

Lecture Notes in Artificial Intelligence 3848
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Jean-François Boulicaut Luc De Raedt
Heikki Mannila (Eds.)

Constraint-Based
Mining and
Inductive Databases

European Workshop on Inductive Databases
and Constraint Based Mining
Hinterzarten, Germany, March 11-13, 2004
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Jean-François Boulicaut
INSA Lyon, LIRIS CNRS UMR 5205
69621 Villeurbanne, France
E-mail: Jean-Francois.Boulicaut@insa-lyon.fr

Luc De Raedt
Albert-Ludwigs-University, Institute for Computer Science
Georges-Köhler-Allee 79, 79110 Freiburg, Germany
E-mail: deraedt@informatik.uni-freiburg.de

Heikki Mannila
HIIT Basic Research Unit, University of Helsinki
and Helsinki University of Technology
P.O. Box 68, 00014 Helsinki, Finland
E-mail: Heikki.Mannila@cs.helsinki.fi

Library of Congress Control Number: 2005938512

CR Subject Classification (1998): I.2, H.2.8, H.2-3, D.3.3, F.1

ISSN 0302-9743
ISBN-10 3-540-31331-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31331-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11615576 06/3142 5 4 3 2 1 0

Preface

The interconnected ideas of inductive databases and constraint-based mining
are appealing and have the potential to radically change the theory and practice
of data mining and knowledge discovery. Today, knowledge discovery is a very
time-consuming and ad-hoc process, in which the analyst has to craft together
a solution in a rather procedural manner. The ultimate goal of the inductive
database framework is to develop an inductive query language, which would
support the overall knowledge discovery process. Inductive queries specify con-
straints over patterns and models in a declarative way. Within this framework,
the user then poses queries, which an inductive database management system
has to answer, and knowledge discovery becomes an interactive querying process.

This book reports on the results of the European IST project cInQ (con-
sortium on knowledge discovery by Inductive Queries) and its final workshop
entitled “Inductive Databases and Constraint-Based Mining” organized in the
Black Forest (Hinterzarten, Germany, March 11-14, 2004). The cInQ consor-
tium consisted of INSA Lyon (France, coordinator: Jean-François Boulicaut),
Università degli Studi di Torino (Italy, Rosa Meo and Marco Botta), the Politec-
nico di Milano (Italy, Pier-Luca Lanzi and Stefano Ceri), the Albert-Ludwigs-
Universitaet Freiburg (Germany, Luc De Raedt), the Nokia Research Center in
Helsinki (Finland, Mika Klemettinen and Heikki Mannila), and the Jozef Stefan
Institute (Slovenia, Sašo Džeroski).

The workshop was attended by about 50 researchers, who presented their
latest results in inductive querying and constraint-based data mining and also
identified future directions. These results are presented in this book and provide
a state-of-the-art overview of this newly emerging field lying at the intersection
of data mining and database research. Even though we are still far away from
inductive database management systems, a lot of progress has been made over
the past few years, especially in constraint-based mining for local patterns (e.g.,
sets, sequential patterns, trees, graphs and rules), and in identifying some new
primitives for data mining. Nevertheless, various important questions still re-
main open, such as the integration of query languages with databases and the
fundamentals for inductive querying on global patterns.

The papers in this book can be categorized as follows (they are ordered in
the book according to the name of the first author):

Keynote speakers: The chapter by Roberto J. Bayardo is an interesting posi-
tion paper on various issues for constraint-based pattern mining. Johannes
Gehrke and his co-authors provide a nice theoretical framework for optimiz-
ing constraint-based mining in difficult cases, typically when monotonicity
properties are missing. Finally, Mohammed J. Zaki and his co-authors give
a pragmatic view on the future of data mining software.
– The Hows, Whys, and Whens of Constraints in Itemset and Rule Dis-

covery by Roberto J. Bayardo

VI Preface

– How to Quickly Find a Witness by Daniel Kifer, Johannes Gehrke,
Cristian Bucila, and Walker White

– Generic Pattern Mining via Data Mining Template Library by Mo-
hammed J. Zaki, Nilanjana De, Feng Gao, Paolo Palmerini, Nagender
Parimi, Jeevan Pathuri, Benjarath Phoophakdee, and Joe Urban

Foundations: Several chapters address conceptual issues related to the induc-
tive database framework, e.g., querying primitives, condensed representa-
tions, multiple uses of frequent sets, and the optimization of sequences of
inductive queries:
– A Relational Query Primitive for Constraint-Based Pattern Mining by

Francesco Bonchi, Fosca Giannotti and Dino Pedreschi.
– A Survey on Condensed Representations for Frequent Sets by Toon

Calders, Christophe Rigotti and Jean-François Boulicaut
– Boolean Formulas and Frequent Sets by Jouni K. Seppänen and Heikki

Mannila
– Computation of Mining Queries: An Algebraic Approach by Cheikh

Talibouya Diop, Arnaud Giacometti, Dominique Laurent, and Nicolas
Spyratos

Optimizing inductive queries on local patterns: Several chapters concern
local pattern discovery by means of constraint-based mining techniques. A
variety of pattern domains are considered such as trees, graphs, subgroups,
inclusion dependencies, and association rules:
– To See the Wood for the Trees: Mining Frequent Tree Patterns by Björn

