryption errors.
The result is rigorously proved though, it loses the security as soon as decryp-
tion error based attack is employed. Furthermore, if we could show that some
transforms are possible to rescue the provable security based on the OW-PCA
even in the presence of decryption errors, we may successfully enhance lots of
the public key encryption primitives, since almost all commonly used PKEs are
in OW-PCA security.

Beyond the one-wayness, the polynomial indistinguishability [8] of the encryp-
tion can make the leakage of any partial information as hard as that of the whole
plaintext. In order to make sense in the strongest attack scenario, the IND should
be considered in the CCA model, called IND-CCA [17], which has become the de
facto requirement of the public key cryptosystem, as follows.

Definition 4. A public key encryption scheme is IND-CCA secure, if there exists
no polynomial-time adversary A = (A1,A2) who, under the help of the decryp-
tion oracle, can distinguish the encryption of two equal-length, distinct plain-
texts, with the probability significantly greater than 1/2 (the only restriction is
that the target ciphertext cannot be sent to the decryption oracle directly). More
formally, the scheme is IND-CCA secure, if with the time bound t, decryption
oracle querying bound q, the following is satisfied:

Pr
b

R←{0,1}

r
R←Ω

⎡⎢⎢⎣
(pk, sk) ← K(1k)
(m0,m1, s) ← AO

1 (pk)
c← Epk(mb; r) b̂ = b
b̂← AO

2 (c,m0,m1, s, pk)

⎤⎥⎥⎦ ≤ 1
2

+ negl(k)

Remark. IND-CCA security is such a strong security notion that it is considered
to leak no single bit of the useful information against even very dangerous at-
tack. On the other hand, however, it is subject to the decryption errors as well.
For example, the famous Naor-Yung paradigm [11], which uses two independent
public keys to encrypt one same message, together with some proof that the mes-
sage two ciphertext encrypted is the same, is denied as long as decryption errors
occur. Thus, we can find that the failure of decryption leads to not only efficiency
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lost, but also security flaw. Similarly for Ajtai-Dwork scheme [1], the decryption
errors were claimed to be eliminated by Goldreich et al [7], however, later was
pointed put to be insecure or totally impractical by Nguyen [12]. Very recently,
Proos gave a successful attack based on decryption failure of NTRU, which de-
nied the provable security of many previous transforms, such as REACT-NTRU,
and OAEP-NTRU.

3 Proos’s Attack

In 2003, Proos [16] provided an attack which for an error-prone public key encryp-
tion (K′, E ′,D′), can break the scheme totally, i.e. to find the secret key, whereas
the scheme remains IND-CCA secure, if with perfect decryption(K, E ,D).

If an encryption scheme has the perfect decryption, the act of decrypting a
valid ciphertext will provide no useful information to attackers. However, if the
error-prone decryption is employed, the error occurred may give useful informa-
tion for attackers to determine the information of the secret key, such as whether
a valid ciphertext is correctly encrypted or not. Note that even a valid ciphertext
is encrypted correctly, the secret information is still possible to leak due to the
imperfect decryption. Next we will explain the attack by Proos 2.

3.1 Decipherable Ciphertext Attacks

Let Π ′ = (K′, E ′,D′) be an error-prone public key encryption primitive. Given
a randomly generated key pair (pk,sk), and a decipherable oracle, DC(pk,sk) is
an oracle which on input (x, r, y) s.t. Epk(x, r) = y returns whether or not
Dsk(y) = x. That is, a DC oracle can be used to determine if a valid ciphertext
encrypted using pk can be correctly decrypted using sk. An attack using the pub-
lic information and a DC oracle will be named as a decipherable ciphertext attack
(DCA). Since naturally, a DC oracle gives additional information on the decryp-
tion, DCA is stronger than plain chosen plaintext attack. As it is also able to be
simulated by decryption oracle, DCA is no stronger than CCA, obviously. And it
is also adapted to the perfect decryption case, though seems a little redundant.

3.2 Attack on IND-CCA Transform

The encryption primitive may not be IND-CCA secure originally, however, there are
many ways to enhance its security to the “appropriate” level, such as by the Op-
timal Asymmetric Encryption Padding (OAEP) [3], or Rapid Enhanced-security
Asymmetric Cryptosystem Transform (REACT) [13] in the random oracle model.

Unfortunately, by the Proos’s attack [16], guaranteed security for perfect de-
cryption transform is not available any more for imperfect decryption ones. There
exists such a scheme which can be proven secure in the perfect decryption sce-
nario, but fails to hold the security in the imperfect decryption scenario, due to
2 Due to the page limit, we omit the introduction of NTRU. Please refer to [9, 10] for

the details why decryption errors occur.
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leakage of useful information when answering the query of decipherable cipher-
text attack. We will explain it in the following.

Take the OW-PCA secure PKE (K′, E ′,D′) as an example, the enhanced se-
curity ΠR = (KR, ER,DR) as the following:

– KR = K′.
– ER

pk(m, s, r), for a message m, choose randomness s and r, let c1 = Epk(s, r);
and use cryptographic hash functions G and H to compute c2 = G(s) ⊕m,
with c3 = H(s,m, c1, c2). At last, define the ciphertext c = (c1, c2, c3).

– DR
sk(c1, c2, c3), for a ciphertext c = (c1, c2, c3), s′ = Dsk(c1), m′ = G(s′) ⊕ c2

and c′3 = H(s,m′, c1, c2). If s′ ∈ M and c′3 = c3 then output m′, otherwise
output ⊥.

The above encryption is able to be proven the IND-CCA security without
the presence of the decryption error, due to [13], while we hereby would like to
consider another situation.

It turns out that when ΠR with the decryption errors, the IND-CCA security
loses, due to the fact that OW-PCA PKE will not return ⊥ for all invalid ci-
phertexts, which would provide a convenience for the attacker to break the PKE
totally.

Consider a PKE with decryption errors Π ′ = (K′, E ′,D′), and assume that
the attacker has found k invalid ciphertext y1, y2..., yk of Π ′, then the attacker
could build ΠR′

by using REACT transform as follows:

– KR′
= K′

– ER′

pk (m, r) = E ′
pk(m, r)–

DR′

sk (y) =

⎧⎨⎩D′
sk(y) if y /∈ {y1, y2, ..., yk}
x if y = yi, and the i-th bit of sk is 1
⊥ otherwise

Clearly, the new ΠR′
and originalΠ ′ are indistinguishable to a PCA attacker,

thus ΠR′
is also OW-PCA secure.

The following attack could be applied to ΠR′
to recover the secret key. For

1 ≤ i ≤ k form a ΠR′
ciphertext yR′

i with s = x and c1 replaced by yi. The yR′

i

then could be sent to the DCA oracle with the knowledge that yR′

i will decrypt
to ⊥ if and only if the i-th bit of sk is zero. Thus ΠR′

is no more IND-CCA.

4 Generic Transforms

Since the underlying attack seems not able to be prevented by the previous
scheme, [10] presented a new exclusive use padding for NTRU. However, we find
that it is able to employ currently existed generic transform, 3-round OAEP [14]
and its variant for this mission. The merit of the schemes is that they are not
only useful to error-prone PKE, but also applicable to other common PKE;
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furthermore, the 3-round OAEP has a good performance in efficiency, i.e. saves
the bandwidth and is less redundant.

4.1 Concrete Construction

The scheme is described in the following:

Setup. On the security parameter, key generation algorithm randomly output
a pair of (pk,sk). Assume the random oracle family H, and F,G,H R← H,

F : {0, 1}k �→ {0, 1}n,
G : {0, 1}n �→ {0, 1}k,
H : {0, 1}k �→ {0, 1}n.

“||” represents bit concatenation. Let a sequence of bit zero be k0-bit long, then
the message length will be n− k0.

Construction (3-round OAEP). The transform for deterministic encryption
is defined as the following:

Encryption Enc(m) Decryption Dec(c)
w := [m||0k0 ]⊕ F (r) Dsk(c) := (s||t)
t := r ⊕G(w) w := H(t)⊕ s
s := H(t)⊕ w r := G(s) ⊕ t
c := Epk(s||t) m′||o := w ⊕ F (r)

If o = 0k0 , then m = m′

otherwise, return ⊥

A New Proposal. When the primitive is a probabilistic encryption scheme,
the transform shall be changed, correspondingly. Use one more random oracle
H ′ R← H, H ′ : {0, 1}n+k �→ {0, 1}k′

, and r′ = H ′(m||r), be used as the required
randomness of the probabilistic encryption. And the sequence of bit zero becomes
not necessary. Others hold the same.

Encryption Enc(m) Decryption Dec(c)
w := m⊕ F (r) Dsk(c) := (s||t; r′)
t := r ⊕G(w) w := H(t) ⊕ s
s := H(t) ⊕ w r := G(s) ⊕ t
r′ := H ′(m||r) m′ := w ⊕ F (r)
c := Epk(s||t; r′) If r′ = H ′(m′||r), then m = m′

otherwise, return ⊥

Remark. Actually, 3-round OAEP [14] has been proposed for its nice property of
size efficiency. However, another property of this transform that it is inherently
immune to the attack based on decryption failures, was not carefully studied and
analyzed. Besides, since 2-round OAEP is widely used now, this is a good can-
didate for promoting uses. And we still provide a slight modification of 3-round
OAEP, which adapts to the probabilistic encryption with decryption errors.
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4.2 Security Analysis with Decryption Errors

We first give the explanation that error-prone encryptions combined with trans-
forms will be immune to the decryption errors attack, and then check the chosen
ciphertext security of both transforms.

Thwarting Decryption Errors. The above transforms could be combined with
error-prone PKE Π ′ with sparse distributions of errors, and then decrease the
probability of finding errors by the attacker. For the sake of analysis, we letΠ ′ has
an error probability α, where the probability is over the choice of (M,R) message
and randomness pair. Thus, we could define the error probability ofM and R as
α where α is negligible when the message and randomness is chosen randomly 3.

Since we are going to reduce the successful probability of attacker to find
such a “bad” pair that leads to the DCA attack, we just analyze that probability
before and after the transform is applied. We start with the 3-round OAEP
transform. Given some message randomness pair, we at first modify the message
gradually, and change the randomness r due to the relation of paddings. The
goal of the attacker is to control the input of Π ′, i.e. (s||t), but only has access
to m. But this is obviously difficult, because F , G, H are random oracles, the
value passing through them becomes randomly. Therefore, the best strategy of
the attacker, rather than randomly guessing, is to query the random oracle and
check all the answers to find appropriate (s||t) and their corresponding (m, r).
We assume the queries to three random oracles are qF , qG, qH respectively.

By analyzing 3-round OAEP, we have the following fact. Let us first see the
t part of the input of Π ′, we have t = r ⊕ G(w), where w = (m||0k0) ⊕ F (r).
For searching the appropriate t, the attacker should use three lists to record the
query and answer to F,G and H , such as (r1, ..., rqF ), (f1, ..., fqF ) of oracle F ,
(w1, ..., wqG), (g1, ..., gqG) of oracle G and (t1, ..., tqH ), (h1, ..., hqH ) of oracle H .
Then, we try to find some “bad” t, where there are corresponding g and h in the
lists, s.t. t = ri⊕gj, and further choose s = wj ⊕hk, thus get a candidate pair of
(m, r) which leads to an fault decryption. Since the error probability is assumed
as α, we can compute the possible probability is bounded by α · qGqH . From
another view, error probability is fixed at first, then all s||t candidates should fit
the requirement of m||0k0 . Since m||0k0 = fi ⊕ wj , after querying both oracles,
1 − (1 − 1/2k0)qF qG ≈ qF qG/2k0 .

According to our analysis, the 3-round OAEP could decrease the error prob-
ability occurred Pr[Error]1 at most

Pr[Error]1 ≤ α · qGqH +
qF qG
2k0

Note that we are able to adjust the parameter to let the above probability
tiny enough.

On the probabilistic 3-round OAEP, the situation is likely, except that one
more hash oracle is introduced. Hence we have to count this probability as well.
Besides similar analysis as above, the attacker has to make the chosen message
3 Attacker will use a more smart strategy to choose its target.
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passing the check by H ′ hash function. Since it is querying all the possible value
to the H ′ oracle, this probability will be bounded by qH′/2k′

. The total bound
is as the following.

Pr[Error]2 ≤ α · qGqH +
qH′

2k′

On the IND-CCA Security. The proof that 3-round OAEP is fulfilling with
IND-CCA seems quite natural to understand after the work by [14]. We will refer
to their paper. On the second transform, it seems that this modified version has
not been proved yet, although another probabilistic version has been studied
in [15], without achieving the exact IND-CCA security.

We just describe the proof strategy of the second transform, and refer to
the full version of this paper for detailed proof. The original 3-round OAEP is
provable with deterministic one-way permutation, however, it is not possibly to
be proved with the probabilistic encryption. The reason is that for probabilistic
encryption, even the input message is the same, the ciphertext could be different
due to distinct randomness used. Thus for the oracle simulation process, the
exact IND-CCA security (definition 4) will be lost easily. We apply one random
oracle to check the validity of message and randomness pair, then all the possible
pairs from attacker must be contained in the queries of this H ′ oracle (otherwise,
we just simply reject the request). The above problem of original 3-round OAEP
can be overcome. The security of this transform bases on OW-PCA (definition 3)
security.

Remark. From above analysis, it may be raised a question that why not just use
more hash functions and build more rounds. It is obvious that they are redundant
and expensive. More importantly, the 2-round OAEP has been proved insecure
against decryption errors attack [16], thus we naturally conclude that 3-round
is the best efficient in the presence of decryption errors, from the viewpoint of
bandwidth.

5 Conclusion

In this paper (extended abstract), we explain that existing generic transform is
suitable for PKEs without or with imperfect decryption, and propose a new vari-
ant as well. We present the error probability bound, which decreases much capa-
bility of attackers to control the message and ciphertext pair in the CCA attack,
and finally contribute to immunize the decryption failure for error-prone PKEs.
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Abstract. The Fujisaki-Okamoto (FO) conversion is widely known to
be able to generically convert a weak public key encryption scheme,
say one-way against chosen plaintext attacks (OW-CPA), to a strong
one, namely, indistinguishable against adaptive chosen ciphertext attacks
(IND-CCA). It is not known that if the same holds for identity-based en-
cryption (IBE) schemes, though many IBE and variant schemes are in
fact specifically using the FO conversion. In this paper, we investigate
this issue and confirm that the FO conversion is generically effective
also in the IBE case. However, straightforward application of the FO
conversion only leads to an IBE scheme with a loose (but polynomial)
reduction. We then propose a simple modification to the FO conversion,
which results in considerably more efficient security reduction.

1 Introduction

Background. Identity based encryption (IBE) [11] is a public key encryption
scheme where the encryption public key can be an arbitrarily string, such as
the recipient’s identity, thus the distribution of public key certificates can be
avoided for an IBE scheme. This was first motivated by applications to encrypt
emails under the recipient’s email address, however, it found more applications
ever since, e.g. [8, 4].

It has been shown [1, 7] that the strongest security notion for IBE is indistin-
guishability against adaptive chosen ID and adaptive chosen ciphertext attacks
(IND-ID-CCA). Nevertheless, many IBE schemes, other than (IND-ID-CCA), first
build a “basic scheme” which is one-way against adaptive chosen ID and cho-
sen plaintext attacks (OW-ID-CPA), then specifically use the famous Fujisaki-
Okamoto (FO) conversion [6] to upgrade the basic scheme to a scheme with
IND-ID-CCA security. However, it is still unknown whether the FO conversion
can generically upgrade OW-ID-CPA security to IND-ID-CCA security.

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 183–192, 2006.
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It is crucial to note that the FO conversion is a generic conversion to enhance
a public key encryption scheme with security of one-wayness under chosen plain-
text attacks (OW-CPA) to security of indistinguishability against adaptive chosen
ciphertext attacks (IND-CCA) [10] in the random oracle model. Many practical
PKE schemes are based on it.

Our Contributions. Our contributions are three-fold:
First, we investigate the generic security of the IBE obtained by applying the
FO conversion to an underlying OW-ID-CPA secure IBE and confirm the IND-
ID-CCA security of the IBE can be polynomially reduced to the OW-ID-CPA
security of the underlying IBE.

Additionally, we find that the straightforward application of the FO con-
version yields a significantly inefficient reduction cost. To be more precise, the
simulator’s time complexity is more than 2100(> 280) times re-encryption com-
putation (in addition to an IND-ID-CCA adversary’s running time).

Finally, we slightly modify the FO conversion so that the simulator’s time
complexity is reduced to be 260(< 280) times re-encryption computation (in
addition to an adversary’s running time) which can be dealt with in practice.

2 Preliminary

In this section, we present the definitions of IBE, OW-ID-CPA, IND-ID-CCA and
γ-uniformity.

ID-Based Encryption. ID-Based encryption (IBE) [11] is a public key en-
cryption scheme where the encryption public keys can be arbitrary strings. It is
formally defined as follows:

Definition 1 (ID-Based Encryption). Formally, an identity-based encryp-
tion (IBE) scheme Π = {S,X , E ,D} consists of the four algorithms.

– S, the setup algorithm, takes security parameter k ∈ Z as input, and outputs
system parameters params and the master-key master-key. S is a probabilistic
algorithm. params consists of descriptions of a finite message space MSPC,
and a finite ciphertext space CSPC.

– X , the extract algorithm, takes as inputs params, master-key and an arbitrary
ID ∈ {0, 1}∗, and outputs a private key d. ID is an arbitrary string and used
as a public key. d is the corresponding private key(decryption key). This
algorithm extracts a private key corresponding to ID.

– E , the encryption algorithm, takes as input params, ID and M ∈ MSPC. Let
COIN(k) ⊆ {0, 1}∗ be a finite set. E chooses a random string coin ∈ COIN(k)
and outputs a ciphertext C ∈ CSPC. E is a probabilistic algorithm. We
denote the result of running this algorithm E(params, ID,M ; coin).

– D, the decryption algorithm, takes as input params, C ∈ CSPC and a private
key d, and outputsM ∈ MSPC. The algorithm decrypts a ciphertext C using
the private key d.
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These algorithms must satisfy the standard consistency constraint,

∀M ∈ MSPC, D(params, d, C) =M where C = E(params, ID,M).

One-Way Identity-Based Encryption. A notion of security called one-way
encryption(OWE) is an even weaker notion. Roughly speaking, this notion means
that when given the encryption of a random plaintext the adversary cannot
produce the plaintext in its entirety. Originally OWE is defined for standard
public key encryption schemes. Boneh and Franklin [3] extended the definition
of OWE for IBE schemes. An IBE scheme is an one-way encryption scheme if no
polynomial adversary A has a non-negligible advantage against the challenger
in the following game:

Setup: The challenger takes a security parameter k and runs the setup algo-
rithm S. It gives the adversary the resulting system parameters params. It
keeps the master-key to itself.

Phase 1: The adversary issues private key extraction queries ID1, . . . , IDm. The
challenger responds by running X to extract the private key di corresponding
to the public key IDi. It sends di to the adversary. These queries may be asked
adaptively.

Challenge: Once the adversary decides that Phase 1 is over it outputs a public
key ID 	∈ {ID1, . . . , IDm} on which it wishes to be challenged. The challenger
picks a random M ∈ MSPC and encrypts M using ID as the public key. It
then sends the resulting ciphertext C to the adversary.

Phase 2: The adversary issues more extraction queries IDm+1, . . . , IDn. The
only constraint is that IDi 	= ID. The challenger responds as in Phase 1.

Guess: Finally, the adversary outputs a guess M ′ ∈ MSPC and wins the game
if M =M ′.

We refer to such an adversary A as an OW-ID-CPA adversary. A’s advantage
in attacking the scheme is defined as: AdvA(k) = Pr[M = M ′]. The probability
is taken over the random bits used by the challenger and the adversary.

Definition 2 (OW-ID-CPA). We say that an IBE scheme is secure in the sense
of OW-ID-CPA if AdvA is negligible for any polynomial time algorithm A.

Chosen Ciphertext Security. Boneh and Franklin [3] defined chosen cipher-
text security for IBE systems. In their model, security for an IBE system is
defined by the following IND-ID-CCA game:

Setup: The challenger takes a security parameter k and runs setup algorithm
S. It gives the adversary the resulting system parameters params and keeps
the master-key to itself.

Phase 1: The adversary issues queries q1, · · · , qm where query qi is one of:
– Extraction query 〈IDi〉. The challenger responds by running algorithm E

to generate decryption key di which corresponds to the public key 〈IDi〉.
It sends di to the adversary.
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– Decryption query 〈IDi, Ci〉. The challenger responds by running algo-
rithm E to generate the decryption key di corresponding to the public
key 〈IDi〉. Then it runs algorithm D to decrypt the ciphertext Ci using
di. It sends the adversary the resulting plaintext.

The query may be asked adaptively, that is, each query qi may depends on
the replies to q1, · · · , qi−1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintext M0,M1 ∈ MSPC and an ID on which it wishes to
be challenged. The only constraint is that the ID did not appear in any
Extraction query in Phase 1. The challenger picks a random bit b ∈ {0, 1}
and sets C = E(params, ID,Mb). It sends C to the adversary.

Phase 2: The adversary issues more queries qm+1, · · · , qn where query qi is one of:
– Extraction query 〈IDi〉 where IDi 	= ID. The challenger responds as in

Phase 1.
– Decryption query 〈IDi, Ci〉 where 〈IDi, Ci〉 	= 〈ID, C〉. The challenger

responds as in Phase 1.
These queries may be asked adaptively as in Phase 1.

Guess: Finally, theadversaryoutputsaguess b′∈{0, 1}andwins thegame ifb′=b.

We refer to such an adversaryA as an IND-ID-CCA adversary. An advantage of
an IND-ID-CCA adversary is defined as follows: AdvA(k) = |Pr[b = b′] − 1

2 |. The
probability is taken over the random bits used by the challenger and the adversary.

Definition 3 (IND-ID-CCA). We say that an IBE system is secure in sense of
IND-ID-CCA if AdvA is negligible for any polynomial time algorithm A.

γ-Uniformity. A property γ-uniformity is originally defined for conventional
public key encryption schemes [6]. Here, we define γ-uniformity for IBE schemes.

Definition 4 (γ-uniformity). LetΠ={S,X , E ,D}beanIBEscheme.Foragiven
ID∈{0, 1}∗, the corresponding decryption key d, x∈MSPC and y∈CSPC, define

γ(x, y) = Pr[h←R COIN(k) : y = E(params, ID, x;h)].

We say that Π is γ-uniform, if, for any ID ∈ {0, 1}∗, any x ∈ MSPC and any
y ∈ CSPC, γ(x, y) ≤ γ.

3 Fujisaki-Okamoto Conversion for IBE Schemes
In this section, we discuss the security of the FO conversion for OW-ID-CPA
secure IBE. As far as we know, this is the first formal analysis which proves that
FO generically converts any OW-ID-CPA secure IBE into an IND-ID-CCA secure
IBE. We also give an observation that the straightforward application of FO to
achieve a strong security is insufficient.

Straightforward Application of FO. Let Π = {S,X , E ,D} be an OW-ID-
CPA IBE. Then, we can construct another IBE Π ′ = {S′,X ′, E ′,D′} as follows:
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Let l1 be a bit length of a plaintext of Π , l2 be a bit length of a plaintext of Π ′

and COIN(k) be Π ’s coin-flipping space.

– S′, the setup algorithm. It is as S. In addition, we pick two hash functions
G : {0, 1}l1 × {0, 1}l2 → COIN(k) and H : {0, 1}l1 → {0, 1}l2.

– X ′, the extraction algorithm. It is as X .
– E ′, the encryption algorithm. It is defined as follows:

E ′(params, ID,M ;σ) = E
(
params, ID, σ;G(σ,M)

)
‖H(σ)⊕M

– D′, the decryption algorithm. Let C = C1‖C2 be a ciphertext to decrypt.
Algorithm D′ works in the following steps:
1. Computes D(params, d, C1) = σ.
2. Computes H(σ) ⊕ C2 =M
3. Sets r = G(σ,M). Tests that E(params, ID, σ; r) = C1. If not, outputs

“reject”.
4. Outputs M as the decryption of C

Theorem 1. Suppose the hash functions G and H are random oracles and Π is
a γ-uniform IBE encryption scheme. Let B be an IND-ID-CCA adversary which
has advantage ε(k) against Π ′ and it runs in time at most t(k). Suppose B makes
at most qH H queries, qG G queries, qE Extraction queries and qD Decryption
queries. Suppose that running time of E is at most τ . Then there is an OW-ID-
CPA adversary A which has advantage at least 1

qH+qG

(
2ε(k) − qDγ − qD/2l2

)
against Π. Its running time is t(k) + qG · qD · τ .

Proof. We show how to construct adversaryA by using adversary B as an oracle.
The challenger starts an OW-ID-CPA game by executing S and generates params
and master-key. The master-key is kept secret by the challenger. A works by
interacting with B in an IND-ID-CCA game as follows:

Setup: A gives params to B.
Responses to G-Queries: A maintains a list of tuples 〈σi,Mi, gi〉 as explained

below. We refer to this list as the Glist. The list is initially empty. When B
queries G(σi,Mi), A responds as follows:
1. If the query σi andMi already appears on the Glist in a tuple 〈σi,Mi, gi〉

then A responds with G(σi,Mi) = gi.
2. Otherwise, A picks a random element gi from COIN(k) of Π .
3. A adds the tuple 〈σi,Mi, gi〉 to the Glist and returns gi.

Responses to H-Queries: A maintains a list of tuples 〈Mi, hi〉 to respond
the queries. We refer to this list as H list. The list is initially empty. When
B queries H(Mi), A responds as following:
1. If the query Mi already appears on the H list in a tuple 〈Mi, hi〉 then A

responds with H(Mi) = hi.
2. Otherwise, A picks a string hi from {0, 1}l2 randomly.
3. A adds the tuple 〈Mi, hi〉 to the H list and returns hi.

Responses to Extraction Queries: Let 〈IDi〉 be an Extraction query issued
by B. A inputs 〈IDi〉 to its own extraction oracle and gets the corresponding
decryption key di. A passes di to B as the answer of the query.
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Responses to Decryption Queries: Let 〈IDi, Ci〉 be a Decryption query is-
sued by B. A responds as follows:
1. Find a pair of tuples 〈σ,M, g〉 and 〈σ, h〉 from the Glist and H list, re-

spectively, such that E(params, IDi, σ; g)‖h⊕Mj = Ci.
2. Outputs M if there exists such a pair of tuples, or outputs “reject”

otherwise.
Challenge: Once B decides that Phase 1 is over it outputs a public key ID and

two messages M0,M1 on which it wishes to be challenged. A sends ID to the
challenger and receives a ciphertext C. Then, A generates Cch1‖Cch2 where
Cch1 = C and Cch2 is a random string whose length is l2. A gives Cch1‖Cch2
as the challenge to B.

Guess: Once B decides that Phase 2 is over it outputs a guess b′.

After B outputs the guess b′, A chooses a tuple 〈σ,M, g〉 or 〈σ, h〉 from the
Glist or the H list, respectively. Then, A outputs σ in the tuple as the answer of
the OW-ID-CPA game.

We first define the following three events:

SuccB the event that B wins the IND-ID-CCA game.
AskB the event that B asks a query forG(D(params, d, Cch1), ∗) orH(D(params,

d, Cch1)) at some point during the game, where d :=X (params,master-key,
ID) and ∗ denotes any l2-bit string.

Fail the event that the simulation fails before B submits a query for
G(D(params, d, Cch1), ∗) or H(D(params, d, Cch1)).

Then, we have that

Pr[SuccB|¬Fail] · Pr[¬Fail] ≥ ε(k) +
1
2
− Pr[Fail].

Since Pr[SuccB|¬Fail,¬AskB] = 1/2, we also have

Pr[SuccB|¬Fail] = Pr[SuccB|¬Fail ∧ AskB] · Pr[AskB] +
1
2

(
1 − Pr[AskB]

)
≤ 1

2
Pr[AskB] +

1
2
.

Hence, we have that(1
2

Pr[AskB] +
1
2

)
· Pr[¬Fail] ≥ ε(k) +

1
2
− Pr[Fail],

and therefore,

Pr[AskB] ≥ 2ε(k)− Pr[Fail].

Next, we estimate Pr[Fail]. The event Fail occurs only when either

Case 1. B submits a Decryption query 〈ID, C1‖H(σ) ⊕ M〉 such that C1 =
E(params, ID, σ;G(σ,M)) without asking G(σ,M), or
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Case 2. B submits a Decryption query 〈ID, E(params, ID, σ;G(σ,M))‖C2〉 such
that C2 = H(σ) ⊕M without asking H(σ).

Case 1 and 2 happen with probability at most γ and 1/2l2, respectively, and
therefore, we have that Pr[Fail] ≤ 1− (1 − γ − 1/2l2)qD .

Hence, we have that

AdvA(k) ≥ 1
qG + qH

Pr[AskB]

≥ 1
qG + qH

(
2ε(k)−

(
1 −
(

1 − γ − 1
2l2

)qD
))

, 1
qG + qH

(
2ε(k)− qDγ −

qD
2l2

)
.

Finally, we estimate A’s running time. Since in addition to B’s running time,
A has to run E for qG times for responding to each Decryption query, A’s running
time is estimated as t(k) + qG · qD · τ . ��

Discussion: Running Time of A. As shown in Theorem 1, there exists a
polynomial time reduction from B to A, and consequently, any polynomial time
adversary cannot break Π ′ in IND-ID-CCA sense if any polynomial time adver-
sary cannot break Π in OW-ID-CPA sense. However, this result does not imme-
diately imply that any realistic adversary cannot break Π ′ in IND-ID-CCA sense
if any realistic adversary cannot break Π in OW-ID-CPA sense. Suppose that A’s
computational time is significantly larger than B’s. Then, it might be still infea-
sible to break Π in practice even if B can break Π ′ in IND-ID-CCA sense. Bellare
and Rogaway [2] proposed the notion of exact security for formally dealing with
this issue.

Now, we focus on the running times of A and B (rather than their advantages).
As in Theorem 1, A’s running time is estimated as t(k) + qG · qD · τ , where t(k)
denotes B’s running time. This means thatA has to run the encryption algorithm
E for qG · qD times in addition to B’s running time. Consequently, assuming that
qG and qD are estimated as 260 and 240 respectively, A has to run E for 2100

times! (Notice that a Decryption query requires on-line computation while a
G-query only requires off-line hash computation.) It is believed that more than
280 operations are computationally infeasible in the real world, and therefore, A
cannot break OW-ID-CPA security ofΠ in practice (even if B works in a practical
time).

Hence, the above straightforward application of the FO conversion is insuffi-
cient for achieving a strong security. In the next section, we propose an improved
version of the FO conversion for IBE, which provides an efficient simulator with
less time complexity.

4 Modified Fujisaki-Okamoto for IBE Schemes

In this section, we propose a modified FO conversion with an improved reduction
cost, i.e. the simulator needs shorter running time but still obtains the same
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advantage when compared with the simulator in the straightforward FO. The
difference between our modification and the original FO is only that we take σ,
M and ID as input to G instead of σ and M .

Basic Idea. The huge running time of A in Theorem 1 is caused by the following
reason. In order to respond to a Decryption query 〈ID, C〉, A has to find a pair
of tuples from Glist and H list such that its corresponding ciphertext with public
key ID is identical to C. Since A does not know ID in advance, it is required
to carry out re-encryption with public key ID for all tuples in Glist for every
Decryption query. This results in qG · qD times of re-encryption operations. For
solving this problem, we add ID as one of the inputs to G.

Modified FO Conversion. Let Π = {S,X , E ,D} be an IBE scheme which
is secure in the sense of OW-ID-CPA. We denote the new encryption scheme as
Π ′′ = {S′′,X ′′, E ′′,D′′}. Let l1 be a bit length of a plaintext of Π , l2 be a bit
length of a plaintext of Π ′′ and COIN(k) be Π ’s coin-flipping space.

– S′′, the setup algorithm. It is as S. In addition we pick two hash functions
G : {0, 1}l1 × {0, 1}l2 × {0, 1}∗ → COIN(k) and H : {0, 1}l1 → {0, 1}l2.

– X ′′, the extraction algorithm. It is as X .
– E ′′, the encryption algorithm. It takes system parameter params, public key

ID ∈ {0, 1}∗, random coin σ ∈ {0, 1}l1 and a message M ∈ {0, 1}l2.
It is defined as follows:

E ′′(params, ID, σ,M) = E
(
params, ID, σ;G(σ,M, ID)

)
‖H(σ)⊕M

– D′′, the decryption algorithm. Let C = C1‖C2 be a ciphertext to decrypt.
This algorithm works in the following four steps:
1. Computes D(params, d, C1) = σ
2. Computes H(σ) ⊕ C2 =M
3. Sets r = G(σ,M, ID). Test that E(params, ID,M ; r) = C1. If not, outputs

“reject”.
4. Outputs M as the decryption of C.

Theorem 2. Suppose the hash functions G and H are random oracles and Π is
γ-uniform IBE encryption scheme. Let B be an IND-ID-CCA adversary which has
advantage ε(k) against Π ′′ and it runs in time at most t(k). Suppose B makes
at most qG G-queries, qH H-queries, qE Extraction queries and qD Decryption
queries. Suppose that encrypting one message needs time τ . Then there is an OW-
ID-CPA adversary A which has advantage at least 1

qH+qG

(
2ε(k)− qDγ− qD/2l2

)
against Π. Its running time is t(k) + qG · τ
Proof. To prove Theorem 2, almost same strategy as the proof of Theorem 1
can be used. That is, assuming IND-ID-CCA adversary B for Π ′′, constructing
OW-ID-CPA adversary A for Π which uses B as an oracle.

There are two different points between the proof of Theorem 1 and 2. The points
are how to answerG-queries and Decryption-queries in the IND-ID-CCA game be-
tweenA andB. Due to the space limitation, we describe only these different points.
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Responses to G-Queries: A maintains a list of tuples 〈σi,Mi, IDi, gi, Ci〉 as
explained below. We refer to this list as the Glist. The list is initially empty.
When B queries G(σi,Mi, IDi), A responds as follows:
1. If the query σi,Mi and IDi already appears on the Glist in a tuple

〈σi,Mi, IDi, gi, Ci〉 then A responds with G(σi,Mi, IDi) = ai.
2. Otherwise, A picks a random element gi from COIN(k).
3. A generates a ciphertext Ci = E(params, IDi, σi; gi)‖H(σi) ⊕Mi.
4. A adds the tuple 〈σi,Mi, IDi, gi, Ci〉 to the Glist and responds to B with
G(σi,Mi, IDi) = gi.

Responses to Decryption Queries: Let 〈IDi, Ci〉 be a decryption query is-
sued by B. A responds this query in the following steps:
1. Finds a tuple 〈σj ,Mj, IDj , gj, Cj〉 from the Glist such that IDi = IDj and
Ci = Cj .

2. Outputs Mj if there exists such a tuple, or outputs “reject” otherwise.

After B outputs the guess b′, A chooses a tuple 〈σ,M, ID, g, C〉 or 〈σ, h〉 from
the Glist or the H list randomly and outputs σ in the tuple as the answer of the
OW-ID-CPA game.

The advantage of A can be evaluate in the same way as in Theorem 1. So, we
omit to describe the detail of the evaluation here.

Finally, we estimate A’s running time. In addition to B’s running time, A has
to run E for qG times to make the Glist. Thus, A’s running time is estimated as
t(k) + qG · τ . ��

Comparison. Here, we compare the running times of simulators forΠ ′ and Π ′′.
In the comparison, we especially focus on times to run the encryption algorithm
E which is required for each simulation. It is believed that if a simulator has to
run E for more than 280 times, then it does not properly work in a realistic time.
Now, we have that

#E(Π ′)(= 2100) - 280 - #E(Π ′′)(= 260),

where #E(·) denotes the times to run E in the simulation. This implies that the
running time of the simulator for Π ′′ is considered realistic, and on the other
hand, that for Π ′ is not.

However, it should be noticed that existence of an adversary which can break
Π ′′ does not always imply existence of another adversary which can break Π in
practice. This is due to its non-tight reduction cost in terms of advantage, i.e.

2
qG+qH

ε(k).

5 Conclusion

In this paper, we confirmed the generic security of FO conversion in IBE schemes,
and investigated the fact that there exists a significantly inefficient reduction cost
in the straightforward application, say, the additional 2100 times re-encryption
computation. Under this circumstance, we modified FO and reduced the addi-
tional time down to 260 times re-encryption computation.
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Our discussion started from the OW-ID-CPA schemes, and we can also address
the case starting from the IND-ID-CPA schemes. When we apply REACT [9] and
the PKC ’99 version of FO [5] to IBE, some similar but more interesting results
will appear. We will present them in the full version of this paper.
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Abstract. In this paper, we propose a variant of Tardos code which
is practical for various applications against a small number of pirates.
As an example of our results, for c = 5, the code length becomes only
1500 log(1/ε) bits while the conventional Tardos code requires
2500 log(1/ε) bits, where ε is a security parameter.

Furthermore our codes do not need a continuous distribution which
is needed to construct the original Tardos codes. Our codes are based
on a simple random variable drawn from a small set. It implies that it
makes to implement and to perform a simulation extremely easier than
the original one.

1 Introduction

1.1 Background

Pointing out a few of many information leakage incidents happened recently
includes the exposure of credit card users’ information incident by one of eminent
credit card companies of the world which shocked us public how fragile the
world’s top most security system could be [1]. Other similar situations have
also been seen in government and major corporate cases. Protecting information
leakage is now a significantly important issue for the network society.

In many cases, such information leakage are performed by a few of persons
involved in. Therefore, it is thought that the importance of the fingerprinting
technology against a small number of pirates is improved. In fact, research for a
fingerprinting code against a few pirates is one of hot topics for recent studies of
information security. There are lots of papers, e.g. [2], [4], [5], [6], [7], [9] on the
topic. In particular, Tardos [8] and Schaathun [6] give very short fingerprinting
codes.

In this paper, we propose a variant of Tardos code [6] against a small number
of pirates. As an example of our results, for c = 5, the code length becomes only
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1500 log(1/ε) bits while the conventional Tardos code requires 2500 log(1/ε) bits,
where ε is a security parameter. Though a continuous distribution is needed to
construct the original Tardos code, our code is based on a discrete random
variable drawn with a small set. For example, only 5 elements distribution is
required to construct 5-secure codes. It is needless to say that to implement and
to perform a simulation become wonderfully simple.

1.2 Our Contribution

In this paper, we propose a variant of Tardos code against a small number of
pirates. As an example of our results, for c = 5, the code length becomes only
1500 log(1/ε) bits while the conventional Tardos code requires 2500 log(1/ε) bits,
where ε is a security parameter. Though a continuous distribution is needed to
construct the original Tardos code, our code is based on a discrete random
variable drawn with a small set. For example, only 5 elements distribution is
required to construct 5-secure codes. It is needless to say that to implement and
to perform a simulation become wonderfully simple.

2 A Generalisation of Tardos Code with a Symmetric
Probabilistic Variable

In this section, we set up our model and introduce how to construct our code.

2.1 The Model

Data Distribution. Let M be the number of total users. When data are dis-
tributed to users (buyers) Ui (1 ≤ i ≤M), a special user, we call him a “codeword
distributor”, embed 0 or 1 to the original data. The embedded data 0 or 1 must
be encrypted not to distinguish them for users. The codeword distributor keep
all of bits distributed to users. We call distributed data “codeword” and denote
by ci and denote its j-th element by ci,j . We denote the length of our code by n.

Assumption for an Attack by Colluders. Some users challenge to change
their data to distribute other people who is not regular. We call such a dishonest
user a “pirate”. And we call a data made by some pirates a “false codeword”.
We assume that an attack by pirates performs under the Marking Assumption
[3]. It means that if all of the j-th element of the pirates are the same cj then
the j-th element of a false codeword must be cj .

And we assume that all of elements of a false codeword is 0 or 1 i.e. any
coalition of pirates cannot make any other symbols.

Tracing Algorithm. After a false codeword is found out, a codeword distribu-
tor makes a score for each users. Supposing an user’s score is over the threshold
Z, a codeword distributor considers that the user is a member of pirates. A way
to make a score in detail is introduced with §2.3. A threshold parameter Z is
obtained in Remark 1.
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2.2 Construction of Our Code

For 0 < q < 1, we denote Pq a random variable such that Pq = 1 with probability
q or Pq = 0 with probability 1− q. Sometimes we denote Pq by q for simplicity.
Let P be a random variable which outputs a random variable Pq (0 < q < 1).
In this paper, we call P a Symmetric Random Variable (SRV) if Pr[P = p] =
Pr[P = 1 − p].

A codeword distributor fixes a SRV P which will become a basis of the code.
Before a codeword distributor constructs codewords for users, a codeword dis-
tributor takes out a random variable pj ∈ P and keeps p = (p1, p2, . . . , pn) in a
memory.

For a user Ui, the codeword distributor determines an element ci,j , according
to the random variable pj , of Ui’s codeword ci = (ci,1, ci,2, . . . , ci,n): i.e. ci,j = 0
if the outcome of pj is 1 or ci,j = 0 if otherwise.

Our codes are based on one of three SRVs P2,P3 and P5 introduced in the
next section.

2.3 How to Make a Score

Let y = (y1, y2, . . . , yn) be a false codeword assembled by pirates.
A codeword distributor makes a score Si for each user Ui by the following. Let

ci = (ci,1, ci,2, . . . , ci,n) be the Ui’s codeword. For each position j, the codeword

distributor adds
√

1−pj

pj
points to Si if ci,j = 1 and yj = 1. The codeword

distributor adds −
√

pj

1−pj
points to Si if ci,j = 0 and yj = 1. Otherwise, yj = 0,

the codeword distributor adds zero point to Si. In other words, the score Si is
formulated by:

Si :=
∑

1≤j≤M :yj=1

{√
1 − pj

pj
δ1,ci,j −

√
pj

1 − pj
δ0,ci,j

}
,

where δ is a delta function, i.e. δx,y = 1 (if x = y) or δx,y = 0 (otherwise).

3 Our Contribution: Our Proposal SRVs and Lengths

In this section, we propose three SRVs P2,P5 and P5 which our 2-secure code, 3-
secure code and 5-secure code are base on respectively. We denote Pr[P = p] = q
by (p, q) ∈ P . Then put

P2 := {(1/2, 1)},
P3 = {((

√
3 − 1)/2

√
3, 1/2), ((

√
3 + 1)/2

√
3, 1/2)},

and

P5 :={(1/10,0.29225),(1/4,0.05925),(1/2,0.2970),(3/4,0.05925), (9/10,0.29225)}.

In §3.1 and §3.2, we compare the length of our codes based on P2,P3 and P5
with Tardos codes [8] and Schaathun codes [6].
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3.1 Comparison with Tardos Codes i.e. ε1 = ε, ε2 = εc/4

The code length of the original Tardos codes ([8]) is given by

n = 100c2 log(1/ε).

If parameters ε1 = ε, ε2 = εc/4 are specified and written about the formula
above, it can express below:

n =
200c2

3
log(1/ε1) +

400c
3

log(1/ε2).

