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Abstract. Given the theoretical framework of Mannila and Toivonen
[26], we are interested in the discovery of the positive border of inter-
esting patterns, also called the most specific interesting patterns. Many
approaches have been proposed among which we quote the levelwise algo-
rithm and the Dualize and Advance algorithm. In this paper, we propose
an adaptive strategy – complementary to these two algorithms – based
on four steps: 1) In order to initialize the discovery, eliciting some el-
ements of the negative border, for instance using a levelwise strategy
until a certain level k. 2) From the negative border found so far, infer-
ring the optimistic positive border by dualization, i.e. the set of patterns
whose all specializations are known to be not interesting patterns. 3) Es-
timating the distance between the positive border to be discovered and
the optimistic positive border. 4) Based on these estimates, carrying out
an adaptive search either bottom-up (the jump was too optimistic) or
top-down (the solution should be very close).

We have instantiated this proposition to the problem of inclusion de-
pendency (IND) discovery. IND is a generalization of the well known
concept of foreign keys in databases and is very important in practice.
We will first point out how the problem of IND discovery fits into the
theoretical framework of [26]. Then, we will describe an instantiation of
our adaptive strategy for IND discovery, called Zigzag, from which some
experiments were conducted on synthetic databases. The underlying ap-
plication of this work takes place in a project called DBA Companion
devoted to the understanding of existing databases at the logical level
using data mining techniques.

1 Introduction

Given the theoretical framework for data mining given in [26], we are interested
in the discovery of the positive border of interesting patterns, also called the most
specific interesting patterns. Many approaches have been proposed among which
we quote the levelwise algorithm [26] and the Dualize and Advance algorithms
[17,30]. In this paper, we propose an adaptive strategy – complementary to these
two main algorithms – based on four steps:
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1. In order to initialize the discovery, eliciting some elements of the negative
border, for instance using a levelwise strategy until a certain level k.

2. From the negative border found so far, inferring the optimistic positive border
which is the set of patterns whose all specializations are known to be not
interesting patterns. In the spirit of the Dualize and Advance algorithm, this
part exploits the idea of monotone dualization, involving the generation of
minimal transversals of an hypergraph.

3. Estimating the distance between the positive border to be discovered and
the optimistic positive border.

4. Based on these estimates, carrying out an adaptive search either bottom-
up (the jump was too optimistic) or top-down (the solution should be very
close).

The basic idea of our proposition is to combine the strength of both levelwise
algorithm and Dualize and Advance algorithm in such a way that:

– ”small” maximal interesting patterns may be found efficiently as well as large
ones, which is drawback of levelwise strategies.

– the number of dualization may be tuned with our adaptive strategy whereas
the number of dualization performed by Dualize and Advance is always
in the size of the positive border (tight bound).

The dualization performed in step 2 is quite similar to that proposed in the
Dualize and Advance algorithm. Nevertheless, instead of starting from interest-
ing patterns as Dualize and Advance algorithm does, we use not interesting pat-
terns to perform the dualization. As a consequence, our proposition contributes
to clarify many works dealing with related problems (e.g. maximal frequent item-
sets [22,5,16,10]) since it gives an exact characterization of the optimistic positive
border of interesting patterns from some subset of interesting patterns.

We have instantiated this proposition to the problem of inclusion dependency
(IND) discovery. IND is a generalization of the well known concept of foreign
keys in databases and is very important in practice. We first point out how the
problem of IND discovery fits into the theoretical framework of borders of theo-
ries only if IND with repeated attributes are allowed. Then, an instantiation of
our adaptive strategy for IND discovery is proposed. From our general propo-
sition, a specific algorithm called Zigzag has been devised for IND discovery.
Some experiments conducted on synthetic databases have been performed and
results are given.

The underlying application of this work takes place in a project called DBA
Companion devoted to the understanding of existing databases at the logical
level using data mining techniques. Whereas physical database design has always
received a lot of attention by the database community, one can quote that,
rather surprisingly, logical database analysis has been less studied despite its
importance for practical applications such as logical database tuning, semantic
query optimization or simply database auditing.

From this simple remark, we have developed a project called DBA Companion
devoted to the understanding of logical database constraints from which logical
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database tuning can be achieved [25,24,11,12]. In this setting, two main data
mining issues need to be addressed: the first one is the design of efficient algo-
rithms for functional dependencies and inclusion dependencies discovery and the
second one is about the interestingness of the discovered knowledge.

Clearly, the contribution made in this paper fits into this project and has been
integrated in our GUI prototype available on-line [23]: its objective is to be able
to connect a database in order to give some insights to DBA/analyst such as:

– the functional dependencies and inclusion dependencies satisfied in her/his
database,

– small examples of her/his database, thanks to Informative Armstrong Data-
bases. The same benefits when the design by example were introduced are
also expected in this slightly different context (database maintenance vs
database design).

Chapter organization. The chapter is organized as follows: Section 2 recalls the
framework of borders of a theory. Section 3 introduces the principle of our ap-
proach for discovering the positive border of interesting patterns within this
theoretical framework. Section 4 applies our proposition on a particular appli-
cation: the discovery of inclusion dependency. Based on this proposition, the
algorithm Zigzag and some experimental results are given. Section 5 quickly
introduces related contributions and we conclude in Section 6.

2 Preliminaries: Borders of a Theory

We recall below some notations and basic results used among this chapter. For
more details, the reader is invited to refer to [26].

Given a database d, a finite language L for expressing patterns or defining
subgroups of the data, and a predicate Q for evaluating whether a pattern ϕ ∈ L
is true or ”interesting” in d, the discovery task is to find the theory of d with
respect to L and Q, i.e. the set Th(L,d,Q) = {ϕ ∈ L|Q(d, ϕ) is true}.

A specialization/generalization relation does often exist between patterns of
L. Such a relation is a partial order � on the patterns of L. We say that ϕ is
more general (resp. more specific) than θ, if ϕ � θ (resp. θ � ϕ).

