
S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 64-90, 2006.
 Springer-Verlag Berlin Heidelberg 2006

A Method for Pruning Ontologies in the Development of
Conceptual Schemas of Information Systems

Jordi Conesa and Antoni Olivé

Universitat Politècnica Catalunya
Departament de Llenguatges i Sistemes Informàtics

Jordi Girona 1-3 E08034 Barcelona (Catalonia)
{jconesa|olive}@lsi.upc.edu

Abstract. In the past, most conceptual schemas of information systems have
been developed essentially from scratch. Currently, however, several research
projects are considering an emerging approach that tries to reuse as much as
possible the knowledge included in existing ontologies. Using this approach,
conceptual schemas would be developed as refinements of (more general)
ontologies. However, when the refined ontology is large, a new problem that
arises using this approach is the need of pruning the concepts in that ontology
that are superfluous in the final conceptual schema. This paper proposes a new
method for pruning ontologies in this approach. We also show how to adapt the
method to prune ontologies in other contexts. Our method is general and it can
be adapted to most conceptual modeling languages. We give the complete
details of its adaptation to the UML. On the other hand, the method is fully
automatic. The method has been implemented. We illustrate the method by
means of its application to a case study that refines the Cyc ontology.

1 Introduction

Most conceptual schemas of information systems have been developed essentially
from scratch. The current situation is not very different: most industrial information
systems projects are being developed using a methodology that assumes that the
conceptual schema is created every time from scratch. However, it is well-known that
substantial parts of conceptual schemas can be reused in different projects, and that
such reuse may increase the conceptual schema quality and the development
productivity [21].

Several research projects explore alternative approaches that try to reuse
conceptual schemas as much as possible [5, 18, 29, 31]. The objective is similar to
that of projects in the artificial intelligence field that try to reuse ontologies. There are
several definitions of the term “ontology”. We adopt here the one proposed in [12,
34], in which an ontology is defined as the explicit representation of a
conceptualization. A conceptualization is the set of concepts (entities, attributes,
processes) used to view a domain. An ontology is the specification of a
conceptualization in some language. In this paper, we consider a conceptual schema
as the ontology an information system needs to know.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 65

Ontologies can be classified in terms of their level of generality into[13]:
− Top-level ontologies, which describe domain-independent concepts such as

space, time, etc.
− Domain and task ontologies which describe, respectively, the vocabulary related

to a generic domain and a generic task.
− Application ontologies, which describe concepts depending on a particular

domain and task.
We call top-level, domain and task ontologies general ontologies. One example of

general ontology is Cyc [16].
General ontologies can play several roles in conceptual modeling [31]. One of

them is the base role. We say that a general ontology plays a base role when it is the
basis from which the conceptual schema is developed. In general, the development
requires three main activities [10]: refinement, pruning and refactoring which are
reviewed in section 3. The objective of the refinement activity is to extend the base
ontology with the particular concepts needed in a conceptual schema, and that are not
defined in that ontology.

In general, when the base ontology is large, the extended ontology cannot be
accepted as the final conceptual schema because it includes many superfluous
concepts. The objective of the pruning activity is then to prune the unnecessary
concepts. In this paper, we propose a new method for pruning ontologies in the
development of conceptual schemas. To the best of our knowledge, ours is the first
method that is independent of the conceptual modeling language used and of the base
ontology. The method can be used in other contexts as well, and we will show that it
has several advantages over similar existing methods. Our method can be adapted to
most languages, and we give the complete details of its adaptation to the UML [25].
We illustrate the method by means of its application to a case study that refines the
Cyc ontology.

The structure of the paper is as follows. In the next section we present the case
study used to exemplify our approach. Section 3 reviews the three main activities in
the development of a conceptual schema from a base ontology, with the objective of
defining the context of the pruning activity, the focus of this paper. Section 4 presents
the pruning method we propose and proves it is correct. Section 5 compares our
method with similar ones. Section 6 extends our method to make it independent of the
selection strategy used to identify the concepts which are of direct interest for the
information system. Finally, Section 7 gives the conclusions and points out future
work.

2 Case Study

In the case study we create the conceptual schema of a recipe information system by
refining the Cyc ontology. The information base must represent information about:

− Recipes: A recipe is a guide that explains how to create a given meal. They are
published in documents written by one or more authors. Each recipe also
indicates which ingredients are necessary to create the described meal for a
given number of persons.

66 Jordi Conesa and Antoni Olivé

− Ingredients: A given quantity of an ingredient consists of one or more quantities
of distinct nutrients.

− Restaurants: A restaurant is an organization whose main activity is to serve and
prepare meals. Each restaurant offers a list of dishes available for a meal. The
dishes are prepared by cookers. A restaurant can only offer the meals its cookers
know prepare. Restaurants are located in cities. The name of a restaurant must
be unique in the city where it is located.

− Menus: Restaurants offer menus, which are composed for a subset of the list of
dishes. The menus must have at least one first dish, one second dish and one
dessert. The price of a menu cannot exceed the addition of the individual prices
per dish.

The information system must answer queries such as:
− Kilocalories of an ingredient.
− Amounts of lipid, carbohydrate, mineral, protein, vitamin, water and cholesterol

an aliment has.
− For a given city, all the restaurants whose cookers have published a recipe.
− The recipe of a given meal with the lower number of calories.
− The restaurant of a given city that offers a given meal at the lowest price.
− All the vegetarian menus offered in a given city.
− For a given restaurant, the cheapest combination of first dish, second dish, and

dessert.
More details will be given when they arise. The complete details of the case study

are reported in [7].

3 The Context

In this section we briefly review the three activities required to develop a conceptual
schema from a general ontology: refinement, pruning and refactoring. Normally, these
activities will be performed sequentially (see Fig. 1), but an iterative development is
also possible [10].

3.1 Refinement

Normally, a general ontology OG will not include completely the conceptual schema
CS required by a particular information system. The objective of the refinement
activity is then to obtain an extended ontology OX such that:

− OX is an extension of OG, and
− OX includes the conceptual schema CS.
The refinement is performed by the designer. S/he analyzes the IS requirements,

determines the knowledge the system needs to know to satisfy those requirements,
checks whether such knowledge is already in OG and, if not, makes the necessary
extensions to OG, thus obtaining OX.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 67

In our case study, we adopted as general ontology OG OpenCyc [26], the public
version of the Cyc ontology. OpenCyc includes over 2900 entity types and over 1300
relationship types. Even if these numbers are large (and even larger in other
ontologies such as Cyc) it is likely that additional entity or relationship types may be
needed for the CS of a particular IS.

For example, our case study deals with recipes, its ingredients and the nutrients
that compose those ingredients. The concept Nutrient exists in the base ontology, but
their specializations into Mineral, Lipid... do not exist in OpenCyc. Then, we have to
add a concept for each nutrient type: Mineral, Lipid, Protein, Carbohydrates, Vitamin
and Water-Ingestible (see figure 2). Note that Water-Ingestible is also a Drink.

In our system, quantities of EdibleStuff must be expressed in some reference unit
(such as gram). For this purpose we have defined attribute referenceUnit of type
UnitOfMeasure (which is a datatype already defined in OpenCyc).

We need a concept that represents all kind of edible stuff element, because
EdibleStuff represents also nutrients, and Food does not represent the condiments or
preservatives that can be considered as ingredients. Then, we define an entity type
called NonNutrientEdibleStuff. We define this type between EdibleStuff and its
children: CerealFood, FoodIngredientsOnly and FoodOrDrink.

The nutritional composition of recipe ingredients is represented in the association
between NonNutrientEdibleStuff and Nutrient. The association is reified in order to
represent the quantity of nutrient included in the base quantity of
NonNutrientEdibleStuff. For example “100 gr. of rice have 7.3 gr. of proteins”,
where rice is an instance of NonNutrientEdibleStuff , with baseQuantity 100 gr., and
the nutrientQuantity of proteins is 7.3 gr.

