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Abstract. In open networked systems a varying number of nodes in-
teract each other just on the basis of their own independent ontologies
and of knowledge discovery requests submitted to the network. Ontol-
ogy matching techniques are essential to enable knowledge discovery and
sharing in order to determine mappings between semantically related
concepts of different ontologies. In this paper, we describe the H-Match
algorithm and related techniques for performing matching of indepen-
dent ontologies in open networked systems. A key feature of H-Match
is that it can be dynamically configured for adaptation to the semantic
complexity of the ontologies to be compared, where the number and type
of ontology features that can be exploited during the matching process
is not known in advance as it is embedded in the current knowledge
request. Furthermore, this number can vary, also for the same ontolo-
gies, each time a new matching execution comes into play triggered by a
knowledge request. We describe how H-Match enforces this capabilities
through a combination of syntactic and semantic techniques as well as
through a set of four matching models, namely surface, shallow, deep,
and intensive. Then, we describe the application of H-Match and its
implementation for knowledge discovery in the framework of the Helios
peer-based system. Finally, we present experimental results of using H-
Match on different test cases, along with a discussion on precision and
recall.

1 Introduction

Open networked systems like Peer-to-Peer networks and Grids are becoming
more and more semantics-enriched infrastructures enabling to share and create
knowledge and to enforce semantic collaboration among the involved parties.
For example, basic P2P networks adopting simple filenames for data sharing
have been evolving to schema-based P2P networks, capable of supporting the
exchange of complex resources like documents and services described by using
metadata or thematic ontologies [1, 2]. P2P scientific collaboration networks have
recently emerged to take advantage of the inherent properties of P2P networks in
order to enforce scientific data sharing and to obtain better performance, flexible
and efficient use of resources and system resilience [3, 4].
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In such systems, it is widely recognized that the use of ontologies plays a
crucial role for providing a semantic description of the resources to be shared
and for enhancing resource discovery through expressive queries [5]. A key fea-
ture of open networked systems is that the network organization can vary at
any moment and a unique global ontology committed by all the parties is not
a viable solution. Rather, a networked system is characterized by a multitude
of independent peer ontologies autonomously made available by each node join-
ing the system. Consequently, for knowledge discovery and sharing, a varying
number of nodes interact each other just on the basis of their own independent
ontologies and of knowledge discovery requests submitted to the network. In
this context, appropriate ontology matching techniques are required to deter-
mine whether and how concepts of different ontologies are semantically related
each other [6, 7]. The problem of schema and ontology matching has been in-
vestigated in the literature and a number of approaches and tools have been
proposed in the area of data and knowledge management [7, 8, 9, 10, 11, 12]. A
reference survey on schema matching is given in [13] while ontology matching is
surveyed according to different classification frameworks in [14, 15, 16, 17].

Existing ontology matching approaches address a number of general require-
ments which remain very important in open networked systems. A first general
requirement is the applicability to different ontology specification languages,
with special attention to recent standards of the Semantic Web like OWL [18].
A further general requirement is the capability of coping with different levels of
detail and design choices in describing the knowledge of interest using a certain
language. In addition, the capability of considering different constructs used in
ontology languages is required for matching purposes.

In addition, new peculiar requirements must be taken into account in con-
ceiving ontology matching techniques for open networked systems. These re-
quirements are originated by the dynamic behavior of peers in such a scenario.
A first peculiar requirement is that the number and type of ontology features
that can be exploited during the matching process is not known in advance as
it is embedded in the current knowledge request. Furthermore, this number can
vary, also for the same ontologies, each time a new matching execution comes
into play triggered by a knowledge discovery request. Moreover, design principles
of ontology matching techniques must be driven by i) the necessity of satisfying
matching requests that are dynamically posed by peers on the basis of unex-
pected needs that can vary continuously, and ii) by the necessity of addressing
all general and peculiar matching requirements as a whole.

In this paper, we present the H-Match algorithm and related techniques for
matching independent ontologies in open networked systems. H-Match has been
developed in the framework of the Helios peer-based system, where it is used to
enable knowledge discovery and sharing [19, 20]. A key feature of H-Match is
that it can be dynamically configured for adaptation to the semantic complexity
of the ontologies to be compared, using a combination of syntactic and semantic
techniques. This feature is achieved by means of four matching models, namely
surface, shallow, deep, and intensive defined with the goal of providing a wide
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spectrum of metrics suited for dealing with many different matching scenarios.
Another distinguishing feature of H-Match is that the matching configuration
is selected in an automated way according to a matching policy embedded in
the incoming request.

In developing H-Match, we started from the schema matching functional-
ities of the Artemis integration system [21]. From Artemis we borrowed the
thesaurus-based approach for name affinity management, and we made a num-
ber of extensions for matching linguistic features of ontology elements to provide
a fully-automated approach. Furthermore, we have moved from the notion of
structural affinity, typical of schema elements based on attributes, to the notion
of contextual affinity, typical of ontology elements, based on semantic relations
with explicit semantics, with consequent development of suitable techniques for
contextual affinity. Moreover, we have introduced the notion of matching model
and of configurability of the matching process through matching models. Finally,
we want to remark that H-Match implements an automated ontology matching
approach, since it has been conceived to enable the knowledge discovery process
in open networked systems without any manual intervention. On the contrary,
Artemis enforces a semi-automated approach to schema matching being tar-
geted to support the schema unification process in data integration systems with
expected interaction with the designer.

Motivating and Running Example. In Figure 1, we show a graphical repre-
sentation 1 of two simple ontologies, namely Apple-q and Apple-o2. They will be
used as running example throughout the paper to show how the H-Match tech-
niques work. The Apple-q ontology specifies that the concept Apple is a fruit and
a kind of food. Apples, in this ontology, origin from Italy. The Apple-o ontology
describes two kinds of products, namely Edible fruits and Computer, where Mo-

bile Computer is a kind of computers. For fruits (i.e., Banana, Grape, and Pineapple),
we have information about the provenance (i.e., Brazil for banana and pineap-
ple, and Italy for grape). In this latter ontology, the concept Apple denotes a
brand of computers like IBM, and it is located in USA. One of the challenging
goals of ontology matching in this example is to capture the difference between
the two Apple concepts, even if they have the same name. We have to evaluate
whether the matching techniques are able to capture this difference on the basis
of the different context that characterizes the two apple concepts in their respec-
tive ontologies. Other relevant matchings that should be found by the matching
techniques are the ones between Food and Fruit of Apple-q and the concept of
Edible fruits in Apple-o, as well as between the two Italy concepts which denote the
same region in the two ontologies. In the remaining of the paper, we will use this

1 This graphical representation is based on H-MODEL, the formalism adopted by
H-Match for internal representation of ontologies for matching (see Section 2.1).

2 The OWL specification of the two ontologies is provided at http://islab.dico.unimi.it/-
ontologies/apple-q.owl and http://islab.dico.unimi.it/ontologies/apple-o.owl, respec-
tively.
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Fig. 1. H-Model graphical representation of Apple-q and Apple-o

example as the running example to show step by step how the matching process
works.

Organization of the Paper. The paper is organized as follows. In Section 2,
we give the foundations of the proposed ontology matching techniques. In Sec-
tion 3, we describe the H-Match algorithm and related matching techniques
with running examples. In Section 4, we describe the application of H-Match
and its implementation for dynamic knowledge discovery in the framework of
our open networked system Helios. In Section 5, we provide experimental re-
sults of applying H-Match and related matching techniques to Semantic Web
ontologies test cases, by discussing the obtained results in terms of precision
and accuracy. In Section 6, we make a critical comparison of H-Match with
related work in the field of ontology matching. Finally, in Section 7, we give our
concluding remarks.
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2 Foundations of H-Match

We define ontology matching as a process that takes two ontologies as input and
returns the mappings that identify corresponding concepts in the two ontologies,
namely the concepts with the same or the closest intended meaning. We define
a mapping as a correspondence between a concept of the first ontology and one
or more concepts of the second ontology 3. Ontology mappings are established
after an analysis of the similarity of the concepts in the compared ontologies. In
H-Match, we perform similarity analysis through affinity metrics to determine
a measure of semantic affinity in the range [0, 1]. A threshold-based mechanism
is enforced to set the minimum level of semantic affinity required to consider two
concepts as matching concepts. With H-Match, it is possible to determine one-
to-one mappings and one-to-many mappings. In a one-to-one mapping, a concept
of the first ontology is associated with only one concept of the second ontology,
namely the matching concept with the highest value of semantic affinity (also
called best-matching concept). In a one-to-many mapping, a concept of the first
ontology is associated with a set of concepts of the second ontology, namely all
the selected matching (also called best-k matching concepts).

2.1 Ontology Representation

In H-Match, an ontology is seen as a set of concepts, properties, and semantic
relations. For the sake of internal representation of ontology specification lan-
guages, and in particular for Semantic Web languages like OWL, we rely on a
reference model, called H-Model. H-Model, as many other tools for ontology
matching 4, provides a graph-based representation of ontologies in terms of con-
cepts, properties, and semantic relations. In Figure 1, we show an example of
H-Model representation of OWL ontologies. In this representation, the graph
nodes denote concepts and properties (that in the example represent classes and
properties of OWL), while the edges denote the semantic relations between con-
cepts (that in the example represent the equivalence and subclass relations in
OWL as well as properties domain and range derived by OWL restrictions). For
a more detailed description of H-Model and supported ontology specification
languages, the reader can refer to [20].