The relation � is a anti-monotone relation with respect to Q if the predicate
Q is anti-monotone wrt �, i.e. for all θ, ϕ ∈ L if Q(d, θ) is true and ϕ � θ then
Q(d, ϕ) is true.

Given a partial order �, the set Th(L,d,Q) can be represented by enumer-
ating only its maximal elements, that is the set

MTh(L,d,Q) = {ϕ ∈ Th(L,d,Q)| for no θ ∈ Th(L,d,Q), ϕ ≺ θ}
A set S of patterns from L such that S is closed downwards under the rela-

tion � can be represented by two borders: the positive border of S, denoted by
Bd+(S), and the negative border of S, denoted by Bd−(S). They are defined as
follows: Bd+(S) = {σ ∈ S |� ∃ϕ ∈ S, σ ≺ ϕ} and Bd−(S) = {σ ∈ L \ S |� ∃ϕ ∈
L \ S, ϕ ≺ σ}.
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Obviously, we have Bd+(Th(L,d,Q)) = MTh(L,d,Q).
Let us consider C as the set of all patterns from L. In that case, (C,�) is a

poset and let R be a set (the powerset of R is denoted by P(R)). Sometimes an
isomorphism between the posets (C,�) and (P(R),⊆) may exist. In that case,
the problem MTh(L,d,Q) is said to be representable as sets.

A function f : C → P(R) is said to be a representation of (C,�) as sets if f
is bijective and its inverse is computable, and for all θ and ϕ we have θ � ϕ iff
f(θ) ⊆ f(ϕ).

With this supplementary constraint, we have a relationship between the pos-
itive and negative border through the notion of minimal transversal1 of hyper-
graphs.

Consider the hypergraph H(S) on R containing as edges the sets f(ϕ) for
ϕ ∈ Bd+(S), i.e. H(S) = {f(ϕ) | ϕ ∈ Bd+(S)} also noted as H(S) = f(Bd+(S)).
Let TrMin(H) be all minimal transversals of the hypergraph H and H(S) =
{R \X | X ∈ H(S)} the complements of the edges of H(S) in R.

Now the relationship between the positive and negative border may be given:
Theorem 1. [26]

f−1(TrMin(H(S))) = Bd−(S)

Note that S can be reduced to its positive border, i.e. we have:
f−1(TrMin(H(Bd+(S)))) = Bd−(Bd+(S)).

3 Principle of Our Approach

The basic idea is to combine the strength of both levelwise algorithm and Du-
alize and Advance algorithm in such a way that ”small” maximal interesting
patterns may be found efficiently by a levelwise strategy, while ”large” maximal
interesting patterns may be discovered by dualization.

The proposed method consists of a pessimistic exploration of the most general
patterns until a given level k, and then a ”zigzag” between the negative border
in construction and the corresponding optimistic positive border.

3.1 Step 1: A k-Levelwise Approach

In order to initialize the discovery, we would like to elicit the largest possible
subset of the negative border. Therefore, we have chosen to apply a levelwise
strategy since it may be optimal whenever large interesting patterns do not
exist. We apply it until a certain level k, which may be specified by the user
or dynamically defined. As an example, the following heuristic may be used :
”As soon as the negative border does not change enough between two iterations,
stop the levelwise search”. This can be done efficiently without any overhead by
counting at a given level k, the ratio of the number of interesting patterns of
1 A minimal transversal of an hypergraph H is a set of elements X such that (1) X

has a non empty intersection with every element of H and (2) X is minimal w.r.t.
this property.
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size k on the number of candidates patterns of size k whose all generalizations
are interesting.

More formally, this heuristic can be stated as follows:
Given a threshold ε ∈ [0, 1], at any iteration of a levelwise algorithm, let Ck

(resp. Fk) be the candidate patterns (resp. interesting patterns) of size k. If
|Fk|
|Ck| ≥ ε, then stop the levelwise search and the current level gives the value of
k. The choice of ε should be typically close to 1.

At the end, whatever the criterion used to get the value k, the levelwise
algorithm provides 1) the set Bd+

k (Th(L,d,Q)), which can be seen as a subset
of Bd+(Th(L,d,Q)) (in fact, some elements of size k will be removed latter) and
2) the set Bd−k (Th(L,d,Q)), which is a subset of Bd−(Th(L,d,Q)).

3.2 Step 2: The Optimistic Positive Border

The simple remark on which this step is founded is the following: a set of not
interesting patterns makes it possible to prune a certain number of candidates
by anti-monotony, and thus to define an optimistic set of interesting patterns, as
being the set of sentences whose all specializations do not verify the predicate.

Definition 1. Let C be the search space associated to L for the problem of
enumerating MTh(L,d,Q). Let NI ⊆ C be a set such that ∀ϕ ∈ NI,Q(d, ϕ) is
false, i.e. ϕ is not interesting in d.

The optimistic set of interesting patterns with respect to NI, denoted by
Iopt(NI), is defined by: Iopt(NI) = {ϕ ∈ C |� ∃σ ∈ NI, σ � ϕ}.

Moreover, the optimistic positive border, denoted by Bd+(Iopt(NI)), is the
set of most specific patterns in Iopt(NI). When clear from context, we will note
Bd+

opt(NI) instead of Bd+(Iopt(NI)). Remark that Bd+
opt(NI) is the same if NI

is restricted to its most general patterns.
In the spirit of the dualization proposed in the Dualize and Advance algorithm

[17], the next theorem states the relation between the optimistic positive border
and the minimal transversals of an hypergraph.

