

Lecture Notes in Computer Science 3870
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Stefano Spaccapietra Paolo Atzeni
Wesley W. Chu Tiziana Catarci
Katia P. Sycara (Eds.)

Journal on
Data
Semantics V

13

Volume Editors

Stefano Spaccapietra
École Polytechnique Fédérale de Lausanne, EPFL
Laboratoire de Bases de Données
Station 14, 1015 Lausanne, Switzerland
E-mail: stefano.spaccapietra@epfl.ch

Paolo Atzeni
Università Roma Tre, Dipartimento di Informatica e Automazione
Via della Vasca Navale 79, 00146 Roma, Italy
E-mail: atzeni@dia.uniroma3.it

Wesley W. Chu
University of California, Computer Science Department
Los Angeles, CA 90095-1596, USA
E-mail: wwc@cs.ucla.edu

Tiziana Catarci
Università di Roma "La Sapienza"
Dipartimento di Informatica e Sistemistica
Via Salaria 113, 00198 Roma, Italy
E-mail: catarci@dis.uniroma1.it

Katia P. Sycara
Carnegie Mellon University, Robotics Institute
5000 Forbes Avenue, Pittsburgh, PA 15213, USA
E-mail: katia@cs.cmu.edu

Library of Congress Control Number: 2005938929

CR Subject Classification (1998): H.2, H.3, I.2, H.4, C.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-31426-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31426-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 11617808 06/3142 5 4 3 2 1 0

The LNCS Journal on Data Semantics

Computerized information handling has changed its focus from centralized data
management systems to decentralized data exchange facilities. Modern distribution
channels such as high-speed Internet networks and wireless communication
infrastructure, provide reliable technical support for data distribution and data access,
materializing the new, popular idea that data may be available to anybody, anywhere,
anytime. However, providing huge amounts of data on request often turns into a
counterproductive service, making the data useless because of poor relevance or
inappropriate level of detail. Semantic knowledge is the essential missing piece that
allows the delivery of information that matches user requirements. Semantic
agreement, in particular, is essential to meaningful data exchange.

Semantic issues have long been open issues in data and knowledge management.
However, the boom in semantically poor technologies, such as the Web and XML,
has boosted renewed interest in semantics. Conferences on the Semantic Web, for
instance, attract crowds of participants, while ontologies on their own have become a
hot and popular topic in the database and artificial intelligence communities.

Springer's LNCS Journal on Data Semantics aims at providing a highly visible
dissemination channel for most remarkable work that in one way or another addresses
research and development on issues related to the semantics of data. The target
domain ranges from theories supporting the formal definition of semantic content to
innovative domain-specific application of semantic knowledge. This publication
channel should be of highest interest to researchers and advanced practitioners
working on the Semantic Web, interoperability, mobile information services, data
warehousing, knowledge representation and reasoning, conceptual database modeling,
ontologies, and artificial intelligence.

Topics of relevance to this journal include:
 Semantic interoperability, semantic mediators
 Ontologies
 Ontology, schema and data integration, reconciliation and alignment
 Multiple representations, alternative representations
 Knowledge representation and reasoning
 Conceptualization and representation
 Multi-model and multi-paradigm approaches
 Mappings, transformations, reverse engineering
 Metadata
 Conceptual data modeling
 Integrity description and handling
 Evolution and change
 Web semantics and semi-structured data
 Semantic caching

VI The LNCS Journal on Data Semantics

 Data warehousing and semantic data mining
 Spatial, temporal, multimedia and multimodal semantics
 Semantics in data visualization
 Semantic services for mobile users
 Supporting tools
 Applications of semantic-driven approaches

These topics are to be understood as specifically related to semantic issues.

Contributions submitted to the journal and dealing with semantics of data will be
considered even if they are not within the topics in the list.

While the physical appearance of the journal issues looks like the books from the
well-known Springer LNCS series, the mode of operation is that of a journal.
Contributions can be freely submitted by authors and are reviewed by the Editorial
Board. Contributions may also be invited, and nevertheless carefully reviewed, as in
the case for issues that contain extended versions of best papers from major
conferences addressing data semantics issues. Special issues, focusing on a specific
topic, are coordinated by guest editors once the proposal for a special issue is
accepted by the Editorial Board. Finally, it is also possible that a journal issue be
devoted to a single text.

The journal published its first volume in 2003 (LNCS 2800), its second volume at
the beginning of 2005 (LNCS 3360), and its third volume in summer 2005 (LNCS
3534). Volumes I and II, as this volume V, are special issues composed of selected
extended versions of best conference papers. Volume III is a special issue on
Semantic-based Geographical Information Systems, coordinated by guest editor
Esteban Zimányi. The fourth volume is the first “normal” volume, comprising
spontaneous submissions on any of the topics of interest to the journal. Currently
planned volumes include a special issue on Emergent Semantics.

The Editorial Board comprises one Editor-in-Chief (with overall responsibility)
and several members. The Editor-in-Chief has a 4-year mandate to run the journal.
Members of the board have a 3-year mandate. Mandates are renewable. More
members may be added to the board as appropriate.

We are happy to welcome you to our readership and authorship, and hope we will
share this privileged contact for a long time.

 Stefano Spaccapietra
 Editor-in-Chief

 http://lbdwww.epfl.ch/e/Springer/

JoDS Volume V – Guest Editorial

To foster the dissemination of the best ideas and results, the Journal on Data
Semantics (JoDS) pursues a policy that includes annually publishing extended
versions of the best papers from selected conferences whose scope encompasses or
intersects the scope of the journal.

This initiative is motivated by the difference in goals we have between conferences
and journals. Conferences usually have a faster turnaround and focused audience, but
they have to enforce space limitation and a fixed time frame, with no chances for
improving a paper by producing multiple versions. In contrast, journals offer more
space, room for debate and refinement, and are usually considered the real archival
venue.

Therefore, the publication of an extended version of a conference paper is a much
appreciated opportunity for researchers to widely disseminate a significantly
improved presentation of their work, where they can develop the appropriate
motivations, reasoning, results and comparative analysis.

This issue includes selections from three international conferences: ER 2004, the

23rd International Conference on Conceptual Modeling, which took place in
November 2004 in Shanghai, China, ODBASE 2004, the Third International
Conference on Ontologies, Databases, and Applications of Semantics, which took
place in October 2004 in Ayia Napa, Cyprus, and ICSNW 2004, the First
International Conference on Semantics of a Networked World, organized by IFIP WG
2.6 in Paris, France, June 2004.

Papers from these conferences were selected based on their quality, relevance and
significance, and the viability of extending their results. All extended papers were
subject to a scholarly review process, and the authors were required to respond to all
concerns expressed by the reviewers before papers were accepted.

Four papers, showing consistently high reviews from the Program Committee,

were selected among those presented at ER 2004.
When reusing ontologies, many superfluous concepts are often included in the

final conceptual schema. The first paper, entitled “A Method for Pruning Ontologies
in the Development of Conceptual Schemas of Information Systems” by Jordi Conesa
and Antoni Olivé presents a formal method of pruning ontologies to remove these
superfluous concepts automatically.

The second paper, “XSLTGen: A System for Automatically Generating XML
Transformation Via Semantic Mappings” by Stella Waworuntu and James Bailey,
presents a method to automatically generate XSLT transformations based on the
semantic mappings between input and output documents. Their experimental results
show that the XSLTGEN works well with varieties of XML and HTML documents.

 Based on the premise that semantically related data are highly likely to be changed
as a result of the effort by the same or even different information sources for
maintaining freshness and consistency, the third paper, “An Ontology-Guided
Approach to Change Detection of the Semantic Web Data” by Li Qin and

VIII JoDS Volume V – Guest Editorial

Vijayalakshmi Atluri presents an approach that explores the relationship among
concepts in guiding the change detection to their data instances for the Semantic Web.

The fourth paper, “Conceptual Modelling Patterns for Roles” by Jordi Cabot, and
Ruth Raventós, studies role semantics in conceptual modeling and proposes a pattern
based approach.

The selection from the ODBASE conference resulted in two extended papers being

accepted for JoDS.
Relationships among concepts, namely inclusion dependencies, are also analyzed

in the paper by Andreas Koeller and Elke A. Rundensteiner. The authors present
heuristics to scale hypergraph-based inclusion dependencies discovery algorithms.
Heuristics are based on the notion of inclusion dependencies between different
relations of a database (or different databases) that are discovered by hypergraph-
based algorithms, but that do not correspond to a real semantic relationship between
such relations.

The paper by de Souza et al. describes a complete solution for the alignment of
subdomain ontologies using an upper domain ontology that is built based on a
thesaurus of terms. Mappings from the concepts of the individual ontologies to sets of
thesaurus terms are established. A novel measure of similarity among concepts is also
introduced together with suitable visualization techniques.

Finally, two of the selected papers from the ICSNW conference were accepted

after rigorous review. The first one, by Bagüés et al., addresses “Semantic
Interoperation Among Data Systems at a Communication Level.” The authors
propose to achieve semantic interoperability in a framework of agent-based data
systems that exchange messages at a semantic level without requiring pre-established
communication patterns. An ontology of communication acts is a key resource for
this kind of interoperability. Semantic description of Web services and two case
studies are also discussed.

The second paper, “Matching Ontologies in Open Networked Systems: Techniques
and Applications,” by S. Castano, A. Ferrara, S. Montanelli, and G. Racca, describes
an algorithm and related techniques for performing matching of independent
ontologies in open networked systems. A key feature is the capability of dynamically
configuring the algorithm taking into account the complexity of the ontologies at
hand. Implementation and experimental results are also presented.

The Guest Editors

JoDS Volume V – Guest Editorial IX

ER 2004
Paolo Atzeni, Università Roma Tre, Italy
Wesley W. Chu, University of California Los Angeles, Los Angeles, USA

ODBASE 2004
Tiziana Catarci, Università di Roma “La Sapienza”, Italy
Katia P. Sycara, Carnegie Mellon University, USA

ICSNW 2004
Stefano Spaccapietra, EPFL, Switzerland

Paolo Atzeni and Wesley Chu would like to dedicate this issue to the memory of
Hongjun Lu, ER04 Program Co-chair, who passed away a few months after the
conference, to which he had dedicated a lot of effort, especially in coordinating the
overall program and the relationships between the Chinese and the international
research community.

X Reviewers

Reviewers

We are please to mention the reviewers who contributed their voluntary effort to the
timely completion of this volume:

Karl Aberer, EPFL, Switzerland
James Baley, University of Melbourne, Australia
Roberta Benassi, Università di Modena e Reggio Emilia, Italy
Athman Bouguettaya, Virginia Tech, USA
Diego Calvanese, Free University of Bozen-Bolzano, Italy
Jordi Conesa, Universtat Politènica Catalunya, Barcelona
Jerome Euzenat, INRIA, France
Csilla Farkas, University of South Carolina,USA
Enrico Franconi, Free University of Bozen-Bolzano, Italy
Antonio L. Furtado, Pontifícia Universidade Católica do Rio de Janeiro, Brazil
Jianming He, UCLA, USA
Lalana Kagal, MIT, USA
Hannu Kangassalo, University of Tampere, Finland
Andreas Koeller, Montclair State University, USA
Fabrice Jouanot, IMAG Grenoble, France
Domenico Lembo, Università di Roma “La Sapienza”, Italy
Diego Milano, Università di Roma “La Sapienza”, Italy
John Mylopoulos, University of Toronto, Canada
Antoni Olivé, Universitat Politècnica de Catalunya, Spain
Li Qin, Western New England College, USA
Sudha Ram, University of Arizona, USA
Pavel Shvaiko, University of Trento, Italy
Sergio Tessaris, Free University of Bozen-Bolzano, Italy
David Toman, University of Waterloo, Canada
Petko Valtchev, University of Montreal, Canada

 The Guest Editors

JoDS Editorial Board

Carlo Batini, Università di Milano Bicocca, Italy

Tiziana Catarci, Università di Roma La Sapienza, Italy

Lois Delcambre, Portland State University, USA

David W. Embley, Brigham Young University, USA

Jerome Euzenat, INRIA Alpes, France

Dieter Fensel, University of Innsbruck, Austria

Nicola Guarino, National Research Council, Italy

Jean-Luc Hainaut, FUNDP Namur, Belgium

Ian Horrocks, University of Manchester, UK

Larry Kerschberg, George Washington University, USA

Maurizio Lenzerini, Università di Roma La Sapienza, Italy

Tok Wang Ling, National University of Singapore, Singapore

Salvatore T. March, Vanderbilt University, USA

Robert Meersman, Vrije Universiteit Brussel (VUB), Belgium

John Mylopoulos, University of Toronto, Canada

Shamkant B. Navathe, Georgia Institute of Technology, USA

Antoni Olivé, Universitat Politècnica de Catalunya, Spain

José Palazzo M. de Oliveira, Universidade Federal do Rio Grande do Sul, Brazil

Christine Parent, Université de Lausanne, Switzerland

John Roddick, Flinders University, Australia

Klaus-Dieter Schewe, Massey University, New Zealand

Bernhard Thalheim, Brandenburg University of Technology, Germany

Yair Wand, University of British Columbia, Canada

Esteban Zimányi, Université Libre de Bruxelles (ULB), Brussels, Belgium

Table of Contents

Third International Conference on Semantics of a
Networked World (ICSNW 2004)

Semantic Interoperation Among Data Systems at a Communication
Level . 1
Miren I. Bagüés, Jesús Bermúdez, Arantza Illarramendi,
Alberto Tablado, and Alfredo Goñi

Matching Ontologies in Open Networked Systems: Techniques and
Applications . 25
Silvana Castano, Alfio Ferrara, and Stefano Montanelli

23rd International Conference on Conceptual
Modeling (ER2004)

A Method for Pruning Ontologies in the Development of Conceptual
Schemas of Information Systems . 64
Jordi Conesa and Antoni Olivé

XSLTGen: A System for Automatically Generating XML
Transformations Via Semantic Mappings . 91
Stella Waworuntu and James Bailey

An Ontology-Guided Approach to Change Detection of the Semantic
Web Data . 130
Li Qin and Vijayalakshmi Atluri

Conceptual Modelling Patterns for Roles . 158
Jordi Cabot and Ruth Raventós

First International Conference on Ontologies,
DataBases, and Applications of Semantics for
Large Scale Information Systems (ODBASE´04)

Heuristic Strategies for the Discovery of Inclusion Dependencies and
Other Patterns . 185
Andreas Koeller and Elke A. Rundensteiner

Aligning Ontologies, Evaluating Concept Similarities and Visualizing
Results . 211
Kleber Xavier Sampaio de Souza, Joseph Davis, and
Silvio Roberto de Medeiros Evangelista

Author Index . 237

Semantic Interoperation Among Data Systems

at a Communication Level

Miren I. Bagüés�, Jesús Bermúdez, Arantza Illarramendi, Alberto Tablado,
and Alfredo Goñi ��

University of the Basque Country, Donostia, Spain

Abstract. The traditional perception of isolated data systems is chang-
ing to a new one where the interest of a real and efficient interoperation
among those data systems is recognized. However, many problems must
be solved yet before a real interoperation becomes true. In order to over-
come the existing problems, there is a considerable number of proposals
that can be found in the specialized literature that promote the idea of
semantic interoperability.
A new framework to achieve semantic interoperability among agent based
data systems at a communication level is proposed in this paper. This
framework permits agents belonging to different data systems 1) to send
each other suitable messages without requiring the establishment of a
common communication pattern in advance; 2) to understand, com-
pletely or partially, those messages that are interchanged among them-
selves; and 3) to invoke web services offered by the data systems at a
high level without needing to go into technical details. An ontology that
captures the semantics of different communication acts is the key element
for supporting the functionalities provided by the framework. Further-
more, the framework has been extended to support semantic descriptions
of web services, which favor their automatic discovery. The usefulness of
the presented framework is evaluated using two case study of interopera-
tion among heterogeneous data systems; on one side through the agents
of those systems, and on the other side, through the combination of an
agent and a web service.

1 Introduction

The traditional perception of isolated data systems is changing to a new one
where the interest of a real and efficient interoperation among those data systems
is recognized. New advances in the areas of Internet and network communications
are favoring somehow this change. However, many problems must be solved
before a real interoperation becomes true. To that end, many proposals appear
� This work is supported by a grant of the Basque Government.

�� All authors are members of the Interoperable DataBases Group, online at
http://siul02.si.ehu.es. This work is mainly supported by the University of the
Basque Country, Diputación Foral de Gipuzkoa (cosupported by the European Social
Fund) and CICYT [TIN2004-07999-C02-00].

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 1–24, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 Miren I. Bagüés et al.

in the specialized literature aiming at overcoming those existing problems. A
great number of those proposals promote the idea of semantic interoperability.

Establishing semantic interoperability among heterogeneous and distributed
data systems has been, and still is, a critical issue attracting significant attention
from research and practical reality. That issue can be tackled from two main
perspectives. From one side, the focus is on the data sources and how to provide
a unified view of their underlying representational and reasoning formalisms
for a semantic mediation process (sometimes the notion of data integration is
used to refer to this perspective). Several proposals consider this perspective
and can be distinguished according to: first, the type of mappings among the
unified views and the schemas of the sources (Global as View versus Local as
View); and second, the languages used for modelling the views and the sources.
Among those proposals, we can mention [1, 2, 3, 4, 5, 6, 7]. From the other side,
the focus is on the communication aspects and how to achieve communication
at a semantic level in presence of different execution platforms when the data
systems agree on the semantics of the interchanged data. So far, this second
perspective has yielded less proposals (e.g. [8]). However, the relevance of the
semantic communication problem is also widely accepted and this matter goes
far beyond the use of xml for the interchange of data. The framework presented
in this paper considers the latter perspective.

Moreover, nowadays there is a tendency to use agents in data systems be-
cause agent technology is broadly recognized as an appropriate technology for
approaching problems which show a highly distributed nature and need flexible
and adaptable solutions [9]. In this paper we focus on these kinds of agent based
data systems.

There are two ways in which agent based data systems can interoperate
among themselves. One, through messages that are interchanged among the
agents of both systems, and two, using the web services that are provided by
each data system. In this paper we present a proposal that considers both cases.

Currently the communication among agents is, in general, based on the in-
terchange of messages. Agents must be aware in advance of the structure, lan-
guage and the meaning of the messages in order to deal with them. Although
this kind of communication is useful, it is also true that it is somehow limited
because it forces agents to share the same communication pattern. Therefore,
the interoperation of agents from different systems, independently developed, is
extremely unlikely in this scenario. Moreover, nowadays interoperation is uncon-
sidered when the agents follow different standards of communication languages.
The framework proposed in this paper is used as a basis for automating the
detection and resolution of conflicts that arise when dealing with messages in-
terchanged by agents of different systems.

Furthermore, concerning the use of web services, the most used approach is
to invoke them. In this case it is necessary to know in advance the number and
type of the parameters of the invocation and the service capabilities. In addition,
the Semantic Web Services framework is trying to soften those requirements.
Semantic Web Services [10], as a new paradigm, is generally defined as the

Semantic Interoperation Among Data Systems at a Communication Level 3

augmentation of Web Service descriptions through Semantic Web annotations
in order to facilitate the higher automation of service discovery, composition,
invocation, and monitoring in an open and unregulated environment that is the
Web. Several research activities in Semantic Web Services are emerging [11, 12,
13]. Our contribution in this paper with regard to web services concerns the
framework we propose for a semantic communication among agents, in the sense
that it can be easily adapted to support Semantic Web Services descriptions.
This issue can help in the process of discovering dynamically and on the fly web
services, and therefore facilitating the data systems interoperation using web
services.

Taking into account the aforementioned difficulties when communicating dif-
ferent data systems through agents or web services, and being aware of the
interest of the web services discovering process, we present in this paper a new
framework that promotes communications among different data systems at a
semantic level (the basics of this framework can be found in [14]) with the goal
of overcoming those difficulties. The proposed framework is mainly based on the
use of ontologies: a communication acts ontology, domain specific ontologies and
an actions/operations ontology.

We have dedicated a considerable effort to develop the communication acts
ontology (called CommOnt), so we present it more in detail. The desideratum
for the other ontologies is to use the ones developed by specialists in the corre-
sponding areas. We distinguish three categories in the CommOnt ontology: the
Actors category that represents those entities that send or receive messages; the
Communication Acts category that represents the messages which have different
purposes and deal with different kinds of contents; and the Contents category
that represents the kind of sentences included in the message. In the ontology
there are axioms which describe the interrelationships among these categories.
Moreover, for the sake of presentation we explain the Communication Acts cat-
egory divided into three layers. The upper layer of the ontology, which include
classes that describe general communication acts with the aim of being shared
by any communication framework. The standards layer of the ontology which is
devoted to general purpose communication languages, is specified as subclasses
of the upper layer classes. Furthermore in the communication acts category ap-
pear classes of messages that different standards such as, fipa-acl [15] and
kqml [16], have defined to use as communication acts (e.g. FIPA-Inform term
for fipa-acl and KQML-Tell term for kqml). Finally in the applications layer
all the classes described are directly related to a concrete data system that it is
considered. Therefore, the first two layers may be shared by all data systems.
Only the applications layer must be defined for each data system. Thus, for each
data system, the classes of messages that it is capable of dealing with must be
specified. If a data system can deal with a particular class M of messages then it
can also deal with any message of a subclass of M in the CommOnt ontology.
We claim that the whole communication acts ontology provides interoperability
support due to the recognition of communication acts from one language as in-
stances of communication acts in another language. Sometimes the “translation”

4 Miren I. Bagüés et al.

will not be complete, but partial comprehension of the communication may be
useful and preferable to the “not understood” answer given nowadays. Reason-
ing support provided by the chosen formalism (owl) [17] will help during the
interaction process.

Domain specific ontologies, that is to say, ontologies that contain terms
related to the domains considered by the data systems, are necessary in our
framework to establish the semantics of the vocabulary used in the interoper-
ation. Moreover, we advocate the importing of those ontologies that are built
by experts in each domain. Finally, an operations/actions ontology which con-
tains terms such as: getting, giving, transaction, etc. is used jointly with the
domain specific ontologies, among other things, to describe web services seman-
tically. Our proposal for web service descriptions follows a set-based modelling
approach supported by a description logic (owl-dl) formalism. This proposal
is compatible with those approaches proposed in [18, 19].

In summary, the specific contributions of the work presented in this paper
are:

– The design of one ontology, CommOnt, that contains terms associated to
communication acts. Those terms of the ontology are divided into three lay-
ers. The first layer contains terms valid in any communication framework.
The second layer contains terms related to the so called standard communi-
cations languages (e.g. fipa). Finally, the third layer contains terms related
to particular messages that handle the agents of each data system.

– The development of a framework for allowing interoperation among hetero-
geneous and distributed agent based systems, based on the CommOnt on-
tology. It is worth mentioning that this framework detects and resolves con-
flicts that appear in the communication process among agents using different
agent communication languages (following the same standard or following
different ones, fipa and kqml for example). Our framework provides agents
of the data systems with the following additional feature: Understanding. An
agent can understand, completely or partially the message sent by an agent
of another data system by following a reasoning process with the ontologies.

– Furthermore, the framework has been adapted to support on the fly, the
automatic discovering of web services offered by the data systems. Taking
the framework developed for the interoperation among agents of different
data systems as the starting point, we have adapted it to provide semantic
web service description and discovering capabilities.

The feasibility of our framework is demonstrated in two scenarios of data
systems interoperation. In the first case, one agent of the Aingeru system
(http://www.aingeru.com) interoperates with one agent of the HeCaSe system
(http://grusma.etse.urv.es/hecase/index.htm). In the second case, one agent of
the HeCaSe system deals with a web service provided by the Aingeru system.

In the rest of this paper we present first, in section 2, the main components
which constitute the proposed framework and the steps that are followed when
the communication among agents takes place. In section 3 we describe the main

Semantic Interoperation Among Data Systems at a Communication Level 5

features of the CommOnt ontology and we show how the other kinds of ontolo-
gies are used within our framework. In section 4 and 5, we respectively explain
two cases of study that illustrate the usefulness of the proposed approach when
agents of different systems communicate, and when agents and web services
communicate. The applicability of the framework to describe and to discover
dynamically web services are presented in section 6. Lastly, we finish with some
related works and conclusions in sections 7 and 8.

2 Framework Components for Communicating Agent
Based Data Systems

Following, we present a simple set theoretic model of the proposed framework
which provides an abstract understanding of the relationships among the com-
ponents, independently of implementation details.

In order to deal with our proposal, the following 7-tuple
Γ = (Ω, Δ, O, τ(E), τ(Λ), π, λ) of components should be incorporated at
each node where a data system runs.

Let C, P , I, V be the sets of ontology concepts, properties, instances and
literal values respectively. We call T to the set of owl triples in the cartesian
product (C ∪ I) × P × (C ∪ I ∪ V). Then,

– Ω ⊆ T is the CommOnt ontology where the classes of messages, contents
and actors are designed. CommOnt has three layers; the two first layers can
be imported from one repository and the application layer must be designed
by the data system administrator;

– Δ ⊆ T is a domain ontology where the terms for referring to objects and
properties of the application domain are specified. This ontology can be
profitably imported from shared repositories;

– O ⊆ T is an ontology describing suitable operations or actions to be per-
formed by agents. This ontology can also be imported.

Messages are communicative actions expressing the sender’s attitude toward
some possible complex proposition. Therefore, a message has two main com-
ponents. First, the attitude of the sender which expresses intentions such as
informing, requesting or promising, for example. And second, the propositional
content which is the subject of what the attitude is about.

Let M = E ∪ Λ be the vocabulary for writing messages; where E represents
the vocabulary subset for writing the “envelope” of messages and Λ represents
the vocabulary for the content language of messages. Then,

– τ(E) ⊆ E × (C ∪P) is an attribute mapping that relates attributes from the
envelope of messages with ontology terms;

– τ(Λ) ⊆ Λ × (C ∪ P) is an attribute mapping that relates content language
features with ontology terms.

A key point of our approach is that every message has an abstract representa-
tion as an individual of a shared universal class of messages. Such representation

6 Miren I. Bagüés et al.

is founded on owl [20] triples1. The Web Ontology Language owl is a W3C
recommendation that facilitates greater machine interpretability.

Let Φ ⊆ T ∩ (I × P × (C ∪ I ∪ V)) be the collection of owl triples which
express statements about instances; and let M∗ and Λ∗ be the sentences for
messages and contents, respectively. Then,

– π: M∗ τ(E),Ω−→ Φ×Λ∗ is a platform mapping that decompose messages into a
collection of triples and in one content language expression.

– λ: Λ∗ τ(Λ),Ω,Δ,O−→ Φ is a content language mapping that applies content lan-
guage expressions on the corresponding collection of triples;

Following we describe the steps followed during a communication process
among agents from different data systems. There is a particular agent, called
CommOnt Manager (CM) in charge of coordinating the process of dealing with
the ontologies (Ω, Δ, O), and it plays the role of intermediary among agents from
different data systems. There will be a CommOnt Manager associated within
each data system. One main reason to include this CommOnt Manager agent
in the framework is that only one agent needs to be a specialist in the process
of dealing with the ontologies. However, this agent could be eliminated and the
proposed framework would also be valid in order to allow direct communication
among agents of different data systems (in this case each agent should deal with
the ontologies). Let us suppose two systems Σ and Θ, and an agent AΣ from
the first system sending a message to an agent AΘ from the second system. The
process consists of the following steps (see figure 1):

Fig. 1. Architecture of the proposal.

1 More precisely, they are rdf [21] triples. But, since owl is an extension of rdf, we
highlight them as owl triples.

Semantic Interoperation Among Data Systems at a Communication Level 7

1. The agent AΣ creates the appropriate message μΣ in the format used in the
Σ system. Also creates and sends an εΣ message requiring the CMΣ agent
to send the μΣ message.

2. The CMΣ agent transforms the message μΣ into an equivalent collection of
triples using πΣ(μΣ) = (μφ, μκ) and λΣ(μκ).

3. The CMΣ agent sends the collection of triples to the CMΘ agent.
4. The CMΘ agent, with the help of ontology reasoners derives more triples and

calculates the most specific class of the μΣ message within the CommOnt
ontology. Let us call it msc(μΣ).

5. If CMΘ recognizes msc(μΣ) as an understandable message class for AΘ,
then it constructs a μΘ message out of the enriched collection of triples
using2 π−1

Θ and λ−1
Θ . A complete understanding is achieved in this case if the

systems Σ and Θ share the domain and operation ontologies Δ and O.
6. In case of CMΘ does not recognize msc(μΣ) as an understandable class

for AΘ, it sends a message to CMΣ advertising which are the subclasses of
msc(μΣ) that AΘ is able to deal with. In this case, for the moment, only a
partial understanding is achieved. However, CMΣ can search in CommOnt
for ontological relationships among those subclasses of msc(μΣ) and classes
of messages that AΣ understands. Then CMΣ has the opportunity to inform
AΣ of the capabilities of AΘ just in terms of Σ messages. In the best case,
AΣ is able to reconstruct its original μΣ message (or something similar) and
renew the communication process.

3 Ontologies

As already mentioned, three different kinds of ontologies take part in the frame-
work. Our main contribution is concerned with one of them; namely, the com-
munication acts ontology called CommOnt. Therefore in this section we will
explain it more in detail.

3.1 The CommOnt Ontology

Every ontology is designed with a specific purpose. The goal of our ontology
is to achieve the interoperability of agent based systems (a more complete pre-
sentation of this CommOnt ontology that includes semantic issues related to
the ontology terms can be found in [22]). For the sake of clarity the CommOnt
ontology is divided into three interrelated layers: Upper layer, Standards layer
and Applications layer.

Upper Layer Currently the communication among agents is, in general, based
on the interchange of messages. The term CommunicationAct3 represents the
universal class of messages. Every concrete message is an individual of this class.
2 π−1

Θ and λ−1
Θ are the inverse mappings of πΘ and λΘ, respectively.

3 We will use this type style to refer to terms specified in the ontology.

8 Miren I. Bagüés et al.

Moreover, we want to point out some parameters of messages that in this setting
are represented by properties. The most immediate are the propositional content
and the actors who send and receive the message.

Let us specify the class CommunicationAct using an abstract syntax in the
following manner:

CommunicationAct� ∀has-sender.Actor � =1.has-sender�
∀has-receiver.Actor �
∀has-content.Content

For the presentation we prefer this logic notation4 instead of the more verbose
owl/xml notation. The sentence means that has-sender, has-receiver and
has-content are properties that may be applied to communication acts. Every
sender and receiver of an instance of the CommunicationAct class must be an
individual of the class Actor and there is exactly one value filling the property
has-sender for each instance of CommunicationAct. Moreover, every content
must be an individual of the class Content.

The term Content in this upper layer represents the class of all possible con-
tents of messages. So far, we have considered three direct subclasses of Content.
First, propositions that can be viewed as statements and which are individuals
of the class Proposition. Second, actions that agents are able to perform and
which are individuals of the class Action. And third, referential expressions de-
scribing values from some domain which satisfies certain constraints and that
we represent as individuals of the class RefExpression.

In the context of CommOnt, by Actor we refer to those entities sending or
receiving messages. We have divided the category of actors into three subclasses:
WebService, Agent and Human. Those subclasses respectively represent the uni-
versal class for the web services defined in the system, the class of agents that
take part in the system and the human users that are going to interact with the
system.

Furthermore, we have designed different specializations of the Communica-
tionAct class, taking into account the different primitive attitudes considered
in the speech acts theory [24]. That theory has been developed in the linguis-
tic area and such attitudes are called illocutionary acts. Among the different
classifications of illocutionary acts that have appeared in the specialized linguis-
tic literature, we have opted for the classification presented by K. Bach and R.
M. Harnish in [25] because we found it more amenable to a formalization of
the semantics in our context. In their proposal, Bach and Harnish divide illocu-
tionary acts into six general categories. The communicative illocutionary acts:
constatives, directives, commissives and acknowledgements ; the conventional il-
locutionary acts: effectives and verdictives. For example, Directive is the class
of those communication acts (representing directives) that expresses the sender’s
attitude towards getting the receiver to do something and his intention that his
attitude be taken as a reason for the receiver’s action. That is to say, the sender

4 This notation is common in the description logics field. See [23] for a full explanation.

Semantic Interoperation Among Data Systems at a Communication Level 9

desires that the receiver do something influenced by the sender’s desire. For ex-
ample, “Get the values of the monitored vital signs”. Moreover, some constraints
are required for communication acts in those classes. For example, the content
of every instance of the Directive class must be an action.

Directive � CommunicationAct� ∃has-content.Action
Constative � CommunicationAct� ∃has-content.Proposition

It is also reasonable to design particularizations of these classes. Keep in mind
that software agents in our context are not prepared to interpret arbitrary
communication acts (as is the case in natural language communication). They
only recognize messages on the basis of the values of their properties. For in-
stance, different classes of contents must be applied to some directives (from
the class Directive) depending on their intention. A directive asking for in-
formation (Inquiry) should contain an action for reporting (ReportAct) about
a referential expression (RefExpression) representing a query or a proposition
(Proposition) to be checked as true or false. However a directive ordering the
performance of another kind of action (Request) should contain a command
(Command). More specialized classes should be included if necessary, and notice
that disjointness of classes is not assumed unless stated explicitly or logically
deduced from statements.

Inquiry � Directive� ∃has-content.ReportAct
Request � Directive� ∃has-content.Command

Responsive � Constative� ∃in-reply-to.Inquiry

Finally, we cannot forget that any singular data system may use specific
classes of messages, which will be particularizations of those upper classes with
their specialized interpretations. Then, interoperation among agents of two sys-
tems using different kinds of messages will proceed through this upper classes of
messages, functioning as a by default semantics of any message.

Standards Layer A standards layer extends the upper layer of the ontology
with specific terms that represent classes of messages of general purpose agent
communication languages, like those from kqml or fipa-acl.

Concentrating on fipa-acl we can observe that it proposes four primitive
communicative acts [15]: Confirm, Disconfirm, Inform and Request. Analysis
carried out on the fipa primitive communicative acts permit us to specify In-
form and Disconfirm as two different subclasses of the CommOnt Constative,
and Request as a subclass of the CommOnt Directive, and the Confirm com-
municative act as a particular subclass of Inform message (which is a subclass
of Constative). Then, we choose the term FIPA-Confirm to represent in Com-
mOnt the class of every fipa Confirm communicative act, and respectively the
terms FIPA-Disconfirm, FIPA-Inform and FIPA-Request.

10 Miren I. Bagüés et al.

FIPA-Confirm � Inform

FIPA-Disconfirm� Constative

FIPA-Inform � Constative

FIPA-Request � Directive

Furthermore, the rest of the fipa communicative acts are derived from those
primitive four, and so a classification of terms representing them in CommOnt
can be established. For example, the communicative act Query-if is the act
of asking another agent whether (it believes that) a given proposition is true.
The sending agent is requesting the receiver to Inform it of the truthness of
the proposition. The formal definition of the Query-if communicative act [15]
specifies it as a Request of an action of the kind Inform-if. The agent which
enacts an Inform-if will actually perform a standard Inform of whether or not
a proposition is true. Then, we can specify them in CommOnt as follows:

FIPA-Query-If≡ Inquiry� FIPA-Request�
=1.has-content.FIPA-Inform-If

FIPA-Inform-If≡ ReportAct�
∃has-content−1.FIPA-Request�
∀has-query.Proposition

Analogously, communication acts from kqml are analyzed and the corre-
sponding terms in CommOnt are specified. For example,

KQML-Tell � Constative

KQML-Ask-If� Inquiry�
∀has-content.(∀has-query.Proposition)

It is of vital relevance for the interoperability aim to be able to specify on-
tological relationships among classes of different standards. For instance, when
a fipa agent wants to request another agent to achieve one goal G, the agent
will send a message of class FIPA-Request, with a content expression referring
to an action achieve (from an ontology of actions) and with the goal G as a
parameter. Instead, a kqml agent trying to communicate the same thing will
send a message of class KQML-Achieve with the goal G in the content expression.
Fortunately, that relationship among fipa and kqml communications acts can
be expressed in the CommOnt ontology by the following axiom:

KQML-Achieve ≡ FIPA-Request� ∃has-content.Achieve

This is a simple example but shows the flexibility of the proposed framework.

Applications Layer It is often the case that every single agent based data sys-
tem uses a limited collection of communication acts that constitute its particular
agent communication language. The CommOnt ontology provides a framework

Semantic Interoperation Among Data Systems at a Communication Level 11

for the description of the nuances of such communication acts. Some of those
communication acts can be defined as particularizations of existing terms in
the standards layer and maybe some others as particularizations of upper layer
terms. Nevertheless their specification in terms of the CommOnt ontology will
favor the interoperability among agent based data systems.

We are going to present terms for this layer using the concrete system Ain-
geru5: an agent based data system for a new way of tele-assistance for elderly
people [26]. The Aingeru system, apart from supporting the functionalities pro-
vided by current tele-assistance services, also offers: an active assistance by using
agents that behave in the face of anomalous situations without a direct inter-
vention of the user; an anywhere and at any time assistance by using wireless
communications and PDAs (Personal Digital Assistant); and the monitoring of
personal vital signs by using sensors that capture the values of those signs and
feed a decision support system that analyzes them and generates an alarm when
necessary.

After completing the requirements analysis of the system, three major groups
of messages were identified. One group includes the messages demanding the re-
ceiver to perform an action. Another group includes the messages asking the
receiver for some information. And a third group, includes the messages sending
results in reply to some request. Consequently, the classes of messages in each
group were defined as subclasses of Request, Inquiry and Responsive respec-
tively. Those were previously defined at the upper layer of the ontology. The
distinctive features of Aingeru messages appear as constraints in their content.

Furthermore, when explaining the upper layer, we have mentioned the class
Content and its subclasses Proposition, RefExpression and Action (see figure
2(b) for specializations of the subclass Action). An important property that
applies to instances of the class Content within the CommOnt ontology, is
has-subject. It relates contents to instances in classes of domain ontologies (e.g.
Sanitary, Traveling, E-commerce). In CommOnt, there exists the class Subject
that represents the top level superclass of any class in a domain ontology (see
figure 2(a)). The following axiom expresses that the class Content is the domain
of the property has-subject and the class Subject is its range.

has-subject � Content× Subject

Taking into account the former considerations, now we are prepared to grasp
the nature of term definitions that correspond to some messages of the Ain-
geru system. For example, an A-MedicineModify6 message is used to request a
change in the medicines prescription: Thus, a particular kind of action (from
the class Overwrite in this case) must fill the content of the message. An
A-LocationQuery message asks for the coordinates of the physical location of a
user, and an A-VitalSignInform message replies to a request of the values of
the vital signs of a person. Moreover, all of them have only one content.
5 Aingeru is the word in the Basque language for expressing the notion of a guardian

angel.
6 The A- prefix intends to label the Aingeru messages.

12 Miren I. Bagüés et al.

Fig. 2. Sample diagram of the Domain and Action ontologies.

A-MedicineModify ≡ Request � =1.has-content �
∀has-content.(Overwrite � ∃has-subject.Medicine)

A-LocationQuery ≡ Inquiry � =1.has-content �
∀has-content.(

∀has-query.(RefExpression � ∃has-subject.Location))

A-VitalSignInform ≡ Responsive � =1.has-content �
∀has-content.(Proposition � ∃has-subject.VitalSignData)

This kind of representation describes necessary and sufficient features of the
structure of messages. Finally, in figure 3 we show a diagram for classes in the
CommOnt ontology. Notice that in the figure appear also some specializations
of the class Actor for the AINGERU system.

3.2 Domain Specific Ontologies and Actions Ontology

Ontologies include computer-usable definitions of basic concepts in the domain
and the relationships among them. Consequently, they make that knowledge
reusable [27]. Ontologies are used by people, data systems, and applications
that need to share domain information (a domain is just a specific subject area
or area of knowledge, like medicine, imagery, automobile repair, etc.). Our desire
is not to describe in this paper the features of domain ontologies that are a result
of consensus of domain experts. Here we are only going to show how they are
used in our framework. In figure 2(a) we show a small part of a domain ontology.
In that ontology we can see terms such as: VitalSign, MedicalAppointment.

Moreover an action ontology that contains terms that describe differ-
ent actions and operations is also included in our framework. In figure 2(b)

Semantic Interoperation Among Data Systems at a Communication Level 13

Fig. 3. Diagram of a fragment of CommOnt.

we show a small part of an action ontology (it corresponds to a subset
of the Suggested Upper Merged Ontology (sumo) that can be found in
http://ontology.teknowledge.com/). In that ontology we can see terms such as:
Writing, Reading.

Terms from both ontologies will be used to describe semantically web services,
and also will be use by the agents of the data systems when they need to build
messages.

For example, if an agent would want to obtain the medicines that someone is
taking, then it would send a message that would include in its content “the action
of reading medicines”. That is, it would use the term MedicineReading that is
composed of the term Reading from the Action ontology and the term Medicine
from the Domain ontology to express its desire (see the following axiom).

MedicineReading≡ Reading� ∃has-subject.Medicine

In the same way the terms MedicalAppointmentWriting and Appoint-
mentWriting would express the action of writing a medical appointment or
writing an appointment respectively (see the axioms).

MedicalAppointmentWriting ≡ Writing � ∃has-subject.MedicalAppointment

AppointmentWriting ≡ Writing � ∃has-subject.Appointment

4 Case Study: Communications Among Agents Through
Messages

In this scenario, an HeCaSe agent asks for information about a user of the
Aingeru system (we assume here that it has the adequate permissions to ask
for such information). HeCaSe is a system that uses fipa-acl for agent com-
munication; it is associated to the Agentcities7 project and it is an agent-based
7 http://www.agentcities.org/

14 Miren I. Bagüés et al.

application that provides medical services. Specifically, the HeCaSe agent wants
to know conditions of the patient identified by 39900002 and therefore it requests
the CommOnt Manager to send the message in figure 4(a).

Fig. 4. (a) HeCaSe message. (b) Aingeru message

The CommOnt Manager associated to the HeCaSe system receives the mes-
sage and submit it to a module in charge of doing a syntactic analysis helped
by axioms in the CommOnt ontology. That module transforms it into a col-
lection of triples. Individual objects are created when necessary and they are
given unique identifiers. For example m1 represents the message to be sent to
the Aingeru system. Then the header QUERY-REF permits the generation of
the triple m1 <type> FIPA-Query-Ref. Due to the axiom FIPA-Query-Ref≡
Inquiry � FIPA-Request � =1.has-content.FIPA-Inform-Ref, the sentence
following the tag :content is recognized as a FIPA-Inform-Ref, yielding
the triples m1 <has-content> m1C and m1C <type> FIPA-Inform-Ref. Next,
the axiom FIPA-Inform-Ref≡ ReportAct � ∃ has-content−1.FIPA-Request
� ∀ has-query.RefExpression helps in the generation of triples like m1C
<has-query> m1CQ, m1CQ <type> RefExpresion, and so on. A detailed descrip-
tion of how the parser module works goes out of the scope of this paper.

Following we summarize some of the corresponding triples:
m1 <type> FIPA-Query-Ref
m1 <has-content> m1C
m1C <type> FIPA-Inform-Ref
m1C <has-query> m1CQ
m1CQ <type> RefExpresion
m1CQ <has-subject> m1CQS
m1CQS <type> PatientDescription
m1CQS <patient-conditions> PC
PC <id-medical> 39900002

Semantic Interoperation Among Data Systems at a Communication Level 15

Then, the CommOnt Manager of the HeCaSe system sends the collection of
triples to the CommOnt Manager of the Aingeru system. When the Aingeru
CommOnt Manager receives the collection, it asserts the triples in the local
facts box of the reasoning system and asks the reasoner to proceed. Due to the
presence of the following axioms in the Aingeru fragment of the CommOnt
ontology:

FIPA-Query-Ref ≡ Inquiry � FIPA-Request �
=1.has-content.FIPA-Inform-Ref

FIPA-Inform-Ref ≡ ReportAct �
∃has-content−1.FIPA-Request�
∀has-query.RefExpression

A-PatientDescriptionQuery ≡ Inquiry � =1.has-content � ∀has-content.(
∀has-query.(RefExpression � ∃has-subject.PatientDescription))

the reasoner will derive the following triples:

m1 <type> Inquiry
m1 <type> =1.has-content.FIPA-Inform-Ref
m1C <type> FIPA-Inform-Ref
m1C <type> ∀has-query.RefExpression
m1 <type> A-PatientDescriptionQuery

We want to stress here that axioms stated with the ≡ symbol express neces-
sary constraints and sufficient conditions for the individuals in the named class
to the left of the equivalence symbol (i.e. C ≡ D means that C � D and D � C).
Notice that it is also possible to take advantage of the formalism to state axioms
that only specify minimal sufficient conditions to recognize that an individual
belongs to a certain class. Using the expressiveness power of the owl formalism
and the supported reasoning capability, it is possible to discover the most spe-
cific class of a message and therefore helping agents to recognize certain messages
that were not explicitly created as one of its owner classes.

Now, the message m1 has been recognized as an instance of an Aingeru
message class. In order for m1 to be completely understood by an Aingeru
agent, the domain ontology used for terms in the m1 subject must be a shared
domain ontology by the HeCaSe and the Aingeru agents.

Then, the CommOnt Manager of the Aingeru system can create the message
shown in figure 4(b), which the MajordomoAgent of the Aingeru system will
understand completely.

5 Case Study: Communications Among Agents and Web
Services

In this scenario we want to show how our framework can be also used when
agents and web services communicate.

Let us suppose that an agent of the HeCaSe system wants to use the
A-MedicalAppointmentQueryWS web service of the Aingeru system in order

16 Miren I. Bagüés et al.

Fig. 5. HECASE message.

to know which are the medical appointments that the patient identified by
39900002 has on March 30th of 2005. We are assuming here that the agent
of the HeCaSe system knows that this concrete web service exists because it
has previously made a discovering process. The agent will request the CommOnt
Manager of the HeCaSe system to send the message shown in figure 5 (it knows
how to send messages but it does not know how to invoke web services). The
CommOnt Manager of the HeCaSe system will transform the message into a
collection of triples:

m2 <type> FIPA-Query-Ref
m2 <has-sender> Personal@grusma.agentcities.net
m2 <has-receiver> A-MedicalAppointmentQueryWS
m2 <has-content> m2C
m2C <has-query> m2CQ
m2CQ <type> RefExpresion
m2CQ <has-subject> m2CQS
m2CQS <type> VisitDescription
m2CQS <visit-conditions> VC
VC <id-medical> 39900002
VC <visit-date> 2005/3/30

Then, the CommOnt Manager of the HeCaSe system will send the collection
of triples to the CommOnt Manager of the Aingeru system. Once the CommOnt
Manager of the Aingeru system receives the triples, it will try to construct the
corresponding invocation of the web service.

Due to the triple m2 <has-receiver> A-MedicalAppointmentQueryWS the
CommOnt Manager of the Aingeru system will recognize the web service
to be invoked and it will retrieve its interface description. Then, applying
the platform mapping (π−1) and the content language mapping (λ−1)(see sec-
tion 2) to the collection of triples, particularly to m2CQS <visit-conditions>
VC, VC <id-medical> 39900002 and VC <visit-date> 2005/3/30, the Com-
mOnt Manager is able to construct the service invocation shown in figure 6.

Semantic Interoperation Among Data Systems at a Communication Level 17

Fig. 6. Web Service invocation

Notice that the property id-medical is in correspondance to the attribute
patient-id and the property visit-date is in correspondance with the at-
tribute appointment-date. Furthermore, the date March 30th of 2005 has been
properly transformed into the codified expression 1112281811153, as required by
the web service interface.

At this point we want to mention an opinion that appears in [28] “Web
Services might evolve into software agents” with which our proposed framework
fits well.

6 Discovering Web Services

In the area of Web Services, the industry has strongly embraced the use of soap
(Simple Object Access Protocol) [29] and wsdl (Web Services Description Lan-
guage) [30]. Both are simple open standards with plenty of available tools, most
of which are useful for other purposes and are becoming de facto standards in
themselves. Moreover, uddi (Universal Description, Discovery and Integration)
[31] is used to discover Web Services. However, uddi does not provide service
descriptions and the automated search supported is severely restricted. uddi
fails in the semantic description of services necessary for automated search.

owl-s [32] provides a solution to the problem of providing semantics for
distributed search of Web services. However, it has one weakness: it currently
only allows service providers to specify pre and postconditions.

In this scenario we propose, as other approaches do (e.g. ubl[33], [34]), to use
an ontology of shared terms in order to provide semantics for service operations.

If we add to our framework an ontology for describing Web Services (see
figure 7), we can observe that the proposed framework can be used to discover
dynamically and on the fly, the web services.

Let us explain this feature in more detail. Assuming that there exists a stan-
dard WS Ontology, its terms will constitute the upper layer specialization of the
class WebService represented in figure 3. Then the WS Ontology administrator
of each data system should describe the offered web services as subclasses of
those defined at the upper layer. Moreover, terms from the domain ontology and

18 Miren I. Bagüés et al.

Fig. 7. Architecture of the proposal.

terms of the actions ontology will be used to describe the operations that are
performed by the Web Services.

In the case of the Aingeru system, among others, it offers the web service
called A-MedicineConsultWS. This web service informs about the medicines that
a user of the Aingeru system has to take. Let us suppose that in the standard
web services ontology exists a class that describes a general web service called
ConsultWS, and that the class MedicineReading from the Action ontology is de-
scribed as previously: MedicineReading ≡ Reading �∃ has-subject.Medicine

The Web Service A-MedicineConsultWS offered by Aingeru will be de-
scribed as:

A-MedicineConsultWS≡ ConsultWS� =1.has-capability�
∀has-capability.MedicineReading

In this framework we also add a Discovering Manager, which is in charge of
dealing with Web Services. Moreover, in order to have a full description of the
web services of the system, we have included an owl-s repository. Each web
service is described in the owl-s description document, and its Service Profile
part is augmented with a new property called has-description which points
to the class of the WS Ontology that describes semantically that web service.

Now, we are going to show the use of this framework for discovering Web Ser-
vices with an example. When an external agent, for example one of the HeCaSe
system, wants to find an Aingeru Web Service which informs him about “the
medicines that a user of the Aingeru system has to take”, it would ask the
Discovering Manager of the HeCaSe system to find a ConsultWS whose service
is Reading related to Medicine. The Discovering Manager of the HeCaSe will
construct an instance sw1 with the minimal properties required by the agent.
Then it will send this collection of triples to the Discovering Manager of the
Aingeru system.

Semantic Interoperation Among Data Systems at a Communication Level 19

sw1 <type> ConsultWS
sw1 <has-capability> sw1C
sw1C <type> Reading
sw1C <has-subject> sw1CS
sw1CS <type> Medicine

When the Discovering Manager of Aingeru receives that collection it as-
serts the triples in the local facts box of the reasoning system and asks the
reasoner to find all the classes to which sw1 belongs to. Then, the Discovering
Manager of Aingeru will reply to the Discovering Manager of HeCaSe with
the classes found (there can be more than one web service that fulfill the needed
functionality). Particularly the A-MedicineConsultWS class will appear in the
answer. Once the agent of the HeCaSe system knows the web services that can
fulfill its requirements, it selects one and it can use our framework to invoke that
web service or the traditional web services techniques in order to discover the
parameters and the structure of invocation.

7 Related Works

To achieve semantic interoperability among data systems is a critical issue for
enterprises, organizations, etc. and can yield large profits for them. As we have
mentioned in the introduction, that issue can be tackled from two different per-
spectives.

From one perspective, the focus is on the data sources, that is, how to provide
a unified view of their underlying representational and reasoning formalisms for a
semantic mediation process. In that optic, research in semantic interoperability
can be categorized into three broad areas [1]: mapping-based approach (con-
structing a federated schema and establishing mappings between that schema
and the participating local schemas, e.g. [35]); intermediary-based approach (use
of mediator mechanisms to achieve interoperability, e.g. [2]); and, query-oriented
approach (based on interoperable languages, e.g. [36]). Moreover, the work pre-
sented in [1] tries to take advantage of the works in many different areas, and
overcoming at the same time their limitations.

From the other perspective, the focus is on the communication aspects, that
is, how to achieve a communication at a semantic level in presence of different
execution platforms. The work presented in this paper goes in this direction.
Although less research works can be found in the specific literature that follows
this perspective, different initiatives related to it are worth mentioning in order
to frame our contribution. We group the related works into two groups. In the
first, we include those related to agent communication aspects and in the second,
those related to web services description.

Among the works of the first group, we start with the sumo ontology (Sug-
gested Upper Merged Ontology) that arises with the idea of promoting data
interoperability, information search and retrieval, automated inferring and nat-
ural language processing. That ontology includes, among others, terms related
to the communication acts. Those terms can be compared with the terms defined

20 Miren I. Bagüés et al.

in the upper layer of our CommOnt ontology; however, CommOnt contains a
more exhaustive description of terms concerning communication acts and fur-
thermore, a framework explaining how to deal with them is also provided in our
case.

Continuing with the first group, our work is complementary to the develop-
ment of standards for agent communication languages like kqml or fipa-acl
(well summarized in [37]). These standards look for general homogeneity through
compliance with the standard.

The closest work to ours, from the first group, is the approach defined in [8]
that describes a Formal Language for Business Communications (flbc) based
on speech acts theory. That paper promotes a classification of messages that
is further discussed in [38], and proposes a formal model of the message in-
terpretation process that defines a standard way for systems to process them.
Moreover, the same author presents in [39] a translation of kqml performatives
to flbc messages. However, our foundation on a formal extensible ontology and
the use of an owl representation distinguishes our approach clearly, and tackle
more satisfactorily with some technical problems. flbc messages are pure xml
documents and therefore inherent difficulties emerge.

Finally in this first group we include, mechanisms that translate communi-
cations from one multiagent system to another. For instance, [40] describes an
InterOperator that implements a connection between the retsina system (a
kqml based system) and the oaa system. In our opinion the great effort needed
to implement the mechanism for each concrete interoperation undermines the
scalability of the approach. Moreover, the Open Agent Architecture (oaa) [41]
is a framework for constructing multiagent systems and their designers intend
to minimize the effort involved in wrapping legacy applications. Agent commu-
nications are represented as events. Each event has a type, a set of parameters,
and a content. The allowable content and parameters vary according to the type
of the event. Altogether they specify a class of messages in a similar way as
descriptions promoted for the applications level in CommOnt.

Concerning the works of the second group, that is those related with web
services description we can mention from one perspective the effort that is being
dedicated to develop an ontological basis for e-business standards (ubl [33]),
they are building the ontology from the sumo Upper Ontology. In a similar
way, in the obelix project [34] they have developed a generic component-based
ontology for real-world services. That obelix service ontology is a formalization
of concepts that represent the consensus in the business science literature on
service management and marketing. Both works are complementary to ours and
could be incorporated in our framework as a collection of upper level terms of
the WS Ontology. From another perspective, we can mention the papers [42, 19]
that propose to enhance the daml-s (predecesor of owl-s) description of web
services and examine different degrees of matching between a service request
and service advertisements, that could be incorporated in our framework. Both
papers adopt, as we do, the set-based modelling approach. A more in depth
analysis of web service discovery is being carried out within the wsmo project

Semantic Interoperation Among Data Systems at a Communication Level 21

[18]. In that project, in addition to the points considered by the previously
mentioned works, they deal with richer descriptions that seem to be necessary
for certain applications.

We want to finish this section noticing one relationship that we have found
between the two mentioned perspectives tackling the semantic interoperability
issue in the introduction. In [1] the authors of the cream system, that consider
the data integration perspective, define 12 different message types for a semantic
mediator communication protocol, namely ask-all, ask-if, deliver, detect,
generate, locate, reconcile, reply-all, reply-if, report, resolve-if
and tell. The protocol contains message types for encapsulating all basic com-
munication events they might need. Those message types could be incorporated
into our framework (that considers the semantic communication perspective)
and so external agents that would ignore that concrete protocol and were inter-
ested in contacting the cream system, could interact with it using our proposed
framework instead of the querying interface offered by cream.

8 Conclusions

Information technology has evolved from a focus on local data systems to more
global interaction and integration within enterprises and communities. However,
currently the interoperation among heterogeneous data systems is very restricted
and there is a long way to go until a real and efficient interoperation is reached.

Two ways are being considered to obtain an actual global interaction: data
integration and semantic communication. In the first case, the focus is on the
data sources; how to provide a unified view of their underlying representational
and reasoning formalisms for a semantic mediation process. In the second case,
the focus is on the communication aspects; in other words, how to achieve com-
munication at a semantic level in presence of different execution platforms when
the data systems agree on the semantics of the data they interchange. Never-
theless, in both cases the need for explicit, machine-interpretable semantics is
recognized and ontologies play the role of providing semantic explicitness that
data systems need to interoperate with shared semantics and increasing semantic
precision.

In this paper we have presented a framework based on the use of ontologies
that favors the interoperation among heterogeneous data systems when commu-
nicating through agents or web services.

The main features of the proposed framework are summarized in the follow-
ing:

– It promotes an explicit description of the communication acts that constitute
the particular agent communication language of each system. This issue al-
lows the sharing of knowledge related to the communication acts supported
by the agents of each system and, in doing so, favors the interoperation
among different data systems.

– It permits the communication among agents of different data systems that
use different agent communication languages following the same standard

22 Miren I. Bagüés et al.

or a different one. Sometimes the understanding will not be complete but it
may be preferable to the not understood answer given nowadays.

– It facilitates for agents the task of invoking web services, therefore handling
technical details associated with that task. The framework also favors the
evolution of web services into software agents.

– It is easily adapted to support semantic descriptions of the web services
provided by the data systems. This issue favors the automatic discovering of
those web services.

The future work is oriented in two directions. In one side on the implemen-
tation of related aspects. The idea is to incorporate to the existing prototype a
friendly interface and to build a web site where the different modules involved
in the framework will be arranged in order to be downloaded. On the other side,
on extending the framework in order to deal with conversations (i.e. well-suited
sequences of messages) among agents.

References

[1] Park, J., Ram, S.: Information systems interoperability: what lies benath? ACM
Transactions on Information Systems 22 (2004) 595–632

[2] Goble, C.A., Stevens, R., Ng, G., Bechhofer, S., Paton, N.W., P. G. Baker, M.P.,
Brass, A.: Transparent access to multiple bioinformatics information sources. IBM
Systems Journal 40 (2001) 532–551

[3] Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.: OBSERVER: An approach for
query processing in global information systems based on interoperation across pre-
existing ontologies. International journal on Distributed And Parallel Databases
(DAPD) 8 (2000) 223–272

[4] Arens, Y., Knoblock, C.A.: Intelligent caching: Selecting, representing and reusing
data in an information server. In: Proceedings of the Third International Confer-
ence on Information and Knowledge Management CIKM. (1994)

[5] Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J.,
Widom, J.: Integrating and accessing heterogeneous information sources in TSIM-
MIS. In: Proceedings of the AAAI Symposium on Information Gathering. (1995)
61–64

[6] Carey, M., et. al.: Towards heterogeneous multimedia information systems: The
garlic approach. In: Proceedings of the 5th International Workshop on Research
Issues in Data Engineering- Distributed Object Management (RIDE-DOM 1995).
(1995) 124–131

[7] Ziegler, P., Dittrich, K.R.: User-specific semantic integration of heterogeneous
data: The SIRUP approach. In: International Conference on Semantics of the
Networked World: Semantics for Grid Databases (ICSNW 2004). LNCS 3226.
(2004) 44–64

[8] Moore, S.A.: A Foundation for Flexible Automated Electronic Communication.
Information Systems Research 12 (2001) 34–62

[9] Jennings, N.R.: An agent-based approach for building complex software systems.
Commun. ACM 44 (2001) 35–41

[10] Payne, T., Lassila, O.: Semantic web services. IEEE Intelligent Systems 19 (2004)
14–15

Semantic Interoperation Among Data Systems at a Communication Level 23

[11] Burstein, M.H.: Dynamic invocation of semantic web services that use unfamiliar
ontologies. IEEE Intelligent Systems 19 (2004) 67–73

[12] Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with
interactive composition techniques. IEEE Intelligent Systems 19 (2004) 42–49

[13] Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., Sycara, K.: Au-
thorization and privacy for semantic web services. IEEE Intelligent Systems 19
(2004) 50–56

[14] Bagüés, M.I., Bermúdez, J., Tablado, A., Illarramendi, A., Goñi, A.: A new
mechanism for the interoperability of data systems. In: International Conference
on Semantics of a Networked World: Semantics for Grid Databases (ICSNW 2004).
LNCS 3226. (2004) 229–247

[15] Foundation For Intelligent Physical Agents: FIPA Communicative Act Library
Specification. (2002) http://www.fipa.org/specs/fipa00037/SC00037J.html.

[16] Finin, T., Labrou, Y., Mayfield, J.: KQML as an agent communication language.
In Bradshaw, J., ed.: Software Agents. MIT Press (1997)

[17] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuiness, D., Patel-
Schneider, P., Stein, L.: OWL Web Ontology Language Reference. World Wide
Web Consortium. (2004) http://www.w3.org/TR/owl-ref.

[18] Keller, U., Lara, R., Polleres, A., Toma, I., Kifer, M., Fensel, D.: WSMO
Web Service Discovery. Working draft, WSML Working Group (2004)
http://www.wsmo.org/2004/d5/d5.1/v0.1.

[19] Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology. In: WWW ’03: Proceedings of the 12th international conference
on World Wide Web, New York, NY, USA, ACM Press (2003) 331–339

[20] Patel-Schneider, P., Hayes, P., Horrocks, I.: OWL web ontology language seman-
tics and abstract syntax. Recommendation, World Wide Web Consortium (2004)
http://www.w3.org/TR/owl-semantics/.

[21] Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts
and abstract syntax. Recommendation, World Wide Web Consortium (2004)
http://www.w3.org/TR/rdf-concepts/.

[22] Bermúdez, J., Goñi, A., Illarramendi, A., Bagüés, M.I., Tablado, A.: Interopera-
tion among information systems through a communications acts ontology. Tech-
nical report, University of the Basque Country (2005)

[23] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Theory, Implementation and Applications. Cam-
bridge University Press (2003)

[24] Searle, J.R.: Speech acts. Cambridge University Press (1969) New York.
[25] Bach, K., Harnish, R.M.: Linguistic Communication and Speech Acts. MIT Press

(1979)
[26] Tablado, A., Illarramendi, A., Bagüés, M.I., Bermúdez, J., Goñi, A.: Aingeru: an

innovating system for tele assistance of elderly people. The Journal on Information
Technology in Healthcare 2 (2004) 205–214

[27] Obrst, L.: Ontologies for semantically interoperable systems. In: Proceedings of
the 2003 ACM CIKM International Conference on Information and Knowledge
Management, New Orleans, Louisiana, USA, ACM (2003) 366–369

[28] Petrie, C., Bussler, C.: Service agents and virtual enterprises: A survey. IEEE
Internet Computing 7 (2003) 68–78

[29] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J., Nielsen, H.: Simple ob-
ject access protocol. Recommendation, World Wide Web Consortium (2003)
http://www.w3.org/TR/soap/.

24 Miren I. Bagüés et al.

[30] Chinnici, R., Gudgin, M., Moreau, J., Schililmmenr, J., Weerawarana, S.: Web
Services Description Language (WSDL). Working draft, World Wide Web Con-
sortium (2004) http://www.w3.org/TR/wsdl20/.

[31] OASIS UDDI Specification Technical Comitee: Uddi version 2 specification. Tech-
nical report, OASIS (2002)
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.

[32] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., et al.: Owl-s:
Semantic markup for web services. Technical report, World Wide Web Consortium
(2004) http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/.

[33] OASIS Universal Business Language (UBL) Technical Committee: OASIS Uni-
versal Business Language 1.0. Technical report, OASIS (2004)
http://docs.oasis-open.org/ubl/cd-UBL-1.0/.

[34] Akkermans, H., Baida, Z., Gordijn, J., Peña, N., Altuna, A., Laresgoiti, I.: Value
webs: Using ontologies to bundle real-world services. IEEE Intelligent Systems
19 (2004) 57–66

[35] Kashyap, V., Sheth, A.P.: Semantic and schematic similarities between database
objects: A context based approach. The Very Large Databases Journal 5 (1996)
276–304

[36] Krishnamurthy, R., Litwin, W., Ken, W.: Language features for interoperability
of databases with schematic discrepancies. In Clifford, J., King, R., eds.: ACM
SIGMOD International Conference on Management of Data, New York, USA,
ACM Press (1991) 40–49

[37] Labrou, Y.: Standardizing agent communication. In Marik, V., Stepankova, O.,
eds.: Multi-Agent Systems & Applications. Advanced Course on Artificial Intelli-
gence (ACAI-01), Springer-Verlag (2001) 74–97

[38] Moore, S.A.: Categorizing automated messages. Decision Support Systems 22
(1998) 213–241

[39] Moore, S.A.: KQML and FLBC: Contrasting agent communication languages.
International Journal of Electronic Commerce 5 (2000) 109–124

[40] Giampapa, J.A., Paolucci, M., Sycara, K.: Agent interoperation across multiagent
system boundaries. In: Proceedings of the Fourth International Conference on
Autonomous Agents, ACM Press (2000) 179–186

[41] Martin, D.L., Cheyer, A.J., Moran, D.B.: The open agent architecture: A frame-
work for building distributed software systems. Applied Artificial Intelligence 13
(1999) 91–128

[42] Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web
services capabilities. In: Proceedings of the First International Semantic Web
Conference (ISWC2002), Springer Verlag (2002) 333–347

Matching Ontologies in Open Networked

Systems: Techniques and Applications

Silvana Castano, Alfio Ferrara, and Stefano Montanelli

Università degli Studi di Milano
DICo - Via Comelico, 39, 20135 Milano - Italy

{castano,ferrara,montanelli}@dico.unimi.it

Abstract. In open networked systems a varying number of nodes in-
teract each other just on the basis of their own independent ontologies
and of knowledge discovery requests submitted to the network. Ontol-
ogy matching techniques are essential to enable knowledge discovery and
sharing in order to determine mappings between semantically related
concepts of different ontologies. In this paper, we describe the H-Match
algorithm and related techniques for performing matching of indepen-
dent ontologies in open networked systems. A key feature of H-Match
is that it can be dynamically configured for adaptation to the semantic
complexity of the ontologies to be compared, where the number and type
of ontology features that can be exploited during the matching process
is not known in advance as it is embedded in the current knowledge
request. Furthermore, this number can vary, also for the same ontolo-
gies, each time a new matching execution comes into play triggered by a
knowledge request. We describe how H-Match enforces this capabilities
through a combination of syntactic and semantic techniques as well as
through a set of four matching models, namely surface, shallow, deep,
and intensive. Then, we describe the application of H-Match and its
implementation for knowledge discovery in the framework of the Helios
peer-based system. Finally, we present experimental results of using H-
Match on different test cases, along with a discussion on precision and
recall.

1 Introduction

Open networked systems like Peer-to-Peer networks and Grids are becoming
more and more semantics-enriched infrastructures enabling to share and create
knowledge and to enforce semantic collaboration among the involved parties.
For example, basic P2P networks adopting simple filenames for data sharing
have been evolving to schema-based P2P networks, capable of supporting the
exchange of complex resources like documents and services described by using
metadata or thematic ontologies [1, 2]. P2P scientific collaboration networks have
recently emerged to take advantage of the inherent properties of P2P networks in
order to enforce scientific data sharing and to obtain better performance, flexible
and efficient use of resources and system resilience [3, 4].