2.2 Semantic Complexity

The notion of semantic complexity has been introduced in [10] to describe differ-
ent levels of complexity at which an ontology can be seen for matching purposes.

3 In this respect, other approaches like [8, 10, 22], consider properties as first-class
objects and, therefore, they find mappings also between them. We take an approach
similar to [7, 12, 23] where mappings are found for concepts and properties are still
matched but for the purpose of evaluating concept similarity.

4 The state of the art ontology matching tools are analyzed with respect to the sup-
ported model for ontology representation in the related work of Section 6.



30 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

At each level, the focus is on the different types of constructs of the ontology
specification. The four matching models defined in H-Match, namely surface,
shallow, deep, and intensive, allow the matching process to enforce different levels
of semantic complexity depending on the ontologies to be matched. In particular,
the surface model is suitable for matching ontologies at the entity level, because
it considers only names of ontology elements. The shallow model is suitable for
ontologies that are semantic nets in that both names and concept properties are
taken into account for matching. The deep and the intensive models are ade-
quate for semantic complexity of the Description Logics languages, because they
also take into account semantic relations and property values, respectively. H-
Match performs matching by considering schema-level information of ontology
descriptions. In other words, H-Match is focused the terminological box level of
the description logics languages. This has been a design choice in developing H-
Match, in order to support knowledge discovery in the Helios open networked
systems 5.

2.3 Linguistic Features

Linguistic features refer to names of ontology elements and their meaning. To
capture the meaning of names for ontology matching, we borrow from Arte-
mis [21] the idea of relying on a thesaurus of terms and weighted terminological
relationships among them. In H-Match the thesaurus is automatically derived
from the lexical system WordNet [24], to provide a common reference basis for
all the peers of the system and to achieve a uniform interpretation of linguistic
features as much as possible. To this end, we have introduced the following
extensions to the Artemis procedure motivated by the use of WordNet:

– Full use of the relations among synsets in WordNet, including not only syn-
onymy and hypernymy/hyponymy, but also other relations provided by Word-

Net like meronymy and coordinate terms. Thesaurus construction can be
configured in order to select the syntactic category to be taken into account.
In the case of verbs, adjectives, and adverbs, the corresponding specific re-
lations (e.g., troponymy for verbs) are considered.

– Automated management of compound terms not included in WordNet. In
fact, names appearing in real ontologies often are formed by two or more
terms originating compound terms that are not retrieved in WordNet.

The thesaurus is structured as a graph, where the nodes represent terms and
the edges represent terminological relationships. Terms can be basic or com-
pound. Basic terms are all those terms that are included in WordNet, composed
by one or multiple tokens. Compound terms are all those terms composed by
more than one token that are not included in WordNet. Terminological relation-
ships represented in the thesaurus are SYN, BT, NT, and RT. SYN (synonymy)

5 In Section 6, we discuss how currently available matching techniques of H-Match
can be taken into account for the purpose of considering also instance-level informa-
tion of ontology specifications.
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denotes that two terms have the same meaning. BT (broader term) (resp., NT

(narrower term)) denotes that a term has a more (resp., less) general meaning
than another term. Finally, RT (related terms) denotes that two terms have a
generic positive relationship. These terminological relationships are derived from
the relations defined in WordNet during the thesaurus construction process, as
described in Section 3. As in Artemis, a weight Wtr is associated with each
terminological relationship tr ∈ {SYN, BT/NT, RT} in the thesaurus. Such a
weight expresses the implication of the terminological relationship for semantic
affinity. Different types of relationships have different implications for semantic
affinity, with WSYN ≥ WBT/NT ≥ WRT. In fact, synonymy is generally considered
a more precise indicator of affinity than hierarchical relationships, consequently
WSYN ≥ WBT/NT. The lowest weight is associated with RT since it denotes a
more generic relationship than the hierarchical relationships BT/NT.

2.4 Contextual Features

Contextual features of a concept c refer both to the properties and to the con-
cepts directly related to c through a semantic relation in an ontology. The im-
portance of considering contexts was already pointed out in [25] for matching
heterogeneous information. It becomes mandatory for ontology matching espe-
cially in distributed contexts, where the meaning of a concept if often determined
by the context where it is downhearted [17]. In Section 6, we provide a compari-
son of the state of the art ontology matching tools with respect to the contextual
features that are supported.

Given a concept c, we denote by P (c) the set of properties of c, and by C(c)
the set of adjacents of c, namely concepts that participate in a semantic relation
with c, respectively. The context of a concept in H-Match is defined as the union
of the properties and of the adjacents of c, that is, Ctx(c) = P (c) ∪ C(c). In H-
Match, we distinguish between strong and weak properties. A strong property sp

is a mandatory property with minimal cardinality 1. A weak property wp is an
optional property with minimal cardinality 0. In H-Match we distinguish four
semantic relations sr between two concepts c and c′, namely same-as, kind-of, part-

of, and associates. The same-as relation denotes that c and c′ are equivalent, while
the kind-of and part-of relations denote that c and c′ are related by a specialization
relation and a composition relation, respectively. Finally, the associates relation
denotes that c and c′ are related by a generic positive semantic association.
In Figure 1, examples of how OWL constructs are mapped on such semantic
relations are given.

Like linguistic features, also contextual features are weighted in H-Match.
In particular, we associate a weight Wsp to strong properties, and a weight Wwp

to weak properties, with Wsp ≥ Wwp to capture the different importance each
kind of property has in characterizing the concept. In fact, strong properties are
mandatory properties related to a concept and they are considered more relevant
in contributing to concept description. Weak properties are optional for the
concept in describing its structure, and, as such, are less important in featuring
the concept than strong properties. Each semantic relation has associated a
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weight Wsr which expresses the strength of the connection expressed by the
relation on the involved concepts. The greater the weight associated with a
semantic relation, the higher the strength of the semantic connection between
concepts. For this reason, we define Wsame−as ≥ Wkind−of ≥ Wpart−of ≥ Wassociates.

3 Matching Ontologies with H-Match

H-Match combines a measure of linguistic affinity and a measure of contextual
affinity in order to evaluate a comprehensive measure of semantic affinity be-
tween ontology concepts. The linguistic affinity provides a measure of similarity
between the ontology concepts by considering their linguistic features, while the
contextual affinity provides a measure of similarity by taking into account their
contextual features. Four matching models, namely, surface, shallow, deep, and
intensive, are defined for dynamically configuring H-Match for its adaptation
to the semantic complexity of the ontologies to be compared. The H-Match
matching process is shown in Figure 2. The process starts with the computation
of the linguistic affinity among the ontology concepts, which is common to all
matching models. Then a matching model is chosen. The context of concepts is

Linguistic affinity

Context composition:
properties

Context composition:
properties

semantic relations

Context composition:
properties

semantic relations
property values

Contextual
affinity

Semantic affinity

Surface matching

Shallow matching Deep matching

Intensive matching
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Fig. 2. The matching process of H-Match
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then composed according to the selected matching model and the corresponding
contextual affinity is computed. Finally, the linguistic and the contextual affinity
values are combined to produce the final comprehensive semantic affinity value.
Matching concepts are then selected by cutting off the concepts whose semantic
affinity is below the threshold.

After describing the H-Match WordNet-based procedure for thesaurus con-
struction and the basic functions for matching terms, datatypes, and relations,
we describe how each model of H-Match works.

3.1 Thesaurus Construction

The H-Match thesaurus construction is performed in two steps. First the en-
tries for both basic and compound terms are defined. Then, the terminological
relationships holding among the term entries are defined. Given the set T of
terms used as names of ontology elements, the construction procedure inserts
into the thesaurus an entry for each basic term bti ∈ T , for each compound term
cti ∈ T , and for each constituent token of cti. If a token is a compound term
itself, the procedure is recursively iterated until all the compound terms are anal-
ysed and corresponding basic term entries are defined. Regarding terminological
relationships, the first step is devoted to define terminological relationships for
compound terms. Our approach relies on the idea that in a typical compound
term ct, one of its constituent tokens denotes the central concept represented
by ct, while the remaining tokens denote a specification of such a central con-
cept [26]. In particular for English, we follow the heuristics that the last token
btn appearing on the right side of a compound term ct composed by n tokens
denotes the central concept, and that each remaining token bti, i = 1 . . . n − 1
we encounter going from the left side to the right side of ct denotes a qualifica-
tion of the meaning of btn. On this basis, a NT relationship is defined between
ct and btn and a RT relationship is defined between ct and each remaining to-
ken bti, i = 1 . . . n − 1. Finally, we define the terminological relationships SYN,
BT, NT and RT between basic term entries on the basis of the relations among
synsets that are provided by WordNet. In particular: a WordNet synonymy is rep-
resented through a SYN terminological relationship; a WordNet hypernymy (resp.,
hyponymy) relation is represented through a BT (resp., NT) terminological rela-
tionship; meronymy and coordinate terms relations of WordNet are represented
through a RT relationship in thesaurus 6.

Example. We consider the example of Figure 1. The first step in the thesaurus
construction is to extract from Apple-q and Apple-o the names of concepts and
properties and to determine the thesaurus entries. Most names are single terms
and are already present in WordNet. An entry for them is thus defined in the
6 The examples and the thesaurus description provided in the paper are referred to

nouns for the sake of clarity. In the case of verbs, the corresponding specific relations
in WordNet, such as troponymy, are considered and mapped onto the thesaurus
terminological relationships following analogous rules.
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thesaurus. There are only two compound terms, Edible Fruit and Mobile Computer.
The first one is retrieved in WordNet and therefore is considered as a basic term
and inserted as an entry in the thesaurus. The second one is not retrieved in
WordNet. For this reason, we split it into two tokens (i.e., Mobile and Computer);
then we insert in the thesaurus two new entries, one for Mobile Computer and
one for Mobile, while an entry for Computer is already present in thesaurus being
already a concept name.