The complete refinement of OpenCyc for the case study is described in [7]. In
summary, we have added twelve entity types (Mineral, Lipid, Protein,
CarboHydrates, Vitamin, Water-Ingestible, NonNutrientEdibleStuff, Recipe,
RecipeDocument, FirstDish, SecondDish, Dessert, Menu, CateringCompany), nine
attributes (attributes referenceUnit of EdibleStuff, baseQuantity of
NonNutrientEdibleStuff, nutrientQuantity of NutritionalComponent shown in Figure

 General
Ontolog

Extend-
ed

 Pruned
Ontolog

Conceptual
 Schema

Refinement Pruning Refactoring

Fig. 1. The three activities in the development of conceptual schemas from general

IS requirements

designer

OG OX OP CS

68 Jordi Conesa and Antoni Olivé

2) and eight associations (one of them is NutritionalComponent in Figure 2). We have
also added two association refinements and six general integrity constraints.

3.2 Pruning

Normally, an extended ontology OX will contain many irrelevant concepts for a
particular information system. The objective of the pruning activity is then to obtain a
pruned ontology OP such that:

− OP is a subset of OX, and
− OP includes the conceptual schema CS, and
− The concepts in OX but not in OP would have an empty extension in the

information system, or they are unnecessary for the information system.
In the case study, we find that the OpenCyc ontology contains thousands of

concepts irrelevant for recipes. For example, the entity and relationship types dealing
with Chemistry. Our information system is not interested in these concepts and,
therefore, their extension in the information base would be empty. The objective of
the pruning activity is to remove such concepts from OX. In the next section we
present a method for the automatic pruning of ontologies. The input of the method is
either the formal specification of the IS requirements (domain events, queries) or the
explicit definition of the concepts (entity and relationship types) of interest.

Fig. 2. Partial refinement of OpenCyc in the case study. The grayed boxes are
refined concepts.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 69

3.3 Refactoring

Normally, a pruned ontology OP cannot be accepted as a final CS because it can be
improved in several aspects. The objective of the refactoring activity is then to obtain
a conceptual schema CS that is externally equivalent to OP yet improves its structure.
The purpose of ontology (or conceptual schema) refactoring is equivalent to that of
software refactoring [11]. The refactoring is performed by the designer, but important
parts of the activity can be assisted or automated, provided that the IS requirements
are formalized. Refactoring consists in the application of a number of refactoring
operations to parts of an ontology. Many of the software refactoring operations can be
adapted to conceptual modeling, but this will not be explored in this paper.

4 Pruning the Extended Ontology

In this section, we define the problem of pruning the extended ontology and we
propose a new method for its solution. The starting point of the pruning activity is an
extended ontology OX and the functional requirements of the IS. We explain also the
adaptation of the problem and the method to the UML, currently one of the most
widely used languages for conceptual modeling.

4.1 The Extended Ontology

We assume that, in the general case, an ontology OX consists of sets of the following
elements [33]:

− Concepts. There are two kinds of concepts:
− Entity types.
− Relationship types. We will denote by R(p1:E1,…,pn:En) a relationship type

R with participant entity types E1, …, En playing roles p1, …, pn
respectively.

− Generalization relationships between concepts. We denote by IsA(C1,C2) the
generalization relationship between concepts C1 and C2, where C1 is the subtype
and C2 the super type. IsA+ will be the transitive closure of IsA. We admit
multiple specialization and multiple classification.

− Integrity constraints1.

Adaptation to the UML. In the UML an ontology OX consists of sets of the
following elements (see Figure 2):

− Concepts:
− Entity types.
− Data types.
− Attributes.
− N-ary associations.

1 The generalization relationships are (inclusion) constraints also, but we give them a special

treatment due to its prominent role in taxonomies and in conceptual modeling.

70 Jordi Conesa and Antoni Olivé

− Association classes, which reify associations. An association class and its
reifying association are a single element.

− Generalization relationships between de above concepts. Attributes cannot be
generalized.

− Constraints.
In the UML, some constraints are predefined (they have a particular language

construct) and others may be user-defined. In our method we deal with constraints of
the following kinds:

− Cardinality constraints of associations and attributes.
− Completeness and disjointness of sets of generalizations.
− Redefinition of association ends and attributes (redefinition constraints). Figure

3 shows an example of association redefinition: the association
ObjectFoundInLocation is redefined in City.

− General constraints. We assume that general constraints are defined by
constraint operations and specified in the OCL, as explained in [23]. The
adaptation of our method to constraints defined as invariants is straightforward.
An example is the constraint that the name of a restaurant must be unique into
the city where it is located. Its formal specification is:

 Context FoodServiceOrganization::uniqueName() : TruthValue
 body: FoodServiceOrganization.allInstances()->forAll(o1,o2|

 (o1 <> o2 and o1.name = o2.name) implies
 o1.City<>o2.City)

In the case study, OX consists of:
− 2,715 Entity types and 255 Data types.
− 255 Attributes and 1,397 Associations.
− 6 general integrity constraints.

4.2 Concepts of Direct Interest

Usually, the extended ontology OX will be (very) large, and only a (small) fraction of
it will be needed for the CS of a particular IS. The objective of the pruning activity, as
we will define it below, is to remove some non-needed elements from OX.

The pruning activity needs to know which concepts from OX are of direct interest
in the IS. A concept is of direct interest in a given IS if its users and designers are
interested in representing its population in the Information Base of the IS or inferring
information from it. Our pruning method needs to know the concepts of direct
interest, independently of how they have been obtained. We study in section 6 how to
use several selection strategies to select the concepts of direct interest in an easy and
reusable way.

When the functional requirements of an IS are formally specified, then the
concepts of direct interest CoI may be automatically extracted from them [31]. The
details of the extraction process depend on the method and language used for that
specification. We explain here the process when the IS behavior is specified by
system operations, as is done in many methods such as Larman’s method [15], the B
method [1] or Fusion [6]. A similar process can be used when the behavior is
specified by statecharts, event operations or other equivalent methods.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 71

In general, the formal specification of a system operation consists of:
− A signature (name, parameters, and result). The types of the parameters and

the result are entity types defined in OX.
− A set of preconditions. Each precondition is a boolean expression involving

concepts defined in OX.
− A set of postconditions. As above, each postcondition is a boolean expression

involving concepts defined in OX.
The concepts of direct interest CoI are then defined as:

− The types of the parameters and result of the system operations.
− The concepts appearing in the pre or postconditions.

In some cases the formal specification may not be available or may be incomplete.
In these cases, the designers may wish to define the concepts CoI explicitly or to add
new concepts to those determined from the functional specification.

If a relationship type is a concept of direct interest then we require that its
participant entity types are in CoI also. Formally, we say that a set of concepts of
direct interest CoI is complete if for each relationship type R(p1:E1,…,pn:En) ∈ CoI the
participant entity types {E1, …, En} ⊂ CoI.

In OX there may be some concepts that generalize those in CoI and which are not
part of CoI. We are interested in these generalized concepts because they may be
involved in constraints that affect instances of the concepts CoI. To this end, we call
set of generalized concepts of interest G(CoI) the concepts of a complete set CoI and
their generalizations. Formally:

G(CoI) = {c | c ∈ CoI ∨ ∃sub (IsA+(sub,c) ∧ sub ∈ CoI)}

Adaptation to the UML. The adaptation is straightforward. We assume that the
pre/postconditions are written in the OCL. For example, consider the system
operation howMuchCholesterol, whose purpose is to return the quantity of cholesterol
of a given meal. Its formal specification may be:

Context System::howMuchCholesterol (f:NonNutrientEdibleStuff):

NonNegativeNumber
body: f.NutritionalComponent->

select(nutrient.oclIsType(CholesterolLipid)).
 nutrientQuantity->sum()

The CoI inferred from this operation are: NonNutrientEdibleStuff,
NonNegativeNumber, NutritionalComponent, Nutrient, CholesterolLipid,
NutrientQuantity and ScalarInterval.

