
To See the Wood for the Trees:

Mining Frequent Tree Patterns

Björn Bringmann

Lab for Machine Learning, Institute of Computer Science,
Albert-Ludwigs-University Freiburg,

Georges-Köhler-Allee 079, 79100 Freiburg, Germany
bbringma@informatik.uni-freiburg.de

Abstract. Various definitions and frameworks for discovering frequent
trees in forests have been developed recently. At the heart of these frame-
works lies the notion of matching, which determines if a pattern tree
matches a tree in a data set. We compare four notions of tree matching
for use in frequent tree mining and show how they are related to each
other. Furthermore, we show how Zaki’s TreeMinerV algorithm can be
adapted to employ three of the four notions of tree matching. Experi-
ments on synthetic and real world data highlight the differences between
the matchings.

1 Introduction

In recent years, interest has grown in extending the frequent itemset paradigm
to more expressive pattern types such as graphs, trees and sequences. Special
attention has been devoted to semi-structured [1,2,3,4] and more specifically
to tree-structured data [5,6,7]. These approaches aim at finding all frequent
trees in a forest of rooted trees. They differ not only in the algorithms and
implementation details, but more importantly also in the underlying notion of
tree matching. When does one tree match another one? Asai et al. [5], Zaki [6]
and Termier et al. [7] provide different answers to this question. Asai’s notion
is more restrictive than Zaki’s, which is in turn more restrictive than Termier’s.
Termier et al. also have shown that it can be beneficial to work with more
permissive notions of matching. However, this typically comes at a computational
costs. Indeed, due to the expressiveness of their framework, Termier et al. cannot
guarantee completeness, whereas the approaches of Zaki and Asai et al. are
complete.

There are several important real-world applications for tree mining. First of
all, consider the web usage mining problem [8]. Thousands of visitors maneuver
through the well known web-sites like Amazon, Yahoo! and CNN each and ev-
ery day. Most of these sites basically follow a hierarchical structure, i.e. a tree
structure. Data Mining techniques created to handle trees can be used to gather
information from the behavior of the visitors. The toy-example of an online shop
shown in Figure (1) compares tree embedding and tree incorporation which we

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 38–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

To See the Wood for the Trees: Mining Frequent Tree Patterns 39

will discuss in paragraph 2.2. While the latter, more expressive definition yields
only one maximally specific pattern, the notion of tree embedding yields two.
According to tree embedding some visitors looked at the blouse and some at
the Fulgoni purse. The single maximally specific pattern according to the notion
of tree incorporation offers some more information: The visitors looking at the
blouse and the visitors looking at the purse are the same persons. This knowledge
might be helpful when restructuring an online-shop to improve accessibility or
placement of advertisements.

Fig. 1. Two visitor subtrees from a hierarchically structured web-site and the maxi-
mally specific patterns with regard to tree embedding and tree incorporation

XML has become a popular way of storing semi-structured data. As Goldfarb
and Prescod write in their book [9]:

XML is a standardized notation for representing structured information.
It is well-formed theoretically and is based on extensive industry experi-
ence. Although XML documents are simple, readily-transmitted character
strings, the notation easily depicts a tree structure. A tree is a natural
structure that is richer than a simple flat list, yet also respectful of cog-
nitive and data processing requirements for economy and simplicity.

XML data thus forms in general a ’source’ for several important data mining do-
mains. In bioinformatics tree structures arise as well. RNA structures essentially
fold as trees. Newly sequenced RNA is compared with known RNA structures
to draw conclusions about the functions of the RNA [10].

In this chapter, we compare the four notions tree inclusion, tree embedding,
tree incorporation, and tree subsumption used in frequent tree mining and show
how they are related to each other. Furthermore, we extend Zaki’s TreeM-

inerV algorithm such that any of the first three named notions (i.e. all but tree
subsumption) can be employed.

The chapter is organized as follows: Section 2 starts with definitions of trees
and related objects. Using these, we formally define the four different notions of
tree matching. In Theorem 1 we discuss the order among these notions. Section 2
ends with the definition of the tree-mining problem. In section 3, all concepts nec-
essary for the tree-mining algorithm are described and the RETRO algorithm
is explained. The following section discusses a novel pruning technique which
reduces the memory consumption and time needed by the algorithm without

40 B. Bringmann

sacrificing any patterns. In section 5, we show two different ways to extract the
maximally specific patterns from the set of frequent patterns found. The experi-
ments in section 6 give insight into the performance of the algorithm employing
different notions and pruning techniques as well as into the amount of patterns
on real and artificial data. Finally, in sections 7 and 8 we touch upon related
work and conclude.

2 Matching Trees

There exist several different matching notions for trees. All notions use a map-
ping function to match the nodes of one tree onto another tree adhering to several
constraints. We will first define trees and several concepts regarding trees. Based
on those concepts, we then define the four notions of matching we discuss in this
chapter.

2.1 Trees

A graph G = (V,E) is a set of vertices V (i.e. nodes), connected by edges
E ⊆ V × V (i.e. links, arcs). The order of a graph is the number of its vertices
|V |. If each edge is an ordered pair of vertices, the graph is a directed graph. A
graph is undirected if each edge is an unordered pair of vertices. A graph can
have labeled vertices, as well as labeled edges. We will denote a label on a vertex
v ∈ V or edge e ∈ E with λ(v) and λ(e) respectively. A sequence of vertices such
that each of its vertices has an edge to its successor vertex is called a path.

A free tree is a graph in which every pair of vertices is connected by exactly
one path. In a rooted tree, the edges are directed (i.e. a rooted tree is a directed
graph) and every node has exactly one incoming edge, except one designated
node v0 called root, which has no incoming edge. Nodes that have no outgoing
edges are called leaves. Every node that is not a leaf is an inner node. In a rooted
tree, a node c is called a child node of p if (p, c) ∈ E. Dually, p is called parent of
c, denoted as p = π(c). If there is a path from a node a to a node d, a is called an
ancestor of d, and d is called a descendant of a. Hence, the root node of a tree is
an ancestor of all other nodes in the tree. We use π∗(d) =def {π(d)} ∪ π∗(π(d))
to denote the set of all ancestors of a node d. For a tree with order k we write k-
tree. In this work we concentrate onto rooted trees, free trees are not investigated.
Hence, we simply use tree to denote a rooted tree. The child nodes of a node can
be ordered. To denote the order from left to right, we use an operator ≺. If the
child nodes of a node are ordered, the tree is called an ordered rooted tree. We
can now define a formal language L composed of all possible labeled, ordered,
rooted trees.

Furthermore, we need a notion of the scope of a node. This is a very useful
notion for tree mining since the following proposition holds:

Proposition 1 (Scope). Given the scope of a node a in a tree it can be checked
in constant time if a second node b of the same tree is an ancestor, descendant,
left or right sibling of a.

