
CrossMine: Efficient Classification Across

Multiple Database Relations�

Xiaoxin Yin1, Jiawei Han1, Jiong Yang1, and Philip S. Yu2

1 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{xyin1, hanj, jioyang}@uiuc.edu

2 IBM T.J. Watson Research Center, Yorktown Heights, N.Y. 10598, USA
psyu@us.ibm.com

Abstract. Most of today’s structured data is stored in relational data-
bases. Such a database consists of multiple relations that are linked
together conceptually via entity-relationship links in the design of re-
lational database schemas. Multi-relational classification can be widely
used in many disciplines including financial decision making and medi-
cal research. However, most classification approaches only work on single
“flat” data relations. It is usually difficult to convert multiple relations
into a single flat relation without either introducing huge “universal re-
lation” or losing essential information. Previous works using Inductive
Logic Programming approaches (recently also known as Relational Min-
ing) have proven effective with high accuracy in multi-relational clas-
sification. Unfortunately, they fail to achieve high scalability w.r.t. the
number of relations in databases because they repeatedly join different
relations to search for good literals.

In this paper we propose CrossMine, an efficient and scalable approach
for multi-relational classification. CrossMine employs tuple ID propaga-
tion, a novel method for virtually joining relations, which enables flex-
ible and efficient search among multiple relations. CrossMine also uses
aggregated information to provide essential statistics for classification. A
selective sampling method is used to achieve high scalability w.r.t. the
number of tuples in the databases. Our comprehensive experiments on
both real and synthetic databases demonstrate the high scalability and
accuracy of CrossMine.

1 Introduction

Relational databases are the most popular format for structured data, and is
thus the richest source of knowledge in the world. There are many real world
applications involving decision making process based on information stored in
relational databases, such as credit card fraud detection and loan application.

� The work was supported in part by National Science Foundation under Grants IIS-
02-09199/IIS-03-08215, and an IBM Faculty Award. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 172–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CrossMine: Efficient Classification Across Multiple Database Relations 173

Approaches that can perform in-depth analysis on relational data is of crucial
importance in such applications. Therefore, multi-relational data mining has
become a field with strategic importance.

There have been many important approaches for classification, such as neural
networks [11] and support vector machines [6]. They can only be applied to
data represented in single, “flat” relations. Multiple relations in a database are
usually connected via semantic links such as entity-relationship links of an ER
model used in the database design [8]. Data stored in the same relation often
have closer semantic relationship than those reachable via remote links. It is
counter-productive to simply “convert” multi-relational data into a single flat
data relation because such conversion may lead to the generation of a huge
universal relation [8] but lose some essential semantic information carried by the
semantic links in the database design.

Inductive Logic Programming (ILP) [12,10] is the most widely used category
of approaches to multi-relational classification. There are many ILP approaches
[1,3,4,5,13,14,15,18], which use very different philosophies in identifying hypothe-
ses that fit the background knowledge. The ILP approaches achieve good classi-
fication accuracy. Unfortunately, most of them are not highly scalable w.r.t. the
number of relations and the number of attributes in databases, thus are usually
inefficient for databases with complex schemas.

In a database for multi-relational classification, there is one target relation
Rt, whose tuples are called target tuples. Each target tuple is associated with
a class label. To build a good multi-relational classifier, one needs to find good
literals in each non-target relation R that help distinguish positive and negative
target tuples. The target relation can usually join with every non-target relation
via multiple join paths. Thus in a database with reasonably complex schema,
there are a large number of join paths that need to be explored, each leading
to dozens of literals in a certain relation. In order to identify the best literals
and construct good clauses, many ILP approaches repeatedly join the relations
along different join paths and evaluate literals based on the joined relation. This
is very time consuming, especially when the joined relation contains much more
tuples than the target one.

There are two major challenges in multi-relational classification: one is ef-
ficiency and scalability, and the other is the accuracy of classification. When
building a classifier for a database with many relations, the search space is usu-
ally very large, and it is unaffordable to perform exhaustive search. On the other
hand, the semantic linkages usually become very weak after passing through a
long chain of links. Therefore, a multi-relational classifier needs to handle both
efficiency and accuracy problems.

In this paper we propose CrossMine, a scalable and accurate approach for
multi-relational classification. Its basic idea is to propagate the tuple IDs (to-
gether with their associated class labels) from the target relation to other rela-
tions. In the relation to which the IDs are propagated, each tuple t is associated
with a set of IDs, which represent the target tuples that are joinable with t.
Tuple ID propagation is a convenient and flexible method for virtually joining

174 X. Yin et al.

different relations, with as low cost as possible. Tuple IDs can be easily prop-
agated between any two relations, which enables CrossMine to search freely in
multiple relations for good literals and clauses. CrossMine obtains high efficiency
and scalability by tuple ID propagation.

CrossMine uses a sequential covering algorithm, which repeatedly constructs
clauses and removes positive examples covered by each clause. To construct a
clause, it repeatedly searches for the best literal and appends it to the current
clause. During the searching process, CrossMine limits the search space to re-
lations related to the target relation or related to relations used in the clause.
In this way the strong semantic links can be identified and the search process
is controlled in promising directions. On the other hand, the search space of
CrossMine is larger than typical ILP approaches. By using tuple ID propagation
and look-one-ahead, CrossMine considers literal sequences of length up to three
at a time. It achieves both high efficiency and high accuracy by controlling the
search space and identifying strong semantic links.

Unlike most previous approaches on multi-relational classification that only
use simple literals, CrossMine uses both simple literals and literals involving ag-
gregations on attribute values. For example, in the database of a CS department,
a student’s average grade or number of publications might be very important
features for judging the academic performance of a student. The aggregations
provide statistics about the target tuples, which often provide essential informa-
tion for classification.

In many sequential covering algorithms, the negative examples are never re-
moved in the clause building process, which makes the algorithm inefficient for
databases with large numbers of tuples. It is common that before building a
clause, there are much less positive examples than negative ones, which causes
the algorithm to spend a large amount of time to build low-quality clauses. To
address this issue, CrossMine employs a selective sampling method to reduce the
number of negative tuples when the numbers of positive and negative tuples are
unbalanced. This helps CrossMine achieve high scalability w.r.t. the number of
tuples in databases. Our experiments show that the sampling method decreases
the running time significantly but only slightly sacrifices the accuracy.

The remaining of the paper is organized as follows. In Section 2 we intro-
duce the related work. The problem definition is presented in Section 3. Section
4 introduces the idea of tuple ID propagation and its theoretical background.
We describe the algorithm and implementation issues in Section 5. Section 6
describes the negative tuple sampling technique. Experimental results are pre-
sented in Section 7. We made discussions in Section 8 and the study is concluded
in Section 9.