Theorem 2. Let NI ⊆ C be a set of non-interesting patterns in d.
The optimistic positive border w.r.t. NI is such that:

Bd+
opt(NI) = f−1(TrMin(H(NI)))

Proof. Let i ∈ C be a pattern.
First, we show that i ∈ Iopt(NI) ⇔ f(i) is a transversal of H(NI) :
i ∈ Iopt(NI)
⇔ ∀j ∈ NI, j �� i
⇔ ∀j ∈ NI, f(j) �⊆ f(i)
⇔ ∀j ∈ NI, f(j) ∩ f(i) �= ∅
⇔ f(i) is a transversal of H(NI).
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Then we show that i is maximal in Iopt(NI) ⇔ f(i) is a minimal transversal of
H(NI) :
Let i ∈ Bd+

opt(NI). Since i ∈ Iopt(NI), f(i) is a transversal of H(NI). Suppose
f(i) is not minimal: ∃X ⊆ R, X transversal of H(NI) and X ⊂ f(i), and thus
f(i) ⊂ X. Then f−1(X) ∈ Iopt(NI) and i ≺ f−1(X), which contradict the fact
that i ∈ Bd+

opt(NI).
Now, let X ∈ TrMin(H(NI)). X is a transversal, then f−1(X) ∈ Iopt(NI).
Suppose that f−1(X) is not maximal: ∃j ∈ Iopt(NI) such that f−1(X) ≺ j.
Then f(j) is a transversal of H(NI) with X ⊆ f(j), and thus f(j) ⊆ X, which
contradicts the fact that X is a minimal transversal.

Remark 1. This result can also be proved as a simple corollary of the theorem
1 since TrMin(TrMin(H)) = H for any hypergraph H [7].

Thanks to this result, the optimistic positive border computation can exploit
the numerous works and results about minimal transversals computation; recent
results can be found in [14,4,9].

An optimization can also be brought to the calculation of Bd+
opt(NI). Indeed,

at each iteration, this set contains at the same time the largest possible inter-
esting patterns, but also all interesting patterns already discovered. The idea
is thus to characterize only new elements of Bd+

opt(NI), ignoring those already
explored. The following result just follows from the theorem 2.

Proposition 1. Let Ik be the set of interesting patterns of size less or equal to
k, NI a set of non-interesting patterns, and n = |R|.

We have:
i ∈ (Bd+

opt(NI) \ Ik) ⇐⇒ f(i) ∈ TrMin(H(NI)) and |f(i)| ≤ n− k

In practice, this condition leads to optimize the generation of minimal trans-
versals since candidates exceeding the size allowed can be safely removed.

3.3 Step 3: Getting Estimates on the Optimistic Positive Border

We try to estimate the distance between the positive border to be discovered
and the optimistic positive border in order to guide the search in the next step.

For ϕ ∈ Bd+
opt(NI), two main cases do exist:

– either Q(d, ϕ) is true: the ”jump” was successful.
– or Q(d, ϕ) is false. In that case, we propose to estimate a degree of error in

order to qualify the jump.

Given a new user-defined threshold δ, a database d and a predicate Q, an
error measure ψ defined from L to �, noted ψd,Q(ϕ), we can easily devised two
sub-cases when Q(d, ϕ) is false:

– either ψd,Q(ϕ) ≤ δ : the ”jump” was not successful but solutions should
exist among the nearest generalizations of ϕ.

– or ψd,Q(ϕ) > δ : In that case, the jump was over-optimistic and probably,
no solution does exist among the nearest generalizations of ϕ.
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Moreover, error measures must be restricted to those verifying the following
property:
Property 1. Let ϕ, θ ∈ L. ϕ � θ ⇒ ψd,Q(ϕ) ≤ ψd,Q(θ)

Clearly the definition of such error measures is quite application-dependent
and should be done carefully.

Nevertheless, a generic idea to build such error measures can be stated as
follows: ”Computing the ratio of the size of the largest subset of the database so
that the pattern becomes interesting on the size of the database”. More formally,
let ϕ ∈ L such that Q(d, ϕ) is false.

ψd,Q(ϕ) = 1 − max{|d′ | | d′ ⊆ d,Q(d
′
, ϕ) true}

|d|
The interested reader may refer to [19] for other error measure definitions in

the restricted setting of functional dependencies.

3.4 Step 4: Adaptive Behavior

Based on these estimates, many different strategies can be devised in order to
guide the search. Basically, the traversal of the unexplored search space can
be carried out either bottom-up (the jump was too optimistic) or top-down
(the solution should be very close). Many other strategies could be applied to
converge as soon as possible to the positive border of interesting patterns. The
basic idea is to avoid the enumeration of the largest parts of the search space.

Note that many propositions have been made in the setting of maximal fre-
quent itemsets, see for example [22,5,16,10]. The discussion done in [22] is quite
relevant in our context.

Once again, this step is also application-dependent and will not be described
further in this chapter. More details will be given in section 4 in the context of
the discovery of INDs in databases.

4 Application to Inclusion Dependency Discovery

4.1 Preliminaries

Some concepts of the relational databases are briefly recalled (see for example
[1,21] for more details).

Let R be a finite set of attributes. For each attribute A ∈ R, the set of all
its possible values is called the domain of A and denoted by Dom(A). A tuple
over R is a mapping t : R → ∪A∈RDom(A), where t(A) ∈ Dom(A), ∀A ∈ R.
A relation is a finite set of tuples. The cardinality of a set X is denoted by
|X |. We say that r is a relation over R and R is the relation schema of r. If
X ⊆ R is an attribute set2 and t is a tuple, we denote by t[X ] the restriction of

2 Letters from the beginning of the alphabet introduce single attributes whereas letters
from the end introduce attribute sets.
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t to X . The projection of a relation r onto X , denoted as πX(r), is defined by
πX(r) = {t[X ] | t ∈ r}.

A database schema R is a finite set of relation schemes Ri. A relational
database instance d (or database) over R corresponds to a set of relations ri
over each Ri of R.

An attribute sequence (e.g. X =< A,B,C > or simply ABC) is an ordered
set of attributes. When it is clear from context, we do not distinguish a sequence
from its underlying set.

Two attributes A and B are said to be compatible if Dom(A) = Dom(B).
Two distinct attribute sequences X and Y are compatible if |X | = |Y | = m and
if for j = [1,m], Dom(X [j]) = Dom(Y [j]).

An inclusion dependency (IND) over a database schema R is a statement of
the form Ri[X ] ⊆ Rj [Y ], where Ri, Rj ∈ R, X ⊆ Ri, Y ⊆ Rj , X and Y are
compatible sequences3.