To See the Wood for the Trees: Mining Frequent Tree Patterns 41

The scope of a node n is an interval in N. The nodes in a tree are indexed with
their preorder index, i.e. they are enumerated in a depth first manner as depicted
in Figure (2). Thus, the root node has the index 0 and its leftmost child is vertex
1. The rightmost descendant of the k-tree (i.e. the rightmost leaf) has the index
k − 1, where k is the number of nodes in the tree. Using a function γ(x) that
returns the index of node x, the scope [xl, xr] of a node can be defined as:

xl =def γ(x) and xr =def

{
cr if c is the rightmost child of x
γ(x) if x is a leaf. (1)

An example for the depth-first enumeration and the scope-definition is shown in
Figure (2).

[2, 2] [3, 3] [5, 5]

[4, 5][1, 3]

[0, 5]0

4

5

1

32

Fig. 2. A tree with its nodes labeled with their preorder index and each node annotated
with its scope

2.2 Notions of Tree Matching

Previously [11], we presented three notions of tree matching and introduced also
a novel one. In this section, we explain the differences and similarities between
the four different notions in more detail.

First, all notions of matching map a tree p = (Vp, Ep) onto another tree
t = (Vt, Et), using a function ϕ : Vp → Vt. In all four cases, the labels of the
vertices are preserved: A vertex vp ∈ Vp can only be mapped to a vertex vt ∈ Vt

if λ(vp) = λ(vt), i.e. they both have the same labels.
The four notions have further similarities, but none is shared by all four of

them. Figure (3) gives an example where the maximally specific patterns are

Fig. 3. Given a database consisting of the two trees T1 and T2 the four different notions
yield four different sets of (maximally specific) patterns contained in both trees

42 B. Bringmann

different for all four notions. The most restrictive notion, called tree inclusion,
states that a tree p is included in another tree t if there exists a subtree of t
which is identical to p. It is defined as follows:

Definition 1. Tree Inclusion
A tree p = (Vp, Ep) is included in a tree t = (Vt, Et), denoted as matchincl(p, t),
if there exists an injective mapping ϕ : Vp → Vt from the nodes of p to the nodes
of t such that ∀u, v ∈ Vp

λ(u) = λ(ϕ(u)) ∧
u ≺ v ⇔ ϕ(u) ≺ ϕ(v) ∧
π(u) = v ⇔ π(ϕ(u)) = ϕ(v).

Tree inclusion has been extensively studied (in [12]) and can be decided in lin-
ear time. Asai et al. use this definition of matching in their algorithm FreqT.
This notion might be to limited for several cases, but for other cases exactly this
restrictiveness is required. Consider for example the representation of mathemat-
ical formulae as trees shown in Figure 4. In such a tree, each node corresponds to
an operator or function and the leaves represent variables or numbers. Since the
existence or absence of a single operation or function changes the whole meaning
of the subtree, one would want patterns that preserve the parent-child relation-
ship. Thus, more relaxed notions like tree embedding or tree incorporation, which
allow to ’skip’ nodes in a pattern (and thus would extract A as a pattern for all
three trees shown), are not useful here. Tree patterns in a set of formulae could
be used to precalculate or optimize calculations that appear frequently.

Fig. 4. In settings where a single node might influence the meaning of its whole subtree,
tree inclusion will be the notion of choice

A more relaxed notion, called tree embedding, was first proposed in [13] and is
based on an injective mapping preserving labels and ancestor-descendant rela-
tionships in the trees. In other words, we require that a parent-child relationship
appears in the pattern p if and only if the two vertices are on the same path
from the root to a leaf in the the tree t.

Definition 2. Tree Embedding
A tree p = (Vp, Ep) is embedded in a tree t = (Vt, Et), denoted as matchemb(p, t),
if there exists an injective mapping ϕ : Vp → Vt from the nodes of p to the nodes
of t such that ∀u, v ∈ Vp

To See the Wood for the Trees: Mining Frequent Tree Patterns 43

λ(u) = λ(ϕ(u)) ∧
u ≺ v ⇔ ϕ(u) ≺ ϕ(v) ∧
v ∈ π∗(u) ⇔ ϕ(v) ∈ π∗(ϕ(u)).

Whereas the notion of tree inclusion is really useful when a node can change the
meaning of its whole subtree, it will often be too restrictive if one deals with
trees that contain some kind of additional or hierarchical information in the
nodes which does not affect the meaning of nodes below. Consider for example
a database of vehicles as in Figure 5, each represented as a hierarchical tree
describing how the vehicle is composed of all its components. In such a case,
trees may contain additional, more detailed information which is not available
for all types of vehicles. Still, the make up of the components might be similar.
Thus, a notion that allows to ’skip’ nodes can be very useful as shown in the
example in Figure 5.

Fig. 5. Not enforcing the preservation of parent-child relationships allows to extract
patterns that show more hidden similarities in the input data

Our definition, termed tree incorporation, is more relaxed than tree embedding
since an ancestor-descendant relationship in the data does not have to hold in
the pattern. Furthermore, it attempts to preserve the order among the children,
but does not enforce it.

Definition 3. Tree Incorporation
A tree p = (Vp, Ep) is incorporated in a tree t = (Vt, Et), denoted as matchicpr

(p, t), if there exists an injective mapping ϕ : Vp → Vt from the nodes of p to the
the nodes of t such that ∀u, v ∈ Vp

λ(u) = λ(ϕ(u)) ∧
u ≺ v ⇐ ϕ(u) ≺ ϕ(v) ∧
v ∈ π∗(u) ⇒ ϕ(v) ∈ π∗(ϕ(u)).

The difference between tree incorporation and tree embedding can be described
as follows. Let us consider two disjunct subsets X and Y of a set of trees D as
shown in Figure (6), where all trees xi ∈ X and yj ∈ Y have two nodes labeled
ψ and φ being descendants of a node labeled γ. Furthermore, in a tree xi ∈ X ,
a node labelled ψ is an ancestor of the node labelled φ. For any tree of the other

44 B. Bringmann

Fig. 6. The notion of tree embedding is more restrictive then tree incorporation, hence
the latter one incorporates more information but less detail in the patterns found

subset Y , the nodes labelled ψ and φ are siblings, i.e. they have no ancestor-
descendant relationship. Given an α such that max(|X |, |Y |) < α ≤ |X | + |Y |,
neither the pattern-tree where ψ is ancestor of φ nor the pattern-tree where
ψ is a sibling of φ will be in at least α trees of the set D. With regard to tree
embedding, there are two tree-patterns with ψ being descendant of γ and φ being
descendant of γ that match at least α trees of the set D. In contrast, when using
the notion of tree incorporation, there will be one tree-pattern where ψ and φ are
siblings in at least α trees in D. That way this result will show the information
that the nodes labelled ψ and φ always appear in the same tree, while from the
result using tree embedding this information cannot be obtained.

Fig. 7. The node labelled 5 denoting a bill and a coin respectively, appears as direct
child of the root-node in the pattern

Furthermore, consider the example in Figure 7 where each tree represents the
bills and coins of a currency. Both currencies have coins and bills with similar
values. However, there is a 5 Euro bill but a 5 DM coin. Hence, the pattern that
appears in both trees w.r.t. tree incorporation contains the node labelled 5 as
child of the root node, since it can not be assigned to bill or coin in both cases.
Using tree embedding, the pattern would or contain a coin and/or bill node or
the node labelled 5 but never all three.

