
Generic Pattern Mining Via Data Mining

Template Library�

Mohammed J. Zaki, Nilanjana De, Feng Gao, Paolo Palmerini��,
Nagender Parimi, Jeevan Pathuri, Benjarath Phoophakdee, and Joe Urban

Computer Science Department, Rensselaer Polytechnic Institute, Troy NY 12180

Abstract. Frequent Pattern Mining (FPM) is a very powerful paradigm
for mining informative and useful patterns in massive, complex datasets.
In this paper we propose the Data Mining Template Library, a collec-
tion of generic containers and algorithms for data mining, as well as
persistency and database management classes. DMTL provides a sys-
tematic solution to a whole class of common FPM tasks like itemset, se-
quence, tree and graph mining. DMTL is extensible, scalable, and high-
performance for rapid response on massive datasets. A detailed set of
experiments show that DMTL is competitive with special purpose al-
gorithms designed for a particular pattern type, especially as database
sizes increase.

1 Introduction

Frequent Pattern Mining (FPM) is a very powerful paradigm which encompasses
an entire class of data mining tasks, namely those dealing with extracting infor-
mative and useful patterns in massive datasets representing complex interactions
between diverse entities from a variety of sources. These interactions may also
span multiple-scales, as well as spatial and temporal dimensions. FPM is ideally
suited for categorical datasets, which include text/hypertext data (e.g., news ar-
ticles, web pages), semistructured and XML data, event or log data (e.g., network
logs, web logs), biological sequences (e.g. DNA/RNA, proteins), transactional
datasets, and so on. FPM techniques are able to extract patterns embedded in
different subspaces within very high dimensional, massive datasets. FPM is very
well suited to selecting or constructing good features in complex data and also
for building global classification models of the datasets [26].

The specific tasks encompassed by FPM include the mining of increasingly
complex and informative patterns, in complex structured and unstructured rela-
tional datasets, such as: Itemsets or co-occurrences [1] (transactional, unordered
data), Sequences [2,24] (temporal or positional data, as in text mining, bioin-
formatics), Tree patterns [25,3] (XML/semistructured data), and Graph pat-

� This work was supported by NSF Grant EIA-0103708 under the KD-D program,
NSF CAREER Award IIS-0092978, and DOE Early Career PI Award DE-FG02-
02ER25538.

�� The work was done while Paolo was at RPI.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 362–379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generic Pattern Mining Via Data Mining Template Library 363

terns [10,13,21,22] (complex relational data, bioinformatics). Figure 1 shows ex-
amples of these different types of patterns; in a generic sense a pattern denotes
links/relationships between several objects of interest. The objects are denoted
as nodes, and the links as edges. Patterns can have multiple labels, denoting
various attributes, on both the nodes and edges.

The current practice in frequent pattern mining basically falls into the para-
digm of incremental algorithm improvement and solutions to very specific prob-
lems. While there exist tools like MLC++ [12], which provides a collection of
algorithms for classification, and Weka [20], which is a general purpose Java li-
brary of different data mining algorithms including itemset mining, these systems
do not have an unifying theme or framework, there is little database support,
and scalability to massive datasets is questionable. Moreover, these tools are not
designed for handling complex pattern types like trees and graphs.

Our work seeks to address all of the above limitations. In this paper we
describe Data Mining Template Library (DMTL), a generic collection of al-
gorithms and persistent data structures, which follows a generic programming
paradigm [4]. DMTL provides a systematic solution for the whole class of pattern
mining tasks in massive, relational datasets. The main contributions of DMTL
are as follows:

– The design and implementation of generic data structures and algorithms to
handle various pattern types like itemsets, sequences, trees and graphs.

– Design and implementation of generic data mining algorithms for FPM, such
as depth-first and breadth-first search.

– Persistent data structures for supporting efficient pattern frequency compu-
tations using a tightly coupled database (DBMS) approach.

– Native support for both a vertical and horizontal database formats for highly
efficient mining.

– DMTL’s support for pre-processing steps like data mapping and discretiza-
tion of continuous attributes and creation of taxonomies. etc.

One of the main attractions of a generic paradigm is that the generic algo-
rithms for mining are guaranteed to work for any pattern type. Each pattern
has a list of properties it satisfies, and the generic algorithm can utilize these
properties to speed up the mining. We conduct a detailed set of experiments
to show the scalability and efficiency of DMTL for different pattern types like
itemsets, sequences, trees and graphs. Our results indicate that DMTL is com-
petitive with the special purpose algorithms designed for a particular pattern
type, especially with increasing database sizes.

1.1 Related Work

Previous research in integrating mining and databases has mainly looked at
SQL support. DMQL [8] is a mining query language to support common mining
tasks. MSQL [9] is an extension of SQL to generate and selectively retrieve sets
of rules from a large database. The MINE RULE SQL operator [15] and Query

364 M.J. Zaki et al.

flocks [18] extend the semantics of association rules, allowing more generalized
queries to be performed. A comprehensive study of several architectural alter-
natives for database and mining integration were studied in [16]. This body of
work is complementary to ours, since these SQL operators can be used as a front
end to DMTL. Also, DMTL is optimized for the class of frequent patterns.