The second step is to determine the terminological relationships among the
thesaurus entries. First of all, we consider the compound term Mobile Computer

Apple SYN Apple
Apple NT Edible Fruit
Banana SYN Banana
Banana NT Edible Fruit
Brand SYN Brand
Brazil SYN Brazil
Computer SYN Computer
Computer BT Mobile Computer
Edible Fruit SYN Edible Fruit
Edible Fruit BT Apple
Edible Fruit BT Banana
Edible Fruit BT Grape
Edible Fruit BT Pineapple
Edible Fruit NT Fruit
Food SYN Food
Fruit SYN Fruit
Fruit BT Edible Fruit
Fruit NT Product
Grape SYN Grape
Grape NT Edible Fruit

IBM SYN IBM
Italy SYN Italy
Location SYN Location
Location NT Region
Mobile SYN Mobile
Mobile RT Mobile Computer
Mobile Computer SYN Mobile Computer
Mobile Computer NT Computer
Mobile Computer RT Mobile
Origin SYN Origin
Origin BT Provenance
Pineapple SYN Pineapple
Pineapple NT Edible Fruit
Product SYN Product
Product BT Fruit
Provenance SYN Provenance
Provenance NT Origin
Region SYN Region
Region BT Location
USA SYN USA

Table 1. Example of thesaurus entries for the running example

and we insert a NT relationship between Mobile Computer and Computer, in order
to denote that mobile computers are a specialization of computers. Moreover,
we insert also a RT relationship between Mobile Computer and Mobile, according
to the approach described above. Then, WordNet is exploited for deriving all
the other relationships that are reported in Table 1. Finally, at the end of the
thesaurus construction phase, a weight is associated with each terminological
relationship in the thesaurus. The weights of terminological relationships used
for thesaurus construction are 1.0 for SYN, 0.8 for BT/NT, and 0.5 for RT. Such
weights have been maintained from Artemis where they have been defined af-
ter extensive experimentation on several schema matching and integration cases.
We performed experimentations using them also on several ontology matching
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cases and we have seen that they work well also for ontology matching. Conse-
quently, we maintain them as default weights also in the H-Match thesaurus
construction procedure.

3.2 Basic Matching Functions

In this section, we describe the basic matching functions that are used in or-
der to evaluate the similarity/compatibility of terms, datatypes, properties and
semantic relations, respectively.

Term Affinity Function. The term affinity function A(t, t′) → [0, 1] evaluates
the affinity between two terms t and t′ based on the thesaurus. The term affinity
function is borrowed from Artemis and it is reported here for the sake of clarity.
A(t, t′) of two terms t and t′ is equal to the value of the highest-strength path
of terminological relationships between them in Th if at least one path exists,
and is zero otherwise. A path strength is computed by multiplying the weights
associated with each terminological relationship involved in the path, that is:

A(t, t′) =
{

maxi=1...k {Wt→n
i t′} if k ≥ 1

0 otherwise
(1)

where: k is the number of paths between t and t′ in Th; t →n
i t′ denotes the ith

path of length n ≥ 1; Wt→n
i t′ = W1tr ·W2tr · . . . ·Wntr is the weight associated

with the ith path, and Wjtr , j = 1, 2, . . . , n denotes the weight associated with
the jth terminological relationship in the path.

Datatype Compatibility Function. The datatype compatibility function
T (dt, dt′) → [0, 1] is defined to evaluate the compatibility of data types of two
concept properties according to a pre-defined set CR of compatibility rules.
T (dt, dt′) of two data types dt and dt′ returns 1 if dt and dt′ are compatible
according to CR, and 0 otherwise, that is:

T (dt, dt′) =
{

1 iff ∃ a compatibility rule for dt, dt′ in CR
0 otherwise

(2)

For instance, with reference to XML Schema datatypes (which are relevant for
OWL ontology matching), examples of compatibility rules that have been defined
are: xsd:integer ⇔ xsd:int, xsd:integer ⇔ xsd:float, xsd:decimal ⇔ xsd:float, xsd:short

⇔ xsd:int.

Property and Semantic Relation Closeness Function. The closeness func-
tion C(e, e′) → [0, 1] is defined to calculate a measure of the distance between two
elements e and e′ of concept contexts. Depending on the way concept contexts
are defined in each respective ontology, e and e′ can be either two properties,
or two semantic relations, or a semantic relation and a property, respectively.
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C(e, e′) exploits the weights associated with context elements and returns a value
in the range [0,1] proportional to the absolute value of the complement of the
difference between the weights associated with the elements, that is:

C(e, e′) = 1− | We − We′ | (3)

where We and We′ are the weights associated with e and e′, respectively. For any
pairs of elements e and e′, the highest value (i.e., 1.0) is obtained when weights
of e and e′ coincide. The higher the difference between We and We′ the lower
the closeness value of e and e′.

3.3 Matching Models

The matching models have been conceived to span from surface to intensive
matching. Each model calculates a semantic affinity value SAc,c′ of two concepts
c and c′ which expresses their level of matching. SAc,c′ is produced by considering
linguistic and/or contextual features of concept descriptions. In a given matching
model, the relevance of the linguistic and the contextual features of c and c′ for
matching can be established, by properly setting the linguistic affinity weight
Wla ∈ [0, 1] in the semantic affinity evaluation process.

Before describing matching models, we make a general consideration for the
surface, shallow, deep, and intensive models. In the evaluation of the contextual
affinity, a special case occurs when both the concepts have an empty context. To
deal with this, three strategies are possible: i) NULL-value strategy: the empty
contexts can be considered to have a semantics analogous to the one of the NULL
value in relational databases. In this strategy, the contextual affinity is set to
undetermined to capture this semantics; ii) worst-case strategy: since the concepts
do not have elements in their contexts, the contextual affinity value is set to 0 for
them, to express that no matching elements have been found in their contexts; iii)
best-case strategy: since the concepts do not have elements in their contexts, the
contextual affinity value is set to 1 for them, to express that two empty contexts
are considered to fully match. In implementing H-Match, we have decided to
adopt the worst-case strategy (ii) in order to avoid to produce semantic affinity
values either too much optimistic (iii) or semantic affinity values that are based
only on linguistic affinity (i), without accounting for the information about the
presence of empty contexts.

Surface Matching. The surface matching is defined to take into account only
the linguistic features of concept descriptions. Surface matching addresses the
requirement of dealing with high-level, poorly structured ontological descrip-
tions. Given two concepts c and c′, surface matching provides a measure SAc,c′

of their semantic affinity determined only on the basis of their names using the
term affinity function (1), that is:

SAc,c′ ≡ A(nc, nc′) (4)

where nc and nc′ are the names of c and c′, respectively. When the surface model
is selected, the Wla weight is automatically considered to be 1 by H-Match.
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Example. All the semantic affinity values computed using the surface matching
on the running example ontologies Apple-q and Apple-o are shown in Table 3,
referring to the thesaurus shown in Table 1. For instance, the semantic affinity

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 1.0 0.64 - - 0.8 0.64 -

Food - - - - - - -
Fruit 0.64 0.64 - - 0.8 0.64 -

Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.64 0.512 - -

Food - - - - - -

Fruit - - 0.64 0.8 - -
Italy 1.0 - - - - -

Table 2. Surface matching results for the running example

value of Apple and Grape is 0.8 · 0.8 = 0.64 as NT relationship is defined between
Apple and Edible Fruit and between Grape and Edible Fruit, whose weight is 0.8.
The other semantic values are calculated in an analogous way. According to this
model, we note that the semantic affinity of the two Apple concepts is 1 as their
names coincide.

Shallow Matching. The shallow matching is defined to take into account
concept names and concept properties. With this model, we want a more accurate
level of matching, by taking into account not only the linguistic features but
also information about the presence of properties and about their cardinality
constraints. For property comparison, each property pi ∈ P (c) is matched against
all properties pj ∈ P (c′) using (1) and (3), and the best matching value m(pi)
is considered for the evaluation of SAc,c′, as follows:

m(pi) = max{A(npi , npj ) · C(pi, pj)}, ∀pj ∈ P (c′) (5)

where npi and npj denote the names of pi and pj , respectively. SAc,c′ is evaluated
by the shallow matching as the weighted sum of the linguistic affinity of c and
c′, calculated using (1), and of their contextual affinity, calculated as the average
of the property best matching values computed using (5), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|P (c)|

i=1 m(pi)
| P (c) | (6)

Example. The matching models from shallow to intensive have been applied to
the running example using the following weights values for contextual features:
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strong properties and weak properties have been associated with the weights
Wsp = 1.0 and Wwp = 0.5, respectively. For semantic relations, Wsame−as = 1.0,
Wkind−of = 0.8, Wpart−of = 0.5, and Wassociates = 0.3. These are the default
weights in H-Match. For their definition, we followed a method similar to the
one used for weighting terminological relationships: we defined specific values
for each weight and then we tested them on several real cases, by choosing as
default values those that exhibited best behavior in most cases. Furthermore, for
the shallow matching and the other two remaining models, we have configured
H-Match with a Wla value of 0.5, which is used as a default in H-Match as it
guarantees an equilibrated balancing of linguistic and contextual affinity in the
matching process.