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 25–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

26 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

In such systems, it is widely recognized that the use of ontologies plays a
crucial role for providing a semantic description of the resources to be shared
and for enhancing resource discovery through expressive queries [5]. A key fea-
ture of open networked systems is that the network organization can vary at
any moment and a unique global ontology committed by all the parties is not
a viable solution. Rather, a networked system is characterized by a multitude
of independent peer ontologies autonomously made available by each node join-
ing the system. Consequently, for knowledge discovery and sharing, a varying
number of nodes interact each other just on the basis of their own independent
ontologies and of knowledge discovery requests submitted to the network. In
this context, appropriate ontology matching techniques are required to deter-
mine whether and how concepts of different ontologies are semantically related
each other [6, 7]. The problem of schema and ontology matching has been in-
vestigated in the literature and a number of approaches and tools have been
proposed in the area of data and knowledge management [7, 8, 9, 10, 11, 12]. A
reference survey on schema matching is given in [13] while ontology matching is
surveyed according to different classification frameworks in [14, 15, 16, 17].

Existing ontology matching approaches address a number of general require-
ments which remain very important in open networked systems. A first general
requirement is the applicability to different ontology specification languages,
with special attention to recent standards of the Semantic Web like OWL [18].
A further general requirement is the capability of coping with different levels of
detail and design choices in describing the knowledge of interest using a certain
language. In addition, the capability of considering different constructs used in
ontology languages is required for matching purposes.

In addition, new peculiar requirements must be taken into account in con-
ceiving ontology matching techniques for open networked systems. These re-
quirements are originated by the dynamic behavior of peers in such a scenario.
A first peculiar requirement is that the number and type of ontology features
that can be exploited during the matching process is not known in advance as
it is embedded in the current knowledge request. Furthermore, this number can
vary, also for the same ontologies, each time a new matching execution comes
into play triggered by a knowledge discovery request. Moreover, design principles
of ontology matching techniques must be driven by i) the necessity of satisfying
matching requests that are dynamically posed by peers on the basis of unex-
pected needs that can vary continuously, and ii) by the necessity of addressing
all general and peculiar matching requirements as a whole.

In this paper, we present the H-Match algorithm and related techniques for
matching independent ontologies in open networked systems. H-Match has been
developed in the framework of the Helios peer-based system, where it is used to
enable knowledge discovery and sharing [19, 20]. A key feature of H-Match is
that it can be dynamically configured for adaptation to the semantic complexity
of the ontologies to be compared, using a combination of syntactic and semantic
techniques. This feature is achieved by means of four matching models, namely
surface, shallow, deep, and intensive defined with the goal of providing a wide

Matching Ontologies in Open Networked Systems 27

spectrum of metrics suited for dealing with many different matching scenarios.
Another distinguishing feature of H-Match is that the matching configuration
is selected in an automated way according to a matching policy embedded in
the incoming request.

In developing H-Match, we started from the schema matching functional-
ities of the Artemis integration system [21]. From Artemis we borrowed the
thesaurus-based approach for name affinity management, and we made a num-
ber of extensions for matching linguistic features of ontology elements to provide
a fully-automated approach. Furthermore, we have moved from the notion of
structural affinity, typical of schema elements based on attributes, to the notion
of contextual affinity, typical of ontology elements, based on semantic relations
with explicit semantics, with consequent development of suitable techniques for
contextual affinity. Moreover, we have introduced the notion of matching model
and of configurability of the matching process through matching models. Finally,
we want to remark that H-Match implements an automated ontology matching
approach, since it has been conceived to enable the knowledge discovery process
in open networked systems without any manual intervention. On the contrary,
Artemis enforces a semi-automated approach to schema matching being tar-
geted to support the schema unification process in data integration systems with
expected interaction with the designer.

Motivating and Running Example. In Figure 1, we show a graphical repre-
sentation 1 of two simple ontologies, namely Apple-q and Apple-o2. They will be
used as running example throughout the paper to show how the H-Match tech-
niques work. The Apple-q ontology specifies that the concept Apple is a fruit and
a kind of food. Apples, in this ontology, origin from Italy. The Apple-o ontology
describes two kinds of products, namely Edible fruits and Computer, where Mo-

bile Computer is a kind of computers. For fruits (i.e., Banana, Grape, and Pineapple),
we have information about the provenance (i.e., Brazil for banana and pineap-
ple, and Italy for grape). In this latter ontology, the concept Apple denotes a
brand of computers like IBM, and it is located in USA. One of the challenging
goals of ontology matching in this example is to capture the difference between
the two Apple concepts, even if they have the same name. We have to evaluate
whether the matching techniques are able to capture this difference on the basis
of the different context that characterizes the two apple concepts in their respec-
tive ontologies. Other relevant matchings that should be found by the matching
techniques are the ones between Food and Fruit of Apple-q and the concept of
Edible fruits in Apple-o, as well as between the two Italy concepts which denote the
same region in the two ontologies. In the remaining of the paper, we will use this

1 This graphical representation is based on H-MODEL, the formalism adopted by
H-Match for internal representation of ontologies for matching (see Section 2.1).

2 The OWL specification of the two ontologies is provided at http://islab.dico.unimi.it/-
ontologies/apple-q.owl and http://islab.dico.unimi.it/ontologies/apple-o.owl, respec-
tively.

28 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

Fruit Food

Apple

origin

Italy

Concept (Class)

Strong property
(min cardinality 1)

Weak property
(min cardinality < 1)

Kind-of
(SubClassOf)

Property domain

Property value
(restriction range)

Legenda

Apple-q

Edible_Fruit
Computer

Apple

location

Product

Region

Brazil Italy

USA

Banana

Grape
Pineapple

IBM

location

brand
brandprovenance

provenance
provenance

Apple-o
Mobile_Computer

Fig. 1. H-Model graphical representation of Apple-q and Apple-o

example as the running example to show step by step how the matching process
works.

Organization of the Paper. The paper is organized as follows. In Section 2,
we give the foundations of the proposed ontology matching techniques. In Sec-
tion 3, we describe the H-Match algorithm and related matching techniques
with running examples. In Section 4, we describe the application of H-Match
and its implementation for dynamic knowledge discovery in the framework of
our open networked system Helios. In Section 5, we provide experimental re-
sults of applying H-Match and related matching techniques to Semantic Web
ontologies test cases, by discussing the obtained results in terms of precision
and accuracy. In Section 6, we make a critical comparison of H-Match with
related work in the field of ontology matching. Finally, in Section 7, we give our
concluding remarks.

Matching Ontologies in Open Networked Systems 29

2 Foundations of H-Match

We define ontology matching as a process that takes two ontologies as input and
returns the mappings that identify corresponding concepts in the two ontologies,
namely the concepts with the same or the closest intended meaning. We define
a mapping as a correspondence between a concept of the first ontology and one
or more concepts of the second ontology 3. Ontology mappings are established
after an analysis of the similarity of the concepts in the compared ontologies. In
H-Match, we perform similarity analysis through affinity metrics to determine
a measure of semantic affinity in the range [0, 1]. A threshold-based mechanism
is enforced to set the minimum level of semantic affinity required to consider two
concepts as matching concepts. With H-Match, it is possible to determine one-
to-one mappings and one-to-many mappings. In a one-to-one mapping, a concept
of the first ontology is associated with only one concept of the second ontology,
namely the matching concept with the highest value of semantic affinity (also
called best-matching concept). In a one-to-many mapping, a concept of the first
ontology is associated with a set of concepts of the second ontology, namely all
the selected matching (also called best-k matching concepts).

2.1 Ontology Representation

In H-Match, an ontology is seen as a set of concepts, properties, and semantic
relations. For the sake of internal representation of ontology specification lan-
guages, and in particular for Semantic Web languages like OWL, we rely on a
reference model, called H-Model. H-Model, as many other tools for ontology
matching 4, provides a graph-based representation of ontologies in terms of con-
cepts, properties, and semantic relations. In Figure 1, we show an example of
H-Model representation of OWL ontologies. In this representation, the graph
nodes denote concepts and properties (that in the example represent classes and
properties of OWL), while the edges denote the semantic relations between con-
cepts (that in the example represent the equivalence and subclass relations in
OWL as well as properties domain and range derived by OWL restrictions). For
a more detailed description of H-Model and supported ontology specification
languages, the reader can refer to [20].

2.2 Semantic Complexity

The notion of semantic complexity has been introduced in [10] to describe differ-
ent levels of complexity at which an ontology can be seen for matching purposes.

3 In this respect, other approaches like [8, 10, 22], consider properties as first-class
objects and, therefore, they find mappings also between them. We take an approach
similar to [7, 12, 23] where mappings are found for concepts and properties are still
matched but for the purpose of evaluating concept similarity.

4 The state of the art ontology matching tools are analyzed with respect to the sup-
ported model for ontology representation in the related work of Section 6.

30 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

At each level, the focus is on the different types of constructs of the ontology
specification. The four matching models defined in H-Match, namely surface,
shallow, deep, and intensive, allow the matching process to enforce different levels
of semantic complexity depending on the ontologies to be matched. In particular,
the surface model is suitable for matching ontologies at the entity level, because
it considers only names of ontology elements. The shallow model is suitable for
ontologies that are semantic nets in that both names and concept properties are
taken into account for matching. The deep and the intensive models are ade-
quate for semantic complexity of the Description Logics languages, because they
also take into account semantic relations and property values, respectively. H-
Match performs matching by considering schema-level information of ontology
descriptions. In other words, H-Match is focused the terminological box level of
the description logics languages. This has been a design choice in developing H-
Match, in order to support knowledge discovery in the Helios open networked
systems 5.

2.3 Linguistic Features

Linguistic features refer to names of ontology elements and their meaning. To
capture the meaning of names for ontology matching, we borrow from Arte-
mis [21] the idea of relying on a thesaurus of terms and weighted terminological
relationships among them. In H-Match the thesaurus is automatically derived
from the lexical system WordNet [24], to provide a common reference basis for
all the peers of the system and to achieve a uniform interpretation of linguistic
features as much as possible. To this end, we have introduced the following
extensions to the Artemis procedure motivated by the use of WordNet:

– Full use of the relations among synsets in WordNet, including not only syn-
onymy and hypernymy/hyponymy, but also other relations provided by Word-

Net like meronymy and coordinate terms. Thesaurus construction can be
configured in order to select the syntactic category to be taken into account.
In the case of verbs, adjectives, and adverbs, the corresponding specific re-
lations (e.g., troponymy for verbs) are considered.

– Automated management of compound terms not included in WordNet. In
fact, names appearing in real ontologies often are formed by two or more
terms originating compound terms that are not retrieved in WordNet.

The thesaurus is structured as a graph, where the nodes represent terms and
the edges represent terminological relationships. Terms can be basic or com-
pound. Basic terms are all those terms that are included in WordNet, composed
by one or multiple tokens. Compound terms are all those terms composed by
more than one token that are not included in WordNet. Terminological relation-
ships represented in the thesaurus are SYN, BT, NT, and RT. SYN (synonymy)

5 In Section 6, we discuss how currently available matching techniques of H-Match
can be taken into account for the purpose of considering also instance-level informa-
tion of ontology specifications.

Matching Ontologies in Open Networked Systems 31

denotes that two terms have the same meaning. BT (broader term) (resp., NT

(narrower term)) denotes that a term has a more (resp., less) general meaning
than another term. Finally, RT (related terms) denotes that two terms have a
generic positive relationship. These terminological relationships are derived from
the relations defined in WordNet during the thesaurus construction process, as
described in Section 3. As in Artemis, a weight Wtr is associated with each
terminological relationship tr ∈ {SYN, BT/NT, RT} in the thesaurus. Such a
weight expresses the implication of the terminological relationship for semantic
affinity. Different types of relationships have different implications for semantic
affinity, with WSYN ≥ WBT/NT ≥ WRT. In fact, synonymy is generally considered
a more precise indicator of affinity than hierarchical relationships, consequently
WSYN ≥ WBT/NT. The lowest weight is associated with RT since it denotes a
more generic relationship than the hierarchical relationships BT/NT.

2.4 Contextual Features

Contextual features of a concept c refer both to the properties and to the con-
cepts directly related to c through a semantic relation in an ontology. The im-
portance of considering contexts was already pointed out in [25] for matching
heterogeneous information. It becomes mandatory for ontology matching espe-
cially in distributed contexts, where the meaning of a concept if often determined
by the context where it is downhearted [17]. In Section 6, we provide a compari-
son of the state of the art ontology matching tools with respect to the contextual
features that are supported.

Given a concept c, we denote by P (c) the set of properties of c, and by C(c)
the set of adjacents of c, namely concepts that participate in a semantic relation
with c, respectively. The context of a concept in H-Match is defined as the union
of the properties and of the adjacents of c, that is, Ctx(c) = P (c) ∪ C(c). In H-
Match, we distinguish between strong and weak properties. A strong property sp

is a mandatory property with minimal cardinality 1. A weak property wp is an
optional property with minimal cardinality 0. In H-Match we distinguish four
semantic relations sr between two concepts c and c′, namely same-as, kind-of, part-

of, and associates. The same-as relation denotes that c and c′ are equivalent, while
the kind-of and part-of relations denote that c and c′ are related by a specialization
relation and a composition relation, respectively. Finally, the associates relation
denotes that c and c′ are related by a generic positive semantic association.
In Figure 1, examples of how OWL constructs are mapped on such semantic
relations are given.

Like linguistic features, also contextual features are weighted in H-Match.
In particular, we associate a weight Wsp to strong properties, and a weight Wwp

to weak properties, with Wsp ≥ Wwp to capture the different importance each
kind of property has in characterizing the concept. In fact, strong properties are
mandatory properties related to a concept and they are considered more relevant
in contributing to concept description. Weak properties are optional for the
concept in describing its structure, and, as such, are less important in featuring
the concept than strong properties. Each semantic relation has associated a

32 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

weight Wsr which expresses the strength of the connection expressed by the
relation on the involved concepts. The greater the weight associated with a
semantic relation, the higher the strength of the semantic connection between
concepts. For this reason, we define Wsame−as ≥ Wkind−of ≥ Wpart−of ≥ Wassociates.

3 Matching Ontologies with H-Match

H-Match combines a measure of linguistic affinity and a measure of contextual
affinity in order to evaluate a comprehensive measure of semantic affinity be-
tween ontology concepts. The linguistic affinity provides a measure of similarity
between the ontology concepts by considering their linguistic features, while the
contextual affinity provides a measure of similarity by taking into account their
contextual features. Four matching models, namely, surface, shallow, deep, and
intensive, are defined for dynamically configuring H-Match for its adaptation
to the semantic complexity of the ontologies to be compared. The H-Match
matching process is shown in Figure 2. The process starts with the computation
of the linguistic affinity among the ontology concepts, which is common to all
matching models. Then a matching model is chosen. The context of concepts is

Linguistic affinity

Context composition:
properties

Context composition:
properties

semantic relations

Context composition:
properties

semantic relations
property values

Contextual
affinity

Semantic affinity

Surface matching

Shallow matching Deep matching

Intensive matching

Composition of linguistic
and contextual affinity

Cut-off values lower
than the threshold t

Fig. 2. The matching process of H-Match

Matching Ontologies in Open Networked Systems 33

then composed according to the selected matching model and the corresponding
contextual affinity is computed. Finally, the linguistic and the contextual affinity
values are combined to produce the final comprehensive semantic affinity value.
Matching concepts are then selected by cutting off the concepts whose semantic
affinity is below the threshold.

After describing the H-Match WordNet-based procedure for thesaurus con-
struction and the basic functions for matching terms, datatypes, and relations,
we describe how each model of H-Match works.

3.1 Thesaurus Construction

The H-Match thesaurus construction is performed in two steps. First the en-
tries for both basic and compound terms are defined. Then, the terminological
relationships holding among the term entries are defined. Given the set T of
terms used as names of ontology elements, the construction procedure inserts
into the thesaurus an entry for each basic term bti ∈ T , for each compound term
cti ∈ T , and for each constituent token of cti. If a token is a compound term
itself, the procedure is recursively iterated until all the compound terms are anal-
ysed and corresponding basic term entries are defined. Regarding terminological
relationships, the first step is devoted to define terminological relationships for
compound terms. Our approach relies on the idea that in a typical compound
term ct, one of its constituent tokens denotes the central concept represented
by ct, while the remaining tokens denote a specification of such a central con-
cept [26]. In particular for English, we follow the heuristics that the last token
btn appearing on the right side of a compound term ct composed by n tokens
denotes the central concept, and that each remaining token bti, i = 1 . . . n − 1
we encounter going from the left side to the right side of ct denotes a qualifica-
tion of the meaning of btn. On this basis, a NT relationship is defined between
ct and btn and a RT relationship is defined between ct and each remaining to-
ken bti, i = 1 . . . n − 1. Finally, we define the terminological relationships SYN,
BT, NT and RT between basic term entries on the basis of the relations among
synsets that are provided by WordNet. In particular: a WordNet synonymy is rep-
resented through a SYN terminological relationship; a WordNet hypernymy (resp.,
hyponymy) relation is represented through a BT (resp., NT) terminological rela-
tionship; meronymy and coordinate terms relations of WordNet are represented
through a RT relationship in thesaurus 6.

Example. We consider the example of Figure 1. The first step in the thesaurus
construction is to extract from Apple-q and Apple-o the names of concepts and
properties and to determine the thesaurus entries. Most names are single terms
and are already present in WordNet. An entry for them is thus defined in the
6 The examples and the thesaurus description provided in the paper are referred to

nouns for the sake of clarity. In the case of verbs, the corresponding specific relations
in WordNet, such as troponymy, are considered and mapped onto the thesaurus
terminological relationships following analogous rules.

34 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

thesaurus. There are only two compound terms, Edible Fruit and Mobile Computer.
The first one is retrieved in WordNet and therefore is considered as a basic term
and inserted as an entry in the thesaurus. The second one is not retrieved in
WordNet. For this reason, we split it into two tokens (i.e., Mobile and Computer);
then we insert in the thesaurus two new entries, one for Mobile Computer and
one for Mobile, while an entry for Computer is already present in thesaurus being
already a concept name.

The second step is to determine the terminological relationships among the
thesaurus entries. First of all, we consider the compound term Mobile Computer

Apple SYN Apple
Apple NT Edible Fruit
Banana SYN Banana
Banana NT Edible Fruit
Brand SYN Brand
Brazil SYN Brazil
Computer SYN Computer
Computer BT Mobile Computer
Edible Fruit SYN Edible Fruit
Edible Fruit BT Apple
Edible Fruit BT Banana
Edible Fruit BT Grape
Edible Fruit BT Pineapple
Edible Fruit NT Fruit
Food SYN Food
Fruit SYN Fruit
Fruit BT Edible Fruit
Fruit NT Product
Grape SYN Grape
Grape NT Edible Fruit

IBM SYN IBM
Italy SYN Italy
Location SYN Location
Location NT Region
Mobile SYN Mobile
Mobile RT Mobile Computer
Mobile Computer SYN Mobile Computer
Mobile Computer NT Computer
Mobile Computer RT Mobile
Origin SYN Origin
Origin BT Provenance
Pineapple SYN Pineapple
Pineapple NT Edible Fruit
Product SYN Product
Product BT Fruit
Provenance SYN Provenance
Provenance NT Origin
Region SYN Region
Region BT Location
USA SYN USA

Table 1. Example of thesaurus entries for the running example

and we insert a NT relationship between Mobile Computer and Computer, in order
to denote that mobile computers are a specialization of computers. Moreover,
we insert also a RT relationship between Mobile Computer and Mobile, according
to the approach described above. Then, WordNet is exploited for deriving all
the other relationships that are reported in Table 1. Finally, at the end of the
thesaurus construction phase, a weight is associated with each terminological
relationship in the thesaurus. The weights of terminological relationships used
for thesaurus construction are 1.0 for SYN, 0.8 for BT/NT, and 0.5 for RT. Such
weights have been maintained from Artemis where they have been defined af-
ter extensive experimentation on several schema matching and integration cases.
We performed experimentations using them also on several ontology matching

Matching Ontologies in Open Networked Systems 35

cases and we have seen that they work well also for ontology matching. Conse-
quently, we maintain them as default weights also in the H-Match thesaurus
construction procedure.

3.2 Basic Matching Functions

In this section, we describe the basic matching functions that are used in or-
der to evaluate the similarity/compatibility of terms, datatypes, properties and
semantic relations, respectively.

Term Affinity Function. The term affinity function A(t, t′) → [0, 1] evaluates
the affinity between two terms t and t′ based on the thesaurus. The term affinity
function is borrowed from Artemis and it is reported here for the sake of clarity.
A(t, t′) of two terms t and t′ is equal to the value of the highest-strength path
of terminological relationships between them in Th if at least one path exists,
and is zero otherwise. A path strength is computed by multiplying the weights
associated with each terminological relationship involved in the path, that is:

A(t, t′) =
{

maxi=1...k {Wt→n
i t′} if k ≥ 1

0 otherwise
(1)

where: k is the number of paths between t and t′ in Th; t →n
i t′ denotes the ith

path of length n ≥ 1; Wt→n
i t′ = W1tr ·W2tr · . . . ·Wntr is the weight associated

with the ith path, and Wjtr , j = 1, 2, . . . , n denotes the weight associated with
the jth terminological relationship in the path.

Datatype Compatibility Function. The datatype compatibility function
T (dt, dt′) → [0, 1] is defined to evaluate the compatibility of data types of two
concept properties according to a pre-defined set CR of compatibility rules.
T (dt, dt′) of two data types dt and dt′ returns 1 if dt and dt′ are compatible
according to CR, and 0 otherwise, that is:

T (dt, dt′) =
{

1 iff ∃ a compatibility rule for dt, dt′ in CR
0 otherwise

(2)

For instance, with reference to XML Schema datatypes (which are relevant for
OWL ontology matching), examples of compatibility rules that have been defined
are: xsd:integer ⇔ xsd:int, xsd:integer ⇔ xsd:float, xsd:decimal ⇔ xsd:float, xsd:short

⇔ xsd:int.

Property and Semantic Relation Closeness Function. The closeness func-
tion C(e, e′) → [0, 1] is defined to calculate a measure of the distance between two
elements e and e′ of concept contexts. Depending on the way concept contexts
are defined in each respective ontology, e and e′ can be either two properties,
or two semantic relations, or a semantic relation and a property, respectively.

36 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

C(e, e′) exploits the weights associated with context elements and returns a value
in the range [0,1] proportional to the absolute value of the complement of the
difference between the weights associated with the elements, that is:

C(e, e′) = 1− | We − We′ | (3)

where We and We′ are the weights associated with e and e′, respectively. For any
pairs of elements e and e′, the highest value (i.e., 1.0) is obtained when weights
of e and e′ coincide. The higher the difference between We and We′ the lower
the closeness value of e and e′.

3.3 Matching Models

The matching models have been conceived to span from surface to intensive
matching. Each model calculates a semantic affinity value SAc,c′ of two concepts
c and c′ which expresses their level of matching. SAc,c′ is produced by considering
linguistic and/or contextual features of concept descriptions. In a given matching
model, the relevance of the linguistic and the contextual features of c and c′ for
matching can be established, by properly setting the linguistic affinity weight
Wla ∈ [0, 1] in the semantic affinity evaluation process.

Before describing matching models, we make a general consideration for the
surface, shallow, deep, and intensive models. In the evaluation of the contextual
affinity, a special case occurs when both the concepts have an empty context. To
deal with this, three strategies are possible: i) NULL-value strategy: the empty
contexts can be considered to have a semantics analogous to the one of the NULL
value in relational databases. In this strategy, the contextual affinity is set to
undetermined to capture this semantics; ii) worst-case strategy: since the concepts
do not have elements in their contexts, the contextual affinity value is set to 0 for
them, to express that no matching elements have been found in their contexts; iii)
best-case strategy: since the concepts do not have elements in their contexts, the
contextual affinity value is set to 1 for them, to express that two empty contexts
are considered to fully match. In implementing H-Match, we have decided to
adopt the worst-case strategy (ii) in order to avoid to produce semantic affinity
values either too much optimistic (iii) or semantic affinity values that are based
only on linguistic affinity (i), without accounting for the information about the
presence of empty contexts.

Surface Matching. The surface matching is defined to take into account only
the linguistic features of concept descriptions. Surface matching addresses the
requirement of dealing with high-level, poorly structured ontological descrip-
tions. Given two concepts c and c′, surface matching provides a measure SAc,c′

of their semantic affinity determined only on the basis of their names using the
term affinity function (1), that is:

SAc,c′ ≡ A(nc, nc′) (4)

where nc and nc′ are the names of c and c′, respectively. When the surface model
is selected, the Wla weight is automatically considered to be 1 by H-Match.

Matching Ontologies in Open Networked Systems 37

Example. All the semantic affinity values computed using the surface matching
on the running example ontologies Apple-q and Apple-o are shown in Table 3,
referring to the thesaurus shown in Table 1. For instance, the semantic affinity

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 1.0 0.64 - - 0.8 0.64 -

Food - - - - - - -
Fruit 0.64 0.64 - - 0.8 0.64 -

Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.64 0.512 - -

Food - - - - - -

Fruit - - 0.64 0.8 - -
Italy 1.0 - - - - -

Table 2. Surface matching results for the running example

value of Apple and Grape is 0.8 · 0.8 = 0.64 as NT relationship is defined between
Apple and Edible Fruit and between Grape and Edible Fruit, whose weight is 0.8.
The other semantic values are calculated in an analogous way. According to this
model, we note that the semantic affinity of the two Apple concepts is 1 as their
names coincide.

Shallow Matching. The shallow matching is defined to take into account
concept names and concept properties. With this model, we want a more accurate
level of matching, by taking into account not only the linguistic features but
also information about the presence of properties and about their cardinality
constraints. For property comparison, each property pi ∈ P (c) is matched against
all properties pj ∈ P (c′) using (1) and (3), and the best matching value m(pi)
is considered for the evaluation of SAc,c′, as follows:

m(pi) = max{A(npi , npj) · C(pi, pj)}, ∀pj ∈ P (c′) (5)

where npi and npj denote the names of pi and pj , respectively. SAc,c′ is evaluated
by the shallow matching as the weighted sum of the linguistic affinity of c and
c′, calculated using (1), and of their contextual affinity, calculated as the average
of the property best matching values computed using (5), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|P (c)|

i=1 m(pi)
| P (c) | (6)

Example. The matching models from shallow to intensive have been applied to
the running example using the following weights values for contextual features:

38 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

strong properties and weak properties have been associated with the weights
Wsp = 1.0 and Wwp = 0.5, respectively. For semantic relations, Wsame−as = 1.0,
Wkind−of = 0.8, Wpart−of = 0.5, and Wassociates = 0.3. These are the default
weights in H-Match. For their definition, we followed a method similar to the
one used for weighting terminological relationships: we defined specific values
for each weight and then we tested them on several real cases, by choosing as
default values those that exhibited best behavior in most cases. Furthermore, for
the shallow matching and the other two remaining models, we have configured
H-Match with a Wla value of 0.5, which is used as a default in H-Match as it
guarantees an equilibrated balancing of linguistic and contextual affinity in the
matching process.

All the results produced for the running example using the shallow match-
ing model are shown in Table 3. As an example of semantic affinity evalua-
tion using the shallow matching model, we continue to consider the case of
matching concept Apple of Apple-q with the concept Grape of Apple-o. Both the
concepts have a weak property in their contexts, i.e., origin for Apple and prove-

nance for Grape. By applying the term affinity function (1) and the closeness
function (3), the matching value of these two properties is evaluated as follows
A(origin,provenance) · C(weak property,weak property) = 0.8 · 1.0 = 0.8. Since these
properties are the only elements in the contexts of both Grape and Apple, this is
also the best matching value. According to this, the semantic affinity between
Apple and Grape is computed as (0.5 · 0.64) + (0.5 · 0.8) = 0.72. As we can see,

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 0.5 0.72 - - 0.4 0.72 -

Food - - - - - - -
Fruit 0.32 0.32 - - 0.4 0.32 -

Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.72 0.256 - -
Food - - - - - -

Fruit - - 0.32 0.4 - -

Italy 0.5 - - - - -

Table 3. Shallow matching results for the running example

with this model the semantic affinity value of Apple and Grape is increased with
respect to the previous value obtained using the surface model. This because
we have taken into account also the presence of matching properties in their
context. We also note that the two apple concepts are now less matching than
before, because we are able to capture differences due to the context properties.

Matching Ontologies in Open Networked Systems 39

Deep Matching. The deep matching model is defined to take into account
concept names and the whole context of concepts, that is, both properties and
semantic relations. Each element ei ∈ Ctx(c) (i.e., a property or an adjacent)
is compared against all elements ej ∈ Ctx(c′) using (1) and (3) and the best
matching value m(ei) is considered for the evaluation of SAc,c′, as follows:

m(ei) = max{A(nei , nej) · C(ei, ej)}, ∀ej ∈ Ctx(c′) (7)

where nei and nej denote the names of ei and of ej , respectively. With the deep
matching model, SAc,c′ is evaluated as the weighted sum of the linguistic affinity
of c and c′, calculated using (1), and of their contextual affinity, calculated as
the average matching value for the elements of the context of c using (7), that
is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑|Ctx(c)|

i=1 m(ei)
| Ctx(c) | (8)

Example. All the results produced by the deep matching on the running exam-
ple ontologies are shown in Table 4. Considering the contexts of Apple in Apple-q

and of Grape in Apple-o, H-Match searches in the context of Grape for the best
matching element for each element of the context of Apple. It is simple to verify
that the best matching element for Fruit is Edible Fruit, and that the best match-
ing element for origin is provenance, while Food has not any matching element in
the context of Grape. By applying the term affinity function (1) and the closeness
function (3), we obtain that the best matching value is 0.8 both for Fruit and for
origin. Then, considering that the context of Apple is composed by 3 elements,
the contextual affinity is given by 0.8+0.8

3 = 0.53. The linguistic affinity value
between Apple and Grape is 0.64, so that the final semantic affinity is calculated
as (0.5 · 0.64)+ (0.5 · 0.53) = 0.59. The main advantage of the deep model in the
example is that it emphasizes the difference between Banana, Pineapple, Grape,
and Apple in Apple-o that is due to the fact that the former three are fruits in
the ontology, while the last one is a computer brand. This is evident by taking
into account the results obtained for Fruit in Apple-q which has a high semantic
affinity value with Banana, Pineapple, and Grape, and a low affinity value with
Apple in Apple-o.

Intensive Matching. The intensive matching model is defined to take into ac-
count concept names, the whole context of concepts, and also property values, in
order to exhibit the highest accuracy in semantic affinity evaluation. In fact, by
adopting the intensive model not only the presence and cardinality of properties,
but also their values are considered to produce the resulting semantic affinity
value. Given two concepts c and c′, the intensive matching calculates a compre-
hensive matching value for the elements of the context of c such as in (7) as well
as a matching value v(pi) for each property pi ∈ P (c). The matching value v(pi)
is calculated as the highest value obtained by composing the affinity of the name
npi and the value vpi of pi with the name npj and the value vpj of each property

40 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 0.5 0.59 - - 0.53 0.59 -
Food - 0.4 - - 0.32 0.4 -

Fruit 0.32 0.72 - - 0.72 0.72 -

Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.59 0.386 - -

Food - - 0.4 0.4 - -

Fruit - - 0.72 0.8 - -
Italy 0.5 - - - - -

Table 4. Deep matching results for the running example

pj ∈ P (c′), respectively. For property values comparison, we exploit the term
affinity function (1) if the property value is the name of a referenced concept,
and the datatype compatibility function (2) if the property value is a datatype,
that is:

v(pi) =
{

max{A(npi , npj) · A(vpi , vpj)},∀pj ∈ P (c′) iff vpi is a reference name
max{A(npi , npj) · T (vpi , vpj)},∀pj ∈ P (c′) iff vpi is a datatype

(9)
SAc,c′ is evaluated by the intensive matching as the weighted sum of the lin-
guistic affinity of c and c′, calculated using (1), and of their contextual affinity,
calculated as the average of the matching values for the elements of the context
of c using (7) and for the property values calculated using (9), that is:

SAc,c′ = Wla · A(nc, nc′) + (1 − Wla) ·
∑ |Ctx(c)|

i=1 m(ei)+
∑ |P (c)|

j=1 v(pj)

|Ctx(c)|+|P (c)| (10)

Example. All the results produced by the intensive matching for concepts of
the running example ontologies are shown in Table 5. Let us consider again Ap-

ple in Apple-q and Grape in Apple-o of the running example. Using the intensive
matching, the contextual affinity of these two concepts must consider also the
value of the properties origin and provenance, i.e., the concept Italy. As shown
above, the affinity between these two property values is given by the following
formula: A(origin,provenance) · A(Italy,Italy) = 0.8 · 1.0 = 0.8. The context of Apple

is composed by 3 elements, but, in the intensive model, we have to sum to this
number also the number of properties, that is 1. For this reason, the contextual
affinity of Apple and Grape is given by 0.8+0.8+0.8

4 = 0.6. The linguistic affinity
value between Apple and Grape is 0.64, so that the final semantic affinity is cal-
culated as (0.5 · 0.64) + (0.5 · 0.6) = 0.62. The main advantage of the intensive
model with respect to the deep model, is that we now capture the difference
between Banana, Pineapple and Grape. In fact, all these concepts have in common
with Apple of Apple-q the fact that they are fruits, but Grape has a higher se-

Matching Ontologies in Open Networked Systems 41

mantic affinity with Apple because they both origin from Italy, while Banana and
Pineapple origin from Brazil.

Apple-q/Apple-o Apple Banana Brazil Computer Edible Fruit Grape IBM

Apple 0.5 0.52 - - 0.5 0.62 -
Food - 0.4 - - 0.32 0.4 -

Fruit 0.32 0.72 - - 0.72 0.72 -
Italy - - - - - - -

Apple-q/Apple-o Italy Mobile Computer Pineapple Product Region USA

Apple - - 0.52 0.356 - -

Food - - 0.4 0.4 - -
Fruit - - 0.72 0.8 - -

Italy 0.5 - - - - -

Table 5. Intensive matching results for the running example

3.4 Matching Policies

The set of parameters to configure the current execution of H-Match for a given
matching case is called matching policy. A matching policy is a 4-tuple of the
form 〈model, Wla, t, mapping〉, where:

– model ∈{surface, shallow, deep, intensive} denotes the matching model to be
used for H-Match execution;

– Wla ∈ [0, 1] denotes the linguistic affinity weight to be used for setting the
relevance of the linguistic affinity, and, consequently, the one of the contex-
tual affinity;

– t ∈ (0, 1] denotes the matching threshold value to be used in order to cut-
off from the results the matching concepts having a low value of semantic
affinity, and thus considered poorly relevant;

– mapping ∈{one-to-one, one-to-many} denotes the kind of mapping to be de-
termined at the end of the matching process.

In the context of open networked systems, each node can specify its own policy
directly within the knowledge discovery request, in order to force the configura-
tion of H-Match at the destination node as described in Section 4.

3.5 Considerations on the Running Example

The main challenging issue in the running example that we have presented above
is to capture the difference between the meaning of the concept Apple in Apple-q

and the meaning of Apple in Apple-o. The two concepts have the same name, but

42 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

in Apple-q apple is a kind of fruit, while in Apple-o it is a brand of computer. For
this reason when we compare Apple-q and Apple-o, the fruit Apple is expected to be
more similar to Banana, Pineapple, and Grape than to Apple in Apple-o. Moreover,
we expect to have a higher similarity between Apple and Grape, since they both
origin from Italy, while Banana and Pineapple origin from Brazil. In order to achieve
these goals, the matching based on the linguistic features alone would fail. In fact
with the surface matching, we obtain that the best matching for Apple in Apple-q is
Apple in Apple-o, due to the synonymy between their names. However, the surface
matching enriches the information provided in the thesaurus, because it captures
a semantic affinity between Apple and the other fruits even if they do not have
any terminological relationship between their names in the thesaurus. A first
refinement of the results is given by the shallow matching model. In this model,
we are able to disambiguate the meaning of the apple concepts, by detecting also
a high affinity between Apple and the other fruits. With the shallow model, we do
not capture the affinity between the concept Fruit and the different types of fruits
in Apple-o because we do not have any property in the context of Fruit. With the
deep model, we consider also semantic relations. This gives us the possibility
to strengthen the affinity between Fruit and Banana, Pineapple, and Grape, by
exploiting the semantic relation that holds between Fruit and Apple in Apple-

q. The best matching concepts for Apple are still Banana, Pineapple, and Grape,
although we do not capture the higher affinity between Apple and Grape. This goal
is achieved by means of the intensive matching model, because it captures the
fact that these concepts have two similar properties (i.e., origin and provenance)
and that these properties have the same value (i.e., Italy). The example shows
how the matching models of H-Match can be used to adapt the algorithm to
the specific features of the ontologies to be matched. A further discussion on the
applicability of the different matching models is given in Section 4.

4 Application of H-Match to Knowledge Discovery in
Open Networked Systems

In this section, we present the query-based approach to knowledge discovery
and sharing we developed in the framework of the Helios open system which
relies on H-Match for ontology matching. Subsequently, we discuss the design
principles that we followed for the implementation of H-Match in Helios.

4.1 Query-Based Knowledge Discovery

In Helios, independent peers with equal role and capabilities cooperate by
sharing their information resources (e.g., data, documents) described through
peer ontologies. Each node provides its own ontology describing the information
resources to be shared and interacts with the other members of the system by
sending probe queries. A probe query provides an ontological description of target
concept(s) of interest for the peer. The Helios probe query template is reported
in Figure 3 and it is composed of the following clauses:

Matching Ontologies in Open Networked Systems 43

– Find: list of target concept(s) names.
– With: (optional) list of properties of the target concept(s).
– Where: (optional) list of conditions to be verified by the property values,

and/or (optional) list of concepts related to the target by a semantic relation.
– Matching policy: (optional) specification of the H-Match configuration re-

quested for the evaluation of the query.

Probe query template

Find target concept name [, ...]
[With 〈property name〉 [, ...]]
[Where condition,

〈related concept, semantic relation name〉 [, ...]]
[Matching policy 〈 model, Wla, t, mapping 〉]

Fig. 3. The reference probe query template

The answer to a probe query is list of concepts that match the target. As de-
scribed in Figure 4, the structure of the Helios answer template contains the
following clauses:

– Concept: name of the matching concept.
– Properties: (optional) list of properties of the matching concept.
– Adjacents: (optional) list of concepts related to the matching concept by a

semantic relation.
– Matching: set of pairs 〈target concept, affinity value〉, specifying the tar-

get concept with which the matching concept matches, together with the
corresponding affinity value.

– Matching policy: (optional) the matching policy adopted for the evaluation
of the query.

Probe answer template

{Concept matching concept name
[Properties 〈property name〉 [, ...]]
[Adjacents 〈related concept, semantic relation name〉 [, ...]]
Matching 〈target concept, affinity value〉[, ...]
[Matching policy 〈 model, Wla, t, mapping 〉]}

Fig. 4. The reference probe answer template

If a peer is interested in discovering nodes capable of providing information re-
sources semantically related to a given target, it composes and submits to the

44 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

system a probe query according to the query template of Figure 3. Receiving a
probe query, a peer invokes the H-Match algorithm to compare such a request
against the concepts contained in its peer ontology in order to identify whether
there are concepts matching the target. In particular, the Find, With, and Where
clauses are used to derive a H-Model description of the target concept(s), while
the matching policy to apply is derived from the Matching policy clause of the
probe query, if specified 7. As a result, for each target concept of the probe
query, H-Match returns a (possibly empty) ranked list of matching concepts
semantically related to the target (that is, those concepts whose semantic affinity
value exceeds the threshold specified in the adopted matching policy). Depend-
ing on the kind of mapping specified in the policy, this ranked list can contain
either one single concept (one-to-one mapping policy) which is the best-matching
concept for the target, or a set of concepts (one-to-many policy), which are all
best-k matching concepts for the target. Finally, the results of H-Match are or-
ganized according to the probe answer template of Figure 4, and such an answer
is replied back to the requesting peer. Collecting query replies from answering
peers, the requesting peer evaluates the results and decides whether to further
interact with those peers found to be relevant in order to access the specific
information resources. A discussion on how the access to information resource
data takes place once the knowledge discovery process has been completed is out
of the scope of this paper. For further details, the reader can refer to [20].

4.2 H-Match Implementation Design

The H-Match algorithm and related techniques have been implemented in C++

in the framework of the Helios project. In order to acquire the OWL ontology
descriptions in H-Model, we exploit the OWL APIs commonly used to this end
also by other ontology matching tools [10]. In this section, we discuss the design
principles that we followed for implementing H-Match.

Creation and management of the thesaurus. This functionality exploits the Word-

Net C library, distributed by the WordNet group at the Princeton University 8.
The library provides the basic functionalities to access the lexical database and
to find the relations holding among terms. Our implementation extracts from
the ontologies to be matched the names of the elements, defines the thesaurus
entries, and exploits WordNet for the definition of the terminological relationships
among them, as described in Section 3. The thesaurus is represented as a graph
where the nodes are the entries derived from entity names and the edges are the
weighted terminological relationships. A specific problem that is addressed by the
thesaurus management functionality is related to terms that are not included in
WordNet (e.g., some acronyms). We have taken into account three main options:

7 If the matching policy is not specified in the query, the receiving peer can au-
tonomously select the policy to apply according to internal criteria (e.g., workload,
bandwidth).

8 http://wordnet.princeton.edu/

Matching Ontologies in Open Networked Systems 45

i) off-line manual extension of the WordNet-based thesaurus with the main terms
of the peer ontology domain not included in WordNet; ii) semi-automated exten-
sion of the WordNet-based thesaurus with the main terms of the peer ontology
domain not included in WordNet by referring to a domain-specific vocabulary, if
available; iii) use of syntax-based techniques (e.g., string similarity) to recognize
and manage these terms. Currently, we enforce the first option, by providing
some basic editing functionalities for off-line thesaurus extension.

Policy management. This functionality has the aim of managing the matching
policies for the H-Match configuration. The matching policies are managed
through the configure method of the class HMatch.

Representation and storage of ontology concepts. This functionality is based on
the idea to represent an ontology as a set of C++ objects, called ConceptVectors.
Each concept vector represents a concept in the ontology, together with its con-
text in terms of properties and semantic relations. In our implementation, each
H-Match execution is characterized by two set of concept vectors, called target
and ontology, respectively. The first set contains the concepts that are the target
of the matching process, while the second set contains the concepts that are the
basis of the matching process.

Affinity functions. This functionality provides the functions that are used for
evaluating both the linguistic and the contextual affinity between two concepts,
working on concept vectors. In particular, for each target concept, the matching
process calculates the semantic affinity value with the concepts that compose
the ontology.

A main portion of the UML class diagram of the C++ classes implementing the
H-Match functionalities is shown in Figure 5. The HMatch class is used for
representing the process of matching two ontologies by means of the H-Match
algorithm. The class is configured by means of a configure function that sets the
value associated with the weight of the linguistic affinity (WLA) and the threshold

from a MatchingPolicy object. Each HMatch instance is then associated with an
instance of the LinguisticAffinity object, which is used to represent the A(n, n′)
function described in (1). This association gives HMatch the capability to evalu-
ate the linguistic affinity holding between two concepts. The LA method returns
the linguistic affinity between two ConceptVector as a float number in the range
[0,1]. In a similar way, the CA function calculates the contextual affinity between
two concepts and requires a third parameter that specifies the matching model
to be used. Finally, the comprehensive semantic affinity value is provided by
means of the SA method that invokes LA and CA, respectively. The evalResults

method is exploited for calculating the semantic affinity value for each target
conceptand each concept of the ontology. The complete set of results are then
stored, together with WLA, threshold, and model used, in the Results object. Each
result is a triple of the form 〈query concept, ontology concept, semantic affinity

46 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

HMatch
WLA :float
threshold :float
target :set<ConceptVector*>
ontology :set<ConceptVector*>
linguisticAffinity :LinguisticAffinity
...
configure(:MatchingPolicy) :void
LA(:ConceptVector*,:ConceptVector*) :float
LA(:ConceptVector*,:ConceptVector*,:string)
LA(:ConceptVector*,:ConceptVector*,:string)
evalResults() :void
...

LinguisticAffinity
LA :DMap
...
evaluateLA(:Graph*) :void
getLA(:string,:string) :float
...

Thesaurus
...
createTH(:set<string>) :void
addTerms(:set<string>) :void
relation(:string,:string) :relationship
...

Graph
...
insertNode(:Term) :bool
insertEdge(:Term,:Term,:relationship) :bool
getAdjacentList(:Term) :list<NodeAndWeight>
...

ConceptVector
name :string
properties :set<Property>
relations :set<Relation>
...
...

Results
WLA :float
threshold :float
model :string
results: set<Result>
...
...

1

1

1

1

1

1

*

*

1...*

Fig. 5. A significant portion of the H-Match UML class diagram

value〉. The thesaurus of terminological relationships is represented by the The-

saurus object, which is composed by a Graph. The graph is implemented by means
of adjacency lists in the class Graph. The class Thesaurus supports basically two
main tasks: i) the creation of the thesaurus given a set of strings, and ii) the
mapping between the relations found in WordNet and the terminological relation-
ships supported by H-Match, as described in Section 3. A further functionality
of the Thesaurus is given by the addTerms method that is used for updating a pre-
defined thesaurus with new term(s) and terminological relationship(s) entries.
This function is adopted in the open networked scenario for extending the the-
saurus that has been pre-calculated for a peer ontology. In particular, we have a
WordNet pre-processing based on the contents of a given peer ontology which is
performed off-line. At the time the matching is requested, the extension of the
thesaurus is performed with new terms/terminological relationships of the tar-
get ontology. Usually the target ontology (i.e., a probe query) contains a limited
number of concepts and the extension process can be performed on-line easily.
Finally, the thesaurus is associated with a LinguisticAffinity object that exploits
a Dijkstra-based algorithm for evaluating the A(n, n′) function described in (1)
over the thesaurus graph. These results are then stored in a map that associates
a float value in the range [0,1] with each pair of terms in the thesaurus. The map
is then refreshed to reflect the thesaurus extensions.

4.3 H-Match Optimization

Let nc be the number of target concepts in the probe query and mc be the number
of concepts in the peer ontology. We developed some optimizations for H-Match
to avoid to perform nc × mc matchings. This problem has been addressed by
other approaches proposed in literature. For example, the QOM tool [27] pro-

Matching Ontologies in Open Networked Systems 47

poses several strategies for reducing the number of matching performed by the
matchmaker starting from an initial set of candidate mappings. Similarly, we
want to reduce the number of atomic matchings required for a probe query by
contemporary guaranteeing a high level of accuracy of the results. The idea is
to match a target concept c of the probe query only against the concepts of the
ontology that have a high probability to have a high semantic affinity with c.
To this end, we observed that the problem is analogous to the problem of find-
ing resources over the Web using the PageRank algorithm [28]. In PageRank, the
importance of a page p is based both on the number of other pages that point
to p and on the importance of those other pages [29]. A ranking scheme is then
exploited for matching a query against the pages that have a high importance
in the rank. For H-Match optimization, we have defined an algorithm, called
ConceptRank, that is based on the idea of building a ranking scheme of con-
cepts in a peer ontology and of exploiting it for matching a target concept only
against the concepts that have a high level of importance in the rank. The rank
of a concept is determined by taking into account the number and the weight
of ontology relations that point to it. In this step, the difference with respect
to PageRank is that the relevance of an edge is given by the weight associated
with it. The importance of a concept c is a measure proportional to the num-
ber of concepts ci that have a semantic relation with c and to the importance
of ci. Probe queries are processed by matching each target concept against the
peer ontology concepts in the ranking scheme starting from the most important
ones and by stopping the matching process when a given number TF of atomic
matchings produce a semantic affinity value under the matching threshold. The
number TF is called tolerance factor and is determined experimentally in order
to obtain the best balance between the required reduction of atomic matchings
and the quality of the results obtained for a probe query. This process has to
take into account the fact that, in the ranking scheme, the most important con-
cepts are the ones that are mostly referenced by the other concepts. For this
reason, the most important concepts in the rank have generally the most generic
meaning in the ontology. When a probe query is searching for a concept with a
specific meaning, the top ranked concepts (i.e., the ones with the most generic
meaning) could not be the best answers for the query. In order to address this
problem, we have defined two main strategies:

– Ranking-based strategy. A target concept c is matched against the concepts
ci in the rank starting from the top ranked concept c0. The matching process
ends when the number of atomic matchings that do not provide a semantic
affinity value exceeding the threshold is higher than or equal to the tolerance
factor TF . A variation of this strategy, called Surface Ranking-based Strategy,
avoids to match c against the peer ontology concepts with the most generic
meaning through a revision of the ranking scheme obtained by exploiting
the surface matching model.

– Graph-based Strategy. In this strategy, we use the ranking scheme just to find
the most important concept c0 that is seen as the concept that has the highest
probability to be relevant for the probe query. Then, the concepts that have

48 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

to be matched against c are chosen by visiting the ontology graph starting
from c0. The process is iterated until the number of atomic matchings that do
not provide a semantic affinity value exceeding the threshold is higher than
or equal to the tolerance factor TF . Also in this case, a variation, called
Surface Graph-based Strategy, has been developed for the same purpose of
the previous one.

We have compared these strategies in order to determine their impact on the
matching process. The results of this experimentation show how the first strategy
guarantees a higher level of performance and a lower level of accuracy than the
last one. Moreover, the graph-based strategy is more adequate to obtain the most
relevant results. The optimization strategies are available in the Helios query
processing module to pre-configure the peer capabilities at the initialization time.

5 Experimental Results

We analyze the behavior of H-Match by performing different tests devoted i) to
evaluate the matching models with respect to performance and quality of results
in terms of precision and recall, and ii) to compare the H-Match results with
the results produced by selected ontology matching tools available on the Web.

5.1 Experimental Evaluation of H-Match Models

In order to evaluate the effectiveness of the four H-Match models, two kind of
tests have been executed: i) a quality test, where the experiments were devoted
to examine precision and recall of the models on real case studies; and ii) a
performance test, where the H-Match models have been analyzed with respect
to computation time and scalability in manifold scenarios with different level of
complexity.

Quality Test. For what concern the H-Match quality test, we have considered
two OWL ontologies from the publication domain (i.e., Ka 9, Portal 10), and we
asked to users (i.e., students of our Ontologies and Semantic Web course) to man-
ually define a set of target ontologies (i.e., twenty target ontologies) related to
the publication domain, too. Each target ontology describes publication-related
concepts with some properties, semantic relations, and property values accord-
ing to the domain knowledge and experience of the ontology creator. To avoid to
be influenced, target ontologies have been composed without considering Ka and
Portal ontology contents. Note that the choice of manually constructing small-size
target ontologies for extensive experimentation is motivated by the fact that H-
Match is used for knowledge discovery in the Helios open networked system.
In such a context, the typical problem is to match a probe query embedding a

9 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
10 http://www.aktors.org/ontology/portal

Matching Ontologies in Open Networked Systems 49

small-size ontology describing target concept(s) against a large ontology. After
the target ontology definition, we asked users to consider Ka and Portal ontolo-
gies, and to map each concept of the target ontologies they have defined on one
or more concepts belonging to the two reference ontologies according to their in-
tuitive understanding of concept similarity. In this way, we have collected a set of
1:1 mappings between the target ontologies and the reference ontology concepts.
The goal of the quality test is to evaluate the effectiveness of H-Match match-
ing process by verifying the overlapping between the results produced by the
different H-Match models and the manual mappings. Moreover, we intend to
analyze the impact of different threshold values t and linguistic affinity weights
Wla on the level of overlapping. To this end, we use precision and recall, which
are the measures commonly adopted for matching evaluation [10] derived from
the classical definitions of Information Retrieval [30]. In particular, precision is
defined as the ratio of the number of relevant matching concepts automatically
found by H-Match to the total number of matching concepts automatically
found. Recall is defined as the ratio of the number of relevant matching concepts
automatically found by H-Match to the total number of matching concepts
(i.e., mappings) manually defined.

In Figure 6, we show the precision of the H-Match matching models with a
linguistic affinity weight which varies from Wla = 0.1 to Wla = 0.8 and the
threshold t = 0.6. These values show the number of manual mappings which

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Wla

P
re

ci
si

o
n

surface
shallow
deep
intensive

Fig. 6. The precision of the H-Match matching models with t = 0.6

50 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

have been correctly identified by H-Match with respect to the total number
of results provided by the algorithm. We observe that the surface matching is
not affected by the variation of the Wla parameter and can ensure a precision
equal to 45%. This is due to the fact that the surface matching always works
with the parameter Wla = 1 and contextual features are not considered in the
matching evaluation. For what concern the other matching models, H-Match
can guarantee a high level of precision in correspondence of high Wla values. In
particular, we observe that with Wla ≥ 0.4, H-Match can achieve a precision
of 82%.

In Figure 7, we measure the H-Match recall in correspondence of different lin-
guistic affinity weights and with the threshold t = 0.3. The results show the

0,7

0,8

0,9

1,0

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8
Wla

R
ec

al
l

surface
shallow
deep
intensive

Fig. 7. The recall of the H-Match matching models with t = 0.3

number of manual mappings which have been correctly identified with respect
to the total number of mappings manually defined. Independently from the val-
ues of Wla, we observe that the recall of each matching model is over the 80%,
and the deep matching model can achieve a recall equal to 99.1% when Wla = 0.4.

From these figures, we observe that the choice of the correct value for the thresh-
old t and for the linguistic affinity weight Wla depends on the goal of the match-
ing case. If we are interested in very precise results, we have to set high values
(i.e., ≥ 0.6) both for threshold and for linguistic affinity weight. On the opposite,

Matching Ontologies in Open Networked Systems 51

if we are interested in accuracy of results, lower values (i.e., 0.3 ≤ t, Wla ≤ 0.5)
for both parameters work better. In both cases, deep and intensive matching are
to be preferable and can provide better results than surface and shallow models.
We want to stress that H-Match has been implemented to be interactively con-
figured, in order to suit the matching process to the requirements of the specific
matching case.

Performance Test. The semantic affinity evaluation performed by H-Match
is based on the comparison of all the concepts and corresponding contexts con-
tained in the two ontologies to be considered. For this reason, the computation
time is affected by the number of elements to be compared and by the adopted
matching model. The goal of the performance test is to focus the attention on
the performance differences between the four matching models for the aspects
related to the contextual affinity evaluation. To this end, we analyze the match-
ing models when comparing a large reference ontology with a great number of
small target ontologies which differ in complexity of concept contexts. In this
test, the linguistic affinity is computed only once as it is common to all matching
models and, as such, it is not considered in discriminating between the different
matching models 11. The test is characterized by the following features:

– The reference ontology is the W3C Wine ontology 12. We have selected this
well known ontology because it provides a relevant number of concepts (more
than one hundred concepts) with an adequate richness in terms of proper-
ties, semantic relations, and property values per concept (an average of five
properties, two semantic relations, and six property values per concept, re-
spectively).

– The target ontologies used in the comparison with the reference Wine ontol-
ogy are randomly composed and vary according to four different complexity
measures: number of concepts in the ontology and number of properties,
semantic relations, and property values per concept, respectively.

– The test has been executed on a Dual Xeon machine at 2.80 GHZ with 1GB
RAM and SCSI disks.

The diagrams reported in Figure 8 show the computation time of the H-Match
models by varying one complexity measure while keeping fixed the other three
measures. In Figure 8(a), we have measured the computation time required for
comparing the reference ontology with a target ontology which varies in the
number of concepts and with a fixed number of properties, semantic relations,
and property values per concept. In the remaining diagrams, we have fixed the
number of target ontology concepts and the complexity measure which varies
11 However, based on the test cases performed on real examples, such as those presented

in Section 5.2, where the linguistic affinity is calculated each time, we found that the
average time required for matching (including LA computation) is in the range of
0.6 seconds for quite complex ontologies (ontologies with more than sixty concepts
to one hundred and more concepts)

12 http://www.w3.org/TR/2003/WD-owl-guide-20030210/wine.owl

52 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

0 1 2 3 4 5 6 7 8 9 10

Number of concepts in the target ontology

0

1

2

3

4

5

6

7

H
-M

A
T

C
H

 ti
m

e
(s

ec
s)

surface
shallow
deep

intensive

0 1 2 3 4 5 6 7 8 9 10

Number of properties per concept

0

0.5

1

1.5

2

H
-M

A
T

C
H

 ti
m

e
(s

ec
s)

surface
shallow
deep
intensive

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11

Number of relations per concept

0

0.5

1

1.5

2

H
-M

A
T

C
H

 ti
m

e
(s

ec
s)

surface
shallow
deep
intensive

0 1 2 3 4 5 6 7 8 9 10

Number of property values per concept

0

0.5

1

1.5

2

H
-M

A
T

C
H

 ti
m

e
(s

ec
s)

surface
shallow
deep
intensive

(c) (d)

Fig. 8. Comparison of the H-Match models

is the number of properties (Figure 8(b)), semantic relations (Figure 8(c)), and
property values (Figure 8(d)), respectively.

We stress that, in the worst case, all the models, including the intensive match-
ing, observe a linear growth of their computation times in correspondence of the
increase of the elements to be evaluated. Furthermore, the surface, shallow, and
deep matching are also scalable, in that the semantic affinity evaluation restricted
to concept names, properties, and semantic adjacents is a very efficient task. On
the contrary, the intensive matching computation times are higher and not com-
parable with the corresponding values of the other matching models. This means
that the semantic affinity evaluation of property values has a great impact on
the matching performances. Anyway, we observe that there is a real difference
between the computation times of Figure 8(a) and the remaining diagrams: the
real impact on matching performances is due to the number of concepts to be
processed in the target ontology rather than to the variations in concept context
definition.

Considerations. Performance and quality tests show that the choice of the
most suitable matching model is a key factor for obtaining relevant matching
results. This depends on the level of detail of the ontology descriptions to be

Matching Ontologies in Open Networked Systems 53

compared as well as on the expected degree of precision and recall of the results.
Furthermore, the appropriate configuration of the threshold and of the linguis-
tic affinity weight have an impact on the quality of H-Match results. When
adopting H-Match, the trade-off between high performances, high precision,
and high recall has to be evaluated. In scenarios where a rapid response time
is required (e.g., open networked systems with discovery queries), some lacks in
matching precision and recall can be admitted in turn of high performances dur-
ing the semantic affinity evaluation. On the opposite, when computation time is
not a critical constraint, we can apply the matching model which best suits the
particular application scenario. In Table 6, we summarize the main features of
the matching models and their corresponding suggested scenarios. The surface

Surface Shallow/Deep Intensive

Ontological
description

Poorly structured on-
tologies with very sim-
ple resource descrip-
tion

Schematic ontologies with
taxonomic resource descrip-
tion

Articulated ontologies
with rich resource de-
scription

Kind of
matching

Linguistic-driven
matching

Linguistic and context-driven
matching

Linguistic, value, and
context-driven match-
ing

Advantages High performances More accurate characteriza-
tion of matching concepts

High precision and re-
call

Table 6. Applicability of the matching models

model is useful when only concept names are to be considered. It requires few
computational resources since neither concept properties nor semantic relations
are considered. This model is well suited, for example, to perform an initial on-
tology comparison to decide whether it is worth to perform a deeper analysis. If
the ontology is constituted mainly by concepts with a few number of properties
and hierarchical relation among concepts, the shallow and deep model allow a
good degree of precision without requiring great amount of computational re-
sources. In presence of an articulated ontology, with rich resource descriptions
and where relations among concepts are described through property values, the
intensive model guarantees the most precise and accurate results, although being
the most expensive in term of computation.

5.2 Comparative Evaluation with Other Tools

In this test, we compare the H-Match algorithm with similar ontology matching
tools and we analyze the results produced by applying them to the same test
case. The tools considered are FOAM 13 (Framework for Ontology Alignment

13 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

54 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

and Mapping) and OLA 14 (OWL Lite Alignment). The choice of these tools has
been led by the following considerations:

– The ontology mapping approach proposed by these tools is similar to H-
Match 15.

– A prototype of these tools is free for download or is available through a Web
Service.

– Different test cases and associated experimental results in term of precision,
recall, and F1 measure are available on the respective Web site.

Two different experimentations have been performed to compare H-Match with
FOAM and OLA, respectively. The goal of each test is to compare two OWL
ontologies in order to identify the pairs of matching elements. A list of expected
mappings is also specified for evaluating the results provided by the tools in
terms of precision, recall, and F1 measure. For what concern precision and recall
we refer to the definitions provided in Section 5.1, while F1 measure is derived
from the classical definition of Information Retrieval [30] and it is defined as
follows:

F1 =
2pr

p + r
(11)

where p and r represent precision and recall measures, respectively. For each
test, we execute H-Match under many different matching policies varying the
adopted matching model, the linguistic affinity weight Wla, the threshold t, and
the kind of mapping determined (i.e., one-to-one, one-to-many). For each test, we
report the H-Match policy that provides the best results in terms of precision,
recall, and F1 measure and we compare such results with the corresponding
results produced by the observed tool.

Comparison with FOAM. The test case adopted in this comparison has
been selected from the FOAM Web site and regards the animal domain. In
Table 7, we show the results produced by FOAM and H-Match, respectively.
The FOAM measurements are obtained by submitting the test case to the FOAM
Alignment Web Service 16. The point of maximum precision of H-Match is
obtained with the matching policy 〈intensive, 0.8, 0.7, one-to-one〉, while the points
of maximum recall and F1 measure are obtained with the policy 〈deep, 0.5, 0.3,
one-to-one〉. We can observe that FOAM has better results than H-Match for
what regards precision, while recall and F1 measure are a little bit higher for
H-Match. In general, these results confirm the impression we stressed in the
experiments of Section 5.1: deep and intensive matching can ensure appreciable
results in terms of precision and recall when Wla and t are properly set. In
particular, precision increases with high values both for linguistic affinity weight
and threshold (e.g., Wla = 0.8 and t = 0.7), while low values for both these
14 http://www.iro.umontreal.ca/∼owlola/
15 FOAM and OLA are also discussed in Section 6 where an analytical comparison

with H-Match is provided.
16 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/service.htm

Matching Ontologies in Open Networked Systems 55

Precision Recall F1 measure

FOAM
Point of maximum precision 1.0 0.58 0.74
Point of maximum recall 0.76 0.67 0.71
Point of maximum F1 1.0 0.58 0.74

H-MATCH
Point of maximum precision 0.86 0.67 0.75
Point of maximum recall 0.78 0.78 0.78
Point of maximum F1 0.78 0.78 0.78

Table 7. Comparison of H-Match and FOAM results

parameters (e.g., Wla = 0.5 and t = 0.3) are required for obtaining high values of
recall. Finally, we note that the one-to-one mapping strategy is always associated
to maximum measures of H-Match. Such a mapping strategy allows to obtain
more balanced results of precision and recall, thus it positively affects the F1
measures.

Comparison with OLA. The test case adopted in this comparison has been
selected from the Ontology Alignment Contest 17 and regards the comparison of
a reference bibliographic ontology 18 with the more complex Karlsruhe ontol-
ogy 19. In Table 8, the results of the comparison between H-Match and OLA
are summarized. Precision, recall, and F1 measure related to OLA on this test

Precision Recall F1 measure

OLA
0.5 0.31 0.38

H-MATCH
Point of maximum precision 0.82 0.74 0.78
Point of maximum recall 0.82 0.74 0.78
Point of maximum F1 0.82 0.74 0.78

Table 8. Comparison of H-Match and OLA results

case are obtained from [8] where the authors indicate that the tool configuration
has the intention to led to the best alignment with respect to precision. For what
concern H-Match, the points of maximum precision, recall, and F1 measure are
all obtained when the adopted matching policy is 〈intensive, 0.8, 0.8, one-to-one〉.

17 http://co4.inrialpes.fr/align/Contest/
18 http://co4.inrialpes.fr/align/Contest/101/onto.rdf
19 http://co4.inrialpes.fr/align/Contest/303/onto.rdf

56 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

We note that H-Match can provide appreciable results both in terms of preci-
sion and recall. With respect to our considerations in Section 5.1, we note that
the H-Match configuration for the point of maximum recall is anomalous. In
this test case, this is due to the fact that the expected mappings are strongly
dependent from linguistic features. This means that when the linguistic affinity
weight is high (e.g., Wla = 0.8), even if the threshold has a high value (e.g.,
t = 0.8), the accuracy of H-Match can achieve relevant results.

6 Related Work

In this section, we perform a comparative analysis of the state of the art tools
for ontology matching, providing also a critical comparison with H-Match. We
perform the comparison in the light of three main criteria: i) the ontology repre-
sentation formalism adopted by the tools; ii) the semantic complexity supported
by the matching process of each tool; iii) the mechanism adopted by each tool
for the composition of different similarity measures. For comparison we have
selected PROMPT [12], FOAM/QOM [10, 27, 31], OLA [8], S-Match [11, 23],
GLUE [7], and COMA++ [22]. PROMPT is a framework for multiple ontology
management; FOAM/QOM is a tool to full- or semi-automatically align two
or more ontologies; OLA is an ontology alignment tool tailored to OWL Lite
ontologies; S-Match is a semantic matchmaker tailored to graph-like structures;
GLUE is an approach based on machine learning techniques for schema and on-
tology matching purposes; COMA++ is a combined framework for schema and
ontology matching.

Ontology Representation Formalism. In Table 9, we compare the different
selected tools with respect to the internal formalism adopted for the ontology
representation and with the ontology languages supported. In particular, we
show which OWL dialect is supported by each tool and which OWL features
are considered in the matching process. The tools presented in Table 9 generally
adopt an internal representation, either a tree-based or a graph-based model, of
the ontology contents, which in several cases is defined to capture the features of
OWL. S-Match and GLUE do not refer explicitly to OWL, but their reference
model is compatible with OWL Lite. With respect to the ontology representation
formalism, H-Match is in line with the state of the art systems, in that it refers
to a graph-based model and provides direct support for OWL.

Features of the Matching Process. Table 10 shows the comparison of the
tools with respect to the ontology elements, the linguistic features, and the con-
textual features that characterize the matching process in each tool. With re-
spect to linguistic features, we compare the tools by taking into account the
techniques adopted for determining linguistic similarities and to the level of lin-
guistic analysis provided by each tool. Contextual features refer to the number
and type of semantic relations among concepts that are used by each tool in

Matching Ontologies in Open Networked Systems 57

OWL Dialect Internal representation

PROMPT
OWL Lite

OWL DL (partial)
OWL Full (partial)

Frame-based
Graph-based

FOAM/QOM
OWL Lite
OWL DL

Karlsruhe Ontology Model [27]
(Graph-based)

OLA OWL Lite
OL-Graph

(Graph-based)

S-Match
OWL Lite

(no specific support for OWL)
Tree-based

GLUE
OWL Lite

(no specific support for OWL)
Tree-based

COMA++ OWL Lite Graph-based

H-MATCH
OWL Lite

OWL DL (partial)
OWL Full (partial)

H-Model
(Graph-based)

Table 9. Comparison on ontology representation

order to determine the contextual similarity between two concepts. Regarding
ontology elements that can be matched, all the tools perform the matching pro-
cess by taking into account concepts and properties. Instances are considered
in PROMPT, FOAM/QOM, OLA, GLUE, and COMA++. In the case of H-
Match, the choice of considering concepts and properties is motivated by the
fact that the algorithm is conceived for matching knowledge requests in the con-
text of open networked systems, where probe queries are used with the aim of
acquiring new knowledge from other peers. In fact, a probe query provides basi-
cally the schema-level description of one or more concepts of interest. However,
H-Match can be easily extended to consider also instance level information in
the ontology matching process. This can be achieved by exploiting a combination
of linguistic and property value similarity measures already available in the in-
tensive matching model. Considering linguistic features, we distinguish between
tools that exploit an external dictionary or a thesaurus taking into account termi-
nological relationships and domain knowledge for linguistic matching, and tools
that rely on the syntactic features of labels and identifiers through string match-
ing. PROMPT and GLUE do not adopt any external support for the linguistic
analysis. FOAM and COMA++ adopt domain specific vocabularies that can be
used for refining the matching results obtained by syntactic analysis. H-Match,
as COMA++, S-Match, and OLA, adopts a language-based approach, in partic-
ular for the preprocessing of compound terms. S-Match, OLA, and H-Match
are similar also with respect to the intensive use of WordNet for the linguistic
matching. With respect to contextual features, all the tools take into account
the semantic relations holding between concepts. S-Match adopts a logic-based
approach that exploits the relations between concepts for automatic reasoning
purposes. All the tools refer to property domain and range as well as to taxo-
nomic relations among concepts. FOAM/QOM takes also into account property

58 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

Ontology elements Linguistic features Contextual features
Type of matching External dictionary

PROMPT
Concepts
Properties
Instances

Syntactic
(String

matching)
-

Property
domain

Property range
Kind-of
(Among
concepts)

FOAM/QOM
Concepts
Properties
Instances

Syntactic
(String

matching)

Domain
specific

dictionary

Property
domain

Property range
Property
hierarchy
Same-as
Kind-of

Individual
identity

OLA
Concepts
Properties
Instances

Syntactic
(String

matching)
Language-

based
(tokenization,

compound
terms)

WordNet

Property
domain

Property range
Kind-of

S-Match Concepts

Syntactic
(String

matching)
Language-

based
(lemmatization,
tokenization,
compound

terms)

WordNet

Same-as
Kind-of

Mismatch
Overlapping

GLUE
Concepts
Properties
Instances

- -

Property
domain

Property range
Same-as
Kind-of

COMA++
Concepts
Properties
Instances

Syntactic
(String

similarity)
Language-

based
(tokenization)

Domain
specific

dictionary

Property
domain

Property range
Same-as
Kind-of

H-MATCH
Concepts
Properties

Language-
based

(Tokenization,
compound

terms)

WordNet

Property
domain

Property range
Same-as
Kind-of
Part-of

Associates

Table 10. Comparison on semantic complexity

hierarchies and identity relations among instances. H-Match takes into account
property domain and range, and the semantic relations of same-as, kind-of, part-of,
and associates in the context of concepts. In particular, the part-of and associates

Matching Ontologies in Open Networked Systems 59

relations are useful to deal with object-oriented ontology specifications, where
these relations are typically used. H-Match and FOAM/QOM adopt a similar
strategy in discarding some kind of contextual features in order to increase the
matching performance. The main difference between the two is related to the
way the strategy is enforced. In H-Match, the strategy is chosen at run-time,
by selecting the most adequate matching model that has to be adopted at a
given invocation time.