There has been limited work in integrating other mining tasks with databases.
A middleware for classification was proposed in [5]; it decomposes and schedules
classification primitives over a back-end SQL database. Two generic SQL oper-
ations called count-by-group (for class histograms) and compute-tuple-distances
(for point distances) were identified in [6] for classification and clustering tasks,
respectively.

2 Preliminaries

The problem of mining frequent patterns can be stated as follows: Let N =
{x1, x2, . . . , xnv} be a set of nv distinct nodes or vertices. A pair of nodes (xi, xj)
is called en edge. Let L = {l1, l2, . . . , lnl

}, be a set of nl distinct labels. Let Ln :
N → L, be a node labeling function that maps a node to its label Ln(xi) = lj ,
and let Le : N × cE → L be an edge labeling function, that maps an edge to its
label Le(xi, xj) = lk.

A pattern P is simply a relation on N , P ⊆ N × N , that is P = {(xi, xj) |
xi, xj ∈ N}, such that P satisfies some user-specified conditions C (i.e., C(P)
is true). It is also intuitive to represent a pattern P as a graph (PV , PE), with
labeled vertex set PV ⊂ N and labeled edge set PE = {(xi, xj) | xi, xj ∈ PV }.
The number of nodes in a pattern P is called its size. A pattern of size k is called a
k-pattern. In some applications P is a symmetric relation, i.e., (xi, xj) = (xj , xi)
(unordered edges), while in other applications P is anti-symmetric, i.e., (xi, xj) �=
(xj , xi) (ordered edges). A path in P is a set of distinct nodes {xi0 , xi1 , xin}, such
that (xij , xij+1) in an edge in PE for all j = 0 · · ·n − 1. The number of edges
gives the length of the path. If xi and xj are connected by a path of length n we
denote it as xi <n xj . Thus the edge (xi, xj) can also be written as xi <0 xj .

Given two patterns P and Q, we say that P is a subpattern of Q (or Q is
a super-pattern of P), denoted P�Q if and only if there exists a 1-1 mapping
f from nodes in P to nodes in Q, such that for all xi, xj ∈ PV : i) Ln(xi) =
Ln(f(xi)), ii) Le(xi, xj) = Le(f(xi), f(Xj)), and iii) (xi, xj) ∈ PV iff (if and
only if) (f(xi), f(xj)) ∈ QV . In some cases we are interested in embedded
subpatterns. P is an embedded subpattern of Q if: i) Ln(xi) = Ln(f(xi)), iii)
Le(xi, xj) = Le(f(xi), f(Xj)), and iii) (xi, xj) ∈ PV iff f(xi) <l f(xj), i.e.,
f(xi) is connected to f(xj) on some path. If P�Q we say that P is contained
in Q or Q contains P .

A database D is just a collection (a multi-set) of patterns. A database pattern
is also called an object. Let O = {o1, o2, . . . , ono}, be a set of no distinct object
identifiers (oid). An object has a unique identifier, given by the function O(di) =
oj , where di ∈ D and oj ∈ O. The number of objects in D is given as |D|.

Generic Pattern Mining Via Data Mining Template Library 365

TREE GRAPH

CB

A

A CA
1 2 3 4

B

SEQUENCE (A−−>AB−−>C)

A B C D
1

ITEMSET (ABCD)

CB

A

A
1

A
1

2

3

3 3

4

4
4

5

2

Fig. 1. FPM Instances

The absolute support of a pattern P in a database D is defined as the number of
objects in D that contain P , given as πa(P,D) = |{P�d | d ∈ D}|. The (relative)
support of P is given as π(P,D) = πa(P,D)

|D| . A pattern is frequent if its support
is more than some user-specified minimum threshold, i.e., if π(P,D) ≥ πmin.
A frequent pattern is maximal if it is not a subpattern of any other frequent
pattern. A frequent pattern is closed if it has no super-pattern with the same
support. The frequent pattern mining problem is to enumerate all the patterns
that satisfy the user-specified πmin frequency requirement (and any other user-
specified conditions).

The main observation in FPM is that the sub-pattern relation � defines a
partial order on the set of patterns. If P�Q, we say that P is more general than
Q, or Q is more specific than P . The second observation used is that if Q is
a frequent pattern, then all sub-patterns P�Q are also frequent. The different
FPM algorithms differ in the manner in with they search the pattern space.

2.1 FPM Instances

Some common types of patterns include itemsets, sequences, trees, and graphs,
as shown in Figure 1. In fact, every pattern can be modeled as a graph; the
nodes (xi) are shown under each circle and the node labels (Ln(xi)) are shown
inside the circle, whereas edge labels have been omitted.