All the results produced for the running example using the shallow match-
ing model are shown in Table 3. As an example of semantic affinity evalua-
tion using the shallow matching model, we continue to consider the case of
matching concept Apple of Apple-q with the concept Grape of Apple-o. Both the
concepts have a weak property in their contexts, i.e., origin for Apple and prove-

nance for Grape. By applying the term affinity function (1) and the closeness
function (3), the matching value of these two properties is evaluated as follows
A(origin,provenance) · C(weak property,weak property) = 0.8 · 1.0 = 0.8. Since these
properties are the only elements in the contexts of both Grape and Apple, this is
also the best matching value. According to this, the semantic affinity between
Apple and Grape is computed as (0.5 · 0.64) + (0.5 · 0.8) = 0.72. As we can see,

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 0.5 0.72 - - 0.4 0.72 -

Food - - - - - - -
Fruit 0.32 0.32 - - 0.4 0.32 -

Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.72 0.256 - -
Food - - - - - -

Fruit - - 0.32 0.4 - -

Italy 0.5 - - - - -

Table 3. Shallow matching results for the running example

with this model the semantic affinity value of Apple and Grape is increased with
respect to the previous value obtained using the surface model. This because
we have taken into account also the presence of matching properties in their
context. We also note that the two apple concepts are now less matching than
before, because we are able to capture differences due to the context properties.
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Deep Matching. The deep matching model is defined to take into account
concept names and the whole context of concepts, that is, both properties and
semantic relations. Each element ei ∈ Ctx(c) (i.e., a property or an adjacent)
is compared against all elements ej ∈ Ctx(c′) using (1) and (3) and the best
matching value m(ei) is considered for the evaluation of SAc,c′, as follows:

m(ei) = max{A(nei , nej ) · C(ei, ej)}, ∀ej ∈ Ctx(c′) (7)

where nei and nej denote the names of ei and of ej , respectively. With the deep
matching model, SAc,c′ is evaluated as the weighted sum of the linguistic affinity
of c and c′, calculated using (1), and of their contextual affinity, calculated as
the average matching value for the elements of the context of c using (7), that
is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|Ctx(c)|

i=1 m(ei)
| Ctx(c) | (8)

Example. All the results produced by the deep matching on the running exam-
ple ontologies are shown in Table 4. Considering the contexts of Apple in Apple-q

and of Grape in Apple-o, H-Match searches in the context of Grape for the best
matching element for each element of the context of Apple. It is simple to verify
that the best matching element for Fruit is Edible Fruit, and that the best match-
ing element for origin is provenance, while Food has not any matching element in
the context of Grape. By applying the term affinity function (1) and the closeness
function (3), we obtain that the best matching value is 0.8 both for Fruit and for
origin. Then, considering that the context of Apple is composed by 3 elements,
the contextual affinity is given by 0.8+0.8

3 = 0.53. The linguistic affinity value
between Apple and Grape is 0.64, so that the final semantic affinity is calculated
as (0.5 · 0.64)+ (0.5 · 0.53) = 0.59. The main advantage of the deep model in the
example is that it emphasizes the difference between Banana, Pineapple, Grape,
and Apple in Apple-o that is due to the fact that the former three are fruits in
the ontology, while the last one is a computer brand. This is evident by taking
into account the results obtained for Fruit in Apple-q which has a high semantic
affinity value with Banana, Pineapple, and Grape, and a low affinity value with
Apple in Apple-o.

Intensive Matching. The intensive matching model is defined to take into ac-
count concept names, the whole context of concepts, and also property values, in
order to exhibit the highest accuracy in semantic affinity evaluation. In fact, by
adopting the intensive model not only the presence and cardinality of properties,
but also their values are considered to produce the resulting semantic affinity
value. Given two concepts c and c′, the intensive matching calculates a compre-
hensive matching value for the elements of the context of c such as in (7) as well
as a matching value v(pi) for each property pi ∈ P (c). The matching value v(pi)
is calculated as the highest value obtained by composing the affinity of the name
npi and the value vpi of pi with the name npj and the value vpj of each property
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Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 0.5 0.59 - - 0.53 0.59 -
Food - 0.4 - - 0.32 0.4 -

Fruit 0.32 0.72 - - 0.72 0.72 -

Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.59 0.386 - -

Food - - 0.4 0.4 - -

Fruit - - 0.72 0.8 - -
Italy 0.5 - - - - -

Table 4. Deep matching results for the running example

pj ∈ P (c′), respectively. For property values comparison, we exploit the term
affinity function (1) if the property value is the name of a referenced concept,
and the datatype compatibility function (2) if the property value is a datatype,
that is:

v(pi) =
{

max{A(npi , npj ) · A(vpi , vpj )},∀pj ∈ P (c′) iff vpi is a reference name
max{A(npi , npj ) · T (vpi , vpj )},∀pj ∈ P (c′) iff vpi is a datatype

(9)
SAc,c′ is evaluated by the intensive matching as the weighted sum of the lin-
guistic affinity of c and c′, calculated using (1), and of their contextual affinity,
calculated as the average of the matching values for the elements of the context
of c using (7) and for the property values calculated using (9), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑ |Ctx(c)|

i=1 m(ei)+
∑ |P (c)|

j=1 v(pj)

|Ctx(c)|+|P (c)| (10)

Example. All the results produced by the intensive matching for concepts of
the running example ontologies are shown in Table 5. Let us consider again Ap-

ple in Apple-q and Grape in Apple-o of the running example. Using the intensive
matching, the contextual affinity of these two concepts must consider also the
value of the properties origin and provenance, i.e., the concept Italy. As shown
above, the affinity between these two property values is given by the following
formula: A(origin,provenance) · A(Italy,Italy) = 0.8 · 1.0 = 0.8. The context of Apple

is composed by 3 elements, but, in the intensive model, we have to sum to this
number also the number of properties, that is 1. For this reason, the contextual
affinity of Apple and Grape is given by 0.8+0.8+0.8

4 = 0.6. The linguistic affinity
value between Apple and Grape is 0.64, so that the final semantic affinity is cal-
culated as (0.5 · 0.64) + (0.5 · 0.6) = 0.62. The main advantage of the intensive
model with respect to the deep model, is that we now capture the difference
between Banana, Pineapple and Grape. In fact, all these concepts have in common
with Apple of Apple-q the fact that they are fruits, but Grape has a higher se-
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mantic affinity with Apple because they both origin from Italy, while Banana and
Pineapple origin from Brazil.

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 0.5 0.52 - - 0.5 0.62 -
Food - 0.4 - - 0.32 0.4 -

Fruit 0.32 0.72 - - 0.72 0.72 -
Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.52 0.356 - -

Food - - 0.4 0.4 - -
Fruit - - 0.72 0.8 - -

Italy 0.5 - - - - -

Table 5. Intensive matching results for the running example

3.4 Matching Policies

The set of parameters to configure the current execution of H-Match for a given
matching case is called matching policy. A matching policy is a 4-tuple of the
form 〈model, Wla, t, mapping〉, where:

– model ∈{surface, shallow, deep, intensive} denotes the matching model to be
used for H-Match execution;

– Wla ∈ [0, 1] denotes the linguistic affinity weight to be used for setting the
relevance of the linguistic affinity, and, consequently, the one of the contex-
tual affinity;

– t ∈ (0, 1] denotes the matching threshold value to be used in order to cut-
off from the results the matching concepts having a low value of semantic
affinity, and thus considered poorly relevant;

– mapping ∈{one-to-one, one-to-many} denotes the kind of mapping to be de-
termined at the end of the matching process.

In the context of open networked systems, each node can specify its own policy
directly within the knowledge discovery request, in order to force the configura-
tion of H-Match at the destination node as described in Section 4.

3.5 Considerations on the Running Example

The main challenging issue in the running example that we have presented above
is to capture the difference between the meaning of the concept Apple in Apple-q

and the meaning of Apple in Apple-o. The two concepts have the same name, but
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in Apple-q apple is a kind of fruit, while in Apple-o it is a brand of computer. For
this reason when we compare Apple-q and Apple-o, the fruit Apple is expected to be
more similar to Banana, Pineapple, and Grape than to Apple in Apple-o. Moreover,
we expect to have a higher similarity between Apple and Grape, since they both
origin from Italy, while Banana and Pineapple origin from Brazil. In order to achieve
these goals, the matching based on the linguistic features alone would fail. In fact
with the surface matching, we obtain that the best matching for Apple in Apple-q is
Apple in Apple-o, due to the synonymy between their names. However, the surface
matching enriches the information provided in the thesaurus, because it captures
a semantic affinity between Apple and the other fruits even if they do not have
any terminological relationship between their names in the thesaurus. A first
refinement of the results is given by the shallow matching model. In this model,
we are able to disambiguate the meaning of the apple concepts, by detecting also
a high affinity between Apple and the other fruits. With the shallow model, we do
not capture the affinity between the concept Fruit and the different types of fruits
in Apple-o because we do not have any property in the context of Fruit. With the
deep model, we consider also semantic relations. This gives us the possibility
to strengthen the affinity between Fruit and Banana, Pineapple, and Grape, by
exploiting the semantic relation that holds between Fruit and Apple in Apple-

q. The best matching concepts for Apple are still Banana, Pineapple, and Grape,
although we do not capture the higher affinity between Apple and Grape. This goal
is achieved by means of the intensive matching model, because it captures the
fact that these concepts have two similar properties (i.e., origin and provenance)
and that these properties have the same value (i.e., Italy). The example shows
how the matching models of H-Match can be used to adapt the algorithm to
the specific features of the ontologies to be matched. A further discussion on the
applicability of the different matching models is given in Section 4.

