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Abstract. The subfield of itemset mining is essentially a collection of algo-
rithms. Whenever a new type of constraint is discovered, a specialized algorithm
is proposed to handle it. All of these algorithms are highly tuned to take advan-
tage of the unique properties of their associated constraints, and so they are not
very compatible with other constraints. We present a more unified view of mining
constrained itemsets such that most existing algorithms can be easily extended to
handle constraints for which they were not designed a-priori. We apply this tech-
nique to mining itemsets with restrictions on their variance — a problem that has
been open for several years in the data mining community.

1 Introduction

Constrained Itemset Mining is a very important data mining problem [15]. It can be
stated as follows. Let I be a set of distinct “items” (where an item is an undefined prim-
itive). A transaction t is a set of items (a nonempty subset of I) and a database D is a
multiset of transactions. In constrained itemset mining, we would like to find all subsets
of I that satisfy a constraint, a user-defined property designed to tailor the output of the
data mining algorithm to the user’s preferences. Such constraints can be the traditional
“minimum support constraint”, where we are only interested in sets X ⊆ I such that
there exist at least s transactions t ∈ D with X ⊆ t, or more complex constraints such
as “the average price of the items has to be larger than c”, or “the variance of the prices
of the items has to be smaller than c”. Three important classes of constraints have been
studied: monotone, antimonotone, and convertible constraints [15,18]; each class has
its own set of efficient mining algorithms [14,18,16,6,7,8]. Some of these algorithms
have a certain degree of flexibility – they can efficiently mine constraints from several
of these classes simultaneously.

For example, several algorithms can simultaneously mine monotone and antimono-
tone constraints [16,6,7,8], or mine convertible combined with either monotone or anti-
monotone constraints [18]. Unfortunately, as we will show later, the flexibility of these
algorithms is very limited, especially when convertible constraints are involved.

We present a unified framework for constrained itemset mining that applies to any
type of constraint. Our framework is based on the concept of efficiently finding a wit-
ness, which is a single itemset X on which we can test whether the constraint holds.
This test will provide information about properties of other itemsets. That information
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can then be used for pruning the search space. The notion of a witness has concep-
tual implications. For example, we now can efficiently mine all three types of con-
straints simultaneously (by finding witnesses for each constraint), and we can also mine
complicated constraints that are neither monotone, antimonotone, nor convertible. As a
demonstration, we will introduce an efficient algorithm for finding a witness for con-
straints involving the variance of a set of items.

In developing this framework, we make the following contributions:

– We introduce the concept of a witness, which decouples the strategy for traversing
the search space from the efficiency of pruning it (using constraints). This trans-
forms the traversal strategy from a necessary restriction on an algorithm into an
optimization heuristic. To illustrate the concept of a witness, we show a very effi-
cient algorithm for finding a witness for a large class of functions which we call
stable functions. (Section 2)

– We show how to efficiently find a witness for the constraints var(S) ≤ c and
var(S) ≥ c, and therefore show how to prune using those constraints - a prob-
lem that has been open in the literature for several years. (Section 3)

– We outline several heuristics that further improve the efficiency of finding wit-
nesses. (Section 4)

For the remainder of this section, we take the reader on a short tour of the relevant
issues motivating our approach. We introduce some terminology and helpful notation in
Section 1.1, and then give an overview of our results in Section 1.2. Readers interested
in the more technical aspects should continue on to Section 2.

1.1 Preliminaries

Let I be a set of distinct “items” (where an item is an undefined primitive). A transaction
t is a set of items (a nonempty subset of I) and a databaseD is a multiset of transactions.
Given a function whose domain is I, such as price : I → R, we extend it to sets of
items in the natural way, e.g., price(S) is the multiset {price(x) : x ∈ S}. We are
also given a real-valued function whose domain is 2I , the powerset of I. An example
of such a function is support(S), which is the number of transactions in D that are
supersets of S. We will use such functions to define constraints. For example, if we
want to find all sets of items that have support greater than some constant c, we say we
are mining with the constraint support(S) > c.

Let us now examine some classes of constraints.

Definition 1 (Antimonotone). A constraint P is antimonotone if whenever A ⊆ B ⊆
I then P (B) ⇒ P (A), or equivalently, ¬P (A) ⇒ ¬P (B).

Definition 2 (Monotone). A constraint Q is monotone if whenever A ⊆ B ⊆ I then
Q(A) ⇒ Q(B), or equivalently, ¬Q(B) ⇒ ¬Q(A).

Note that both antimonotonicity and monotonicity are useful properties. Once we
know that itemset A does not satisfy an antimonotone constraint P we don’t need to
look at supersets of A, and if itemset B satisfies P then we know that all subsets of B
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satisfy P . Similarly, once we know that B does not satisfy a monotone constraint Q we
don’t need to look at B’s subsets, and if A satisfies Q then so do all supersets of A.

These two classes of constraints have another useful feature: they are both closed
under logical conjunction (AND). If P1 and P2 are antimonotone (resp., monotone)
constraints then so is P1 ∧ P2 and we can use existing algorithms to prune with this
compound constraint.

To define convertible constraints, we need to discuss the notion of a prefix. Fix an
ordering on the elements of I. We can therefore treat S1 ⊆ I and S2 ⊆ I as two
sequences. Let �1 be the length of S1, and �2 be the length of S2. Then S1 is a prefix of
S2 if �1 ≤ �2 and the first �1 elements of S2 are exactly S1.

Definition 3 (Convertible [18]). A constraint R is convertible monotone if there is
an ordering ω1 such that whenever S1 is a prefix of S2 then R(S1) ⇒ R(S2) (i.e.,
¬R(S2) ⇒ ¬R(S1)) and R is convertible antimonotone if there is an ordering ω2

such that if T1 is a prefix of T2 then R(T2) ⇒ R(T1) (i.e. ¬R(T1) ⇒ ¬R(T2)). R is
convertible if it is both convertible monotone and convertible antimonotone.

In order to prune with convertible constraints efficiently, an algorithm must ex-
amine itemsets in a restricted order. An example of a convertible constraint is R ≡
avg(price(S)) > c. If the items are sorted by price in ascending order then R is con-
vertible monotone; if the items are sorted in descending order then R is convertible
antimonotone. Similarly, the constraint avg(price(S)) < c is also convertible.1 But
suppose we want to mine with the following constraint that involves the functions price
and weight: (

avg(price(S)) ≤ c
)

∧
(

avg(weight(S)) ≤ d
)

If we assume that price and weight are not correlated, then this conjunction of convert-
ible constraints is not convertible. Thus existing algorithms for convertible constraints
will not prune efficiently - they will use only one of these constraints and then post-
process the output. This is an unfortunate situation, since many interesting predicates
are conjunctions of convertible monotone or convertible antimonotone constraints.

1.2 Catching a Witness: An Overview

As an elementary example, suppose that I = {a, b, c, d} and that database D consists
of the following sets: {a, b, c}, {b, c, d}, {b, c},{b, d}. Assume we are interested in all
subsets of I that have support ≥ 2. To find these sets, we must enumerate all possible
subsets of I and then test this property for each of them. At one point we will consider
the set {a}. It is included in only one set in D and therefore it is not interesting to
us. We could add more elements to {a}, in fact we could add any subset of {b, c, d}
(call this set F({a})) to get another set in our enumeration. However, support is an
antimonotone constraint and so any set containing {a} will have support less than 2.
Thus we can prune from consideration all sets X such that {a} ⊆ X ⊆ F({a}) ∪ {a}
— 8 sets in all. Let us call this collection of sets A({a}). We say that {a} is a negative

1 Note that we can replace < by≤ and > by≥ without changing any of the properties stated so
far.
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Fig. 1. An enumeration of a, b, c, d

witness for A({a}) because once we know that our constraint does not hold for {a}, we
know it does not hold for any set in A({a}). If {a} had been included in more than one
transaction in D, then we could not conclude anything about all sets in A({a}) and we
would have to examine them further. Thus having {a} as a witness for A({a}) allows
us to prune a large part of the search space. In general, if P holds for {a} implies P
holds for all sets in A({a}) then we call {a} a positive witness for A({a}) with respect
to P and a negative witness with respect to ¬P .