Similarity Measures Composition. In Table 11, we compare the different ap-
proaches with respect to: i) the mechanism adopted for deriving a comprehensive
similarity value out of the different similarity measures and ii) the mechanism
adopted for cutting off the useless results. With respect to the similarity mea-

Similarity measure composition Cut-off

PROMPT Cumulative approach Highest value

FOAM/QOM
Weighted sum

Process iteration
Threshold-based

OLA Iterative process Highest value

S-Match Logic-based (SAT) -

GLUE
Machine learning

approach
Probability-

based

COMA++
Average value

Iterative approach
Highest value

H-MATCH Weighted sum Threshold-based

Table 11. Comparison on similarity measure composition

sures composition, PROMPT, OLA, and GLUE, even if in different ways, adopt
a cumulative and iterative strategy for deriving the comprehensive degree of
similarity between two ontology elements. In S-Match the structural matching is
seen as a logic proof based on the previously determined relations among concept
labels. COMA++ and FOAM are frameworks based on the idea of combining
different measures of similarity. In COMA++ the similarity measures are com-
posed in a comprehensive measure by evaluating their average value. In FOAM,
the strategy is to perform a weighted sum of the different similarity measures,
where the factors are functionally computed. H-Match adopts a weighted sum
between linguistic and contextual measures of similarity, where the weights as-
sociated with linguistic and contextual affinity are constant. The problem of
cutting off the results that are not used to determine mappings is typical of the
approaches that provide a measure of similarity between ontology elements. S-
Match is based on the idea to discover a semantic relation between two elements
of different ontologies, so that there is no need of a cutting off mechanism. In
GLUE, mappings represent the probability that an instance of a given element

60 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

is an instance also of another element. GLUE chooses the most probable map-
ping, that is the mapping between the elements with the highest probability
to represent the same real object in the domain. In PROMPT and OLA, the
matching value used for determine the mappings is the highest value that is com-
puted between two elements by means of a cumulative strategy. FOAM/QOM,
COMA++, and H-Match provide a measure of similarity between ontology el-
ements in the range [0, 1]. In COMA++, mappings are determined between the
elements with the highest matching values. In FOAM and H-Match, the cut-off
mechanism is based on a threshold that is set as a parameter of the algorithm.

7 Concluding Remarks

In this paper, we have presented the H-Match algorithm and related techniques
for matching of independent ontologies in open networked systems. H-Match
has been implemented and used for probe query processing in the framework of
the Helios networked system for supporting dynamic knowledge discovery and
ontology-addressable content retrieval in peer-based systems [19, 20]. The novel
contributions and distinguishing features of H-Match can be summarized as
follows:

– Fully-automated matching process that can be used as: i) a matchmaker
engine of a peer for matching probe queries against peer ontologies for
knowledge discovery as occurs in the Helios open networked system; ii)
a conventional ontology matching tool for the alignment of two independent
ontologies;

– Capability of satisfying as a whole both general requirements of ontology
matching per se and peculiar requirements of matching in open networked
context. This is achieved by providing a wide spectrum of metrics suited for
dealing with many different matching scenarios where the number and type
of ontology features that can be exploited during the matching process is
not known in advance;

– Capability of being dynamically configured for adaptation to the semantic
complexity of the ontologies to be compared. This is achieved by automati-
cally selecting the matching configuration according to a policy embedded in
the incoming request which can vary, also for the same ontology, each time
a new request is submitted to the system.

Future work will regard the enrichment of the ontology features supported by H-
Match; the semantic query routing; the semantic community definition. With
respect to the first issue, we will consider also instance-level information of on-
tology specifications in the matching process of H-Match, starting from current
intensive matching techniques. Other two research issues are related to the use
of H-Match for enforcing semantic query routing and for semantic community
formation, which are hot research topics in open networked systems. Some initial
results on these issues are presented in [32, 33].

Matching Ontologies in Open Networked Systems 61

Acknowledgments. The authors would like to thank the anonymous refer-
ees for their detailed and insightful comments. A special acknowledgment is
due to Gianpaolo Racca for his invaluable collaboration to the development of
H-MATCH in the framework of the HELIOS project. This paper has been par-
tially funded by “Wide-scalE, Broadband, MIddleware for Network Distributed
Services (WEB-MINDS)” FIRB Project funded by the Italian Ministry of Edu-
cation, University, and Research, and by NoE INTEROP, IST Project n. 508011 -
6th EU Framework Programme.

References

[1] Broekstra, J., et al.: A Metadata Model for Semantics-Based Peer-to-Peer Sys-
tems. In: Proc. of the 1st WWW Int. Workshop on Semantics in Peer-to-Peer and
Grid Computing (SemPGRID 2003), Budapest, Hungary (2003)

[2] Nejdl, W., et al.: EDUTELLA: a P2P Networking Infrastructure Based on RDF.
In: Proc. of the 11th Int. World Wide Web Conference (WWW 2002), Honolulu,
Hawaii, USA (2002)

[3] Mitre, J., Navarro-Moldes, L.: P2P Architecture for Scientific Collaboration. In:
Proc. of the 13th Int. Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE 2004), Modena, Italy, IEEE Computer Society
(2004) 95–100

[4] Iamnitchi, A., Ripeanu, M., Foster, I.T.: Locating Data in (Small-World?) Peer-to-
Peer Scientific Collaborations. In: Proc. of the 1st Int. Workshop on Peer-to-Peer
Systems IPTPS 2002, Cambridge, MA, USA (2002) 232–241

[5] Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Logical Foundations
of Peer-To-Peer Data Integration. In: Proc. of the 23rd ACM SIGACT SIGMOD
SIGART Sym. on Principles of Database Systems (PODS 2004), Paris, France
(2004) 241–251

[6] Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling Approach for
Semantics-Driven Enterprise Applications. In Springer, ed.: Proc. of Confeder-
ated Int. Conferences DOA, CoopIS and ODBASE 2002, Irvine, California, USA
(2002) 1082–1099

[7] Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Map between
Ontologies on the Semantic Web. In: Proc. of the 11th Int. World Wide Web
Conference (WWW 2002), Honolulu, Hawaii, USA (2002) 662–673

[8] Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology Alignment with OLA.
In: Proc. of the 3rd ISWC Workshop on Evaluation of Ontology-based Tools (EON
2004), Hiroshima, Japan (2004)

[9] Do, H., Rahm, E.: COMA - A System for Flexible Combination of Schema Match-
ing Approaches. In: Proc. of 28th Int. Conference on Very Large Databases (VLDB
2002), Hong Kong, China (2002)

[10] Ehrig, M., Sure, Y.: Ontology Mapping - An Integrated Approach. In: Proc. of
the 1st European Semantic Web Symposium, Heraklion, Greece, Springer Verlag
(2004) 76–91

[11] Giunchiglia, F., Shvaiko, P.: Semantic Matching. Knowledge engineering review
18 (2003) 265–280

[12] Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools For Ontology
Merging And Mapping. International Journal of Human-Computer Studies 59
(2003) 983–1024

62 Silvana Castano, Alfio Ferrara, and Stefano Montanelli

[13] Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. VLDB Journal 10 (2001) 334–350

[14] Shvaiko, P., Euzenat, J.: A Survey of Schema-based Matching Approaches. Jour-
nal on Data Semantics (JoDS) (2005)

[15] Noy, N.F.: Semantic Integration: a Survey of Ontology-based Approaches. SIG-
MOD Record Special Issue on Semantic Integration (2004)

[16] Kalfoglou, Y., Schorlemmer, M.: Ontology Mapping: the State of the Art. The
Knowledge Engineering Review 18 (2003)

[17] INTEROP - Network of Excellence: State of the Art and State of the Practice In-
cluding Initial Possible Research Orientations. Deliverable D8.1, NoE INTEROP
- IST Project n. 508011 - 6th EU Framework Programme (2004)

[18] Smith, M.K., Welty, C., McGuinness, D.L., (eds.): OWL Web Ontology Language
Guide (2004) World Wide Web Consortium (W3C), http://www.w3.org/TR/owl-guide/.

[19] Castano, S., Ferrara, A., Montanelli, S., Zucchelli, D.: HELIOS: a General Frame-
work for Ontology-based Knowledge Sharing and Evolution in P2P Systems. In:
Proc. of the 2nd DEXA Int. Workshop on Web Semantics (WEBS 2003), Prague,
Czech Republic, IEEE Computer Society (2003)

[20] Castano, S., Ferrara, A., Montanelli, S.: Dynamic Knowledge Discovery in Open,
Distributed and Multi-Ontology Systems: Techniques and Applications. In: Web
Semantics and Ontology. Idea Group (2005) To Appear.

[21] Castano, S., De Antonellis, V., De Capitani Di Vimercati, S.: Global Viewing of
Heterogeneous Data Sources. IEEE Transactions on Knowledge and Data Engi-
neering 13 (2001) 277–297

[22] Aumueller, D., Do, H., Massmann, S., Rahm, E.: Schema and Ontology Matching
with COMA++. In: Proc. of SIGMOD 2005 - Software Demonstration, Baltimore,
USA (2005)

[23] Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an imple-
mentation of semantic matching. In: Semantic Interoperability and Integration,
Schloss Dagstuhl, Germany (2005)

[24] Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM (CACM) 38 (1995) 39–41

[25] Ouksel, A.M., Naiman, C.F.: Coordinating Context Building in Heterogeneous
Information Systems. Journal of Intelligent Information Systems 3 (1994) 151–183

[26] Lauer, M.: Designing Statistical Language Learners: Experiments on Noun Com-
pounds. In: Proc. of the 33rd Annual Meeting of the Association for Computa-
tional Linguistics (ACL 1995), Cambridge, Massachusetts, USA (1995) 47–54

[27] Ehrig, M., Staab, S.: QOM - Quick Ontology Mapping. In: Proc. of the 3rd Int.
Semantic Web Conference (ISWC 2004), Hiroshima, Japan (2004)

[28] Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking:
Bringing Order to the Web. Technical report, Computer Science Department,
Stanford University (1998)

[29] Arasu, A., Cho, J., Garcia-Molina, H., Paepcke, A., Raghavan, S.: Searching the
web. ACM Transactions on Internet Technology (2001)

[30] Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley (1989)

[31] Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for Ontologies - A Com-
prehensive Framework. In: Proc. of the 13th European Conference on Information
Systems, Regensburg, Germany (2005)

Matching Ontologies in Open Networked Systems 63

[32] Castano, S., Ferrara, A., Montanelli, S., Pagani, E., Rossi, G.P., Tebaldi, S.: On
Combining a Semantic Engine and Flexible Network Policies for P2P Knowledge
Sharing Networks. In: Proc of the 1st DEXA Workshop on Grid and Peer-to-Peer
Computing Impacts on Large Scale Heterogeneous Distributed Database Systems
(GLOBE 2004), Zaragoza, Spain, IEEE Computer Society (2004) 529–535

[33] Castano, S., Montanelli, S.: Semantic Self-Formation of Communities of Peers.
In: Proc. of the ESWC Workshop on Ontologies in Peer-to-Peer Communities,
Heraklion, Greece (2005)

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 64-90, 2006.
 Springer-Verlag Berlin Heidelberg 2006

A Method for Pruning Ontologies in the Development of
Conceptual Schemas of Information Systems

Jordi Conesa and Antoni Olivé

Universitat Politècnica Catalunya
Departament de Llenguatges i Sistemes Informàtics

Jordi Girona 1-3 E08034 Barcelona (Catalonia)
{jconesa|olive}@lsi.upc.edu

Abstract. In the past, most conceptual schemas of information systems have
been developed essentially from scratch. Currently, however, several research
projects are considering an emerging approach that tries to reuse as much as
possible the knowledge included in existing ontologies. Using this approach,
conceptual schemas would be developed as refinements of (more general)
ontologies. However, when the refined ontology is large, a new problem that
arises using this approach is the need of pruning the concepts in that ontology
that are superfluous in the final conceptual schema. This paper proposes a new
method for pruning ontologies in this approach. We also show how to adapt the
method to prune ontologies in other contexts. Our method is general and it can
be adapted to most conceptual modeling languages. We give the complete
details of its adaptation to the UML. On the other hand, the method is fully
automatic. The method has been implemented. We illustrate the method by
means of its application to a case study that refines the Cyc ontology.

1 Introduction

Most conceptual schemas of information systems have been developed essentially
from scratch. The current situation is not very different: most industrial information
systems projects are being developed using a methodology that assumes that the
conceptual schema is created every time from scratch. However, it is well-known that
substantial parts of conceptual schemas can be reused in different projects, and that
such reuse may increase the conceptual schema quality and the development
productivity [21].

Several research projects explore alternative approaches that try to reuse
conceptual schemas as much as possible [5, 18, 29, 31]. The objective is similar to
that of projects in the artificial intelligence field that try to reuse ontologies. There are
several definitions of the term “ontology”. We adopt here the one proposed in [12,
34], in which an ontology is defined as the explicit representation of a
conceptualization. A conceptualization is the set of concepts (entities, attributes,
processes) used to view a domain. An ontology is the specification of a
conceptualization in some language. In this paper, we consider a conceptual schema
as the ontology an information system needs to know.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 65

Ontologies can be classified in terms of their level of generality into[13]:
 Top-level ontologies, which describe domain-independent concepts such as

space, time, etc.
 Domain and task ontologies which describe, respectively, the vocabulary related

to a generic domain and a generic task.
 Application ontologies, which describe concepts depending on a particular

domain and task.
We call top-level, domain and task ontologies general ontologies. One example of

general ontology is Cyc [16].
General ontologies can play several roles in conceptual modeling [31]. One of

them is the base role. We say that a general ontology plays a base role when it is the
basis from which the conceptual schema is developed. In general, the development
requires three main activities [10]: refinement, pruning and refactoring which are
reviewed in section 3. The objective of the refinement activity is to extend the base
ontology with the particular concepts needed in a conceptual schema, and that are not
defined in that ontology.

In general, when the base ontology is large, the extended ontology cannot be
accepted as the final conceptual schema because it includes many superfluous
concepts. The objective of the pruning activity is then to prune the unnecessary
concepts. In this paper, we propose a new method for pruning ontologies in the
development of conceptual schemas. To the best of our knowledge, ours is the first
method that is independent of the conceptual modeling language used and of the base
ontology. The method can be used in other contexts as well, and we will show that it
has several advantages over similar existing methods. Our method can be adapted to
most languages, and we give the complete details of its adaptation to the UML [25].
We illustrate the method by means of its application to a case study that refines the
Cyc ontology.

The structure of the paper is as follows. In the next section we present the case
study used to exemplify our approach. Section 3 reviews the three main activities in
the development of a conceptual schema from a base ontology, with the objective of
defining the context of the pruning activity, the focus of this paper. Section 4 presents
the pruning method we propose and proves it is correct. Section 5 compares our
method with similar ones. Section 6 extends our method to make it independent of the
selection strategy used to identify the concepts which are of direct interest for the
information system. Finally, Section 7 gives the conclusions and points out future
work.

2 Case Study

In the case study we create the conceptual schema of a recipe information system by
refining the Cyc ontology. The information base must represent information about:

 Recipes: A recipe is a guide that explains how to create a given meal. They are
published in documents written by one or more authors. Each recipe also
indicates which ingredients are necessary to create the described meal for a
given number of persons.

66 Jordi Conesa and Antoni Olivé

 Ingredients: A given quantity of an ingredient consists of one or more quantities
of distinct nutrients.

 Restaurants: A restaurant is an organization whose main activity is to serve and
prepare meals. Each restaurant offers a list of dishes available for a meal. The
dishes are prepared by cookers. A restaurant can only offer the meals its cookers
know prepare. Restaurants are located in cities. The name of a restaurant must
be unique in the city where it is located.

 Menus: Restaurants offer menus, which are composed for a subset of the list of
dishes. The menus must have at least one first dish, one second dish and one
dessert. The price of a menu cannot exceed the addition of the individual prices
per dish.

The information system must answer queries such as:
 Kilocalories of an ingredient.
 Amounts of lipid, carbohydrate, mineral, protein, vitamin, water and cholesterol

an aliment has.
 For a given city, all the restaurants whose cookers have published a recipe.
 The recipe of a given meal with the lower number of calories.
 The restaurant of a given city that offers a given meal at the lowest price.
 All the vegetarian menus offered in a given city.
 For a given restaurant, the cheapest combination of first dish, second dish, and

dessert.
More details will be given when they arise. The complete details of the case study

are reported in [7].

3 The Context

In this section we briefly review the three activities required to develop a conceptual
schema from a general ontology: refinement, pruning and refactoring. Normally, these
activities will be performed sequentially (see Fig. 1), but an iterative development is
also possible [10].

3.1 Refinement

Normally, a general ontology OG will not include completely the conceptual schema
CS required by a particular information system. The objective of the refinement
activity is then to obtain an extended ontology OX such that:

 OX is an extension of OG, and
 OX includes the conceptual schema CS.

The refinement is performed by the designer. S/he analyzes the IS requirements,
determines the knowledge the system needs to know to satisfy those requirements,
checks whether such knowledge is already in OG and, if not, makes the necessary
extensions to OG, thus obtaining OX.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 67

In our case study, we adopted as general ontology OG OpenCyc [26], the public
version of the Cyc ontology. OpenCyc includes over 2900 entity types and over 1300
relationship types. Even if these numbers are large (and even larger in other
ontologies such as Cyc) it is likely that additional entity or relationship types may be
needed for the CS of a particular IS.

For example, our case study deals with recipes, its ingredients and the nutrients
that compose those ingredients. The concept Nutrient exists in the base ontology, but
their specializations into Mineral, Lipid... do not exist in OpenCyc. Then, we have to
add a concept for each nutrient type: Mineral, Lipid, Protein, Carbohydrates, Vitamin
and Water-Ingestible (see figure 2). Note that Water-Ingestible is also a Drink.

In our system, quantities of EdibleStuff must be expressed in some reference unit
(such as gram). For this purpose we have defined attribute referenceUnit of type
UnitOfMeasure (which is a datatype already defined in OpenCyc).

We need a concept that represents all kind of edible stuff element, because
EdibleStuff represents also nutrients, and Food does not represent the condiments or
preservatives that can be considered as ingredients. Then, we define an entity type
called NonNutrientEdibleStuff. We define this type between EdibleStuff and its
children: CerealFood, FoodIngredientsOnly and FoodOrDrink.

The nutritional composition of recipe ingredients is represented in the association
between NonNutrientEdibleStuff and Nutrient. The association is reified in order to
represent the quantity of nutrient included in the base quantity of
NonNutrientEdibleStuff. For example “100 gr. of rice have 7.3 gr. of proteins”,
where rice is an instance of NonNutrientEdibleStuff , with baseQuantity 100 gr., and
the nutrientQuantity of proteins is 7.3 gr.

The complete refinement of OpenCyc for the case study is described in [7]. In
summary, we have added twelve entity types (Mineral, Lipid, Protein,
CarboHydrates, Vitamin, Water-Ingestible, NonNutrientEdibleStuff, Recipe,
RecipeDocument, FirstDish, SecondDish, Dessert, Menu, CateringCompany), nine
attributes (attributes referenceUnit of EdibleStuff, baseQuantity of
NonNutrientEdibleStuff, nutrientQuantity of NutritionalComponent shown in Figure

 General
Ontolog

Extend-
ed

 Pruned
Ontolog

Conceptual
 Schema

Refinement Pruning Refactoring

Fig. 1. The three activities in the development of conceptual schemas from general

IS requirements
designer

OG OX OP CS

68 Jordi Conesa and Antoni Olivé

2) and eight associations (one of them is NutritionalComponent in Figure 2). We have
also added two association refinements and six general integrity constraints.

3.2 Pruning

Normally, an extended ontology OX will contain many irrelevant concepts for a
particular information system. The objective of the pruning activity is then to obtain a
pruned ontology OP such that:

 OP is a subset of OX, and
 OP includes the conceptual schema CS, and
 The concepts in OX but not in OP would have an empty extension in the

information system, or they are unnecessary for the information system.
In the case study, we find that the OpenCyc ontology contains thousands of

concepts irrelevant for recipes. For example, the entity and relationship types dealing
with Chemistry. Our information system is not interested in these concepts and,
therefore, their extension in the information base would be empty. The objective of
the pruning activity is to remove such concepts from OX. In the next section we
present a method for the automatic pruning of ontologies. The input of the method is
either the formal specification of the IS requirements (domain events, queries) or the
explicit definition of the concepts (entity and relationship types) of interest.

Fig. 2. Partial refinement of OpenCyc in the case study. The grayed boxes are
refined concepts.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 69

3.3 Refactoring

Normally, a pruned ontology OP cannot be accepted as a final CS because it can be
improved in several aspects. The objective of the refactoring activity is then to obtain
a conceptual schema CS that is externally equivalent to OP yet improves its structure.
The purpose of ontology (or conceptual schema) refactoring is equivalent to that of
software refactoring [11]. The refactoring is performed by the designer, but important
parts of the activity can be assisted or automated, provided that the IS requirements
are formalized. Refactoring consists in the application of a number of refactoring
operations to parts of an ontology. Many of the software refactoring operations can be
adapted to conceptual modeling, but this will not be explored in this paper.

4 Pruning the Extended Ontology

In this section, we define the problem of pruning the extended ontology and we
propose a new method for its solution. The starting point of the pruning activity is an
extended ontology OX and the functional requirements of the IS. We explain also the
adaptation of the problem and the method to the UML, currently one of the most
widely used languages for conceptual modeling.

4.1 The Extended Ontology

We assume that, in the general case, an ontology OX consists of sets of the following
elements [33]:

 Concepts. There are two kinds of concepts:
 Entity types.
 Relationship types. We will denote by R(p1:E1,…,pn:En) a relationship type

R with participant entity types E1, …, En playing roles p1, …, pn
respectively.

 Generalization relationships between concepts. We denote by IsA(C1,C2) the
generalization relationship between concepts C1 and C2, where C1 is the subtype
and C2 the super type. IsA+ will be the transitive closure of IsA. We admit
multiple specialization and multiple classification.

 Integrity constraints1.

Adaptation to the UML. In the UML an ontology OX consists of sets of the
following elements (see Figure 2):

 Concepts:
 Entity types.
 Data types.
 Attributes.
 N-ary associations.

1 The generalization relationships are (inclusion) constraints also, but we give them a special

treatment due to its prominent role in taxonomies and in conceptual modeling.

70 Jordi Conesa and Antoni Olivé

 Association classes, which reify associations. An association class and its
reifying association are a single element.

 Generalization relationships between de above concepts. Attributes cannot be
generalized.

 Constraints.
In the UML, some constraints are predefined (they have a particular language

construct) and others may be user-defined. In our method we deal with constraints of
the following kinds:

 Cardinality constraints of associations and attributes.
 Completeness and disjointness of sets of generalizations.
 Redefinition of association ends and attributes (redefinition constraints). Figure

3 shows an example of association redefinition: the association
ObjectFoundInLocation is redefined in City.

 General constraints. We assume that general constraints are defined by
constraint operations and specified in the OCL, as explained in [23]. The
adaptation of our method to constraints defined as invariants is straightforward.
An example is the constraint that the name of a restaurant must be unique into
the city where it is located. Its formal specification is:

 Context FoodServiceOrganization::uniqueName() : TruthValue
 body: FoodServiceOrganization.allInstances()->forAll(o1,o2|

 (o1 <> o2 and o1.name = o2.name) implies
 o1.City<>o2.City)

In the case study, OX consists of:
 2,715 Entity types and 255 Data types.
 255 Attributes and 1,397 Associations.
 6 general integrity constraints.

4.2 Concepts of Direct Interest

Usually, the extended ontology OX will be (very) large, and only a (small) fraction of
it will be needed for the CS of a particular IS. The objective of the pruning activity, as
we will define it below, is to remove some non-needed elements from OX.

The pruning activity needs to know which concepts from OX are of direct interest
in the IS. A concept is of direct interest in a given IS if its users and designers are
interested in representing its population in the Information Base of the IS or inferring
information from it. Our pruning method needs to know the concepts of direct
interest, independently of how they have been obtained. We study in section 6 how to
use several selection strategies to select the concepts of direct interest in an easy and
reusable way.

When the functional requirements of an IS are formally specified, then the
concepts of direct interest CoI may be automatically extracted from them [31]. The
details of the extraction process depend on the method and language used for that
specification. We explain here the process when the IS behavior is specified by
system operations, as is done in many methods such as Larman’s method [15], the B
method [1] or Fusion [6]. A similar process can be used when the behavior is
specified by statecharts, event operations or other equivalent methods.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 71

In general, the formal specification of a system operation consists of:
 A signature (name, parameters, and result). The types of the parameters and

the result are entity types defined in OX.
 A set of preconditions. Each precondition is a boolean expression involving

concepts defined in OX.
 A set of postconditions. As above, each postcondition is a boolean expression

involving concepts defined in OX.
The concepts of direct interest CoI are then defined as:

 The types of the parameters and result of the system operations.
 The concepts appearing in the pre or postconditions.

In some cases the formal specification may not be available or may be incomplete.
In these cases, the designers may wish to define the concepts CoI explicitly or to add
new concepts to those determined from the functional specification.

If a relationship type is a concept of direct interest then we require that its
participant entity types are in CoI also. Formally, we say that a set of concepts of
direct interest CoI is complete if for each relationship type R(p1:E1,…,pn:En) CoI the
participant entity types {E1, …, En} CoI.

In OX there may be some concepts that generalize those in CoI and which are not
part of CoI. We are interested in these generalized concepts because they may be
involved in constraints that affect instances of the concepts CoI. To this end, we call
set of generalized concepts of interest G(CoI) the concepts of a complete set CoI and
their generalizations. Formally:

G(CoI) = {c | c CoI sub (IsA+(sub,c) sub CoI)}

Adaptation to the UML. The adaptation is straightforward. We assume that the
pre/postconditions are written in the OCL. For example, consider the system
operation howMuchCholesterol, whose purpose is to return the quantity of cholesterol
of a given meal. Its formal specification may be:

Context System::howMuchCholesterol (f:NonNutrientEdibleStuff):

NonNegativeNumber
body: f.NutritionalComponent->

select(nutrient.oclIsType(CholesterolLipid)).
 nutrientQuantity->sum()

The CoI inferred from this operation are: NonNutrientEdibleStuff,
NonNegativeNumber, NutritionalComponent, Nutrient, CholesterolLipid,
NutrientQuantity and ScalarInterval.

4.3 Constrained Concepts

We call constrained concepts of an integrity constraint ic, CC(ic), the set of concepts
appearing in the formal expression of ic. By abuse of notation we write CC(O) to
denote the set of concepts constrained by all the integrity constraints defined in
ontology O. Formally,

72 Jordi Conesa and Antoni Olivé

CC(O) = {c | c is a concept c O ic (ic is a constraint ic O c CC(ic))}

Adaptation to the UML. If ic is a cardinality constraint of an attribute or association,
then CC(ic) will be the attribute or association, and the entity and data types involved
in it.

If ic is a completeness constraint with a common supertype super and subtypes
sub1, …, subn, then CC(ic) = {super, sub1 ,…, subn}.

A disjointness constraint with a common supertype super and subtypes sub1, …,
subn, corresponds to n(n-1)/2 disjunction constraints each of which constraints two
subtypes, subi and subj, and super. Strictly speaking, these constraints do not involve
the supertype super, but in the UML they are attached to sets of generalizations
having the same supertype.

If ic is a redefinition of an association or attribute then CC(ic) will be the redefined
association or attribute, and the entity and data types involved in the association or
attribute.

The constrained concepts of a general constraint will be the entity types, data
types, attributes, associations and association classes appearing in the OCL expression
that defines it. For example, if uniqueName is the general constraint defined in 4.1,
and figure 3 represents the relevant fragment of the OX for this integrity constraint,
then CC(uniqueName) = {FoodServiceOrganization, TruthValue, name,
SomethingExisting, ObjectFoundInLocation, City}. Note that the entity types
SomethingExisting and ObjectFoundInLocation have been selected because they
participate directly in the selected relationship types, which are name and
ObjectFoundInLocation respectively.

4.4 The Pruning Problem

Given an extended ontology OX and a complete set of concepts of direct interest CoI,
as explained above, the pruning problem consists in obtaining a pruned ontology OP
such that:
(a) The elements in OP are a subset of those in OX. We do not want to add new

elements to OX in the pruning activity. Additions can be done in the refinement or
in the refactoring activities.

c (c OP c OX)

(b) OP includes the concepts of direct interest CoI. These concepts must be included
in OP. The information system needs such concepts in order to perform its
functions.

c (c CoI c OP)

(c) If C1 and C2 are two concepts in OP and there is a direct or indirect generalization
relationship between them in OX, then such relationship must also exist in OP.
Otherwise, the child concept C1 would lose the relationship types and constraints
defined in C2 or in its parents. Formally:

c1,c2 (c1 OP c2 OP IsA+(c1,c2) OX IsA+(c1,c2) OP)

A Method for Pruning Ontologies in the Development of Conceptual Schemas 73

(d) OP includes all constraints defined in OX whose constrained concepts are in
G(CoI). The rationale is that the constraints in OX which constraint the
Information Base of OP must be part of it. The constraints in OX that involve one
or more concepts not in G(CoI) cannot be enforced and, therefore, are not part of
OP.

IC (IC OX CC(IC) G(CoI) IC OP)

(e) OP is syntactically correct [17] , that is, it is a valid instance of the conceptual
modeling language in which it is specified (metamodel).

(f) OP is minimal, in the sense that if any of its elements is removed from it, the
resulting ontology does not satisfy (b-e) above.

For each OX and CoI there is at least an ontology OP that satisfies the above
conditions and, in the general case, there may be more than one.

To the best of our knowledge, there does not exist a method that obtains OP
automatically in a context similar to ours. In what follows we describe a method for
the problem. In the next section we will compare it with existing similar methods.

4.5 The Pruning Algorithm

Our algorithm obtains OP in three steps. The algorithm begins with an initial ontology
O0 which is exactly OX (that is, O0 := OX) and obtains OP. The steps are:

 Pruning irrelevant concepts and constraints. The result is the ontology O1.
 Pruning unnecessary parents. The result is the ontology O2.
 Pruning unnecessary generalization paths. The result is OP.

Pruning irrelevant concepts and constraints. The concepts of direct interest for the
IS are given in the set CoI, and G(CoI) is the set of concepts in which the IS is
directly or indirectly interested in. However, O0 may include other concepts, which
are irrelevant for the IS. Therefore, in the first step we prune from O0 all concepts
which are not in G(CoI), that is, we prune the set of concepts:

IrrelevantConcepts = {c | c is a concept c O0 c G(CoI)}

Pruning a concept C implies pruning of all generalization relationships IsA(C1,C)
and IsA(C,C1) in which C participates. The super types and subtypes C1 of C are not
affected by the pruning of C.

Similarly, we prune the constraints in O0 that are not relevant for the IS, because
they constraint one or more concepts not in G(CoI). That is, we prune the set of
constraints:

IrrelevantConstraints =

{ic | ic is a constraint ic O0 c (c CC(ic) c G(CoI)}

The result of this step is the ontology O1:

O1 = O0 – IrrelevantConcepts – IrrelevantConstraints

74 Jordi Conesa and Antoni Olivé

In the example of Figure 3, we have that HasWorkers is a concept of interest and,
therefore, {HasWorkers} G(CoI). However, HasEmployees, a subtype of
HasWorkers, is not an element of G(CoI) and therefore it is pruned in this step.
Likewise, Person is a concept of interest but its subtypes (Student, HumanChild,
HumanAdult, FemalePerson, MalePerson, etc. not shown in Figure 3) are not, and
therefore they are also pruned in this step. The same happens to “lateral” concepts
such as Atom or Electron.

In the case study, after the application of this step we have an ontology O1
consisting of:

 140 Entity types and 22 Data types.
 15 Attributes and 30 Associations.
 6 general integrity constraints.

Pruning unnecessary parents. After the previous step, the concepts of the resulting
ontology (O1) are exactly G(CoI). However, not all of them are needed in the CS. The
concepts strictly needed are given by:

NeededConcepts = CoI CC(O1)

The other concepts are potentially not needed. Formally:

PotentiallyUnneededConcepts= G(CoI) – NeededConcepts

We can prune the parents of NeededConcepts which are not children of some
concept in NeededConcepts. Formally,

UnnecessaryParents = {c | c PotentiallyUnneededConcepts c’ (c’
NeededConcepts IsA+(c,c’))}

As we have said before, the pruning of a concept implies the pruning of all
generalization relationships in which that concept participates.

The result of this step is the ontology O2:

O2 = O1 – UnnecessaryParents

Fig. 3. Fragment of the extended ontology with relevant elements and constraints

FoodServiceOrganization

«IC» uniqueName(): TruthValue

City

SpatialThing-Localized *

*

objectFoundInLocation

*

1..*objectFoundInLocation

Person

nameSuffix:CharacterString[*]
socialSecurityNum:SocialSecurityNumber[0..1
titleOfPerson-StringCharacterString[*]

author1..*

*writtenBy

RecipeDocument

{redefines worker}

1..*
{redefines work}

1..*hasWorkers 1..*

Agent

*

*

hasWorkers

work

worker

{redefines location}

location

HasEmployees

SomethingExisting
name: CharacterString

A Method for Pruning Ontologies in the Development of Conceptual Schemas 75

In Figure 4, examples of unnecessary parents are the entity types SpatialThing,
TemporalThing, Individual and Thing which are the parents of SpatialThing-
Localized and SomethingExisting. In the case study, SpatialThing neither is a needed
concept of O1, nor is a child of some needed concept, and therefore it is pruned in this
step. The same happens for Thing, Individual and TemporalThing. Note that although
the entity types InformationBearingThing and TextualMaterial are not unnecessary,
they cannot be deleted, because of their common necessary parent SpatialThing-
Localized.

In the case study, after the application of this step we have an ontology O2
consisting of:

 106 Entity types and 19 Data types.
 15 Attributes and 11 Associations.
 6 general integrity constraints.

Pruning unnecessary generalization paths. In some cases, the ontology O2 may
contain generalization paths between two concepts such that not all of them are
necessary. The purpose of the third step is to prune these paths.

We say that there is a generalization path between C1 and Cn if:
 C1 and Cn are two concepts from O2,
 IsA+(C1,Cn) and
 The path includes two or more generalization relationships IsA(C1,C2), …,

IsA(Cn-1,Cn).
A generalization path IsA(C1,C2), …, IsA(Cn-1,Cn) between C1 and Cn is potentially

redundant if none of the intermediate concepts C2, …, Cn-1:
 Is member of the set CoI CC(O2)
 Is the super or the sub of other generalization relationships.

Fig. 4. Detecting and deleting the unnecessary parents. The grayed
boxes are needed concepts

SomethingExisting

name:CharacterString

«IC» uniqueName():TruthValue

TemporalThing

SpatialThing-Localized

SpatialThing

Individual

Thing

*

*
objectFoundInLocation

InformationBearingThing

TextualMaterial

RecipeDocument

76 Jordi Conesa and Antoni Olivé

A potentially redundant generalization path between concepts C1 and Cn is
redundant if there are other generalization paths between the same pair of concepts. In
this case, we prune the concepts C2, …, Cn-1 and all generalization relationships in
which they participate. Note that, in the general case, this step is not determinist.

The output of this step is the pruned ontology, OP.
Figure 5 shows four generalization paths between the concepts of direct interest

Restaurant and SomethingExisting. None of these paths can be deleted, because at
least one of their elements participate in more than one generalization relationship.
Concretely, the entity types FoodServiceOrganization,
CommercialServiceOrganization, CommercialOrganization, LegalAgent,
Organization and SocialBeing. However, there exist three specialization paths
between the entity types Organization and FoodServiceOrganization:
P1={Organization, FoodAndBeverageOrganization, FoodServiceOrganization},
P2={Organization, Service, FoodServiceOrganization} and P3={Organization,
CommercialOrganization, FoodServiceOrganization}. The intermediate concepts of
all the paths are not members of CoI CC(O2). Furthermore,
FoodAndBeverageOrganization is the only intermediate concept which does not
participate in other generalization relationships, so the path P1 is the only path that is
potentially redundant. Therefore, it can be pruned from the ontology. After this, the
algorithm will detect another duplicated specialization path between the concepts
Organization and CommercialServiceOrganization composed by {Organization,
ServiceOrganization and CommercialServiceOrganization}, and as a consequence the
concept ServiceOrganization will be pruned.

In the case study, after the application of this step we have an ontology OP
consisting of:

Fig. 5. Detecting and deleting the unnecessary duplicated paths between
Restaurant and Organization. The white boxes are the concepts to prune and the
black ones are the necessary concepts.

CommercialOrganization

CommercialServiceOrganization

FoodAndBeverageOrganization

LegalAgentOrganization

ServiceOrganization

SocialBeing

SomethingExisting

City

FoodServiceOrganization

Restaurant

A Method for Pruning Ontologies in the Development of Conceptual Schemas 77

 75 Entity types and 15 Data types.
 15 Attributes and 11 Associations.
 6 general integrity constraints.

4.6 Correctness of the Pruning Algorithm

In this section we argue that the above pruning algorithm is correct. We assume that
the input to the algorithm is a syntactically correct extended ontology OX and a set
CoI of concepts of interest, with CoI OX. The pruning algorithm is correct if its
output (the pruned ontology OP) satisfies the conditions defined in section 4.4. In the
following paragraphs we argue that OP satisfies all of these conditions.

The elements in OP are a subset of those in OX. The algorithm only removes
elements (concepts, constraints) from OX. It never adds new elements. Therefore, in
the general case, OP will be a subset of OX. In the rare case that all OX concepts are of
direct interest, then OP and OX would be the same.

OP includes the concepts of direct interest CoI. None of the algorithm steps deletes
any concept of direct interest:
 The pruning irrelevant concepts and constraints step removes the concepts not

included in G(CoI). G(CoI) includes all the concepts of direct interest, therefore
CoI concepts cannot be deleted in this step.

 The pruning of unnecessary parents step deletes a subset of the set of potentially
unneeded concepts, which contains the concepts that are not of direct interest for
the information system and do not appear in any relevant constraint. Obviously,
this step cannot delete CoI concepts because of its exclusion of the potentially
unneeded concepts set.

 The pruning unnecessary generalization paths step removes a subset of the
potentially redundant elements set. This step cannot delete concepts of direct
interest because that set does not include the CoI concepts.
Obviously, if no step can eliminate CoI concepts, then all CoI concepts will be

included in the pruned ontology.

All OP concepts with an IsA relationship in OX, must also have an IsA
relationship in OP. None of the deletions done in the pruning steps results in a loss of
specialization path between two needed concepts:
 The pruning irrelevant concepts and constraints step removes the IsA relationships

relating irrelevant concepts. The irrelevant concepts neither are of direct interest,
nor have children of direct interest, so we can affirm that all the specializations of
an irrelevant concept are also irrelevant. As a consequence, whenever an
irrelevant element is deleted, all its children are deleted as well. Then, it is obvious
that none specialization path between survival elements may be deleted.

 The pruning of unnecessary parents step deletes the IsA relationships that relate
unneeded elements, which are elements without necessary parents. Then, when the
method deletes an unneeded element all its parents are deleted as well. As a
consequence, it is obvious that their deletion do not break any specialization path.

78 Jordi Conesa and Antoni Olivé

 The pruning unnecessary generalization paths step removes the specialization paths
between two concepts which satisfy a set of conditions, one of which is that the
whole path is redundant. Then, eliminating a generalization path implies that there
exists another generalization path between the same elements, so it is impossible to
break a generalization path in this step.
Therefore, we can say our pruning activity does not delete necessary

generalization paths between OP concepts.

OP includes all constraints defined in OX whose constrained concepts are in
G(CoI). The pruning irrelevant concepts and constraints is the only step that deletes
constraints. In particular, this phase only deletes the constraints whose concepts
includes one or more irrelevant concepts, which are exactly the concepts not included
into G(CoI). Then, for definition, we can conclude all the constrained concepts of the
survival constraints are members of the set G(CoI).

OP is syntactically correct. An ontology is syntactically correct if all the
constructions used to describe it are compliant with the grammar of its ontology
language. For instance, an UML ontology is syntactically correct if it is a valid
instance of the UML’s metamodel and satisfies all its integrity constraints, including
the well-formedness rules (WFR).

We assume OX is syntactically correct. Then, in order to prove that OP is also
syntactically correct, we must prove that all possible deletions of the pruning method
preserve the syntactic correctness of the ontology. In the following, we prove this for
the deletion operations over the ontology elements:
 Concepts: Deleting a concept, implies deleting also all the generalization

relationships where it participates. On the other hand, in our method, the deletion
of a concept that participates in a given relationship or integrity constraint, also
implies deleting its related concepts. Therefore, it is not possible to delete any
concept that participates either in a relevant relationship type or a relevant integrity
constraint.

 Generalization relationships: If a concept uses a relationship type defined in any of
its parents, a deletion of a taxonomic relationship between the concept and its
parent, may result in a syntactically incorrect ontology, because the child may lose
the referred relationship type. Nevertheless, this particular case cannot occur in our
algorithm, because, as we proved before, it does not allow breaking the
generalization path between concepts.

 Integrity Constraints: They only restrict the possible instantiations of the ontology,
so their deletion will result in a new ontology, less restricted, but not syntactically
incorrect.
As a consequence, we can say that if the OX is correct, the OP will be correct as

well.

OP is minimal. In order to prove that OP is minimal, we are going to see which
violations can be produced by the elimination of each kind of OP element:
 Concepts: The concepts of the pruned ontology may be:

 Concepts of Direct Interest: We cannot delete these concepts, because they
must be included in the OP (condition b). Their deletion may also produce the

A Method for Pruning Ontologies in the Development of Conceptual Schemas 79

violation of condition c (if the concept participates in one generalization and
one specialization) or e (if any relationship type or constraint uses it).

 Needed Concepts which are not CoI: These concepts are needed because they
participate in one or more relevant constraints. Then, their deletion produces
a syntactically incorrect ontology, because they are referred to in some
relevant constraints.

 Other concepts: These concepts are necessary to maintain a generalization
path between, at least, two necessary concepts. Therefore, their deletion will
break a non redundant specialization path, violating condition c of the
method. Their deletion can also violate condition e.

 Integrity Constraints: The integrity constraints of the pruned ontology are those
which can be evaluated using only elements of the G(CoI) set. Therefore, we
cannot delete any of them without violating condition d.

 Generalization/specialization relationships. They are part of a non redundant
generalization/specialization path between two (or more) necessary concepts.
Obviously, we cannot delete any of them, without violating condition c.
Therefore, we have proved that the removal of any of the pruned ontology

elements results in the violation of at least one condition of the pruning method.

5 Comparison with Previous Work

The need for pruning ontologies has been described in several research works in the
fields of information systems and knowledge bases development. We may mention
Swartout et al. [32], Knowledge Bus [27], Text-To-Onto [14, 19], Ontology
Derivation Rules [39], MOVE [3, 4, 38], the ODS (Ontology-Domain-System)
approach [36], DODDLE-II [30, 40], Mena et al. [20], the Dynamic Ontologies [28,
37] and OntoLearn [22]. In the following we explain the main differences among the
pruning methods; we present a table that summarizes their main characteristics, and
finally, give some comments and comparisons on the pruning methods which are
more related to ours.

Even if the above works differ in the context in which the need for pruning arises,
the ontology language, the particular ontology used as base, or the selection of the
concepts of interest, we believe that (at least parts of) our pruning method can be
adapted to be used successfully in all those works. The reason are: (1) we deal with
any base ontology; (2) our method can be adapted to any ontology language (in [8] we
show the adaptation of our method to the OWL (Web Ontology Language) [2]); (3)
we take into account the specificity of entity types, relationship types, generalizations
and constraints present in all complete conceptual modeling languages; and (4)
although we obtain the concepts of interest from the functional specifications, our
method can use any selection strategy to obtain the concepts of direct interest, as we
will see in the next section.

Usually the pruning methods are intended to be applied in a particular context. The
ontology context determines mainly its foremost properties: 1) the base ontology the
method is able to prune, 2) how the method selects the concepts of direct interest, and
3) how many elements are pruned. The methods that use pruning techniques to
support the information systems development, which are Knowledge Bus, Ontology

80 Jordi Conesa and Antoni Olivé

derivation rules, MOVE, Ontology Domain System and our method, allow pruning
more expressive ontologies than the others. These methods also tend to do a more
effective pruning, because their pruned ontologies are used directly for humans, and
obviously, humans cannot deal easily with large ontologies (with more than a
thousand concepts). Furthermore, those pruning methods, with the exceptions of
Knowledge Bus and our method, have not been defined to prune very large ontologies.
Examples are the ODS approach, which is totally manual, or the Ontology derivation
rules, which works very well for small ontologies, but with too manual intervention to
make it usable with large ontologies such as OpenCyc. In these methods, the user
tends to participate very actively in the selection of the concepts of direct interest. The
rationale is that in this context the user knows all the concepts that are relevant for the
final information system and that must exist in the final ontology.

The goal of the other methods, which are Swartout et al, Text-to-onto, Ontolearn
and DODDLE-II, is the creation of a domain ontology, whose information will be
used to support users in a given task. These methods use linguistic ontologies as a
basis, which are less expressive than those used by the above methods, but contain
more concepts that the other ones. For example, SENSUS ontology, which is the
ontology used by Swartout, et al., has more than 50,000 concepts, while OpenCyc
does not have more than 5,000 concepts. These methods have more efficient selection
processes, this is because they use the semantic relationships (synonyms, antonyms,
...) among concepts that the linguistic ontologies have. These methods are not
interested in generating very small pruned ontologies, because their pruned ontologies
are used for programs to infer information, and then, they should contain the concepts
of direct interest and all their related concepts. For this reason, these pruning methods
are equivalent to the first step of our pruning method, with the exception of
DODDLE, whose pruning activity contains also a restructuring step.

Table 1 shows a few characteristics of the main current pruning methods. For each
method we give: 1) the base ontology the method uses; 2) whether or not the method
takes into account the integrity constraints (in one case we are unsure about this); 3)
how automatic the method is; 4) the selection strategy used for selecting the concepts
of direct interest; and finally, 5) the efficiency of the pruning activity, that is how
many elements the pruned ontology has.

In the following we give some additional comments on the works which are the
more closely related to ours, and that describe a comparable pruning method.

The purpose of the Ontology Derivation Rules is to generate domain or application
ontologies using a set of rules over a base ontology. The base ontology can be any
ontology written in the UML language. The designer is responsible of selecting the
concepts of direct interest by-hand, which are called permanent elements in this
method. The pruning method also restructures the ontology to minimize its volume.
The restructuring is done by applying a set of rules, such as when a non permanent
class c1 contains a permanent attribute a1 and there is a permanent class c2 child of
c1, then move the attribute a1 to c2. After applying these rules, the method generates
all the possible associations among the permanent classes of the ontology, following
the associative property of the UML associations. Once all these hybrid relationships
are created, the designer must identify the relevant ones. Finally, the method uses this
information to delete the ontology irrelevant elements, and asks to the designer for
a name for the survival hybrid associations. The results of this method are quite
good, but its process is too manual to be usable with medium and large ontologies.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 81

Table 1. Comparison of the main current pruning methods

B
as

e
on

to
lo

gy

In
te

gr
ity

C

on
st

ra
in

ts

A
ut

om
at

io
n

Se
le

ct
io

n
St

ra
te

gy

Fi
na

l O
nt

ol
og

y

Knowledge
Bus [27] OpenCyc TOTAL By-hand TOO LARGE

Swartout et
al. [32]

SENSUS,
but

applicable
to any

ontology

 SEMI-
AUTOMATIC By-hand TOO LARGE

Ontology
Derivation
Rules [39]

Any UML
ontology ? SEMI-

AUTOMATIC By-hand DESIRED

MOVE
[3, 4, 38] Any Cardinality

constraints
SEMI-

AUTOMATIC By-hand CUSTOMIZABLE

Text-to-
Onto [14,

19]

Any RDF
ontology

Predefined
in the

language

SEMI-
AUTOMATIC

Automatic:
using text-

mining
algorithms

LARGE

OntoLearn
[22] WordNet SEMI-

AUTOMATIC

Automatic:
using text-

mining
algorithms

LARGE

Ontology
Domain
System

[36]

Any UML
ontology NONE By-hand DESIRED

DODDLE
– II [30,

40]
WordNet SEMI-

AUTOMATIC By-hand LARGE

Our
method [9] Any TOTAL Any CLOSE TO

DESIRED

The reason is the high number of hybrid relationships that appears in its pruning
process, and the hard work of the designers in identifying which is relevant and which
is not. The same results or better can be obtained with the execution of our pruning
and refactoring activities. For example, with reference to our case study, an ontology
with over 4000 concepts and over 30 concepts of direct interest, the method will
generate several hundreds of anonymous hybrid relationships (note that in an
ontology with the magnitude of OpenCyc it can exits easily a chain of relationships
relating almost all the entity types of the ontology). In addition, as far as we know, it
does not exist the formal definition of the whole method, so it is unclear the efficiency
of the pruning method for real cases. Furthermore, our method is more automatic and
efficient than this one, because the restructuring activity is done after the pruning
method.

82 Jordi Conesa and Antoni Olivé

MOVE uses the ontology derivation rules approach to generate a view of a given
ontology that satisfies a set of requirements. The method can prune any kind of
ontology written in the IOS language. This language allows to represent concepts,
attributes, binary relationships and cardinality constraints over relationship types and
attributes. The concepts of direct interest (called “selected”) are selected by-hand by
the user. The user also has to select the concepts that cannot appear in the final
ontology (called “unselected”). Then, the pruning is executed by taking into account
four optimization schemas: 1) RCOS, which uses the ontology derivation rules to
guaranty the final ontology satisfies the users requirements (the selection); 2) SCOS,
which validates the semantic completeness of the ontology, that is, if a concept is
defined using other concepts, we cannot delete the last without losing information of
the former; 3) WFOS, which contains the rules that guarantees the syntactic
correctness of the final ontology; and 4) TSOS, which guarantees the obtained
ontology is the smallest that can be obtained. Up to now, as far as we know, only the
two first phases have been defined, so their results are neither proved, nor guaranteed
to be minimal. The pruning method may be customized by changing the given
optimization schemas or adding new ones [38]. As in the previous case, this method
can be compared to our pruning and refactoring activities together, and the same
efficiency reasoning of the previous method can be applied also here.

The purpose of Swartout et al. is the development of specialized, domain specific
ontologies from a large base ontology. The base ontology is SENSUS, a natural
language based ontology containing well over 50,000 concepts. The elements of the
ontology are only entity types and generalization relationships. The concepts of
interest are assumed to be a set of entity types (called the "seed") selected explicitly
by domain experts, and all entity types that generalize them. The pruning method
corresponds roughly to our first step (pruning irrelevant concepts and constraints).
Using our method, the domain experts could select the seed, as before, but also the
generalized entity types of interest. The two other steps of our method could then be
applied here, thus obtaining more specific domain ontologies.

The purpose of Knowledge Bus [27] is to generate information systems from
application-focused subsets of a large ontology. The base ontology is Cyc, and the
ontology language is CycL. The concepts of interest are assumed to be the set of
entity types defined in a context (a subset of Cyc), also called the "seed" set, and all
the entity and relationship types that can be "navigated" directly or indirectly from
them. For example, with reference to Figure 3, if the seed set were only
{FoodServiceOrganization} then all entity and relationship types shown in that figure
would be considered concepts of interest. If we consider not only the fragment shown
in that figure but the complete OpenCyc, then over 700 entity types and 1300
relationship types would be considered concepts of interest. The pruning method
(called the sub-ontology extractor) corresponds here also to our first step (pruning
irrelevant concepts and constraints). The result is that (as the authors recognize) many
superfluous types are extracted from Cyc. Using our method, the domain experts can
be more precise with respect to the concepts of interest. They could select the seed, as
before, but also the generalized entity and relationship types of interest. The two other
steps of our method could then be applied here as well, thus improving the specificity
of the sub-ontology extraction process.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 83

6 Adapting Our Pruning Method to Different Selection Methods

Up to now, we have defined and solved the pruning problem in the context of
developing the conceptual schema for an information system. In this section we show
that our method can be used in other contexts as well.

Before pruning an ontology, it is necessary to select those elements that must be
included in the final result. In our context, this selection is done using the information
system requirements but in other contexts other selection strategies may be more
suitable. For example, in the semantic web it can be necessary to select the elements
using text mining algorithms [19], or manually [20]. In many methods, the selection
of elements is an integral part of the pruning process. This implies that the selection
strategy cannot be changed without re-implementing the pruning process. Here, we
propose to separate the phases of selection and pruning (figure 6). This will allow us
to do the pruning activity applicable for any strategy selection and able to reuse other
selection methods.

In what follows we present a taxonomy (summarized in Figure 7) that describes the
different ways of concept selection. Then we study how to use the taxonomy to reuse
selection methods written by others. Finally we use the taxonomy to classify the main
actual pruning methods.

6.1 Taxonomy of Relevant Concepts Selection Methods

According to its granularity, selection methods may be classified as individual or
composite selection. An individual selection (also known as primitive selection)
computes a selection based on a single selection criteria, and may be classified into

Fig. 6. Separating the pruning and selection phase in the pruning activity

Selection
Phase

Pruning
Phase

(2) Find Knowledge

(4) Ontology elements

(3) Selected elements

(5) Generate a new
ontology without

unnecessary elements

Pruning Activity

OPOP

OXOX

(1) By using instances or
other methods

(1) By hand

(1) By text-mining
algorithms

(1) From other elements

Selection
Phase

Pruning
Phase

(2) Find Knowledge

(4) Ontology elements

(3) Selected elements

(5) Generate a new
ontology without

unnecessary elements

Pruning Activity

OPOP

OXOX

(1) By using instances or
other methods

(1) By hand

(1) By text-mining
algorithms

(1) From other elements

84 Jordi Conesa and Antoni Olivé

manual or automatic selection. In the manual selection, the designer must select by
hand the elements of OX that are necessary to the final ontology. The manual selection
may be classified into:
 Unassisted selection: this is the most usual selection method. The designer chooses

the necessary concepts without any system assistance. This method is used in [3, 9,
27, 32, 38, 40], where the designer selects manually the set of concepts relevant for
the final ontology.

 Assisted selection: The system supports the user by proposing concepts to select.
This kind of selection is usually combined with other selection methods (composite
selection). We can see an example in the last step of the Swartout et al. approach
[32], in which the system may propose the selection of ontology subtrees.
In the automatic selection, the concepts of direct interest are selected automatically

by the system. This kind of selection must use some information to detect
automatically new concepts of direct interest. This information can be taken from:
 Other selected concepts: The concepts of direct interest previously selected are

used to select new concepts. An example of this kind of selection can be seen in
[27], where the set of selected classes (CoI) is used to obtain all the relationships
applicable to the classes of the CoI set (that is, the relationships whose participants
are contained into CoI).

 Other ontology elements: Sometimes the non concept elements of the ontology
(the ones that are not entity types or relationship types: individuals, classification
relationships, …) are used to select new concepts. This is one of the most forgotten
techniques of selection on pruning algorithms, but we think that it may be
interesting in some cases to obtain the concepts of direct interest from the instances
of the ontology, its integrity constraints, or its generalization relationships.

 External sources: The concepts of direct interest may also be obtained from
information that lies in external sources. This is one of the most common
techniques to select concepts of direct interest in pruning algorithms. Examples of
this kind of selection are [22, 35], where the concepts of direct interest are obtained
applying text-mining algorithms to several documents. There is another example in

Selection Approaches

Individual Selection Composite Selection

Manual Selection Automatic Selection
Collaborative
Composition

Sequential
Composition

Unassisted Selection Assisted Selection From other selected
concepts From other elements From external sources

- By hand
- Others - Neighbours Subtrees

- Related Concepts
- Others

- Select all classes accessible from CoI
- Select all relationships applicable to CoI classes
- Select all parents from CoI
- Others

- From instances
- From integrity constraints
- Others

- From the requirements
- Using text-mining algorithms
- From a text file
- Others

Fig. 7. Selection methods to detect the concepts of direct interest

A Method for Pruning Ontologies in the Development of Conceptual Schemas 85

the case study of this document, where the concepts of direct interest are detected
automatically from the requirements of the IS, formalized by means of system
operations [15] written in OCL [24].

Composite selection: A composite selection method includes more than one selection
approach (that can be individual or composite). A composite selection may be:
 Collaborative composition: Several selection approaches are used collaboratively

to detect the elements of direct interest. In this approach the outputs of the different
selection approaches are evaluated to determine which concepts to select. Although
this technique is not used nowadays in the pruning activity, we think it provides a
very powerful way to detect the concepts of direct interest. On the other hand it
seems that this selection technique needs a high participation of the ontology
designer to define which elements to select, and this may be a drawback in the
pruning of large ontologies.

 Sequential composition: A sequential composition is composed of a sequence of
selection approaches, in which the output of each selection approach is the input of
the next one. This technique is the most used at the moment. An example of this
approach is Swartout et al. [32], where the selection process is a sequential
composition of three individual selections: 1) a manual selection where the user
selects without assistance a set of concepts of direct interest, 2) an automatic
selection that selects all the parents of the elements selected in the previous
process, and finally 3) a neighbour subtrees selection where the user can select
subtrees whose neighbours have been selected in the previous steps.

6.2 Allowing General Purpose Selection

Current pruning approaches do not separate the selection and pruning phase.
Therefore, the pruning methods are hooked to a selection strategy, which cannot be
changed without re-implementing the pruning method. The problem grows when the
pruning algorithm is specific to a selection strategy or a base ontology (its language or
its structure). For example, a non generic pruning algorithm may contain a rule like
“delete a concept when none of its synonyms has been selected as relevant”. This rule
is part of a selection strategy, in fact we may classify this rule in our taxonomy as a
selection from other selected component. In addition, a strategy selection tends to be
dependent to a given ontology. In the example the use of the synonym relationship,
which is particular of linguistic ontologies, makes the pruning algorithm not
applicable to all ontologies.

Separating the selection and the pruning phase makes the pruning algorithm more
concise and independent of both selection strategies and the ontology used. In the
previous example we may state the previous rule in the selection phase “select the
synonyms of the relevant elements”, and the pruning phase will contain a rule like
“delete the non relevant elements”. It is obvious that this way of defining a pruning
algorithm is more generic than the previous one.

This separation reports also reusability benefits, because it allows to reuse
individual selection approaches defined and implemented by others. To define a
composite selection strategy, an ontology designer has to obtain the primitive
methods (reusing them or developing them from scratch) needed in the composition,

86 Jordi Conesa and Antoni Olivé

and write a program that executes these primitive methods sequentially, giving the
result of each method to the next one, and finally returning the results of the selection
to the pruning phase.

Now that a taxonomy of selection is defined (see figure 7), it is possible to define a
framework that supports the designer in the definition of selection strategies. A
selection strategy, which combines several kinds of selection strategies, may be
specified by means of a high level language based on the selection taxonomy.

We say our pruning method is generic, because the set CoI, which is necessary to
our pruning activity, may be obtained as a result of applying any selection strategy
that could be expressed as an instance of the presented taxonomy.

6.3 Expressing the Actual Pruning Methods as a Combination of Primitive
Selection Methods

We think our taxonomy is complete with regards to the pruning methods defined until
now in the literature. In order to validate this affirmation we show in this subsection
how the selection phase of the main pruning methods can be expressed as an instance
of our taxonomy.

Knowledge Bus
The selection begins with the selection by-hand of the relevant classes. Then, the
system executes a fix point algorithm that selects all the classes that can be accessed
from the relevant classes following relationships. Finally, all the associations whose
participants have been selected in the previous steps are selected as well.

It is easy to see that the knowledge bus selection strategy may be represented by a
Sequential Composition of: 1) an unassisted by hand method that selects the classes of
direct interest (CoI). 2) An automatic selection that obtains the classes accessible from
the CoI classes through relationships (Select all the classes accessible from CoI), and
3) another automatic selection that selects all the relationships whose participants
were selected in the previous steps (Select all relationships applicable from CoI).

Swartout et al.
In this approach the relevant concepts for the target domain are manually selected by
the user. Then, for each selected concept, the system automatically selects the
elements contained in the path defined between the root of the ontology and the
concept. After that, the designer may select some subtrees of the ontology such that
almost all their neighbours (concepts with the same parents) have been selected,
assuming that if all the neighbours of a concept have been selected, then the concept
probably must be selected as well.

This selection process can be defined as a sequential composition of: 1) an
unassisted by hand method that selects the concepts of direct interest, 2) an automatic
selection that uses the previous one to obtain all the parents of the selected concepts
(Select all parents Of), and 3) an assisted selection that assists the designer to select
the needed ontology subtrees whose neighbours have been selected (Neighbour
Subtrees).

A Method for Pruning Ontologies in the Development of Conceptual Schemas 87

Note that the first step is the same that the first step in Knowledge Bus, so both
approaches may reuse the same implementation of the primitive selection method by
hand.

Our Approach
The selection process of our method can be defined as a sequential composition of: 1)
an automatic selection that selects all the concepts referred to in the requirements of
the IS (From the Requirements), and 2) an unassisted by hand method that selects the
rest of concepts necessary to the IS that were not selected in the previous step (this
might be the same method used in Knowledge Bus and Swartout et al. approaches).

Due to space limitations we cannot define here all the pruning methods in terms of

our taxonomy, but the application to the other pruning approaches is straightforward.

7 Conclusions

We have tried to contribute to the approach of developing conceptual schemas of
information systems by reusing existing ontologies. We, as many others, believe that
this approach offers a great potential for increasing both the conceptual schema
quality and the development productivity.

We have focused on the problem of pruning ontologies. The problem arises when
the reused ontology is large and it includes many concepts which are superfluous for
the final conceptual schema. The objective of the pruning activity is to remove these
superfluous concepts.

We have presented a new formal method for pruning an ontology. The input to our
method is the ontology and the set of concepts of interest. When the functional
requirements are formally specified, the concepts of interest can be automatically
extracted from them. From this input, our method obtains automatically a pruned
ontology, in which most of the superfluous concepts have been removed. We have
shown that the method is correct.

We have formalized the method independently of the conceptual modeling
language used. However, the method can be adapted to most languages, and we have
shown the details of its adaptation to the UML. A prototype to prune UML ontologies
has been implemented2. The adaptation of the pruning method to the OWL [2] is
described in [8]. On the other hand, our method can be used with any ontology. The
method has been illustrated by means of its application to a case study that refines the
public version of the Cyc ontology. Our method improves on similar existing
methods, due to its generality and greater pruning effectiveness.

The pruning method has been generalized in order to prune ontologies in other
contexts. Changing the context of pruning application may result in a change of the
way the concepts of direct interest are selected. Our pruning method is independent of
the context, in the sense that it may be customized to be applied in any context and
taking into account any way of selecting the concepts of direct interest.

2 http://www.lsi.upc.es/~gmc/Downloads/jconesa/Program.zip

88 Jordi Conesa and Antoni Olivé

We plan to continue our work in (at least) two directions. First, we would like to
implement our pruning method into a CASE tool. This will allow the designer to use
the pruning method in a automatic and usable way. Finally, we plan to work on the
activity that follows pruning: refactoring. The large amount of existing work on
schema transformation can be “reused” for that purpose.

Acknowledgments

We would like to thank Jordi Cabot, Xavier de Palol, Dolors Costal, Cristina Gómez,
Anna Queralt, Ruth Raventós, Maria Ribera Sancho and Ernest Teniente for their
many useful comments to previous drafts of this paper.

This work has been partly supported by the Ministerio de Ciencia y Tecnologia and
FEDER under project TIC2002-00744.

References

1. J. R. Abrial, The B-Book, 1996.
2. S. Bechhofer, F. v. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-

Schneider, and L. A. Stein, OWL Web Ontology Language Reference ,
http://www.w3.org/TR/owl-ref/: W3C, December, 2003.

3. M. Bhatt, A. Flahive, C. Wouters, W. Rahayu, and D. Taniar, "A Distributed Approach to
Sub-Ontology Extraction," in Proceedings of the 18th International Conference on
Advanced Information Networking and Application. Fukuoka, Japan, 2004.

4. M. Bhatt, C. Wouters, A. Flahive, W. Rahayu, and D. Taniar, "Semantic Completeness in
Sub-ontology Extraction Using Distributed Methods," in Proceedings of ICCSA 2004,
2004, pp. 508-517.

5. S. Castano, V. D. Antonellis, and B. Zonta, "Classifying and Reusing Conceptual
Schemas," in ER'92, vol. 645, Lecture Notes in Computer Science, G. Pernul and A. M.
Tjoa, Eds., 1992, pp. 121-138.

6. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Guilchrist, F. Hayes, and P. Jeremaes,
Object-Oriented Development. The Fusion Method: Prentice Hall, 1994.

7. J. Conesa, "Ontology Driven Information Systems Development: Pruning and refactoring
of ontologies. PhD Thesis (In preparation)," in LSI - Llenguatges i Sistemes Informàtics.
Barcelona: UPC, 2005.

8. J. Conesa and A. Olivé, "A General Method for Pruning OWL Ontologies," in
ODBASE'04, vol. 3291, Lecture Notes in Computer Science. Larnaca, Cyprus, 2004, pp.
981-998.

9. J. Conesa and A. Olivé, "Pruning Ontologies in the Development of Conceptual Schemas
of Information Systems," in ER2004, Lecture Notes in Computer Science. Shangai,
China, 2004.

10. J. Conesa, X. d. Palol, and A. Olivé, "Building Conceptual Schemas by Refining General
Ontologies," in DEXA'03, vol. 2736, Lecture Notes in Computer Science, 2003, pp. 693 -
702.