Finally, tree subsumption was introduced in [7]. It corresponds to representing
the trees as relational formulae (cf. [14]), i.e. as a conjunction of all π∗, edge and
label relations that hold in the tree. A tree then matches another tree if it θ-
subsumes it. Theta-subsumption defined by Plotkin [15] is commonly employed

To See the Wood for the Trees: Mining Frequent Tree Patterns 45

in the field of inductive logic programming (ILP, cf. [16]) and relational learning.
Termier et al. [7] use this notion of tree subsumption in their TreeFinder

algorithm.

Definition 4. Tree Subsumption
A tree p = (Vp, Ep) is subsumed by a tree t = (Vt, Et), denoted as matchsub(p, t),
if there exists a mapping ϕ : Vp → Vt from the nodes of p to the nodes of t such
that ∀u, v ∈ Vp

λ(u) = λ(ϕ(u)) ∧
v ∈ π∗(u) ⇒ ϕ(v) ∈ π∗(ϕ(u)).

2.3 Order Among the Notions

The four notions given above are closely related. Indeed, the following theorem
holds:

Theorem 1.

∀t, p ∈ L
matchincl(p, t) → matchemb(p, t) → matchicpr(p, t) → matchsub(p, t)

(2)

Proof(matchincl → matchemb):
Since a parent node is also an ancestor node, i.e. π(x) ∈ π∗(x), it follows that:

if (v = π(u) ⇔ ϕ(v) = π(ϕ(u)))
then (v = π(u) ∈ π∗(u) ⇔ ϕ(v) = π(ϕ(u)) ∈ π∗(ϕ(u))).

Hence, if a tree p is included in a tree t, it is also embedded in t. �

Proof (matchemb → matchicpr):
Given u ≺ v ⇔ ϕ(u) ≺ ϕ(v) and v ∈ π∗(u) ⇔ ϕ(v) ∈ π∗(ϕ(u)), it is obvious
that also u ≺ v ⇐ ϕ(u) ≺ ϕ(v) and v ∈ π∗(u) ⇒ ϕ(v) ∈ π∗(ϕ(u)) hold. Hence,
a tree p embedded in a tree t is also incorporated in t. �

Proof (matchicpr → matchsub):
Given an injective mapping ϕ from Vp to the nodes of Vt, such that ∀u, v ∈ Vp

(λ(u) = λ(ϕ(u))) ∧ (u ≺ v ⇐ ϕ(u) ≺ ϕ(v)) ∧ (v ∈ π∗(u) ⇒ ϕ(v) ∈ π∗(ϕ(u))), it
is obvious that only the part of the conditions required by tree subsumption will
hold as well. Thus, if there exists a mapping ϕ such that a tree p is incorporated
in a tree t it is also subsumed by t. �

2.4 Generality

On each of the matching notions, a more-general than (more-specific than) rela-
tion � (�) can be defined. Given two trees t, t′ ∈ L the relation can be defined
as

t � t′ ⇔ match(t, t′)

46 B. Bringmann

Hence, a tree t is called more general than a tree t′, if and only if t is a pattern of
t′, according to the tree matching notion used. Corresponding to the four notions
of matching there are four generality relations, i.e. for each matchχ there is a
�χ with χ ∈ {incl, emb, icpr, sub}. All four notions of generality induce a partial
order on the pattern language L. In contrast to the generality notion commonly
used for frequent itemset mining1, none of the four generality notions induces a
lattice over L. Figure (8) gives an example for this. In this example two elements
S, S′ are in the greatest lower bound of the trees T1 and T2 for any of the four
notions. Since in a lattice the infimum (and supremum) are unique, this shows
that no generality notion discussed here induces a lattice over L.

Fig. 8. An example that none of the four tree matching notions induces a lattice over
L. S and S′ are maximally specific generalisations of the set {T1, T2}, i.e. there is no
unique element that is the upper bound for this set.

2.5 Pattern Mining

After defining tree matching notions and therewith generality relations over L,
we can formalize the frequent tree mining problem. As stated before, let L be
a formal language composed of all possible labeled, ordered, rooted trees and
D ⊆ L a database. To count the trees t ∈ D containing a pattern p with regard
to a matching notion χ we define a function dt,χ : L → {0, 1} as

dt,χ(p) =def

{
1 if p �χ t
0 otherwise, (3)

that is 1 if the pattern p occurs at least once in the tree t, and 0 otherwise. The
frequency of a pattern p in D can then be defined as

σD,χ(p) =def Σt∈Ddt,χ(p) (4)

Using this definition, we now can define the task of frequent tree mining:

Given a set of trees D and a minimum frequency α, the task of tree-
mining is to find all patterns p ∈ L with regard to a matching notion χ
such that σD,χ(p) ≥ α holds.

1 In frequent itemset mining as introduced in [17], a pattern t is a set of items, and t
is more general than t′ if and only if t ⊆ t′.

To See the Wood for the Trees: Mining Frequent Tree Patterns 47

All four matching notions can be used for searching patterns that occur with a
minimum frequency.

Definition 5. Antimonotonicity
A constraint or selection predicate q(p) (such as minimum frequency σD,χ(p) ≥
α) is antimonotone with regard to the specialization relation � if and only if

∀g � s⇒ (q(s) ⇒ q(g)). (5)

The minimum-frequency predicate as defined above is antimonotone with re-
gard to the specialization-relation �, since for any pattern g �χ s it holds
that σD,χ(g) ≥ σD,χ(s). Considering the framework introduced by Mannila and
Toivonen [18], the theory of a database D with regard to a matching notion χ
and a minimum frequency α can be defined as:

Th(L,D, (α, χ)) = {p ∈ L | σD,χ(p) ≥ α}

As a consequence of Theorem 1, the set of frequent trees with regard to a data
set D for tree inclusion is smaller than that for tree embedding, which is in turn
smaller than that for tree incorporation. The set of frequent trees with regard
to tree incorporation finally is smaller than that induced by tree subsumption.
This motivates the use of the notion of matching as a parameter of frequent tree
discovery tasks.

As pointed out by Mannila and Toivonen [18], a set Th ⊆ L can be described
by giving just the positive or the negative border. This helps to reduce the
size for the representation of the solution. While the complete theory Th may
contain thousands of patterns, the borders often contain only a small fraction of
the patterns when compared to the whole version space. The maximally specific
set S, which is the same as the positive border (Bd+), is defined as follows:

Definition 6. Maximally Specific Set - S

S =def {p ∈ Th|∀p′ ∈ L : p � p′ ⇒ p′ /∈ Th} (6)

Minimum support is only one of several constraints that can be used to search
for patterns occurring in a database. As long as the constraint is antimonotone
with regard to the more-general relation, the resulting Th can be represented
by its maximally specific set only. Hence, one could define constraints on tree-
patterns like a maximum number of vertices, a maximum depth, or a maximum
branching factor in a pattern. In addition to this extension, one can also use
the generality relation � to define additional constraints. That will result in
constraints like maximally specific patterns. I.e., given a set of maximally specific
patterns Max ⊂ L there will be only patterns p in the result set such that
∀m ∈ Max : p � m. Please note that the set Max cannot always be reduced to
just one tree, since the generality relation does not induce a lattice over L.