The size (or arity) of an IND i = R[X ] ⊆ R[Y ], noted |i| is such that |i| =
|X | = |Y |. We call unary inclusion dependency an IND of size 1.

Let d be a database over a database schema R, where ri, rj ∈ d are relations
over Ri, Rj ∈ R respectively. An inclusion dependency Ri[X ] ⊆ Rj [Y ] is satisfied
in a database d over R, denoted by d |= Ri[X ] ⊆ Rj [Y ], if and only if ∀u ∈
ri, ∃v ∈ rj such that u[X ] = v[Y ] (or equivalently πX(ri) ⊆ πY (rj)).

Let I1 and I2 be two sets of inclusion dependencies, I1 is a cover of I2 if
I1 |= I2 (this notation means that each dependency in I2 holds in any database
satisfying all the dependencies in I1) and I2 |= I1.

A sound and complete axiomatization for INDs was given in [27]. If I is a set
of INDs, we have:

1. (reflexivity) I |= R[A1, ..., An] ⊆ R[A1, ..., An]
2. (projection and permutation) if I |= R[A1, ..., An] ⊆ S[B1, ..., Bn] then
I |= R[Aσ1, ..., Aσm] ⊆ S[Bσ1, ..., Bσm] for each sequence σ1, ..., σm of dis-
tinct integers from {1, ..., n}

3. (transitivity) if I |= R[A1, ..., An] ⊆ S[B1, ..., Bn] et I |= S[B1, ..., Bn] ⊆
T [C1, ..., Cn] then I |= R[A1, ..., An] ⊆ T [C1, ..., Cn]

4. (attribute equality) if I |= R[AB] ⊆ S[CC], then A and B can be substituted
to each other in all satisfied IND expressions.

5. (redundancy) if I |= R[X ] ⊆ S[Y ], then I |= R[XU ] ⊆ S[Y V ], where R[U ] ⊆
S[V ] can be obtained from R[X ] ⊆ S[Y ] using second inference rule.

4.2 Adequacy to the Framework of Borders of Theories

The finite language L corresponds to the language defining INDs in a database
schema, i.e. a pattern is an IND. The database d is the relational database on
which the discovery of INDs has to be performed and, the predicate Q(d, ϕ) is
3 Usually, the IND definition excludes repeated attributes in the sequences on left

and right-hand sides. In this paper, we adopt a less restrictive framework in order to
ensure a representation as sets for INDs (cf Section 4.2) ; the exclusion of the repeated
attributes is considered after the presentation of the algorithm (cf. Section 4.5).
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the satisfaction of an IND against the database, i.e. Q(d, ϕ) is true ⇐⇒ d |= ϕ.
In other words, an interesting pattern is a satisfied IND.

The problem of IND discovery can be formulated as follows:

Let d be a database, find a cover of all satisfied INDs in d

The number of potentially satisfied INDs, which constitutes the basic search
space, is more than factorial in the number of attributes [18].

In the sequel, we denote by C the search space of INDs, made up of a set of
IND expressions. The aim of this section is to reach a formal definition of C, in
such a way that the IND discovery problem fits into the framework previously
presented.

In order to structure the search space, a specialization / generalization relation
between INDs is proposed in the following definition.

Definition 2. Given i = R[X ] ⊆ S[Y ] and j = R[X ′] ⊆ S[Y ′] two IND
expressions, we say that j generalizes i (or i specializes j), noted j � i, if
X =< A1, ..., An >, Y =< B1, ..., Bn >, and there exists a set of integers
k1 < ... < kl ∈ {1, ..., n} with l ≤ n such that X ′ =< Ak1 , ..., Akl

> and
Y ′ =< Bk1 , ..., Bkl

>.

For example, R[AC] ⊆ S[DF ] � R[ABC] ⊆ S[DEF ]. We note j ≺ i for j � i
and j �= i.

Moreover, the satisfaction of an IND in a database d turns out to be anti-
monotone with respect to the relation �, which is a requirement to comply with
the theoretical framework introduced in Section 2.
Property 2. Let i, j ∈ C such that j � i.

d �|= j ⇒ d �|= i

Thus, any set I of INDs can be represented by two borders: its most specialized
elements, i.e. its positive border Bd+(I) and the most general elements which
does not belong to I, i.e. its negative border Bd−(I).

Clearly, when I is the set of the satisfied INDs in d, Bd+(I) answers the IND
discovery problem.

In order to apply our proposition, we need to exhibit a representation as sets
of the search space C of INDs, i.e. to find a subset lattice (P(R),⊆) isomorph
to (C,�). The basic idea is to consider the powerset of unary INDs as a possible
candidate in order to build a bijective function between (P(R),⊆) and (C,�).
We shall see in the sequel that we will need to restrict somehow (C,�) to comply
with the requirements given in Section 2.

We first define a function, called ens, to transform a given IND into a set of
unary INDs.

Definition 3. Let I1 be the set of unary INDs over R.
The function ens : C −→ P(I1) is defined by:

ens(i) = {j ∈ I1 | j � i}
Therefore, each IND can be associated with a set of unary INDs.
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Example 1. Consider i = R[ABC] ⊆ S[EFG], i1 = R[A] ⊆ S[E], i2 = R[B] ⊆
S[F ] and i3 = R[C] ⊆ S[G]. Then: ens(i) = {i1, i2, i3}.

Then, the following example points out that, if the domain of ens (i.e. C) is not
carefully defined, the function ens is not injective and ens−1 is not computable.
Example 2. Suppose d = {r1, r2, r3} over the schema R = {R1, R2, R3}, with
R1 = ABC,R2 = DEF and R3 = GHI. For sake of clearness, let us note
i1 = R1[A] ⊆ R2[D], i2 = R1[A] ⊆ R2[E] and i3 = R1[B] ⊆ R3[H ]. Then:

– ens(R1[AA] ⊆ R2[DE]) = ens(R1[AA] ⊆ R2[ED]) = {i1, i2}, i.e. the func-
tion ens is not injective.