4.3 Constrained Concepts

We call constrained concepts of an integrity constraint ic, CC(ic), the set of concepts
appearing in the formal expression of ic. By abuse of notation we write CC(O) to
denote the set of concepts constrained by all the integrity constraints defined in
ontology O. Formally,

72 Jordi Conesa and Antoni Olivé

CC(O) = {c | c is a concept ∧ c ∈ O ∧ ∃ic (ic is a constraint ∧ ic ∈ O ∧ c ∈ CC(ic))}

Adaptation to the UML. If ic is a cardinality constraint of an attribute or association,
then CC(ic) will be the attribute or association, and the entity and data types involved
in it.

If ic is a completeness constraint with a common supertype super and subtypes
sub1, …, subn, then CC(ic) = {super, sub1 ,…, subn}.

A disjointness constraint with a common supertype super and subtypes sub1, …,
subn, corresponds to n(n-1)/2 disjunction constraints each of which constraints two
subtypes, subi and subj, and super. Strictly speaking, these constraints do not involve
the supertype super, but in the UML they are attached to sets of generalizations
having the same supertype.

If ic is a redefinition of an association or attribute then CC(ic) will be the redefined
association or attribute, and the entity and data types involved in the association or
attribute.

The constrained concepts of a general constraint will be the entity types, data
types, attributes, associations and association classes appearing in the OCL expression
that defines it. For example, if uniqueName is the general constraint defined in 4.1,
and figure 3 represents the relevant fragment of the OX for this integrity constraint,
then CC(uniqueName) = {FoodServiceOrganization, TruthValue, name,
SomethingExisting, ObjectFoundInLocation, City}. Note that the entity types
SomethingExisting and ObjectFoundInLocation have been selected because they
participate directly in the selected relationship types, which are name and
ObjectFoundInLocation respectively.

4.4 The Pruning Problem

Given an extended ontology OX and a complete set of concepts of direct interest CoI,
as explained above, the pruning problem consists in obtaining a pruned ontology OP
such that:
(a) The elements in OP are a subset of those in OX. We do not want to add new

elements to OX in the pruning activity. Additions can be done in the refinement or
in the refactoring activities.

∀c (c ∈ OP → c ∈ OX)

(b) OP includes the concepts of direct interest CoI. These concepts must be included
in OP. The information system needs such concepts in order to perform its
functions.

∀c (c ∈ CoI → c ∈ OP)

(c) If C1 and C2 are two concepts in OP and there is a direct or indirect generalization
relationship between them in OX, then such relationship must also exist in OP.
Otherwise, the child concept C1 would lose the relationship types and constraints
defined in C2 or in its parents. Formally:

∀c1,c2 (c1 ∈ OP ∧ c2 ∈ OP ∧ IsA+(c1,c2) ∈ OX → IsA+(c1,c2) ∈ OP)

A Method for Pruning Ontologies in the Development of Conceptual Schemas 73

(d) OP includes all constraints defined in OX whose constrained concepts are in
G(CoI). The rationale is that the constraints in OX which constraint the
Information Base of OP must be part of it. The constraints in OX that involve one
or more concepts not in G(CoI) cannot be enforced and, therefore, are not part of
OP.

∀IC (IC∈ OX ∧ CC(IC)∈ G(CoI) → IC ∈ OP)

(e) OP is syntactically correct [17] , that is, it is a valid instance of the conceptual
modeling language in which it is specified (metamodel).

(f) OP is minimal, in the sense that if any of its elements is removed from it, the
resulting ontology does not satisfy (b-e) above.

For each OX and CoI there is at least an ontology OP that satisfies the above
conditions and, in the general case, there may be more than one.

To the best of our knowledge, there does not exist a method that obtains OP
automatically in a context similar to ours. In what follows we describe a method for
the problem. In the next section we will compare it with existing similar methods.

4.5 The Pruning Algorithm

Our algorithm obtains OP in three steps. The algorithm begins with an initial ontology
O0 which is exactly OX (that is, O0 := OX) and obtains OP. The steps are:

− Pruning irrelevant concepts and constraints. The result is the ontology O1.
− Pruning unnecessary parents. The result is the ontology O2.
− Pruning unnecessary generalization paths. The result is OP.

Pruning irrelevant concepts and constraints. The concepts of direct interest for the
IS are given in the set CoI, and G(CoI) is the set of concepts in which the IS is
directly or indirectly interested in. However, O0 may include other concepts, which
are irrelevant for the IS. Therefore, in the first step we prune from O0 all concepts
which are not in G(CoI), that is, we prune the set of concepts:

IrrelevantConcepts = {c | c is a concept ∧ c ∈ O0 ∧ c ∉ G(CoI)}

Pruning a concept C implies pruning of all generalization relationships IsA(C1,C)
and IsA(C,C1) in which C participates. The super types and subtypes C1 of C are not
affected by the pruning of C.

Similarly, we prune the constraints in O0 that are not relevant for the IS, because
they constraint one or more concepts not in G(CoI). That is, we prune the set of
constraints:

IrrelevantConstraints =

{ic | ic is a constraint ∧ ic ∈ O0 ∧ ∃c (c ∈ CC(ic) ∧ c ∉ G(CoI)}

The result of this step is the ontology O1:

O1 = O0 – IrrelevantConcepts – IrrelevantConstraints

74 Jordi Conesa and Antoni Olivé

In the example of Figure 3, we have that HasWorkers is a concept of interest and,
therefore, {HasWorkers} ⊆ G(CoI). However, HasEmployees, a subtype of
HasWorkers, is not an element of G(CoI) and therefore it is pruned in this step.
Likewise, Person is a concept of interest but its subtypes (Student, HumanChild,
HumanAdult, FemalePerson, MalePerson, etc. not shown in Figure 3) are not, and
therefore they are also pruned in this step. The same happens to “lateral” concepts
such as Atom or Electron.

In the case study, after the application of this step we have an ontology O1
consisting of:

− 140 Entity types and 22 Data types.
− 15 Attributes and 30 Associations.
− 6 general integrity constraints.

Pruning unnecessary parents. After the previous step, the concepts of the resulting
ontology (O1) are exactly G(CoI). However, not all of them are needed in the CS. The
concepts strictly needed are given by:

NeededConcepts = CoI ∪ CC(O1)

The other concepts are potentially not needed. Formally:

PotentiallyUnneededConcepts= G(CoI) – NeededConcepts

We can prune the parents of NeededConcepts which are not children of some
concept in NeededConcepts. Formally,

UnnecessaryParents = {c | c ∈ PotentiallyUnneededConcepts ∧ ¬ ∃c’ (c’ ∈
NeededConcepts ∧ IsA+(c,c’))}

As we have said before, the pruning of a concept implies the pruning of all
generalization relationships in which that concept participates.

The result of this step is the ontology O2:

O2 = O1 – UnnecessaryParents

Fig. 3. Fragment of the extended ontology with relevant elements and constraints

FoodServiceOrganization

«IC» uniqueName(): TruthValue

City

SpatialThing-Localized *

*

objectFoundInLocation

*

1..*objectFoundInLocation

Person

nameSuffix:CharacterString[*]
socialSecurityNum:SocialSecurityNumber[0..1
titleOfPerson-StringCharacterString[*]

author1..*

*writtenBy

RecipeDocument

{redefines worker}

1..*
{redefines work}

1..*hasWorkers 1..*

Agent

*

*

hasWorkers

work

worker

{redefines location}

location

HasEmployees

SomethingExisting
name: CharacterString

A Method for Pruning Ontologies in the Development of Conceptual Schemas 75

In Figure 4, examples of unnecessary parents are the entity types SpatialThing,
TemporalThing, Individual and Thing which are the parents of SpatialThing-
Localized and SomethingExisting. In the case study, SpatialThing neither is a needed
concept of O1, nor is a child of some needed concept, and therefore it is pruned in this
step. The same happens for Thing, Individual and TemporalThing. Note that although
the entity types InformationBearingThing and TextualMaterial are not unnecessary,
they cannot be deleted, because of their common necessary parent SpatialThing-
Localized.