Applied the same parameters ε1 = ε, ε2 = εc/4 to, then our codes associ-
ated to P2,P3 and P5 have the lengths 151.8497 log(1/ε), 517.4193 log(1/ε) and
1497.7922 log(1/ε) respectively. Thus our lengths are about 0.6-time length com-
pared with original Tardos ones.

3.2 3-Secure Code: ε1 = ε/M, ε2 = ε, Where ε = 10−j and M = 2i

Next we compare our 3-secure code with Schaathun codes which are concate-
nated fingerprinting codes with scattering codes ([6]). If we assume that the num-
ber of buyers (users) is M = 2i and the security parameters are ε1 = ε/M, ε2 = ε
where ε = 10−j, then the length n of our code is formulated by:

n = i× 311.9162 + j × 1244.8242.

Table 1 shows that our codes are shorter than Schaathun codes under the
parameters (i, j) listed below.

Table 1. Lengths of 3-secure codes of [6] and ours

(j, i) (25, 13) (75, 15) (11, 18) (16, 18) (53, 21) (148, 40)
[6] 57337 229369 110565 57330 114681 458745

Ours 35176 98041 19308 25532 72537 196711

4 Code Length

In this section, we analyze the length of our code based on a SRV (Theorem 1).
Before beginning the analysis of the length, we introduce two following lemmas.
The proofs will be performed in Appendix.

Lemma 1. Let x1 and r1 be positive numbers such that r1 = (ex1 − 1 − x)/x2.
Let α be a positive number. If α

√
(1 − p)/p < x1 holds for any p ∈ P, then the

probability that the score S of an innocent user will exceed the threshold Z is the
following:

Pr[S > Z] < er1α2n−αZ .
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Lemma 2. Let Sl be the sum of the scores of l pirates who assembled a false
codeword. Let P be a SRV. Put Rl,x := max{0,Ex[px(1 − p)l−x{x

√
(1 − p)/p−

(l− x)
√
p/(1 − p)}]}, Rl,P := {lEX [(1− p)l−1/2p1/2]−

∑
1≤x≤l−1

(
l
x

)
Rl,x} and

s := −r2/b+Rl,P . Then

Exp∈P,U [e−βSl ] ≤ e−βsn.

In this paper, we introduce two security parameters ε1 and ε2 to estimate the
security level of our codes. The parameter ε1 expresses the upper bound of the
probability to accuse an innocent user and ε2 expresses the upper bound of the
probability not to detect one of pirates, either. Applying r1α2n − αZ = log ε1
and −sβn+cβZ = log ε2 to Lemmas 1 and 2 respectively, we immediately obtain
the following inequalities:

Pr[S > Z] < er1α2n−αZ = ε1, (1)

Pr[Sl < lZ] < e−sβn+cβZ = ε2. (2)

By two relations (1) and (2), we have the following equations:(
n
Z

)
=
(
r1α

2 −α
−sβ cβ

)−1(
ε1
ε2

)
=

1
r1cα2β − sαβ

(
cβ α
sβ rα2

)(
log ε1
log ε2

)
Observing the length n, we have the following formula:

n =
cβ log(1/ε1) + α log(1/ε2)

sαβ − r1cα2β
. (3)

For ease, put α = 1/ac, β = 1/bc. (Note that a = 10 and b = 20 have been used
to construct Tardos codes). Then (3) can be re-formulated by

n =
a2c2 log(1/ε1) + abc log(1/ε2)

sa− r1
=
a2 log(1/ε1)
sa− r1

c2 +
ab log(1/ε2)
sa− r1

c.

In order to shorten the length n, it is important to choose a, b, s, r1 well. By
Remark 3, 4, we have conditions:

s = −r2
b

+Rl,P ,

r1 =
ex1 − 1 − x1

x2
1

, r2 =
ex2 − 1 − x2

x2
2

,

ax1 ≥
√

(1 − p0)/p0/c, bx2 ≥
√

(1 − p0)/p0.
Now p0, c,Rl,P are given, so we put

ex1 − 1 − x1

x1
=

Rl,P
√

1 − p0
4c
√
p0

,
ex2 − 1 − x2

x2
=

Rl,P
√

1 − p0
2
√
p0

and

b :=
√

1 − p0
p0

1
x2

(
=

2r2
Rl,P

)
, a :=

√
1 − p0
p0

1
x1c

(
=

4r1
Rl,P

)
.
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Then we have the following theorem:

Theorem 1. Let P be a SRV. Let c be the total number of pirates and l the total
number of pirates that a false codeword was assembled by l (out of c) pirates .
Put Rl,P := lEx[(1− p)l−1/2p1/2]−

∑
1≤x≤l−1

(
l
x

)
Rl,x. Let p0 ∈ P be minimum.

Then it is enough if the code length nc,l,P satisfies

nc,l,P ≥ 4c
√

1 − p0
x1Rl,P

√
p0

log(1/ε1) + 4c
√

1 − p0
x2Rl,P

√
p0

log(1/ε2)

=
1 − p0

(ex1 − 1 − x1)p0
log(1/ε1) +

2c(1− p0)
(ex2 − 1 − x2)p0

,

where ex1−1−x1
x1

= Rl,P
√

1−p0

4c
√

p0
and ex2−1−x2

x2
= Rl,P

√
1−p0

2
√

p0
.

Remark 1. Then the threshold parameter Z associated to is

Z =
2
√

1 − p0
x1
√
p0

log(1/ε1) +
√

1 − p0
x2
√
p0

log(1/ε2)

=
Rl,P (1 − p0)

2c(ex1 − 1 − x1)p0
log(1/ε1) +

Rl,P (1 − p0)
2(ex2 − 1 − x2)p0

log(1/ε2).

5 c-Indistinguishable SRV

In this section, we introduce a notion “c-indistinguishable” to an SRV. In fact,
our codes are based on a c-indistinguishable SRV.

We fix the total number of pirates and denote the number by c. Thus a false
codeword will be assembled by at most c pirates.

We call an SRV P c-indistinguishable if
∑

1≤x≤l−1

(
l
x

)
Rl,x = 0 for any 2 ≤

l ≤ c. We note that if P is c-indistinguishable then we have Rl,P = lEx[(1 −
p)l−1/2p1/2].

Proposition 1. Any SRV P is 2-indistinguishable.

Proof. Since c = 2, it is enough to show that

R2,1 = Ex[p0.5(1 − p)1.5 − p1.5(1 − p)0.5] = 0.

Since P is a SRV, (p, q) ∈ P implies (1 − p, q) ∈ P . Hence p0.5(1 − p)1.5 −
p1.5(1 − p)0.5 = −((1 − p)0.5p1.5 − (1 − p)0.5p1.5). It follows that R2,1 = 0.

We give examples of c-indistinguishable SRV and calculate its associated
length.

P2. Then R2,P = 1/2, p0 = 1/2, x1 = 0.12005 and x2 = 0.76279.
Thus

n = 133.2796 log(1/ε1) + 37.1402 log(1/ε2),
Z = 16.6600 log(1/ε1) + 2.3213 log(1/ε2).



A Short Random Fingerprinting Code Against a Small Number of Pirates 199

P3. There is no 3-indistinguishable SRV if P consists of one random variable i.e.
P = {(p), 1)} and P3 is a unique 3-indistinguishable SRV P with two elements.

Its length is
n = 450.7279 log(1/ε1) + 89.8924 log(1/ε2).

P5. In fact, P5 is 5-indistinguishable. Then R5,P = R4,P = R3,P = R2,P =
0.375158 and

n = 1473.8529 log(1/ε1) + 19.1515 log(1/ε2).
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A Appendix: Lemmas and Remarks

A.1 Formulas

Let l be a positive integer and x a variable. Let p be a positive number such that
0 < p < 1. Put L(p,x) := x

√
(1 − p)/p− (l − x)

√
p/(1 − p).

Lemma 3.

l∑
x=0

(
l

x

)
px(1 − p)l−xL(p,x) = 0,

l∑
x=0

(
l

x

)
px(1 − p)l−xL2

(p,x) = l.
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Lemma 4 (Markov Bound). Let Y be a random variable and t a positive
number. If Y is non-negative,

Pr[Y ≥ t] ≤ Ex[Y ]/t,

where Ex[Y ] is the expected value of Y .

Remark 2. Let er1 be the probability to accuse a single innocent user and erM

the probability to accuse one of M innocent users. Then erM ≤ er1 ×M , since

erM = 1 − (1 − er1)M < 1 − (1 − er1M) = er1M.

A.2 Proof of Lemma 1

Proof (Proof of Lemma 1). In general,

Pr[S > Z] = Pr[αS > αZ] = Pr[eαS > eαZ ].

Since we assume α > 0 and by Markov bound (Lemma 4), Pr[eαS > eαZ ] <
Ex[eαS ]

eαZ .

From now, we show Ex[eαS ] < erα2n. Put ui =
√

1−pj

pj
δ1,ci,j −

√
pj

1−pj
δ0,ci,j ,

appeared in §2.3, then

Ex[eαS ] = Ex[eα i:yi=1 ui ].

Since ui are bitwise-independent, Ex[eα i:yi=1 ui ] =
∏

i:yi=1 Ex[eαui ]. Thus

Ex[eαui ] ≤ Ex[1 + αui + r1α2u2
i ] = 1 + αEx[ui] + r1α2Ex[u2

i ].

It is easy to verify that Ex[ui] = 0,Ex[u2
i ] = 1, hence

Ex[eαui ] ≤ 1 + r1α2.

In general, 1 + x ≤ ex. Therefore Ex[eαui ] ≤ 1 + r1α2 ≤ er1α2
. Thus Ex[eαS ] ≤∏

i:yi=1 e
r1α2 ≤

∏
i e

r1α2
= er1α2n. Now we conclude that

Pr[S > Z] ≤ er1α2n

eαZ
= er1α2n−αZ .

Remark 3. We assumed two conditions in the statement of Lemma 1:

r1 = (ex1 − 1 − x1)/x2
1

and
∀p ∈ P , ax1 ≥

√
(1 − p)/p/c,

where α = 1/ac. The second condition is equivalent to

ax1 ≥
√

(1 − p0)/p0/c,

where p0 is the minimum value of P .
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A.3 Proof of Lemma 2: The Probability NOT to Accuse a Pirate

Let c be the maximal number of pirates. Let y be a given false codeword and let
l the number of users who made y. We note that it is easy to trace a pirate if
l = 1. By Marking assumption, y is the codeword of him. Thus we can assume
that 2 ≤ l ≤ c to analyze the length of our code, without the loss of generality.

Lemma 5. Let P be a SRV. For 0 ≤ x ≤ l, put

ol,0,x := Exp∈P [px(1 − p)l−x],

ol,1,x := EXp∈P [px(1 − p)l−xe−βL(p,x) ].

And put

Ml,x :=

⎧⎨⎩ o0,0, x = 0
max{o0,x, o1,x}, 1 ≤ x ≤M − 1
o1,l, x = M

Then we have

Exp∈P,U [e−βSl ] ≤

⎛⎝ ∑
0≤x≤l

(
l

x

)
Mx

⎞⎠n

,

where U is the set of all l × n-matrices constructed by the codewords of the
coalition of l-pirates.

Proof. Indeed, it is proved by a similar argument in [8] Equation (2). Hence we
omit the proof.

Let x2, r2 be positive numbers satisfy ex2 = 1 + x2 + r2x2
2. Now −βL(p,x) ≤

−βL(p,0) = βl
√
p/(1− p). If βl

√
p/(1 − p) < x2 for all p ∈ P , then we have the

following:

px(1 − p)l−xe−βL(p,x) < px(1 − p)l−x(1 − βL(p,x) + r2β2L2
(p,x)).

For 1 ≤ x ≤ l − 1, we define

ol,2,x := EX[px(1−p)l−x]−βEX[px(1−p)l−xL(p,x)]+r2β2EX[px(1−p)l−x]+βRl,x,

where
Rl,x := max{0,EX[px(1 − p)l−xL(p,x)]}.

By the definition of ol,2,x, we have ol,0,x, ol,1,x ≤ ol,2,x.

Proof (Proof of Lemma 2). It is known that Exp∈P,U [e−βSl ] ≤ (
∑

0≤x≤l

(
l
x

)
Mx)n

(Lemma 5).∑
0≤x≤l

(
l

x

)
Mx ≤ o0,0 + o1,1 +

∑
1≤x≤l−1

(
l

x

)
o2,x

=
∑

0≤x≤l

(
l

x

)
EX[px(1 − p)l−x] + r2β2

∑
1≤x≤l

(
l

x

)
EX[px(1 − p)l−xL2

(p,x)]

−β
∑

1≤x≤l

(
l

x

)
EX[px(1 − p)l−xL(p,x)] + β

∑
1≤x≤l−1

(
l

x

)
Rl,x. (4)
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By Lemma 3,

(4) = 1 + r2β2(l − EX[(1− p)lL2
(p,0)])

−β(0 − EX [(1 − p)lL(p,0)]) + β
∑

1≤x≤l−1

(
l

x

)
Rl,x

≤ 1 + β

⎧⎨⎩r2lβ − lEX [(1− p)l−1/2p1/2] +
∑

1≤x≤l−1

(
l

x

)
Rl,x

⎫⎬⎭
≤ 1 − β

⎧⎨⎩−r2/b+ lEX [(1− p)l−1/2p1/2]−
∑

1≤x≤l−1

(
l

x

)
Rl,x

⎫⎬⎭ . (5)

Remember 1 + x ≤ ex. Then

(5) ≤ exp

⎛⎝−β
⎧⎨⎩−r2/b+ lEX[(1− p)l−1/2p1/2]−

∑
1≤x≤l−1

(
l

x

)
Rl,x

⎫⎬⎭
⎞⎠

= exp(−β{−r2/b+Rl,P}) = exp(−βs).

Remark 4. We assumed the following conditions in the statement of Lemma 2:

ex2 = 1 + x2 + r2x2

and
∀p ∈ P , βl

√
p/(1− p) ≤ x2.

The second condition is equivalent to

bx2 ≥
√

(1 − p0)/p0l/c,

where β = 1/bc and the minimum p0 ∈ P . In particular, it is sufficient to

bx2 ≥
√

(1 − p0)/p0,

since l ≤ c.
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Abstract. This paper proposes a novel approach for cryptanalysis of
certain cryptographic pseudorandom sequence (keystream) generators
consisting of the composition of a linear finite state machine (LFSM)
and nonlinear mapping. The proposed approach includes a dedicated
decimation of the sample for cryptanalysis based on the following: Sup-
pose certain B bits of the LFSM initial state as known and identify time
instances where certain arguments of the nonlinear function depend only
on these B bits and are equal to zero. As opposed to previously reported
methods, the proposed one also identifies and uses certain characteristics
of the LFSM state-transition matrix in order to reduce the nonlinearity
of the system of overdefined equations employed in an algebraic attack
scenario, or to reduce the noise introduced by the linearization of the
nonlinear function which corrupts the linear equations employed in a
correlation attack scenario.

Keywords: overdefined systems of nonlinear equations, decimation, de-
coding, stream ciphers, keystream generators, state transition matrix,
LFSRs, cryptanalysis, algebraic attacks, fast correlation attack.

1 Introduction

This paper points out novel algebraic and correlation attack techniques for
cryptanalysis of certain keystream generators for stream ciphers known as the
nonlinear combination generators (see [11], for example).

Algebraic and correlation attacks are well recognized as the general purpose
tools for security evaluation and cryptanalysis of these generators. A general
paradigm of the algebraic and correlation attacks is based on establishing and
processing a system of overdefined equations which are:
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- nonlinear and (mainly) error free in the case of algebraic attacks;
- linear and (very) noisy in the case of correlation attacks (assuming that a

noisy equation denotes an equation which is satisfied with a certain, known,
probability).

Recently, algebraic attacks have appeared as a powerful tool for cryptanalysis
and security evaluation of certain encryption schemes and particularly stream
ciphers including the nonlinear filter based keystream generators. Some early
algebraic attacks on stream and related ciphers have been reported in [4] as
well as in [17] and [18]. Very recently, a number of algebraic attacks have been
reported in [5], [6], [13], [1], [8] and [19]. An algebraic attack can be roughly
summarized as follows: (i) Describe the secret key by a largely overdefined system
of (low-degree) nonlinear algebraic equations; (ii) If the number of equations
exceeds the number of terms, linearize the system; i.e. treat each term as an
independent variable and solve this (huge) system of linear equations, or (iii)
Try to solve the system by other appropriate techniques (Grobner basis, . . .).

On the other hand, a correlation attack can be summarized as follows: (i)
Describe the secret key as a largely overdefined system of noisy linear algebraic
equations; (ii) Employ an appropriate decoding oriented procedure for finding
a solution. All contemporary correlation attacks originate from [22] where this
cryptanalytic approach was introduced, and [12] where the first fast correlation
attack algorithm was proposed. The fast correlation attack is usually modeled
as the problem of recovering a LFSR initial state when its output sequence is
observable via a binary symmetric channel (BSC) with crossover probability
equal to p. The modeling of a BSC is a consequence of the linearization of the
keystream generator. Accordingly, the fast correlation attack can be addressed
as the decoding of an appropriate code related to the LFSR output sequence.
As underlying codes, certain block and convolutional codes have been consid-
ered, and the employed decoding techniques include two main approaches: one
pass decoding and iterative decoding. The reported iterative block decoding
approaches include [14], [15], and the non-iterative approaches include those re-
ported in [16] and [3], for example. The most efficient techniques include a search
over all hypotheses on a subset of the information bits. The convolutional code
based approaches for fast correlation attack have been considered in a number
of papers including the ones recently reported in [9] and [21].

Motivation for the Work. The general powerful algebraic attacks that have been
recently reported are based on the construction of an overdefined system of non-
linear equations employing only certain characteristics of the nonlinear function.
Accordingly, the performance of these attacks strongly depends on the nonlin-
ear part, and if this part does not have certain characteristics appropriate for
cryptanalysis, the attacks could become very complex or even not feasible. A
goal of this paper is to address the following issue: Find a way to include into
the algebraic attack certain characteristics of the linear part in order to obtain
more powerful attacks against certain nonlinear functions (which could be heav-
ily resistant against the reported algebraic attacks). An additional motivation
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for this work was a complementary extension of the algebraic attack approach
reported in [19].

The paradigm of contemporary fast correlation attacks could be considered
as consisting of the following main steps: (i) assuming that certain secret key
bits are known, specification of an overdefined system of noisy linear equations;
(ii) solving the specified system as a decoding problem via hypothesis testing
and evaluation of parity checks. The noise involved in the system of equations
is a consequence of the linearization of a nonlinear system of equations which
describes the considered stream cipher. As a result, this noise is not an usual
random one and could be an objective for adjustment attempts. Accordingly,
motivations for this work include consideration of the possibilities for specifying
the systems of equations with a noise level lower than the one obtained by a
simple straightforward linearization of the initial system of nonlinear equations
related to the nonlinear filter.

Finally, a motivation for this work was to generalize the attacking approach
on a particular keystream generator reported in [20].

Organization of the Paper. The model of the keystream generators under consid-
eration is given in Section 2. The framework for the dedicated decimation based
cryptanalysis employing algebraic and fast correlation attack approaches is pro-
posed in Section 3. Following this framework, novel algebraic and fast correlation
attacks are proposed and analyzed in Sections 4 and 5, respectively.

2 Model of the Keystream Generators Under
Consideration

2.1 Preliminaries

An m-variable Boolean function f(x1, x2, . . . , xm) can be considered as a mul-
tivariate polynomial over GF(2). This polynomial can be expressed as a sum
of products of all distinct r-th order products (0 ≤ r ≤ m) of the variables as
follows:

f(x1, x2, . . . , xm) =
⊕

u∈GF (2m)

λu

m∏
i=1

xui

i , λu ∈ GF (2) , u = (u1, u2, . . . , um)

or

f(x1, x2, . . . , xm) = a0⊕1≤i≤m aixi⊕1≤i<j≤m aijxixj ⊕· · ·⊕a12...mx1x2 . . . xm ,
(1)

where the coefficients a0, ai, aij , . . . , a12...m ∈ GF(2). This representation of f(·)
is called the algebraic normal form (ANF) of f . The algebraic degree of f ,
denoted by deg(f) or simply d, is the maximal value of the Hamming weight of
u such that λu 	= 0, or the number of variables in the highest order term with
nonzero coefficient.

Note that the ANF of f(·) directly specifies one multivariate equation between
the function arguments and its output which has the nonlinearity order equal to
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the algebraic degree of f(·), but in many cases additional multivariate equations
with a lower nonlinearity order can be specified as well. When a linear combining
of the equations is allowed, the linear combination can be with a lower degree
than the component equations, assuming that enough equations are available for
the combining (see [6], for example).

A binary linear finite state machine (LFSM) can be described as Xt = AXt−1,
where A is the state transition matrix (over GF(2)) of the considered LFSM.
Let X0 be the column (L × 1) matrix [XL−1, . . . , X0]T representing the initial
contents or initial state of the LFSM, and let Xt = [X(t)

L−1, . . . , X
(t)
0 ]T , be the

L-dimensional column vector over GF(2) representing the LFSM state after t
clocks, where XT denotes the transpose of the L-dimensional vector X. We
define

Xt = AXt−1 = AtX0, At =

⎡⎢⎣A(t)
1
·

A(t)
L

⎤⎥⎦ , t = 1, 2, . . . , (2)

where At is the t-th power over GF(2) of the L×L state transition binary matrix
A, and each A(t)

i , i = 1, 2, . . . , L, represents a 1 × L matrix (a row-vector).

2.2 Basic Model

For simplicity of presentation, the novel algebraic and correlation based attack
techniques proposed in this paper for cryptanalysis of certain keystream genera-
tors are introduced via the nonlinear filter keystream generator model (see [11],
for example). The developed approach is also applicable for attacking certain
keystream generators belonging to the class of nonlinear combination generators
which consist of a number of LFSMs whose outputs are combined by a nonlinear
Boolean function (see [11], for example).

Accordingly, the basic model of the keystream generators under cryptanalytic
consideration is depicted in Fig. 1 where LFSM denotes a known LFSM with
only the initial state X0 determined by the secret key, and f(·) denotes a known
nonlinear memoryless function of m arguments {xj}m

j=1 specified by the state
Xt of LFSM as follows:

xj = X(t)
i(j), i(j) ≥ j, i(j) < i(j + 1), j = 1, 2, . . . ,m. (3)

3 Underlying Ideas for the Decimated Sample Based
Cryptanalysis

The developed approach for cryptanalysis is based on the following framework.

– Pre-Processing: Assuming that a certain subset of the secret bits is known,
decimate the sample so that at the selected points the nonlinear function
degenerates into a more suitable one for the cryptanalysis.
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At X0 Xt f( )

state-transition 

matrix 
initial 

state

current 

state

nonlinear 

function

output

Linear Finite State Machine (LFSM)

x

Fig. 1. Basic model of the keystream generators under consideration: The nonlinear
filter

– Processing: Perform the main steps of cryptanalysis taking into account only
the sample elements selected in the pre-processing phase.

Accordingly, the nonlinear function f(·) is considered as:

f(x1, x2, . . . , xm) = xj ⊕ g(x1, x2, . . . , xm) , j ∈ {1, 2, . . . ,m} . (4)

Obviously, the function g(x1, x2, . . . , xm) does not contain the linear term xj

and it has the same algebraic degree as f(·).
One of the main objectives of the pre-processing phase is to identify an ap-

propriate sample decimation so that one of the following two goals is achieved:

(a) at the decimated points, g(·) is equal to zero or it has the algebraic degree
d∗ << d;

(b) at the decimated points, g(·) reduces to a nonlinear function g∗(·) which can
be approximated by noise that corresponds to p∗, which is much smaller than
the noise defining p determined by a direct approximation of f(·) with xj .

The required decimation is based on the consideration of the state-transition
matrix powers in order to find powers t for which at certain indices i, in each
vector A(t)

i the all zero pattern appears at pre-specified positions. Accordingly,
we introduce the following definition.

Definition 1. The sets T and I are sets of the values t and i, respectively,
determined by the vectors A(t)

i with the last L−B elements equal to zero. The
cardinalities of T and I are |T | and |I|, respectively.

Note that the set I is a subset of the indices {i(j)}m
j=1 from (3).

Regarding the above proposed basic framework we have the following.

– The implementation of the framework includes a preprocessing phase which
is independent of a particular sample (i.e. it should be done only once), and
a processing phase which recovers the secret key based on the given sample.
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– Assuming a nonlinear function suitable for the proposed attack, the gain in
the processing phase is a consequence of the following:
• a highly reduced nonlinearity of the related system of equations in the

case of algebraic attacks;
• a highly reduced correlation noise in the case of fast correlation attacks.

4 A Novel Algebraic Attack

This section proposes and analyzes a particular algorithm which targets the case
g(·) = 0, i.e. d∗ = 0. In a similar manner an algorithm which targets the case
when the algebraic degree d∗ << d can be developed.

The proposed algorithm follows the framework pointed out in the previous
section, as well as an approach based on classes of equivalent hypotheses defined
by the following.

Definition 2. For given A(t)
i with all zeros in the last L − B positions and w

ones at the first B positions, a class of equivalent hypotheses on B bits of the
LFSM initial state X0 is a set of B-dimensional binary vectors where a certain
pattern corresponds to the w positions of ones in A(t)

i and with all possible 2B−w

binary patterns at the remaining B − w positions.

4.1 Algorithm I

– Pre-Processing Phase
• Input: (i) the generator elements L, A, f(·), g(·); and (ii) the parameterB

which depends on the values of N and L, and fulfills L−()L/B*+1)B <
(B/2) + log2B + |I|.

• Pre-Processing Steps
∗ Identify a minimal sub-set of the arguments xi, i ∈ I, such that their

equality to zero implies g(·) = 0 as well.
∗ For each of )L/B* + 1 different suitably selected non-overlapping

positions PB of the B bits do the following:
1. Searching over the powers of the state transition matrix A, for

the given set I determine the set T specified by Definition 1.
2. For each t ∈ T specify the set of eligible hypotheses as a subset

of all possible 2B hypotheses for which the condition g(·) = 0 is
fulfilled.

3. For each t ∈ T categorize all the eligible hypotheses into the
classes H(t)

q , q = 1, 2, . . . , Q, of equivalent hypotheses specified
by Definition 2.

4. Implement a suitable list of all 2B hypotheses which support re-
moval from the list of all the hypotheses from a class of equivalent
hypotheses via one-step parallel processing.

• Output: Outputs of the steps 3 and 4.
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– Processing Phase
• Input: (i) Inputs and outputs of the Pre-Processing Phase; and (ii) the

generator output sequence {zi}N
i=1.

• Processing Steps
1. For each )L/B*+ 1 sets PB do the following:

(a) For each t ∈ T and for each class of equivalent hypotheses H(t)
q

perform the following:
i. Select an arbitrary hypothesis from H(t)

q on the B bits of the
LFSM initial state;

ii. For the considered hypothesis evaluate ẑt = A(t)
j X0;

iii. If ẑt 	= zt, t ∈ T , remove from the list all the hypotheses of
the considered class of equivalent hypotheses.

2. For each of the remaining hypotheses on B bits and all possible
hypotheses on the remaining L − ()L/B* + 1)B bits of the LFSM
initial state X0, do the following:
(a) Evaluate ẑt = f({A(t)

j X0}m
j=1), t = 1, 2, . . . , 2L;

(b) If ẑt = zt, t = 1, 2, . . . , 2L, accept the considered candidate as
the correct one and go to the output.

• Output: Recovered LFSM initial state.

4.2 Analysis of the Complexity

Required Sample
The required sample depends on the employed LFSM, and in general, only the
upper bound can be claimed. Due to the decimation approach, it is expected to
be relatively long.

Proposition 1. According to the preprocessing steps 1 and 2, the upper bound
on required sample length N is O(2L−B+I).

Space Complexity
The space complexity is determined by the space requirements for storing the
list of all 2B hypotheses and for storing all the lists of equivalent hypotheses for
all decimated sample points. As a consequence of the binomial distribution of
the weights (number of ones in a binary vector) of each A(t)

i , for each sampled
position, there are on average 2B/2 classes of the equivalent hypotheses. On the
other hand due to the condition g(·) = 0 the expected length of each list of
equivalent hypotheses is equal to 2(B/2)−|I|.

Proposition 2. According to the pre-processing steps 2-4 and the structure of
the entire algorithm the space complexity of the algorithm is O(B2B).

Time Complexity

Proposition 3. According to the pre-processing steps 1 and 2 the time com-
plexity of pre-processing is O(2L−B+|I|) +O(2B).
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Table 1. Comparison of the proposed algebraic attack and the algebraic attack based
on the results reported in [6], [1] and [8] assuming in the second case that the algebraic
degree of the employed function f(·) is d

pre-processing processing upper bound required
time complexity time complexity on required memory

sample
algebraic attack

based on O L
d

2.7
O L

d
L2 O L

d
O L

d
L2

[6], [1] and [8]

proposed O 2L−B+|I| + O 2B O 2(B/2)+log2B+|I| O 2L−B+I O B2B

Algorithm I

For consideration of the time complexity of processing we assume the following.

Assumption 1. The complexity of removing a class of equivalent hypotheses
from the list of all possible hypotheses is O(1).

The implementation of Assumption 1 includes a dedicated memory access man-
agement. Particularly note that in a dedicated implementation, removal of a
class of equivalent hypotheses from the list of all possible hypotheses does not
require random memory access but the static one. A possible implementation
framework could be as follows. Assign to each class of equivalent hypotheses H(t)

q

a variable α(t)
q which is initially set to 1, and changes to 0 if the class H(t)

q is
rejected. To each of the 2B hypotheses assign: (i) a number of pointers corre-
sponding to all α(t)

q regarding H(t)
q to which the considered hypothesis belongs;

and (ii) an AND logic gate with inputs α(t)
q provided by the pointers. Note that

after consideration of all the sets H(t)
q it is expected that only one hypothesis

will remain which has all assigned α(t)
q equal to one, and this hypothesis can be

identified with time complexity log(2B+I). The described framework has space
complexity O(B2B).

Proposition 4. According to the processing step 1(a), the time complexity of
processing is O(2(B/2)+log2B+|I|).

According to Propositions 1–4, Table 1 summarizes the performance of the pro-
posed Algorithm I and compares it with related previously reported algorithms.

5 A Novel Fast Correlation Attack

5.1 Framework

Instead of employing just a straightforward linearization of the nonlinear func-
tion f(·), i.e. approximation of the nonlinear function g(·) by a constant, the
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approach proposed in this section takes into account certain (suitable) charac-
teristics of the linear part which provide a possibility for establishing relevant
linear equations corrupted by a lower noise. Consequently, the recovery of the
secret key via the correlation decoding approach becomes easier. The LFSM ini-
tial state is considered as consisting of two suitably determined parts: one which
should be determined by an exhaustive search, and the other which can be re-
covered via an appropriately designed correlation attack, assuming that the first
part is known due to the employed hypotheses.

When certain necessary conditions are fulfilled, in general, the correlation
attack based algorithms for cryptanalysis under development consist of the fol-
lowing main steps:

(i) Suppose that certain B secret key bits (variables) will be recovered by
exhaustive search;

(ii) Determine a set T of time instances t where a subset Sg of arguments of
g(·) depend only on the assumed B bits;

(iii) For each assumed pattern of B bits, identify a subset TB of T where all
the arguments in Sg are equal to zero; As a result the approximation of
g(·) by zero at these time instances implies correctness of each parity check
equations with probability 1−p∗, where p∗ ≤ p, and 1−p is the correctness
of the same parity-check equations when a straightforward linearization of
f(·) is applied without taking into account a suitable decimation;

(iv) Recover a candidate for the secret key via solving the system of overdefined
noisy linear equations related only to the time instances t ∈ TB employing
an appropriate decoding technique, and check correctness of the candidate.

5.2 Algorithm II

– Pre-Processing Phase
• Input: (i) the generator elements L, A, f(·), g(·); and (ii) the parameter
B (which depends on the values of N and L).

• Pre-Processing Steps
1. Identify a minimal subset of arguments xi, i ∈ I, such that their

equality to zero implies that g(·) can be approximated by a constant
introducing a lower approximation (correlation) noise than direct
linearization of f(·).

2. Searching over the powers of the state transition matrix A, for the
given set I, determine the set T specified by Definition 1.

3. Employing particular characteristics of LFSM states at the positions
t ∈ T construct the basic parity check equations and via linear com-
bining up to w of these parity check equations (in the manner em-
ployed in [16] and [3], for example) for each of the not assumed L−B
elements of X0 specify a set Ωi of the related parity checks of the
weight B + w + 1, i = B + 1, B + 2, . . . , L.

• Output: Outputs of the steps 2 and 3.
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– Processing Phase

• Input: (i) Inputs and outputs of the Pre-Processing Phase; and (ii) the
generator output sequence {zi}N

i=1.
• Processing Steps:

1. Select a previously not considered B-bit pattern.
2. For each i = B + 1, B + 2, . . . , L, select a subset Ωi(B) of Ωi with

the parity-check equations related only to the positions t ∈ TB where
the arguments from the subset I are equal to zero.

3. Perform the appropriate decoding procedure (like those reported in
[16] and [3], for example), and recover the values of the L−B initial
state bits under the assumption that the B-bits in the processing
Step 1 are correct.

4. Compare the output sequence generated based on the initial state
specified by the processing Step 1 and Step 3, and the one given as
the algorithm input.

5. If the sequences under comparison in Step 4 are at the Hamming
distance lower than the certain threshold, accept the initial state
determined by the current hypothesis on B bits and the recovered
L − B bits as the correct one, recover the secret key and go to the
processing phase Output. Otherwise, go to the processing Step 1.

• Output: Recovered secret key.

Remark 1. The given Algorithm II is a basic form of the proposed fast corre-
lation attack approach based on dedicated sample decimation. The concept of
eligible and equivalent hypotheses used in Algorithm I, as well as certain ele-
ments of the techniques reported in [3] and [10], can be involved into a more
sophisticated version of the algorithm for cryptanalysis, but these issues are out
the scope of this paper.

5.3 Analysis of the Complexity

Assumption 2. A hypothesis on B out of the L secret bits of the LFSM ini-
tial state, under the condition that in the decimated sample one input of the
nonlinear function is always equal to zero, decreases the correlation noise to p∗,
p∗ < p. This implies that M∗ parity-checks of weight w per bit provide the
correct decoding of that bit with probability close to 1.

Remark 2. According to the results presented in [7] for given p∗ and w, the
required number M∗ of parity checks can be estimated as O((1 − 2p∗)−2w).
Regarding the parameter w see [16], [3] for the trade-off between the required
sample size and pre-processing/processing complexity.

Remark 3. For each i = B+ 1, B+ 2, . . . , L, the expected cardinality of Ωi(B)
is 2−w|Ωi|, and so the expected cardinality of Ωi should be 2wM∗.
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Table 2. Parameters, complexity and required sample of the proposed fast correlation
attack versus corresponding the most powerful reported one - A simplified comparison

required
number of pre-processing processing required

parity-check complexity complexity sample
equations
per a bit

reported
attack M O(2L−B+log2(L−B)+log2 M ) O((L − B)2BM) N
[16]

proposed
Algorithm II M∗ < M O(2L−B+log2(L−B)+w+log2 M∗

) O((L − B)2BM∗) N∗ > N

Accordingly, the structure of the proposed fast correlation attack implies the
following statements.

Proposition 5. When Assumption 2 holds, the expected sample N∗ required
for the proposed fast correlation attack satisfies 2B−L(L−B)

(2B−LN∗

w

)
> 2wM∗

implying that required length of N∗ is O(2L−B+w−1(L−B−log2(L−B)+w+log2 M∗)).

Proposition 6. When Assumption 2 holds, the expected time complexity of the
proposed fast correlation attack pre-processing is O(2L−B+log2(L−B)+w+log2M∗

).

Proposition 7. When Assumption 2 holds, the expected time complexity of the
proposed fast correlation attack processing is O((L −B)2BM∗).

Proposition 8. When Assumption 2 holds, the expected space complexity of
the proposed fast correlation attack processing is O((L −B)2wM∗).

According to Propositions 5–7, Table 2 summarizes the performance of the
proposed Algorithm II and compares it with the related previously reported
algorithm.
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Abstract. This paper addresses the problem of threshold traitor tracing
for digital content where, by embedding appropriate digital patterns into
the distributed content, it is possible to trace and identify the source of
unauthorised redistribution.

We use a set of marking assumptions where the adversaries have vary-
ing powers to change or erase coordinates of the fingerprint where their
individual fingerprints differ–and consider the implications. We propose
new codes derived from combinatorial designs–and develop a method
for concatenating these codes to filter out the false positives and defend
against some of the attacks considered.

Keywords: Traitor tracing, fingerprinting, digital rights management,
coding theory, block designs, Reed-Solomon codes.

1 Introduction

Fingerprinting (see [4, 2, 1]) is a technique that aims to prevent the unauthorized
redistribution of digital content. Very close copies of a digital document are made
available to a large number of authorized users. The locations where the copies dif-
fer are where the fingerprint has been embedded into the digital object. Malicious
users attempt todiscover thefingerprint andalter it to construct rogue copieswhich
will still “function”. The document is assumed to be a string over a finite alphabet,
with the fingerprint being a randomly spread-out substring of the former, butmuch
shorter than the document itself. Traitor Tracing (see [5, 3]) schemes enable the
tracing of the user(s) whose fingerprints were used to construct the rogue copies.
Here we are interested in tracing more powerful attacks as in the example below.

Example 1. For two coalitions drawn from codewords 01234, 00224 and 10323
we exhibit some descendants below:

codeword codeword
traitor1 0 1 2 3 4 traitor1 0 1 2 3 4
traitor2 0 0 2 2 4 traitor3 1 0 3 2 3
narrow 0 0 2 3 4 narrow 1 1 3 3 3
wide 0 4 2 # 4 wide # 0 3 # 4
erasure 0 # 2 # 4 erasure # # # # #
hybrid 0 # 2 3 4 hybrid 1 # 2 3 #
type descendant type descendant

(1)

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 215–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In a narrow attack, the attackers can choose any symbol which already appears
in their copies at that location–see Tardos [11] for an efficient solution, and [9, 10]
for earlier work. In an erasure attack, the attackers erase symbols at locations
where their copies mismatch. In a hybrid attack, the attackers can switch between
the narrow and erasure attacks, position by position. In a wide attack they can
choose any symbol from the alphabet or erase the locations where their copies
differ. Clearly an attacker who can carry out the weaker attacks can also carry
out a combination of them, so this model is reasonable.

2 Attacks on Fingerprinting Schemes

The symbol v denotes a vector; v(i) is its i-th coordinate. We assume the finite
alphabet Q to be Fq, wherever convenient.

Definition 1. A code M is a subset of FN
q . A linear code is a vector subspace

of FN
q .

2.1 Attack Taxonomy

We identify each user with the unique codeword that she has been assigned. A
coalition is a set of attackers. We then ask: (i) What can a coalition do? (ii) How
large can a coalition be?

Definition 2. (a) Let C(M, ω) denote the collection of all possible coalitions of
M with size at most ω: C(M, ω) = {A ⊆ M : |A| ≤ ω} .

(b) Let A ⊆ FN
q . The spectrum of A at the z-th coordinate is

spec(A, z) =
{
v(z) : v ∈ A

}
.

(c) Let Q# = Q∪{#} be the extension of the finite alphabet Q. Let T ∈ C(M, ω).
The word d = (d(1), . . . , d(N)) is a wide descendant of the coalition T , de-
noted d ∈ Wdescω(T )

d(i) ∈
{

spec(T , i), if | spec(T , i)| = 1
Q# else.

(d) For any code M, the set of all wide descendants from coalitions of size ≤ ω
is denoted:

WDescω(M) =
⋃

T ∈C(M,ω)

Wdescω(T ) (2)

The special cases of the wide attack have been informally defined in Example 1
due to space constraints. The narrow, erasure and hybrid attacks need to be
defended against if we are to defend against the wide attack. We have recently
considered this hierarchy of attacks [7, 8] and reduced the wide attack to a hy-
brid attack–by the method of alphabet boosting–at the cost of expanding the
codelength. Here, we focus on the details of code design for tracing the hybrid
attack, after a brief overview of the attack hierarchy, and refer the reader to [8]
for the details of tracing the erasure attack and the wide attack reduction.
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3 Defending Against the Various Attacks

3.1 Tracing the Hybrid Attack

We first define some concepts from the erasure attack.

Definition 3 (Coalition Erasure Profile). Consider a coalition T ; ET is defined
by, ET = {(i, spec(T , i)) : |spec(T , i)| = 1} .
The erasure profile ET also obeys ET =

⋂
f∈T Ef . Note that, Ef = E{f} ={

(i, f (i)) : 1 ≤ i ≤ N
}
, i.e., Ef is the erasure profile of a coalition containing

only the codeword f . Given d ∈ Edesc(T ), the erasure profile is simply the sets
of pairs (i, d(i)) of the descendant that haven’t been erased:

ET =
{

(i, d(i)) : d(i) 	= #, 1 ≤ i ≤ N
}
. (3)

To construct a code that is resistant to an erasure attack we require: (i) ET
must be nonempty for all coalitions T ; (ii) To ensure that every coalition can be
uniquely defined by ET , we impose the simple condition:

T1 	= T2 ⇔ ET1 	= ET2 , ∀T1, T2 ∈ C(M, ω). (4)

Definition 4 (Partial Trace). Given the Erasure profile of a coalition ET , the
partial trace for the coalition T on the pairs (i, x) ∈ ET is
Bi,x =

{
f ∈ M : f (i) = x

}
.

For a hybrid descendant d, we define the corresponding profile as the “tracing
profile”.

Definition 5 (Tracing Profile). For any descendant d ∈ HDescω(M), the trac-
ing profile of d is given by,

Id =
{

(i, d(i)) : d(i) 	= #, 1 ≤ i ≤ N
}
. (5)

Note that ET represents the set of (coordinate, value) that a coalition can’t
erase, whereas Id is the set of (coordinate, value) that a coalition has not
deleted.

Definition 6 (Trace of hybrid attack). The trace of a descendant d ∈
HDescω(M) is the intersection of all coalitions T ∈ C(M, ω) which can con-
struct d. A coalition T can construct d provided T ∩Bi,z 	= ∅ for all (i, z) ∈ Id.
The intersection of all such coalitions gives all codewords required to construct
the descendant d, i.e.,

trace(d) =
⋂

{T : d∈Hdesc(T )}
T . (6)

It has been noted in [7] that the hybrid attack can be defended against by using
codes described in the next section, which have been designed against the erasure
attack, for slightly smaller coalition sizes. We don’t consider this further in this
paper.
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4 Vector Space Block Design Codes (VSBDCs)

A VSBDC is a type of Resolvable BIBD [12], constructed by using the set of
all (ω − 1)−dimensional quotient vector spaces of a vector space V . For this
construction, we need a method of mapping the partitions of a resolvable design
to coordinates of the codewords.