– ens−1({i1, i3}) is not computable since i1 and i3 are not defined over the
same right-hand side schema.

It is also worth noting that we can now justify through this example the
necessity of accepting repeated attributes in IND definition, since otherwise
ens−1({i1, i2}) could not be defined.

To cope with the first point of the example 2, the search space C has to be
restricted to only one permutation of each IND. Hopefully, thanks to the second
inference rule for INDs (cf Section 4.1), this restriction does not imply any lost
in the discovered knowledge and can be fixed easily: a total order on attributes
has to be enforced on one side of IND. We choose to fix an order on the left-hand
side, cf Definition 4 below.

Now, an interesting property allows us to deal with the second point of the
example 2, making it possible to break up our exploration method into several
independent courses.
Property 3. Let d be a database over a schema R and I the set of satisfied
INDs in d. Let IR→S be INDs from R to S. Then

Bd+(I) =
⋃

(R,S)∈R2

Bd+(IR→S)

Thus, the IND discovery can be made through independent tasks, one for each
couple of relations in the database. During one execution, only INDs defined from
a given relation to another (possibly the same) relation are considered, and thus
the second difficulty pointed out by the example 2 does not occur any more.

We can now restrict the search space C of INDs to a couple of relations in
a database schema. We suppose that a total order exists over attributes, for
instance the lexicographic order can always be used up to a renaming.

Definition 4. Let R be a database schema and (R,S) a couple of relation
schema of R. The search space of INDs over (R,S), denoted by C(R,S) or
just C when (R,S) is clear from the context, is defined by:

C(R,S) = {R[< A1...An >] ⊆ S[< B1...Bn >] | ∀1 ≤ i < j ≤ n,

(Ai < Aj) ∨ (Ai = Aj ∧Bi < Bj)}
where n = min(|R|, |S|).
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Until the end of this chapter, we will use the following notation:

– (R,S) is a couple of relations of R,
– C is the search space of INDs from R to S and
– I1 the set of unary INDs from R to S, i.e. I1 ⊆ C.

We can now give the main result of this section, that is to say that under the
previous assumptions, the IND search space is representable as sets.
Property 4. The function ens : C −→ P(I1) is bijective and its inverse function
ens−1 is computable.

This result can be easily derived from the definition of ens and from the def-
inition of the search space C. The following property follows from the definition
of the function ens and the definition of the relation �:
Property 5. Let i and j be two INDs expressions of C.

i � j ⇔ ens(i) ⊆ ens(j)

Thus, we have highlighted an isomorphism from (C,�) to (P(I1),⊆), that is
to say that the search space of INDs is representable as sets. As a consequence,
each set of INDs in C can be associated with an hypergraph:

Definition 5. Let I ⊆ C. The hypergraph associated with I, denoted by H(I) =
{V,E}, is defined by: V = I1 and E = {ens(i) | i ∈ I}.
4.3 Applying Our Four Steps Approach

In this section, we customize our four steps approach to the problem of IND
discovery. Some properties of INDs will be given to justify our choices.
Step 1: A k-levelwise Approach. Several factors justify to use a levelwise
approach for INDs of ”small” size. The first one is that in practice, a great
proportion of unary IND candidates is not satisfied. Thus a significant part of
the search space is disqualified by anti-monotony, justifying a levelwise approach
for this level.

The second one is that an efficient method was proposed in [11] for unary IND
discovery, based on a data reorganization. The salient feature of this approach
is not to make as many database passes as candidates exist (as it is the case in
general for dependency discovery [26]), but only one database pass for all the
candidates (as it is for example the case for frequent itemsets).

In [26], a levelwise approach is suggested to discover Bd+(I). The algorithm
MIND [11] is based on this idea, using an AprioriGen like candidate generation
[2]. Its effectiveness is based on the presence at each level of many not satisfied
INDs, in order to prune a great part of the remaining space. The experiments
conducted in [11] show that such an approach is scalable according to the num-
ber of tuples and attributes: the greatest database had 90000 tuples and 200
attributes, the IND positive border of the database was composed of four unary
IND and one IND of size 6. Nevertheless, such an approach is not adapted when
large INDs have to be discovered; indeed, to discover an IND i of size n, it is
necessary to have discovered the 2n INDs which generalize i.

As a consequence, we decided to use MIND until a given level k in order to
initialize the search.
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Step 2: The optimistic positive border. From the negative border already
discovered, we may apply the Theorem 2 to infer the so-called optimistic positive
border of INDs.

In fact, a justification for an optimistic approach does exist for IND discovery
and will be formaly stated in Proposition 3. Intuitively, it can be expressed as
follows:

if all generalizations of size k of a candidate IND i are satisfied, then
i has more chances to be satisfied when k increases.

This result is justified by an inference rule4 of Functional Dependencies (FDs)
and INDs given by the following proposition.

Proposition 2. Let {r, s} be a database, C the corresponding IND search space,
and Ik = {i ∈ C | |i| = k, {r, s} |= i}, k ≥ 2.

Let i = R[X ] ⊆ S[Y ], i ∈ C, |i| = n, n > k such that ∀j ∈ C, |j| = k, j ≺ i, we
have j ∈ Ik.

if ∃Y1 ⊆ Y, |Y1| = k − 1 and s |= Y1 → Y \ Y1 then {r, s} |= i

Proof. Let d = {r, s} be a database and C the corresponding IND search space.
Let i = R[X ] ⊆ S[Y ] ∈ C an IND expression of arity n ≥ 3, and an integer
k < n. Suppose that all INDs which generalize i, of size lower or equal to k, are
satisfied. And let Y1 ⊆ Y be such that |Y1| = k − 1 and s |= Y1 → Y \ Y1.
Let us put Y \ Y1 = B1...Bn−k+1. We note X1 the sub-sequence of X in which
the position of elements in X correspond to the position of elements of Y1 in Y ,
and A1, ..., An−k+1 the elements of X in which the position of elements in X
correspond to the position respectively of B1, ..., Bn−k+1 in Y .
Let t ∈ r. We have d |= R[X1A1] ⊆ S[Y1B1], since this IND is of arity k. Thus
∃u1 ∈ s such that u1[Y1B1] = t[X1A1]. In the same way, d |= R[X1A2] ⊆
S[Y1B2], then ∃u2 ∈ s such that u2[Y1B2] = t[X1A2]. We know that s |=
Y1 → B2 and thus u1[B2] = u2[B2] since u1[Y1] = u2[Y1]. Thus, u1[Y1B1B2] =
t[X1A1A2]. We can repeat n − k + 1 times the same reasoning, to show that
u1[Y1B1B2...Bnk+1] = t[X1A1A2...Ank+1], and then u1[Y ] = t[X ]. This is true
for all tuple in r, and we have d |= R[X ] ⊆ S[Y ].