2 Related Work

The most important category of approaches in multi-relational classification is
ILP [12,10], which is defined as follows. Given background knowledge B, a set
of positive examples P , and a set of negative examples N , find a hypothesis H ,
which is a set of Horn clauses such that:

CrossMine: Efficient Classification Across Multiple Database Relations 175

– ∀p ∈ P : H ∪ B |= p (completeness)
– ∀n ∈ N : H ∪ B |�= n (consistency)

The well known ILP systems include FOIL [18], Golem [14], and Progol [13].
FOIL is a top-down learner, which builds clauses that cover many positive ex-
amples and few negative ones. Golem is a bottom-up learner, which performs
generalizations from the most specific clauses. Progol uses a combined search
strategy. Some recent approaches TILDE [3], Mr-SMOTI [1], and RPTs [15] use
the idea of C4.5 [17] and inductively construct decision trees from relational data.
These approaches are usually more efficient than traditional ILP approaches due
to the divide-and-conquer nature of decision tree algorithm.

Efficiency and scalability are two major issues in ILP. In [4] an approach
was proposed to handle data stored on disks. In [5] the authors proposed an
approach that can evaluate packs of queries which can be handled together.
This approach is similar to CrossMine because both of them can utilize common
prefix of different clauses. But CrossMine can propagate tuple IDs freely among
different relations, which is more convenient in building clauses.

Besides ILP, probabilistic approaches [19,16] are also popular for multi-
relational classification and modelling. Probabilistic relational models [19] is an
extension of Bayesian networks for handling relational data, which can integrate
the advantages of both logical and probabilistic approaches for knowledge rep-
resentation and reasoning. In [16] an approach is proposed to integrate ILP and
statistical modelling for document classification and retrieval.

We take FOIL as a typical example of ILP approaches and show its working
procedure. FOIL is a sequential covering algorithm that builds clauses one by
one. Each clause is built by repeatedly adding literal. At each step, every possible
literal is evaluated and the best one is appended to the current clause. To evaluate
a literal p, p needs to be appended to the current clause c to get a new clause c′.
Then it constructs a new dataset which contains all target tuples satisfying c′,
evaluates p based on the number of positive and negative target tuples satisfying
c′. For databases with complex schemas, the search space is huge and there are
many possible literals at each step. Thus FOIL needs to repeatedly construct
datasets by physical joins to find good literals, which is very time-consuming.
This is also verified by our experiments.

3 Preliminaries

3.1 Basic Definitions

A database D consists of a set of relations, one of which is the target relation Rt,
with class labels associated with its tuples. The other relations are non-target
relations. Each relation may have one primary key and several foreign keys. The
following types of joins are considered in CrossMine:

1. Join between a primary key k and some foreign key pointing to k.
2. Join between two foreign keys k1 and k2, which point to the same primary key

k. (For example, the join between Loan.account-id and Order.account-id.)

176 X. Yin et al.

date

frequency

district−id

Account

account−id

amount

operation

type

account−id

trans−id

Transaction

date

balance

symbol

issue−date

type

disp−id

card−id

Card

type

client−id

disp−id

account−id

Disposition

district−id

gender

client−id

Client

birthdate

District

#lt−2000

#lt−500

#people

region

district−id

name

unemploy95

avg−salary

ratio−urban

#city

#lt−10000

#gt−10000

#crime96

#crime95

unemploy96

den−enter
type

amount

to−account

to−bank

order−id

Order

account−id

payment

duration

amount

date

loan−id

Loan

account−id

Fig. 1. The financial database from PKDD CUP 99

We ignore other possible joins because they do not represent strong seman-
tic relationships between entities in the database. Figure 1 shows an example
database. Arrows go from primary-keys to corresponding foreign-keys. The tar-
get relation is Loan. Each target tuple is either positive or negative, indicating
whether the loan is paid on time.

CrossMine is a clause-based classifier on relational data. In general, each
clause consists of a list of literals and the predicted class. Each literal is ei-
ther a simple literal on the value of an attribute, or an aggregation literal on the
aggregated value of an attribute.

3.2 Literals

In general, a literal is a constraint on a certain attribute in a certain relation. For
example, literal “l1 = Loan(L, , , , >= 12,)” means that the duration of
loan L is no less than 12 months. In relational databases a literal is often defined
based on a certain join path. For example, “l2 = Loan(L, A, , , ,), Account
(A, , monthly,)” is defined on the join path Loan �� Account, which means
that the associated account of a loan has frequency “monthly”.

There are two types of attributes: categorical attributes and numerical at-
tributes. There are three types of literals:

1. Categorical literal: A categorical literal is defined on a categorical at-
tribute. It is a constraint that this attribute must take a certain value, such
as l2 in the above example.

CrossMine: Efficient Classification Across Multiple Database Relations 177

2. Numerical literal: A numerical literal is defined on a numerical attribute.
It contains a certain value and a comparison operator, such as l1, in the
above example.

3. Aggregation literal: An aggregation literal is similar to a numerical literal,
but is defined on the aggregated value of an attribute. It contains an aggre-
gation operator, a certain value, and a comparison operator. For example,
l3 = Loan(L, A, , , ,), Order(, A, , , sum(amount) >= 1000,) is
an aggregation literal, which requires the sum of amount of all orders related
to a loan is no less than 1000. The following aggregation operators can be
used: count, sum, avg.

3.3 Clauses

CrossMine is a clause-based classifier, which aims at finding clauses that dis-
tinguish positive examples from negative ones. Each clause contains a list of
literals, associated with a class label. To integrate the join path into the clauses,
CrossMine uses a form of clauses that is different from the traditional ILP ap-
proaches. Instead of using conventional literal, complex literal is used here as the
element of clauses. A complex literal l̂ contains two parts:

1. prop-path, i.e., propagation path, which indicates how to propagate IDs. For
example, “Loan.account id → Account.account id” indicates propagating
IDs from the Loan relation to the Account relation using the join condition
“Loan.account id = Account.account id”. 1

2. constraint: which indicates the constraint on the relation which the IDs are
propagated to. For example, “Account.frequency = monthly” indicates that
tuples in the Account relation should have value “monthly” on attribute
frequency. The constraint is actually a literal that is either categorical, nu-
merical, or involves aggregation.

A complex literal is usually equivalent to two conventional literals. For exam-
ple, the clause “Loan(L, +) :− Loan(L, A, , , ,), Account(A, , monthly,)”
can be represented by “Loan(+) :− [Loan.account id → Account.account id,
Account.frequency = monthly]”.

A clause contains a list of literals. A target tuple satisfies a clause if and only
if it satisfies every literal of the clause. To judge whether a target tuple t satisfies
a clause c, one needs to join t with tuples in other relations according to the join
path of c. We will introduce how to efficiently find out all target tuples satisfying
a clause later.

We use the database in Figure 2 as an illustrative example. Suppose clause c =
Loan(+) :− [Loan.account id → Account.account id, Account.frequency =
monthly]. We say a tuple t in Loan satisfies c if and only if any tuple in Account
that is joinable with t has value “monthly” in the attribute of frequency. In this
example, there are two tuples (with account-id 124 and 45) in Account that
satisfy the literal “Account(A, , monthly,)”. So there are four tuples (with
loan-id 1, 2, 4, and 5) in Loan that satisfy this clause.
1 The prop-path of a complex literal may be empty if we already have the right tuple

IDs on the relation to which the constraint is applied.