11. M. Fowler, Refactoring: Improving the Design of Existing Code: Addison-Wesley, 1999.
12. T. R. Gruber, "Toward Principles for the Design of Ontolgies for Knowledge Sharing," in

International Journal of Human and Computer Studies, vol. 43 (5/6), 1995, pp. 907 -
928.

A Method for Pruning Ontologies in the Development of Conceptual Schemas 89

13. N. Guarino, "Formal Ontology and Information Systems," in Proc. FOIS'98: IOS Press,
1998, pp. 3-15.

14. J.-U. Kietz, A. Maedche, and R. Volz, "A Method for Semi-Automatic Ontology
Acquisition from a Corporate Intranet," in Proceedings of EKAW-2000 Workshop,
Springer Lecture Notes in Artificial Intelligence (LNAI), 2000.

15. C. Larman, Applying UML and Patterns. An Introduction to Object-Oriented Analysis
and Design: Prentice Hall, 1998.

16. D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, "CYC: Toward
Programs With Common Sense," Communications of the ACM, vol. 33, pp. 30-49, 1990.

17. O. I. Lindland, G. Sindre, and A. Solvberg, "Understanding Quality in Conceptual
Modeling," IEEE Software, vol. 11, pp. 42-49, 1994.

18. M. Lloyd-Williams, "Exploiting Domain Knowledge During the Automated Design of
Object-Oriented Databases," in Proc. ER '97, vol. 1331, Lecture Notes in Computer
Science, D. W. Embley and R. C. Goldstein, Eds.: Springer, 1997, pp. 16-29.

19. A. Maedche and S. Staab, "Ontology Learning for the Semantic Web," IEEE Inteligent
Systems, vol. 16, pp. 72 - 79, 2001.

20. E. Mena, J. A. Royo, A. Illarramendi, and A. Goñi, "An Agent-based Approach for
Helping Users of Hand-Held Devices to Browse Software Catalogs," in In Cooperative
Information Agents VI, 6th International Workshop CIA 2002. Madrid, Spain, 2002.

21. H. Mili, F. Mili, and A. Mili, "Reusing Software: Issues and Research Directions," IEEE
TSE, vol. 21, pp. 528-562, 1995.

22. R. Navigli, "Automatically Extending, Pruning and Trimming General Purpose
Ontologies," in International Conference on Systems, Man and Cybernetics. Tunisy,
2002.

23. A. Olivé, "Integrity Constraints Definition in Object-Oriented Conceptual Modeling
Languages," in ER'03, vol. 2813, Lecture Notes In Computer Science, 2003, pp. 349 -
362.

24. OMG, "OMG Revised Submission, UML 2.0 OCL,"
25. OMG, UML 2.0 Superstructure Specification, 2.0 edition: OMG, August, 2003.
26. OpenCyc, "OpenCyc, the public version of Cyc,"http://www.opencyc.com/
27. B. J. Peterson, W. A. Andersen, and J. Engel, "Knowledge Bus: Generating Application-

focused Databases from Large Ontologies," in KRDB'98, CEUR Workshop Proceedings,
1998, pp. 2.1-2.10.

28. G. Sacco, "Dynamic Taxonomies: A Model for Large Information Bases," IEEE
Transactions on Data and Knowledge Engineering, vol. 12, pp. 468-479, 2000.

29. V. C. Storey, R. H. L. Chiang, D. Dey, R. C. Goldstein, and S. Sundaresan, "Database
Design with Common Sense Business Reasoning and Learning," ACM TODS, vol. 22,
pp. 471-512, 1997.

30. N. Sugiura, M. Kurematsu, N. Fukuta, N. Izumi, and T. Yamaguchi, "A Domain
Ontology Engineeering Tool with General Ontologies and Text Corpus," in Proceedings
of the 2nd Workshop on Evaluation of Ontology based Tools, 2003, pp. 71-82.

31. V. Sugumaran and V. C. Storey, "Ontologies for conceptual modeling: their creation, use,
and management," Data & Knowledge Engineering, vol. 42, pp. 251-271, 2002.

32. W. R. Swartout, R. Tatil, K. Knight, and T. Russ, "Toward Distributed use of Large-
Scale Ontologies," in Proc. 10th. Knowledge Acquisition for Knowledge-Based Systems
Workshop, Canada, 1996.

33. M. Uschold, "Knowledge level modelling: concepts and terminology," The Knowledge
Engineering Review, vol. 13, pp. 5-29, 1998.

34. M. Uschold and M. Gruninger, "Ontologies: Principles, Methods and Applications," The
Knowledge Engineering Review, vol. 11, pp. 93-136, June, 1996.

35. R. Volz, R. Studer, A. Maedche, and B. Lauser, "Pruning-based Identification of Domain
Ontologies," Journal of Universal Computer Science, vol. 9, pp. 520-529, 2003.

90 Jordi Conesa and Antoni Olivé

36. X. Wang, C. W.Chan, and H. J.Hamilton, "Design of Knowledge-Based Systems with the
Ontology-Domain-System Approach," in Software Engineering and Knowledge
Engineering, vol. 859. Ischia, Italy: ACM Press, 2002, pp. 233 - 236.

37. D. Wollersheim and W. Rahayu, "Methodology For Creating a Sample Subset of
Dynamic Taxonomy to Use in Navigating Medical Text Databases," in Proceedings of
the 2002 International Symposium on Database Engineering & Applications, 2002, pp.
276-289.

38. C. Wouters, T. Dillon, W. Rahayu, E. Chang, and R. Meersman, "Ontologies on the
MOVE," in Proceedings of the 9th International Conference on Database Systems for
Advanced Applications, vol. 2973, Lecture Notes in Computer Science. Jeju Island,
Korea, 2004, pp. 812 - 823.

39. C. Wouters, T. S. Dillon, J. W. Rahayu, and E. Chang, "A Practical Walkthrough of the
Ontology Derivation Rules," in DEXA'02, vol. 2453, Lecture Notes in Computer Science,
2002, pp. 259-268.

40. T. Yamaguchi, "Constructing Domain Ontologies Based on Concept Drift Analysis," in
IJCAI-99. Workshop on Ontologies and Problem-Solving Methods, 1999.

XSLTGen: A System for Automatically

Generating XML Transformations Via
Semantic Mappings�

Stella Waworuntu and James Bailey

NICTA Victoria Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
{stellavw, jbailey}@cs.mu.oz.au

Abstract. XML is rapidly emerging as a dominant standard for repre-
senting and exchanging information. The ability to transform and present
data in XML is crucial and XSLT is a relatively recent programming
language, specially designed to support this activity. Despite its utility,
however, XSLT is widely considered a difficult language to learn.
In this paper, we present a novel system called XSLTGen, an auto-
matic XSLT Generator. This system automatically generates an XSLT
stylesheet, given a source XML document and a desired output HTML
or XML document. It allows users to become familiar with and learn
XSLT stylesheets, based solely on their knowledge of XML or HTML.
Our method for automatically generating XSLT transformations is based
on the use of semantic mappings between the input and output docu-
ments. We show how such mappings can be first discovered and then
employed to create XSLT stylesheets. The results of our experiments
show that XSLTGen works well with a number of different varieties of
XML and HTML documents.

1 Introduction

XML (eXtensible Markup Language) [4] is rapidly emerging as the new standard
for data representation and exchange on the Web. As the medium for commu-
nication between applications, an ability to transform XML to other data rep-
resentations is essential. This data conversion can be performed by a language
called XSLT (eXtensible Stylesheet Language: Transformations) [7]. XSLT plays
an important role in transforming XML documents into HTML, text, or other
types of XML documents. In this paper, we focus on transformations from XML
to HTML (HyperText Markup Language) [26], since we are motivated by pub-
lishing applications, but our techniques are also applicable for XML to XML
transformations.

Despite its capability of transforming documents having a certain structure,
e.g. XML documents, into an HTML representation, XSLT is a relatively new
� Parts of results of this paper appeared in [30].

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 91–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

92 Stella Waworuntu and James Bailey

language, and is widely considered difficult to learn [19]. Rendering to HTML
using XSLT requires skills and knowledge of both XSLT programming and Web
page styling. Our focus in this paper is on the development of algorithms and
tools that can generate XSLT stylesheets automatically, given a user provided
source XML document and a user provided target HTML document.

Automatic XSLT generation is an extremely useful facility for students and
Web developers in the process of learning XSLT. With such a tool, they are able
to see and understand how the XSLT stylesheet should look, in order to trans-
form a particular XML document into a desired HTML document. In addition,
this tool can also be useful for aiding the XSLT development process. Program-
mers may use the automatically generated XSLT stylesheet as a starting point
for something more complex.

In this paper, we present XSLTGen: An Automatic XSLT Generator, a
novel system that automatically generates an XSLT stylesheet, given a source
XML document, and a desired output HTML document. The generated XSLT
stylesheet contains rules needed to transform the given XML document to the
HTML document and can be applied to other XML documents with similar
structure, or to the given XML document after updates to it have been ap-
plied. The important feature of this system is that users can generate an XSLT
stylesheet based solely on their knowledge of XML and HTML, i.e. users only
need to create a desired output HTML document based on an input XML doc-
ument. Moreover, users do not have to know anything about the syntax or pro-
gramming of XSLT, or be aware of the XSLT rule generation process.

A naive solution to the problem of automatic XSLT generation is to create an
XSLT stylesheet consisting of only one template rule, whose pattern matches the
XML root element and whose template contains the HTML document markup
(in other words create a stylesheet which is very specific to the desired output).
This naive approach has a major drawback in terms of reusability. This stylesheet
is specific for transforming the given XML document only and could not be used
to transform other XML documents having similar structure. In contrast, we
are interested in generating a more generic stylesheet, which can then be reused
to transform other XML documents with similar structure. A more detailed
discussion and illustration of both the naive and more generic solutions is given
in Sect. 3.

In this paper, we show how XSLT stylesheets can be automatically generated
by first discovering semantic mappings between the input and output. We make
the following contributions:

1. We describe the use of text matching and structure matching for finding
semantic mappings between an XML document and an HTML document
generated from this XML document.

2. We introduce sequence checking to the matching context, and show that it
enables the system to discover 1-m mappings between the two documents,
in addition to its capability of discovering 1-1 mappings.

3. We describe a fully automatic XSLT generation system that generates XSLT
rules based on the semantic mappings found.

XSLTGen: A System for Automatically Generating XML Transformations 93

4. We describe a technique for improving the accuracy of the XSLT stylesheet
generated, that examines the differences between the original HTML docu-
ment and the one produced by applying the generated XSLT stylesheet back
to the XML document.

5. We conduct experiments on a number of datasets to validate the matching
accuracy and quality of XSLT stylesheets generated by XSLTGen. The re-
sults show that XSLTGen works well with different varieties of XML and
HTML documents.

6. This is the first paper that we are aware of that describes completely auto-
matic XSLT generation from a source XML and a target HTML document.

This paper is structured as follows. In Sect. 2, we give a brief overview of
XSLT and describe important definitions and terminology used in the paper.
In Sect. 3, we present the definition of the problem of generating XSLT auto-
matically. In Sect. 4, we present an overview of XSLTGen and then describe
the details of each technique involved in the XSLTGen system. In Sect. 5, we
conduct experiments to measure the similarity between the original HTML doc-
ument and the one generated by the resulting XSLT stylesheet. We then evaluate
the performance of XSLTGen. In Sect. 6, we survey related work in the field.
Finally in Sect. 7, we offer concluding remarks and discuss possible extensions
to the current system.

2 Background and Terminology

In this section, we provide a brief overview of XSLT. For a more complete de-
scription of XSLT, the reader is directed to [7], and [16]. Following this, we
describe important definitions and terminology used in this paper.

2.1 XSLT

XSLT is a “high-level declarative language for transforming XML documents
into other XML documents or HTML documents” [7]. The dominant features of
XSLT as a declarative language are that it is a rule-based language, where the
rules are not arranged in any particular order, and it is side-effect free which
enables XSLT rules to be called any number of times and in any order.

XSLT uses XML syntax. The root element is <xsl:stylesheet>, which must
include a namespace declaration for XSLT. The optional <xsl:output> element
tells the type of the target document. The root element is then filled with tem-
plate rules, which describe how to transform elements in the source document,
in this case, XML document. Each template rule consists of two parts: a pat-
tern and a template. The pattern describes which XML element nodes should be
processed by the rule. In some cases, patterns are specified using XPath expres-
sions [8]. On the other hand, the template describes the HTML structure that
should be generated when nodes that match the pattern are found. In an XSLT
stylesheet, a template rule is represented by an <xsl:template> element. The

94 Stella Waworuntu and James Bailey

pattern is the value of its match attribute, and the template is the element’s
content.

The template may contain a sequence of text nodes and literal result elements1

to be copied to the output, and instructions to be executed according to the
rules of the particular instruction. The complete set of XSLT instructions can
be found in Sect. 7 of [7]. The two XSLT instructions that will be used very
often in the XSLT stylesheets generated by XSLTGen are <xsl:value-of> and
<xsl:apply-templates>. The <xsl:value-of> instruction extracts the data
content of an XML element and inserts it into the output. It has a select at-
tribute which consists of a pattern. The <xsl:apply-templates> instruction
finds all nodes that match the select attribute pattern, and processes each
node in turn by applying the template rule that matches the node.

As described earlier, XSLT is a language specifically designed for transform-
ing the structure of XML documents. The transformation process works as fol-
lows. A list of nodes from the source document is processed to create a result
tree fragment. The result tree is constructed by processing a list containing just
the root node. Within a list of source nodes, each list member is processed in
order and the result tree structures are appended. A node is processed by find-
ing all the template rules with patterns that match the node, and choosing the
best amongst them; the template of the chosen rule is then instantiated with the
node as the current node and with the list of source nodes as the current node
list. A template typically contains instructions that select an additional list of
source nodes for processing. This process is continued recursively until the list
of source nodes is empty.

2.2 Definitions and Terminology

We now present definitions and terminology that will be be useful in describing
the semantic mappings and their generation.

Let m : (m.x, m.h) denote a mapping between an element in the source XML
document to one or more elements in the output (destination) HTML document.
The XML component of m is denoted by m.x, while the HTML component of
m is denoted by m.h. Note that m.h can be a sequence (concatenation) of one
or more elements, while m.x must be a single element. e.g. (poem,body) and
(line[1],li++br) are both mappings. If m.x is an attribute node, owner(x)
is defined to be the XML node that owns m.x.

Two mappings m1 and m2 are distinct if both m1.x.name �= m2.x.name and
m1.h.name �= m2.h.name (where name refers to the tag name of the appropriate
element); otherwise they are coincide. e.g. (poem,body) and (line[1],li++br)
are distinct mappings, whereas (poem,body) and (poem,li++br) coincide.

Exact mappings and substring mappings will be used later to describe tex-
tual correspondences in the XML source and HTML output. An exact mapping
is a mapping e such that, e.x is a text node or an attribute node, e.h

1 A literal result element is an element within a template that cannot be interpreted
as an XSLT instruction.

XSLTGen: A System for Automatically Generating XML Transformations 95

is a text node, and e.x.value ≡ e.h.value (where value refers to the string
content of the appropriate element and ≡ indicates that the two strings being
compared have exactly the same characters located at the same positions, af-
ter leading and trailing whitespaces have been removed from the strings. e.g.
("XML is good","XML is good") is an exact mapping.

A substring mapping is a mapping s such that, s.x is a text node or an
attribute node, s.h is a text node, and s.x.value is a substring of s.h.value.
In addition to this, the following conditions must be satisfied by a substring
mapping in order to rule out meaningless cases, such as a mapping between an
XML text “the” and an HTML text “there” since it is highly unlikely that an
HTML text “there” is generated from an XML text “the”:

1. if s.x.value starts with a non-letter and non-digit character, then the char-
acter preceding its occurrence in s.h.value (if any) must be either a letter
or a digit; otherwise, the preceding character must be both non-letter and
non-digit. And,

2. if s.x.value ends with a non-letter and non-digit character, then the character
following its occurrence in s.h.value (if any) must be either a letter or a digit;
otherwise, the following character must be both non-letter and non-digit.

("XML","XML is good") is an example of a substring mapping.
Special HTML elements are the elements br and hr, which are used to sep-

arate text in HTML document.
An extra node is a node that does not have any matching node in the other

document. Extra XML nodes are those XML nodes that are ignored when gener-
ating the HTML document, while extra HTML nodes are HTML nodes that are
added at the time the HTML document was generated and are not constructed
from any part of the XML document. Examples of extra nodes are provided later
in Table 2.

Let N be an XML or HTML node. We define the precise node of N , denoted
by precise(N), to be the node that is used to represent a transformation in
the XSLT template rule match. For a mapping m, if m.x is a text node,
precise(m.x) is the parent of m.x, whereas if m.x is an attribute node,
precise(m.x) = m.x. Finding the precise node for m.h is slightly more com-
plicated since we need to look at the neighbourhood surrounding m.h, for the
existence of special HTML elements. precise(m.h) is discovered as follows:

1. If the next sibling of m.h is a special HTML element node hs, then
precise(m.h) = m.h ++ hs.

2. If m.h has no next sibling or the next sibling of m.h is not special and m.h
has element node siblings, then precise(m.h) = m.h.

3. Otherwise, precise(m.h) is the highest ancestor of m.h such that each node
lying between precise(m.h) and m.h path only has one non-extra child.

96 Stella Waworuntu and James Bailey

We also define the sequence of element N , denoted by seq(N) to be a DTD2

of N if N is the root of a document (e.g. In Figure 1, a possible DTD for the
root element is (author,date,title,stanza*)). Otherwise, let D′ be a DTD
of the parent of N, then seq(N) is equal to trimN (D′). Since it is possible
that D′ involves symbols that represent elements other than N , the function
trim is employed here. trimN (E) removes both the largest prefix not containing
the element N and the largest suffix not containing the element N from its
argument E, which is a regular expression. Here, E is viewed as an ordered
conjunction and so the largest prefix of E not containing N is the maximal
prefix of conjuncts in E that don’t contain N . Similar for the largest suffix. e.g.
trimp(a, b, (e|f), p∗, (p|a), a) = p∗, (p|a).

3 Problem Formulation

In this section, we further formulate the problem of generating an XSLT style-
sheet automatically from a source XML document and a desired output HTML
document. We also discuss both the naive and non-naive ways of solving our
problem.

Our primary focus in this paper is to automatically construct an XSLT
stylesheet that transforms a source XML document to a desired output HTML
document. Thus, the problem addressed in this paper can be stated as follows.

Problem statement. Given an XML document drawn from a class of XML
documents, and an HTML document to be generated from the XML document,
generate an XSLT stylesheet which contains rules needed to transform the given
XML document into the HTML document and which also can be applied to
other XML documents of the same document class.

The following example best illustrates the problem described above. Figure 1
shows an XML source for a poem Song. We want to create an XSLT stylesheet
such that the poem appears in the browser as shown in Fig. 2.

A naive solution to the above problem is to create an XSLT stylesheet con-
sisting of only one template rule whose pattern matches the XML root element
poem and whose template contains the HTML document markup. Figure 3 shows
this naive solution. However, this naive approach has a major drawback in terms
of reusability. This solution is very specific for transforming the given XML doc-
ument only and could not be used to transform other XML documents having
similar structure. A particularly important kind of structurally similar docu-
ment is an updated version of the original (after insertions or deletions). i.e.
This naive solution would no longer be applicable if the XML document had
another stanza added. This violates the initial purpose of developing XSLTGen,
which is to generate a stylesheet based on the supplied source XML and desired
output HTML documents, so that the resulting stylesheet can be reused with

2 A DTD (Document Type Definition) is a grammar for describing the structure of
a document. A DTD constrains the structure of an element by specifying a regular
expression that its sub-element sequences have to conform to.

XSLTGen: A System for Automatically Generating XML Transformations 97

<poem>

<author>Rupert Brooke</author>

<date>1912</date>

<title>Song</title>

<stanza>

<line>And suddenly the wind comes soft.</line>

<line>And Spring is here again;</line>

<line>And the hawthorn quickens with buds of green</line>

<line>And my heart with buds of pain.</line>

</stanza>

<stanza>

<line>My heart all Winter lay so numb.</line>

<line>The earth so dead and frore.</line>

<line>That I never thought the Spring would come again</line>

<line>Or my heart wake any more.</line>

</stanza>

<stanza>

<line>But Winter’s broken and earth has woken.</line>

<line>And the small birds cry again;</line>

<line>And the hawthorn hedge puts forth its buds.</line>

<line>And my heart puts forth its pain.</line>

</stanza>

</poem>

Fig. 1. XML source for poem Song

other XML documents having a similar structure, or with the original document
after updates to it have been applied.

In contrast, we are interested in generating a more generic stylesheet, which
can then be reused to i) transform structurally similar XML documents and ii)
transform the document even after it has been updated. In order to generate this
solution, the first thing that we need to do is to discover the semantic mappings
between the XML and HTML documents. A complete listing of the mappings
found is presented in Table 1. The process of discovering these mappings will be
explained in Sect. 4.

The next phase is to generate an XSLT stylesheet based on the mappings
found. The stylesheet should start with the standard header. Following that, a
template rule for each XML element specified in Table 1 is created. Finally, we
finish off the stylesheet by closing the <xsl:stylesheet> element. This non-
naive XSLT stylesheet is shown in Fig. 4. This stylesheet can then be reused to
transform other XML documents having similar structure as the one in Fig. 1.

98 Stella Waworuntu and James Bailey

Fig. 2. Poem Song displayed in a browser and its HTML source

4 XSLTGen System

We now present an overview of the XSLTGen system. We then explain the details
of each subsystem in the later subsections. We will use a running example based
on a Soccer document.

4.1 System Architecture

The architecture of the XSLTGen system is illustrated in Fig. 5. Two input
documents, a source XML document and a desired target HTML document, are
given to XSLTGen in order to initiate the stylesheet generation process. The
output of XSLTGen is an XSLT stylesheet consisting of rules for transforming
the given XML document to the supplied HTML document. As shown in the
figure, the system consists of six main components: DOM Builder, Text Matching
subsystem, Structure Matching subsystem, Sequence Checker, XSLT Stylesheet
Constructor, and XSLT Stylesheet Refiner subsystem.

DOM Builder. DOM is “a programming API for documents” [12]. It is
based on an object structure that closely resembles the structure of the docu-
ments it models. In the DOM, documents have a logical structure which is very
much like a tree. For each input document used in XSLTGen, the DOM builder
constructs the DOM tree, which represents the structure of the specified docu-
ment. We adopt the DOM package from W3C (org.w3c.dom.*) embedded with

XSLTGen: A System for Automatically Generating XML Transformations 99

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="poem">

<html>

<head>

<title>Song</title>

</head>

<body>

<div align="center"><h1>Song</h1></div>

<div align="center"><h2>Rupert Brooke</h2></div>

<p>

And suddenly the wind comes soft.

And Spring is here again;

And the hawthorn quickens with buds of green

And my heart with buds of pain.

</p>

<p>

My heart all Winter lay so numb.

The earth so dead and frore.

That I never thought the Spring would come again

Or my heart wake any more.

</p>

<p>

But Winter’s broken and earth has woken.

And the small birds cry again;

And the hawthorn hedge puts forth its buds.

And my heart puts forth its pain.

</p>

<p><i>1912</i></p>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Fig. 3. Naive solution of XSLT stylesheet for poem Song

Table 1. Mappings for poem Song

XML HTML

poem body
author div[2]
date p[4]
title div[1]
stanza[i] p[i], for 1 ≤ i ≤ 3
line[i] text()[i] ++ br, for 1 ≤ i ≤ 4

100 Stella Waworuntu and James Bailey

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:template match="poem">

<html>

<head>

<title><xsl:value-of select="title"/></title>

</head>

<body>

<xsl:apply-templates select="title"/>

<xsl:apply-templates select="author"/>

<xsl:apply-templates select="stanza"/>

<xsl:apply-templates select="date"/>

</body>

</html>

</xsl:template>

<xsl:template match="title">

<div align="center"><h1><xsl:value-of select="."/></h1></div>

</xsl:template>

<xsl:template match="author">

<div align="center"><h2><xsl:value-of select="."/></h2></div>

</xsl:template>

<xsl:template match="date">

<p><i><xsl:value-of select="."/></i></p>

</xsl:template>

<xsl:template match="stanza">

<p><xsl:apply-templates select="line"/></p>

</xsl:template>

<xsl:template match="line">

<xsl:value-of select="."/>

</xsl:template>

</xsl:stylesheet>

Fig. 4. Non-naive solution of XSLT stylesheet for poem Song

stylesheet

 DOM
Builder

DOM
Builder

XML
DOM

HTML
DOM

MatchingMatching

(M)

(M)
Substring Mappings

Exact Mappings

HTML DOM

XML DOM

XML
document

document
HTML

(M

Structure
Mappings

)
Sequence
Checker

StructureText Mappings
One−Many

)(MOMSM

E

S
Constructor
Stylesheet

XSLT XSLT
stylesheet

Structure Mappings (MSM)

Exact Mappings

Substring Mappings

(ME)

(M S)

Refining
XSLT

Stylesheet

One−Many Mappings
(MOM)

fixed
XSLT

Fig. 5. Architecture of the XSLTGen system

XSLTGen: A System for Automatically Generating XML Transformations 101

in Java to accommodate this task. The input document given to DOM builder
has to be strictly well-formed. Figure 6 shows an example of fragments of XML
and HTML DOMs for our Soccer example.

Fragment of HTML DOM

Matches in
Group A

h1

Brazil vs
Scotland

h2

10−Jun−98 Brazil Scotland

td td td

tr

table

Scotland vs
Norway

h2

td

16−Jun−98 Scotland Norway

td td

tr

table

body

date team

10−Jun−98 Brazil

team

Scotland

match

16−Jun−98 Scotland Norway

date team team

match

soccer

A

group

Fragment of XML DOM

Fig. 6. Soccer example

Text Matching subsystem. The XML and HTML DOMs built by the
DOM builder are input to the text matching subsystem. This subsystem dis-
covers associations between nodes in the XML DOM and those in the HTML
DOM, i.e. which nodes in the HTML DOM correspond to which nodes in the
XML DOM and what transformations need to be applied to those XML nodes.
In this subsystem, the mappings found are instances of text-based element-level
matching, which can either be exact or substring mappings. Since the HTML
document is generated based on the content of the XML document, it is possible
to find elements within the HTML DOM that have the same text data or part
of text data as the elements in the XML DOM.

Structure Matching subsystem. The structure matching subsystem also
takes the XML and HTML DOM trees produced by the DOM builder as its
input. Besides these DOM trees, this subsystem takes the list of exact and sub-
string mappings found by the text matching subsystem into account, to discover
structure-level associations between XML DOM nodes and HTML DOM nodes.
The term structure-level matching refers to matching combinations of elements
that appear together in a structure. Loosely speaking, two nodes, an XML and
an HTML node, structurally match if their children also match.

Sequence Checker. This subsystem is responsible for verifying each struc-
ture mapping found and possibly discovering 1-m mappings (a mapping between
an XML element and a concatenation of two or more HTML elements) depend-
ing on the result of the verification. In the verification process, the sequence
checker checks whether the sequence of the XML component conforms to the
sequence of the HTML component, by comparing an inferred DTD of the XML
component and an inferred DTD of the HTML component. The XTRACT sys-
tem [14] is used to infer the DTD of an element. If the verification process fails,

102 Stella Waworuntu and James Bailey

the sequence checker generates a new 1-m mapping based on the two extracted
DTDs.

XSLT Stylesheet Constructor. This subsystem generates a template rule
for each mapping discovered by the text matching, structure matching and se-
quence checker subsystems. Consecutively, the template rules are put together
to construct an XSLT stylesheet.

XSLT Stylesheet Refiner. This subsystem is responsible for repairing the
XSLT stylesheet generated by the XSLT stylesheet constructor, in circumstances
where there are differences between the original HTML document and the one
produced by applying the generated stylesheet back to the given XML document.

4.2 Text Matching

The quality of the XSLT stylesheet generated by the XSLT stylesheet constructor
is dependent on the set of mappings input to it. The mappings found in text
matching serve as the basis for discovering structure mappings, which in turn
serve as the starting point for finding 1-m mappings. Therefore, it is crucial
that the text mappings found be complete and accurate. The goal of the text
matching subsystem is to achieve this objective by discovering a set of exact
mappings Me and substring mappings Ms (recall these were defined in section
2.2). As the content of the HTML document is created based on the content of
the XML document, it is important to find both exact and substring mappings
between the two documents, since there must be HTML elements that have the
same string or substring as the XML elements.

The starting point to find a mapping is to compare nodes that have a value
attribute, i.e. text nodes and attribute nodes. In this paper, the nodes
that we compare are an XML text node with an HTML text node and an
XML attribute node with an HTML text node. We do not consider HTML
attribute nodes, since the attribute value of those nodes is usually specific to
the display of the HTML document in the Web browsers and is not generated
from the text within the XML document. Example 1 shows examples of both
exact and substring mappings.

Example 1. In the Soccer example of Fig. 6,

1. An exact mapping occurs between XML text node “10-Jun-98” and
HTML text node “10-Jun-98”, because X.value ≡ H.value.

2. A substring mapping occurs between XML text node “A” and HTML
text node “Matches in Group A”, since X.value is a substring of
H.value.

As mentioned earlier, the text matching procedure takes two inputs: an XML
DOM x and an HTML DOM h. It discovers as many text mappings as possible
between the nodes in x and h. The text matching procedure is called twice,
once to first discover all exact mappings between the XML nodes in x and the
HTML nodes in h and again to discover all substring mappings. The output

XSLTGen: A System for Automatically Generating XML Transformations 103

of our text matching algorithm is two lists of mappings: exact mappings (ME)
and substring mappings (MS).

Our text matching is implemented using a top-down approach that visits
each node in the XML DOM in pre-order and uses the same traversal to explore
the HTML DOM, to find a matching node. Note that in order to create an XSLT
template rule, the XML node should be an element node (not a text node).
The discovered exact or substring mapping between two text nodes cannot
represent any transformation in the XSLT template rule. Therefore, we need
to determine for each mapping found, the precise node of its XML and HTML
component that best describes the transformation. This approach allows us to
discover more precise mappings between the XML and HTML documents.

Moreover, we set a constraint that every HTML node that has been matched
to an XML node during the exact matching process, cannot be considered as a
matching candidate in the substring matching process. In this way, we reduce
the number of possible matching elements for substring matching.

Referring back to the Soccer example (Fig. 6), some of the text mappings
discovered are: (<team>Brazil</team>, <td>Brazil</td>) (exact mapping),
(<team>Brazil</team>,<h2>Brazil vs Scotland</h2>) (substring mapping);
and
(group="A", <h1>Matches in Group A</h1>) (substring mapping).

4.3 Structure Matching

Structure matching discovers all structure mappings between the elements in
the XML and HTML DOMs. Finding these mappings is more complicated than
finding text matches. We adopt two constraints used in the GLUE system [10]
as a guide to determine whether two nodes should be structurally matched:

1. Neighbourhood Constraint: “two nodes match if nodes in their neighbourhood
also match”, where the neighbourhood is defined to be the children.

2. Union Constraint: “if every child of node A matches node B, then node A also
matches node B” (this constraint is derived from the taxonomy context. It
relies on the property that element/concept A is the union of all its children).

Note that there could be a range of possible matching cases, depending on
the completeness and precision of the match. In the ideal case, all components
of the structures in the two nodes fully match. Alternatively, only some of the
components are matched (a partial structural match). Examples of the two cases
are shown in Table 2. In the case of partial structure matching between XML
node X and HTML node H , there are some children of X that do not match
with any children of H ; and/or vice versa. However, these XML nodes must be
extra nodes, i.e. they do not have any match in the entire HTML document.
Similarly with those children of H that do not match with any children of X ,
they should not have any match in the entire XML document either. In addition
to this, partial structure matching is valid if at least one of the children of X
and H matches. If all children of X are extra nodes, and/or all children of H are

104 Stella Waworuntu and James Bailey

extra nodes, then this is not a partial structure matching. We allow XSLTGen
system to detect partial structure matching because extra nodes do not give
additional information about the mapping and we want to ignore them during
the structure matching process, i.e. treat them as if they are not present in the
document. Having or not having extra nodes in the documents should not affect
the mappings found.

Table 2. Example of full vs partial structural match

XML elements HTML elements

<tr> full structural
<td>Michael Kay</td> match of book
<td>XSLT</td> and tr

<book> <td>Wrox</td>
<author>Michael Kay</author> <td>34.99</td>
<title>XSLT</title> </tr>

<price>34.99</price> <tr> partial structural
<publisher>Wrox</publisher> <td>reference</td> match of book

</book> <td>Michael Kay</td> and tr
<td>XSLT</td>
<td>34.99</td>

</tr>

In order to be able to discover full and partial structure matching, the above
constraints need to be modified to construct the definition of structure matching
which accommodates both full and partial structure matching.

Definition 1. A structure mapping m : (X, H) exists in the following cir-
cumstances:

1. Neighbourhood Constraint: “X structurally matches H if H is not an extra
HTML node and every non-extra child of H either text matches or struc-
turally matches a non-extra descendant of X”; or,

2. Union Constraint: “X structurally matches H if every non-extra child of H
either text matches or structurally matches X”.

As stated in the above definition, we need to examine the children of the
two nodes being compared in order to determine if a structure matching exists.
Therefore, structure matching is implemented using a bottom-up approach that
visits each node in the HTML DOM in post-order and searches for a matching
node in the entire XML DOM. This bottom-up approach also enables the system
to apply the union constraint to a lower level structure mapping by invalidating
and updating it with an upper level structure mapping, if the latter is found to
be a better match than the former. If the list of substring mappings MSM is still
empty after the structure matching process finishes, we add a mapping from the

XSLTGen: A System for Automatically Generating XML Transformations 105

XML root element to the HTML body element, if it exists, or to the HTML root
element, otherwise. The structure matching algorithm is presented in Fig. 7. It
takes as input the exact mappings (ME , the substring mappings (MS), the XML
DOM x and the HTML DOM h. It then returns a list of structure mappings
MSM .

In the Soccer example (Fig. 6), some discovered structure mappings are:

1. (match, tr) (neighbourhood constraint): since every child of tr text matches
one of the children of match, i.e. (date, td[1]), (team[1], td[2]), and
(team[2], td[3])

2. mapping (1) will then be invalidated and updated by (match, table) (union
constraint) since the only child of table, i.e. tr, structurally matches
match

3. (soccer, body) (neighbourhood constraint): since every child of body either
text matches or structurally matches one of the descendant of soccer.

4.4 Sequence Checking

Up to this point, the mappings generated by the text matching and structure
matching subsystems have been limited to 1-1 mappings. In cases where the
XML and HTML documents have more complex structure, these mappings may
not be accurate and this can affect the quality of the XSLT rules generated from
these mappings. Consider the following example:

In Fig. 6, we can see that the sequence of the children of XML node soccer
is made up of nodes with the same name, match; whereas the sequence of the
children of the matching HTML node body follows a specific pattern: it starts
with h1 and is followed repetitively by h2 and table. Using only the discovered
1-1 mappings, it is not possible to create an XSLT rule for soccer that resembles
this pattern, since the XML node match maps only to the HTML node table
according to structure matching. In other words, there will be no template that
will generate the HTML node h2.

Focusing on the structure mapping (match, table) and the substring map-
pings {(team[1], h2), (team[2], h2)}, we can see in the DOM trees that the
children of match, i.e. team[1] and team[2], are not mapped to the descendant
of table. Instead, they map to the sibling of table, i.e. h2. Normally, we expect
that the descendant of match maps only to the descendant of table, so that
the notion of 1-1 mapping is kept. In this case, there is an intuition that match
should not only map to table, but also to h2. In fact, match should map to the
concatenation of h2 and table, so that the sequence of the children of body is
preserved when generating the XSLT rule. This is termed as a 1-m mapping,
where an XML node maps to the concatenation of two or more HTML nodes.

The 1-m mapping (match, h2 ++ table) can be found by examining the sub-
element sequence of soccer and the sub-element sequence of body described
above. Note that the sub-element sequence of a node can be represented us-

106 Stella Waworuntu and James Bailey

procedure StructureMatching(ME , MS , x, h)
begin
1. DoStructMatch(ME , MS , x, h)
2. if (MSM is empty)
3. if (h has a descendant whose name is body)
4. add (x, body) to MSM

5. else
6. add (x, h) to MSM

end

procedure DoStructMatch(ME , MS , x, h)
begin
1. for each child c of h
2. DoStructMatch(ME , MS , x, c)
3. if h.type = element node
4. SearchStructMatch(ME , MS , x, h)
end

procedure SearchStructMatch(ME , MS , x, h)
begin
1. Ex := {cx : cx ∈ children of x, cx.type = element node}
2. for each node cx in Ex

3. SearchStructMatch(ME , MS , cx, h)
4. if (CheckMatch(ME , MS , x, h) = true)
5. m := (x, h)
6. if (MappingExist(m) = not exist)
7. add m to MSM

8. else if (MappingExist(m) = modify)
9. if (x �= x root) /* x root is the root of the XML document */
10. replace all a.h in {a : a ∈ MSM , a.x = m.x, a.h.name �= body, a.h is a descendant

of m.h} with h
end

procedure CheckMatch(ME , MS , x, h)
begin
1. if (h is an extra HTML node)
2. return false
3. for each child ch of h
4. if (ch is not an extra HTML node)
5. let x′ be an XML node, such that ((x′, ch) ∈ ME or (x′, ch) ∈ MS or (x′, ch) ∈ MSM)
6. if (x′ �= null)
7. if (x′ is not a descendant of x)
8. return false
9. else
10. return false
11. return true
end

procedure MappingExist(m)
begin
1. if (m ∈ MSM or {a : a ∈ MSM , a.x is a descendant of m.x, a.h = m.h} is not empty)
2. return exist
3. else if ({a : a ∈ MSM , a.x = m.x, a.h.name �= body, a.h is a descendant of m.h} is not empty)
4. return modify
5. return not exist
end

Fig. 7. The structure matching algorithm

XSLTGen: A System for Automatically Generating XML Transformations 107

ing a regular expression3. In this case, the regular expression representing the
sub-element sequence of soccer is match∗, whereas the one representing the
sub-element sequence of body is h1(h2, table)∗. We then check whether the ele-
ments in the first sequence conform to the elements in the second sequence, as
follows: According to the substring mapping (group, h1), element h1 conforms to
an attribute of soccer and thus, we ignore it and remove h1 from the second se-
quence. Comparing match∗ with (h2, table)∗, we can see that element m should
conform to elements (h2, table) since the sequence match∗ corresponds directly
to the sequence (h2, table)∗, i.e. they both are in repetitive pattern, denoted by
∗. However, element match conforms only to element table, as indicated by the
structure matching (match, table). The verification therefore fails, which indi-
cates that the structure matching (match, table) is not accurate. Consequently,
based on the sequences match∗ and (h2, table)∗, we deduce the more accurate
1-m mapping: (match, h2 ++ table).

The main objective of the sequence checking subsystem is to discover 1-m
mappings using the technique of comparing two sequences described above. The
pseudo-code of the sequence checking procedure is presented in Fig. 8. The task
begins with processing the structure mappings in MSM which are provided as
input to the procedure. Given a structure mapping m, the issue is to verify that
the seq(m.x) conforms to seq(m.h). If seq(m.x) does not conform to seq(m.h),
the verification process fails and this situation suggests that there are 1-m map-
pings that can instead be generated based on these sequences. These discovered
mappings 1-m mappings (MOM) are what is finally returned by the procedure.

As we mentioned above, a sequence can be represented using a regular ex-
pression. To obtain this regular expression, we adapt the technique for inferring
a DTD of an element used by Xtract [14].

4.5 XSLT Stylesheet Generation

This subsystem is responsible for constructing a template rule for each of the
mappings previously discovered (the exact mappings ME , structure mappings
MSM , and 1-m mappings MOM) and then putting them all together to compose
an XSLT stylesheet. We do not create template rules for the substring mappings
in MS , because in substring mappings, it is possible to have an HTML node
whose text value is a concatenation of text values of two or more XML nodes.
This makes it impossible to create template rules for those XML nodes. More-
over, as the term substring implies, there can be some extra strings presented in
the HTML text value. Considering these situations, we implement a procedure
that generates a template for each distinct HTML node in MS .

The XSLT stylesheet generation process begins by generating the list of sub-
string rules. We then construct a stylesheet by creating the <xsl:stylesheet>
root element and subsequently filling it with template rules for the 1-m mappings

3 A regular expression is a combination of symbols representing each sub-element and
metacharacters: |, ∗, +, ?, (,). | denotes OR, ∗ denotes zero or more, + denotes one
or more, ? denotes zero or one, and () are used for grouping

108 Stella Waworuntu and James Bailey

procedure CheckSequence(MSM)
begin
1. check root = false
2. for each mapping m in MSM

3. if (m.x = x root and check root = false)
4. x seq = Xtract(m.x)
5. h seq = Xtract(m.h)
6. else if (m.x �= x root)
7. x dtd = Xtract(parent of m.x)
8. x seq = Trimm.x(x dtd)
9. h dtd = Xtract(parent of m.h)
10. h seq = Trimm.h(h dtd)
11. if (parent of m.x = x root)
12. check root = true
13. else
14. continue
15. if (x seq = (sx)∗ and h seq = (xh)∗)
16. x seq = sx

17. h seq = sh

18. X SEQS = ∅
19. if (x seq = s1|s2| . . . |sn)
20. add each si to X SEQS
21. else
22. add x seq to X SEQS
23. h seq = remove symbols representing special HTML elements in h seq
24. for each sequence xi in X SEQS
25. if (number of symbols in xi = 1 and number of symbols in h seq > 1)
26. x = XML node represented by symbol xi

27. for each symbol hj in h seq
28. h = h ++ HTML node represented by symbol hj

29. m = (x, h)
30. add m to MOM

end

Fig. 8. The sequence checking algorithm

in MOM , the structure mappings in MSM and the exact mappings in ME . The
template rules for the 1-m mappings have to be constructed first, since within
that process, they may invalidate several mappings in MSM and ME (e.g. rule
A and B of Table 6 and thus, the template rules for those omitted mappings do
not get used. In each mapping list (MOM , MSM , and ME), the template rule is
constructed for each distinct mapping to avoid having conflicting template rules.

Even though the mappings between the nodes in the XML document and
the nodes in the HTML documents have been discovered previously, creating
a template rule for a mapping m is not an easy task. This is due to the fact
that we have to appropriately locate the suitable XSLT instructions, taking into
account the structures or the subtrees of the XML and HTML components of
m. Therefore, in the next four subsections, we describe the detail of substring
rule generation, followed by explanation on how to construct template rules for
exact mapping, structure mapping, and 1-m mapping.

Substring Rule Generation. The substring rule generator creates a template
from an XML node or a set of XML nodes to each distinct HTML node pre-
sented in the substring mapping list MS. The result of this subsystem is a list of
substring rules SUB RULES, where each element is a tuple (html node, rule).

XSLTGen: A System for Automatically Generating XML Transformations 109

The set of XML nodes that map to the same HTML node could be large,
since within that set, it is possible to have two XML nodes with different names
but the same string, or two nodes with the same name and string but differ-
ent locations in the XML DOM. As an example, consider the substring map-
pings in Fig. 9. In that figure, both XML nodes artist (node I) and owner
(node B) have the same text value “Kylie” and map to the same HTML node
<td>Kylie’s by Kylie (2002)</td> (node R). On the other hand, two XML
nodes named date (nodes E and H) have the same text value “2002” but can
either map to HTML node <td>Aquarium by Aqua (2002)</td> (node P) or
<td>Kylie’s by Kylie (2002)</td> (node R).

Kylie’s

date

2002 Kylie

Aquarium
by Aqua Kylie

AquariumAqua2002

NEW NEW

(2002) (2002)

Fragment of XML DOM Fragment of HTML DOM

Kylie

5 6

9

873 41 2

owner

A

CD CD

albumartist artist album

B C D

E date F G H I J M N

O P Q R

K body

tableL

tr tr

tdtdtdtd

music 10
11

12

Kylie’s by

Fig. 9. Music example

This situation may cause some ambiguities in the substring rules generated.
Consider the mappings where the HTML component is node R, i.e. mappings 1,
6, 7, 8, 9. There can be four different combinations of the XML components in
these mappings that result in two similar substring rules representing the HTML
component. Combinations of nodes E, I, and J; or nodes H, I, and J produce
the substring rule:

<tr><xsl:value-of select="album"/> by <xsl:value-of select="artist"/>

(<xsl:value-of select="date"/>)</tr>.

Alternatively, combinations of nodes B, E, and J; or nodes B, H, and J yield
the substring rule:

<tr><xsl:value-of select="album"/> by <xsl:value-of select="owner"/>

(<xsl:value-of select="date"/>)</tr>.

110 Stella Waworuntu and James Bailey

Clearly, the problem that we face here is choosing the combination of XML
nodes that best describe an HTML component. Based on the XML and HTML
DOM in Fig. 9, we can see that the combination of XML nodes H, I, and J is the
one that best represents the HTML node R. This is because the region of these
XML nodes is related to the region of HTML node R, i.e. the parent of these
XML nodes structurally maps to the parent of HTML node R, as indicated by
the structure mapping 10. In addition, the mappings 1, 5, and 9 should not be
considered in the substring rule generation, since the regions between the XML
and HTML nodes are not related and hence, they are not accurate.

In the following subsection, we have devised a heuristic strategy for selecting
a subset of such HTML component mappings that yields an unambiguous sub-
string rule. We then present a brief description of the algorithm for generating
the substring rule itself.

Selecting a Subset of the Mappings to the Same HTML Component The main
motivation behind choosing a subset of the mappings that go the same HTML
component is that we want to construct a unique and unambiguous substring
rule between a set of XML nodes and an HTML node. This purpose is served only
if the region of the XML nodes and the region of the HTML node is related.
For example, in order to generate a substring rule for HTML node P in the
Music example (Fig. 9), there are four substring mappings that can be used:
mappings 2, 3, 4, and 5, since the HTML component of these mappings is the
HTML node P. However, the subset of these mappings that we select are the
mappings 2, 3, and 4, since the XML components of these mappings are located
in the region that is related to the region of the HTML node P. The two regions
that we discuss are the subtree of XML node C and the subtree of HTML node
M, which are structurally mapped as indicated by the structure mapping 11.
Mapping 5 is not selected since the XML node F is not located in the subtree
of XML node C.

In this subsection, we describe how we choose a subset of substring mappings
that best describes an HTML node based on the related regions. Note that the
set of mappings that we are focusing on, is the one that has the same HTML
component for every mapping in that set. This set of mappings is in fact a subset
of MS. Splitting MS into sets of mappings with the same HTML component is
not a complicated task.

Intuitively, given a set of mappings MH that all map to the same HTML node,
a subset G of MH is a good subset if the combination of the XML components
in G produces a single substring rule that represents the HTML component.

Therefore, given a set of substring mappings MH , which has the same HTML
component h for every mapping in it, we first find a mapping s in MSM or in
MOM , such that s.h, is the closest ancestor of h. Then, a subset G of MH is a
“good” subset for generating a unique substring rule, if for every mapping m in
G, m.x is a descendant of s.x.

Referring back to the Music example describe in Sect. 4.5, to facilitate the
substring rule generation of HTML node R, we need to examine the set MH of
substring mappings 1, 6, 7, 8, and 9, since these mappings lead to the HTML

XSLTGen: A System for Automatically Generating XML Transformations 111

node R. As stated above, the first thing that we need to do is find a structure
mapping or a 1-m mapping s, whose HTML component is the closest ancestor
of node R. In this case, the mapping s is the structure mapping between node
D and node N (mapping 10). We then select the mappings in MH whose XML
component is a descendant of node D and we obtain a good subset G consisting
of mappings 6, 7, and 8.

Once we have a “good” subset G, a substring rule R is generated by invoking
the algorithm described in the next subsection, and is then added to the list of
substring rules SUB RULES.

Algorithm for Generating a Substring Rule. In this subsection, we show how the
substring rule for a set of mappings G can be derived. Recall that all mappings
in G have the same HTML component, h. Concisely, the main idea of the sub-
string rule generation is to construct the string of h by combining the strings
of the XML components of the mappings in G. Since the mappings in G are
found within the text matching subsystem, h only has one string, denoted by
h string, which is the value of the text node located at the leaf of the subtree
of h. For example, the h string of the HTML node td (node R) in the Music
example (Fig. 9) is “Kylie’s by Kylie (2002)”. The same condition applies
to the XML component of each mapping in G. If the XML component is an
element node, the XML node also has only one string x string, which is the
value of the text node located at the leaf of the subtree of the XML node. For
instance, the x string of the XML node date (node E) in Fig. 9 is “2002”. In
the case where the XML component is an attribute node, the string x string
is simply the value of the XML node.

As the term substring implies, there must be parts of h string that do not
have any matching x string in G, i.e. these are extra strings. For each substring of
h string that exactly matches an x string, an XSLT <xsl:value-of> statement
is generated to extract the x string from the corresponding XML component.
Thus, we can conclude that the generated substring rule is a sequence of extra
strings and <xsl:value-of> statements that together represents h string.

The substring rule s rule for the mappings in G is constructed recursively
until h string is empty. At each step, we search for a mapping m′ whose x string
of m′.x matches the longest prefix of h string and then update the substring
rule s rule using the rules specified in Table 3. When h string is empty, the
construction of s rule of G is finished and a tuple (h, s rule) is returned.

We believe that this algorithm is a reasonable method for constructing sub-
string rules, since it is capable of capturing extra strings and matching x strings
accurately. The following example best illustrates the key steps of our algorithm.

Example 2. Consider the set G of substring mappings 6, 7, and 8 shown in the
Music example of Fig. 9. In this case, the h string of G is “Kylie’s by Kylie
(2002)”, while the set of x strings is {“2002”, “Kylie”, Kylie’s}. Below, we
list how Rules (A) and (B) described in Table 3 are recursively applied to derive
the substring rule s rule.

112 Stella Waworuntu and James Bailey

Table 3. Rules for generating a substring rule

Rule Condition Update

A m′ is not found Extract the first character of h string and add it to
s rule, since it is suspected that the prefix of the cur-
rent h string is part of the extra strings

B m′ is found, m′.x is
an element node

Add <xsl:value-of select="m′.x.name"/> to s rule
and delete the prefix of h string matching x string

C m′ is found, m′.x is
an attribute node

Add <xsl:value-of select="owner(m′.x).name/
@m′.x.name"/> and delete the prefix of h string
matching x string

1. Mapping 8 is chosen since its x string “Kylie’s” is the longest string that
matches the prefix of h string “Kylie’s by Kylie (2002)”. According to
Rule (B),

s rule = <xsl:value-of select="album"/>
h string = “ by Kylie (2002)”.

2. Apply Rule (A) recursively for characters in substring “ by ” since it is an
extra string. At the final execution of Rule (A),

s rule = <xsl:value-of select="album"/> by
h string = “Kylie (2002)”.

3. Mapping 7 is chosen and we apply Rule (B).
4. Apply Rule (A) recursively for characters in extra string “ (”.
5. Mapping 6 is chosen and we apply Rule (B).
6. Apply Rule (A) for character “)”. h string is now empty and s rule is

<xsl:value-of select="album"/> by <xsl:value-of select="artist"/>

(<xsl:value-of select="date"/>)

Constructing a Template Rule for an Exact Mapping in ME. As de-
scribed in Sect. 2.1, each template rule begins with an XSLT <xsl:template>
element and ends by closing that element. For a mapping m, the pattern of the
corresponding template rule is the name of m.x. The difficult task lies in deter-
mining the appropriate template, i.e. which XSLT instructions to be used and
where they should be placed.

We now describe how we construct a template rule for an exact mapping m.
Compared to the procedures for the other two mappings (structure mapping and
1-m mapping), this procedure is the simplest and the most straightforward, since
there is only one XSLT instruction used in the template: <xsl:value-of>. In
this procedure, we only construct a template rule when m is a mapping between
an XML element node to an HTML node or a concatenation of HTML nodes.
The reason that we ignore mappings involving XML attribute nodes is that
the template for this mapping will be generated directly within the construction
of the template rule for structure mapping and 1-m mapping.

Since there could be mappings from an XML node to a concatenation of
HTML nodes in text matching, we need to create a template for each HTML

XSLTGen: A System for Automatically Generating XML Transformations 113

node hi in m.h. Given an exact mapping m, the rules for creating a template
representing transformation between m.x and hi are listed in Table 4.

Table 4. Rules for creating the template for exact mappings

Rule Condition Template

A hi is a special HTML element <hi.name/>
B hi is not a special HTML ele-

ment, m.x is an element node
<hi.name><xsl:value-of select=”.”/>
</hi.name>

C hi is not a special HTML el-
ement, m.x is an attribute
node

<hi.name>
<xsl:value-of select="@m.x.name."/>
</hi.name>

Example 3. Consider the exact mapping (line, text() ++ br). The steps per-
formed to construct the template rule are:

1. Create a template rule: <xsl:template match="line">
2. Create a template for each HTML node in (text() ++ br): for HTML node

text(), apply Rule (B) since the XML node line is an element node.
The template body is: <xsl:value-of select="."/>
Note that there are no opening and closing tags, since text() is a
text node.

3. Apply Rule (A), since br is a special HTML element:

4. Close the template rule: </xsl:template>

Constructing a Template Rule for a Structure Mapping in MSM . We
next explain how the template rule for a structure mapping m is constructed.
Recall from the structure matching subsystem that one of the mappings in MSM

must be the mapping that has the root of the XML document as its XML
component. Let r denote this special mapping. For the mapping r, the template
begins with copying the root of the HTML document and its subtree, excluding
the HTML component r.h and its subtree.

The next step in constructing the template for mapping r follows the steps
performed for the other mappings in MSM . For any mapping m in MSM , the
opening tag for m.h is created. The process continues with creating a template
for each child ci of m.h and finishes by closing the m.h tag.

For each HTML child ci, we need to determine whether an XSLT instruction
is needed; and if so, which XSLT instruction should be used. This task depends
fully on the similarities and differences between the structure of the XML com-
ponent m.x and the structure of the HTML node hi. Given an XML component
m.x and a child ci of the HTML component m.h, the rules for creating a template
that represents the transformation from m.x to ci are listed in Table 5.

114 Stella Waworuntu and James Bailey

Table 5. Rules for creating the template for structure mappings

Rule Condition Template

A ci is an extra node but not a special
HTML element

Node ci complete with its subtree

B ∃e ∈ ME , e.x is a descendant of
m.x, e.h = ci

<xsl:apply-templates select="{XPath
describing e.x in the context of m.x}"/>

C ∃e ∈ ME , owner(e.x) = m.x, e.x
is an attribute node, e.h = ci

Apply the algorithm for constructing a
template rule for an exact mapping to e

D ∃e ∈ ME , owner(e.x) is a de-
scendant of m.x, e.x is an at-
tribute node, e.h = ci

<ci.name><xsl:value-of select="

{XPath describing owner(e.x) in the con-
text of m.x}/@e.x.name"/></ci.name>

E ∃s ∈ MSM , s.x is a descendant of
m.x, s.h = ci

<xsl:apply-templates select="{XPath
describing s.x in the context of m.x}"/>

F ∃sr : (ci, sr.rule) ∈ SUB RULES <ci.name> sr.rule </ci.name>
G Otherwise <ci.name> {Create template for (m.x, ci),

i.e. apply Rules (A) - (G) to each child
of ci} </ci.name>

Example 4. Consider the structure mapping (match, table) and the exact map-
pings (date, td[1]), (team[1], td[2]), (team[2], td[3]) discovered in the Soc-
cer example (Fig. 6) . The steps required to generate the template rule for this
structure mapping are:

1. Create a template rule: <xsl:template match="match">
2. Start the template body by generating an opening tag for HTML node table,

since match is not the root of the XML document: <table>
3. Apply Rule (G) since tr has no matching XML node in any mapping lists:

(a) Generate an opening tag for HTML node tr: <tr>
(b) For the first child of tr, i.e. td[1], apply Rule (B) because (date,

td[1]) ∈ ME and date is a descendant of the XML node match:
<xsl:apply-templates select="./date"/>

(c) Apply Rule (B) to the second and third child of tr, i.e. td[2] and
td[3], for the same reason as the first child td[1], and we obtain:
<xsl:apply-templates select="./team[1]"/>
<xsl:apply-templates select="./team[2]"/>

(d) Generate the closing tag for tr: </tr>
4. Generate the closing tag for HTML node table: </table>
5. Close the template rule: </xsl:template>

Constructing a Template Rule for a One-Many Mapping in MOM .
This subsection describes the process for constructing a template rule for a 1-m
mapping m in MOM . Being a 1-m mapping, the HTML component m.h must
be a concatenation of several HTML nodes. Thus, each HTML node hi in m.h
is processed sequentially to find out the sequence of XSLT instructions that fill

XSLTGen: A System for Automatically Generating XML Transformations 115

up the template rule. Given a 1-m mapping m, the rule for creating a template
representing the transformation from m.x to each hi is presented in Table 6.

Table 6. Rules for creating the template for 1-m mappings

Rule Condition Template

A (m.x, hi) ∈ MSM Apply the algorithm for constructing
a template rule for a structure map-
ping to (m.x, hi). Then, delete mappings
(m.x, hi) ∈ MSM

B (m.x, hi) ∈ ME Apply the algorithm for constructing
a template rule for an exact map-
ping to (m.x, hi). Then, delete mappings
(m.x, hi) ∈ ME

C ∃e ∈ ME , e.x is a descendant of
m.x, e.h = hi

<hi.name><xsl:apply-templates
select="{XPath describing e.x in
the context of m.x}"/></hi.name>

D ∃e ∈ ME , owner(e.x) = m.x, e.x
is an attribute node, e.h = hi

Apply the algorithm for constructing a
template rule for an exact mapping to e

E ∃e ∈ ME , owner(e.x) is a de-
scendant of m.x, e.x is an at-
tribute node, e.h = hi

<hi.name><xsl:value-of select="

{XPath describing owner(e.x) in the con-
text of m.x}/@e.x.name"/></hi.name>

F ∃sr : (hi, sr.rule) ∈ SUB RULES <hi.name>sr.rule</hi.name>
G hi is an extra node but not a spe-

cial HTML element
Node hi complete with its subtree

Example 5. Consider 1-m mapping (match, h2 ++ table) discovered in Sect. 4.4,
and structure mapping (match, table) found in Sect. 4.3 for the Soccer example
(Fig. 6). Suppose we have generated substring rule
(h2, <xsl:value-of select= "team[1]"/> vs <xsl:value-of select="team[2]"/>).

The steps involved in generating the template rule for the 1-m mapping is:

1. Create a template rule: <xsl:template match="match">
2. Apply Rule (F) since SUB RULES contains a substring rule for h2:

<h2><xsl:value-of select="team[1]"/> vs
<xsl:value-of select="team[2]"/></h2>

3. For HTML node table, apply Rule (A) since (match, table) ∈ MSM . This
is the same as the template body discovered in Example 4, which is:
<table><tr>

<xsl:apply-templates select="./date"/>
<xsl:apply-templates select="./team[1]"/>
<xsl:apply-templates select="./team[2]"/>

</tr></table>
4. Close the template rule: </xsl:template>

116 Stella Waworuntu and James Bailey

4.6 Refining the XSLT Stylesheet

In some cases, the (new) HTML document obtained by applying the generated
XSLT stylesheet to the XML document may not be accurate, due to the wrong
ordering of instructions within a template. i.e. there exist differences between
this (new) HTML document and the original (user-defined) HTML document.
By examining such differences, we can improve the accuracy of the stylesheets
generated by XSLTGen. This step is applicable in circumstances where we have a
set of complete and accurate mappings between the XML and HTML documents,
but generated erroneous XSLT code based on these mappings. If the discovered
mappings themselves are incorrect or incomplete, then this refinement step will
not be effective and it is better to address the problem by improving the matching
techniques. An indicator that we have complete and accurate mappings is that
each element in the new HTML document corresponds exactly to the element
in the original HTML document at the same depth.

Refining can be effective in situations where the generated XSLT stylesheet
can be fixed by applying local move operations within the template matches,
i.e. the generated stylesheet is inaccurate due to the wrong ordering of XSLT
instructions within the template rules. This situation typically occurs when we
have two or more XML nodes with the same name and are located at the same
depth in the XML DOM, but have different order or sequence of children. In
this case, the mappings generated are complete and accurate, however our XSLT
stylesheet constructor assumes that these XML nodes have the same order of
children and hence, it follows the order of the first node (amongst these XML
nodes) encountered in the pre-order traversal of the XML DOM. Therefore, the
main objective of this refining step is to fix the order of XSLT instructions within
the template matches of the generated stylesheet, so that the resulting HTML
document is closer to or exactly the same as the original HTML document.

A naive approach to the above problem is to use brute force and attempt all
possible orderings of instructions within templates until the correct one is found
(i.e. until there exist no differences between the new and the original HTML
documents). However, this approach is prohibitively costly. Therefore, we adopt
a heuristic approach, which begins by examining the differences between the
original and the new HTML documents. We employ a change-detection algo-
rithm [6], that produces a sequence of edit operations needed to transform the
original HTML document to the new HTML document. The types of edit op-
erations returned are insert, delete, change, and move. Of course, other similar
change detection algorithms such as [9, 18] could potentially be used instead.

To carry out the refinement, the edit operation that we focus on is the move
operations, since we want to swap around the XSLT instructions in a template
match to get the correct order. In order for this to work, we require that there are
no missing XSLT instructions for any template match in the XSLT stylesheet.
After examining all move operations, this procedure is started over using the
fixed XSLT stylesheet. This repetition is stopped when no move operations are
found in one iteration; or, the number of move operations found in one iteration
is greater than those found in the previous iteration. The second condition is

XSLTGen: A System for Automatically Generating XML Transformations 117

required to prevent the possibility of fixing the stylesheet incorrectly. We want
the number of move operations to decrease in each iteration until it reaches zero.
A sketch of the refinement algorithm is presented in Fig. 10.

procedure ImproveXSLT(XML, HTML, XSLT, ME , MSM , MOM)
begin
1. Mprev = ∅
2. Hist = ∅ /* List of XSLT instructions that have been moved */
3. repeat
4. Apply XSLT to XML to get HTMLnew

5. Find the set of edit operations, E, between HTML and HTMLnew

6. M = move operations in E
7. if (|M| = 0 or |M| > |Mprev |)
8. return
9. Mprev = M
10. NoFix = 0 /* Number of modifications made to XSLT in the current iteration */
11. for each move m ∈ M
12. Find the template match to be fixed, T , in XSLT
13. Find the specific XSLT instruction to be moved, I, within T
14. if I /∈ Hist
15. Move I into the correct place using the information from M
16. Add I to Hist
17. Increment NoFix
18. until
19. No new modifications made to XSLT, i.e. NoFix = 0
end

Fig. 10. The XSLT stylesheet refining algorithm (sketch)

5 Empirical Evaluation

We have conducted experiments to study and measure the performance of the
XSLTGen system. Our goals were to evaluate the matching accuracy of XSLT-
Gen, and verify that XSLTGen generates useful XSLT stylesheets with a variety
of XML and HTML documents. The system is written in Java, and employs a
library for HTML cleaning, JTidy4.

5.1 Data Sets

It is difficult to test this system on a class of documents, due to the lack of
other suitable automatic generation systems for comparison. However, to give
the reader some idea on how XSLTGen performs, we evaluated XSLTGen on
four examples taken from a popular XSLT book5 and a real-life data taken from
MSN Messenger6 chat log.

These datasets were originally pairs of (XML document, XSLT stylesheet).
To get the HTML document associated with each dataset, we apply the original
4 http://sourceforge.net/projects/jtidy
5 http://www.wrox.com/books/0764543814.shtml
6 http://messenger.ninemsn.com/Default.aspx

118 Stella Waworuntu and James Bailey

XSLT stylesheet to the XML document using Xalan7 XSLT processor. We choose
the datasets such that they exhibit a wide variety of characteristics. This is useful
for benchmarking the performance of the XSLTGen system with different types
of data. The characteristics of the five datasets are shown in Table 7. The Books
dataset has its HTML document in a tabular format and the structure of the
XML is fairly similar. The Itinerary dataset contains no extra nodes in its HTML
DOM, unlike Books. Also, its HTML DOM is roughly twice the size of its XML
DOM. The Poem dataset is different from the previous two, containing a large
number of special HTML elements. The Soccer dataset has many more HTML
nodes than XML nodes and also a very large number of extra nodes. The Chat
Log dataset is noteworthy in that it has a large maximum number of children
per node, 20 in each DOM, which is significantly bigger than any of the other
datasets.

Table 7. Datasets used in our experiments

Datasets # # non- depth # # # extra # special max #
x : xml elem leaf elem text attr HTML HTML children
h : html node node node node node element / node

Books x 17 5 2 12 4 - - 3
h 28 7 4 21 2 5 0 5

Itinerary x 10 1 1 9 9 - - 9
h 21 3 3 18 0 0 0 18

Poem x 19 4 2 15 0 - - 6
h 20 6 3 15 1 1 12 5

Soccer x 25 7 2 18 13 - - 6
h 99 44 5 55 18 54 0 13

Chat Log x 121 61 3 60 161 - - 20
h 244 45 6 105 40 100 0 20

5.2 Manual Mappings

For evaluation purposes, we manually determined the correct mappings between
the XML and HTML DOMs in each dataset. These mappings include exact
mappings, substring mappings, structure mappings, and 1-m mappings. Table 8
shows the number of manual mappings found for each dataset.

5.3 Experiments

For each dataset, we applied XSLTGen to find the mappings between elements in
the XML and HTML DOMs, and generate an XSLT stylesheet that transforms
the XML document to the HTML document. We then measured two aspects:
7 http://xml.apache.org/xalan-j/index.html

XSLTGen: A System for Automatically Generating XML Transformations 119

Table 8. Manual mappings determined in the datasets

Datasets Exact Substring Structure 1-m

Books 22 0 5 0
Itinerary 9 9 1 9
Poem 1 12 5 0
Soccer 48 68 7 6
Chat Log 1440 0 51 0

1. Matching accuracy: the percentage of the manually determined mappings
that XSLTGen discovered.

2. The quality of the XSLT stylesheet inferred by XSLTGen.

To evaluate the quality of the XSLT stylesheet generated by XSLTGen in each
dataset, we applied the generated XSLT stylesheet back to the XML document
using Xalan and then compared the resulting HTML with the original HTML
document using HTMLDiff8. HTMLDiff is a tool for analysing changes made
between two revisions of the same file. It is commonly used for analysing HTML
and XML documents. The differences may be viewed visually in a browser, or
analysed at the source level.

5.4 Matching Accuracy

Table 9 shows the matching accuracy on the different datasets for the subsys-
tems of XSLTGen. As shown in the table, XSLTGen achieves high matching
accuracy across all five datasets. Exact mappings reach 100% accuracy in four
out of five datasets. In the dataset Chat Log, exact mappings reach 86% ac-
curacy which is still deemed significantly accurate. This is because there are
undiscovered mappings from XML attribute nodes to HTML attribute
nodes, which violates our assumption in Sect. 4.2 that the value of an HTML
attribute node is usually specific to the display of the HTML document in
the Web browsers and is not generated from a text within the XML document.
Substring mappings achieve 100% accuracy in the datasets Itinerary and Soccer.
In contrast, substring mappings achieve 0% accuracy in the dataset Poem. This
poor performance is caused by incorrectly classifying the substring mappings as
exact mappings during the text matching process. In the datasets Books and
Chat Log, substring mappings do not exist. Structure mappings achieve per-
fect accuracy in all datasets except Poem. In the dataset Poem, the structure
mappings achieve 80% accuracy because the XML node author is incorrectly
matched with the HTML text node “Rupert Brooke” in text matching, while
it should be matched with the HTML node div in structure matching. Following
the success of the other mappings, 1-m mappings also achieve 100% accuracy
in all applicable datasets, i.e. Itinerary and Soccer. In the datasets Books, Poem
and Chat Log, there are no 1-m mappings.
8 http://www.componentsoftware.com/products/HTMLDiff/

120 Stella Waworuntu and James Bailey

Table 9. Matching accuracy of XSLTGen (in %)

Datasets Exact Substring Structure 1-m

Books 100.00 100.00
Itinerary 100.00 100.00 100.00 100.00
Poem 100.00 0.00 80.00
Soccer 100.00 100.00 100.00 100.00
Chat Log 86.11 100.00

The results indicate that in most of these cases, the XSLTGen system is
capable of discovering complete and accurate mappings.