In an itemset [1] no two nodes have the same label. Let V = {x1, x2, · · ·xk} be
a node set such that Ln(xi) �= Ln(xj) for all xi, xj ∈ V , and Ln(xi) < Ln(Xi+1

366 M.J. Zaki et al.

for all 1 ≤ i ≤ k − 1. There are several possible formulation of the itemset
pattern: i) vertex-only: An itemset pattern P is just a of vertices, i.e., PV = V
and PE = ∅, ii) linear: Figure 1 shows another formulation, where the itemset
is defined as PV = V , and PE = {(xi, xi+1)|xi, xi+1 ∈ PV }, iii) clique: A third
alternative is to represent itemset P as a clique, i.e., PV = V and PE = {(xi, xj) |
i < j and xi, xj ∈ PV }.

In sequence mining [2], a sequence is modeled as an ordered list of itemsets,
and thus the different nodes in a sequence can have the same label. We can
model a sequence pattern P as being made up of a sequence of n itemsets P i,
i = 1, · · ·n, using the linear formulation (as shown in Figure 1); note that using
the vertex-only formulation is problematic, since it results in a disconnected
pattern. Thus P has a vertex set made up of n disjoint subsets PV =

⋃n
i=1 P i

V .
The edge set P contains all the edges within P i (consecutive and undirected),
and PE contains, a directed edge for every pair of consecutive itemsets, i.e., from
the last node of P i to the first node of P i+1.

In tree mining [25,3], typically rooted, ordered and labeled trees are consid-
ered. Thus a tree pattern P consists of the vertex set PV = {r, x1, x2, · · ·}, where
r is a special node called root. A tree pattern must satisfy all tree properties,
namely i) the root has no parent, i.e., (xi, r) �∈ PE for any xi ∈ PV , ii) the edges
are directed, i.e., if (xi, xj) ∈ PE , then (xj , xi) �∈ PE), iii) a node has only one
parent, i.e., if (xi, xj) ∈ PE , then (xk, xj) �∈ PE for any xk �= xi, iv) the tree is
connected, i.e., for all xi ∈ PV , there exists a path from the root r to xi, and v)
tree has no cycles. Furthermore for ordered trees the order of a nodes’ children
matters. This means that there is an ordering of edges in PE , such that (xi, xj)
comes before (xi, xk) in PE only if xj is before xk in the ordering of xi’s children.

Finally, by definition a pattern can model any general graph, as well as any
special constraints that might appear in graph mining [10,13,21], such as con-
nected graphs, or induced subgraphs. It is also possible to model other patterns
such as DAGs (directed acyclic graphs).

3 DMTL: Data Structures and Algorithms

The C++ Standard Template Library (STL) provides efficient, generic imple-
mentations of widely used algorithms and data structures, which tremendously
aid effective programming. Like STL, DMTL is a collection of generic data min-
ing algorithms and data structures. In addition, DMTL provides persistent data
and index structures for efficiently mining any type of pattern or model of in-
terest. The user can mine custom pattern types, by simply defining the new
pattern types, but there is no need to implement a new algorithm, since any
generic DMTL algorithm can be used to mine them. Since the mined models
and patterns are persistent and indexed, this means the mining can be done
efficiently over massive databases, and mined results can be retrieved later from
the persistent store.

Following the ideology of generic programming, DMTL provides a standard-
ized, general, and efficient implementation of frequent pattern mining tasks by

Generic Pattern Mining Via Data Mining Template Library 367

isolating the concept of data structures or containers, as they are called in generic
programming, from algorithms. DMTL provides container classes for represent-
ing different patterns (such as itemsets and sequences) and collection of pat-
terns, containers for database objects (horizontal and vertical), and containers
for temporary mining results. These container classes support persistency when
required.

Generic algorithms, on the other hand are independent of the container and
can be applied on any valid container. These include algorithms for performing
intersections of the vertical lists [23,24,25] for itemsets or sequences or other pat-
terns. Generic algorithms are also provided for mining itemsets and sequences
[1,17,23,24], as well as for finding the maximal or closed patterns [7,27]. Fi-
nally DMTL provides support for the database management functionality, pre-
processing support for mapping data in different formats to DMTL’s native
formats, as well as for data transformation (such as discretization of continuous
values).

In this section we focus on the containers and algorithms for mining. In later
sections we discuss the database support in DMTL as well as support for pre-
processing and post-processing.

Figure 2 shows the different DMTL container classes for PMT and the rela-
tionship among them. At the lowest level set the different kinds of pattern-types
one might be interested in mining (such as itemsets, sequences, and several
variants). A pattern is uses the base pattern-type classes to provide a generic
container. There are several pattern family types (such as pvector, plist, etc.)

pvector plist partial−order

PatFamType

Pattern Family

Pattern Persistency Manager

Pattern Type

Itemset Sequence GraphTree

Fig. 2. DMTL Container Hierarchy

368 M.J. Zaki et al.

which together with a persistency manager class make up different pattern family
classes. More details on each class appears below.