178 X. Yin et al.

Loan

loan-id account-id amount duration payment class

1 124 1000 12 120 +

2 124 4000 12 350 +

3 108 10000 24 500 −
4 45 12000 36 400 −
5 45 2000 24 90 +

Account

account-id frequency date

124 monthly 960227

108 weekly 950923

45 monthly 941209

67 weekly 950101

Fig. 2. A sample database (The last column of Loan relation contains class labels)

3.4 Evaluation of Literals and Clauses

To generate a clause, CrossMine starts at an empty clause, keeps selecting the
best literal and add it to the current clause. At each step, we need to evaluate
every literal and select the best one. Foil gain is used [18] to measure the goodness
of a literal.

Definition 1 (Foil gain). For a clause c, we use P (c) and N(c) to denote the
number of positive and negative examples satisfying c. Suppose the current clause
is c. We use c + l to denote the clause constructed by appending literal l to c.
The foil gain of literal l is defined as follows,

I(c) = − log
P (c)

P (c) + N(c)
(1)

foil gain(l) = P (c + l) · [I(c) − I(c + l)] (2)

Intuitively foil gain(l) represents the total number of bits saved in representing
positive examples by appending l to the current clause. It indicates how much
the predictive power of the clause can be increased by appending l to it.

After generating a clause c, we need to evaluate c by estimating its accuracy.
Suppose there are N+ positive and N− negative tuples satisfying c in the training
set. The accuracy of c can be estimated using the method in [7], which is shown
in the following equation:

Accuracy(c) = (N+ + 1)/(N+ + N− + C) (3)

where C is the number of classes.

4 Tuple ID Propagation

In this section we present the idea of tuple ID propagation and method of finding
good literals with that. In essence, tuple ID propagation is a method for virtually
joining non-target relations with the target relation. It is a convenient method
that enables flexible search in relational databases, and is much less costly than
physical join in both time and space.

CrossMine: Efficient Classification Across Multiple Database Relations 179

4.1 Search for Literals by Joins

Consider the sample database in Figure 2. Suppose we want to compute the foil
gain of literals in a non-target relation, such as Account. We need to find out
for all positive and negative target tuples satisfying each literal l in the Account
relation.

One approach is to join the two relations together and compute the foil gain
of all literals, as shown in Figure 3. With the joined relation, the foil gain of
every literal in both relations can be computed. To compute the foil gain of all
literals on a certain attribute, one only needs to scan the corresponding column
in the joined relation once. It can also handle continuous attribute as in [17]. To
find the best literal on attribute Account.date, one can first sort that column,
then iterate from the smallest value to the largest value, and for each value d,
compute the foil gain of two literals “date ≤ d” and “date ≥ d”.

Loan �� Account

l-id a-id amount dur pay freq date class

1 124 1000 12 120 monthly 960227 +

2 124 4000 12 350 monthly 960227 +

3 108 10000 24 500 weekly 950923 −
4 45 12000 36 400 monthly 941209 −
5 45 2000 24 90 monthly 941209 +

Fig. 3. The join of Loan and Account

It is quite expensive to use physical joins to evaluate literals for the follow-
ing two reasons. First, in a database with complex schema, there are usually
a large number of join paths that need to be explored. For example, in the
database shown in Figure 1, Loan can join with Account, Order, Transaction
and Disposition. Each of the four relations can join with several other rela-
tions, such as Disposition that can join with Card, Client, or back to Account
and Order. Therefore one needs to repeatedly perform physical joins and cre-
ate many joined relations. Second, there may be much more tuples in a joined
relation than in the target relation. For example, a loan may join with several
orders or dozens of transactions. Thus the joined relation may contain a large
number of tuples when the join path is long.

The above two challenges prevent most traditional ILP approaches from effi-
ciently searching among different relations. In the next section we will introduce
tuple ID propagation, a technique that enables free search in relational databases.
When searching for good literals, one can propagate tuple IDs from any relation
that IDs have been propagated to, which requires much less computation and
data transfer. The tuple IDs can be easily propagated between any two relations,
which makes it possible to “navigate freely” among different relations.

180 X. Yin et al.

4.2 Tuple ID Propagation

Suppose the primary key of the target relation is an attribute of integers, which
represents the ID of each target tuple. Consider the sample database shown
in Figure 4, which has the same schema as in Figure 2. Instead of performing
physical join, the IDs and class labels of target tuples can be propagated to the
Account relation. The procedure is formally defined as follows.

Loan

loan-id account-id amount duration payment class

1 124 1000 12 120 +

2 124 4000 12 350 +

3 108 10000 24 500 −
4 45 12000 36 400 −
5 45 2000 24 90 +

Account

account-id frequency date IDs class labels

124 monthly 960227 1, 2 2+, 0−
108 weekly 950923 3 0+, 1−
45 monthly 941209 4, 5 1+, 1−
67 weekly 950101 – 0+, 0−

Fig. 4. Example of tuple ID propagation

Definition 2 (Tuple ID propagation). Suppose two relations R1 and R2 can
be joined by attributes R1.A and R2.A. Each tuple t in R1 is associated with a
set of IDs in the target relation, represented by idset(t). For each tuple u in R2,
we set idset(u) =

⋃
t∈R1,t.A=u.A idset(t).

The following lemma and its corollary show the correctness of tuple ID prop-
agation and how to compute foil gain from the propagated IDs.

Lemma 1. Suppose two relations R1 and R2 can be joined by attribute R1.A
and R2.A, and R1 is the target relation, with primary key R1.id. All the tuples in
R1 satisfy the current clause (others have been eliminated). The current clause
contains a literal “R1(R1.id, R1.A, · · ·)”, which enables the join of R1 with
R2. With tuple ID propagation from R1 to R2, for each tuple u in R2, idset(u)
represents all target tuples joinable with u, using the join path specified in the
current clause.

Proof. From definition 2, we have idset(u) =
⋃

t∈R1,t.A=u.A idset(t). That is,
idset(u) represents the target tuples joinable with u using the join path specified
in the current clause.

Corollary 1. Suppose two relations R1 and R2 can be joined by attribute R1.A
and R2.A, R1 is the target relation, and all the tuples in R1 satisfy the current

CrossMine: Efficient Classification Across Multiple Database Relations 181

clause (others have been eliminated). If R1’s IDs are propagated to R2, then the
foil gain of every literal in R2 can be computed using the propagated IDs on R2.

Proof. Given the current clause c, for a literal l in R2, such as R2.B = b, its
foil gain can be computed based on P (c), N(c), P (c + l) and N(c + l). P (c)
and N(c) should have been computed during the process of building the current
clause. P (c + l) and N(c + l) can be computed in the following way: (1) find all
tuples t in R2 that t.B = b; (2) with the propagated IDs on R2, find all target
tuples that can be joined with any tuple found in (1) (using the join path specified
in the current clause); and (3) count the number of positive and negative tuples
found in (2).

