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Abstract. As a step towards the design of an Inductive Database Sys-
tem, in this paper we present a primitive for constraint-based frequent
pattern mining, which represents a careful trade-off between expressive-
ness and efficiency. Such primitive is a simple mechanism which takes a
relational table in input and extracts from it all frequent patterns which
satisfy a given set of user-defined constraints. Despite its simplicity, the
proposed primitive is expressive enough to deal with a broad range of
interesting constraint-based frequent pattern queries,using a comprehen-
sive repertoire of constraints defined over SQL aggregates. Thanks to its
simplicity, the proposed primitive is amenable to be smoothly embedded
in a variety of data mining query languages and be efficiently executed,
by the state-of-the-art optimization techniques based on pushing the var-
ious form of constraints by means of data reduction.

1 Introduction

Typically, two different kinds of structures are sought in data mining: models
and patterns [31]. Models are high level, global, descriptive summaries of data
sets. Patterns, on the other hand, are local descriptive structures. Patterns may
be regarded as local models, and may involve just a few points or variables; i.e.,
they are descriptions of small fragments of the data, instead of overall descrip-
tions. Accordingly, Pattern Discovery has a distinguished role within data min-
ing technology. In particular, since frequency provides support to any extracted
knowledge, it is the most used measure of interest for the extracted patterns.
Therefore during the last decade a lot of researchers have focussed their stud-
ies on the computational problem of Frequent Pattern Discovery, i.e., mining
patterns which satisfy a user-defined minimum threshold of frequency [3, 30].

The simplest form of frequent pattern is the frequent itemset: given a database
of transactions (a transaction is a set of items) we want to find those subsets of
transactions (itemsets) which appear together frequently.

Definition 1 (Frequent Itemset Mining). Let I = {x1, ..., xn} be a set
of distinct literals, usually called items, where an item is an object with some
predefined attributes (e.g., price, type, etc.). An itemset X is a non-empty subset
of I. If |X | = k then X is called a k-itemset. A transaction database D is a bag
of itemsets t ∈ 2I , usually called transactions. The support of an itemset X in
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date cust item
11-2-97 cust1 beer
11-2-97 cust1 chips
11-2-97 cust1 wine
11-2-97 cust2 wine
11-2-97 cust2 beer
11-2-97 cust2 pasta
11-2-97 cust2 chips
13-2-97 cust1 chips
13-2-97 cust1 beer
13-2-97 cust2 jackets
13-2-97 cust2 col shirts
13-2-97 cust3 wine
13-2-97 cust3 beer
15-2-97 cust1 pasta
15-2-97 cust1 chips
16-2-97 cust1 jackets
16-2-97 cust2 wine
16-2-97 cust2 pasta
16-2-97 cust3 chips
16-2-97 cust3 col shirts
16-2-97 cust3 brown shirts
18-2-97 cust1 pasta
18-2-97 cust1 wine
18-2-97 cust1 chips
18-2-97 cust1 beer
18-2-97 cust2 beer
18-2-97 cust2 beer
18-2-97 cust2 chips
18-2-97 cust2 chips
18-2-97 cust3 pasta

(a)

date cust itemset
11-2-97 cust1 {beer,chips,wine}
11-2-97 cust2 {wine,beer,pasta,chips}
13-2-97 cust1 {chips,beer}
13-2-97 cust2 {jackets,col shirts}
13-2-97 cust3 {wine,beer}
15-2-97 cust1 {pasta,chips}
16-2-97 cust1 {jackets}
16-2-97 cust2 {wine,pasta}
16-2-97 cust3 {chips,col shirts,brown shirts}
18-2-97 cust1 {pasta,wine,chips,beer}
18-2-97 cust2 {beer,chips}
18-2-97 cust3 {pasta}

(b)

name price type
beer 10 beverage
chips 3 snack
wine 20 beverage
pasta 2 food
jackets 100 clothes
col shirt 30 clothes
brown shirt 25 clothes

(c)

Fig. 1. (a) A sample sales table, (b) its transactional representation and (c) the
product table

database D, denoted suppD(X), is the number of transactions in D which are
superset of X . Given a user-defined minimum support σ, an itemset X is called
frequent in D if suppD(X) ≥ σ.

The problem of mining all frequent itemsets in a database is the basis of
the well-known association rule mining task [1]. However, frequent itemsets are
meaningful not only in the context of association rules: they can be used as a
basic mechanism in many other kind of analysis, ranging from classification [39,
40] to clustering [50, 58].

Example 2 (Market Basket Analysis). The classical context for association rule
mining, as well as the most natural way to think about a transaction database,
is the market basket setting, where we have a sales database of a retail store
recording the content of each basket appearing at the cash register. In this con-
text a transaction represent the content of a basket. In Figure 1(a) we have a
relational table where a transaction or basket identifier is not explicitly given;
however one could reconstruct transactions, for instance, grouping items by the
pair (date, cust) as represented in Figure 1(b).

In principle, it is possible to express a query to count frequent itemsets in
conventional SQL. This approach is examined in [57, 32, 52, 2]. For example,



16 F. Bonchi, F. Giannotti, and D. Pedreschi

in Figure 2 it is shown how to compute all 2-itemsets which are frequent in
a relational database. We join sales with itself, with the condition that tID
(transaction identifier) is the same, and the names of the two items are lexico-
graphically different. We group the joined relation by the pair of items involved
and check in the having clause that the group has at least 2 transactions.

SELECT i1.item, i2.item

FROM sales AS i1, sales AS i2

WHERE i1.item < i2.item AND

i1.tID = i2.tID

GROUP BY i1.item, i2.item

HAVING 2 <= COUNT(i1.tID)

Fig. 2. Frequent 2-itemsets computation in SQL

The problem with this approach is that the right optimizations and “tricks”
are beyond the state-of-the-art of conventional optimizers in commercial DBMS.
Therefore a DBMS-based approach can not compete with specific algorithms
employing ad hoc data structures. This is one of the main reasons, together with
the stronger requirements of expressiveness, that justifies the need for specialized
primitives and query languages for knowledge discovery.

1.1 Constraint-Based Pattern Discovery

Recently the research community has turned its attention to more complex kinds
of frequent patterns extracted from more structured data: sequences, trees, and
graphs. All these different kinds of patterns have different peculiarities and ap-
plication fields, but they all share the same computational aspects: a usually
very large input, an exponential search space, and a too large solution set. This
situation – too many data yielding too many patterns – is harmful for two rea-
sons. First, performance degrades: mining generally becomes inefficient or, of-
ten, simply unfeasible. Second, the identification of the fragments of interesting
knowledge, blurred within a huge quantity of mostly useless patterns, is difficult.

Therefore, the paradigm of constraint-based mining was introduced. Con-
straints provide focus on the interesting knowledge, thus reducing the number
of patterns extracted to those of potential interest. Additionally, they can be
pushed deep inside the pattern discovery algorithm in order to achieve better
performance [7, 4, 6, 9, 36, 37, 19, 25, 29, 38, 48, 49, 56, 44].