Definition 7 (Partition Mapping). Let A be a finite set with lexicographical
ordering {a1, a2, . . . , an} and let P be a partition on A with segments {S1, S2, . . . ,
Sm} which ordered by size and lexicographically. The map ζP : A �→ Im =
{1, . . . ,m} is defined by

∀a ∈ A, a ∈ Si ⇐⇒ ζP(a) = i. (7)

Given a partition mapping ζ : A → Im, we can construct a set of codewords or
“partition vectors” from a Resolvable BIBD.

Definition 8 (Partition Vectors). Let A be a finite set with a set of N ordered
partitions B = {P1,P2, . . . ,PN}. A partition vector is a vector of length N gen-
erated from A and B and is denoted vB(a). Each coordinate i of vB(a) specifies
the segment (by index) that contains the element a in the partition Pi ∈ B. i.e,

vB(a) = (ζP1(a), ζP2(a), . . . , ζPN (a)) . (8)

We can construct a partition vector for each a ∈ A. We call the set of all partition
vectors a “block design code”.

Definition 9 (Block Design Code). Given an ordered set of partitions B =
{P1,P1, . . . ,PN} of a finite set A, a block design code denoted BDC(A,B) is the
set of all partition vectors vB(a) where a ∈ A. i.e.,

BDC(A,B) = {vB(a) : a ∈ A} . (9)

The type of block design code we are interested in will be called a “vector space
block design code”.

Definition 10 (Vector Space Block Design Codes). A Vector Space Block Design
Code (VSBDC), denoted BDC(V ,BV,k), is a block design code where the set of
treatments is a vector space V and the block design is the set of quotient vector
spaces BV,k of dimension k.

The set of quotient vector spaces BV,k is a resolvable balanced incomplete block
design (RBIBD). We now give an example of a VSBDC with ω = 3.

Example 2. Let V = Z3
2 . The VSBDC M = BDC(V ,BV,2) is constructed

from the set of all vector subspaces of V with dimension 2, denoted SV,2. The
codewords in BDC(V ,BV,2) are

vB(000) = (1, 1, 1, 1, 1, 1, 1) , vB(001) = (1, 1, 1, 2, 2, 2, 2) ,
vB(010) = (1, 2, 2, 1, 1, 2, 2) , vB(100) = (2, 1, 2, 1, 2, 1, 2) ,
vB(011) = (1, 2, 2, 2, 2, 1, 1) , vB(101) = (2, 1, 2, 2, 1, 2, 1) ,
vB(110) = (2, 2, 1, 1, 2, 2, 1) , vB(111) = (2, 2, 1, 2, 1, 1, 2) .

(10)
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The set AT , defined below, is the V-representation of the set of partition vectors
in the coalition T .

Definition 11. Consider a coalition T of ω codewords from the vector space
block design code BDC(V ,BV,ω−1). Then AT consists of all vectors a in V that
satisfy: AT =

{
a : vBV,ω−1(a) ∈ T , a ∈ V

}
.

We define the partial trace Bi,x as the set which can be used to construct the
descendant, but includes codewords which may not have actually taken part in
the coalition.

Definition 12. Let M be the code BDC(V ,BV,k). We define the partial trace
Bi,x to be the vectors in V that construct the codewords in T instead of the

codewords themselves. i.e., Bi,x =
{
a : v(i)

BV,k
(a) = x, a ∈ V

}
, where v(i)

BV,k
(a)

is the i-th coordinate of the partition vector vBV,k
(a).

We characterize the partial trace below.

Theorem 13. Let M be the vector space block design code BDC(V ,BV,ω−1),
where V = Fn

q . Let T ∈ C(M, ω). The partial trace of ET is the coset generator
[AT ]V . i.e.,

ptrace(ET ) =
⋂

(i,x)∈ET

Bi,x = [AT ]V . (11)

Proof. The erasure profile ET lists all the blocks that contain the coalition AT .
If the coset generator has |[AT ]V | = qω−1 elements, then [AT ]V must be one
of the blocks Bj,z in the block design BV,ω−1. Now, each block in BV,ω−1 is
unique, therefore the erasure profile ET can only contain one pair (j, z), which
corresponds to the coset generator [AT ]V . Thus it follows that:

ptrace(ET ) =
⋂

(i,x)∈ET

Bi,x = Bj,z = [AT ]V . (12)

If |[AT ]V | = qk < qω−1 then it must be a vector subspace of V with dimension k.
Let 〈H〉 = [AT ]V be that vector subspace. Moreover, every block in the design
BV,ω−1 that contains the vector subspace 〈H〉, must also be a vector subspace
of V , since it must contain the zero vector. All the blocks Bi,x that contain 〈H〉
(which themselves are vector subspaces of V) can be expressed as a direct sum

Bi,x = 〈H〉 + 〈Ti,x〉, 〈Ti,x〉 ∩ 〈H〉 = {0}, (13)

where Ti,x extends 〈H〉 to Bi,x. So the set {Bi,x : (i, x) ∈ ET }, is the set of all
vector subspaces in V containing the subspace 〈H〉 with dimension ω − 1. The
intersection of all subspaces Bi,x is⋂

(i,x)∈ET

Bi,x =
⋂

(i,x)∈ET

(〈H〉 + 〈Ti,x〉) = 〈H〉 +
⋂

(i,x)∈ET

〈Ti,x〉 = 〈H〉, (14)

where intersection of all allowable 〈Ti,x〉 is the trivial vector subspace {0}.
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Note that the VSBDC has the desirable property that any coalition of size ω must
have at least one coordinate where all codewords are equal (since every coalition
T must have a non empty erasure profile ET ). This property enables a partial
trace of the descendant which will contain the coalition plus other codewords
(spoof words). We use concatenated codes to get around this problem.

Definition 14 (Concatenated Vector Space Block Design Code). A CVSBDC
M consists of an inner code MI = BDC(FNI

q ,B
F

NI
q ,k

), an outer code MO ⊂
FNO

qNI
and a scalar preserving homomorphism ϕ : FNI

q �→ (FqNI ,+). Its codewords
are constructed as follows:

M =
{
vB
(
ϕ−1(f (1))

)
, . . . ,vB

(
ϕ−1(f (NO))

)
: f ∈MO

}
where B is the set of quotient vector spaces BV,k, and
f = (f (1), f (2), . . . , f (NO)).

We cannot use a linear code as MO as this re-introduces the problem of spoof
words at the outer code level. In [8, 7], we have introduced δ-nonlinear codes–in
the form of modified GRS codes–to get around this problem. These are codes
where the sum of δ or fewer codewords is not a codeword, and are obtained by
applying a special type of permutation polynomial to Generalized Reed Solomon
(GRS) codewords–see [6] for details on GRS codes–which are MDS codes attain-
ing the Singleton bound, and have length N, dimension k and minimum distance
N − k + 1.

Definition 15 (Modified GRS Code). Let X = (x1, x2 . . . , xN ), where xi are
distinct elements of Fq, and let Π : Fq[x] −→ Fq[x]. The Modified Generalized
Reed-Solomon code, denoted by MGRSk(Fq, X,Π), consists of all vectors,

f = (Π(f)(x1), Π(f)(x2), . . . , Π(f)(xN ))) , (15)

where f(x) ranges over all polynomials of degree ≤ k with coefficients from Fq.

The δ-nonlinearity property ensures that the partial trace of the concatenated
code would only contain the coalition T plus other non-codewords which can
be discarded leaving only the coalition–see the concluding section for further
discussion. We give an example of a concatenated vector space block design
code (CVSBDC) below.

Example 3. Let V be the vector space F2
2. There are 3 vector subspaces H1,H2,

H3 of V with dimension 1. The set of all quotient vector spaces with dimension
1, BV,1, is:

BV,1 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨⎪⎩
H1︷ ︸︸ ︷

{00, 01}, {10, 11}

⎫⎪⎬⎪⎭︸ ︷︷ ︸
V/H1

,

⎧⎪⎨⎪⎩
H2︷ ︸︸ ︷

{00, 10}, {01, 11}

⎫⎪⎬⎪⎭︸ ︷︷ ︸
V/H2

,

⎧⎪⎨⎪⎩
H3︷ ︸︸ ︷

{00, 11}, {01, 10}

⎫⎪⎬⎪⎭︸ ︷︷ ︸
V/H3

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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From BV,1, we generate the inner code MI = BDC(V ,BV,1);

MI =
{
vBV,1(00), vBV,1(01), vBV,1(10), vBV,1(11)

}
= {111, 122, 212, 221} .

Here vBV,1(01) = 122 is the partition vector of 01 ∈ V. Now, let MO ⊆ F4
4 be

the outer code with a codeword f = (0, α, 1, α2) (α is a primitive element of F4).
A suitable choice of scalar preserving homomorphism ϕ : F2

2 −→ (F4,+) is:

x ∈ F2
2 ϕ(x) ∈ F22 ϕ(x) as αi

00 0 0
01 1 α0

10 α α1

11 α+ 1 α2

(16)

We construct the concatenated codeword as follows: The first coordinate of f
is f (1) = 0, applying the inverse of ϕ we get the vector 00. The corresponding
partition vector is vBV,1(00) = 111. The second, third and fourth coordinates
give us the partition vectors 212, 122 and 221. The concatenated codeword is
then (111, 212, 122, 221). We can apply this process to all the codewords in MO

to construct M.

Given a concatenated code M, and a descendant d ∈ EDescω(M), what is the
partial trace of the erasure profile? If we view the concatenated code at the inner
level, then the partial trace of the concatenated code is simply the sequence of
partial traces for each inner code segment. We call this the “concatenated partial
trace”.

Definition 16 (Concatenated Partial Trace). Let M be a CVSBDC with outer
code MO and inner code MI . Let T ∈C(M, ω) be a coalition of the concate-
nated code. Let TO be the codewords in MO that generate the concatenated
codewords in T . Let T (i) ∈ C(MI , ω) be the coalition of inner codewords that
are inserted into each codeword of TO at the i-th coordinate. The concate-
nated partial trace of the erasure profile ET denoted Cptrace(ET ), is the se-
quence of NO partial traces for each inner coalition T (i). i.e., Cptrace(ET ) =
(ptrace(ET (1)), . . . ,ptrace(ET (NO))) .

Note that, if the inner code MI is a VSBDC, then by Theorem 13 the concate-
nated partial trace is Cptrace(ET ) =

(
[T (1)]Fn

q
, . . . , [T (NO)]Fn

q

)
. The concate-

nated partial trace is useful for viewing the code at the inner level; at the outer
level, we need to use a “coset image”.

Definition 17 (Coset Image). Consider Fn
q and Fqn . For a given scalar pre-

serving homomorphism ϕ : Fn
q −→ (Fqn ,+) and a given subset A ⊆ Fqn , a coset

image [A]ϕ is [A]ϕ = ϕ
(
[ϕ−1(A)]Fn

q

)
is:

[A]ϕ =

{
a+

∑
b∈A

λb(b− a) : λb ∈ Fq, b ∈ A
}
, for any a ∈ A, (17)

where ϕ−1(A) = {ϕ−1(a) : a ∈ A} ⊂ Fn
q .
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The components λb are over the subfield Fq and not the field Fqn . The coset
image contains ≤ q|A|−1 elements of Fqn . We now show that we can construct
the concatenated partial trace by using a coset image on the outer code MO.

Definition 18 (Coset Generator). Let V be an n–dimensional vector space over
the finite field Fq. Also, let A ⊂ V with v ∈ A. The set defined [A]V,v consists of
all vectors v + 〈A−v〉, where 〈A−v〉 is a vector subspace of V generated by the
span of A−v. The set of vectors [A]V,v is a coset of the vector subspace 〈A−v〉.
Theorem 19. Let M be a CVSBDC as defined in Definition 14. Let T ∈
C(M, ω) be a coalition and let TO and T (i) be as defined in Definition 14. The
coset image [TO]ϕ can generate every partial trace of the erasure profiles ET (i)

via ptrace (ET (i)) = [T (i)]Fn
q

= ϕ−1 (spec([TO]ϕ, i)) .

Proof. The coalitions T (i) are obtained from the spectrum of TO at the i-th
coordinate;

T (i) = ϕ−1 (spec(TO, i)) , 1 ≤ i ≤ NO. (18)

Using the definitions of a coset generator (see Definition 18), a coset image (see
Definition 17) and some algebraic manipulation, we obtain:

[T (i)]Fn
q

=
[
ϕ−1 spec(TO, i)

]
Fn

q

= ϕ−1ϕ
[
ϕ−1 spec(TO, i)

]
Fn

q

= ϕ−1 [spec(TO, i)]ϕ (19)

= ϕ−1 spec([TO]ϕ, i)

This gives the required result.

We now have a coset image [TO]ϕ that can be used to construct the concatenated
partial trace in Definition 16. But for it to be of any use for tracing purposes, we
require that it be the only coset image that constructs the concatenated partial
trace.

Theorem 20. Let MO be a linear code with codelength NO and maximum
sharing sM. For any two coalitions TO, T ′

O ∈ C(M, ω), if the codelength NO >
qωsM and spec([TO]ϕ, i) = spec([T ′

O]ϕ, i) for 1 ≤ i ≤ NO, then [TO]ϕ = [T ′
O]ϕ.

Proof. The coset images [TO]ϕ, [T ′
O]ϕ contain up to qω−1 codewords (see Defini-

tion 17). Let NO > qω−1sM, [TO]ϕ 	= [T ′
O]ϕ and spec([TO]ϕ, i) = spec([T ′

O]ϕ, i)
for 1 ≤ i ≤ NO. Then there must be a codeword v ∈ [TO]ϕ\[T ′

O]ϕ. We immedi-
ately have that share([T ′

O]ϕ,v) = NO. But, since v /∈ [T ′
O]ϕ we can show by a

simple counting argument that share([T ′
O]ϕ,v) ≤ qω−1sM. But NO > qω−1sM

therefore we have a contradiction: it must be concluded that [TO]ϕ = [T ′
O]ϕ.

5 Conclusions and Discussion

We have investigated powerful attacks against fingerprinting schemes used for
securing digital content and described new types of codes which can be used to
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Table 1. Some suitable Permutation Polynomials for δ-Nonlinear Codes. Here F2n is
the alphabet, δ is the nonlinearity threshold, sM is the maximum degree of the MGRS
code, |M| is the number of codewords and ξ(x) is the minimum degree permutation
polynomial found which can be used to construct a δ-nonlinear code, as in Theorem 9
of [8].

F2n δ sM |M| ξ(x)

F24 3 1 28 x6 + α4x5 + α12x3 + α10x2 + x
F25 3 4 225 x3 + x2 + x
F25 4 2 215 x5 + x3 + x
F26 3 4 230 x11 + x10 + x9 + x8 + x3 + x2 + x
F26 5 3 224 x11 + x10 + x9 + x8 + x3 + x2 + x
F27 3 20 2147 x3 + x2 + x
F27 5 7 256 x5 + x4 + x3 + x2 + x
F27 7 3 228 x7 + x6 + x5 + x4 + x3 + x2 + x

defend against such attacks. We have made use of resolvable BIBDs (Balanced
Incomplete Block Designs) in order to construct new code families we call VS-
BDC (Vector Space Block Design) codes. These codes, used with concatenation
techniques, are resistant to narrow, erasure, and as far as experimentally ob-
served, to hybrid attacks.

There are efficient algorithms for decoding Reed Solomon codes, which could
be applied to the δ-nonlinear Generalized Reed Solomon codes. The algorithms
for decoding the BIBD based component of the concatenated codes could be
based on linear algebra operations for computing cosets and subspaces, and thus
have a priori complexity no worse than a small power of the codelength, which
is given by an appropriate q−binomial coefficient. More precisely, if V is an n-
dimensional vector space over the field Fq, the number of vector subspaces with
dimension k, |SV,k|, is given by the q-Binomial Coefficient:

|SV,k| =
[
n
k

]
q

=
k−1∏
i=0

qn−i − 1
qi+1 − 1

, (20)

and a small power–between 2 and 3–of this quantity will determine the maximum
complexity of the operations used–see also Definition 14. It remains an open
problem to obtain more efficient decoding algorithms for the design based codes.

One question raised during the review process of this paper is the complexity
of generating the VSBDCs and the δ-nonlinear codes–which together generate
the CVSBDCs. The VSBDCs can be generated recursively by generating all the
relevant vector subspaces, hence by complexity essentially proportional to the
size of the above q-Binomial coefficient. It has turned out that a set of special
permutation polynomials, which are used to obtain the δ-nonlinear codes can
also be easily generated. More precisely, for the MGRS codes in Definition 15,
we can use the mapping

Π : f(x) �→ ξ(f(x) · x)
x

(21)
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where ξ is a special type of permutation polynomial, in order to preserves the
distance between all modified codewords and obtain the desired δ-nonlinearity
property. We omit the details due to the limitations on space but exhibit a small
table of such polynomials, which are obtained by a simple algorithmic procedure
and after an efficient randomized procedure. See section V in [8] for more details.
Here, we display a table with suitable choices of permutation polynomials to
construct δ-nonlinear codes.

The main contribution of this paper is an explicit–nonrandomized–coding
construction for addressing erasure and other attacks in digital fingerprinting.
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Abstract. We examine the well-known problem of determining the ca-
pacity of multi-dimensional run-length-limited constrained systems. By
recasting the problem, which is essentially a combinatorial counting prob-
lem, into a probabilistic setting, we are able to derive new lower and
upper bounds on the capacity of (0, k)-RLL systems. These bounds are
better than all previously-known bounds for k � 2, and are even tight
asymptotically. Thus, we settle the open question: what is the rate at
which the capacity of (0, k)-RLL systems converges to 1 as k → ∞?
While doing so, we also provide the first ever non-trivial upper bound
on the capacity of general (d, k)-RLL systems.

1 Introduction

A (d, k)-RLL constrained system is the set of all binary sequences in which every
two adjacent 1’s are separated by at least d zeroes, and no more than k 0’s appear
consecutively. The study of these systems was initiated by Shannon [10, 11] who
defined the capacity of a constrained system S as

cap(S) = lim
n→∞

log2 |S(n)|
n

,

where S(n) denotes the number of sequences of S of length exactly n.
Constrained systems are widely used today in all manners of storage systems

[7, 8]. However, the emergence of two-dimensional recording systems brought
to light the need for two-dimensional and even multi-dimensional constrained
systems. A two-dimensional (d, k)-RLL constrained system is the set of all binary
arrays in which every row and every column obeys the one-dimensional (d, k)-
RLL constraint. The generalization to the D-dimensional case is obvious, and we
denote such a system as SD

d,k. Though we consider in this paper only symmetrical
constrains, i.e., the same d and k along every dimension, the results generalize
easily to asymmetrical RLL constraints as well.

In the one-dimensional case it is well known that cap(S1
d,k), for 0 � d � k, is

the logarithm in base 2 of the largest positive root of the polynomial

xk+1 − xk−d − xk−d−1 − · · · − x− 1 .

However, unlike the one-dimensional case, almost nothing is known about the
two-dimensional case, and even less in the multi-dimensional case. In [1], Calkin
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and Wilf gave a numerical estimation method for the capacity of the two-
dimensional (0, 1)-RLL constraint which gives,

0.5878911617 � cap(S2
0,1) � 0.5878911618 .

Their method ingeniously uses the fact that the transfer matrix is symmetric,
but unfortunately, this happens only for the case of (0, 1)-RLL (and by inverting
all the bits, the equivalent (1,∞)-RLL case). Using the same method in the
three-dimensional case, it was shown in [9] that

0.522501741838 � cap(S3
0,1) � 0.526880847825 .

Some general bounds on the capacity were given in [5]. Using bit-stuffing en-
coders, the best known lower bounds on two-dimensional (d,∞)-RLL were shown
in [2]. Amazingly, we still do not know the exact capacity of the
multi-dimensional RLL-constraint except when it is zero [3].

The bounds we improve upon in this work are those of two-dimensional (0, k)-
RLL, k � 2. These are given in the following three theorems:

Theorem 1 (Theorem 3, [5]). For every positive integer k,

cap(S2
0,k) � 1 −

1 − cap(S2
0,1)

�k/2
 .

Theorem 2 ([12]). For all integers k � 8,

cap(S2
0,k) � 1 +

log2(1 − ()k/2*+ 1)2−(�k/2	−1))
()k/2*+ 1)2

.

Theorem 3 (Theorem 7, [5]). For every positive integer k,

cap(S2
0,k) � 1 − 1

k + 1
log2

(
1

1 − 2−(k+1)

)
.

Our new bounds are given in Theorem 6 and Theorem 13. A numerical com-
parison with the previously-best bounds for 2 � k � 10 is given in Table 1.
Furthermore, our lower and upper bounds agree asymptotically, thus settling
the open question of the rate of convergence to 1 of cap(SD

0,k) as k → ∞ by
showing it to be D log2 e

4·2k .
Our approach to the problem of bounding the capacity is to recast the prob-

lem from a combinatorial counting problem to a probability bounding problem.
Suppose we randomly select a sequence of length n with uniform distribution.
Let AS

n denote the event that this sequence is in the constrained system S. Then
the total number of sequences in S of length n may be easily written as

|S(n)| = Pr[AS
n ] · 2n .

It follows that

cap(S) = lim
n→∞

log2 |S(n)|
n

= lim
n→∞

log2(Pr[AS
n ]2n)

n
= lim

n→∞

log2 Pr[AS
n ]

n
+ 1 .
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Table 1. Comparison of lower bounds (LB) and upper bounds (UB) on cap(S2
0,k), for

2 � k � 10. Lower and upper bounds are rounded down and up, respectively, to six
decimal digits.

k LB by [5] LB by [12] LB by Theorem 6 UB by Theorem 13 UB by [5]
2 0.587891 0.758292 0.904373 0.935785
3 0.793945 0.893554 0.947949 0.976723
4 0.793945 0.950450 0.970467 0.990840
5 0.862630 0.976217 0.983338 0.996214
6 0.862630 0.988383 0.990816 0.998384
7 0.896972 0.994268 0.995068 0.999295
8 0.896972 0.943398 0.997155 0.997410 0.999687
9 0.917578 0.943398 0.998583 0.998663 0.999860
10 0.917578 0.981164 0.999293 0.999318 0.999936

This translates in a straightforward manner to higher dimensions as well. By
calculating or bounding Pr[AS

n ], we may get the exact capacity or bounds on it,
which is the basis for what is to follow.

The work is organized as follows. In Section 2 we use monotone families to
achieve lower bounds on cap(SD

0,k) and an upper bound on cap(SD
d,k). While

this method may also be used to lower bound cap(SD
d,∞), the resulting bound

is extremely weak. We continue in Section 3 by deriving an upper bound on
cap(SD

0,k) using a large-deviation bound for sums of nearly-independent random
variables. We conclude in Section 4 by discussing the asymptotics of our new
bounds and comparing them with the case of (d,∞)-RLL.

2 Bounds from Monotone Families

We can use monotone increasing and decreasing families to find new lower bounds
on the capacity of (0, k)-RLL, and a new upper bound on the capacity of (d, k)-
RLL, d � 1. We start with the definition of these families.

Definition 4. Let n > 0 be some integer, and [n] denote the set {1, 2, . . . , n}.
A family F ⊆ 2[n] is said to be monotone increasing if when A ∈ F and A ⊆
A′ ⊆ [n], then A′ ∈ F . It is said to be monotone decreasing if when A ∈ F and
A′ ⊆ A, then A′ ∈ F .

The following theorem is due to Kleitman [6]:

Theorem 5. Let A, B be monotone increasing families, and C, D be
monotone decreasing families. Let X be a random variable describing a
uniformly-distributed random choice of subset of [n] out of the 2n possible sub-
sets. Then,

Pr[X ∈ A ∩ B] � Pr[X ∈ A] · Pr[X ∈ B] , (1)
Pr[X ∈ C ∩ D] � Pr[X ∈ C] · Pr[X ∈ D] , (2)
Pr[X ∈ A ∩ C] � Pr[X ∈ A] · Pr[X ∈ C] . (3)
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We can now apply Kleitman’s theorem to (0, k)-RLL constrained systems:

Theorem 6. For all integers k � 0, cap(S2
0,k) � 2cap(S1

0,k) − 1.

Proof. The constrained system we examine is S = S2
0,k, and with our notation,

AS
n denotes the event that a randomly chosen n× n array is (0, k)-RLL.
We now define two closely related constraints. Let R denote the set of two-

dimensional arrays in which every row is (0, k)-RLL, and C denote the set of
two-dimensional arrays in which every column is (0, k)-RLL. Similarly we define
the events AR

n and AC
n . By definition,

AS
n = AR

n ∩AC
n .

It is easy to verify that both constraints R and C are monotone increasing
families. Hence, by Theorem 5,

Pr[AS
n ] = Pr[AR

n ∩AC
n ] � Pr[AR

n ] Pr[AC
n ] .

It follows that,

cap(S) = lim
n→∞

log2 Pr[AS
n ]

n2 + 1 � lim
n→∞

log2(Pr[AR
n ] Pr[AC

n ])
n2 + 1 . (4)

Now, both Pr[AR
n ] and Pr[AC

n ] may be easily expressed in terms of one-
dimensional constrained systems. An n× n binary array chosen randomly with
uniform distribution is equivalent to a set of n2 i.i.d. random variables for each
of the array’s bits, each having a “1” with probability 1/2. Thus,

Pr[AR
n ] = Pr[AC

n ] =
(
Pr[AS′

n ]
)n

,

where S′ = S1
0,k is the one-dimensional (0, k)-RLL constraint. Plugging this back

into (4) we get

cap(S2
0,k) � lim

n→∞

2 log2 Pr[AS′

n ]
n

+ 1 = 2cap(S1
0,k) − 1 .

��
This is generalized to higher dimensions in the following corollary.

Corollary 7. Let D1, D2 � 1 be integers, then

cap(SD1+D2
0,k ) � cap(SD1

0,k) + cap(SD2
0,k) − 1 .

We note that similar lower bounds may be given for the (d,∞)-RLL constraint,
since such arrays form a monotone decreasing family. However, the resulting
bounds are very weak. We can also mix monotone increasing and decreasing
families to get the following result.

Theorem 8. Let D � 1 be some integer, and k � d also integers, then

cap(SD
d,k) � cap(SD

d,∞) + cap(SD
0,k) − 1 .

Proof. Omitted. ��
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3 New Upper Bounds

In this section we present upper bounds on the capacity of (0, k)-RLL. Unlike
the previous section, these bounds are explicit. For this purpose we introduce
a new probability bound. It is derived from the bound by Janson [4], but by
requiring some symmetry, which applies in our case, we can make the bound
stronger.

Suppose that ξi, i ∈ [n], is a family of independent 0–1 random variables. Let
S ⊆ [n]�k, where [n]�k denotes the set of all subsets of [n] of size at most k. We
then define the following indicator random variables,

IA =

{∏
i∈A ξi A ∈ S ,

0 A 	∈ S .

For A,B ∈ S, we denote A ∼ B if A 	= B and A ∩ B 	= ∅. Let X =
∑

A∈S IA,
and define

Δ =
∑
A

∑
B∼A

Pr[IA = 1 ∧ IB = 1] .

Janson [4] gave the following bound:

Theorem 9. With the setting as defined above, let μ = E(X) =
∑

AE(IA),
then

Pr[X = 0] � e−
μ2

μ+Δ .

Our goal is to use Theorem 9 to show an upper bound on the capacity of
two-dimensional (0, k)-RLL systems. If S(n,m) denotes the number of two-
dimensional (0, k)-RLL arrays of size n×m then by definition,

cap(S2
0,k) = lim

n,m→∞

log2 |S(n,m)|
nm

.

However, it would be more convenient to work in a more symmetric setting.
In a sense, positions which are close enough to the edge of the array are “less
constrained” than others lying within the array. We overcome this difficulty by
considering cyclic (0, k)-RLL arrays.

We say that a binary n × m array A is cyclic (0, k)-RLL if there does not
exist 0 � i � n − 1, 0 � j � m − 1 such that Ai,j = Ai+1,j = · · · = Ai+k,j = 0
or Ai,j = Ai,j+1 = · · · = Ai,j+k = 0, where the indices are taken modulo n and
m respectively. We denote the set of all such n×m arrays as Sc(n,m). The next
lemma shows that by restricting ourselves to cyclic (0, k)-RLL arrays, we do not
change the capacity.

Lemma 10. For all positive integers k,

cap(S2
0,k) = lim

n,m→∞

log2 |Sc(n,m)|
nm

.

Proof. Omitted. ��
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We start by considering a random n × n binary array, chosen with uniform
distribution, which is equivalent to saying that we have an array of n2 i.i.d. 0–1
random variables ξi,j , 0 � i, j � n− 1, with ξi,j ∼ Be(1/2).

For the remainder of this section, we invert the bits of the array, or equiva-
lently, we say that an array is (0, k)-RLL if it does not contain k+1 consecutive
1’s along any row or column. Furthermore, by Lemma 10, we consider only cyclic
(0, k)-RLL arrays. Suppose we define the following subsets of coordinates of the
arrays:

SV = {{(i, j), (i+ 1, j), . . . , (i+ k, j)} | 0 � i, j � n− 1} ,

SH = {{(i, j), (i, j + 1), . . . , (i, j + k)} | 0 � i, j � n− 1} ,

S = SV ∪ SH ,

where all the coordinates are taken modulo n. We now define the following
indicator random variables

IA =
∏

(i,j)∈A

ξi,j for all A ∈ S .

If IA = 1 for some A ∈ S, we have a forbidden event of k + 1 consecutive 1’s
along a row or a column. Finally, we count the number of forbidden events in
the random array by defining X =

∑
A∈S IA. It is now clear that the probability

that this random array is (0, k)-RLL is simply

Pr[A
S2

0,k
n ] = Pr[X = 0] .

It is easy to be convinced that this setting agrees with the requirements of
Theorem 9. All we have to do now to upper bound Pr[X = 0], is to calculate
μ and Δ. We note that X is the sum of 2n2 indicator random variables, so by
linearity of expectation,

μ = E(X) =
1

2k+1 · 2n2 =
n2

2k
,

since each of the indicator random variables has probability exactly 1/2k+1 of
being 1. Calculating Δ is equally easy,

Δ =
∑
A

∑
B∼A

Pr[IA = 1 ∧ IB = 1] = 2n2

(
(k + 1)2

1
22k+1 + 2

k∑
i=1

1
2k+1+i

)

= n2
(

(k + 1)2

22k
+

2
2k

(
1 − 1

2k

))
.

By Theorem 9,

Pr[X = 0] � e−
μ2

μ+Δ = e−
n2

3·2k+(k+1)2−2 ,

which immediately gives us:

cap(S2
0,k) � 1 − log2 e

3 · 2k + (k + 1)2 − 2
. (5)
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The bound of (5) is already better than the best known bounds for k � 2 given
in [5]. But we can do even better by improving the bound of Theorem 9. This
is achieved by assuming some more symmetry than the general setting of the
theorem. Given some A ∈ S ⊆ [n]�k, let XA = IA +

∑
B∼A IB. We define

ΓA =
∑

i

Pr[XA = i | IA = 1]
i

.

If ΓA does not depend on the choice of A ∈ S, we simply denote it as Γ .

Theorem 11. With the setting as defined above, let μ = E(X) =
∑

AE(IA). If
the distribution of XA given IA = 1 does not depend on the choice of A, then

Pr[X = 0] � e−μΓ .

Proof. Omitted. ��

It is obvious that the symmetry requirements of Theorem 11 hold in our case.
So now, in order to apply Theorem 11 we have to calculate Γ , which is a little
more difficult than calculating Δ. Since Γ does not depend on the choice of A,
we arbitrarily choose the horizontal set of coordinates

A = {(0, 0), (0, 1), . . . , (0, k)} .

We now have to calculate Pr[XA = i | IA = 1]. We note that we can partition
the set {B | B ∼ A} into the following disjoint subsets:

{B | B ∼ A} = SHL ∪ SHR ∪ SV,0 ∪ SV,1 ∪ · · · ∪ SV,k ,

where

SHL = {B ∈ SH − {A} | (0, 0) ∈ B} ,

SHR = {B ∈ SH − {A} | (0, k) ∈ B} ,

SV,j = {B ∈ SV | (0, j) ∈ B} , for all 0 � j � k .

We define XHL =
∑

B∈SHL
IB , and in a similar fashion,XHR and XV,j for all 0 �

j � k. Since the indicators for elements from different subsets are independent
given IA = 1 because their intersection contains only coordinates from A, it
follows that XHL, XHR and XV,j , 0 � j � k, are independent given IA = 1.

The distribution of XHL and XHR given IA = 1 is easily seen to be

Pr[XHL = i | IA = 1] = Pr[XHR = i | IA = 1] =

{
1

2i+1 0 � i � k − 1
1
2k i = k

since the 0 closest to A determines the number of runs of 1’s of length k+1. We
denote

f
‖
k (i) = 2k Pr[XHL = i | IA = 1] = 2k Pr[XHR = i | IA = 1] .

For the distribution of XV,j we need the following lemma.
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Lemma 12. Let f⊥k (i) denote the number of binary strings of length 2k+1 with
their middle position a 1, and which contain exactly 0 � i � k+ 1 runs of k+ 1
1’s. Then,

f⊥k (i) =

⎧⎪⎨⎪⎩
22k − (k + 2)2k−1 i = 0
(k − i+ 4)2k−i−1 1 � i � k
1 i = k + 1 .

Proof. Omitted. ��

Using this lemma, we can now say that

Pr[XV,j = i | IA = 1] =
f⊥k (i)
22k

.

Since XA = XHL +XHR +
∑k

j=0XV,j + IA, we have that

Pr[XA = i | IA = 1]

=
∑

iL+iR+i0+...+ik=i−1
0�iL,iR�k

0�i0,...,ik�k+1

Pr[XHL = iL | IA = 1] Pr[XHR = iR | IA = 1]

·
k∏

j=0

Pr[XV,j = ij | IA = 1] .

It follows that

Γ =
∑
i�1

1
i

∑
iL+iR+i0+...+ik=i−1

0�iL,iR�k
0�i0,...,ik�k+1

f
‖
k (iL)f‖k (iR)

22k

k∏
j=0

f⊥k (ij)
22k

. (6)

We can now apply Theorem 11 and get that

Pr[X = 0] � e−n2Γ/2k

,

where Γ is given by (6). This immediately gives us the following theorem.

Theorem 13. Let k � 1 be some integer, then

cap(S2
0,k) � 1 − log2 e

2k
Γ ,

where Γ is given by (6)

We can make the bound of Theorem 13 weaker for small values of k, but more
analytically appealing for an asymptotic analysis. This is achieved by noting
that f⊥k (0)/22k is almost 1 for large values of k.
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Theorem 14. Let k � 1 be some integer, then

cap(S2
0,k) � 1 − log2 e

2k

(
1
2
− 1

2k+1

)
(1 − (k + 2)2−(k+1))k+1 .

Proof. Omitted. ��

We can generalize both Theorem 13 and Theorem 14, and for simplicity, show
just the latter in the following theorem.

Theorem 15. Let D � 2 and k � 1 be some integers, then

cap(SD
0,k) � 1 − D log2 e

2 · 2k

(
1
2
− 1

2k+1

)
(1 − (k + 2)2−(k+1))(D−1)(k+1) .

4 Conclusion

In this work we showed new lower and upper bounds on the multi-dimensional
capacity of (0, k)-RLL systems, as well as a new upper bound on the capacity of
(d, k)-RLL systems. We conclude with an interesting comparison of the asymp-
totes of our new bounds with those of the best previously known bounds. We
examine the rate of convergence to 1 of cap(S2

0,k) as k →∞. The best asymptotic
bounds were given in [5]:

log2 e

2(k + 1)2k
< 1 − cap(S2

0,k) � 4
√

2 log2 e

(k + 1)2k/2 +
8
2k

,

for sufficiently large k. Our bounds, given in Theorem 6 and Theorem 14, show:

log2 e

2k

(
1
2
− 1

2k+1

)
(1 − (k + 2)2−(k+1))k+1 � 1 − cap(S2

0,k) � 2(1− cap(S1
0,k))

for all integers k � 1. As mentioned in [5], the one-dimensional capacity of (0, k)-
RLL converges to 1 when k → ∞ as log2 e

4·2k . Hence, our lower and upper bounds
agree asymptotically and the rate of convergence to 1 of cap(S2

0,k) as k → ∞ is
log2 e
2·2k . In the D-dimensional case this rate becomes D log2 e

4·2k .
It is also interesting to make a comparison with (d,∞)-RLL. While cap(S2

d,∞)
converges to 0 as log2 d

d , just as it does in one dimension, forD-dimensional (0, k)-
RLL the capacity converges to 1 slower than the one-dimensional case by a factor
of D.
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Abstract. This paper compares two approaches to reliable communica-
tion over fading channels using low-density parity check (LDPC) codes.
The particular model considered is the block fading channel with in-
dependent channel realizations. The first approach uses a block inter-
leaver to create independent sub-channels that are encoded using irregu-
lar LDPC codes with rates specified by the appropriate capacity values;
this first approach uses a decision feedback structure wherein decoded
data are used as pilots to estimate the channel prior to the next round of
decoding. The second approach uses a combined graph describing both
the channel and the code to iteratively estimate the channel and decode
data. For comparable channels, it is shown that the decision-feedback
approach provides better performance when a long delay is acceptable,
while the iterative receiver provides better performance when more strin-
gent delay constraints are imposed.

1 Introduction

Modern error correcting codes such as low-density parity-check (LDPC) codes [1]
and turbo codes [2] provide excellent performance over fading channels. In such
systems, the receiver must estimate the characteristics of the fading – i.e., the
channel state information (CSI) – to effectively decode the data. The optimal
approach is to carry out joint channel estimation and decoding; however, the
complexity of optimal joint channel estimation and decoding can be prohibitive.

A popular alternative to joint estimation/decoding is to design iterative re-
ceivers that iteratively estimate the channel and decode the data. An iterative
receiver provides a good approximation to the optimal approach with reasonable
complexity. A unified approach for designing iterative receivers on factor graphs
was proposed by Worthen et. al [5]; this unified approach makes it possible to
employ the iterative sum-product algorithm on factor graphs [3] describing the
iterative receiver. Performance analysis of the resulting receiver is possible by
means of density evolution [4]; this also leads to the design of good codes that are
well-matched to the receiver. Examples of iterative receivers employing LDPC
and turbo codes can be found in [6,7,8]. Although the iterative receiver approach
is suboptimal, it achieves good performance.

More recently, a receiver employing decision feedback based successive decod-
ing has been proposed for channels with memory [9]. This approach decomposes

M. Fossorier et al. (Eds.): AAECC 2006, LNCS 3857, pp. 235–244, 2006.
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a fading channel (or a channel with memory) into a bank of memoryless sub-
channels with a block interleaver, and each sub-channel is protected with an
LDPC code. The receiver is composed of a decoder and a channel estimator.
The LDPC codes are decoded successively, and the decoded symbols are fed
back to the channel estimator, which uses the feedback to estimate the channel
and then decode the LDPC code for the next sub-channel. It has been shown
that this approach is optimal [9]. However, it can incur a long delay in order to
achieve optimal performance.

The goal of this paper is to compare the performance of these two approaches.
The channel model considered in this paper is a block fading channel with inde-
pendent channel realizations between blocks. The transmitted signal is subject to
frequency-flat, time-selective fading with both amplitude fluctuation and phase
rotation. The complex fading coefficient remains constant for T channel uses and
then changes to a new (independent) value for the next T channel uses. (In this pa-
per, we refer to each group of T channel uses over which the channel is constant as
a block.) Neither the transmitter nor the receiver are assumed to know the channel
realization. The effect of a delay constraint is examined for each receiver structure.

2 Channel Model

The receiver produces samples of the matched filter output at the symbol rate.
The equivalent discrete-time complex channel model is given by

yi,k = cixi,k + wi,k, i = 1, 2, . . .N, k = 1, 2, . . . , T, (1)

where the fading coefficients {ci} are i.i.d. complex Gaussian random variables
with distribution ∼ CN (0, 1) and the additive noise {wi,k} are similarly i.i.d.
complex Gaussian with distribution CN (0, N0). Here N0 is the noise variance
per two dimensions. In the equation above, xi,k is the kth transmitted symbol
of the ith block and yi,k is the corresponding received symbol. For simplicity, we
assume binary phase shift keying (BPSK) modulation, so xi,k∈S={+1,−1}.

3 The Successive Decoding Receiver

To transmit data over a block fading channel with coherence time T , the trans-
mitter de-multiplexes the user data into T streams. Each stream is then indi-
vidually encoded using a block code of length N and rate Rk for k = 1, . . . , T .
The kth codeword is denoted xk = [x1,k, . . . , xN,k]T for k = 1, . . . , T . These
codewords are stored column-wise in the following block structure:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 x1,2 · · · x1,k · · · x1,T

x2,1 x2,2 · · · x2,k · · · x2,T

...
...

...
...

xi,1 xi,2 · · · xi,k · · · xi,T

...
...

...
...

xN,1 xN,2 · · · xN,k · · · xN,T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)
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The transmitter sends the data in 2 row by row. We will also use xi,: to denote
the ith row and x:,j to denote the jth columns in (2).

3.1 Estimation and Decoding

The receiver employs a successive decoding strategy that was proposed for chan-
nels with memory in [9]. It operates on the block structure in (2), starting from
the leftmost column and proceeding to the right. The codeword x:,1 is decoded
first, and x:,2 is decoded second with the assistance of the decoded symbols cor-
responding to x:,1. More specifically, the decoded symbols corresponding to x:,1
are used to estimate the channel realizations that affect each symbol in x:,2. This
approach is used to permit decoding to proceed from left to right.

The estimation and the decoding of a codeword are performed sequentially.
Take the kth codeword as an example, where 1 ≤ k ≤ T . At this point, all the
previous k − 1 codewords are decoded, and the decoded symbols have been fed
back to the receiver. First, the receiver estimates the a posteriori probability
(APP) of the ith bit in the kth codeword as

APP(xi,k = a) = P
(
xi,k = a|yi,:, xi,1, · · · , xi,k−1

)
(3)

for a ∈ {+1,−1} and i = 1, . . . , N . In (3), the bits xi,1, . . . , xi,k−1 are treated as
training symbols. After the receiver calculates the log-likelihood ratios (LLRs)
{ξ(1, k), . . . , ξ(N, k)}, where

ξ(i, k) = log
APP(xi,k = +1)
APP(xi,k = −1)

, (4)

the decoder uses the LLRs to decode the kth LDPC codeword.

3.2 Optimality

The receiver structure described above is optimal, i.e., it is information lossless
if the decisions fed back at each stage are correct. This was shown in [9] for any
channels with memory. The rest of this section will briefly illustrate the result
for the block fading channel.