4 Application of H-Match to Knowledge Discovery in
Open Networked Systems

In this section, we present the query-based approach to knowledge discovery
and sharing we developed in the framework of the Helios open system which
relies on H-Match for ontology matching. Subsequently, we discuss the design
principles that we followed for the implementation of H-Match in Helios.

4.1 Query-Based Knowledge Discovery

In Helios, independent peers with equal role and capabilities cooperate by
sharing their information resources (e.g., data, documents) described through
peer ontologies. Each node provides its own ontology describing the information
resources to be shared and interacts with the other members of the system by
sending probe queries. A probe query provides an ontological description of target
concept(s) of interest for the peer. The Helios probe query template is reported
in Figure 3 and it is composed of the following clauses:
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– Find: list of target concept(s) names.
– With: (optional) list of properties of the target concept(s).
– Where: (optional) list of conditions to be verified by the property values,

and/or (optional) list of concepts related to the target by a semantic relation.
– Matching policy: (optional) specification of the H-Match configuration re-

quested for the evaluation of the query.

Probe query template

Find target concept name [, ...]
[With 〈property name〉 [, ...]]
[Where condition,

〈related concept, semantic relation name〉 [, ...]]
[Matching policy 〈 model, Wla, t, mapping 〉]

Fig. 3. The reference probe query template

The answer to a probe query is list of concepts that match the target. As de-
scribed in Figure 4, the structure of the Helios answer template contains the
following clauses:

– Concept: name of the matching concept.
– Properties: (optional) list of properties of the matching concept.
– Adjacents: (optional) list of concepts related to the matching concept by a

semantic relation.
– Matching: set of pairs 〈target concept, affinity value〉, specifying the tar-

get concept with which the matching concept matches, together with the
corresponding affinity value.

– Matching policy: (optional) the matching policy adopted for the evaluation
of the query.

Probe answer template

{Concept matching concept name
[Properties 〈property name〉 [, ...]]
[Adjacents 〈related concept, semantic relation name〉 [, ...]]
Matching 〈target concept, affinity value〉[, ...]
[Matching policy 〈 model, Wla, t, mapping 〉]}

Fig. 4. The reference probe answer template

If a peer is interested in discovering nodes capable of providing information re-
sources semantically related to a given target, it composes and submits to the
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system a probe query according to the query template of Figure 3. Receiving a
probe query, a peer invokes the H-Match algorithm to compare such a request
against the concepts contained in its peer ontology in order to identify whether
there are concepts matching the target. In particular, the Find, With, and Where
clauses are used to derive a H-Model description of the target concept(s), while
the matching policy to apply is derived from the Matching policy clause of the
probe query, if specified 7. As a result, for each target concept of the probe
query, H-Match returns a (possibly empty) ranked list of matching concepts
semantically related to the target (that is, those concepts whose semantic affinity
value exceeds the threshold specified in the adopted matching policy). Depend-
ing on the kind of mapping specified in the policy, this ranked list can contain
either one single concept (one-to-one mapping policy) which is the best-matching
concept for the target, or a set of concepts (one-to-many policy), which are all
best-k matching concepts for the target. Finally, the results of H-Match are or-
ganized according to the probe answer template of Figure 4, and such an answer
is replied back to the requesting peer. Collecting query replies from answering
peers, the requesting peer evaluates the results and decides whether to further
interact with those peers found to be relevant in order to access the specific
information resources. A discussion on how the access to information resource
data takes place once the knowledge discovery process has been completed is out
of the scope of this paper. For further details, the reader can refer to [20].

4.2 H-Match Implementation Design

The H-Match algorithm and related techniques have been implemented in C++

in the framework of the Helios project. In order to acquire the OWL ontology
descriptions in H-Model, we exploit the OWL APIs commonly used to this end
also by other ontology matching tools [10]. In this section, we discuss the design
principles that we followed for implementing H-Match.

Creation and management of the thesaurus. This functionality exploits the Word-

Net C library, distributed by the WordNet group at the Princeton University 8.
The library provides the basic functionalities to access the lexical database and
to find the relations holding among terms. Our implementation extracts from
the ontologies to be matched the names of the elements, defines the thesaurus
entries, and exploits WordNet for the definition of the terminological relationships
among them, as described in Section 3. The thesaurus is represented as a graph
where the nodes are the entries derived from entity names and the edges are the
weighted terminological relationships. A specific problem that is addressed by the
thesaurus management functionality is related to terms that are not included in
WordNet (e.g., some acronyms). We have taken into account three main options:

7 If the matching policy is not specified in the query, the receiving peer can au-
tonomously select the policy to apply according to internal criteria (e.g., workload,
bandwidth).

8 http://wordnet.princeton.edu/
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i) off-line manual extension of the WordNet-based thesaurus with the main terms
of the peer ontology domain not included in WordNet; ii) semi-automated exten-
sion of the WordNet-based thesaurus with the main terms of the peer ontology
domain not included in WordNet by referring to a domain-specific vocabulary, if
available; iii) use of syntax-based techniques (e.g., string similarity) to recognize
and manage these terms. Currently, we enforce the first option, by providing
some basic editing functionalities for off-line thesaurus extension.

Policy management. This functionality has the aim of managing the matching
policies for the H-Match configuration. The matching policies are managed
through the configure method of the class HMatch.

Representation and storage of ontology concepts. This functionality is based on
the idea to represent an ontology as a set of C++ objects, called ConceptVectors.
Each concept vector represents a concept in the ontology, together with its con-
text in terms of properties and semantic relations. In our implementation, each
H-Match execution is characterized by two set of concept vectors, called target
and ontology, respectively. The first set contains the concepts that are the target
of the matching process, while the second set contains the concepts that are the
basis of the matching process.

Affinity functions. This functionality provides the functions that are used for
evaluating both the linguistic and the contextual affinity between two concepts,
working on concept vectors. In particular, for each target concept, the matching
process calculates the semantic affinity value with the concepts that compose
the ontology.

A main portion of the UML class diagram of the C++ classes implementing the
H-Match functionalities is shown in Figure 5. The HMatch class is used for
representing the process of matching two ontologies by means of the H-Match
algorithm. The class is configured by means of a configure function that sets the
value associated with the weight of the linguistic affinity (WLA) and the threshold

from a MatchingPolicy object. Each HMatch instance is then associated with an
instance of the LinguisticAffinity object, which is used to represent the A(n, n′)
function described in (1). This association gives HMatch the capability to evalu-
ate the linguistic affinity holding between two concepts. The LA method returns
the linguistic affinity between two ConceptVector as a float number in the range
[0,1]. In a similar way, the CA function calculates the contextual affinity between
two concepts and requires a third parameter that specifies the matching model
to be used. Finally, the comprehensive semantic affinity value is provided by
means of the SA method that invokes LA and CA, respectively. The evalResults

method is exploited for calculating the semantic affinity value for each target
conceptand each concept of the ontology. The complete set of results are then
stored, together with WLA, threshold, and model used, in the Results object. Each
result is a triple of the form 〈query concept, ontology concept, semantic affinity
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HMatch
WLA :float
threshold :float
target :set<ConceptVector*>
ontology :set<ConceptVector*>
linguisticAffinity :LinguisticAffinity
...
configure(:MatchingPolicy) :void
LA(:ConceptVector*,:ConceptVector*) :float
LA(:ConceptVector*,:ConceptVector*,:string)
LA(:ConceptVector*,:ConceptVector*,:string)
evalResults() :void
...

LinguisticAffinity
LA :DMap
...
evaluateLA(:Graph*) :void
getLA(:string,:string) :float
...

Thesaurus
...
createTH(:set<string>) :void
addTerms(:set<string>) :void
relation(:string,:string) :relationship
...

Graph
...
insertNode(:Term) :bool
insertEdge(:Term,:Term,:relationship) :bool
getAdjacentList(:Term) :list<NodeAndWeight>
...

ConceptVector
name :string
properties :set<Property>
relations :set<Relation>
...
...

Results
WLA :float
threshold :float
model :string
results: set<Result>
...
...

1

1

1

1

1

1

*

*

1...*

Fig. 5. A significant portion of the H-Match UML class diagram

value〉. The thesaurus of terminological relationships is represented by the The-

saurus object, which is composed by a Graph. The graph is implemented by means
of adjacency lists in the class Graph. The class Thesaurus supports basically two
main tasks: i) the creation of the thesaurus given a set of strings, and ii) the
mapping between the relations found in WordNet and the terminological relation-
ships supported by H-Match, as described in Section 3. A further functionality
of the Thesaurus is given by the addTerms method that is used for updating a pre-
defined thesaurus with new term(s) and terminological relationship(s) entries.
This function is adopted in the open networked scenario for extending the the-
saurus that has been pre-calculated for a peer ontology. In particular, we have a
WordNet pre-processing based on the contents of a given peer ontology which is
performed off-line. At the time the matching is requested, the extension of the
thesaurus is performed with new terms/terminological relationships of the tar-
get ontology. Usually the target ontology (i.e., a probe query) contains a limited
number of concepts and the extension process can be performed on-line easily.
Finally, the thesaurus is associated with a LinguisticAffinity object that exploits
a Dijkstra-based algorithm for evaluating the A(n, n′) function described in (1)
over the thesaurus graph. These results are then stored in a map that associates
a float value in the range [0,1] with each pair of terms in the thesaurus. The map
is then refreshed to reflect the thesaurus extensions.