5.5 Quality of Generated XSLT Stylesheets

Table 10 shows the result of comparing the original and the new HTML docu-
ment, i.e. the one produced by applying the generated XSLT stylesheet to the
XML document, for different datasets in terms of the percentage of correct nodes.

Table 10. Percentage of correct nodes in the new HTML document for each
dataset

Datasets Element Nodes Text Nodes Attributes Nodes

Books 100.00 85.71 100.00
Itinerary 100.00 100.00 100.00
Poem 100.00 14.29 80.00
Soccer 100.00 100.00 100.00
Chat Log 100.00 100.00 75.00

As shown in the table, the new HTML documents have a high percentage
of correct nodes. Using HTMLDiff, the results of comparing the new HTML
document with the original HTML document in each dataset is reflected in the
table. The accuracy is very high. In the datasets Itinerary and Soccer, the HTML
documents being compared are identical. This is shown by the achievement of
100% in all types of nodes. In the dataset Poem, the two HTML documents
have exactly the same appearance in Web browsers, but according to HTMLDiff,
there are some missing whitespaces in each line within the paragraphs of the new
HTML document. That is the reason why the percentage of correct text nodes
in the Poem dataset is very low (14%). The only possible explanation in this
case is that in the text matching subsystem, we remove the leading and trailing
whitespaces of a string before the matching is done. The improvement stage also
does not fix the stylesheet since there are no move operations. In the dataset
Books, the difference occurs in the first column of the table. In the original HTML

XSLTGen: A System for Automatically Generating XML Transformations 121

document, the first column is a sequence of numbers 1, 2, 3, and 4; whereas in
the new HTML document, the first column is a sequence of 1s. This is because
the numbers 1, 2, 3, and 4 in the original HTML document are represented
using four extra nodes, and our template rule constructor in the XSLT stylesheet
generator assumes that all extra nodes that are cousins (their parent are siblings
and have the same node name) have the same structure and values. Since in this
dataset the four extra nodes have different text values, the percentage of correct
text nodes in the new HTML document is slightly affected (86%). Lastly, the
differences between the original and the new HTML documents in the dataset
Chat Log are caused by the undiscovered mappings mentioned in the previous
subsection. Because of these undiscovered mappings, it is not possible to fix
the XSLT stylesheet in the improvement stage. These undiscovered mappings
affect some attribute nodes in the new HTML document but the percentage
of correct attribute nodes is still acceptable (75%).

5.6 Discussion and Future Work

We have also tested XSLTGen on many other examples. In general, it seems to
perform most effectively in situations where the XSLT stylesheet that needs to
be generated follows a ‘fill-in-the-blanks’ style design pattern [16]. In such sit-
uations, the structure of the required stylesheet is rather similar to the desired
output, with variable data being retrieved from the XML and inserted at par-
ticular points. The stylesheets generated were also tested on extra structurally
similar versions of the given examples, that were generated by insertions and
deletions of subtrees. The precision was similar to that for the original exam-
ples.

However, there are some problems that prevent XSLTGen from obtaining
higher matching accuracy. First, in a few cases, XSLTGen is not able to discover
some mappings which deal with relationships between XML attribute nodes
and HTML attribute nodes. The reason is that these mappings violate our
assumption stated in Sect. 4.2. This problem can be alleviated by adding HTML
attribute nodes in the matching process. Undiscovered mappings are also
caused by incorrectly matching some nodes, which is the second problem faced
in the matching process. Incorrect matchings typically occur when an XML
or an HTML text node has some element node siblings. In some cases,
these nodes should be matched during the text matching process, while in other
cases they should be matched in structure matching. Here, the challenge will
be in developing matching techniques that are able to determine whether a
text node should be matched during text matching or structure matching. The
third problem concerns with incorrectly classified mappings. This problem only
occurs between a substring mapping and an exact mapping, when the compared
strings have some leading and trailing whitespaces. Determining whether the
whitespaces should be kept or removed is a difficult choice. In many cases, the
whitespaces should be removed in order to correctly match some nodes. This is
how whitespaces are treated in our text matching. However in some cases, the
whitespaces should be kept since they are used to specify the formatting of the

122 Stella Waworuntu and James Bailey

HTML document. This problem can be mitigated by adding an option to keep
or remove the whitespaces.

Besides this, as the theme of our text matching subsystem is text-based
matching (matching two strings), the performance of the matching process de-
creases if the supplied documents contain mainly numerical data. In this case,
the mappings discovered, especially substring mappings, are often inaccurate
and conflicting, i.e. more than one HTML nodes match a single XML node. This
is also true for cases where very complex restructurings of the data are need to
be performed, such as unnesting and normalizing.

The mappings discovered certainly are an important basis for generating
a good and accurate XSLT stylesheet. Undiscovered mappings and incorrect
matchings cause the generated stylesheet to be erroneous, since the HTML nodes
that are supposed to have matching XML nodes are treated as extra nodes and
thus, are directly copied to the corresponding template. Although in some cases
the HTML document generated using this kind of stylesheet is identical to the
original HTML document, this behaviour obviously reduces the reusability of the
XSLT stylesheet, since it contains information specific to a particular XML doc-
ument. On the other hand, incorrectly classified mappings do not cause serious
problems in the XSLT stylesheet. They may or may not affect the appearance
of the HTML document generated using this stylesheet in a browser.

However, having complete and accurate mappings does not guarantee that
the generated XSLT stylesheet will be accurate and of high quality. Another crit-
ical factor that should be considered is the similarities and differences between
the structure of the XML document and the structure of the HTML document.

Occasionally within those complete and accurate mappings, there is more
than one mapping discovered for the same XML node. This case only happens
when two or more strings in the HTML document are generated from a single
string in the XML document. In this case, the generated XSLT stylesheet is
inconsistent, since it contains conflicting template rules. Hence, an additional
extension to XSLTGen is to make it be aware of such cases, and not generate
conflicting template rules, but instead, integrate the template of each of these
template rules to the appropriate <xsl:apply-template> instruction that calls
it, taking into account the structures of the two documents.

We note that the current version of XSLTGen does not support the capa-
bility to automatically generate XSLT stylesheets with complex functions (e.g.
sorting). This is a very challenging task and an interesting direction for future
work. Another direction for future work would be to modify XSLTGen so that
it uses a DTD, if it has been provided with the input XML document in the
automatic generation process. Of course, if the desired output is HTML, then
the standard DTD for the HTML language is unlikely to be useful.

Lastly, we observe that the focus of the XSLTGen has been on producing
quality stylesheets, rather than minimising execution time. Improving the run-
time efficiency and scalability of the system for very large documents are inter-
esting ways to enhance the system. However, we expect the XSLTGen system to

XSLTGen: A System for Automatically Generating XML Transformations 123

be deployed in a static, rather than dynamic manner (i.e. run once-only for an
input-output pair, rather than repeatedly) and so this is not a primary issue.

6 Related Work

Recently, there has been much work in the literature about XML document
transformations, in which only a few address the problem of generating XSLT
stylesheet automatically. To the best of our knowledge, this work mainly focuses
on XML to XML transformations and the techniques involved are specific to the
XML to XML transformations, such as element/tag names comparison, which
is impossible in our case since XML and HTML have completely different tag
names; and the use of XML Schemas. Although it may be possible to generate
an XML Schema for an HTML document, it would not be particularly useful in
our scenario.

[13] presents a system that captures the semantics of the XML schemas and
using these semantics to automatically generate the necessary XSLTs. The sys-
tem firstly defines a rich information model using ontology and then maps the
schema’s elements, complex types, and simple types to the information model,
thereby formally capturing the schemas’ semantics. While the creation of in-
formation model is partially automated by arbitrarily declaring an ontological
concept per schema component; the mapping process requires a human interven-
tion. In the next step, the active semantic hub is used to automatically generate
the XSLT based on the element’s meanings. The algorithm find elements of the
source and target that mapped to the same ontological concepts, or to concepts
that can be related to each other with encoded conversion rules.

A semi-automatic XSLT stylesheet generation is also invoked within the
IDACT system [23], which is a tool for automating the compilation of het-
erogeneous scientific datasets. If a suitable transformation is not found in its
database, IDACT attempts to create a new transformation. IDACT firstly rep-
resents the input and output XML documents as trees, and then determines
the relationships between them, by considering the XML element names, or the
XML element content formats. By searching a library of XSLT conversions or
functions, and a database of element name relationships, IDACT can build an
entire XSLT stylesheet from library components. However, if IDACT finds an
element that does not have a relationship, the user is prompted to provide one.
This new relationship and the new XSLT stylesheet will then be saved and made
available for future use.

[11] describes an approach to an automatic XML to XML transformation
generator that is based on a theory of information-preserving and approximat-
ing XML operations and their associated DTD transformations. The system
strictly requires the presence of DTDs of both the source and target documents.
The process starts with identifying an algebra of information-preserving and -
approxi- mating XML transformations. This is done by defining corresponding
relations on XML trees, which are induced by operations on XML values. The
operations considered as information-preserving are renaming of tags, regroup-

124 Stella Waworuntu and James Bailey

ing, and congruence; while the one considered as information-approximating is
deletion. The renaming of tags is comparable to our exact mapping. However, its
procedure involves some measures of similarity between tag names, which is not
applicable to XSLTGen since XML and HTML have completely different set of
tags. The congruence operation is similar to our structure matching. The next
step is to construct a search space of DTDs by applying algebra operations and
find a path from a source DTD element to the required target DTD element.
The path represents the sequence of operations that realise the sought trans-
formation. Based on the presentation in the paper, the approach seems to be
a theoretical one and does not appear to have been implemented in an actual
system.

In [3], a conceptual modelling based approach is used for performing semantic
matching. It introduces a new layered model for XML schemas, called LIMXS,
which offers a semantic view for XML schemas through the specification of con-
cepts and semantic relationships among them. This model initiates a dynamic
and incremental algorithm for finding semantic mappings. The system initially
performs semantic matching between a source and target semantic views. Once
semantic mapping is generated and validated by user, the result is given to the
logical layer, which performs logical matching. Finally, an XSLT code is auto-
matically produced. In a way, XSLTGen also uses the dynamic and incremental
approach with our text matching, structure matching, and sequence checking,
but without the need for user interaction.

The only prior work about XML to HTML transformations of which we
are aware of is XSLbyDemo [24], a system that generates an XSLT stylesheet
by example. The process begins with transforming the XML document to an
HTML page using an XSLT stylesheet that was manually created taking into
account the DTD of the XML document. This HTML page is referred to as initial
HTML page. The user then modifies the initial HTML page using a WYSIWYG
editor and their actions are recorded in an operation history. Based on the user’s
operation history, an XSLT stylesheet is generated. Obviously, this system is not
automatic, since the user directly involves at some stages of the XSLT generation
process. Hence, it is not comparable to our fully automatic XSLTGen system.
Specifically, our approach differs from XSLbyDemo in three key ways:

1. Our algorithm produces an XSLT stylesheet consisting of transformations
from an XML document to an HTML document, while XSLbyDemo gener-
ates transformations from an initial HTML to its modified HTML document.

2. Following the first argument, our generated XSLT can be applied directly
to other XML documents from the same document class, whereas using
XSLbyDemo, the other XML documents have to be converted to their initial
HTML pages before the generated XSLT can be applied.

3. Finally, our users do not have to be familiar with a WYSIWYG editor and
the need of providing structural information through the editing actions. The
only thing that they need to possess is knowledge of a basic HTML tool.

In the process of generating XSL Transformations, XSLTGen involves a step
of matching the supplied XML and HTML documents, i.e. finding semantic

XSLTGen: A System for Automatically Generating XML Transformations 125

mappings between the XML and HTML tags. The rest of this section focuses on
the related work in the area of tree matching and semantic mapping.

6.1 Tree Matching

There are a number of algorithms available for tree matching. Work done in [1,
28, 29, 32] on the tree distance problem or tree-to-tree correction problem and
work done in [6, 20] known as the change-detection algorithm, compare and
discover the sequence of edit operations needed to transform the source tree into
the result tree given. These algorithms are mainly based on structure matching,
and their input comprises of two labelled trees of the same type, i.e. two HTML
trees or two XML trees. The text matching involved is very simple and limited
since it compares only the labels of the trees. More recent algorithms on tree
matching and main memory change detection for XML include the XyDiff system
[9] and work in [18], which leverages relational database technology.

6.2 Semantic Mapping

In the field of semantic mapping, a significant amount of work has focused on
schema matching (refer to [27] for survey). Schema matching is similar to our
matching problem in the sense that two different schemas, with different sets
of element names and data instances, are compared. However, the two schemas
being compared are mostly from the same domain and therefore, their element
names are different but comparable. Besides using structure matching, most of
the schema mapping systems rely on element name matchers to match schemas.
The TransSCM system [22] matches schema based on the structure and names
of the SGML tags extracted from DTD files by using concept of labelled graphs.
The Artemis system [2, 5] measures similarity of element names, data types
and structure to match schemas. In XSLTGen, it is impossible to compare the
element names since XML and HTML have completely different tag names.

XMapper [17] is a system built for finding semantic mappings between struc-
tured documents within a given domain, particularly XML sources. This system
uses an inductive machine learning approach to improve accuracy of mappings
for XML data sources, whose data types are either identical or very similar, and
the tag names between these data sources are significantly different. In essence,
this system is suitable for our matching process since the tag names of XML and
HTML documents are absolutely different. However, this system is not automatic
since it requires the user to select one matching tag between two documents.

The Clio system [15] is an interactive, semi-automated tool for computing
schema matchings. It was introduced for the relational model in [21] and was
based on value correspondences provided by the user, in order to create the cor-
responding data transformation/query. In [31], the system has been extended by
using instances to refine schema matchings. Refinements are obtained by infer-
ring schema matchings from operations applied to example data, which is done by
the user who manipulates the data interactively. User interaction is also needed
in [25] where a two-phase approach for schema matching is proposed. The second

126 Stella Waworuntu and James Bailey

phase, called semantic translation, generates transformations that preserve given
constraints on the schema. However, if few or even no constraints are available,
the approach does not work well. It is clear that the algorithm for finding schema
matching used in the Clio system is not suitable for our work, since user inter-
action is required along the phases of finding schema matchings. In addition to
this, the Clio system is applicable only to structured and semi-structured data
that can be described by a schema (a relational schema, a nested XML Schema,
or DTD). It is not applicable to the exchange of documents or unstructured data
(e.g. HTML documents, multimedia, and unstructured text) [25].

Recent work in the area of ontology matching also focuses on the problem of
finding semantic mappings between two ontologies. GLUE system [10] employs
machine learning techniques to semi-automatically create such semantic map-
pings. Given two ontologies: for each node in one ontology, the purpose is to
find the most similar node in the other ontology using the notions of Similarity
Measures and Relaxation Labelling. Similar to our matching process, the basis
used in the similarity measure and relaxation labelling are data values and the
structure of the ontologies, respectively. However, GLUE is only capable of find-
ing 1-1 mappings whereas our matching process is able to discover not only 1-1
mappings but also 1-m mappings and m-1 mappings (in substring mappings).

The main difference between mapping in XSLTGen and other mapping sys-
tems, is that in XSLTGen we believe that mappings exist between elements in
the XML and HTML documents, since the HTML document is derived from the
XML document by the user; whereas in other systems, the mappings may not
exist. Moreover, the mappings generated by the matching process in XSLTGen
are used to generate code (an XSLT stylesheet) and that is why the mappings
found have to be accurate and complete, while in schema matching and ontology
matching, the purpose is only to find the most similar nodes between the two
sources, without further processing of the results. To accommodate the XSLT
stylesheet generation, XSLTGen is capable of finding 1-1 mappings and 1-m
mappings; whereas the other mapping systems focus exclusively on discovering
1-1 mappings. Besides this, the matching subsystem in XSLTGen has the ad-
vantage of having very similar and related data sources, since the HTML data
is derived from the XML data. Hence, they can be used as the primary basis
to find the mappings. In other systems, the data instances in the two sources
are completely different, the only association that they have is that the sources
come from the same domain. Following this argument, XSLTGen discovers the
mappings between two different types of document, i.e. an XML and an HTML
document, whereas the other systems compare two documents of the same type.
Finally, another important aspect which differs XSLTGen from several other
systems, is that the process of discovering the mappings which will then be used
to generate XSLT stylesheet is completely automatic.

XSLTGen: A System for Automatically Generating XML Transformations 127

7 Conclusion

With the massive upsurge in the data exchange and publishing on the Web,
simple conversion of data from its stored representation (XML) to its publishing
format (HTML) is becoming increasingly important. XSLT plays a prominent
role in transforming XML documents into HTML documents. However, XSLT
is difficult for users to learn.

We have devised the XSLTGen system, a system for automatically generating
an XSLT stylesheet, given a source XML document and a desired output HTML
document. This is useful for helping users to learn XSLT. The main strong char-
acteristics of the generated XSLT stylesheets are accuracy and reusability. We
have described how the notions of text matching, structure matching and se-
quence checking, enable XSLTGen to discover not only 1-1 semantic mappings
between the elements in the XML and HTML documents, but also 1-m map-
pings between the two documents. We have described a fully automatic XSLT
generation system that generates XSLT rules based on the mappings found. Our
experiments showed that XSLTGen can achieve high matching accuracy and
produce high quality XSLT stylesheets.

References

[1] D.T. Barnard, N. Duncan, and G. Clarke. Tree-to-tree Correction for Document
Trees. Technical Report 95–372, Department of Computing and Information Sci-
ence, Queen’s University, Kingston, 1995.

[2] S. Bergamaschi, S. Castano, S.D.C.D. Vimeracati, and M. Vincini. An Intelligent
Approach to Information Integration. In Proceedings of the 1st International
Conference on Formal Ontology in Information Systems, pages 253–267, Trento,
Italy, June 1998.

[3] A. Boukottaya, C. Vanoirbeek, F. Paganelli, and O.A. Khaled. Automating XML
Documents Transformations: A Conceptual Modelling Based Approach. In Pro-
ceedings of the 1st Asia-Pacific Conference on Conceptual Modelling, pages 81–90,
Dunedin, New Zealand, January 2004.

[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (Second Edition). W3C Recommendation, October 2000.
http://www.w3.org/TR/REC − xml.

[5] S. Castano and V.D. Antonellis. A Schema Analysis and Reconciliation Tool
Environment for Heterogeneous Databases. In Proceedings of the 1999 Interna-
tional Database Engineering and Applications Symposium, pages 53–62, Montreal,
Canada, August 1999.

[6] S.S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change Detec-
tion in Hierarchically Structured Information. In Proceedings of the 1996 Inter-
national Conference on Management of Data, pages 493–504, Montreal, Canada,
June 1996.

[7] J. Clark. XSL Transformation (XSLT) Version 1.0. W3C Recommendation,
November 1999. http://www.w3.org/TR/xslt.

[8] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C Rec-
ommendation, November 1999. http://www.w3.org/TR/xpath.

128 Stella Waworuntu and James Bailey

[9] G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in xml documents.
In ICDE, pages 41–52, 2002.

[10] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to Map between
Ontologies on the Semantic Web. In Proceedings of the 11th International Con-
ference on World Wide Web, pages 662–673, Honolulu, USA, May 2002.

[11] M. Erwig. Toward the Automatic Derivation of XML Transformations. In Proceed-
ings of the 1st International Workshop on XML Schema and Data Management,
pages 342–354, Chicago, USA, October 2003.

[12] A.L. Hors et.al. Document Object Model (DOM) Level 2 Core Specification Version
1.0. W3C Recommendation, November 2000.
http://www.w3.org/TR/DOM-Level-2-Core.

[13] J. Fox. Generating XSLT with a Semantic Hub. In Proceedings of the 2002 XML
Conference, Baltimore, USA, December 2002.

[14] M. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, and K. Shim. XTRACT:
Learning Document Type Descriptors from XML Document Collections. Data
Mining and Knowledge Discovery, 7(1):23–56, January 2003.

[15] L.M. Haas, R.J. Miller, B. Niswonger, M.T. Roth, P.M. Schwarx, and E.L. Wim-
mers. Transforming Heterogeneous Data with Database Middleware: Beyong In-
tegration. Bulleting of the IEEE Computer Society Technical Committee on Data
Engineering, 22(1):31–36, March 1999.

[16] M. Kay. XSLT Programmer’s Reference. Wrox Press Ltd., 2000.
[17] L. Kurgan, W. Swiercz, and K.J. Cios. Semantic Mapping of XML Tags using

Inductive Machine Learning. In Proceedings of the 2002 International Conference
on Machine Learning and Applications, pages 99–109, Las Vegas, USA, June 2002.

[18] E. Leonardi, S. Bhowmick, T. Dharma, and Madria S. Detecting content changes
on ordered xml documents using relational databases. In DEXA, pages 580–590,
2004.

[19] M. Leventhal. XSL Considered Harmful.
http://www.xml.com/pub/a/1999/05/xsl/xslconsidered 1.html, 1999.

[20] S. Lim and Y. Ng. An Automated Change-Detection Algorithm for HTML
Documents Based on Semantic Hierarchies. In Proceedings of the 17th Inter-
national Conference on Data Engineering, pages 303–312, Heidelberg, Germany,
April 2001.

[21] R.J. Miller, L.M. Haas, and M.A. Hernández. Schema Mapping as Query Dis-
covery. In Proceedings of the 26th International Conference on Very Large Data
Bases, pages 77–88, Cairo, Egypt, September 2000.

[22] T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous Data
Translation. In Proceedings of 24th International Conference on Very Large Data
Bases, pages 122–133, New York, USA, August 1998.

[23] K.L. Nance and B. Hay. IDACT: Automating Data Discovery and Compilation. In
Proceedings of the 2004 Nasa’s Earth Science Technology Conference, Palo Alto,
USA, June 2003.

[24] K. Ono, T. Koyanagi, M. Abe, and M. Hori. XSLT Stylesheet Generation by Ex-
ample with WYSIWYG Editing. In Proceedings of the 2002 International Sym-
posium on Applications and the Internet, Nara, Japan, March 2002.

[25] L. Popa, Y. Velegrakis, R.J. Miller, M.A. Hernández, and R. Fagin. Translating
Web Data. In Proceedings of the 28th International Conference on Very Large
Data Bases, pages 598–609, Hong Kong, China, August 2002.

[26] D. Raggett, A.L. Hors, and I. Jacobs. Hypertext Markup Language (HTML) 4.01.
W3C Recommendation, December 1999. http://www.w3.org/TR/html4.

XSLTGen: A System for Automatically Generating XML Transformations 129

[27] E. Rahm and P.A. Bernstein. A Survey of Approaches to Automatic Schema
Matching. VLDB Journal, 10(4):334–350, December 2001.

[28] S.M. Selkow. The Tree-to-Tree Editing Problem. Information Processing Letters,
6(6):184–186, December 1977.

[29] K.C. Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 26(3):422–
433, July 1979.

[30] S. Waworuntu and J. Bailey. XSLTGen: A system for automatically generating
XML transformations via semantic mappings. In Proceedings of the 23rd Interna-
tional Conference on Conceptual Modeling (ER2004), volume LNCS 3288, pages
479–492, November, 2004.

[31] L.L. Yan, R.J. Miller, L.M. Haas, and R. Fagin. Data-Driven Understanding and
Refinement of Schema Mappings. In Proceedings of ACM SIGMOD International
Conference on Management of Data, Santa Barbara, USA, May 2001.

[32] K. Zhang and D. Shasha. Simple Fast Algorithms for the Editing Distance between
Trees and Related Problems. SIAM Journal of Computing, 18(6):1245–1262, De-
cember 1989.

An Ontology-Guided Approach to Change Detection of
the Semantic Web Data�

Li Qin1 and Vijayalakshmi Atluri2

1 Department of Marketing and CIS, Western New England College
1215 Wilbraham Road, Springfield, MA 01119

lq274250@wnec.edu
2 CIMIC and MSIS Department, Rutgers University

180 University Avenue, Newark, NJ 07102
atluri@cimic.rutgers.edu

Abstract. To achieve improved availability and performance, often, local copies
of remote data from autonomous sources are maintained. Web search engines are
the primary examples of such services. Increasingly, these services are utilizing
the Semantic Web as it is often envisioned as a machine-interpretable web. In
order to keep the local repositories current, it is essential to synchronize their
content with that of their original sources. Change detection is the first step to
accomplish this. It is essential to have efficient change detection mechanisms as
the size of the local repositories is often very large.
In this paper, we present an approach that exploits the semantic relationships
among the concepts in guiding the change detection process. Given changes to
some seed instances, a reasoning engine fires a set of pre-defined rules to charac-
terize the profile of the changed target instances. In addition to change detection,
our proposed semantics-based approach of utilizing semantic associations can be
utilized in other applications such as guiding information discovery for agents,
consistency maintenance among distributed information sources, among others.

1 Introduction

To achieve improved availability and performance, often, local copies of remote data
from autonomous sources are maintained. Web search engines are the primary examples
of such services. Increasingly, these services are utilizing the Semantic Web as it is
often envisioned as a machine-interpretable web. In order to keep the local repositories
current, it is essential to synchronize their content with that of their original sources.
Change detection is the first step to accomplish this, which essentially is to find whether
and what changes have occurred to data of interest, especially those owned and updated
by autonomous sources [23]. For example, a search engine has to detect changes to data
published by autonomous sources in order to synchronize its local copies and its index
with their sources.

� A preliminary version of this paper has appeared in “L. Qin and V. Atluri, Ontology-guided
Change Detection to the Semantic Web Data, 23rd International Conference on Conceptual
Modeling (ER 2004).”

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 130–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 131

The major challenge confronting change detection lies in the conflict between lim-
ited availability of resources for change detection and the enormity of the data available.
As an extension of WWW, the Semantic Web [2] will continue to be decentralized with
its information space projected to increase at a much faster pace than resource avail-
ability. The Semantic Web will be ubiquitous since it is a machine-interpretable web
targeted for automation, integration and reuse of data across different applications. As
a result, it is essential to have efficient change detection mechanisms as the size of the
local repositories is often very large. In addition to search engines, local repositories
include data warehouses, cache maintenance and knowledge archival applications for
the Semantic Web.

Earlier approaches to change detection to web pages rely on the link structure
among web pages or statistics estimated offline (e.g., change frequencies) [6,16]. The
Semantic Web will no longer be simply pages and links, but is a network of resources
whose semantics and interrelationships are explicitly stated. As such, it enables ma-
chines to make inferences and deductions about these resources. Specifically, semantic
Web technologies (e.g. RDF [19], RDF Schema [20] and OWL [15]) provide methods
and standards to enrich data instances with metadata, which are defined as concepts
and properties in ontologies. Each ontology is a formal, explicit specification of shared
conceptualization of a given domain of discourse. As a result, machines can interpret
the data instances by following the pointer embedded in their annotation to seek their
meaning in the ontologies.

In this paper, we exploit the rich specifications of the Semantic Web in efficiently
guiding the change detection process. In particular, we exploit the semantic relation-
ships at ontological level as ontologies present richer and more complete semantics.
We assume that, if a data instance changes, it is highly likely that all its semantically
related instances also have changed. Therefore, our approach gives priority to those re-
lated instances while searching for changes. To this end, we identify certain inferences
rules among concepts, properties, and instances of concepts as well as their changes.
Given changes detected to seed instances, our reasoning engine uses these rules to gen-
erate a profile of target instances that are likely to have changed. This profile essentially
contains information such as the concepts that target instances belong to, how they are
semantically related to the seed instances and any properties that target instances should
or should not instantiate. To our knowledge, we are the first to investigate change de-
tection in the domain of the Semantic Web, and to utilize semantic relationships in this
process.

Since the detected changes are semantically related, it may reveal something more
interesting than what can be discovered by observing each change separately. For ex-
ample, if consistent changes are witnessed to multiple independent sources, this may
increase the trust-worthiness of the detected changes so that they can be trusted to iden-
tify more changes. By taking advantage of the Semantic Web infrastructure, change
detection can ultimately become a well-controlled process. In other words, instead of
visiting pages in a blind way, one may target more accurately the pages to visit. In addi-
tion, our proposed semantics-based approach of utilizing semantic associations can be
used in other applications such as guiding information discovery for agents, consistency
maintenance among distributed information sources, among others. Taking the consis-

132 Li Qin and Vijayalakshmi Atluri

tency maintenance as an example, independent sources may publish contents that are
semantically related. Therefore, when the contents of one source change, other sources
should have their contents updated accordingly.

This paper is organized as follows. In section 2, we provide an overview of our
intelligent change detection approach guided by ontologies. Since our approach fully
takes advantage of the Semantic Web infrastructure, section 3 presents preliminaries
on ontologies, instances, and relationships accompanied by examples. We elaborate the
types of changes to the Semantic Web data and profiles in section 4. Note that various
inference rules are used by the reasoning engine to make smart decisions about the tar-
get instances. Therefore, section 5 presents concept inference rules, property inference
rules, instance inference rules, change inference rules and profile inference rules. Sec-
tion 6 presents the system architecture for the implementation of our intelligent change
detection system and the details of the reasoning process performed within the reason-
ing engine. However, due to the limited number of the Semantic Web data, we are yet
not in a position to experiment on the efficiency and scalability of our approach. A brief
overview of the related work is provided in section 7. Conclusions and an insight into
our future work are provided in section 8.

2 Overview

Our approach begins with identifying different types of inference rules based on on-
tologies. These rules are independent of any specific ontology to ensure their universal
applicability, and they are exploited by the reasoning engine in guiding the change de-
tection process. Our change detection approach is ontology-guided since all these rules
act based on the ontologies involved. We identify the following five categories of infer-
ence rules:

1. Change Inference Rules: Given changes to seed instances, these rules imply
changes to their semantically related instances.
The set of change inference rules is extensible, meaning that similar rules to be
identified in the future can be added to this set.

2. Profile Inference Rules: There is a profile inference rule corresponding to each
change inference rule. Once any change inference rule is fired, the correspond-
ing profile inference rule is used to derive a profile for characterizing these in-
stances. This profile consists of descriptions of target concepts possibly in terms of
eq[c]3and sub[c], target instances in terms of eq[i] and da[i], and target properties
in terms of eq[p] and sup[p].
Given the profile for target instances, the following three rules are used to further
reason about the specifics for these instances: The concept inference rules derive
the concepts that these instances belong to; the instance inference rules derive how
these instances are associated with other visited instances; the property inference
rules derive whether these instances should or should not instantiate certain prop-
erties.

3. Concept Inference Rules: If the description of target concepts contains eq[c] or
sub[c], concept inference rules are called to derive the specific constituent concepts.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 133

Ontologies

Concept Inference Rules
• sub[c]
• eq[c]

Profile Inference Rule

•Target concepts: sub[c], eq[c]
•Target instances: eq[i], da[i]

•Target properties: eq[p], sup[p]

Instance Inference Rules
• da[i]
• eq[i]

Property Inference Rules
• sup[p]
• eq[p]

1
2

3

3

3

4

Change Inference Rules

•Equivalent instances
•Directly associated

by inverse or symmetry
•Directly associated by inference

Seed instances

Target instances

Instances & Index

Fig. 1. Information and rules used by the reasoning engine

4. Property Inference Rules: If the description of target properties contains eq[p] or
sup[p], property inference rules are called to derive the specific constituent proper-
ties.

5. Instance Inference Rules: If the description of target instances contains eq[i] or
da[i], instance inference rules are called to derive how the specific target instances
are semantically related to the seed instance.

Figure 1 shows the components involved in the reasoning, where the arrows and
numbers between components show how and when each component is used by the
reasoning engine. It starts with some seed instances, and finds changes to them. These
changes become input to the change inference rules. Assume that the entry page for
the MSIS Dept. of Rutgers, which is an instance of concept ‘Department’ has been
visited, and the ‘address’ of the department has been updated, which happens when the
department moves to a new building.

Given the change(s) detected to this seed instance, the reasoning engine checks the
change inference rules and fires those relevant to the detected change(s) and the ontolo-
gies, shown as step 1 in Figure 1. Let us assume that one of the change inference rules
is stated as follows: “if ‘address’ property can infer any property of the semantically
associated concepts, then this inferred property value, which belongs to instances asso-
ciated with this department instance, should have changed.” Then, the reasoning engine
visits the ontology that this department instance points to, and finds out that ‘address’
property is defined to the concept ‘Academic Unit’, of which concept ‘Department’
is defined as a specialization. Also, concept ‘Employee’ associates itself with concept

3 eq[c] and sub[c] represent the set of equivalent and subclass concepts of concept c, respec-
tively; eq[p] and sup[p] represent the set of equivalent properties and super-properties of prop-
erty p, respectively; eq[i] and da[i] represent the set of equivalent and directly associated
instances to instance i, respectively.

134 Li Qin and Vijayalakshmi Atluri

‘Academic Unit’ through object property ‘worksFor’, and it has been identified that
the ‘business address’ property of concept ‘Employee’ can be inferred through the ‘ad-
dress’ property of concept ‘Academic Unit’. This means that if the ‘address’ property
of an instance of ‘Department’ has changed, then the value to the ‘Business Address’
of all the instances of ‘Employee’ directly associated with this ‘Department’ instance
should also have changed. As a result, the above change inference rule is fired.

Since the fired change inference rule implies possible changes to some semantically
related instances, the corresponding profile inference rules are triggered (indicated by
step 2 in Figure 1). In our example, the profile inference rule for semantically related
instances by inference is triggered.

Shown as step 3 in Figure 1, the profile inference rules generate a profile consist-
ing of target concepts, target instances and target properties with each set described by
certain operators. In our example, if concept ‘Employee’ has subclass concepts ‘Fac-
ulty’, ‘Staff’ and ‘Ph.D Student’ with each having their own subclass concepts, then
the target concepts will contain the operator for the subclass concepts of ‘Employee’
as sub[Employee]. To derive their specific constituent elements, the operators for con-
cepts, instances and properties in the profile description will call the concept inference
rules, instance inference rules and property inference rules, respectively. For our exam-
ple, the concept inference rules will be called to derive the specific concepts constituting
sub[Employee], which includes concepts ‘Faculty’, ‘Staff’, ‘Ph.D Student’ as well as
their subclass concepts, if exist. After that, the reasoning engine finally derives a profile
for the target instances to be the instances of concepts ‘Employee’, ‘Faculty’, ‘Staff’,
‘Ph.D Student’ as well as their subclass concepts or equivalent concepts. In addition,
these instances are directly associated with the MSIS Department through ‘worksFor’
property, and have its ‘business address’ property instantiated.

The profile is used to locate the actual target instances if the profile is satisfiable by
certain instances (shown as step 4 in Figure 1). The target data instances for our example
may be located in the personal web pages of the department’s faculty members, the
faculty list page on the department’s web site, and so on.

3 Preliminaries

In this section, we present the preliminaries on ontologies, instances and relationships
among concepts and instances, and introduce denotations that will be used in the latter
sections of this paper.

3.1 Ontologies

Ontologies are an essential component of the Semantic Web since ontologies provide
interpretations to the contents of web data. A well-cited definition for an ontology is
given by Gruber [9] as a “specification of a conceptualization”. Generally, an ontol-
ogy defined for a domain contains a description of important concepts in the domain,
properties of each concept, relationships among these concepts as well as restrictions or
axioms upon properties in terms of cardinality, property value type, domain and range
of a relationship, and so on.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 135

advisedBy

Student

Ph.D
Student

Course

Faculty

http://www.
rutgers.edu/
~amy#amy

http://cs.rutgers.
edu/course#320

http://cimic.
rutgers.edu/
~smith#smi
th

ID

quaExamDate

registers

taughtBy

su
bC

la
ss

O
f

registe
rs

quaExamDate

supervises

Xsd:string

maxCardinality

2

Xsd:date

123456789

05/02/2002

taughtBy
inverseOf

ID

(a)

(b)

Fig. 2. Example for ontology and instances

Figure 2(a) is an example of an ontology, available at ‘http://cimic.rutgers.edu/
ontologies/university’. Here, rectangles represent concepts with their properties indi-
cated as labels on the edges from concepts to their values, ovals represent datatype
property values, rounded rectangles represent restrictions as well as their values and
hexagons represent axioms of properties. Figure 2(b) contains some instances of this
ontology, where instances are shown by rectangles and values to the datatype properties
are shown in ovals. The dashed lines across these two parts indicate the correspon-
dence between the instances and ontologies. We will use examples from this figure to
complement our discussion in this section.

An ontology oi consists of the following elements:

1. concepts: Each ontology o contains a set of concepts, C[o] = {c1, c2, . . . , cn}.

For example, for the ontology in Figure 2, C[‘http://cimic.rutgers.edu/ontologies/
university’] = {Student, Ph.D Student, Course, Faculty}.

2. properties: For each concept c ∈ C[o], there exists a set of properties P [c] =
DP [c] ∪ OP [c], where

– DP [c] = {dp1, dp2, . . . , dpm} are datatype properties of concept c, each tak-
ing a primitive data type as the value, and

– OP [c] = {op1, op2, . . . , opn} are object properties, each taking some con-
cept(s) as the value.

Note that properties are directional. We use dpi[c] to represent the datatype property
dpi of concept c, and v[dpi[c]] for the value taken by this property. Similarly, we
use opi[c] to denote the object property opi of concept c with v[opi[c]] for its value.

136 Li Qin and Vijayalakshmi Atluri

For example, for concept ‘Ph.D Student’ in Figure 2, P [Ph.D Student] =
{subClassOf , quaExamDate, advisedBy}, with DP [Ph.D Student] =
{quaExamDate} where quaExamDate[Ph.D Student] = xsd : date (quaExamDate
represents the date of qualifier exam for Ph.D Students) and OP [Ph.D Student] =
{subClassOf , advisedBy}.
Object properties of a concept c can be of two types:

– domain-independent (OPDI [c]): Domain-independent object properties have
pre-defined meaning that does not vary from one ontology to another.

– domain-specific (OPDS [c]): The meaning of domain-specific object properties
depends on the context in which it is defined.

Using the same example, OPDI [Ph.D Student] = {subClassOf} where
subClassOf [Ph.D Student] = Student (which means ‘Ph.D Student’ is a subclass
concept of ‘Student’) and OPDS[Ph.D Student] = {advisedBy} where
advisedBy[Ph.D Student] = Faculty. The domain-specific property ‘advisedBy’,
when considered in a medical domain, may represent the relationship between
‘Patient’ and ‘Doctor’, which is different from what we use here between ‘Ph.D
Student’ and ‘Faculty’. On the other hand, domain-independent relationships such
as subClassOf have the same predefined semantics irrespective of the domain in
which it is used.

3. restrictions: For each property p ∈ P [c] where c ∈ C[o], there exists a set
of restrictions on the value or cardinality of the property, denoted by R[p] =
{r1, . . . , rw} where rk[p] is the restriction rk of property p and v[rk[p]] is the value
to the restriction.

For example, R[quaExamDate] = {maxCardinality} where
maxCardinality[quaExamDate] = 2, which means each Ph.D student should have
at most two date values for their qualifying exam (quaExamDate property).

4. axioms: For each property, p ∈ P [c] where c ∈ C[o], there exists a set of axioms
with each defined by itself (unary) or in relation to another property (binary), de-
noted by A[p] = {a1, a2, . . . , an}. ai[p] represents the axiom ai of property p and
if ai is binary, v[ai[p]] denotes the property related to p through axiom ai.

Figure 2 shows that inverseOf [advisedBy] = supervises, where
supervises ∈ P [Faculty] and supervises[Faculty] = Ph.D Student. Therefore, in-
verseOf is a binary axiom relating the properties ‘advisedBy’ and ‘supervises’.

Different ontology languages may support different types of domain-independent
object properties, restrictions and axioms upon properties. For instance, OWL Full
[15] supports at least the following domain-independent object properties: subClas-
sOf, equivalentClass, intersectionOf, unionOf, complementOf. It supports restrictions
such as cardinality, minCardinality, maxCardinality, and axioms such as subPropertyOf
(binary), equivalentProperty (binary), TransitiveProperty (unary), SymmetricProperty
(unary), FunctionalProperty (unary), InverseFunctionalProperty (unary), inverseOf (bi-
nary), and so on.

Though our approach is not limited to any specific ontology language, to simplify
our discussion, in this paper, we resort to the OWL Full vocabulary with their semantics.
For completeness, we briefly explain some of them in the appendix.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 137

3.2 Instances

We first discuss how instantiation should be done based on ontologies and then the
components of an instance.

Ontologies Vs. Instances Ontologies define and relate concepts used to annotate the
web data, which are instances to the concepts in ontologies. Different elements of on-
tologies serve different functions: concepts along with their datatype properties and
domain-specific object properties are what can be instantiated by instances, restric-
tions upon properties specify the requirements that valid instantiation should satisfy,
domain-independent object properties and the axioms of properties provide powerful
mechanisms for enhanced reasoning about instances. A semantic document is an ag-
gregation of instances of different concepts with some or all of the properties of each
concept instantiated.

Note that in ontologies, a property is only specified to the most general concept to
which it applies; the subclass concepts of this concept can inherit all of its properties.
Therefore, the instances of these subclass concepts can instantiate these inherited prop-
erties as well as their own by assigning a (valid) value to it. For a concept ci, we use
P ′[ci] to represent all the properties that instances of concept ci can instantiate. There-
fore, P ′[ci] includes all the datatype properties and domain-specific object properties
of ci and its superclass concepts. Therefore, P ′[ci] = DP [ci] ∪ OPDS [ci] ∪ DP [cj] ∪
OPDS [cj], where cj = sup[ci] or cj = eq[ci]. Similarly, DP ′[ci] and OP ′

DS [ci] rep-
resent the set of datatype properties and domain-specific object properties that instance
i can instantiate where i is an instance of ci, i.e. i ∈ I[ci]. R′[p] is the set of re-
strictions on property p. Based on Figure 2(a), since subClassOf [Ph.D Student] =
Student, P ′[Ph.D Student] = {quaExamDate,advisedBy,ID,registers}; DP ′[Ph.D Stu-
dent] = {ID,quaExamDate}; OP ′

DS[Ph.D Student] = {registers, advisedBy} where reg-
isters[Ph.D Student] = Course and advisedBy[Ph.D Student] = Faculty; R′[advisedBy]
= {maxCardinality} where maxCardinality[advisedBy] = 2. Note that the instan-
tiation of an object property of a concept taking another concept as its value represents
a mapping (direct association) between the instances belonging to these two concepts.

If ci is a subclass of cj , then all the instances of ci are also instances of cj . To be
clear, we use the following notation:

– I[c] for the instances which are explicitly asserted to belong to concept c, and i ∈
I[c] only if an instance i is asserted to belong to a concept c.

– I ′[c] to refer to all the instances of concept c by explicit assertion and by inheri-
tance, in which case, I ′[c] = I[c]∪ I[ci] for any ci, where ci ∈ sub[c] or ci ∈ eq[c].

For instance, subClassOf [Ph.D Student] = Student and ‘http://www.rutgers.edu/
amy#amy’ ∈ I[Ph.D student]. Therefore, ‘http://www.rutgers.edu/amy#amy’ ∈
I ′[student]. For an instance i, we use C[i] to represent the set of concepts, where
i ∈ I ′[c]. Therefore, C[‘http://www.rutgers.edu/amy#amy’] = {Student,Ph.D Student}.

Components of an Instance: Each concept c has a set of instances I[c] = {i1, . . . , in}
and every ik ∈ I[c] is a 4-tuple ij = 〈URIk, c, DP ′[c], OP ′

DS [c]〉, such that

138 Li Qin and Vijayalakshmi Atluri

1. URIk is a Universal Resource Identifier by which ik can be universally identified
and other instances can refer to it.

2. c is the concept that ik is asserted to instantiate.
3. DP ′[c] is a set of datatype property instantiations where each dpk ∈ DP ′[c] takes

a specific value vk, denoted as ik : dpk = vk, where vk has a specified primitive
data type as its domain.

4. OP ′
DS [c] is a set of object property instantiations, where each opk ∈ OP ′

DS [c] and
opk[c] = cj takes an instance ij as its value, denoted as ik : opk = ij where
ij ∈ I ′[cj].

We use P [i], DP [i] and OP [i] to denote the set of properties, datatype properties
and object properties instantiated by instance i. If i ∈ I[c], p ∈ P [i], then p ∈ P ′[c].
Also, if i ∈ I[c], then P [i] ⊆ P ′[c], DP [i] ⊆ DP ′[c], OP [i] ⊆ OP ′[c].

Take the instance of concept ‘Ph.D Student’ in Figure 2 as an example. The URI
for this instance is ‘http://www.rutgers.edu/amy#amy’ and the concept it belongs to is
‘Ph.D Student’. P [‘http://www.rutgers.edu/amy#amy’] = {ID,quaExamDate,registers}
with DP [‘http://www.rutgers.edu/amy#amy’] = {ID,quaExamDate}
and OPDS[‘http://www.rutgers.edu/amy#amy’] = {registers}.
More specifically, ‘http://www.rutgers.edu/amy#amy’:ID = 123456789,
‘http://www.rutgers.edu/amy#amy’:quaExamDate = 05/02/2002 and
‘http://www.rutgers.edu/amy#amy’:registers = ‘http://cs.rutgers.edu/course#320’.

3.3 Relationships

Given two concepts ci and cj , we say ci and cj are directly associated through opi

if opi[ci] = cj or opi[cj] = ci. We use da[ci] to denote the set of concepts that are
directly associated with concept ci and da[ci : opi] to denote the concept directly
associated with concept ci through object property opi. For example, da[Ph.D Stu-
dent] = {Student,Faculty}. In particular, da[Ph.D Student:subClassOf] = Student and
da[Ph.D Student:advisedBy] = Faculty.

The relationship between two instances can be directly associated, indirectly associ-
ated or not associated. We will first discuss equivalence between instances as a special
category, whose transitivity allows it to be either directly associated or indirectly as-
sociated. In this paper, we focus only on direct association between instances because
our change and profile inference rules are mainly specified upon directly associated
instances.

Note that the relationship between instances covers both explicit and implicit rela-
tionships. By explicit relationship, we mean the relationship between the instances is
asserted explicitly by content creators. In other cases, the implicit relationship between
two instances can be derived through reasoning. The equivalence between instances we
discuss below is implicit, if it is evaluated based on the value of its identification prop-
erty.
Equivalent instances Each instance should be given a URI by its author for identify-
ing the instance and for other instances to refer to it. URIs are decentralized and “Two
URIs are different unless they are the same character for character.” [1] However, dif-
ferent URIs may be equivalent if they refer to the same real world object. For example,

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 139

information on a faculty member who works for a university may be published as an in-
stance in the university’s faculty directory, the department’s faculty page, some research
project’s participating faculty page, the faculty member’s personal web page, and so
on. In other words, considering the ‘Faculty’ instance example in Figure 2, this faculty
member on his personal web page has a URI of ‘http://cimic.rutgers.edu/smith#smith’
whereas the same faculty instance published in the faculty list of his department may
have a URI of ‘http://cs.rutgers.edu/Faculty#smith’. These instances refer to the same
faculty member, thus are equivalent with each other though each of these web sites
gives it a different URI and may or may not assert it as equivalent to the other.

We notice that equivalent instances published in different sources may be matched
based on the value of some identification or quasi-identification property (or a combi-
nation of multiple properties), similar to the primary key in a relational database ta-
ble. Instances of different concepts may be equivalent. For instance, an international
Ph.D student may be instantiated as an instance of concepts such as ‘Student’, ‘Inter-
national Student’, ‘Graduate Student’ or ‘Ph.D Student’. In particular, if concepts share
a property defined to be owl:InverseFunctionalProperty (defined in the appendix), then
instances that have the same value for this property are equivalent. In other words, a
property, whose axiom defines it to be an owl:InverseFunctionalProperty, is actually an
identification property. Besides, equivalence between instances can also be explicitly
indicated using owl:sameIndividualAs.
Equivalence between instances: Two instances are equivalent if they refer to the same
entity in the real world. We use eq[im] for the set of equivalent instances of im with im
itself included. If instances im ∈ I[ci] and in ∈ I[cj] are equivalent, then

– ci and cj share an identification datatype property dpk such that im : dpk = in :
dpk; or ci and cj share an identification object property opk such that im : opk =
in : opk (or im : opk ∈ eq[in : opk]);

– ci and cj refer to the same concept, or ci is an equivalent concept of cj , or ci and
cj are subclass concepts of ck where dpk(or opk) ∈ P [ck].

This definition will be the foundation for the instance inference rule on equivalent
instances, discussed in section 5.
Directly associated instances: For instances ii and ij where ii ∈ I ′[ci], ij ∈ I ′[cj], if
there exists opi ∈ OP ′[ci] such that opi[ci] = ck, ck ∈ C[ij] and ii : opi = ij , then we
say ii and ij are directly associated instances through opi.

For instance i, we use da[i] for the set of instances directly associated with i, and
da[i : op] represents the set of instances directly associated with i through op. Take an
instance from Figure 2 as an example, da[‘http://www.rutgers.edu/amy#amy’:registers]
= ‘http://cs.rutgers.edu/course#320’.

4 Changes to the Semantic Web Data and Profiles

Based on the changes to the Semantic Web data and ontologies, the reasoning engine
fires the appropriate change inference rules and profile inference rules to generate a pro-
file for characterizing the target instances. While we outline, in section 4.1, the different
types of changes to the Semantic Web data, in section 4.2, we describe the components
of a profile.

140 Li Qin and Vijayalakshmi Atluri

4.1 Changes to the Semantic Web Data

Detecting changes to the Semantic Web data requires one to first identify whether or not
a change has occurred to the instantiation of concepts along with their properties. If a
change has occurred, then the actual changes to the instances and their properties need
to be identified. A change to the Semantic Web data instance is denoted by Δ. Three
types of changes are significant to our change detection approach:

– Addition(Deletion) of property instantiation. ΔA(ΔD) = 〈i, c, p, v〉, where i is the
instance involved in the addition (deletion), c the concept to which i belongs, i.e.
i ∈ I[c]; p the property added or deleted in the change, and v the value of p involved
in the addition (deletion);

– Update to property instantiation value. ΔU = 〈i, c, p, ov, nv〉, where i is the in-
stance being updated, c the concept to which i belongs, i.e. i ∈ I[c]; p the property
being updated, ov the old value of p before the update, and nv the new value of p
after the update.

In case of change to concept membership, we may treat it as a combination of
deletion of all the properties of an instance followed by subsequent additions.

Each change to the Semantic Web data above constitutes a ‘complete delta’ [14] in
the sense that it provides sufficient information for transforming the old version to the
new version, and vice versa.

Given a specific change Δ , we use i[Δ], c[Δ], p[Δ], dp[Δ], op[Δ] to denote the
instance, the concept to which the instance belongs, the property, the datatype property
and object property involved in the change, respectively. We use v[ΔA] to denote the
value to p[ΔA] added in the change, v[ΔD] to denote the value to p[ΔD] deleted by
the change, ov[ΔU] to denote the old value of p[ΔU] before the change and nv[ΔU] to
denote the new value of p[ΔU] after the change.

4.2 Profiles

Profile. A profile generated by the reasoning engine consists of the following descrip-
tions to characterize the target instances:

– Target concepts (TC): This is the set of concept(s) that target instances belong to.
– Target instances (TI): TI may consist of instances identified explicitly by its URI

or instances whose properties take specific values.
– Target Properties (TP): This is the set of properties that target instances may or

may not instantiate, based on the type of the change. Specifically, TP are instanti-
ated if the change is ΔU or ΔD, but they are not instantiated if the change is ΔA.
We use EXISTS and NOT EXISTS to indicate whether or not TP are instantiated.

The profile generated for the target instances describes their common characteris-
tics, which is further used to locate these instances.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 141

5 Inference Rules

Based on some detected changes and ontologies, the reasoning engine makes smart de-
cisions about what instances should have changed and describes them through a profile
in terms of target concepts, instances and properties. The reasoning process relies on
different types of inference rules, which are triggered in a specific sequence: It first
fires the change inference rules based on the changes to seed instances and ontolo-
gies, then the profile inference rules to generate the profile, in which concept inference
rules, property inference rules and instance inference rules may be triggered. Below,
we present concept inference rules, property inference rules, instance inference rules,
change inference rules and profile inference rules in sections 5.1, 5.2, 5.3, 5.4 and 5.5,
respectively.

5.1 Concept Inference Rules

The components of an ontology described in section 3 are based on what is explicitly
stated in the ontology. The significance of ontologies to the Semantic Web definitely
goes beyond its components by allowing for reasoning through domain-independent ob-
ject properties and axioms. Domain-independentobject properties such as subClassOf
and equivalentClass have their own axioms such as transitivity. Operators including
eq[ci] and sub[ci] are used in the profile inference rules to represent the target concepts
for a profile. The following inferences rules specify how the set of equivalent and sub-
class concepts can be generated for a given concept based on the ontology.

Concept Inference Rules: We identify the following inference rules for identifying
sub[c] and eq[c] for a given concept c. Let ci, cj and ck be three concepts.

1. (equivalentClass[ck] = ci ∨ equivalentClass[ck] = cj where cj ∈ eq[ci]) ⇒
(ck ∈ eq[ci]). This means, if ck is asserted as equivalentClass of ci or
equivalentClass of cj such that cj belongs to the set of concepts equivalent to ci,
then ck belongs to the set of concepts equivalent to ci.

2. (ck ∈ eq[ci]) ⇒ (ci ∈ eq[ck]). If ck belongs to the set of concepts equivalent to ci,
then ci also belongs to the set of concepts equivalent to ck.

3. (subClassOf [ck] = ci ∨ subClassOf [ck] = cj where cj ∈ sub[ci]) ⇒ (ck ∈
sub[ci]); and (ci ∈ intersectionOf [ck] ∨ ck ∈ unionOf [ci]) ⇒
(subClassOf [ck] = ci). This means, if ck is asserted as subClassOf ci or subClas-
sOf cj such that cj belongs to the set of subclass concepts of ci, then ck belongs
to the set of subclass concepts of ci. Moreover, ck is a subclass of ci can also be
implied if ck is the intersection of ci and some other concepts, or if ci is the union
of ck and some other concepts.

4. (ck ∈ eq[cj] ∧ ck ∈ sub[ci]) ⇒ (cj ∈ sub[ci]). This means, if ck belongs to the
set of concepts equivalent to cj and the set of subclass concepts of ci, then cj also
belongs to the set of subclass concepts of ci.

5. (ck ∈ eq[cj] ∧ ci ∈ sub[ck]) ⇒ (ci ∈ sub[cj]). This mean, if ci belongs to the set
of subclass concepts of ck and ck belongs to the set of equivalent concepts of cj ,
then ci also belongs to the set of subclass concepts of cj .

142 Li Qin and Vijayalakshmi Atluri

In the following, we will explain with an example, how target concepts can
be generated using the concept inference rules stated above. Figure 3 shows con-
cepts c1,...,c8 with the domain-independent object properties specified among them.
Let us assume that the profile inference rules generate a profile with target con-
cepts = {c1, sub[c1], eq[c1]}. According to this figure, equivalentClass[c2] = c1 and
equivalentClass[c2] = c3. From Rule 1, we infer that c2 ∈ eq[c1] and c2 ∈ eq[c3].
Then, based on Rule 2, one may infer c3 ∈ eq[c2]. Finally, based on c2 ∈ eq[c1] and
c3 ∈ eq[c2], one can infer c3 ∈ eq[c1] by using Rule 1 again. After considering how c1,
c2, c3 are related to other concepts, we conclude eq[c1] = {c2, c3}. Now, let us examine
what concepts constitute sub[c1]. First, based on Rule 1, c4 ∈ sub[c1] and c7 ∈ sub[c1]
can be inferred. Based on equivalentClass[c4] = c5 (therefore c4 ∈ eq[c5]) and
c4 ∈ sub[c1], one may infer c5 ∈ sub[c1] by using Rule 4. Also, c6 ∈ sub[c1] can
be inferred based on subClassOf [c6] = c2 and c2 ∈ eq[c1] using Rule 5. Finally,
c8 ∈ sub[c1] can be inferred based on c6 ∈ sub[c1] and c8 ∈ eq[c6] further using Rule
4. As a result, sub[c1] = {c4, c5, c6, c7, c8}. By substituting the eq[c1] and sub[c1] in
the target concepts, we get target concepts = {c1, c2, c3, c4, c5, c6, c7, c8}.

equivalentClass equivalentClass

equivalentClass

subC
lassO

f

equivalentClass

c1 c2 c3

c4c5 c6

c7

c8

subC
lassO

f

subC
lassO

f

Fig. 3. Example for sub[c] and eq[c]

For concept ‘Student’ in Figure 2, the following concept inference rule is fired for
identifying sub[student]: subClassOf [Ph.D Student] = Student ⇒ Ph.D Student ∈
sub[Student].

5.2 Property Inference Rules

Similar rules for sup[p] and eq[p] can be built based on subPropertyOf and
equivalentProperty. For a property p, we use sup[p] to represent the super-properties

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 143

of p, i.e. the properties to which p is a sub-property, and eq[p] to represent all the prop-
erties equivalent to p.

Property Inference Rules: We identify the following inference rules for identifying
sup[p] and eq[p] for a given property p. Let pi, pj and pk be three properties.

1. (equivalentProperty[pk] = pi ∨ equivalentProperty[pk] = pj where pj ∈
eq[pi]) ⇒ (pk ∈ eq[pi]). This means, if pk is asserted as equivalentProperty of
pi, or that of pj such that pj belongs to the set of properties equivalent to pi, then
pk belongs to the set of properties equivalent to pi.

2. (pk ∈ eq[pi]) ⇒ (pi ∈ eq[pk]). This means, if pk belongs to the set of properties
equivalent to pi, then pi also belongs to the set of properties equivalent to pk.

3. (subPropertyOf [pk] = pi ∨ subPropertyOf [pk] = pj where pi ∈ sup[pj]) ⇒
(pi ∈ sup[pk]). This means, if pk is asserted as subPropertyOf pi or that of pj

such that pi belongs to the set of super-properties of pj , then pi belongs to the set
of super-properties of pk.

4. (pk ∈ eq[pj] ∧ pk ∈ sup[pi]) ⇒ (pj ∈ sup[pi]). This means, if pk belongs to the
set of properties equivalent to pj and the set of super-properties of pi, then pj also
belongs to the set of super-properties of pi.

5. (pk ∈ eq[pj] ∧ pi ∈ sup[pk]) ⇒ (pi ∈ sup[pj]). This means, if pk belongs to the
set of properties equivalent to pj and pi belongs to the set of super-properties of pk,
then pi also belongs to the set of super-properties of pj .

These property inference rules would help us identify the target properties from
the set of properties where initial changes are detected. Let’s say, the ‘ID’ property of
‘Student’ has an equivalent property ‘SSN’, then the following property inference rule
is fired for identifying eq[ID] where ID ∈ DP [Student]: equivalentProperty[ID] =
SSN ⇒ SSN ∈ eq[ID].

5.3 Instance Inference Rules

Instance inference rules used by the reasoning engine can identify eq[i] and da[i] for a
given instance i.

The complexity of identifying equivalent instances results from the distributed na-
ture of the web, where authors of different information sources may instantiate equiva-
lent instances by resorting to different concepts and properties for their own application,
convenience or preference. Now, we focus on how equivalent instances can be gener-
ated for a given instance.

Equivalent Instance Inference Rule: We identify the following inference rule for
identifying eq[im] for a given instance.

1. Given im ∈ I[cm], eq[im] = {i|(i ∈ I[cj] such that cj = ck, cj ∈ eq[ck], or
cj ∈ sub[ck]) ∧ (i : pk = im : pk ∨ i : pk = eq[im : pk]) where
InverseFunctionalProperty ∈ A[pk] and pk ∈ P [ck]}.

144 Li Qin and Vijayalakshmi Atluri

This rule states that given im is an instance of concept cm, the equivalent instances
of im will be those that are instances of cm or an equivalent concept of cm or a subclass
concept of the concept to which the identification property is defined, and take the same
value for its identification property as that for im.

Take concept ‘Student’ in Figure 2 as an example, let’s say, property ‘ID’ of con-
cept ‘Student’ is an InverseFunctionalProperty, then for a specific instance of ‘Stu-
dent’, ‘http://www.rutgers.edu/student#123’, whose ‘ID’ takes the value of 999999999,
the following instance inference rule is fired for identifying its equivalent instances:
‘http://www.rutgers.edu/student#123’∈ I[Student] and ID ∈ P [Student] and
InverseFunctionalProperty∈A[Student] and ‘http://www.rutgers.edu/student#123’
:ID = 99999999 ⇒ eq[‘http://www.rutgers.edu/student#123’] = {i|i ∈ I[c] such as c =
Student or c ∈ eq[Student] or c ∈ sub[Student] and i:ID = 999999999}.

Directly Associated Instance Inference Rules: We identify the following inference
rules for identifying da[i] for a given instance i.

1. Given im ∈ I ′[cm], if opm[ck] = cj (or opm[cj] = ck) where ck ∈ C[im] and
SymmetricProperty /∈ A[opm], where A[p] as the set of axioms over property
p, then da[im : opm] = {i|i ∈ I ′[cj] ∧ in : opm = ij where in ∈ eq[im] and
ij ∈ eq[i] (or ij : opm = in where in ∈ eq[im] and ij ∈ eq[i]) }.
This rule states that, im is an instance (by assertion or inference) of concept cm, and
cm is directly associated with concept cj through object property opm which is not
a symmetric property (opm[cm] = cj). Then the directly associated instances of im
through opm belong to concept cj (by assertion or inference), and these instances or
their equivalent instances are taken as the value to object property opm of im or its
equivalent instances. It also implies that, if cj is directly associated with cm through
object property opm (opm[cj] = cm), then the directly associated instances of im
through opm belong to concept cj (by assertion or inference), and these instances or
their equivalent instances take im or its equivalence as the value to object property
opm.

2. Given im ∈ I ′[cm], if opm[ck] = cj (or opm[cj] = ck) where ck ∈ C[im] and
SymmetricProperty ∈ A[opm], then da[im : opm] = {i|i ∈ I ′[cj]∧ (in :
opm = ij ∨ ij : opm = in where in ∈ eq[im] and ij ∈ eq[i])}.
This states that, im is an instance of concept cm, cm is directly associated with con-
cept cj through object property opm, opm[cm] = cj , (or cj is directly associated
with cm through object property opm, opm[cj] = cm), and opm is a symmetric
property. Then the directly associated instances of im through opm belong to con-
cept cj , these instances or their equivalence either are taken as the value to object
property opm of im or its equivalent instances, or take im or its equivalence as the
value to object property opm. In the case that cm and cj are directly associated
through a symmetric property, cm = cj or cm ∈ eq[cj].

3. Given im ∈ I ′[cm], if opm[ck] = cj where ck ∈ C[im] and inverseOf [opm] =
opj (or inverseOf [opj] = opm), then da[im : opm] = {i|i ∈ I ′[cj]∧ (in : opm =
ij where in ∈ eq[im] and ij ∈ eq[i])}; da[im : opj] = {i|i ∈ I ′[cj]∧(ij : opj = in
where in ∈ eq[im] and ij ∈ eq[i])}; da[im : opm, opj] = {i|i ∈ I ′[cj] ∧ (in :
opm = ij ∨ ij : opj = in where in ∈ eq[im] and ij ∈ eq[i])}.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 145

This states that, im is an instance of concept cm, cm is directly associated with
concept cj through object property opm, opm[cm] = cj , and property opm is
inverseOf opj , opj [cj] = cm. Then the directly associated instances of im through
opm and opj belong to concept cj , these instances or their equivalent instances ei-
ther are taken as the value to object property opm of im or its equivalent instances,
or take im or its equivalent instances as the value to object property opj .

For example, in Figure 2, concept ‘Ph.D Student’ is directly associated with concept
‘Faculty’ through object properties ‘advisedBy’ and ‘supervises’. Then for a specific in-
stance of concept ‘Ph.D Student’, ‘http://www.rutgers.edu/phdstudent#222’, the follow-
ing instance inference rule is fired to identify its directly associated instances through
‘advisedBy’ and ‘supervises’: ‘http://www.rutgers.edu/phdstudent#222’∈ I[Ph.D Stu-
dent], advisedBy[Ph.D Student] = Faculty and inverseOf [advisedBy] = supervises ⇒
da[‘http://www.rutgers.edu/phdstudent#222’:advisedBy, supervises] = {i|i ∈ I ′[Facul-
ty] ∧ (im:advisedBy = ij ∨ ij :supervises = im where im∈eq[‘http://www.rutgers.edu/
phdstudent#222’] and ij ∈ eq[i])}.

The profile generated by the profile inference rules may call the rules defined above
to get the target instances.

5.4 Change Inference Rules

Our previous inference rules are defined through reasoning based on the ontologies
whereas the change inference rules we define below are based on the heuristics that
replicated or semantically related information are expected to change in a consistent
way, as the result of the efforts by the same or even different information sources to
maintain freshness and consistency of their data.

1. ∀Δi, if ij ∈ eq[i[Δi]], then there exists Δj where i[Δj] = ij .
2. ∀Δi, i[Δi] : op[Δi] = ij , there exists Δj where i[Δj] = ij or i[Δj] = ik where

ik ∈ eq[i[Δj]]; If SymmetricProperty ∈ A[op[Δi]], then op[Δj] = op[Δi], else
inverseOf [op[Δi]] = op[Δj].

3. For pi ∈ P [ci], pj ∈ P [cj] and opi[ci] = cj , if pj can be inferred from pi, ∀Δi

where op[Δi] = pi, i[Δi] = ii, there exists Δj where op[Δj] = pj , i[Δj] ∈ da[ii :
opi] or i[Δj] ∈ da[ii : opi, opj] if inverseOf [opi] = opj .

The first rule states that, if an instance has changed and it has equivalent instances, it
implies that these equivalent instances also have changed. So, the question now is how
to find out the profile for the equivalent instances of a given instance especially when
their equivalence is not explicitly specified.

The second rule states that, if a change involves an object property of an instance in
which this object property has an inverse property defined in the ontology, or this object
property itself is symmetric, then it implies that the directly associated instances as well
as their equivalent ones have also changed.

The third rule states that, if the value to a property has been changed and another
property of the directly associated concept can be inferred from the changed property it
implies the value to the other property involved should also have changed. The property
inference relationship we proposed in this rule can be identified by domain experts.

146 Li Qin and Vijayalakshmi Atluri

For example, assume an instance of ‘Ph.D Student’ in Figure 2 has its ‘advisedBy’
property changed, since this property has an inverse property ‘supervises’ which be-
longs to concept ‘Faculty’, then the second change inference rule above is fired: Δi and
i[Δi]:advisedBy = ij and inverseOf [advisedBy] = supervises ⇒Δj where i[Δj] = ij
or i[Δj] = ik where ik ∈ eq[i[Δj]].

Though the second and the third rules both involve directly associated instances,
they are significantly different: the third rule involves all the directly associated in-
stances through the object property between the concepts; the second rule involves only
some of the directly associated instances when the cardinality of the relationship be-
tween the concepts is not one-to-one.

5.5 Profile Inference Rules

Profile for Equivalent Instances Based on the first change inference rule, our focus
here is to profile the equivalent instances of a given instance, to which a change has
been detected. Changes are expected to the corresponding property of the equivalent
instances.

In the following, we will explain each step involved in the reasoning process that
helps to identify the profile of target instances. Assuming a change Δm has been de-
tected to an instance im, where I[Δm] = im and p[Δm] = pm, where pm is some
property of im.