The main idea is that the block transmission structure effectively decomposes
the original block fading channel into a bank of T sub-channels. These sub-
channels are memoryless, but they interact with each other via the decision
feedback. Thus, the bits in a codeword are transmitted over a memoryless sub-
channel, and separate estimation and decoding is optimal. To see this, we write
the constrained channel capacity of a block fading channel as

C =
1
TN

I(x1, . . . ,xT ;y1, . . . ,yT ) (5)

where N is assumed to be sufficiently large. Now define the kth sub-channel as
follows: it has a scalar inputs xi,k, a vector output yi,: and a vector of decision
feedbacks [xi,1, . . . , xi,k−1]T . The capacity of the kth sub-channel is given by

Ck =
1
N
I
(
xk;y1, . . . ,yT

∣∣∣[x1,1, . . . , x1,k−1]T , . . . , [xT,1, . . . , xT,k−1]T
)
. (6)
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From the chain rule of mutual information, we have

C =
1
T

T∑
k=1

Ck (7)

which means the original channel can be decomposed into T sub-channels with-
out loss of mutual information. Furthermore, due to the independent nature of
the original channel, the sub-channel is memoryless, i.e.,

Ck =
1
N

N∑
i=1

I(xi,k;yi,:|xi,1, . . . , xi,k−1) (8)

Finally, the APP value in (3) is a sufficient statistics for the sub-channel. There-
fore, the estimation and decoding scheme in Section 3.1 is optimal.

Intuitively, the block fading channel with coherence time T and i.i.d. inputs
can be viewed as a multiple access channel with T independent users and a vec-
tor channel output. Using this analogy, the successive interference cancellation
scheme, which is optimal for a multiple access channel, becomes a successive
decoding scheme, wherein the decision feedback serve as training symbols.

3.3 The APP Calculation

This section describes how the APP in (3) can be computed. Since the techniques
for estimating the APP values are the same for any row of (2), we will only
consider the first row and drop the time index i for the rest of the paper. In
what follows, xk

1 is used to denote the vector [x1, x2, . . . , xk], and yk
1 is defined

similarly. Since

P (xk = a|yT
1 , x

k−1
1 ) ∝ P

(
yT
1 |xk−1

1 , xk = a
)
, (9)

we will consider the computation of likelihood function (9). Minimum mean
square error (MMSE) channel estimation uses the decision feedback to obtain
an MMSE estimate of the channel state and then enumerates all possible values
of the unknown (or future) symbols to obtain the probability 9. Mathematically,

P
(
yT
1 |xk

1
)

=
∑

xT
k+1∈ST −k

P (xT
k+1)P

(
yT
1 |xT

1
)

=
∑

xT
k+1∈ST −k

P (xT
k+1)P (yk−1

1 |xk−1
1 )P (yT

k |yk−1
1 , xT

1
)

(10)

∝
∑

xT
k+1∈ST −k

P (yT
k |yk−1

1 , xT
1
)

(11)

=
∑

xT
k+1∈ST −k

1
|πΣ| exp

(
−
(
yT

k − xT
k ĉ
)H
Σ−1(yT

k − xT
k ĉ
))

(12)

where from linear estimation theory [10], the conditional mean and variance are
given by
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ĉ =
1

k − 1 +N0

k−1∑
i=1

yix
∗
i and (13)

Σ =
N0

k − 1 +N0
xT

k (xT
k )H +N0IT−k+1. (14)

3.4 Channel Capacity

Using the simplified notation, the constrained capacity of sub-channel k is

Ck = I(xk; yT
1 |xk−1

1 ). (15)

From the definition of mutual information and entropy, (15) becomes

Ck = H(x) − E[− logAPP(xk)], (16)

where the APP value can be computed using (9) and (12). The expectation in
(16) can be evaluated using Monte Carlo integration.

Due to the increasing number of training symbols, the sequence of sub-channel
capacity is monotonic increasing, i.e.,

C1 < C2 < · · · < CT . (17)

The kth sub-channel is coded by a particular LDPC codes of rate Rk. Here, we
set the code rate to be equal to the sub-channel capacity, i.e.,

Rk = Ck, for k = 1, . . . , T . (18)

This paper used irregular LDPC codes optimized for the AWGN channel as
component codes.

4 The Iterative Receiver

This section derives an algorithm that carries out iterative channel estimation
and LDPC decoding on a joint factor graph. Since the channel is a complex
fading channel, pilot symbols are used to assist in estimating the channel states.
The basic idea of the iterative receiver is to permit the channel state estimator
and the iterative decoder to share preliminary information about the transmitted
symbols; after several iterations of LDPC decoding, the decoded symbols are fed
back to the channel estimator as additional pilots to help refine the channel
estimation.

4.1 Factor Graph

The system factor graph is shown in Figure 1. The LDPC decoder is represented
by a bipartite graph in which the variable nodes V represent transmitted symbols
and the factor nodes C represent parity checks. One pilot symbol (designated
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P

LDPC edge permutation

C

S

T

V

cl−1 ci cl+1

μTV

μST (cl)μT S(cl)

Pr(cl)

Fig. 1. A fraction of factor graph for a block fading channel with LDPC code, where
channel states are complex fading coefficients and independent with each other

xl0 for all l ∈ {1, 2, . . . , N}) is transmitted in each fading block; the value of this
pilot symbol is known to the receiver and is not part of any LDPC codeword.
The joint graph is obtained by concatenating the code graph and the channel
graph. In the channel graph, the channel states are denoted by variable nodes S.
The factor nodes Tlk = f(ylk|xlk, cl) represent the input-output characteristic
of the channel. The factor nodes P represent the prior information about the
distribution of the channel state.

In the following, we use notation CN (x,m, σ2) to represent the complex Gaus-
sian distribution of x with mean m and variance σ2 per two dimensions. The
message from the channel to the decoder and the message from the decoder to
the channel are denoted by μTlk→Vlk

(ylk) and μVlk→Tlk
(ylk), respectively; they

represent log-likelihood ratios associated with xlk. In contrast, the messages in
the channel graph are probability density functions (PDFs). The message from
Tlk to Sl is μTlk→Sl

(cl), which is the PDF of ylk given the channel state cl:

μTlk→Sl
(cl) = Pr(ylk|cl, x̂lk) ∝ CN (ylk, clx̂lk, σ

2
n) ∝ CN (cl, ylk/x̂lk, σ

)
n. (19)

Here x̂lk represents the decisions made by the channel decoder for the transmit-
ted symbols.

The message from Sl to Tlk is the PDF of cl given the pilots, and is denoted
by μSl→Tlk

(cl). Note that, in the first channel estimation iteration, only one
pilot symbol is sent for each fading block; however, in the subsequent iterations,
additional pilots are obtained by taking hard decisions about the transmitted
symbols from the LDPC decoder. Finally the message from Pl to Sl is basically
the prior distribution of the channel state cl, which is Pr(cl) = CN (cl, 0, 1).

4.2 The Iterative Sum-Product Algorithm

Once the messages on the combined factor graph have been defined, it is straight-
forward to derive the message passing algorithm that iteratively estimates the
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channel and decodes the LDPC code. Because LDPC decoding via message pass-
ing is well understood and widely known, this section will emphasize the aspects
of the receiver dealing with channel estimation.

The iterative algorithm works as follows. First, the channel estimator obtains
the initial estimate of the channel using the pilot symbols. The LLRs of the
channel (μTlk→Vlk

(ylk)) are then calculated based on this channel estimate and
are provided to the LDPC decoder. After several LDPC decoding iterations,
new LLRs (μVlk→Tlk

(ylk)) are calculated by the decoder, and hard decisions
(x̂lk, k 	= 0) of the transmitted symbols are obtained by the channel estimator
based on μVlk→Tlk

(ylk). The following hard decision rule is applied,

x̂lk =

⎧⎪⎨⎪⎩
1, μVlk→Tlk

> T

−1, μVlk→Tlk
< −T

0, otherwise.
(20)

If T is sufficiently large, then the code symbols with messages with absolute
values that are greater than T are highly reliable, and the resulting non-zero
values of x̂lk can be treated as ”pseudo-pilots” to help re-estimate the channel.

According to the sum-product rule, the message produced by a state variable
node is the product of the input messages, Thus, the message from the channel
state node Sl to the factor node Tlk is

μSl→Tlk
(cl) = Pr(cl)

j=N−1∏
j=0,j �=k,x̂lj �=0

μTlj→Sl
(cl)

= CN (cl, 0, 1)
j=N−1∏

j=0,j �=k,x̂lj �=0

CN (cl, ylk/x̂lk, σ
2
n)

∝ CN (cl, m̂c, σ̂
2
c ). (21)

The expressions for m̂c and σ̂2
c can be obtained by applying the product rule

for Gaussian PDFs (see Appendix A of [3]) and are omitted here. Also by the
sum-product rule, the message produced by a factor node is the product of the
input messages with the local factor, marginalized for the destination variable.
Thus the message out of the factor node Tlk is

Pr(ylk|xlk) =
∫

cl

μSl→Tlk
(cl)Pr(ylk|cl, xlk)dcl

=
∫

cl

CN (cl, m̂c, σ̂
2
c )CN (ylk, xlkcl, σ

2
n)dcl

∝ CN (ylk, xlkm̂c, σ̂
2
c + σ2

n). (22)

Equation (22) comes from the the integration rule for Gaussian PDFs. (See
Appendix of [3]). Since the messages from the channel to the decoder are LLRs,
we have
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μTlk→Vlk
(ylk) = log

Pr(ylk|xlk = 1)
Pr(ylk|xlk = −1)

=
2Re{y∗lkm̂c}
σ̂2

c + σ2
n

. (23)

5 Simulation Results and Conclusions

We first considered a block fading channel with block length T = 5.In this case,
the successive decoding receiver uses five codes of rates R1, . . . , R5 set to 0,
0.4948, 0.5643, 0.5917, 0.6058, respectively. The overall rate is 0.4513. For the
iterative receiver, a code of rate 0.5641 is used, so taking into account the pilots
the overall rate is also 0.4513. The channel capacity in terms of Eb/N0 is 5.6
dB. To compare the performance of the two receivers, the overall delay is set
to be the same. We set the delay to be 200k, 50k, and 6k bits, respectively. For
the successive receiver, the codeword length of each sub-channel is 40k, 10k and
1.2k. For the iterative receiver, the codeword length is 160k, 40k, and 4.8k.

The results of the T = 5 block fading channel are plotted in Fig. 2. When the
delay is large, the successive decoding scheme outperforms the iterative receiver,
while at a short delay, the iterative receiver performs better. Intuitively, when a
long delay is acceptable, the successive decoding receiver, proven to be optimal
by preserving channel mutual information under the assumption that the fed
back decoded symbols are correct, will always performs at least as well as the
iterative receiver. On the other hand, since the iterative receiver uses a single
code, as compared to T codes used in the successive decoding receiver, the block
length of the LDPC code in the iterative receiver is T times that of constituent
codes in the successive receiver. (Taking into account the one-bit training symbol
for each fading block in the iterative receiver, the exact ratio of the component
codeword length is T − 1.) When the over all delay is relatively short, this
difference in codeword length has significant impact on system performance, as
clearly demonstrated in the 6k bits delay curve in Fig. 2. In a moderate delay
constraint of 50k bits, the performances of the two approaches are rather close.

We also simulated a T = 10 block fading channel. In the simulation, the
successive receiver uses 10 codes of rates 0, 0.5177, 0.5869, 0.6109, 0.6229, 0.6302,
0.6364, 0.6397, 0.6430 and 0.6453. The iterative receiver uses a code of rate
0.5014. The overall rate of both system is 0.4513. The performance comparison
for delay constraints of 10k, 100k and 200k bits results are shown in Fig. 3. The
results are similar to the case of T = 5. Note that the performance gap between
the iterative and successive receiver increases to around 1 dB in the long delay
case. This is due to the fact that if delay is fixed, longer channel memory means
less channel diversity, which degrades the performance of the iterative receiver.

In conclusion, the decision-feedback based successive receiver has better ca-
pacity approaching performance if long delay is acceptable, while iterative re-
ceiver is more robust to delay constraints. Currently we are looking at the com-
parison of two approaches on more practical channel models. We are also investi-
gating the possibility of combining the two design philosophies into one receiver
design, that takes the advantages of both approaches.
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Fig. 2. Performance comparison of successive and iterative schemes for a T = 5 inde-
pendent block fading channel under different delay constraints
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Fig. 3. Performance comparison of successive and iterative schemes for a T = 10
independent block fading channel under different delay constraints
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Abstract. We study the design of structured Tanner codes with low
error-rate floors on the AWGN channel. The design technique involves
the “doping” of standard LDPC (proto-)graphs, by which we mean Ham-
ming or recursive systematic convolutional (RSC) code constraints are
used together with single-parity-check (SPC) constraints to construct a
code’s protograph. We show that the doping of a “good” graph with
Hamming or RSC codes is a pragmatic approach that frequently results
in a code with a good threshold and very low error-rate floor. We focus
on low-rate Tanner codes, in part because the design of low-rate, low-
floor LDPC codes is particularly difficult. Lastly, we perform a simple
complexity analysis of our Tanner codes and examine the performance
of lower-complexity, suboptimal Hamming-node decoders.

1 Introduction

An LDPC code, as first proposed by Gallager in [1], is defined as an (n, k) linear
block code with a low density of non-zero elements in its parity check matrix H .
The m × n matrix H can be represented as a bipartite graph (Tanner graph)
with n variable nodes and m single-parity-check (SPC) nodes. A generalization
of these codes was suggested by Tanner in [2], for which subsets of the vari-
able nodes obey a more complex constraint than an SPC constraint, such as a
Hamming code constraint. There are at least two advantages to employing con-
straint nodes with constraints more complex than a simple parity check. First,
more complex constraints tend to lead to larger minimum distances. Second,
because a complex constraint node can encapsulate multiple SPC constraints,
the resulting Tanner graph will contain fewer edges so that deleterious graphical
properties are more easily avoided. Both of these advantages lead to a lower
error-rate floor. One successful instance of a Tanner code is the turbo product
code (TPC) [3]. Another special case of Tanner codes was studied in [4] and
[5], where the constraint nodes correspond to Hamming codes. Also, in [6] codes
are built by applying BCH or Reed-Solomon code constraints to variable node

� This work was funded by NASA-JPL grant 1264726 and by the University of
Bologna, Progetto Pluriennale.
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subsets, and in [7] recursive systematic convolutional (RSC) codes are used as
constraints. The RSC-LDPC codes in this work are more general in the sense
that different constraint nodes can be used to construct codes and the graph
structure is generally more flexible.

Liva and Ryan in [8], [9] present a more general case of Tanner codes in [5]
called Hamming-doped LDPC codes (HD-LDPCC). This generalization allows
more than one type of constraint node in the graph as well as irregularity among
the node degrees. The doping refers to the fact that the design approach involves
inserting Hamming constraint nodes into a Tanner graph or a protograph [10]
in place of selected SPC nodes. (A protograph will be defined in Section III.)
In this paper, we consider the doping of protographs using either Hamming
nodes or RSC nodes; we will call the latter code type RSC-LDPC codes. When
referring generically to such a code, we will use doped LPDC code and Tanner
code interchangeably. We will also refer to a code that resides at a constraint
node as a component code (in contrast with Tanner’s “subcode”), and we use
constraint node and component-code node interchangeably.

We demonstrate via computer simulations that both HD-LDPC and RSC-
LPDC codes exhibit very low error floors, even for code lengths less than 1000
bits. Of course, since our doping technique replaces SPC nodes of code rate
p/(p+1) by lower-rate codes, the resulting doped LDPC codes are low-rate codes.
Thus, our code design technique provides an approach to designing structured,
short (or long), low-rate graphical codes with very low floors, a difficult task if
one were restricted to standard LDPC codes [11].

The paper proceeds as follows. In the next section, we present an overview
of the construction of Hamming- and RSCC-doped LDPC codes based on pro-
tographs. Section III presents four example code family designs. In Section 4, we
discuss the iterative decoders which are used to decoder the doped LDPC codes,
and analyze their complexity. In Section 5, we present simulation results of the
codes we have designed.

2 Overview of the Design Technique

The graph of a Tanner code has n variable nodes and mc constraint nodes. The
connections between the set of variable nodes and constraint nodes V and C is
given by anmc×n adjacency matrix Γ . For an LDPC code, the adjacency matrix
Γ and the parity-check matrix H are identical. For a Tanner code, knowledge of
the parity-check matrices of the component codes is also required.

In this paper, we consider only Hamming or RSC component codes in addition
to the more common SPC component codes. Because the parity-check matrices
for SPC and Hamming codes are straightforward, we discuss only the parity-
check matrices for (possibly punctured) rate-1/2 finite-length RSC codes which
will be used to dope graphs. For a memory-ν, rate-1/2 RSC code with generator
polynomials g1(D) = g10 + g11D+ · · ·+ g1νD

ν and g2(D) = g20 + g21D + · · ·+
g2νD

ν , the corresponding parity-check matrix is

H(D) =
[
g2(D) g1(D)

]
. (1)
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Because we consider finite block lengths, the binary parity-check matrix for
such a code is given by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g20 g10 0 0 0 0 · · ·
g20 g10 g20 g10 0 0 · · ·
...

... g20 g10

g2ν g1ν

...
...

0 0 g2ν g1ν

0 0 0 0
. . .

...
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

To find the rate of a doped graph with n variable nodes and mc constraint
nodes, note that each component-code contributes (1 − Ri)ni redundant bits,
where ni and Ri are the length and rate of the ith component-code, respectively.
Consequently, the total number of redundant bits in the code cannot exceed
m =

∑mc

i=1(1 − Ri)ni, and so the number of information bits in the code will
be at least n − m. This implies that the code rate satisfies Rc ≥ 1 − m

n , with
equality when the check equations are independent.

The parameters in standard LDPC code design which most affect code per-
formance are the degree distributions of the node types, the topology of the
graph (e.g., to maximize girth), and the minimum distance, dmin. For the design
of Tanner codes, decisions must also be made on the types and multiplicities
of component codes to be used. The choice of component code types and their
multiplicities is dictated by the code rate and complexity requirements. Regard-
ing complexity, we consider only Hamming codes for which the number of parity
bits is (1 − Ri)ni ≤ 4 and only RSC codes for which the number of trellis
states is at most eight. Note that this constraint on the Hamming code fam-
ily limits the number of states in the time-varying BCJR trellis [12] to be at
most 16.

As for LDPC codes, the topology of the graph for a Tanner code should
be free of short cycles. Obtaining optimal or near-optimal degree distributions
for the graphs of Tanner codes can proceed as for LDPC codes, using EXIT
charts [13], for example. In this paper, we instead follow the pragmatic design
approach introduced in [8], [9], which starts with a protograph that is known
to have a good decoding threshold and replaces selected SPC nodes with either
Hamming or RSC nodes. Although we provide no proof, the substitution of
these more complex nodes tends to increase minimum distance as shown by
simulations. Further, it leads to a smaller adjacency matrix since multiple SPC
nodes are replaced by a single component code node. The implication of a smaller
adjacency matrix is that short cycles and other deleterious graphical properties
are more easily avoided.
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3 Example Doped LDPC Code Designs

A protograph [14], [10] is a relatively small bipartite graph from which a larger
graph can be obtained by a copy-and-permute procedure: the protograph is
copied q times, and then the edges of the individual replicas are permuted among
the replicas (under restrictions described below) to obtain a single, large graph.
Of course, the edge connections are specified by the adjacency matrix Γ .

Note that the edge permutations cannot be arbitrary. In particular, the nodes
of the protograph are labeled so that if variable node A is connected to constraint
node B in the protograph, then variable node A in a replica can only connect
to one of the q replicated B constraint nodes. Doing so preserves the decoding
threshold properties of the protograph. A protograph can possess parallel edges,
i.e., two nodes can be connected by more than one edge. The copy-and-permute
procedure must eliminate such parallel connections in order to obtain a derived
graph appropriate for a parity-check matrix.

It is convenient to choose an adjacency matrix Γ as an Mc×nc array of q× q
weight-one circulant matrices (some of which may be the q × q zero matrix).
We will call each row of permutation matrices a block row which we observe
has q rows and n = qnc columns. We note that there is one block row for each
constraint node of the protograph. We note also that the number of nonzero
permutation matrices in a block row is simultaneously equal to the degree of its
corresponding constraint nodes and the common length of the nodes’ component
codes.

Since there is one matrix Hi for each block row of Γ (for the ith component
code), we need only discuss the ith block row. Let Hi be mi × ni. Then for each
row in the ith block row, replace the ni ones in the row by the corresponding
ni columns of Hi. This expands the ith block row from q × n to qmi × n. (For
the special case of an SPC constraint node, mi = 1 and the row block is not
expanded.) Once this process has been applied to each block row, the resulting
parity-check matrix H for the Tanner code will be

∑
i qmi × n. Because Γ is

block circulant, the resulting matrix H can also be put in a block-circulant form
(thus, the Tanner code will be quasi-cyclic) [9].

For the case when Γ is not an array of circulants, theH matrix can be obtained
via a process analogous to the one above. Γ in this case corresponds to a random
permutation on the edges of the protograph replicas, but two constraints are
taken in considerations: the protograph structure and the girth of the graph.

In the remainder of this section, we present several HD-LDPC and RSC-
LDPC codes whose design relies on doping protographs. In Section 5 we present
selected simulation results for these codes on the AWGN channel.

Code 1: Rate-1/6 HD-LDPC Code. The doped protograph for a rate-1/6
HD-LDPC code is shown in Figure 1. The protograph displays a single infor-
mation bit, u0, five parity bits p0 to p4, two SPC nodes, and a (6,3) shortened
Hamming code. The initial protograph that we doped was a rate-1/4 ARA pro-
tograph [15], but with minor modification.
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Fig. 1. Rate-1/6HD-LDPCprotograph
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T

2

T RSC

1

Fig. 2. Rate-1/6 RSC-LDPC protograph

The (6,3) Hamming code was selected because it leads to the targeted rate of
1/6, it has a low-complexity BCJR decoder, and its H matrix-based graph is free
of 4-cycles so that belief propagation is an option. Note also that the addition
of the Hamming node has the effect of amplifying the minimum distance of
the eventual code (after copying and permuting). This is because there will be
q copies of the Hamming node whose codewords have a minimum distance of
three. Section 5 presents an example code based on this protograph together
with its performance (a pseudo-random adjacency matrix is used).

Code 2: Rate-1/6 RSC-LDPC Code. The idea of adding a component code
node to amplify weight (hence, dmin) led us to consider RSC nodes, particularly
since RSC codes produce large weight for low-weight inputs. Since a rate-1/2
RSC code can have any even length, we must consider in the design of an RSC-
doped protograph what this length should be. Figure 2 accommodates an un-
terminated (6T , 3T ) RSC component code, where T is a design parameter, so
that the overall protograph has T inputs and 6T outputs. The 6T outputs are
represented by all of the circles in Figure 2, some of which are obscured; the RSC
node in Figure 2 has 3T inputs and 3T outputs. Notice that this figure contains
T equivalent sub-protographs. In the copy-and-permute procedure, we ignore the
fact that these were formerly protographs, and apply the copy-and-permute rules
only to the overall protograph.

We point out that codes based on this protograph are turbo-like [16] in the
sense that copies of the information bits are permuted and distributed over
T accumulators, and then part of their outputs together with the remaining
information bits are permuted and fed to the RSC code encoder. One major
difference, however, is that the present code uses multiple short RSC code blocks
rather than one or two long RSC code blocks. The rate-1/6 RSC-LDPC codes
presented in Section 5 utilize (pseudo-)random adjacency matrices.

v1v0 v2 v13 v14

H2H1

Fig. 3. Rate-1/2 HD-LDPC proto-
graph

1RSC

RSC2

0u 0p 1p 2p 3p 1u 4p p5 0u 0p 1p 2p 3p 1u 4p p5

1 8

Fig. 4. Rate-1/4 RSC-LDPC protograph
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Code 3: Rate-1/2 HD-LDPC Code. The protograph in Figure 3 corresponds
to a rate-1/2 HD-LDPC code. It consists of two (15,11) Hamming component
codes and 15 variable nodes. One of the protograph’s variable nodes is punctured
to achieve the desired rate. Further, the two code-components are not identical.
Specifically,

H1 = [M1 M2] =

⎡⎢⎢⎢⎣
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

⎤⎥⎥⎥⎦ , (3)

and H2 = [M2 M1], where the definitions of M1 and M2 are evident. The ben-
efit of permuting the bits of identical component codes was pointed out by
Tanner [2].

A rate-1/2 (2044,1022) Tanner code can be constructed from the
protograph of Figure 3 as follows. First, make q = 146 total replicas of the
protograph. This yield a graph with n=(15)(146)=2190 bit nodes and mc =
292 check nodes. The number of parity bits for the code is m = 292(15− 11)
= 1168 so that the resulting code is (2190,1022). For the code presented in
Section 5, Γ is an array of q × q circulants, in which case, the code quasi-
cyclic. A rate-1/2 (2044,1022) quasi-cyclic Tanner code can be obtained by
puncturing the first 146 bits of each codeword (corresponding to the first col-
umn of circulants of Γ ).

Code 4: Rate 1/4 RSC-LDPC Code. As depicted in Figure 4, we can
obtain a rate-1/4 RSC-LDPC protograph which resembles the protograph of
Figure 3, with two different rate-1/2 RSC nodes (of length 48) used in place of the
Hamming nodes. Note that the two RSC component-codes form 48 parity check
equations, which necessitate the existence of 64 variable nodes in the protograph
in order to achieve a rate-1/4 code. Moreover, the number of information bits
among these 64 bits is 16 and each 64-bit word must satisfy these 48 check
equations. In Figure 4, we divided the variable nodes into eight similar groups
(enclosed in the dash boxes), with six connections to each RSC code. Each group
contains two information bits, u0 and u1, and six parity bits, p0 to p5, which are
ordered in a sequence relevant to the decoder.

The rate-1/2 RSC component codes have two different polynomial sets; one
has polynomials (17, 15)8 and the other has polynomials (3, 2)8. Assuming that
both have unterminated trellises; the resultant code has rate 1/4. However,
we have to terminate one of the two component codes to obtain good perfor-
mance. (Terminating both of them also works, but at the cost of code rate.)
In this code, the (17, 15)8 RSC code trellis has been terminated. Since ν = 3
and the rate is 1/2 for this component code, 6 code bits are related to these
termination bits.

From Figure 4, the last six bits of each of the RSC component codes include
two information bits. Consequently, trellis termination process reduces the rate
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from 16/64 to 14/64. In order to obtain rate 1/4, we puncture eight of the 64
bits, four degree-one variable nodes from each RSC code.

Finally, we constructed a (16352,4088) RSC-LDPC code by making 292 copies
of the above protograph. A block-circulant adjacency matrix was used in our
simulations. In summary, n = 18 688, mc = 584, Mc = 2, and q = 292.

4 Doped-LDPC Code Iterative Decoder

For LDPC codes in this paper, we used the standard sum-product algorithm
(SPA). For the Tanner codes which have more complex constraint nodes, a soft-
input soft-output (SISO) decoder is used to compute the soft-output messages.
The choice of the SISO decoder for non-SPC constraint codes depends on the
code type. For RSC codes we use the BCJR decoder [17].

In HD-LDPC codes, the Hamming constraints can be replaced by their
equivalent SPC equations. However, except for the (6,3) shortened Hamming
code, the large number of 4-cycles the resultant graph degrades the perfor-
mance of the SPA decoder. Alternatively, for the Hamming nodes, we can use
the BCJR decoder applied to the BCJR trellis [12]. We also consider the mod-
ified Chase algorithm [18] and the cyclic-2 pseudo-maximum likelihood (PML)
decoder [19].

The modified Chase and cyclic-2 PML decoders are both SISO list-based
decoders. Cyclic-2 has an advantage over modified Chase in term of complexity
as it uses a list that refers to nearby codewords, which are independent of its
input, resulting in fewer addition operations. The complexity reduction factor
from using either of these decoders instead of the BCJR decoder depends on
the number of the states in the code’s trellis. As an example, in the decoding
of 107 codewords of the (32, 26) extended Hamming code, we observed that the
cyclic-2 decoder was 9 times faster than BCJR decoder, and the modified Chase
decoder was 4.5 times faster than BCJR.

Lastly, to gain insight on the decoding complexity of the HD-LDPC and
RSC-LDPC codes compared with that of standard regular LDPC we consider
the following rate 1/6 codes. The first is an HD-LDPC code constructed fromW
copies of the protograph in Figure 1. The second is an RSC-LDPC code based
on one copy of the protograph in Figure 2, using the RSC code polynomials
(5, 7)8. The last code is an LDPC code derived from the previous HD-LDPC
code, where the Hamming constraint is replaced by its SPC constraints.

The number of additions per iteration are 131W , 50W, and 20W for HD-
LDPC, RSC-LDPC, and LDPC codes, respectively. This calculation is based on
the following (η is the relevant block length, Ns,total is the total number of trellis
states in the finite-length trellis): (1) For a standard LDPC codes, the number
of additions equals to the number of ones in its parity-check matrix. (2) The
number of additions in the HD-LDPC BCJR is given by 2Ns,total +4η. (3) For
the RSC-LDPC BCJR, the number of additions is 2Ns,total +5η/2 because the
number of stages in a rate-1/2 RSC trellis is half the block length, but it has to
compute two values at each stage; hence, 5 instead of 4.
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5 Simulation Results

In this section we present several simulation results for different doped-LDPC
codes. First, we designed a (600, 100) HD-LDPC code based on the protograph
in Figure 1 and three (600, 100) RSC-LDPC codes based on the protograph in
Figure 2. The three RSC-LDPC codes correspond to three different values of the
parameter T : T = 2, 4, and 8. All of these codes were constructed using random
permutations on the edges of their protographs, but two constraints are taken
into consideration: the protograph structure and the girth of the graph. The
progressive edge growth construction in [20] is used to give the required girth,
which is eight for all loops that have only SPC nodes. On the other hand, loops
that include Hamming or RSC nodes can be of length less than eight.

A comparison between the frame error rate (FER) curves of these codes and
the (600,100) random coding bound (RCB) is presented in Figure 5. The iterative
decoder described above was used, where BCJR decoders are used to decode the
Hamming and RSC component codes. The maximum number of iterations is
Imax = 50 and 20 error events were collected at each Eb/N0 value on each curve,
except for the point at 4.5 dB of the T = 8 RSC-LDPC curve where only three
error events occurred during the decoding of 7.26 × 108 codewords. Note that
the floor for almost every code is quite low, even though the code length is 600.
Note also the lowest floor occurs for the T = 8 RSC-LDPC code, which shows
no evidence of a floor down to FER ≈ 10−9. This code is about 1.3 dB from the
random coding bound at FER=10−4.

Figure 6 shows the error rate performance curves of the (2044, 1022) quasi-
cyclic HD-LDPC code. The Hamming component codes were decoded using the
BCJR decoder and the overall decoder employed a maximum of Imax = 50
iterations. The code performance is within 1 dB of the random coding bound
and has no floor down to FER ≈ 5 × 10−8.

The performance of the rate-1/4 RSC-LDPC code (Imax = 20) constructed
in Section 2 is presented in Figure 7. Its performance is compared to that of
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the quasi-cyclic repeat-accumulate code (QCRA) in [21] as well as the random
coding bound. The curves show that our code is superior to the QCRA code at
low Eb/N0 values. But at higher Eb/N0 values, the QCRA code has a slightly
better FER than the RSC-LDPC. We noticed that by increasing Imax from 20 to
50 in RSC-LDPC code, the FER at Eb/N0 =0.8 dB reduced to around 2×10−6.

Finally, we examined the performance of a (2048, 1024) HD-LDPC code,
constructed from the (32, 26) extended Hamming code, using the BCJR decoder,
the Chase decoder (radius 6), and the cyclic-2 PML decoder. Note in Figure 8
that the performance curves of the modified Chase and the BCJR decoders are
almost the same, and about 0.5 dB better than that of the cyclic-2 PML decoder.
On the other hand, cyclic-2 PML decoder is about twice as fast as the Chase
decoder and about nine times as fast as the BCJR decoder.
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Abstract. This paper is the first part of a sequence of two papers that present
algebraic constructions of quasi-cyclic LDPC codes for AWGN, binary random
and burst erasure channels. In this paper, a class of quasi-cyclic LDPC codes for
both AWGN and binary random erasure channels is constructed based on finite
fields and special vector representations of finite field elements.

1 Introduction

LDPC codes, discovered by Gallager in 1962 [1], were rediscovered and shown to form
a class of Shannon capacity approaching codes in the late 1990’s [2, 3]. Ever since
their rediscovery, design, construction, decoding, efficient encoding, and applications
of these codes in digital communication and storage systems have become focal points
of research. Many methods for constructing these codes have been proposed. Based on
the methods of construction, LDPC codes can be classified into two general categories:
(1) random-like codes [4, 5] that are generated by computer search based on certain
design guidelines and required structural properties of their Tanner graphs [6]; and (2)
structured codes that are constructed based on algebraic and combinatorial tools [7, 8,
9, 10, 11, 12, 13, 14, 15, 16].

Most of the proposed constructions of LDPC codes are for the AWGN channel,
however only a few of them for other types of channels. In this and a succeeding papers,
we present two algebraic methods for constructing quasi-cyclic (QC) LDPC codes for
AWGN, binary random and burst erasure channels. QC-LDPC codes have encoding
advantage over the other types of LDPC codes. They can be encoded with simple shift-
registers with linear complexity [17]. It has been shown that well designed QC-LDPC
codes decoded with iterative decoding perform very well over the AWGN channel and
close to the Shannon theoretical limit [10, 14]. In this and next papers, we show that
well designed QC-LDPC codes decoded with iterative decoding also perform well over
binary random and burst erasure channels.
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A binary regular LDPC code [1] is defined as the null space of a sparse parity-check
matrix H over GF(2) with the following structural properties: (1) each row has constant
weight ρ; (2) each column has constant weight γ; (3) no two rows (or two columns)
have more than one 1-component in common; and (4) both ρ and γ are small compared
with the code length. H is said to be (γ,ρ)-regular and the code given by the null space
of H is called a (γ,ρ)-regular LDPC code. Property (3) is referred to as the column-row
(RC) constraint. The RC-constraint ensures that: (1) the minimum distance of the code
is at least γ+1; and (2) the Tanner graph of the code is free of cycles of length 4 [7]. An
LDPC code is said to be irregular if its parity-check matrix has varying column weights
and/or varying row weights. A QC-LDPC code is given by the null space of an array
of sparse circulants [7, 10, 14].

The performance of an LDPC code decoded with iterative decoding is measured by
its bit-error probability, block-error probability, error-floor and rate of decoding conver-
gence, collectively. Structured LDPC codes in general have a lower error-floor which
is important in digital communication and storage systems, where very low error rates
are required. Structured LDPC codes with large minimum distances can be constructed
much easier than computer generated random-like LDPC codes.

The performance of an LDPC code over the AWGN channel with iterative decoding
depends on a number of code structural properties besides its minimum distance. One
such structural property is the girth of the code that is defined as the length of the
shortest cycle in the code’s Tanner graph. For an LDPC code to perform well over
the AWGN channel with iterative decoding, its Tanner graph must not contain short
cycles. The shortest cycles that affect code performance the most are cycles of length
4. Therefore, cycles of length 4 must be prevented in LDPC code construction for the
AWGN channel. For an LDPC code to perform well over the binary random erasure
channel, its Tanner graph must also be free of cycles of length 4 [18, 19].

2 LDPC Codes for the Binary Random Erasure Channel

For transmission over the binary random erasure channel, a symbol, 0 or 1, is either cor-
rectly received with probability 1−p or erased with probability p (called erasure proba-
bility), and there is no transmission error. The output of the binary random erasure chan-
nel consists of three symbols, 0, 1, and ?, where the symbol ”?” denotes a transmitted
symbol being erased, called an erasure. Suppose a codeword x = (x0, x1, . . . , xn−1)
from a binary code C of length n is transmitted and y = (y0, y1, . . . , yn−1) is the cor-
responding received sequence. Let E = {j1, j2, . . . , jt} be the set of locations in y with
0 ≤ j1 < j2 < . . . < jt < n, where the transmitted symbols are being erased. Let
[n] � {0, 1, . . . , n−1}. Define Ē � [n]\E . Then Ē is the set of locations in y where the
transmitted symbols are correctly received, i.e., yi = xi for i ∈ Ē . The set E displays
the pattern of erased symbols in y and is called an erasure pattern. Decoding y is to
determine the value of each erasure in E . An erasure pattern E is said to be recoverable
(resolvable or correctable) if the value of each erasure in E can be uniquely determined.

Consider an LDPC code C of length n given by the null space of a J × n sparse
matrix H. Then a binary n-tuple x = (x0, x1, . . . , xn−1) is a codeword in C if and only
if xHT = 0. Suppose a codeword x is transmitted and y = (y0, y1, . . . , yn−1) is the
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corresponding received sequence. Let E = {j1, j2, . . . , jt} be the erasure pattern con-
tained in y. Let Hε be the submatrix that consists of the columns of H corresponding
to the locations of the erased symbols given in E and Hε̄ be the submatrix that con-
sists of the columns of H corresponding to the locations of the correctly received code
symbols in Ē . Let yε denote the subsequence that consists of the erased symbols in y
and yε̄ denote the subsequence that consists of the known symbols in y at the locations
given in Ē . The symbols in yε are unknown. For y to be a codeword in C, we must have
yHT = 0. This constraint can be put in the form:

yεH
T
ε = yε̄H

T
ε̄ . (1)

The right-hand side of (1) is known and can be computed from yε̄ and Hε̄. The left-hand
side of this equation (or yε̄) is unknown. Then decoding y is to solve (1). An iterative
method for solving (1) was proposed in [18].

Let h1, h2, . . . ,hJ be the rows of H. For 1≤ i≤J , let hi = (hi,0, hi,1, . . . , hi,n−1).
Then a codeword y = (y0, y1, . . . , yn−1) must satisfy the condition, si � y0hi,0 +
y1hi,1 + . . .+ yn−1hi,n−1 = 0 for 1 ≤ i ≤ J , which is called a check-sum. The code
symbol yj is said to be checked by the sum si if hi,j = 1, i.e., yj is included in the sum
si. Then yj can be determined from other code bits that are checked by hi as follows:

yj =
n−1∑

k=0,k �=j

ykhi,k. (2)

For each erased position jl in an erasure pattern E = {j1, j2, . . . , jt} with 1 ≤ l ≤ t,
if there exists a row hi in H that checks only the erased symbol yjl

and not any of the
other t − 1 erased symbols in E , then it follows from (2) that the value of each erased
symbol in E can be determined by the correctly received symbols in Ē as follows:

yjl
=
∑
k∈Ē

ykhi,k. (3)

Such an erasure pattern is said to be resolvable in one step (or one iteration). However,
there are erasure patterns that are not resolvable in one step but resolvable in multiple
steps iteratively. Given an erasure pattern E , we first determine the values of those erased
symbols that can be resolved in one step using (3). Then we remove the known erased
symbols from E . This results in a new erasure pattern E1 of smaller size. Next we
determine the values of erased symbols in E1 that are resolvable using (3). Removing
the known erased symbols from E1, we obtain an erasure pattern E2 of size smaller than
that of E1. We repeat the above process iteratively until either all the erased symbols in
E are resolved or an erasure pattern Em is obtained such that no erasure in Em can be
resolved using (3). In the latter case, some erasures can not be recovered.

The above decoding process is iterative in nature and can be formulated as an algo-
rithm [18]. To initialize the decoding process, we first set k = 0 and E0 = E . Then we
execute the following steps iteratively:

(1) Determine Ek. If Ek is empty, stop decoding, otherwise go to Step 2.
(2) Form Hεk

, Hε̄k
, yεk

, and yε̄k
.
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(3) Compute yε̄k
HT

ε̄k
.

(4) Find the rows in Hεk
such that each contains only one 1-component. Determine

the erasures in Ek that are checked by these rows. Determine the values of these
erasures by application of (3) and go to Step 5. If there is no row in Hεk

that
contains only one 1-component, stop decoding.

(5) Remove the erasures resolved at the step 4 from Ek. Set k = k+1 and go to Step 1.

If decoding stops at Step 1, all the erasures in the erasure pattern E are resolved and
the decoding is successful. If decoding stops at Step 4, some erasures in E can not be
recovered.

The performance measure of an LDPC code over the binary random erasure chan-
nel is the error probability. Di et. al. [18] have derived the threshold for regular LDPC
codes with given Tanner degree distribution pair (γ, ρ) (or column and row weight pair
of a (γ,ρ)-regular parity-check matrix) using the above iterative decoding algorithm. The
threshold is a small probability ε(γ, ρ) associated with an ensembles of regular LDPC
codes whose Tanner graphs have degree distribution pair (γ,ρ). The implication of thresh-
old ε(γ, ρ) is as follows: over all binary random erasure channels with erasure probability
p smaller than ε(γ, ρ), information can be reliably transmitted by using a sufficiently long
LDPC code with degree distribution pair (γ, ρ). Reliable transmission of information is
not possible if the erasure probability p is larger than the threshold ε(γ, ρ).

The performance of an LDPC code over the binary random erasure channel is deter-
mined by the stopping sets of its Tanner graph T [18]. Let V be a set of variable nodes
in T and S be the set of check nodes in T such that each check node in S is connected
to at least one variable node in V . The nodes in S are called the neighbors of the nodes
in V . A set V of variable nodes is called a stopping set of T if each check node in the
neighbor check set S of V is connected to at least two nodes in V . If an erasure pattern
E corresponds to a stopping set in the Tanner graph of an LDPC code, then a check-
sum that checks an erasure in E also checks at least one other erasure in E . As a result,
no erasure in E can be determined with Eq. (3) (or Eq. (1)) and E is an irrecoverable
erasure pattern.

A set Q of variable nodes in T may contain many stopping sets. It is clear that: (1)
the union of two stopping sets in Q is also a stopping set in Q; and (2) the union of
all the stopping sets in Q gives the maximum stopping set in Q. A set Vssf of variable
nodes in T is said to be stopping-set-free (SSF) if it does not contain any stopping set.
The following theorem [18] characterizes the significance of stopping sets for correct-
ing erasures: Suppose an LDPC code C is used for correcting erasures using iterative
decoding. Let y be a received sequence that contains an erasure pattern E . Then the era-
sures contained in the maximum stopping set of E cannot be recovered. This theorem
says that any erasure pattern E is recoverable if it is SSF.

Let B be a stopping set of minimum size in the Tanner graph of an LDPC code,
called a minimal stopping set (not unique). If the code symbols corresponding to the
variable nodes in B are being erased, it follows from the above theorem that B forms an
irrecoverable erasure pattern of minimum size. Therefore, for random erasure correction
with iterative decoding, it is desired to construct codes with largest possible minimal
stopping sets in their Tanner graphs. A good LDPC code for erasure correction must
have no or very few small stopping sets. A stopping set always contains cycles. In [19],
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it has been proved that the size of a minimal stopping set of a Tanner graph with girth
4 is two. The size of a minimal stopping set of a Tanner graph with girth 6 is γ + 1 and
is 2γ for girth 8, where γ is the degree of a variable node (or the column weight of the
parity-check matrix of the code). Hence for iterative decoding of an LDPC code over
the binary random erasure channel, the most critical cycles in the code’s Tanner graph
are cycles of length 4. Therefore, in code construction for the binary random erasure
channel, cycles of length 4 must be avoided in the Tanner graph of a code. It is proved
in [20] that for a code with minimum distance dmin, it must contain a stopping set of
size dmin. Therefore, in the construction of a code for erasure correction, we need to
keep its minimum distance large. For a regular LDPC code whose parity-check matrix
has column weight γ and satisfies the RC-constraint, the size of a minimal stopping set
in the code’s Tanner graph is at least γ + 1.

