
Boolean Formulas and Frequent Sets

Jouni K. Seppänen and Heikki Mannila

HIIT Basic Research Unit, Lab. Computer and Information Science,
FI-02015 Helsinki University of Technology, Finland

{Jouni.Seppanen, Heikki.Mannila}@hut.fi

Abstract. We consider the problem of how one can estimate the support
of Boolean queries given a collection of frequent itemsets. We describe an
algorithm that truncates the inclusion-exclusion sum to include only the
frequencies of known itemsets, give a bound for its performance on dis-
junctions of attributes that is smaller than the previously known bound,
and show that this bound is in fact achievable. We also show how to
generalize the algorithm to approximate arbitrary Boolean queries.

1 Introduction

Algorithms for mining frequent itemsets continue to be a subject of recent data
mining research [GZ03] long after the original publications [AIS93, AMS+96].
Less attention has been received by the question of how one can utilize the
frequent itemsets one has mined. The original motivation was provided by as-
sociation rules, but we claim that the collection of frequent itemsets is good for
much more than rule mining: they give us a picture of the joint distribution of
the data, and can therefore be used to approximately evaluate Boolean queries
over the original data.

The simple idea of approximating exponentially long inclusion-exclusion sums
using a small collection of frequent itemsets was considered in [MT96]. Thus the
frequent sets can be seen as a condensed representation of the data. In this
paper we give a more thorough presentation of the issues involved. We sharpen
Theorem 5 in [MT96], which shows that the approximation error for a disjunctive
query is bounded by 2b−2/b, where b is the size of the negative border. Here
we prove a bound of

(
b

�b/2�
)
/b, and give a family of examples for which this

bound is reached. Our main contribution is the generalization of the discussion
to arbitrary Boolean formulas.

Related work includes using maximum entropy to approximate the joint dis-
tribution [PMS00, PS01] and linear programming to find upper and lower bounds
for queries [BSH04]. These approaches share the problem that they require ex-
ponential space in the number of attributes involved. There has also been much
work on reducing the size of the itemset collection, such as free-sets [BBR00] and
non-derivable sets [CG02]. However, most such work concentrates on algorithms
for discovering itemsets, not on using the itemsets obtained to evaluate queries.

The rest of this paper is structured as follows. We start in Section 2 from the
almost trivial case of estimating conjunctive queries, introducing notation and
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showing the general idea of the results that follow. In Section 3 we discuss the
much more interesting case of disjunctive queries, and in Section 4 we generalize
our results to arbitrary Boolean queries.

2 Conjunction of Attributes

The goal of this section is to introduce our notation and the basic task in a
simple setting. Throughout the paper, we will denote by U a set of attributes or
items, and by r a binary relation over U : that is, r is a multiset of tuples T ⊂ U .
Itemsets are arbitrary subsets of U , denoted by X or Y . We will denote by g(X)
the fraction of tuples in r that are equal to X , and call this quantity the exact
frequency of X . By contrast, the frequency f(X) is the fraction of tuples that
contain all attributes in X . Thus

f(X) =
∑

Y ⊃X

g(X).

An itemset is called frequent if its frequency is at least a predefined threshold σ.
The collection of σ-frequent itemsets is denoted Fσ. As is well known, this col-
lection is downward closed : given itemsets X ⊂ Y ∈ Fσ, we have X ∈ Fσ. We
will in general denote by F an arbitrary downward closed collection of itemsets.

The task that we are interested in is estimating the result of a Boolean query ϕ.
For now, we let ϕ be simply a conjunction of attributes: let C ⊂ U be any itemset,
and let

ϕ =
∧

C =
∧

A∈C

A.

We say that a tuple T ∈ r supports ϕ, denoted T |= ϕ, if T includes every
attribute in the query. The frequency of the query f(ϕ) is the fraction of tuples
in r that support ϕ. In the case of conjunctions, one sees immediately that a
tuple T supports ϕ if and only if C ⊂ T , and thus the frequency of the query ϕ
is equivalent to the frequency of the itemset C.

We can now present the task Approximate Query(Fσ, ϕ): given the col-
lection Fσ of frequent itemsets, and a Boolean query ϕ, find an estimate f̂(ϕ)
that should be close to f(ϕ). Any solution to this task will be evaluated on
its worst-case accuracy, i.e., how far from the actual frequency it can be. The
measure of accuracy that we will use is the maximum absolute value of the error
e(ϕ) = f(ϕ) − f̂(ϕ).

