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Abstract. Inclusion dependencies (INDs) between databases are assertions of
subset-relationships between sets of attributes (dimensions) in two relations. Such
dependencies are useful for a number of purposes related to information integra-
tion, such as database similarity discovery and foreign key discovery.
An exhaustive approach at discovering INDs between two relations suffers from
the dimensionality curse, since the number of potential mappings between the
attributes of two relations is exponential in the number of attributes. For this rea-
son, levelwise (Apriori-like) approaches at discovery do not scale beyond rela-
tions with 8 to 10 attributes. Approaches modeling the similarity space as graphs
or hypergraphs are promising, but also do not scale very well.
This paper discusses approaches to scale discovery algorithms for INDs and some
other similarity patterns in databases. The major obstacle to scalability is the ex-
ponentially growing size of the data structure representing potential INDs. There-
fore, the focus of our solution is on heuristic techniques that reduce the number
of IND candidates considered by the algorithm. Despite the use of heuristics, the
accuracy of the results is good for real-world data.
Experiments are presented assessing the quality of the discovery results versus
the runtime savings. We conclude that the heuristic approach is useful and im-
proves scalability significantly. It is particularly applicable for relations that have
attributes with few distinct values.

1 Introduction

In database research, and in particular in database design, modeling, and optimization,
much emphasis has been placed on dependencies in databases. A vast field of research
deals with functional dependencies (FDs), and many other dependencies between at-
tributes of the same relation have been studied.

However, one type of dependency, called Inclusion Dependency (INDs) [1], is de-
fined across two relations. The problem of IND discovery, which is addressed in this
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paper, involves finding the minimal set of maximal inclusion dependencies between two
relations from the data in the relations, rather than from implied or explicit knowledge
about schemas (e.g., based on attribute names, features, or ontologies). IND discovery is
also different from IND inference [1,2], which is the problem of discovering new INDs
from known INDs, by using inference mechanisms such as transitivity, projection and
permutation. IND discovery proceeds by querying or otherwise examining data across
two relations without prior knowledge about those relations, in order to find inclusion
patterns between them.

Solving IND discovery problems is interesting for a number of applications. INDs
describe subset-relationships between projections (sets of attributes) of two relations,
and can be thought of as related to the “specialization” relationship of object-oriented
systems. For example, foreign key constraints are nothing but true (valid) INDs be-
tween a foreign key in one table and the associated key in another. Foreign key and
functional dependency discovery [3] can be used to reorganize legacy database sys-
tems. In query rewriting, algorithms that answer queries over information spaces with
partially redundant tables benefit from knowledge of INDs [4]. Examples can be found
in the literature, e.g., query folding [5,6,7]. In the context of schema integration and
matching [8], knowledge of redundancies across sources is essential. INDs represent
such redundancies.

The problem of IND discovery is NP-hard [2], and enumeration algorithms are pro-
hibitively slow, even for small real-world problems [9,10]. Since the problem is related
to the discovery of functional dependencies [3] and association rule mining [11], pro-
posals exist to adapt successful algorithms from those domains to the IND discovery
problem [10]. In particular, those algorithms use a levelwise strategy [12], discovering
single-attribute INDs first, then two-attribute (binary) INDs, then higher-order INDs.
However, this approach does not scale beyond very modestly sized problems, as demon-
strated in [9] and [10].

In previous work [13], the authors have proposed a scalable algorithm called FIND2

that discovers INDs between unknown relations. Another similar algorithm, called Zig-
zag, has been independently proposed by de Marchi et al. [14]. The FIND2 algorithm
and the Zigzag algorithm approach the IND discovery problem from similar directions.
They both observe that the solution to an IND discovery problem can be mapped to a
hypergraph. Thus they can map the problem of IND discovery to a problem of discov-
ering a hypergraph from limited knowledge of the hypergraph’s nodes and edges. The
algorithms employed in both approaches (hyperclique finding in FIND2 and minimal
traversal in Zigzag) are polynomial in the number of edges, and therefore exponen-
tial in the number of nodes in the hypergraph (since the number of edges in a general
hypergraph of k nodes is bounded by 2k). In the problem mapping applied in those
algorithms, discovery problems over relations with 50 attributes (a common size) can
easily lead to hypergraphs with hundreds of nodes, which for an algorithm running in
exponential time in the number of nodes poses a serious problem [9,14]. Depending on
the data in the source relations, even relations with 10–20 attributes can lead to unac-
ceptably high runtimes or memory problems.

This paper deals with heuristic strategies to scale hypergraph-based IND-discovery
algorithms beyond the sizes manageable in the basic hypergraph approach. The heuris-
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tics reduce the size of hypergraph data structures involved in the discovery process by
exploiting easily computable database statistics. While the non-heuristic FIND2 and
Zigzag algorithms find the exact problem solution, some of the strategies proposed here
reduce the completeness of the solution. That is, the heuristics will sometimes prevent
the finding of all INDs, but all INDs that are discovered will be correct, and often at
least the largest IND in a given problem will be found.

It should be noted here that our work is orthogonal to manual or semi-automatic
discovery of database relationships, as suggested by many research works [15,16] and
implemented in many industrial software solutions. Our algorithms do not make use
of domain knowledge such as ontologies, expert-supplied attribute relationship infor-
mation, or use other schema-driven techniques. They exclusively use the data in the
information sources to suggest relationships between databases.

The contributions of this paper are as follows: We identify and define “spurious”
inclusion dependencies (INDs) as a major reason for performance problems in IND
discovery. Then, we give a model of detecting such INDs. We also show how to derive
heuristics based on this model, give additional suggestions as to the improvement of
IND discovery, and present an experimental study of the advantages of our heuristic
algorithm.

A preliminary version of this work was presented at the ODBASE 2004 confer-
ence [17]. In addition to the work published there, this paper contains: a discussion of
the quality of results in heuristic IND discovery, a discussion of the use of the algorithm
presented for discovery of patterns other than INDs, as well as four new experiments
comparing our algorithm with an alternative technique, studying the effects of heuris-
tics on quality, evaluating the DV heuristic specifically, and assessing the usefulness of
the algorithm for non-IND pattern discovery.

The remainder of this paper is organized as follows: Section 2 reviews INDs and a
hypergraph-based discovery algorithms for them. Section 3 introduces spurious INDs
and motivates the concept. Section 4 introduces heuristics based on that notion and
their application to IND discovery. Section 5 discusses how to assess the quality of the
heuristic algorithm’s results. Section 6 suggests the application of this algorithm to de-
tect approximate relationships between tables, rather than INDs, which are based on
exact subsets. Section 7 discusses experimental data to support our theoretical results
and assess the algorithms. Sections 8 and Section 9 present related work and conclu-
sions, respectively.

2 Background

2.1 Problem Definition

Our goal is to solve the problem of deducing all inclusion dependencies between two
given relations solely from the data in the relations. Inclusion dependencies are defined
as below.

Definition 1 (IND). Let R[a1, a2, . . . , an] and S[b1, b2, . . . , bm] be (projections on)
two relations. Let X be a sequence of k distinct attribute names from R and Y a se-
quence of k distinct attribute names from S, with 1 ≤ k ≤ min(n, m). Then an inclu-
sion dependency (IND) σ is an assertion of the form σ = R[X ] ⊆ S[Y ]. k is called
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the arity of σ and denoted by |σ|. An IND σ = (R[a1, . . . , ak]⊆S[b1, . . . , bk]) is valid
between two relations R and S if the sets of tuples in R and S satisfy the assertion
given by σ.