3.1 Pattern

In DMTL a pattern is a generic container, which can be instantiated as an
itemset, sequence, tree or a graph, specified as Pattern<class P> by means
of a template argument called pattern-type (P). A generic pattern is simply a
pattern-type whose frequency we need to determine in a larger collection or
database of patterns of the same type.

3.2 Pattern Type

This allows users to select the type of pattern they want to mine, and as long
as certain operations are defined on the pattern-type all the generic algorithms
provided by DMTL can be used. The main source of flexibility of PMT is that
developers can easily define new types of patterns to suit their needs and once
the operations are defined on them all the generic algorithms of DMTL can
be used on the new pattern types. For example, an itemset can be defined as
pattern-type vector<int>, denoting a set of items (int in this case), A se-
quence pattern-type can defined as list<vector<int>>, denoting an ordered
list of itemsets. If we want to include a time field along with the different itemsets
in a sequence, we can define a new sequence type as follows list<pair<time,
vector<int>>>, i.e., a list of (time,vector<int>) pairs, where time is a
user-defined type to note when each event occurs. All algorithms are guaranteed
to work with any pattern type.

3.3 Pattern Family

In addition to the basic pattern classes, most pattern mining algorithms op-
erate on a collection of patterns. The pattern family is a generic container
PatternFamily<class PatFamType> to store groups of patterns, specified by
the template parameter PatFamType. PatFamType represents some persistent
class provided by DMTL, that provides seamless access to the members, whether
they be in memory or on disk. All access to patterns of a family is through the
iterator provided by the PatFamType class. PatternFamily provides generic op-
erations to add and remove patterns to/from the family, to find the maximal or
closed patterns in the family, as well as a count() function that finds the sup-
port of all patterns, in the database, using functions provided by the database
class.

3.4 Pattern Family Type

DMTL provides several persistent classes to store groups of patterns. Each such
class is templatized on the pattern-type (P) and a persistency manager class PM.
An example is pvector<class P, class PM>, a persistent vector class. It has

Generic Pattern Mining Via Data Mining Template Library 369

the same semantics as a STL vector with added memory management and persis-
tency. Thus a pattern family for itemsets can be defined in terms of the pvector
class as follows: PatternFamily<pvector<Itemset, PM>>. Another class is
plist<P,PM>. Instead of organizing the patterns in a linear structure like a vec-
tor or list, another persistent family type DMTL class, partial-order<P,PM>,
organizes the patterns according to the sub-pattern/super-pattern relationship.
While pvector and partial-order provide the same interface, certain operations
will be more efficient in one class than the other. For example, inserts and dele-
tions are cheaper for plists, while the maximality and closed testing functions
will be cheaper for partial-orders, since the patterns are already organized ac-
cording to sub/super-pattern relation.

3.5 Persistent Containers

An important aspect of DMTL is to provide a user-specified level of persistency
for all DMTL classes. To support large-scale data mining, DMTL provides au-
tomatic support for out-of-core computations, i.e., memory buffer management,
via the persistency manager class PM. The PatternFamilyType class uses the
persistency manager (PM) to support the buffer management for patterns. The
details of implementation are hidden from PatternFamily; all generic algorithms
continue to work regardless of whether the family is (partially) in memory or
on disk. The implementation of a persistent container (like pvector) is similar to
the implementation of a volatile container (like STL vector); the difference being
that instead of pointers one has to use offsets and instead of allocating memory
using new one has to request it from the persistency manager class. More details
on the persistency manager will be given later.

We saw above that PatternFamily uses the count() function to find the sup-
port of all patterns in the family, in the database; at the end of count() all
patterns have their support field set to their frequency in the database. DMTL
provides native support for both the horizontal and vertical database formats.
The generic count() algorithm does not impose any restriction on the type of
database used, i.e., whether it is horizontal or vertical. The count() function
uses the interface provided by the DB class, passed as a parameter to count(),
to get pattern supports. More details on the DB class and its functions will be
given later.

3.6 Generic Mining Algorithms

The pattern mining task can be viewed as a search over the pattern space
looking for those patterns that match the minimum support constraint. For
instance in itemset mining, the search space is the set of all possible subsets
of items. Various search strategies are possible leading to several popular vari-
ants of the mining algorithms. DMTL provides generic algorithms encapsulating
these search strategies; by their definition these algorithms can work on any
type of pattern: Itemset, Sequence, Tree or Graph. An example is the generic al-
gorithm DFS-Mine<class PatFamType> (PatternFamily<PatFamType> &pf,

370 M.J. Zaki et al.

DB &db, ...) , which mines the frequent patterns using a depth-first search
(DFS) [23,24]. The generic DFS mining algorithm takes in a pattern family
and the database. The types of patterns and persistency manager are specified
by the pattern family type. The DFS algorithm in turn relies on other generic
subroutines for creating equivalence classes, for generating candidates, and for
support counting. There is also a generic BFS-Mine that performs Breadth-First
Search [1,17] over the pattern space.