Definition 3 (Constrained Frequent Itemset Mining). A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint as
the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. Thus
with this notation, the frequent itemsets mining problem requires to compute
the set of all frequent itemsets Th(Cfreq[D,σ]). In general, given a conjunction
of constraints C the constrained frequent itemsets mining problem requires to
compute Th(Cfreq) ∩Th(C).
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According to the constraint-based mining paradigm, the data analyst must
have a high-level vision of the pattern discovery system, without worrying about
the details of the computational engine, in the very same way a database designer
has not to worry about query optimizations. The analyst must be provided
with a set of primitives to be used to communicate with the pattern discovery
system, using a Pattern Discovery Query Language. The analyst just needs to
declaratively specify in the pattern discovery query how the desired patterns
should look like and which conditions they should obey (a set of constraints).
Such rigorous interaction between the analyst and the pattern discovery system,
can be achieved by means of a set of pattern discovery primitives, that should
include:

– the specification of the source data,
– the kind of pattern to be mined,
– background or domain knowledge,
– the representation of the extracted patterns,
– constraints that interesting patterns must satisfy,
– interestingness measures for patterns evaluation.

Providing a query language capable to incorporate all these features may
result, like in the case of relational databases, in a high degree of expressiveness
in the specification of pattern discovery tasks, a clear and well-defined separation
of concerns between logical specification and physical implementation of such
tasks, and easy integration with heterogeneous information sources.

Clearly, the implementation of this vision presents a great challenge. A path to
this goal is indicated in [41] where Mannila introduces an elegant formalization
for the notion of interactive mining process: the term inductive database refers
to a relational database plus the set of all sentences from a specified class of
sentences that are true w.r.t. the data. In other words, the inductive database is a
database framework which integrates the raw data with the knowledge extracted
from the data and materialized in the form of patterns. In this way, the knowledge
discovery process consists essentially in an iterative querying process, enabled
by a query language that can deal either with raw data or patterns.

Definition 4. Given an instance r of a relation R, a class L of sentences (pat-
terns), and a selection predicate q, a pattern discovery task is to find a theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}

The selection predicate q indicates whether a pattern s is considered interesting.
In the constraint-based paradigm, such selection predicate q is defined by a
conjunction of constraints.

1.2 Paper Contribution and Organization

As a step towards the design of an Inductive Database System, in this paper we
present a primitive for constraint-based frequent pattern mining in a relational
context. Such primitive is a simple mechanism which takes a relational table
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in input and extracts from it all frequent patterns which satisfy a given set of
user-defined constraints. Despite its simplicity, the proposed primitive is expres-
sive enough to deal with a broad range of interesting constraint-based frequent
pattern queries,using a comprehensive repertoire of constraints defined over SQL
aggregates.

In this paper we do not deal specifically with the Data Mining Query Language
issue, as our primitive can be embedded in any kind of query language based on
the relational paradigm (SQL-like databases, logic-based deductive databases);
basically we can view our primitive as an operator of the relational algebra.

Therefore, after introducing the primitive for constraint-based pattern mining
we informally assess its expressiveness by means of example queries in SQL-
like and DATALOG-like syntax. Then we concentrate on optimization issues:
we summarize and amalgamates all the algorithmic results in constraint-based
frequent pattern discovery obtained in the last years (2003-05) at Pisa KDD
Laboratory, thus achieving an optimization framework.

The paper is organized as follows. In the next Section we define our primitive
going through a rigorous identification of its basic components and of the con-
straints handled. In Section 3, we advocate the expressiveness and versatility of
our proposal, showing how it can be embedded in query languages of different
flavour. In Section 4 we recall the state-of-the-art classification of constraints
and their properties, which can be exploited in order to achieve an efficient com-
putation. In Section 5 we compose the state-of-the-art of the constraint pushing
techniques in a breadth-first Apriori-like computation, achieving a very efficient
evaluation strategy for our primitive. In particular, we adopt the strategy of
pushing constraints in the computation mainly by means of data-reduction tech-
niques: this approach enables us to exploit the different properties of constraints
all together, and the total benefit is always greater than the sum of the individ-
ual benefits. Finally in Section 6 we conclude by describing on-going work on
constrained frequent pattern discovery at Pisa KDD Laboratory, and drawing
some future research paths.

2 A Primitive for Constraint-Based Mining

In this Section, going through a rigorous identification of all its basic compo-
nents, we provide a definition of a primitive for constraint-based frequent pattern
mining task over a relational database DB.

The first needed component is the data source: which table must be mined
for frequent patterns, and which attributed do identify transactions and items.

Definition 5 (Mining View). Given a database DB any relational expression
V on preds(DB) can be selected as data source, and named mining view.

Definition 6 (Transaction id). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our mining view. Any subset
of attributes T ⊂ sch(V) can be selected as transaction identifier, and named
transaction id.
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Definition 7 (Item attribute). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our mining view. Given a
subset of attributes T ⊂ sch(V) as transaction id, let Y = {y|y ∈ sch(V)\T ∧
T → y does not hold}; we define an attribute I ∈ Y an item attribute provided
the functional dependency T I → Y \I holds in DB.

Proposition 8. Given a relational database DB, a triple 〈V , T , I〉 denoting the
mining view V, the transaction id T , the item attribute I, uniquely identifies a
transactional database, as defined in Definition 1.

We next distinguish between attributes which describe items (descriptive at-
tributes), from attribute which describe transactions (circumstance attributes).

Definition 9 (Circumstance attribute). Given a database DB and a relation
V derived from preds(DB). Let V with attributes sch(V) be our mining view.
Given a subset of attributes T ⊂ sch(V) as transaction id, we define any attribute
A ∈ sch(R) where R is a relation in preds(DB) circumstance attribute provided
that A /∈ T and the functional dependency T → A holds in DB.

Definition 10 (Descriptive attribute). Given a database DB and a relation
V derived from preds(DB). Let V with attributes sch(V) be our mining view.
Given a subset of attributes T ⊂ sch(V) as transaction id, and given I as item
attribute; we define descriptive attribute any attribute A ∈ sch(R) where R is a
relation in preds(DB), provided the functional dependency I → A holds in DB.

Consider the mining view: sales(tID, locationID, time, product, price)
where each attribute has the intended semantics of its name and with tID acting
as the transaction id. Since the functional dependency {tID} → {locationID}
holds, locationID is a circumstance attribute. The same is true for time. We also
have {tID, product} → {price}, and {product} → {price}, thus product is
an item attribute, while price is a descriptive attribute.

Note that, from the previous definitions, transaction id and the item attribute
must be part of the mining view, while circumstance and descriptive attributes
could be also in other relations.