In the case study, after the application of this step we have an ontology O2
consisting of:

− 106 Entity types and 19 Data types.
− 15 Attributes and 11 Associations.
− 6 general integrity constraints.

Pruning unnecessary generalization paths. In some cases, the ontology O2 may
contain generalization paths between two concepts such that not all of them are
necessary. The purpose of the third step is to prune these paths.

We say that there is a generalization path between C1 and Cn if:
− C1 and Cn are two concepts from O2,
− IsA+(C1,Cn) and
− The path includes two or more generalization relationships IsA(C1,C2), …,

IsA(Cn-1,Cn).
A generalization path IsA(C1,C2), …, IsA(Cn-1,Cn) between C1 and Cn is potentially

redundant if none of the intermediate concepts C2, …, Cn-1:
− Is member of the set CoI ∪ CC(O2)
− Is the super or the sub of other generalization relationships.

Fig. 4. Detecting and deleting the unnecessary parents. The grayed
boxes are needed concepts

SomethingExisting

name:CharacterString

«IC» uniqueName():TruthValue

TemporalThing

SpatialThing-Localized

SpatialThing

Individual

Thing

*

*
objectFoundInLocation

InformationBearingThing

TextualMaterial

RecipeDocument

76 Jordi Conesa and Antoni Olivé

A potentially redundant generalization path between concepts C1 and Cn is
redundant if there are other generalization paths between the same pair of concepts. In
this case, we prune the concepts C2, …, Cn-1 and all generalization relationships in
which they participate. Note that, in the general case, this step is not determinist.

The output of this step is the pruned ontology, OP.
Figure 5 shows four generalization paths between the concepts of direct interest

Restaurant and SomethingExisting. None of these paths can be deleted, because at
least one of their elements participate in more than one generalization relationship.
Concretely, the entity types FoodServiceOrganization,
CommercialServiceOrganization, CommercialOrganization, LegalAgent,
Organization and SocialBeing. However, there exist three specialization paths
between the entity types Organization and FoodServiceOrganization:
P1={Organization, FoodAndBeverageOrganization, FoodServiceOrganization},
P2={Organization, Service, FoodServiceOrganization} and P3={Organization,
CommercialOrganization, FoodServiceOrganization}. The intermediate concepts of
all the paths are not members of CoI ∪ CC(O2). Furthermore,
FoodAndBeverageOrganization is the only intermediate concept which does not
participate in other generalization relationships, so the path P1 is the only path that is
potentially redundant. Therefore, it can be pruned from the ontology. After this, the
algorithm will detect another duplicated specialization path between the concepts
Organization and CommercialServiceOrganization composed by {Organization,
ServiceOrganization and CommercialServiceOrganization}, and as a consequence the
concept ServiceOrganization will be pruned.

In the case study, after the application of this step we have an ontology OP
consisting of:

Fig. 5. Detecting and deleting the unnecessary duplicated paths between
Restaurant and Organization. The white boxes are the concepts to prune and the
black ones are the necessary concepts.

CommercialOrganization

CommercialServiceOrganization

FoodAndBeverageOrganization

LegalAgentOrganization

ServiceOrganization

SocialBeing

SomethingExisting

City

FoodServiceOrganization

Restaurant

A Method for Pruning Ontologies in the Development of Conceptual Schemas 77

− 75 Entity types and 15 Data types.
− 15 Attributes and 11 Associations.
− 6 general integrity constraints.

4.6 Correctness of the Pruning Algorithm

In this section we argue that the above pruning algorithm is correct. We assume that
the input to the algorithm is a syntactically correct extended ontology OX and a set
CoI of concepts of interest, with CoI ⊆ OX. The pruning algorithm is correct if its
output (the pruned ontology OP) satisfies the conditions defined in section 4.4. In the
following paragraphs we argue that OP satisfies all of these conditions.

The elements in OP are a subset of those in OX. The algorithm only removes
elements (concepts, constraints) from OX. It never adds new elements. Therefore, in
the general case, OP will be a subset of OX. In the rare case that all OX concepts are of
direct interest, then OP and OX would be the same.

OP includes the concepts of direct interest CoI. None of the algorithm steps deletes
any concept of direct interest:
− The pruning irrelevant concepts and constraints step removes the concepts not

included in G(CoI). G(CoI) includes all the concepts of direct interest, therefore
CoI concepts cannot be deleted in this step.

− The pruning of unnecessary parents step deletes a subset of the set of potentially
unneeded concepts, which contains the concepts that are not of direct interest for
the information system and do not appear in any relevant constraint. Obviously,
this step cannot delete CoI concepts because of its exclusion of the potentially
unneeded concepts set.

− The pruning unnecessary generalization paths step removes a subset of the
potentially redundant elements set. This step cannot delete concepts of direct
interest because that set does not include the CoI concepts.
Obviously, if no step can eliminate CoI concepts, then all CoI concepts will be

included in the pruned ontology.

All OP concepts with an IsA relationship in OX, must also have an IsA
relationship in OP. None of the deletions done in the pruning steps results in a loss of
specialization path between two needed concepts:
− The pruning irrelevant concepts and constraints step removes the IsA relationships

relating irrelevant concepts. The irrelevant concepts neither are of direct interest,
nor have children of direct interest, so we can affirm that all the specializations of
an irrelevant concept are also irrelevant. As a consequence, whenever an
irrelevant element is deleted, all its children are deleted as well. Then, it is obvious
that none specialization path between survival elements may be deleted.

− The pruning of unnecessary parents step deletes the IsA relationships that relate
unneeded elements, which are elements without necessary parents. Then, when the
method deletes an unneeded element all its parents are deleted as well. As a
consequence, it is obvious that their deletion do not break any specialization path.

78 Jordi Conesa and Antoni Olivé

− The pruning unnecessary generalization paths step removes the specialization paths
between two concepts which satisfy a set of conditions, one of which is that the
whole path is redundant. Then, eliminating a generalization path implies that there
exists another generalization path between the same elements, so it is impossible to
break a generalization path in this step.
Therefore, we can say our pruning activity does not delete necessary

generalization paths between OP concepts.

OP includes all constraints defined in OX whose constrained concepts are in
G(CoI). The pruning irrelevant concepts and constraints is the only step that deletes
constraints. In particular, this phase only deletes the constraints whose concepts
includes one or more irrelevant concepts, which are exactly the concepts not included
into G(CoI). Then, for definition, we can conclude all the constrained concepts of the
survival constraints are members of the set G(CoI).

OP is syntactically correct. An ontology is syntactically correct if all the
constructions used to describe it are compliant with the grammar of its ontology
language. For instance, an UML ontology is syntactically correct if it is a valid
instance of the UML’s metamodel and satisfies all its integrity constraints, including
the well-formedness rules (WFR).

We assume OX is syntactically correct. Then, in order to prove that OP is also
syntactically correct, we must prove that all possible deletions of the pruning method
preserve the syntactic correctness of the ontology. In the following, we prove this for
the deletion operations over the ontology elements:
− Concepts: Deleting a concept, implies deleting also all the generalization

relationships where it participates. On the other hand, in our method, the deletion
of a concept that participates in a given relationship or integrity constraint, also
implies deleting its related concepts. Therefore, it is not possible to delete any
concept that participates either in a relevant relationship type or a relevant integrity
constraint.

− Generalization relationships: If a concept uses a relationship type defined in any of
its parents, a deletion of a taxonomic relationship between the concept and its
parent, may result in a syntactically incorrect ontology, because the child may lose
the referred relationship type. Nevertheless, this particular case cannot occur in our
algorithm, because, as we proved before, it does not allow breaking the
generalization path between concepts.