Example 3. Consider the IND i = R[ABCDEF ] ⊆ S[GHIJKL]. Suppose that
the 20 INDs of size 3 which generalize i are satisfied; then if there exists two
attributes of GHIJKL that determine the others, for example GH → IJKL,
we have d |= i.

Thus, the principle justified by this rule is, starting from an explored level k,
to build the highest IND expressions for which all sub-INDs of size k are true.
Notice that the larger k is, the more there are chances that sets of attributes of
size k − 1 determine the others, meeting the conditions of the Proposition 2.

4 The inference rule stated by the Proposition 2 does not form part of the Mitchell
system [27], but of course is inferred by this system which is sound and complete.
The demonstration suggested here seems to be more comprehensible and shorter.
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However, when a suspected large IND i of size n is detected as false, it is
necessary to choose between two alternatives: going back to the level k + 1 ”to
consolidate” basic knowledge, or maintaining an optimistic attitude by testing
INDs which generalize i.

Step 3: Getting estimates on the optimistic positive border. Each time
a candidate generated by an optimistic approach is detected to be false against
the database, we try ”to estimate” the distance between this element and the
positive border of satisfied INDs. The idea is to count the number of tuples which
does not satisfy the IND; we propose for that to use the error measure g′3 [25]
given by:

g′
3(R[X] ⊆ S[Y ], d) =

1 − max{|πX(r′)| | r′ ⊆ r, (d − {r}) ∪ {r′} |= R[X] ⊆ S[Y ]}
|πX (r)|

Intuitively, g′3 is the proportion of distinct values one has to remove from
πX(r) to obtain a database d′ such that d′ |= R[X ] ⊆ S[Y ]. Such a computation
can be implemented with SQL queries on top of RDBMS. Clearly, g′3 complies
with the requirement given in the Property 1 (Section 3.3), i.e. j � i⇒ g′3(j) ≤
g′3(i).

Step 4: Adaptive behavior. When an IND i of the optimistic positive border
is false, but with a very small error, one can reasonably hope to find a satisfied
IND among its nearest generalizations. Thus we consider the generalizations of
i from the more specific ones to the most general ones, i.e. implementing a top-
down approach. Inversely when the error is large, i.e. a great number of values
contradicts the IND, we start again the search in a bottom-up fashion. This step
is described in much more details in Algorithm 1 (next section).

4.4 The Algorithm Zigzag

The principle of the Algorithm 1 is to mix top-down and bottom-up approaches
for eliciting the positive border of satisfied INDs. As explained before, one search
is performed for each couple of relation in the input database.

Initially (line 1) a purely pessimistic approach is performed from an adapta-
tion of the levelwise algorithm MIND [11], until the level k fixed by the user
is reached. We then know Ik and NIk, the set of the most specialized satisfied
INDs and the set of the most general not satisfied INDs (resp.) of size smaller
or equal to k. Ik thus corresponds to an initialization of Bd+(I) and NIk to
an initialization of Bd−(I), I being the set of all satisfied INDs. The optimistic
positive border Bd+

opt(NIk) is then computed thanks to the Theorem 2 (line 3)5.
The algorithm terminates when every element of Bd+

opt(NIk) has already been

5 The optimistic positive border generation is not detailed here. We used an adaptation
of the algorithm proposed in [13].
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tested as true in previous passes, i.e. Bd+
opt(NIk)\Bd+(I) is empty (line 4). Oth-

erwise, INDs of Bd+
opt(NIk) \ Bd+(I) are evaluated against the database: Those

satisfied are added to Bd+(I), the others are divided into two groups according
to the committed error: the ”almost true” ones in the optimistic set optDI and
the others in the pessimistic set pessDI. The INDs which generalize the INDs of
optDI are traversed in a top-down fashion, from the most specific to the more
general; Bd+(I) and Bd−(I) are updated accordingly (lines 14 to 21). Lastly,
INDs of size k + 1 which generalize the INDs of pessDI are tested, Bd+(I) and
Bd−(I) are also updated (lines 23 to 26). Bd+

opt(NIk) is then updated for the
next iteration (line 28).

Example 4. Let us consider a database d = {r1, r2} over a schema R =
{R1, R2}, with R1 = ABCDE and R2 = FGHIJ . Suppose that the set of
satisfied unary INDs in d are: {i1 = A ⊆ F, i2 = B ⊆ G, i3 = C ⊆ H, i4 = D ⊆
I, i5 = E ⊆ J}. The Figure 1 represents a subset of the search space of INDs
over R. For sake of clarity, not satisfied unary INDs are not represented since
they are discarded by anti-monotony.
Let us illustrate Algorithm 1 with k = 2 over this toy example. After a levelwise
search until level 2, the initialization is :
Bd+(I) = {AB ⊆ FG,AC ⊆ FH,AD ⊆ FI,AE ⊆ FJ,BC ⊆ GH,BD ⊆
GI,BE ⊆ GJ,CD ⊆ HI,DE ⊆ IJ};
Bd−(I) = {CE ⊆ HJ}.
Bd+

opt(I) is then computed from Bd−(I), i.e. Bd+
opt(I) = {ABCD ⊆ FGHI,

ABDE ⊆ FGIJ} (we omit the details).
These two INDs are tested over the database and let us assume that one is
satisfied while the other one is not:

– ABCD ⊆ FGHI is satisfied and added to Bd+(I), its generalizations being
dropped from Bd+(I). Thus, Bd+(I) = {ABCD ⊆ FGHI,AE ⊆ FJ,BE ⊆
GJ,DE ⊆ IJ}.