Even further, monotone constraints could be used. I.e., a maximum support
could be defined similar to the minimum support or a set of maximally gen-
eral patterns. Similar to the antimonotonicity of constraints the monotonicity is
defined.

48 B. Bringmann

Definition 7. Monotonicity
A constraint q(p) is monotone with regard to the specialization relation � if and
only if

∀g � s⇒ (q(g) ⇒ q(s)). (7)

If monotone constraints are used the corresponding border must be given to
represent the resulting set Th in a compact way, i.e. only by its borders. This set
G of maximally general patterns is defined analogue to the set S of maximally
specific patterns.

Definition 8. Maximally General Set - G

G =def {p ∈ Th|∀p′ ∈ L : p′ � p⇒ p′ /∈ Th} (8)

Apart from the maximum and minimum frequency constraints, none of the con-
straints mentioned above requires to query the database. Following the notion
of Ng et al. [19], constraints that do not require to query the database are called
domain constraints. In the context of constraint-based mining one can see the
notion of matching employed as providing a constraint. This type of constraint
is comparable to the so-called class constraints mentioned by Ng et al.

Below we focus on the well known minimum frequency. Most of the other
constraints can be treated in a similar way.

3 Mining Trees

Algorithms for mining frequent trees with regard to all four notions of tree
matching exists. The algorithms for tree inclusion FreqT [5] and tree embed-
ding TreeMinerV [6] work in a levelwise manner. Possible pattern trees are
generated by extending known frequent trees with an additional node. After this
extension, the supports for the new pattern trees are counted. The algorithm for
mining incorporated trees RETRO [11] is an extension to the TreeMinerV

algorithm for embedded trees. Thus, it works similarly, searching for frequent
patterns in a levelwise manner.

However, the algorithm TreeFinder by Termier et al. [7] for mining frequent
tree patterns is quite different. First, the trees are represented as relational for-
mulae similar to representing trees within the Inductive Logic Programming
(ILP) framework [16]. For every edge there is a binary predicate named after the
labels of the nodes that are connected. The two arguments are unique identi-
fiers of the connected nodes. After constructing all edge-predicates, their transi-
tive closure is calculated. The algorithm then searches for all frequent ancestor-
descendant relationships and clusters them. The resulting ancestor-descendant
sets are re-transformed into edges from which a tree is constructed. For an in-
depth explanation we refer the reader to [7].

The algorithm FreqT for searching included trees is not further described
here, since the TreeMinerV algorithm will be extended in a way such that it
can be used for mining frequent trees with regard to tree inclusion, tree embed-
ding, and tree incorporation.

To See the Wood for the Trees: Mining Frequent Tree Patterns 49

3.1 Systematically Enumerating Candidate Tree Patterns

As stated before, the algorithms for tree inclusion (FreqT), tree embedding
(TreeMiner), and tree incorporation (RETRO) work in a levelwise manner.
All three use a method called rightmost expansion to canonically enumerate all
labeled, ordered, rooted trees. This technique was independently proposed by
Zaki [6] and Asai et al. [5]. It works in a levelwise manner, adding a single node to
a known frequent pattern in such a way that every possible candidate pattern will
be generated exactly once. Thus the rightmost expansion is an optimal refinement
operator, since every tree is enumerated but no tree is enumerated several times.
Basically a k-tree is expanded to several k+1-trees Pi by adding new nodes only
to its rightmost path as shown in Figure 9. The new node vk+1 in a pattern Pi is
called rightmost leaf (RML) and the subtree without its RML is called prefix of the
tree, denoted as [Pi]. The rightmost path of a tree is the path from the root node
to the rightmost leaf. For efficient candidate generation the antimonotonicity
of frequent patterns is used (i.e. a specialization s of a pattern p is not more
frequent than p). Thus, we consider only frequent patterns for extension.

Fig. 9. All 3 and 4-trees of the enumerationtree. The nodes are labeled with their
preorder index. New nodes attached at each level are marked.

3.2 Equivalence Classes and Instance Lists

With focus on the rightmost extension, patterns are organized in so called equiv-
alence classes (EQ). An equivalence class contains all patterns that have the same
prefix, i.e. differ in their rightmost leaves only. Each equivalence class contains
the prefix [Pi] only once and for each pattern Pi a tuple 〈λ(RMLi), γ(π(RMLi))〉
that contains the label λ(RMLi) of the new node and the index of the node it is
attached to. If the RML is the root node of the pattern (i.e. the prefix is empty),
this is denoted by a tuple 〈λ(RMLi),−1〉. Since prefix and equivalence class denote
essentially the same concept, [P] is used to denote both, the prefix of a pattern
P and the equivalence class that contains all patterns with the same prefix [P].
If there are no ambiguities, we use 〈λ, γ〉 to refer to a pattern Pi in [Pi]. With
regard to the definition of tree incorporation, a pattern 〈λ, j〉 is a specialization
of a pattern 〈λ, i〉 if j > i and both patterns belong to the same equivalence

50 B. Bringmann

Fig. 10. A sample for four different instances of pattern p incorporated in a database
consisting of two trees a and b. Both trees contain the pattern twice. In a the rightmost
leaves of both instances are different, whereas in tree b their prefix is different. The
grey marked nodes are the reason that there are two instances in each of the trees.

class. Hence, a function ϕ exists that maps the nodes of 〈λ, i〉 to the nodes of
〈λ, j〉 with respect to Definition 3. For example, for the two left-hand 4-trees in
Figure (9), the right one is a specialization of the left one, but not vice versa.

To efficiently count the support of a pattern, the algorithm needs information
about the instances in the data that support this pattern. Let pattern X be a
k-subtree occurring in a tree T , ϕ the mapping from the pattern-nodes to the
nodes of T , and xk refer to the rightmost leaf of X . Following Zaki, we use I(X)
to refer to the instance-list (also known as scope-list) ofX . Each element of I(X)
is a triple 〈t, s,m〉 identifying an instance of X where t is the identifier of the
tree T the pattern X occurs in, m =def {γ(ϕ(x0)), γ(ϕ(x1)), . . . , γ(ϕ(xk−1))}
is a list called match label of the prefix of X , and s is the scope of the node
ϕ(xk), which the rightmost leaf of the pattern is mapped to. These instance lists
contain all instances of a pattern with regard to tree embedding. An example is
shown in Figure (10). Here the instance list for the pattern p is

I(p) = { 〈a, [6, 7], (2, 4, 5)〉,
〈a, [7, 7], (2, 4, 5)〉,
〈b, [6, 6], (0, 2, 4)〉,
〈b, [6, 6], (0, 3, 4)〉 }