4.3 H-Match Optimization

Let nc be the number of target concepts in the probe query and mc be the number
of concepts in the peer ontology. We developed some optimizations for H-Match
to avoid to perform nc × mc matchings. This problem has been addressed by
other approaches proposed in literature. For example, the QOM tool [27] pro-
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poses several strategies for reducing the number of matching performed by the
matchmaker starting from an initial set of candidate mappings. Similarly, we
want to reduce the number of atomic matchings required for a probe query by
contemporary guaranteeing a high level of accuracy of the results. The idea is
to match a target concept c of the probe query only against the concepts of the
ontology that have a high probability to have a high semantic affinity with c.
To this end, we observed that the problem is analogous to the problem of find-
ing resources over the Web using the PageRank algorithm [28]. In PageRank, the
importance of a page p is based both on the number of other pages that point
to p and on the importance of those other pages [29]. A ranking scheme is then
exploited for matching a query against the pages that have a high importance
in the rank. For H-Match optimization, we have defined an algorithm, called
ConceptRank, that is based on the idea of building a ranking scheme of con-
cepts in a peer ontology and of exploiting it for matching a target concept only
against the concepts that have a high level of importance in the rank. The rank
of a concept is determined by taking into account the number and the weight
of ontology relations that point to it. In this step, the difference with respect
to PageRank is that the relevance of an edge is given by the weight associated
with it. The importance of a concept c is a measure proportional to the num-
ber of concepts ci that have a semantic relation with c and to the importance
of ci. Probe queries are processed by matching each target concept against the
peer ontology concepts in the ranking scheme starting from the most important
ones and by stopping the matching process when a given number TF of atomic
matchings produce a semantic affinity value under the matching threshold. The
number TF is called tolerance factor and is determined experimentally in order
to obtain the best balance between the required reduction of atomic matchings
and the quality of the results obtained for a probe query. This process has to
take into account the fact that, in the ranking scheme, the most important con-
cepts are the ones that are mostly referenced by the other concepts. For this
reason, the most important concepts in the rank have generally the most generic
meaning in the ontology. When a probe query is searching for a concept with a
specific meaning, the top ranked concepts (i.e., the ones with the most generic
meaning) could not be the best answers for the query. In order to address this
problem, we have defined two main strategies:

– Ranking-based strategy. A target concept c is matched against the concepts
ci in the rank starting from the top ranked concept c0. The matching process
ends when the number of atomic matchings that do not provide a semantic
affinity value exceeding the threshold is higher than or equal to the tolerance
factor TF . A variation of this strategy, called Surface Ranking-based Strategy,
avoids to match c against the peer ontology concepts with the most generic
meaning through a revision of the ranking scheme obtained by exploiting
the surface matching model.

– Graph-based Strategy. In this strategy, we use the ranking scheme just to find
the most important concept c0 that is seen as the concept that has the highest
probability to be relevant for the probe query. Then, the concepts that have
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to be matched against c are chosen by visiting the ontology graph starting
from c0. The process is iterated until the number of atomic matchings that do
not provide a semantic affinity value exceeding the threshold is higher than
or equal to the tolerance factor TF . Also in this case, a variation, called
Surface Graph-based Strategy, has been developed for the same purpose of
the previous one.

We have compared these strategies in order to determine their impact on the
matching process. The results of this experimentation show how the first strategy
guarantees a higher level of performance and a lower level of accuracy than the
last one. Moreover, the graph-based strategy is more adequate to obtain the most
relevant results. The optimization strategies are available in the Helios query
processing module to pre-configure the peer capabilities at the initialization time.

5 Experimental Results

We analyze the behavior of H-Match by performing different tests devoted i) to
evaluate the matching models with respect to performance and quality of results
in terms of precision and recall, and ii) to compare the H-Match results with
the results produced by selected ontology matching tools available on the Web.

5.1 Experimental Evaluation of H-Match Models

In order to evaluate the effectiveness of the four H-Match models, two kind of
tests have been executed: i) a quality test, where the experiments were devoted
to examine precision and recall of the models on real case studies; and ii) a
performance test, where the H-Match models have been analyzed with respect
to computation time and scalability in manifold scenarios with different level of
complexity.

Quality Test. For what concern the H-Match quality test, we have considered
two OWL ontologies from the publication domain (i.e., Ka 9, Portal 10), and we
asked to users (i.e., students of our Ontologies and Semantic Web course) to man-
ually define a set of target ontologies (i.e., twenty target ontologies) related to
the publication domain, too. Each target ontology describes publication-related
concepts with some properties, semantic relations, and property values accord-
ing to the domain knowledge and experience of the ontology creator. To avoid to
be influenced, target ontologies have been composed without considering Ka and
Portal ontology contents. Note that the choice of manually constructing small-size
target ontologies for extensive experimentation is motivated by the fact that H-
Match is used for knowledge discovery in the Helios open networked system.
In such a context, the typical problem is to match a probe query embedding a

9 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
10 http://www.aktors.org/ontology/portal
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small-size ontology describing target concept(s) against a large ontology. After
the target ontology definition, we asked users to consider Ka and Portal ontolo-
gies, and to map each concept of the target ontologies they have defined on one
or more concepts belonging to the two reference ontologies according to their in-
tuitive understanding of concept similarity. In this way, we have collected a set of
1:1 mappings between the target ontologies and the reference ontology concepts.
The goal of the quality test is to evaluate the effectiveness of H-Match match-
ing process by verifying the overlapping between the results produced by the
different H-Match models and the manual mappings. Moreover, we intend to
analyze the impact of different threshold values t and linguistic affinity weights
Wla on the level of overlapping. To this end, we use precision and recall, which
are the measures commonly adopted for matching evaluation [10] derived from
the classical definitions of Information Retrieval [30]. In particular, precision is
defined as the ratio of the number of relevant matching concepts automatically
found by H-Match to the total number of matching concepts automatically
found. Recall is defined as the ratio of the number of relevant matching concepts
automatically found by H-Match to the total number of matching concepts
(i.e., mappings) manually defined.

In Figure 6, we show the precision of the H-Match matching models with a
linguistic affinity weight which varies from Wla = 0.1 to Wla = 0.8 and the
threshold t = 0.6. These values show the number of manual mappings which
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Fig. 6. The precision of the H-Match matching models with t = 0.6
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have been correctly identified by H-Match with respect to the total number
of results provided by the algorithm. We observe that the surface matching is
not affected by the variation of the Wla parameter and can ensure a precision
equal to 45%. This is due to the fact that the surface matching always works
with the parameter Wla = 1 and contextual features are not considered in the
matching evaluation. For what concern the other matching models, H-Match
can guarantee a high level of precision in correspondence of high Wla values. In
particular, we observe that with Wla ≥ 0.4, H-Match can achieve a precision
of 82%.

In Figure 7, we measure the H-Match recall in correspondence of different lin-
guistic affinity weights and with the threshold t = 0.3. The results show the
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Fig. 7. The recall of the H-Match matching models with t = 0.3

number of manual mappings which have been correctly identified with respect
to the total number of mappings manually defined. Independently from the val-
ues of Wla, we observe that the recall of each matching model is over the 80%,
and the deep matching model can achieve a recall equal to 99.1% when Wla = 0.4.

From these figures, we observe that the choice of the correct value for the thresh-
old t and for the linguistic affinity weight Wla depends on the goal of the match-
ing case. If we are interested in very precise results, we have to set high values
(i.e., ≥ 0.6) both for threshold and for linguistic affinity weight. On the opposite,
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if we are interested in accuracy of results, lower values (i.e., 0.3 ≤ t, Wla ≤ 0.5)
for both parameters work better. In both cases, deep and intensive matching are
to be preferable and can provide better results than surface and shallow models.
We want to stress that H-Match has been implemented to be interactively con-
figured, in order to suit the matching process to the requirements of the specific
matching case.

Performance Test. The semantic affinity evaluation performed by H-Match
is based on the comparison of all the concepts and corresponding contexts con-
tained in the two ontologies to be considered. For this reason, the computation
time is affected by the number of elements to be compared and by the adopted
matching model. The goal of the performance test is to focus the attention on
the performance differences between the four matching models for the aspects
related to the contextual affinity evaluation. To this end, we analyze the match-
ing models when comparing a large reference ontology with a great number of
small target ontologies which differ in complexity of concept contexts. In this
test, the linguistic affinity is computed only once as it is common to all matching
models and, as such, it is not considered in discriminating between the different
matching models 11. The test is characterized by the following features:

– The reference ontology is the W3C Wine ontology 12. We have selected this
well known ontology because it provides a relevant number of concepts (more
than one hundred concepts) with an adequate richness in terms of proper-
ties, semantic relations, and property values per concept (an average of five
properties, two semantic relations, and six property values per concept, re-
spectively).

– The target ontologies used in the comparison with the reference Wine ontol-
ogy are randomly composed and vary according to four different complexity
measures: number of concepts in the ontology and number of properties,
semantic relations, and property values per concept, respectively.

– The test has been executed on a Dual Xeon machine at 2.80 GHZ with 1GB
RAM and SCSI disks.