Bringmann
– Mining Constrained Graphs: The Case of Workflow Systems by Gi-

anluigi Greco, Antonella Guzzo, Giuseppe Manco, Luigi Pontieri, and
Domenico Saccà

– Relevancy in Constraint-Based Subgroup Discovery by Nada Lavrač,
and Dragan Gamberger

– Adaptive Strategies for Mining the Positive Border of Interesting Pat-
terns: Application to Inclusion Dependencies in Databases by Fabien De
Marchi, Frédéric Flouvat, and Jean-Marc Petit

– A Novel Incremental Approach to Association Rules Mining in Inductive
Databases by Rosa Meo, Marco Botta, Roberto Esposito, and Arianna
Gallo

Optimizing inductive queries on global patterns: Less research has been
devoted to constraint-based mining of global patterns or models like clusters
or classifiers. Important results in this direction are presented:
– Inductive Queries on Polynomial Equations by Sašo Džeroski, Ljupčo

Todorovski, and Peter Ljubič
– CrossMine: Efficient Classification Across Multiple Database Relations

by Xiaoxin Yin, Jiawei Han, Jiong Yang, and Philip S. Yu
– Inductive Querying for Discovering Subgroups and Clusters by Albrecht

Zimmermann and Luc De Raedt

Preface VII

Applications: It is of course important to look at concrete applications of
inductive querying techniques. Three chapters report on this:
– Remarks on the Industrial Application of Inductive Database Technolo-

gies by Kimmo Hätönen, Mika Klemettinen, and Markus Miettinen
– Employing Inductive Databases in Concrete Applications by Rosa Meo,

Pier Luca Lanzi, Maristella Matera, Danilo Careggio, and Roberto Es-
posito

– Contribution to Gene Expression Data Analysis by Means of Set Pattern
Mining by Ruggero G. Pensa, Jérémy Besson, Céline Robardet, and
Jean-François Boulicaut

The editors would like to thank the EU (FET arm of the IST programme) for
supporting the cInQ project as well as the Hinterzarten workshop, the partners
in the cInQ consortium, and the participants in the workshop, especially our
keynote speakers: Roberto J. Bayardo, Johannes Gehrke, and Mohammed J.
Zaki. We hope that the readers will enjoy reading this book as much as we
enjoyed the process of producing it.

September 2005 Jean-François Boulicaut
Luc De Raedt

Heikki Mannila

Table of Contents

The Hows, Whys, and Whens of Constraints in Itemset and Rule
Discovery

Roberto J. Bayardo . 1

A Relational Query Primitive for Constraint-Based Pattern Mining
Francesco Bonchi, Fosca Giannotti, Dino Pedreschi 14

To See the Wood for the Trees: Mining Frequent Tree Patterns
Björn Bringmann . 38

A Survey on Condensed Representations for Frequent Sets
Toon Calders, Christophe Rigotti, Jean-François Boulicaut 64

Adaptive Strategies for Mining the Positive Border of Interesting
Patterns: Application to Inclusion Dependencies in Databases

Fabien De Marchi, Frédéric Flouvat, Jean-Marc Petit 81

Computation of Mining Queries: An Algebraic Approach
Cheikh Talibouya Diop, Arnaud Giacometti, Dominique Laurent,
Nicolas Spyratos . 102

Inductive Queries on Polynomial Equations
Sašo Džeroski, Ljupčo Todorovski, Peter Ljubič 127

Mining Constrained Graphs: The Case of Workflow Systems
Gianluigi Greco, Antonella Guzzo, Giuseppe Manco, Luigi Pontieri,
Domenico Saccà . 155

CrossMine: Efficient Classification Across Multiple Database Relations
Xiaoxin Yin, Jiawei Han, Jiong Yang, Philip S. Yu 172

Remarks on the Industrial Application of Inductive Database
Technologies

Kimmo Hätönen, Mika Klemettinen, Markus Miettinen 196

How to Quickly Find a Witness
Daniel Kifer, Johannes Gehrke, Cristian Bucila, Walker White 216

Relevancy in Constraint-Based Subgroup Discovery
Nada Lavrač, Dragan Gamberger . 243

X Table of Contents

A Novel Incremental Approach to Association Rules Mining in
Inductive Databases

Rosa Meo, Marco Botta, Roberto Esposito, Arianna Gallo 267

Employing Inductive Databases in Concrete Applications
Rosa Meo, Pier Luca Lanzi, Maristella Matera, Danilo Careggio,
Roberto Esposito . 295

Contribution to Gene Expression Data Analysis by Means of Set
Pattern Mining

Ruggero G. Pensa, Jérémy Besson, Céline Robardet,
Jean-François Boulicaut . 328

Boolean Formulas and Frequent Sets
Jouni K. Seppänen, Heikki Mannila . 348

Generic Pattern Mining Via Data Mining Template Library
Mohammed J. Zaki, Nilanjana De, Feng Gao, Paolo Palmerini,
Nagender Parimi, Jeevan Pathuri, Benjarath Phoophakdee,
Joe Urban . 362

Inductive Querying for Discovering Subgroups and Clusters
Albrecht Zimmermann, Luc De Raedt . 380

Author Index . 401

The Hows, Whys, and Whens of Constraints

in Itemset and Rule Discovery

Roberto J. Bayardo

IBM Almaden Research Center
bayardo@alum.mit.edu

http://www.almaden.ibm.com/cs/people/bayardo/

Abstract. Many researchers in our community (this author included)
regularly emphasize the role constraints play in improving performance of
data-mining algorithms. This emphasis has led to remarkable progress
– current algorithms allow an incredibly rich and varied set of hidden
patterns to be efficiently elicited from massive datasets, even under the
burden of NP-hard problem definitions and disk-resident or distributed
data. But this progress has come at a cost. In our single-minded drive
towards maximum performance, we have often neglected and in fact hin-
dered the important role of discovery in the knowledge discovery and
data-mining (KDD) process. In this paper, I propose various strategies
for applying constraints within algorithms for itemset and rule mining
in order to escape this pitfall1.