3 A Class of QC-LDPC Codes Constructed Based on Finite Fields

Consider the Galois field GF(q) where q is a power of a prime. Let α be a primitive
element of GF(q). Then α−∞ � 0, α0 = 1, α, . . . , αq−2 form all the elements of
GF(q) and αq−1 = 1. The q − 1 nonzero elements of GF(q) form the multiplicative
group of GF(q) under the multiplication operation. For each nonzero element αi with
0 ≤ i ≤ q − 2, we form a (q − 1)-tuple over GF(2), z(αi) = (z0, z1, . . . , zq−2),
whose components correspond to the q − 1 nonzero elements of GF(q), where the ith
component zi = 1 and all the other q− 2 components are equal to 0. This (q− 1)-tuple
z(αi) is referred to as the location vector of αi with respective to the multiplicative
group of GF(q). We call z(αi) the location-vector of αi. The location-vectors of two
different nonzero elements of GF(q) are different. The location vector of the 0 element
of GF(q) is defined as the all-zero (q − 1)-tuple, (0, 0, . . . , 0). Let β be a nonzero
element in GF(q), then the location-vector z(αβ) of αβ is the cyclic-shift (one place
to the right) of the location-vector z(β) of β. Form a (q − 1) × (q − 1) matrix A over
GF(2) with the location-vectors of β, αβ, . . . , αq−2β as rows. Then A is a circulant
permutation matrix.

Form the following (q − 1) × (q − 1) matrix over GF(q):

M =

⎡⎢⎢⎢⎣
w0
w1
...

wq−2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
α0 − 1 α− 1 · · · αq−2 − 1
α− 1 α2 − 1 · · · αq−1 − 1

...
...

. . .
...

αq−2 − 1 αq−1 − 1 · · · α2(q−2) − 1

⎤⎥⎥⎥⎦ . (4)

Matrix M has the following structural properties: (1) any two rows (or two columns)
differ in all positions; (2) all the entries in a row (or a column) are different elements in
GF(q); and (3) each row (or column) contains one and only one zero element.

Lemma 1. For 0 <= i, j, k, l < q − 1 with i 	= j, the two (q − 1)-tuples αkwi and
αlwj can not have more than one position with identical components, i.e., they differ in
at least q − 2 positions.

Proof. Suppose there are two different positions, say s and t with 0 ≤ s, t < q − 1,
where αkwi and αlwj have identical components. Then αk(αi+s − 1) = αl(αj+s − 1)
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and αk(αi+t−1) = αl(αj+t−1). These two equalities imply that either i = j or s = t
that contradicts the assumptions that i 	= j and s 	= t. This proves the theorem.

For each row wi of M given by (4) with 0 ≤ i < q − 1, we form the following
(q − 1)× (q − 1) matrix over GF(q) with wi, αwi, . . . , α

q−2wi as rows:

Mi =

⎡⎢⎢⎢⎣
wi

αwi

...
αq−2wi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
αi − 1 αi+1 − 1 · · · αi+q−2 − 1
α(αi − 1) α(αi+1 − 1) · · · α(αi+q−2 − 1)

...
...

. . .
...

αq−2(αi − 1) αq−2(αi+1 − 1) · · · αq−2(αi+q−2 − 1)

⎤⎥⎥⎥⎦ .
(5)

We label the column of Mi from 0 to q− 2. We readily see that: (1) any two rows differ
in every position, except the (q−1−i)th position, where they both have the 0 element of
GF(q); and (2) the q− 1 entries of each column of Mi form the q− 1 nonzero elements
of GF(q), except the entries of the (q + 1 − i)th column, which are all zeros.

Replacing each entry in Mi by its location-vector, we obtain a (q−1)×(q−1)2 matrix
over GF(2), Bi = [Ai,0Ai,1 . . .Ai,q−2], which consists of a row of q−1 (q−1)×(q−1)
square submatrices, where Ai,j is formed with the location-vectors of the q − 1 entries
of the jth column of Mi, α

i+j − 1, α(αi+j − 1), . . . , αq−2(αi+j − 1), as rows. All the
submatrices of Bi are (q−1)×(q−1) circulant permutation matrices, except Ai,q−1−i,
which is a (q − 1) × (q − 1) zero matrix. All the circulant permutation matrices in Bi

are different. Form the following (q− 1)× (q − 1) array of (q− 1)× (q − 1) circulant
permutation and zero matrices:

H =

⎡⎢⎢⎢⎣
B0
B1
...

Bq−2

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A0,0 A0,1 · · · A0,q−2
A1,0 A1,1 · · · A1,q−2

...
...

. . .
...

Aq−2,0 Aq−2,1 · · · Aq−2,q−2

⎤⎥⎥⎥⎦ , (6)

which is a (q − 1)2 × (q − 1)2 matrix over GF(2) with both column and row weight
q− 2. It follows from Lemma 1 and the structural properties of matrices M and Mi that
H satisfies the RC-constraint.

For any pair of positive integers with 1 ≤ γ, ρ < q, let H(γ, ρ) be a γ × ρ sub-
array of H. H(γ, ρ) is a γ(q − 1) × ρ(q − 1) matrix over GF(2) which also satisfies
the RC-constraint. If H(γ, ρ) does not contain zero submatrices of H, it has constant
column and row weights γ and ρ, respectively. The null space of H(γ, ρ) gives a (γ, ρ)-
regular QC-LDPC code Cqc of length ρ(q − 1), rate at least (ρ − γ)/ρ and minimum
distance at least γ + 1, whose Tanner graph has a girth of at least 6. Since H(γ, ρ) is
an array of permutation matrices, no odd number of columns can be added to the zero
column vector 0, and hence the minimum distance of Cqc must be even. Consequently,
the minimum distance of Cqc is at least γ + 2 for even γ and γ + 1 for odd γ. Since
the girth of the Tanner graph of Cqc is at least 6, the size of a minimal stopping set in
the Tanner graph is at least γ + 1 [19]. If H(γ, ρ) contains some zero submatrices of
H, then H(γ, ρ) has two column weights, γ − 1 and γ, and possibly two row weights
ρ− 1 and ρ. In this case, the null space of H(γ, ρ) gives a near-regular QC-LDPC code
with minimum distance at least γ for even γ and at least γ + 1 for odd γ. The size of a
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minimal stopping set in the code’s Tanner graph is either at least γ or γ + 1. The above
construction gives a class of QC-LDPC codes whose Tanner graph have girth at least 6.

4 An Example

In the following, we use an example to illustrate the method of construction of QC-
LDPC codes described in Section III and to demonstrate the performances of a code
over the AWGN and binary random erasure channels. For the AWGN channel, the code
is decoded with the sum-product algorithm (SPA) [3,4,7], and its performance is com-
pared with the Shannon limit. For the binary random erasure channel, the code is de-
coded with the iterative decoding algorithm given in Section II and its performance is
compared with the threshold ε(γ, ρ) for the degree pair (γ,ρ) of its Tanner graph. We set
the maximum number of decoding iterations to 100. We also assume BPSK signaling.

Let GF(73) be the field for code construction. Using this field, we can construct
a 72 × 72 array H of 72 × 72 circulant permutation and zero matrices. Set γ = 6
and ρ = 72. We take a 6 × 72 subarray H(6, 72) from array H (the first 6 rows of
submatrices of H). Each of the first 6 columns of submatrices of H(6, 72) contains a
single 72 × 72 zero matrix. Hence H(6, 72) is a 432 × 5184 matrix over GF(2) with
constant row weight 71 and two column weights, 5 and 6. The null space of H(6, 72)
gives a (5184, 4752) QC-LDPC code with rate 0.917. The performance and the rate
of decoding convergency of this code over the AWGN channel are shown in Figure 1.
We see that the decoding of this code converges very fast. At the BER of 10−6, the
performance gap between 5 iterations and 100 iterations is within 0.2dB. At BER of
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given in Section 4 over the AWGN channel
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Fig. 3. Performance of the (5184,4752) QC-LDPC code given in Section 4 over the binary random
erasure channel

10−6 with 100 iterations, the code performs 1.3 dB from the Shannon limit. The error-
floor of this code is estimated below the BER of 10−25 and the block-error rate (BLER)
of 10−22 as shown in Figure 2 (using the method given in [21]). The estimated minimum
distance of this code is 19. The error performance of this code for the binary random
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erasure channel is shown in Figure 3. At the BER of 10−6, the code performs 0.002
from the threshold ε(6, 72) = 0.0528. Figures 1 to 3 demonstrates that the (5184,4752)
QC-LDPC code constructed based on GF(73) performs well on both the AWGN and
binary erasure channels.

5 Conclusion

In this paper, we have presented a method for constructing a class of QC-LDPC codes
based on finite fields and location-vector representations of finite field elements. The
Tanner graphs of the codes in this class have girth of at least 6. For a given finite field,
a family of QC-LDPC codes with various lengths, rates, minimum distances and sizes
of minimal stopping sets can be constructed. The proposed construction of QC-LDPC
codes may be regarded parallel to the construction of BCH codes [22]. A QC-LDPC
code was constructed to show that it performs very well over both the AWGN and bi-
nary random erasure channels with iterative decoding. It has a very low error-floor. In a
succeeding paper, we will use the RC-constrained arrays of circulant permutation ma-
trices constructed based on finite fields together with a masking technique to construct
QC-LDPC codes for AWGN, binary random and burst erasure channels.
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Abstract. This paper is the second part of a sequence of two papers that present
several algebraic methods for constructing quasi-cyclic (QC) LDPC codes for
AWGN, binary random and burst erasure channels. In the first paper, we pre-
sented a class of QC-LDPC codes for both the AWGN and binary random era-
sure channels. The construction of this class of QC-LDPC codes is based on finite
fields and location vector representations of finite field elements. In this paper, we
presented two other algebraic methods for constructing QC-LDPC codes for the
AWGN, binary random and burst erasure channels.

1 Introduction

This paper is the second part of a sequence of two papers devoted in construction of
QC-LDPC codes for three types of channels, namely the AWGN, binary random and
burst erasure channels. In the first paper [1], we presented a method based on finite
fields and location vector representations of field elements to construct RC-constrained
arrays of circulant permutation matrices. From these RC-constrained arrays of circulant
permutation matrices, we constructed a class of QC-LDPC codes for both the AWGN
and binary random erasure channels. In this paper, we use these arrays and a masking
technique to construct QC-LDPC codes for all three types of channels mentioned above.

2 Construction of QC-LDPC Codes by Masking

Consider the RC-constrained arrays of circulant permutation matrices constructed in the
first paper. These arrays are highly structured and their component circulant permuta-
tion matrices are densely packed. The density of an array can be reduced by replacing a
set of circulant permutation matrices by zero matrices. We referred to this replacement
of circulant permutation matrices by zero matrices as masking [2,3]. Masking results in
a new array whose Tanner graph has fewer edges and hence has fewer short cycles and
possibly larger girth.
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Consider a γ × ρ array H(γ, ρ) = [Ai,j ] of (q − 1)× (q − 1) circulant permutation
matrices constructed based on the Galois field GF(q). The masking operation can be
mathematically formulated as a special matrix product. Let D(γ, ρ) = [di,j ] be a γ× ρ
matrix over GF(2). Define the following matrix product:

M(γ, ρ) = D(γ, ρ) ⊗H(γ, ρ) = [di,jAi,j ], (1)

where di,jAi,j = Ai,j for di,j = 1 and di,jAi,j = O (a (q− 1)× (q− 1) zero matrix)
for di,j = 0. In this product operation, a set of permutation matrices in H(γ, ρ) is
masked by the set of 0-entries of D(γ, ρ), We call D(γ, ρ) the masking matrix, H(γ, ρ)
the base matrix (or array), and M(γ, ρ) the masked matrix (or array). The distribution
of the circulant permutation matrices in the masked matrix M(γ, ρ) is identical to the
distribution of the 1-entries in the masking matrix D(γ, ρ). The masked matrix M(γ, ρ)
is an array of circulant permutation and zero matrices. Since the base array H(γ, ρ)
satisfies the RC-constraint, the masked array M(γ, ρ) also satisfies the RC-constraint
regardless of the masking matrix D(γ, ρ). Hence, the Tanner graph of M(γ, ρ) has a
girth of at least 6. If the girth of the masking matrix D(γ, ρ) is g ≥ 6, the girth of the
Tanner graph of the masked matrix M(γ, ρ) is at least g. If the size of a masking matrix
is not very large, it is quite easy to construct masking matrices with girth, 8 to 12, either
by computer search or using the algorithm given in [4, 5].

The null space of the masked matrix M(γ, ρ) gives a QC-LDPC code, whose Tanner
graph has a girth of at least 6. If the masking matrix D(γ, ρ) is a regular matrix, then the
null space of M(γ, ρ) gives a regular QC-LDPC code, otherwise it gives an irregular
QC-LDPC code. Masking is very effective for constructing long LDPC codes, regular
or irregular. The performance of an LDPC code constructed by masking depends on the
choice of the masking matrix. How to design masking matrices to optimize the perfor-
mance of codes is a challenging research problem that needed to be studied. Regular
masking matrices can be constructed using algebraic or combinatorial methods. An ir-
regular masking matrix can be constructed by computer search based on the variable-
and check-node degree distributions of a code graph derived by the evolution of the
probability densities of the messages passed between the two types of nodes as pro-
posed in [6].

Example 1. In this example, we construct three regular QC-LDPC codes using the
masking technique presented in this section. For code construction, we use the prime
field GF(257). Based on this field, we construct a 256× 256 array H of 256× 256 cir-
culant permutation matrices. We choose three pairs of integers, (γ, ρ)’s, as follows: (1)
γ = 8 and ρ = 32; (2) γ = 8 and ρ = 64; and (3) γ = 8 and ρ = 128. Based on these
choices of (γ, ρ)’s, we form three subarrays, H(8, 32), H(8, 64), and H(8, 128), of H
as the base arrays for masking. In forming these arrays, we avoid the inclusion of zero
matrices in H. Next we design three regular masking matrices, D(8, 32), D(8, 64), and
D(8, 128), which are rows of four, eight, and sixteen 8×8 circulants, respectively, each
circulant having both column and row weights 4. The first rows (called the generators)
of the circulants in each masking matrix are given in Table 1. Masking the three base
arrays with the designed masking matrices, we obtain three masked matrices, M(8, 32),
M(8, 64), and M(8, 128). The null spaces of these masked matrices give three regu-
lar QC-LDPC codes that are: (8192, 6145), (16384, 14337), and (32768, 30721) codes
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Table 1. Generators of circulants in the masking matrices of Example 1

D(8, 32) d1 = (01101010) d2 = (10101010)
d3 = (11001100) d4 = (00110110)

D(8, 64) d1 = (10011010) d2 = (11011000)
d3 = (00111010) d4 = (01100110)
d5 = (01111000) d6 = (11100010)
d7 = (11010010) d8 = (01010110)

D(8, 128) d1 = (10100100) d2 = (01101010)
d3 = (10101100) d4 = (10100110)
d5 = (01011100) d6 = (10111000)
d7 = (01010110) d8 = (01110010)
d9 = (10010110) d10 = (01011010)
d11 = (00011110) d12 = (11000110)
d13 = (00111010) d14 = (01011010)
d15 = (00111010) d16 = (11001100)
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Fig. 1(a). Performances of the three regular QC-LDPC codes given in Example 1 over the AWGN
channel

with rates 0.7501, 0.8750, and 0.9375, respectively. Their performances on the AWGN
and binary random erasure channels are shown in Figures 1(a) and 1(b), respectively.
We see that they perform well on both channels. For example, at the BER of 10−6, the
(32768, 30721) code performs 0.65 dB from the Shannon limit for the AWGN channel
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and 0.009 from the threshold ε(4, 64) = 0.0482 for the degree distribution pair (4, 64)
for the binary random erasure channel. //

An irregular LDPC code is given by the null space of a sparse matrix H with vary-
ing column weights and/or varying row weights. Consequently, its Tanner graph T
has varying variable-node degrees and/or varying check-node degrees. The degree dis-
tributions of these two type of nodes are expressed in terms of two polynomials [6],
v(X) =

∑dv

i=1 viX
i−1 and c(X) =

∑dc

i=1 ciX
i−1, where vi and ci denote the fractions

of variable- and check-nodes in T with degree i, respectively, dv and dc denote the max-
imum variable- and check-node degrees, respectively. Since the variable- and check-
nodes of T correspond to the columns and rows of the parity-check matrix H, v(X)
and c(X) also give the column and row weight distributions of H. It has been shown
that the error performance of an irregular LDPC code depends on the variable- and
check-node degree distributions of its Tanner graph [6] and Shannon limit approaching
codes can be designed by optimizing the two degree distributions based on density evo-
lution. In code construction, once the degree distributions v(X) and c(X) have been
derived, a code graph is constructed by connecting the variable-nodes and check-nodes
with edges based on the degree distributions. Since the selection of edges in the con-
struction of a code graph is not unique, edge selection is carried out in a random manner
by computer search. During the edge selection process, effort must be made to ensure
that the code graph does not contain short cycles. Once a code graph is constructed,
the corresponding parity-check matrix H is formed based on the edges that connect
the variable- and the check-nodes of T . The null space of H gives a random irregular
LDPC code.
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Irregular QC-LDPC codes can be constructed based on masking an array of circulant
permutation matrices. First we design the degree distributions, v(X) and c(X), of the
variable- and check-nodes of the Tanner graph of a code with desired rate R based on
density evolution. Then choose proper γ, ρ, and GF(q) that give the desired code length
and rate R (or close to the desired code length and rate). The condition γ ≥ dv and
ρ ≥ dc must be met. By computer search, we construct a masking matrix D(γ, ρ) with
column and row weight distributions identical (or close to) v(X) and c(X). Construct
a base array H(γ, ρ) of circulant permutation matrices using the method given in part-
I [1]. Masking the base array H(γ, ρ) with D(γ, ρ), we obtain a masked matrix M(γ, ρ)
with column and row weight distributions identical (or close to) v(X) and c(X). Then
the null space of the masked matrix gives a QC-LDPC code whose Tanner graph has
degree distributions identical (or close to) v(X) and c(X). This masking construction
not only gives an irregular QC-LDPC code that can be efficiently encoded but also
simplifies the code construction significantly. Since the Tanner graph of the base array
is already free of cycles of length 4, the Tanner graph of the resultant code is also
free of cycles of length 4. However, in random construction, a large random bipartite
graph based on the degree distributions must first be constructed. In the process of
constructing a code graph by computer, effort must be made to avoid cycles of length 4.

Example 2. Suppose we want to construct an irregular QC-LDPC code of length equal
or close to 1013 = 8196 with rate about 7/8 based on the degree distributions, v(X) =
0.09375X+0.0625X2+0.84375X3 and c(X) = 0.25X28+0.5X29+0.25X30. First
we use the field GF(28) to construct an RC-constrained 255×255 array H of 255×255
circulnat permutation matrices. The largest degrees in v(X) and c(X) are 4 and 31,
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respectively. We set γ = 4 and ρ = 32. Choose a 4 × 32 subarray H(4, 32) from H,
avoiding the zero matrices in H. H(4, 32) is a 1020×8160 matrix with column and row
weights, 4 and 32, respectively. Next we construct a 4×32 masking matrix D(4, 32) with
column and row weight distributions identical to v(X) and c(X). Masking H(4, 32)
with D(4, 32), we obtain a 1020× 8160 masked matrix M(4, 32) with column and row
weight distribution identical to v(X) and c(X). The null space of M(4, 32) gives a
(8160, 7140) irregular QC-LDPC code with rate 0.875. The performance of this code
over the AWGN channel is shown in Figure 2. At the BER of 10−6, the code performs
0.9 dB from the Shannon limit. //

3 LDPC Codes for Binary Burst Erasure Channels

There are binary erasure channels over which erasures cluster in bursts. Such channels
are called burst erasure channels. An erasure pattern E is called an erasure-burst of
length l if the erasures in E are confined to l consecutive locations, the first and last
of which are erasures. Erasure bursts occur in recording and fading channels. In this
section, we consider designing LDPC codes for correcting erasure-bursts.

Let x = (x0, x1, · · · , xn−1) be a nonzero n-tuple over GF(2). The first (or the left-
most) 1-component of x is called the leading-1 of x and the last (or the right-most)
1-component of x is called the trailing-1 of x. If x has only 1-component, then the
leading-1 and trailing-1 of x are the same. A zero-span of x is defined as a sequence
of consecutive zeros between two 1-components. The zeros to the right of the trailing-1
of x together with the zeros to the left of leading-1 of x also form a zero-span, called
the end-around-zero-span. The number of zeros in a zero-span is called the length of
the zero-span. Given a nonzero binary n-tuple x, we can determine all its zero-spans
and compute their lengths. A zero-span in x with the longest length is called a maximal
zero-span of x (not unique). Consider the binary 16-tuple, x = (0010001000000100). It
has three zero-spans with lengths, 3, 6, and 4, respectively. The end-around zero-span,
(001 . . .100), has a length of 4.

Consider a (γ, ρ)-regular LDPC code C given by the null space of an RC-constrained
J × n parity-check matrix H with constant column weight γ. Label the columns of H
from 0 to n − 1. For 0 ≤ j < n, there are γ rows of H, each having a ”1” in the j-th
column of H. For each of these γ rows, we find its zero-span starting from the (j+1)-th
column to the next 1-component and compute its length. If the 1-component of a row
at the position j (or in the j-th column of H) is the trailing-1 of the row, we determine
its end-around zero-span. Among the zero-spans of the γ rows with a ”1” in the j-th
column of H, the longest one, denoted δj , is called the zero-span of column j. Define
δ � min0≤j<nδj . This parameter δ is called the zero-span of the parity-check matrix
H. The next lemma gives a lower bound on the erasure-burst-correction capability of an
LDPC code in terms of the zero-span of its parity-check matrix.

Lemma 1. An LDPC code C given by the null space of a parity-check matrix H over
GF (2) with zero-span δ is capable of correcting any erasure-burst of length at least up
to δ + 1.

Proof. Consider an erasure-burst E of length δ+1 or shorter whose first erasure occurs
at position j with 0 ≤ j < n. Since the zero-span of the parity-check matrix H is δ,
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there exists a row in H that checks the erasure at the position j and no other erasures in
E . From (3) of Part-I, the value of the erasure at position j can be uniquely determined.
Once the value of the erasure at the position j is determined, the erasure-burst E is
shortened. Let E1 be the new erasure-burst. The length of E1 is at most δ. Determine
the position, say k, of the first erasure in E1. Since the length of E1 is at most δ, there
exists at least a row in H that checks the erasure at position k and no other erasures
in E1. Find this row and determine the value of the erasure at position k. This results
in another shorter erasure-burst E2. We repeat the above correction process step by step
until the values of all the erasures in E are determined. It follows from the definition of
the zero-span of the parity-check matrix H that at each step of decoding, there always
exists a row in H that checks only the first erasure of the erasure-burst obtained in the
previous step.

The parameter δ + 1 gives a lower bound on the erasure-burst correction capability of
a regular LDPC code whose parity-check matrix has a zero-span δ. Lemma 1 implies
that no δ+ 1 or fewer consecutive variable nodes in the Tanner graph of an LDPC code
cannot form a stopping set. The zero-span δ of a parity-check matrix and Lemma 1 can
be generalized to irregular LDPC codes.

Decoding an erasure-burst based on the zero-spans of columns of the parity-check
matrix of an LDPC code can be carried out iteratively as follows:

(1) If there are erasures in the received vector y, determine the starting position of the
erasure-burst in y, say position j, and go to Step 2. If there is no erasure in y, stop
the decoding.

(2) Determine the length of the erasure-burst, say l. If l ≤ δj+1, go to Step 3, otherwise
stop the decoding.

(3) Determine the value of the erasure at the position j and go to Step 1.

The above decoding algorithm actually corrects many erasure-bursts of lengths longer
than δ + 1. The iterative decoding algorithm for correcting random erasures given in
Section II of Part-I can also be used for decoding erasure-bursts, but the above algorithm
is simpler.

4 A Class of QC-LDPC Codes for Correcting Erasure-Bursts

A class of QC-LDPC codes for erasure-burst correction can be constructed by masking
the arrays presented in Section 3 of Part-I using a special class of masking matrices.

For k, l ≥ 2 , we form l k-tuples, u1, u2, . . .ul over GF(2) where: (1) u1 =(100 . . .0)
consists of a single 1-component at the first position followed by k − 1 consecutive
zeros; (2) ul = (011 . . . 1) consists of a single 0-component at the first position followed
by k − 1 consecutive 1-components; and (2) the other k-tuples, u2 to ul−1 are zero k-
tuples, i.e., u2 = . . . = ul−1 = (00 . . . 0). Let u = (u1, u2, . . . ,ul). Then u is a kl-tuple
with a single 1-component at the left-end and k − 1 one-components at the right-end
and has weight k. This kl-tuple has one and only one zero-span of nonzero length that
is k(l − 1).

Form a kl × kl circulant Q with u as the first row and kl − 1 right cyclic-shifts of
u as the other kl − 1 rows. As a circulant, each row of Q is the right cyclic-shift of the
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row above it and the first row is the right cyclic-shift of the last row; and each column
of Q is the downward cyclic-shift of the column on its left and the first column is the
downward cyclic-shift of the last column. It follows from the cyclic-shift structure of
the rows and columns of Q that the zero-span of Q is k(l − 1). For 1 ≤ m, we form a
kl × klmmatrix over GF(2),

D(kl, klm) = [Q Q . . .Q], (2)

that consists of a row ofmQ-matrices. We readily see that each column of D(kl, klm)
is downward cyclic-shift of the of the column on its left (including the transition across
of the boundary of two neighbor Q-matrices) and the first column of D(kl, klm) is the
downward cyclic-shift of its last column. Each row hasm zero-spans, each with length
(l − 1)k. Consequently, the zero-span of D(kl, klm) is (l − 1)k.

Take a kl × klm subarray H(kl, klm) of (q − 1) × (q − 1) circulant permutation
matrices from the array H constructed based on the field GF(q) such that klm < q
and H(kl, klm) does not contains any zero matrix of H, Masking H(kl, klm) with
D(kl, klm), we obtained a kl × klm masked array M(kl, klm) of (q − 1) × (q − 1)
circulant permutation and zero matrices. In each column of M(kl, klm) (as an array),
there is a circulant permutation matrix that is followed by (l−1)k (q−1)×(q−1) zero
matrices. Hence M(kl, klm) is a kl(q − 1) × klm(q − 1) RC-constrained matrix over
GF(2) with a zero-span of length at least k(l− 1)(q− 1). The column and row weights
of M(kl, klm) are k and km, respectively. The null space of M(kl, klm) gives a regular
QC-LDPC code C of length klm(q − 1) with rate at least (m − 1)/m and minimum
distance at least k + 1 or k + 2, whose Tanner graph has a girth of at least 6. The code
is capable of correcting any erasure-burst of length at least up to k(l − 1)(q − 1) + 1.
If H(kl, klm) contains zero matrices of H, then M(kl, klm) may contain two different
column weights, k and k−1, and two row weights, km and km−1. In this case, the null
space of M(kl, klm) gives a near-regular QC-LDPC code. The erasure-burst correction
capability of the code is still at least k(l − 1)(q − 1) + 1. The number of parity-check
bits of C is at most kl(q − 1). The ratio σ of the erasure-burst correction capability of
a code to the number of its parity-check bits is defined as the erasure-burst correction
efficiency. The erasure-burst correction efficiency of the QC-LDPC code C constructed
above is lower bounded by (l−1)/l. We see that the efficiency approaches to 1 for long
codes with large l.

Example 3. Consider the 72 × 72 array H of 72 × 72 circulant permutation and zero
matrices constructed based on the multiplicative group of the prime field GF(73). Take
the first 8 rows of H and remove the first and the last 7 columns. This results in an 8×64
subarray H(8, 64) of 72 × 72 circulant permutation matrices (no zero matrices). Let
k = 4, l = 2 andm = 8. Based on (2), we construct an 8×64 masking matrix D(8, 64)
that consists of a row of eight 8×8 Q-matrices. The zero-span of D(8, 64) is 4. Masking
H(8, 64) with D(8, 64), we obtain a 576 × 4608 masked matrix M(8, 64) with a zero-
span at least 288. The column and row weights of M(8, 64) are 4 and 32, respectively.
The null space of M(8, 64) gives a (4608, 4033) QC-LDPC code with rate 0.8752 that
is capable of correcting any erasure-burst of length up to at least 289. By computer
search, we find the that code can actually correct any erasure-burst of length up to 375.
Thus the erasure-burst correction efficiency of the code is 0.652. The performances of
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this code with iterative decoding over the AWGN and binary random erasure channels
are shown in Figures 3(a) and 3(b). For the AWGN channel, it performs 1.15 dB from
the Shannon limit at the BER of 10−8. For the BEC channel, it performs 0.018 from the
threshold ε(4, 32) = 0.0966 for the degree pair (4, 32) at the BER of 10−6. The code
performs well for all three types of channels. //

Example 4. Suppose we use the prime field GF(257) for code construction. Based on this
field, we construct a 256 × 256 array H of 256 × 256 circulant permutation matrices.
Set k = 4, l = 8 and m = 8. Based on (2), we construct a 32 × 256 masking matrix
D(32, 256). Take a 32 × 256 subarray H(32, 256) from H. Masking H(32, 256) with
D(32, 256), we obtain a 32 × 256 masked array M(32, 256) of 256 × 256 circulant
permutation and zero matrices. The zero-span of M(32, 256) is at least 7168. The null
space of M(32, 256) gives a (65536, 57345) regular QC-LDPC code with rate 0.875. The
code is capable of correcting any erasure-burst of length at least up to 7169. Its erasure-
burst correction efficiency is at least 0.875. This code also perform well over the AWGN
and binary erasure channels as shown in Figures 3(a) and 3(b). At the BER of 10−6, it
performs 0.6 dB away from the Shannon limit for the AWGN channel and 0.00357 from
the threshold ε(4, 32) = 0.0966 for the degree distribution pair (4,32). //

5 Conclusion

In this paper, we first constructed a class of QC-LDPC codes for the AWGN and binary
random erasure channels based on masking RC-constrained arrays of circulant per-
mutation matrices. Then we discussed erasure-burst correction capability of an LDPC
code in terms of the zero-span of its parity-check matrix. A simple iterative method
for recovering an erasure-burst was presented. Finally, a class of QC-LDPC codes for
correcting erasure-burst was constructed based on masking RC-constrained arrays of
circulant permutation matrices with a special class of masking matrices.
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New Constructions of Quasi-cyclic LDPC Codes
Based on Two Classes of Balanced Incomplete Block
Designs: For AWGN and Binary Erasure Channels
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Abstract. This paper presents two new methods for constructing quasi-cyclic
LDPC codes using certain special classes of balanced incomplete block designs
constructed based on finite fields. The codes constructed perform well with itera-
tive decoding over both AWGN and binary erasure channels.

1 Introduction

In 1939, Bose presented a method [1], to construct several classes of balanced incom-
plete block designs (BIBD’s) [2] based on finite fields. These BIBD’s were recently
used to construct LDPC codes [3] for the AWGN channel [4]. LDPC codes of prac-
tical lengths constructed from these BIBD’s with iterative decoding using the sum-
product algorithm (SPA) [5]-[8] perform very well over the AWGN channel and close
to the Shannon limit. In this paper, we present two new methods for constructing quasi-
cyclic (QC) LDPC codes based on two classes of BIBD’s constructed by Bose for both
AWGN and binary erasure channels. QC-LDPC codes have encoding advantage over
other types of LDPC codes. Encoding of a QC-LDPC code can be accomplished using
simple shift-registers with linear complexity [9]. Well designed QC-LDPC codes can
perform just as well as random LDPC codes in terms of bit-error probability, block-error
probability, error-floor, and rate of decoding convergence, collectively [10]-[14].

A binary regular LDPC code [3] is given by the null space of a sparse parity-check
matrix H with the following structural properties: (1) each row has constant weight ρ;
(2) each column has constant weight γ; (3) no two rows (or two columns) have more
than one 1-component in common; and (4) ρ and γ are small compared to the length
of the code. Property (3) is referred to as the row-column (RC) constraint. The RC-
constraint ensures that the Tanner graph [5] of the code is free of cycles of length 4
and the minimum distance of the code is at least γ + 1 [15], [16]. Since the parity-
check matrix has constant column and row weights γ and ρ, respectively, we say that
the parity-check matrix H is (γ, ρ)-regular and the code given by the null space of H
is called a (γ, ρ)-regular LDPC code. An LDPC code is quasi-cyclic if its parity-check
matrix is an array of sparse circulants of the same size [10], [15], [17].

The performance of an LDPC code over an AWGN channel with iterative decoding
depends on a number of code structural properties besides its minimum distance. One
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such structural property is the girth of the code that is defined as the length of the
shortest cycle in the code’s Tanner graph. For a code to perform well with iterative
decoding, its Tanner graph must not contain short cycles. The shortest cycles that affect
code performance the most are cycles of length 4. In code construction, these cycles
must be avoided. A code that is free of cycles of length 4 in its Tanner graph has a girth
of at least 6.

Let V be a set of variable nodes in the Tanner graph T of an LDPC code and S be a
set of check nodes in T that are adjacent to the nodes in V , i.e., each check node in S is
connected to at least one variable node in V . The nodes in S are called the neighbors of
nodes in V . A set V of variable nodes in T is called a stopping set of T if each check
node in the neighbor set S of V is connected to at least two variable nodes in V [18]. A
stopping set of minimum size is called a minimal stopping set (not unique). The perfor-
mance of an LDPC code over a binary erasure channel (BEC) with iterative decoding is
determined by the distribution of stopping sets in its Tanner graph, especially the size
of its minimal stopping sets [18]. A stopping set corresponds to an erasure pattern that
can not be recovered. For an LDPC code to achieve good performance over the BEC,
the size of its minimal stopping sets should be made as large as possible. The size of a
minimal stopping set in a Tanner graph is proved to be related to the girth of the Tanner
graph. It has been proved [19] that the sizes of minimal stopping sets of Tanner graphs
with girths 4, 6 and 8 are 2, γ+ 1 and 2γ, respectively. For a (γ, ρ)-regular LDPC code
whose parity-check matrix satisfies the RC-constraint, the size of a minimal stopping
set is at least γ + 1.

2 Bose-BIBD’s

Let X = {x1, x2, . . . , xq} be a set of q objects. A BIBD of X [1], [2] is a collection
of n g-subsets of X , denoted B1, B2, . . . , Bn, called blocks, such that the following
conditions hold: (1) each object xi appears in exactly r of the n blocks; (2) every two
objects appear together in exactly λ of the n blocks; and (3) the number g of objects
in each block is small compared to the total number of objects in X . Since a BIBD
is characterized by 5 parameters, n, q, r, g, and λ, it is also called a (n, q, r, g, λ)-
configuration (or BIBD). For the special case λ = 1, each pair (xi, xj) of objects inX
appears in exactly one block. Consequently, any two blocks can not have more than one
object in common. BIBD’s of this special type have been used for constructing LDPC
codes whose Tanner graphs are free of cycles of length 4 [4].

In his 1939 paper [1], Bose constructed several classes of (n, q, r, g, 1)-BIBD’s based
on finite fields and a technique, called symmetrically repeated differences. In this sec-
tion, we present two classes of Bose-BIBD’s which will be used to construct QC-LDPC
codes in the next two sections for both the AWGN and BEC channels.

2.1 Class-I Bose-BIBD’s

Let t be a positive integer such that 12t + 1 is a prime. Then there exists a finite field
GF(12t+1) = {0, 1, . . . , 12t} with 12t+1 elements under modulo-(12t+1) addition
and multiplication. Let the elements of GF(12t + 1) represent the objects for which
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Table 1

Prime Field GF(12t+ 1) Prime Field GF(20t+ 1)
t (α, c) t (α, c)
1 (2,1) 2 (6,3)
6 (5,33) 3 (2,23)
8 (5,27) 12 (7,197)
9 (6,71) 14 (3,173)
15 (2,13) 21 (2,227)
19 (6,199) 30 (7,79)
20 (7,191) 32 (3,631)
23 (5,209) 33 (2,657)
28 (10,129) 35 (2,533)
34 (21,9) 41 (2,713)

a BIBD is to be constructed. Suppose GF(12t + 1) has a primitive element α such
that α4t − 1 = αc, where c is an odd integer less than 12t + 1. Then there exists a
(n, q, r, g, 1)-BIBD with n = t(12t+ 1), q = 12t+ 1, r = 4t, g = 4 and λ = 1. Since
α is a primitive element of GF(12t + 1), then α0 = 1, α, . . . , α12t−1 form all the 12t
nonzero elements of GF(12t + 1) and α12t = 1. Table 1 gives a list of t’s that satisfy
the condition, α4t − 1 = αc and 12t+ 1 is a prime.

To form the BIBD with the above parameters, n, q, r, g, and 1, we first form t base
blocks which are given as follows: Bi = {0, α2i, α2i+4t, α2i+8t}, for 0 ≤ i < t. From
each base blockBi, we can form 12t+1 blocks by adding each element of GF(12t+1)
in turn to the elements in Bi. This results in t(12t + 1) blocks. For 0 ≤ i < t and
0 ≤ j ≤ 12t, let Bi,j � {0 + j, α2i + j, α2i+4t + j, α2i+8t + j} be the block obtained
by adding the element j to the elements of the base block Bi.

2.2 Class-II Bose-BIBD’s

Let t be a positive integer such that 20t + 1 is a prime. Then there exists a finite field
GF(20t+ 1) = {0, 1, . . . , 20t} with 20t+ 1 elements. Suppose there exists a primitive
element α in GF(20t + 1) such that α4t + 1 = αc, where c is a positive odd inte-
ger less than 20t + 1. Then there exists a (n, q, r, g, 1)-BIBD with n = t(20t + 1),
q = 20t + 1, r = 5t, g = 5 and λ = 1. Table 1 gives a list of t’s that satisfy
the condition, α4t + 1 = αc. To form this BIBD, we first form t base blocks, Bi =
{α2i, α2i+4t, α2i+8t, α2i+12t, α2i+16t} for 0 ≤ i < t. From each base block Bi, we
form 20t+ 1 blocks by adding each element of GF(20t+ 1) in turn to the elements in
Bi. This results in t(20t+1) blocks. For 0 ≤ j ≤ 20t, the block obtained by adding the
element j to the elements in Bi is Bi,j � {α2i + j, α2i+4t + j, α2i+8t + j, α2i+12t +
j, α2i+16t + j}.

3 A New Construction of QC-LDPC Codes Based on Bose-BIBD’s

Let p be a prime and GF(p)={0, 1, . . . , p − 1} be a prime field under the modulo-
p addition and multiplication. For an element i in GF(p), we define a p-tuple over
GF(2), z(i) = (z0, z1, z2, . . . , zp−1), whose components correspond to the p elements
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of GF(p), where the ith component zi is set to ”1” and all the other components are set
to ”0”. This p-tuple is called the location vector of element i (the concept of location
vectors of elements of a finite field was first introduced in [20]). The 1-components of
the location vectors of two different field elements are at two different positions. For
any element i in GF(p), the location vector z(i + 1) of element i + 1 is the cyclic-
shift (one place to the right) of the location vector z(i) of element i. It is clear that the
elements i, i + 1, . . . , i + p − 1 under modulo-p addition give all the p elements of
GF(p). Let A be a p× p matrix over GF(2) with the location vectors of field elements,
i, i+ 1, . . . , i+ p− 1 as rows. Then A is a circulant permutation matrix.

3.1 Class-I BIBD QC-LDPC Codes

For 0 ≤ i < t, form a (12t+ 1) × 4 matrix over GF(12t+ 1) with the elements of the
12t+ 1 blocks, Bi,0, Bi,1, . . . , Bi,12t, of a Class-I Bose-BIBD as rows as follows:

Qi =

⎡⎢⎢⎣
0 α2i α2i+4t α2i+8t

1 α2i + 1 α2i+4t + 1 α2i+8t + 1
...

... . . .
...

12t α2i + 12t α2i+4t + 12t α2i+8t + 12t

⎤⎥⎥⎦ . (1)

Matrix Qi has the following structural properties: (1) all the 12t+1 entries in a column
are different and form all the 12t+1 elements of GF(12t+1); and (2) any two columns
(or two rows) differ in every position. Since each row of Qi is a block of a Bose-BIBD,
it follows from the structural property of a (n, q, r, g, 1)-BIBD that two rows from two
different matrices Qi and Qj have only one element in common. We label the rows of
Qi from 0 to 12t and the columns from 0 to 3. Replacing each entry in Qi by its location
vector, we obtain a (12t+1)× 4(12t+ 1) matrix Mi over GF(2) that consists of a row
of four (12t+1)×(12t+1) circulant permutation matrix, Mi = [Ai,0 Ai,1 Ai,2 Ai,3],
where Ai,j is formed with the location vectors of the entries of the jth column of Qi as
rows for 0 ≤ j ≤ 3. Next we form the following t×4 array Z1 of (12t+1)× (12t+1)
circulant permutation matrices:

Z1 =

⎡⎢⎢⎣
M0
M1

...
Mt−1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
A0,0 A0,1 A0,2 A0,3
A1,0 A1,1 A1,2 A1,3

...
... . . .

...
At−1,0 At−1,1 At−1,2 At−1,3

⎤⎥⎥⎦ . (2)

It is a t(12t+1)×4(12t+1) matrix over GF(2) with column weight t and row weigh 4.
Since the rows of Z1 correspond to the blocks of a Class-I Bose-BIBD, it follows from
the structured properties of Qi’s that no two rows (or two columns) of Z1 have more
than one 1-component in common. Hence, Z1 satisfies the RC-constraint.

Let H1 be the transpose of Z1, i.e., H1 � ZT
1 . Then H1 is a 4 × t array of (12t+

1)×(12t+1) circulant permutation matrices. It is a 4(12t+1)× t(12t+1) matrix over
GF(2) with column and row weights 4 and t, respectively. Clearly H1 also satisfies the
RC-constraint. Let ρ be a positive integer such that 1 ≤ ρ ≤ t. Let H1(4, ρ) be a 4 × ρ
subarray of H1. It is a 4(12t+1)× ρ(12t+1) matrix over GF(2) with column and row
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weights 4 and ρ, respectively. The null space of H1(4, ρ) gives a binary (4, ρ)-regular
QC-LDPC code Cqc,1 of length ρ(12t + 1) and rate at least (ρ − 4)/ρ, whose Tanner
graph has a girth of at least 6. Since H1(4, ρ) is an array of permutation matrices,
no odd number of columns of H1(4, ρ) can be added to 0. As a results, the minimum
distance of Cqc,1 must be even. Since H1(4, ρ) satisfies the RC-constraint, the minimum
distance is at least 4+1 = 5. Consequently, the minimum distance of Cqc,1 is at least 6.
The size of a minimal stopping set in the Tanner graph of Cqc,1 is at least 5. The above
construction gives a class of (4, ρ)-regular QC-LDPC codes whose Tanner graphs have
girth at least 6.