A property P can have both positive and negative witnesses. If X is a positive wit-
ness then P (X) = true implies that P (Y ) = true for all Y ∈ A(X) and so we save
time by not evaluating P (Y ). If X is a negative witness (then it is a positive witness for
¬P ) then P (X) = false implies that P (Y ) = false for all Y ∈ A(X) and so we
save time by pruning A(X).

Let us investigate how witnesses actually work when mining with constraints. Each
itemset mining algorithm enumerates candidate itemsets in some order, for example
through a tree structure (see Figure 1 for an enumeration for a, b, c, d) that is traversed
in a depth-first or breadth-first manner. When we examine a set X , we need to find
a witness for the subtree rooted at X . In simple cases, such as mining with a single
antimonotone constraint, X is this witness, whereas in other cases finding a witness is
not so trivial.

For an example where X is not a witness for A(X), suppose that the prices of
a, b, c, d are 1, 7, 6, 5, respectively, and that we are interested in all sets whose aver-
age is at least 6. If we examine node {a} in Figure 1 then clearly the average price
of {a} does not tell us much about the average price of nodes in A({a}), the subtree
rooted at {a}. However, if we add to {a} all items with price ≥ 6 we obtain the can-
didate witness {a, b, c}. Since we added as many items with price ≥ 6 as possible, if
{a, b, c} does not have an average ≥ 6, then no set in A({a}) can have an average ≥ 6,
and thus {a, b, c} is a negative witness. The average price of {a, b, c} actually is less
than 6 and so same is true for any set in A({a}). Thus this witness allows us to prune
the complete subtree. Had the price of item a been 5 or higher, the witness would not
give us enough information and we would have to traverse A({a}). Thus finding wit-
nesses for constraints involving an average is rather straightforward: we add all items
with value greater than the threshold to obtain the witness itemset, and then we test its
average.
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Now let us consider a more difficult case. Assume that our constraint states that the
variance of the prices must be ≤ k (or ≥ k) for some constant k. Now when we ex-
amine node {a}, good witnesses are elements in A({a}) that have maximal or minimal
variance. But how do we find an element with maximal variance? Intuitively, the vari-
ance of a set is large if the elements are far away from the average. This motivates the
following simple algorithm: we add to {a} the item x that is furthest from the average
of {a}, then add the item y that is furthest away from the average of {a, x}, etc. This
simple algorithm overlooks the subtlety that we want to add elements that are furthest
away from the average of the final witness, rather than the average of {a} – but we
do not know the average of the final witness a priori. Nevertheless, as we will show in
Section 2, a variant of this algorithm actually finds the itemset with maximal variance.

Now let us consider the case where we want to find an itemset with minimal variance.
Intuitively we want to include items that are close to the average of the final witness,
but not items that are far from the average. Here we run into the same subtlety — the
average we are talking about is the average of the witness, not the average of {a}.
These subtleties present significant hurdles to the development of an efficient algorithm
for finding a witness. As examples, assume that we are currently examining node X in
a search tree. The following two approaches are doomed to fail:

First Algorithm

1. Start at C = I (all of the items).
2. Remove from C the element in C \ X which is furthest away from the current

average of C, and return true if this new set has variance ≤ k
3. Repeat step 2.

Second Algorithm

1. Start at C = X .
2. Add to C the element closest to avg(C), and return true if this new set has variance

≤ k
3. Repeat step 2.

We can construct an example where both algorithms fail to return the correct witness.
Let X be {45, 55}, the set of two items with prices 45 and 55, respectively. Assume that
the subtree rooted at X contains the following items: 1, 000, 000 items with price 100;
999, 999 items with price 0; one item with price 30 and another item with price 15.
From this example it is clear that there is only one set with minimal variance and we
obtain it by adding to X all elements with price 100. Let k be slightly larger than the
minimal variance but smaller than the variance of any other set containing X . The first
algorithm will fail because it will add the item with price 30. The second algorithm will
fail because the average of all prices is slightly less than 50, and thus the algorithm will
remove all items with price = 100.

From this example we see that we can lower the variance by adding a “dense clus-
ter” — many items with similar values. If we order the items on a line by price and
slide an appropriately sized window, we may be able to find a good cluster that lowers
the variance enough. In Section 3.2 we will explain the structure of such a window.
However, the size of the window depends not only on the values of the elements in the
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window, but also on the number of elements the window contains. In fact, as we slide
the window, it can shrink: as the left endpoint of the window moves to the right, the
right endpoint of the window might move to the left! In Section 3.2, using subtle rea-
soning about the structure of the space, we describe an algorithm that finds a witness in
time linear in the number of items.

2 Witnesses

The execution of a typical data mining algorithm for antimonotone constraints looks
like a tree. At the root is the empty set and all other nodes are non-empty sets of items. A
child is a superset of its parent and contains one more item than its parent (see Figure 1
for an example). Let n be some node in the tree. Let B(n) be the set of items associated
with n, and let Free(n) be the collection of items that can be added to B(n). Free(n)
is the minimal set such that for any descendant n′ of n, B(n′) = B(n) ∪ J where
J ⊆ Free(n). For example in Figure 1, if B(n) = {a, b} then Free(n) = {c, d}. Let
A(n) be the collection of sets X such that B(n) ⊆ X ⊆ B(n) ∪ Free(n). As is done
in practice, we assume constraints have the following form: f(X)#c where # is either
<,≤, > or ≥; c is a constant; X is a set; and f is a real-valued function whose domain
is 2I , the powerset of I.

Definition 4 (Witness). Given a fixed constant c, node n and a function f : 2I → R,
a set Yn ∈ A(n) is called a large witness if

f(Yn) ≤ c ⇒ ∀X ∈ A(n) : f(X) ≤ c

A set Zn ∈ A(n) is called a small witness if

f(Zn) ≥ c ⇒ ∀X ∈ A(n) : f(X) ≥ c

For a general predicate P , Wn ∈ A(n) is a positive witness if

P (Wn) = true⇒ ∀X ∈ A(n) : P (X) = true

and Wn is a negative witness if

P (Wn) = false⇒ ∀X ∈ A(n) : P (X) = false

The intuition behind this nomenclature is that a set in A(n) that maximizes f (over
A(n)) is a large witness and a set that minimizes f is a small witness. When it is unam-
biguous, the notational dependency on n will be dropped. We will use Y to represent a
large witness and Z to represent a small witness. Note that

f(Y) < c ⇒ ∀X ∈ A : f(X) < c

and
f(Z) > c ⇒ ∀X ∈ A : f(X) > c

When we are mining for itemsets X that satisfy f(X) ≥ c, if f(Yn) < c then
clearly we can prune out A(n) — we do not need to look at any set in that collection.
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If f(Yn) ≥ c then we do not have enough information to prune and must examine the
children of n. If f(Zn) ≥ c then we do not need to evaluate f on the sets in A(n) —
we know the result will be greater than or equal to c. If f(Zn) < c then we do not have
enough information and must examine the children of n. Analogous statements are true
when we have constraints f(X)#c, where # is >, <, or ≤.

2.1 Comparison to Existing Methods

When mining with antimonotone constraints, such as support(X) > c, then for any
node n, clearly B(n) is a negative witness and B(n) ∪ Free(n) is a positive witness.
For monotone constraints, such as support(X) < c, B(n) is a positive witness and
B(n) ∪ Free(n) is a negative witness. For the function support(X), B(n) is a large
witness and B(n) ∪ Free(n) is a small witness (clearly a small or large witness is
negative or positive depending on the inequality used in the constraint). Thus we have
generalized pruning with monotone and antimonotone constraints. Most algorithms that
prune with monotone and/or antimonotone constraints can easily be modified to search
for witnesses in order to prune efficiently.