For example, suppose “Loan(L, +) :− Loan(L, A, , , ,)” is the current
clause. For literal “Account(A, , monthly,)”, we can first find out tuples in
the Account relation that satisfy this literal, which are {124, 45}. Then we can
find out tuples in the Loan relation that can be joined with these two tuples,
which are {1, 2, 4, 5}. We maintain a global table of the class label of each target
tuple. From this table, we know that tuples {1, 2, 4, 5} contain three positive
and one negative examples. With this information we can easily compute the
foil gain of literal “Account(A, , monthly,)”.

Besides propagating IDs from the target relation to relations directly joinable
with it, one can also propagate IDs transitively by propagating the IDs from one
non-target relation to another, according to the following lemma.

Lemma 2. Suppose two non-target relations R2 and R3 can be joined by at-
tribute R2.A and R3.A, and all the tuples in R2 satisfy the current clause (oth-
ers have been eliminated). For each tuple v in R2, idset(v) represents the target
tuples joinable with v (using the join path specified by the current clause). By
propagating IDs from R2 to R3 through the join R2.A = R3.A, for each tuple u
in R3, idset(u) represents target tuples that can be joined with u (using the join
path in the current clause, plus the join R2.A = R3.A).
Proof. Suppose a tuple u in R3 can be joined with v1, v2, · · ·, vm in R2, using
join R2.A = R3.A. Then idset(u) =

⋃m
i=1 idset(vi). A target tuple t is joinable

with any one of v1, v2, · · ·, vm if and only if t.id ∈ ⋃m
i=1 idset(vi). Therefore, a

target tuple t is joinable with u (using the join path in the current clause, plus
the join R2.A = R3.A) if and only if t.id ∈ idset(u).

A corollary similar to corollary 1 can be proved for Lemma 2. That is, by
tuple ID propagation between non-target relations, one can also compute the
foil gain based on the propagated IDs.

4.3 Analysis and Constraints

The idea of label propagation was proposed in [2], which propagates class labels
along join paths for evaluating literals. This approach is effective for n-to-1
relationships. But for join paths that involve 1-to-n or n-to-n relationships, it
cannot find the numbers of positive and negative target tuples satisfying each

182 X. Yin et al.

literal. For example, suppose there are 10 tuples in the Loan relation, 5 being
positive and 5 being negative. 4 positive and 5 negative tuples are joinable with 1
account each, while the other positive tuple is joinable with 10 accounts. Suppose
all above accounts satisfy a literal l. Then one can see that there are 5 positive
and 5 negative target tuples satisfying l, indicating that l has low foil gain.
However, if only class labels are propagated, we will not be able to distinguish
class labels from different target tuples, and will say that there are 14 positive
and 5 negatives tuples satisfying l, indicating that l has high foil gain. A real
database usually contains many 1-to-n and n-to-n relationships, thus one needs
to propagate IDs instead of labels when building classifiers.

Tuple ID propagation is a way to perform virtual join. Instead of physically
joining relations, they are virtually joined by attaching the tuple IDs of the tar-
get relation to the tuples of a non-target relation, using a certain join path. In
this way the literals can be evaluated as if physical join is performed. Tuple ID
propagation is a flexible and efficient method. IDs (and their associated class
labels) can be easily propagated from one relation to another. By dong so, lit-
erals in different relations can be evaluated with little redundant computation.
The required space is also small because the IDs do not take much additional
storage space. Moveover, a relation may be associated with multiple set of IDs
corresponding to different join paths. This enables CrossMine to search for good
literals freely across relations.

ID propagation, though valuable, should be enforced with certain constraints.
There are two cases that such propagation could be counter-productive: (1)
propagate via large fan-outs, and (2) propagate via long weak links.

The first case happens if the there are too many tuples that can be produced
via propagation. Suppose after the IDs are propagated to a relation R, it is found
that every tuple in R can be joined to many target tuples and every target tuple
can be joined to many tuples in R. Then the semantic link between R and
the target relation is usually very weak because the link is very unselective.
For example, propagation among people via birth-country links may not be
productive. Therefore, our system discourages propagation if the current link
has very large fan-out.

The second case happens if the propagation goes through long weak links,
e.g., linking a student with his car dealer’s pet (via car, and then dealer) may
not be productive either. From the consideration of both efficiency and accuracy,
our system discourages propagation via such links.

5 Clause Generation

In this section we present CrossMine’s algorithm for generating clauses by tuple
ID propagation. A sequential covering algorithm is developed that repeatedly
builds clauses and removes positive tuples satisfying the clause. To build a clause,
it repeatedly searches for the best literal and adds it to the current clause. This
algorithm is selected because it guarantees the quality of each clause by always
keeping a large number of negative examples, and moreover, its greedy nature
makes it efficient in large databases.

CrossMine: Efficient Classification Across Multiple Database Relations 183

5.1 Finding Best Literal

Suppose CrossMine is searching for the best literal in a certain relation R, and
tuple IDs have been propagated to R so that one will know the target tuples
joinable with each tuple in R. To find the best literal in R, CrossMine evaluates
the literals in each attribute of R. Different algorithms are used for categorical
and numerical attributes.

Suppose the best literal on a categorical attribute Ac is to be found. Suppose
Ac has l values a1, . . . , al. For each value ai, a literal li = [R.Ac = ai] is built.
Then CrossMine scans the values of each tuple on Ac to find out the numbers
of all positive and negative target tuples satisfying each literal li. With this
information, the foil gain of each li can be computed and the best literal can be
found.

Suppose the best literal on a numerical attribute An is to be found, and a
sorted index for values on An has been built beforehand. CrossMine iterates
from the smallest value of An to the largest value. When iterating to each value
vi, all tuples having value vi are found, and their associated IDs are added into
a pool. This pool of IDs represent all target tuples satisfying literal [An ≤ vi].
In this way, one can compute the foil gain of every literal of the form [An ≤ vi]
for every value vi of An. Then CrossMine iterates from the largest value to the
smallest value to evaluate the literals of the form [An ≥ vi]. In this way the best
numerical literal can be found for An.

To search for the best aggregation literal for An, CrossMine first finds some
statistics for each target tuple. By scanning the tuple IDs associated with tuples
in R, for each target tuple t∗, CrossMine can find the tuples in R joinable with
t∗, and calculate the count, sum, and average of the values of those tuples on
An. Then CrossMine computes the foil gain of all aggregation literals using an
approach similar to the approach for finding best numerical literals. In this way
the best aggregation literal can be found.

5.2 Clause Generation Algorithms

Given a relational database with one target relation, CrossMine builds a classifier
containing a set of clauses, each of which contains a list of complex literals and
a class label. The overall idea is to repeatedly build clauses. After each clause is
built, remove all positive target tuples satisfying it. The algorithm is shown in
Figure 5.

To build a clause, one repeatedly searches for the best complex literal and
appends it to the current clause, until the stop criterion is met. A relation is
active if it appears in the current clause, or it is the target relation. Every active
relation is required to have the correct propagated IDs on every tuple before
searching for the next best literal. The algorithm is shown in Figure 6.