Due to its unclear semantics, we do not consider duplication of attributes on either
side of the IND (i.e., we require sequences X and Y to be composed of distinct at-
tributes). However, allowing duplicate attributes is possible and would not significantly
increase the runtime of the algorithms presented here.

Casanova et al. [1] give a complete set of inference rules for INDs, observing that
INDs are reflexive, transitive and invariant under projection and permutation. Permuta-
tion here refers to the reordering of attributes on both sides of the IND. For example,
R[AB] ⊆ S[KL] ≡ R[BA] ⊆ S[LK] �≡ R[BA] ⊆ S[KL]. Transitivity is defined as
usual, R[X ]⊆S[Y ] ∧ S[Y ]⊆T [Z] ⇒ R[X ]⊆T [Z].

Projection invariance of INDs is the key to discovery algorithms. By projection, a
valid k-ary IND with k > 1 implies sets of m-ary valid INDs, with 1 ≤ m ≤ k.
Specifically, for a given valid IND σ = R[X ] ⊆ S[Y ], the IND σ′ = R[X ′] ⊆ S[Y ′]
will be valid for any subsequence X ′ ⊆ X and its corresponding subsequence Y ′ ⊆ Y .
Such a set of m-ary INDs implied by a k-ary IND has a cardinality of

(
k
m

)
and is

denoted by Σk
m. A very important observation is that the validity of all implied m-ary

INDs of a given IND σ is a necessary but not sufficient condition for the validity of σ.
For example, (R[A1] ⊆ S[B1])∧ (R[A2] ⊆ S[B2])∧ (R[A3] ⊆ S[B3]) does not imply
R[A1, A2, A3] ⊆ S[B1, B2, B3], as can easily be seen through an example (Fig. 1).

R
A1 A2 A3

1 4 7
2 5 8
3 6 9

S
B1 B2 B3

1 4 7
2 5 8
3 6 -1
-1 6 9
3 -1 9

R[A1, A2]⊆S[B1, B2] is valid.
R[A2, A3]⊆S[B2, B3] is valid.
R[A1, A3]⊆S[B1, B3] is valid.
R[A1, A2, A3]⊆S[B1, B2, B3] is not valid.

Fig. 1. Validity of all implied INDs is not a sufficient validity test.

Due to the projection invariance, a set Σ of INDs between two relations can be de-
scribed by a cover of INDs, denoted by G(Σ). Intuitively, this is a minimal set of INDs
from which all INDs in Σ can be derived by projection, permutation, and transitivity.
Naturally, G(Σ) ⊆ Σ. With these observations, the IND discovery problem reduces to
the problem of finding a cover of INDs for a given pair of relations.

2.2 IND-discovery Algorithms

Exhaustive Discovery Since |Σk
m| =

(
k
m

)
, the number of valid INDs implied by a

single k-ary IND σ is exponential in k:
k−1∑

m=1

(
k
m

)
= 2k − 2. Furthermore, INDs are not
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invariant under permutation of the attributes of just one side, but only if the attribute
lists on both sides are permutated synchronously. That means for example that, when
discovering INDs between two relations with k attributes, one has to test k! potential
INDs just for the hypothesis that the one relation is completely included in the other.
Consequently, exhaustive enumeration algorithms are exponential and not feasible for
IND discovery.

Since Apriori-like algorithm are the standard solution for many discovery prob-
lems (e.g., for association rules), the question arises whether such an algorithm might
be appropriate for our problem. In fact, a levelwise algorithm [12] akin to the Apriori
algorithms in association rule mining [11] has been proposed as a solution to this prob-
lem [10]. It discovers unary INDs first and then forms binary IND candidates from the
valid unary INDs. Those INDs then have to be validated against the database. From the
validated binary INDs, 3-ary INDs are formed, then tested, and so on. In the presence of
a single sufficiently large valid IND σ, such an algorithm will have to discover 2|σ| − 2
implied INDs before even considering σ. This is clearly not a feasible approach. Ex-
periments conducted by the authors (see Sec. 7) and de Marchi [10] both suggest that
levelwise algorithms do not scale beyond a maximal IND size of 8–10.

Hypergraph-Based Discovery In general, the worst-case complexity of the problem
is determined by the number of possible distinct INDs between two relations. However,
in real-world problems, one expects to find a very low number of large distinct INDs
(in fact, often just one), and possibly several small INDs (see also Sec. 5). Therefore, it
is meaningful to find a minimal cover of valid INDs without even enumerating all valid
INDs, reducing the complexity significantly.

For this purpose, the problem is mapped into a graph problem. We use a family
of k-uniform hypergraphs which are graphs in which each edge is incident to ex-
actly k nodes. Standard undirected graphs can be considered “2-uniform hypergraphs”.
Furthermore, we extend the concept of clique (maximal connected subgraph) to hyper-
graphs.

Definition 2 (hyperclique). Let G = (V, E) be a k-uniform hypergraph. A hyper-
clique is a set C ⊆ V such that for each k-subset S of distinct nodes from C, the edge
corresponding to S exists in E.

In analogy to above, a clique is a hyperclique in a 2-hypergraph.
To map our problem, we now map the set of valid INDs to a family of hypergraphs

Gm (2 ≤ m < k), by making all k-ary valid INDs hyperedges in a k-uniform hy-
pergraph. The nodes of all hypergraphs (for any k) are formed by the unary INDs. For
example, the first hypergraph for k = 2 has as its nodes all valid unary INDs, and as its
edges all valid binary INDs.

We then use the fact that, for m = 2 . . . k − 1, any set Σk
m of INDs implied by a

valid σk maps to a hyperclique in the corresponding hypergraph Gm. In other words,
after an initial step of discovering low-arity INDs (k = 1 . . . 2), we can form candidates
for valid high-arity INDs by considering only those potential INDs that correspond to
cliques in k-uniform hypergraphs for small k.
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Algorithm FIND2 Algorithm FIND2 (Fig. 2) applies hyperclique-finding techniques
to find inclusion dependencies (INDs). It was published as part of a dissertation [9]
and also appears in [13]. Full details and derivations can be found in [18]. FIND2 takes
as input two relations R and S, with kR and kS attributes, respectively and returns a
cover G(Σ) of INDs between R and S. The algorithm proceeds in stages enumerated
by a parameter k = 2, 3, . . .. It begins by exhaustively validating unary and binary
INDs, forming a (2-uniform) hypergraph using unary INDs as nodes and binary INDs
as edges (Step 1, k = 2). A clique-finding algorithm then determines all higher-arity
INDs candidates (Step 2, candidates c1 and c2 in the figure). Since the clique property
is necessary but not sufficient for the validity of a higher-arity IND (Sec. 2.1), each
IND candidate thus discovered must also be checked for validity. Each IND that tests
invalid (but corresponds to a clique in the 2-hypergraph) is broken down into its im-
plied 3-ary INDs. They then form the edges of a 3-hypergraph (Step 3, k = 3). Edges
corresponding to invalid INDs are removed from the 3-hypergraph.