For tree incorporation, we need the notion of extended instance lists . As stated
before, a pattern 〈λ, j〉 is a specialization of a pattern 〈λ, i〉 if j > i and both pat-
terns belong to the same equivalence class. Hence, every instance that supports
a pattern 〈λ, j〉 is also an instance that supports the pattern 〈λ, i〉. Using this
information, the definition of an extended instance list , containing all instances
that support a pattern X , is as follows:

I∗(X) = I∗(〈λ, i〉) =def ∪j≥iI(〈λ, j〉) (9)

Given an equivalence class [P], we use Zaki’s class extension to obtain equiv-
alence classes containing the successors of the patterns in [P] with regard to the
canonical enumeration scheme. The main idea is to consider each pair of patterns

To See the Wood for the Trees: Mining Frequent Tree Patterns 51

Fig. 11. An example for class extension. A class with two patterns is extended to
obtain all its canonical successors. The grey nodes of each pattern represent the prefix
common to all patterns in the equivalence class.

in the class for extension, including self extension. There can be up to two new
candidates for each pair of patterns to be joined. Zaki’s Theorem [6] formalizes
this notion:

Theorem 2. (Class Extension)
Let [P] be an equivalence class and let 〈x, i〉 and 〈y, j〉 denote any two elements in
the class. Let [Px] denote the class representing extensions of element 〈x, i〉. We
define a join operator ⊗ on the two elements, denoted 〈x, i〉 ⊗ 〈y, j〉, as follows:

〈x, i〉 ⊗ 〈y, j〉 =def

⎧⎪⎪⎨
⎪⎪⎩

{〈y, 0〉} if i = j = −1
{〈y, j〉, 〈y, γ(x)〉} if i = j > −1
{〈y, j〉} if i > j
{} otherwise (i < j)

(10)

Then all possible (k + 1)-subtrees in [Px] with the prefix [P] will be enumerated
by applying the join operator to each unordered pair of elements 〈x, i〉 and 〈y, j〉.

As formalized in the join operation, there can be up to two outcomes of a join
of two patterns. In Figure (11), showing the application of the join operator to
an equivalence class consisting of two patterns, the self join of 〈Z, 0〉 results in
two new patterns.

When two patterns A and B of the same equivalence class are joined, their in-
stance lists are joined to obtain the instances that support the resulting patterns
of the join. The corresponding operation is denoted ∩⊗. Let R = 〈x, i〉 ⊗ 〈y, j〉
denote the resulting set of patterns of the join. As stated before, there can be at
most two elements (i.e. patterns) in R. In one of the elements, r̈, the node with

52 B. Bringmann

label y is a sibling of x and in the other element, ˙̇r, y is a child of x. Either one of
the two elements can be in R. Similarly, the join of the instance lists results in at
most two new instance lists, one for each element in R. When joining the instance
lists I(X) and I(Y) of two patterns X and Y , all pairs x = 〈tx, sx,mx〉 ∈ X
and y = 〈ty , sy,my〉 ∈ Y of instances are considered. For two instances to be
joined, i.e. recombined to a new instance, several conditions have to hold. First,
both instances have to appear in the same tree. Second, both instances have to
be extensions of the same prefix occurrence. Finally, the scopes sx = [lx, ux] and
sy = [ly, uy] of the rightmost leaves of the instances have to be considered. If sy

is contained in sx, the rightmost leaf of y is a descendant of the rightmost leaf
of x. In this case we have a new instance for the pattern ˙̇r. If the rightmost leaf
of y is a sibling (to the right) of the rightmost leaf of x we have a new instance
for r̈. The conditions for a new instance for a pattern r̈ are called out-scope test,
whereas the conditions for a pattern ˙̇r are called in-scope test.

Formally speaking, the out-scope test and the in-scope test for two instances
x = 〈tx, sx,mx〉 and y = 〈ty, sy,my〉 (with sx = [lx, ux] and sy = [ly, uy]) are
defined as follows:

Definition 9. In-Scope Test
Given two instances x = 〈tx, sx,mx〉 and y = 〈ty, sy,my〉 we say that y is in the
scope of x if the following conditions hold:

1. tx = ty
2. mx = my

3. lx < ly ∧ ux ≥ uy

Definition 10. Out-Scope Test
Given two instances x = 〈tx, sx,mx〉 and y = 〈ty , sy,my〉 we say that y is
outscope of x if the following conditions hold:

1. tx = ty
2. mx = my

3. ux < ly

If a new instance z is added to either r̈ or ˙̇r, it is composed by combining the
instances x and y such that z =def 〈ty, sy,my ⊕ γ(RML(x))〉, where the operator
⊕ adds a new element to the end of the list. Thus, the node the rightmost leaf
of x refers to is now part of the match of the new instance.

This notion works for embedded trees. For incorporated as well as for included
trees, some minor changes and extensions have to be made.

For tree incorporation we have already introduced extended instance lists.
These lists contain every instance supporting a pattern with regard to tree in-
corporation. Furthermore the conditions of an out-scope test have to be modified
such that condition 3 reads:

ux < ly ∨ (ly < lx ∧ uy ≥ ux).

To See the Wood for the Trees: Mining Frequent Tree Patterns 53

That way, an out-scope test holds if the node the RML of y is mapped to is a
right-sibling or an ancestor of the node the RML of x is mapped to.

For tree inclusion there are no ancestor-descendant relationships allowed, but
only parent-child relationships. Fortunately, this additional constraint can be
incorporated into the algorithm in the following way. The prefix of a tree, i.e.
the part of the pattern that is common to all patterns in the same equivalence
class is not changed when a pattern is extended. So we have to make sure that
every pattern prefix is consistent with the parent-child constraint, such that only
the rightmost leaves are allowed to be in an ancestor-descendant relationship2.
To achieve the parent-child consistency in the prefix, an extension 〈x, i〉 ⊗ 〈y, j〉
of a pattern 〈x, i〉 is permitted only if the rightmost leaf of 〈x, i〉 is a proper child
of its parent in the instance both nodes are mapped to. To do that, we keep track
of the preorder indices of the nodes in the match-part of a pattern instance. To
refer to a single node in the match m = {γ(ϕ(x0)), γ(ϕ(x1)), . . . , γ(ϕ(xn))}, we
use m[i] = γ(ϕ(xi)). Please note that the elements m[i] in the match m of an
instance are ordered with regard to the prefix order of the nodes xi in the pattern
tree X , i.e. m[i] = γ(ϕ(xi)). In addition, the notion of an instance is changed to
a quadruple 〈t, s,m, p〉 where p is the preorder index of the parent node of the
rightmost leaf in the instance. The other three parts remain as before, i.e. t is
the identifier of the tree, s is the scope of the rightmost leaf of the instance, and
m is the match of the instance. The in-scope and out-scope tests are modified
such that there is an additional condition 4 for both cases which requires:

m[k] = p

where k is the number of nodes in the prefix, i.e. the number of elements in the
match m.

3.3 The RETRO Algorithm

As stated before, the RETRO (Frequent Tree Discovery) algorithm is a mod-
ification of Zaki’s TreeMinerV algorithm. The main differences are the usage
of the extended instance lists and the new condition for the out-scope test. The
algorithm for computing frequent patterns with regard to tree incorporation is
shown in Figure (12).