The reasoning engine needs to find out to which concept cm the property is defined
in the ontology, where p[Δm] ∈ P [cm]. Note that cm is not always necessarily equal
to c[Δm], but it could be any other concept in sub[cm] or eq[cm] since p[Δm] can be
instantiated by any instance of these concepts.

Identifying the target instances (TI) will call the instance inference rules for
eq[i[Δm]]. As indicated in the instance inference rules, there should exist pI ∈
P ′[c[Δm]], where pI is either designated as an identification property of cm or is defined
to be an InverseFunctionalProperty. For any in ∈ eq[im], in : pI = im : pI .

Then the reasoning engine needs to find out whether pm is the sub-property of some
other property pj where subPropertyOf [pm] = pj . The equivalent instances of i[Δm]
may have changes to pm or pj . Note that a change to a property always triggers a change
to its super-property, but may not necessarily change its sub-properties. The reasoning
engine also checks whether pi has any equivalent properties.

Profile for Equivalent Instances. Given a change Δ, the profile for the equivalent
instances is:

TI = {eq[i[Δ]]},
TC = {ci, sub[ci], eq[ci]} where p[Δ] ∈ P [ci], and
TP = {p[Δ], eq[p[Δ]], sup[p[Δ]]} EXISTS for ΔD and ΔU , NOT EXISTS for ΔA.

Profile for Associated Instances by Inverse or Symmetry For any change involv-
ing an object property, at least two instances directly related by the property are in-
volved: the instance to which a change is detected to its object property and the in-
stance taken as the value to this object property. If the inverse relationship of p[Δ] is

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 147

defined in the ontology, which means there exists another object property opi where
inverseOf [opi] = op[Δ] (or inverseOf [op[Δ]] = opi) or property p[Δ] is symmetric
indicated by SymmetricProperty ∈ A[p[Δ]], then the change may also be reflected
in the instance which is taken by the property p[Δ]. The target instances may associate
themselves with i[Δ] through the inverse property opi or the symmetric property p[Δ]
itself. Here comes the profile for the directly associated instances by inverse or symme-
try.

Profile for Directly Associated Instances by Inverse. Given a change Δ involving
op[Δ] with inverseOf [op[Δ]] defined in the ontology, the profile for the directly asso-
ciated instances by inverse is:

For ΔA:
TI = {v[ΔA], eq[v[ΔA]]};

For ΔD:
if the cardinality of op[ΔD] is one-to-one

TI = {da[i[ΔD] : op[ΔD], inverseOf [op[ΔD]]]};
else if the cardinality of op[ΔD] is many-to-one

TI = {da[i[ΔD] : op[ΔD]]};
else if the cardinality of op[ΔD] is one-to-many

TI = {da[i[ΔD] : inverseOf [op[ΔD]]]};
else

TI = {v[ΔD], eq[v[ΔD]]}.
For ΔU :

if the cardinality of op[ΔU] is one-to-one
TI = {da[i[ΔU] : op[ΔU], inverseOf [op[ΔU]]], ov[ΔU], eq[ov[ΔU]], nv[ΔU],
eq[nv[ΔU]]};

else if the cardinality of op[ΔU] is many-to-one
TI = {da[i[ΔU] : op[ΔU]], ov[ΔU], eq[ov[ΔU]], nv[ΔU],
eq[nv[ΔU]]};

else if the cardinality of op[ΔU] is one-to-many
TI = {da[i[ΔU] : inverseOf [op[ΔU]]], ov[ΔU], eq[ov[ΔU]], nv[ΔU],
eq[nv[ΔU]]};

else
TI = {ov[ΔU], nv[ΔU], eq[ov[ΔU]], eq[nv[ΔU]]}.

TC = {ci, sub[ci], eq[ci]} if inverseOf [op[Δ]] ∈ P [ci];
TP = {inverseOf [op[Δ]], eq[inverseOf [op[Δ]]], sup[inverseOf [op[Δ]]]} EXISTS
for ΔD and ΔU , NOT EXISTS for ΔA.

Profile for Directly Associated Instances by Symmetry. Given a change Δ involving
a symmetric property op[Δ], the profile for the directly associated instances by symme-
try is:

For ΔA:
TI = {v[ΔA], eq[v[ΔA]]};

148 Li Qin and Vijayalakshmi Atluri

For ΔD:
if the cardinality of op[ΔD] is one-to-one

TI = {da[i[ΔD] : op[ΔD]]};
else

TI = {v[ΔD], eq[v[ΔD]]}.
For ΔU :

if the cardinality of op[ΔU] is one-to-one
TI = {da[i[ΔU] : op[ΔU]], ov[ΔU], eq[ov[ΔU]], nv[ΔU], eq[nv[ΔU]]};

else
TI = {ov[ΔU], nv[ΔU], eq[ov[ΔU]], eq[nv[ΔU]]}.

TC = {cj , sub[cj], eq[cj]} where op[Δ] ∈ P [cj];
TP = {op[Δ], eq[op[Δ]], sup[op[Δ]]} EXISTS for ΔD and ΔU , NOT EXISTS for ΔA.

Profile for Directly Associated Instances by Inference. Given a change Δ and p[Δ]
can infer pi where pi ∈ P [cj], the profile for directly associated instances by inference
is:

TI = {da[i[Δ] : opj]}, if opj [c[Δ]] = cj or opj [cj] = c[Δ];
TI = {da[i[Δ] : opj , opi]}, if inverseOf [opi] = opj or inverseOf [opj] = opi

TC = {cj , eq[cj], sub[cj]};
TP = {pi, eq[pi], sup[pi]} EXISTS for ΔD and ΔU , NOT EXISTS for ΔA

As an example, if the instance of ‘Ph.D Student’, ‘http://www.rutgers.edu/
phdstudent#222’, which takes ‘http://www.rutgers.edu/faculty#111’ as the value to its
‘advisedBy’ property, has this property deleted. After the second change inference rule
is fired, the reasoning engine will fire the profile inference rule for directly associ-
ated instances by inverse as follows: ΔD = 〈 ‘http://www.rutgers.edu/phdstudent#222’,
Ph.D Student, advisedBy,‘http://www.rutgers.edu/faculty#111’〉 and cardinality of ‘ad-
visedBy’ is many-to-one ⇒ The profile for the target instances is:
TC = {Faculty, eq[Faculty], sub[Faculty]},
TP = {supervises, eq[supervises], sup[supervises]},
TI = {da[‘http://www.rutgers.edu/phdstudent#222’:advisedBy]}.

6 Ontology-Guided Change Detection

In this section, we present the system architecture for intelligent change detection in
section 6.1, followed by an example in section 6.2. We particularly focus our discussion
on the reasoning process performed within the reasoning engine in section 6.3.

6.1 System Architecture

Figure 4 shows the architecture of intelligent crawling with our change detection tech-
nique incorporated. Similar to a data-flow diagram, we use circles to represent pro-
cesses, arrows to represent flows of data, and open-ended rectangles to represent data
repositories. Note that inference and ontologies are shown as separate data stores in the
architecture and they can be combined if inference can be specified within ontologies.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 149

Web
Crawler

Reasoning
Engine

Change
Detector

Page
Locator

Indexes

Repository

Ontologies

Index
Web Page

Diff
Web Page

Reason

Locate
URLs

URL

web page
index

web page

ol
d

ve
rs

io
n

web page
& changes

web page &
changes

changes
ontologies

pr
of

ile

in
de

x

URLs

Inference

Analyze
Inference

ontologies

in
fe

re
nc

e

Rules
rules

Download
Web Page

URLs

Store
Web Page
/Changes

In
fe

re
nc

e

Fig. 4. Architecture for intelligent change detection

Algorithm 1 describes how the intelligent change detection is done. This algorithm
works as follows: The web crawler starts downloading web pages by retrieving a URL
from a given list and the full-text of the page is indexed. A diff algorithm is run to
find out whether and what changes have occurred to this page by comparing it with its
earlier version retrieved from the local repository. The detected changes are saved to the
repository along with the new version of the page. Meanwhile, the detected changes are
sent to the reasoning engine, which use the inference rules we defined in section 5 to
generate a profile for the target instances to be visited next. The profile is used to locate
the URLs of the instances satisfying the profile by querying the index of data instances
and these URLs are appended to the front of the URL list so that the crawler can visit
them next. As can be seen, the step of generating the profile for target instances is the
key to our approach.

Note that this algorithm starts with (seed) instances, with inference rules fired based
on ontologies and back to (target) instances. It is easy to go from instances to ontologies
since each data instance contains a pointer to the ontologies where concepts and prop-
erties used for annotating the data instance are defined. But not vice versa since each
ontology has no knowledge about by what data instances it is used. After the reason-
ing engine derives the profile describing the target instances, the URLs for these target
instances satisfying the profile have to be determined. The search engine or local repos-
itory usually maintains an index of data instances. For instance, indexing data instances
of a semantic document can be done based on keywords, concepts and relationships

150 Li Qin and Vijayalakshmi Atluri

Algorithm 1 Intelligent Change Detection
Require: URL list for seed instances, index of web pages

while the URL list for seed instances is not empty do
The web crawler retrieves a URL from the front of the list
The web crawler downloads the web page
The indexer indexes the web page
The change detector diffs the web page against its previous version from the repos-
itory
The change detector saves the web page and the changes to the repository, and
sends changes to the reasoning engine
The reasoning engine determines the profile for the target web pages to be visited
The page locator finds out the URLs based on the profile by querying the index
The page locator appends the URLs to the URL list

end while

[21]. The profile is translated into queries, which are evaluated against the index of data
instances, as a result, URLs for the target instances are returned.

Regarding seed instances, we suggest that important web pages be selected. Changes
to important web pages imply that many other pages should also be updated. This will
provide a better warranty that our algorithm will work recursively and improve the data
quality of the local repository.

6.2 An Example

In this section, we present an example to show how our change detection approach
works.

We start with a list of seed instances. For instance, assume the crawler visits
‘http://cimic.rutgers.edu/smith’ and downloads the following data instance:

<rdf:RDF xmlns:univ =“http://cimic.rutgers.edu/ontologies/university#”>
<univ:Faculty rdf:ID =“smith”>

<univ:name>John Smith</univ:name>
<univ:officephone>9739995555</univ:officephone>
<univ:email>jsmith@cimic.rutgers.edu</univ:email>
<univ:teaches rdf:resource = “http://cs.rutgers.edu/course#320” />

</univ:Faculty>

This page is indexed under concept ‘Faculty’ and relationship ‘teaches’ as follows:

univ:Faculty
(‘http://cimic.rutgers.edu/smith#smith’:name,John Smith)
(‘http://cimic.rutgers.edu/smith#smith’:officephone,9739995555)

univ:teaches(Faculty,Course)
(‘http://cimic.rutgers.edu/smith#smith’,‘http://cs.rutgers.edu/course#320’)

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 151

Then the change detector retrieves the previous version of the page. For instance,
the previous version of this page is shown as follows:

<rdf:RDF xmlns:univ = “http://cimic.rutgers.edu/ontologies/university#”>
<univ:Faculty rdf:ID =“smith”>

<univ:name>John Smith</univ:name>
<univ:officephone>9739995555</univ:officephone>
<univ:email>jsmith@cimic.rutgers.edu</univ:email>

</univ:Faculty>

The change detector diffs the new version with the previous version and finds the
‘teaches’ property instantiation has been added (ΔA = 〈 ‘http://cimic.rutgers.edu/smith
#smith’,univ:Faculty,teaches,‘http://cs.rutgers.edu/course#320’ 〉).

This change is fed into our reasoning engine and the reasoning engine finds from the
instance that the ontology used by this instance is ‘http://cimic.rutgers.edu/ontologies/un
iversity’. Let’s say, part of this ontology about ‘Faculty’ is as follows:

<!DOCTYPE owl[
<!ENTITY univ “http://cimic.rutgers.edu/ontology/university#”>]>
<rdf:RDF xmlns = “&univ;”>
<owl:Class rdf:ID = “Faculty”>

<rdfs:subClassOf rdf:resource =“#Academic Staff” />
</owl:Class>
<owl:Class rdf:ID =“Course” />
<owl:DatatypeProperty rdf:ID =“courseID”>

<rdfs:domain rdf:resource =“#Course” />
<rdf:type rdf:resource =“&owl;InverseFunctionalProperty” />

</owl:DatatypeProperty>
<owl:Class rdf:ID =“UndergradCourse”>

<rdfs:subClassOf rdf:resource=“#Course” />
</owl:Class>
<owl:Class rdf:ID =“GradCourse”>

<rdfs:subClassOf rdf:resource =“#Course” />
</owl:Class>
<owl:ObjectProperty rdf:ID =“teaches”>

<rdfs:domain rdf:resource =“#Faculty” />
<rdfs:range rdf:resource =“#course” />
<owl:inverseOf rdf:resource =“#taughtBy” />

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID =“name”>

<rdfs:domain rdf:resource =“#Faculty” />
<rdfs:range rdf:resource =“&xsd;string” />

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID =“officephone”>

<rdfs:domain rdf:resource =“#Faculty” />

152 Li Qin and Vijayalakshmi Atluri

<rdfs:range rdf:resource =“&xsd;string” />
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID =“email”>

<rdfs:domain rdf:resource =“#Faculty” />
<rdfs:range rdf:resource =“&xsd;string” />

</owl:DatatypeProperty>

Given the change, the reasoning engine checks the change inference rules. Since the
property involved in the change is an object property of a ‘Faculty’ instance and there
exists another property as an inverse of it, the change inference rule for directly associ-
ated instances by inverse is fired: ΔA = 〈 ‘http://cimic.rutgers.edu/smith#smith’,univ:
Faculty,teaches,‘http://cs.rutgers.edu/course#320’ 〉 and ‘http://cimic.rutgers.edu/smith
#smith’:teaches = ‘http://cs.rutgers.edu/course#320’ and inverseOf [teaches] = taugh-
tBy ⇒ Δj where i[Δj] = ‘http://cs.rutgers.edu/course#320’ or i[Δj] = ik where ik ∈
eq[‘http://cs.rutgers.edu/course#320’].

As a result, the profile inference rule for directly associated instances by inverse is
also fired: ΔA = 〈 ‘http://cimic.rutgers.edu/smith#smith’,univ:Faculty,teaches,
‘http://cs.rutgers.edu/course#320’〉⇒ The profile for the target instances is: TC =
{Course, eq[Course], sub[Course]}, TP = {taughtBy, eq[taughtBy], sup[taughtBy]},
TI = {‘http://cs.rutgers.edu/course#320’, eq[‘http://cs.rutgers.edu/course#320’]}.

The reasoning engine fires concept inference rules subClassOf [UndergradCourse]
= Course⇒ UndergradCourse∈ sub[Course] and subClassOf [GradCourse] = Course
⇒ GradCourse ∈ sub[Course] to derive that sub[Course] = {UndergradCourse, Grad-
Course}. As a result, TC = {Course, UndergradCourse, GradCourse}. Similarly, if no
equivalent property or super-property is defined to ‘taughtBy’, then TP = {taughtBy}.
The reasoning engine thens fires the instance inference rule for the equivalent instances
of ‘Course’ instance ‘http://cs.rutgers.edu/course#320’, eq[‘http://cs.rutgers.edu/
course#320’]. The ontology shows that concept ‘Course’ has an InverseFunctional-
Property ‘courseID’. The specific instance inference rule is as follows:
‘http://cs.rutgers.edu/course#320’ ∈ I[Course], courseID ∈ P [course] and Inverse-
FunctionalProperty ∈ A[courseID] ⇒ eq[‘http://cs.rutgers.edu/course#320’] = {i|(i ∈
I[cj] such that cj = Course or cj ∈ sub[Course] or cj ∈ eq[Course]) ∧ (i:courseID =
‘http://cs.rutgers.edu/course#320’: courseID}. After calling the concept inference rules,
the target instances include data instances of concept ‘Course’, ‘UndergradCourse’, or
‘GradCourse’, having the same value for ‘courseID’ property of ‘http://cs.rutgers.edu/
course#320’, and with property ‘taughtBy’ uninstantiated. This profile is translated into
a query into the index of data instance. Let’s say, the index for ‘univ:Course’, ‘Under-
gradCourse’, ‘GradCourse’ and ‘taughtBy’ is as follows:

univ:Course
(‘http://cs.rutgers.edu/schedule#320’:courseID,320)
(‘http://cs.rutgers.edu/course#340’:courseID,340)
(‘http://cs.rutgers.edu/course#320’:courseID,320)

univ:GradCourse
(‘http://cs.rutgers.edu/grad/course#320’:courseID,320)

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 153

univ:UndergradCourse
(‘http://cs.rutgers.edu/undergrad/course#220’:courseID,220)

univ:taughtBy(Course,Faculty)
(‘http://cs.rutgers.edu/course#340’,‘http://www.rutgers.edu/mwhite’)

The target instances retrieved from querying this index with the profile will be
data instances ‘http://cs.rutgers.edu/schedule#320’ and ‘http://cs.rutgers.edu/grad/
course#320’, which are equivalent instances of ‘Course’ instance ‘http://cs.rutgers.edu/
course#320’. These three URLs are appended to the front of the URL list and they will
be visited next.

6.3 Reasoning Engine

Our proposed inference rules are based on OWL Full, which is the most expressive
sublanguage provided by the OWL language. Since no reasoning software can support
every feature of OWL Full [15], in this section, we would like to further present the
reasoning process performed within the reasoning engine. Note that none of the existing
reasoning systems (e.g., RacerPro [18]) can support the features of OWL Full [15] used
in our rules. One may use the Instance Store [11], which uses a database to support
reasoning over instances.

Change(s) to seed instance

Profile for target instance(s)

Is the change
to an object property
which is symmetric
or has an inverse

property?

Is the change to a datatype
property which can infer other

properties?

change inference rule
for equivalent instances

change inference rule
for directly associated instances

by symmetry or inverse

change inference rule
for directly associated instances

by property inference

profile inference rule
for equivalent instances

profile inference rule
for directly associated instances

by symmetry or inverse

profile inference rule
for directly associated instances

by property inference

Does TC contain
eq[] or sub[]?

Does TI contain
eq[] or da[]?

Does TP contain
eq[] or sup[]?

concept inference rules property inference rulesinstance inference rules

yes yes

yes yes yes

on
to

lo
gi

es
ontologies

Does the concept contain
an identification property?

yes

Fig. 5. Reasoning engine

154 Li Qin and Vijayalakshmi Atluri

In Figure 5, we present the reasoning process, starting with the changes to seed
instances until the profile for the target instances is generated. This reasoning process
needs to be repeated recursively. The target instances are to become the seed instances,
which are further used to identify target instances. However, special care needs to be
taken to prevent the seed instances in the prior processes from being identified as the
target instances shortly after they are visited. Compared with determining whether a
particular target instance has been visited recently after the reasoning process is done,
a more efficient solution is possible by trying to avoid it before the rules are invoked.
For example, if instance in is identified as an equivalent instance of seed instance im
and then in becomes a seed instance, it is not necessary to invoke the change inference
rule for equivalent instances upon in since it will retrieve the same set of instances as
those upon im. However, if other new changes are detected to in, these new changes
may trigger other change inference rules.

7 Related Work

Research has been done to study the change dynamics of web pages [3,5]. Especially,
experiments [6] show that the change of web pages follows a Poisson process and the
change frequency of each web page can be estimated offline based on its change history.
Cho et al. further proposed synchronization strategies to improve the average freshness
of the local repository by utilizing the change frequencies of web pages [7]. Qin et
al. proposed object freshness as another freshness metric and discussed the operation
of a tree structure, which can be used to schedule accesses to data objects at different
frequencies in [16].

A large number of diff algorithms have been developed to accommodate different
yet increasingly more popular data formats such as HTML and XML [4,8,22]. These
diff algorithms focus on detecting the changes to a document by comparing the new
version with its old version. Efficiency and optimality have been the focus of the com-
petition among these diff algorithms.

For reasoning over the Semantic Web, the RacerPro system [18] is a commercial
knowledge representation system with support for OWL DL. It can deal with reasoning
over both ontologies and instances. Horrocks et al. proposed the Instance Store by using
database to support reasoning over instances, providing sound and complete answers
to instance retrieval queries [11]. The limitation of the Instance Store is that it does
not support relationships between instances. Research attention has also been given to
studying semantic relationships [21], querying the Semantic Web [10,13], changes to
ontologies [12] and so on.

As for our semantics-based change detection approach under this new context, it is
oriented for the Semantic Web by making use of its infrastructure and characteristics.
Therefore, it works intelligently by exploiting instances and the correlation in their
change behaviors under the guidance of ontologies.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 155

8 Conclusions and Future Work

In this paper, we have presented a semantics-based change detection approach guided
by ontologies for the Semantic Web data. Given changes to some instances, the rea-
soning engine works by firing pre-defined rules applicable to the changes, referring to
the ontologies that instances point to and generating a profile for the target instances
to be visited next. Due to the limited number of the Semantic Web data, we are yet
not in a position to experiment on the efficiency and scalability of our approach. We
are planning to implement our reasoning engine and test it over synthesized data and
changes.

The target instances may be determined with more change information. For in-
stance, a sample can be taken from the instances of a concept before reasoning is done.
Or, certain instances of multiple related concepts can be visited and their changes may
be propagated through the object properties to concepts of a wider range. As a result,
the target instances may belong to some indirectly associated concepts. As part of our
future work, we intend to study what role the semantic locality plays in change detec-
tion.

References

1. Tim Berners-Lee. Universal Resource Identifiers-Axioms of Web Architecture. Available at
http://www.w3.org/DesignIssues/Axioms.html

2. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American,
May 2001.

3. Brian E. Brewington and George Cybenko. How Dynamic is the Web? 9th World Wide Web
Conference (WWW9), 2000.

4. Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom.
Change Detection in Hierarchically Structured Information. ACM SIGMOD International
Conference on Management of Data, Montreal, Quebec, June 1996, pages 493-504.

5. Junghoo Cho and Hector Garcia-Molina. Estimating Frequency of Change. ACM Transac-
tions on Internet Technology, 3(3): August 2003.

6. Junghoo Cho and Hector Garcia-Molina. The Evolution of the Web and Implications for
an Incremental Crawler, 26th International Conference on Very Large Databases (VLDB),
September 2000, pages 200-209.

7. Junghoo Cho and Hector Garcia-Molina. Synchronizing a Database to Improve Freshness.
ACM SIGMOD International Conference on Management of Data, Dallas, Texas, USA, May
14-19, 2000, pages 117-128.

8. Gregory Cobena, Serge Abiteboul, and Amelie Marian. Detecting Changes in XML Docu-
ments. International Conference on Data Engineering (ICDE), 2002.

9. T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2),
pages 199-220, 1993.

10. Ian Horrocks and Sergio Tessaris. Querying the Semantic Web: A Formal Approach. Inter-
national Semantic Web Conference 2002, LNCS 2342, pp. 177-191, 2002.

11. Ian Horrocks, Lei Li, Daniele Turi and Sean Bechhofer. The Instance Store: Description
Logic Reasoning with Large Numbers of Individuals. In Proc. of the 2004 Description Logic
Workshop (DL 2004), pages 31-40, 2004.

156 Li Qin and Vijayalakshmi Atluri

12. Michel Klein, Atanas Kiryakov, Damyan Ognyanov, and Dieter Fensel. Finding and Char-
acterizing Changes in Ontologies, In Proceedings of the 21st International Conference on
Conceptual Modeling (ER2002), Tampere, Finland, October 7-11, 2002.

13. Aimilia Magkanaraki, Grigoris Karvounarakis, Ta Tuan Anh, Vassilis Christophides, Dim-
itris Plexousakis. Ontology Storage and Querying. Technical Report No 308, April 2002.
Available at http://139.91.183.30:9090/RDF/publications/tr308.pdf

14. Amelie Marian, Serge Abiteboul, Grgory Cobena, and Laurent Mignet. Change-Centric
Management of Versions in an XML Warehouse. 27th VLDB Conference, Rome, Italy, 2001,
pages 581-590.

15. OWL Web Ontology Language Guide. Available at http://www.w3.org/TR/owl-guide/
16. Li Qin and Vijayalakshmi Atluri. An Access Scheduling Tree to Achieve Optimal Freshness

in Local Repositories. Electronic Commerce and Web Technologies (EC-Web) 2003, pages
227-236.

17. Li Qin and Vijayalakshmi Atluri. Ontology-Guided Change Detection to the Semantic Web
Data. 23rd International Conference on Conceptual Modeling (ER 2004).

18. RacerPro. http://www.racer-systems.com/products/racerpro/index.phtml
19. Resource Description Framework (RDF). Available at http://www.w3.org/RDF/
20. RDF Vocabulary Description Language 1.0: RDF Schema. Available at http://www.w3.org/

TR/rdf-schema/
21. Amit Sheth. Relationships at the Heart of Semantic Web: Modeling, Discovering, Validating

and Exploiting Complex Semantic Relationship, Keynote Address, SOFSEM 2002 (29th
Annual Conference on Current Trends in Theory and Practice of Informatics), Milovy, Czech
Replublic, November 2002.

22. Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: A Fast Change Detection Algorithm
for XML Documents. Proceedings of International Conference on Data Engineering, 2003.

23. Jennifer Widom. Research Problems in Data Warehousing. 4th Int’l Conference on Informa-
tion and Knowledge Management (CIKM), Baltimore, Maryland, Nov. 1995, pages 25-30.

9 Appendix

The following is the OWL vocabulary with their semantics. Readers may refer to the
OWL language guide for more detailed information.

– subClassOf: If a concept c1 is tagged as owl:subClassOf c2, which we denote as
subClassOf[c1] = c2, then c1 can inherit all the properties of c2, and all the in-
stances of c1 are also instances of c2. e.g. ‘Ph.D Student’ is a subclass of ‘Student’.

– equivalentClass: If a concept c1 is tagged as owl:equivalentClass of c1, which we
denote as equivalentClass[c1] = c2, then the instances of c1 are also instances of c2,
and vice versa. This can be used to tie up concepts from two different ontologies.

– intersectionOf: If a concept c1 is tagged as owl:intersectionOf c2 and c3, which
we denote as intersectionOf[c1] = {c2, c3}, then all the instances of c1 are also
instances of c2 and c3, and all the common instances of c2 and c3 are also instances
of c1.

– unionOf: If a concept is c1 tagged as the owl:unionOf c2 and c3, which we denote
as unionOf[c1] = {c2, c3}, then all the instances of c1 should belong to at least one
of c2 and c3, and all the instances of c2 and c3 are also instances of c1.

– complementOf: If a concept c1 is tagged as owl:complementOf c2, which we denote
as complementOf[c1] = c2, then they share no common instances, and c1 and c2

constitute the universe of discourse.

An Ontology-Guided Approach to Change Detection of the Semantic Web Data 157

– subPropertyOf: If a property p1 is tagged as owl:subPropertyOf p2, which we de-
note as subPropertyOf[p1] = p2, then p1 is a specialization of p2.

– equivalentProperty: If a property p1 is tagged as owl:equivalentProperty of p2,
which we denote as equivalentProperty[p1] = p2, then p1 and p2 should belong to
the same or equivalent concepts.

– TransitiveProperty: If a property p is tagged as owl:TransitiveProperty, then for
any i1, i2, and i3, i1 : p = i2 ∧ i2 : p = i3 ⇒ i1 : p = i3. (Note: i1 : p = i2 means
the value to the property p of instance i1 is i2.)

– SymmetricProperty: If a property p is tagged as owl:SymmetricProperty, then for
any i1 and i2, i1 : p = i2 ⇔ i2 : p = i1 e.g. ‘collaborateWith’ between ‘Person’
and ‘Person’.

– FunctionalProperty: If a property p is tagged as owl:FunctionalProperty, then for
all i1, i2, and i3, i1 : p = i2 ∧ i1 : p = i3 ⇒ i2 = i3. This means each instance
should have one unique value for this property.

– inverseOf: If a property p1 is tagged as owl:inverseOf p2, then for all i1 and i2,
i1 : p1 = i2 ⇔ i2 : p2 = i1. e.g. ‘supervises’ from concept ‘Faculty’ to concept
‘Ph.D Student’ vs. ‘advisedBy’ from concept ‘Ph.D Student’ to concept ‘Faculty’.

– InverseFunctionalProperty: If a property p is tagged as
owl:InverseFunctionalProperty, then for all i1 and i2, i1 : p = i2 : p ⇒ i1 = i2.
e.g. the ‘SSN’ property of concept ‘Person’.

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 158-184, 2006.
 Springer-Verlag Berlin Heidelberg 2006

Conceptual Modelling Patterns for Roles

Jordi Cabot1,2 and Ruth Raventós2

1Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya
Av. Tibidabo, 39-43, E08035 Barcelona

jcabot@uoc.edu
2 Departament Llenguatges i Sistemas Informàtics, Universitat Politècnica de Catalunya

Campus Nord, Edif. Omega, Jordi Girona 1-3, E08034 Barcelona
raventos@lsi.upc.edu

Abstract. Roles are meant to capture dynamic and temporal aspects of real-
world objects. The role concept has been used with many semantic meanings:
dynamic class, aspect, perspective, interface or mode. This paper identifies
common semantics of different role models found in the literature. Moreover, it
presents a set of conceptual modelling patterns for the role concept that include
both the static and dynamic aspects of roles. In particular, we propose the Role
as Entity Types conceptual modelling pattern to deal with the full role
semantics. A conceptual modelling pattern is aimed at representing a specific
structure of knowledge that appears in different domains. The use of these
patterns eases the definition of roles in conceptual schemas. In addition, we
describe the design of schemas defined by using the patterns in order to
implement them in any object-oriented language.

1 Introduction

An accurate and complete conceptual modelling is essential for a correct development
of information systems. Reusable conceptual schemas facilitate this difficult and time-
consuming activity. The use of patterns is essential to increase the reusability in all
stages of software development.

A pattern identifies a problem and provides the specification of a generic solution
to that problem. The definition of patterns in conceptual modelling may be regarded
in two different ways: conceptual modelling patterns and analysis patterns.

In this paper, we distinguish between a conceptual modelling pattern that is aimed
at representing a specific structure of knowledge encountered in different domains
(for instance the MemberOf relationship) and an analysis pattern that specifies a
generic and domain-dependent knowledge required to develop an application for
specific users (for instance a pattern for electronic marketplaces). Authors do not
always make this distinction. For example, to Fowler, in [13], patterns correspond to
our conceptual modelling patterns while to Fernandez and Yuan, in [12], patterns
correspond to our definition of analysis patterns. For a further discussion on analysis
patterns see Teniente in [43].

The goal of this paper is to propose a set of conceptual modelling patterns to
facilitate the representation of roles in conceptual schemas.

Conceptual Modelling Patterns for Roles 159

Although definitions of the role concept abound in the literature of conceptual
modelling [3, 58, 13, 18, 35,37] a uniform and globally accepted definition is not
given. To sum up, we could say that roles are meant to capture the dynamic and
temporal aspects of real-world objects.

Roles appear very frequently in conceptual schemas. They are useful to model
some dynamic situations from the real world that are not well represented just with
the basic modelling language constructs, such as entity types that present different
properties or behaviour depending on the context where they are used. For instance,
the properties of a person when playing the role of student are different from those
when playing the role of Employee. Moreover, when asking for his email address the
answer depends on the role/s he is playing, it may be his personal email address, his
student email address or his work email address.

Despite its importance, the possibilities that conceptual modelling languages offer
to deal with roles are very limited (see, for example, what UML supports in [9] and
[39]). In short, they consider roles just as the name of a participant in a relationship
type.

We identify common and different semantics of role models found in the literature
and characterize the patterns in terms of the features they cover. This allows the
designer to choose the pattern best suitable for his needs. We also discuss the design
and implementation of conceptual schemas that use these patterns to facilitate their
implementation in object-oriented languages.

Of particular importance is our Role as Entity Types pattern, useful to represent
roles when the full expressiveness of the role concept is needed. The pattern covers
the most well-known role semantics. In contrast with previous approaches, one of its
advantages is its simplicity, since roles and their evolution are represented with
already existing constructs (entity types and constraints). Therefore, roles are easily
integrated in conceptual schemas.

 The rest of this paper is organized as follows: the next section presents a set of
basic patterns. Section 3 proposes the Roles as Entity Types pattern. Section 4
comments related work and compares it with our proposals. Finally, conclusions and
further work are presented.

2 Conceptual Modeling Patterns for Roles

The aim of this section is to define and compare a set of patterns to specify roles in
conceptual schemas (CSs) by using just the standard constructs offered by conceptual
modelling languages. Mosse in [24] and Fowler in [13] also propose a series of
patterns for role representation. However, both of them discuss the patterns very
informally and consider only a small subset of the role features we take into account.

One of the advantages of patterns explained in this section is that they are quite
simple but, as a trade-off, their expressiveness is rather limited.

In order to describe the role patterns we adopt the template proposed by Geyer-
Schulz and Hahsler in [16] to describe conceptual modelling patterns (called by the
authors analysis patterns). They adopt a uniform and consistent format, in contrast to
Fowler in [13] who uses a very free format for pattern writing. Geyer-Schulz and
Hahsler stress that adhering to a structure for writing patterns is essential since

160 Jordi Cabot and Ruth Raventós

patterns are easier to teach, learn, compare with, write and use once the structure has
been understood.

Their template preserves the typical context/problem/forces/solution structure of
design patterns but adapted for the description of conceptual modelling patterns. The
template includes the following sections: (1) Pattern Name. (2) Intent: what the
pattern does and the problems it addresses. (3) Motivation: a scenario that illustrates
the problem and how the pattern contributes to the solution in the specific scenario.
(4) Forces and Context that should be resolved by the pattern. (5) Solution:
description of all relevant structural and behavioural aspects of the pattern. (6)
Consequences: how the pattern achieves its objectives and the existing trade-off. (7)
Design and implementation: how the pattern can be realized in the design stage. (8)
Known uses: examples of the pattern.

Obviously sections about intent, motivation and forces and context are common to
all patterns for role representation. We first address these sections. Then, we define
the solution that each pattern proposes, its consequences, its design and the known
uses.

2.1 Intent

The intent is the representation of roles that entities play through their life span and
the control of their evolution.

2.2 Motivation

The role concept appears frequently in many different domains of the real world,
since we can find entity types in each domain that present some properties that evolve
over time (see Papazoglou et al. in [32] and Jodlowski et al. in [20] for some example
applications where roles are specially useful).

There is not a uniform and globally accepted definition of roles. The first
commonly credited definition of roles in a data model goes back to the 70s when
Bachman and Dayas proposed the role data model [3]. They defined a role as “a
defined behaviour pattern that may be assumed by entities of different kinds”. Since
then, many other definitions and additional semantics have been proposed.

For instance, to Dahchour et al. in [8], the concept of role is “a generic relationship
for conceptual modeling that relates a class of objects (e.g., people) and classes of
roles (e.g., students, employees) for those objects. The relationship is meant to capture
temporal aspects of real-world objects”. To Papazoglou and Krämer in [31] a role
“ascribes properties that possibly vary over time. The purpose of a role is to model
different representation alternatives for the same object in terms of both structure and
behavior“.

To sum up, we could state that roles are useful to model the properties and
behaviour of entities that evolve over time. The entity type Person is an illustrative
example. During his or her life, a person may play different roles, for example he or
she may become a student, an employee, a project manager, and so forth. Besides this,
a person may have different properties and behaviours depending on the role or roles
he/she is playing at a certain time.

Conceptual Modelling Patterns for Roles 161

For instance, let us consider the following scenario, which will serve as a recurrent
example in the following pages: let Maria be a person (with a name, phone number,
birthdate, country, age, sex and full address), who starts a degree (Maria plays the role
of student). After some years of study, she registers to a second university program
(Maria plays twice the role of student) and starts to work in a company (Maria plays
the role of employee). In that company she may become a project manager (now,
Maria through her employee role, plays the role of project manager). If in the future,
Maria became a department manager, now Maria through her employee role would
play a new role, department manager.

For each role we are interested in recording a set of properties specific for that role.
As employee we are interested in: her employee number, category, company phone
number, working status and the expiration date of her contract. As a project manager
we are interested in information about the project she manages (the project name, the
start date and the tasks it involves). Moreover, roles share properties with the main
entity type. For instance, when considering Maria as employee we also want to know
her name, even though the name is not an explicit property of employee.

Figure 1 shows the different relationships that are involved in the scenario
introduced above. Note that, in this situation, if we ask for the value of a property of
Maria the answer is not trivial because it depends on the role or roles she is playing.
For instance, if we ask for her telephone number, the answer may be her personal
number (since Maria is a person) or her company phone number (since Maria is an
employee).

Fig. 1. Relationships involved in the example application

Despite its importance, the possibilities that conceptual modelling languages offer
to deal with roles are very limited and cover only a very small part of their features.
For instance, the ER model [6] considers roles as named places in a relationship;
UML [29] considers that a role is an association end; in Description Logics [2] roles

162 Jordi Cabot and Ruth Raventós

only denote binary relationships between individuals; in Nijssen’s information
analysis method (NIAM) [25] and in its descendants as Object-Role Modeling (ORM)
[19] each fact type (relationship) involves a number of roles, hence, roles are named
placed in the relationships.

Taking into account the complexity of the notion of role and the lack of support for
roles in present conceptual modelling languages, it is clear that patterns to define such
a common construct are needed in conceptual modelling.

2.3 Forces and Context

To account for the complexity of the notion of roles and variety of semantics found in
them, we describe below the set of features that roles should meet, most of which
have been identified by Steinmann [38]. In our case, these features are the forces that
influence and should be resolved by the pattern.

We describe them by using some examples related to the scenario introduced
above:
1. Ownership. A role comes with its own properties and behaviour, i.e., an instance of

Employee has its own properties which may be different from the ones of the entity
type that plays such a role.

2. Dependency. An instance of a role is related to a unique instance of its entity type
and its existence depends on the entity type to which it is associated to, i.e., it is not
possible to have an instance of Student not related to an instance of Person.
Although a fundamental characteristic, there exist proposals considering that a role
should remain unconnected to any entity type, for instance, to model the salary of
a vacant position for department manager [36]. This work does not address such
possibility.

3. Diversity. An entity may play different roles simultaneously, i.e., an instance of
Person may play simultaneously the role of Student and Employee.

4. Multiplicity. An instance of an entity type may play several instances of the same
role type at the same time. For instance, a person that registers to more than one
university has multiple instances of Student related to it.

5. Dynamicity. An entity may acquire and relinquish roles dynamically, i.e., a person
may become a student, after some years become an employee, finish his/her
studies, become a project manager, start another program and so forth.

6. Control. The sequence in which roles may be acquired and relinquished can be
subject to restrictions, i.e., a person may not become an employee after he/she has
retired or when he/she is also studying two degrees. Note that this does not
prevents an employee from studying two degrees in the future. The restriction
needs to be true only when hiring the employee.

7. Roles can play roles. This mirrors that an instance of Person can play the role of
Employee and an instance of Employee can also play de role of ProjectManager.

8. Role identity. Each instance of a role has its own role identifier, which is different
from that of all other instances of the entity to which is associated with. This solves
the so-called counting problem introduced by Wieringa et al in [44]. It refers to the
fact that we need to distinguish the instances of the roles from the instances of the
entity types that play them. For example, if we want to count the number of people
that are students in a university (i.e., every person who is registered to at least a

Conceptual Modelling Patterns for Roles 163

program in such university), the total number is less than the number of registered
students in such university (in this case a person is counted twice if he or she is
registered at two programs).

9. Adoption. Roles do not inherit properties from their entity types. Instead, instances
of roles have access to some properties of their corresponding entities i.e., Student
may adopt name and address properties of Person but neither religion nor marital
status properties. Therefore, the Student role cannot use the last two referred
properties.

10. Relationship independency. A role is meaningful even out of the context of a
relationship. E.g., a person may play the role of student or employee without
necessarily being tied to a university or a company respectively.

11. Common role for unrelated types. A set of unrelated types may play the same role
[3]. For instance, a project manager may be the role of both employee and external
service provider.

12. Sharing structure and behavior. Roles may have some common structure and
behavior. For instance, the constraint that Maria may not become an employee
before she is 16 years old should apply also to project manager.

2.4 Roles as Participant Names Pattern

2.4.1 Solution
A role is merely represented as a name assigned to the participation of an entity type
in a relationship type. Although a rather limited representation, it is what conceptual
modelling languages usually consider.

Figure 2 models the running example when considering roles as the participant
names of a relationship type. Note that ProjectManager and DepartmentManager do
not appear in the conceptual schema, since, in this approach, a role cannot play other
roles. Students can neither be classified in domestic or foreign students.

2.4.2 Consequences
Only a small subset of the previous features is covered by the pattern. We justify each
of them as follows:

2. Dependency: a relationship in a relationship type is always related to an instance
of the participant entity types. For example, a student may only be defined if an
instance of the relationship type relating Person and University exists.

3. Diversity: an entity type can participate in many different relationship types.
4. Multiplicity: this feature is partially covered since an entity type can play several

times the same role (i.e., it may participate in the same relationship type) by providing
the value of the multiplicy of the participant greater than one. However, two
relationships of a relationship type may not exist between the same participants (i.e a
person cannot study twice in the same University).

5. Dynamicity: relationships can be added and deleted at any time.
Due to the limited expressiveness of participant names, the pattern does not

support the following features:
1. Ownership: the participation of an entity type in a relationship type does not

have properties nor behaviour

164 Jordi Cabot and Ruth Raventós

 6. Control: we cannot attach constraints to the participation apart from multiplicity
constraints.

7. Roles can play roles: only entity types can participate in other relationship types.
Therefore, we cannot define that the role Employee has the role of ProjectManager.
 8. Role identity: a relationship type has no identity, it is identified through its
participants.
 9. Adoption: by navigating through the relationship type where the role is defined
we can access to all properties of the entity type. We cannot restrict the access to the
personal number of person when navigating from employee.
 10. Relationship independency: obviously, roles represented as participant names
only make sense in the context of a relationship type.
 11. Common role for unrelated types: the same role cannot be used in different
relationship types.
 12. Different roles may share structure and behaviour: since roles as participant
names have no structure or behaviour they cannot share it.

Fig. 2. Example of the Roles as Participant Names Pattern

2.4.3 Design and Implementation
The design and implementation of roles defined following this pattern in object
oriented languages is straightforward. Roles are simply transformed into attributes of
the entity type. The multiplicity and type of these attributes is obtained from the
definition of the relationship type including the role.

2.4.4 Known Uses
This pattern is useful when we want to qualify the participation of an entity type in a
relationship type but we are not interested in defining properties or behaviour of that
participation. For instance, if we are only interested on a person becoming a student
without worrying about his or her properties as student, like the degree he/she is
studying.

Person

phone#: PhoneNumber
birthDate: Date
country: String

employee
*

Company

University *

Male Female

name: String

/age: Integer

*

student

ProjectManager and DepartmentManger
can not be defined as roles of employee

It is not possible to distinguish between
ForeignStudent and DomesticStudent

Address

street: String
number: Integer
ZIPcode: String

1*

*

Conceptual Modelling Patterns for Roles 165

2.5 Roles as Subtypes Pattern

2.5.1 Solution
Role entity types are represented as subtypes of the entity type playing them. For
instance, Student and Employee would appear as subtypes of Person. Quite obviously,
such a solution requires dynamic and multiple classification, since a person can
change his/her role and play several roles simultaneously.

As an example Figure 3 shows the running example when considering roles as
subtypes.

Fig. 3. Example of the Roles as Subtypes Pattern

2.5.2 Consequences
The following list of role features is supported for this pattern:
1. Ownership: as a subtype, the role can define its own properties and behaviour.
2. Dependency: all subtype instances are instances of their supertypes.
3. Diversity: by assuming multiple classification, an entity may appear in several role
subtypes (i.e., a person may be an employee and a student at the same time).
5. Dynamicity: by assuming dynamic classification role instances can be added and
removed from the subyptes at any time.
7. Roles can play roles: this feature is simulated by defining a role type as a subtype
of another role type. For instance, ProjectManager is defined as a subtype of
Employee.
10. Relationship independency: as entity types, roles have their own existence
independent from any relationship type.

Person

phone#: PhoneNumber
birthDate: Date
country: String

Male Female

name: String

/age: Integer

 Employee

employee#: Integer
category: String
phone#: PhoneNumber
state: String
expirationDate: Date

ProjectManager

projectName: String
startDate: Date

Student

student#: Integer
university : String

DomesticStudent ForeignStudent

Task

taskName: String
startDate: Date
dueDate: Date
cost: Integer

* 1

degree: String

DepartmentManager

An Employee can only be a
ProjectManager of 1 project

A Person can only be once a Student

Address

street: String
number: Integer
ZIPcode: String

1*

Employee inherits all
properties of Person

166 Jordi Cabot and Ruth Raventós

12. Different roles may share structure and behaviour: by assuming multiple
inheritance, two roles may share structure and behaviour if they inherit them from a
common supertype.

On the other hand some important features are not covered by the pattern:
4. Multiplicity: since Employee is a subtype of Person, we cannot define that a person
plays simultaneously twice the role of Employee.
6. Control: as entity types, we can define constraints on role types. However, the
constraints are static and thus must be satisfied at any time. We cannot define
constraints that only apply when the role is inserted or deleted.
8. Role identity: as a subtype, the identifier of the role instance is the same as the
identifier of the entity type instance. Therefore, the counting problem mentioned
before is not solved. In fact, the counting problem is not solved either because
multiplicity cannot be addressed with this pattern.
9. Adoption: with specialization we cannot restrict which attributes are adopted by the
roles because they inherit all the attributes and relationships of their supertype (i.e.
Employee inherits all the Person’s attributes).
11. Common role for unrelated types: this could be simulated using multiple
inheritance. However, in such a case the role would inherit the properties of all its
supertypes which is not what we meant. For instance, if we need ProjectManager to
be the role of both Employee and ExternalServiceProvider, we could define
ProjectManager as a subtype of both Employee and ExternalServiceProvider but then
ProjectManager would inherit the properties of Employee as well as the properties of
ExternalServiceProvider.

2.5.3 Design
The design and implementation of roles defined following this pattern in object
oriented languages is not straightforward, since, in general, they do not support
multiple nor dynamic classification. Fowler [13] and Pelechano et al. [34] comment
some design patterns to cope with these issues.

2.5.4 Known Uses
Probably, this is the most intuitive way to represent roles. Provided that the previous
limitations are not a problem in the specific application, this pattern represents a good
combination between simplicity and expressiveness. However, we should also take
into account that the design of this pattern is not trivial.

2.6 Roles as Interfaces Pattern

2.6.1 Solution
Roles are represented as interfaces. An interface represents a declaration of a set of
coherent public features and obligations [29]. To define that an entity type plays a
certain role we must specify that the type realizes (i.e., implements) the interface
corresponding to that role.

The implementation relationship signifies that the entity type conforms to the
contract specified by the interface (i.e., the entity type provides an operation for every
operation defined in the interface and a property for each feature).

Conceptual Modelling Patterns for Roles 167

Figure 4 shows the running example when considering roles as interfaces. For
instance, to specify that Person plays the role of Employee, Employee is defined as an
interface that is implemented by Person. Note that this obliges Person to contain all
the attributes defined in Employee, since an entity needs to contain all attributes of all
its interfaces. Students are not classified in domestic or foreign since the notion of
subtypes cannot be applied to interfaces. We could define them as interfaces
extending the Student interface but the resulting semantics would be different (for
example, the state of a person being a student would be completely independent from
the state of a person being a domestic student, since interfaces inherit only the
specification of extended interfaces but not its state).

Fig. 4. Example of the Roles as Interfaces Pattern

2.6.2 Consequences
The features covered for this pattern are:
2. Dependency: the role does not exist as a separate instance from the instance of the
entity type.
3. Diversity: an entity type can implement several interfaces.
10. Relationship independency: as interfaces, roles do not depend on any relationship
of the entity type.
11. Common role for unrelated types: interfaces can be implemeted by many
unrelated types.
12. Different roles may share structure and behaviour: this can be simulated by
defining inheritance relationships between interfaces.

168 Jordi Cabot and Ruth Raventós

The features not covered for this pattern are:
1. Ownership: even though an interface defines its own properties, it does not have an
independent state from the state of the instances of the entity type implementing them.
4. Multiplicity: an entity type cannot implement twice an interface, and thus, a entity
type can only play once the same role.
5. Dynamicity: every instance of the entity type plays all roles corresponding to the
interfaces implemented by the type during its whole life. All interfaces are acquired
when the instance is created.
6. Control: since all roles are acquired at the beginning, this property does not make
sense.
7. Roles can play roles: interfaces cannot implement other interfaces. For instance,
Employee cannot implement the ProjectManager interface. When defining
ProjectManager we can extend the specification of Employee but the semantics are
the same as if two independent interfaces were defined since it is Person and not
Employee who implements the interface ProjectManager.
8. Role identity: interfaces do not have instances.
9. Adoption: interfaces do not adopt any of the properties of the entity type. On the
contrary, each interface defines its independent set of properties that must be
implemented by the entity type.

2.6.3 Design and Implementation
One of the advantages of this pattern is that the design and implementation of roles as
interfaces is a direct translation from the conceptual schema since most object
oriented languages perfectly support the notion of interfaces.

2.6.4 Known Uses
Despite its major drawbacks, the main usage of this pattern is the definition of
conceptual schemas where roles must be played by unrelated entity types. Also, as
Fowler in [13] proposes, the pattern can be used to integrate seamlessly the
specification of CS with its implementation when the implementation language does
not support multiple and dynamic classification.

2.7 Roles as Reified Entity Types Pattern

2.7.1 Solution
Roles are represented as reified entity types of a relationship type between the entity
type playing the role and another entity type (called the companion entity type). For
instance, the student role can be defined as the reified entity type of the relationship
between Person and University (although a more appropriate name for the reified type
could be enrolment). Note that it is not clear whether Student is a role of Person or
University.

Choosing the right companion entity type is not easy. In fact, sometimes it does not
exist and must be created specifically to be able to define the role. For instance, to
define the student role we have to include in the CS the University type. Note that,
depending on the purpose of the CS, we may not be interested in recording data about
the universities where people study. In such a case, a plain string recording the name

Conceptual Modelling Patterns for Roles 169

of the university as an attribute of the student could be enough (as in the roles as
subtypes approach).

On the other hand, the election may impose some constraints to the role since there
could not exist two relationships of a relationship type between the same participants.
In the previous example, choosing University as companion entity type prevents a
person to study twice in the same university.

Figure 5 shows the running example when considering roles as reified entity types.

Fig. 5. Example of the Roles as Reified Entity Types Pattern.

2.7.2 Consequences
The features covered for this pattern are:
1. Ownership: as an entity type, the role can define its own properties and behaviour.
2. Dependency: as a reified entity type, an instance of the role type can only exist
when the participants of the relationship also exist.
3. Diversity: an entity type may participate in several relationships.
5. Dynamicity: instances of reified entity types can be inserted and deleted at any
time.
7. Roles can play roles: a reified entity type can be a participant in other relationship
types. For instance, the reified entity type Employee is one of the participants of the
relationship defined to specify the role DepartmentManager
8. Role identity: the role has its own identity as a reified entity type, different from the
identity of the entity type.
12. Different roles may share structure and behaviour: this can be simulated by means
of generalization and specialization relationships between the reified types.

On the other hand, the roles do not cover:
4. Multiplicity: it is restricted by the choosen companion class.

170 Jordi Cabot and Ruth Raventós

6. Control: as entity types, we can define constraints on role types. However, we
cannot define constraints that only apply when the role is inserted or deleted.
9. Adoption: we cannot restrict which attributes are adopted by the roles since, by
default, all properties can be acceded.
10. Relationship independency: as reified entity types, roles can only exist in the
context of a relationship type.
11. Common role for unrelated types: two different relationship types cannot share the
same reified entity type.

2.7.3 Design and Implementation
The reified entity types are designed and implemented as classes with a set of single-
valued additional attributes, which refer to each of the participants of the relationship
type.

2.7.4 Known Uses
This pattern can be regarded as an extension of the previous roles as participant
names pattern. Therefore, this pattern is useful to qualify the participation of an entity
type in a relationship type. Moreover, by using the pattern we can define properties
and behaviour of that participation.

As a disadvantage, apart from the features not covered by the pattern, the use of
this pattern may increase the complexity of the resulting CS since for each role we
must create a relationship type, a reified relationship type and, when not present in the
CS, the companion entity type.

3 Roles as EntityTypes Pattern

Previous patterns cover only a subset of the required role features. We propose to use
our Role as Entity types pattern when the full expressivity of the role concept is
needed. This pattern is an updated and extended version of the one presented in [5].

The basic aim of the pattern is to represent roles as an entity type related to the
entity type playing the role by means of a special kind of relationship type, the RoleOf
relationship type.

Next sections discuss in depth the pattern solution, its consequences, design and
known uses.

3.1 Solution

We divide the solution of our role pattern in two subsections. The first one deals with
the structural aspects of roles while the second one deals with their evolution.

3.1.1 Structural Aspects of Roles
We believe there is not a fundamental difference between roles and entity types since
roles have their own properties and identity. Therefore, when using this pattern we
represent roles as entity types with their own attributes, relationships and

Conceptual Modelling Patterns for Roles 171

generalisation/specialisation hierarchies. For practical reasons, we call role entity
types (or simply role if the context is clear) the entity types that represent roles and
natural entity types1 (or simply entity types) the entity types that may play those roles.

We define the relationship between a role entity type and its natural entity type by
means of a new generic relationship type, the RoleOf relationship. A generic
relationship type is a relationship type that may have several realizations in a domain
[27]. Each realization of this generic relationship type is a specific relationship type
relating a natural entity type to a role entity type to indicate that the natural entity type
may play the role represented by the role entity type.

In the relationship type we also specify the properties (attributes and associations)
of the natural entity type that are adopted by the role entity type.

Note that, since roles may play other roles, the same entity type may appear as a
role entity type in a RoleOf relationship and as a natural entity type in a different
RoleOf relationship.

Although this representation may be expressed in many conceptual modelling
languages, in this work, we only adapt it to UML [29] and OCL [28]. See Olivé in
[27] for a general discussion about the implementation of generic relationship types in
conceptual schemas.

To represent the RoleOf relationship we use the standard extension mechanisms
provided by UML, such as stereotypes, tags and constraints. Stereotypes allow us to
define (virtual) new subclasses of metaclasses by adding some additional semantics
and properties (tags) to its base entity type. A stereotype may also define additional
constraints. It is worth to notice that merely using these lightweight2 extension
mechanisms ensures that the pattern can be easily integrated in UML conceptual
schemas.

We represent the RoleOf generic relationship type by means of the «RoleOf»
stereotype. The base class of the stereotype is the Association metaclass, which
represents association relationships among classes. Each specific relationship type is
labelled with this stereotype. The stereotype also permits the definition of the
properties3 the role adopts from the natural entity type. They are represented with a
multivalued attribute, called adoptedProperties. Figure 6 shows the definition of the
«RoleOf» stereotype.

«stereotype»

RoleOf

adoptedProperties[*]: String

«Metaclass»

Association

«stereotype»

Fig. 6. Definition of the RoleOf stereotype

As an example, figure 7 shows the running example introduced in section 2.2 using
this pattern. Note that all roles are represented as entity types with a «RoleOf»

1 The natural entity type of a role relationship has sometimes been called object class [8, 44]

ObjectWithRoles [17], natural type [18, 38], base class [7, 31], entity type [1], entity class
[3], base role [33], or core object [4].

2 In contrast with heavyweight mechanisms that involve the creation of new metaentity types.
3 A property in UML 2.0 [29] represents both the attributes and associations of an entity type.

172 Jordi Cabot and Ruth Raventós

relationship type relating the role with is entity type. For instance, the role Student is
represented as an entity type related to Person through a «RoleOf» relationship type.
In the relationship type it is also indicated that student adopts the properties: name,
address, phone# and country from Person (its natural entity type). Employee
participates in three «RoleOf» relationship types, one as a role of Person and the other
ones as a natural entity type playing the role of ProjectManager and
DepartmentManager.

The stereotyped operations, also shown in the figure, will be further described in
the following section.

To complete the definition of the static aspects of roles we must attach some
constraints to the «RoleOf» stereotype in order to control the correctness of its use.
There already exist proposals to automatically ensure the consistency of a conceptual
schema according to the conceptual modelling language metamodel extended with
stereotypes [41].

The constraints are the following:
 A stereotyped «RoleOf» association is a binary association with multiplicity

‘1’ and settability readOnly in an association end.
 Each value of the adoptedProperty tag must coincide with the name of a

property of the natural entity type.
 A role entity type can only be related throughout a RoleOf relationship to at

most a natural entity type.
 No cycles of roles are permitted. A role entity type may not be related

throughout a direct or indirect RoleOf relationship to itself.

Person

phone#: PhoneNumber

birthDate: Date
country: String

{adoptedProperties =
 name, age}

«RoleOf»

{adoptedProperties = name,
 address, phone#, country}

{adoptedProperties = name,
 employee#, expirationDate}

1 {readOnly}

*

1

{readOnly}
*

1{readOnly}

0..2

 Employee

employee#: Integer
category: String
phone#: PhoneNumber
state: String

expirationDate: Date

«IniIC» mayBeHired()

«DelIC» mayBeFired()

Address

street: String

number: Integer

ZIPcode: String

1*

Task

taskName: String

startDate: Date

dueDate: Date

cost: Integer

*1

ProjectManager

projectName: String

startDate: Date

«IniIC»

notTooManyPendingTasks()

Male Female

«RoleOf»

name: String

/age: Integer

«RoleOf»
«RoleOf»

1{readOnly}

DepartmentManager

Student

student#: Integer

university : String

DomesticStudent ForeignStudent

degree: String

*

Fig. 7. Example of RoleOf relationships in the UML

Properties adopted by the role from its natural entity type may be considered as
implicit properties of the role entity type. Nevertheless, in order to facilitate the use of
these adopted properties (for instance, when writing OCL expressions) we may need

Conceptual Modelling Patterns for Roles 173

to include them explicitly in the role entity type. In this case, we add an extra property
in the role entity type for each adopted property. These extra properties are labeled
with the «adopted» stereotype to distinguish them from the own properties of the role
entity type. In addition, they are derived. Their derivation rule always follows the
general form:

context RoleEntityType::adoptedPropertyX: Type
derive: naturalEntityType.propertyX

Note that, to facilitate the work of designers, these added properties can be
automatically generated.

Fig. 8. Example of the Student role entity type

Figure 8 extends a subset of the previous example illustrating the Student role
entity type including its adopted properties.

Likewise, when the CS includes operations role entity types can also adopt said
operations. For instance, if we express the age derived property of the Person entity
type as a query operation (Figure 9) we may be interested in defining that the age
operation can also be executed over employees (indicated in the adoptedOperation
tag). Operations are adopted following a delegation mechanism, i.e., the body of the
adopted operation delegates the execution to the original operation.

Fig. 9. Adoption of the age operation

For instance, the adopted age operation in the Employee role entity type would be
defined as:

174 Jordi Cabot and Ruth Raventós

context Employee::Age():Natural
body: person.age()

3.1.2 Role Acquisition and Relinquishment
So far, we have introduced a representation of the static part of the Roles as Entity
Types Pattern. Nevertheless, this is not enough since role instances may be added or
removed dynamically from an entity during its lifecycle and this addition or removal
may be subjected to user-defined restrictions.

Since roles are represented as entity types we may define constraints on roles in the
same way we define constraints on entity types. Some of the constraints are inherent
to our role representation (for example, that a person must play the role of Employee
to play the role of ProjectManager, is already enforced by the schema). Other
restrictions may be expressed by means of the predefined constraints of the UML. For
example, to restrict that an Employee cannot play more than twice the
ProjectManager role simultaneously, it is enough to define a cardinality constraint in
the relationship type. The definition of the rest of constraints requires the use of a
general-purpose language, commonly OCL in the case of UML. For instance, we
could specify OCL constraints to control that:

 A Person can only play the role of Employee if he/she is between 18 and 65
years old:

 context Employee
 inv: self.age>=18 and self.age<=65

 Any task of a ProjectManager must finish before his contract expires

context Task
inv:self.dueDate<self.projectManager.expirationDate

These OCL constraints are static, and thus, the role instances must satisfy them at
any time. However, many of the restrictions that may be involved in the evolution of
roles only apply at particular times, particularly they only need to be satisfied when
the role is acquired or when it is relinquished. To specify such constraints we use the
notion of creation-time constraints defined by Olivé in [26] and, in a similar way, we
define the deletion-time constraints.

Creation-time constraints must hold when the instances of some entity type are
created (in our case when the role is created). Deletion-time constraints must hold
when the instances of some entity type are deleted (in our case when the role is
deleted). These constraints are represented as operations, also called constraint
operations, attached to the entity types and identified by a special stereotype. The
creation-time constraint operations are marked with the stereotype «IniIC». We define
the stereotype «DelIC» for the deletion-time constraint operations.

These operations return a boolean that must be true to indicate that the constraint is
satisfied. If the operation returns false (i.e., the constraint is not satisfied) then the
creation or deletion event of the role is not accomplished. When appropriate, the
operations are automatically executed by the information system.

Conceptual Modelling Patterns for Roles 175

As an example, the constraints in Figure 7 can be defined as follows:
 A person cannot become an employee if he/she is studying two university

programs simultaneously. Note that this does not imply that a person that is
already an employee may not apply for two degrees.

 context Employee :: mayBeHired () : Boolean

 body: self.person.student->size()<2
 An employee may not be fired if he or she is in maternity leave.

context Employee :: mayBeFired () : Boolean
 body: self.workingStatus<>’MaternityLeave’

 An employee may not become a new project manager if he/she still holds
more than ten pending tasks.

context ProjectManager::notTooManyPendingTasks():

 Boolean
body : self.employee.projectManager.tasks ->

 select(dueDate>Today)->size()<=10

3.2 Consequences

The pattern achieves most of the role features outlined before:
1. Ownership. As roles are represented as entity types, they may have their own

properties.
2. Dependency. The cardinality ‘1’ with the tag {readOnly} ensures that all role

instances depend on a unique instance of the natural entity type.
3. Diversity. Entity types may have many RoleOf relationships.
4. Multiplicity. This is obtained by defining a cardinality greater than one in the

RoleOf relationship.
5. Dinamicity. Entities are related to their roles through an association. Thus, an

entity may acquire or retract instances of a role at any time.
6. Control. The sequence in which roles may be acquired and relinquished can be

subjected to restrictions, including creation-time and deletion-time constraints.
7. Roles can play roles. Roles are represented by ordinary entity types. So, they can

be participants of a RoleOf relationship.
8. Role identity. As roles are represented as entity types, their instances have their

own identifier.
9. Adoption. The adoptedProperty tag of the RoleOf relationship allows the

definition of the adopted properties.
10. Relationship independency. As entity types, roles are independent from

relationship types.
12. Different roles may share structure and behavior. As entity types we can define

generalization relationships between roles.
 As a trade-off, our pattern does not directly supports the remaining feature (11.
Common role for unrelated types). However it can be easily represented. For instance,
if we need ProjectManager to be the role of both Employee and

176 Jordi Cabot and Ruth Raventós

ExternalServiceProvider, we could define a common supertype for Employee
(understood as InternalServiceProvider) and ExternalServiceProvider, called
ServiceProvider, which plays the role of ProjectManager.

An alternative is to define two different RoleOf relationship types, one between
ProjectManager and Employee and another one between ProjectManager and
ExternalServiceProvider. Both relationship types are specified with a xor constraint to
prevent a project manager being an employee and an external service provider at the
same time. ServiceProvider is not needed. On the other hand, the management of the
adopted properties is more complex.

Figure 10 shows the example using both alternatives.

Fig. 10. Representing common role for unrelated types feature

3.3 Design and Implementation

There are some design patterns useful for designing and implementing roles in object
oriented languages [13]. However, most of them are unable to deal with our proposed
role semantics completely. A well-known pattern close to our role defined semantics
is the Role Object Pattern [4]. This pattern is especially well suited for role
implementation when roles are deemed as a specialization (or a kind of specialization)
of its entity type (see Pelechano et al. in [33] as an example).

Nevertheless, this pattern is not entirely appropriate for designing our conceptual
modelling pattern. We encounter two main problems in the Role Object Pattern. First,
it uses a common superclass for all the roles of the entity type. In our approach, roles
are independent entity types with not necessarily any common properties that justify
this superclass. Second, all the roles are forced to have the same inherited properties;
it is not possible to define different adopted properties for each role.

This is the reason why we advocate here for an adapted version of this pattern that
takes into account our complete role semantics, including the adoption mechanism
and the creation-time and deletion-time constraints.

Given a natural entity type and the set of its roles, we create a class for the natural
entity type and a class for each role. We create a different relationship between the
natural entity type and each of its roles. This relationship will be used to navigate
from the natural entity type to its roles and vice versa. We add to the natural entity
type two new operations addRole and deleteRole in charge of adding (deleting) roles
to the natural entity after checking the creation-time (deletion-time) constraints. We
could also add other useful operations when dealing with roles, such as hasRole (to
check whether an entity plays a role) or getRole (to obtain a role played by the entity).

Conceptual Modelling Patterns for Roles 177

The problem of the design of the adopted properties may be regarded as the same
problem as designing derived information. In general, from a design and/or
implementation point of view, there are two different approaches to deal with derived
information. The attributes may be computed if they are calculated by means of an
operation or may be materialized if they are explicitly stored in the class. In this case,
for each adopted property we add an extra operation to the role class that returns the
value of the property of the natural entity type. The operation accesses the property
of the natural entity type navigating through the relationship.

Figure 11 summarizes our proposal.

Fig. 11. Summarized class diagram of the design

In figure 12, we apply the proposed design pattern to a part of the conceptual
schema of figure 7. Note that Employee is both a role for the Person entity type and a
natural entity type for the ProjectManager role, and thus, it presents both a reference
to Person (as a role entity type) and the operations addRole and deleteRole (as a
natural entity type). Additionally, Employee includes also the name and age
operations to get this information from Person.

Fig. 12. Example of an application of the design

178 Jordi Cabot and Ruth Raventós

This structure can be directly implemented in any common object-oriented
language. An example of the implementation in the Java Language can be found in
Appendix A.

3.4 Known Uses

This pattern should be used to represent the full expressiveness of roles in conceptual
schemas.

In contrast to other approaches where the complexity of the CS is really increased
when using roles due to the special construct needed to represent them, our pattern
allows a plain integration of roles in CS. Therefore, there are no trade-offs that
prevent from applying the pattern whenever it may be useful.

4 Related Work

The role concept has been widely addressed in the literature. Although all approaches
present their own characteristics, they can be grouped in four basic approaches to
represent roles: 1 - roles as the name of a participant in a relationship type [6, 10, 19,
29]; 2 - roles as a sort of subtypes or supertypes of the natural entity types [1, 31, 37];
3 - roles as interfaces [21, 23, 40]; and 4 - roles as a distinct element from an entity
type but coupled to it [3, 7, 8, 11, 17, 20, 22, 35, 38, 42 , 44, 45].

The first three families are similar to our Roles as Participant Names, Roles as
Subtypes and Roles as Interfaces patterns, respectively. Therefore, the major
advantages and drawbacks of these three groups are mainly the same commented for
the corresponding patterns in Section 2.

In this section we focus on the comparison between our Roles as Entity types
pattern and the other approaches also considering a role as a distinct element from an
entity type but coupled to it.

Table 1 compares the most representative approaches in terms of the role features
they can handle. Most of these approaches use different semantics from the ones
presented in this paper or are unable to handle the full role semantics.

All approaches shown in the table fulfil the ownership, dependency, diversity and
dynamicity features.

However, few approaches consider roles with their other identity (thus, solving the
counting problem). Some of them propose alternative techniques to distinguish
between different role instances of the same natural instance. For instance, Gottlob et
al [17] mixes the identifier of the natural instance with the value of a special attribute,
called qualifier and Wong et al. [45] uses the state of the role instance.