12 13 14 15 23 24 25 34 35 45
(only indices shown,

never generated

cover of valid INDs

123 124 125 134 135 145 234 235 245 345

134

valid binary INDs

3−ary INDs 456

4−ary INDs
4567
(invalid)

(invalid)
567467457

(invalid)(valid)(invalid)

(valid)

unary INDs:

123455−ary INDs

6757564746

2

1
4

3

c2

c1

σ1 = R[A] ⊆ S[A]

e.g., 12 ≡ σ12 = R[AB] ⊆ S[AB])

σ5 = R[E] ⊆ S[E]

σ2 = R[B] ⊆ S[B]

σ6 = R[F ] ⊆ S[F ]

σ3 = R[C] ⊆ S[C]

σ7 = R[G] ⊆ S[G]

σ4 = R[D] ⊆ S[D]

Fig. 2. Overview of the complete algorithm FIND2.

Then, hypercliques are found in the 3-uniform hypergraph formed with unary INDs
as nodes and 3-ary INDs as edges. Hypercliques found are new IND candidates. Invali-
dated IND candidates found in this step are broken down into 4-ary subsets (k = 4). The
process is repeated for increasing k until no new cliques are found. At each phase, some
small elements of the cover G(Σ) might be missed and are discovered by a cleanup pro-
cess (Step 4, see also [18]). In all of our experiments using real data sets, the algorithm
terminated for k ≤ 6 (in Fig. 2, the algorithm terminates for k = 3).

Since the publication of FIND2, de Marchi et al. have independently proposed a
similar algorithm called Zigzag [14], which uses the same basic model as ours, but em-
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ploys minimal hypergraph traversals [3,19] instead of clique-finding in order to gener-
ate large IND candidates. Furthermore, they introduce an optimization to the treatment
of invalidated large IND candidates (e.g., c2 in Fig. 2), in that they also attempt to vali-
date such a failed IND candidate by projecting out single attributes from it, rather than
restarting the discovery process for k + 1. They make a decision as to which strategy to
apply based on the number of tuples in relations R and S that violate the hypothesized
IND.

3 The Semantics of Inclusion Dependencies

Attribute sets that stand in an IND to each other are not necessarily matches for the
purpose of data integration. INDs can occur between attributes “by accident”, especially
if attributes have few distinct values and have similar or equal domains. Therefore, an
algorithm enumerating all inclusion dependencies across two database tables is likely
to produce some results that are not interesting for the purpose of data integration or
schema matching.

3.1 Why Improve IND Discovery?

Algorithms FIND2 and Zigzag as described so far find the complete and correct solution
to the IND-finding problem for two given relations. In principle, both algorithms first
discover unary and binary INDs by enumeration and testing (called pessimistic strategy
in [14]), and then form an optimistic hypothesis about the IND space by assuming that
all high-arity INDs that could be valid based on the validated unary and binary INDs
are in fact valid. That assumption makes both algorithms extremely sensitive to an
overestimation of valid unary and binary INDs. A high number of such small INDs
would cause many invalid larger IND candidates to be generated and tested against the
database.

Also, several of the algorithms involved, in particular the hypergraph-based pattern
discovery (hyperclique-finding in FIND2, min-hypergraph traversal in Zigzag), have
high complexity [19,18], and are fast only for sparse hypergraphs.

Therefore, the overall discovery strategy is sensitive to such overestimations and it
is important to prune unnecessary INDs from the search space.

3.2 Spurious INDs

We will now motivate the concept of “overestimating” INDs. For this purpose, we define
a notion of “accidental” or “spurious” INDs which are valid in the database but do not
contribute significantly to finding a solution to our problem.

Definition 3 (Spurious IND). An inclusion dependency σ = R[A] ⊆ S[B] is called
spurious iff (1) it is valid in the database and (2) does not reflect a semantic relationship
between attribute sets A and B (i.e., A and B do not represent the same real-world
dimensions).
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The exact meaning of “semantic relationship” depends somewhat on the context
in which the IND discovery is used. For example, in schema matching, semantically
related attributes would be mapped into the same attribute in the integrated schema.
In query rewriting, a semantic relationship between two attributes would represent a
redundancy between those attributes.

Often, spurious INDs occur when the domains of attributes are small (i.e., if at-
tributes have many duplicate values), as the following example illustrates.

Example 1. Consider Fig. 3 for an example. The domains of three columns in table
Member and two columns in table Former are “year”, which is a domain with few
values. The figure shows the cover G(Σ) of INDs for this problem.

Member
Name Birthyear MemberSince MemberUntil

Jones 1940 1969 1989
Miller 1945 1960 1988
Myers 1960 1980 1988
Shultz 1969 1988 1989
Becker 1961 1989

Former
Member YOB LeftIn

Myers 1960 1988
Shultz 1969 1989

Former[Member,YOB,LeftIn]⊆Member[Name,Birthyear,MemberUntil],
Former[YOB,LeftIn]⊆Member[MemberSince,MemberUntil]

Former[LeftIn]⊆Member[MemberSince]

Fig. 3. Accidental INDs introduced by small domains

Two low-arity INDs are part of the cover of INDs between Former and Mem-
ber, shown in bold font in Fig. 3. However, in some sense, these INDs are intuitively
“wrong”. Note that they are not implied by any INDs with arity larger than 2. Therefore,
the discovery algorithm will not need these INDs for finding INDs with arity > 2 and
pruning them from the search space would speed up the algorithm while not signifi-
cantly reducing the quality of its result.

3.3 Detecting Whether an IND Is Spurious

Algorithms FIND2 and Zigzag both treat testing a single IND as an elementary oper-
ation with a binary result. A test for binary IND validity can simply be performed by
formulating a database query. In SQL, one could employ the EXCEPT (set-difference)
operator, since R[A]⊆S[B] ⇐⇒ (∣∣R[A]\S[B]

∣
∣ = 0

)
. This however does not generate

any information about the “spuriousness” of the IND.
In order to assess the probability for spurious INDs to occur we now look at a

statistical model. Consider a sample N of size n obtained by sampling with replacement
from a set K of k objects. Given a certain set R ⊆ K of size r ≤ n, consider the
probability that all values in R are included in the sample N and denote it by P (n, r, k).
It can be computed by the following formula.
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Theorem 1. Consider a set R = {e1, . . . , er} of r distinct elements from a universe
K of k distinct elements. The probability that a random sample (obtained by sampling
with replacement) of size n from K contains set R is

P (n, r, k) = 1−

r∑

i=1

(−1)i+1 · (r
i

) · (k − i)n

kn
= 1−

r∑

i=1

(−1)i+1·
(

r

i

)
·
(

1 − i

k

)n

(1)

Proof. There are kn different samples of size n from k distinct elements (sampling with
replacement). We compute how many of those do not contain R. A sample that does
not contain R is missing at least one element from R. Let us denote by Ae the set of all
samples that are missing element e. Then, the number of samples that do not contain at
least one element from R is r0 = |Ae1 ∪ Ae2 ∪ · · · ∪ Aer

|.
We now need to determine the size of the union of all those sets. The size of each Ae

is (k − 1)n. In analogy, the size of Ae1 ∩ Ae2 (the set of all samples missing two given
elements) is (k − 2)n, and so on. Since we can compute the sizes of their intersections,

we can use the inclusion-exclusion rule of combinatorics3, and get r0 =
r∑

i=1

(−1)i+1 ·
(
r
i

) · (k − i)n. We then get the probability P ′ = r0
kn that a sample does not contain R.