− Integrity Constraints: They only restrict the possible instantiations of the ontology,
so their deletion will result in a new ontology, less restricted, but not syntactically
incorrect.
As a consequence, we can say that if the OX is correct, the OP will be correct as

well.

OP is minimal. In order to prove that OP is minimal, we are going to see which
violations can be produced by the elimination of each kind of OP element:
− Concepts: The concepts of the pruned ontology may be:

− Concepts of Direct Interest: We cannot delete these concepts, because they
must be included in the OP (condition b). Their deletion may also produce the

A Method for Pruning Ontologies in the Development of Conceptual Schemas 79

violation of condition c (if the concept participates in one generalization and
one specialization) or e (if any relationship type or constraint uses it).

− Needed Concepts which are not CoI: These concepts are needed because they
participate in one or more relevant constraints. Then, their deletion produces
a syntactically incorrect ontology, because they are referred to in some
relevant constraints.

− Other concepts: These concepts are necessary to maintain a generalization
path between, at least, two necessary concepts. Therefore, their deletion will
break a non redundant specialization path, violating condition c of the
method. Their deletion can also violate condition e.

− Integrity Constraints: The integrity constraints of the pruned ontology are those
which can be evaluated using only elements of the G(CoI) set. Therefore, we
cannot delete any of them without violating condition d.

− Generalization/specialization relationships. They are part of a non redundant
generalization/specialization path between two (or more) necessary concepts.
Obviously, we cannot delete any of them, without violating condition c.
Therefore, we have proved that the removal of any of the pruned ontology

elements results in the violation of at least one condition of the pruning method.

5 Comparison with Previous Work

The need for pruning ontologies has been described in several research works in the
fields of information systems and knowledge bases development. We may mention
Swartout et al. [32], Knowledge Bus [27], Text-To-Onto [14, 19], Ontology
Derivation Rules [39], MOVE [3, 4, 38], the ODS (Ontology-Domain-System)
approach [36], DODDLE-II [30, 40], Mena et al. [20], the Dynamic Ontologies [28,
37] and OntoLearn [22]. In the following we explain the main differences among the
pruning methods; we present a table that summarizes their main characteristics, and
finally, give some comments and comparisons on the pruning methods which are
more related to ours.

Even if the above works differ in the context in which the need for pruning arises,
the ontology language, the particular ontology used as base, or the selection of the
concepts of interest, we believe that (at least parts of) our pruning method can be
adapted to be used successfully in all those works. The reason are: (1) we deal with
any base ontology; (2) our method can be adapted to any ontology language (in [8] we
show the adaptation of our method to the OWL (Web Ontology Language) [2]); (3)
we take into account the specificity of entity types, relationship types, generalizations
and constraints present in all complete conceptual modeling languages; and (4)
although we obtain the concepts of interest from the functional specifications, our
method can use any selection strategy to obtain the concepts of direct interest, as we
will see in the next section.

Usually the pruning methods are intended to be applied in a particular context. The
ontology context determines mainly its foremost properties: 1) the base ontology the
method is able to prune, 2) how the method selects the concepts of direct interest, and
3) how many elements are pruned. The methods that use pruning techniques to
support the information systems development, which are Knowledge Bus, Ontology

80 Jordi Conesa and Antoni Olivé

derivation rules, MOVE, Ontology Domain System and our method, allow pruning
more expressive ontologies than the others. These methods also tend to do a more
effective pruning, because their pruned ontologies are used directly for humans, and
obviously, humans cannot deal easily with large ontologies (with more than a
thousand concepts). Furthermore, those pruning methods, with the exceptions of
Knowledge Bus and our method, have not been defined to prune very large ontologies.
Examples are the ODS approach, which is totally manual, or the Ontology derivation
rules, which works very well for small ontologies, but with too manual intervention to
make it usable with large ontologies such as OpenCyc. In these methods, the user
tends to participate very actively in the selection of the concepts of direct interest. The
rationale is that in this context the user knows all the concepts that are relevant for the
final information system and that must exist in the final ontology.

The goal of the other methods, which are Swartout et al, Text-to-onto, Ontolearn
and DODDLE-II, is the creation of a domain ontology, whose information will be
used to support users in a given task. These methods use linguistic ontologies as a
basis, which are less expressive than those used by the above methods, but contain
more concepts that the other ones. For example, SENSUS ontology, which is the
ontology used by Swartout, et al., has more than 50,000 concepts, while OpenCyc
does not have more than 5,000 concepts. These methods have more efficient selection
processes, this is because they use the semantic relationships (synonyms, antonyms,
...) among concepts that the linguistic ontologies have. These methods are not
interested in generating very small pruned ontologies, because their pruned ontologies
are used for programs to infer information, and then, they should contain the concepts
of direct interest and all their related concepts. For this reason, these pruning methods
are equivalent to the first step of our pruning method, with the exception of
DODDLE, whose pruning activity contains also a restructuring step.

Table 1 shows a few characteristics of the main current pruning methods. For each
method we give: 1) the base ontology the method uses; 2) whether or not the method
takes into account the integrity constraints (in one case we are unsure about this); 3)
how automatic the method is; 4) the selection strategy used for selecting the concepts
of direct interest; and finally, 5) the efficiency of the pruning activity, that is how
many elements the pruned ontology has.

In the following we give some additional comments on the works which are the
more closely related to ours, and that describe a comparable pruning method.

The purpose of the Ontology Derivation Rules is to generate domain or application
ontologies using a set of rules over a base ontology. The base ontology can be any
ontology written in the UML language. The designer is responsible of selecting the
concepts of direct interest by-hand, which are called permanent elements in this
method. The pruning method also restructures the ontology to minimize its volume.
The restructuring is done by applying a set of rules, such as when a non permanent
class c1 contains a permanent attribute a1 and there is a permanent class c2 child of
c1, then move the attribute a1 to c2. After applying these rules, the method generates
all the possible associations among the permanent classes of the ontology, following
the associative property of the UML associations. Once all these hybrid relationships
are created, the designer must identify the relevant ones. Finally, the method uses this
information to delete the ontology irrelevant elements, and asks to the designer for
a name for the survival hybrid associations. The results of this method are quite
good, but its process is too manual to be usable with medium and large ontologies.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 81

Table 1. Comparison of the main current pruning methods

B
as

e
on

to
lo

gy

In
te

gr
ity

C

on
st

ra
in

ts

A
ut

om
at

io
n

Se
le

ct
io

n
St

ra
te

gy

Fi
na

l O
nt

ol
og

y

Knowledge
Bus [27] OpenCyc TOTAL By-hand TOO LARGE

Swartout et
al. [32]

SENSUS,
but

applicable
to any

ontology

 SEMI-
AUTOMATIC By-hand TOO LARGE

Ontology
Derivation
Rules [39]

Any UML
ontology ? SEMI-

AUTOMATIC By-hand DESIRED

MOVE
[3, 4, 38] Any Cardinality

constraints
SEMI-

AUTOMATIC By-hand CUSTOMIZABLE

Text-to-
Onto [14,

19]

Any RDF
ontology

Predefined
in the

language

SEMI-
AUTOMATIC

Automatic:
using text-

mining
algorithms

LARGE

OntoLearn
[22] WordNet SEMI-

AUTOMATIC

Automatic:
using text-

mining
algorithms

LARGE

Ontology
Domain
System

[36]

Any UML
ontology NONE By-hand DESIRED

DODDLE
– II [30,

40]
WordNet SEMI-

AUTOMATIC By-hand LARGE

Our
method [9] Any TOTAL Any CLOSE TO

DESIRED

The reason is the high number of hybrid relationships that appears in its pruning
process, and the hard work of the designers in identifying which is relevant and which
is not. The same results or better can be obtained with the execution of our pruning
and refactoring activities. For example, with reference to our case study, an ontology
with over 4000 concepts and over 30 concepts of direct interest, the method will
generate several hundreds of anonymous hybrid relationships (note that in an
ontology with the magnitude of OpenCyc it can exits easily a chain of relationships
relating almost all the entity types of the ontology). In addition, as far as we know, it
does not exist the formal definition of the whole method, so it is unclear the efficiency
of the pruning method for real cases. Furthermore, our method is more automatic and
efficient than this one, because the restructuring activity is done after the pruning
method.