The following procedure is used to find the best literal: (1) for every active
relation R̂, find the best complex literal whose constraint applies on R̂ (no ID
propagation involved), and (2) for every relation R̄ that can be joined with some
active relation R̂, propagate IDs from R̂ to R̄, and find the best complex literal on

184 X. Yin et al.

Algorithm 1. Find-Clauses
Input: a relational database D with a target relation Rt.
Output: a set of clauses for predicting class labels of target tuples.

Procedure
clause set R← emptyset;
do

clause c← Find-A-Clause();
add c to R;
remove all positive target tuples satisfying c;

while(there are more than 10% positive target tuples left);
return R;

Fig. 5. Algorithm Find-Clauses

Algorithm 2. Find-A-Clause
Input: a relational database D with a target relation Rt.
Output: a clause for predicting class labels of target tuples.

Procedure
clause c← empty-clause;
set Rt to active;
do

Complex literal l← Find-Best-Literal();
if foil gain(l) < MIN FOIL GAIN;
then break;
else

c← c + l;
remove all target tuples not satisfying c;
update IDs on every active relation;
if l.constraint is on an inactive relation
then set that relation active;

while(c.length < MAX CLAUSE LENGTH);
return c;

Fig. 6. Algorithm Find-A-Clause

R̄. Consider the database in Figure 1. Originally only Loan is active. Sup-
pose the first best complex literal is “[Loan.account id → Account.account id,
Account.frequency = monthly]”. Now Account becomes active as well. And we
will try to propagate the tuple IDs from Loan or Account in every possible way
to find the next best literal.

The idea behind the algorithm of building a clause is as follows. Starting
from the target relation Rt, find the best complex literal l̂, which propagates
IDs from Rt to another relation R̄. Then start from either Rt or R̄ to find the
next complex literal. This algorithm is greedy in nature. It extends the clause
using only those literals in either the active relations or the relations directly
joinable with an active relation.

CrossMine: Efficient Classification Across Multiple Database Relations 185

loan−id

client−id

Has−Loan

district−id

gender

client−id

Client

birthdate

District

#people

region

district−id

name

#city

ratio−urban

avg−salary

payment

duration

amount

date

loan−id

Loan

account−id

Fig. 7. Another sample database

The above algorithm may fail to find good literals in databases containing
some relations that are used to join with other relations, such as the database
shown in Figure 7. In this database there is no meaningful literal in the Has Loan
relation. Therefore, the clauses built will never involve any literals on the Client
relation and the District relation.

This problem can be solved using the look-one-ahead method. When search-
ing for the best literal, after IDs have been propagated to a relation R̄, if R̄
contains a foreign-key pointing to relation R̄′, IDs are propagated from R̄ to
R̄′, and used to search for good literals in R̄′. By this method, in the exam-
ple in Figure 7, one can find clauses such as “Loan(+) :− [Loan.loan id →
Has Loan.loan id, Has Loan.client id → Client.client id, Client.birthdate <
01/01/60]”.

With the correct IDs on a relation R̄, one can scan R̄ once to compute the
number of positive and negative target tuples satisfying every literal in R̄, using
the approach in [9]. The algorithm for searching for the best complex literal is
shown in Figure 8.

The above algorithms show the procedure of building clauses in CrossMine.
The basic idea of building a clause is to start from the target relation, keep
appending literals in active relations or relations related to some active relation,
until the stopping criterion is met. The running time of CrossMine is not much
affected by the number of relations in the database, because the size of the search
space is mainly determined by the number of active relations and the number of
joins on each active relation. This is also verified in our experiments on synthetic
databases.

To achieve high accuracy in multi-relational classification, an algorithm should
be able to find most of the useful literals in the database, and builds good clauses
with them. In most commercial databases following E-R model design there are
two types of relations: entity relation and relationship relation. Usually each
entity relation is reachable from some other entity relations via join paths go-
ing through relationship relations. Suppose an entity relation R contains use-
ful information for classification. There are usually many join paths between
R and the target relation Rt, some representing important semantic links. It
is likely that R can be reached from some other useful entity relations through

186 X. Yin et al.

Algorithm 3. Find-Best-Literal
Input: a relational database D with a target relation Rt, and current clause c.
Output: the complex literal with most foil gain.

Procedure
Complex literal lmax ← empty;

for each active relation R̂

Complex literal l← best complex literal in R̂;
if foil gain(l) > foil gain(lmax)
then lmax ← l;

for each relation R̄
for each key/foreign-key k of R̄

if R̄ can be joined to some active relation R̂ with R̄.k
then

propagate IDs from R̂ to R̄;
l ← best complex literal in R̄;
if foil gain(l) > foil gain(lmax)
then lmax ← l;
for each foreign-key k′ �= k of R̄

propagate IDs from R̄ to relation R̄′

that is pointed to by R̄.k;
l← best complex literal in R̄′;
if foil gain(l) > foil gain(lmax)
then lmax ← l;

return lmax;

Fig. 8. Algorithm Find-Best-Literal

relationship relations. Therefore, by using the method of look-one-ahead, it is
highly probable that one can utilize the information in R.

Most ILP approaches also perform heuristical search when building clauses.
However, the search spaces of those approaches are usually much smaller than
that of CrossMine. By using complex literals, CrossMine considers two literals at
a time (one for join and another for value constraint). By using look-one-ahead,
it can consider up to three literals together in clause generation. This enables
CrossMine to find good literals and build more accurate classifiers than tradi-
tional ILP approaches. On the other hand, CrossMine is rather different from
joining a large number of relations indiscriminately, such as the “universal rela-
tion” approach. Instead, it limits the search process (i.e., tuple ID propagation)
among only active relations with at most one look-ahead. Thus the search space
is more confined, following more promising and active links than indiscriminate
joins, and thus lead to both high efficiency and classification accuracy.

5.3 Predicting Class Labels with Clauses

After generating clauses, CrossMine needs to predict the class labels of unlabelled
target tuples. CrossMine also needs to predict the class labels of the tuples in

CrossMine: Efficient Classification Across Multiple Database Relations 187

the training set to estimate the accuracy of each clause. Therefore, an efficient
algorithm is needed for finding out all target tuples satisfying each clause.

CrossMine uses an efficient algorithm based on tuple ID propagation to find
out all target tuples satisfying a certain clause c. Suppose c = Rt(+) :− l1, l2,
. . . , lk. (li (1 ≤ i ≤ k) is a complex literal.) The main idea of the algorithm is to
propagate the IDs of all target tuples along the prop-path of each literal li, and
prune all IDs of target tuples not satisfying the constraint of li.

To illustrate this procedure, let us examine an example. Suppose c =
Loan(+) :− [Loan.account id → Account.account id, Account.frequency =
monthly], [Account.district id → District.district id, avg salary > 80000].
First, the IDs of all target tuples are propagated to the Account relation via
the prop-path Loan.account id → Account.account id. All target tuples whose
associated account has value “monthly” on attribute frequency are found, and
the IDs of all the other tuples are pruned. Then the remaining IDs are propa-
gated to the District relation via the prop-path Account.district id → District.
district id, and target tuples satisfying the second literal are found, which are
all tuples satisfying this clause.