Therefore P (n, r, k) = 1 − P ′, 
�
In order to now determine the probability of “spurious INDs’, assume two relations

R and S and the problem of assessing whether a valid IND σ = R[A] ⊆ S[B] is
spurious. Let A have r distinct values. Furthermore, set n = |S|, i.e., n is the number
of (non-distinct) values in attribute B. One can argue that since the values in A are a
subset of the values in B, the values in both attributes are from a common domain K
with k distinct elements.

We are interested in the “chance” that attribute A just “happens” to be included
in attribute B. This “chance” can be assessed by the probability that a sample (with
replacement) of size n from K contains A, which is P (n, r, k).

Now note that lim
n→∞(1 − i

n )n = e−i. Define k = n
c and insert it into the rightmost

term in Equation 1. Since lim
n→∞(1− ci

n )n = e−ic, that means that for large n and k, the

value of P (n, r, k) depends approximately only on r and c = n
k .

In Table 1 we have listed the maximum value of c for which P (n, r, k) remains
lower than 5%, for different r. That is, for a given number of distinct values in an
attribute A, we can estimate how likely it is that A is contained in an attribute B by
chance, given the size of B and the size of the common domain of A and B. This is a
measure of how likely R[A]⊆S[B] is to be spurious.

Of course, the size of domain K is unknown. However, since we have assumed
initially that R[A]⊆S[B], we could assume that K is given by the distinct values in B.
In this case, n > k and thus c ≥ 1. In this case, we get a P < 0.05 only if r > 7.

We conclude that inclusion dependencies where the included attribute has less than
6 or 7 distinct values have a high chance of being valid by statistical coincidence, rather
than by semantic relationships between the attributes. We exploit this result to restrict
the search space of our algorithm.

3 This is a generalization of |A ∪ B| = |A| + |B| − |A ∩ B|. See also [9].
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Table 1. Minimum number of distinct values to avoid spurious INDs.

P (n, r, k) < 0.05 for P (n, r, k) < 0.05 for
r c = n/k less than r c = n/k less than

2 0.25 7 1.06
3 0.46 10 1.35
4 0.64 20 1.97
5 0.80 50 2.85
6 0.93 100 3.53

4 Heuristics for IND-validity Testing

From the observations above, we have derived two heuristics which are useful in reduc-
ing the number of IND candidates considered in a discovery problem.

4.1 The Number-of-Distinct-Values (DV) Heuristic

Based on our definition of spuriousness, the DV heuristic states that an IND R[A] ⊆
S[B] should not be used as a node or edge in a hypergraph in algorithm FIND2 (or sim-
ilar algorithms such as Zigzag) if the attribute (or attribute set) A has few distinct values
(tuples). That is, this heuristic simply discards all inclusion dependencies in which the
included attribute has less than n distinct values.

This method is supported by our theoretical results in Sec. 3.3, which state that
r = δ(R[A]) (the number of distinct values in attribute A) must be relatively large for
the IND R[A]⊆ S[B] to not be considered spurious. From the theory, we would set a
value of n = 7, a choice that is confirmed by our experiments.

The DV heuristic can only be used to test for valid INDs, i.e., an IND that is already
considered invalid will not be affected. It may produce false negatives, i.e., declare
INDs as spurious that are in fact not. Therefore, this heuristic has to be used carefully,
as explained in Sec. 4.3.

4.2 The Attribute-Value-Distribution (AVD) Heuristic

The Attribute Value Distribution (AVD) heuristic has strong predictive power for many
data sets. It is based on the hypothesis that two attributes A and B that form a non-
spurious IND (i.e., are semantically related) have the same frequency distribution of
values.

Obviously, this is strictly only true if A and B are both randomly taken from a
common set of values. However, for the purpose of this paper, we are assuming that
semantically related attributes are both taken from such a common set. Therefore, the
additional assumption that they are random samples seems reasonable at least for some
cases. The heuristic then states the following:

If the values of attributes A and B in a valid IND σ = R[A]⊆ S[B] do not show
the same value distribution, the attributes are not semantically related.
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That is, if the value distribution is found to be different, the σ can be considered
spurious. If it is not different, no new information is gained about σ. This heuristic
can produce false negatives when attributes that are actually semantically related are
rejected due to the fact that they actually do not have similar frequency distributions.
The statistical hypothesis testing itself, which is probabilistic in nature, may also lead
to false negatives.

Performing Statistical Hypothesis Testing for AVD For the hypothesis test, we use
the widely applicable χ2-Test [20], in particular a χ2-Test for independence. This test is
designed to assess the independence of two categorical variables x and y. The χ2-Test
then tests under the null hypothesis that the two variables x and y are independent, i.e.,
that the value of variable x does not influence the value of variable y.

For our purpose we perform the following mapping: Given an IND R[A] ⊆ S[B],
we set x = {A, B} (i.e., the names A and B) and y = δ(R[A]) ∪ δ(R[B]), where
δ(R[A]) denotes the set of distinct values in attribute A of relation R. The contingency
table used for the χ2-Test is then filled with the counts of each distinct data value in
each of the two attributes.

We are therefore testing for the null hypothesis: “the distribution of values in an
attribute does not depend on the choice of attribute (out of {A, B}) from which the
values are taken”. If this hypothesis is rejected (i.e., if the value distribution is dependent
on the choice of attribute), we conclude that the value distributions in the two attributes
are different, and consequently an IND between them is spurious.

The attribute value distribution in a single attribute can be obtained easily through
an SQL-query and can be pre-computed for all attributes. For larger INDs, attribute
values can be concatenated to compute AVDs.

4.3 Incorporating Heuristics into the IND-checking Algorithm

The heuristic-based IND-checking function, called CHECKH, is shown in Fig. 4. While
the basic FIND2 algorithm uses a simple database query to detect the validity of an IND,
the heuristic algorithm, called FINDH, uses this heuristic check function. CHECKH

employs the DV and AVD heuristics introduced above, and also performs a simple
check for compatible domains. Note that the AVD heuristic is only used when (1) the
IND is valid in the database and (2) the DV heuristic rejects the IND. The intuition is
that the AVD heuristic is a stronger test of spuriousness than the DV heuristic and can
detect a semantic relationship (and thus “pass” the IND) where the DV heuristic failed.
The CHECK-function performs a validity check of a single IND against the source
database(s) through a database query and returns a Boolean value.