Example 1. Let t = 15. Then 12t + 1 = 181 is a prime. The element α = 2 is a
primitive element of the prime field GF(181) that satisfies the condition α4t − 1 = αc

with c = 13. Based on this field, we can construct a class-I Bose-BIBD with n = 2715,
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q = 181, r = 60, g = 4 and λ = 1. Based on this BIBD, we can form a 4×15 array H1
of 181 × 181 circulant permutation matrices. Choose ρ = 15. Then H1(4, 15) = H1
which is a 724× 2715 matrix with column and row weights 4 and 15, respectively. The
null space of H1(4, 15) gives a (4, 15)-regular (2715, 1994) QC-LDPC code with rate
0.7344. Assume BPSK transmission. The performance of this code over the AWGN
channel with iterative decoding using the SPA is shown in Figure 1 (maximum number
of decoding iterations is set to 100). At the BER of 10−6, the code performs 1.6 dB
from the Shannon limit and there is no error-floor down to the BER of 10−8. Figures 2
and 3 show the rate of decoding convergence and the estimated error-floor of the code
(using a modified technique given in [21]). We see that the iterative decoding of the
code converges very fast and the code has a very low-error floor. The performance of
the code over the BEC using the iterative decoding given in [18] is shown in Figure 4.
The Tanner graph of this code has degree pair (4, 15). For this degree pair, the threshold
ε(4, 15) is 0.2059 [18]. From Figure 4, we see that the code perform 0.036 from the
threshold.

Example 2. If we choose t = 34, we can construct a 4 × 34 array H1 of 409 × 409
circulant permutation matrices based on the prime field GF(409) (the primitive element
α = 21 of GF(409) satisfies the condition α4t − 1 = αc with c = 9). Let ρ = 34. Then
H1(4, 34) = H1. The null space of H1(4, 34) gives a (4, 34)-regular (13906, 12273)
QC-LDPC code with rate 0.8826. The performances of this code over the AWGN and
binary erasure channels are also shown in Figures 1 and 4, respectively. For the AWGN
channel channel, the code performs 0.85 dB from the Shannon limit at the BER of 10−6

has no error-floor down to 5 × 10−8. For the BEC, the code performs 0.0135 from the
threshold ε(4, 34) = 0.0909 for the degree pair (4, 34) of its Tanner graph.

3.2 Class-II QC-LDPC Codes

For each t such that 20t+ 1 is a prime, if there is a primitive element α in GF(20t+ 1)
which satisfies the condition α4t + 1 = αc, we can construct a Class-II Bose-BIBD.
Based on a class-II Bose-BIBD, we can construct a 5 × t array H2 of (20t + 1) ×
(20t + 1) circulant permutation matrices. The construction of this array is the same
as the construction of array H1 based on a Class-I Bose-BIBD. For 3 ≤ γ ≤ 5 and
3 ≤ ρ ≤ t, take a γ × ρ subarray H2(γ, ρ) from H2. Then the null space of H2(γ, ρ)
gives a (γ, ρ)-regular QC-LDPC code of length ρ(20t+ 1).

Example 3. Let t = 21. Then 20t + 1 = 421 is a prime. Based on the prime field
GF(421), we can construct a Bose-BIBD with the following parameters: n = 8841,
q = 421, r = 105, g = 5 and λ = 1. Based on this BIBD, we can construct a 5 × 21
array H2 of 421 × 421 circulant permutation matrices. Choose γ = 5 and ρ = 20.
Take the first 20 columns of circulant permutation matrices to form a 5 × 20 subarray
H2(5, 20) of 421 × 421 circulant permutation matrices. H2(5, 20) is a 2105 × 8420
matrix over GF(2) with column and row weights 5 and 20, respectively. The null space
of H2(5, 20) gives a (8420, 6319) QC-LDPC code with rate 0.7504. The performances
of this code over the AWGN and binary erasure channels with iterative decoding are
shown in Figures 5 and 6, respectively.
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4 Construction of QC-LDPC Codes by Circular Dispersion

The component circulant permutation matrices of an array He with e = 1 or 2 can be
dispersed (or spreaded) to form a new array of circulant permutation and zero matrices.
Dispersion reduces the density of an array and hence reduces the number of short cycles
in its Tanner graph and may even increase its girth. Dispersion results in a larger array
of circulant permutation and zero matrices that still satisfies the RC-constraint.

In this section, we present a circular dispersion that maintains the regularity structure
of He, i.e., constant column weight and constant row weight. Circular dispersion results
in QC-LDPC codes that are also capable of correcting bursts of erasures.

For illustration of the dispersion technique, we use a subarray of the array H1 con-
structed based on a class-I Bose-BIBD. Let k be a positive integer such that 8k ≤ t.
Take a 4× 8k subarray H1(4, 8k) from the array H1 of circulant permutation matrices
constructed based on a Class-I Bose-BIBD. This subarray consists of 4 rows and 8k
columns of circulant permutation matrices. For 1 ≤ i ≤ 4, we label all the circulant
permutation matrices in the ith row with integer i. Divide H1(4, 8k) into k 4 × 8 sub-

arrays, D(1)
1 ,D(1)

2 , . . . ,D(1)
k , each consisting of 8 consecutive columns of H1(4, 8k).

The circulant permutation matrices of each subarray D(1)
i are dispersed to form an 8×8

array of (12t+ 1)× (12t+ 1) circulant permutation and zero matrices as follows:

E(1)
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 | 0 1 1 1
2 2 0 0 | 0 0 2 2
3 3 3 0 | 0 0 0 3
4 4 4 4 | 0 0 0 0
− − − − | − − − −
0 1 1 1 | 1 0 0 0
0 0 2 2 | 2 2 0 0
0 0 0 3 | 3 3 3 0
0 0 0 0 | 4 4 4 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)
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where a zero in E(1)
i represents a (12t+1)×(12t+1) zero matrix. Array E(1)

i is called a

dispersion array (or simply dispersion) of D(1)
i . The dispersions of all the k subarrays,

D(1)
1 ,D(1)

2 , . . . ,D(1)
k , of H1(4, 8k) are of the same structure. E(1)

i consists of four 4×4
subarrays of permutation and zero matrices. E(1)

i is an 8(12t+ 1)× 8(12t+ 1) matrix
over GF(2) with both column and row weights 4.

The above dispersion of the k subarrays of H1(4, 8k) results in an 8 × 8k array

W(1)(8, 8k) = [E(1)
1 E(1)

2 . . .E(1)
k ] of (12t+ 1)× (12t+ 1) circulant permutation and

zero matrices. It is an 8(12t+1)×8k(12t+1) matrix over GF(2) with column and row
weights 4 and 4k, respectively. The null space of W(1)(8, 8k) gives a (4, 4k)-regular
QC-LDPC code with rate at least (k−1)/k, whose Tanner graph has a girth of at least 6.

So far, we have only presented QC-LDPC codes for AWGN and binary random
erasure channels. Over a binary random erasure channel, erasures occur at random lo-
cations. However, there are erasure channels over which erasures cluster into bursts,
such as recording, jamming and some fading channels. An erasure pattern E is called
an erasure-burst of length l if the erasures in E are confined to l consecutive locations,
the first and the last of which are erasures. QC-LDPC codes constructed using circular
dispersion are also effective for correcting erasure-bursts.

From (3), we readily see that for each column of the array W(1)(8, 8k), there is a
(12t + 1) × (12t + 1) circulant permutation matrix that is followed by four (12t +
1) × (12t+ 1) zero matrices, including the end-around case. This implies that for any
column j in the matrix W(1)(8, 8k), there exists a row with a 1-component at the jth
position that is followed by at least 4(12t+ 1) zeros. As a results, if an erasure-burst of
length 4(12t+ 1) + 1 or shorter occurs and starts at the position j, then this row gives
a check-sum that contains the erasure at the position j but not other erasures. From this
check-sum, we can determine the value of the erasure at position j. In the same manner,
we can determine the values of the other erasures in the burst. Therefore, the code given
by the null space of W(1)(8, 8k) is capable of correcting any erasure-burst of length at
least 4(12t+ 1) + 1, including the end-around erasure-bursts.

Example 4. Consider the 4× 28 array H1 of 337× 337 circulant permutation matrices
constructed based on the prime field GF(12t+1) with t = 28. Take the first 24 columns
of circulant permutation matrices of H1 to form a 4 × 24 subarray H1(4, 24) of H1.
The code given by the null space of H1(4, 24) is an (8088, 6743) QC-LDPC code
with rate 0.834 whose performances over the AWGN and binary erasure channels are
shown in Figures 5 and 6. Divide H1(4, 24) into three 4 × 8 subarrays, D(1)

1 , D(1)
2 ,

and D(1)
3 . Disperse these three subarrays of H1(4, 24) into three 8× 8 arrays of 337×

337 circulant permutation and zero matrices, E(1)
1 , E(1)

2 , and E(1)
3 , based on (3). The

dispersion of H1(4, 24) results in an 8 × 24 array of 337 × 337 circulant permutation

and zero matrices, W(1)(8, 24) = [E(1)
1 E(1)

2 E(1)
3 ]. W(1)(8, 24) is a 2696×8088 matrix

over GF(2) with column and row weights 4 and 12, respectively. The null space of
W(1)(8, 24) gives a (8088, 5395) QC-LDPC code with rate 0.667. The performances
of this code over AWGN and binary erasure channels are also shown in Figures 5 and 6,
respectively. The code is also capable of correcting any erasure-burst of length at least
1349. We see that the code performs well over AWGN, binary random and burst erasure
channels.
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In a similar manner, we can disperse subarrays of arrays H2 constructed based on class-
II Bose-BIBD’s.

5 Conclusion

In this paper, we have presented two new methods for constructing QC-LDPC codes
based on two classes of Bose-BIBD’s that are constructed from prime fields. The Tanner
graphs of codes in these classes have girth at least 6. Some example codes of various
lengths were given. Experimental results showed that the example codes perform very
well over the AWGN and binary erasure channels. One class of codes is also capable of
correcting bursts of erasures. The proposed methods can be used to construct QC-LDPC
codes from BIBD’s with λ = 1 that are constructed based on finite fields.
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Abstract. It is shown that long enough extended t-error correcting
BCH codes Bt are spanned by its lightest words of weight 2t + 2. The
proof follows from an upper bound on the number of words of weight
2t + 2 in any subcode of Bt of codimension 1.

1 Introduction

The (binary, primitive, narrow-sense) BCH codes are among the most studied
algebraic codes. It is not always simple to determine their combinatorial pa-
rameters such as minimum distance, covering radius, and distance distribution.
However, when the length of the considered codes is large enough these param-
eters ”stabilize”, and exact results can be derived. For instance, it was shown
by Farr (see [23]) that the actual minimum distance of long t-error correcting
BCH codes, Ct, equals to its designed distance, 2t+1. Skorobogatov and Vladuts
[27] (see also [5, 22, 30, 31]) proved that the covering radius of long codes Ct is
exactly 2t − 1. As for the distance distribution of BCH codes, it was proved
by Sidel’nikov [26] (see also [7, 14, 16, 18, 20, 28, 32]) that when the length of the
code grows the distance distribution of Ct converges to a normalized binomial
distribution.

The question whether a linear code has a basis consisting of minimum weight
words has been addressed for different classes of codes. For instance, it was cen-
tral in considerations of [33] where such a property was related to existence of
a minimal-change ordering of code. In [9] the codes having a minimum-weight
basis were called ”high-visible”. In [3] the defined property was a necessary con-
dition for existence of a minimum possible path for a traveling salesman on the
Hamming cube. Some applications to data compression were discussed in [3].
In [17] it was shown that low-weight trellis-based iterative soft-decision decod-
ing algorithms are very efficient for codes that are spanned by their minimum
weight words.

The question of existence of a minimum-weight basis has got a special atten-
tion in the case of Reed-Muller codes and their generalizations [6, 8, 10, 11, 13, 15].
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However, in the case of BCH codes the problem has not been addressed earlier.
The only result we are aware of is due to Augot, Charpin and Sendrier [1], who
showed that in the BCH codes of length 2m−1 and minimum distance 2m−2−1,
there is no minimum-weight basis.

In this paper we study extended (binary, primitive, narrow-sense) BCH codes,
Bt, having length n = 2m and minimum distance 2t+ 2. The main result is that
long enough codes Bt have a basis consisting only of words of weight 2t + 2.
The proof is based on checking a condition on the weight distribution of a linear
subcode of the code. Namely, we demonstrate that in any subcode of codimension
1 the number of codewords of weight 2t + 2 is always less than the one in the
ambient code. The proof involves a combination of a Johnson-like and Karamata
inequalities, and some properties of Krawtchouk polynomials.

2 Preliminaries and Useful Coding Tools

Let F = {0, 1}, and x be a vector in Fn of weight w(x). For a linear code C ⊆ Fn

and v ∈ Fn such that v /∈ C, the v-coset of C is

C + v def= {c+ v|c ∈ C}.

Note that |C + v| = |C|. Let

C ∪ v def= C ∪ (C + v) = {c|c ∈ C ∨ c ∈ C + v},

|C ∪ v| = 2|C|. The covering radius of C, R(C), is the maximum distance from
the code to a vector in the ambient space [4]. The following basic facts (see e.g.
[23]) will be used throughout the paper.

For a linear code C ⊆ Fn the distance distribution (spectrum) of C,

BC = (BC
0 , B

C
1 , · · · , BC

n ),

is defined as follows:

BC
i = |{c ∈ C|w(c) = i}|, i = 0, 1, . . . , n.

It coincides with the weight distribution. For a coset [C+ v] we define its weight
distribution as

B
[C+v]
i = |{c ∈ [C + v]|w(c) = i}|, i = 0, 1, . . . , n.

Claim. [Johnson Bound] For any v ∈ Fn and a code C of length n and distance d,

B
[C+v]
i ≤ dn

2i2 − 2ni+ dn
. ��

The distance distribution BC⊥
of the dual code C⊥ is called the dual spectrum

of C. It is uniquely determined by BC .
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Claim. [MacWilliams Transform] For a linear binary code C of length n,

BC⊥

j =
1
|C|

n∑
i=0

BC
i Pj(i), j = 0, 1, . . . , n,

where

Pj(i) =
j∑

�=0

(−1)�

(
i

%

)(
n− i
j − %

)
is the Krawtchouk polynomial of degree j. ��

For a coset [C + v] we formally define its MacWilliams transform,

B
[C+v]⊥

j
def=

1
|C|

n∑
i=0

B
[C+v]
i Pj(i), j = 0, 1, . . . , n.

For properties of the Krawtchouk polynomials see e.g. survey [21]. Following
is a useful simple bound on values of Krawtchouk polynomials [21].

Claim. For k = 0, 1, . . . , n,

Pk(i) ≤ |n− 2i|k
k!

. ��

Extended (binary primitive narrow-sense) BCH codes, Bt, have length n = 2m

and minimum distance at least 2t+2. The possible non-zero distances in B⊥
t are

restricted by the following result.

Claim. [A.Weil-Carlitz-Uchiyama Bound] For c ∈ B⊥
t , c /∈ {0n, 1n}:

n

2
− (t− 1)

√
n ≤ w(c) ≤ n

2
+ (t− 1)

√
n.

Moreover,
B

B⊥
t

0 = B
B⊥

t
n = 1,

B
B⊥

t
i = B

B⊥
t

n−i, i = 1, . . . , n−1. ��

Clearly this bound holds for the minimum distance d⊥t of B⊥
t ,

d⊥t ≥ n

2
− (t− 1)

√
n. (1)

Finally, we will be using the following result from [20].

Claim. In Bt the number of codewords of weight 2i, BBt

2i , is

BBt

2i =

(
n
2i

)
2nt

(
1 +O

(
1
n

))
. ��

Throughout we assume that t is a constant while n is large enough.
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3 Coset Property and a Minimum-Weight Basis for
Codes

In the following we provide a sufficient condition for existence of a minimum-
weight basis for a linear code.

Definition 1. A linear code C of length n has Coset-Property(k, δ(ε, k)) if for
every ε,

1
n
≤ ε ≤ R(C)

n
,

there exists a non-decreasing (in ε) δ = δ(ε, k) > 0, such that for every vector
vεn being at distance εn from C,

B
[C+vεn]⊥

k ≤ (1 − 2δ)BC⊥

k . ��

Indeed for a vector vεn /∈ C, its distance from C is between 1 to R(C). Thus, ε
is chosen to cover all possible distances of vεn from C.

Note that the condition

B
[C+vεn]⊥

k ≤ (1 − 2δ)BC⊥

k

implies
B

[C∪vεn]⊥

k ≤ (1 − δ)BC⊥

k .

Indeed,

B
[C∪vεn]⊥

k =
1

|C ∪ vεn|

n∑
i=0

BC∪vεn

i Pk(i)

=
1

2|C|

n∑
i=0

BC
i Pk(i) +

1
2|C|

n∑
i=0

BC+vεn

i Pk(i)

=
BC⊥

k

2
+
B

[C+vεn]⊥

k

2
.

Next we show that the coset-property of C implies that C⊥ is spanned by
minimum-weight words.

Theorem 1. If C has Coset-Property(k, δ(ε, k)) then C⊥ is spanned by words
of weight k.

Proof. Assume that the weight k codewords C⊥
k do not span C⊥. Then, there

exists C∗ that contains C⊥
k and perhaps some other codewords from C⊥, such

that its size is half of the size of C⊥. Hence, we conclude that C∗⊥, that is dual to
C∗, is C∗⊥ = C∪vεn, where vεn ∈ C⊥. However, due to Coset-Property(k, δ(ε, k))
we know that the number of words of weight k in C∗ = [C ∪ vεn]⊥ is at most
(1 − δ)BC⊥

k , and this contradicts to the fact that C∗ contains BC⊥

k words of
weight k. Hence, C⊥ is spanned by its weight k words.
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The main result of the paper is the following theorem.

Theorem 2. For a constant t ≥ 1 and n large enough, Bt is spanned by its
words of weight 2t+ 2. ��

To prove it we show that B⊥
t has the Coset-Property(2t+ 2, ε), i.e. we chose

δ(ε, 2t+2) = ε. The idea we use is as follows. Note that the Coset-Property(2t+
2, ε) for B⊥

t is obtained if for any ε ∈
[ 1

n , R(B⊥
t )
]

and any vector vεn that is at
distance εn from B⊥

t ,

B
[B⊥

t +vεn]⊥

2t+2 ≤ (1 − 2ε)BBt
2t+2.

Using the MacWilliams transform the last can be reformulated as follows:
n∑

i=0

B
B⊥

t +vεn

i P2t+2(i) ≤ (1 − 2ε)
n∑

i=0

B
B⊥

t

i P2t+2(i).

Recalling that BB⊥
t , BB⊥

t +vεn and P2t+2(i) are symmetric around n
2 , we conclude

that the last inequality can be deduced from the following one:

n/2∑
i=εn

B
B⊥

t +vεn

i P2t+2(i) ≤ (1 − 2ε)

⎛⎝( n

2t+ 2

)
+

n/2−1∑
i=d⊥

t

B
B⊥

t
i P2t+2(i)

⎞⎠ .
The intuition justifying validity of the last claim is as follows. Since all non-zero
and non-one codewords of B⊥

t , are of weight close to n
2 , and as the corresponding

Krawtchouk polynomial has small values around n
2 , we conclude that the term(

n
2t+2

)
corresponding to the zero word contributes significantly to the summa-

tion in the right-hand side, while other codewords have negligible effect. The
zero word does not appear in the coset of B⊥

t + vεn since the minimum weight
of B⊥

t + vεn is εn. Since the rest of codewords do not contribute much to the
summation we obtain the desired property.

In order to bound the left-hand side expression we use the following strategy.
We partition it into two sums that we address as head (first sum) and tail
(second sum),

n
2∑

i=εn

B
B⊥

t +vεn

i P2t+2(i) =

n
2 −a∑
i=εn

B
B⊥

t +vεn

i P2t+2(i) +

n
2∑

i= n
2 −a

B
B⊥

t +vεn

i P2t+2(i).

Here a, to be defined later in the proof, is close to n
2−

√
n. Hence, we will conclude

that the contribution of the tail is negligible. To deal with the head we use some
generalization of the Johnson bound, to estimate

∑n
2 −a
i=εn B

B⊥
t +vεn

i . Then we use
the Karamata inequality to deduce a bound on the head. Note that Karamata
inequality was used earlier for derivation of an upper bound on code’s size as a
function of minimum distance by Tietäväinen [29]. In what follows we consider
the case t > 1. Note that for t = 1 , it is known that the extended Hamming
codes (= Reed-Muller codes of length 2m and order m − 2) are spanned by its
minimum weight vectors [23].
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4 Proof of Theorem 2

In this section we provide a proof to the central result.

4.1 Two Useful Lemmas

Lemma 1. [Karamata Inequality, see [24]]: Let x1, · · · , xs, y1, · · · ys be two non-
negative sequences, such that for every q < s,

q∑
i=1

xi ≤
q∑

i=1

yi,

and such that
s∑

i=1

xi =
s∑

i=1

yi.

If f(·) is a convex function then,
s∑

i=1

f(xi) ≤
s∑

i=1

f(yi). ��

Lemma 2. [A generalized Johnson Bound]: Let

a = n
1
2+ 1

4(2t+3) ,

and let ci for i = 1, · · · , 2nt, be the codewords of B⊥
t + vεn. Denote xi = n−2w(ci)

and assume that the order of the codewords is such x1 ≥ x2 ≥ · · · ≥ x2nt . Denote

Q =

n
2 −a∑
εn

B
B⊥

t +vεn

i .

Then
Q ≤ n1− 1

(2t+2) (1 + o(1)).

Moreover,
for s ≤ Q, such that s ≤ n 1

2−
1

100 ,
s∑

i=1

xi ≤ n
√
s(1 + o(1)),

for s ≤ Q, such that s ≥ n 1
2 + 1

100 ,

s∑
i=1

xi ≤ n
3
4 s(1 + o(1)),

for s ≤ Q, such that n
1
2−

1
100 ≤ s ≤ n 1

2+ 1
100 ,

s∑
i=1

xi ≤ n1+ 1
100

√
s(1 + o(1)).
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4.2 Sketch of the Proof of Theorem 2

Consider B⊥
t , t > 1, ε > 0. Recall that by Theorem 1 it is sufficient to show that

B⊥
t has the Coset-Property(2t+ 2,ε).
We next show that for a vector vεn that is at distance εn from B⊥

t ,

B
[B⊥

t +vεn]⊥

2t+2 ≤ (1 − 2ε)BBt
2t+2.

As we showed it is sufficient to show that:
n
2∑

i=εn

B
B⊥

t +vεn

i P2t+2(i)

≤ (1 − 2ε)

n
2 −a∑
i=εn

B
B⊥

t +vεn

i P2t+2(i) + (1 − 2ε)

n
2∑

i= n
2 −a

B
B⊥

t +vεn

i P2t+2(i).

In the following we bound the left-hand side. Choose a = n
1
2+ 1

(2t+2) . Note that
a2t+2 = o(nt+2). By the bound from Claim 2, and by the bound on the number
of codewords in B⊥

t the following is true:

n
2∑

i=εn

B
B⊥

t +vεn

i P2t+2(i)

≤
n
2 −a∑
i=εn

B
B⊥

t +vεn

i P2t+2(i) + (n+ 1)t max
n
2 −a<i≤n

2

(P2t+2(i))

≤ 1
(2t+ 2)!

⎛⎝n
2 −a∑
i=εn

B
B⊥

t +vεn

i (n− 2i)2t+2 + (2a)2t+2(n+ 1)t

⎞⎠ . (2)

In the following we present two properties, whose validity is sufficient for the
proving the theorem.

Head Bound:
n
2 −a∑
i=εn

B
B⊥

t +vεn

i (n− 2i)2t+2 ≤ (1 − 3ε)n2t+2 +O(n2t+1).

Tail Bound:

(2a)2t+2 · (n+ 1)t ≤ 1
2
(εn2t+2 +O(n2t+1)).

We will provide different proofs for different ranges of values of ε. We deal
with three cases:
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Case 1: 1
4 ≤ ε ≤ 1

2 .

Case 2: 1

n
1
2 − 1

4(2t+2)
≤ ε ≤ 1

4 .

Case 3: 1
n ≤ ε ≤ 1

n
1
2 − 1

4(2t+2)
.

Note that by the bounds on the covering radius of the code (see e.g. [4]),
ε is at most 1

2 . Hence, the three cases cover the possible values of ε. The first
two cases are proved along the same lines. The proof is based on the Karamata
inequality presented in Lemma 1. In either of these cases we shall show that
the Head Bound and Tail Bound apply. In the proof of the third case we
use a different strategy based on analysis of the relevant values of Krawtchouk
polynomials.

In the proof of the first case we use the fact that by the Johnson bound the
number of words of weight exactly εn in B⊥

t + vεn is at most

dn

2(εn)2 − 2n(εn) + dn
≤ 1

(1 − 2ε)2
(1 + o(1)).

In the second case we use the fact that there can be only one word ci in B⊥
t + vεn

of weight εn. The rest of the words of B⊥
t + vεn are of weight at least (1

2 − ε)n.
By the Johnson bound the number of words of weight (1

2 − ε)n in this code is at
most

dn

2(1
2 − ε)2 − 2n(1

2 − ε) + dn
≤ 1

(2ε)2
(1 + o(1)).

The complete proofs will be published elsewhere.

5 Conclusion

We proved that long enough extended BCH codes are spanned by a subset of
their minimum weight codewords. It is still an open question if the same claim is
true for non-extended codes. Though we believe this is the case we were not able
to prove it. As well it would be interesting to obtain estimates on the minimum
length from which Theorem 2 is true. The example from [1] demonstrates that
this result cannot be correct for all lengths. It is easy to see that in our arguments
we used only knowledge of the minimum distance, dual minimum distance, and
the size of codes. Therefore, our consideration can be easily extended to other
codes with similar to BCH parameters, e.g. Goppa codes. It would be inter-
esting to further expand the list of codes for which there is a minimum-weight
basis.
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28. P. Solé, A limit law on the distance distribution of binary codes, IEEE Trans.
Inform. Theory, vol. 36, 1990, pp.229–232.
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Abstract. The Feng-Rao bound gives good estimates of the minimum
distance of a large class of codes. In this work we are concerned with
the problem of how to extend the Feng-Rao bound so that it deals with
all the generalized Hamming weights. The problem was solved by Hei-
jnen and Pellikaan in [7] for a large family of codes that includes the
duals of one-point geometric Goppa codes and the q-ary Reed-Muller
codes, but not the Feng-Rao improved such ones. We show that Heij-
nen and Pellikaan’s results holds for the more general class of codes for
which the traditional Feng-Rao bound can be applied. We also establish
the connection to the Shibuya-Sakaniwa bound for generalized Hamming
weights ([15], [16], [17], [18], [19] and [20]). More precisely we show that
the Shibuya-Sakaniwa bound is a consequence of the extended Feng-Rao
bound. In particular the extended Feng-Rao bound gives always at least
as good estimates as does the Shibuya-Sakaniwa bound.

1 Introduction

In [3] and [4] Feng and Rao showed how to estimate the minimum distance of a
large class of algebraically defined codes by considering certain relations between
the rows in the corresponding parity check matrices. This result is known today
as the Feng-Rao bound. Using the bound Feng and Rao were able to improve a
large class of well-known codes by leaving out certain rows in the corresponding
parity check matrices. Since the emergence of the Feng-Rao bound quite a lot
of research has been done on the subject. In the present paper we will present
a new point of view on how to extend the Feng-Rao bound so that it also deals
with generalized Hamming weights. This in particular will allow us to establish
the connection between various results in the literature.

The literature gives several interpretations of the Feng-Rao bound. In [14]
and [9] Kirfel and Pellikaan introduced the concept of an error-correcting array.
Using this concept they reformulated the Feng-Rao bound for a large class of
codes that includes the duals of one-point geometric Goppa codes, the q-ary
Reed-Muller codes and the cyclic codes. Another interpretation was given by
Høholdt, van Lint and Pellikaan in [8]. Here they introduced the concept of an
order function acting on what is known today as an order domain ([6]). They
reformulated some of the most important results by Feng and Rao into this new
setting. The code constructions described by Høholdt et al. includes the set of
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duals of one-point geometric Goppa codes, the set of Feng-Rao improved such
ones, the set of q-ary Reed-Muller codes and the set of Feng-Rao improved such
ones (the hyperbolic codes). In the PhD thesis [11] and the papers [12] and [13]
Miura independently took on more or less the same point of view as done by
Høholdt et. al. Furthermore Miura showed how to interpret the Feng-Rao bound
into the setting of any linear code over Fq defined by means of its paritycheck
matrix. This point of view was taken a little further by Matsumoto and Miura
in [10]. The work by Matsumoto and Miura is very much related to the work
by Kirfel and Pellikaan. Matsumoto and Miura’s formulation of the Feng-Rao
bound is the most general version of all previous proposed interpretations.

In [7] Heijnen and Pellikaan showed how to derive the generalized Hamming
weights of a family of codes related to order domains. This family of codes
consists of the duals of one-point geometric Goppa codes, the q-ary Reed-Muller
codes and a large class of codes defined from order domains of transcendence
degree more than one. However, it was not described in [7] how to deal with the
Feng-Rao improved codes. In the series of papers [15], [16], [17], [18], [19], [20],
Shibuya, Sakaniwa et. al derived a bound on the generalized Hamming weights
of linear codes defined by means of their parity check matrices. We will refer to
this bound as the Shibuya-Sakaniwa bound. In the first paper they consider only
affine variety codes, but in the later papers their results are generalized into the
setting of any linear codes using the concepts introduced by Miura in [11] and
[12] and using to some extend the concepts introduced by Matsumoto and Miura
in [10]. The very fact that Shibuya, Sakaniwa et. al use the concept introduced
by Matsumoto and Miura indicates that there should be a strong connection
between the Shibuya-Sakaniwa bound and the Feng-Rao bound. This connection
is to some extent investigated in the work by Shibuya, Sakaniwa et. al, but it
is left as an open problem to establish the precise and general connection ([18,
p. 1094], [20, p. 3141]). In the present paper we suggest an extension of the
Feng-Rao bound so that it deals with the generalized Hamming weights of any
linear codes defined by means of their paritycheck matrices. From our bound
it is clear what is the connection between the work by Heijnen, Pellikaan by
Matsumoto, Miura and by Shibuya, Sakaniwa et. al. Our bound can be viewed
as a generalization and to some extend improvement of all the above bounds.

2 The New Bound

Generalized Hamming weights were introduced by Wei in [21] for cryptographi-
cally purposes. We start this section by reminding the reader of their definition.
Recall that the support of a set S, S ⊆ Fn

q is defined by

Supp(S) := {i | ci 	= 0 for some c = (c1, . . . , cn) ∈ S}.
The tth generalized Hamming weight of a code C is defined by

dt(C) := min{#Supp(S) | S is a linear subcode of C of dimension t}.
Clearly d1(C) is just the well-known minimum distance. Consider the following
definition of a linear code.
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Definition 1. Let B = {b1, . . . , bn} be a basis for Fn
q and let G ⊆ B. We define

the #G dimensional code C(B,G) by C(B,G) := spanFq
{b | b ∈ G}. The dual

code (of dimension n−#G) is denoted C⊥(B,G). If Fq′ is a subfield of Fq then
the corresponding subfield-subcode of C⊥(B,G) is denoted C⊥

q′ (B,G)

We next introduce a number of concepts that play a central role in the following.

Definition 2. For u = (u1, . . . , un),v=(v1, . . . , vn)∈Fn
q define the component-

wise (or Schur or Hadamard) product u ∗ v := (u1v1, . . . , unvn). Consider the
basis B = {b1, . . . , bn} for Fn

q and define b0 := 0 ∈ Fn
q . Define L−1 := ∅ and

Ll := span
Fq
{b0, b1, . . . , bl} for l = 0, . . . , n.

We have a chain of spaces L0 � L1 � · · · � Ln−1 � Ln = Fn
q and dim(Li) = i

holds for i = 0, 1, . . . , n. Hence, the following definition makes sense.

Definition 3. Define ρ̄ : Fn
q → {0, 1, . . . , n} by ρ̄(v) = l if v ∈ Ll\Ll−1.

The concept of a well-behaving ordered pair plays a central role in this paper. We
recall this concept and introduce a new concept called one-way well-behaving.

Definition 4. Consider two bases B = {b1, . . . , bn} and B′ = {b′1, . . . b′n} for
Fn

q (we may or may not have B = B′). Let I := {1, 2, . . . , n}. An ordered pair
(i, j) ∈ I2 is said to be well-behaving (WB) if ρ̄(bu ∗b′v) < ρ̄(bi ∗b′j) for all u and
v with 1 ≤ u ≤ i, 1 ≤ v ≤ j and (u, v) 	= (i, j). Less restrictive an ordered pair
(i, j) ∈ I2 is said to be one-way well-behaving (OWB) if ρ̄(bu ∗ b′j) < ρ̄(bi ∗ b′j)
for u < i.

In the literature (e.g. [10] and [9]) one also finds the concept of weakly well-
behaving (WWB). This concept can be interpreted as follows. An ordered pair
(i, j) is said to be WWB if both (i, j) and (j, i) are OWB. Clearly, WB implies
OWB and also WWB implies OWB. The results in the present paper are all
stated using the concept of OWB. As a consequence of the above observations
all results holds if OWB is replaced by either WB or WWB.

Definition 5. Given bases B,B′ as above consider for l = 1, 2, . . . , n the fol-
lowing sets

Vl := {i ∈ I | ρ̄(bi ∗ b′j) = l for some b′j ∈ B′ with (i, j) OWB } (1)

Λi := {l ∈ I | ρ̄(bi ∗ b′
j) = l for some b′

j ∈ B′ with (i, j) OWB} (2)

Definition 6. For {l1, . . . , lt} ⊆ I and {i1, . . . , it} ⊆ I define

μ̄(l1, . . . lt) := # ((∪s=1,...,tVls) ∪ {l1, . . . , lt}) (3)
σ̄(i1, . . . it) := # ((∪s=1,...,tΛis) ∪ {i1, . . . , it}) (4)

Our main result is (5) below.

Theorem 1. Let G ⊆ B be fixed. For 1 ≤ t ≤ #G respectively 1 ≤ t ≤ n−#G
we have
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dt(C(B,G)) ≥ min{σ̄(a1, . . . , at) | ai 	= aj for i 	= j and {ba1 , . . . , bat} ⊆ G}
dt(C⊥(B,G)) ≥

min{μ̄(a1, . . . , at) | ai 	= aj for i 	= j and {ba1 , . . . , bat} ⊆ B\G}.
(5)

Given a subfield Fq′ of Fq the bound (5) also holds if for t, 1≤ t≤dim(C⊥
q′ (B,G))

one replaces dt(C⊥(B,G)) with dt(C⊥
q′ (B,G)).

The result concerning C(B,G) is from [1]. The results concerning the codes
C⊥(B,G)) and C⊥

q′ (B,G) are new, but are very much related to the Shibuya-
Sakaniwa bound. We postpone a discussion of these connections to the next
section. Obviously the result concerning the code C⊥

q′ (B,G) follows immediately
from (5). For the proof of (5) we will need the following definition and a lemma.

Definition 7. For any c ∈ Fn
q \{0} we define m(c) to be the unique number m

such that c ∈ L⊥
m−1 but c 	∈ L⊥

m. In other words

m(c) = min{m | c · bm 	= 0, c · b1 = · · · = c · bm−1 = 0}.

Lemma 1. Consider G = {bi1 , . . . , bis} ⊆ B. Let S, S ⊆ C⊥(B,G) be a linear
space of dimension t. There exist a basis {c1, . . . , ct} for S with

m(c1) < · · · < m(ct). (6)

We have

m(ci) ∈ I\{i1, . . . , is}, i = 1, . . . , t. (7)

Proof. We first observe that by the very definition of the function m for any
c ∈ C⊥(B,G)\{0} we have m(c) ∈ {1, 2, . . . , n}\{i1, . . . , is}. Hence, if a basis
exists that satisfies (6) then it will certainly also satisfy (7). Let {c1, . . . , ct} be
a basis for S. If m(c1), . . . ,m(ct) are pairwise different we are through. Assume
m(cu) = m(cv) =: m for some u, v with 1 ≤ u < v ≤ t. Define βu := cu ·bm 	= 0,
βv := cv · bm 	= 0. Consider c′v := βvcu −βucv. As c′v · r = βv(cu · r)− βu(cv · r)
for any r we conclude that c′v ·bi = 0 for i = 1, 2, . . . ,m. If we replace cv with c′v
in the basis {c1, . . . , ct} we get a new basis. In particular c′v 	= 0 and therefore
m(c′v) is well defined. We therefore have m(c′v) > m. The lemma now follows by
induction.

Proof of (5). Let S, S ⊆ C⊥(B,G) be a space of dimension t. Let {c1, . . . , ct}
be a basis for S as in Lemma 1. Denote m1 := m(c1), . . . ,mt := m(ct). Denote
γ := μ̄(m1, . . . ,mt) and write

{i1, . . . , iγ} =
∪s=1,...,t

(
{i ∈ I | ∃b′j ∈ B′ with ρ̄(bi ∗ b′j) = ms and (i, j) OWB } ∪ {ms}

)
.

We may assume i1 < . . . < iγ . Let 1 ≤ h ≤ γ and consider any vector

rh =
h∑

v=1

αvbiv , αv ∈ Fq, αh 	= 0.



On the Feng-Rao Bound for Generalized Hamming Weights 299

If ih ∈ {m1, . . . ,mt} then it follows from the definition of the function m (Defi-
nition 7) that rh ·ch 	= 0 and in particular that rh ∗ch 	= 0. If ih 	∈ {m1, . . . ,mt}
then it is because there exists a j and anmu, u ∈ {1, . . . , t} such that ρ̄(bih

∗b′j) =
mu with (ih, j) OWB. From the definition of the function m and from the OWB
property of (ih, j) we know that (rh ∗ b′

j) · cu 	= 0. But then rh ∗ cu 	= 0 holds
again. All together for every rh there exist a c ∈ S with rh ∗ c 	= 0.

This contradicts that #Supp(S) < γ, Supp(S) ⊆ {1, . . . , γ − 1} say, which is
seen by selecting r =

∑γ
v=1 βvbiv , (β1, . . . , βγ) ∈ Fγ

q\{0} such that Supp({r}) ⊆
{γ, γ + 1, . . . , n} and observe that r ∗ c = 0 for all c ∈ S. The proof of (5) is
complete.

Clearly, Theorem 1 holds in particular for the special case B = B′. More or
less all known code constructions for which the Feng-Rao bound is known to be
interesting corresponds to the case B = B′. As an exception, to deal with the
cyclic codes we will need two different bases B,B′ (see [9, Ex. 2.4] and [20, Sec.
4]). The results in Theorem 1 concerning the codes C⊥(B,G) and C⊥

q′ (B,G) can
be generalized to deal not only with two, but with many different bases for Fn

q . In
this way one can in particular extend the traditional Feng-Rao bound as stated
by Matsumoto and Miura in [10] so that it also deals with generalized Hamming
weights. Actually, by the following remark one can generalize even further.

Remark 1. From the proof of (5) it is clear that it is of no significance that B′

is a basis for Fn
q and therefore B′ can be any indexed subset of Fn

q .

The use of the OWB concept prior to the WWB concept is already justified by
the above remark. We further note that it is possible to give examples where
OWB gives better estimates than WWB does.

3 The Connection to the Work by Shibuya, Sakaniwa et al.

In [19] Shibuya and Sakaniwa considered the set-up with only one basis B (that
is, the setup in Theorem 1 with B = B′). In [19] they were concerned with the
WWB property. In [20] Shibuya and Sakaniwa considered the set-up with two
bases B,B′ but were only concerned with the WB property. As we will show
below our bound is at least as good as their bound even if we replace their WB
as well as their WWB with OWB.

In the following let B and B′ be bases as in the previous section. Assume
G ⊆ B and denote G = {bi1 , . . . , bis}. The Shibuya-Sakaniwa bound from [19]
and [20] can be interpreted as follows (we have replaced their WB respectively
WWB with OWB).

Definition 8. For T ⊆ {i1, . . . , is} let

ΛT := ∪i∈TΛi Λ∗
T := (I\{i1, . . . , is}) \ΛT

ηt := s−max{#T | T ⊆ {i1, . . . , is} such that #Λ∗
T ≥ t}.



300 O. Geil and C. Thommesen

Theorem 2. For t = 1, . . . , n−#G we have

dt

(
C⊥(B,G)

)
≥ ηt + t (8)

Given a subfield Fq′ of Fq the bound (8) also holds if for t, 1≤ t≤dim
(
C⊥

q′ (B,G)
)

one replaces dt(C⊥(B,G)) with dt(C⊥
q′ (B,G)).

The connection to the theory in the present paper is easily read of the proof of
the following proposition.

Proposition 1. The bound (5) in Theorem 1 is at least as tight as the Shibuya-
Sakaniwa bound (8).

Proof. From Definition 6 we have

min
a1 < · · · < at

ai ∈ I\{i1, . . . , is}

{μ̄(a1, . . . , at)}

= min
a1 < · · · < at

ai ∈ I\{i1, . . . , is}

{
#[∪t

s=1{i ∈ I |

ρ̄(bi ∗ b′j) = as for some b′
j ∈ B′ with (i, j) OWB} ∪ {a1, . . . , at}]

}
≥ min

a1 < · · · < at
ai ∈ I\{i1, . . . , is}

{
# ∪t

s=1 {i ∈ {i1, . . . , is} |

ρ̄(bi ∗ b′j) = as for some b′
j ∈ B′ with (i, j) OWB}

}
+ t

= s−max{#T | T ⊆ {i1, . . . , is} such that #Λ∗
T ≥ t} + t = ηt + t

This concludes the proof of Proposition 1.

In Section 5 below we demonstrate that the bound (5) in Theorem 1 can actually
be sharper than the bound (8) in Theorem 2.

Next we will be concerned with the complexity of calculating the two
bounds (5) and (8). By k we will denote the dimension of C⊥(B,G). That is,
#G = n− k. The bound (8) can be calculated with a worst case complexity of

O

(
ki

n−k∑
i=1

(
n− k
i

))
.

At a first glance it seems as if the worst case complexity of the bound (5) is

O

(
nt

(
k
t

))
. (9)

However, due to the generalized Singleton bound dt ≤ n− k + t one need in (5)
only consider the ai’s with μ̄(ai) ≤ n − k + t. The number of such ai’s are in
general much smaller than k. So the value k in (9) should be replaced with
a much smaller value. Hence, for large t combined with small dimensions the
new bound (5) is by far the fastest. Whereas, for large t combined with large
dimensions the picture is not so clear. For small values of t the estimation of
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dt will be fastest by using the bound (5). Fortunately we may sometimes do
without the above calculations. Recall, that a code is called tth rank MDS if the
tth generalized Hamming weight attains the generalized Singleton bound. In [20]
Shibuya and Sakaniwa gave an easily calculate-able criterion under which the
code C⊥(B,G) is guaranteed to be tth rank MDS.