1 Introduction

Constraint-based pattern mining is the process of identifying all patterns in a
given dataset that satisfy the specified constraints. There are many types of
patterns we may wish to explore, depending on the data or its expected use. To
name only a few, we have itemsets, sequences, episodes, substrings, rules, trees,
cliques, and so on. The important aspect of constraint-based mining is not so
much the specific patterns being identified, but the fact that we would like to
identify all of them subject to the given constraints. This task of constraint-based
mining is in contrast to heuristic pattern mining which attempts only to identify
patterns which are likely (but not guaranteed) to be good according to certain
criteria. A third task which I will touch upon only briefly, optimization-based
pattern mining, attempts to identify only those patterns that are guaranteed to
be (among the k-) best according to certain metrics.

While many may assign constraint-based mining a high face value solely from
plethora of research on the topic, it is illustrative to take a step back and contem-
plate why it is a task worthy of our interest. Indeed, long before the “association
rule” was a household name, heuristic pattern miners were proving extremely

1 My use of the informal “I” rather than the typical “we” is to emphasize this paper
is a personal position statement, along with a view of existing research in light of
my position.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 R.J. Bayardo

useful in machine learning circles. In fact, heuristic rule miners, which include
decision tree (“divide and conquer”) and covering (“separate and conquer”) al-
gorithms, remain essential components in the analyst’s toolbox. I witnessed a
growing interest in constraint-based mining once heuristic machine learning ap-
proaches gained reasonably widespread use in practice. The white-box nature of
decision tree and other rule-based models were being used directly for end-user
understanding of the data, even though they were not specifically intended for
that purpose2. Use of these rule-based models for understanding led to questions
such as the following:

– Do these rules capture and convey the “essence” of the relationship(s) in my
data?

– Are there better rules (and who gets to define better)?

Note that each of these questions is open to some amount of subjective in-
terpretation. But this is the point: the analyst is typically involved in knowledge
discovery in which subjective and difficult to formalize notions of “goodness”
are guiding the process, not simply data mining in which an algorithm follows a
deterministic procedure to extract patterns that may or (more often) may not
be of interest. Provided that constraints are used sensibly (and what “sensibly”
means is the subject of this paper), constraint-based mining fosters discovery by
providing the analyst with a broad result set capable of concretely answering a
far wider set of questions than one that is heuristically determined.

A theme of this paper is that there are different phases of the knowledge
discovery process in which we can exploit constraints, and the specific use of
constraints should be dependent on when (in what phase) we are using them.
During the mining phase, I argue that constraints should be discovery preserv-
ing. That is, they should filter out only those results that are highly unlikely to
ever be of interest to the analyst. This admittedly informal notion of preserving
discovery is in stark contrast to other proposals that envision query languages
for constraint-based mining in which every imaginable constraint is enforced
directly by the mining phase. The problem with this alternate view is simply
that the analyst rarely knows the specific results of interest a priori (no pun
intended). Constraints should therefore be used during the mining phase pri-
marily for performance tractability. Discovering the precise results of interest is
best left for post-processing of the mining results through interactive interfaces
involving visualization, browsing, and ranking.

Recall that optimization-based pattern discovery forms an interesting middle-
ground between the heuristic and constraint-based approaches: unlike heuristic
approaches, it provides guarantees on result quality. Unlike constraint-based
approaches, it provides these guarantees without requiring the extraction of all
patterns matching the constraints, the number of which can be enormous. While
these are desirable attributes, once again we are confronted with the question of
what makes one rule better than the other. Optimization-based approaches allow
2 It is therefore ironic that association rule miners are now commonly used in building

general classification models, even though originally this was not their intended use!

The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery 3

no ambiguity on the part of the analyst since the ranking function is part of the
input, if not hard-coded into the algorithm itself. Should an optimization-based
approach be required (for example it is possible the pattern space is simply too
large for constraints alone), I argue it is desirable for the approach to provide
some ability to select and adjust the ranking criteria post-mining [6]. It is tempt-
ing to view an optimization criteria as itself just another constraint to be enforced
by a constraint-based miner. Viewed as such, an optimization criteria is actually
a constraint on the set of patterns rather than a constraint on the properties of
the individual patterns. I believe this distinction is important enough to justify
treating optimization-based approaches as separate from constraint-based ones.

As researchers, once we are convinced why something is useful, we become
obsessed with how we can achieve it. And with constraint-based mining, the
how part is particularly interesting due to huge computational challenges. Many
constraint-based mining tasks can be proven NP-hard through reductions from
problems such as constraint satisfaction, hitting set, prime implicant, and so on.
Worse, the datasets involved often attain volumes beyond which standard data
management strategies can efficiently cope. Then there is the issue of ensuring
the results of our algorithms have statistical merit. This combination of search,
data management, and statistical issues has provided ample research fodder for
our community.