4 DMTL: Persistency and Database Support

DMTL is the back-end server that actually provides the persistency, and index-
ing support for both the patterns and the database. DMTL supports DMTL
by seamlessly providing support for memory management, data layout, high-
performance I/O, as well as tight integration with database management sys-
tems (DBMS). It supports multiple back-end storage schemes including flat files,
embedded databases, and relational or object-relational DBMS. DMTL also pro-
vides persistent pattern management facilities, i.e., mined patterns can them-
selves be stored in a pattern database for retrieval and interactive exploration.

DMTL provides native database support for both the horizontal [1] and ver-
tical [23,24,25] data formats. In the horizontal approach, each object has an oid
along with the itemset comprising the object. Thus object with oid = 1 is the
set {A, C, T, W}. In contrast, the vertical format maintains for each label (and
itemset) its oid list, a set of all oids where it occurs. For example, the label A
appears in oids 1, 3, 4, and 5. Thus its oid list is given as 1345 (omitting set
notation).

It is also worth noting that since in many cases the database contains the
same kind of objects as the patterns to be extracted (i.e., the database can be
viewed as a pattern family), the same database functionality used for horizontal
format can be used for providing persistency for pattern families. It is relatively
straightforward to store a horizontal format object, and by extension, a family of
such patterns, in any object-relational database. Thus the persistency manager
for pattern families can handle both the original database and the patterns that
are generated while mining. DMTL provides the required buffer management so
that the algorithms continue to work regardless of whether the database/patterns
are in memory or on disk.

4.1 Vertical Attribute Tables

To provide native database support for objects in the vertical format, DMTL
adopts a fine grained data model, where records are stored as Vertical Attribute
Tables (VATs). Given a database of objects, where each object is characterized
by a set of properties or attributes, a VAT is essentially the collection of objects
that share the same values for the attributes. For example, for a relational ta-
ble, cars, with the two attributes, color and brand, a VAT for the property
color=red stores all the transaction identifiers of cars whose color is red. The
main advantage of VATs is that they allow for optimizations of query intensive

Generic Pattern Mining Via Data Mining Template Library 371

applications like data mining where only a subset of the attributes need to be
processed during each query. As was mentioned earlier these kinds of vertical
representations have proved to be useful in many data mining tasks [23,24,25].

In DMTL there is typically one VAT per pattern. A VAT is an entity composed
of a body, which contains the list of object identifiers in which a given pattern
occurs. For storing database sequences a VAT needs, in addition, a time field
for each occurrence of the pattern. For tree and graph patterns the body type is
different. A VAT is defined as VAT<class V>, where V is a vat-type class.

Depending on the pattern type being mined the vat-type class may be differ-
ent. For instance for itemset mining it suffices to keep only the object identifiers
where a given itemset appears. In this case the vat-type is simply an int (as-
suming that oid is an integer). On the other hand for sequence mining one needs
not only the oid, but also the time stamp for the last AV pair in the sequence.
For sequences the vat-type is then pair<int, time>, i.e., a pair of an int,
denoting the oid, a nd time, denoting the time-stamp. Different vat-types must
also provide operations like equality testing (for itemsets and sequences), and
less-than testing (for sequences; a oid-time pair is less then another if they have
the same oid, and the first one happens before the second).

Given the generic setup of a VAT, DMTL defines a generic algorithm to
join/intersect two VATs. For instance in vertical itemset mining, the support
for an itemset is found by intersection the VATs of its lexicographic first two
subsets. A generic intersection operation utilizes the equality operation defined
on the vat-type to find the intersection of any two VATs. On the other hand in
vertical sequence mining the support of a new candidate sequence is found by
a temporal join on the VATs, which in turn uses the less-than operator defined
by the vat-type. Since the itemset vat-type typically will not provide a less-than
operator, if the DMTL developer tries to use temporal intersection on itemset
vat-type it will generate a compile time error! This kind of concept-checking
support provided by DMTL is extremely useful in catching library misuses at
compile-time rather than at run-time.

DMTL provides support for creating VATs during the mining process, i.e.,
during algorithms execution, as well as support for updating VATs (add and
delete operations). In DMTL VATs can be either persistent or non-persistent.
Finally DMTL uses indexes for a collection of VATs for efficient retrieval based
on a given attribute-value, or a given pattern.

4.2 Storage and Persistency Manager

The database support for VATs and for the horizontal family of patterns is
provided by DMTL in terms of the following classes, which are illustrated in
Figure 3.

Vat-type: A class describing the vat-type that composes the body of a VAT,
for instance int for itemsets and pair<int,time> for sequences.

VAT<class V>: The class that represents VATs. This class is composed of a
collection of records of vat-type V.