Witness-based pruning can also handle many convertible constraints. One of the
most interesting convertible constraints is average (i.e., average price). Assuming all
items have a price,

Yn = B(n) ∪ {x ∈ Free(n) : price(x) ≥ c}
is clearly a large witness, and

Zn = B(n) ∪ {x ∈ Free(n) : price(x) ≤ c}
is a small witness.

Naively, it may take O(Free(n)) time to find a witness and calculate its average.
However, we just need to know the average of a witness and this can be maintained
incrementally in constant time per node. Algorithm 1 shows this technique applied to
a simple depth-first algorithm for antimonotone constraints. Note the O(I) initializa-
tion step done once at the beginning of the algorithm. We can apply this technique in a
straightforward manner to many other algorithms for mining monotone and antimono-
tone constraints, including DualMiner [8]. One advantage of this technique is that the
modified algorithms can handle conjunctions of constraints. This is possible by sim-
ply searching for a witness for each constraint. Thus our technique can efficiently find
sets of items X such that R ≡ avg price(X) < c ∧ avg weight(X) < d, whereas
an algorithm designed for convertible constraints cannot prune with R — despite the
fact that R is simply a conjunction of convertible constraints. Another advantage of our
approach is that the presence of a conjunction of several constraints does not restrict
the order in which nodes can be evaluated. This gives our technique an extra degree of
freedom for optimization of traversal strategies with heuristics. Note that our technique
can even be used to modify existing algorithms for convertible constraints.

Let us introduce some notation before we discuss some conceptual extensions. For
convenience we will start identifying items xi with their prices (price(xi)). Since sev-
eral items may have the same price we are now dealing with multisets and as a reminder
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Algorithm 1 : AVGminer
Require: antimonotone P , node n,Free(n), Zsum, Zcount
1: if n =root then
2: Free(n)← I
3: Zsum← �

x∈Free,price(x)≤c

price(x)

4: Zcount← �

x∈Free,price(x)≤c

1

5: else if ¬P (n) ∨ Zsum/Zcount > c then
6: RETURN (no set in A satisfies both constraints)
7: else if P (n) ∧ avg(price(n)) ≤ c then
8: OUTPUT B(n)
9: end if

10: Temp← Free(n)
11: while Temp �= ∅ do
12: choose some x ∈ Temp; Temp← Temp \ {x}
13: if x ≤ c then
14: Zsum← Zsum− x; Zcount← Zcount − 1
15: end if
16: create child n′ such that B(n′) = B(n) ∪ {x}
17: AVGminer(P ,n′,Temp,Zsum + x,Zcount + 1)
18: end while

of this fact, ⊕ will represent multiset union and � will represent multiset set-difference.
Therefore when we talk about a set in A we are really talking about a multiset.

The same witnesses that work for average also work for a more general class, the
class of stable functions, as introduced in the following definition.

Definition 5. A real-valued function f is stable if, for any c

f(A), f({x}) ≥ c ⇒ f(A ⊕ {x}) ≥ c, and

f(A), f({x}) ≤ c ⇒ f(A ⊕ {x}) ≤ c.

The predicates f(S) ≥ c and f(S) ≤ c are called stable constraints.

Examples of stable functions are average, median, and even linear combinations of
moments. A linear combination of moments has the form

f(X) =
∑

j

aj

n

n∑
i=1

xj
i =

n∑
i=1

∑
j

ajx
j
i

n
=

n∑
i=1

f({xi})
n

and is clearly stable. The following theorem shows how to find witnesses Y and Z for
stable functions, such that f(Y ) ≥ c ⇒ f(X) ≥ c and f(Z) ≤ c ⇒ f(X) ≤ c, for all
X ∈ A.

Theorem 1. Let n be a node and f a stable function. Then

f(B(n) ⊕ {x ∈ Free(n) : f(x) ≤ c}) ≤ c

if and only if ∃X ∈ A(n) such that f(X) ≤ c.
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Also

f(B ⊕ {x ∈ Free(n) : f(x) ≥ c}) ≥ c

if and only if ∃X ∈ A(n)such thatf(X) ≥ c.

Proof. We only prove the first statement, as the second is similar. One direction is
obvious. Assume there is some X ∈ A such that f(X) ≤ c. Since f is stable, it follows
by induction that f(X � {x ∈ Free : f(x) > c}) ≤ c. Then, f(B ⊕ {x ∈ Free :
f(x) ≤ c}) = f(X � {x ∈ Free : f(x) > c} ⊕ {x ∈ Free�X : f(x) ≤ c}) ≤ c.

��
A stable function f is invertible if given f({x1, x2, . . . , xk}) and xi (for 1 ≤ i ≤ k)

we can compute f({x1, . . . , xi−1, xi+1, . . . , xk}). In this case we can use the same
approach we used for average to maintain (in constant time per node) the value of f
of a witness. For example, linear combinations of moments are invertible. It should be
noted that the common convertible constraints are included in the class of invertible
stable functions.

3 Mining Variance

We now apply our framework to solve an open problem: mining variance. Our solution
essentially reduces the problem from finding itemsets to searching for a particular node
in a lattice. The following key property will be used extensively.

Lemma 1. If M is a multiset and c, d ∈ R such that

|d − avg(M)| ≥ |c − avg(M)|,

then we have

var(M ⊕ {d}) ≥ var(M ⊕ {c}).

While we provide a formal proof below, this claim is intuitively obvious; the further
away an element is from the average, the larger the variance. This leads to the following
simple corollary.

Corollary 1. If c ∈ M and either d ≥ c ≥ avg(M) or d ≤ c ≤ avg(M) then
var(M � {c} ⊕ {d}) ≥ var(M).

Proof (of Lemma 1). Assume |d − avg(M)| ≥ |c − avg(M)|. Let n = |M |. Given a
constant k,

var(M ⊕ {k}) =
k2 +

∑
M

x2
i

n + 1
−

(
k +

∑
M

xi

)2

(n + 1)2

=
k2 +

∑
M

x2
i

n + 1
−

k2 + 2k
∑
M

xi +
(∑

M

xi

)2

(n + 1)2
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Thus

var(M ⊕ {d}) − var(M ⊕ {c}) =
d2 − c2

n + 1
−

d2 − c2 + 2(d − c)
∑
M

xi

(n + 1)2

=
n

(n + 1)2
[
(d2 − c2) − 2(d − c) avg(M)

]

The last equation is nonnegative if and only if

(d − c)(d + c) ≥ (d − c)2 avg(M) (1)

Case 1. If d, c ≥ avg(M) then by hypothesis d ≥ c and so Equation (1) is satisfied.
Case 2. If d, c ≤ avg(M) then by hypothesis d ≤ c and clearly d + c ≤ 2 avg(M).

Therefore, Equation (1) is also satisfied.
Case 3. If d ≥ avg(M) ≥ c then d − c ≥ 0 and by hypothesis d − avg(M) ≥

avg(M) − c and so d + c ≥ 2 avg(M). Thus Equation (1) is satisfied.
Case 4. Finally, if d ≤ avg(M) ≤ c then d− c ≤ 0 and by hypothesis avg(M) − d ≥

c − avg(M) and so 2 avg(M) ≥ d + c. Even in this case Equation (1) is satisfied.
��

To find itemsets that satisfy var(X) > c we need to prune sets where var(X) ≤ c.
Thus we need to find a witness Y such that var(Y) ≤ c ⇒ var(X) ≤ c for any X ∈ A.
The next subsection shows how this is done.

3.1 Finding Maximal Variance

An obvious choice for such a witness Y is a set in A(n) that has maximal variance. We
begin by examining what such a witness looks like. For any set S let mink(S) be the
k smallest elements of S and maxk(S) be the k largest elements of S. Ties are broken
according to some convention >κ; that is if a = b with a ∈ X and b /∈ X then

– if a > avg(X) let a >κ b
– if a ≤ avg(X) then a <κ b

We break all other ties arbitrarily.