82 Jordi Conesa and Antoni Olivé

MOVE uses the ontology derivation rules approach to generate a view of a given
ontology that satisfies a set of requirements. The method can prune any kind of
ontology written in the IOS language. This language allows to represent concepts,
attributes, binary relationships and cardinality constraints over relationship types and
attributes. The concepts of direct interest (called “selected”) are selected by-hand by
the user. The user also has to select the concepts that cannot appear in the final
ontology (called “unselected”). Then, the pruning is executed by taking into account
four optimization schemas: 1) RCOS, which uses the ontology derivation rules to
guaranty the final ontology satisfies the users requirements (the selection); 2) SCOS,
which validates the semantic completeness of the ontology, that is, if a concept is
defined using other concepts, we cannot delete the last without losing information of
the former; 3) WFOS, which contains the rules that guarantees the syntactic
correctness of the final ontology; and 4) TSOS, which guarantees the obtained
ontology is the smallest that can be obtained. Up to now, as far as we know, only the
two first phases have been defined, so their results are neither proved, nor guaranteed
to be minimal. The pruning method may be customized by changing the given
optimization schemas or adding new ones [38]. As in the previous case, this method
can be compared to our pruning and refactoring activities together, and the same
efficiency reasoning of the previous method can be applied also here.

The purpose of Swartout et al. is the development of specialized, domain specific
ontologies from a large base ontology. The base ontology is SENSUS, a natural
language based ontology containing well over 50,000 concepts. The elements of the
ontology are only entity types and generalization relationships. The concepts of
interest are assumed to be a set of entity types (called the "seed") selected explicitly
by domain experts, and all entity types that generalize them. The pruning method
corresponds roughly to our first step (pruning irrelevant concepts and constraints).
Using our method, the domain experts could select the seed, as before, but also the
generalized entity types of interest. The two other steps of our method could then be
applied here, thus obtaining more specific domain ontologies.

The purpose of Knowledge Bus [27] is to generate information systems from
application-focused subsets of a large ontology. The base ontology is Cyc, and the
ontology language is CycL. The concepts of interest are assumed to be the set of
entity types defined in a context (a subset of Cyc), also called the "seed" set, and all
the entity and relationship types that can be "navigated" directly or indirectly from
them. For example, with reference to Figure 3, if the seed set were only
{FoodServiceOrganization} then all entity and relationship types shown in that figure
would be considered concepts of interest. If we consider not only the fragment shown
in that figure but the complete OpenCyc, then over 700 entity types and 1300
relationship types would be considered concepts of interest. The pruning method
(called the sub-ontology extractor) corresponds here also to our first step (pruning
irrelevant concepts and constraints). The result is that (as the authors recognize) many
superfluous types are extracted from Cyc. Using our method, the domain experts can
be more precise with respect to the concepts of interest. They could select the seed, as
before, but also the generalized entity and relationship types of interest. The two other
steps of our method could then be applied here as well, thus improving the specificity
of the sub-ontology extraction process.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 83

6 Adapting Our Pruning Method to Different Selection Methods

Up to now, we have defined and solved the pruning problem in the context of
developing the conceptual schema for an information system. In this section we show
that our method can be used in other contexts as well.

Before pruning an ontology, it is necessary to select those elements that must be
included in the final result. In our context, this selection is done using the information
system requirements but in other contexts other selection strategies may be more
suitable. For example, in the semantic web it can be necessary to select the elements
using text mining algorithms [19], or manually [20]. In many methods, the selection
of elements is an integral part of the pruning process. This implies that the selection
strategy cannot be changed without re-implementing the pruning process. Here, we
propose to separate the phases of selection and pruning (figure 6). This will allow us
to do the pruning activity applicable for any strategy selection and able to reuse other
selection methods.

In what follows we present a taxonomy (summarized in Figure 7) that describes the
different ways of concept selection. Then we study how to use the taxonomy to reuse
selection methods written by others. Finally we use the taxonomy to classify the main
actual pruning methods.

6.1 Taxonomy of Relevant Concepts Selection Methods

According to its granularity, selection methods may be classified as individual or
composite selection. An individual selection (also known as primitive selection)
computes a selection based on a single selection criteria, and may be classified into

Fig. 6. Separating the pruning and selection phase in the pruning activity

Selection
Phase

Pruning
Phase

(2) Find Knowledge

(4) Ontology elements

(3) Selected elements

(5) Generate a new
ontology without

unnecessary elements

Pruning Activity

OPOP

OXOX

(1) By using instances or
other methods

(1) By hand

(1) By text-mining
algorithms

(1) From other elements

Selection
Phase

Pruning
Phase

(2) Find Knowledge

(4) Ontology elements

(3) Selected elements

(5) Generate a new
ontology without

unnecessary elements

Pruning Activity

OPOP

OXOX

(1) By using instances or
other methods

(1) By hand

(1) By text-mining
algorithms

(1) From other elements

84 Jordi Conesa and Antoni Olivé

manual or automatic selection. In the manual selection, the designer must select by
hand the elements of OX that are necessary to the final ontology. The manual selection
may be classified into:
− Unassisted selection: this is the most usual selection method. The designer chooses

the necessary concepts without any system assistance. This method is used in [3, 9,
27, 32, 38, 40], where the designer selects manually the set of concepts relevant for
the final ontology.

− Assisted selection: The system supports the user by proposing concepts to select.
This kind of selection is usually combined with other selection methods (composite
selection). We can see an example in the last step of the Swartout et al. approach
[32], in which the system may propose the selection of ontology subtrees.
In the automatic selection, the concepts of direct interest are selected automatically

by the system. This kind of selection must use some information to detect
automatically new concepts of direct interest. This information can be taken from:
− Other selected concepts: The concepts of direct interest previously selected are

used to select new concepts. An example of this kind of selection can be seen in
[27], where the set of selected classes (CoI) is used to obtain all the relationships
applicable to the classes of the CoI set (that is, the relationships whose participants
are contained into CoI).

− Other ontology elements: Sometimes the non concept elements of the ontology
(the ones that are not entity types or relationship types: individuals, classification
relationships, …) are used to select new concepts. This is one of the most forgotten
techniques of selection on pruning algorithms, but we think that it may be
interesting in some cases to obtain the concepts of direct interest from the instances
of the ontology, its integrity constraints, or its generalization relationships.

− External sources: The concepts of direct interest may also be obtained from
information that lies in external sources. This is one of the most common
techniques to select concepts of direct interest in pruning algorithms. Examples of
this kind of selection are [22, 35], where the concepts of direct interest are obtained
applying text-mining algorithms to several documents. There is another example in

Selection Approaches

Individual Selection Composite Selection

Manual Selection Automatic Selection
Collaborative
Composition

Sequential
Composition

Unassisted Selection Assisted Selection From other selected
concepts From other elements From external sources

- By hand
- Others - Neighbours Subtrees

- Related Concepts
- Others

- Select all classes accessible from CoI
- Select all relationships applicable to CoI classes
- Select all parents from CoI
- Others

- From instances
- From integrity constraints
- Others

- From the requirements
- Using text-mining algorithms
- From a text file
- Others

Fig. 7. Selection methods to detect the concepts of direct interest

A Method for Pruning Ontologies in the Development of Conceptual Schemas 85

the case study of this document, where the concepts of direct interest are detected
automatically from the requirements of the IS, formalized by means of system
operations [15] written in OCL [24].

Composite selection: A composite selection method includes more than one selection
approach (that can be individual or composite). A composite selection may be:
− Collaborative composition: Several selection approaches are used collaboratively

to detect the elements of direct interest. In this approach the outputs of the different
selection approaches are evaluated to determine which concepts to select. Although
this technique is not used nowadays in the pruning activity, we think it provides a
very powerful way to detect the concepts of direct interest. On the other hand it
seems that this selection technique needs a high participation of the ontology
designer to define which elements to select, and this may be a drawback in the
pruning of large ontologies.