Constraints, as introduced in the previous Section (see Definition 3), describes
properties of itemsets, i.e., a constraint C is a boolean function over the domain
of itemsets: C : 2I → {true, false}. According to this view, constraints are only
those ones defined on item attributes (Definition 7) or descriptive attributes
(Definition 10).

Constraints defined over the transaction id (Definition 6) or over circum-
stance attributes (Definition 9) are not constraints in the strict sense. Indeed,
they can be seen as selection conditions on the transactions to be mined and
thus they can be satisfied in the definition of the mining view. Consider the rela-
tion: sales(tID, locationID, time, product, price) where each attribute
has the intended semantics of its name and with tID acting as the transaction
id. Since the functional dependency {tID} → {locationID} holds, locationID
is a circumstance attribute. The constraints locationID ∈ {Florence, Milan,
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Rome} is not a real constraint of the frequent pattern extraction, indeed it is a
condition in the mining view definition, i.e., it is satisfied by imposing such con-
dition in the relational expression defining the mining view (a select statement
if we embed our primitive in a SQL-like language).

The following Definition lists all kinds of constraints that we consider as
possible input for our primitive.

Definition 11 (Constraints on itemsets). In Table 1 all constraints admit-
ted in our primitive are listed. The following notation is adopted:

– s is an itemset;
– a1, . . . , an are items;
– d is a descriptive attribute;
– d1, . . . , dn are values of a descriptive attribute;
– m is a numeric constant;
– θ ∈ {≤,≥, =}
– aggr ∈ {min, max, sum, avg, count, range, avg, median, var, std, md}

Table 1. Constraints admitted in our primitive

Constraint Description

s ⊇ {a1, . . . , an} itemset contains

s ⊆ {a1, . . . , an} itemset domain

count(s) θ m itemset cardinality

s.d ⊇ {d1, . . . , dn} descriptive attribute contains

s.d ⊆ {d1, . . . , dn} descriptive attribute domain

aggr(s.d) θ m aggregate on descriptive attribute

We have provided all the needed components of our primitive, thus we are
now ready to introduce it.

Definition 12 (Primitive for constraint-based itemset mining). Given
a database DB, let the quintuple 〈V , T , I, σ, C〉 denotes the mining view V , the
transaction id T , the item attribute I, the minimum support threshold σ, and
a conjunction of constraints on itemsets C.

The primitive for constraint-based itemset mining takes in input such quin-
tuple and returns a binary relation recording the set of itemsets which satisfy
C and are frequent (w.r.t. σ) in the transaction database 〈V , T , I〉, and their
supports:

freq(V , T , I, σ, C) = {(I, S) | C(I) ∧ supp〈V,T ,I〉(I) = S ∧ S ≥ σ}

Example 13. A frequent pattern query for the sales table in Figure 1 (a), and
the product table in Figure 1 (c), querying itemsets having a support ≥ 3
(transactions are made grouping by customer and date), and having a total
price ≥ 30, could be simply defined as:
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freq(sales, {date, cust}, item, 3, sum{p | i ∈ I∧product(i, p, t)} ≥ 30) = {(I, S) |

sum{p | i∈ I∧product(i, p, t)}≥ 30 ∧ supp〈sales,{date,cust},item〉(I) =S ∧ S ≥ 3}
The result of such query is a relation (I,S) with the following two entries:
({beer, wine},4) and ({beer, wine, chips},3).

3 Embedding the Primitive into a Query Language

The issue of designing a query language capable of dealing with all requirements
of knowledge discovery process, including definition of interestingness measures
for extracted patterns and ad hoc exploitation of the application specific back-
ground knowledge, is a prominent research goal in data mining. This issue has
been tackled both by a database perspective and a machine learning perspective
(see [24] for a thorough discussion).

The proposal by a database perspective [33] is to combine relational query
languages with data mining primitives in an overall framework capable of specify-
ing data mining problems as an iterative and interactive querying session, where
queries can involve both data and extracted models or patterns, and the result
of a query becomes available for further querying (closure principle). In such
a knowledge discovery system, identified by the term inductive database, query
optimization and execution techniques typically rely on advanced ad hoc data
mining algorithms. Past efforts for developing such languages can be classified
in two categories:

– Developing mining tools tightly integrated with SQL DBMSs, representing
both the source data and the induced patterns in database relations. Mining
queries are specified in an SQL-like language [42, 43, 34, 35, 16, 27, 26, 55, 28,
29, 44].

– Exploiting logic to encode ad hoc data mining tasks and to specify back-
ground knowledge using the same language: typically some DATALOG ex-
tension [57, 53, 54, 21, 22, 14, 23].

On the machine learning side the main effort has been devoted to upgrading
existing “propositional” data mining techniques to first order logic. This ap-
proach is denoted Inductive Logic Programming (ILP). ILP systems construct
logic programs from examples (both positive and negative) and background
knowledge: the challenge is to find a hypothesis that is consistent (w.r.t. negative
examples) and complete (w.r.t. positive examples). The background knowledge
and the hypothesis are expressed in two (not necessarily distinct) languages that
are fixed in advance. In recent years, ILP has broadened its scope to cover stan-
dard data mining tasks such as classification, regression, clustering and associa-
tion rules. This research is triggered by the need to pass from single-relational
to multirelational data mining [20, 18, 17], i.e., a learning setting where every
example is a set of facts or, equivalently, a (small) relational database.

An interesting approach would be to integrate the two different perspective
in an overall framework, where multirelational data mining approach can meet
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the potentials offered by the integration of mining and querying which is typical
of the inductive database approach. A nice tentative in this direction is the logic
language RDM [51] which uses terms for conjunctive queries: both constants
and variables can be conjunctive queries, thus RDM queries can be regarded as
higher order queries that seeks for standard conjunctive queries which satisfy
some given constraints.

Although we are aware of the importance of designing a powerful query lan-
guage for knowledge discovery, in this paper we do not provide yet another
tentative in this direction. Less ambitiously, we provide a simple primitive for
constraint-based frequent pattern queries, which can be embedded in any kind
of query language and system coherent with the relational paradigm.

The rationale for this aim, is in our intention to focalize on the crucial point
of the Data Mining Query Language problem: the hot-spot where an adequate
trade-off between efficiency and expressiveness of the query language has to be
found. The potential efficient evaluation of the proposed primitive is discussed
in Section 4 and 5; here we advocate its adequate expressiveness and versatility
showing how it can be embedded in query languages of different flavour.

Example 14 (Embedding the primitive in a SQL-like language). Consider the
constraint-based frequent pattern query of Example 13. The following is some
SQL-like syntactic sugar to express such query.