Lemma 2. Given a node n, then for any element X in A(n) with maximal variance,
there exist two nonnegative integers L and R such that

X = B(n) ⊕ min
L

{y ∈ Free : y ≤ avg(X)}
⊕ max

R
{y ∈ Free : y > avg(X)}

Proof. We need only show the existence of L, as the existence of R is analogous. Let
S1 = {y ∈ X � B : y ≤ avg(X)} and let F1 = {y ∈ Free : y ≤ max(S1)}. If
S1 = ∅ then L = 0 and if S1 = F1 then L = |S1|. Otherwise, let m = max(S1) and
choose y = min(F1�S1). If y = m then L = |S1| and we are done by the tie-breaking
convention. The only other possibility is y < m, in which case it is further away from
avg(X) than m and, since y /∈ X , by Corollary 1 we can replace m with y in X to
increase the variance. Clearly this case can’t happen and so a suitable L always exists.

��
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In other words, in addition to B, X contains the Lth most extreme elements on the
left and the Rth most extreme elements on the right.

A naive approach to finding a witness Y would look at all pairs of integers L, R
and use Lemma 2, but that would result in an O(|Free |2) algorithm. We need to find
the elements that are furthest away from the average of Y without knowing what this
average is. Because of this subtlety, it is surprising not only that a linear time algorithm
exists, but also that this algorithm is greedy.

However, we have one precondition. Before we begin to mine, we must sort all el-
ements by value. The sorted order of Free(n) can easily be maintained by most algo-
rithms as they examine different nodes n. Thus we pay a one-time O(|I| log |I|) startup
cost – which is not so bad considering how much time mining algorithms take – and
a constant cost per node maintaining this order. Algorithm 2 shows the witness-search
algorithm. It returns true if the witness has variance greater than c, false otherwise.

Algorithm 2 : Maximal Variance
Require: node n, Free(n) is sorted
1: C0 ← B(n), i← 0
2: if var(C0) > c then
3: RETURN true
4: end if
5: Temp← Free(n)
6: while Temp �= ∅ do
7: choose x ∈ Temp with |x− avg(Ci)| largest
8: (ties broken arbitrarily)
9: Ci+1 ← Ci ⊕ {x}

10: if var(Ci+1) > c then
11: RETURN true
12: else if var(Ci−1) ≥ max

�
var(Ci), var(Ci+1)

�
, i ≥ 1 then

13: RETURN false
14: end if
15: i← i + 1
16: end while
17: RETURN false

In algorithm 2 we keep adding elements that are furthest away from the current
average until we find a Y ∈ A with var(Y ) > c or we reach the stopping condition
at line 12. The stopping condition essentially says that we get two chances to keep the
variance growing.

In order to show that this algorithm is correct, we need to show two things: that it
visits an element with maximal variance when a witness exists, and that the condition
for returning “false” is correct. The first half of this correctness claim is covered by the
theorem below.

Theorem 2. Without any stopping conditions, Algorithm 2 will visit an element in A(n)
with maximal variance.
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Proof. Let T be the set B(n)⊕Free(n). Without stopping conditions, the execution of
this algorithm produces a chain of sets B(n) = C0 ⊂ C1 ⊂ · · · ⊂ Ck = T and for
all i, |Ci+1 � Ci| = 1. If T has maximal variance then we are done. If not, let j be the
largest index such that Cj is a subset of an element with maximal variance but Cj+1 is
not. If Cj has maximal variance then we are done. Otherwise, let M be some superset
of Cj that has maximal variance. Also let c = Cj+1 �Cj . By definition, c is chosen by
the algorithm because it is the free element furthest away from avg(Cj).

Because of symmetry, we can assume c ≥ avg(Cj). By the definition of c we know
that M�Cj can only contain elements less than c. If some element is larger, it is further
away from avg(Cj); if some element equals c, then we can just replace it with c without
affecting variance, which violates the definition of Cj . This means that c ≥ avg(M)
since we can not add M � Cj to Cj and increase the average beyond c.

From Corollary 1, we know that M �Cj contains no element ≥ avg(M). Otherwise
we could replace it with c and the variance will not decrease. Therefore max(M�Cj) =
m < avg(M).

Now we claim that avg(Cj) ≥ m. If this is not the case, then m > avg(Cj) and
adding M � Cj to Cj would not raise the average past m. This implies m ≥ avg(M),
which cannot happen. Thus avg(Cj) ≥ m and adding M �Cj to Cj would only lower
the average. Since Cj ⊂ M , it follows that avg(Cj) ≥ avg(M). If δ = min(M � Cj)
(which is < avg(M)) it also follows that avg(Cj) ≥ avg(M � {δ}). As c is the free
element furthest away from avg(Cj), we see that

c − avg(M � {δ}) ≥ c − avg(Cj) ≥ avg(Cj) − δ

≥ avg(M � {δ}) − δ ≥ 0

By Lemma 1 var(M �{δ}⊕{c}) ≥ var(M), a contradiction. Therefore the greedy
algorithm visits the node with the largest variance.

��

So all that is left is to show that if we reach the stopping condition, then no witness
exists.

Theorem 3. Let Ci be a multiset such that varCi+1 ≤ varCi and varCi+2 ≤ varCi.
Then for any j ≥ i, var(Cj) ≤ var(Ci).

The proof of Theorem 3 is rather involved, it is useful to first see an example moti-
vating it. The implication of Theorem 3 is that if no set has variance greater than c, then
we will find this out two iterations after we reach a node with maximal variance. The
reason for this is that the variance does not grow monotonically, but instead zigzags.
This is clear from the following example.

Example 1. Let B = {−40,−40, 40, 40} and Free = {−42,−42, 42, 42}. The chain
of sets produced is
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C0 = {−40,−40, 40, 40} var(C0) = 1600

C1 = C0 ⊕ {42} var(C1) = 1562.24

C2 = C1 ⊕ {−42} var(C2) = 1654
2
3

C3 = C2 ⊕ {42} var(C3) = 1634
2
7

C4 = C3 ⊕ {−42} var(C4) = 1682

To prove Theorem 3, we need the following two lemmas.

Lemma 3. var(Ci) ≥ var(Ci+1) if and only if d = Ci+1 � Ci satisfies the condition

n(d − avg(Ci))2 ≤ (n + 1) var(Ci), where n = |Ci|
Alternatively, if Ci has average 0 and sum of squares Q, then n2d2 ≤ (n + 1)Q.

Proof. Let X = Ci, n = |X | and Y = Ci+1. Let d = Y � X . First suppose that
avg(X) = 0 and without loss of generality assume that d ≥ 0. Because of the way
d is selected, |d| ≥ |c| for any c ∈ T � X . Let Q be the sum of squares in X . Since
var(X) ≥ var(Y ),

var(Y ) − var(X) =
Q + d2

n + 1
− d2

(n + 1)2
− Q

n
=

nd2 − Q

n(n + 1)
− d2

(n + 1)2
≤ 0

This is true if and only if

(n2 + n)d2 − (n + 1)Q − nd2

n(n + 1)
≤ 0

⇔ n2d2 − (n + 1)Q
n(n + 1)

≤ 0

⇔ n2d2 − (n + 1)Q ≤ 0

⇔ n2d2 ≤ (n + 1)Q

If X does not have average 0 then since variance is translation invariant, we can
apply this result to

X ′ = {x − avg(X) : x ∈ X}
and to Q′ =

∑
x∈X

(x − avg(X))2, d′ = d − avg(X). Now Q′ is just n var(X) and so

n(d − avg(X))2 ≤ (n + 1) var(X)

��
To state the next Lemma, we use the following convention: when k is an integer and

S is a multiset, we use k · S to denote k multiset unions of S with itself.
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Lemma 4. Let C be a set, a be an element and let D ≥ var(C) and p ∈ Z
+ be

constants. If
var(C ⊕ (p · {a})) > D

then

(a − avg(C))2 >
|C| + 1
|C| D

Proof. Let Q = var(C). Let C′ = {x − avg(C) : x ∈ C} and let n = |C| and
b = a − avg(C). Clearly avg(C′) = 0 and var(C′) = Q. The quantity nQ is the sum
of squares of C′ and var(C′ ⊕ (p · {b})) = var(C ⊕ (p · {a})).

var(C ⊕ (p · {a})) ≥ D ⇒ var(C′ ⊕ (p · {b})) ≥ D

⇒ nQ + pb2

n + p
− p2b2

(n + p)2
≥ D

⇒ (n + p)nQ + (n + p)pb2 − p2b2 ≥ D(n + p)2

⇒ (n + p)nQ + npb2 ≥ D(n + p)2

⇒ (n + p)nD + npb2 ≥ D(n + p)2

⇒ npb2 ≥ npD + p2D

⇒ b2 ≥ D + pD/n ≥ n + 1
n

D

��
Proof (of Theorem 3). Let n = |Ci| and e = Ci+1 � Ci, f = Ci+2 � Ci+1. This
theorem is obvious if n < 2 so we can assume that n ≥ 2. Without loss of generality
we can assume that avg(Ci) = 0 and that e > 0.