Even more critical is the support of the control and adoption features.
Most of them do not handle the control feature. Some allow the definition of static

constraints. Additionally, Pernici [35] and Wieringa [44] take into account the
sequence in which roles are acquired and relinquinshed, but do not consider the
definition of additional restrictions over the sequence (as our creation-time and
deletion-time constraints).

Conceptual Modelling Patterns for Roles 179

Table 1. Comparison of role representation approaches

Adoption is neither supported. Most approaches define that roles can (or cannot)

access all the properties of the natural entity type but they do not provide a
mechanism to indicate which properties may be adopted.

Our alternative suggesting roles as separated entity types fulfils the role semantics.
We believe one of the main advantages of our Roles as Entity Types pattern over

previous approaches is that we handle the complexity of role semantics in a very
simple manner since we represent roles and their evolution with already existing
elements (entity types and constraints) without adding completely new language
constructs (as done by several of the previous approaches). Therefore, the designer
can easily use the patterns to specify roles in conceptual schemas. In addition, our
pattern describes a representation of roles in the standard UML, and thus, the pattern
can be directly incorporated into current UML CASE tools.

We would also like to remark that our pattern is complete and feasible in the sense
that it includes the design and the implementation of the pattern, in contrast to most of
previous approaches that do not state how this could be achieved.

5 Conclusions

This paper identifies the most important features of roles and presents a set of
conceptual modelling patterns to facilitate the representation of roles in conceptual

 Approaches

Features B
ac

hm
an

 a
nd

D

ay
a

[3
]

C
hu

 a
nd

 Z
ha

ng

[7
]

D
ah

ch
ou

r,
Pr

io
tte

 a
nd

Zi

m
án

yi
 [8

]

Fa
n,

 B
ar

ke
r,

Po
rte

r a
nd

C

la
rk

 [1
1]

G
ot

tlo
b,

 S
ch

re
fl

an
d

R
öc

k
[1

7]

Jo
dl

ow
sk

i,
H

ab
el

a,

Po
dz

ie
n

an
d

Su
bi

et
a

[2
0]

K
ris

te
ns

en
 [2

2]

Pe
rn

ic
i [

35
]

St
ei

m
an

n
(D

K
E)

 [3
8]

Th
al

he
im

 [4
2]

W
ie

rin
ga

, d
e

Jo
ng

e
an

d
Sp

ru
it

[4
4]

W
on

g,
 C

ha
u

an
d

Lo
ch

ov
sk

y
[4

5]

Ownership

Dependency

Diversity

Multiplicity

Dynamicity

Control
Roles can play
roles

Identity

Adoption

Relantionship
Independency

Common role
for unrelated
types
Sharing
structure and
behavior

180 Jordi Cabot and Ruth Raventós

schemas. Each pattern is characterized in terms of the features it covers. We also
review their design and implementation.

Roles as Entity Types pattern is of special importance. We propose using this
pattern when we need to represent the full expressivity of roles in CSs. We have
adapted the pattern to the UML conceptual schemas. To our knowledge, ours is the
first UML standard extension that defines roles in conceptual schemas specified with
this language. Because of its simplicity, the pattern can be easily implemented in any
CASE tool in order to allow designers the use of the role concept.

The pattern includes the static aspects of roles as well as their evolution. We define
roles as entity types (role entity types) related to natural entity types by means of a
generic RoleOf relationship type that includes the adoption of properties from the
natural entity types by the role entity types. We have extended UML by means of the
«RoleOf» stereotype to be able to represent such kind of relationships. To specify the
role evolution, we use two special kinds of constraints: creation-time constraints and
deletion-time constraints.

It would be interesting to semi-automate the selection and application of these
patterns in CS. Given the set of role features the designer needs to take into account,
the CS and a set of roles, we could integrate the roles in the CS by using the simplest
pattern covering the required role features. Additionally, given the CS with the roles
included, we would like to automate its design and implementation by means of an
application that, given a conceptual schema (for instance, represented in XMI [30]),
generates automatically the corresponding classes in the target object oriented
language. These are directions in which we plan to continue our work.

Acknowledgements

We would like to thank Jordi Conesa, Dolors Costal, Xavier de Palol, Cristina
Gómez, Antoni Olivé, Anna Queralt, Maria Ribera Sancho, Ernest Teniente for their
many useful comments in the preparation of this paper. This work has been partially
supported by the Ministerio de Ciencia y Tecnologia and FEDER under project
TIC2002-00744.

References

1. A. Albano, R. Bergamini, G. Ghelli, R. Orsini, “An Object Data Model with Roles”,
Proceedings of the 19th Very Large Data Bases (VLDB) Conference. Morgan
Kaufmann, 1993, pp. 39-51.

2. F. Baader, W. Nutt, “Basic Description Logics”, In: F. Baader, D. Calvanese, D.
McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Description Logic
Handbook: Theory, Implementation, and Applications. CambridgeUniversity Press,
2003

3. C.W. Bachman, M. Daya. “The Role Concept in Data Models”, Proceedings of the
3rd Very Large Data Bases (VLDB) Conference, 1977, pp. 464-476.

4. D. Bäumer, D. Riehle, W. Wiberski, M. Wulf. “The Role Object Pattern”,
Proceedings of Pattern Languages of Programming (PLoP) Conference 1997.
Technical Report WUCS-97-34. Washington University Dept.

Conceptual Modelling Patterns for Roles 181

5. J. Cabot, R. Raventos, “Roles as Entity Types: A Conceptual Modelling Pattern”,
Proceedings of the 23rd International Conferece on Conceptual Modeling (ER’04),
LNCS 3288, Springer, pp. 69-82

6. P.P. Chen. “The entity-relationship model: Towards a unified view of data, ACM
Transactions on DatabaseSystems 1 (1), 1976, pp. 9-36.

7. W.W. Chu, G. Zhang, “Associations and Roles in Object-oriented Modeling”,
Proceedings of the 16th International Conferece on Conceptual Modeling (ER'97),
LNCS 1331, Springer, pp. 257-270.

8. M. Dahchour, A. Pirotte, E. Zimányi, “A role model and its metaclass
implementation”, Information Systems, 29 (2004) pp. 235-270.

9. R.Depke, G.Engels, J.M. Küster, “On the Integration of Roles in the UML”,
Technical Report No. 214, University of Paderborn, August 2000.

10. E. Falkenberg, “Concepts for modelling information”, Proceedings of the IFIP
Conference on Modelling in Data Base Management Systems, North-Holland,
Amsterdam; 1976, pp. 95-109.

11. J. Fan, K. Barker, B.W. Porter, P. Clark, “Representing roles and purpose”,
Proceedings of the First International Conference on Knowledge Capture (K-CAP
2001), pp. 38-43.

12. E. B. Fernandez; X. Yuan. “Semantic Analisis Patterns”, Proceedings of the 19th Int.
Conference on Conceptual Modeling (ER’00), LNCS 1920, Springer 2000, pp. 183-
195.

13. M. Fowler, “Dealing with Roles”, Pattern Languages of Programming (PLoP '97)
and EuroPLoP '97 Conference, Technical Report #wucs-97-34, Dept. of Computer
Science, Washington University, 1997.

14. M. Fowler, “Analysis Patterns: Reusable Object Models”, Addison-Wesley, 1997.
15. E.Gamma, R.Helm, R.Johnson, J. Vlissides, “Design Patterns – Elements of

Reusable Object-Oriented Software”, Addison-Wesley, 1994.
16. A. Geyer-Schulz, M. Hahsler, “Software Reuse with Analysis Patterns”, Proceedings

of the 8th Americas Conference on Information Systems (AMCIS 2002), August
2002, pp. 1156-1165.

17. G. Gottlob, M. Schrefl, B. Röck, “Extending Object-oriented Systems with Roles”,
ACM Transactions on Information Systems 14 (3), 1996, pp. 268-296.

18. N. Guarino, “Concepts, Attributes and Arbitrary Relations”, Data & Knowledge
Engineering 8, 1992, pp. 249-261.

19. T. Halpin, “Conceptual Schema & Relational Database Design”, Second Edition,
Prentice-Hall of Australia Pty Ltd: Sydnes, 1995

20. A. Jod owski, P. Habela, J. P odzien, C. Subieta, “Extending OO Metamodels
towards Dynamic Object Roles”, R. Meersman et al. (Eds.): On The Move to
Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM
Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, LNCS
2888 Springer 2003, pp. 1032–1047.

21. E.A. Kendall, Role Modeling for Agent System Analysis, Design, and
Implementation, IEEE Concurrency, vol. 8 no. 2, 2000, pp. 34-41.

22. B.B. Kristensen, Object Oriented Modeling with Roles, Proceedings of the 2nd
International Conference on Object-Oriented Information Systems (OOIS’95), 1995

23. D. Lea, J. Marlowe, “Interface-Based Protocol Specification of Open Systems using
PSL”, 9th European Conference ECOOP'95 - Object-Oriented Programming, LNCS
952 Springer 1995, pp. 374-398.

24. F.G. Mossé, “Modeling Roles - A Practical Series of Analysis Patterns”, Journal of
Object Technology (JOT) , vol.1 no.4, 2002, pp.27-37.

25. G.M. Nijssen and T.A. Halpin. “Conceptual Schema and Relational Database
Design: a fact oriented approach”. Prentice-Hall, Sydney, Australia, 1989.

182 Jordi Cabot and Ruth Raventós

26. A. Olivé, “Integrity Constraints Definition in Object–Oriented Conceptual Modeling
Languages”, Proceedings of the 22th International Conference on Conceptual
Modeling (ER’03), LNCS 2813, 2003, pp.349-362.

27. A. Olivé, “Representation of Generic Relationship Types in Conceptual Modeling·,
Proceedings of the 14th International Conference on Advanced Information Systems
Engineering (CAiSE’02), LNCS 2348, pp. 675-691

28. OMG, “UML 2.0 OCL Specification”, Adopted Specification (ptc/03-10-14), 2003
29. OMG, “UML 2.0 Superstructure Specification”, Adopted Specification (ptc/03-08-

02), 2003
30. OMG, “OMG XML Metadata Interchange Specification”, v.1.2, January 2002.
31. M.P. Papazoglou, B.J. Krämer, “A database model for object dynamics”, The Very

Large Databases (VLDB) Journal (6), January 1997, pp. 73-96.
32. M. P. Papazoglou, “Modeling Object Dynamics”, in. M.P. Papazoglou, S.

Spaccapietra, Z.Tari (Eds.), Advances in Object-Oriented Data Modeling. MIT Press
2000, pp. 195-217.

33. V. Pelechano, M. Albert, E. Campos, O. Pastor, “Automating the Code Generation of
Role Classes in OO Conceptual Schemas”, Proceedings of the 4st International
Conference on Enterprise Information Systems (ICEIS 2002), 2002, pp. 656-686.

34. V. Pelechano, O. Pastor, E. Insfrán, “Automated code generation of dynamic
specializations: an approach based on design patterns and formal techniques”, Data &
Knowledge Engineering 40, 2002, pp. 315-353

35. B. Pernici, “Objects with Roles”, Proceedings of the Conference on Office
Information Systems, SIGOIS Bulletin, vol. 11, no. 2/3, ACM Press, New York,
1990, pp. 205-215.

36. T. Reenskaug, P.Wold, O.A. Lehne, Working with Objects: The OOram Software
Engineering Method, Prentice-Hall, Englewood Cliffs, NJ, 1995.

37. J. Sowa, “Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Publishing Company, New York, 1984.

38. F. Steimann, “On the Representation of Roles in Object-oriented and Conceptual
Modelling”, Data & Knowledge Engineering 35, 2000, pp. 83-106.

39. F. Steimann, “A Radical Revision of UML’s Role Concept”, UML 2000: The
Unified Modelling Language, LNCS 1939, Springer, pp. 194-209.

40. F. Steimann, “Role=Interface”, Journal of Object-Oriented Programming,
October/November 2001, Vol. 14, Num. 14, pp. 23-32.

41. J.G. Süß, A. Leicher, F. Chabarek, “Software Model Engineering and Reuse with the
Evolution and Validation Environment”, N.Guelfi, E. Astesiano, G. Reggio (Eds.):
Scientific Engineering of Distributed Java Applications, Third International
Workshop, FIDJI 2003, November 27-28, 2003, Revised Papers, LNCS 2952,
Springer 2004, pp. 196-105.

42. B. Thalheim, “Entity-Relationship Modeling: Foundations of Database Technology”,
Springer-Verlag, 2000.

43. E. Teniente, “Analysis Pattern Definition in the UML”, Proceedings Information
Resources Management Association (IRMA) 2003, Idea Group Pub., pp. 774–777.

44. R.Wieringa, W. de Jorge, P.Spruit, “Using Dynamic Classes and Role Classes to
Model Object Migration”, Theory and Practice of Object Systems, 1(1), 1995,pp. 61-
83.

45. R. K. Wong, H. L. Chau, F. H. Lochovsky, “A Data Model and Semantics of Objects
with Dynamic Roles”, 13th International Conference on Data Engineering, IEEE
Computer Society, pp. 402-411.

Conceptual Modelling Patterns for Roles 183

Appendix A

public class Person
{
 public String name;
 public PhoneNumber phone;
 public Date birthDate;
 public Address address;

 Vector rols=new Vector()4;

 public double age() { //Age calculation}

 public void addRole(Object o) //Adding a new role
 {
 if (o instanceof Employee)
 { //Checking mayBeHired constraint
 int i=0; int numSt=0; Object o2;
 while (i<rols.size() && numSt<2)
 {
 o2=rols.get(i);
 if(o2 instanceof Student) numSt++;
 i++;
 }
 if(numSt<2) {rols.add(o);
 ((Employee)o).naturalEntityType=this;}
 else System.out.println("Error");
 }
 . . .
 }

 public void deleteRole(Object o)
 {
 if(o instanceof Employee)//Checking mayBeFired
 constraint
 {
 if(!((Employee) o).
 workingStatus.equals("MaternityLeave"))
 { rols.removeElement(o);
 ((Employee) o).naturalEntityType=null;}
 }

4 Note that Person has a single multivalued attribute to store all the roles of that person,

instead of having a different multivalued attribute for each of its roles (an attribute for the
student instances, another for the employee instances…). We can use a single attribute since all
the classes in Java are implicit subclasses of the class Object. When dealing with the attribute
we make the appropriate castings to the specific role class.

184 Jordi Cabot and Ruth Raventós

 // ...
 }
}

public class Employee
{
 public int emp;
 public String category;
 public Object naturalEntityType;

. . .
 //Adopted properties
 public String name()
 { return ((Person) naturalEntityType).name; }
 public double age()
 { return ((Person) naturalEntityType).age; }

 }

Heuristic Strategies for the Discovery of Inclusion
Dependencies and Other Patterns�

Andreas Koeller1�� and Elke A. Rundensteiner2

1 Oracle Corporation, NEDC
Nashua, NH 03062, USA
koeller@acm.org

2 Department of Computer Science, Worcester Polytechnic Institute,
100 Institute Road, Worcester MA 01609, USA

rundenst@cs.wpi.edu

Abstract. Inclusion dependencies (INDs) between databases are assertions of
subset-relationships between sets of attributes (dimensions) in two relations. Such
dependencies are useful for a number of purposes related to information integra-
tion, such as database similarity discovery and foreign key discovery.
An exhaustive approach at discovering INDs between two relations suffers from
the dimensionality curse, since the number of potential mappings between the
attributes of two relations is exponential in the number of attributes. For this rea-
son, levelwise (Apriori-like) approaches at discovery do not scale beyond rela-
tions with 8 to 10 attributes. Approaches modeling the similarity space as graphs
or hypergraphs are promising, but also do not scale very well.
This paper discusses approaches to scale discovery algorithms for INDs and some
other similarity patterns in databases. The major obstacle to scalability is the ex-
ponentially growing size of the data structure representing potential INDs. There-
fore, the focus of our solution is on heuristic techniques that reduce the number
of IND candidates considered by the algorithm. Despite the use of heuristics, the
accuracy of the results is good for real-world data.
Experiments are presented assessing the quality of the discovery results versus
the runtime savings. We conclude that the heuristic approach is useful and im-
proves scalability significantly. It is particularly applicable for relations that have
attributes with few distinct values.

1 Introduction

In database research, and in particular in database design, modeling, and optimization,
much emphasis has been placed on dependencies in databases. A vast field of research
deals with functional dependencies (FDs), and many other dependencies between at-
tributes of the same relation have been studied.

However, one type of dependency, called Inclusion Dependency (INDs) [1], is de-
fined across two relations. The problem of IND discovery, which is addressed in this

� This work was supported in part by NSF grant #IIS9988776.
�� This work was performed while the author was affiliated with Montclair State University,

Montclair, NJ, USA

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 185–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

186 Andreas Koeller and Elke A. Rundensteiner

paper, involves finding the minimal set of maximal inclusion dependencies between two
relations from the data in the relations, rather than from implied or explicit knowledge
about schemas (e.g., based on attribute names, features, or ontologies). IND discovery is
also different from IND inference [1,2], which is the problem of discovering new INDs
from known INDs, by using inference mechanisms such as transitivity, projection and
permutation. IND discovery proceeds by querying or otherwise examining data across
two relations without prior knowledge about those relations, in order to find inclusion
patterns between them.

Solving IND discovery problems is interesting for a number of applications. INDs
describe subset-relationships between projections (sets of attributes) of two relations,
and can be thought of as related to the “specialization” relationship of object-oriented
systems. For example, foreign key constraints are nothing but true (valid) INDs be-
tween a foreign key in one table and the associated key in another. Foreign key and
functional dependency discovery [3] can be used to reorganize legacy database sys-
tems. In query rewriting, algorithms that answer queries over information spaces with
partially redundant tables benefit from knowledge of INDs [4]. Examples can be found
in the literature, e.g., query folding [5,6,7]. In the context of schema integration and
matching [8], knowledge of redundancies across sources is essential. INDs represent
such redundancies.

The problem of IND discovery is NP-hard [2], and enumeration algorithms are pro-
hibitively slow, even for small real-world problems [9,10]. Since the problem is related
to the discovery of functional dependencies [3] and association rule mining [11], pro-
posals exist to adapt successful algorithms from those domains to the IND discovery
problem [10]. In particular, those algorithms use a levelwise strategy [12], discovering
single-attribute INDs first, then two-attribute (binary) INDs, then higher-order INDs.
However, this approach does not scale beyond very modestly sized problems, as demon-
strated in [9] and [10].

In previous work [13], the authors have proposed a scalable algorithm called FIND2

that discovers INDs between unknown relations. Another similar algorithm, called Zig-
zag, has been independently proposed by de Marchi et al. [14]. The FIND2 algorithm
and the Zigzag algorithm approach the IND discovery problem from similar directions.
They both observe that the solution to an IND discovery problem can be mapped to a
hypergraph. Thus they can map the problem of IND discovery to a problem of discov-
ering a hypergraph from limited knowledge of the hypergraph’s nodes and edges. The
algorithms employed in both approaches (hyperclique finding in FIND2 and minimal
traversal in Zigzag) are polynomial in the number of edges, and therefore exponen-
tial in the number of nodes in the hypergraph (since the number of edges in a general
hypergraph of k nodes is bounded by 2k). In the problem mapping applied in those
algorithms, discovery problems over relations with 50 attributes (a common size) can
easily lead to hypergraphs with hundreds of nodes, which for an algorithm running in
exponential time in the number of nodes poses a serious problem [9,14]. Depending on
the data in the source relations, even relations with 10–20 attributes can lead to unac-
ceptably high runtimes or memory problems.

This paper deals with heuristic strategies to scale hypergraph-based IND-discovery
algorithms beyond the sizes manageable in the basic hypergraph approach. The heuris-

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 187

tics reduce the size of hypergraph data structures involved in the discovery process by
exploiting easily computable database statistics. While the non-heuristic FIND2 and
Zigzag algorithms find the exact problem solution, some of the strategies proposed here
reduce the completeness of the solution. That is, the heuristics will sometimes prevent
the finding of all INDs, but all INDs that are discovered will be correct, and often at
least the largest IND in a given problem will be found.

It should be noted here that our work is orthogonal to manual or semi-automatic
discovery of database relationships, as suggested by many research works [15,16] and
implemented in many industrial software solutions. Our algorithms do not make use
of domain knowledge such as ontologies, expert-supplied attribute relationship infor-
mation, or use other schema-driven techniques. They exclusively use the data in the
information sources to suggest relationships between databases.

The contributions of this paper are as follows: We identify and define “spurious”
inclusion dependencies (INDs) as a major reason for performance problems in IND
discovery. Then, we give a model of detecting such INDs. We also show how to derive
heuristics based on this model, give additional suggestions as to the improvement of
IND discovery, and present an experimental study of the advantages of our heuristic
algorithm.

A preliminary version of this work was presented at the ODBASE 2004 confer-
ence [17]. In addition to the work published there, this paper contains: a discussion of
the quality of results in heuristic IND discovery, a discussion of the use of the algorithm
presented for discovery of patterns other than INDs, as well as four new experiments
comparing our algorithm with an alternative technique, studying the effects of heuris-
tics on quality, evaluating the DV heuristic specifically, and assessing the usefulness of
the algorithm for non-IND pattern discovery.

The remainder of this paper is organized as follows: Section 2 reviews INDs and a
hypergraph-based discovery algorithms for them. Section 3 introduces spurious INDs
and motivates the concept. Section 4 introduces heuristics based on that notion and
their application to IND discovery. Section 5 discusses how to assess the quality of the
heuristic algorithm’s results. Section 6 suggests the application of this algorithm to de-
tect approximate relationships between tables, rather than INDs, which are based on
exact subsets. Section 7 discusses experimental data to support our theoretical results
and assess the algorithms. Sections 8 and Section 9 present related work and conclu-
sions, respectively.

2 Background

2.1 Problem Definition

Our goal is to solve the problem of deducing all inclusion dependencies between two
given relations solely from the data in the relations. Inclusion dependencies are defined
as below.

Definition 1 (IND). Let R[a1, a2, . . . , an] and S[b1, b2, . . . , bm] be (projections on)
two relations. Let X be a sequence of k distinct attribute names from R and Y a se-
quence of k distinct attribute names from S, with 1 ≤ k ≤ min(n, m). Then an inclu-
sion dependency (IND) σ is an assertion of the form σ = R[X] ⊆ S[Y]. k is called

188 Andreas Koeller and Elke A. Rundensteiner

the arity of σ and denoted by |σ|. An IND σ = (R[a1, . . . , ak]⊆S[b1, . . . , bk]) is valid
between two relations R and S if the sets of tuples in R and S satisfy the assertion
given by σ.

Due to its unclear semantics, we do not consider duplication of attributes on either
side of the IND (i.e., we require sequences X and Y to be composed of distinct at-
tributes). However, allowing duplicate attributes is possible and would not significantly
increase the runtime of the algorithms presented here.

Casanova et al. [1] give a complete set of inference rules for INDs, observing that
INDs are reflexive, transitive and invariant under projection and permutation. Permuta-
tion here refers to the reordering of attributes on both sides of the IND. For example,
R[AB] ⊆ S[KL] ≡ R[BA] ⊆ S[LK] �≡ R[BA] ⊆ S[KL]. Transitivity is defined as
usual, R[X]⊆S[Y] ∧ S[Y]⊆T [Z] ⇒ R[X]⊆T [Z].

Projection invariance of INDs is the key to discovery algorithms. By projection, a
valid k-ary IND with k > 1 implies sets of m-ary valid INDs, with 1 ≤ m ≤ k.
Specifically, for a given valid IND σ = R[X] ⊆ S[Y], the IND σ′ = R[X ′] ⊆ S[Y ′]
will be valid for any subsequence X ′ ⊆ X and its corresponding subsequence Y ′ ⊆ Y .
Such a set of m-ary INDs implied by a k-ary IND has a cardinality of

(
k
m

)
and is

denoted by Σk
m. A very important observation is that the validity of all implied m-ary

INDs of a given IND σ is a necessary but not sufficient condition for the validity of σ.
For example, (R[A1] ⊆ S[B1])∧ (R[A2] ⊆ S[B2])∧ (R[A3] ⊆ S[B3]) does not imply
R[A1, A2, A3] ⊆ S[B1, B2, B3], as can easily be seen through an example (Fig. 1).

R
A1 A2 A3

1 4 7
2 5 8
3 6 9

S
B1 B2 B3

1 4 7
2 5 8
3 6 -1
-1 6 9
3 -1 9

R[A1, A2]⊆S[B1, B2] is valid.
R[A2, A3]⊆S[B2, B3] is valid.
R[A1, A3]⊆S[B1, B3] is valid.
R[A1, A2, A3]⊆S[B1, B2, B3] is not valid.

Fig. 1. Validity of all implied INDs is not a sufficient validity test.

Due to the projection invariance, a set Σ of INDs between two relations can be de-
scribed by a cover of INDs, denoted by G(Σ). Intuitively, this is a minimal set of INDs
from which all INDs in Σ can be derived by projection, permutation, and transitivity.
Naturally, G(Σ) ⊆ Σ. With these observations, the IND discovery problem reduces to
the problem of finding a cover of INDs for a given pair of relations.

2.2 IND-discovery Algorithms

Exhaustive Discovery Since |Σk
m| =

(
k
m

)
, the number of valid INDs implied by a

single k-ary IND σ is exponential in k:
k−1∑
m=1

(
k
m

)
= 2k − 2. Furthermore, INDs are not

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 189

invariant under permutation of the attributes of just one side, but only if the attribute
lists on both sides are permutated synchronously. That means for example that, when
discovering INDs between two relations with k attributes, one has to test k! potential
INDs just for the hypothesis that the one relation is completely included in the other.
Consequently, exhaustive enumeration algorithms are exponential and not feasible for
IND discovery.

Since Apriori-like algorithm are the standard solution for many discovery prob-
lems (e.g., for association rules), the question arises whether such an algorithm might
be appropriate for our problem. In fact, a levelwise algorithm [12] akin to the Apriori
algorithms in association rule mining [11] has been proposed as a solution to this prob-
lem [10]. It discovers unary INDs first and then forms binary IND candidates from the
valid unary INDs. Those INDs then have to be validated against the database. From the
validated binary INDs, 3-ary INDs are formed, then tested, and so on. In the presence of
a single sufficiently large valid IND σ, such an algorithm will have to discover 2|σ| − 2
implied INDs before even considering σ. This is clearly not a feasible approach. Ex-
periments conducted by the authors (see Sec. 7) and de Marchi [10] both suggest that
levelwise algorithms do not scale beyond a maximal IND size of 8–10.

Hypergraph-Based Discovery In general, the worst-case complexity of the problem
is determined by the number of possible distinct INDs between two relations. However,
in real-world problems, one expects to find a very low number of large distinct INDs
(in fact, often just one), and possibly several small INDs (see also Sec. 5). Therefore, it
is meaningful to find a minimal cover of valid INDs without even enumerating all valid
INDs, reducing the complexity significantly.

For this purpose, the problem is mapped into a graph problem. We use a family
of k-uniform hypergraphs which are graphs in which each edge is incident to ex-
actly k nodes. Standard undirected graphs can be considered “2-uniform hypergraphs”.
Furthermore, we extend the concept of clique (maximal connected subgraph) to hyper-
graphs.

Definition 2 (hyperclique). Let G = (V, E) be a k-uniform hypergraph. A hyper-
clique is a set C ⊆ V such that for each k-subset S of distinct nodes from C, the edge
corresponding to S exists in E.

In analogy to above, a clique is a hyperclique in a 2-hypergraph.
To map our problem, we now map the set of valid INDs to a family of hypergraphs

Gm (2 ≤ m < k), by making all k-ary valid INDs hyperedges in a k-uniform hy-
pergraph. The nodes of all hypergraphs (for any k) are formed by the unary INDs. For
example, the first hypergraph for k = 2 has as its nodes all valid unary INDs, and as its
edges all valid binary INDs.

We then use the fact that, for m = 2 . . . k − 1, any set Σk
m of INDs implied by a

valid σk maps to a hyperclique in the corresponding hypergraph Gm. In other words,
after an initial step of discovering low-arity INDs (k = 1 . . . 2), we can form candidates
for valid high-arity INDs by considering only those potential INDs that correspond to
cliques in k-uniform hypergraphs for small k.

190 Andreas Koeller and Elke A. Rundensteiner

Algorithm FIND2 Algorithm FIND2 (Fig. 2) applies hyperclique-finding techniques
to find inclusion dependencies (INDs). It was published as part of a dissertation [9]
and also appears in [13]. Full details and derivations can be found in [18]. FIND2 takes
as input two relations R and S, with kR and kS attributes, respectively and returns a
cover G(Σ) of INDs between R and S. The algorithm proceeds in stages enumerated
by a parameter k = 2, 3, It begins by exhaustively validating unary and binary
INDs, forming a (2-uniform) hypergraph using unary INDs as nodes and binary INDs
as edges (Step 1, k = 2). A clique-finding algorithm then determines all higher-arity
INDs candidates (Step 2, candidates c1 and c2 in the figure). Since the clique property
is necessary but not sufficient for the validity of a higher-arity IND (Sec. 2.1), each
IND candidate thus discovered must also be checked for validity. Each IND that tests
invalid (but corresponds to a clique in the 2-hypergraph) is broken down into its im-
plied 3-ary INDs. They then form the edges of a 3-hypergraph (Step 3, k = 3). Edges
corresponding to invalid INDs are removed from the 3-hypergraph.

12 13 14 15 23 24 25 34 35 45
(only indices shown,

never generated

cover of valid INDs

123 124 125 134 135 145 234 235 245 345

134

valid binary INDs

3−ary INDs 456

4−ary INDs
4567
(invalid)

(invalid)
567467457

(invalid)(valid)(invalid)

(valid)

unary INDs:

123455−ary INDs

6757564746

2

1
4

3

c2

c1

σ1 = R[A] ⊆ S[A]

e.g., 12 ≡ σ12 = R[AB] ⊆ S[AB])

σ5 = R[E] ⊆ S[E]

σ2 = R[B] ⊆ S[B]

σ6 = R[F] ⊆ S[F]

σ3 = R[C] ⊆ S[C]

σ7 = R[G] ⊆ S[G]

σ4 = R[D] ⊆ S[D]

Fig. 2. Overview of the complete algorithm FIND2.

Then, hypercliques are found in the 3-uniform hypergraph formed with unary INDs
as nodes and 3-ary INDs as edges. Hypercliques found are new IND candidates. Invali-
dated IND candidates found in this step are broken down into 4-ary subsets (k = 4). The
process is repeated for increasing k until no new cliques are found. At each phase, some
small elements of the cover G(Σ) might be missed and are discovered by a cleanup pro-
cess (Step 4, see also [18]). In all of our experiments using real data sets, the algorithm
terminated for k ≤ 6 (in Fig. 2, the algorithm terminates for k = 3).

Since the publication of FIND2, de Marchi et al. have independently proposed a
similar algorithm called Zigzag [14], which uses the same basic model as ours, but em-

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 191

ploys minimal hypergraph traversals [3,19] instead of clique-finding in order to gener-
ate large IND candidates. Furthermore, they introduce an optimization to the treatment
of invalidated large IND candidates (e.g., c2 in Fig. 2), in that they also attempt to vali-
date such a failed IND candidate by projecting out single attributes from it, rather than
restarting the discovery process for k + 1. They make a decision as to which strategy to
apply based on the number of tuples in relations R and S that violate the hypothesized
IND.

3 The Semantics of Inclusion Dependencies

Attribute sets that stand in an IND to each other are not necessarily matches for the
purpose of data integration. INDs can occur between attributes “by accident”, especially
if attributes have few distinct values and have similar or equal domains. Therefore, an
algorithm enumerating all inclusion dependencies across two database tables is likely
to produce some results that are not interesting for the purpose of data integration or
schema matching.

3.1 Why Improve IND Discovery?

Algorithms FIND2 and Zigzag as described so far find the complete and correct solution
to the IND-finding problem for two given relations. In principle, both algorithms first
discover unary and binary INDs by enumeration and testing (called pessimistic strategy
in [14]), and then form an optimistic hypothesis about the IND space by assuming that
all high-arity INDs that could be valid based on the validated unary and binary INDs
are in fact valid. That assumption makes both algorithms extremely sensitive to an
overestimation of valid unary and binary INDs. A high number of such small INDs
would cause many invalid larger IND candidates to be generated and tested against the
database.

Also, several of the algorithms involved, in particular the hypergraph-based pattern
discovery (hyperclique-finding in FIND2, min-hypergraph traversal in Zigzag), have
high complexity [19,18], and are fast only for sparse hypergraphs.

Therefore, the overall discovery strategy is sensitive to such overestimations and it
is important to prune unnecessary INDs from the search space.

3.2 Spurious INDs

We will now motivate the concept of “overestimating” INDs. For this purpose, we define
a notion of “accidental” or “spurious” INDs which are valid in the database but do not
contribute significantly to finding a solution to our problem.

Definition 3 (Spurious IND). An inclusion dependency σ = R[A] ⊆ S[B] is called
spurious iff (1) it is valid in the database and (2) does not reflect a semantic relationship
between attribute sets A and B (i.e., A and B do not represent the same real-world
dimensions).

192 Andreas Koeller and Elke A. Rundensteiner

The exact meaning of “semantic relationship” depends somewhat on the context
in which the IND discovery is used. For example, in schema matching, semantically
related attributes would be mapped into the same attribute in the integrated schema.
In query rewriting, a semantic relationship between two attributes would represent a
redundancy between those attributes.

Often, spurious INDs occur when the domains of attributes are small (i.e., if at-
tributes have many duplicate values), as the following example illustrates.

Example 1. Consider Fig. 3 for an example. The domains of three columns in table
Member and two columns in table Former are “year”, which is a domain with few
values. The figure shows the cover G(Σ) of INDs for this problem.

Member
Name Birthyear MemberSince MemberUntil

Jones 1940 1969 1989
Miller 1945 1960 1988
Myers 1960 1980 1988
Shultz 1969 1988 1989
Becker 1961 1989

Former
Member YOB LeftIn

Myers 1960 1988
Shultz 1969 1989

Former[Member,YOB,LeftIn]⊆Member[Name,Birthyear,MemberUntil],
Former[YOB,LeftIn]⊆Member[MemberSince,MemberUntil]

Former[LeftIn]⊆Member[MemberSince]

Fig. 3. Accidental INDs introduced by small domains

Two low-arity INDs are part of the cover of INDs between Former and Mem-
ber, shown in bold font in Fig. 3. However, in some sense, these INDs are intuitively
“wrong”. Note that they are not implied by any INDs with arity larger than 2. Therefore,
the discovery algorithm will not need these INDs for finding INDs with arity > 2 and
pruning them from the search space would speed up the algorithm while not signifi-
cantly reducing the quality of its result.

3.3 Detecting Whether an IND Is Spurious

Algorithms FIND2 and Zigzag both treat testing a single IND as an elementary oper-
ation with a binary result. A test for binary IND validity can simply be performed by
formulating a database query. In SQL, one could employ the EXCEPT (set-difference)
operator, since R[A]⊆S[B] ⇐⇒

(∣∣R[A]\S[B]
∣∣ = 0

)
. This however does not generate

any information about the “spuriousness” of the IND.
In order to assess the probability for spurious INDs to occur we now look at a

statistical model. Consider a sample N of size n obtained by sampling with replacement
from a set K of k objects. Given a certain set R ⊆ K of size r ≤ n, consider the
probability that all values in R are included in the sample N and denote it by P (n, r, k).
It can be computed by the following formula.

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 193

Theorem 1. Consider a set R = {e1, . . . , er} of r distinct elements from a universe
K of k distinct elements. The probability that a random sample (obtained by sampling
with replacement) of size n from K contains set R is

P (n, r, k) = 1−

r∑
i=1

(−1)i+1 ·
(
r
i

)
· (k − i)n

kn
= 1−

r∑
i=1

(−1)i+1·
(

r

i

)
·
(

1 − i

k

)n

(1)

Proof. There are kn different samples of size n from k distinct elements (sampling with
replacement). We compute how many of those do not contain R. A sample that does
not contain R is missing at least one element from R. Let us denote by Ae the set of all
samples that are missing element e. Then, the number of samples that do not contain at
least one element from R is r0 = |Ae1 ∪ Ae2 ∪ · · · ∪ Aer

|.
We now need to determine the size of the union of all those sets. The size of each Ae

is (k − 1)n. In analogy, the size of Ae1 ∩ Ae2 (the set of all samples missing two given
elements) is (k − 2)n, and so on. Since we can compute the sizes of their intersections,

we can use the inclusion-exclusion rule of combinatorics3, and get r0 =
r∑

i=1

(−1)i+1 ·(
r
i

)
· (k − i)n. We then get the probability P ′ = r0

kn that a sample does not contain R.
Therefore P (n, r, k) = 1 − P ′, ��

In order to now determine the probability of “spurious INDs’, assume two relations
R and S and the problem of assessing whether a valid IND σ = R[A] ⊆ S[B] is
spurious. Let A have r distinct values. Furthermore, set n = |S|, i.e., n is the number
of (non-distinct) values in attribute B. One can argue that since the values in A are a
subset of the values in B, the values in both attributes are from a common domain K
with k distinct elements.

We are interested in the “chance” that attribute A just “happens” to be included
in attribute B. This “chance” can be assessed by the probability that a sample (with
replacement) of size n from K contains A, which is P (n, r, k).

Now note that lim
n→∞(1 − i

n)n = e−i. Define k = n
c and insert it into the rightmost

term in Equation 1. Since lim
n→∞(1− ci

n)n = e−ic, that means that for large n and k, the

value of P (n, r, k) depends approximately only on r and c = n
k .

In Table 1 we have listed the maximum value of c for which P (n, r, k) remains
lower than 5%, for different r. That is, for a given number of distinct values in an
attribute A, we can estimate how likely it is that A is contained in an attribute B by
chance, given the size of B and the size of the common domain of A and B. This is a
measure of how likely R[A]⊆S[B] is to be spurious.

Of course, the size of domain K is unknown. However, since we have assumed
initially that R[A]⊆S[B], we could assume that K is given by the distinct values in B.
In this case, n > k and thus c ≥ 1. In this case, we get a P < 0.05 only if r > 7.

We conclude that inclusion dependencies where the included attribute has less than
6 or 7 distinct values have a high chance of being valid by statistical coincidence, rather
than by semantic relationships between the attributes. We exploit this result to restrict
the search space of our algorithm.

3 This is a generalization of |A ∪ B| = |A| + |B| − |A ∩ B|. See also [9].

194 Andreas Koeller and Elke A. Rundensteiner

Table 1. Minimum number of distinct values to avoid spurious INDs.

P (n, r, k) < 0.05 for P (n, r, k) < 0.05 for
r c = n/k less than r c = n/k less than

2 0.25 7 1.06
3 0.46 10 1.35
4 0.64 20 1.97
5 0.80 50 2.85
6 0.93 100 3.53

4 Heuristics for IND-validity Testing

From the observations above, we have derived two heuristics which are useful in reduc-
ing the number of IND candidates considered in a discovery problem.

4.1 The Number-of-Distinct-Values (DV) Heuristic

Based on our definition of spuriousness, the DV heuristic states that an IND R[A] ⊆
S[B] should not be used as a node or edge in a hypergraph in algorithm FIND2 (or sim-
ilar algorithms such as Zigzag) if the attribute (or attribute set) A has few distinct values
(tuples). That is, this heuristic simply discards all inclusion dependencies in which the
included attribute has less than n distinct values.

This method is supported by our theoretical results in Sec. 3.3, which state that
r = δ(R[A]) (the number of distinct values in attribute A) must be relatively large for
the IND R[A]⊆ S[B] to not be considered spurious. From the theory, we would set a
value of n = 7, a choice that is confirmed by our experiments.

The DV heuristic can only be used to test for valid INDs, i.e., an IND that is already
considered invalid will not be affected. It may produce false negatives, i.e., declare
INDs as spurious that are in fact not. Therefore, this heuristic has to be used carefully,
as explained in Sec. 4.3.

4.2 The Attribute-Value-Distribution (AVD) Heuristic

The Attribute Value Distribution (AVD) heuristic has strong predictive power for many
data sets. It is based on the hypothesis that two attributes A and B that form a non-
spurious IND (i.e., are semantically related) have the same frequency distribution of
values.

Obviously, this is strictly only true if A and B are both randomly taken from a
common set of values. However, for the purpose of this paper, we are assuming that
semantically related attributes are both taken from such a common set. Therefore, the
additional assumption that they are random samples seems reasonable at least for some
cases. The heuristic then states the following:

If the values of attributes A and B in a valid IND σ = R[A]⊆ S[B] do not show
the same value distribution, the attributes are not semantically related.

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 195

That is, if the value distribution is found to be different, the σ can be considered
spurious. If it is not different, no new information is gained about σ. This heuristic
can produce false negatives when attributes that are actually semantically related are
rejected due to the fact that they actually do not have similar frequency distributions.
The statistical hypothesis testing itself, which is probabilistic in nature, may also lead
to false negatives.

Performing Statistical Hypothesis Testing for AVD For the hypothesis test, we use
the widely applicable χ2-Test [20], in particular a χ2-Test for independence. This test is
designed to assess the independence of two categorical variables x and y. The χ2-Test
then tests under the null hypothesis that the two variables x and y are independent, i.e.,
that the value of variable x does not influence the value of variable y.

For our purpose we perform the following mapping: Given an IND R[A] ⊆ S[B],
we set x = {A, B} (i.e., the names A and B) and y = δ(R[A]) ∪ δ(R[B]), where
δ(R[A]) denotes the set of distinct values in attribute A of relation R. The contingency
table used for the χ2-Test is then filled with the counts of each distinct data value in
each of the two attributes.

We are therefore testing for the null hypothesis: “the distribution of values in an
attribute does not depend on the choice of attribute (out of {A, B}) from which the
values are taken”. If this hypothesis is rejected (i.e., if the value distribution is dependent
on the choice of attribute), we conclude that the value distributions in the two attributes
are different, and consequently an IND between them is spurious.

The attribute value distribution in a single attribute can be obtained easily through
an SQL-query and can be pre-computed for all attributes. For larger INDs, attribute
values can be concatenated to compute AVDs.

4.3 Incorporating Heuristics into the IND-checking Algorithm

The heuristic-based IND-checking function, called CHECKH, is shown in Fig. 4. While
the basic FIND2 algorithm uses a simple database query to detect the validity of an IND,
the heuristic algorithm, called FINDH, uses this heuristic check function. CHECKH

employs the DV and AVD heuristics introduced above, and also performs a simple
check for compatible domains. Note that the AVD heuristic is only used when (1) the
IND is valid in the database and (2) the DV heuristic rejects the IND. The intuition is
that the AVD heuristic is a stronger test of spuriousness than the DV heuristic and can
detect a semantic relationship (and thus “pass” the IND) where the DV heuristic failed.
The CHECK-function performs a validity check of a single IND against the source
database(s) through a database query and returns a Boolean value.

The computational complexity of IND-checking against the database is quite high,
as a check involves computing a set difference, and is consequently of O(n log n) com-
plexity in the number of tuples in the relations. De Marchi [10] proposes the use of
an inverted index of data values in order to facilitate the computation of unary INDs
only. This approach is not applicable for binary or higher-order INDs. Further improve-
ments in the testing of INDs (rather than the generation of IND candidates) could be
beneficial.

196 Andreas Koeller and Elke A. Rundensteiner

function CHECKH(Relation R, AttList A of R, Relation S, AttList B of S)
if (domains of R[A] and S[B] incompatible)

return invalid
else if (CHECK(R, A, S, B) = invalid) //a check against the database

return invalid
else if (DV heuristic does not reject IND)

return valid
else if (AVD heuristic rejects IND)

return invalid //false negative possible
else return valid

Fig. 4. The heuristic IND-checking function CHECKH used by algorithm FINDH

4.4 Detecting INDs in the Presence of False Negatives

Consider a complete graph (i.e., a graph with all possible edges) G = (V, E). Then,
the set of nodes V forms a clique in G. Now remove a single edge from E. Clearly, the
clique property does no longer hold, but rather G will now contain at least two distinct
maximal cliques. Those cliques are likely to have a substantial overlap (i.e., common
set of nodes).

If any of our heuristics produces false negatives, some edges (or even nodes, i.e.,
unary INDs) of any graph or hypergraph considered by FIND2 may be missing. The
clique finding algorithms used by FIND2 will then no longer find cliques that corre-
spond to the maximal INDs in the problem given, but rather find only smaller subsets
of those cliques. Simulations show that the removal of as few as 5 random edges from a
clique of 40 or 50 nodes will generally produce a graph with around 20 distinct maximal
cliques. However, those sub-cliques will often show substantial overlaps. Therefore, we
use the following strategy: When heuristics are used in FIND2 that may produce false
negatives (i.e., reporting non-spurious INDs as invalid), and FIND2 reports several
large, overlapping INDs, then we merge those INDs by computing the union of their
nodes.

Naturally, merging all INDs found by algorithm FIND2 will in general not lead to a
valid INDs, unless the (true) cover of INDs actually contains only one IND. Therefore,
we merge INDs of decreasing size, starting from the largest, until adding another IND
to the result will no longer produce a valid IND.

Our experiments show that the IND-merging heuristic is powerful enough to find
large or maximal valid INDs even in cases when many underlying edges are pruned in
earlier stages of heuristic discovery (Sec. 7).

5 Quality of Results in Heuristic IND Discovery

Discovery of INDs typically has the goal of discovering relationships between data-
bases. As such, finding the largest set of related attributes between two given tables
is an important subgoal. If that largest IND is large (has many attributes) compared to

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 197

any other INDs in the solution, it represents more information about the relatedness of
the databases than the smaller INDs. The reason for this is that a 10-ary (or any high-
arity) IND is very unlikely to hold by accident. If a high-dimensional IND is found
between two tables, it most likely represents an actual semantic relationships between
the attributes in the IND, rather than a random pattern that is true due to statistical
coincidence.

See Table 2 for a typical result of an IND discovery. In the example, two tables have
a set of 10 attributes each, which stand in an Inclusion Dependency relationship to each
other. This is represented by the 10-ary IND discovered by the exact algorithm (left
column in the table). The exact algorithm also found 7 more INDs, one unary one, 5
binary ones, and one 3-ary one, which are not implied by the 10-ary IND. Those 7 INDs
are most likely spurious by our definition (Def. 3) since they do not seem to represent a
semantic relationship between the tables. See also Fig. 5.

Table 2. Sets of Maximal Distinct INDs discovered by Heuristic FINDH and Exact
FIND2 Algorithms.

IND Size Exact Algorithm (FIND2) Heuristic Algorithm (FINDH)
1 1 1
2 5 1
3 1 0
4 0 0
5 0 1
6 0 0
7 0 3
9 0 0

10 1 0

Furthermore, a large IND implies many smaller INDs (Sec. 2.1). In the example in
Table 2, the 10-ary IND σ10

1 implies 210 − 2 = 1022 smaller INDs, whereas all the
remaining maximal INDs (σ1

1 . . . σ3
1) together imply only 5 ·(22−2)+1 ·(23−2) = 16

more smaller INDs, most of which are already subsumed by σ10
1 or are duplicates of

each other.

On the other hand, the heuristic FINDH algorithm did not find all of the INDs be-
tween the two tables (Fig. 2). Instead of σ10

1 , it found three 7-ary INDs, which are
fragments of the 10-ary true IND. Note that the union of the attributes of the three INDs
σ7

1 . . . σ7
3 is exactly σ10

1 .

This means that using IND-merging, the heuristically found solution is essentially as
useful as the exact one. However, the 7-ary INDs imply only a total of 3∗(27−2) = 372
INDs, less than 40% of the total number of INDs implied by σ10

1 . Most of those INDs
are also duplicates of each other since those three INDs have a 6-attribute overlap.
Therefore, counting the total number of INDs in the solution is not a good measure for
the quality of the result.

198 Andreas Koeller and Elke A. Rundensteiner

σ1
1 = R[C]⊆S[B]

σ2
1 = R[B, J]⊆S[C, J]

σ2
2 = R[F, J]⊆S[I, J]

σ2
3 = R[H, J]⊆S[I, J]

σ2
4 = R[H, J]⊆S[F, J]

σ2
5 = R[E, H]⊆S[E,F]

σ3
1 = R[E, F, J]⊆S[E, H,J]

σ10
1 = R[A, B, C, D, E, F, G, H, I, J] ⊆

S[A, B, C, D, E, F, G, H, I, J]

Fig. 5. INDs discovered by Exact FIND2

Algorithm.

σ1
1 = R[C]⊆S[B]

σ2
1 = R[B, J]⊆S[C, J]

σ5
1 = R[B, C, D, G, I]⊆S[B,C, D, G, I]

σ7
1 = R[A, B, C, D, E, F, I] ⊆

S[A, B, C, D, E, F, I]

σ7
2 = R[A, B, C, D, E, H, I] ⊆

S[A, B, C, D, E, H, I]

σ7
3 = R[A, B, C, D, E, I, J] ⊆

S[A, B, C, D, E, I, J]

Fig. 6. INDs discovered by Heuristic
FINDH Algorithm.

The primary difference between the exact and the heuristic algorithms is their treat-
ment of unary and binary INDs, since the heuristics are not applied for higher-arity
INDs. Therefore, we can also compare the counts of those unary and binary INDs as a
measure of result quality. In the example above, the exact algorithm FIND2 discovered
16 valid (not necessarily maximal) unary INDs. On the other hand, the heuristic FINDH

algorithm regarded 4 of those unary INDs as spurious. Those 4 INDs were actually not
implied by the large IND σ10

1 , which means the heuristic correctly disregarded them.
The FINDH algorithm then generated only 62 possible binary INDs to test against the
database, as opposed to 105 in the exact algorithm, which represents a 40% savings
in runtime for this phase. However, the distinct-value heuristic for the binary INDs re-
jected 8 of the valid 46 binary INDs, some of which were implied by σ10

1 . Thus, the
cause of quality loss in this case was the distinct-value heuristic for binary INDs.

6 Heuristics for Discovering IND-like Database Similarities

Algorithms FINDH and FIND2 discover INDs, which are strict set-inclusion patterns.
However, they can also be used to discovery patterns that are not technically INDs,
but rather “IND-like” pattern. In particular, the discovery of similarities (near inclu-
sion) between tables rather than strict inclusion is possible if the similarities are strong
enough.

The current algorithm uses SQL set-difference queries (see also Sec. 3.3) to detect
inclusion of a given projection of the two tables in question. A projection πA (R) on
a table R is included in a projection πB (S) in table S if the result of the relational
query Δ = πA (R)\πB (S) is empty. However, if Δ is not empty, its size |Δ| (i.e,. the
number of tuples in the difference relation) can be an indicator for the relatedness of
the projections. In its simplest form, a small |Δ| indicates a good relationship, while
a large |Δ| suggests no relationship. A somewhat stronger heuristic is to use the ratio

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 199

of |Δ| to the number of distinct tuples in πA (R) and/or πB (S). This “relatedness”
score can be used to rank IND-like patterns, which is important when at some stage
in the algorithm, too many patterns are discovered to consider all. This ranking is also
useful in the final output of the algorithm, as it gives additional information on whether
a pattern discovered is real or not.

Partial Overlap Heuristic Determining whether two projections πA (R) and πB (S)
of relations R and S are related if they do not satisfy an IND (i.e. if πA (R) �⊆ πB (S))
can be done in the following way:

– If |πA (R)\πB (S)| < c1, the projections are considered related. c1 can either be
a integer constant (c1 ≥ 1) or can be a function of the number of attributes in A
(i.e,. the arity of the IND-like pattern). The rationale is that a very small number of
“violating” tuples in the set difference between the two projections could be caused
by noise in the data rather than a non-relatedness. An empirically found useful
value for c1 is c1 = 3.

– If |πA (R)\πB (S)| < c2 · |πA (R)| the projections are considered related as well,
with 0 < c2 ≤ 1. The rationale here is that if the number of distinct tuples in
the set-difference is less than a fraction of the number of distinct tuples in the left
(“smaller”) relation of the IND-like pattern, a relationship between the projections
is likely. We experimented successfully with a c2 = 0.49, which represents the fact
that the smallest useful domain in a relational database must have a size of two (two
distinct values, one of which could be null). In this way, for example, an attribute
with a two-valued domain would not be considered related to another attribute un-
less there is a true IND between the two attribute sets (i.e., |πA (R)\πB (S)| = 0),
while two attribute sets A and B with larger domains could be considered related
even if πA (R) �⊆ πB (S).

If either of those two conditions is satisfied, the projections will be considered re-
lated, and treated like valid INDs. That is, they are then passed on to the other heuristics,
filtering out spurious INDs, and then used in the FINDH algorithm.

While this heuristic works well for many cases (see Experiment 7, Sec. 7), the un-
derlying assumption is that related tables have some data in common. With this simple
scheme, a discovery of “relatedness” is possible if there is some extensional overlap
between the relations to be compared. If the relations have no tuples in common, the
use of set-difference queries is not meaningful for the discovery of relationships.

7 Experiments and Evaluation

7.1 Experimental Setup

Experiments were performed on several Linux-PCs with a dedicated machine run-
ning a relational database server. We obtained data from the UC Irvine KDD Archive
(http://kdd.ics.udi.edu), specifically subsets of the CUP98, CENSUS, IN-
SURANCE, and INTERNET data sets, which (converted into relational tables) had
between 40 and 90 attributes each.

200 Andreas Koeller and Elke A. Rundensteiner

In order to “discover” inclusion dependencies, we used different projections and
selections of each dataset and compared those to each other. An interesting feature of
some of the data sets is that they have very small domains, as many of their attributes
are categorical data. Furthermore, they are encoded as small integers, such that many
unrelated attributes match each other (i.e., form spurious unary INDs). While one could
“join” those columns with their “dimension tables” and obtain distinct domains, we left
the tables as they were as a challenge to our algorithms. The effect was a high number
of spurious INDs, which we could use to assess the performance of our solution.

7.2 Experiment 1: Comparison with Alternative IND Discovery Techniques

The performance of the FIND2 algorithm (without heuristics) was compared with the
previously published Apriori-like IND discovery algorithm [10], which serves as the
baseline algorithm for this problem (and can be faster for very small problems). The
latter algorithm was implemented in the same environment (Java over relational DB)
as the FIND2 algorithm. The test case consisted of a set of selections of the CENSUS
table, with 500 rows each. Each table had 41 attributes. The total number of INDs
between those tables varied, and the size of the largest IND between any of the tables
tested also varied, between 5 and 16 attributes.

As can be seen from Fig. 7, the runtime of the FIND2 algorithm is substantially
shorter than that of the Apriori-like algorithm. The runtime recorded represents CPU
time only; the number of database queries is also lower for the FIND2 algorithm than
for the Apriori-algorithm. As expected, the latter algorithm shows exponential runtime
behavior in the size of the largest IND in the solution (note that the y-Axis is logarith-
mic). The runtime of FIND2 is not affected by the size of the largest IND.

On the other hand, the runtime of FIND2 does depend on the size of the solution,
i.e., the number of distinct maximal INDs in the result (Fig. 8 shows data and linear
regression curve; the correlation coefficient is r2 = 0.95). As explained in Section 5,
the size of the true solution is often small, but can be increased greatly by spurious
INDs. Even though many of those spurious INDs are eventually purged from the search
space in later phases of the algorithm, they slow down IND discovery significantly,
and can even lead to aborted discovery runs due to memory problems. Here, using the
heuristics proposed in this paper can help to speed up IND discovery.

7.3 Experiment 2: Performance and Quality Effects of Heuristics

This experiment was conducted to assess the runtime of the algorithm and the quality
of its output for a given data set, with and without the use of heuristics. For this ex-
periment, we used a 5000-tuple random subset CENSUS1 of data set CENSUS and
a further random subset of 4500 tuples (90%) of CENSUS1, called CENSUS2 (i.e.,
CENSUS2 ⊂ CENSUS1 ⊂ CENSUS). This choice was made to emulate a certain
randomness in real-world data. We compared the performance and quality of algorithms
FIND2 and FINDH. We used different projections on those tables, which all originally
have 41 attributes. Figure 9 shows the runtime of algorithms FIND2 and FINDH, for
different size projections, illustrating the large performance benefits of the heuristic
strategy.

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 201

Fig. 7. Comparison of Algorithm FIND2 with Apriori-like algorithm

Fig. 8. Runtime Behavior of Algorithm FIND2 under different size solutions.

202 Andreas Koeller and Elke A. Rundensteiner

Fig. 9. Performance of algorithms FIND2 and FINDH, respectively, for discovering
INDs between CENSUS2 and CENSUS1. The time for merging INDs is included
in the runtime measurements.

There is a penalty in accuracy as a tradeoff for the lower runtime. The full cover
of INDs is not found by the heuristic algorithm. Rather, FINDH reports a maximum
IND whose arity is about 70%-85% of the largest valid IND between the test data sets.
However, through IND merging (Sec. 4.4), we still correctly find the largest IND in this
data set. In other cases, the results of clique merging are not perfect as here, but still
large INDs are found, as shown below.

7.4 Experiment 3: Assessing Result Quality for Heuristic FINDH Algorithm

As explained in Sec. 5, the size of the largest IND discovered is a useful measure for
the quality of the algorithm’s performance. However, to assess the quality reduction of
FINDH, we conducted an experiment assessing the precision and recall of unary and
binary INDs in the respective solutions.

For our test case of the CENSUS dataset, we recorded all unary and binary INDs
that the heuristic and non-heuristic algorithms had considered and discovered, and com-
pared with the true solutions.

See Table 3 for the results. The table contains the values for precision and recall
for unary and binary INDs for both algorithms. Precision is computed in the usual
manner as percentage of discovered INDs that are correct, while recall is computed as
percentage of discovered INDs that are found by the algorithm.

In the test case, there was a single 41-ary IND to discover, such that the number of
correct unary INDs was 41, and the number of correct binary INDs was

(
41
2

)
= 820. The

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 203

Table 3. Precision and Recall of Heuristic Algorithm FINDH for Unary and Binary
INDs

Algorithm Unary INDs Binary INDs
Precision Recall Precision Recall

FIND2 59% 100% 83% 100%
FINDH 89% 100% 99% 97%

non-heuristic IND algorithm of course discovers all those INDs, but considers many
more, spurious, INDs. In this experiment, the heuristics worked very well for unary
INDs, achieving 100% recall and only considering very few INDs that turned out to
be spurious. This is partially due to good performance of the AVD-heuristic which
compares frequency distribution of values.

In other cases, the recall is not as good but still sufficient to discover large INDs
efficiently. This experiment demonstrates the effect of the FINDH algorithm: increase
in precision of discovery of small INDs, at the expense of a reduction in recall.

7.5 Experiment 4: Effect of Low Numbers of Distinct Values in Data Set

In this experiment, we assess the quality of the heuristic algorithm in a data set with
many spurious INDs. Table INSURANCE is such a data set, as it contains almost ex-
clusively attributes with small integer domains (often less than ten distinct values) and
consequently nearly 50% of its unary INDs are valid. For the full data set of 86 at-
tributes, 4000 unary INDs are valid in the database, which would lead to a prohibitively
large hypergraph with 4000 nodes.

In fact, the non-heuristic FIND2 algorithm fails for this data set for all cases with
more than 10 attributes, so no performance results for the non-heuristic algorithm can
be reported for comparison.

Table 4 shows the quality achieved by the heuristic algorithm CHECKH for this
case, for different size projections of table INSURANCE. Both the size of the largest
IND found directly and the size of the largest merged IND are reported. The reason for
the reduction in quality for larger relations is that in order for the algorithm to finish,
we had to prune the search space by limiting the number of nodes and edges of the
search hypergraph. The increase of quality for large relations may be due to the random
projections of relations that were performed to obtain problem subsets.

The power of the IND-merging strategy (Sec. 4.4) becomes clear for very large
relations, as the size of the largest discovered IND (relative to the size of the largest
existing IND) actually increases.

7.6 Experiment 5: Number-of-Distinct-Tuples Parameter in DV Heuristic

The Distinct-Value (DV) heuristic rejects valid INDs as spurious when the number of
distinct values is lower than a certain threshold n. A study of the statistic effects of
this heuristic is given in Sec. 3.3. In this experiment, we varied the parameter n, whose

204 Andreas Koeller and Elke A. Rundensteiner

Table 4. Size of largest IND discovered relative to size of largest valid IND in a difficult
case. In cases marked “N/A”, the algorithm did not finish.

of Attributes Algorithm
Non-heuristic Heuristic Heuristic w/ IND-merging

10 100% 100% 100%
20 N/A 95% 95%
30 N/A 50% 50%
40 N/A 33% 33%
52 N/A 38% 38%
64 N/A 41% 44%
86 N/A 36% 53%

default value is 7, from 0 to 15. An n = 0 represents the exact (non-heuristic) algorithm.
Table 5 shows the higher-arity INDs that the FINDH algorithm found for a test case from
the CENSUS experiment set, for different n.

For this experiment, there was a single true IND to be discovered, with 41 attributes
(column 1). Two effects are apparent: First, the size of the largest IND discovered by
the heuristic algorithm FINDH decreases as the DV heuristic declares more and more
small INDs spurious. Second, the algorithm also discovers more INDs, with different
sizes, such that the solution becomes “spread out”. For n > 7, the solution quickly
deteriorates, as predicted by the theory. Note that for this experiment, IND-merging
(i.e., computing the union of the attribute sets in all discovered INDs) yielded the “true”
solution of a 41-ary IND.

Furthermore, the algorithm actually becomes slower for larger values of n. One
reason is that the size of the discovered solution (i.e, the number of minimal unique
INDs) increases (see also Fig. 8). Another reason is that the (time-consuming) AVD-
heuristic (Sec. 4.2) is used more often as the DV-heuristic declares more INDs spurious
(since the AVD-heuristic is applied to INDs rejected by the DV heuristic).

7.7 Experiment 6: Accuracy of the χ2-Test and the AVD Heuristic

The attribute value distribution (AVD) heuristic relies on the assumption that attributes
that stand in an inclusion relationship to one another are semantically related and thus
show a similar distribution of their values. This will be true if the two relations in
question are actually random samples of some larger real-world data set. However, if
algorithm FIND2 is run on two relations R and S, with one or both of R and S being
selected from a larger set D on a predicate (R = σC1(D) ∨ S = σC2(D)), the value
distribution in some attributes in R might be different from the value distribution in
some attributes in S.

Thus, we performed a number of experiments in which we generated subsets of our
data sets using predicates rather than random sampling. The expectation is that the AVD
heuristic will produce many false negatives in the presence of such predicates, which

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 205

Table 5. Large INDs discovered with Different Thresholds for the DV Heuristic

IND Size Declare IND spurious if n ≤
0 4 6 7 8 10 15

≤ 24 4
25 1 1
26 3
27 1
28 2 4
29 2
30 1 2
31 1
32 2 1 6
33 1 2 5 2
34 1 2 4
35 4 1
36 2 1
37 2
38
39 2
40
41 1

Runtime (sec) 650 381 356 334 388 408 455

motivates the design to only run this heuristic after the DV heuristic has already rejected
an IND (Sec. 4.3).

Table 6 shows the quality (ratio of size of largest IND found to size of largest
existing IND) of the result in data set INTERNET for four different predicates. The
data set represents a survey in Internet usage data, and we selected the following four
attributes for predicates: gender, household income, country/state of origin (encoded
in a single attribute in the original data source), and major occupation, with condi-
tions that had selectivities between 0.45 and 0.8. For example, selecting tuples with
a predicate such as GENDER<>’female’ will change the value distribution of the
values in the other columns if they are gender-specific. Likewise, a predicate such as
HOUSEHOLD_INCOME<75,000 will probably change the value distribution in the
other columns of this table, which represents an Internet usage survey.

We performed similar experiments with our other data sets and found that the AVD
heuristic helps to find between 50% (data set CUP98) and 10% (data set INSUR-
ANCE) larger INDs than the algorithm with only the DV heuristic, averaged over sev-
eral different predicates. This experiment shows that using the AVD heuristic gives bet-
ter results (i.e., more accurate large INDs) in most of our experimental cases in which it
was actually applied. It never reduces the quality of the result due to the way it is used
in algorithm CHECKH.

206 Andreas Koeller and Elke A. Rundensteiner

Table 6. Relative size of largest discovered IND, with subsets selected by predicate.

Attribute Predicate with AVD without AVD

GENDER <>’female’ 81% 43%
HOUSEHOLD INCOME < 75000 94% 43%
COUNTRY =’US’ AND state <=

’North Carolina’
85% 42%

MAJOR OCCUPATION <>’other’ 88% 43%

7.8 Experiment 7: Discovering Non-exact Relationships

In this experiment, we tested the hypothesis established in Sec. 6, that the FINDH al-
gorithm can be used to discover approximate relationships between tables that are not
exact inclusions of one another.

Our test case consisted of data from the US Census database4, with the goal of let-
ting the algorithm discover that the census data from two small states (North and South
Dakota) are related. As explained in Sec. 6, due to the use of set-difference queries at
the lowest level, the algorithm in its current form can not be used to compare distinct
relations; some overlap is required. We therefore generated two overlapping tables by
introducing tuples of each state’s microcensus table into the other. We obtained two ta-
bles with about 5,000 tuples each, which had an intersection of about 3,500 tuples, and
about 1,500 unique tuples each. For this experiment, we then projected those tables to
15 randomly selected attributes. We then let the FIND2 and the FINDH algorithms at-
tempt to discover the one-to-one attribute correspondence between the two tables (i.e.,
a single 15-ary inclusion-dependency-like pattern, which implies 15 unary and 105 bi-
nary patterns).

While the non-heuristic FIND2 algorithm generated 126 unary and over 6000 binary
patterns, and subsequently did not finish, the FINDH algorithm performed very well. It
generated only 37 unary and 275 binary patterns (with the DV and AVD heuristics in
place), well within the capabilities of the clique-finding algorithm. It finished after 248
seconds, and found a 13-ary relationship between the two input tables (after merging).
The two attributes not found both had only 2 values in their domains and were highly
correlated, making them indistinguishable for the algorithm.

This experiment suggests that the FINDH algorithm can be used to discover relation-
ships between database even in the presence of substantial noise, or even if the tables
only partially overlap rather than form subsets of one another.

8 Related Work

There is substantial work on the discovery of patterns in databases. Much work is con-
centrated on functional dependencies (FDs), such as Lim and Harrison [21].

4 One-percent microcensus:
ftp://ftp2.census.gov/census 2000/datasets/PUMS/.

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 207

An important related paper is by Kantola, Mannila et al. [2]. The authors describe
an algorithm for discovering functional dependencies and also mention inclusion de-
pendencies. However, no algorithm for IND discovery is given, and only a very rough
upper bound for the complexity of the IND-finding problem is presented (in addition to
a proof of NP-completeness of the problem).

Much database pattern discovery uses the concept of levelwise search, which has
a well known instantiation in the Apriori-algorithm for association rule mining [11].
Mannila and Toivonen [12] give a theory of levelwise searches, and introduce the con-
cept of borders of theories for discovery algorithms.

Zaki [22] uses levelwise search as well as the idea of cliques (but not hypercliques)
for association rule mining. In this paper, the author also mentions clique-merging,
which is similar to our IND-merging.

Hypergraphs have been used in other areas of databases and data mining. For ex-
ample, Mannila and Räihä [3] give an algorithm for the discovery of functional depen-
dencies that maps the problem to a hypergraph traversal.

Inclusion dependencies have been widely studied on a theoretical level. Fundamen-
tal work is done by Casanova, Fagin and Papadimitriou [1]. They present a simple ax-
iomatization for INDs. While their work focuses on inference of INDs, not discovery,
we use their “projection and permutation” axiom as the basis for the FIND2 algorithm.
Casanova et al. further prove that the decision problem for INDs (i.e., deciding whether
a given IND can be derived from a given set of INDs through inference) is PSPACE-
complete. Chandra and Vardi [23] prove undecidability of the problem. Mitchell [24]
developed inference rules for INDs. No discovery on the data-level is mentioned in that
body of work.