It is of course easy to come up with a simple and fairly accurate solution, which
we name Truncate Sum (for reasons that will become clear later): f̂(ϕ) = f(C)
if C ∈ Fσ, otherwise f̂(ϕ) = 0. Again, C is the set of attributes in the conjunc-
tion ϕ. If C ∈ Fσ, we have f̂(ϕ) = f(ϕ) and therefore e(ϕ) = 0. Otherwise, we
know that 0 ≤ f(C) < σ, which implies that |e(ϕ)| ≤ σ. Thus our bound for the
maximum absolute error is σ. We have shown the following result:

Proposition 1. For a conjunction of attributes ϕ, Truncate Sum yields re-
sults to Approximate Query that have maximal absolute error σ.
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3 Disjunction of Attributes

In this section we consider the case where ϕ is a disjunction of attributes. The
main results are that the worst-case error of Truncate Sum can be bounded
by an expression that depends exponentially on the size of the negative border
(which will be defined later), and that this worst-case bound cannot be decreased
at all: that is, there are collections of frequent sets where the bound holds with
equality.

We now investigate queries of the form

ϕ =
∨

D =
∨

A∈D

A.

A tuple T ∈ r supports the query if at least one of the attributes in D appears
in T : in logical notation, T |= ϕ if D ∩ T �= ∅. The frequency of ϕ is, again, the
fraction of tuples that support ϕ. A basic result in combinatorics is that this
frequency can be obtained by the inclusion-exclusion principle:

f(ϕ) =
∑

X⊂D

[X �= ∅] (−1)|X|+1f(X). (1)

Here, and in the sequel, we avoid long sum conditions in subscripts by using the
“Iverson notation”

[P ] =

{
1, P is true,
0, P is false,

popularized by Knuth [Knu92].
The inclusion-exclusion principle is fine if we know the frequency of every

itemset X that is a subset of D. If we do not, our approach is to compute the
sum over all itemsets whose frequencies we do know:

f̂(ϕ) =
∑

X⊂D

[∅ �= X ∈ Fσ] (−1)|X|+1f(X). (2)

The exponentially long sum (1) is truncated to the terms (2) that we know; thus
the name Truncate Sum. The error made in the approximation is

e(ϕ) =
∑

X⊂D

[X ∈ G] (−1)|X|+1f(X),

where by G we denote the family of non-frequent sets, i.e., the complement of Fσ.
An intuition for this estimate is provided by the well-known Bonferroni in-

equalities, which state that if our collection Fσ happens to contain exactly the
itemsets of size at most k, then the error is bounded by the sum of frequencies of
itemsets of size k + 1. [GS96] The proof is simple, although not entirely trivial:
the error consists of exponentially many terms, which happen to mostly cancel
out. We would like to prove analogues of the Bonferroni inequalities for our more
general case.

We start from a simple upper bound that is not very interesting in itself but
will be used in the proof of Theorem 1. Recall that G is the complement of Fσ.
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Lemma 1. For a disjunction of attributes ϕ =
∨

D,

|e(ϕ)| ≤
∑

X∈G

( |X |⌈|X |/2
⌉
)

g(X).

Proof. We write the frequency as a sum over tuples: f(X) = |r|−1
∑

T∈r[T ⊃ X ],
and therefore

e(ϕ) = |r|−1
∑

T∈r

∑

X⊂T

[X ∈ G] (−1)|X|+1.

One way of proving the Bonferroni inequalities is based on pairing up most of
the tuples in G; we proceed similarly.