Given a set of target tuples whose class labels need to be predicted, CrossMine
first finds out the tuples satisfying each clause. For each target tuple t, the most
accurate clause that is satisfied by t is found, and the class label of that clause is
used as the predicted class. If multiple classes are presented in the training set,
then for each class C, CrossMine takes tuples of C as positive tuples and all the
other tuples as negative ones to build clauses for class C. The same algorithm is
used for predicting the class labels of unseen tuples.

6 Tuple Sampling

From Algorithm 1 we can see that during the procedure of building clauses, the
number of positive tuples keeps decreasing and the number of negative tuples
remains unchanged. Each clause covers a certain proportion of the remaining
positive tuples (usually 5% to 20%), thus the first several clauses can often cover
the majority of the positive tuples. However, even if most of positive tuples have
been covered, it still takes a similar amount of time to build a clause because all
the negative tuples remain there.

Let c.sup+ and c.sup− be respectively the number of positive and negative
tuples satisfying a clause c. Let c.bg+ and c.bg− be respectively the number of
positive and negative tuples satisfying c when c is built. The accuracy of c can
be estimated using the method in [7], which is shown in the following equation:

Accuracy(c) = (c.sup+ + 1)/(c.sup+ + c.sup− + C) (4)

where C is the number of classes.
In the algorithm described above, c.bg− always equals to the number of nega-

tive tuples. When c.bg+ is small, even if c.bg− is large, the quality of c cannot be
guaranteed. That is, if c.bg+ is small, one cannot be confident that Accuracy(c)
is a good estimate for the real world accuracy of c. Therefore, although much

188 X. Yin et al.

time is spent in building these clauses, the quality of the clauses is usually much
lower than that of the clauses with high bg+ and bg−.

Based on this observation, the following method is proposed to improve its
effectiveness. Before a clause is built, we require that the number of negative
tuples is no greater than NEG POS RATIO times the number of positive tu-
ples. Sampling is performed on the negative tuples if this requirement is not
satisfied. We also require that the number of negative tuples is smaller than
MAX NUM NEGATIVE, which is a large constant.

Here we analyze the improvement on efficiency by sampling. Our experiments
show that, when only a small portion of positive tuples remain, each clause
generated usually covers an even smaller portion of the remaining positive tuples.
The possible reason is that, there are usually many “special positive cases” that
cannot be covered by any good clause. The consequence is that the number
of generated clauses usually increases with the number of target tuples. When
sampling is not used, the time for building each clause is proportional to the total
number of target tuples. Thus the total runtime increases sharply as the number
of tuples increases, because more clauses are needed and longer time is used for
building each clause. When sampling is used, the time for building a clause is
proportional to the number of remaining positive tuples. Because the first several
clauses can often cover the majority of positive tuples, the total number of tuples
decreases sharply after finding them, and the algorithm becomes highly scalable.

When sampling is used, the accuracy of clauses should be estimated in a
different way. Suppose before building clause c, there are P positive and N
negative tuples. N ′ negative tuples are randomly chosen by sampling (N ′ <
N). After building clause c, suppose there are l positive and n′ negative tuples
satisfying c. We need to estimate n, the number of negative tuples satisfying
c. The simplest estimation is n ≈ n′ N

N ′ . However, this is not a safe estimation
because it is quite possible that c luckily excludes most of the N ′ negative
examples but not the others. We want to find out a number n, so that the
probability that n′ ≤ nN ′

N is 0.9. Or to say, it is unlikely that n
N ≤ n′

N ′ .
As we know, N ′ out of N negative tuples are chosen by sampling. Assume

we already know that n negative tuples satisfy c. Consider the event of a nega-
tive tuple satisfying c as a random event. Then n′ is a random variable obeying
binomial distribution, n′ ∼ B(N ′, n

N). n′ can be considered as the sum of N ′

random variable of B(1, n
N). When N ′ is large, according to central limit the-

orem, we have n′
N ′ ∼ N(n

N ,
n
N (1− n

N)

N ′). For a random variable X ∼ N(µ, σ2),
P (X ≥ µ − 1.28σ) ≈ 0.9. So we require

n′

N ′ =
n

N
− 1.28

√
n
N (1 − n

N)
N ′ (5)

Let x = n
N and d = n′

N ′ . Equation (5) is converted into

(

1 +
1.64
N ′

)

x2 −
(

2d +
1.64
N ′

)

x + d2 = 0 (6)

CrossMine: Efficient Classification Across Multiple Database Relations 189

Equation (6) can be easily solved with two solutions x1 and x2, corresponding
to the positive and negative squared root in equation (5). The greater solution
x2 should be chosen because it corresponds to the positive squared root. If there
are x2N negative tuples satisfying the clause before sampling, then it is unlikely
that there are less than n′ tuples satisfying the clause after sampling. Therefore,
we use x2N as the safe estimation of n. From the estimated n, we can estimate
the accuracy of c based on equation (4).

7 Experimental Results

We have performed comprehensive experiments on both synthetic databases and
real databases to show the accuracy and scalability of CrossMine. We compare
CrossMine with FOIL [18] and TILDE [3] in every experiment, where the source
code of FOIL and binary code of TILDE are from their authors. CrossMine and
FOIL are run on a 1.7GHz Pentium 4 PC running on Windows 2000 Professional.
TILDE is run on a Sun Blade 1000 workstation. Ten-fold experiments are used
unless specified otherwise.

The following parameters are used in our experiments for testing CrossMine:
MIN FOIL GAIN = 2.5, MAX CLAUSE LENGTH = 6, NEG POS RATIO =
1, and MAX NUM NEGATIVE = 600. Moreover, we have found that the accu-
racy and running time of CrossMine are not sensitive to these parameters.

7.1 Synthetic Databases

To evaluate the scalability of CrossMine, a set of synthetic relational databases
are generated. These databases mimic the real world relational databases. Our
data generator takes the parameters shown in Table 1 to generate a database.
The three columns of Table 1 represent the parameter name, description, and
default value.

To generate the database, we first generate a relational schema with |R| re-
lations, one being the target relation. The number of attributes of each relation
obeys exponential distribution with expectation A and is at least Amin. One of
the attributes is the primary-key. All attributes are categorical, and the number
of values of each attribute (except the primary key) obeys exponential distri-
bution with expectation V and is at least Vmin. Besides these attributes, each
relation has a few foreign-keys, pointing to the primary-keys of other relations.
The number of foreign-keys of each relation obeys exponential distribution with
expectation F and is at least Fmin.

After the schema is generated, we generate clauses that are lists of complex
literals. The number of complex literals in each clause obeys uniform distribution
between Lmin and Lmax. Each complex literal has probability fA to be on an
active relation and probability (1 − fA) to be on an inactive relation (involving
a propagation). Only categorical literals are used. The class label of each clause
is randomly generated, but the number of positive clauses and that of negative
clauses differ by at most 20%.