− Sequential composition: A sequential composition is composed of a sequence of
selection approaches, in which the output of each selection approach is the input of
the next one. This technique is the most used at the moment. An example of this
approach is Swartout et al. [32], where the selection process is a sequential
composition of three individual selections: 1) a manual selection where the user
selects without assistance a set of concepts of direct interest, 2) an automatic
selection that selects all the parents of the elements selected in the previous
process, and finally 3) a neighbour subtrees selection where the user can select
subtrees whose neighbours have been selected in the previous steps.

6.2 Allowing General Purpose Selection

Current pruning approaches do not separate the selection and pruning phase.
Therefore, the pruning methods are hooked to a selection strategy, which cannot be
changed without re-implementing the pruning method. The problem grows when the
pruning algorithm is specific to a selection strategy or a base ontology (its language or
its structure). For example, a non generic pruning algorithm may contain a rule like
“delete a concept when none of its synonyms has been selected as relevant”. This rule
is part of a selection strategy, in fact we may classify this rule in our taxonomy as a
selection from other selected component. In addition, a strategy selection tends to be
dependent to a given ontology. In the example the use of the synonym relationship,
which is particular of linguistic ontologies, makes the pruning algorithm not
applicable to all ontologies.

Separating the selection and the pruning phase makes the pruning algorithm more
concise and independent of both selection strategies and the ontology used. In the
previous example we may state the previous rule in the selection phase “select the
synonyms of the relevant elements”, and the pruning phase will contain a rule like
“delete the non relevant elements”. It is obvious that this way of defining a pruning
algorithm is more generic than the previous one.

This separation reports also reusability benefits, because it allows to reuse
individual selection approaches defined and implemented by others. To define a
composite selection strategy, an ontology designer has to obtain the primitive
methods (reusing them or developing them from scratch) needed in the composition,

86 Jordi Conesa and Antoni Olivé

and write a program that executes these primitive methods sequentially, giving the
result of each method to the next one, and finally returning the results of the selection
to the pruning phase.

Now that a taxonomy of selection is defined (see figure 7), it is possible to define a
framework that supports the designer in the definition of selection strategies. A
selection strategy, which combines several kinds of selection strategies, may be
specified by means of a high level language based on the selection taxonomy.

We say our pruning method is generic, because the set CoI, which is necessary to
our pruning activity, may be obtained as a result of applying any selection strategy
that could be expressed as an instance of the presented taxonomy.

6.3 Expressing the Actual Pruning Methods as a Combination of Primitive
Selection Methods

We think our taxonomy is complete with regards to the pruning methods defined until
now in the literature. In order to validate this affirmation we show in this subsection
how the selection phase of the main pruning methods can be expressed as an instance
of our taxonomy.

Knowledge Bus
The selection begins with the selection by-hand of the relevant classes. Then, the
system executes a fix point algorithm that selects all the classes that can be accessed
from the relevant classes following relationships. Finally, all the associations whose
participants have been selected in the previous steps are selected as well.

It is easy to see that the knowledge bus selection strategy may be represented by a
Sequential Composition of: 1) an unassisted by hand method that selects the classes of
direct interest (CoI). 2) An automatic selection that obtains the classes accessible from
the CoI classes through relationships (Select all the classes accessible from CoI), and
3) another automatic selection that selects all the relationships whose participants
were selected in the previous steps (Select all relationships applicable from CoI).

Swartout et al.
In this approach the relevant concepts for the target domain are manually selected by
the user. Then, for each selected concept, the system automatically selects the
elements contained in the path defined between the root of the ontology and the
concept. After that, the designer may select some subtrees of the ontology such that
almost all their neighbours (concepts with the same parents) have been selected,
assuming that if all the neighbours of a concept have been selected, then the concept
probably must be selected as well.

This selection process can be defined as a sequential composition of: 1) an
unassisted by hand method that selects the concepts of direct interest, 2) an automatic
selection that uses the previous one to obtain all the parents of the selected concepts
(Select all parents Of), and 3) an assisted selection that assists the designer to select
the needed ontology subtrees whose neighbours have been selected (Neighbour
Subtrees).

A Method for Pruning Ontologies in the Development of Conceptual Schemas 87

Note that the first step is the same that the first step in Knowledge Bus, so both
approaches may reuse the same implementation of the primitive selection method by
hand.

Our Approach
The selection process of our method can be defined as a sequential composition of: 1)
an automatic selection that selects all the concepts referred to in the requirements of
the IS (From the Requirements), and 2) an unassisted by hand method that selects the
rest of concepts necessary to the IS that were not selected in the previous step (this
might be the same method used in Knowledge Bus and Swartout et al. approaches).

Due to space limitations we cannot define here all the pruning methods in terms of

our taxonomy, but the application to the other pruning approaches is straightforward.

7 Conclusions

We have tried to contribute to the approach of developing conceptual schemas of
information systems by reusing existing ontologies. We, as many others, believe that
this approach offers a great potential for increasing both the conceptual schema
quality and the development productivity.

We have focused on the problem of pruning ontologies. The problem arises when
the reused ontology is large and it includes many concepts which are superfluous for
the final conceptual schema. The objective of the pruning activity is to remove these
superfluous concepts.

We have presented a new formal method for pruning an ontology. The input to our
method is the ontology and the set of concepts of interest. When the functional
requirements are formally specified, the concepts of interest can be automatically
extracted from them. From this input, our method obtains automatically a pruned
ontology, in which most of the superfluous concepts have been removed. We have
shown that the method is correct.

We have formalized the method independently of the conceptual modeling
language used. However, the method can be adapted to most languages, and we have
shown the details of its adaptation to the UML. A prototype to prune UML ontologies
has been implemented2. The adaptation of the pruning method to the OWL [2] is
described in [8]. On the other hand, our method can be used with any ontology. The
method has been illustrated by means of its application to a case study that refines the
public version of the Cyc ontology. Our method improves on similar existing
methods, due to its generality and greater pruning effectiveness.

The pruning method has been generalized in order to prune ontologies in other
contexts. Changing the context of pruning application may result in a change of the
way the concepts of direct interest are selected. Our pruning method is independent of
the context, in the sense that it may be customized to be applied in any context and
taking into account any way of selecting the concepts of direct interest.

2 http://www.lsi.upc.es/~gmc/Downloads/jconesa/Program.zip

88 Jordi Conesa and Antoni Olivé

We plan to continue our work in (at least) two directions. First, we would like to
implement our pruning method into a CASE tool. This will allow the designer to use
the pruning method in a automatic and usable way. Finally, we plan to work on the
activity that follows pruning: refactoring. The large amount of existing work on
schema transformation can be “reused” for that purpose.

Acknowledgments

We would like to thank Jordi Cabot, Xavier de Palol, Dolors Costal, Cristina Gómez,
Anna Queralt, Ruth Raventós, Maria Ribera Sancho and Ernest Teniente for their
many useful comments to previous drafts of this paper.

This work has been partly supported by the Ministerio de Ciencia y Tecnologia and
FEDER under project TIC2002-00744.

References

1. J. R. Abrial, The B-Book, 1996.
2. S. Bechhofer, F. v. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-

Schneider, and L. A. Stein, OWL Web Ontology Language Reference ,
http://www.w3.org/TR/owl-ref/: W3C, December, 2003.

3. M. Bhatt, A. Flahive, C. Wouters, W. Rahayu, and D. Taniar, "A Distributed Approach to
Sub-Ontology Extraction," in Proceedings of the 18th International Conference on
Advanced Information Networking and Application. Fukuoka, Japan, 2004.