We first introduce some notation: t = |T |, and t′ = �t/2	. It is well known that
the power set P(T ) can be written as a union of

(
t
t′
)

disjoint chains, where a chain
means a collection C of sets where given any two sets X, Y ∈ C, either X ⊂
Y or Y ⊂ X . [Bol88, Theorem 1 of Section 4] The construction of Bollobás
yields chains that are symmetric and consist of consecutive sets: if we write C =
{X1, X2, . . . , Xk } with X1 ⊂ X2 ⊂ . . . Xk, then |X1| + |Xk| = d and |Xj+1| =
|Xj | + 1 for all 1 ≤ j < k. Thus, if d is odd, each chain C is of even length, and
the alternating sum

∑
X∈C(−1)|X|+1 is zero. If d is even, the chains from the

construction are of odd length. However, we can remove one attribute A from T ,
perform the construction on T \ {A } to obtain a collection of

(
d−1
d′−1

)
chains, and

then add to the collection a duplicate of each chain with A added to every set:
the result is a partition of P(T ) into 2

(
t−1
t′−1

)
=

(
t
t′
)

chains, each of which consists
of an even number of consecutive sets.

We can thus assume that there is a partition T = C1 ∪ C2 ∪ · · · ∪ Cm of T
into m =

(
t
t′
)

disjoint chains, such that
∑

X∈Cj
(−1)|X|+1 = 0 for each chain Cj .

Now
∑

X⊂T

[X ∈ G] (−1)|X|+1 =
m∑

j=1

∑

X∈Cj

[X ∈ G] (−1)|X|+1.

Every chain Cj that is wholly contained in either Fσ or G contributes 0 to this
sum. Every other chain contributes either 0 or ±1. Therefore,

∣
∣∣
∑

X⊂T

[X ∈ G] (−1)|X|+1
∣
∣∣ ≤ m =

(
t

t′

)
.

The claim follows by observing that g(X) = |r|−1
∑

T∈r[T = X ]. �

Recall that the Bonferroni inequalities, which apply to the case where Fσ

consists of all itemsets of size at most k, give an error bound related to the
itemsets of size k+1. An analogue of the size k+1 itemsets that is both intuitively
appealing and practically useful is the negative border Bd− [MT96], defined as
the family of minimal non-frequent sets:

Bd− = {X ∈ G | Y ∈ Fσ ∀Y � X }.
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Note that if Fσ consists of sets of size at most k, then Bd− is exactly the family
of sets of size k + 1. The practical usefulness stems from the famous Apriori
algorithm, which computes the family Fσ and finds Bd− as a byproduct of its
stopping condition [AMS+96].

We will prove a lemma connecting the negative border to the error e(ϕ). First,
we need to define some more notation: GD is the set of non-frequent subsets of D,

GD = {X | X ∈ G, X ⊂ D },

and the negative border relative to D, denoted Bd−
D, consists of the minimal sets

in GD. Note that Bd−
D ⊂ Bd−, since if X is minimal in GD, all subsets of X are

in Fσ, and therefore X is minimal also in G. We will also need the concept of
exact frequency of X relative to D, defined for X ⊂ D as the fraction of tuples
whose intersection with D is X , which we can write as

gD(X) = f
( ∧

A∈X

A ∧
∧

A∈D\X

¬A
)
.

Lemma 2. Consider the query ϕ =
∨

D. If Bd−
D �= { ∅ }, the algorithm Trun-

cate Sum has an error of

e(ϕ) =
∑

∅	=E⊂Bd−
D

(−1)|E|+|� E|gD

(⋃ E)
. (3)

To illustrate the lemma, consider some simple examples. If Bd−
D consists of a

single set B �= ∅, the error is an inclusion-exclusion sum

e(ϕ) =
∑

X

[B ⊂ X ⊂ D] (−1)|X|+1f(X),

which is of course exactly the expression for (−1)|B|+1gD(B).
Likewise, if Bd− is the two-set family {B1, B2 } with Bj ∩D �= ∅ for j = 1, 2,

we obtain

e(ϕ) =
∑

X

[B1 ⊂ X ⊂ D or B2 ⊂ X ⊂ D] (−1)|X|+1f(X).

We can use inclusion-exclusion to decompose the condition on X :

[B1 ⊂ X ⊂ D or B2 ⊂ X ⊂ D]
= [B1 ⊂ X ⊂ D] + [B2 ⊂ X ⊂ D] − [B1 ∪ B2 ⊂ X ⊂ D]

Thus we can break the formula for e(ϕ) into three components, which sum up
to gD(B1), gD(B2) and −gD(B1 ∪B2). The proof of the lemma is a straightfor-
ward extension of this idea.
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Proof of Lemma 2. The error is given by

e(ϕ) =
∑

X

[X ∈ GD] (−1)|X|+1f(X). (4)

We can rewrite the condition X ∈ GD in terms of the minimal sets in GD as
follows: We have X ∈ GD if and only if X ⊃ B for some B ∈ Bd−

D. We apply
inclusion-exclusion on the Iverson function:

[X ∈ GD] =
∑

B∈Bd−
D

[B ⊂ X ⊂ D] −
∑

B1,B2∈Bd−
D

[B1 ∪ B2 ⊂ X ⊂ D] + · · ·

=
∑

∅	=E⊂Bd−
D

(−1)|E|+1
[⋃ E ⊂ X ⊂ D

]
.