190 X. Yin et al.

Table 1. Parameters of data generator

Name Description Def.

|R| # relations x

Tmin Min # tuples in each relation 50

T Expected # tuples in each relation y

Amin Min # attributes in each relation 2

A Expected # attributes in each relation 5

Vmin Min # values of each attribute 2

V Expected # values of each attribute 10

Fmin Min # foreign-keys in each relation 2

F Expected # foreign-keys in each relation z

|c| # clauses 10

Lmin Min # complex literals in each clause 2

Lmax Max # complex literals in each clause 6

fA Prob. of a literal on active relation 0.25

The generated tuples are added to the database. The target relation has
exactly T tuples. Each target tuple is generated according to a randomly chosen
clause. In this way we also need to add tuples to non-target relations to satisfy
the clause. After all target tuples are generated, we add more tuples to non-
target relations. For each non-target relation R, the number of tuples obeys
exponential distribution with expectation T and is at least Tmin. If R already has
enough tuples, we leave it unchanged. Otherwise we randomly generate tuples
and add them to R until it has enough tuples. We use “Rx.Ty.Fz” to represent
a synthetic database with x relations, expected y tuples in each relation, and
expected z foreign-keys in each relation.

For a multi-relational classification approach, we are most interested in its
scalability w.r.t. the size of database schema, the number of tuples in each re-
lation, and the number of joins involving each relation. Therefore, experiments
are conducted on databases with different number of relations, different number
of tuples in each relation, and different number of foreign-keys in each relation.
In each experiment, the running time and accuracy of CrossMine, FOIL, and
TILDE are compared.

To test the scalability w.r.t. the number of relations, five databases are cre-
ated with 10, 20, 50, 100, and 200 relations respectively. In each database, the
expected number of tuples in each relation is 500 and the expected number of
foreign-keys in each relation is 2.

Figure 9 (a) shows the running time of the three approaches. Ten-fold experi-
ments are used in most tests, and the average running time of each fold is shown
in the figure. If the running time of an algorithm is close to or greater than 10
hours, only the first fold is tested in our experiments. We stop an experiment if
the running time is much greater than 10 hours. From the experimental results,
one can see that CrossMine is thousands of times faster than FOIL and TILDE
in most cases. Moreover, its running time is not affected much by the number of
relations. FOIL and TILDE are not scalable with the number of relations. The

CrossMine: Efficient Classification Across Multiple Database Relations 191

 1

 10

 100

 1000

 10000

 100000

 1e+06

 16 32 64 128

R
un

tim
e

(i
n

se
co

nd
s)

Number of relations

CrossMine
FOIL

TILDE

a) Time vs. #relation

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 16 32 64 128

A
cc

ur
ac

y
(%

)

Number of relations

CrossMine
FOIL

TILDE

b) Accuracy vs. #relation

Fig. 9. Runtime and accuracy on R*.T500.F2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10000 100000

R
un

tim
e

(i
n

se
co

nd
s)

Expected number of tuples

CrossMine
CrossMine with sampling

FOIL
TILDE

a) Time vs. # tuple

 40

 50

 60

 70

 80

 90

 100

 10000 100000

A
cc

ur
ac

y
(%

)

Expected number of tuples

CrossMine
CrossMine with sampling

FOIL
TILDE

b) Accuracy vs. # tuple

Fig. 10. Runtime and accuracy on R20.T*.F2

running time of FOIL increases 9.6 times when the number of relations increases
from 10 to 50, whereas the running time of TILDE increases 17.3 times. The
accuracy of the three approaches are shown in Figure 9 (b). One can see that
CrossMine is more accurate than FOIL and TILDE.

To test the scalability w.r.t. the number of tuples, five databases are cre-
ated with the expected number of tuples in each relation being 200, 500, 1000,
2000, and 5000, respectively. There are twenty relations in each dataset, thus
the expected number of tuples range from 4K to 100K. The expected num-
ber of foreign-keys in each relation is 2. In this experiment, the performance of
CrossMine with sampling is also tested to show the effectiveness of sampling.
Figure 10 (a) shows the running time of the four approaches.

One can see that CrossMine is more scalable than FOIL and TILDE. The
running time of CrossMine increases 8 times when the number of tuples increases
from 200 to 1000, while those of FOIL and TILDE increase 30.6 times and
104 times, respectively. With tuple sampling, CrossMine becomes more scalable
(running time decreases to one third of non-sampling version when the number of
tuples is 5000). The accuracy of the three approaches is shown in Figure 10 (b).
CrossMine is more accurate than FOIL and TILDE, and the sampling method
only slightly sacrifices the accuracy.

192 X. Yin et al.

 1

 10

 100

 1000

 10000

 10000 100000 1e+06

R
un

tim
e

(i
n

se
co

nd
s)

Number of tuples

CrossMine with sampling

a) Time vs. # tuple

 40

 50

 60

 70

 80

 90

 100

 10000 100000 1e+06

A
cc

ur
ac

y(
%

)

Number of tuples

CrossMine with sampling

b) Accuracy vs. # tuple

Fig. 11. Runtime and accuracy on large datasets

 1

 10

 100

 1000

 10000

 100000

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
un

tim
e

(i
n

se
co

nd
s)

Number of foreign-keys

CrossMine
FOIL

TILDE

a) Time vs. #foreign-key

 40

 50

 60

 70

 80

 90

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

ur
ac

y
(%

)

Number of foreign-keys

CrossMine
FOIL

TILDE

b) Accuracy vs. #foreign-key

Fig. 12. Runtime and accuracy on R20.T500.F*

We also test CrossMine (with negative sampling) on large datasets to show
its high scalability. We generate nine datasets with expected number of tuples in
each relation from 200 to 100K. Since there are twenty relations in each dataset,
the expected numbers of tuples range from 4K to 2M. The running time and
accuracy of CrossMine are shown in Figure 11 (a) and (b). It can be seen that
CrossMine is highly scalable for large datasets.

Finally, we test the scalability w.r.t. the number of foreign-keys. Again, five
databases are created with the expected number of foreign-keys in each relation
being 1 to 5. The number of relations is 20 and the expected number of tuples
in each relation is 500. The running time of the three approaches are shown in
Figure 12 (a) and the accuracy are shown in Figure 12 (b). One can see that
CrossMine is not very scalable w.r.t. the number of foreign-keys, although it is
still much more efficient than FOIL and TILDE. Fortunately, in most commer-
cial databases the number of foreign-keys in each relation is quite limited. And
CrossMine is very efficient when this number is not large.