Let Q be the sum of squares of Ci. Suppose there exists a j > i such that var(Cj) >
var(Ci). Then let J = Cj . Let a be the largest value in J � Ci and b be the smallest
value. Clearly a = e and b ≤ f . a satisfies the conditions in Lemma 3. If a2 ≤ Q

n then
this theorem is obviously true, so we can assume a2 > Q

n . Since f is at least as far from

avg(Ci+1) as b, Lemma 1 implies that var(Ci ⊕{a, b}) ≤ var(Ci). Thus if b ≤ −
√

Q
n

then by Lemma 1,

var(Ci ⊕ {a, b}) ≥ var

(
Ci ⊕

{√
Q

n
,−
√

Q

n

})
= var(Ci)

So b > −
√

Q
n , which means that |a| > |b| and a + b > 0.

From J we will inductively construct a multiset J∗ such that var(J∗) ≥ var(J). Let
J0 = J and given Jk, pick some element c from the set

H = {x ∈ Jk � Ci : a > x > b}
If c ≥ avg(Jk) then we know a > c and so let Jk+1 = Jk � {c} ⊕ {a}. Similarly,
if c ≤ avg(Jk) then we know c > b and so let Jk+1 = Jk � {c} ⊕ {b}. By Lemma
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1, var(Jk+1) ≥ var(Jk). If H is empty and we cannot choose an element c, then let
J∗ = Jk. Clearly J∗ = Ci ⊕ (p · {a, b})⊕ (q · {x}) for some integers p and q, where
x is either a or b.

Now suppose q ≥ 1 and x is the element b. If p = 0 then a is further away from
avgJ∗ � {b} than b. If p ≥ 1 then

avg J∗ � {b} ≤ p(a + b)/(n + 2p + q) ≤ (a + b)/2

and so a is also further away from avgJ∗ � {b} than b. By Lemma 1, var(J∗ � {b} ⊕
{a}) ≥ var(J) and

J∗ � {b} ⊕ {a} = Ci ⊕ ((p + 1) · {a, b})⊕ ((q − 2) · {b})

Note this is also true when q = 1 if we interpret B ⊕ (−1) · A as B � A. Using this
argument repeatedly, we get the set

Ci ⊕ ((p + �q/2�) · {a, b})⊕ ((q mod 2) · {a})

which has variance ≥ var(J∗). Thus, without loss of generality we can assume that x
is the element a.

By hypothesis, var(Ci) − var(Ci+2) ≥ 0, and so

var(Ci) − var(Ci+2) =
Q

n
− Q + a2 + b2

n + 2
+

(a + b)2

(n + 2)2

=
2Q − na2 − nb2

n(n + 2)
+

(a + b)2

(n + 2)2
≥ 0

which implies that 2Q
n − a2 − b2 + (a+b)2

n+2 ≥ 0.
Let I = Ci ⊕ (p · {a, b}). Then we have that

var(Ci) − var(I) =
Q

n
− Q + pa2 + pb2

n + 2p
+

p2(a + b)2

(n + 2p)2

=
2pQ − npa2 − npb2

n(n + 2p)
+

p2(a + b)2

(n + 2p)2

=
p

n + 2p

(
2Q

n
− a2 − b2 +

p(a + b)2

n + 2p

)

=
p

n + 2p

(
2Q

n
− a2 − b2 +

p(n + 2)
n + 2p

(a + b)2

n + 2

)

=
p

n + 2p

(
2Q

n
− a2 − b2 +

pn + 2p

n + 2p

(a + b)2

n + 2

)

=
p

n + 2p

(
2Q

n
− a2 − b2 +

(a + b)2

n + 2

)
=

≥ p

n + 2p
(var(Ci) − var(Ci+2)) ≥ 0
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Thus var(I) ≤ var(Ci) and J∗ = I ⊕ (q · {a}). By Lemma 4, it is only possible
for var(J∗) > var(Ci) if (a − avg(I))2 > n+1

n var(Ci). Since a + b ≥ 0, we have
a ≥ avg(I) ≥ 0 and so a ≥ (a − avg(I)) ≥ 0.

From Lemma 3

var(Ci)
n + 1

n
≥ a2 ≥ (a − avg(I))2

Therefore var(J∗) cannot be larger than var(Ci), and so when the variance of a set is
not less than the variance of either its two successors, its variance is not less than the
variance of any of its successors.

��
Given Theorems 2 and 3, we now know that Algorithm 2 is correct. However, it is

important to note that it is also optimal.

Theorem 4. If there exists a set X with var(X) ≥ c, then Algorithm 2 will find the
shortest path to any node whose variance ≥ c.

Proof. Let Ci be the chain of sets from the proof of Theorem 2. We call a node X quick
if var(X) ≥ c and if ∀Y ∈ (B, T ), then |Y | ≤ |X | ⇒ var(Y ) < c. We need to show
that for some i, Ci is quick.

Quickness is a maximality property. Therefore, to complete the proof, we simply
carry out the proof of Theorem 2, substituting “quick” for “maximal variance”.

��

3.2 A Small Witness for Variance

Now that we know how to find a large witness Y , we need an algorithm to find a witness
Z such that var(Z) > c ⇒ var(X) > c for all X ∈ A. This is a much more difficult
problem. To see why, note that we indirectly used the following property to show that a
greedy algorithm worked for finding maximal variance.

Lemma 5. For any constant h, if var(Y ) ≥ h and var(X) ≥ h then var(X ⊕ Y ) ≥ h.

Proof. For convenience, let A =
∑

yi∈Y

yi and B =
∑

yi∈Y

y2
i and n = |Y |. Also let C =

∑
xi∈X

xi and D =
∑

xi∈X

x2
i and m = |X |. Since variance is invariant under translation,

we can assume that the elements of X and Y are nonnegative. We know that

var(Y ) =
B

n
− A2

n2
≥ h ⇒ B ≥ nh +

A2

n

var(X) =
D

m
− C2

m2
≥ h ⇒ D ≥ mh +

C2

m

Therefore

B + D ≥ nh +
A2

n
+ mh +

C2

m

= h(n + m) +
mA2 + nC2

mn
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= h(n + m) +
(mn + m2)A2 + (mn + n2)C2

mn(m + n)

≥ h(n + m) +
mnA2 + mnC2 + 2mnAC

mn(m + n)

= h(n + m) +
A2 + C2 + 2AC

m + n

= h(n + m) +
(A + C)2

m + n

This implies h ≤ B+D
m+n − (A+C)2

(m+n)2 = var(X ⊕ Y ).
��

This allowed us to add elements that had the largest effect on the variance with-
out worrying too much about the structure of the set we were creating. The constraint
var(X) < c does not have a similar property and this suggests that a greedy algorithm
to find a witness Z does not exist. Thus the intuitive algorithms in Section 1.2 do not
work. Instead, the following lemma describes what a witness should look like.