Theorem 3. Let G = {bi1 , . . . , bis} and I = {1, 2, . . . , n} and define

g(B,G) := max
i∈{i1,...,is}

{# (I\(Λi ∪ {i1, . . . , is}))}. (10)

For t with g(B,G) + 1 ≤ t ≤ n− s the code C⊥(B,G) is tth rank MDS.

In [20, Sec. 4] Shibuya and Sakaniwa presented a BCH type bound for the gener-
alized Hamming weights of cyclic codes. To establish this bound they considered
two bases B and B′. The proof in [20] is not very complicated, however with the
bound (5) in hand the proof gets even shorter.

4 Codes from Order Domains

In [7] Heijnen and Pellikaan showed how to estimate the generalized Hamming
weights of a family of codes related to order domains. This family consists of
the duals of one-point geometric Goppa codes and their generalizations to order
domains of transcendence degree more than one, including the q-ary Reed-Muller
codes. Heijnen and Pellikaan did not describe how to deal with the Feng-Rao
improved codes. In this section we will apply the bound (5) to the case of codes
defined from order domains. We will see that Heijnen and Pellikaan’s bound
can be viewed as a consequence of (5) and as a special case of our new bound.
In our presentation we will consider only order functions that are also weight
functions. These seems to be the only order functions that are relevant for coding
theoretical purposes. From[6] we have the following definition and theorem.

Definition 9. Let R be an Fq-algebra, let Γ be a subsemigroup of Nr
0 for some

r and let ≺ be a monomial ordering on Nr
0. A surjective map ρ : R → Γ−∞ :=

Γ∪{−∞} that satisfies the following five conditions is said to be a weight function
over the order domain R

(W.0) ρ(f) = −∞ if and only if f = 0
(W.1) ρ(af) = ρ(f) for all nonzero a ∈ Fq

(W.2) ρ(f + g) � max{ρ(f), ρ(g)} and equality holds when ρ(f) ≺ ρ(g)
(W.4) If f and g are nonzero and ρ(f) = ρ(g), then there

exists a nonzero a ∈ Fq such that ρ(f − ag) ≺ ρ(g)
(W.5) If f and g are nonzero then ρ(fg) = ρ(f) + ρ(g).

Theorem 4. Given a weight function then any set B = {fγ | ρ(fγ) = γ}γ∈Γ

constitutes a basis for R as a vector space over Fq. In particular {fλ ∈ B | λ � γ}
constitutes a basis for Rγ := {f ∈ R | ρ(f) � γ}.
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In the following we will assume that a basis B as above has been chosen.

Definition 10. Let R be an Fq-algebra. A surjective map ϕ : R → Fn
q is called

a morphism of Fq-algebras if ϕ is Fq-linear and ϕ(fg) = ϕ(f) ∗ ϕ(g) for all
f, g ∈ R.

From [1] we have the following definition.

Definition 11. Let α(1) := 0 and define for i = 2, 3, . . . , n recursively α(i) to be
the smallest element in Γ that is greater than α(1), α(2), . . . , α(i−1) and satisfies
ϕ(Rγ) � ϕ(Rα(i)) for all γ < α(i). Write Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)}.

We are now in the position that we can describe bases B = B′ for Fn
q for which

the bound (5) is very much applicable. From [1] we have.

Theorem 5. Let Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} be as in Definition 11.
The set

B := {b1 := ϕ(fα(1)), . . . , bn := ϕ(fα(n))} (11)

constitutes a basis for Fn
q as a vector space over Fq. For any c ∈ Fn

q there exists
a unique ordered set (β1, . . . , βn), βi ∈ Fq such that c = ϕ

(∑n
i=1 βifα(i)

)
. The

function ρ̄ : Fn
q → {0, 1, . . . , n} corresponding to B is given by

ρ̄(c) =
{

0 if c = 0
max{i | βi 	= 0} otherwise.

The following proposition from [1] helps us dealing with the concept of WB.

Proposition 2. Let B = {b1, . . . , bn} be the basis in (11). If α(i), α(j), α(l) ∈
Δ(R, ρ, ϕ) are such that ρ(fα(i)fα(j)) = α(l) then ρ̄(bi ∗ bj) = l and (i, j) ∈ I2
is WB. Consider α(l) ∈ Δ(R, ρ, ϕ) and assume β1, β2 ∈ Γ satisfies ρ(fβ1fβ2) =
α(l). Then β1, β2 ∈ Δ(R, ρ, ϕ) holds.

We have motivated the following definition.

Definition 12. For λ ∈ Γ define N(λ) := {α ∈ Γ | λ − α ∈ Γ} and μ(λ) :=
#N(λ) if N(λ) is finite and μ(λ) := ∞ if not. In larger generality consider
{λ1, . . . , λt}⊆Γ and define N(λ1, . . . , λt) :=∪t

s=1N(λs). Define μ(λ1, . . . , λt) :=
#N(λ1, . . . , λt) if N(λ1, . . . , λt) is finite and μ(λ1, . . . , λt) := ∞ if not.

As an immediate consequence of Proposition 2 we have.

Proposition 3. Consider the set Δ(R, ρ, ϕ) = {α(1), . . . α(n)} and the basis
B = {b1, . . . , bn} from Definition 5. Let α(s) ∈ Δ(R, ρ, ϕ). For i = 1, . . . , n
we have μ̄(i) ≥ μ(α(i)). In larger generality for {a1, . . . , at} ⊆ I we have
μ̄(a1, . . . , at) ≥ μ(α(a1), . . . , α(at)).

The results concerning the generalized Hamming weights in (5) are now easily
translated into the setting of codes from order domains. We consider only two
particular choices of subsets G of B.
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Definition 13. Given a basis B as in Theorem 4 and a morphism ϕ let

C(λ) := {c ∈ Fn
q | c · ϕ(fγ) = 0 for all γ � λ}

C̃(δ) := {c ∈ Fn
q | c · ϕ(fα(i)) = 0 for all α(i) ∈ Δ(R, ρ, ϕ) with μ(α(i)) < δ}

For the case of order domains of transcendence degree 1 the set of codes C(λ)
are the set of duals to one-point geometric Goppa codes. For larger transcen-
dence degree the set of codes C(λ) includes the q-ary Reed-Muller codes but also
many other codes. The codes C̃(δ) are examples of Feng-Rao improved codes.
The theorem below is an immediate consequence of (5) and the above discussion.

Theorem 6. For 1 ≤ t ≤ dim(C(λ)) respectively 1 ≤ t ≤ dim(C̃(δ)) we have

dt(C(λ)) ≥
min{μ(η1, . . . , ηt) | {η1, . . . , ηt} ⊆ Δ(R, ρ, ϕ), λ ≺ ηs for s = 1, . . . , t} (12)

dt(C̃(δ)) ≥
min{μ(η1, . . . , ηt) | {η1, . . . , ηt} ⊆ Δ(R, ρ, ϕ), μ(ηs) ≥ δ for s = 1, . . . , t}(13)

The bound (12) for the codes C(λ) is identical to the bound given by Heijnen
and Pellikaan in [7, Th. 3.14]. It is known that (12) gives the actual values of the
t generalized Hamming weights of the q-ary Reed-Muller codes (see [7]). It is also
known that (12) gives the actual values of the tth generalized Hamming weights
of the Hermitian codes (see [2]). For the case of hyperbolic codes (improved q-ary
Reed-Muller codes) (13) gives exactly the same estimates as was found in [5]. We
note that the result concerning the condition for tth rank MDS from the previous
section is easily translated into the setting of the present section. Also we note
that one can show that applying the Shibuya-Sakaniwa bound (8) to the codes of
this section would produce the same estimates as is found by using(12) and(13).

5 Examples

The following two examples deals with codes coming from the Hermitian curve.

Example 1. Consider the factorringR = Fq2 [X,Y ]/I where I := 〈Xq+1−Y q−Y 〉
means the ideal generated by Xq+1 − Y q − Y . The set B = {XaY b + I | 0 ≤
a, 0 ≤ b < q} constitutes a basis for R as a vectorspace over Fq2 . Consider the
map ρ : B → N0, ρ(XaY b + I) = qa + (q + 1)b. This map is easily extended
to a weight function ρ on R by applying the rules (W.0), (W.1) and (W.2)
from Definition 9. With this weight function, the basis B can be indexed to
be of the form described in Theorem 4. The polynomial Xq+1 − Y q − Y has
q3 zeros P1, . . . , Pq3 which give rise to the following morphism ϕ : R → Fq3

q2

ϕ(G(X,Y ) + I) = (G(P1), . . . , G(Pq3 )). We get

Δ(R, ρ, ϕ) = {α(1), . . . , α(q3)} = {qa+ (q + 1)b | 0 ≤ a < q2, 0 ≤ b < q}.

The basis B that we should use for the code construction is B = {bi | i =
1, . . . , q3} where bi := ϕ(XaY b + I) with 0 ≤ a < q2, 0 ≤ b < q and qa + (q +
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1)b = α(i). Using (12) and (13) we calculate the following parameters for some
Hermitian codes and improved such ones (recall that we noted above that the
bound (12) is sharp for the non-improved Hermitian codes). The codes in the
first two arrays are defined over F16 and are of length n = 64. The codes in
the last two arrays are defined over F64 and are of length n = 512. A bolded
number means that the generalized Singleton bound is attained. We note that
Theorem 3 predicts exactly the bolded numbers.

k d1 d2 d3 d4 d5 d6 d7 d8 d9

C̃(6) 55 6 8 9 11 12 14 15 16 18
C(14) 55 4 8 9 12 13 14 16 17 18

k d1 d2 d3 d4 d5 d6 d7 d8

C̃(9) 51 9 12 14 15 17 18 19 21
C(18) 51 8 12 13 16 17 18 20 21
C(19) 50 9 13 14 17 18 19 21 22

k d1 d2 d3 d4 d5 d6 d7

C̃(18) 476 18 21 24 26 27 30 32
C(63) 476 9 17 18 25 26 27 33
C(72) 467 18 26 27 34 35 36 42

k d1 d2 d3 d4 d5 d6 d7 d8 d9

C̃(5) 504 5 6 7 8 9 12 13 14 15
C(25) 504 4 5 6 7 8 11 12 13 14
C(27) 502 5 6 7 8 9 13 14 15 16

We take a closer look at the code C̃(6) and C(14) over F16. These codes are of
the same dimension k = 55 and C̃(6) is indeed an improved code as d(C̃(6)) ≥
6 > 4 = d(C(14)) holds. Nevertheless we observe that the estimated value of
d7 respectively d8 of C̃(6) are smaller than d7(C(14)) respectively d8(C(14)). A
similar phenomenon occurs for the the codes C̃(9) and C(18) over F16.

In the next example we consider not only one, but two different bases B and
B′ related to the Hermitian curve. This will allow us to demonstrate that the
bound (5) can actually be better than the Shibuya-Sakaniwa bound (8).

Example 2. Consider R = F4[X,Y ]/I where I = 〈X3 + Y 2 + Y 〉. Let ϕ be as in
the previous example and consider the following two bases for F8

4.

B = {b1 = ϕ(1 + I), b2 = ϕ(X + I), b3 = ϕ(Y + I), b4 = ϕ(X2 + I),
b5 = ϕ(XY + I), b6 = ϕ(X3 + I), b7 = ϕ(X2Y + I), b8 = ϕ(X3Y + I)}

B′ = {b′1 = ϕ(1 + I), b′
2 = ϕ(X + I), b′

3 = ϕ(XY +X2 + Y + I),
b′4 = ϕ(XY +X2 + I), b′5 = ϕ(XY + I), b′

6 = ϕ(X2Y +X3 + I),
b′7 = ϕ(X2Y + I), b′

8 = ϕ(X3Y + I)}

Given a monomialXaY b we define the weight ofXaY b to be w(XaY b) := 2a+3b.
The following observations will play an important role to us:

w(XaY b) = 0 ⇒ ϕ(XaY b + I) ∈ L1
w(XaY b) = s ⇒ ϕ(XaY b + I) ∈ Ls\Ls−1 for s = 2, 3, 4, 5, 6, 7
w(XaY b) = 9 ⇒ ϕ(XaY b + I) ∈ L8\L7

⎫⎬⎭ (14)

Consider the Hermitian code C(3) (made from B). Clearly, this code has param-
eters [n, k, d] = [8, 5, 3]. We now show that for the particular choice of B′ our
new bound (5) will give us at least d(C(3)) ≥ 2 whereas the Shibuya-Sakaniwa
bound will only give d(C(3)) ≥ 1.
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The bound (5) calls for an estimation of the values μ̄(4), . . . , μ̄(8). By use
of (14) we get the following estimates: μ̄(4) ≥ 2 as b2 ∗ b′

2, b4 ∗ b′1 ∈ L4\L3
and (2, 2), (4, 1) are OWB. μ̄(5) ≥ 3 as b1 ∗ b′3, b3 ∗ b′2, b5 ∗ b′1 ∈ L5\L4 and
(1, 3), (3, 2), (5, 1) are OWB. μ̄(6) ≥ 2 as b4 ∗b′2, b6 ∗b′1 ∈ L6\L5 and (4, 2), (6, 1)
are OWB. μ̄(7) ≥ 4 as b1∗b′6, b2∗b′3, b5∗b′2, b7∗b′1 ∈ L7\L6 and (1, 6), (2, 3), (5, 2),
(7, 1) are all OWB. μ̄(8) ≥ 5 as b1 ∗b′8, b2 ∗b′6, b4 ∗b′3, b7 ∗b′2, b8 ∗b′1 ∈ L8\L7 and
(1, 8), (2, 6), (4, 3), (7, 2), (8, 1) are all OWB. Hence, from (5) we get d(C(3)) ≥ 2.
We next apply Definition 8 and (8) in Theorem 2. We will show that for T =
{1, 2, 3} we have {6} ⊆ Λ∗

T . From this we can conclude that η1 = 3 − 3 = 0
and therefore (8) becomes d(C(3)) ≥ 0 + 1 = 1. To establish {6} ⊆ Λ∗

T we will
in the following show that there is no pair (i, j), i ∈ {1, 2, 3}, j ∈ {1, . . . , 8}
such that bi ∗ b′

j ∈ L6\L5. By use of (14) we get b1 ∗ b′1 ∈ L1, b1 ∗ b′2 ∈ L2,
b1 ∗b′3, b1 ∗b′4, b1 ∗b′5 ∈ L5, b1 ∗b′6, b1 ∗b′7 ∈ L7\L6, b1 ∗b′8 ∈ L8\L7, b2 ∗b′1 ∈ L2,
b2 ∗b′2 ∈ L4, b2 ∗b′3, b2 ∗b′4, b2 ∗b′5 ∈ L7\L6, b2 ∗b′6, b2 ∗b′7 ∈ L8\L7, b3 ∗b′1 ∈ L3,
b3 ∗ b′2 ∈ L5.

It remains to study the incidents (i, j), i ∈ {1, 2, 3} for which (14) does not
immediately apply. We get

b2 ∗ b′8 = ϕ(X4Y + I) = ϕ(XY + I) ∈ L5

b3 ∗ b′3 = ϕ(XY 2 +X2Y + Y 2 + I)=ϕ(X +XY +X2Y +X3 + Y + I)∈L7\L6

b3 ∗ b′4 = ϕ(XY 2 +X2Y + I) = ϕ(X +XY +X2Y + I) ∈ L7\L6

b3 ∗ b′5 = ϕ(XY 2 + I) = ϕ(X +XY + I) ∈ L5

b3 ∗ b′6 = ϕ(X2Y 2 +X3Y + I) = ϕ(X2 +X2Y +X3Y + I) ∈ L8\L7

b3 ∗ b′7 = ϕ(X2Y 2 + I) = ϕ(X2 +X2Y + I) ∈ L7\L6

b3 ∗ b′8 = ϕ(X3Y 2 + I) = ϕ(X3 +X3Y + I) ∈ L8\L7.

We have shown that there is no pair (i, j), i ∈ {1, 2, 3}, j ∈ {1, . . . , 8} such that
bi ∗ b′j ∈ L6\L5 and therefore by the above discussion (8) becomes d(C(3)) ≥ 1.
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Abstract. Dirty paper coding are relevant for wireless networks, mul-
tiuser channels, and digital watermarking. We show that the problem of
dirty paper is essentially equivalent to some classes of constrained mem-
ories, and we explore the binary so-called nested codes, which are used
for efficient coding and error-correction on such channels and memories.
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The motivation of this paper is the dirty paper channel introduced by Costa
[3]. This channel has received increased attention [4] in recent years, due to
applications in wireless multiuser networks and digital fingerprinting [5].

We show that the dirty paper channel is practically equivalent to writing on
reluctant memories, and we make a few improvements on the existing results for
such channels. Our interest is mainly in the binary dirty paper channel (BDP).

1 Dirty Paper and Constrained Memory Coding

The dirty paper channel is depicted in Figure 1. There are two independent noise
sources which are added to the transmitted signal to form the received signal.
The first noise vector, which we will call the state of the channel is known to
the sender but not to the receiver. The second noise vector, which we will refer
to as noise is unknown to both.

The sender is subject to a power constraint ||x|| ≤ P on the transmitted
signal. For a binary channel || · || is usually the Hamming norm; for a continuous
channel it is usually the Euclidean norm.

Costa [3] introduced this channel with Gaussian sources for both the state
and the noise. His surprising result was that the channel capacity depends only on
the intensity of the noise; the intensity of the state does not change capacity. In
more recent years, his results have been generalised to other source distributions.
We will consider the binary dirty paper channel (BDP).
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s n⏐⏐H ⏐⏐H
m−−−−−→ Enc. x−−−−−→

⊕ y−−−−−→
⊕ r−−−−−→ Dec. m̃−−−−−→

Fig. 1. The dirty paper channel

In a constrained memory, there are restrictions on writing to the memory,
such that starting in one memory state, some states are reachable in one write
operation and others are not. For each memory state, there is a feasible region
of words which may be used to represent the next message. In this case the state
is given by the previous message stored in memory.

Dirty paper coding and constrained memory coding are similar, in fact BDP
channels are practically equivalent to WRM (write reluctant memories) with
error-correction [2]. In WRM, one write operation cannot change more than a
certain number P of bits. This corresponds to the power constraint in BDP; if
s is the state (previous contents), x is the change, and y = s + x is the memory
contents after writing, then w(x) ≤ P .

The state on dirty paper channels is externally given, whereas in constrained
memories it is the old codeword (with possible errors). The state, together with
power constraints, defines the feasible region of vectors y which can be generated.
For BDP/WRM, the feasible region is a Hamming sphere around the state.

Remark 1. Occasionnally, in constrained memories, one assumes that s is a code-
word with few errors, since nobody would write rubbish to the memory. We will
not make this assumption, for two reasons. Primarily, it does not extend to BDP.
Also, we know of no cases where results can be improved due to this assumption.
Furthermore, by avoiding such assumption, the system can recover after an error
pattern which could not be corrected.

Example 1. Another example of constrained memory is the Write Isolated Mem-
ory (WIM), where two consecutive memory bits cannot be changed in the same
operation. In other words, the feasible region is the set {x+ s : x = (x1, . . . , xn),
xi = 1 ⇒ xi−1 = xi+1 = 0}, where s is the memory state and x0 = xn+1 = 0 by
convention.

BDP (WRM) and WIM both fall into a class of channels, where the feasible re-
gions are translation invariant, permitting some common techniques. By this
we mean that if Fs is the feasible region from s, then Fs′ = Fs − s + s′.
Let us call this class CCTIR (constrained channels with translation invariant
regions).

2 Some Coding Theory

An (n,M)q code C is an M -set of n-tuples over a q-ary alphabet. When q = 2
we may suppress the subscript. The Hamming distance d(x,y) is the number of
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positions where the two tuples differ. The minimum distance d = d(C) of C is the
least distance between twodifferent codewords.We say thatC is an (n,M, d)q code.
The covering radius r of C is the largest distance between a vector y ∈ Qn and the
code.

The problem of covering codes amounts to finding codes minimising r given
n and M , whereas the problem of error-correcting codes is about maximising d
given n and M .

We also define normalised measures, which will be useful when moving to
asymptotic codes. We define the rate logqM/n, the distance δ = d/n, and the
covering radius ρ = r/n.

3 Codes for CCTIR

In order to make a successful code for CCTIR, we need for every state s and
every message m, to have at least one codeword x corresponding to m in the
feasible region of s. Furthermore, we require any capability for error-correction
that we may need. We will study e-error correcting CCTIR codes.

Lemma 1. For CCTIR, if x ∈ Fy then y ∈ Fx.

Let Bi be the set of words corresponding to message i. We require that for any
s, Fs ∩Bi 	= ∅. By the lemma above, this is equivalent to⋃

b∈Bi

Fb = n, (1)

i.e. that the feasible regions around the words of Bi cover the space. If the set
of possible messages is i = 1, . . . ,M , then we define

CF =
M⋃
i=1

Bi.

When the feasible regions are spheres of radius ρ, this is to say that Bi must be
a covering code of covering radius ρ or smaller. For other feasible regions it is a
more general covering by F -shapes.

In order to correct up to e errors, we require that if i 	= j, then d(Bi, Bj) >
2e. It is sufficient to require that CF has minimum distance 2e+1 or more; i.e.
that CF is e-error correcting. Furthermore as a necessary condition, if there
are two codewords with distance at most 2e apart, they must fall in the same
set Bi.

In a sense, we try to pack the space with coverings Bi such that we maintain
a minimum distance of 2e+ 1, a problem studied in [2].

We say that a CCTIR code (B1, . . . , BM ) is linear if CF is a linear e-error-
correcting code, Bj is a subcode satisfying (1) for some j, and the Bi are cosets
of Bj in CF . Clearly by linearity, Bi satisfies (1) whenever Bj does.
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Let an = #F0. For CCTIR, all the feasible regions clearly have the same
size.

Lemma 2. For an (n,M) CCTIR code, we have

M ≤ an

Lemma 3. For dirty paper codes, we have

an = V (n,R) =
n∑

i=0

(
n

i

)
.

In the case of WRM and dirty paper channels, a linear CCTIR code is also
called a nested code. We call CF the fine code and CC ⊆ CF the coarse code.
The nested code is the quotient C = CF /CC , and we say that C is an [n,K; d1, ρ]
code, where K = kF − kC is the dimension of C. The following lemma is well
known.

Lemma 4 (Supercode lemma). For any [n,K; d1, ρ] nested code, we have
ρ ≥ d1.

4 Asymptotic Existence

Definition 1 (Entropy). The (binary) entropy of a discrete stochastic variable
X drawn from a set X is defined as

H(X) = −
∑
x∈X

P (X = x) logP (X = x).

The conditional entropy of X with respect to another discrete stochastic variable
Y from Y is

H(X|Y ) = −
∑
y∈Y

P (Y = y)
∑
x∈X

P (X = x|Y = y) logP (X = x|Y = y).

The following general theorem appears in [2].

Theorem 1. For n large enough, there are θn-error correcting codes for CCTIR
with rate

κ(θ) ≥ κ0 −H(2θ),

where κ0 is the maximum rate for a non-error-correcting code for the same con-
strained channel.

The proof is by greedy techniques, as follows.

Proof. We write
S(B, i) =

⋃
b∈B

{x : d(x,b ≤ i}.
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First we make a code CC of rate 1 − κ without error-correction. Let S0 =
S(CC , 2θn− 1).

We start with B = {0}, and construct a code CC by the following greedy
algorithm. In each step we take a random vector y ∈ S\S(B + CC , 2θn − 1),
and update B to be the linear span of y and the vectors of B. We proceed until
S\S(B+CC , 2θn− 1) is empty. Since each word included in B excludes at most
#S(CC , 2θn− 1) elements from S0, we get that

#B ≥ 2n

#CC#S({0}, 2θn− 1)
≥ 2κn

#S({0}, 2θn− 1)
.

Assymptotically, we have #B ≈ 2(κ−H(2θ))n, Let CF = B + CC , so that C =
CF /CC ≡ B. Clearly the rate of B and C is κ−H(2θ) as required.

In the case of dirty paper channel, κ0 = 1 − Rρ where Rρ is the minimum rate
for a covering code with appropriate ρ.

Theorem 2. For dirty paper codes with no error-correction, we can obtain rate
κ0 = H(ρ).

Observe that whenever ρ > δ, we get asymptotic codes with non-zero rate from
the above theorems. For ρ = δ, however, the guaranteed rate is just zero.

Problem 1. Are there asymptotic families of nested codes with R>0 and ρ=d?

5 Some Small Constructions

Lemma 5. For any [n,K; 1, 1] nested code with even n, we have K ≤ log n.

Proof. For a [n, kC ]1 covering code, we have kC ≤ n− log n when n is even, and
for an [n, kF , 1] code, we have kF ≤ n. Hence K = kF − kC ≤ log n.

Lemma 6. There is a [2K − 1,K; 1, 1] nested code for any K.

Proof. Let the coarse code be the [2K − 1, 2K − 1 −K, 3]1 Hamming code, and
let the fine code be the [2K − 1, 2K − 1, 1] code.

Table 1. Some nested codes for n = 3

Parameters Coarse code Fine code

[3, 1; 1, 1]
[
110
101

] ⎡⎣100
010
001

⎤⎦
[3, 1; 2, 2]

[
110
] [

110
011

]
[3, 2; 1, 2]

[
110
] ⎡⎣100

010
001

⎤⎦



312 H.G. Schaathun and G.D. Cohen

Table 2. Some nested codes for n = 4, 5, 6

Parameters Coarse code Fine code

[4, 2; 1, 1]
[
1110
1001

] ⎡⎢⎢⎣
1000
0100
0010
0001

⎤⎥⎥⎦
[4, 2; 2, 2]

[
1111

] ⎡⎣1100
1010
1001

⎤⎦
[4, 3; 1, 2]

[
1111

] ⎡⎢⎢⎣
1000
0100
0010
0001

⎤⎥⎥⎦
[5, 2; 1, 1]

⎡⎣11100
10011
00110

⎤⎦ [5, 5, 1] full code

[5, 4; 1, 2]
[
11111

]
[5, 5, 1] full code

[5, 2; 2, 2]
[
11111

] ⎡⎣11000
10100
10010

⎤⎦
[6, 2; 2, 2]

[
111000
000111

] ⎡⎢⎢⎣
111000
000111
100100
010010

⎤⎥⎥⎦
[6, 4; 1, 2]

[
111000
000111

]
[6, 6, 1] full code

[6, 4; 2, 3]
[
111111

]
[6, 5, 2] even weight

Lemma 7. There are [2K ,K; 1, 1] and [2K − 1,K; 1, 1] nested codes.

Proof. The fine code is the [n, n, 1] full space. The coarse codes are the Hamming
codes, and the [2K , 2K − K, 1] direct sum of a Hamming code padded with a
zero column, and the code generated by a single word of weight one.

Lemma 8. There are [2K ,K; 2K−1, 2K−1] and [2K − 1,K; 2K−1 − 1, 2K−1 − 1]
nested codes for any positive K.

Proof. Let the coarse code be the [2K , 1, 2K ] repetition code, and let the fine code
be the [2K ,K, 2K−1] Reed-Muller code. The second set of parameters comes from
puncturing the above code.

Lemma 9. If there is an [n,K; d, ρ] code, then there is an [n − 1,K; d − 1, ρ]
code by puncturing and an [n− 1,K; d, ρ+ 1] code by shortening.

Proof. This follows easily from the standard results on puncturing and shorten-
ing of error-correcting and covering codes.

Lemma 10 ([2]). The [2m − 1, 2m − 1− 2m, 5] BCH code has ρ = 3 for m ≥ 3.
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Table 3. Some nested codes for n ≥ 7

Parameters Coarse code Fine code
[7, 3; 1, 1] [7, 4; 3]1 Hamming [7, 7, 1]
[7, 3; 3, 3] [7, 1, 7]3 repetition [7, 4, 3] Hamming

[8, 3; 1, 1]

⎡⎢⎢⎢⎢⎣
10001110
01000110
00101010
00010110
00000001

⎤⎥⎥⎥⎥⎦ [8, 8, 1]

[8, 3; 4, 4] [8, 1, 8]4 repetition [8, 4, 4] ext. Hamming
[15, 4; 3, 3] [15, 7, 5]3 BCH(2) [15, 11, 3] Hamming
[15, 2; 5, 5] [15, 5, 7]5 BCH(3) [15, 7, 5]3 BCH(2)
[15, 2; 7, 7] [15, 1, 15]7 repetition [15, 3, 7] BCH(3)
[15, 4; 7, 7] [15, 1, 15]7 repetition [15, 5, 7] punctured Reed-Muller
[16, 6; 4, 6] [16, 5, 8]6 RM(1, 4) [16, 11, 4] RM(2, 4)
[16, 4; 8, 8] [16, 1, 16]8 repetition [16, 5, 8] Reed-Muller

[27, 6; 11, 13] [27, 1, 27]13 repetition [27, 7, 11] [1]
[28, 6; 12, 14] [28, 1, 28]14 repetition [28, 7, 12] [1]
[31, 5; 3, 3] [31, 21, 5]3 BCH(2) [31, 26, 3] Hamming
[31, 5; 5, 5] [31, 16, 7]5 BCH(3) [31, 21, 5]3 BCH(2)
[31, 5; 7, 7] [31, 11, 11]7 BCH(4) [31, 16, 7]5 BCH(3)

[31, 5; 11, 11] [31, 6, 15]11 BCH(6) [31, 11, 11]7 BCH(4)
[31, 5; 15, 15] [31, 1, 31]15 repetition [31, 6, 15] punctured Reed-Muller
[32, 5; 2, 2] [32, 26, 4]2 RM(3, 5) [32, 31, 2] RM(4, 5)
[32, 10; 4, 6] [32, 16, 8]6 RM(2, 5) [32, 26, 4] RM(3, 5)
[32, 10; 8, 12] [32, 6, 16]12 RM(1, 5) [32, 16, 8] RM(2, 5)
[36, 20; 4, 13] [36, 8, 16]ρ ρ ≤ 13 [36, 28, 4] C⊥

C

[49, 9; 20, 24] [49, 1, 49]24 repetition [49, 10, 20] [1]
[63, 6; 1, 1] [63, 57, 3]1 BCH(1) [63, 63, 1] full code
[63, 6; 3, 3] [63, 51, 5]3 BCH(2) [63, 57, 3]1 BCH(1)
[63, 6; 5, 5] [63, 45, 7]5 BCH(3) [63, 51, 5]3 BCH(2)
[63, 6; 7, 7] [63, 39, 9]7 BCH(4) [63, 45, 7]5 BCH(3)
[63, 3; 9, 9] [63, 36, 11]9 BCH(5) [63, 39, 9]7 BCH(4)
[64, 15; 4, 8] (u, u + v) construction

[64, 15; 16, 28] [64, 7, 32]28 RM(1, 6) [64, 22, 16] RM(2, 6)

Corollary 1. There is a [2m − 1,m; 3, 3] nested code for every m ≥ 3.

Proof. The coarse code is the [2m − 1, 2m − 1 − 2m, 5]3 BCH(2) code, and the
fine code is the Hamming code.

Lemma 11 ([2]). The [2m − 1, 2m − 1− 3m, 7] BCH code has ρ = 5 for m ≥ 4.

Corollary 2. There is a [2m − 1,m; 5, 5] nested code for every m ≥ 4.
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Proof. The coarse code is the [2m − 1, 2m − 1 − 3m, 7]5 BCH(3) code, and the
fine code is the [2m − 1, 2m − 1 − 2m, 5]3 BCH(2) code.

Lemma 12. There are [22m+1 − 2m, 2m+ 2; 22m − 2m, 22m] and [22m+1 − 2m −
1, 2m+ 2; 22m − 2m − 1, 22m − 1] nested codes.

Proof. The coarse code is a repetition code. The fine code is a [22m+1−2m, 2m+
3, 22m − 2m] code [1] or a punctured version of it.

Lemma 13. There is no [6, 4; 2, 2] nested code, so the [6, 3; 2, 2], [6, 4; 1, 2] and
[6, 4; 2, 3] codes are optimal.

Proof. The smallest covering code of ρ = 2 and n = 6 has kC = 2, so to get
K = 4, we would need kF ≥ 6, which would give d = 1.

6 Some Upper Bounds on the Nested Code Dimension

Lemma 14. For an [n,K; d, d] nested code, we have

2K ≤
(
n

d

)
+ 1.

Proof. Consider the points of CC and the balls of radius ρ = d around these
points. Because ρ is the covering radius of CC , these balls cover the space. Since
CF has minimum distance d = ρ, it can only contain points on the border of
these balls, besides the points of CC . Hence

#CF ≤ #CC ·
((
n

d

)
+ 1
)
,

and hence
#(CF /CC) ≤

((
n

d

)
+ 1
)
,

as required.

We have seen that this bound can be met with equality for ρ = 1. For ρ > 1
except ρ = n = 2 we have inequality; let’s see this for ρ = 2 first.

Proposition 1. For an [n,K; 2, 2] nested code with n > 2, we have

2K <

(
n

2

)
+ 1.

Proof. Suppose the bound were met with equality. Since CC is a covering code
of ρ = 2, we have

2n ≤ 2kC

(
1 +
(
n

1

)
+
(
n

2

))
≤ 2kC (2K + n) ≤ 2kF + 2kCn.
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For all n > 2, we have

n < 1 +
(
n

2

)
,

which is equal to 2K by assumption. This gives

2n < 2kF +1,

and clearly n ≥ kF , so we get n = kF ; but then d = 1 < 2, giving a contradiction.

We do have degenerate [n, 1;n, n] nested codes for all n. They have only the zero
word for CC , an [n, 1, n] repetition code for CF .

Proposition 2. For an [n,K; d, d] nested code, we have

2K ≤ A(n, d, d) + 1.

It is readily seen that this bound is stronger than Lemma 14 when ρ > 2.

Proof. We start as we did proving Lemma 14 with the balls of radius ρ around
the points of CC . The border of the ball around x are the points x+y where y
has weight ρ. Obeying the distance requirement, the y that we choose for CF

from this ball, will have to form a constant weight code of weight and distance
ρ = d.

Generalising, we get the following proposition, for which we ommit the proof.

Proposition 3. For an [n,K; d, ρ] nested code, we have

2K ≤ 1 +
ρ∑

w=d

A(n, d, w).

7 Some Constructions

Theorem 3. Let U = UF /UC and V = VF /VC be [n,KU ; dU , ρU ] and [n,KV ;
dV , ρV ] nested codes. Let Ui ◦ Vi denote the (u,u + v) composition of UI and
UV . Then we can form a nested code C = U ◦ V = (UF ◦ VF )/(UC ◦UF ), and C
is a [2n,KU +KV ; d, ρ] nested code with ρ ≤ ρU + ρV and d = min{2dV , dU}.

The proof is obvious from fundamental results on the parameters of the compo-
nent codes.
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Abstract. One of the disadvantages of orthogonal frequency division
multiplexing (OFDM) systems is the high peak-to-average power ratio
(PAPR) of OFDM signals. Golay complementary sets have been pro-
posed to tackle this problem. In this paper, we develop several theorems
which can be used to construct Golay complementary sets and multiple-
shift complementary sets from Reed-Muller codes. We show that the re-
sults of Davis and Jedwab on Golay complementary sequences and those
of Paterson and Schmidt on Golay complementary sets can be considered
as special cases of our results.

1 Introduction

Orthogonal frequency division multiplexing (OFDM) [1] is a technique to trans-
mit data over a number of subcarriers. OFDM offers many advantages, and in
particular, it can provide resistance to dispersion caused by multipath delay
spread. Consequently, OFDM has been adopted for many types of wireless ap-
plications. One of the drawbacks in implementation is the high peak-to-average
power ratio (PAPR) of OFDM signals. High PAPR leads to the consequence
that power amplifiers with a large linear range are required, which results in
high cost and limits widespread applications.

Many coding approaches [2]–[8] have been proposed to cope with this problem.
In [3], Davis and Jedwab provided a connection between Golay complementary
sequences [9] and Reed-Muller codes, along with a code which guarantees low
PAPR. And Paterson proposed a theory linking Golay complementary sets [10]
and second-order cosets of the first-order Reed-Muller codes in [4]. The results in
[3] on Golay complementary sequences can be regarded as a special case of those
proposed in [4] on complementary sets. However, only second-order cosets are
considered in [4]. In [8], Schmidt and Finger generalized Paterson’s work to cosets
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of arbitrary order, but the upper bound on PAPR is not very tight. In this paper,
we propose a more powerful theory to link all the cosets of the first-order Reed-
Muller codes and a tighter upper bound on PAPR. Furthermore, we provide a
relationship between Reed-Muller codes and multiple shift complementary sets
[11]–[13] which are an extension of Golay complementary sets.

2 Signal Model

For an even integer q, we denote c = (c0, c1, . . . , cn−1), a Zq-valued sequence of
length n, where ci is in the ring Zq = {0, 1, . . . , q−1}, and x = (x0, x1, . . . , xn−1)
= (ξc0 , ξc1 , . . . , ξcn−1), a q-PSK modulated sequence, where ξ = e2πj/q is a com-
plex qth root of unity. For the sake of convenience, we use the equivalent complex
baseband notation. Let an OFDM signal be given by

Xc(t) =
n−1∑
i=0

xie
j2πit, 0 ≤ t ≤ 1

where n is the number of subcarriers. The instantaneous power of an OFDM
signal is then given by Pc(t) = |Xc(t)|2. The average power Pav is n for equal
energy constellations. The PAPR of a sequence c is defined as

PAPR(c) = max
0≤t≤1

Pc(t)
Pav

.

3 Golay Complementary Sets

Before describing Golay complementary sets, we introduce the relationship be-
tween the instantaneous power and the aperiodic autocorrelation. It is easy to
show [4] that

Pc(t) = n+ 2
n−1∑
u=1

1
{
Ac(u)ej2πut

}
where 1{·} denotes the real part. The aperiodic autocorrelation function Ac(u)
of c at displacement u is defined as

Ac(u) =
n−1−u∑

k=0

xk+ux
∗
k =

n−1−u∑
k=0

ξck+u−ck , 0 ≤ u ≤ n− 1.

Definition 1. [10] A set of N length-n sequences c1, c2, . . . , cN is called a Golay
complementary set if

Ac1(u) +Ac2(u) + · · · +AcN
(u) =

{
0, u 	= 0
Nn, u = 0.

If N = 2, the set is called a Golay complementary pair, and any sequence which
is a member of such a pair is called a Golay complementary sequence. It has
been shown in [14], [15], and [4] that the PAPR of any sequence of a Golay
complementary set of size N is at most N .
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4 Complementary Sets from Reed-Muller Codes

In this section, we will provide a relationship between Golay complementary
sets and cosets of the first-order Reed-Muller codes. We denote the rth-order
Reed-Muller code of length 2m over Zq by RMq(r,m). Let the 2m-tuple vectors

vi = (00 · · · 0︸ ︷︷ ︸
2i−1

11 · · · 1︸ ︷︷ ︸
2i−1

00 · · · 0︸ ︷︷ ︸
2i−1

· · · 11 · · ·1︸ ︷︷ ︸
2i−1

), i = 1, 2, . . . ,m (1)

and
v0 = (11 · · · 1) (2)

the all-one vector. For vectors a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1),
we denote ab = (a0 · b0, a1 · b1, . . . , an−1 · bn−1) where “·” represents the product.
Then RMq(r,m) is a linear code over Zq generated by the following vectors [16]:

GRM(r,m) = {v0,v1,v2, . . . ,vm,v1v2, . . . ,vm−1vm,

. . . , up to products of degree r}.

We will show that any codeword of arbitrary coset of RMq(1,m) is contained in
a Golay complementary set, and, as a result, we can derive an upper bound on
PAPR for cosets of RMq(1,m). Some of the proofs and derivations are sketched
or omitted hereinafter, due to the length limitation.

Theorem 1. For any even integer q, for any choice of ai,J ∈ Zq, for any integer
k = 0, 1, . . . ,m − 1, and for any permutation π of the symbols {1, 2, . . . ,m}, if
we denote

Q =
q

2

∑
i∈{1,2,...,m−1}\{t1,t4,...,t3k−2}

vπ(i)vπ(i+1)

+
∑
J⊆S

∑
i∈ h∈J Ih

ai,Jvπ(i)

⎛⎝∏
j∈J

v′
j

⎞⎠
+
q

2

2k−1∑
d=0

(
k∏

i=1

vdi

π(t3i)
(v0 − vπ(t3i))

1−di

)
Qd(vπ(1),vπ(2), . . . ,vπ(t1)) (3)

where d = (d1, d2, . . . , dk) ∈ Zk
2 is the binary representation of d ∈ Z2k , vi,

i = 1, 2, . . . ,m, and v0 are defined in (1) and (2), respectively, v′
j = vπ(tj)

for j = 2, 3, . . . , 3k, v′
−1 =

∑2k−1
d=0 vπd(1)

∏k
i=1 vdi

π(t3i)
(v0 − vπ(t3i))

1−di , v′
1 =∑2k−1

d=0 vπd(t1)
∏k

i=1 vdi

π(t3i)
(v0 − vπ(t3i))

1−di where each πd is a permutation of
{1, 2, . . . ,m} with πd(i) = π(i) for i = t2, t2 + 1, . . . ,m, S = {−1, 1, . . . , 3k},
I3p−1 =

⋃k
l=p+1{t3l−1, t3l−1+1, . . . , t3l} for p = 0, 1, . . . , k−1, I3p−2 =

⋃k
l=p{t3l,

t3l + 1, . . . , t3l+1} for p = 1, 2, . . . , k, I3p = {1, 2, . . . , t3p−2} for p = 1, 2, . . . , k,
and 1 = t−1 ≤ t0 = t1 = t2−1 < t3 < · · · < t3k−2 = t3k−1−1 < t3k ≤ m = t3k+1.
For each d, if

t1−1∑
i=0

vπ(i)vπ(i+1) + Qd
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is of the form
t1−1∑
i=0

vπd(i)vπd(i+1)

then for any choice of gi ∈ Zq,

G =

⎧⎨⎩Q +
m∑

i=0

givi +
q

2

⎛⎝ k∑
j=0

djv
′
3j−1

⎞⎠ : dj ∈ {0, 1}

⎫⎬⎭
is a Golay complementary set of size 2k+1.

Proof. We have to show

∑
c∈G

n−1−u∑
i=0

ξci+u−ci =
n−1−u∑

i=0

∑
c∈G

ξci+u−ci = 0, for u 	= 0.

For an integer i, denote j = i+ u and let (i1, i2, . . . , im) and (j1, j2, . . . , jm) be
the binary representations of i and j, respectively.

(i) If iπ(t3p−1) 	= jπ(t3p−1) for p ∈ {1, 2, . . . , k}, then for any sequence c ∈ G,
there exists c′ = c + q

2vπ(t3p−1) ∈ G such that

cj − ci − c′j + c′i =
q

2
(iπ(t3p−1) − jπ(t3p−1)) ≡

q

2
(mod q).