372 M.J. Zaki et al.

H

B

H

B

H

B

H

B

H

B

H

B

��������������������
��������������������
��������������������

��������������������
��������������������
��������������������

MetaTable<V,PM>

VAT<V> VAT<V>

DB<V,PM>

Buffer<V>

Intersect(VAT &v1, VAT &v2)

Get_Vats()

Get_Vat_Body()

Storage<PM> Storage<PM>

Fig. 3. DMTL: High level overview of the different classes used for Persistency

Storage<class PM>: The generic persistency-manager class that implements
the physical persistency for VATs and other classes. The class PM provides
the actual implementations of the generic operations required by Storage. For
example, PM metakit and PM gigabase are two actual implementations of
the Storage class in terms of different DBMS like Metakit [19], a persistent
C++ library that natively supports the vertical format, and Gigabase [11],
an object-relational database. Other implementations can easily be added as
long as they provide the required functionality.

MetaTable<class V, class PM>: This class represents a collection of VATs. It
stores a list of VAT pointers and the adequate data structures to handle
efficient search for a specific VAT in the collection. It also provides physical
storage for VATs. It is templatized on the vat-type V and on the Storage
implementation PM.

DB<class V, class PM>: The database class which holds a collection of Meta-
tables. This is the main user interface to VATs and constitutes the database
class DB referred to in previous sections. It supports VAT operations such
as intersection, as well as the operations for data import and export. The
double template follows the same format as that of the Metatable class.

Buffer<class V>: A fixed-size main-memory buffer to which VATs are written
and from which VATs are accessed, used for buffer management to provide
seamless support for main-memory and out-of-core VATs (of type V).

A diagram of the class interaction is displayed in Figure 3. As previously stated,
the DB class is the main DMTL interface to VATs and the persistency manager

Generic Pattern Mining Via Data Mining Template Library 373

for patterns. It has as data members an object of type Buffer<V> and a collection
of MetaTables<V,PM>.

The Buffer<V> class is composed of a fixed size buffer which will contain as
many VAT bodies. When a VAT body is requested from the DB class, the buffer
is searched first. If the body is not already present there, it is retrieved from disk,
by accessing the Metatable containing the requested VAT. If there is not enough
space to store the new VAT in the buffer, the buffer manager will (transparently)
replace an existing VAT with the new one. A similar interface is used to provide
access to patterns in a persistent family or the horizontal database.

The MetaTable class stores all the pointers to the different VAT objects. It
provides the mapping between the patterns, called header, and their VATs, called
the body, via a hashed based indexing scheme. In the figure the H refers to a
pattern and B its corresponding VAT. The Storage class provides for efficient
lookup of a particular VAT object given the header.

4.3 VAT Persistency

VATs can be in one of three possible states of persistence:

– volatile: the VAT is fully loaded and available in main memory only.
– buffered: the VAT is handled as if it were in main memory, but it is actually

kept on disk in an out-of-core fashion.
– persistent: the VAT is disk resident and can be retrieved after the program

execution, i.e.: the VAT is inserted in the VATdatabase.

Volatile VATs are created and handled by directly accessing the VAT class
members. Buffered VATs are managed from the DB class through Buffer func-
tions. Buffered VATs must be inserted into the file associated with a Metatable,
but when a buffered VATis no longer needed, its space on disk can be freed. A
method for removing a VAT from disk is provided in the DB class. If such method
is not called, then the VAT will be persistent, i.e., it will remain in the metatable
and in the storage associated with it after execution.

4.4 Buffer Management

The Buffer class provides methods to access and to manage a fixed size buffer
where the most recently used VATs/patterns are stored for fast retrieval. The
idea behind the buffer management implemented in the Buffer class is illus-
trated in Figure 4.

A fixed size buffer is available as a linear block of memory of objects of
type V. Records are inserted and retrieved from the buffer as linear chunks of
memory. To start, the buffer is empty. When a new object is inserted, some data
structures are initialized in order to keep track of where every object is placed so
it can be accessed later. Objects are inserted one after the other in a round-robin
fashion. When there is no more space left in the buffer, the least recently used
(LRU) block (corresponding to one entire VAT body, or a pattern) is removed.
While the current implementation provides a LRU buffering strategy, as part
of future work we will consider more sophisticated buffer replacement strategies
that closely tie with the mining.

374 M.J. Zaki et al.

��������
��������
��������
��������

��������
��������
��������
��������

�������������
�������������
�������������
�������������

��������
��������
��������
��������

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����������
����������
����������
����������

curr=0

curr=8

curr=2

curr=3

free=10

free=2

free=1

free=7

_index

_index

_index

(empty)

3−7

_index

8−1

0 9

90 3

30 8 9

0−2

0−2

3−7

Fig. 4. Buffer Management: The buffer manager keeps track of the current position in
the buffer (curr), the amount of free space (free), and an index to keep track of where
an object is. As new objects are inserted these are updated and when an existing object
is replaced when the buffer becomes full.

4.5 Storage

Physical storage of VATs and pattern families can be implemented using different
storage systems, such as a DBMS or ad-hoc libraries. In order to abstract the
details of the actual system used, all storage-related operations are provided in
a generic class, Storage. Implementations of the Storage class for MetaKit [19]
and Gigabase [11] backends are provided in the DMTL. Other implementations
can easily be added as long as they provide the required functionality.