The first part of the algorithm computes the sets containing all frequent
1-trees (i.e. nodes) and 2-trees. Then the main loop starts by calling the function
Enumerate-Frequent-Subtrees for every frequent 2-tree. The function Enumerate-
Frequent-Subtrees generates all possible refinements of patterns in an EQ [P]. This
is done by joining every pair 〈x, i〉 ⊗ 〈y, j〉 of patterns in [P] including self-joins.
Due to the rightmost expansion it is not allowed to join 〈x, i〉 ⊗ 〈y, j〉 with i < j
which would result in non-canonical expansions. A join results in one or two
new patterns (R). Afterwards the respective instance lists are created by joining
the instance lists of the patterns 〈x, i〉 and 〈y, j〉. Any new pattern that turns
out to be frequent is added to the new equivalence class [Px]. If all frequent
2 This is imposed by the design of the algorithm.

54 B. Bringmann

FrequentTreeDiscovery(D, minsup):
F1 = { frequent 1-subtrees };
F2 = { classes [P]1 of frequent 2-subtrees };
for all [P]1 ∈ F2 do

Enumerate-Frequent-Subtrees([P]1);

Enumerate-Frequent-Subtrees([P]):
for each element (x, i) ∈ [P] do

[Px] = ∅
for each element (y, j) ∈ [P] with i ≥ j do

R = {(x, i) ⊗ (y, j)};
I(R) = {I∗(x, i) ∩⊗ I∗(y, j)};
if for any p ∈ R, p is frequent then [Px] = [Px] ∪ {p};

Enumerate-Frequent-Subtrees([Px]);

Fig. 12. TreeMining Algorithm

patterns of the new equivalence class [Px] are computed further refinements of
these patterns are generated. Thus, the algorithm proceeds depth-first.

The Figure (13) shows one path of the enumeration tree when the algorithm
is applied to the database consisting of the two trees (x), (y). The extended
instance lists are required explicitly in refinement step 3. Without the extended
instance lists the algorithm would not refine further, hence it would not reach
the incorporated pattern p.

Fig. 13. An example for a tree pattern search with the notion of tree incorporation.
Only the search path leading to the most specific pattern (p) in both trees (x), (y)
is shown. The shown pattern is not valid with regard to tree embedding where two
different most specific patterns would be discovered.

4 Instance Pruning

Next to well-known pruning techniques like node pruning and edge pruning [5],
we introduce a novel technique called instance pruning (IP) that reduces the

To See the Wood for the Trees: Mining Frequent Tree Patterns 55

average computation time by 50%. It is not only applicable to the algorithm
working on the novel pattern definition, but also to the TreeMinerV algorithm.

As stated before, dt,χ(X) returns a 1 if there is at least one occurrence of
pattern X in tree t, otherwise it returns 0. Hence, the frequency of a pattern
depends only partly on the number of instances. The idea for IP is to keep
only a subset of the instances necessary to discover all frequent patterns. If
there are different instances of a pattern 〈x, i〉 in tree t, they are represented
in the instance list I〈x, i〉 as I1,0 = 〈t, a0, s〉 and I2,0 = 〈t, b0, r〉. If the pattern

Fig. 14. One of the groups with the match label s = {0, 1, 2, 4} or r = {0, 1, 3, 4} can
be removed, since both would yield the same result in future joins

〈x, i〉 is joined with another pattern 〈y, j〉, all instances in I1 and I2 will be
joined with the respective instances of (y, j). Consider two groups of instances
〈t, a0, s〉, . . . , 〈t, am, s〉 and 〈t, b0, r〉, . . . , 〈t, bn, r〉 of the tree t with match labels
s and r as shown in figure 14. If for every triple 〈t, bk, r〉 there exists a triple
〈t, al, s〉 with al = bk, all triples with the match label r can be removed from the
EQ. This is possible, as for instances in the same tree with the same match label
only the nodes al (or bk) are of relevance for the extension of the instances. If a
match label s includes all nodes bk of a match label r, no instance can be created
out of instances with match label r that cannot be created out of instances with
match label s. This decrease in the number of instances can effectively reduce the
memory consumption of the process. More importantly, it lowers computation
time. Not only the removed instances themselves are not joined anymore, but
also the ones that would have been created by joining them. For databases, with
a low number of labels when compared to the number of nodes, IP can reduce
the computation time by up to 80%.

5 Towards the S-Set

As stated before, the pattern mining algorithm uses a canonical enumeration
scheme for labeled, ordered, rooted trees. Due to this scheme, not every spe-
cialization s is created as a refinement of a more general pattern g. During the
mining process this restriction is very useful, since it assures that no pattern is
generated twice, i.e. it avoids redundancy. However, if we are only interested in
the maximally specific patterns, the enumeration strategy gives rise to a prob-
lem:

If a pattern cannot be refined further using the enumeration strategy,
that does not imply that there is no further valid specialization.

56 B. Bringmann

Fig. 15. Altogether there are 35 generalizations (including the empty tree) for the tree
(p) on the left. The Figure shows only the 12 4-trees.

We focus on the most specific patterns only, i.e. the set of patterns S where
every s ∈ S is frequent, but there is no specialization s′ � s such that s′ is
frequent. A run of the algorithm, cf. Figure (12), yields all patterns that are
found to be frequent during the search process. For the notions matchincl and
matchemb these are all frequent patterns. Since the amount of frequent patterns
with regard to the notion of tree incorporation is very high, (cf. Figure (15))
the algorithm focuses on the set S only. Hence, not all frequent patterns are
generated during the search. Obviously, every pattern that can be refined further
cannot be part of the set S. But due to the canonical enumeration scheme, not
every pattern that cannot be refined further is a maximally specific pattern. An
example is shown in Figure (16). Hence, it is necessary to check if there exists a
possible extension, whether it is canonical or not. Below we describe two ways
to solve this problem.

First, the set S
+ containing all patterns that could not be further refined

by the algorithm, which is a superset of the desired set S, can be filtered in a

Fig. 16. The trees s, s′, and s′′ are specializations of the tree g. Whereas s and s′

are canonical refinements which are generated by the rightmost expansion, s′′ is not
generated from g by rightmost expansion. Assume that g and s′′ are frequent but
neither s nor s′ are frequent, there exists no frequent canonical refinement of g but
there is a frequent specialization for g: s′′. I.e., g would not be a maximally specific
pattern.

To See the Wood for the Trees: Mining Frequent Tree Patterns 57

post processing step. This can be done by applying the algorithm on each pair
s1, s2 ∈ S

+, s1 �= s2 to search for patterns that appear in both trees, i.e. that
have a frequency of 100%. If there is a pattern p that is equal to s1 and appears
in s2 we know that s1 � s2. Hence, s2 is a specialization of s1 and thus s1
does not belong to the set S. After checking every pair of pattern-trees3 the set
S is obtained. This method can be used for all three matchings tree inclusion,
embedding, and incorporation. Unfortunately, the time-complexity is at O(|S|2).