So we have
ξcj−ci/ξc

′
j−c′

i = ξq/2 = −1

which implies ξcj−ci + ξc
′
j−c′

i = 0. Hence, we have∑
c∈G

ξci+u−ci = 0.

(ii) If iπ(t3p−1) = jπ(t3p−1) for p = 1, 2, . . . , k, we denote h as the smallest
integer such that iπ(h) 	= jπ(h) for t3k−1 < h ≤ t3k. Let (i1, i2, . . . , 1 −
iπ(h−1), . . . , im) and (j1, j2, . . . , 1− jπ(h−1), . . . , jm) be the binary represen-
tations of i′ and j′, respectively. For any sequence c ∈ G, we have

ci′ − ci =
q

2
iπ(h−2) +

q

2
iπ(h)

+
∑

J⊆{−1,2,...,3k−4}
ah−1,J

⎛⎝∏
p∈J

iπ(tp)

⎞⎠
+ gπ(h−1)iπ(h−1).
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Therefore,

cj − ci − cj′ + ci′ =
q

2
(iπ(h−2) − jπ(h−2)) +

q

2
(iπ(h) − jπ(h))

+
∑

J⊆{−1,2,...,3k−4}
ah−1,J

⎛⎝∏
p∈J

iπ(tp) − jπ(tp)

⎞⎠
+ gπ(h−1)(iπ(h−1) − jπ(h−1))

≡ q

2
(mod q)

since iπ(h−2) = jπ(h−2), iπ(h−1) = jπ(h−1), iπ(h) 	= jπ(h), and iπ(tp) = jπ(tp)

for p ∈ {−1, 2, . . . , 3k − 4}. So we have ξcj−ci/ξcj′−ci′ = ξq/2 = −1 which
implies ξcj−ci + ξcj′−ci′ = 0. Hence, we have∑

c∈G

ξci+u−ci + ξci′+u−ci′ = 0.

We assume that iπ(r) = jπ(r) for r = t3l−1, t3l−1 + 1, . . . , t3l for l = p +
1, p + 2, . . . , k. Let h′ be the smallest integer such that iπ(h′) 	= jπ(h′) for
t3p−1 < h

′ ≤ t3p. Let (i1, i2, . . . , 1 − iπ(h′−1), . . . , im) and (j1, j2, . . . , 1 −
jπ(h′−1), . . . , jm) be the binary representations of i′ and j′, respectively.
For any sequence c ∈ G, we can also obtain cj − ci − cj′ + ci′ = q/2.
Therefore, ∑

c∈G

ξci+u−ci + ξci′+u−ci′ = 0.

By induction, if iπ(p) 	= jπ(p) for p ∈ {t3l−1 + 1, t3l−1 + 2, . . . , t3l : l ∈
{0, 1, . . . , k}}, we have∑

c∈G

ξci+u−ci + ξci′+u−ci′ = 0

for a particular i′.
(iii) For any d ∈ Zk

2 , let (iπ(t3), iπ(t6), . . . , iπ(t3k)) = d. If iπd(1) 	= jπd(1), then for
any sequence c ∈ G, there exists c′ = c + q

2v′
−1 ∈ G such that

cj − ci − c′j + c′i =
q

2
(iπd(1) − jπd(1)) ≡

q

2
(mod q).

If iπd(1) = jπd(1), we denote h as the smallest integer such that iπd(h) 	=
jπd(h) for 1 < h ≤ t1. Let (i1, i2, . . . , 1− iπd(h−1), . . . , im) and (j1, j2, . . . , 1−
jπd(h−1), . . . , jm) be the binary representations of i′ and j′, respectively. We
can also obtain
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∑
c∈G

ξci+u−ci + ξci′+u−ci′ = 0.

(iv) We assume that iπ(p) = jπ(p) for p= t3l−1, t3l−1 +1, . . . , t3l for l=0, 1, . . . , k.
If iπ(h) 	= jπ(h) for h ∈ {t3l + 1, t3l + 2, . . . , t3l+1 : l∈{1, 2, . . . , k}}, then by
induction similar to (ii), we can also obtain∑

c∈G

ξci+u−ci + ξci′+u−ci′ = 0

for a particular i′.

From (i), (ii), (iii), and (iv), we have

∑
c∈G

n−1−u∑
i=0

ξci+u−ci = 0, for u 	= 0.

which completes the proof. ��

Note that all the sequences of the same Golay complementary set mentioned in
the above theorem lie in the same coset Q + RMq(1,m). Furthermore, from the
fact that the PAPR of any sequence in a Golay complementary set of size 2k+1

is at most 2k+1, we can obtain a corollary to this theorem.

Corollary 1. If Q is the same as that defined in Theorem 1, then the coset
Q + RMq(1,m) has PAPR at most 2k+1.

The connection between Golay complementary sets and second-order cosets of
RMq(1,m) was provided in [3] and [4]. Theorem 1 and [8] both generalize the
construction of complementary sets in [4] and give a connection between Golay
complementary sets and cosets of RMq(1,m) of arbitrary order. But, however,
the upper bound in Corollary 1 is tighter than those in [4] and [8]. Also by taking
t2 = t3 = t4 = m − k + 1, t5 = t6 = t7 = m − k + 2, . . ., and t3k−1 = t3k =
t3k+1 = m in Theorem 1, the results of [8] on Golay complementary sets can be
regarded as a special case of Theorem 1. Moreover, if |J | = 1, Theorem 1 can be
reduced to the results of [4] on Golay complementary sets. In [4], an example was
provided: for length n = 25 = 32, let Q = v1v2 +v1v5+v2v5 +v3v5+v4v5, and
then the coset Q + RMq(1, 5) has PAPR equal to 3.449. However, the theorems
in [4] and [8] both give a bound of only 8, while our theorem gives a tight bound
of 4 by taking k = 1, π(1) = 1, π(2) = 2, π(3) = 4, π(4) = 5, π(5) = 3, t−1 = 1,
t1 = 2, t2 = 3, t3 = 4, t4 = 5, and Qd = 0 for d ∈ Z2 in Theorem 1. Any
codeword in this coset lies in a complementary set of size 4, so this coset has
PAPR at most 4. Consider one more example: for n = 2m where m is even, let
Q =

∑m−1
i=1,i�=m/2 vivi+1, [4] and [8] both give a bound of 2m/2+1 which is very

loose as m is large, while Theorem 1 gives a tight bound of 4 by taking k = 1,
t1 = m/2, π(i) = i for i = 1, 2, . . . ,m, and Qd = 0 for d ∈ Z2 whether m is large
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or not. In [4] it was asked that “What is the strongest possible generalization of
Theorem 12?” Theorem 1 could be a partial answer to this question.

5 Multiple-Shift Complementary Sets

We define a set of N length-n sequences c1, c2, . . . , cN to be called a multiple
L-shift complementary set [12] if the following property is satisfied:

Ac1(u) +Ac2(u) + · · · +AcN
(u) =

{
0, u mod L = 0
Nn, u = 0.

From the above definition, it is obvious that the family of multiple L-shift
complementary sets is an extension of that of Golay complementary sets. When
N = 1, such a sequence is called a multiple L-shift auto-orthogonal sequence. A
multiple L-shift complementary set of size 2 is called a multiple L-shift comple-
mentary pair, and the sequences in this set are called multiple L-shift comple-
mentary sequences. In [13], it was shown that any multiple L-shift complemen-
tary sequence has PAPR at most 2L. In this section, we provide a relationship
between cosets of the first-order Reed-Muller codes and multiple L-shift com-
plementary sets of length n = 2m. We first denote the set of all sequences
which lie in some multiple L-shift complementary sets of size N as G(L)

N , and
then we derive the following theorem about G(L)

N when both of L and N are a
power of 2.

Theorem 2. For L=2l and N=2k, where l, k≥0, if S is a multiple L-shift com-
plementary set of size N , then S + avi is also a multiple L-shift complementary
set of size N , for i=1, 2, . . . , l, where a∈Zq and vi’s are the same as those de-

fined in Theorem 1. Moreover, if we denote Sp =
{

a + q
2

∑l
i=l−p+1 divi : a ∈ S,

di ∈ {0, 1}}, then Sp is a multiple 2l−p-shift complementary set of size 2k+p, for

p = 1, 2, . . . , l. Therefore, G(2l)
2k ⊆ G(2l−1)

2k+1 ⊆ · · · ⊆ G(1)
2k+l .

Proof. (a) For a sequence c ∈ S, we denote ĉ = c + avp ∈ S + avp for
p ∈ {1, 2, . . . , l} where a ∈ Zq. By definition, we have

∑
c∈S

n−1−u∑
i=0

ξci+u−ci = 0, for u mod L = 0.

For an integer i, denote j = i+ u and let (i1, i2, . . . , im) and (j1, j2, . . . , jm)
be the binary representations of i and j, respectively. Since u mod 2l = 0,
we have ih = jh for h = 1, 2, . . . , l. So

ĉi+u − ĉi = ci+u + ajp − ci − aip = ci+u − ci.
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Hence, we have

∑
ĉ∈S+avp

Aĉ(u) =
∑

ĉ∈S+avp

n−1−u∑
i=0

ξĉi+u−ĉi

=
∑
c∈S

n−1−u∑
i=0

ξci+u−ci

= 0, for u mod L = 0

which implies S + avp is a multiple L-shift complementary set of size N .
(b) We have to show

∑
c∈Sp

Ac(u) =
n−1−u∑

i=0

∑
c∈Sp

ξci+u−ci = 0, for u mod 2l−p = 0

if p = 1, 2, . . . , l. For an integer i, denote j = i+u and let (i1, i2, . . . , im) and
(j1, j2, . . . , jm) be the binary representations of i and j, respectively. Since
u mod 2l−p = 0, we have ih = jh for h = 1, 2, . . . , l− p.
(i) If ih 	= jh for h ∈ {l−p+1, l−p+2, . . . , l}, then for any sequence c ∈ Sp,

there exists c′ = c + q
2vh ∈ Sp such that

cj − ci − c′j + c′i =
q

2
(ih − jh) ≡ q

2
(mod q).

So we have
ξcj−ci/ξc

′
j−c′

i = ξq/2 = −1

which implies ξcj−ci + ξc
′
j−c′

i = 0. Hence, we have∑
c∈Sp

ξci+u−ci = 0.

(ii) If ih = jh for h = 1, 2, . . . , l, then u = j − i mod 2l = 0. From (a), we
have Ŝ = S + q

2

∑l
r=l−p+1 drvr is a multiple L-shift complementary set

of size N for dr ∈ {0, 1} since S is a multiple L-shift complementary set
of size N . Therefore,∑

c∈Sp

Ac(u) =
∑

dl−p+1∈{0,1}
· · ·

∑
dl∈{0,1}

∑
c∈Ŝ

Ac(u)

=
∑

dl−p+1∈{0,1}
· · ·

∑
dl∈{0,1}

0

= 0, for u mod 2l = 0.

From (i) and (ii), we have

∑
c∈Sp

Ac(u) =
n−1−u∑

i=0

∑
c∈Sp

ξci+u−ci = 0, for u mod 2l−p = 0.
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(c) From (b), it can be obtained that G(2l)
2k ⊆ G(2l−1)

2k+1 by taking p = 1. Therefore,

we have G(2l)
2k ⊆ G(2l−1)

2k+1 ⊆ · · · ⊆ G(1)
2k+l .

��

From Theorem 2, we know that G(2l)
2k ⊆ G(1)

2k+l , whereG(1)
2k+l is the family of Golay

complementary sets of size 2k+l, so any sequence in a multiple 2l-shift comple-
mentary set of size 2k has PAPR at most 2k+l. With a proof similar to that of
Theorem 1, we can obtain the following theorem which can be used to construct
multiple L-shift complementary sets from cosets of the first-order Reed-Muller
codes.

Theorem 3. Let L = 2l be a power of 2. Suppose all the parameters are the
same as those defined in Theorem 1, except an additional condition. If Vl ⊆ T ,
where Vl = {v1,v2, . . . ,vl} and T = {v′

−1,v
′
2, . . . ,v

′
3k−1}, then for any choice

of gi ∈ Zq,

G =

{
Q +

m∑
i=0

givi +
q

2

( ∑
w∈T�Vl

dw ·w
)

: dw ∈ {0, 1}
}

is a multiple L-shift complementary set of size 2k−l+1.

In the above discussion, we only consider the case when L is a power of 2.
However, we know that multiple L-shift complementary sequences exist for L 	=
2l by [13] and computer search results. Hence, we also provide two theorems
to construct multiple L-shift complementary sequences when L = 2l + 1 and
L = 2l − 1.

Theorem 4. Let q be an even integer, for L = 2l + 1 where l is a positive
integer, and for any permutation π of the symbols {1, 2, . . . ,m}, if π(m) ≡ π(m−
1) (mod 2l), let

Q =
q

2

m−2∑
i=1

vπ(i)vπ(i+1) + avπ(m−2)vπ(m−1)vπ(m)

+bvπ(m−1)vπ(m)

where a, b ∈ Zq. If π(m) 	≡ π(m− 1) (mod 2l), let

Q =
q

2

m−3∑
i=1

vπ(i)vπ(i+1) +
q

2
avπ(m−2)vπ(m−1)

+
q

2
(1 ⊕ a⊕ b)vπ(m−2)vπ(m−1)vπ(m)

+
q

2
bvπ(m−2)vπ(m) + cvπ(m−1)vπ(m)

where a, b ∈ Z2, c ∈ Zq, and ⊕ denotes the mod-2 addition. For any codeword
c ∈ Q + RMq(1,m), (c, c + q

2vπ(1)) is a pair of multiple L-shift complementary
sequences. Hence, the coset Q + RMq(1,m) has PAPR at most 2L.



326 C.-Y Chen, C.-H. Wang, and C.-c. Chao

Theorem 5. Let q be an even integer, for L = 2l − 1 where l ≥ 3, and for any
permutation π of the symbols {1, 2, . . . ,m}, we denote

Q =
q

2

m−2∑
i=1

vπ(i)vπ(i+1) + avπ(m−2)vπ(m−1)vπ(m)

+bvπ(m−1)vπ(m)

where a, b ∈ Zq. For any codeword c ∈ Q + RMq(1,m), (c, c + q
2vπ(1)) is a pair

of multiple L-shift complementary sequences. Hence, the coset Q + RMq(1,m)
has PAPR at most 2L.

6 Conclusion

In this paper, we have shown how to obtain complementary sets and multiple-
shift complementary sets from first-order Reed-Muller codes of length n = 2m.
In addition, we also provide some results which can be used to derive multiple
L-shift complementary sequences for some L 	= 2l. Only the case that the length
of the complementary set is a power of 2 is considered. However, complementary
sets also exist for length n 	= 2m. Work still in progress includes the study of
complementary sets of length n which can be any integer and that of multiple
L-shift complementary sets for any integer L.
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Abstract. The rank, r, and the dimension of the kernel, k, for binary
Hadamard codes of length 2t were studied in [12], constructing such
codes for all possible pairs (r, k). Now, we will focus on Hadamard codes
of length 2t · s, s > 1 odd. As long as there exists a Hadamard code of
length 4s, constructions of Hadamard codes of length n = 2t · s (t ≥ 3)
with any rank, r ∈ {4s + t − 3, . . . , n/2}, and any possible dimension of
the kernel, k ∈ {1, . . . , t − 1}, are given.

1 Introduction

Let Fn denote the set of all binary vectors of length n. The Hamming distance
between two vectors x, y ∈ Fn, denoted by d(x, y), is the number of coordinates
in which x and y differ. The Hamming weight of x is given by wt(x) = d(x,0),
where 0 is the all-zero vector. The support of a vector x ∈ Fn is the set of
nonzero coordinate positions of x and is denoted by supp(x).

A (binary) (n,M, d)-code is a subset, C, of Fn such that |C| = M and
d(c1, c2) ≥ d for all pairs c1, c2 ∈ C. The elements of a code are called code-
words and d is called minimum distance. We will write 〈C〉 to denote the binary
linear span of C.

Two codes C1, C2 ∈ Fn are equivalent if there exists a vector a ∈ Fn and
a permutation π such that C2 = {a + π(c) | c ∈ C1}. Two structural proper-
ties of nonlinear codes are the rank and kernel. The rank of a binary code C,
r = rank(C), is simply the dimension of the linear span of C. By the binary
orthogonal code of the nonlinear code C, denoted by C⊥, we mean the dual of
the subspace spanned by C having dimension n− r. The kernel of a binary code
C is defined as K(C) = {x ∈ Fn | x + C = C}. If the zero word is in C, then
K(C) is a linear subspace of C. In general, C can be written as the union of
cosets of K(C) and K(C) is the largest such linear code for which this is true
(see [3]). We will denote the dimension of the kernel of C by k = ker(C).
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A Hadamard matrix H of size n is an n × n matrix of +1’s and −1’s such
that HHT = nI, where I is the n × n identity matrix. In other words, the
real inner product of any row with itself is n and distinct rows are orthogonal.
Since nH−1 = HT , we also have HTH = nI, thus the columns have the same
properties and the transpose of any Hadamard matrix, H , is also a Hadamard
matrix, which is not necessary equivalent to H . We know that if a Hadamard
matrix H of size n exists, then n is 1, 2 or a multiple of four (see [4, 8]).

Two Hadamard matrices are equivalent if one can be obtained from the other
by permuting rows and/or columns and multiplying rows and/or columns by
−1. We can change the first row and column of H into +1’s and we obtain an
equivalent Hadamard matrix which is called normalized.

From now on, we will use H ′ to denote a normalized Hadamard matrix of
size n. If +1’s are replaced by 0’s and −1’s by 1’s, H ′ is changed into a (binary)
Hadamard matrix c(H ′). Since the rows of H ′ are orthogonal, any two rows of
c(H ′) agree in n/2 places and differ in n/2 places, and so have Hamming distance
n/2 apart. The binary (n, 2n, n/2)-code consisting of the rows of c(H ′) and their
complements is called a (binary) Hadamard code (see [8]) and we will use H to
denote it.

Now, we recall some results, that we will need, about the rank and the kernel
dimension of Hadamard codes constructed using the Kronecker product construc-
tion. That is, if H ′ = (hij) is any n × n Hadamard matrix, and B1, B2, . . . , Bn

are any k × k Hadamard matrices, then the following matrix

H ′ ⊗ [B1, B2, . . . , Bn] =

⎛⎜⎜⎜⎝
h11B1 h12B1 · · · h1nB1
h21B2 h22B2 · · · h2nB2

...
...

...
...

hn1Bn hn2Bn · · · hnnBn

⎞⎟⎟⎟⎠
is a nk × nk Hadamard matrix, [1]. If B1 = B2 = · · · = Bn = B, we write
H ′ ⊗ [B1, B2, . . . , Bn] = H ′ ⊗B.

Let S be the Hadamard matrix 1 1
1 −1 . Starting from a Hadamard matrix

H ′ of size n, we can construct a Hadamard matrix of size 2n, S⊗H ′. So, if there
exists a Hadamard matrix of size 4s, where s is an odd number, there exists a
Hadamard matrix of size 2t · s, ∀t ≥ 3. Currently, the first size n for which it is
not known whether or not there exists a Hadamard matrix is n = 668, [5].

Lemma 1. [11, 12] Let H ′ be a Hadamard matrix and H its Hadamard code.
The kernel dimension of the corresponding Hadamard code of S⊗H ′ is ker(H)+1
and the rank is rank(H) + 1.

Lemma 2. [1] Let H ′
1 ,H ′

2 be two Hadamard matrices and H1, H2 their
Hadamard codes. The rank of the corresponding Hadamard code of S⊗[H ′

1, H
′
2] is

rank(H1)+rank(H2)+1−dim(〈H1〉∩〈H2〉) or, equivalently, dim(〈H1∪H2〉)+1.

Lemma 3. [11, 12] Let H ′
1, H ′

2 be two Hadamard matrices. Let H1, H2 be their
Hadamard codes and K(H1), K(H2) their kernels. If for all v, H1 	= v + H2,
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then the kernel K of the corresponding Hadamard code of S ⊗ [H ′
1, H

′
2] is K =

{(x, x) | x ∈ K(H1) ∩K(H2)}.

The rank and the dimension of the kernel for Hadamard codes of length a power
of two were studied in [1, 6, 9, 10, 11, 12]. In [11, 12], exact lower and upper bounds
for the rank and dimension of the kernel of a Hadamard code of length n = 2t

were established. Moreover, Hadamard codes for all possible ranks and dimension
of kernels between these bounds were constructed.

In this paper, we will focus on the rank and the dimension of the kernel for
Hadamard codes of length n = 2t ·s, s > 1 odd. The paper is arranged as follows.
In Section 2, we establish that Hadamard codes of length 2t · s (s > 1 odd) have
kernel of dimension k in the range {1, . . . , t − 1}. In Section 3, we prove that if
there exists a Hadamard code of length 4s (s odd), we can construct Hadamard
codes of length 2t ·s with rank r, for all r between 4s+t−3 and the upper bound
n/2. Finally, in Section 4, we construct Hadamard codes of length 2t · s with
parameters (r, k) for all of the above values, as long as there exists a Hadamard
code of length 4s (s odd).

2 Dimension of the Kernel of Hadamard Codes

In [11, 12], it was proved that the Hadamard codes of length n = 2t have kernels
of dimension k ∈ {1, 2, . . . , t− 1, t+ 1}. For these Hadamard codes of length 2t,
there always exists the linear one of dimension t + 1, denoted by St. We can
assume St is generated by the binary vectors 1, v1, v2, . . . , vt of length 2t, where
the vectors vi, ∀i ∈ {1, . . . , t}, are as follows:

v1 = (1, 1, 1, 1, 1, ..., 1︸ ︷︷ ︸
n/2

, 0, 0, 0, 0, 0, ..., 0︸ ︷︷ ︸
n/2

),

v2 = (1, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, ..., 0︸ ︷︷ ︸
n/4

, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, ..., 0︸ ︷︷ ︸
n/4

),

...
vt = (1, ..., 1︸ ︷︷ ︸

n/2t

, 0, ..., 0︸ ︷︷ ︸
n/2t

, 1, ..., 1︸ ︷︷ ︸
n/2t

, ..., 0, ..., 0︸ ︷︷ ︸
n/2t

).

(1)

In general, if n = 2t · s, we can also consider the vectors 1, v1, v2, . . . , vt of
length n = 2t · s constructed in the same way. It is known that not always
〈1, v1, v2, . . . , vt〉 ⊆ 〈H〉 [2], however if a Hadamard code H has ker(H) = k, it
is straightforward to see that the kernel is generated by k (independent) vectors
from 1, v1, v2, . . . , vt, so we can assume that K(H) = 〈1, v1, v2, . . . , vk−1〉, up to
equivalence.

Now, we will show that we can construct a new Hadamard code by puncturing
some coordinates of a given Hadamard code. LetH be a Hadamard code of length
n = 2t·s (t ≥ 2), where s 	= 1 is an odd number, let c(H ′) be the corresponding
binary Hadamard matrix and let
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S = {i |xi 	= 0, ∀x ∈ K(H) ∩ c(H ′)}.
If k > 1, then |S| < n and we can construct the multi-punctured code L, obtained
from H by deleting all the coordinates out of S and avoiding repeated vectors.
The length of L is |S| = 2t−(k−1)·s.
Lemma 4. Let H be a Hadamard code of length n = 2t·s (t ≥ 2), where s 	= 1
is an odd number. If the dimension of the kernel of H is k > 1, then t ≥ 3.

Proof. Let H ′ be the corresponding normalized Hadamard matrix and c(H ′) be
the binary Hadamard matrix. If k > 1, there exists v ∈ K(H)∩c(H ′) and v 	= 0.
Let x, y ∈ c(H ′)\{0}, such that x 	= y + v, which coincide in α coordinates of
value 1 in supp(v) and coincide in β coordinates of value 1 in supp(1 + v). We
know that any two vectors in c(H ′)\{0} have n/4 coordinates in which they
share ones. Then, α + β = n/4. Since v ∈ K(H), we have that 1 + v ∈ K(H)
and y + 1 + v ∈ H . There are α + (n/4 − β) = n/4 coordinates where x and
y + 1 + v share ones. Hence, α = β = n/8 and so t ≥ 3.

Lemma 5. Let H be a Hadamard code of length n = 2t·s (t ≥ 2), where s 	= 1
is an odd number. If the dimension of the kernel of H is k ≥ 1, then t ≥ k + 1.

Proof. For k = 1 it is trivial and for k = 2 it follows directly from Lemma 4. For
the general case, we will use induction, so we assume the result is true for k > 1
and we will prove it for k + 1.

Let v ∈ K(H)\{0,1}. Take H and puncture the code eliminating all the
coordinates where the vector v is zero. There are exactly two copies of each
vector, since for any x ∈ H , the vector x + 1 + v ∈ H is the same as x in the
support of v. Let L be the new code without repeated vectors. The code L has
length n = 2t−1·s. The dimension of the kernel is greater or equal to k− 1, since
the independent vectors in the kernel of H are still independent in the kernel of
L, with the possible exception of the vector v, which coincides with 1.

We will see that L is a Hadamard code since t−1 ≥ 2, so 4|n and, moreover, if
we take any two vectors in H at distance apart n/2, then the restrictions of these
two vectors to the support of v are at distance apart n/4. Let x, y ∈ c(H ′)\{0},
such that x 	= y + v, which coincide in α coordinates of value 1 in supp(v) and
coincide in β coordinates of value 1 in supp(1 + v). We know by the proof of
Lemma 4 that α = β = n/8. The vectors x and y coincide in γ coordinates
of value 0 in supp(v) and coincide in δ coordinates of value 0 in supp(1 + v).
Moreover, α+ δ = β+ γ = n/4 [1, theorem 7.2.2], so γ = δ = n/8. The distance
from x to y restricted to the support of v is n/2−α−γ = n/4. Finally, the code
L is a Hadamard code of length 2t−1 · s and dimension of the kernel greater or
equal to k − 1, so by using the induction hypothesis t− 1 ≥ k or, equivalently,
t ≥ k + 1.

Theorem 1. A Hadamard code of length n = 2t·s (t ≥ 2), where s 	= 1 is an
odd number, has kernel of dimension k ∈ {1, 2, . . . , t− 1}.
Proof. For a Hadamard code, the minimum dimension of the kernel is 1, since
the complement of any codeword is in the code. By Lemma 5, we have that
k ≤ t− 1.
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3 Rank of Hadamard Codes

In [11, 12], it was proved that there exist a Hadamard code of length n = 2t for
any possible rank, r ∈ {t + 1, . . . , n/2}. For Hadamard codes of length 4s and
8s, where s 	= 1 is an odd number, the next result is well-known.

Proposition 1. [1] The Hadamard codes of length 4s and 8s, where s is an odd
number, have rank 4s− 1 and 4s, respectively.

It is also a well-known result that for any binary matrix A of size n × n, in
which all the rows are nonzero and distinct, the rank is lower bounded by log2n
with equality if and only if A is a (binary) Hadamard matrix whose associate
Hadamard code is linear, [7]. For Hadamard codes of length n = 2t · s, where
s 	= 1 is an odd number, this logarithm does not give us the exact lower bound.
However, the following theorem shows the existence of these Hadamard codes
with rank r, for all r between 4s+ t− 3 and the exact upper bound n/2.

Lemma 6. Let H ′ be a Hadamard matrix of size n = 2t · s (t ≥ 3) and H its
Hadamard code. The minimum weight in the linear span 〈H〉 is greater or equal
to four.

Proof. The minimum weight in H⊥ is at least 3, since H does not contain equal
columns. As H ⊂ H⊥, we have that 〈H〉 ⊂ H⊥ and the weight of the vectors in
H is even. So, the minimum weight in 〈H〉 is greater or equal to four.

Theorem 2. If there exists a Hadamard code of length 4s, where s 	= 1 is an
odd number, for all t ≥ 3 there exists a Hadamard code of length n = 2t · s with
rank r, ∀r ∈ {4s+ t− 3, . . . , n/2}.

Proof. By Proposition 1 and Lemma 1, the corresponding Hadamard code of
S⊗H ′, where H ′ is the Hadamard matrix of size 4s, has length 8s and rank 4s,
so the result is true when t = 3. Let K ′ be a Hadamard matrix of size n = 2t−1 ·s
(t ≥ 4) and K its Hadamard code with rank(K) = r and such that the (last)
r column vectors of K are the independent ones. We will see how to construct
Hadamard matrices of size 2t · s with different ranks.

First, the rank of the corresponding Hadamard code of S ⊗ K ′ is r + 1,
by Lemma 1. Now, consider L′

1 = π0,1(K ′) the matrix formed by switching
columns n and n − 1 in K ′, (i.e. π0,1 = (n− 1, n)) and let L1 be its Hadamard
code. The independent vectors in 〈K ∪ L1〉 include those in K as well as, the
vector ur−1,r = (0, . . . , 0, 1, 1) = (x, 01) + (x, 10) for some (x, 01) ∈ K and
(x, 10) ∈ L1. By Lemma 6, ur−1,r is independent from 〈K〉. Hence the rank of
the corresponding Hadamard code of S ⊗ [K ′, L′

1] is dim(〈K ∪L1〉) + 1 = r+ 2.
We can continue in this way taking L′

2 = π0,2(L′
1) the matrix formed by

switching columns n and n−2 in L′
1, π0,2 = (n−2, n) or, equivalently, by a cyclic

shift L′
2 = (n, n−1, n−2)K ′. The independent vectors in 〈K∪L2〉 include those in

K and, moreover, vectors ur−1,r = (0, . . . , 0, 1, 1) and ur−2,r = (0, . . . , 0, 1, 0, 1)
which are independent from 〈K〉 by Lemma 6. There exist some vectors in 〈K〉
with different values in the last three coordinates (e.g. (x, 001), (x, 010), (x, 100)),
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such that adding pairwise these vectors to the corresponding vectors in L2 we
find vectors ur−1,r and ur−2,r. So, the rank of the corresponding Hadamard code
of S ⊗ [K ′, L′

2] is dim(〈K ∪ L2〉) + 1 = r + 3.
In the same way, we can form matrices L′

i = π0,i(L′
i−1) or equivalently by

taking cyclic shifts L′
i = (n, n−1, . . . , n− i)K ′, of i+1 ≤ r independent columns

in K ′. Hence if you assume we have a Hadamard code of length n = 2t−1 · s
and rank r ∈ {4s + t − 4, . . . , 2t−2 · s} we can construct new Hadamard codes
of length 2t · s and rank from r + 1 to 2r which, in general, gives us Hadamard
codes of rank from 4s+ t− 3 to 2t−1 · s.

4 Hadamard Codes with a Given Rank and Dimension of
the Kernel

First, for Hadamard codes of any length, we will give an upper bound on the
rank, in terms of the dimension of the kernel. This result is a generalization of
a result in [11, 12] for length a power of two.

Proposition 2. A (nonlinear) Hadamard code of length n = 2t·s (t ≥ 3), where
s is an odd number, with rank r and a kernel of dimension k satisfies

r ≤
{

2t+1−k·s+ k − 1 if 3 ≤ k ≤ t− 1
2t−1·s if 1 ≤ k ≤ 2

Proof. Let H be a Hadamard code of length n = 2t·s with rank r and a kernel of
dimension k. We know that K(H) is the largest linear subspace into H such that
H can be written as the union of cosets of K(H) and that the cosets of K(H)
form a partition of H . There are 2t+1−k · s cosets in H . When each coset has an
independent vector, the rank is maximum, so r ≤ 2t+1−k·s + k − 1. For k = 1
and k = 2, 2t+1−k·s+ k− 1 > 2t−1·s, but since these codes are self-orthogonal,
r ≤ n/2 = 2t−1·s [1], so in these two cases the upper bound is 2t−1·s.

In [11, 12] it was proved that apart from the linear Hadamard code, we can
construct Hadamard codes of length 2t (t > 4) with rank r and kernel of dimen-
sion k, for all the possible pairs (r, k) between the theoretical lower and upper
bounds: {

t+ 2 ≤ r ≤ 2t+1−k + k − 1 if 3 ≤ k ≤ t− 1
t+ 3 ≤ r ≤ 2t−1 if 1 ≤ k ≤ 2 (2)

For example, in Table 1, we show the different ranks and dimension of the kernels
for which there exist a Hadamard code of length 32. For length 16, apart from
the linear one, there exist four more with each one of the parameters (r, k)
∈ {(6, 3), (7, 2), (8, 2), (8, 1)}.

Now, we will also show how to construct Hadamard codes of length 2t · s
(t ≥ 3), where s 	= 1 is an odd number, with any rank between 4s+ t−3 and the
upper bound (see Proposition 2), given any possible dimension of the kernel (see
Theorem 1). These constructions will work, as long as there exists a Hadamard
code of length 4s, which will have rank 4s− 1 and dimension of the kernel 1, by
Proposition 1 and Theorem 1, respectively.
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Table 1. Dimension of the kernels and ranks of Hadamard codes of length n = 32

rank(C)
ker(C) 6 7 8 9 10 11 12 13 14 15 16

6 �
4 �
3 • � � •
2 � � � � � � � � �
1 • � ∗ ∗ ∗ ∗ ∗ ∗ ∗

Proposition 3. If there exists a Hadamard code of length 4s, where s 	= 1 is an
odd number, there exist two (non-equivalent) Hadamard codes of length 8s with
kernel of dimensions 1 and 2, and both with rank 4s.

Proof. By Proposition 1 and Theorem 1, a Hadamard code H of length 4s has
rank 4s − 1 and dimension of the kernel 1. By Lemma 1, the corresponding
Hadamard code of S ⊗ H ′ has length 8s, rank 4s and kernel of dimension 2.
Now, consider the Hadamard matrix L′ = π(H ′), where π is any transposition,
and L its Hadamard code. Since 〈H〉 is generated by all the vectors of weight
2, 〈H ∪L〉 = 〈H〉 and the corresponding Hadamard code of S ⊗ [H ′, π(H ′)] has
also rank 4s by Lemma 2, and kernel of dimension 1 by Lemma 3.

Lemma 7. Given a nonlinear Hadamard code H of length 2t·s (t ≥ 3) with rank
r and kernel of dimension k, there exist Hadamard codes of length n = 2t+1 · s
with rank r + 1 + δ and kernel of dimension k + 1 − δ, ∀δ ∈ {0, . . . , k}.

Proof. By Lemma 1 the corresponding Hadamard code of S ⊗H ′ has rank r +
1 and kernel of dimension k + 1. By the same argument as in the proof of
Proposition 2, for each δ ∈ {1, . . . , k} there exists a permutation πδ such that the
corresponding Hadamard code of C′ = S⊗ [H ′, πδ(H ′)] has rank r+1+δ. These
permutations represent a cyclic shift of δ+1 independent columns in H ′. We can
choose these columns in the following way. If δ = 1, π1 is a transposition that
fixesK(H). Note that π1 always exists since we stated that H is a nonlinear code
and, in this case, following the notation in (1), we can take as π1 the transposition
of two coordinates with the same value in all the vectors vi. Hence, in the case
δ = 1, by Lemma 3, the Hadamard code C has kernel of dimension k+ 1− 1. If
δ ∈ {2, . . . , k}, πδ effects δ − 1 vectors in K(H), so C has kernel of dimension
k − (δ − 1) = k + 1 − δ.

Lemma 8. If there exists a Hadamard code of length 4s, where s 	= 1 is an odd
number, there exist Hadamard codes of length n = 2t · s (t ≥ 3) with kernel of
dimension 1 and rank r, ∀r ∈ {4s+ 2(t− 3), . . . , n/2}.

Proof. By Proposition 3, it is true for t = 3. Let H be a Hadamard code of length
2t−1 · s, with rank 4s+2(t− 4) and kernel of dimension 1. By Lemma 7 (δ = 1),
there exists a Hadamard code of length n = 2t · s, with rank 4s+ 2(t− 4) + 2 =
4s+ 2(t− 3) and kernel of dimension 1. The result follows using Lemma 3 and
the same argument as in the proof of Proposition 2.
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Lemma 9. If there exists a Hadamard code of length 4s, where s 	= 1 is an odd
number, there exist Hadamard codes of length n = 2t · s (t ≥ 4) with kernel of
dimension 2 and rank r, ∀r ∈ {2t−2 · s+ 3, . . . , n/2}.

Proof. The Hadamard codes considered in Lemma 8 have a kernel of dimen-
sion 1 and are constructed using the Kronecker product. In the corresponding
Hadamard matrix H ′, after a normalization, we can always assume there exists a
column c with all the coordinates one and so another column d with half the coor-
dinates equal to one and the other half equal to zero. If we take the transposed
matrix, we obtain a new Hadamard matrix L′. The corresponding Hadamard
code L will have kernel of dimension at least two. The two independent rows cT

and dT are in the kernel, because of the Kronecker product construction.
From Proposition 2 we know there does not exist any Hadamard code with

dimension of the kernel greater than two and rank greater or equal to 2t−2 ·s+3.
Hence, when the rank has these values we conclude that the dimension of the
kernel is 2.

Lemma 10. If there exists a Hadamard code of length 4s, where s 	= 1 is an
odd number, there exists a Hadamard code of length n = 2t ·s (t ≥ 2) with kernel
of dimension 1 and minimum rank 4s+ t− 3.

Proof. Let Ht and Lt be Hadamard codes of length 2t · s with rank 4s + t − 3
and kernel of dimension 1 and 2, respectively. We know this result is true for
t = 2, so there exists H2. By Proposition 3, there also exist H3 and L3.

We suppose there exists Ht−1 (t ≥ 4), which has rank 4s+ t− 4. By Lemma
7 and from a Hadamard code Ht−2 with rank 4s+ t− 5, we can construct Lt−1
which will have rank 4s+t−4 and kernel of dimension 2. Then, the corresponding
Hadamard code of S ⊗ [Ht−1, Lt−1] will have length 2t · s, rank 4s+ t − 3 and
kernel of dimension 1, by Lemmas 2 and 3. So there exists Ht = S⊗ [Ht−1, Lt−1].

Lemma 11. If there exists a Hadamard code of length 4s, where s 	= 1 is an
odd number, there exists a Hadamard code of length n = 2t · s (t ≥ 4) with rank
r = 2t−2 · s+ 2 and dimension of the kernel k = 3.

Proof. Let H be a Hadamard code (which exists by Lemma 7) of length n =
2t · s (t ≥ 4) with rank 2t−2 · s + 1 and dimension of the kernel 3. Assume
(after a coordinate permutation if it is needed) the basis vectors for the kernel
K = K(H) are 1, v1, v2, as they are defined in equation (1). Let L be a code
H\(K+x)∪(K+x+v1v2), where x ∈ H\K and v1v2 = (11 . . . 1, 00 . . .0) with 1’s
in the first n/4 coordinates. We claim that L is a Hadamard code. It is clear that
L has also 2n codewords, since (K + x+ v1v2) ∩ (K + y) = ∅, ∀y ∈ H\(K + x).
To prove that the minimum distance between codewords is n/2, it suffices to
show that this is the minimum weight for the words of type K + x + y + v1v2.
Let z = (z0, z1, z2, z3) be any word of K + x+ y+ v1v2 of minimum weight n/2,
where in each zi there are n/4 coordinates of z. Since y 	∈ K + x, we have that
z 	∈ K = 〈1, v1, v2〉. Each zi (i ∈ 0, 1, 2, 3) and z0 + 11 . . . 1 have weight n/8,
so z + v1v2 has weight n/2. The kernel of L is K and rank(L) = rank(H) + 1
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because 〈L〉 = 〈H, v1v2〉. Hence, code L is a Hadamard code of length n = 2t · s
(t ≥ 4) with rank 2t−2 · s+ 2 and dimension of the kernel 3.

Finally, using these last lemmas, we have established the next theorem.

Theorem 3. If there exists a Hadamard code of length 4s, where s 	= 1 is an
odd number, there exist Hadamard codes of length n = 2t·s (t ≥ 3) with kernel
of dimension k and rank r for all r such that

4s+ t− 3 ≤ r ≤
{

2t+1−k·s+ k − 1 if 3 ≤ k ≤ t− 1
2t−1·s if 1 ≤ k ≤ 2 (3)

For example, since we know that there exists a Hadamard code of length n = 12
with rank 11 and kernel of dimension 1, we can construct two (non-equivalent)
Hadamard codes of length n = 24 with kernel of dimension 1 and 2, respectively.
The corresponding Hadamard matrices H1 and H2 of these codes, constructed
using Proposition 3, are (in hexadecimal notation):
H1=[000000,FFF000, C8B374, 4F1B0E, 64D9B2, 3A9C56, 8EA8EA, 6A66A6,

56C56C, 3FFC0, D252DA,B0EB0E, 1C7E38, 59A59A,E38E38, C56C56,
9B49B4, FC0FC0, 372372, 9596A6, A9556A, 7138EC,A6359C, 2DC2DC],

H2=[000000,FFF000, 8EA8EA,A9356C, 4F1B0E, 3A9C56, 6A66A6, 56C56C,
59A59A, 2DC2DC,B0EB0E, 9596A6, 1C7E38, A6559A, 372372, D232DC,
E38E38, 64B9B4, C56C56, 9B49B4, 3FFC0, C8D372,FC0FC0, 7158EA].

Continuing with the example, we can also construct (non-equivalent) Hadamard
codes with the ranks and the dimension of the kernels given in Table 2 for length
n = 48 and n = 96. These codes are constructed using Lemmas 7, 8, 9, 10 and
11 and are denoted by &, ∗, �, ◦ and •, respectively.

Table 2. Dimension of the kernels and ranks of Hadamard codes of length n = 48 and
n = 96, respectively

n = 48

rank(C)
ker(C) 13 14 15 16 · · · 24

3 � •
2 � � � � · · · �
1 ◦ ∗ ∗ ∗ · · · ∗

n = 96

rank(C)
ker(C) 14 15 16 · · · 25 26 27 28 · · · 48

4 � �
3 � � � · · · � •
2 � � � · · · � � � � · · · �
1 ◦ � ∗ · · · ∗ ∗ ∗ ∗ · · · ∗

5 Conclusions

In this paper we studied the 2-rank and the dimension of the kernel for Hadamard
codes of length n = 2t · s (s 	= 1 odd). These two parameters can be used to
distinguish between non-equivalent Hadamard matrices, since equivalent ones
have codes with the same parameters.
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We proved the existence of Hadamard codes of length n = 2t · s (s 	= 1 odd)
with rank r and kernel of dimension k, for all r ∈ {4s + t − 3, . . . , n/2} and
k ∈ {1, . . . , t− 1}, provided that there exists a Hadamard code of length 4s. It
is still an open problem to establish the exact lower bound for the rank of these
codes. However, if the dimension of the kernel is t− 1 or t− 2, then 4s+ t− 3 is
the exact lower bound. We claim that this value is always the lower bound. To
prove this it is enough to show the non-existence of Hadamard codes with k = 1
and r < 4s + t − 3. The non-existence of a Hadamard code of length n = 48,
with k = 1 and r < 13 is the smallest unknown case.
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