The diagrams reported in Figure 8 show the computation time of the H-Match
models by varying one complexity measure while keeping fixed the other three
measures. In Figure 8(a), we have measured the computation time required for
comparing the reference ontology with a target ontology which varies in the
number of concepts and with a fixed number of properties, semantic relations,
and property values per concept. In the remaining diagrams, we have fixed the
number of target ontology concepts and the complexity measure which varies
11 However, based on the test cases performed on real examples, such as those presented

in Section 5.2, where the linguistic affinity is calculated each time, we found that the
average time required for matching (including LA computation) is in the range of
0.6 seconds for quite complex ontologies (ontologies with more than sixty concepts
to one hundred and more concepts)

12 http://www.w3.org/TR/2003/WD-owl-guide-20030210/wine.owl



52 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

0 1 2 3 4 5 6 7 8 9 10

Number of concepts in the target ontology

0

1

2

3

4

5

6

7

H
-M

A
T

C
H

 ti
m

e 
(s

ec
s)

surface
shallow
deep

intensive

0 1 2 3 4 5 6 7 8 9 10

Number of properties per concept

0

0.5

1

1.5

2

H
-M

A
T

C
H

 ti
m

e 
(s

ec
s)

surface
shallow
deep
intensive

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11

Number of relations per concept

0

0.5

1

1.5

2

H
-M

A
T

C
H

 ti
m

e 
(s

ec
s)

surface
shallow
deep
intensive

0 1 2 3 4 5 6 7 8 9 10

Number of property values per concept

0

0.5

1

1.5

2

H
-M

A
T

C
H

 ti
m

e 
(s

ec
s)

surface
shallow
deep
intensive

(c) (d)

Fig. 8. Comparison of the H-Match models

is the number of properties (Figure 8(b)), semantic relations (Figure 8(c)), and
property values (Figure 8(d)), respectively.

We stress that, in the worst case, all the models, including the intensive match-
ing, observe a linear growth of their computation times in correspondence of the
increase of the elements to be evaluated. Furthermore, the surface, shallow, and
deep matching are also scalable, in that the semantic affinity evaluation restricted
to concept names, properties, and semantic adjacents is a very efficient task. On
the contrary, the intensive matching computation times are higher and not com-
parable with the corresponding values of the other matching models. This means
that the semantic affinity evaluation of property values has a great impact on
the matching performances. Anyway, we observe that there is a real difference
between the computation times of Figure 8(a) and the remaining diagrams: the
real impact on matching performances is due to the number of concepts to be
processed in the target ontology rather than to the variations in concept context
definition.

Considerations. Performance and quality tests show that the choice of the
most suitable matching model is a key factor for obtaining relevant matching
results. This depends on the level of detail of the ontology descriptions to be
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compared as well as on the expected degree of precision and recall of the results.
Furthermore, the appropriate configuration of the threshold and of the linguis-
tic affinity weight have an impact on the quality of H-Match results. When
adopting H-Match, the trade-off between high performances, high precision,
and high recall has to be evaluated. In scenarios where a rapid response time
is required (e.g., open networked systems with discovery queries), some lacks in
matching precision and recall can be admitted in turn of high performances dur-
ing the semantic affinity evaluation. On the opposite, when computation time is
not a critical constraint, we can apply the matching model which best suits the
particular application scenario. In Table 6, we summarize the main features of
the matching models and their corresponding suggested scenarios. The surface

Surface Shallow/Deep Intensive

Ontological
description

Poorly structured on-
tologies with very sim-
ple resource descrip-
tion

Schematic ontologies with
taxonomic resource descrip-
tion

Articulated ontologies
with rich resource de-
scription

Kind of
matching

Linguistic-driven
matching

Linguistic and context-driven
matching

Linguistic, value, and
context-driven match-
ing

Advantages High performances More accurate characteriza-
tion of matching concepts

High precision and re-
call

Table 6. Applicability of the matching models

model is useful when only concept names are to be considered. It requires few
computational resources since neither concept properties nor semantic relations
are considered. This model is well suited, for example, to perform an initial on-
tology comparison to decide whether it is worth to perform a deeper analysis. If
the ontology is constituted mainly by concepts with a few number of properties
and hierarchical relation among concepts, the shallow and deep model allow a
good degree of precision without requiring great amount of computational re-
sources. In presence of an articulated ontology, with rich resource descriptions
and where relations among concepts are described through property values, the
intensive model guarantees the most precise and accurate results, although being
the most expensive in term of computation.

5.2 Comparative Evaluation with Other Tools

In this test, we compare the H-Match algorithm with similar ontology matching
tools and we analyze the results produced by applying them to the same test
case. The tools considered are FOAM 13 (Framework for Ontology Alignment

13 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/
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and Mapping) and OLA 14 (OWL Lite Alignment). The choice of these tools has
been led by the following considerations:

– The ontology mapping approach proposed by these tools is similar to H-
Match 15.

– A prototype of these tools is free for download or is available through a Web
Service.

– Different test cases and associated experimental results in term of precision,
recall, and F1 measure are available on the respective Web site.

Two different experimentations have been performed to compare H-Match with
FOAM and OLA, respectively. The goal of each test is to compare two OWL
ontologies in order to identify the pairs of matching elements. A list of expected
mappings is also specified for evaluating the results provided by the tools in
terms of precision, recall, and F1 measure. For what concern precision and recall
we refer to the definitions provided in Section 5.1, while F1 measure is derived
from the classical definition of Information Retrieval [30] and it is defined as
follows:

F1 =
2pr

p + r
(11)

where p and r represent precision and recall measures, respectively. For each
test, we execute H-Match under many different matching policies varying the
adopted matching model, the linguistic affinity weight Wla, the threshold t, and
the kind of mapping determined (i.e., one-to-one, one-to-many). For each test, we
report the H-Match policy that provides the best results in terms of precision,
recall, and F1 measure and we compare such results with the corresponding
results produced by the observed tool.

Comparison with FOAM. The test case adopted in this comparison has
been selected from the FOAM Web site and regards the animal domain. In
Table 7, we show the results produced by FOAM and H-Match, respectively.
The FOAM measurements are obtained by submitting the test case to the FOAM
Alignment Web Service 16. The point of maximum precision of H-Match is
obtained with the matching policy 〈intensive, 0.8, 0.7, one-to-one〉, while the points
of maximum recall and F1 measure are obtained with the policy 〈deep, 0.5, 0.3,
one-to-one〉. We can observe that FOAM has better results than H-Match for
what regards precision, while recall and F1 measure are a little bit higher for
H-Match. In general, these results confirm the impression we stressed in the
experiments of Section 5.1: deep and intensive matching can ensure appreciable
results in terms of precision and recall when Wla and t are properly set. In
particular, precision increases with high values both for linguistic affinity weight
and threshold (e.g., Wla = 0.8 and t = 0.7), while low values for both these
14 http://www.iro.umontreal.ca/∼owlola/
15 FOAM and OLA are also discussed in Section 6 where an analytical comparison

with H-Match is provided.
16 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/service.htm
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Precision Recall F1 measure

FOAM
Point of maximum precision 1.0 0.58 0.74
Point of maximum recall 0.76 0.67 0.71
Point of maximum F1 1.0 0.58 0.74

H-MATCH
Point of maximum precision 0.86 0.67 0.75
Point of maximum recall 0.78 0.78 0.78
Point of maximum F1 0.78 0.78 0.78

Table 7. Comparison of H-Match and FOAM results

parameters (e.g., Wla = 0.5 and t = 0.3) are required for obtaining high values of
recall. Finally, we note that the one-to-one mapping strategy is always associated
to maximum measures of H-Match. Such a mapping strategy allows to obtain
more balanced results of precision and recall, thus it positively affects the F1
measures.

Comparison with OLA. The test case adopted in this comparison has been
selected from the Ontology Alignment Contest 17 and regards the comparison of
a reference bibliographic ontology 18 with the more complex Karlsruhe ontol-
ogy 19. In Table 8, the results of the comparison between H-Match and OLA
are summarized. Precision, recall, and F1 measure related to OLA on this test

Precision Recall F1 measure

OLA
0.5 0.31 0.38

H-MATCH
Point of maximum precision 0.82 0.74 0.78
Point of maximum recall 0.82 0.74 0.78
Point of maximum F1 0.82 0.74 0.78

Table 8. Comparison of H-Match and OLA results

case are obtained from [8] where the authors indicate that the tool configuration
has the intention to led to the best alignment with respect to precision. For what
concern H-Match, the points of maximum precision, recall, and F1 measure are
all obtained when the adopted matching policy is 〈intensive, 0.8, 0.8, one-to-one〉.

17 http://co4.inrialpes.fr/align/Contest/
18 http://co4.inrialpes.fr/align/Contest/101/onto.rdf
19 http://co4.inrialpes.fr/align/Contest/303/onto.rdf
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We note that H-Match can provide appreciable results both in terms of preci-
sion and recall. With respect to our considerations in Section 5.1, we note that
the H-Match configuration for the point of maximum recall is anomalous. In
this test case, this is due to the fact that the expected mappings are strongly
dependent from linguistic features. This means that when the linguistic affinity
weight is high (e.g., Wla = 0.8), even if the threshold has a high value (e.g.,
t = 0.8), the accuracy of H-Match can achieve relevant results.

6 Related Work

In this section, we perform a comparative analysis of the state of the art tools
for ontology matching, providing also a critical comparison with H-Match. We
perform the comparison in the light of three main criteria: i) the ontology repre-
sentation formalism adopted by the tools; ii) the semantic complexity supported
by the matching process of each tool; iii) the mechanism adopted by each tool
for the composition of different similarity measures. For comparison we have
selected PROMPT [12], FOAM/QOM [10, 27, 31], OLA [8], S-Match [11, 23],
GLUE [7], and COMA++ [22]. PROMPT is a framework for multiple ontology
management; FOAM/QOM is a tool to full- or semi-automatically align two
or more ontologies; OLA is an ontology alignment tool tailored to OWL Lite
ontologies; S-Match is a semantic matchmaker tailored to graph-like structures;
GLUE is an approach based on machine learning techniques for schema and on-
tology matching purposes; COMA++ is a combined framework for schema and
ontology matching.