Plugging this in the error sum (4) and changing the order of summation, we
obtain

e(ϕ) =
∑

∅	=E⊂Bd−
D

(−1)|E|+1
∑

X

[⋃ E ⊂ X ⊂ D
]
(−1)|X|+1f(X).

It now suffices to show that for Y ⊂ D,

(−1)|Y |gD(Y ) =
∑

X

[Y ⊂ X ⊂ D] (−1)|X|f(X),

for then letting Y =
⋃ E yields (3). This is an easy exercise in inclusion-exclusion:

given a tuple T ∈ r, write T = R ∪ S with R ⊂ D, S ⊂ U \ D. The tuple will
contribute (−1)|R| to all terms corresponding to X ⊂ R∪S. In the case R = Y ,
the contribution is exactly (−1)|Y |; otherwise, the contributions cancel out. �

Based on the lemma, we can prove an analogue to the Bonferroni inequalities
that gives, however, rather larger bounds than the Bonferroni case.

Theorem 1. For a disjunction of attributes ϕ =
∨

D, the absolute error |e(ϕ)|
of Truncate Sum is bounded by

( |Bd−
D|

⌈|Bd−
D|/2

⌉
)
|Bd−

D|−1
∑

X∈Bd−
D

f(X).

Proof. Arrange the sum (3) in the form

e(ϕ) =
∑

X∈GD

ν(X)gD(X).

For the coefficients ν(X) we have

ν(X) = (−1)|X| ∑

E⊂Bd−
X

[⋃ E = X
]
(−1)|E|.



354 J.K. Seppänen and H. Mannila

In this sum, the condition
[⋃ E = X

]
defines an upwards-closed subfamily of

the powerset of Bd−
X . We know from Lemma 1 that the absolute value of this

alternating sum is bounded by
(

m
m′

)
with m = |Bd−

X | and m′ = �m/2	.
Arrange also the sum

∑
X∈Bd−

D
f(X) in the form

∑

X∈GD

µ(X)gD(X).

We have for the coefficients µ(X)

µ(X) =
∑

Y ∈Bd−
D

[Y ⊂ X ] = |Bd−
X | > 0

for all X ∈ GD. The ratio |ν(X)|/µ(X) is bounded by
(

m
m′

)
/m, and this bound

is largest for X = D. Thus

|e(ϕ)| ≤
∑

X∈GD

|ν(X)|gD(X) ≤
∑

X∈GD

(
max

|ν(X)|
µ(X)

)
µ(X)gD(X)

≤
( |Bd−

D|
⌈|Bd−

D|/2
⌉
)
|Bd−

D|−1
∑

X∈Bd−
D

f(X).
(5)

�
Using the inequality f(X) < σ for X ∈ Bd−, we can obtain a form of the

bound that is independent of the actual frequencies of sets in the border.

Corollary 1. For a disjunction of attributes ϕ =
∨

D,

e(ϕ) ≤
( |Bd−|

⌈|Bd−|/2
⌉
)

σ.

Thus, the bound depends superpolynomially on the size of the border. A
natural question is whether the bound can be decreased. We will next show
that the answer is negative: the bound is in the worst case tight. The example
will have a small negative border. The key part in the proof is constructing the
family Fσ so that when Lemma 1 is used in the proof of Theorem 1, equality
holds. This is the case when the minimal families E ⊂ Bd−

X that satisfy the
condition

⋃ E = X are exactly of size
⌈|Bd−

X |/2
⌉
.