4. M. Bhatt, C. Wouters, A. Flahive, W. Rahayu, and D. Taniar, "Semantic Completeness in
Sub-ontology Extraction Using Distributed Methods," in Proceedings of ICCSA 2004,
2004, pp. 508-517.

5. S. Castano, V. D. Antonellis, and B. Zonta, "Classifying and Reusing Conceptual
Schemas," in ER'92, vol. 645, Lecture Notes in Computer Science, G. Pernul and A. M.
Tjoa, Eds., 1992, pp. 121-138.

6. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Guilchrist, F. Hayes, and P. Jeremaes,
Object-Oriented Development. The Fusion Method: Prentice Hall, 1994.

7. J. Conesa, "Ontology Driven Information Systems Development: Pruning and refactoring
of ontologies. PhD Thesis (In preparation)," in LSI - Llenguatges i Sistemes Informàtics.
Barcelona: UPC, 2005.

8. J. Conesa and A. Olivé, "A General Method for Pruning OWL Ontologies," in
ODBASE'04, vol. 3291, Lecture Notes in Computer Science. Larnaca, Cyprus, 2004, pp.
981-998.

9. J. Conesa and A. Olivé, "Pruning Ontologies in the Development of Conceptual Schemas
of Information Systems," in ER2004, Lecture Notes in Computer Science. Shangai,
China, 2004.

10. J. Conesa, X. d. Palol, and A. Olivé, "Building Conceptual Schemas by Refining General
Ontologies," in DEXA'03, vol. 2736, Lecture Notes in Computer Science, 2003, pp. 693 -
702.

11. M. Fowler, Refactoring: Improving the Design of Existing Code: Addison-Wesley, 1999.
12. T. R. Gruber, "Toward Principles for the Design of Ontolgies for Knowledge Sharing," in

International Journal of Human and Computer Studies, vol. 43 (5/6), 1995, pp. 907 -
928.

http://www.w3.org/TR/owl-ref/:

A Method for Pruning Ontologies in the Development of Conceptual Schemas 89

13. N. Guarino, "Formal Ontology and Information Systems," in Proc. FOIS'98: IOS Press,
1998, pp. 3-15.

14. J.-U. Kietz, A. Maedche, and R. Volz, "A Method for Semi-Automatic Ontology
Acquisition from a Corporate Intranet," in Proceedings of EKAW-2000 Workshop,
Springer Lecture Notes in Artificial Intelligence (LNAI), 2000.

15. C. Larman, Applying UML and Patterns. An Introduction to Object-Oriented Analysis
and Design: Prentice Hall, 1998.

16. D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, "CYC: Toward
Programs With Common Sense," Communications of the ACM, vol. 33, pp. 30-49, 1990.

17. O. I. Lindland, G. Sindre, and A. Solvberg, "Understanding Quality in Conceptual
Modeling," IEEE Software, vol. 11, pp. 42-49, 1994.

18. M. Lloyd-Williams, "Exploiting Domain Knowledge During the Automated Design of
Object-Oriented Databases," in Proc. ER '97, vol. 1331, Lecture Notes in Computer
Science, D. W. Embley and R. C. Goldstein, Eds.: Springer, 1997, pp. 16-29.

19. A. Maedche and S. Staab, "Ontology Learning for the Semantic Web," IEEE Inteligent
Systems, vol. 16, pp. 72 - 79, 2001.

20. E. Mena, J. A. Royo, A. Illarramendi, and A. Goñi, "An Agent-based Approach for
Helping Users of Hand-Held Devices to Browse Software Catalogs," in In Cooperative
Information Agents VI, 6th International Workshop CIA 2002. Madrid, Spain, 2002.

21. H. Mili, F. Mili, and A. Mili, "Reusing Software: Issues and Research Directions," IEEE
TSE, vol. 21, pp. 528-562, 1995.

22. R. Navigli, "Automatically Extending, Pruning and Trimming General Purpose
Ontologies," in International Conference on Systems, Man and Cybernetics. Tunisy,
2002.

23. A. Olivé, "Integrity Constraints Definition in Object-Oriented Conceptual Modeling
Languages," in ER'03, vol. 2813, Lecture Notes In Computer Science, 2003, pp. 349 -
362.

24. OMG, "OMG Revised Submission, UML 2.0 OCL,"
25. OMG, UML 2.0 Superstructure Specification, 2.0 edition: OMG, August, 2003.
26. OpenCyc, "OpenCyc, the public version of Cyc,"http://www.opencyc.com/
27. B. J. Peterson, W. A. Andersen, and J. Engel, "Knowledge Bus: Generating Application-

focused Databases from Large Ontologies," in KRDB'98, CEUR Workshop Proceedings,
1998, pp. 2.1-2.10.

28. G. Sacco, "Dynamic Taxonomies: A Model for Large Information Bases," IEEE
Transactions on Data and Knowledge Engineering, vol. 12, pp. 468-479, 2000.

29. V. C. Storey, R. H. L. Chiang, D. Dey, R. C. Goldstein, and S. Sundaresan, "Database
Design with Common Sense Business Reasoning and Learning," ACM TODS, vol. 22,
pp. 471-512, 1997.

30. N. Sugiura, M. Kurematsu, N. Fukuta, N. Izumi, and T. Yamaguchi, "A Domain
Ontology Engineeering Tool with General Ontologies and Text Corpus," in Proceedings
of the 2nd Workshop on Evaluation of Ontology based Tools, 2003, pp. 71-82.

31. V. Sugumaran and V. C. Storey, "Ontologies for conceptual modeling: their creation, use,
and management," Data & Knowledge Engineering, vol. 42, pp. 251-271, 2002.

32. W. R. Swartout, R. Tatil, K. Knight, and T. Russ, "Toward Distributed use of Large-
Scale Ontologies," in Proc. 10th. Knowledge Acquisition for Knowledge-Based Systems
Workshop, Canada, 1996.

33. M. Uschold, "Knowledge level modelling: concepts and terminology," The Knowledge
Engineering Review, vol. 13, pp. 5-29, 1998.

34. M. Uschold and M. Gruninger, "Ontologies: Principles, Methods and Applications," The
Knowledge Engineering Review, vol. 11, pp. 93-136, June, 1996.

35. R. Volz, R. Studer, A. Maedche, and B. Lauser, "Pruning-based Identification of Domain
Ontologies," Journal of Universal Computer Science, vol. 9, pp. 520-529, 2003.

http://www.opencyc.com/

90 Jordi Conesa and Antoni Olivé

36. X. Wang, C. W.Chan, and H. J.Hamilton, "Design of Knowledge-Based Systems with the
Ontology-Domain-System Approach," in Software Engineering and Knowledge
Engineering, vol. 859. Ischia, Italy: ACM Press, 2002, pp. 233 - 236.

37. D. Wollersheim and W. Rahayu, "Methodology For Creating a Sample Subset of
Dynamic Taxonomy to Use in Navigating Medical Text Databases," in Proceedings of
the 2002 International Symposium on Database Engineering & Applications, 2002, pp.
276-289.

38. C. Wouters, T. Dillon, W. Rahayu, E. Chang, and R. Meersman, "Ontologies on the
MOVE," in Proceedings of the 9th International Conference on Database Systems for
Advanced Applications, vol. 2973, Lecture Notes in Computer Science. Jeju Island,
Korea, 2004, pp. 812 - 823.

39. C. Wouters, T. S. Dillon, J. W. Rahayu, and E. Chang, "A Practical Walkthrough of the
Ontology Derivation Rules," in DEXA'02, vol. 2453, Lecture Notes in Computer Science,
2002, pp. 259-268.

40. T. Yamaguchi, "Constructing Domain Ontologies Based on Concept Drift Analysis," in
IJCAI-99. Workshop on Ontologies and Problem-Solving Methods, 1999.

	1 Introduction
	2 Case Study
	3 The Context
	4 Pruning the Extended Ontology
	5 Comparison with Previous Work
	6 Adapting Our Pruning Method to Different Selection Methods
	7 Conclusions
	Acknowledgments
	References