Lemma 6. For any element X in (B, T ) with minimal variance, there exist two non-
negative integers L and R such that

X = B(n) ⊕ max
L

{y ∈ Free : y ≤ avg(X)}
⊕ min

R
{y ∈ Free : y > avg(X)}

Proof. The proof is analogous to that of Lemma 2 and again assumes that ties are
broken according to the convention >κ.

��
In other words, if we order the points in Free on a line, X contains B(n) and only

the points in some window of size L + R over this line.
It is clear from Lemma 6 that if there exists a set X with var(X) < c then there

exists a witness Z with var(Z) < c and that Z is the multiset union of B(n) and some
window over Free(n). The next lemma states that this window does not have to be too
big.

Lemma 7. Let C be a set, a ∈ C, n = |C| and let D ≥ var(C). If (a − avg(C �
{a}))2 > n

n−1D then var(C � {a}) < D

Proof. We prove the lemma by contradiction. Assume var(C�{a}) ≥ D. Without loss
of generality, assume avg(C � {a}) = 0. Let Q be the sum of squares of C �{a}. So,
we have Q ≥ (n− 1)D and (n− 1)a2 > nD. Then var(C) = (Q+ a2)/n− a2/n2 =
(nQ + (n − 1)a2)/n2 > (nQ + nD)/n2 ≥ (n(n − 1)D + nD)/n2 = D. Thus,
var(C) > D, contradiction, therefore var(C � {a}) < D.

��
We can derive an easy O(|Free |2) search algorithm using Lemma 6, but it is possible

to do better. The algorithm to determine if there is a set Z with var((Z)) ≤ c is a
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two-step sliding window algorithm. In the first step, we start with a window whose
right endpoint is the largest element in Free. We slide the window to the left until the
right endpoint is no longer greater than or equal to avg(B(n)). If we have not found a
witness, we repeat the same thing, but on the left hand side. We can reflect all points
around the y-axis (i.e. multiply them by −1) without affecting the variance of any set,
and so by symmetry we only need to describe the first step of the algorithm.

We can use Lemma 7 to define a suitable window. Note that the window size depends
on the number of points in the window. We also have no guarantees that the window
associated with the witness (by Lemma 6) is the same size as the algorithm’s window.
Therefore we must be careful about checking for witnesses to avoid a quadratic search
algorithm. Once again, the algorithm assumes the elements of Free are maintained in
sorted order. Let F be the array of elements of Free sorted in descending order. Given
the index r of the right endpoint, we want the largest � such that

Tr,� = {F [r],F [r + 1], . . . ,F [�]} ⊕ B(n) (2)

satisfies the following properties.

1. F [r] − avg(Tr,� �F [r]) ≤√ck/(k − 1) - where |Tr,� �F [r]| = k − 1
2. F [r] −F [�] ≤ 2

√
ck/(k − 1)

infinity

avg(B(n))

F[l] F[r]

F[r+1]

F[r+2]

Window Moves

Fig. 2. The Window

The first condition states that we do not want the right endpoint to be further away
from the average (without the endpoint) than allowable by the hypothesis of Lemma 7.
Thus given a right endpoint, we know what the smallest allowable average is. Condition
2 states that we do not want the left endpoint to be further away from this quantity than is
allowable by Lemma 7. The window defined by r and � is Wr, our target window for r.

The window associated with a set M of minimal variance is a subset of Wr for some
r. To see why, suppose this were not the case. Then one of the two conditions is false.
This means that either the left endpoint or the right endpoint of M ’s window is too far
from avg(M), so by Lemma 7 we can remove this endpoint and decrease the variance
further. Hence all of these lemmas provide us with the following result.

Theorem 5. Let Z be a witness which has a window associated to it as in Lemma 6.
Then there exists a witness Z ′ whose window is a subset of the window of Z , and the
window of Z ′ is contained in a target window Wr for some r.
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For some choices of r, it may not be possible to get a window which brings the
average close enough to F [r]. In this case set � to be the largest integer such that the set
in equation (2) satisfies

1*. F [r] −F [�] ≤√ck/(k − 1) but
F [r] − avg(Tr,� �F [r]) >

√
ck/(k − 1)

The intuition behind this idea is that we add all the elements that are greater than or
equal the minimum average allowed by Lemma 7. If this cannot get the average (with-
out F [r]) high enough, then no window will. But if this does move the average close
enough, we can keep adding elements that satisfy condition 2. In any case we can move
the left endpoint to the left until we reach � and we will recognize � as soon as we see it.
Note that this does not change the truth of Theorem 5 since this added definition only
enlarges windows that would have had length 0 otherwise.

The problem with target windows is that sliding this window to the left may cause
the left endpoint to move to the right. In other words, it is possible that Wr+1 ⊆ Wr

and therefore sliding this window over F may require an O(|F|2) computation. For
example, supposeF [r] = F [r+1] and equality holds in condition 1. Sliding the window
over would cause the average to move further away from F [r + 1] and thus violate
condition 1. Because of this our algorithm will maintain a window larger than the target
window by simply leaving the left endpoint fixed in such cases. Furthermore, if the left
endpoint is defined by condition 1*, the left endpoint will never move to the right.

Algorithms 3 and 4 show how to slide the window.

Algorithm 3 : SlideWindow
Require: r, �
1: r ← r + 1
2: if var(Tr,�) ≤ c then
3: RETURN (true, r, �)
4: end if
5: �← ExpandWindow(r, �)
6: if var(Tr,�) ≤ c then
7: RETURN (true,r,�)
8: else
9: RETURN (false,r,�)

10: end if

Notice that ExpandWindow (Algorithm 4) checks the variance as it moves the left
boundary. Since the left and right endpoints shift in one direction only, the variance can
be computed in constant time by incrementally maintaining the number of elements in
the window, their sum, and the sum of their squares. If the algorithm finds a witness,
then it returns immediately and SlideWindow (Algorithm 3) will know this.

The main algorithm is shown in Algorithm 5, where we assume, for simplicity, that
F [−1] = ∞. This algorithm returns true if there is an element with var ≤ c and false
otherwise.

As this algorithm is a little involved, we present the following illustrative example.
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Algorithm 4 : ExpandWindow
Require: r, �
1: while � < |I| − 1 do
2: k← |Tr,�+1|
3: if F [r]− F [� + 1] ≤�ck/(k − 1) then
4: �← � + 1 (Condition 1*)
5: else if F [r]−avg(Tr,�+1� F [r]) ≤�ck/(k − 1), F [r]−F [� + 1] ≤ 2

�
ck/(k − 1)

then
6: �← � + 1
7: else
8: BREAK
9: end if

10: if var(Tr,�) ≤ c then
11: BREAK
12: end if
13: end while
14: RETURN �

Algorithm 5 : SmallVar
1: r ← −1, �← 0
2: while F [r] ≥ avg(B(n)) do
3: (result, r, �)← SlideWindow(r, �)
4: if result =true then
5: RETURN true
6: end if
7: end while
8: Repeat with window to the left of avg(B(n)).
9: RETURN false

Example 2. Let B = {−20, 20} and F = Free = {30, 10, 0,−10,−30}. Also let
c = 200. Our algorithm starts with r = −1, � = 0. Clearly F [−1] = ∞ is larger than
avg(B(n)), so we slide. We now set r = 0 and hence

Tr,� = {30} ⊕ B = {−20, 20, 30}

As var(Tr,�) = 700, we expand the window.
We start with k = 2, F [r] = 30, and F [�+1] = 10. Then F [r]−F [�+1] = 20 while√
ck/(k − 1) = 20. So we increment � by one. Furthermore, as var(Tr,�) ≈ 466.7 >

250, we have not necessarily found a set of minimal variance yet. So we continue the
loop.