Theorem 2. There exists a set U , a relation r over U , and a downward-closed
collection of itemsets F such that for the disjunctive query ϕ =

∨
U the absolute

error of Truncate Sum is

|e(ϕ)| =
( |Bd−|

⌈|Bd−|/2
⌉
)
|Bd−|−1

∑

X∈Bd−
f(X).
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Proof. Choose integer parameters p > k > 1; p will be the number of sets in
the negative border, and we will see later that choosing p = 2k + 1 suits our
purposes well. We will need n =

(
p
k

)
attributes: let U = [n] = { 1, . . . , n }.

We will set up Bd− so that for all families E ⊂ Bd−, |E| ≤ k implies
⋃ E �= U ,

and |E| > k implies
⋃ E = U . To achieve this, we first enumerate all the k-element

subsets of [p]; there are n of them, and we will name them K1, K2, . . . , Kn in
any arbitrary order. Then for all q ∈ [p], we define Wq as the set of those i
such that q /∈ Ki. Let Bd− = {Wq | q ∈ [p] }. Note that Bd− is an antichain,
since all sets Wq have the same number of elements; thus we can define F as
the downward-closed collection of sets that are not supersets of any sets in Bd−,
and Bd− will automatically be the negative border corresponding to F .

We must now prove the assertion that for E ⊂ Bd−,
⋃ E = U if and only

if |E| > k. Given any collection E of border sets, we can write E = {Wq | q ∈ Q }
for some index set Q ⊂ [p]. If |E| = |Q| ≤ k, some set Ki must be a superset of
the index set Q, since we have enumerated all k-element subsets of [p]. But then
we have that i /∈ ⋃ E , and thus

⋃ E �= U . Conversely, if
⋃ E �= U , there must be

some i /∈ ⋃ E , and therefore for all q ∈ Q we must have q ∈ Ki, because i /∈ Wq.
But this means that Q ⊂ Ki, and therefore |E| = |Q| ≤ |Ki| = k. We have thus
shown that

⋃ E = U if and only if |E| > k.
We will let ϕ =

∨
U over all the attributes. Thus, the terms gD(X) will be

the usual exact frequencies g(X) and the family Bd−
D will be the usual negative

border Bd−. We will also let g(U) = 1 and g(X) = 0 for all X /∈ F , X �= U . We
can let g(X) be some sufficiently high number for all X ∈ F so that F = Fσ for
some σ.

Now we are in a position to apply Lemma 2. The sum over E ⊂ Bd− becomes
a sum over those E for which

⋃ E = U , since g(
⋃ E) = 0 otherwise. By the

construction, these are exactly those E such that |E| > k. Thus

e(ϕ) =
∑

E⊂Bd−
(−1)|E|+|r| [|E| > k] = (−1)|r|

n∑

j=k+1

(−1)j

(
p

j

)
.

It is an easy proof by induction that

n∑

j=k+1

(−1)j

(
p

j

)
= (−1)k+1

(
p − 1

k

)
.

If we now let p = 2k + 1, we have

|e(ϕ)| =
(

2k

k

)
=

( |Bd−|
|Bd−|/2

)
.

Since we have f(X) = 1 for all X ∈ Bd−, the frequency sum of sets in the border
is

∑
X [X ∈ Bd−] f(X) = |Bd−| = |Bd−

D|. This completes the proof. �
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While the construction creates a small number of sets in the border, there
are of course many sets that are “almost” in the border, which is not true in
the usual Bonferroni situation. The following theorem is another analogue of the
Bonferroni inequalities.

Theorem 3. Define the thick negative border Bd−
∗ as the family of itemsets

that are not frequent but that have at least one frequent subset. Then

e(ϕ) ≤
∑

X∈Bd−
∗

f(X).

Proof. Again, we will write e(ϕ) as a sum over all tuples T ∈ r. We will show
that the contribution made by T toward e(ϕ) is bounded by the number of sets
in Bd−

∗ that include T , which implies the claimed upper bound.
First of all, if T ∈ Fσ, the contribution is zero. Otherwise, the contribution is

∑

X⊂T

[X /∈ Fσ] (−1)|X|+1. (6)

Select any attribute A ∈ T , and delete from the sum (6) all pairs X, Y /∈ Fσ

such that Y = X ∪ {A }. What we have left is

∑

X⊂T

[X /∈ Fσ] [X \ {A } ∈ Fσ] (−1)|X|+1.