I cannot hope to even begin to address all interesting aspects of the hows
in constraint-based mining in this short paper, but I will discuss some (often
neglected) issues that I feel fit with in the context of discovery preservation.
While much of what remains to be discussed applies to pattern mining in general,
for concreteness sake, I focus in particular on itemsets and association rules. An
itemset is simply a set of values appearing in a given dataset. An association rule
is itself an itemset along with additional information specifying the division of
items into antecedent and consequent subsets. The seminal work on association
rule mining produced algorithms employing two distinct phases: (1) mine the
frequent itemsets from the data, (2) output the rules of interest from them.
While this two-phase approach was for the most part an operational detail of
the mining algorithm, researchers (again, this author included) have been eager
to build on only the first phase as if itemsets themselves are the output desired
by the end user. I am quick to agree that itemsets are indeed sometimes the
artifact of interest in data-mining. But that said, I believe, by and large, that
the desired outcome of mining is more often rules since they express easy to
interpret relationships between dataset elements that itemsets alone do not.

Luckily, many itemset constraints are themselves useful rule constraints, thus
work in constraint-based itemset mining often has direct applications in
constraint-based rule mining. There are, however, many constraints that are spe-
cific to rules such as bounds on confidence, lift, and other measures of predictive
accuracy, and they have gone virtually ignored outside of result post-processing.
To be fair, another reason rule-specific constraints have been ignored is that they
do not fall into any of the convenient constraint classes that have been found
to be easily enforceable during mining. But the fact is that many of these rule

4 R.J. Bayardo

constraints can be broken down into constituents that do fall into these classes. I
will overview previous work in which properties of these constituents have been
exploited for effective enforcement during mining given appropriate structuring
of the search. That said, coming back to my original thesis, we typically would
not want to enforce arbitrary rule constraints during mining to avoid hindering
discovery. I therefore provide examples of rule constraints that can be regarded
as discovery preserving, along with a framework for their enforcement during
mining.

2 Constraints in the Discovery Process

It is well-known that knowledge discovery is a multi-phase and iterative process
[11]. The data preparation and data-mining stages are often the most costly
in terms of compute overhead. Thus, if possible, iteration should be restricted
to subsequent phases (such as post-processing) in which it can be performed
quickly. In the context of pattern mining, the role of the data-mining algorithm
should be to transform the (preprocessed) dataset into a representation that
allows for interactive browsing, ranking, and querying. “Interactive” means that
the effects of changing a parameter, for example via a graphical control, are
almost instantaneous. The following figure depicts this view.

Fig. 1. Idealized View of the Mining Process

In some cases the input dataset may be sufficiently compact and the mining
sufficiently trivial to allow the data-mining algorithm to be reapplied in real time
to support interactivity. Mining caches can be used to further improve response
[15,17], though I have doubts that cache hit rates will be significant enough for
this to be of much use in practice.

More often, an intermediate representation is required to satisfy interactive
response requirements. In the case of constraint-based rule and itemset mining,
this intermediate representation is typically some collection of itemsets with their
associated support values. For some datasets it might be possible to precompute
the support of all possible itemsets and store them in an indexed database.
However, most non-trivial datasets have enough items to make this impractical,
as the number of itemsets increases exponentially with the number of items.
A solution is to apply constraints to reduce the size of the mining result and
the time required to obtain it, preferably without excluding patterns that are

The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery 5

of interest to the analyst. I argue that a good mining engine constraint has the
following properties:

1. It is tweakable: post-mining, if the constraint is parameterized, the param-
eter should be adjustable without requiring expensive processing such as
scanning or re-mining the original dataset.

2. It provides efficiency: applying the constraint should make the algorithm
run significantly more efficiently. At this phase we are more concerned with
using constraints for achieving tractability, and not necessarily in speeding
up mining by a small constant.

3. It preserves discovery: the constraint, if it limits the sets of questions the
analyst may efficiently pose during post-processing, should eliminate only
those questions that are unlikely to be of value.

Properties 1 and 2 allow for the system itself to specify constraints automati-
cally to ensure tractability of the mining run. The user is then able to efficiently
adjust the constraints after the fact if necessary.

Property 3 implies that the system has a low probability of excluding pat-
terns that may have otherwise been found interesting by the user. Property 3
is clearly the most subjective. Indeed, any pattern elimination can probably be
rationalized as eliminating something useful for some purpose. However there
are some constraints that do satisfy these properties in most settings. One ex-
ample is a very low setting of minimum support. (1) Minimum support can be
easily adjusted upwards post-mining without going back to the original dataset.
One only needs to filter (or ignore) those itemsets whose supports falls below
the modified limit. (2) Minimum support has been proven to provide significant
boosts in efficiency during mining, even at relatively low settings. (3) Minimum
support, provided it can be set low enough, preserves discovery since results with
extremely low support are unlikely to be statistically valid.