Fortunately, there is another way to discover if further specializations s′ of a
pattern s exist. Before inserting a frequent pattern s that is not further refinable
into the solution set S it has to be checked if there exists no frequent special-
ization s′ of s. For this, non-canonical expansions of the pattern s have to be
considered as well.

During the search process, the algorithm traces instances of the patterns
found. This trace-data can now be used to search for possible non-canonical
expansions of patterns that cannot be generated with regard to the canonical
enumeration scheme.

There are three possible specializations to consider: (1) A new root node,
i.e. adding a parent node of the current root node to the pattern. (2) A new
child node, i.e. adding a child node of the current root node to the pattern.
(3) Descent of a node, i.e. specializing a pattern by moving a certain node
downwards.

The first specialization, which can basically be described as adding a new
node above the current pattern-root node is straight forward. For each tree t,
we select the node r the pattern’s root node is mapped to. We traverse the path
starting from r to the root of t upwards and count the unique labels of the nodes
seen. If any label’s count reaches the minimum frequency, the search can be
aborted: there exists a possible specialization of the considered pattern adding
a new root node.

In the second case, where a new node is added below the pattern-root to gen-
erate a frequent non-canonical specialization, the process is more complicated.
Since for every pattern p with a node n as some descendant of the root node
there exists a more general pattern p with n as direct child of the root node,
only expansions with new nodes as direct children of the root node have to be
considered. Hence, there are as many possible positions (called bins) for a new
node as the current pattern has direct children of the root node. expansion with
a new node as the rightmost child of the root node, since this is already covered
by the canonical expansion. Every node n that is not already part of the pattern
could appear in a bin to the left as well as to the right of a direct child c of the
root node, if n and c are on the same path to the root node. If a node n does not
lie on a path with any direct child c of the root node, it could appear only in one
bin between two existing children cn, cn+1 of the root node (cf. node B in Figure
17). In general in a tree a node n lies on the same path as every ancestor of n and
on the same path as every node in the subtree of n. Figure (17) shows a pattern
and an instance of the pattern in a data tree. For non-canonical expansions there

3 Of course, patterns that turn out to have a specialization are not reconsidered.

58 B. Bringmann

are two positions x1, x2 for a new node. The node D that is a descendant of A
could appear at both, whereas the nodes B and E could only appear at position
x2. The second possible position for node E would be a canonical expansion and
thus is not considered here. To find possible non-canonical expansions, the algo-
rithm traverses the subtree of each instance root and counts the possible labels
for the bins. If any label reaches the minimum support, we know that there is a
frequent specialization of the pattern.

Fig. 17. Searching for non-canonical expansions the algorithm puts every node that is
not part of the instance in up to two bins. Each bin is located on the left of each child of
the root node. for both bins next to the corresponding between the ’root-childs’ where
they are located.

In the third and last case, no new node is added to the pattern. Instead,
specializations of the pattern are considered where the nodes are moved further
down in the tree. For this, every pair of nodes n1, n2 in the pattern is consid-
ered where n1 is a sibling of n2. The algorithm checks if there is an ancestor-
descendant relationship in the data between the nodes n1 and n2 are mapped
to. If the number of trees in which n1 is an ancestor of n2 is equal to or larger
then the minimum frequency, the pattern considered can be specialized further.
I.e., it is not maximally specific.

If none of the three specializations is possible, the pattern is maximally specific
and can be added to the set S.

5.1 Cardinality of Maximally Specific Sets

Due to Theorem 1, the resulting pattern space with regard to tree incorporation
contains more patterns than of tree embedding, which in turn contains more pat-
terns than that of tree inclusion. In contrast to the whole pattern space, there
is no such relation among the S sets, i.e. the sets containing the most specific
patterns only. Two examples are given in Figure (18) and Figure (19). The first
shows that with the given database and a minimum frequency of two there are
five maximally specific patterns for tree inclusion and six for tree embedding.
With a minimum frequency of three, there are still five maximally specific pat-
terns for tree inclusion, but only four for tree embedding. The example for tree
embedding and tree incorporation in Figure (19) is similar. In the first case, there
are four maximally specific patterns with regard to tree embedding and six for

To See the Wood for the Trees: Mining Frequent Tree Patterns 59

Fig. 18. A database and maximally specific patterns w.r.t. tree inclusion and tree em-
bedding for a minimum support of n=2 and n=3 each. For n=2 there are more maximally
specific patterns for embedding while for n=3 there are more w.r.t. inclusion.

Fig. 19. Two databases and maximally specific patterns w.r.t. tree embedding and tree
incorporation for a minimum support of n = 2 in both cases. In the upper case there
are more maximally specific patterns for incorporation while for the database on the
bottom there are more w.r.t. embedding.

tree incorporation. In the second case, there are more for tree embedding than
for tree incorporation.

6 Experimental Results

A number of experiments were conducted on real-world and synthetic datasets.
The real-world dataset (legcare [20]) consists of an online shop’s web-log, con-
taining 234942 visits. Each visit is regarded as a subtree of the hierarchically
structured web-site. There where 694 unique labels for the database. For the
synthetic dataset we implemented a data generator as described by Zaki [6]. All

60 B. Bringmann

the experiments were performed on a 3.2GHz Intel Pentium 4 with 2GB main
memory, running SUSE 9.0. The algorithms were implemented in C++. For the
tree embedding and tree incorporation, instance pruning is available. We com-
pared the number of frequent patterns found by the algorithms and the size of
the S set on both datasets with different minimum support. To calculate the S

set an additional post-processing step was performed.

Fig. 20. Comparing the amount of the patterns generated during the search (left) and
the size of the maximally specific border (right) of three tree matching notions for
various minimum support levels

Figure (20) shows the number of patterns generated during the search and
the number of patterns contributing to the S set for tree embedding and tree
incorporation on the legcare dataset. As mentioned earlier, the notion of tree
incorporation is more relaxed than tree embedding such that more patterns are
generated and discovered during the search. In contrast to the figures shown
here (Figure 20), there is no order between the notions with regard to the size of
the according S set as explained in the Figures (18, 19). All three notions have
in common that they exhibit exponential growth in the number of most specific
patterns as well as in patterns considered during the search when reducing the
minimum support. For the legcare-dataset there was no effect on computation
time with and without IP. However, using IP, the memory consumption dropped
dramatically for computing frequent pattern sets with minimum support below
10%. For the experiments with the synthetic data, a master-tree with 100 unique
labels and 10000 nodes was generated with a maximum depth and fanout of 10.
From this hypothetical web-site we generated 10000 visits, each a smaller sub-
tree of the master-tree, as database. The graph in Figure (21) shows the results
of experiments on this dataset regarding computation time and the effect of in-
stance pruning. The plot clearly indicates an exponential growth in computation
time when lowering the minimum support. The solid lines depict the required
time with IP. Both, tree embedding and tree incorporation4, show a significant
speedup for low minimum support levels using IP. More experiments on syn-
thetic data sets showed similar behaviour, i.e. the runtimes for the algorithms
using IP are significantly lower, especially at low minimum support levels.
4 Since IP was not implemented for tree inclusion there are no results here.