The DB class is a doubly templated class where both the vat-type and the
storage implementation need to be specified. An example instantiation of a DB
class for itemset patterns would therefore be DB<int,PM metakit> or DB<int,
PM gigabase>.

5 DMTL: Pre-processing Support

DMTL provides support for dynamic mapping of data into VATs at run-time
over the same base database using a mapping class, which transforms original
attribute values into mapped values according to a set of user specified mapping
directives, contained in a configuration file. For every input database there has
to be an XML configuration file. For the definition of the syntax of such file, we

Generic Pattern Mining Via Data Mining Template Library 375

follow the approach presented in [14] by Talia et al.. The format of such file is
the following.

<?xml version="1.0"?>
<!DOCTYPE Datasource SYSTEM "dmtl config.dtd">
<Data model=relational source=ascii file>

<Access> [...] </Access>
<Structure>

<Format> [...] </Format>
<Attributes> [...] </Attributes>

</Structure>
</Data>

5.1 Attributes

Configuration used for mapping attribute values are contained in the <Struc-
ture> section. The <Format> section contains the characters used as record
separator and field separator. An <Attribute> section must be present for each
attribute (or column) in the input database. Such section might be something
like: <Attribute name="price" type="continuous" units="Euro" ignore=
"yes"> [...] </Attribute>. Possible attributes for the <Attribute> tag
are: name: the name of the attribute, type: one of continuous, discrete, cate-
gorical, units: the unit of measure for values (currency, weight, etc.), ignore:
should a VAT be created for this attribute or not.

5.2 Mapping

The mapping information is enclosed in the <Mapping> section. Mapping can be
different for categorical, continuous or discrete fields. For continuous values we
can specify a fixed step discretization within a range:

<Attribute name="price" type="continuous">
<Mapping min="1.0" max="5.0" step=".5">0
</Mapping> </Attribute>

In this case the field price will be mapped to (max-min)/step = (5-1)/.5
= 10 values, labeled with integers starting from 0. It is also possible to specify
non-uniform discretizations, omitting the step attribute and explicitly specifying
all the ranges and labels. For categorical values we can also specify a mapping,
that allows for taxonomies or other groupings.

6 Experiments

DMTL is implemented using C++ Standard Template Library [4]. We present
some experimental results on the time taken by DMTL to load databases and to

376 M.J. Zaki et al.

 0.1

 1

 10

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Itemset Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
ECLAT

 0.01

 0.1

 1

 10

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Itemset Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
ECLAT

 1

 10

 100

 1000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Sequence Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
SPADE

 0.1

 1

 10

 100

 1000

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Sequence Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
SPADE

 1

 10

 100

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Tree Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
TreeMiner

 0.1

 1

 10

 100

 1000

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Tree Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
TreeMiner

 1

 10

 100

 1000

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Graph Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
gSpan

 0.1

 1

 10

 100

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Graph Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
gSpan

Fig. 5. Itemset, Sequence, Tree and Graph Mining: Effect of Minimum Support and
Database Size

Generic Pattern Mining Via Data Mining Template Library 377

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

T
o

ta
l T

im
e

 (
se

c)

Transactions (thousands)

Tree Conversion

Flat
Metakit

Gigabase

 0

 10

 20

 30

 40

 50

 60

 70

 10 100 1000

T
o

ta
l T

im
e

 (
se

c)

Transactions (thousands)

Graph Conversion

Flat
Metakit

Gigabase

Fig. 6. Database Conversion and Loading Times

perform different types of pattern mining on them. We used the IBM synthetic
database generator [1] for itemset and sequence mining, the tree generator from
[25] for tree mining and the graph generator by [13], with sizes ranging from
10k to 1000k (or 1 million). The experiment were run on a Pentium4 2.8Ghz
Processor with 6GB of memory, running Linux.

Figure 5 shows the DMTL mining time versus the specialized algorithms for
itemset mining (ECLAT [23]), sequences (SPADE [24]), trees (TreeMiner [25])
and graphs (gSpan [21]). For the DMTL algorithms, we show the time with a flat-
file (Flat) persistency manager/database, with the metakit backend (Metakit)
and the gigabase backend (Gigabase). The left hand column shows the effect of
minimum support on the mining time for the various patterns. We find that for
all pattern types DMTL is within a factor of 10 of the specialized algorithms
even as we decrease the minimum support on a database with 100K records. The
column on the right hand size shows the effect of increasing database sizes on
these algorithms. We find that as the number of objects increase the gap between
DMTL algorithms and the specialized ones starts to decrease. We expect that as
we increase the number of records, the specialized algorithms will break down,
while DMTL will continue to run since it explicitly manages the memory buffers.
Comparing the three backend implementations, we find that the flatfile approach
has a slight edge, but the object-oriented gigabase database backend is almost
as fast. On the other hand the embedded database Metakit is generally slower.