– ABDE ⊆ FGIJ is not satisfied and added to Bd−(I): Bd−(I) = {CE ⊆
HJ,ABDE ⊆ FGIJ}. Let us assume now that g′3(ABDE ⊆ FGIJ) is less
than a user-supplied threshold. In that case, the generalizations of ABDE ⊆
FGIJ of size 3 are generated and if they are not already specialized by
an IND of Bd+(I), they are tested against the database. Thus, ABE ⊆
FGJ,ADE ⊆ FIJ and BDE ⊆ GIJ are tested, and if we assume they
are satisfied, Bd+(I) is updated accordingly:
Bd+(I) = {ABCD ⊆ FGHI,ABE ⊆ FGJ,ADE ⊆ FIJ,BDE ⊆ GIJ}.

4.5 Practical Aspects and Optimizations

Dealing with not satisfied unary INDs. In line 2 of algorithm 1, not satisfied
unary INDs are added in the initialization of Bd−(I). In practice, we do not need
to take them into account at one condition: they have to be removed from the
set of unary INDs used during the computation of the complements of minimal
transversal of the hypergraph associated with Bd−(I).
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Algorithm 1 Zigzag : IND cover discovery
Require: a database d over a schema R, an integer k and R, S in R
Ensure: Bd+(I) cover of the satisfied INDs from R to S
1: Compute Ik and NIk from R to S using a levelwise algorithm.
2: Bd+(I) = Ik; Bd−(I) = NIk;
3: Compute Bd+

opt(I) from Bd−(I);

4: while Bd+
opt(I) \ Bd+(I) �= ∅ do

5: optDI = pessDI = ∅;
6: for all i ∈ Bd+

opt(I) \ Bd+(I) do
7: if (g′

3(i,d) = 0) then Bd+(I) = Bd+(I) ∪ {i} \ {j ∈ Bd+(I) | j ≺ i};
8: else
9: Bd−(I) = Bd−(I) ∪ i;

10: if (g′
3(i,d) ≤ ε and|i| > k + 1)

11: then optDI = optDI ∪ {i};
12: else pessDI = pessDI ∪ {i};
13: end for
14: while optDI �= ∅ do
15: candidats = ∪i∈optDI{j | j � i, |j| = |i| − 1 and|j| > k};
16: for all i ∈ candidats do
17: if (d |= i) then Bd+(I) = Bd+(I)∪{i} \ {j ∈ Bd+(I) | j ≺ i}; candidats =

candidats \ {i};
18: else Bd−(I) = Bd−(I) ∪ {i} \ {j ∈ Bd−(I) | i ≺ j};
19: end for
20: optDI = candidats;
21: end while
22: Ck+1 = ∪i∈pessDI{j | j ≺ i, |j| = k + 1};
23: for all i ∈ Ck+1 do
24: if (Bd+(I) |= i or d |= i) thenBd+(I) = Bd+(I) ∪ {i} \ {j ∈ Bd+(I) | j ≺ i};
25: else Bd−(I) = Bd−(I) ∪ {i} \ {j ∈ Bd−(I) | i ≺ j};
26: end for
27: k = k + 1;
28: Compute Bd+

opt(I) from Bd−(I);
29: end while
30: Return Bd+(I).

Dealing with repeated attributes in INDs. The usual IND definition rejects re-
peated attributes in the left ot right-hand sides, since their pratical interest
remains rather limited in databases. Nevertheless, we have pointed out that we
had to have duplicated attributes in order to obtain a representation as sets for
INDs.

In fact we are still able to answer the problem of IND discovery without
duplicate attributes. For that, it is enough to add into the negative border, during
its initialization (line 2 of algorithm 1) the set of INDs of size 2 with repeated
attributes made up of two satisfied unary INDs.

Indeed, consider an IND i having at least one repeated attribute on the left-
hand side6, i.e. i = R[X1AAX2] ⊆ S[Y1BCY2]. Thus there exists at least one
6 The same justification still holds for right-hand side.
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i1=A ⊆ F i3=C ⊆ H i5=E ⊆ Ji2=B ⊆ G

AB ⊆ FG AC ⊆ FH AD ⊆ FI AE ⊆ FJ BC ⊆ GH BD ⊆ GI BE ⊆ GJ

ABC ⊆ FGH

Non satisfied INDs

Satisfied INDs

Negative border

Positive border

i4=D ⊆ I

CD ⊆ HI CE ⊆⊆⊆⊆ HJ DE ⊆ IJ

ABD ⊆ FGI ABE ⊆⊆⊆⊆ FGJ ACD ⊆ FHI ACE ⊆ FHJ ADE ⊆⊆⊆⊆ FIJ BCD ⊆GHI BCE ⊆ GHJ BDE ⊆⊆⊆⊆ GIJ CDE ⊆ HIJ

ABCD ⊆⊆⊆⊆ FGHI ABCE ⊆ FGHJ ABDE ⊆⊆⊆⊆ FGIJ ACDE ⊆ FHIJ BCDE ⊆ GHIJ

ABCDE ⊆ FGHIJ

Fig. 1. A subset of the search space for INDs

IND of size 2, here j = R[AA] ⊆ S[BC], which generalizes i. If j belongs to the
negative border, then i cannot belong to the corresponding optimistic positive
border, according to definition 1.

4.6 Experimental Results

Tests were carried out on synthetic databases in order to show the feasability of
our proposition given in Section 3 on the IND discovery problem.