MINE PATTERNS Freq_pat, Support
FROM sales
GROUPING item BY day,cust
MINIMUM SUPPORT: 3
CONSTRAINTS ON name
FROM product
HAVING SUM(price) >= 30,

In the first line we define the name of the two output attributes Freq pat and
Support corresponding to the variables I and S of the query in Example 13.
In the FROM clause we indicate the data source, or, in other words, the relation
which plays the role of the mining view (V): note that according to Definition 5
the mining view can be defined by a relational expression; this means that in the
FROM clause we can have a full SQL SELECT clause. In the third line we indicate
that transactions are created grouping the attribute item by the two attributes
day,cust. In other word, we indicate the attribute which plays the role of item
(I), and a list of attributes which play the role of transaction identifier (T ).
Note that such grouping is not really performed by the underlying DBMS: this
is just syntactic sugar to express the input parameters for our primitive. In the
fourth line we define the minimum support threshold σ. The last three lines
define the additional constraint on the sum of prices. Since the attribute price
is recorded in a relation different from the mining view we must indicate such
relation (product) and the name of the item attribute in such relation (name).
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An alternative could be to join the two tables in the definition of the mining
view, as follows:

MINE PATTERNS Freq_pat, Support
FROM (SELECT *

FROM sales JOIN product ON item = name
)

GROUPING item BY day,cust
MINIMUM SUPPORT: 3
HAVING SUM(price) >= 30,

However, this requires that the underlying DBMS joins two tables, a costly
operation not really necessary since our primitive can handle constraints defined
on different relations. In general we can have how many clauses of the form
“CONSTRAINTS ON attribute FROM table HAVING constraint” as necessary.

The simple query language whose syntax has been exemplified above, and
whose semantics is indirectly given by Definition 12, seems to be an adequate
trade-off between efficiency and expressiveness. It inherits its efficiency by our
primitive, which is implemented by an ad hoc optimized mining algorithm (see
Section 4 and 5). It is expressive since it allows full SQL definition of the source
data, it can exploit a wide variety of different constraints, and more impor-
tantly, it is geared on frequent itemsets which is a primitive task for many
complex queries. The most famous SQL-like data mining query language, MINE
RULE [42], has not the same flexibility, being geared on association rules, nor
the same efficiency, since it does not exploit constrain-pushing optimizations as
those described in the next Section. MINE RULE allows to express queries for
the mining of association rules whose body and head satisfy some structural con-
straints. In the following Example we show how such template-based queries can
be expressed in a DATALOG-like query language which embeds our primitive
as optimized mining engine.

Example 15 (Embedding the primitive in a DATALOG-like language). Consider
again the relation in Figure 1(a) and (c). Suppose we want to compute simple
association rules having support greater than 5 and confidence greater than 0.4
with exactly two items in the head (one of type beverage and one of type snack)
and at least 3 items in the body.

As usually we can divide the association rule mining problem in two parts: the
mining of frequent itemsets and the subsequent generation of valid rules. For the
first subproblem we can use an inductive query which exploits our primitive in
order to have an efficient mining, while the second post-processing subproblem
can be solved by a simple DATALOG query.

The first inductive rule requires to compute itemsets with the proper support
and containing at least one item of type beverage and one of type snack.
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frequentPatterns(Itemset, Support)← Support = freq(Itemset, X),
X = 〈I|{D, C}〉,
sales(D, C, I),
Support >= 5,
product(L, , beverage),
product(J, , snacks),
{L, J} ⊂ Itemset.

In the head of the rule we have the two output attributes Itemset and
Support. The first clause in the body of the rule states that the variable Support
stores the support of Itemset in the transaction database X. Such database is
obtained from relation sales(D,C,I) (third clause) grouping I by {D,C} (sec-
ond clause). The last three clauses in the body of the rule define the required
constraints.

The second rule is a deductive DATALOG rule which computes the required
association rules from the frequent itemsets by finding frequent itemsets of car-
dinality at least 5, having a frequent subset composed by two items to use as
head of the association rule.

rules(L, R, S, C)← frequentPatterns(I, S),
cardinality(I) >= 5,
frequentPatterns(R, S1),
cardinality(R) = 2,
subset(R, I), difference(I,R, L),
C = S/S1, C >= 0.4.

As pointed out by these examples, our primitive is a propositional mechanism
which works on a single relation, the input mining view. However, it is also possi-
ble in principle to embed the primitive into a multirelational data mining query
language, such as RDM [51], equipped with high-order mechanisms to generate
all possible mining views coherent with the specified item and transaction IDs,
thus obtaining repeated invocation to the primitive on the various admissible
mining views.

4 Constraint Properties and How to Exploit Them

Constrained frequent pattern mining can be seen as a query optimization prob-
lem: given a mining queryQ containing a set of constraints C, provide an efficient
evaluation strategy for Q which is sound and complete (i.e. it finds all and only
itemsets in Th(Cfreq) ∩ Th(C)). A näıve solution to such a problem is to first
find all frequent patterns (Th(Cfreq)) and then test them for constraints satisfac-
tion. However more efficient solutions can be found by analyzing the property of
constraints comprehensively, and exploiting such properties in order to push con-
straints in the frequent pattern computation. Following this methodology, some
classes of constraints which exhibit nice properties have been individuated. In
this Section, by reviewing all basic works on the constrained frequent itemsets
mining problem, we recall a classification of constraints and their properties.
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Fig. 3. Characterization of the classes of commonly used constraints

4.1 Anti-monotone and Succinct Constraints

A first work defining classes of constraints which exhibit nice properties is [44]. In
that paper is introduced an Apriori-like algorithm, named CAP, which exploits
two properties of constraints, namely anti-monotonicity and succinctness, in
order to reduce the frequent itemsets computation. Four classes of constraints,
each one with its own associated computational strategy, are defined:

1. Anti-monotone but not succinct constraints;
2. Anti-monotone and succinct constraints;
3. Succinct but not anti-monotone constraints;
4. Constraints that are neither.

Given an itemset X , a constraint CAM is anti-monotone if ∀Y ⊆ X : CAM (X)⇒
CAM (Y ). The frequency constraint is the most known example of a CAM con-
straint. This property, the anti-monotonicity of frequency, is used by the Apri-
ori [3] algorithm with the following heuristic: if an itemset X does not satisfy
Cfreq , then no superset of X can satisfy Cfreq , and hence they can be pruned. This
pruning can affect a large part of the search space, since itemsets form a lattice.
Therefore the Apriori algorithm (see Algorithm1) operates in a level-wise fashion
moving bottom-up on the itemset lattice, from small to large itemsets. At each
iteration k Apriori counts the support of candidate itemsets (i.e. itemsets which
have all subsets frequent) of size k, which are denoted by Ck.