Is minimum support enough? I feel it is safe to say that for “market-basket”
and other sparse datasets, the answer is wholeheartedly yes. In fact, minimum
support as exploited by the earliest of association rule miners (such as Apriori)
is often entirely sufficient. In figure 2, I reprint with permission two graphs from
a recent workshop on frequent itemset mining implementations (FIMI-03 [12]) in
which participants submitted implementations for apples-to-apples comparison
on a variety of datasets. For the sparse datasets, Borgelt’s Apriori implementa-
tion outperformed most of the newer algorithms. Only for the very lowest support
settings on the bmspos dataset was it outperformed by any significant amount.
The point is that for any significantly complex mining task, the transformation
and mining phases will be applied offline. Whether an algorithm requires one
versus two hours to complete is not a major concern if iteration is relegated to
post-processing.

Dense datasets tell a different story. Most tabular datasets with more than
a handful of columns are sufficiently dense to render minimum support pruning
woefully inadequate. In the FIMI-03 experiments, minimum support was the
only constraint considered, and the minimum support levels attainable by any

6 R.J. Bayardo

Fig. 2. Performance of the FIMI-03 implementations on sparse datasets

algorithm on the densest datasets were nowhere near what would be necessary
to find any reasonably predictive rules [6]. We must therefore ask, what other
constraints might we employ? Another good constraint is that the mining arti-
facts, whether itemsets or rules, be in a sense non-redundant. In the rule mining
context, I noted in [8] that when an itemset has support equivalent to that of
one of its subsets, it is redundant in the sense that it leads only to rules that are
equivalent to existing rules in predictive accuracy and the population covered. It
is a simple matter to prune such itemsets in order to avoid excessive counting due
to equivalent supports. This idea is the basis of what is now commonly known as
freeness and closure [13,19,25] in the context of itemset mining, and also what
I called “antecedent maximality” in the context of rule mining [6]. Closure, while

The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery 7

not a parameterized property, is in a sense tweakable since we can easily regen-
erate non-closed itemsets (non-antecedent-maximal rules) from those in the set
without dataset access. While it doesn’t always help significantly (e.g. for sparse
datasets), it certainly doesn’t hurt performance. And finally, it doesn’t hinder
discovery whatsoever since it removes only redundant information which can be
efficiently derived if necessary.

Unfortunately, I feel the benefits of closure are often overstated. It’s no sur-
prise that the Irvine “chess” and “connect-4” datasets are the most common
benchmarks for demonstrating efficiency of closure-exploiting techniques. These
datasets are relatively small and completely noise free. In the real world, data has
noise. Noise quickly removes equivalence relations between itemsets, rendering
closure-based pruning ineffective. Again, I refer to the FIMI-03 evaluation, where
the algorithms employing closure remained ineffective on noisy dense datasets
such as pumsb, except under an unreasonably high minimum support constraint.

As I further noted in [8], it is therefore worth exploiting “near equivalence”,
which is when an itemset has a support value that is within a very small amount
of one of its subsets. This idea has since been better formalized as the principle
of δ-free sets [13]. Pruning nearly equivalent itemsets restricts the questions
we can ask from the result, but only slightly so. Further, it allows deriving of
reasonably tight bounds on the support of any omitted itemset. While this makes
the method very powerful in the itemset mining domain, these bounds cannot
be straightforwardly used to intuitively quantify the effects on what rules are
removed. But it is possible to perform some reasoning about rules using delta
freeness, as demonstrated by Cremilleux and Boulicaut [14] who apply properties
of delta free sets to characterizing classification rule conflicts. In the next section,
I present what I believe to be a better constraint when rules instead of itemsets
are the target pattern.

3 Discovery Preserving Rule-Specific Constraints

Rule-specific constraints are those that exploit properties specific to what distin-
guishes rules from itemsets; namely, the separation of the itemset into antecedent
(A) and consequent (C) subsets (denoted A → C). The most well known (and
most often derided!) rule constraint is minimum confidence. Confidence, in the
context of association rule mining, expresses the conditional probability with
which the consequent holds given the antecedent:

conf(A→ C) =
sup(A ∪C)

sup(A)

Confidence itself is not a bad metric. Along with knowledge of the background
consequent probability (frequency), it conveys as much information as lift and
related measures of predictive accuracy such as conviction [10]. It is my opinion
that confidence, being a probability, is easier to interpret than these alterna-
tive measures. The problem with confidence stems from attempts at imposing
a minimum bound in cases where the consequent of rules is allowed to vary,

8 R.J. Bayardo

as is the case in the traditional association rule mining problem [1]. A single
fixed minimum on confidence will exclude highly predictive rules if their conse-
quents have a very low frequency, and will allow completely non-predictive rules
if their consequents have high a high frequency. But for rules which share the
same consequent, the fact is that confidence, lift (also known as interest) and
conviction rank rules identically [7]. A minimum confidence constraint in the
case of consequent-constrained rule mining is actually a very useful constraint,
as it can be used to concisely exclude only non-predictive rules3. I believe that
excluding non-predictive rules is discovery preserving in most contexts, provided
“non-predictive” is quantified in a sufficiently tight manner.

A constraint that excludes non-predictive results is a good start, but the fact
is we can do even better without unduly hindering discovery. Many rules are
highly predictive, but when considered in the appropriate context, are actually
of little interest if the goal is indeed to understand predictive relationships. For
example, we might find a highly predictive rule {i1, i2} → {ic}. But what if the
rule {i1} → {ic} is even more predictive? The rule {i1, i2} → {ic} considered
in isolation of such subrules might lead to highly suboptimal decisions. The
point is that one cannot fully understand the predictive nature of a rule without
also considering the predictive behavior of all its proper subrules. (Formally, a
subrule of a rule A → C is any rule A′ → C such that A′ ⊆ A.) This idea extends
the notion that interpreting a rule from its confidence without considering its
consequent frequency is virtually meaningless.