They were performed on an INTEL Pentium III 500 MHz, with 384 MB of
main memory and running Windows 2000 Pro. The algorithms were implemented
using C++/STL language. The test databases are stored under Oracle 9i, and
data accesses were carried out via ODBC drivers. The tests were conducted
on three databases having 2 relations, with 25 attributes and 90000 tuples in
each relation. The databases differ on the constitution of the positive border of
satisfied INDs to discover:
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– database 1: 10 INDs, with arities of 2,5,6 and 7;
– database 2: 10 INDs, with arities of 3,5,6 and 11;
– database 3: 20 INDs, with arities of 6,8,13,17 and 18;

Table 1 gives execution times for IND discovery using algorithm Zigzag with
k = 2. Times are compared with those given by the levelwise algorithm Mind
[11]. The value for Mind on the third database is an estimate: it multiplies the
number of tests to be carried out with the average cost of a test.

Table 1. Experimental results

database Zigzag Mind

1 1 754 s. 2 790 s.

2 3 500 s. 25 626 s.

3 7 729 s. ≥ 1 year (estimate)

First of all, these results confirm the failure of levelwise approach for large IND
discovery, and thus reinforce the interest of proposing alternatives. Moreover,
algorithm Zigzag makes it possible to reach INDs of size 18 in about only two
hours (while Mind would have taken more than one year!), and thus shows the
feasibility of the approach.

Nevertheless, we were not able to get feedbacks from our experiments on key
paramaters of our propositions such as the impact of adaptive strategies (step
4). This is mainly due to the fact that ”real-life” or synthetic databases are often
not freely available and difficult to generate.

5 Related Works

Maximal interesting pattern mining. Several algorithms exist for discovering
maximal interesting patterns; most of them were proposed in the specific case of
maximal frequent itemsets mining in a transactional database. The goal is always
to avoid an exponential search in the search space by characterizing as fast as
possible large frequent itemsets without exploring their subsets. MaxMiner [5]
uses a levelwise approach to explore the candidate itemsets, using the Rymon’s
enumeration system [29] - in which itemsets are arranged in a non redundant
tree. But when a candidate X is counted over the database, the greatest candi-
date in the subtree of X is also counted; if it is frequent, then all the subtree
can be pruned by anti-monotony of the ”is frequent” property. Jumps done by
MaxMiner depend on the ordering of items used to build the tree and are
therefore quite different from jumps proposed in this paper.

The algorithms Mafia [10] and GenMax [16] use the same technique as
MaxMiner to ”explore” the top of the search space. A difference lies in the fact
that they reduce the number of tests by checking, for each candidate, if it is
not a subset of a frequent itemsets already found. Moreover, Mafia stores the
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database in vertical bitmaps which appear to be extremely effective in practice.
With respect to our optimistic positive border, the pruning of GenMax appears
to be more precise than the MaxMiner pruning, thanks to a lemma which limits
the size of the largest itemset to be explored. Despite of this optimization, their
pruning remains always less precise than our pruning.

The Pincer−Search Algorithm [22] uses a search strategy very close to ours.
After a levelwise initialization, the principle is also to look at the largest not yet
eliminated candidates. However, these large candidates are not characterized in
a formal way.

In [17], the authors propose the Dualize and Advance algorithm. In their ap-
proach, the positive border in construction is always a subset of the positive
border to be discovered. At each step, from some elements of the positive bor-
der already discovered, they generate the corresponding negative border. If one
element of the negative border appears to be satisfied, they generate a special-
ization of it which belongs to the positive border and they re-iterate the process
until each element of the negative border is indeed not satisfied. The same strat-
egy is always made to explore the candidates, i.e. they cannot be guided by an
estimation of the distance to the positive border and the number of dualization,
i.e. minimal transversals computation, cannot be tuned.

Adaptive data mining algorithms. Some algorithms like Mafia [10] or DCI [28]
can adapt themselves to mine frequent itemsets, with respect to the dataset
density and some architectural characteristics (e.g. available memory). Even if
these aspects improve performances, it only concerns choices for data structures;
the mentioned algorithms do not really adapt their strategy to explore the search
space.

In [8,3], the authors studied the addition of user-defined monotone constraint
to facilitate exploration and reduce computation in the frequent pattern min-
ing problem. If pushing monotone constraints can improve the pruning, it can
also reduce the effectiveness of anti-monotone pruning, depending on the char-
acteristics of the dataset. To cope with this difficulty, an adaptive algorithm was
proposed based on an auto-adaptive search strategy.

Inclusion dependency mining. To our knowledge, only few contributions address
a subset of the initial problem of IND discovery: problem declaration [18], unary
IND discovery [6], or theoretical frameworks in which the problem of IND discov-
ery could be solved [26,17]. An interesting contribution addressed the problem
of large IND discovery [20]; the idea is to build an optimistic positive border
starting from a set of known satisfied INDs, by introducing the concept of maxi-
mal hyperclique of a regular hypergraph, a concept very similar to the monotone
dualization.

Note that an ongoing work based on results given in this chapter is currently
done for maximal frequent itemsets from which an adaptive algorithm called
ABS has been proposed [15].
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6 Conclusion

From the theoretical framework of borders of theories, we have proposed a four
steps approach to discover the positive border of interesting patterns. The key
idea is to combine the strength of levelwise algorithms for small ”maximal” inter-
esting patterns with the strength of algorithms based on monotone dualization
[17,30] for large maximal interesting patterns. We have introduced an adaptive
behavior to guide the search from which ”zigzaging” in the search space becomes
possible.

We have applied our proposition to a data mining problem: the discovery of
INDs in databases. An interesting aspect has been to point out the main steps
in order to fit into the theoretical framework of borders. The principle of an
optimistic attitude has been justified by a structural property of the relational
model based on an interaction property between functional dependencies and
inclusion dependencies. An algorithm called Zigzag has been devised and some
experiments performed. Due to the very high cost of testing IND satisfaction
against a database, Zigzag turns out to be more efficient in all configurations
tested, even when the positive border to be discovered is not too far from the
most generalized IND.

This work is integrated in a more general project devoted to DBA assistance
and relational databases logical tuning, called ”DBA Companion” [12].
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