All sets fulfilling both conditions of the sum are in Bd−
∗ ∩ P(T ), and thus the

absolute value of the contribution is bounded by |Bd−
∗ ∩ P(T )|. Summing these

inequalities for all contributions yields

|e(ϕ)| ≤
∑

T∈R

|Bd−
∗ ∩ P(T )| ≤

∑

T∈R

|Bd−
∗ | =

∑

X∈Bd−
∗

f(X). �

We have proved two theorems for upper-bounding the absolute error: Theo-
rems 1 and 3. Both theorems are problematic in practice: the bound of Theo-
rem 1 grows exponentially, and the thick border of Theorem 3 can be very large.
It would be useful to find a bound for Truncate Sum in-between these two
theorems. Note that the construction of Theorem 2 creates a large number of
maximal frequent sets. By analogy with the negative border, one can define the
positive border Bd+ as the collection of these sets. For the construction, Bd+ is
large and Bd− is small; in many practical cases, Bd+ is smaller and Bd− larger.
The set Bd+ ∪ Bd− is worth investigating, and we conjecture (again [Man02])
that

e(ϕ) ≤
∑

X

[X ∈ Bd− ∪ Bd+] f(X).
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4 General Queries

In this section we will generalize the preceding discussion: we will define Trun-
cate Sum for arbitrary Boolean formulas ϕ, and prove counterparts of Lemma 2
and Theorem 1. The bounds provided by these results can be even larger than
the disjunction-specific bounds of the previous section.

Let now ϕ be an arbitrary Boolean formula, i.e., an expression consisting
of negation ¬, conjunction ∧, disjunction ∨ and attributes A ∈ U . We define
the semantics of such formulas in the usual way: T |= ϕ if ϕ is true when the
attributes are substituted by their values in T . The goal remains the same: to
approximate f(ϕ), the fraction of tuples supporting ϕ, given the collection Fσ

of σ-frequent itemsets.
The support of the query formula can obviously be written as

f(ϕ) =
∑

X

[X |= ϕ] g(X).

We denote the coefficients ζ(X) = [X |= ϕ]. What we want to do is write

f(ϕ) =
∑

X

ξ(X)f(X)

with suitable new coefficients ξ(X), and then truncate the sum, obtaining

f̂(ϕ) =
∑

X

[X ∈ Fσ] ξ(X)f(X).

To compute the new coefficients, we can use inclusion-exclusion: since

g(X) =
∑

Y

[Y ⊃ X ] (−1)|Y \X|f(Y ),

we have

f(ϕ) =
∑

X

ζ(X)g(X) =
∑

X

∑

Y

ζ(X) [Y ⊃ X ] (−1)|Y \X|f(Y )

=
∑

Y

f(Y )
∑

X

ζ(X) [Y ⊃ X ] (−1)|Y \X|.

The required coefficients are thus given by

ξ(Y ) =
∑

X

[X ⊂ Y ] (−1)|Y \X|ζ(X).

Next we prove a generalization of Lemma 2.

Lemma 3. When ϕ is an arbitrary Boolean formula with exact-frequency coef-
ficients ζ(X) = [X |= ϕ] and the border Bd− does not contain the empty set,

e(ϕ) =
∑

X

ν(X)g(X),
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where

ν(X) = (−1)|X| ∑

∅	=E⊂Bd−
X

(−1)|E|+1
∑

Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y ).

Proof. The error is

e(ϕ) =
∑

X

[X ∈ G] ξ(X)f(X)

=
∑

X,Y

[X ∈ G] f(X) [Y ⊂ X ] (−1)|X\Y |ζ(Y ).

Again we apply inclusion-exclusion on the condition X ∈ G:

[X ∈ G] =
∑

∅	=E⊂Bd−
(−1)|E|+1

[
X ⊃

⋃
E]

,

obtaining

e(ϕ) =
∑

∅	=E⊂Bd−
(−1)|E|+1

∑

X,Y

[
X ⊃

⋃
E]

f(X) [Y ⊂ X ] (−1)|X\Y |ζ(Y )

=
∑

∅	=E⊂Bd−
(−1)|E|+1

∑

Y

(−1)|Y |ζ(Y )
∑

X

[
X ⊃

⋃
E ∪ Y

]
(−1)|X|f(X)

=
∑

∅	=E⊂Bd−
(−1)|E|+1

∑

Y

(−1)|Y |+|� E∪Y |ζ(Y )g
(⋃ E ∪ Y

)
.