De Marchi et al. first proposed a levelwise algorithm for IND discovery [10]. The al-
gorithm is competitive for very small problems, especially due to the use of an inverted
index for unary IND discovery, but suffers from the dimensionality curse for IND sizes
beyond about 8. More recently, deMarchi et al. proposed the Zigzag algorithm [14]
which is very similar to the FIND2 algorithm presented by the authors in [9,13]. There
are significant differences such as the hypergraph model (we use k-uniform hypergraphs
vs. de Marchi’s general hypergraphs) and the discovery algorithm (our hypercliques
vs. de Marchi’s minimal hypergraph traversals). In addition, de Marchi treats invalid
large IND candidates (such as c2 in Fig. 2) differently from us, by attempting to vali-
date them by removing single attributes. The choice of strategy is guided by a heuristic
based on the number of tuples violating the IND property in the proposed IND. His
ideas are orthogonal to ours, and we expect that a pooling of ideas might lead to an
overall more optimized algorithm. In any case, the results from this paper would apply
equally to FIND2 and Zigzag.

There is substantial related work on the mathematical foundations of some of the
heuristics that we have used to restrict problem spaces in our algorithm. Work on the
theory of attribute value distributions can be found in [25] and [26]. The statistical χ2-
Test itself is described in statistics textbooks such as [20].

Schema integration is not limited to the discovery of INDs. In fact, there is a very
large body of work in meta-data driven (as opposed to data-driven) schema integration.

208 Andreas Koeller and Elke A. Rundensteiner

Rahm and Bernstein [8] give an overview over some recent schema-integration projects;
an earlier survey is [27].

Larson et al. [28] give a theory in which they infer attribute equivalence by a variety
of indicators, such as domains, maximal and minimal values, and some constraints im-
posed by the (relational) database system. Their work is complementary to ours in some
sense but ignores the actual data inside the attributes. Therefore, it is very sensitive to
the availability and correctness of their assumed constraints.

More ideas on schema matching are contained in the SemInt project [29], in which
attribute equivalence is inferred based on 20 different features of an attribute, five of
which (minimum, maximum, average, coefficient of variance, standard deviation) are
based on data but represent very simple properties and apply only to numeric attributes.
These 20 dimensions are then used to train a neural network classifier for inferring
attribute relatedness. Doan et al. [30] use a similar machine-learning approach to infer
related schema elements in semistructured databases.

Kang and Naughton [31] present another schema matching approach, in which they
map each of two relations into a graph and then perform graph matching to achieve
schema matching. They use the assumption that attributes with similar entropy are re-
lated and also take intra-relational mutual information of attributes into account. The
entropy heuristic applies to all data types and is somewhat related to our AVD measure,
but is only a one-dimensional measure which incurs many false positives. The authors
report that their approach does not scale beyond 15–20 attributes due to the deteriora-
tion of their heuristic.

9 Conclusion

In this paper, we have proposed heuristics that help to scale hypergraph-based inclusion
dependency discovery algorithms [13,14]. We have shown that significant performance
benefits are possible by applying the concept of spurious IND. This concept is used to
reduce the problem size for exponential-complexity algorithms. This strategy makes it
possible to automatically discover overlaps between almost any pair of real-world size
relations. Even relations with many meaningless single-attribute overlaps (introduced
by domains with few and accidentally identical values between those attributes) can be
used for robust discovery.

Applications of this work lie in database integration (particularly, schema match-
ing), reorganization, and query optimization. It could also be potentially beneficial in
other application domains, since exponential-complexity mapping problems are com-
mon in subset and similarity discovery problems.

A potential direction into which to take this work is a further generalization of
the problem, moving away from the discovery of exact subsets between relations and
towards true similarity. This would entail relaxing the assumptions (1) that all tuples in
the “included” relation actually exist in the other and (2) overcoming the problem that
values across the attributes must match exactly for an inclusion dependency, both of
which are receiving some attention in the research community already While the first
problem is addressed in this paper and the FINDH algorithm can be used for discovery
tasks in this category, see for example [31] for the second problem.

Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns 209

References

1. Casanova, M.A., Fagin, R., Papadimitriou, C.H.: Inclusion dependencies and their interac-
tion with functional dependencies. In: Proceedings of ACM Conference on Principles of
Database Systems (PODS). (1982) 171–176

2. Kantola, M., Mannila, H., Räihä, K.J., Siirtola, H.: Discovering functional and inclusion
dependencies in relational databases. International J. Of Intelligent Systems 7 (1992) 591–
607

3. Mannila, H., Räihä, K.J.: Algorithms for inferring functional-dependencies from relations.
Data & Knowledge Engineering 12 (1994) 83–99

4. de Marchi, F., Lopes, S., Petit, J.M., Toumani, F.: Analysis of existing databases at the
logical level: the DBA companion project. SIGMOD Record (ACM Special Interest Group
on Management of Data) 32 (2003) 47–52

5. Lee, A.J., Nica, A., Rundensteiner, E.A.: The EVE approach: View synchronization in dy-
namic distributed environments. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 14 (2002) 931–954

6. Gryz, J.: Query folding with inclusion dependencies. In: Proc. Intl. Conf. on Data Engineer-
ing, IEEE Computer Society (1998) 126–133

7. Calı̀, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data
integration systems. Proceedings of IJCAI (2003) 16-21

8. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB
Journal: Very Large Data Bases 10 (2001) 334–350

9. Koeller, A.: Integration of Heterogeneous Databases: Discovery of Meta-Information and
Maintenance of Schema-Restructuring Views. PhD thesis, Worcester Polytechnic Institute,
Worcester, MA, USA (2001)

10. de Marchi, F., Lopes, S., Petit, J.M.: Efficient algorithms for mining inclusion dependencies.
In: Proceedings of International Conference on Extending Database Technology (EDBT).
(2002) 464–476

11. Aggarwal, C.C., Yu, P.S.: Online generation of association rules. In: Proceedings of IEEE
International Conference on Data Engineering. (1998) 402–411

12. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1 (1997) 241–258

13. Koeller, A., Rundensteiner, E.A.: Discovery of high-dimensional inclusion dependencies.
In: Proceedings of IEEE International Conference on Data Engineering, Bangalore, India,
IEEE (2003) 683–685

14. de Marchi, F., Petit, J.M.: Zigzag: A new algorithm for mining large inclusion dependencies
in databases. In: 3rd Intl. Conf. on Data Mining, Melbourne, Florida, IEEE (2003) 27–34

15. Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic integration of knowledge sources.
In: Proc. of the 2nd Int. Conf. On Information Fusion (FUSION’99), Sunnyvale, California
(1999)

16. Beneventano, D., Bergamaschi, S., Castano, S., et al.: Information integration: The MOMIS
project demonstration. In: International Conference on Very Large Data Bases. (2000) 611–
614

17. Koeller, A., Rundensteiner, E.A.: Heuristic Strategies for Inclusion Dependency Discovery
In: Proceedings of 3rd International Conference on Ontologies, Databases and Applications
of Semantics (ODBASE) (2004) 891–908

18. Koeller, A., Rundensteiner, E.A.: Discovery of high-dimensional inclusion dependencies.
Technical Report WPI-CS-TR-02-15, Worcester Polytechnic Institute, Dept. of Computer
Science (2002)

210 Andreas Koeller and Elke A. Rundensteiner

19. Demetrovics, J., Thi, V.D.: Some remarks on generating armstrong and inferring functional
dependencies relation. Acta Cybernetica 12 (1995) 167–180

20. Rice, J.A.: Mathematical Statistics and Data Analysis. 2nd edn. Duxbury Press (1995)
21. Lim, W., Harrison, J.: Discovery of constraints from data for information system reverse en-

gineering. In: Proc. of Australian Software Engineering Conference (ASWEC ’97), Sydney,
Australia (1997)

22. Zaki, M.J.: Scalable algorithms for association mining. IEEE Transactions on Knowledge
and Data Engineering (TKDE) 12 (2000) 372–390

23. Chandra A.K., Vardi, M.Y.: The implication problem for functional and inclusion dependen-
cies is undecidable. SIAM J. Comput. 3 (1985) 671–677

24. Mitchell, J.C.: Inference rules for functional and inclusion dependencies. In: Proceedings of
ACM Symposium on Principles of Database Systems, Atlanta, Georgia (1983) 58–69

25. Mannino, M.V., Chu, P., Sager, T.: Statistical profile estimation in database systems. ACM
Computing Surveys 20 (1988)

26. Hon, W.C., Zhang, Z., Zhou, N.: Statistical inference of unknown attribute values in data-
bases. In: Proceedings of International Conference on Information and Knowledge Manage-
ment. (1993) 21–30

27. Batini, C., Lenzerini, M., Navathe, S.: A comparative analysis of methodologies for database
schema integration. ACM Computing Surveys 18 (1986) 323–364

28. Larson, J.A., Navathe, S.B., Elmasri, R.: A theory of attribute equivalence in databases with
application to schema integration. IEEE Transactions on Software Engineering 15 (1989)
449–463

29. Li, W., Clifton, C.: SemInt: A tool for identifying attribute correspondences in heterogeneous
databases using neural networks. Data and Knowledge Engineering 33(1) (2000) 49–84

30. Doan, A., Domingos, P., Halevy, A.: Learning source description for data integration. In:
Proceedings of the Third International Workshop on the Web and Databases (WebDB), Dal-
las (2000) 81–86

31. Kang, J., Naughton, J.F.: On schema matching with opaque column names and data values.
Proceedings of SIGMOD (2003) 205–216

Aligning Ontologies, Evaluating Concept

Similarities and Visualizing Results

Kleber Xavier Sampaio de Souza1,2�, Joseph Davis2, and
Silvio Roberto de Medeiros Evangelista1

1 Embrapa Informática Agropecuária
Caixa Postal 6041 CEP 13083-886 Campinas SP, Brazil

{kleber,silvio}@cnptia.embrapa.br
2 The University of Sydney, School of Information Technologies

Madsen Building F09, Sydney NSW 2006, Australia
jdavis@it.usyd.edu.au

Abstract. Ontologies have been created for many different subjects
and by independent groups around the world. The nonexistence of a
commonly accepted and used general purpose upper-ontology makes it
difficult to integrate these ontologies through merge and alignment oper-
ations. The majority of the algorithms proposed so far rely on syntactic
analysis, disregarding the structural properties of the source ontologies.
In our previous work, we proposed an alignment method that consid-
ers the structural properties of an upper-ontology constructed using a
thesaurus and Formal Concept Analysis technique (FCA). We also ana-
lyzed the FCA’s lattice structure and proposed a measure of similarity
based on Tversky’s model, which allowed us to identify closely related
concepts in different source ontologies. In this paper, we apply the align-
ment method to ontologies developed for a completely different domain,
and enhance the solution by providing a navigational aid for the lattice.
It is well known that one of the main drawbacks of the application of
FCA is that the resulting lattice soon becomes cluttered when the num-
ber of objects and attributes increases. The proposed solution is based
on hyperbolic visualization and on structural elements of the lattice.
Keywords: ontology alignment, Formal Concept Analysis, lattice visu-
alization, similarity measures

1 Introduction

The merging and alignment of ontologies has been receiving increasing attention
from the research and development community. Even before the advent of the
Semantic Web Initiative, proposed by Tim Berners-Lee [1, 2], the problem had
already been addressed by database researchers in the search for better methods
for schema integration.

In merging and alignment, both the organization and content of ontologies
are important and they have to be addressed in any merge/alignment method.

� Research supported by Capes-Brazil grant BEX0687/03-0

S. Spaccapietra et al. (Eds.): Journal on Data Semantics V, LNCS 3870, pp. 211–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

212 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

The way current research approaches the problem varies greatly on the amount
of attention given to each aspect of the problem. Some proposals, like the FCA-
Merge method [3], builds the structure of the merged ontology based on an
analysis of a set of documents referenced to by the source ontologies. The pre-
viously existing structure of these ontologies is disregarded. Others [4, 5], try to
balance between content and structure in the construction of similarity measures
to evaluate the proximity between concepts in different ontologies.

The necessity of content assessment arises from semiotics, because the sym-
bols that we compose to form the ideas (concepts) contained in an ontology are
arbitrary, in the sense that the association between a symbol and its referent 3

was established at a certain time and continued to be valid ever since. For in-
stance, someone must learn that the set of elements of an alphabet c-a-r refers
to something that has usually four wheels and is self propelled. In this paper,
the definition of ontology is that they are knowledge specifications of concep-
tualizations [6], and are constituted of symbols (entities) and relations between
symbols 4.

In a previous work [7], we proposed a method for the alignment of sub-domain
ontologies using an upper-ontology based on a thesaurus. To the best of our
knowledge, this was the first time that FCA was applied to ontology alignemnt.
The formalization for the alignment was carried out via Formal Concept Analy-
sis [8, 9], a data analysis technique based on lattice theory. Firstly, we embedded
the thesaurus in FCA’s formalism (details in Section 6). Then, because every
entity in the original ontologies had been previously mapped to a set of the-
saurus’ terms, when the concept lattice is constructed, every node (concept) in
the lattice represents a set of objects which share the same thesaurus’ terms. As
there is a mapping between the original ontologies and the new one, the con-
cept lattice is an articulation of two ontologies, as defined by Kalfoglou and
Schorlemmer [10]. We call this articulation an upper-ontology.

In this paper, we adopt the definitions proposed by Kalfoglou and Schor-
lemmer [10] for mapping, articulation, merging, and alignment of ontologies.
In the ontology mapping, the vocabularies and axioms of ontologies A and B
are put in correspondence (please, see Fig. 1(a)), in such a way as to preserve
both the mathematical structure (e.g. partial ordering of elements) and ontolog-
ical axioms. Ontology alignment is a pair of ontological mappings M1 and M2

(please, see Fig. 1(b)) between an intermediate ontology, called articulation
of two ontologies, and the source ontologies. This articulation of ontologies is
represented in this work by the upper-ontology.

In another work [11], we explained how the join and meet operations over
the lattice could be used to process user queries in the form of a set of terms and
AND/OR connectors. As Chaudron observed in [12], the concept lattice corre-
sponds to a zero order logical language. This logical language arises naturally
from Galois Connection among subsets of objects and attributes.

3 The entity which the symbol refers to.
4 This definition is essentially pragmatic, a reduction of the original Aristotelian idea,

which dates back to ancient Greece, more than 2,300 years ago.

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 213

Ontology A Ontology B Articulation

Ontology A

Ontology B

Mapping Mappings

(a) (b)

M

M

M

1

2

Fig. 1. (a) ontological mapping between Ontologies A and B; (b) Ontologies A
and B are aligned with the Articulation Ontology

We also developed [13] a similarity measure based on Tversky’s Model of
Similarity [14]. Since the assessment of similarity requires the establishment of a
common basis over which the judgment is realized, we used the concept lattice
as a basis. The concept lattice is a rich structure from the point of view of the
amount of information that it provides. Firstly, lattices are based on Powersets of
a POSET. Secondly, because the lattice generated by FCA is a complete lattice,
and complete lattices have, by definition, least upper bound (or supremum)
and greatest lower bound (or infimum) for every pair of elements. This en-
ables us to evaluate which concept subsumes other concepts juxtaposed in the
hierarchy provided by the thesaurus.

As we would like to have a structural measure, not one which simply counts
the number of common attributes, we selected the meet-irreducible elements
of the lattice as a basis for our structural measure. An element is called join-
irreducible if it cannot be written as a join of other elements. Similarly, an
element is meet-irreducible if it cannot be written as a meet of other ele-
ments. There is an easy way to visually identify these elements in the lattice:
join-irreducible elements are linked downwards by just one edge, whereas meet-
irreducible are linked upwards by just one edge. The nodes marked in Fig. 2
correspond to meet-irreducible elements.

In this article, we apply the alignment method proposed in [7, 13] to ontolo-
gies developed for a completely different domain. This is intented as an indication
that the method can be applied to any knowledge domain, although we do not
prove it. We also propose a new form of visualization for the concept lattice.
This new visualization is based on a special spanning tree for the lattice using
the irreducible elements, which is rendered through a hyperbolic tree.

The remainder of the paper is as follows. In the next section, related work on
ontology merging, similarity measures and concept lattice visualization is pre-
sented. Then, for sake of completeness, we repeat the main parts of the formalism
presented in [7, 11, 13], associated with Formal Concept Analysis and Lattice
Theory, used in the construction of the alignment method. A similarity measure
is used in association with the alignment to evaluate the similarity between con-

214 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

Fig. 2. Meet-irreducible (•) and join-irreducible (�) elements in a lattice

cepts in different ontologies, in the subsequent section. Finally, the visualization
technique is proposed and conclusions are drawn.

2 Related Work

Ontology Merging and Alignment: The design and integration of ontologies
have been addressed by many researchers [15, 16, 17]. They use heuristic rules to
find appropriate matches among nodes in corresponding source ontologies. Al-
though they have powerful features to support the user in the task of finding the
best match for a given node, there still remains a lot of work that the user must
carry out in order to produce a merged ontology. Kalfoglou and Schorlemmer [10]
provide an excellent review on the subject. One of their conclusions is that the
process of producing a fully automated method for ontology mapping has not
been achieved by any of the proposed methods. Moreover, full automation of the
actual mapping methods would lead to combinatorial explosion.

Schema Integration: Rahm and Bernstein [18] defined in their review on
the subject that, database schemas are composed of elements connected by some
structure. The choice of the elements and the structure of a schema depends on
the particular representation chosen: objects, inheritance mechanisms, pointers
and interfaces in OO models; entities and relationships in ER models; elements
and ID references in XML; and nodes and edges in graphs. Several of these
elements are also present in the definition of ontologies and, for this reason, some
authors tend to see ontology merge and alignment simply as schema matching.
However, as pointed out in [19] there are many differences between the two
approaches. Nevertheless, these approaches share the majority of the techniques.
For instance, in [20], Description Logics is used to formalize an enhanced ER
model, and linguistic analysis is used to compare attributes existing in different
models.

Information Integration: There is a large number of initiatives describing
the use of ontologies in integration of information [21]. OBSERVER system [22],
for example, explores syntactic relations among elements in ontologies (formal-

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 215

ized in Description Logics) to translate a query across multiple related ontologies.
Our approach differs from the syntactic ones because the alignment of ontologies
anchored in a thesaurus provides a structural rather than syntactical comparison
between ontologies (details in Section 5).

Ontology Merging and FCA: Formal Concept Analysis has been applied
to a number of domains, including ontology merging [9]. The FCA-Merge method
uses a set of documents related to the two ontologies to be merged and processes
them through natural language processing techniques, producing a pruned con-
cept lattice. That lattice is then used for the generation of the final merged
ontology. In our approach, the documents contained in the source ontologies are
not re-processed to find their best classification in the aligned ontology. As of
their original classification, they were already linked to the appropriate terms
in the thesaurus and were associated with the nodes in the corresponding ontol-
ogy [23].

FCA and Thesaurus: The formalization of botanical taxonomies with For-
mal Concept Analysis was studied in [24]. Another work associating thesaurus
and FCA was reported in [25]. In this work, the association was structured to or-
ganize medical discharge summaries. None of the approaches, however, addressed
the alignment of ontologies anchored on a thesaurus.

In our work [7], instead of merging the common corpus between the two
ontologies to be merged (as in FCA-Merge), every term (nodes organized in a
part-of relation) in the source ontologies is mapped into a term in an upper-
ontology constructed using a thesaurus.

Similarity Measures and Ontologies: Rodriguez and Egenhofer [5] pro-
posed an assessment of semantic similarity among entity classes in different on-
tologies. Their matching process is based on Tversky’s measure of similarity [14]
and uses synonym sets, distinguishing features and semantic relations of en-
tity classes. Doan et al. [26, 4] proposed the application of machine learning
techniques to create, semi-automatically, mappings between ontologies. In their
model, they used a probabilistic distribution-based similarity measure called
Jaccard coefficient. Like these approaches, our work deals with similarity mea-
sures to evaluate appropriate matches. However, our approach is different in that
we are using a thesaurus to provide a common partial ordering over which the
matches are evaluated, instead of a plain hierarchy of classes. In this work, we
assume that the instances have already been classified in the thesaurus.

Visualization of Concept Lattices: FCA’s concept lattice becomes rapidly
cluttered as the number of objects and attributes increases. The solutions pro-
posed so far are directed mainly at reduction of the lattice to a manageable
size. The first approach, proposed in [9], is the use of conceptual scales in which
subsets of the attributes are analysed separately. This approach is used in the
Toscana System [27, 28]. Another approach is to apply data mining techniques
and display only concepts having at least a minimum level of support. Support
is introduced in the closure operator, producing the so called iceberg concept
lattices [29]. With this technique, only the top-most part of the lattice is shown.
It is a very interesting approach because it reduces the size of the lattice for very

216 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

large databases. Our approach differs in that it is based on a spanning tree for
the lattice. However, as the spanning tree has the same number of concepts of
the originating lattice, its size is also very large for large lattices. This difficulty
is overcome with the hyperbolic visualization, discussed below.

Graph Visualization: the problem of lattice visualization is a special case
of the general problem of graph visualization. In an excellent review on the sub-
ject focusing specifically on visualization applied to navigation in information,
Hernan et al. [30] discuss the problems related to the size of the graph. Yet,
they point out that the usability problem becomes an issue even when we are
still able to identify all the nodes and edges displayed. Some of the techniques
used to manage the size problem are distortion, such as fisheye, which enlarges
the area being focused [31], and hyperbolic layout [32, 33], which distorts the
spanning tree of a graph, increasing the focusing area, similar to what occurs
with fisheye distortion. In our paper, we will adopt the hyperbolic layout. Please
refer to Section 8 for details.

3 Overview of the Proposed Solution

The problem: given two ontologies developed for closely related domains, we
would like to compare how similar they are, and visualize both of them in a
common graphical structure. The graphical structure must support ontolo-
gies with hundreds of nodes, at the very least.

The background: in [7, 11, 13] we had ontologies designed for sub-domains of
the agricultural domain. We developed an alignment method anchored in a
thesaurus (Agrovoc), discussed how the lattice could be used as a unified
view by a search engine, and designed similarity measures to identify cross-
ontology related concepts;

The structure used in the analysis: we established as a requirement that
the formalism employed in the alignment provided a good structural view of
both ontologies, so that their commonalities and differences would be clearly
visible, even without any mathematical similarity measure. It turned out that
Lattice Theory, the basis of Formal Concept Analysis 5 (FCA) provided such
a structural perspective. We had only to select the appropriate elements to
display in the lattice;

Thesaurus terms as elements of the structure: the set of elements repre-
sents the characteristics of the objects that we are analysing. They can be
either objects from the original ontologies, terms obtained from statistical
analysis, or terms from a set of predefined elements, like a thesaurus, for
example. Since all the information in the system had been catalogued using,
among other information, terms contained in a thesaurus (Agrovoc [34]),
and a thesaurus is a Partial Ordered Set(POSET) [27], we decided to align
the ontologies using a thesaurus;

Similarity between Concepts: the lattice showing the result of the align-
ment gives some clues about which concepts are closer to or farther from

5 Please see Section 5 for FCA applied to alignment of ontologies.

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 217

some given concept. However, as we would like to express mathematically
this degree of sharing, we created a structural similarity measure to evaluate
this precise degree of sharing;

The remaining problems: in our previous papers, the only way to compare
graphically the objects and visualize the whole structure of the alignment was
by inspecting the concept lattice. This task turned out to be hard whenever
the lattice had more than fifty nodes. Here, we develop a visualization aid
to support this analysis.

The first part of this paper (Sections 5 and 6) is dedicated to the defini-
tion of the common basis over which we perform a structural analysis, viz. the
Galois Lattice obtained by the application of Formal Concept Analysis to the
set of objects. In the second part (Sections 7 and 8), this analysis is used in
the construction of a structural similarity measure, and in the development of a
heuristic method for the visualization of the lattice.

4 A Motivating Example

In [7, 11, 13] we used ontologies designed for sub-domains of the agricultural
domain, namely Beef Cattle and Dairy Cattle. For alignment purposes, we used
a thesaurus that is widely known in the agricultural domain, the Agrovoc the-
saurus. Here, the example that we are providing is more general, and has been
proposed by Mitra et al. [35] for articulation of ontologies (please see Fig. 3),
and later by Compatangelo et al. [20] for schema integration. Since it has been
used in different (but correlated) approaches, we thought that it would provide
a good indication of the generality of our proposed method.

Transportation

BuyerWeight CargoCarrier Price

Vehicle

Truck

Transportation

Owner Driver Model

Cars Trucks

Price

attribute

subclassFactoryCarrier

Goods

Fig. 3. Motivating example: fragments of ontologies carrier and factory (adapted
from [35].)

It is a very simple simple fragment of two ontologies: carrier and factory.
These ontologies define transportation from two different points of view: the one
of those who use vehicles to transport goods, and the other of a manufacturer.
In [35] these ontologies were aligned using a graph-oriented model, and in [20]
they were aligned using Description Logics and linguistic analysis.

218 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

5 Formal Concept Analysis and Lattice Theory

Since it was first proposed in the early 1980’s, Formal Concept Analysis (FCA),
or Galois Lattice [8, 9], has been applied to many domains: from structuring
information systems [27], to knowledge discovery in databases [29], political sci-
ence, understanding building regulations and psychology [25]. FCA is a method
for data analysis based on Lattice Theory and Propositional Calculus. It is es-
pecially suitable for exploration of symbolic knowledge (concepts) contained in
a formal context, such as a corpus, a database, or an ontology.

Due to space limitations, we will avoid giving a detailed explanation of
the FCA theoretical background. Please refer to [8, 9] for further information.
Rather, we will include here only the essential definitions and theorems necessary
for the understanding of this paper.

The concept lattice, resulting from the application of FCA to a matrix con-
taining a set of objects and their associated attributes, structures the abstraction
of concepts present in human thought in an elegant way. The concepts are classes
of things having certain attributes. If a concept A is above a concept B in the
lattice, and the two are linked, then concept A is more general than B and,
as such, it inherits part of attributes of B. As a consequence, we can say that
whenever B happens, A is also happening, which suggests a logical entailment.
In the lattice, we cannot only see a hierarchy of concepts, but also the whole set
of binary relations present among concepts. That makes the visual analysis of
data superior to the one we can obtain by looking at a hierarchy of classes.

Definition 1 (Formal Concept). Let O be a set of objects, A be a set of
attributes and R ⊆ O × A, a binary relation between O and A. A pair (E, I),
with E ⊆ O, I ⊆ A is a formal concept, if, and only if, E′ = I and I ′ = E,
where:

E′ = {a ∈ A | ∀o ∈ E : (o, a) ∈ R} (1)
I ′ = {o ∈ O | ∀a ∈ I : (o, a) ∈ R} (2)

The set of all formal concepts is called formal context, denoted by (O, A, R).

E is called the extent and I the intent of the formal concept (E, I). It can
be seen from the definition above that E is the set of all objects that share the
same attributes in I. Similarly, I is the set of all attributes that are shared by
the same objects in E. The definition of E′ and I ′, together with the restriction
that I ′ = E and E′ = I, satisfy the necessary and sufficient conditions to
provide a Galois Connection between E and I. These equations also establish
a subconcept-superconcept relation, such that:

(E1, I1) ≤ (E2, I2) ⇔ E1 ⊆ E2 (3)
(E1, I1) ≤ (E2, I2) ⇔ I1 ⊇ I2 (4)

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 219

This partial ordering results in a complete ordering among all elements of the
formal context (O, A, R), with corresponding infimum (or meet) and supremum
(or join). Moreover, this ordered set is a lattice, called concept lattice [9].

Theorem 1 (The basic theorem on concept lattices (adapted from [9])).
The concept lattice B(O, A, R) is a complete lattice in which infimum and supre-
mum are given by:

∨
j∈J

(Ej , Ij) = ((
⋃
j∈J

Ej)′′,
⋂
j∈J

Ij) (5)

∧
j∈J

(Ej , Ij) = (
⋂
j∈J

Ej , (
⋃
j∈J

Ij)′′) (6)

Where J is the set of all elements in the lattice.

6 Associating Thesaurus and FCA to Construct the
Alignment

To make the paper self-contained, we repeat here the main definitions and theo-
rems proposed and proved in [7]. For further details, please refer to that paper.

After we selected FCA as the structural basis over which the assessment
of similarity is going to be performed, we had now to embed appropriately the
thesaurus terms as elements in the FCA formalism. The thesaurus, together with
FCA, provides a unified view of the two source ontologies anchored in a common
partial ordering.

It is interesting to note that, normally, this special procedure is not necessary
in standard FCA. This is particularly so if the set of elements used as attributes
is flat, i.e. does not contain any ordering among its elements, in which case
Theorem 2 and Corollary 1 are not necessary. In our case, however, this ordering
is essential because we use it to evaluate the most specific concept that subsumes
any two given concepts.

The definition of thesaurus used in this paper is that, a thesaurus 〈T,�〉
is a set of terms ti ∈ T organized in accordance with a partial order �. It
is organized into many sub-trees. Each sub-tree contains the term’s definition,
its hypernyms and hyponyms. Usually, thesauri also contain related terms and
use-for/used-for relations, which establish that instead of using a term with a
certain name, one should use another one considered standard. However, we do
not explore this part in our work because we are only interested in the partial
ordering of terms.

The embedding of the thesaurus in the lattice is realized in the following way:
initially, each term tI ∈ T is transformed into one attribute aI ∈ A of the formal
context (O, A, R). Then, the partial order � is guaranteed by requiring that the
inclusion of a term implies the inclusion of all of its predecessors (hypernyms).
This embedding is stated formally in Theorem 2.

220 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

Theorem 2. Let B(O, A, R) be a concept lattice, 〈T,�〉 a thesaurus of terms
T embedded in B, and (E1, I1) and (E2, I2) two formal concepts with (E1, I1) ≥
(E2, I2). If a1 ∈ I1, a2 ∈ I2 and a1 � a2, then a1 ∈ I2 holds.

Proof. From (4) above, (E1, I1) ≥ (E2, I2) ⇔ I2 ⊇ I1. Therefore, if a1 ∈ I1 and
a2 ∈ I2 and a1 � a2, then a1 ∈ I2�.

The equation a1 ∈ I2 in Theorem 2 states that either a1 and a2 are in the
same node of the lattice, or a1 must come from a node above. This result holds
even when three nodes are compared, as it can be seen in the following corollary.

Corollary 1. Let a1, a2 and a3 be attributes such that a1 ∈ I1, a2 ∈ I2, a3 ∈ I3.
If a1 � a2 and a1 � a3, then a1 ∈ (E2, I2) ∨ (E3, I3).

Proof. From Theorem1, (E2, I2) ∨ (E3, I3) = ((E2 ∪ E3)′′, (I2 ∩ I3)). If a1 ∈ I2

and a1 ∈ I3, then a1 ∈ (I2 ∩ I3).�

The preceding corollary shows that if the term a1 is a common attribute
between two nodes and it is a hypernym of terms a2 and a3 in the thesaurus
ordering, then it is an element of the least upper bound (or join) of these nodes.
This means that the in the lattice a1 is in a position nearer to the top than a2

and a3.
Having established the common ordering through which ontological similar-

ities and differences can be observed, the articulation of two ontologies, which
we call upper-ontology of ontologies can now be defined:

Definition 2. Let O1, O2, A1, A2 and R1, R2 be the set of objects, attributes and
relations of ontologies O1 and O2, respectively. The formal context representing
the upper-ontology is defined by OU = ((O1 ∪ O2), (A1 ∪ A2), (R1 ∪ R2)).

6.1 Example Continued

Before we can perform the alignment, it is necessary to associate thesaurus
terms with the objects encountered in the ontologies we would like to align.
For the agricultural domain, we took advantage of the fact all objects had been
previously classified using Agrovoc. For this example, however, this association
was manually done, selecting terms from WordNet c© thesaurus 6, and it is shown
in Table 1. Another way of performing this classification is by using machine
learning techniques, as described in [26, 4].

Whenever a term was selected from WordNet c© we identified the ordering all
the way up to the root node in this thesaurus, in such a way to satisfy Theorem 2.
The partially ordered set identified is shown in Figure 4.

Table 1 shows the formal context aligning part of the ontologies Carrier and
Factory. The Objects correspond to rows in the table and Attributes, to columns.
Whenever there is a relation between an object and an attribute, the intersection
is marked in the table with an X. Objects relating to Factory ontology are marked
with an A before the name, and to Carrier ontology with a B.
6 WordNet: a lexical database for the English language. Cognitive Science Laboratory,

Princeton University. URL http://www.cogsci.princeton.edu/˜wn/

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 221

person

operator

priceartifact

transportgoods

vehicle

motor vehicle

car truck

owner

consumer
driver

buyer

Fig. 4. Partially ordered set selected from WordNet c© thesaurus regarding the
carrier-factory alignment example.

t
r
a
n
s
p
o
r
t
→
a
r
t
i
f
a
c
t

d
r
i
v
e
r
→
p
e
r
s
o
n

p
e
r
s
o
n

v
e
h
i
c
l
e
→
t
r
a
n
s
p
o
r
t

t
r
u
c
k
→
m
o
t
o
r
V
e
h
i
c
l
e

c
a
r
→
m
o
t
o
r
V
e
h
i
c
l
e

m
o
t
o
r
V
e
h
i
c
l
e
→
v
e
h
i
c
l
e

b
u
y
e
r
→
p
e
r
s
o
n

o
w
n
e
r
→
p
e
r
s
o
n

p
r
i
c
e

g
o
o
d
s
→
a
r
t
i
f
a
c
t

a
r
t
i
f
a
c
t

A transportation X X
A vehicle X X X X X X
A buyer X X
A price X
A truck X X X X X
A cargo carrier X X X X X
A goods X X X X X X
B transport X X
B cars X X X X X X X X
B trucks X X X X X X X
B driver X X
B owner X X
B price X

Table 1. Alignment formal context for Factory (A) and Carrier (B) Ontologies.

The Hasse diagram corresponding to the formal context displayed in Table 1
is shown in Fig. 5. The names near each node correspond to WordNet thesaurus’

222 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

terms and the names in boxes are objects of ontologies A and B, respectively. The
objects positioned at a certain node of the diagram inherit all the attributes of
the nodes in the path from it to the top node. Thus object A CargoCarrier, for
example, is linked in its context to truck, motorVehicle, vehicle, transport
and artifact.

To illustrate how the thesaurus was correctly embedded in the lattice (as
predicted in Theorem 2), consider the sequence:

truck→motorVehicle→transport→artifact
The term motorVehicle in Fig. 5 is placed in a concept above the one cor-

responding to truck, vehicle is above motorVehicle, and transport is above
vehicle. The same happens with person and its specializations buyer, driver
and owner.

B driverB ownerA buyer

B price

A price

A cargo carrier

A truck

A vehicle B cars

A transportation

B transportation

artifact

A goods
B trucks

truck

price transport3

4 5 6 7

8 9

11

12 13

16

0

21

10

14 15car

ownerbuyer driver vehicle

motorVehicle

goods

person

Fig. 5. Hasse Diagram corresponding to the formal context of Table 1.

One indication that two objects of source ontologies are close to each other
is that they share most of the same attributes, i.e. the closer their intent, the
closer the objects are regarding the concepts they represent. A transportation
and B transportation could be merged, the same happening to A price and
B price.

The objects A truck and B truck are very close to each other. They share
the attributes truck, motorVehicle, vehicle, transport and artifact, but B
trucks has two more attributes: driver and person.

The operation of meet (∧) and join (∨) allows us to evaluate the exact degree
of sharing, in terms of attributes, that any two objects have. For example, (B

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 223

cars ∨ B trucks)7 gives as result the node above their intersection upwards,
which is identified by (∨) (see Fig. 5). These two objects share many attributes,
i.e. motorVehicle, vehicle, transport, artifact, driver and person.

However, there are attributes which belong only to one of the objects, like
truck in the case of B trucks, and owner in the case of B cars. These com-
monalities and differences motivated us to introduce measures of similarity to
express mathematically the precise degree of sharing.

This does not mean, as one might think however, that the alignment only
exists when we have such measures. The alignment was concluded when we
generated the concept lattice, because, it represents the articulation of the
two ontologies, as stated in Section 2. It is a single structure containing objects
of two (or more) ontologies, and its formal context realizes the mappings M1

and M2 linking the objects in the formal context with original ones in the source
ontologies.

7 Using the Alignment to Evaluate Similarity Between
Concepts

The assessment of similarity occupies a central role in the cognition process [36,
37]. For example, we cannot say much about trx5226 unless we are told that it
is a truck. Once we know this, we can make inferences like: it will serve as means
of transportation, we can use it to deliver goods, and so on. In the inference
process, we are using our knowledge of trucks in general, the purpose they are
used for, and making a similarity assessment between this kind of truck and
other vehicles. During inference and judgment of similarity, what we are trying
to do is to categorize, as precisely as possible, a recently known concept, viz.
trx5226.

The relation between categorization and knowledge is bidirectional [38].
Knowing that trx5226 shares some properties with other trucks enables us to
categorize it as a truck. Conversely, knowing that trx5226 is a truck, enables
us to infer that it can be used to transport goods, like other trucks. Therefore,
when we use a similarity measure, we expect it to support the inference process
as well.

7.1 Models of Similarity

There are many models of similarity. They can be broadly divided into two main
groups [39]: continuous metric space models and set-theoretic matching models.
One example of the former is the Shepard Model, which is based on probabilistic
distributions. The latter group, which we will be using in our work, can be fur-
ther subdivided into geometric, transformational, featural and alignment-based
7 We are abusing of the notation here. The correct would be (13 ∨ 14), because these

are the identifiers of the nodes, and the operation ∨ is defined only for lattice nodes.
However, we do so because (B cars ∨ B trucks) will not require the reader to go
to the lattice and find the corresponding objects.

224 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

models. Geometric models are based on distances (calculated in n-dimensional
space) between vectors representing the characteristics of an entity, viz. every
attribute is marked as zero/one in that vector indicating its presence/absence of
that characteristic. Transformational models are based on the number of trans-
formations required to make two entities equal, viz. the DNA sequence ACCG
requires two transformations to become ACGA. Featural models, consider the
sets of common as opposed to distinctive features. One example is Tversky’s
ratio model [14], given in equation 7, where A and B are the set of features of a
and b, respectively, f denotes a measure over the feature sets, (A−B) represents
the set of features present in A but not in B and (B − A), those present in B
but not in A.

S(a, b) =
f(A ∩ B)

f(A ∩ B) + αf(A − B) + βf(B − A)
(7)

The parameters α and β were introduced in the model because Tversky
observed in psychological experimentation that the assessment of similarity is
not symmetrical. One example usually cited is that people consider North Korea
to be more similar to China than China to North Korea.

In alignment-based models [40], structural parts that are placed in correspon-
dence influence more than those parts which cannot be aligned. For example, if
an entire sub-tree of a tree is identical to a sub-tree in another hierarchy, we can
say that they are structurally aligned. Gentner and Markman [40] argue that
because people focus on alignable differences rather than on nonalignable ones,
the former has a greater impact on similarity assessment. As a result, people
have found it easier to enumerate differences between motel and hotel rather
than between magazine and kitten. This may also explain why we find aliens
more realistic in science fiction movies if they have head, two arms, two legs,
mouth and teeth, all of them structurally positioned in correspondence to what
we are accustomed to in intelligent beings, viz. the mouth is located in the head
and the head is in the upper part of the alien. We make the correspondence one
to one (structurally) and state that the alien has a double set of teeth instead
one, has a brain larger than ours, and so on.

7.2 The Structural Similarity Measure

One important fact about Concept Lattices (proved in Theorem1) is that the
infimum (meet) and supremum (join) between every pair of objects is defined in
terms of the usual set operators (∩, ∪, ⊂, ⊃). Moreover, the supremum of two
elements serves as a basis of comparison between them because it contains all the
common attributes of these two elements. For example, in Fig. 5, the objects A
vehicle and B trucks have in common the attributes (join) person, vehicle,
transport and artifact, because the concept corresponding the supremum of
the formers, identified as (∨), has these attributes as its intents.

However, as we would like to have a true alignment measure, it should not be
based on a common set of attributes, but rather on a common set of structural

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 225

elements of the lattice. Yet, those structural elements really exist. They are called
join-irreducible and infimum-irreducible elements, defined in Section 1.

Meet-irreducible elements play an important role in our similarity measure.
As we commented in Section 6.1, attributes in the lattice are introduced from the
top to the bottom. Every meet-irreducible element corresponds to one new at-
tribute being added, although the opposite is not necessarily true. In Fig. 5, the
node 9 is meet-irreducible and introduces the thesaurus attribute motorVehicle,
whereas the node 13 introduces the attribute car but is not meet-irreducible.
That happens because car occurs only in conjunction with the attributes onwner,
driver and motorVehicle. It does not occur in isolation. For this reason, car
does not add any relevant information to the lattice and could, therefore, be
eliminated without any loss of structural information. The lattice could be com-
pletely reconstructed without the presence of the car attribute. That is why
meet-irreducible elements are so important from the point of view of attributes,
viz. we can identify which attributes are really structurally necessary.

In [13], we developed a structural similarity measure using the meet-irre-
ducible elements of the concept lattice. Tversky’s similarity model was used
as a basis for this measure, because of its conformance with an information-
theoretic definition of similarity [41], its application in Computer Science [5] and
its psychological experimental confirmation. This similarity measure is defined
in Eq. 8.

S(a, b) =
|(a ∨ b)∧|

|(a ∨ b)∧| + α|(a − b)∧| + (1 − α)|(b − a)∧| (8)

In (8), the set of common features is given by the set of common meet-
irreducible elements. Using lattice operations (join (∨) and meet (∧)), the set
of common meet-irreducible elements is given by the meet-irreducible elements
which are intent of a ∨ b. This set is represented as (a ∨ b)∧.

As set of distinctive features, we considered both the set of meet-irreducible
elements which are in a, but not in b, represented as (a − b)∧, and the set of
meet-irreducible elements which are in b, but not in a, represented as (b − a)∧.

Instead of varying the parameter α in accordance with the relative depths
of the nodes, as in [5], we left α fixed in 0.5. That means that we designed our
measure as a symmetrical one, i.e. a is similar to b in the same measure as b is
similar to a. The example below show the calculation of the similarity measure
between the concepts a = 12 and b = 14, whose attached objects in Fig. 5 are A
vehicle and B trucks, respectively.

(a ∨ b)∧ = {2, 3, 7} (9)
(a − b)∧ = {1, 4} (10)
(b − a)∧ = {6, 9, 11} (11)

S(a, b) =
3

3 + 0.5 ∗ 2 + 0.5 ∗ 3
= 0.545 (12)

226 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

Table 2 shows the result of the similarity measure between all concepts in
concept lattice of Fig. 5. It is interesting to note that, as the similarity measure
considers nodes of the lattice (the meet-irreducible ones), our measure actually
measures the similarity between concepts, rather than between objects. This
means that the similarity between B trucks and A truck is the same as between
B trucks and A cargo carrier, because A cargo carrier and A truck are
associated with the same node in the lattice.

Another point that is worth mentioning is that we are counting the number
of meet-irreducible elements of the lattice and not the number of attributes. As
a consequence, the node containing attributes transport and artifact count
as one node only.

node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 0 0 0 0 0 0 0 0 0 0.29 0 0 0
2 1 0 0.67 0.67 0.67 0 0.5 0 0.33 0 0.33 0.29 0.29 0
3 1 0 0 0 0.67 0.5 0.5 0.33 0.4 0.33 0.29 0.29 0.33
4 1 0.5 0.5 0 0.4 0 0.29 0 0.57 0.25 0.25 0
5 1 0.5 0 0.4 0 0.29 0 0.29 0.5 0.25 0
6 1 0 0.4 0 0.57 0 0.29 0.5 0.5 0
7 1 0.8 0.8 0.57 0.67 0.57 0.5 0.5 0.57
8 1 0.67 0.75 0.57 0.75 0.67 0.67 0.5
9 1 0.75 0.86 0.44 0.67 0.67 0.75
10 1 0.67 0.6 0.91 0.91 0.6
11 1 0.44 0.6 0.8 0.89
12 1 0.54 0.54 0.4
13 1 0.83 0.54
14 1 0.72
15 1

Table 2. Similarity measure applied to formal concept lattice of Fig 5.

The dashed lines in Fig. 6 shows some8 of the relations between concepts
for which S(a, b) > 0.5. Besides the example above, there are also similarities
identified between A truck and B cars, A vehicle and B cars, A goods and
B trucks, and so on. This threshold establishes the degree of precision with
which the alignment is being considered. Whenever we increase the threshold
the number of identified matches decrease.

The last association, between A goods and B trucks may seem strange
at first sight, because goods has no common ancestor with trucks in the the-
saurus hierarchy. However, what is being identified here is the relationship be-
tween these two concepts. Goods, in ontology A exists in the association with
A CargoCarrier, because the factory is concerned about who is going to trans-

8 We did not plot the complete results of Tab. 2 because this would make the diagram
difficult to read.

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 227

B driverB ownerA buyer

B price

A price

A cargo carrier

A truck

A vehicle B cars

A transportation

B transportation

artifact

A goods
B trucks

truck

price transport3

4 5 6 7

8 9

11

12 13

16

0

21

10

14 15car

ownerbuyer driver vehicle

motorVehicle

goods

person

Fig. 6. Hasse Diagram displaying the meet-irreducible elements (marked with
black dots) and some of the aligned nodes (dashed lines) sharing more than 50%
of similarity.

port its goods. One advantage of FCA is that it allows one to break the whole
hierarchy of sub-classes and reassemble it in a different way, where the relations
are stronger. This can partially explain why it has been successful in software
reengineering [42].

If we compare the results given by our approach with those obtained by [35]
and [20], we can see that all the matches found in these papers have also been
found here. For instance, A vehicle, B trucks and B cars have been asso-
ciated with a common entity called CarsTrucks in [35], and Car or Truck
in [20]. A truck, A cargoCarrier and B trucks have been associated with
VehicleCargoCarrier in [35]. CarsTrucks corresponds to concept 7 (vehicle)
in the lattice displayed in Fig. 6, and VehicleCargoCarrier corresponds to con-
cept 11. Below concept 7 there are all objects that relate to vehicles in general,
whereas below concept 11 there are only those related to cargo vehicles.

A buyer, B owner and B driver are all associated with Person in [35],
whereas A buyer and B owner are associated with Owner in [20]. In our ap-
proach, A buyer has only a similarity of 50% with A owner, and this comes
from the fact that both are specializations of person. This occurs because in
WordNet, the buyer is not viewed as an owner (please see Figure 4), but rather
as a consumer.

228 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

A price and B price have been aligned to price both here and in [35], and A
transportation and B transportation have been aligned to transportation
here and in [35].

8 Visualization Through Hyperbolic Trees

An important limitation of FCA is the visualization problem. As the lattice grows
to more than fifty nodes, we are not able to visualize it comfortably. Ganter and
Wille [9] suggested the use of conceptual scales to reduce the size of the lattice
and show only a slice adequate for the analysis. A scale consists of a subset of
the set of attributes and values for these attributes. Because it selects columns
in the formal context matrix, this approach is often referred to as vertical [29].

Another way of reducing the size of the lattice is by producing an iceberg
concept lattice [29]. This approach is called horizontal, because it uses Data
Mining techniques and prunes the lattice below a certain threshold (the support
level in Data Mining). That leaves us only with the upper part of the lattice, in
this case, the part considered most relevant for the data analysis.

The approach we propose in this paper differs from these two in that we make
a case not to reduce the lattice, but instead, we seek a visualization method that
supports the data analysis that we perform over the entire lattice.

Lattice visualization is a special case of graph visualization. An excellent sur-
vey of graph visualization is presented in [30]. This survey is especially important
for our work because it focuses on graph visualization from the perspective of
information visualization. It discusses several methods and techniques used to
deal with usability and discernability when graphs become very large. One of
these techniques is fisheye distortion, which works like a lens, augmenting a cer-
tain region of the graph [31]. However, simply looking at something in detail
does not eliminate all the existing crossings in the graph. Hernan et al. [30] also
comment that reducing the crossings is a very important aesthetic factor.

The crossings can be eliminated by laying out a spanning tree for the graph.
It is well known [30] that tree layout algorithms are simpler to implement, and
because of their lower computational complexity, they also perform very well
in real time. This is the approach that we have selected for our visualization
heuristics.

Naturally, as we wish to display the totality of the nodes, the tree size has to
be managed somehow. One alternative is to use Cone Trees, because they expand
subtrees in 3D space, allowing for good management of the space available.
Another technique is hyperbolic layout [32, 33], which distorts the spanning
tree of a graph, increasing the focusing area, similar to what occurs with fisheye
distortion. One point in favor of hyperbolic layout is that it eliminates the clutter
present in Cone Trees. Due to its characteristics and ease of use, we adopted
hyperbolic layout in our research.

After the selection of the visualization form, there still remains the problem
of finding an appropriate spanning tree. The trivial solution would be the appli-
cation depth-first or breadth-first strategy and linking all the nodes to the root

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 229

node. However, as we seek to propose a visual tool that supports data analysis,
there are some additional requirements that our spanning tree and associated
tool must satisfy:

1. When visiting a lattice node (concept), we often seek to identify its intent
(attributes added up to that node) and its extent (objects that has these
attributes), as defined in Theorem 1;

2. The meet operations in the lattice allows the identification of objects having
certain characteristics. For example, in Fig. 5, we might want to know which
objects relate person and vehicle. There are three objects that satisfy this
query, namely A vehicle, B cars and B trucks;

3. There is also the inverse query (join), i.e. given a set of objects, which at-
tributes are shared by them. For example, B cars and A cargo carrier
have in common the attributes truck, motorVehicle, vehicle, transport
and artifact.

These requirements demand more than a simple spanning tree. The second
and third items require that we be able to solve, in real time, AND/OR opera-
tions over the lattice, and to find the corresponding concept. Nevertheless, it is
intrinsic to the nature of transversalization that whenever there is a meet, one
element stays in one sub-tree and the other in another sub-tree. Otherwise the
cycles would make the construction of the tree impossible . For example, we may
connect the node 10 to the node 6,8 and 9 in Fig. 5. If we connect to 8, we loose
the meets (6 ∧ 8), (8 ∧ 9) and (6 ∧ 9).

As well, there are also problems regarding the join operation. Given that a
tree naturally joins its branches upwards, the join operation can be satisfied to
a certain extent, but not completely, because when we eliminate the cycles, we
also eliminate some of the joins. If we connect 9 and 10 in the example, we have
the join (10 ∨ 11), but we loose the join (12 ∨ 10).

As the joins and meets are combinations of some structural elements, the
best scenario that we can expect is to have in the same branch as many struc-
tural elements as possible. As discussed in Section 7, every new meet-irreducible
element corresponds to a new attribute being added. It means that if we align on
the same path as many meet-irreducible elements as possible, the corresponding
tree will have branches with a high cohesion in terms of intent. This proximity
in terms of intent is determined by our similarity measure, as explained in the
previous section. So, we will use this similarity measure as an attraction force
to determine which node a certain node should be connected to.

Figure 7 shows the spanning tree obtained from the application of the results
in Table 2. In some cases, the attraction forces determined by the similarity
measure between a node and two or more of its parents are the same. When this
happens, the node could be connected to more than one parent. For example,
we could connect either nodes 8 and 10, or 9 and 10 (please see Table 2). In
this case, we based our decision on the number of alignable meet-irreducible
elements. As node 9 has tree meet-irreducible elements in the way up to the top
node, and node 8 has only two, we connect node 10 to node 9.

230 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

B driverB ownerA buyer

B price

A price

A cargo carrier

A truck

A vehicle B cars

A transportation

B transportation

artifact

A goods
B trucks

truck

price transport3

4 5 6 7

8 9

11

12 13

0

21

10

14 15car

ownerbuyer driver vehicle

motorVehicle

goods

person

Fig. 7. Spanning tree for the lattice of the example, determined using the simi-
larity measure.

The hyperbolic tree corresponding to the spanning tree in Fig. 7 is shown in
Fig. 8. The original lattice nodes correspond to the inner nodes, every leaf node
represents an object, and the nodes indicated with arrows9 are the broken links.
The broken links serve as an indication to the reader that there was another
alternative way down the lattice but that was broken during the construction
of the spanning tree. The broken link 10 coming out of node 8, for example, is
indicating that there is a link between 8 and 10, but the node 10 and its successors
were drawn elsewhere. Actually, it is linked to node motorVehicle. Every node
has an associated number, but to enable the user to easily identify the meet-
irreducible elements, we put the names of the associated attributes instead of
the number in these nodes. Hence, the label motorVehicle is displayed instead
of the label “node 9”.

The small window on the upper left corner is used for searching in the lattice.
If we type “price”, it will mark all nodes containing words, either on its title or
on the associated data structure, beginning with the string “price”. This can
also be used to find a node label. For example, if we had found the node 10 and
we would like to find the actual node 10, we would have just to type “10” in the
small window and follow the paths leading to node 10. One of them would be
the actual node 10.

To solve the problem related to meets suppressed by the construction of the
spanning tree, the visualization tool was also designed to process AND queries.
With this feature, we are able to search for nodes having (truck ∧ goods).
Nevertheless, this is not enough to identify the meets correctly, because the

9 In the software tool, they are displayed in a different color

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 231

word truck, for example, may be used either as part of an object name or as an
attribute.

To eliminate this problem, every meet-irreducible element is associated with
a unique identifier, like #pc for price and #ve for vehicle. Moreover, when
constructing the hyperbolic tree, we attach the intent of every node to the node
itself. For example, if a node has price and vehicle it will have #pc and #ve
as value in its data structure. As a consequence, if we type #pc in the upper
left corner of Fig. 8 all the nodes that have price as intent will be highlighted
with a dot and the path up to those nodes will be drawn (dashed line shown in
Fig. 8). From the path marked in Fig. 8, we can see that there are three objects
that have #pc as attribute, namely B price, A price and A vehicle.

transport (tr) artifact (ar)

node 10

root node

price (pc)

vehicle (ve)

node 8

person (pn)

buyer (bu)

B transportation

A transportation

motorvehicle (mv)

node 12

A vehicle

B price

A price

owner (ow)

driver (dv)

node 12

Fig. 8. Hyperbolic tree for the lattice of the example.

Since the search routine is able to process AND sentences, we can, for exam-
ple, search for all nodes that satisfy (vehicle ∧ price). This is an interesting
meet that was separated by the spanning tree construction. When we type “#ve
& #pc”, we can find that the only node satisfying this condition is node 12 and
the associated object A vehicle. Figure 9 shows the result for this case. It is
represented by the dashed line from the root node up only to node 12, which is
the only one satisfying this conjunction.

232 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

transport (tr) artifact (ar)

node 10

root node

price (pc)

vehicle (ve)

node 8

person (pn)

buyer (bu)

B transportation

A transportation

motorvehicle (mv)

node 12

A vehicle

B price

A price

owner (ow)

driver (dv)

node 12

Fig. 9. Hyperbolic tree highlighting the nodes satisfying the condition: “#ve &
#pc”.

The heuristics for determining the spanning tree can be summarized as fol-
lows:

1. Determine the similarity measure between each pair of nodes in the Hasse
Diagram;

2. Starting from the bottom of the Hasse Diagram, which we call N-Level,
determine which parent each node from that level should be linked to;

3. If two parents have the same similarity value, select the one with the largest
number of meet-irreducible elements, counting from that node up to the top
node;

4. Repeat for the levels (N − 1), (N − 2), . . . , 1
5. Determine a unique identifier for each attribute that corresponds to a meet-

irreducible element;
6. Add to data structure associated to each node the identifiers of all attributes

which are part of the intent for this node;
7. Add to each node, all the objects directly linked to it.

One point that is worth mentioning is that we have used the hyperbolic tree
visualization for the analysis that we have performed in the concept lattice. How-
ever, we did not conduct any user tests to evaluate proposed solution. As pointed

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 233

out by Herman et al. [30], there is paucity of research addressing the problem
of user interface evaluation in this area. This is probably due to the need for
the application of both cognitive science and human factors in such evaluations.
These areas, however, have few findings that can be applied in practice.

We adopted a different approach: given that cluttering, edge crossing and dis-
cernability are important usability factors for information visualization, we have
proposed a solution that minimized those problems. Nevertheless, our heuristics
represent an application of Cognitive Science, in that it uses a similarity measure
developed from psychological studies.

9 Conclusion

This article presented a complete solution for the alignment of ontologies, com-
posed of structural alignment, evaluation of similarities between concepts and
visualization of the result.

The alignment method is based on Formal Concept Analysis, or Galois Lat-
tices, a data analysis technique grounded in Lattice Theory and Propositional
Calculus. Two alternatives were considered: (a) transform each ontology in a
concept lattice and merge them, and (b) align the ontologies with an upper-
ontology constructed using a thesaurus, namely Agrovoc. The latter option was
adopted.

The results showed that anchoring two ontologies in a common partial or-
dering provided by a lattice of terms (thesaurus) is an excellent analysis tool
for the structure of these ontologies. Actually, a complete logical system can be
constructed using lattice terms as first order predicates [12]. As a result, a com-
plex logical system can be built over the lattice, enabling the system to process
elaborate queries involving logical operators.

We also analyzed the FCA’s lattice structure and proposed a measure of
similarity based on Tversky’s model, which allowed us to identify closely re-
lated concepts in different source ontologies. The similarity measure developed
considered a special set of elements in the lattice called meet-irreducible. These
elements are similar to the concept of a basis in Linear Algebra, in the sense
that the entire lattice can be reconstructed from them.

To address one of the main drawbacks of the application of FCA, viz. the
cluttering in visualization when the lattice grows, we proposed a new approach.
This approach consists of a special spanning tree representation of the lattice,
constructed considering our structural similarity measure. By doing so, we pro-
posed that the nodes structurally closer to each other stayed. The result was then
visualized through a hyperbolic tree tool, for which we implemented some special
features. The tool’s features were developed taking into account the navigation
needs in concept lattices.

234 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

References

[1] Berners-Lee, T.: Semantic web road map. Internal note, World Wide Web Con-
sortium (1998) URL http://www.w3.org/DesignIssues/Semantic.html.

[2] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

[3] Stumme, G., Maedche, A.: Fca-merge: Bottom-up merging of ontologies. In: Proc.
17th Intl. Conf. on Artificial Intelligence (IJCAI ’01), Seattle, WA, USA. (2001)
225–230

[4] Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A ma-
chine learning approach. In Staab, S., Studer, R., eds.: Handbook on Ontologies.
International Handbooks on Information Systems, Springer (2004) 385–404

[5] Rodŕıguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity
classes from different ontologies. IEEE Transactions on Knowledge and Data
Engineering 15 (2003) 442–456

[6] Gruber, T.R.: A Translation Approach to Portable Ontology Specifications.
Knowledge Aquisition 5 (1993) 199–220

[7] de Souza, K.X.S., Davis, J.: Aligning ontologies through formal concept analysis.
In: Proceedings of The Sixth International Conference on Information Integra-
tion and Web Based Applications & Services (iiWAS2004), Jakarta, Indonesia,
Austrian Computer Society (2004)

[8] Wille, R.: Restructuring lattice theory: An approach based on hierarchies of
concepts. In Rival, I., ed.: Ordered Sets. Volume 83 of NATO Advanced Study
Institute Series C. Reidel, Dordrecht (1982) 445–470

[9] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin - Heidelberg - New York (1999)

[10] Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The
Knowledge Engineering Review 18 (2003) 1–31

[11] de Souza, K.X.S., Davis, J.: Using an aligned ontology to process user queries.
In: Artificial Intelligence: Methodology, Systems, and Applications: 11th Inter-
national Conference, AIMSA 2004, Varna, Bulgaria, September 2-4, 2004. Pro-
ceedings. Number 3192 in Lecture Notes in Computer Science, Springer-Verlag
Heidelberg (2004) 44–53

[12] Chaudron, L., Maille, N., Boyer, M.: The cube lattice model and its applications.
Applied Artificial Intelligence 17 (2003) 207–242

[13] de Souza, K.X.S., Davis, J.: Aligning ontologies and evaluating concept simi-
larities. In: On The Move to Meaningful Internet Systems 2004: CoopIS, DOA,
and ODBASE, Lanarca, Cyprus. Proceedings. Number 3291 in Lecture Notes in
Computer Science, Springer-Verlag Heidelberg (2004) 1012–1029

[14] Tversky, A.: Features of Similarity. Psychological Review 84 (1977) 327–352
[15] McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging

and testing large ontologies. In Cohn, A.G., Giunchiglia, F., Selman, B., eds.:
KR2000: Principles of Knowledge Representation and Reasoning, San Francisco,
Morgan Kaufmann (2000) 483–493

[16] Noy, N.F., Musen, M.: PROMPT: Algorithm and tool for automated ontology
merging and alignment. In: Proceedings of the 7th Conference on Artificial In-
telligence (AAAI-00) and of the 12th Conference on Innovative Applications of
Artificial Intelligence (IAAI-00), Austin, Texas, AAAI Press (2000) 450–455

[17] Chalupsky, H.: Ontomorph: A translation system for symbolic knowledge. In:
Principles of Knowledge Representation and Reasoning. (2000) 471–482

Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results 235

[18] Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10 (2001) 334–350

[19] Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems 6 (2004) 428–440

[20] Compatangelo, E., Meisel, H.: Intelligent support to knowledge sharing through
the articulation of class schemas. In: Proc. of the 6th Intl. Conf. on Knowledge-
Based Intelligent Information & Engineering Systems(KES’2002), IOS Press
(2002) 306–310

[21] Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hubner, S.: Ontology-based integration of information - a survey of existing
approaches. In Stuckenschmidt, H., ed.: IJCAI-01 Workshop: Ontologies and
Information Sharing. (2001) 108–117

[22] Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Domain specific ontologies for
semantic information brokering on the global information infrastructure. In: Pro-
ceedings of the 1st International Conference on Formal Ontology in Information
Systems(FOIS98). (1998) 269–283

[23] de Souza, K.X.S., Davis, J., Souza, M.I.F.: Organizing information for the
agribusiness sector: Embrapa’s Information Agency. In: Proceedings of 2004 In-
ternational Conference on Digital Archive Technologies, Taipei, Taiwan, Institute
of Information Science - Academia Sinica (2004) 159–169

[24] Priss, U.: Formalizing botanical taxonomies. In: Conceptual Structures for Knowl-
edge Creation and Communication. Proceedings of the 11th International Con-
ference on Conceptual Structures. Number 2746 in LNAI, Springer Verlag (2003)
309–322

[25] Cole, R., Eklund, P.: Application of formal concept analysis to information re-
trieval using a hierarchically structured thesauris. In: Supplementary Proceedings
of International Conference on Conceptual Structures, ICCS ’96, University of
New South Wales (1996) 1–12

[26] Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between on-
tologies on the semantic web. In: The Eleventh International WWW Conference,
Hawaii, USA (2002)

[27] Groh, B., Strahinger, S., Wille, R.: Toscana-systems based on thesauri. In: Pro-
ceedings 6th International Conference on Conceptual Structures. Number 1453 in
LNAI, Springer Verlag, Berlin (1998) 127–138

[28] Becker, P., Hereth, J., Stumme, G.: ToscanaJ: An open source tool for quali-
tative data analysis. In Duquenne, V., Ganter, B., Liquiere, M., Nguifo, E.M.,
Stumme, G., eds.: Advances in Formal Concept Analysis for Knowledge Discov-
ery in Databases. Proc. Workshop FCAKDD of the 15th European Conference on
Artificial Intelligence (ECAI 2002). Lyon, France, July 23, 2002. (2002)

[29] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with titanic. Journal on Knowledge and Data Engineering (KDE)
42 (2002) 189–222

[30] Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics 6 (2000) 24–43

[31] Sarkar, M., Brown, M.H.: Graphical fisheye views of graphs. In Bauersfeld, P.,
Bennett, J., Lynch, G., eds.: Proceedings of the Conference on Human Factors in
Computing Systems, ACM Press (1992) 83–92

236 Kleber X.S. de Souza, Joseph Davis, and Silvio R. de Medeiros Evangelista

[32] Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In Katz, I.R., Mack, R., Marks, L.,
Rosson, M.B., Nielsen, J., eds.: Proceedings of the Conference on Human Factors
in Computing Systems (CHI’95), Denver, CO, USA, ACM Press (1995) 401–408

[33] Munzner, T.: H3: laying out large directed graphs in 3d hyperbolic space. In:
IEEE Symposium on Information Visualization (InfoVis ’97), IEEE (1997) 2–10

[34] FAO (Food and Agriculture Organization of the United Nations): FAO (Food
and Agriculture Organization of the United Nations). AGROVOC: Multilingual
Agricultural Thesaurus (1995) FAO. Rome.

[35] Mitra, P., Wiederhold, G., Kersten, M.L.: A Graph-Oriented Model for Articula-
tion of Ontology Interdependencies. In: Proceedings of the International Confer-
ence on Extending Database Technology (EDBT). Volume 1777 of Lecture Notes
in Computer Science (LNCS), Springer-Verlag., Konstanz, Germany (2000) 86–
100

[36] Heit, E.: Features of similarity and category-based induction. In: Proceedings
of the Interdisciplinary Workshop on Categorization and Similarity, University of
Edinburgh (1997) 115–121

[37] Goldstone, R.L., Kersten, A.: Concepts and caterogization. In Healy, A., Proctor,
R., eds.: Comprehensive Handbook of Psychology. Wiley, New Jersey (2003) 599–
621

[38] Sloutsky, V.M.: The role of similarity in the development of categorization.
TRENDS in Cognitive Sciences 7 (2003) 246–251

[39] Tenenbaum, J.B., Griffiths, T.L.: Generalization, similarity, and bayesian infer-
ence. Behavioral and Brain Sciences 24 (2001) 629–640

[40] Gentner, D., Markman, A.B.: Structure mapping in analogy and similarity. Amer-
ican Psychologist 52 (1997) 45–56

[41] Lin, D.: An information-theoretic definition of similarity. In: Proceedings of
the Fifteenth International Conference on Machine Learning, Morgan Kaufmann
Publishers Inc (1998) 296–304

[42] Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies us-
ing galois lattices. In Paepcke, A., ed.: Proceedings of the 8th Annual Conference
on Object-Oriented Programming Systems, Languages and Applications, Wash-
ington, DC, USA, ACM Press (1993) 394–410

Author Index

Atluri, Vijayalakshmi, 130

Bagüés, Miren I., 1
Bailey, James, 91
Bermúdez, Jesús, 1

Cabot, Jordi, 158
Castano, Silvana, 25
Conesa, Jordi, 64

Davis, Joseph, 211
de Medeiros Evangelista, Silvio Roberto,
211
de Souza, Kleber Xavier Sampaio, 211

Ferrara, Alfio, 25

Goñi, Alfredo, 1

Illarramendi, Arantza, 1

Koeller, Andreas, 185

Montanelli, Stefano, 25

Olivé, Antoni, 64

Qin, Li, 130

Raventós, Ruth, 158
Rundensteiner, Elke A., 185

Tablado, Alberto, 1

Waworuntu, Stella, 91

	Frontmatter
	Third International Conference on Semantics of a Networked World (ICSNW 2004)
	Semantic Interoperation Among Data Systems at a Communication Level
	Matching Ontologies in Open Networked Systems: Techniques and Applications

	23rd International Conference on Conceptual Modeling (ER2004)
	A Method for Pruning Ontologies in the Development of Conceptual Schemas of Information Systems
	XSLTGen: A System for Automatically Generating XML Transformations Via Semantic Mappings
	An Ontology-Guided Approach to Change Detection of the Semantic Web Data
	Conceptual Modelling Patterns for Roles

	First International Conference on Ontologies, DataBases, and Applications of Semantics for Large Scale Information Systems (ODBASE '04)
	Heuristic Strategies for the Discovery of Inclusion Dependencies and Other Patterns
	Aligning Ontologies, Evaluating Concept Similarities and Visualizing Results

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