The computational complexity of IND-checking against the database is quite high,
as a check involves computing a set difference, and is consequently of O(n log n) com-
plexity in the number of tuples in the relations. De Marchi [10] proposes the use of
an inverted index of data values in order to facilitate the computation of unary INDs
only. This approach is not applicable for binary or higher-order INDs. Further improve-
ments in the testing of INDs (rather than the generation of IND candidates) could be
beneficial.
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function CHECKH(Relation R, AttList A of R, Relation S, AttList B of S)
if (domains of R[A] and S[B] incompatible)

return invalid
else if (CHECK(R, A, S, B) = invalid) //a check against the database

return invalid
else if (DV heuristic does not reject IND)

return valid
else if (AVD heuristic rejects IND)

return invalid //false negative possible
else return valid

Fig. 4. The heuristic IND-checking function CHECKH used by algorithm FINDH

4.4 Detecting INDs in the Presence of False Negatives

Consider a complete graph (i.e., a graph with all possible edges) G = (V, E). Then,
the set of nodes V forms a clique in G. Now remove a single edge from E. Clearly, the
clique property does no longer hold, but rather G will now contain at least two distinct
maximal cliques. Those cliques are likely to have a substantial overlap (i.e., common
set of nodes).

If any of our heuristics produces false negatives, some edges (or even nodes, i.e.,
unary INDs) of any graph or hypergraph considered by FIND2 may be missing. The
clique finding algorithms used by FIND2 will then no longer find cliques that corre-
spond to the maximal INDs in the problem given, but rather find only smaller subsets
of those cliques. Simulations show that the removal of as few as 5 random edges from a
clique of 40 or 50 nodes will generally produce a graph with around 20 distinct maximal
cliques. However, those sub-cliques will often show substantial overlaps. Therefore, we
use the following strategy: When heuristics are used in FIND2 that may produce false
negatives (i.e., reporting non-spurious INDs as invalid), and FIND2 reports several
large, overlapping INDs, then we merge those INDs by computing the union of their
nodes.

Naturally, merging all INDs found by algorithm FIND2 will in general not lead to a
valid INDs, unless the (true) cover of INDs actually contains only one IND. Therefore,
we merge INDs of decreasing size, starting from the largest, until adding another IND
to the result will no longer produce a valid IND.

Our experiments show that the IND-merging heuristic is powerful enough to find
large or maximal valid INDs even in cases when many underlying edges are pruned in
earlier stages of heuristic discovery (Sec. 7).

5 Quality of Results in Heuristic IND Discovery

Discovery of INDs typically has the goal of discovering relationships between data-
bases. As such, finding the largest set of related attributes between two given tables
is an important subgoal. If that largest IND is large (has many attributes) compared to
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any other INDs in the solution, it represents more information about the relatedness of
the databases than the smaller INDs. The reason for this is that a 10-ary (or any high-
arity) IND is very unlikely to hold by accident. If a high-dimensional IND is found
between two tables, it most likely represents an actual semantic relationships between
the attributes in the IND, rather than a random pattern that is true due to statistical
coincidence.

See Table 2 for a typical result of an IND discovery. In the example, two tables have
a set of 10 attributes each, which stand in an Inclusion Dependency relationship to each
other. This is represented by the 10-ary IND discovered by the exact algorithm (left
column in the table). The exact algorithm also found 7 more INDs, one unary one, 5
binary ones, and one 3-ary one, which are not implied by the 10-ary IND. Those 7 INDs
are most likely spurious by our definition (Def. 3) since they do not seem to represent a
semantic relationship between the tables. See also Fig. 5.

Table 2. Sets of Maximal Distinct INDs discovered by Heuristic FINDH and Exact
FIND2 Algorithms.

IND Size Exact Algorithm (FIND2) Heuristic Algorithm (FINDH)
1 1 1
2 5 1
3 1 0
4 0 0
5 0 1
6 0 0
7 0 3
9 0 0

10 1 0

Furthermore, a large IND implies many smaller INDs (Sec. 2.1). In the example in
Table 2, the 10-ary IND σ10

1 implies 210 − 2 = 1022 smaller INDs, whereas all the
remaining maximal INDs (σ1

1 . . . σ3
1) together imply only 5 ·(22−2)+1 ·(23−2) = 16

more smaller INDs, most of which are already subsumed by σ10
1 or are duplicates of

each other.

On the other hand, the heuristic FINDH algorithm did not find all of the INDs be-
tween the two tables (Fig. 2). Instead of σ10

1 , it found three 7-ary INDs, which are
fragments of the 10-ary true IND. Note that the union of the attributes of the three INDs
σ7

1 . . . σ7
3 is exactly σ10

1 .

This means that using IND-merging, the heuristically found solution is essentially as
useful as the exact one. However, the 7-ary INDs imply only a total of 3∗(27−2) = 372
INDs, less than 40% of the total number of INDs implied by σ10

1 . Most of those INDs
are also duplicates of each other since those three INDs have a 6-attribute overlap.
Therefore, counting the total number of INDs in the solution is not a good measure for
the quality of the result.
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σ1
1 = R[C]⊆S[B]

σ2
1 = R[B, J ]⊆S[C, J ]

σ2
2 = R[F, J ]⊆S[I, J ]

σ2
3 = R[H, J ]⊆S[I, J ]

σ2
4 = R[H, J ]⊆S[F, J ]

σ2
5 = R[E, H ]⊆S[E,F ]

σ3
1 = R[E, F, J ]⊆S[E, H,J ]

σ10
1 = R[A, B, C, D, E, F, G, H, I, J ] ⊆

S[A, B, C, D, E, F, G, H, I, J ]

Fig. 5. INDs discovered by Exact FIND2

Algorithm.

σ1
1 = R[C]⊆S[B]

σ2
1 = R[B, J ]⊆S[C, J ]

σ5
1 = R[B, C, D, G, I ]⊆S[B,C, D, G, I ]

σ7
1 = R[A, B, C, D, E, F, I ] ⊆

S[A, B, C, D, E, F, I ]

σ7
2 = R[A, B, C, D, E, H, I ] ⊆

S[A, B, C, D, E, H, I ]

σ7
3 = R[A, B, C, D, E, I, J ] ⊆

S[A, B, C, D, E, I, J ]

Fig. 6. INDs discovered by Heuristic
FINDH Algorithm.

The primary difference between the exact and the heuristic algorithms is their treat-
ment of unary and binary INDs, since the heuristics are not applied for higher-arity
INDs. Therefore, we can also compare the counts of those unary and binary INDs as a
measure of result quality. In the example above, the exact algorithm FIND2 discovered
16 valid (not necessarily maximal) unary INDs. On the other hand, the heuristic FINDH

algorithm regarded 4 of those unary INDs as spurious. Those 4 INDs were actually not
implied by the large IND σ10

1 , which means the heuristic correctly disregarded them.
The FINDH algorithm then generated only 62 possible binary INDs to test against the
database, as opposed to 105 in the exact algorithm, which represents a 40% savings
in runtime for this phase. However, the distinct-value heuristic for the binary INDs re-
jected 8 of the valid 46 binary INDs, some of which were implied by σ10

1 . Thus, the
cause of quality loss in this case was the distinct-value heuristic for binary INDs.

6 Heuristics for Discovering IND-like Database Similarities

Algorithms FINDH and FIND2 discover INDs, which are strict set-inclusion patterns.
However, they can also be used to discovery patterns that are not technically INDs,
but rather “IND-like” pattern. In particular, the discovery of similarities (near inclu-
sion) between tables rather than strict inclusion is possible if the similarities are strong
enough.