Algorithm 1 Apriori
Input: D, σ
Output: Th(Cfreq[D,σ])
1: C1 ← {{i} | i ∈ I}; k← 1
2: while Ck �= ∅ do
3: Lk ← count(D, Ck)
4: Ck+1 ← generate apriori(Lk)
5: k + +
6: Th(Cfreq[D,σ])←

�
k Lk
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Those ones which have a support greater than the minimum support threshold
σ are frequent itemsets. From the set of frequent itemsets of size k (denoted
by Lk) the set of candidates for the next iteration Ck+1 is generated by the
generate apriori procedure. Other CAM constraints can easily be pushed deeply
down into the frequent itemsets mining computation since they behave exactly
as Cfreq : if they are not satisfiable at an early level (small itemsets), they have
no hope of becoming satisfiable later (larger itemsets). Conjoining other CAM

constraints to Cfreq we just obtain a more selective anti-monotone constraint.
A succinct constraint CS is such that, whether an itemset X satisfies it or

not, can be determined based on the singleton items which are in X . Informally,
given A1, the set of singleton items satisfying a succinct constraint CS , then any
set X satisfying CS is based on A1 , i.e. X contains a subset belonging to A1

(for the formal definition of succinct constraints see [44]). A CS constraint is
pre-counting pushable, i.e. it can be satisfied at candidate-generation time: these
constraints are pushed in the level-wise computation by substituting the usual
generate apriori procedure, with the proper (w.r.t. CS) candidate generation
procedure. For instance, consider the constraint CS ≡ min(X.price) ≤ v, which
is a succinct but not anti-monotone constraint. Given A1 = {i ∈ I | i.price ≤
v}, we have that Th(CS) = {X ∈ 2I | ∃i ∈ X : i ∈ A1}. Therefore this
constraint can be satisfied at candidate-generation time. This can be done using
a special candidate generation procedure, which takes care of the kind of the
given constraint, and produces only candidates which satisfy it. Constraints that
are both anti-monotone and succinct can be pushed completely in the level-wise
computation before it starts (at pre-processing time). For instance, consider the
constraint min(X.price) ≥ v: if we start with the first set of candidates formed
by all singleton items having price greater than v, during the computation we
will generate only itemsets satisfying the given constraint. Constraints that are
neither succinct nor anti-monotone are pushed in the CAP [44] computation by
inducing weaker constraints which are either anti-monotone and/or succinct.

4.2 Monotone Constraints

Monotone constraints work the opposite way of anti-monotone constraints. Given
an itemset X , a constraint CM is monotone if: ∀Y ⊇ X : CM (X)⇒ CM (Y ). Since
the frequent itemset computation is geared on Cfreq , which is anti-monotone, CM
constraints have been considered more hard to be pushed in the computation
and less effective in pruning the search space. In fact, many works [4, 19, 15, 13]
have studied the computational problem Th(Cfreq) ∩ Th(CM ), proposing some
smart exploration of its search space, but all facing the inherent difficulty of the
computational problem: the CAM -CM tradeoff. Such tradeoff can be described
as follows. Suppose that an itemset has been removed from the search space
because it does not satisfy a monotone constraint. This pruning avoids checking
support for this itemset, but on the other hand, if we check its support and find
it smaller than the frequency threshold, we may prune away all the supersets of
this itemset. In other words, by monotone pruning we risk to lose anti-monotone
pruning opportunities given by the pruned itemset. The tradeoff is clear: pushing
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monotone constraint can save frequency tests, however the results of these tests
could have lead to more effective anti-monotone pruning.

In [7] a completely new approach to exploit monotone constraints by means of
data-reduction is introduced. The ExAnte Property [7, 8] is obtained by shifting
attention from the pattern search space to the input data. Indeed, the CAM -CM
tradeoff exists only if we focus exclusively on the search space of the problem,
while if exploited properly, monotone constraints can reduce dramatically the
data in input, in turn strengthening the anti-monotonicity pruning power. With
data reduction techniques we exploit the effectiveness of a CAM -CM synergy.

The ExAnte property states that a transaction which does not satisfy the
given monotone constraint can be deleted from the input database since it will
never contribute to the support of any itemset satisfying the constraint.

Proposition 16 (ExAnte property [7]). Given a transaction database D and
a conjunction of monotone constraints CM , we define the µ-reduction of D as the
dataset resulting from pruning the transactions that do not satisfy CM : µCM (D) =
{t ∈ D | t ∈ Th(CM )}.
It holds that this data reduction does not affect the support of solution itemsets:

∀X ∈ Th(CM ) : suppD(X) = suppµCM
(D)(X).

A major consequence of reducing the input database in this way is that it
implicitly reduces the support of a large amount of itemsets that do not sat-
isfy CM as well, resulting in a reduced number of candidate itemsets generated
during the mining algorithm. Even a small reduction in the database can cause
a huge cut in the search space, because all supersets of infrequent itemsets are
pruned from the search space as well. In other words, monotonicity-based data-
reduction of transactions strengthens the anti-monotonicity-based pruning of
the search space. This is not the whole story, in fact, infrequent singleton items
can not only be removed from the search space together with all their super-
sets, for the same anti-monotonicity property they also can be deleted from all
transactions in the input database (this anti-monotonicity-based data-reduction
is named α-reduction). Removing items from transactions offers another posi-
tive effect: reducing the size of a transaction which satisfies CM can make the
transaction violate it. Therefore a growing number of transactions which do not
satisfy CM can be found. Obviously, we are inside a loop where two different
kinds of pruning (α and µ) cooperate to reduce the search space and the input
dataset, strengthening each other step by step until no more pruning is possible
(a fix-point has been reached).

The ExAMiner Algorithm. The recently introduced algorithm ExAMiner [6,
5], generalizes the ExAnte idea to reduce the problem dimensions at all levels
of a level-wise Apriori-like computation. In this way, the CAM -CM synergy is
effectively exploited at each iteration of the mining algorithm, and not only at
pre-processing as done by ExAnte, resulting in significant performance improve-
ments. The idea is to generalize ExAnte’s α-reduction from singletons level to
the generic level k. This generalization results in the following set of data reduc-
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tion techniques, which are based on the anti-monotonicity of Cfreq (see [6] for
the proof of correctness).

Gk(i): an item which is not subset of at least k frequent k-itemsets can be pruned
away from all transactions in D.

Tk(t): a transaction which is not superset of at least k + 1 frequent k-itemsets
can be removed from D.

Lk(i): given an item i and a transaction t, if the number of frequent k-itemsets
which are superset of i and subset of t is less than k, then i can be pruned
away from transaction t.