Now k = 3, F [r] = 30, and F [� + 1] = 0. Then F [r] − F [� + 1] = 30 while√
ck/(k − 1) ≈ 17.3, so line 3 of ExpandWindow is no longer true. Furthermore,

avg(Tr,�+1 −F [r]) = avg({−20, 0, 10, 20}) = 2.5

and henceF [r]−avg(Tr,�+1−F [r]) = 27.5. This is not less than
√

ck/(k − 1) ≈ 17.3,
so we are done with this iteration of ExpandWindow.
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Again, F [0] = 30 > avg(B(n)), so we slide r = 1, � = 1. As var(Tr,�) ≈ 433.3,
we expand the window. We start with k = 2, F [r] = 10, and F [� + 1] = 0. As
10 <

√
ck/(k − 1) = 20, we increment � by one. As var(Tr,�) ≈ 291.7 > 250, we

continue the loop.
Now we have � = 2, k = 3. F [r] − F [� + 1] = 20, while

√
ck/(k − 1) ≈ 17.3.

However,

F [r] − avg(Tr,�+1 −F [r]) = 10 − avg({−20,−10, 0, 20}) = 12.5

Furthermore,F [r]−F [�+1] ≤ 2
√

ck/(k − 1), so now we have satisfied the condition
on line 5 of ExpandWindow. We increment � by one again. Now we have that

Tr,� = {−20,−10, 0, 10, 20}
As var(Tr,�) = 250, we continue with our loop.

However, it is easy to check that the set Tr,� = {−20,−10, 0, 10, 20} is the one of
minimal variance. Hence the remaining steps of the algorithm will determine that none
of the itemsets in this lattice satisfy the constraint, and so we can prune them all.

Note that this algorithm runs in O(|F|) time because variance is computed once
each time we move the right endpoint and once each time we move the left endpoint.
Although SlideWindow is called O(|F|) times, it either does not move the left endpoint
(hence doing a constant unit of work) or it moves the left endpoint to the left. Thus
overall it does O(|F|) + O(|F|)=O(|F|) units of work.

Correctness is given by the following theorem.

Theorem 6. If there is some set in A with variance not greater than c then SmallVar
(Algorithm 5) will find one such set.

Lemma 8 (The Expanding Window). If there exists a witness Z with var(Z) ≤ c
and and window defined by right endpoint a and left endpoint b then if d > b and
avg(Z) − F [d] ≤ √

c(|Z| + 1)/|Z| then there is a witness Z ′ with var(Z ′) ≤ c and
window defined by endpoints a and d.

Proof. If d = b + 1 then this is obvious by Lemma 4. If d > b + 1 then this is true by
induction.

��
Proof (of Theorem 6).

The algorithm’s window can be in 3 states.

State 1: The window satisfies condition 1*.
State 2: The window satisfies conditions 1 and 2.
State 3: The left endpoint didn’t move and the previous window satisfied conditions
1 and 2 (otherwise the current window satisfies condition 1* and is in state 1).

It is clear that if the algorithm is in state 1, sliding the window will only move it to states
1 or 2. If it is in state 2 then it will only go to states 2 or 3. Finally, if it is in state 3, it
can go to any other state.
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We already know that there exists a witness Z that is characterized by Lemma 6
– it has an associated window. By Lemma 7 we can restrict ourselves to only look
for witnesses whose right endpoints are close enough to the average of the rest of the
witness (i.e. satisfy condition 1). Without loss of generality we can assume that the
window is minimal in the sense that no witness has an associated window that is a
proper subset of this. By symmetry, we can also assume that the right endpoint of this
window is not less than avg(B(n)). Thus by sliding the algorithm’s window over to the
left, at some point the right endpoint r of the algorithm window will also be the right
endpoint of the minimal witness.

When this happens, by Theorem 5, the target window, Wr, contains the window
of the minimal witness. When the algorithm window is in states 2 or 3 and has right
endpoint r, it will contain the target window and therefore the window of the minimal
witness. Since r is also the right endpoint of the window of the minimal witness, the
algorithm window with right endpoint r can not satisfy condition 1* and so it will not
be in state 1. Thus it is sufficient to prove two things.

(i) If the algorithm is in states 2 or 3 and a witness’s window is contained within the
algorithm’s current window and both windows have the same right endpoint, then
the algorithm will find this out.

(ii) If the window of a witness is inside the algorithm’s window and the algorithm’s
window is in state 1, then when we slide the window it will still contain the window
of a witness.

We prove property (ii) first. If the window satisfies condition 1* and a witness has
its window inside the algorithm’s window, then we test if var(Tr,�) ≤ c. If the variance
is greater than c then we claim there is a witness Z whose window is inside of this
window, but that the window of the witness has a right endpoint different from r. If
there was a witness whose right endpoint was r then by condition 1*, F [r] is far away
from avgZ � {F [r]}, and by Lemma 7 Z � {F [r]} is also a witness. Furthermore,
the right endpoint of this witness’s window will still be larger than avg(B(n)) by the
minimality assumption. At this point the algorithm would slide the window over and
the window of Z would still be contained in the algorithm’s window.

Property (i) follows by induction. The inductive hypothesis will also maintain the
fact that if the algorithm window is in state 3 then if the window of a witness is inside
the algorithm’s window, then we can extend the left boundary of the witness’s window
to the left endpoint of the algorithm’s window and so create a set with variance not
greater than c.

The base case of the induction is the beginning of the algorithm. The first window
must be either in state 1 or 2. If it is in state 1 then property (i) is vacuously true for the
first algorithm window. If it is in state 2, let r be the right endpoint. ExpandWindow will
initially start with the with right and left endpoints r and r and will check if we have a
witness whose window has right endpoint r every time it moves the left endpoint. Thus
we will know if a witness’s window is inside the algorithm window and shares a right
endpoint with it.

Let g(r) be the largest integer such that

F [r] −F [g(r)] ≤
√

ck/(k − 1)
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where k = |Tr,g(r)|. Note that g(r) = � if condition 1* holds and g(r) ≤ � for states 2
and 3. We will left r1, �1 be the boundaries of the previous algorithm window and r2, �2

be the boundaries of the current window. As we can treat any occurrence of state 1 as
the initial state, the inductive step has five cases.

Case (I). The current window is in state 2 and the previous window is in state 1. Since
the algorithm explicitly checks for the variance of Tr2,�1 , . . . Tr2,�2 , we must show that
we do not miss anything by not checking the variance of Tr2,r2 , . . . , Tr2,�1−1. Since
�1 = g(r1) ≤ g(r2) it is sufficient to show that we do not need to check the variance of
Tr2,r2 , . . . , Tr2,g(r2)−1. Suppose there is a witness Z whose window has right endpoint
r and left endpoint L between r2 and g(r2) − 1. Because the witnesses must satisfy
condition 1, the distance between avgZ and F [g(r2)] is not greater than the distance
between F [r] and F [g(r2)]. Since |Z| ≤ |Tr2,g(r2)| and

(|Z| + 1)/|Z| ≥ (|Tr2,g(r2)| + 1)/|Tr2,g(r2)|
the g(r2) and Z satisfy the conditions of the Expanding Window Lemma. So Tr2,g(r2)

would also be a witness and would be explicitly checked by the algorithm.

Case (II). Both the current window and the previous window are in state 2. Once again
we must show that we do not miss anything by not checking the variance of the sets
Tr2,r2 , . . . , Tr2,�1−1. Suppose there is a witness Z whose window has right endpoint r
and left endpoint L between r2 and �1−1. If L ≤ g(r2) then we use the same arguments
as in Case (I). Otherwise L > g(r2) ≥ g(r1) and so Tr1,L must satisfy Condition 1.
But if Tr2,L were a witness then by Lemma 4 so is Tr1,L and this would have been
discovered by the inductive hypothesis.

Case (III). The current window is in state 2 and the previous window is in state 3. Again
we show that we do not miss anything by not checking the variance of Tr2,r2 , . . . ,
Tr2,�1−1. Suppose there is a witness Z whose window has right endpoint r and left
endpoint L between r2 and �1−1. Then the window of the witness is bounded by r1, �1

and so by the inductive hypothesis we can extend its left endpoint and so Tr2,L will
have var ≤ c. This set will then be checked by the algorithm.