The current algorithm uses SQL set-difference queries (see also Sec. 3.3) to detect
inclusion of a given projection of the two tables in question. A projection πA (R) on
a table R is included in a projection πB (S) in table S if the result of the relational
query ∆ = πA (R)\πB (S) is empty. However, if ∆ is not empty, its size |∆| (i.e,. the
number of tuples in the difference relation) can be an indicator for the relatedness of
the projections. In its simplest form, a small |∆| indicates a good relationship, while
a large |∆| suggests no relationship. A somewhat stronger heuristic is to use the ratio



Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 199

of |∆| to the number of distinct tuples in πA (R) and/or πB (S). This “relatedness”
score can be used to rank IND-like patterns, which is important when at some stage
in the algorithm, too many patterns are discovered to consider all. This ranking is also
useful in the final output of the algorithm, as it gives additional information on whether
a pattern discovered is real or not.

Partial Overlap Heuristic Determining whether two projections πA (R) and πB (S)
of relations R and S are related if they do not satisfy an IND (i.e. if πA (R) �⊆ πB (S))
can be done in the following way:

– If |πA (R)\πB (S)| < c1, the projections are considered related. c1 can either be
a integer constant (c1 ≥ 1) or can be a function of the number of attributes in A
(i.e,. the arity of the IND-like pattern). The rationale is that a very small number of
“violating” tuples in the set difference between the two projections could be caused
by noise in the data rather than a non-relatedness. An empirically found useful
value for c1 is c1 = 3.

– If |πA (R)\πB (S)| < c2 · |πA (R)| the projections are considered related as well,
with 0 < c2 ≤ 1. The rationale here is that if the number of distinct tuples in
the set-difference is less than a fraction of the number of distinct tuples in the left
(“smaller”) relation of the IND-like pattern, a relationship between the projections
is likely. We experimented successfully with a c2 = 0.49, which represents the fact
that the smallest useful domain in a relational database must have a size of two (two
distinct values, one of which could be null). In this way, for example, an attribute
with a two-valued domain would not be considered related to another attribute un-
less there is a true IND between the two attribute sets (i.e., |πA (R)\πB (S)| = 0),
while two attribute sets A and B with larger domains could be considered related
even if πA (R) �⊆ πB (S).

If either of those two conditions is satisfied, the projections will be considered re-
lated, and treated like valid INDs. That is, they are then passed on to the other heuristics,
filtering out spurious INDs, and then used in the FINDH algorithm.

While this heuristic works well for many cases (see Experiment 7, Sec. 7), the un-
derlying assumption is that related tables have some data in common. With this simple
scheme, a discovery of “relatedness” is possible if there is some extensional overlap
between the relations to be compared. If the relations have no tuples in common, the
use of set-difference queries is not meaningful for the discovery of relationships.

7 Experiments and Evaluation

7.1 Experimental Setup

Experiments were performed on several Linux-PCs with a dedicated machine run-
ning a relational database server. We obtained data from the UC Irvine KDD Archive
(http://kdd.ics.udi.edu), specifically subsets of the CUP98, CENSUS, IN-
SURANCE, and INTERNET data sets, which (converted into relational tables) had
between 40 and 90 attributes each.
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In order to “discover” inclusion dependencies, we used different projections and
selections of each dataset and compared those to each other. An interesting feature of
some of the data sets is that they have very small domains, as many of their attributes
are categorical data. Furthermore, they are encoded as small integers, such that many
unrelated attributes match each other (i.e., form spurious unary INDs). While one could
“join” those columns with their “dimension tables” and obtain distinct domains, we left
the tables as they were as a challenge to our algorithms. The effect was a high number
of spurious INDs, which we could use to assess the performance of our solution.

7.2 Experiment 1: Comparison with Alternative IND Discovery Techniques

The performance of the FIND2 algorithm (without heuristics) was compared with the
previously published Apriori-like IND discovery algorithm [10], which serves as the
baseline algorithm for this problem (and can be faster for very small problems). The
latter algorithm was implemented in the same environment (Java over relational DB)
as the FIND2 algorithm. The test case consisted of a set of selections of the CENSUS
table, with 500 rows each. Each table had 41 attributes. The total number of INDs
between those tables varied, and the size of the largest IND between any of the tables
tested also varied, between 5 and 16 attributes.

As can be seen from Fig. 7, the runtime of the FIND2 algorithm is substantially
shorter than that of the Apriori-like algorithm. The runtime recorded represents CPU
time only; the number of database queries is also lower for the FIND2 algorithm than
for the Apriori-algorithm. As expected, the latter algorithm shows exponential runtime
behavior in the size of the largest IND in the solution (note that the y-Axis is logarith-
mic). The runtime of FIND2 is not affected by the size of the largest IND.

On the other hand, the runtime of FIND2 does depend on the size of the solution,
i.e., the number of distinct maximal INDs in the result (Fig. 8 shows data and linear
regression curve; the correlation coefficient is r2 = 0.95). As explained in Section 5,
the size of the true solution is often small, but can be increased greatly by spurious
INDs. Even though many of those spurious INDs are eventually purged from the search
space in later phases of the algorithm, they slow down IND discovery significantly,
and can even lead to aborted discovery runs due to memory problems. Here, using the
heuristics proposed in this paper can help to speed up IND discovery.

7.3 Experiment 2: Performance and Quality Effects of Heuristics

This experiment was conducted to assess the runtime of the algorithm and the quality
of its output for a given data set, with and without the use of heuristics. For this ex-
periment, we used a 5000-tuple random subset CENSUS1 of data set CENSUS and
a further random subset of 4500 tuples (90%) of CENSUS1, called CENSUS2 (i.e.,
CENSUS2 ⊂ CENSUS1 ⊂ CENSUS). This choice was made to emulate a certain
randomness in real-world data. We compared the performance and quality of algorithms
FIND2 and FINDH. We used different projections on those tables, which all originally
have 41 attributes. Figure 9 shows the runtime of algorithms FIND2 and FINDH, for
different size projections, illustrating the large performance benefits of the heuristic
strategy.
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Fig. 7. Comparison of Algorithm FIND2 with Apriori-like algorithm

Fig. 8. Runtime Behavior of Algorithm FIND2 under different size solutions.
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Fig. 9. Performance of algorithms FIND2 and FINDH, respectively, for discovering
INDs between CENSUS2 and CENSUS1. The time for merging INDs is included
in the runtime measurements.

There is a penalty in accuracy as a tradeoff for the lower runtime. The full cover
of INDs is not found by the heuristic algorithm. Rather, FINDH reports a maximum
IND whose arity is about 70%-85% of the largest valid IND between the test data sets.
However, through IND merging (Sec. 4.4), we still correctly find the largest IND in this
data set. In other cases, the results of clique merging are not perfect as here, but still
large INDs are found, as shown below.

7.4 Experiment 3: Assessing Result Quality for Heuristic FINDH Algorithm

As explained in Sec. 5, the size of the largest IND discovered is a useful measure for
the quality of the algorithm’s performance. However, to assess the quality reduction of
FINDH, we conducted an experiment assessing the precision and recall of unary and
binary INDs in the respective solutions.

For our test case of the CENSUS dataset, we recorded all unary and binary INDs
that the heuristic and non-heuristic algorithms had considered and discovered, and com-
pared with the true solutions.

See Table 3 for the results. The table contains the values for precision and recall
for unary and binary INDs for both algorithms. Precision is computed in the usual
manner as percentage of discovered INDs that are correct, while recall is computed as
percentage of discovered INDs that are found by the algorithm.