Algorithm 2 count&reduce

Input: Dk, σ, CM , Ck, Vk−1

Output: Dk+1, Vk, Lk

1: forall i ∈ I do Vk[i]← 0
2: forall tuples t in Dk do
3: forall i ∈ t do if Vk−1[i] < k − 1
4: then t← t \ i
5: else i.count ← 0
6: if |t| ≥ k and CM (t) then
7: forall X ∈ Ck, X ⊆ t do
8: X.count++; t.count++
9: forall i ∈ X do i.count++

10: if X.count = σ then
11: Lk ← Lk ∪ {X}
12: forall i ∈ X do Vk[i] + +
13: if |t| ≥ k + 1 and t.count ≥ k + 1 then
14: forall i ∈ t if i.count < k
15: then t← t \ i
16: if |t| ≥ k + 1 and CM (t) then
17: write t in Dk+1

In ExAMiner [6] these data reductions are coupled with the µ-reduction for CM
constraints as described in Proposition 16. Essentially ExAMiner is an Apriori-
like algorithm, which at each iteration k − 1 produces a reduced dataset Dk to
be used at the subsequent iteration k. Each transaction in Dk, before participat-
ing to the support count of candidate itemsets, is reduced as much as possible
by means of Cfreq -based data reduction, and only if it survives to this phase,
it is effectively used in the counting phase. Each transaction which arrives to
the counting phase, is then tested against the CM (µ-reduction) , and reduced
again as much as possible, and only if it survives to this second set of reductions,
it is written to the transaction database for the next iteration Dk+1. The pro-
cedure we have just described, is named count&reduce (see Algorithm 2), and
substitutes the usual support counting procedure of Apriori (Algorithm 1).
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In Algorithm 2 in order to implement the data-reduction Gk(i) we use an
array of integers Vk (of the size of Items), which records for each item the
number of frequent k-itemsets in which it appears. This information is then
exploited during the subsequent iteration k + 1 for the global pruning of items
from all transaction in Dk+1 (lines 3 and 4 of the pseudo-code). On the contrary,
data reductions Tk(t) and Lk(i) are put into effect during the same iteration
in which the information is collected. Unfortunately, they require information
(the frequent itemsets of cardinality k) that is available only at the end of the
actual counting (when all transactions have been used). However, since the set of
frequent k-itemsets is a subset of the set of candidates Ck, we can use such data
reductions in a relaxed version: we just check the number of candidate itemsets
X which are subset of t (t.count in the pseudo-code, lines 10 and 18) and which
are superset of i (i.count in the pseudo-code, lines 9 and 14).

4.3 Convertible Constraints

In [48, 49] the class of convertible constraints is introduced, and an FP-growth
based methodology to push such constraints is proposed. A constraint CCAM

is convertible anti-monotone provided there is an order R on items such that
whenever an itemset X satisfies CCAM , so does any prefix of X . A constraint CCM

is convertible monotone provided there is an orderR on items such that whenever
an itemset X violates CCM , so does any prefix of X . In [48, 49], two FP-growth
based algorithms are introduced: FICA to mine Th(Cfreq) ∩ Th(CCAM ), and
FICM to mine Th(Cfreq)∩Th(CCM ). A major limitation of any FP-growth based
algorithm is that the initial database (internally compressed in the prefix-tree
structure) and all intermediate projected databases must fit into main memory.
If this requirement cannot be met, these approaches can simply not be applied
anymore. This problem is even harder with FICA and FICM: in fact, using
an order on items different from the frequency-based one, makes the prefix-
tree lose its compressing power. Thus we have to manage much greater data
structures, requiring a lot more main memory which might not be available.
Another important drawback of this approach is that it is not possible to take
full advantage of a conjunction of different constraints, since each constraint in
the conjunction could require a different ordering of items.

4.4 Loose Anti-monotone Constraints

In [12] a new class of tougher constraints, which is a proper superclass of convert-
ible anti-monotone, is introduced together with an Apriori-like algorithm which
exploit such constraints by means of data reduction.

Example 17 (var constraint is not convertible). Calculating the variance is an
important task of many statistical analysis: it is a measure of how spread out a
distribution is. The variance of a set of number X is defined as:

var(X) =
∑

i∈X(i− avg(X))2

|X |
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A constraint based on var is not convertible. Otherwise there is an order R
of items such that var(X) is a prefix increasing (or decreasing) function. Con-
sider a small dataset with only four items I = {A, B, C, D} with associated
prices P = {10, 11, 19, 20}. The lexicographic order R1 = {ABCD} is such that
var(A) ≤ var(AB) ≤ var(ABC) ≤ var(ABCD), and it is easy to see that we
have only other three orders with the same property: R2 = {BACD},R3 =
{DCBA},R4 = {CDBA}. But, for R1, we have that var(BC) � var(BCD),
which means that var is not a prefix increasing function w.r.t. R1. Moreover,
since the same holds for R2, R3, R4, we can assert that there is no order R such
that var is prefix increasing. An analogous reasoning can be used to show that
it neither exists an order which makes var a prefix decreasing function.

Following a similar reasoning it can be shown that other interesting con-
straints, such as for instance those ones based on standard deviation (std) or
unbiased variance estimator (varN−1) or mean deviation (md), are not con-
vertible as well. Luckily, all these constraints share a nice property that named
“Loose Anti-monotonicity” [12].

While an anti-monotone constraint is such that, if satisfied by an itemset then
it is satisfied by all its subsets, a loose anti-monotone constraint as such that, if
it is satisfied by an itemset of cardinality k then it is satisfied by at least one of
its subsets of cardinality k− 1. Since some of these interesting constraints make
sense only on sets of cardinality at least 2, in order to get rid of such details,
we shift the definition of loose anti-monotone constraint to avoid considering
singleton items.

Definition 18 (Loose Anti-monotone constraint). Given an itemset X
with |X | > 2, a constraint is loose anti-monotone (denoted CLAM ) if: CLAM (X)
⇒ ∃i ∈ X : CLAM (X \ {i})

The next proposition and the subsequent example state that the class of CLAM

constraints is a proper superclass of CCAM (convertible anti-monotone con-
straints).

Proposition 19. Any convertible anti-monotone constraint is trivially loose
anti-monotone: if a k-itemset satisfies the constraint so does its (k − 1)-prefix
itemset.

Example 20. We show that the constraint var(X.A) ≤ v is a CLAM constraint.
Given an itemset X , if it satisfies the constraint so trivially does X \ {i}, where
i is the element of X which has associated a value of A which is the most far
away from avg(X.A). In fact, we have that var({X \ {i}}.A) ≤ var(X.A) ≤ v,
until |X | > 2.Taking the element of X which has associated a value of A which
is the closest to avg(X.A) we can show that also var(X.A) ≥ v is a CLAM

constraint. Since the standard deviation std is the square root of the variance,
it is straightforward to see that std(X.A) ≤ v and std(X.A) ≥ v are CLAM . The
mean deviation is defined as: md(X) = (

∑
i∈X |i− avg(X)|) / |X |. Once again,

we have that md(X.A) ≤ v and md(X.A) ≥ v are loose anti-monotone. It is
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easy to prove that also constraints defined on the unbiased variance estimator,
varN−1 = (

∑
i∈X(i− avg(X))2) / (|X | − 1) are loose anti-monotone.

The next Proposition (see [12] for the proof) indicates how a CLAM constraint
can be exploited in a level-wise Apriori-like computation by means of data-
reduction. It states that if at any iteration k ≥ 2 a transaction is not superset of
at least one frequent k-itemset which satisfy the CLAM constraint (a solution),
then the transaction can be deleted from the database.