Regrouping the terms yields

e(ϕ) =
∑

X

g(X)(−1)|X| ∑

∅	=E⊂Bd−
X

(−1)|E|+1
∑

Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y ),

which is the claim. �

To see that this generalizes Lemma 2, let ϕ =
∨

D. Then ζ(X) = [X∩D �= ∅].
Consider the sum over Y :

∑

Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |[Y ∩ D �= ∅]. (7)

We may assume that
⋃ E ⊂ X , since the outer sum is taken over E ⊂ Bd−

X .
Furthermore, if

⋃ E contains any attribute A that is not in D, we can pair up
terms corresponding to Y � A and Y \ {A }, and thus show that the sum (7)
is 0. On the other hand, if X contains any attributes that are in D but not
in

⋃ E , the Iverson function [Y ∩D �= ∅] is always 1, and since
⋃ E �= ∅, and the

sum (7) is seen to compute the difference in number of even and odd subsets
of

⋃ E , which is of course 0.
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Assume now that X =
⋃ E ∪ Z with

⋃ E ⊂ D and Z ∩ D = ∅. We thus have
for Z ⊂ Y ⊂ X that [Y ∩D �= ∅] = [Y �= Z], and the sum (7) becomes −(−1)|Z| =
(−1)|X\� E|+1 = (−1)|X|+|� E|+1, since

⋃ E ⊂ X .
We have shown for all X that

∑

∅	=E⊂Bd−
X

(−1)|E|+1
∑

Y

[
X \

⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y )

=
∑

∅	=E⊂Bd−
X

[⋃ E ⊂ D
] [

(X \
⋃

E) ∩ D = ∅] (−1)|E|+|� E|.

The result of Lemma 2 follows by noting that for X ⊂ D

gD(X) =
∑

Y

[Y ∩ D = ∅] g(X ∪ Y )

and rearranging terms.
The coefficients ν(X) used in the statement of the lemma have already played

a role in proving Theorem 1: the key part was showing that |ν(X)| ≤ 2|Bd−
X | for

disjunctions ϕ. A natural question then is, how large can |ν(X)| be for general
queries? To answer this question, we rearrange the sum as

ν(X) = (−1)|X| ∑

Y

[Y ⊂ X ] (−1)|Y |ζ(Y )
∑

∅	=E⊂Bd−
X

(−1)|E|+1
[
X \

⋃
E ⊂ Y

]
. (8)

Denote by S the innermost sum. We can rewrite it in the form

S =
∑

∅	=E⊂Bd−
X

[
X \ Y ⊂

⋃
E]

(−1)|E|+1,

which is seen to be an inclusion-exclusion sum over the upwards-closed subfamily
{
E ⊂ Bd−

X

∣
∣∣
⋃

E ⊃ X \ Y
}

(9)

of the powerset of Bd−
X . Applying Lemma 1 to this sum, we have for |S| an upper

bound of
(

p
�p/2�

)
, where p = |Bd−

X |. Combining this with the fact that ζ(Y ) is
always 0 or 1, we obtain

|ν(X)| ≤ 2|X|−1

( |Bd−
X |

�|Bd−
X |/2	

)
.

We thus have the following analogue of Theorem 1.

Theorem 4. For an arbitrary query ϕ, the absolute error |e(ϕ)| of Truncate
Sum is bounded by

2|U|−1

( |Bd−|
�|Bd−|/2	

)
|Bd−|−1

∑

X∈Bd−
f(X).
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The bound in the general case is even larger than the one in the disjunction
case. How close to the bound can we come? Consider the sum (8). The form
of the alternating sum over Y suggests that a parity-like function would be a
difficult case: if ζ(Y ) = 1 if and only if |Y | is even, the sum becomes

ν(X) = (−1)|X| ∑

Y ⊂X

[|Y | even
]
S,

where S is the inclusion-exclusion sum mentioned in the proof of Theorem 4.
The bound for |S| used Lemma 1, where it is easy to see that equality holds if
the upwards-closed family (9) consists of those sets E ⊂ Bd−

X that have |E| =⌈|Bd−
X |/2

⌉
. But for Y = ∅ exactly this is achieved by the construction in the

proof of Theorem 2. For larger sets Y ⊂ X , S is smaller; however, this suffices
to show that if the statement of Theorem 4 is to be strengthened, one cannot
simply decrease the general bound for |S|, but more careful analysis of the double
sum (8) is required.