In the test case, there was a single 41-ary IND to discover, such that the number of
correct unary INDs was 41, and the number of correct binary INDs was

(
41
2

)
= 820. The
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Table 3. Precision and Recall of Heuristic Algorithm FINDH for Unary and Binary
INDs

Algorithm Unary INDs Binary INDs
Precision Recall Precision Recall

FIND2 59% 100% 83% 100%
FINDH 89% 100% 99% 97%

non-heuristic IND algorithm of course discovers all those INDs, but considers many
more, spurious, INDs. In this experiment, the heuristics worked very well for unary
INDs, achieving 100% recall and only considering very few INDs that turned out to
be spurious. This is partially due to good performance of the AVD-heuristic which
compares frequency distribution of values.

In other cases, the recall is not as good but still sufficient to discover large INDs
efficiently. This experiment demonstrates the effect of the FINDH algorithm: increase
in precision of discovery of small INDs, at the expense of a reduction in recall.

7.5 Experiment 4: Effect of Low Numbers of Distinct Values in Data Set

In this experiment, we assess the quality of the heuristic algorithm in a data set with
many spurious INDs. Table INSURANCE is such a data set, as it contains almost ex-
clusively attributes with small integer domains (often less than ten distinct values) and
consequently nearly 50% of its unary INDs are valid. For the full data set of 86 at-
tributes, 4000 unary INDs are valid in the database, which would lead to a prohibitively
large hypergraph with 4000 nodes.

In fact, the non-heuristic FIND2 algorithm fails for this data set for all cases with
more than 10 attributes, so no performance results for the non-heuristic algorithm can
be reported for comparison.

Table 4 shows the quality achieved by the heuristic algorithm CHECKH for this
case, for different size projections of table INSURANCE. Both the size of the largest
IND found directly and the size of the largest merged IND are reported. The reason for
the reduction in quality for larger relations is that in order for the algorithm to finish,
we had to prune the search space by limiting the number of nodes and edges of the
search hypergraph. The increase of quality for large relations may be due to the random
projections of relations that were performed to obtain problem subsets.

The power of the IND-merging strategy (Sec. 4.4) becomes clear for very large
relations, as the size of the largest discovered IND (relative to the size of the largest
existing IND) actually increases.

7.6 Experiment 5: Number-of-Distinct-Tuples Parameter in DV Heuristic

The Distinct-Value (DV) heuristic rejects valid INDs as spurious when the number of
distinct values is lower than a certain threshold n. A study of the statistic effects of
this heuristic is given in Sec. 3.3. In this experiment, we varied the parameter n, whose
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Table 4. Size of largest IND discovered relative to size of largest valid IND in a difficult
case. In cases marked “N/A”, the algorithm did not finish.

# of Attributes Algorithm
Non-heuristic Heuristic Heuristic w/ IND-merging

10 100% 100% 100%
20 N/A 95% 95%
30 N/A 50% 50%
40 N/A 33% 33%
52 N/A 38% 38%
64 N/A 41% 44%
86 N/A 36% 53%

default value is 7, from 0 to 15. An n = 0 represents the exact (non-heuristic) algorithm.
Table 5 shows the higher-arity INDs that the FINDH algorithm found for a test case from
the CENSUS experiment set, for different n.

For this experiment, there was a single true IND to be discovered, with 41 attributes
(column 1). Two effects are apparent: First, the size of the largest IND discovered by
the heuristic algorithm FINDH decreases as the DV heuristic declares more and more
small INDs spurious. Second, the algorithm also discovers more INDs, with different
sizes, such that the solution becomes “spread out”. For n > 7, the solution quickly
deteriorates, as predicted by the theory. Note that for this experiment, IND-merging
(i.e., computing the union of the attribute sets in all discovered INDs) yielded the “true”
solution of a 41-ary IND.

Furthermore, the algorithm actually becomes slower for larger values of n. One
reason is that the size of the discovered solution (i.e, the number of minimal unique
INDs) increases (see also Fig. 8). Another reason is that the (time-consuming) AVD-
heuristic (Sec. 4.2) is used more often as the DV-heuristic declares more INDs spurious
(since the AVD-heuristic is applied to INDs rejected by the DV heuristic).

7.7 Experiment 6: Accuracy of the χ2-Test and the AVD Heuristic

The attribute value distribution (AVD) heuristic relies on the assumption that attributes
that stand in an inclusion relationship to one another are semantically related and thus
show a similar distribution of their values. This will be true if the two relations in
question are actually random samples of some larger real-world data set. However, if
algorithm FIND2 is run on two relations R and S, with one or both of R and S being
selected from a larger set D on a predicate (R = σC1(D) ∨ S = σC2(D)), the value
distribution in some attributes in R might be different from the value distribution in
some attributes in S.

Thus, we performed a number of experiments in which we generated subsets of our
data sets using predicates rather than random sampling. The expectation is that the AVD
heuristic will produce many false negatives in the presence of such predicates, which
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Table 5. Large INDs discovered with Different Thresholds for the DV Heuristic

IND Size Declare IND spurious if n ≤
0 4 6 7 8 10 15

≤ 24 4
25 1 1
26 3
27 1
28 2 4
29 2
30 1 2
31 1
32 2 1 6
33 1 2 5 2
34 1 2 4
35 4 1
36 2 1
37 2
38
39 2
40
41 1

Runtime (sec) 650 381 356 334 388 408 455

motivates the design to only run this heuristic after the DV heuristic has already rejected
an IND (Sec. 4.3).

Table 6 shows the quality (ratio of size of largest IND found to size of largest
existing IND) of the result in data set INTERNET for four different predicates. The
data set represents a survey in Internet usage data, and we selected the following four
attributes for predicates: gender, household income, country/state of origin (encoded
in a single attribute in the original data source), and major occupation, with condi-
tions that had selectivities between 0.45 and 0.8. For example, selecting tuples with
a predicate such as GENDER<>’female’ will change the value distribution of the
values in the other columns if they are gender-specific. Likewise, a predicate such as
HOUSEHOLD_INCOME<75,000 will probably change the value distribution in the
other columns of this table, which represents an Internet usage survey.

We performed similar experiments with our other data sets and found that the AVD
heuristic helps to find between 50% (data set CUP98) and 10% (data set INSUR-
ANCE) larger INDs than the algorithm with only the DV heuristic, averaged over sev-
eral different predicates. This experiment shows that using the AVD heuristic gives bet-
ter results (i.e., more accurate large INDs) in most of our experimental cases in which it
was actually applied. It never reduces the quality of the result due to the way it is used
in algorithm CHECKH.
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Table 6. Relative size of largest discovered IND, with subsets selected by predicate.

Attribute Predicate with AVD without AVD

GENDER <>’female’ 81% 43%
HOUSEHOLD INCOME < 75000 94% 43%
COUNTRY =’US’ AND state <=

’North Carolina’
85% 42%

MAJOR OCCUPATION <>’other’ 88% 43%

7.8 Experiment 7: Discovering Non-exact Relationships

In this experiment, we tested the hypothesis established in Sec. 6, that the FINDH al-
gorithm can be used to discover approximate relationships between tables that are not
exact inclusions of one another.