Proposition 21. Given a transaction database D, a minimum support threshold
σ, and a CLAM constraint, at the iteration k ≥ 2 of the level-wise computation, a
transaction t ∈ D such that: �X ⊆ t, |X | = k, X ∈ Th(Cfreq[D,σ])∩Th(CLAM ) can
be pruned away from D, since it will never be superset of any solution itemsets
of cardinality > k.

As in ExAMiner [6] the anti-monotonicity based data reductions are coupled
with the µ-reduction for CM constraints, similarly we can exploit the above
Proposition for CLAM constraints, by embedding such loose anti-monotonicity
based data reduction with-in the count&reduce procedure (see [12]).

5 Constraint Pushing Optimization

In this section we define an ad hoc optimized algorithm for the evaluation of our
primitive on the basis of the state-of-the-art of constraint pushing techniques
described in the previous Section. The proposed algorithm, is a breadth-first
Apriori-like computation based on data-reduction techniques.

Adopting this kind of algorithmic architecture, i.e., moving level-wise and
reducing data as much as possible, we can exploit different properties of con-
straints all together, and the global reduction benefit is always greater than the
sum of the individual benefits.

In Table 2 we report the properties that our algorithm exploits for each con-
straint admitted in our framework. In the Table we do not report convertibility
property since we do not exploit it. Convertibility, in fact, is well suited for
FP-tree based depth-first algorithms [30, 48, 49] while we adopt an Apriori-like
breadth-first computation. In our framework, the constraint based on the avg
aggregate, which is the prototypical convertible constraint, is pushed in the com-
putation by means of loose anti-monotonicity data reduction, obtaining stronger
benefits. For a deeper discussion on this issue and for empirical comparison of
the two different strategies see [12].

Algorithm 3 implements our primitive. Given freq(V , T , I, σ, C) Algorithm 3
computes Th(Cfreq[D,σ]) ∩ Th(C) where D is given by the triple 〈V , T , I〉 as de-
scribed in Section 2. In the pseudo-code the constraints in the conjunction C are
partitioned in groups w.r.t. their properties. In particular:

– CAM is the conjunction of constraints in C which are anti-monotone but not
succinct;
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Table 2. Properties of the constraints admitted in our primitive

Constraint Properties

S ⊆ V CAM , CS , CLAM

S ⊇ V CM , CS , CLAM

S.A ⊆ V CAM , CS , CLAM

S.A ⊇ V CM , CS , CLAM

min(S.A) ≥ v CAM , CS , CLAM

min(S.A) ≤ v CM , CS , CLAM

max(S.A) ≥ v CM , CS , CLAM

max(S.A) ≤ v CAM , CS , CLAM

count(S) ≤ v CAM , CLAM

count(S) ≥ v CM
count(S.A) ≤ v CAM , CLAM

count(S.A) ≥ v CM
sum(S.A) ≤ v (∀i ∈ S, i.A ≥ 0) CAM , CLAM

sum(S.A) ≥ v (∀i ∈ S, i.A ≥ 0) CM
range(S.A) ≤ v CAM , CLAM

range(S.A) ≥ v CM , CLAM

avg(S.A)θv CLAM

median(S.A)θv CLAM

var(S.A)θv CLAM

std(S.A)θv CLAM

md(S.A)θv CLAM

– CAMS is the conjunction of constraints in C which are both anti-monotone
and succinct;

– CM is the conjunction of constraints in C which are monotone but not suc-
cinct;

– CMS is the conjunction of constraints in C which are both monotone and
succinct;

– CLAM is the conjunction of constraints in C which are loose anti-monotone.

Note that this groups of constraints are not necessarily disjoint.

Example 22. The constraint range(S.A) ≥ v ≡ max(S.A) −min(S.A) ≥ v, is
both monotone and loose anti-monotone. Thus, when we mine frequent itemsets
which satisfy such constraint we can exploit the benefit of having together, in the
same count&reduce procedure, the Cfreq -based data reductions, the µ-reduction
for monotone constraints, and the reduction based on CLAM .

The possibility of exploiting different properties of constraints all together,
exists not only for CM and CLAM constraints (as seen in Example 22), but also
for any other kind of constraints. In fact, all the properties that we exploit are
orthogonal and thus can be combined.

Example 23. Consider now the constraint max(S.A) ≥ v. This constraint is
monotone, succinct and loose anti-monotone. This means that we can exploit all
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these properties by using it as a succinct constraint at candidate generation time,
and using it as a monotone constraint and as a loose anti-monotone constraint
by means of data-reduction at counting time.

Algorithm 3 Constraint-based Frequent Pattern Mining
Input: D, σ, C
Output: Th(Cfreq[D,σ]) ∩ Th(C)
1: L1 ← I
2: C1 ← {{i} | i ∈ I ∧ CAMS ({i}) ∧ CAM ({i})}
3: D1 ← πC1(D)
4: L1,D1 ← count first iteration(D1, σ, C1, CM , CMS )
5: while L1 �= C1 do
6: C1 ← L1;
7: L1,D1 ← count first iteration(D1, σ, C1, CM , CMS )
8: C2 ← generate(L1, CAM , CMS )
9: forall i ∈ L1 do V1[i]← 0

10: k ← 2
11: while Ck �= ∅ do
12: Lk,Dk+1, Vk ← count&reduce(Dk, σ, CM , CMS , CLAM , Ck, Vk−1)
13: Ck+1 ← generate(Lk, CAM , CMS )
14: k + +
15: for(i = 0; i ≤ k; i + +) do
16: forall X ∈ Li do
17: if CM (X) ∧ CMS (X) ∧ CLAM (X) then return X

Let us briefly describe the pseudo-code in Algorithm 3. First of all, note that
as stated in Section 3 constraints which are both anti-monotone and succinct are
pushed once and for all, at preprocessing, simply by considering in the forthcom-
ing computation singleton items which satisfy them (Line 2). Lines from 3 to 7
together with procedure count first iteration (Algorithm 4), implement the Ex-
Ante pre-processing [7]. Lines from 11 to 14 implements the typical central loop
of the Apriori algorithm, where the generate procedure exploits succinctness and
anti-monotonicity to reduce the set of candidates, and the count&reduce pro-
cedure exploits monotonicity and loose anti-monotonicity. Finally, lines from 15
to 17 implement the post-processing, where possible solution itemsets are check
for satisfaction of those kinds of constraints, for which satisfaction not already
guaranteed.

Our algorithm, by means of data-reduction, exploits a real synergy of all
constraints that the user defines for the pattern extraction: each constraint does
not only play its part in reducing the data, but this reduction in turns strengthens
the pruning power of the other constraints. Moreover data-reduction induces
a pruning of the search space, and the pruning of the search space in turn
strengthens future data reductions.