Figure 6 shows the time taken to convert the input data into VATs. The times
are shown for the three different backends (flat, metakit and gigabase) for upto 1
million objects. We find that these three approaches are roughly the same, with
the maximum difference being a factor of 2.

7 Conclusions

In this paper we describe the design and implementation of the DMTL proto-
type for an important subset of FPM tasks, namely mining frequent itemsets,

378 M.J. Zaki et al.

sequences, trees, and graphs. Following the ideology of generic programming,
DMTL provides a standardized, general, and efficient implementation of frequent
pattern mining tasks by isolating the concept of data structures or containers,
from algorithms. DMTL provides container classes for representing different pat-
terns, collection of patterns, and containers for database objects (horizontal and
vertical). Generic algorithms, on the other hand are independent of the con-
tainer and can be applied on any valid pattern. These include algorithms for
performing intersections of the VATs, or for mining.

The generic paradigm of DMTL is a first-of-its-kind in data mining, and we
plan to use insights gained to extend DMTL to other common mining tasks like
classification, clustering, deviation detection, and so on. Eventually, DMTL will
house the tightly-integrated and optimized primitive, generic operations, which
serve as the building blocks of more complex mining algorithms. The primitive
operations will serve all steps of the mining process, i.e., pre-processing of data,
mining algorithms, and post-processing of patterns/models. Finally, we plan to
release DMTL as part of open-source, and the feedback we receive will help drive
more useful enhancements. We also hope that DMTL will provide a common
platform for developing new algorithms, and that it will foster comparison among
the multitude of existing algorithms.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast
discovery of association rules. In U. Fayyad and et al, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, CA,
1996.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In 11th Intl. Conf. on
Data Engg., 1995.

3. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Effi-
cient substructure discovery from large semi-structured data. In 2nd SIAM Int’l
Conference on Data Mining, April 2002.

4. M. H. Austern. Generic Programming and the STL. Addison Wesley Longman,
Inc., 1999.

5. S. Chaudhri, U. Fayyad, and J. Bernhardt. Scalable classification over SQL
databases. In 15th IEEE Intl. Conf. on Data Engineering, March 1999.

6. A. Freitas and S. Lavington. Mining very large databases with parallel processing.
Kluwer Academic Pub., Boston, MA, 1998.

7. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In 1st
IEEE Int’l Conf. on Data Mining, November 2001.

8. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining query
language for relational databases. In 1st ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, June 1996.

9. T. Imielinski and A. Virmani. MSQL: A query language for database mining. Data
Mining and Knowledge Discovery: An International Journal, 3:373–408, 1999.

10. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In 4th European Conference on Principles
of Knowledge Discovery and Data Mining, September 2000.

Generic Pattern Mining Via Data Mining Template Library 379

11. Konstantin Knizhnik. Gigabase, object-relational database management system.
http://sourceforge.net/projects/gigabase.

12. R. Kohavi, D. Sommerfield, and J. Dougherty. Data mining using mlc++, a ma-
chine learning library in c++. International Journal of Artificial Intelligence Tools,
6(4):537–566, 1997.

13. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE Int’l
Conf. on Data Mining, November 2001.

14. C. Mastroianni, D. Talia, and P. Trunfio. Managing heterogeneous resources in
data mining applications on grids using xml-based metadata. In Proceedings of
The 12th Heterogeneous Computing Workshop, 2002.

15. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In 22nd Intl. Conf. Very Large Databases, 1996.

16. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
databases: alternatives and implications. In ACM SIGMOD Intl. Conf. Manage-
ment of Data, June 1998.

17. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In 5th Intl. Conf. Extending Database Technology, March
1996.

18. D. Tsur, J.D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query
flocks: A generalization of association rule mining. In ACM SIGMOD Intl. Conf.
Management of Data, June 1998.

19. Jean-Claude Wippler. Metakit. http://www.equi4.com/metakit/.
20. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann Publishers, 1999.
21. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE

Int’l Conf. on Data Mining, 2002.
22. X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. In ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, August 2003.
23. M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on

Knowledge and Data Engineering, 12(3):372-390, May-June 2000.
24. M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning Journal, 42(1/2):31–60, Jan/Feb 2001.
25. M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD

Int’l Conf. Knowledge Discovery and Data Mining, July 2002.
26. M. J. Zaki and C.C. Aggarwal. Xrules: An effective structural classifier for xml

data. In 9th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,
August 2003.

27. M. J. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm for closed itemset
mining. In 2nd SIAM International Conference on Data Mining, April 2002.

	Introduction
	Related Work

	Preliminaries
	FPM Instances

	DMTL: Data Structures and Algorithms
	Pattern
	Pattern Type
	Pattern Family
	Pattern Family Type
	Persistent Containers
	Generic Mining Algorithms

	DMTL: Persistency and Database Support
	Vertical Attribute Tables
	Storage and Persistency Manager
	VAT Persistency
	Buffer Management
	Storage

	DMTL: Pre-processing Support
	Attributes
	Mapping

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