7.2 Real Databases

Experiments are also conducted on two real databases to compare the efficiency
and accuracy of CrossMine, FOIL and TILDE. The first database is the financial

CrossMine: Efficient Classification Across Multiple Database Relations 193

Table 2. Performances on the financial database of PKDD CUP’99

Approach Accuracy Runtime

CrossMine w/o sampling 89.5% 20.8 sec

CrossMine with sampling 88.3% 16.8 sec

FOIL 74.0% 3338 sec

TILDE 81.3% 2429 sec

Table 3. Performances on the Mutagenesis database

Approach Accuracy Runtime

CrossMine 89.3% 2.57 sec

FOIL 79.7% 1.65 sec

TILDE 89.4% 25.6 sec

database used in PKDD CUP 1999. Its schema is shown in Figure 1. We modify
the original database by shrinking the Trans relation which was extremely huge,
and removing some positive tuples in the Loan relation to make the numbers of
positive tuples and negative tuples more balanced. The final database contains
eight relations and 75982 tuples in total. The Loan relation contains 324 positive
tuples and 76 negative ones. The performances on this database is shown in Table
2. All three types of literals are considered in this experiment.

The second database is the Mutagenesis database, which is a frequently used
ILP benchmark. It contains four relations and 15218 tuples. The target relation
contains 188 tuples, in which 124 are positive and 64 are negative. The Muta-
genesis database is pretty small and the sampling method has no influences to
CrossMine. The performances is shown in Table 3.

From the experiments one can see that CrossMine achieves good accuracy and
efficiency. It is much more efficient than traditional ILP approaches, especially
on databases with complex schemas.

8 Discussions

In this paper it is assumed that the dataset can fit in main memory, so that
random access can be performed on tuples in different relations. In some real
applications the dataset cannot fit in main memory. Instead, the data are stored
in a relational database in the secondary storage. However, this will not affect
the scalability of CrossMine. In this section we show that all the operations of
CrossMine can be performed efficiently on data stored on disks.

8.1 Tuple ID Propagation

Tuple ID propagation is the most basic operation of CrossMine. When data is
in main memory, a set of tuple IDs associated with a relation R are stored in

194 X. Yin et al.

a separate array. When data cannot fit in main memory, we can store a set
of tuple IDs as an attribute of R. Since CrossMine limits the fan-out of tuple
ID propagation (Section 4.3), the number of IDs associated with each tuple is
limited, thus the IDs can be stored as a string of fixed or variable length.

In CrossMine, only joins between keys or foreign-keys are considered (Section
3.1). An index can be created for every key or foreign key. When propagating
IDs from R1 to R2, only the tuple IDs and the two joined attributes are needed.
If one of them can fit in main memory, this propagation can be done efficiently.
Otherwise, a join operation can be performed between R1 and R2 to find joinable
tuples and propagated IDs.

8.2 Evaluating Literals

Suppose tuple IDs have been propagated to a relation R, and the best literal on
R need to be identified. If all attributes of R are categorical, then the numbers
of positive and negative target tuples satisfying every literal can be calculated
by one sequential scan on R. With this sequential scan, we can also generate
simple statistics (sum, average, etc.) for every target tuple and every numerical
attribute. The best aggregation literal can be found by these statistics. For a
numerical attribute A, suppose a sorted index has been built on A. Then a
sorted scan on A is needed to find the best literal on A. If this index and the
tuple IDs can fit in main memory, this can be done efficiently.

9 Conclusions and Future Work

Multi-relational classification is an important issue in data mining and machine
learning involving large, real databases. It can be widely used in many disciplines,
such as financial decision making, medical research, and geographical applications.
Many traditional ILP approaches are inefficient and unscalable for databases with
complex schemasbecause they evaluate ahugenumber of clauseswhen selecting lit-
erals. In this paperweproposeCrossMine, an efficient approach formulti-relational
classification. It uses tuple ID propagation to reduce the computational cost dra-
matically, which makes CrossMine highly scalable w.r.t. the size of database
schemas. In the process of building clauses, CrossMine performs search in wider
space than traditional ILP approaches by considering up to three literals at a time.
This enables CrossMine to identify better-quality literals and build more accurate
clauses. Experiments show that CrossMine is highly efficient comparing with the
traditional ILP approaches, and it achieves high accuracy. These features make it
appropriate for multi-relational classification in real world databases.

There are several possible extensions to CrossMine. Although CrossMine
searches a wider space to select better-quality clauses than most ILP approaches,
it is still a greedy algorithm and searches only a small part of the whole search
space. Moreover, it is interesting to study how to integration CrossMine method-
ology with other classification methods (such as SVM, Neural Networks, and
k-nearest neighbors) in the multi-relational environment to achieve even better
accuracy and/or scalability.

CrossMine: Efficient Classification Across Multiple Database Relations 195

References

1. A. Appice, M. Ceci, and D. Malerba. Mining model trees: a multi-relational ap-
proach. In Proc. 2003 Int. Conf. on Inductive Logic Programming, Szeged, Hun-
gary, Sept. 2003.

2. J. M. Aronis, F. J. Provost. Increasing the Efficiency of Data Mining Algorithms
with Breadth-First Marker Propagation. In Proc. 2003 Int. Conf. Knowledge Dis-
covery and Data Mining, Newport Beach, CA, 1997.

3. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of logical decision
trees. In Proc. 1998 Int. Conf. Machine Learning, Madison, WI, Aug. 1998.

4. H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge Dis-
covery, 3(1):59-93, 1999.

5. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research, 16:135-166, 2002.

6. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–168, 1998.

7. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
Proc. 1991 European Working Session on Learning, pages 151–163, Porto, Portu-
gal, Mar. 1991.

8. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice Hall, 2002.

9. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast
decision tree construction of large datasets. In Proc. 1998 Int. Conf. Very Large
Data Bases, New York, NY, Aug. 1998.

10. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

11. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
12. S. Muggleton. Inductive Logic Programming. Academic Press, New York, NY,

1992.
13. S. Muggleton. Inverse entailment and progol. In New Generation Computing,

Special issue on Inductive Logic Programming, 1995.
14. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proc. 1990

Conf. Algorithmic Learning Theory, Tokyo, Japan, 1990.
15. J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning Relational Probability

Trees. Proc. 2003 Int. Conf. Knowledge Discovery and Data Mining, Washtington,
DC, 2003.

16. A. Popescul, L. Ungar, S. Lawrence, and M. Pennock. Towards structural logistic
regression: Combining relational and statistical learning. In Proc. Multi-Relational
Data Mining Workshop, Alberta, Canada, 2002.

17. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
18. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proc. 1993

European Conf. Machine Learning, Vienna, Austria, 1993.
19. B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clustering in

relational data. In Proc. 2001 Int. Joint Conf. Artificial Intelligence, Seattle, WA,
2001.

	Introduction
	Related Work
	Preliminaries
	Basic Definitions
	Literals
	Clauses
	Evaluation of Literals and Clauses

	Tuple ID Propagation
	Search for Literals by Joins
	Tuple ID Propagation
	Analysis and Constraints

	Clause Generation
	Finding Best Literal
	Clause Generation Algorithms
	Predicting Class Labels with Clauses

	Tuple Sampling
	Experimental Results
	Synthetic Databases
	Real Databases

	Discussions
	Tuple ID Propagation
	Evaluating Literals

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