So if we are to accept that the analyst is interested in discovering predictive
relationships, another interesting and discovery preserving constraint would be
to remove all rules containing subrules that are more (or equally) predictive.
(Note that this notion encompasses pruning with support equivalence, since it’s
easy to show a rule that improves upon the predictive accuracy of all its sub-
rules has no functional dependencies between disjoint subsets of its antecedent.)
When applying this constraint in practice, the effects are indeed dramatic, but
problems remain. While it is strictly more powerful than pruning with closure,
we are still plagued by “near equivalence” relationships between an itemset and
its subsets. These near equivalences result in numerous rule variations, each re-
flecting roughly the same relationships along with one or more “noise” items.
For example, we may again have that i strongly predicts , say, 1 ic with a confi-
dence value of 90%. But we may also find that there exist dozens of other rules
of the form {i1} ∪ I → {ic} with confidence greater than 90% but perhaps less
than 90.1%. Are these findings truly useful? I would argue in almost all cases
they are not. One way to exclude such effects of near-equivalence is through a
minimum positive bound on the predictive improvement a rule offers over all its
subrules. Formally, I define the improvement value of a rule as the minimum of
the differences between a rule’s confidence and its proper subrules:

3 A minimum confidence constraint also excludes negatively predictive rules, which
are often of substantial interest. This can be avoided by also allowing the mining of
rules that predict the negation of the desired consequent.

The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery 9

improvement(A→ C) = min
∀A′s.t.(A′⊂A)

{conf(A→ C)− conf(A′ → C)}

Note that alternate definitions of the improvement value are possible, for
example we could have defined improvement using ratios between confidence or
lift values instead of differences. I chose differences between confidences because
I feel it is easier to interpret.

Instead of simply requiring that improvement be positive, we can instead
require that the improvement value of any rule exceed a specified bound. For
example, a minimum improvement bound of .1 would exclude the noise rules
from the examples above. Experiments show that even such a very low minimum
improvement setting dramatically reduces the size of the result set and the time
required to compute it [7]. Much as delta-free sets allow tight bounds on the
support of any omitted itemset, a minimum improvement filtered rule set allows
for tight upper bounds on the predictive ability of any omitted rule.

4 Enforcing Rule Constraints During Mining

Rule constraints such as minimums on confidence, lift, conviction and improve-
ment are not exploitable through generic constraint-based itemset mining frame-
works [18] because they are not classifiable as monotone, anti-monotone, suc-
cinct, convertible, or by any other simple and easily exploitable property. How
then can we hope to exploit them during mining? Let us first consider the con-
fidence value which I now rewrite slightly:

conf(A→ C) =
sup(A ∪C)

sup(A ∪ C) + sum(A ∪ ¬c)

In the above expression, the notation c reflects a conceptual item that is con-
tained by any record that does not contain the consequent itemset. Such records
are deemed “negative examples” in the machine-learning context. Rewritten as
such, note that the expression is obviously monotone in sup(A ∪ C) and anti-
monotone in sup(A ∪ ¬c) . Given that confidence consists of monotone and
anti-monotone constituents, is it possible to compute a reasonably tight bound
on the confidence achievable during mining? The answer is yes. The key is to
explicitly keep track of all items that can be appended to an itemset to form a
descendent of the itemset in a tree-structured search space. In the description
of the Max-Miner algorithm [4], I referred to such a structure as an itemset
“group”, though a more mathematically precise term is perhaps a “subalgebra”
of the itemset lattice [9]. This concept has its roots in algorithms for circuit
optimization [22], though Webb [24] was first to formalize the concept within a
generic search framework, and also exploit it in rule mining tasks.

More formally, let’s assume the consequent itemset is fixed to C and we are
searching over all possible antecedent itemsets for rules meeting various con-
straints. A node in the search space is represented by a head itemset H repre-
senting the antecedent of the rule enumerated by the node, and another ordered
itemset T representing all items that can be appended to H to form descendents

10 R.J. Bayardo

of H in the search space. At each node in the search space, before expanding the
children of the node, we filter items from T that cannot possibly lead to rules
satisfying the constraints. In many cases, especially near the tree root, we may
not be able to filter out any items. After filtering T , we obtain a new set T ′

whose size dictates the number of children of the node. For each item i in T ′,
the child expansion policy creates a new node with head set H ∪{i} and tail set
{j|j ∈ T ′ ∧ j follows i in the item ordering}.

Note then as we descend in the tree, the itemset H always grows by exactly
one item with each level (hence its support is monotonically decreasing), and the
itemset H∪T either shrinks or stays the same (hence its support is monotonically
increasing).

A bound on the confidence of any rule derivable by the node and its descen-
dents can therefore be computed as follows:

conf bound(H → C, T) =
sup(H ∪ C)

sup(H ∪ C) + sum(H ∪ T ∪ ¬c)

Correctness of the bound computation follows directly from the monotonic-
ity and anti-monotonicity properties stated earlier. Conveniently, being able to
bound confidence allows us to also bound improvement of a rule: we simply com-
pute conf bound(H → C, T) − conf(H ′ → C) for the proper subrule H ′ → C
of H → C with the highest confidence.