In the last two cases, the current state is 3. We must show that any witness whose
window fits inside the algorithm’s current window can have its left endpoint extended
to the algorithm’s window’s left endpoint. From this it follows that if a witness has
right endpoint equal to r2, then the variance of Tr2,�2 is ≤ c and this is checked by the
algorithm. If �2 ≤ g(r2) then we should actually be in state 3. Therefore �2 > g(r2).

Case (IV). The current window is in state 3 and the previous window is in state 2.
In this case �1 = �2 and Tr1,�2 satisfies both conditions 1 and 2 but Tr2,�2 does not.
Since the fewer the elements in the window, the larger 2

√
ck/(k − 1) is, condition 2

is automatically satisfied. Hence condition 1 must be false. Thus if there is a witness
whose window has endpoints R, L where r2 ≤ R ≤ L < �2 and if avg(TR,L) ≥ F [�2]
then

| avg(TR,L) −F [�2]| ≤
√

ck/(k − 1)

where k − 1 = |Tr1,�2 |. Since k∗ = |TR,L| < |Tr1,�2 |, we have | avg(TR,L)−F [�2]| ≤√
c(1 + |TR,L|)/|TR,L| and we can use the Expanding Window Lemma. If, on the other
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hand avg(TR,L) < F [�2] then F [�2] is closer to avg(TR,L) than F [R] is and because of
our restriction on witnesses we can again use the Expanding Window Lemma to expand
the left endpoint from L to �2.

Case (V). Both the current window and the previous window are in state 3. This follows
trivially from the inductive hypothesis since r1 ≤ r2 and �1 = �2 and so the current
algorithm window is contained in the previous algorithm window.

��
3.3 Variance in Higher Dimensions

The definitions of average and variance easily extend to multi-dimensional spaces. For
a d-dimensional vector space (d > 1), let −→x = (x1, x2, . . . , xd).

avg(S) =
1
|S|

∑
−→x ∈S

−→x =
1
|S|

⎛
⎝∑

−→x ∈S

x1, . . . ,
∑
−→x ∈S

xd

⎞
⎠

and

var(S) =

∑
−→x ∈S

||−→x − avg(S)||2

|S|
where ||−→x −−→y || represents the Euclidean distance between −→x and −→y . From Lemmas 2
and 6 we see that witnesses for variance in one-dimension have a nice structure because
all the points can be ordered. This is no longer true in higher dimensions and so the algo-
rithms for variance fall apart. To see this, let us extend Algorithm 2 to two-dimensions:
given a node n, we keep adding to B(n) the element in Free(n) that is furthest from the
current average. Suppose B(n) consists of the point (0, 0) and Free(n) consists of the
points {(5, 0), (0, 5), (3.01, 4.01)}. The point (3.01, 4.01) is furthest away from (0, 0)
and is added to our candidate witness: {(0, 0), (3.01, 4.01)} and its variance is 6.28505.
After this the point (5, 0) is added (the variance increases to 7.79782) and finally (0, 5)
is added and the variance becomes 9.70129. However, the algorithm never considers
the set {(0, 0), (5, 0), (0, 5)}, which achieves the maximum variance 11.1111.

4 Heuristics

In practice, we do not always want to run a linear time (or greater) search algorithm
to find a witness. Although a linear time algorithm may allow us to prune away an
exponential number of sets, sometimes our negative witness satisfies the constraint. In
those cases we cannot prune away A(n) and our time is wasted.

There are two techniques to deal with this problem. It may be possible to amortize
the cost of the search by maintaining state that avoids redundant computation. For ex-
ample, when we showed how to mine average, we maintained the average of the witness
incrementally instead of recomputing it every time.

When amortization is not possible, we can use heuristics to tell us when to run the
search algorithm. For example, if we are mining with a constraint var(S) < c then we
want to prune sets with variance greater than or equal to c. We can use the observation
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that the higher the value of var(B(n)), the less likely that var(S) < c for some S ∈ A.
Thus we can set some threshold τ on var(B(n)), and if the variance is larger than the
threshold we search for witness. A similar approach works for the constraint var(S) >
c. A heuristic can also be based on some precomputed statistics.

When using such constraints we can also benefit from a heuristic which chooses the
order in which elements are added to B(n) to create children of B(n). Thus we can
try to arrange it so that we see many nodes n for which B(n) has high variance. One
such heuristic could be to order all items (in descending order) by their distance from
the overall average of I. This is very similar to the approach taken by the convertible
algorithms [18].

We should note that in most cases amortization is possible by avoiding redundant
computation. For example, suppose we have the constraint var(S) > c and that we are
currently examining a node n. We run Algorithm 2 but find a set with variance > c.
We cannot prune the subtree rooted at n but we can amortize the cost of the search. Let
a1, a2, . . . , ak be the elements that were added to B(n) by the algorithm in that order.
Because we cannot prune, we will eventually have to visit the nodes represented by the
sets B(n) ⊕ {a1}, B(n) ⊕ {a1, a2}, B(n) ⊕ {a1, a2, a3}, etc, in order to traverse the
subtrees rooted at those nodes.

If we run the algorithm at those nodes we will get the same witness as when we
ran it at n. Thus at those nodes we can choose not to run the algorithm. Since we visit
these nodes anyway, the amortized cost of the search is at most a constant per node plus
the cost of maintaining this information. By doing a depth-first traversal of nodes, we
can arrange it so that the next k nodes that the algorithm traverses are these k nodes
for which we already know the result of the witness search. In this case, maintaining
extra state is constant per node. Otherwise we just need to maintain two numbers - the
smallest ai that is at least avg(B(n)) and the largest aj that is less than avg(B(n)).
Then whenever we come to a node of the form B(n)⊕J (where J ⊆ {a1, a2, . . . , ak})
we do not have to run the algorithm again since the same witness is also valid.

Similarly, if we had the constraint var(S) ≤ c, we run Algorithm 5 on a node n only
to discover a set with variance ≤ c. Again we cannot prune the subtree rooted an n.
We let a1, . . . , ak be the consecutive sequence of points that define the window of the
witness we have found. Clearly this would also be a witness when we examine a node
represented by B(n) ⊕ J (where J ⊆ {a1, . . . , ak}). We still have to traverse to these
nodes to examine their subtrees, however we do not need to run the algorithm again.
To maintain this state we need just two numbers – the left and right endpoints of the
window of this witness.

5 Related Work

Agrawal et al. first introduced the problem of mining frequent itemsets as a first step
in mining association rules [1]. They also considered item constraints such as an item
must or must not be contained in an association rule. Agrawal and Srikant introduced
the Apriori algorithm and some variations of it [3,2]. Srikant et al. generalized this min-
ing problem to item constraints over taxonomies [20]. Other types of constraints were
introduced later by Ng et al. [15,14]. These papers introduced the concepts of antimono-
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tone and succinct constraints and presented methods for using them to prune the search
space. These classes of constraints were also studied in the case of 2-variable constraints
[12] and along with monotone constraints were further generalized and studied by Pei et
al. [18,16]. Boulicant and Jeudy presented algorithms for mining frequent itemsets with
both antimonotone and non-antimonotone constraints [6,7]. However they assume that
the minimal itemsets satisfying the monotone constraint are easy to compute, that the
minimum size of such itemsets is one, and that there is no gap in the sizes of itemsets
that satisfy all the constraints - assumptions that frequently do not hold. This problem
was also given a theoretical treatment by Gunopoulos et al. [10]. DualMiner is the first
algorithm that simultaneously uses both monotone and antimonotone constraints for
pruning the search space [8]. Some recent papers study the problem in the context of
multi-attribute data of high dimensionality [19] or take another approach to the prob-
lem, such as not pushing the constraints deeply into the mining process, but enforcing
the constraints in a final phase [11]. Another approach is a pre-processing algorithm
called ExAnte which reduces the search space and the size of the transaction database
[5]. This technique has also been pushed deeper into the mining process [4]. Other pa-
pers present specializations of previous algorithms, based on FP-trees [13] or based on
projected databases [17].
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