To See the Wood for the Trees: Mining Frequent Tree Patterns 61

Fig. 21. Comparing the effect of instance pruning for embedding and incorporation on
synthetic data

7 Related Work

The most directly related work to this paper is Zaki’s TreeMinerV [6] as well as
Termier’s TreeFinder [7] and FreqT by Asai [5]. Zaki uses a smart, so-called
vertical representation to facilitate the candidate count enabling a fast mining
process that scales well even with large datasets. We adopted this idea for the
presented treemining algorithm RETRO. Since the definition of tree incorpora-
tion is more general than tree embedding or tree inclusion, the algorithm yields
more patterns even when focusing on the S set only. Therefore it is not surprising
that the algorithm is slower than TreeMinerV. Using the RETRO algorithm
to mine embedded trees there is a significant speedup compared to TreeM-

inerV due to the presented pruning technique. Compared to TreeFinder, it
uses a less general pattern definitions, but all of them are complete with regard
to the maximally specific patterns. For tree inclusion and tree embedding it is
even complete with regard to the whole pattern space.

Other algorithms like FreeTreeMiner by Yun Chi et al. [21] and Hy-

bridTreeMiner [22] work on free trees. Furthermore there exist several al-
gorithms like FreeTreeMiner by Rückert and Kramer [23] which searches for
free-tree patterns in graphs or AGM [1], FSM [2], gSpan [3], and Gaston [24]
that work completely on graphs rather than trees. They are restricted to sub-
graphs consisting of edges and if applied to trees would only discover frequent
trees in the sense of subtree inclusion. The Gaston algorithm realizes the graph
search stepwise. First frequent sequences are mined that are expanded to trees
and later on to graphs.

8 Conclusions

The algorithm presented in this paper improves and expands the TreeMinerV

algorithm. We added support for tree incorporation and and tree inclusion. The
introduced instance pruning technique reduces the computation time as well as
the memory usage of the algorithm in many cases. Since the amount of frequent

62 B. Bringmann

patterns in large databases grows fast when lowering the minimum support it
seams to be useful to calculate the set S of all maximally specific patterns. An
approach how to immediately calculate the set of all maximally specific patterns
by considering non-canonical expansions was presented.

Furthermore, we have shown that there is an order among the four different
matching notions. Each tree that matches another one with regard to tree in-
clusion also matches the same tree with regard to tree embedding. In the same
way, each tree that is embedded in another tree is incorporated in the tree as
well. Finally each incorporated tree is subsumed. Hence, the amount of patterns
grows from tree inclusion, over embedding, incorporation to subsumption. In
contrast this is not true for the set of maximally specific patterns.

With regard to the future, especially in a real-word environment, it would
be nice to have more constraints, like maximally-general or maximally-specific
pattern, to enable the user to focus the search as in MolFea [4]. Furthermore
it would be interesting to extend the tree-mining process to first order logic
which would give a much more expressive language for data and patterns. On
the other hand the frequent patterns discovered could also be used as features
for some classifier as in [25]. Considering the notion of tree incorporation, we still
have to evaluate if the additional cost in time and memory is justified by more
informative patterns. Finally, it depends on the data and on the requirements
of the user which tree matching notion is the best.

Acknowledgments

We sincerely thank Luc De Raedt for motivating this work. We also thank Mo-
hammed Zaki for providing the TreeMiner source code. Further many thanks
to Ulrich Rückert, Albrecht Zimmermann, Kristian Kersting, and Andreas Kar-
wath for constructive comments and helpful suggestions. The real world dataset
was kindly provided by Blue Martini Software.

This work was partly supported by the EU IST project cInQ (Consortium on
discovering knowledge with Inductive Queries). Contract no. IST-2000-26469.

References

1. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining
frequent substructures from graph data. In: Proc. of PKDD. (2000) 13–23

2. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. of ICDM.
(2001) 439–442

3. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of
ICDM. (2002) 721–724

4. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its application
to molecular fragement finding. In: Proc. of IJCAI-01. (2001) 853–862

5. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: Proc. of SIAM SDM.
(2002) 158–174

6. Zaki, M.: Efficiently mining frequent trees in a forest. In: Proc. of KDD. (2002)
71–80

To See the Wood for the Trees: Mining Frequent Tree Patterns 63

7. Termier, A., Rousset, M.C., Sebag, M.: Treefinder: a first step towards XML data
mining. In: Proc. of ICDM. (2002) 450–457

8. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Information and pattern
discovery on the world wide web. In: Proc. of ICTAI. (1997) 558–567

9. Goldfarb, C.F., Prescod, P.: The XML handbook. Prentice Hall (1998) ISBN
0-13-081152-1.

10. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using
tree comparisons. Computer Applications in the Biosciences 6 (1990) 309–318

11. Bringmann, B.: Matching in frequent tree discovery. In: Proc. of ICDM. (2004)
335–338

12. Ramesh, R., Ramakrishnan, L.: Nonlinear pattern matching in trees. Journal of
the ACM 39(2) (1992) 295–316

13. Kilpeläinen, P.: Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki (1992)

14. Lloyd, J.W.: Foundations of logic programming; (2nd extended ed.). Springer-
Verlag New York, Inc. (1987)

15. Plotkin, G.D.: A note on inductive generalization. In: Machine Intelligence. Vol-
ume 5. Edinburgh University Press (1970) 153–163

16. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

17. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proc. of ICMD, Washington, D.C. (1993) 207–216

18. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1 (1997) 241–258

19. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning
optimizations of constrained associations rules. In: SIGMOD ’98: Proceedings of
the 1998 ACM SIGMOD international conference on Management of data, ACM
Press (1998) 13–24

20. Kohavi, R., Brodley, C., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000 orga-
nizers’ report: Peeling the onion. SIGKDD Explorations 2 (2000) 85–98

21. Chi, Y., Yang, Y., Muntz, R.R.: Indexing and mining free trees. In: Proc. of ICDM.
(2003) 509–512

22. Chi, Y., Yang, Y., Muntz, R.R.: Hybridtreeminer: An efficient algorithm for mining
frequent rooted trees and free trees using canonical form. In: Proc. of SSDBM.
(2004) 11–20

23. Rückert, U., Kramer, S.: Frequent free tree discovery in graph data. In: Proc. of
ACM symposium on Applied computing, ACM Press (2004) 564–570

24. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a
difference. In: Proc. of KDD, ACM Press (2004) 647–652

25. Bringmann, B., Karwath, A.: Frequent SMILES. In: Proc. of LWA (FGML). (2004)
132–137

	Introduction
	Matching Trees
	Trees
	Notions of Tree Matching
	Order Among the Notions
	Generality
	Pattern Mining

	Mining Trees
	Systematically Enumerating Candidate Tree Patterns
	Equivalence Classes and Instance Lists
	The RETRO Algorithm

	Instance Pruning
	Towards the S-Set
	Cardinality of Maximally Specific Sets

	Experimental Results
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