The orthogonality of the exploited constraint pushing techniques has a twofold
benefit: on one hand all the techniques can be amalgamated together achieving a
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Algorithm 4 count first iteration

Input: D, σ, C, CM , CMS

Output: D1, L1

1: L1 ← ∅;D1 ← ∅
2: forall t ∈ D do
3: if CM (t) ∧ CMS (t) then
4: forall i ∈ t do i.count + +; if i.count + + = σ then L1 ← L1 ∪ {i}
5: D1 ← D1 ∪ t
6: D1 ← πL1(D1)

very efficient computation (for the empirical evaluation of each single technique
we address the interested reader to the respective paper cited in Section 4);
on the other hand the framework can be easily extended to handle to other
constraints.

Another positive effect of adopting an Apriori-like algorithm, is that in the im-
plementation we can exploit all coding tricks and smart data structure that have
been developed in the last decade for the Apriori algorithm (see, for instance,
[45, 46]).

At Pisa KDD Laboratory developed a prototype of the optimized computa-
tional framework in tight collaboration with the authors of [45, 46], within the
P 3D project1.

6 Conclusions and Future Work

In this paper, we introduced a primitive for constraint-based pattern discovery,
which represents a trade-off between simplicity and generality, as well as between
expressiveness and efficiency. The versatility of the primitive is witnessed by
its easy adaption within query languages of different nature; its efficiency is
witnessed by the availability of systematic optimization methods, based on the
properties of the specified constraints. We believe that this trade-off ia a step
forward in the road to a realistic inductive database system. We are also aware
that many issues remain open, and deserve further research:

– how to support user-defined constraints;
– how to integrate condensed representations of patterns in the constraint-

based mining framework [47, 10, 11];
– how to tightly integrate our primitive within a relational DBMS: his issue

is strictly connected with many other open problems, for instance, how to
store and index frequent pattern query results;

– defining constraint-based incremental mining techniques, i.e., how to exploit
the results of previous queries in order to have a more efficient computation
for the forthcoming queries;

– developing a constraint-based mining framework for more complex kinds of
patterns such as sequences and graphs.

1 http://www-kdd.isti.cnr.it/p3d/index.html
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Our objective is to integrate the results of these investigations in a unified
system for exploratory constraint-based pattern discovery.
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20. S. Džeroski and N. Lavrač, editors. Relational Data Mining. Springer, Berlin, 2001.
21. F. Giannotti and G. Manco. Querying Inductive Databases via Logic-Based User-

Defined Aggregates. In Proceedings of PKDD’99.



36 F. Bonchi, F. Giannotti, and D. Pedreschi

22. F. Giannotti and G. Manco. Making Knowledge Extraction and Reasoning Closer.
In T. Terano, editor, Proceedings of PAKDD’00.

23. F. Giannotti, G. Manco and F. Turini. Specifying Mining Algorithms with Iterative
User-Defined Aggregates. IEEE Trans. Knowl. Data Eng. 16(10): 1232-1246 (2004).

24. F. Giannotti, G. Manco and J. Wijsen. Logical Languages for Data Mining. In
Logics for emerging Applications of Databases. Springer, Berlin, 2003.

25. G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained corre-
lated sets. In Proceedings of ICDE’00).

26. J. Han. Towards On-Line Analytical Mining in Large Databases. Sigmod Records,
27(1):97–107, 1998.

27. J. Han, S. Chee, and J. Chiand. Issues for On-Line Analytical Mining of Data
Warehouses. In Proceedings of DMKD’98.

28. J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A Data Mining
Query Language for Relational Databases. In Proceedings of DMKD’96.

29. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based, multidimensional
data mining. Computer, 32(8):46–50, 1999.

30. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of ACM SIGMOD’00.

31. D. Hand, H. Mannila, and P. Smyh. Principles of Data Mining. The MIT Press,
2001.

32. M. Houtsma and A. Swami. Set-oriented mining for association rules in relational
databases. In Proceedings of ICDE’95.

33. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Comm. Of The Acm, 39:58–64, 1996.

34. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Data Mining and Knowledge Discovery, 3(4):373–408, 1999.

35. T. Imielinski, A. Virmani, and A. Abdulghani. DMajor - Application Programming
Interface for Database Mining. Data Mining and Knowledge Discovery, 3(4):347–
372, 1999.

36. B. Jeudy and J.F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis Journal, 6(4):341–357, 2002.

37. S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in hiv data. In
Proceedings of ACM SIGKDD’01.

38. L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. SIGMOD Record, 28(2), 1999.

39. W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In In Proceedings of ICDM’01.

40. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proceedings of KDD’98.

41. H. Mannila and H. Toivonen. Levelwise Search and Border of Theories in Knowl-
edge Discovery. Data Mining and Knowledge Discovery, 3:241–258, 1997.

42. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In Proceedings of VLDB’96.

43. R. Meo, G. Psaila, and S. Ceri. A Tightly-Coupled Architecture for Data Mining.
In Proceedings of ICDE’98.

44. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings of the ACM
SIGMOD’98.

45. S. Orlando, P. Palmerini, and R. Perego. Enhancing the Apriori Algorithm for
Frequent Set Counting. In Proceedings of DaWak’01.



A Relational Query Primitive for Constraint-Based Pattern Mining 37

46. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and Resource-Aware
Mining of Frequent Sets. In Proceedings of ICDM’02.

47. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of ICDT’99.

48. J. Pei and J. Han. Can we push more constraints into frequent pattern mining?
In Proceedings of ACM SIGKDD’00.

49. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In (Proceedings of ICDE’01).

50. J. Pei, X. Zhang, M. Cho, H. Wang, and P. Yu. Maple: A fast algorithm for
maximal pattern-based clustering. In Proceedings of ICDM’03.

51. L. De Raedt. A logical database mining query language. In Proceedings of ILP’00.
52. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with

relational database systems: Alternatives and implications. In Proceedings of the
ACM SIGMOD’98.

53. W. Shen and B. Leng. A Metapattern-Based Discovery Loop for Integrated Data
Mining - Unsupervised Learning of Relational Patterns. IEEE Trans. on Knowledge
and Data Engineering, 8(6):898–910, 1996.

54. W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for Data Min-
ing. In Advances in Knowledge Discovery and Data Mining, pages 375–398. AAAI
Press/The MIT Press, 1996.

55. A. P. J. M. Siebes and M. L. Kersten. Keso: Minimizing Database Interaction. In
Proceedings of KDD’97.

56. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proceedings of KDD’97.

57. D. Tsur, J.D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query flocks: A generalization of association-rule mining. In Pro-
ceedings of ACM SIGMOD’98.

58. M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected clustering.
In Proceedings of ICDM’03.


	Introduction
	Constraint-Based Pattern Discovery
	Paper Contribution and Organization

	A Primitive for Constraint-Based Mining
	Embedding the Primitive into a Query Language
	Constraint Properties and How to Exploit Them
	Anti-monotone and Succinct Constraints
	Monotone Constraints
	Convertible Constraints
	Loose Anti-monotone Constraints

	Constraint Pushing Optimization
	Conclusions and Future Work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