Ontology Representation Formalism. In Table 9, we compare the different
selected tools with respect to the internal formalism adopted for the ontology
representation and with the ontology languages supported. In particular, we
show which OWL dialect is supported by each tool and which OWL features
are considered in the matching process. The tools presented in Table 9 generally
adopt an internal representation, either a tree-based or a graph-based model, of
the ontology contents, which in several cases is defined to capture the features of
OWL. S-Match and GLUE do not refer explicitly to OWL, but their reference
model is compatible with OWL Lite. With respect to the ontology representation
formalism, H-Match is in line with the state of the art systems, in that it refers
to a graph-based model and provides direct support for OWL.

Features of the Matching Process. Table 10 shows the comparison of the
tools with respect to the ontology elements, the linguistic features, and the con-
textual features that characterize the matching process in each tool. With re-
spect to linguistic features, we compare the tools by taking into account the
techniques adopted for determining linguistic similarities and to the level of lin-
guistic analysis provided by each tool. Contextual features refer to the number
and type of semantic relations among concepts that are used by each tool in
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OWL Dialect Internal representation

PROMPT
OWL Lite

OWL DL (partial)
OWL Full (partial)

Frame-based
Graph-based

FOAM/QOM
OWL Lite
OWL DL

Karlsruhe Ontology Model [27]
(Graph-based)

OLA OWL Lite
OL-Graph

(Graph-based)

S-Match
OWL Lite

(no specific support for OWL)
Tree-based

GLUE
OWL Lite

(no specific support for OWL)
Tree-based

COMA++ OWL Lite Graph-based

H-MATCH
OWL Lite

OWL DL (partial)
OWL Full (partial)

H-Model
(Graph-based)

Table 9. Comparison on ontology representation

order to determine the contextual similarity between two concepts. Regarding
ontology elements that can be matched, all the tools perform the matching pro-
cess by taking into account concepts and properties. Instances are considered
in PROMPT, FOAM/QOM, OLA, GLUE, and COMA++. In the case of H-
Match, the choice of considering concepts and properties is motivated by the
fact that the algorithm is conceived for matching knowledge requests in the con-
text of open networked systems, where probe queries are used with the aim of
acquiring new knowledge from other peers. In fact, a probe query provides basi-
cally the schema-level description of one or more concepts of interest. However,
H-Match can be easily extended to consider also instance level information in
the ontology matching process. This can be achieved by exploiting a combination
of linguistic and property value similarity measures already available in the in-
tensive matching model. Considering linguistic features, we distinguish between
tools that exploit an external dictionary or a thesaurus taking into account termi-
nological relationships and domain knowledge for linguistic matching, and tools
that rely on the syntactic features of labels and identifiers through string match-
ing. PROMPT and GLUE do not adopt any external support for the linguistic
analysis. FOAM and COMA++ adopt domain specific vocabularies that can be
used for refining the matching results obtained by syntactic analysis. H-Match,
as COMA++, S-Match, and OLA, adopts a language-based approach, in partic-
ular for the preprocessing of compound terms. S-Match, OLA, and H-Match
are similar also with respect to the intensive use of WordNet for the linguistic
matching. With respect to contextual features, all the tools take into account
the semantic relations holding between concepts. S-Match adopts a logic-based
approach that exploits the relations between concepts for automatic reasoning
purposes. All the tools refer to property domain and range as well as to taxo-
nomic relations among concepts. FOAM/QOM takes also into account property
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Ontology elements Linguistic features Contextual features
Type of matching External dictionary

PROMPT
Concepts
Properties
Instances

Syntactic
(String

matching)
-

Property
domain

Property range
Kind-of
(Among
concepts)

FOAM/QOM
Concepts
Properties
Instances

Syntactic
(String

matching)

Domain
specific

dictionary

Property
domain

Property range
Property
hierarchy
Same-as
Kind-of

Individual
identity

OLA
Concepts
Properties
Instances

Syntactic
(String

matching)
Language-

based
(tokenization,

compound
terms)

WordNet

Property
domain

Property range
Kind-of

S-Match Concepts

Syntactic
(String

matching)
Language-

based
(lemmatization,
tokenization,
compound

terms)

WordNet

Same-as
Kind-of

Mismatch
Overlapping

GLUE
Concepts
Properties
Instances

- -

Property
domain

Property range
Same-as
Kind-of

COMA++
Concepts
Properties
Instances

Syntactic
(String

similarity)
Language-

based
(tokenization)

Domain
specific

dictionary

Property
domain

Property range
Same-as
Kind-of

H-MATCH
Concepts
Properties

Language-
based

(Tokenization,
compound

terms)

WordNet

Property
domain

Property range
Same-as
Kind-of
Part-of

Associates

Table 10. Comparison on semantic complexity

hierarchies and identity relations among instances. H-Match takes into account
property domain and range, and the semantic relations of same-as, kind-of, part-of,
and associates in the context of concepts. In particular, the part-of and associates
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relations are useful to deal with object-oriented ontology specifications, where
these relations are typically used. H-Match and FOAM/QOM adopt a similar
strategy in discarding some kind of contextual features in order to increase the
matching performance. The main difference between the two is related to the
way the strategy is enforced. In H-Match, the strategy is chosen at run-time,
by selecting the most adequate matching model that has to be adopted at a
given invocation time.

Similarity Measures Composition. In Table 11, we compare the different ap-
proaches with respect to: i) the mechanism adopted for deriving a comprehensive
similarity value out of the different similarity measures and ii) the mechanism
adopted for cutting off the useless results. With respect to the similarity mea-

Similarity measure composition Cut-off

PROMPT Cumulative approach Highest value

FOAM/QOM
Weighted sum

Process iteration
Threshold-based

OLA Iterative process Highest value

S-Match Logic-based (SAT) -

GLUE
Machine learning

approach
Probability-

based

COMA++
Average value

Iterative approach
Highest value

H-MATCH Weighted sum Threshold-based

Table 11. Comparison on similarity measure composition

sures composition, PROMPT, OLA, and GLUE, even if in different ways, adopt
a cumulative and iterative strategy for deriving the comprehensive degree of
similarity between two ontology elements. In S-Match the structural matching is
seen as a logic proof based on the previously determined relations among concept
labels. COMA++ and FOAM are frameworks based on the idea of combining
different measures of similarity. In COMA++ the similarity measures are com-
posed in a comprehensive measure by evaluating their average value. In FOAM,
the strategy is to perform a weighted sum of the different similarity measures,
where the factors are functionally computed. H-Match adopts a weighted sum
between linguistic and contextual measures of similarity, where the weights as-
sociated with linguistic and contextual affinity are constant. The problem of
cutting off the results that are not used to determine mappings is typical of the
approaches that provide a measure of similarity between ontology elements. S-
Match is based on the idea to discover a semantic relation between two elements
of different ontologies, so that there is no need of a cutting off mechanism. In
GLUE, mappings represent the probability that an instance of a given element
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is an instance also of another element. GLUE chooses the most probable map-
ping, that is the mapping between the elements with the highest probability
to represent the same real object in the domain. In PROMPT and OLA, the
matching value used for determine the mappings is the highest value that is com-
puted between two elements by means of a cumulative strategy. FOAM/QOM,
COMA++, and H-Match provide a measure of similarity between ontology el-
ements in the range [0, 1]. In COMA++, mappings are determined between the
elements with the highest matching values. In FOAM and H-Match, the cut-off
mechanism is based on a threshold that is set as a parameter of the algorithm.

7 Concluding Remarks

In this paper, we have presented the H-Match algorithm and related techniques
for matching of independent ontologies in open networked systems. H-Match
has been implemented and used for probe query processing in the framework of
the Helios networked system for supporting dynamic knowledge discovery and
ontology-addressable content retrieval in peer-based systems [19, 20]. The novel
contributions and distinguishing features of H-Match can be summarized as
follows:

– Fully-automated matching process that can be used as: i) a matchmaker
engine of a peer for matching probe queries against peer ontologies for
knowledge discovery as occurs in the Helios open networked system; ii)
a conventional ontology matching tool for the alignment of two independent
ontologies;

– Capability of satisfying as a whole both general requirements of ontology
matching per se and peculiar requirements of matching in open networked
context. This is achieved by providing a wide spectrum of metrics suited for
dealing with many different matching scenarios where the number and type
of ontology features that can be exploited during the matching process is
not known in advance;

– Capability of being dynamically configured for adaptation to the semantic
complexity of the ontologies to be compared. This is achieved by automati-
cally selecting the matching configuration according to a policy embedded in
the incoming request which can vary, also for the same ontology, each time
a new request is submitted to the system.

Future work will regard the enrichment of the ontology features supported by H-
Match; the semantic query routing; the semantic community definition. With
respect to the first issue, we will consider also instance-level information of on-
tology specifications in the matching process of H-Match, starting from current
intensive matching techniques. Other two research issues are related to the use
of H-Match for enforcing semantic query routing and for semantic community
formation, which are hot research topics in open networked systems. Some initial
results on these issues are presented in [32, 33].
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