5 Conclusion and Future Work

We have described the Approximate Query problem and analyzed the Trun-
cate Sum algorithm, expanding upon the foundations in [MT96]. The results
are disappointing in a sense: for the simple-looking query class of disjunctions
of attributes, the behavior is not even polynomial in the size of the border.
However, this is a worst-case situation that may not be very realistic in practi-
cal, sparse datasets. In the proof of Theorem 1, the key inequality (5) is based
upon bounding the ratio |ν(X)|/µ(X). However, the ratio is multiplied by the
quantity gD(X), the exact frequency of X when the data is projected to the at-
tributes in D, and in sparse data it is reasonable that this quantity should vanish
for most large itemsets X . This observation suggests a modified algorithm: when
mining the frequent itemsets, remove from the data those tuples where the ratio
would be large, and store them separately; if the data is sparse, there should not
be too many of these tuples. Queries can be computed exactly for the difficult,
dense tuples, and approximated for the easy part of the data condensed into the
frequent itemset representation.

More generally, assume that there is space for storing some extra information
along with the frequent itemsets. The question then is, what is a good class of
information to store in order to approximate a wide variety of queries?

Another avenue for future research is to use the information inherent in fre-
quent itemsets in some way other than truncating the inclusion-exclusion sum.
In the Bonferroni case, Linial and Nisan have shown that if the frequencies are
known for sets X with |X | ≥ Ω(

√|D|), there are good approximations to f(
∨

D)
using multipliers other than ±1, and if the frequencies are known only for sets X
with |X | ≤ O(

√|D|), no approximation can be very good [LN90]. It would be
interesting to extend this approach to the general case of frequent itemsets that
do not form such a level family, and to queries more general than disjunctions.
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[Bol88] Béla Bollobás. Combinatorics: set systems, hypergraphs, families of vectors
and combinatorial probability. U Cambridge, 1988.

[BSH04] Artur Bykowski, Jouni K. Seppänen, and Jaakko Hollmén. Model-
independent bounding of the supports of Boolean formulae in binary data.
In Rosa Meo, Pier Luca Lanzi, and Mika Klemettinen, editors, Database
Support for Data Mining Applications: Discovering Knowledge with Induc-
tive Queries, volume 2682 of LNAI, pages 234–249. Springer, 2004.

[CG02] Toon Calders and Bart Goethals. Mining all non-derivable frequent item-
sets. In PKDD ’02, volume 2431 of LNAI, pages 74–85. Springer, 2002.

[GS96] Janos Galambos and Italo Simonelli. Bonferroni-type Inequalities with
Applications. Probability and its Applications. Springer, 1996.

[GZ03] Bart Goethals and Mohammed J. Zaki, editors. Proceedings of the Work-
shop on Frequent Itemset Mining Implementations (FIMI–03), volume 90
of CEUR-WS, Melbourne, Florida, 2003. http://CEUR-WS.org/Vol-90/.

[Knu92] Donald E. Knuth. Two notes on notation. Am. Math. Monthly, 99(5):403–
422, 1992.

[LN90] Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Com-
binatorica, 10(4):349–365, 1990.

[Man02] Heikki Mannila. Local and global methods in data mining: Basic tech-
niques and open problems. In P. Widmayer, F. Triguero, R. Morales,
M. Hennessy, S. Eidenbenz, and R. Conejo, editors, Automata, Languages
and Programming, volume 2380 of LNCS, pages 57–68. Springer, 2002.

[MT96] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and
condensed representations. In KDD ’96, pages 189–194, Portland, Oregon,
August 1996. AAAI Press.

[PMS00] Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Probabilistic models
for query approximation with large sparse binary datasets. In UAI, 2000.

[PS01] Dmitry Pavlov and Padhraic Smyth. Probabilistic query models for trans-
action data. In KDD ’01, 2001.


	Introduction
	Conjunction of Attributes
	Disjunction of Attributes
	General Queries
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