Our test case consisted of data from the US Census database4, with the goal of let-
ting the algorithm discover that the census data from two small states (North and South
Dakota) are related. As explained in Sec. 6, due to the use of set-difference queries at
the lowest level, the algorithm in its current form can not be used to compare distinct
relations; some overlap is required. We therefore generated two overlapping tables by
introducing tuples of each state’s microcensus table into the other. We obtained two ta-
bles with about 5,000 tuples each, which had an intersection of about 3,500 tuples, and
about 1,500 unique tuples each. For this experiment, we then projected those tables to
15 randomly selected attributes. We then let the FIND2 and the FINDH algorithms at-
tempt to discover the one-to-one attribute correspondence between the two tables (i.e.,
a single 15-ary inclusion-dependency-like pattern, which implies 15 unary and 105 bi-
nary patterns).

While the non-heuristic FIND2 algorithm generated 126 unary and over 6000 binary
patterns, and subsequently did not finish, the FINDH algorithm performed very well. It
generated only 37 unary and 275 binary patterns (with the DV and AVD heuristics in
place), well within the capabilities of the clique-finding algorithm. It finished after 248
seconds, and found a 13-ary relationship between the two input tables (after merging).
The two attributes not found both had only 2 values in their domains and were highly
correlated, making them indistinguishable for the algorithm.

This experiment suggests that the FINDH algorithm can be used to discover relation-
ships between database even in the presence of substantial noise, or even if the tables
only partially overlap rather than form subsets of one another.

8 Related Work

There is substantial work on the discovery of patterns in databases. Much work is con-
centrated on functional dependencies (FDs), such as Lim and Harrison [21].

4 One-percent microcensus:
ftp://ftp2.census.gov/census 2000/datasets/PUMS/.
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An important related paper is by Kantola, Mannila et al. [2]. The authors describe
an algorithm for discovering functional dependencies and also mention inclusion de-
pendencies. However, no algorithm for IND discovery is given, and only a very rough
upper bound for the complexity of the IND-finding problem is presented (in addition to
a proof of NP-completeness of the problem).

Much database pattern discovery uses the concept of levelwise search, which has
a well known instantiation in the Apriori-algorithm for association rule mining [11].
Mannila and Toivonen [12] give a theory of levelwise searches, and introduce the con-
cept of borders of theories for discovery algorithms.

Zaki [22] uses levelwise search as well as the idea of cliques (but not hypercliques)
for association rule mining. In this paper, the author also mentions clique-merging,
which is similar to our IND-merging.

Hypergraphs have been used in other areas of databases and data mining. For ex-
ample, Mannila and Räihä [3] give an algorithm for the discovery of functional depen-
dencies that maps the problem to a hypergraph traversal.

Inclusion dependencies have been widely studied on a theoretical level. Fundamen-
tal work is done by Casanova, Fagin and Papadimitriou [1]. They present a simple ax-
iomatization for INDs. While their work focuses on inference of INDs, not discovery,
we use their “projection and permutation” axiom as the basis for the FIND2 algorithm.
Casanova et al. further prove that the decision problem for INDs (i.e., deciding whether
a given IND can be derived from a given set of INDs through inference) is PSPACE-
complete. Chandra and Vardi [23] prove undecidability of the problem. Mitchell [24]
developed inference rules for INDs. No discovery on the data-level is mentioned in that
body of work.

De Marchi et al. first proposed a levelwise algorithm for IND discovery [10]. The al-
gorithm is competitive for very small problems, especially due to the use of an inverted
index for unary IND discovery, but suffers from the dimensionality curse for IND sizes
beyond about 8. More recently, deMarchi et al. proposed the Zigzag algorithm [14]
which is very similar to the FIND2 algorithm presented by the authors in [9,13]. There
are significant differences such as the hypergraph model (we use k-uniform hypergraphs
vs. de Marchi’s general hypergraphs) and the discovery algorithm (our hypercliques
vs. de Marchi’s minimal hypergraph traversals). In addition, de Marchi treats invalid
large IND candidates (such as c2 in Fig. 2) differently from us, by attempting to vali-
date them by removing single attributes. The choice of strategy is guided by a heuristic
based on the number of tuples violating the IND property in the proposed IND. His
ideas are orthogonal to ours, and we expect that a pooling of ideas might lead to an
overall more optimized algorithm. In any case, the results from this paper would apply
equally to FIND2 and Zigzag.

There is substantial related work on the mathematical foundations of some of the
heuristics that we have used to restrict problem spaces in our algorithm. Work on the
theory of attribute value distributions can be found in [25] and [26]. The statistical χ2-
Test itself is described in statistics textbooks such as [20].

Schema integration is not limited to the discovery of INDs. In fact, there is a very
large body of work in meta-data driven (as opposed to data-driven) schema integration.
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Rahm and Bernstein [8] give an overview over some recent schema-integration projects;
an earlier survey is [27].

Larson et al. [28] give a theory in which they infer attribute equivalence by a variety
of indicators, such as domains, maximal and minimal values, and some constraints im-
posed by the (relational) database system. Their work is complementary to ours in some
sense but ignores the actual data inside the attributes. Therefore, it is very sensitive to
the availability and correctness of their assumed constraints.

More ideas on schema matching are contained in the SemInt project [29], in which
attribute equivalence is inferred based on 20 different features of an attribute, five of
which (minimum, maximum, average, coefficient of variance, standard deviation) are
based on data but represent very simple properties and apply only to numeric attributes.
These 20 dimensions are then used to train a neural network classifier for inferring
attribute relatedness. Doan et al. [30] use a similar machine-learning approach to infer
related schema elements in semistructured databases.

Kang and Naughton [31] present another schema matching approach, in which they
map each of two relations into a graph and then perform graph matching to achieve
schema matching. They use the assumption that attributes with similar entropy are re-
lated and also take intra-relational mutual information of attributes into account. The
entropy heuristic applies to all data types and is somewhat related to our AVD measure,
but is only a one-dimensional measure which incurs many false positives. The authors
report that their approach does not scale beyond 15–20 attributes due to the deteriora-
tion of their heuristic.

9 Conclusion

In this paper, we have proposed heuristics that help to scale hypergraph-based inclusion
dependency discovery algorithms [13,14]. We have shown that significant performance
benefits are possible by applying the concept of spurious IND. This concept is used to
reduce the problem size for exponential-complexity algorithms. This strategy makes it
possible to automatically discover overlaps between almost any pair of real-world size
relations. Even relations with many meaningless single-attribute overlaps (introduced
by domains with few and accidentally identical values between those attributes) can be
used for robust discovery.

Applications of this work lie in database integration (particularly, schema match-
ing), reorganization, and query optimization. It could also be potentially beneficial in
other application domains, since exponential-complexity mapping problems are com-
mon in subset and similarity discovery problems.

A potential direction into which to take this work is a further generalization of
the problem, moving away from the discovery of exact subsets between relations and
towards true similarity. This would entail relaxing the assumptions (1) that all tuples in
the “included” relation actually exist in the other and (2) overcoming the problem that
values across the attributes must match exactly for an inclusion dependency, both of
which are receiving some attention in the research community already While the first
problem is addressed in this paper and the FINDH algorithm can be used for discovery
tasks in this category, see for example [31] for the second problem.
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