This is a simple but illustrative example. In fact, we can break down the
improvement value itself into monotone and anti-monotone constituents to more
directly derive a complementary bound on the improvement attainable by any
of a node’s descendents. This example is considerably more involved, but the
essential concepts are the same. For the details I direct the reader to [7]. While
not immediately obvious, this particular bounding technique effectively exploits
near equivalences between antecedent subsets.

Constraint enforcement is a search space size issue, but in the data mining
literature, its presentation is often confusingly intertwined with the particular
data management and traversal strategies employed. The constraint enforcement
techniques such as those from above are generic, and can be applied irrespective
of breadth versus depth-first search, and irrespective of whether we use database
scans to compute supports compared to more esoteric dataset representations in-
volving database projections or projected FP-tree structures. Contrary to what I
sometimes find implied in the literature, using a depth-first search does not mag-
ically provide more pruning opportunities, though it may simplify and optimize
the gathering of necessary support information to be able to apply them.

5 Conclusions

In summary, I have attempted to make several (hopefully controversial!) points
regarding the hows, whys, and whens of constraints in itemset and rule discovery:

The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery 11

1. First and foremost, while the utility of constraints in knowledge discovery is
undeniable, they should be applied judiciously. In particular, apply during
mining only those constraints that are in a sense discovery preserving.

2. Apriori adequately solves the problem of mining itemsets and rules from
market-basket and other sparse datasets.

3. Itemset freeness/closure/equivalence is a powerful concept, but its effective-
ness in practice is limited. Consider exploiting constraints based on near-
equivalence instead, such as δ-freeness for itemsets and improvement thresh-
olds for rules.

4. A rule cannot be fully interpreted in isolation from its subrules. This gen-
eralizes the well-known fact that confidence in absence of the consequent
frequency is meaningless.

5. Itemset search methods should explicitly maintain the set of items that can
be appended to the enumerated itemset in order to form its descendents
in the search tree. Such explicit maintenance of lattice subalgebras allows
exploiting both monotone and anti-monotone function constituents for more
general and more powerful constraint enforcement.

6. Separating out issues of search space size from specific tree-traversal and
data-management strategies improves understanding of algorithm perfor-
mance, and increases the generality of constraint enforcement proposals.

7. Itemsets are not the only mining artifact of interest. Don’t ignore the impli-
cations of mining-enforced constraints on what questions can be asked about
the rules.

Now for the disclaimers. While I have stated each point as if it were maxim,
I do not deny there are certain situations where some may fail to apply. Also, I
do not claim to be the first to make them. Many similar points have been made
within the literature (see for example [16] and [21] which are related point 1),
and some I have picked up through osmosis from various talks and discussions.
It is refreshing that even while I am writing this draft, I continue to come across
new relevant work [3]. I must therefore apologize in advance for any references I
have inevitably missed. For each point, I hope to minimally have provided some
new perspectives.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets
of Items in Large Databases. In Proc. of the 1993 ACM-SIGMOD Conf. on Man-
agement of Data, 207–216, 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast Discov-
ery of Association Rules. In Advances in Knowledge Discovery and Data Mining,
AAAI Press, 307–328, 1996.

3. C. Antunes and A. L. Oliveira. Mining Patterns Using Relaxations of User De-
fined Constraints. In Proc. of the Workshop on Knowledge Discovery in Inductive
Databases, 2004.

4. R. J. Bayardo. Efficiently Mining Long Patterns from Databases. In Proc. of the
1998 ACM-SIGMOD Int’l Conf. on Management of Data, 85–93, 1998.

12 R.J. Bayardo

5. R. J. Bayardo, The many roles of constraints in data mining. (Letter from the
guest editor.) ACM SIGKDD Explorations 4(1), i–ii, June 2002.

6. R. J. Bayardo and R. Agrawal. Mining the most interesting rules. In Proc. of
the Fifth ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining,
145–154, 1999.

7. R. J. Bayardo, R. Agrawal, and G. Gunopulos. Constraint-based rule mining in
large, dense databases. In Proc. of the 15th Int’l Conf. on Data Engineering, 188–
197, 1999.

8. R. J. Bayardo. Brute-force mining of high confidence classification rules. In Proc.
of the Third International Conference on Knowledge Discovery and Data Mining,
123–126, 1997.

9. C. Bucila, J. Gehrke, D. Kifer, DualMiner: A Dual-Pruning Algorithm for Itemsets
with Constraints. In Proc. SIGKDD 2002.

10. S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and
Implication Rules for Market Basket Data. In Proc. of the 1997 ACM-SIGMOD
Conf. on Management of Data, 255–264, 1997.

11. R. J. Brachman and T. Anand. The Process Of Knowledge Discovery In Databases:
A Human-Centered Approach. In Advances In Knowledge Discovery And Data
Mining, eds. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
AAAI Press/The MIT Press, Menlo Park, CA., 37–57, 1996.

12. B. Goethals and M. J. Zaki. Advances in Frequent Itemset Mining Implementa-
tions: Introduction to FIMI-03. In Proc. of the ICDM 2003 Workshop on Frequent
Itemset Mining Implementations, 2003.

13. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by means of free-sets. In Proc. PKDD Int. Conf. Principles of Data Mining and
Knowledge Discovery, pages 75–85, 2000.

14. B. Cremilleux, J-F. Boulicaut. Simplest rules characterizing classes generated by
delta-free sets. In: Proceedings of the 22nd BCS SGAI International Conference
on Knowledge Based Systems and Applied Artificial Intelligence, Cambridge (UK),
33–46, 2002.

15. B. Jeudy and J.-F. Boulicaut. Using Condensed Representations for Interactive
Association Rule Mining. In Proc. of Principles of Data Mining and Knowledge
Discovery: 6th European Conference (PKDD 2002), 228–236, 2002.

16. J. Hipp and U. Gntzer. Is pushing constraints deeply into the mining algorithms
really what we want?: an alternative approach for association rule mining. ACM
SIGKDD Explorations 4(1), 50–55, June 2002.

17. B. Nag, P. M. Deshpande, and D. J. DeWitt. Using a knowledge cache for inter-
active discovery of association rules. In Proc. SIGKDD-1999, 244–253, 1999.

18. R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In Proc. SIGMOD-1998, 13–24,
1998.

19. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

20. R. Rymon. Search through systematic set enumeration. In Proc. of the Third Int’l
Conf. on Principles of Knowledge Representation and Reasoning, 539–550, 1992.

21. S. Sahar: Interestingness via What is Not Interesting. In Proc. of SIGKDD-1999:
332–336

22. J. R. Slagel, C.-L. Chang, and R. C. T. Lee. A New Algorithm for Generating
Prime Implicants. IEEE Trans. on Computers, C-19(4):304–310, 1970.

The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery 13

23. R. Srikant, Q. Vu, and R. Agrawal. Mining Association Rules with Item Con-
straints. In Proc. of the Third Int’l Conf. on Knowledge Discovery in Databases
and Data Mining, 67–73, 1997.

24. G. I. Webb. Opus: an efficient admissible algorithm for unordered search. Journal
of Artificial Intelligence Research 3, 431–465, 1995.

25. M. J. Zaki. Generating non-redundant association rules. In Proc. SIGKDD-2000,
pages 34–43, 2000.

A Relational Query Primitive for

Constraint-Based Pattern Mining

Francesco Bonchi1, Fosca Giannotti1, and Dino Pedreschi2

1 ISTI - CNR, Area della Ricerca di Pisa, Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
2 Dipartimento di Informatica, Via F. Buonarroti 2, 56127 Pisa, Italy

Abstract. As a step towards the design of an Inductive Database Sys-
tem, in this paper we present a primitive for constraint-based frequent
pattern mining, which represents a careful trade-off between expressive-
ness and efficiency. Such primitive is a simple mechanism which takes a
relational table in input and extracts from it all frequent patterns which
satisfy a given set of user-defined constraints. Despite its simplicity, the
proposed primitive is expressive enough to deal with a broad range of
interesting constraint-based frequent pattern queries,using a comprehen-
sive repertoire of constraints defined over SQL aggregates. Thanks to its
simplicity, the proposed primitive is amenable to be smoothly embedded
in a variety of data mining query languages and be efficiently executed,
by the state-of-the-art optimization techniques based on pushing the var-
ious form of constraints by means of data reduction.

1 Introduction

Typically, two different kinds of structures are sought in data mining: models
and patterns [31]. Models are high level, global, descriptive summaries of data
sets. Patterns, on the other hand, are local descriptive structures. Patterns may
be regarded as local models, and may involve just a few points or variables; i.e.,
they are descriptions of small fragments of the data, instead of overall descrip-
tions. Accordingly, Pattern Discovery has a distinguished role within data min-
ing technology. In particular, since frequency provides support to any extracted
knowledge, it is the most used measure of interest for the extracted patterns.
Therefore during the last decade a lot of researchers have focussed their stud-
ies on the computational problem of Frequent Pattern Discovery, i.e., mining
patterns which satisfy a user-defined minimum threshold of frequency [3, 30].

The simplest form of frequent pattern is the frequent itemset: given a database
of transactions (a transaction is a set of items) we want to find those subsets of
transactions (itemsets) which appear together frequently.

Definition 1 (Frequent Itemset Mining). Let I = {x1, ..., xn} be a set
of distinct literals, usually called items, where an item is an object with some
predefined attributes (e.g., price, type, etc.). An itemset X is a non-empty subset
of I. If |X | = k then X is called a k-itemset. A transaction database D is a bag
of itemsets t ∈ 2I , usually called transactions. The support of an itemset X in

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 14–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Relational Query Primitive for Constraint-Based Pattern Mining 15

date cust item
11-2-97 cust1 beer
11-2-97 cust1 chips
11-2-97 cust1 wine
11-2-97 cust2 wine
11-2-97 cust2 beer
11-2-97 cust2 pasta
11-2-97 cust2 chips
13-2-97 cust1 chips
13-2-97 cust1 beer
13-2-97 cust2 jackets
13-2-97 cust2 col shirts
13-2-97 cust3 wine
13-2-97 cust3 beer
15-2-97 cust1 pasta
15-2-97 cust1 chips
16-2-97 cust1 jackets
16-2-97 cust2 wine
16-2-97 cust2 pasta
16-2-97 cust3 chips
16-2-97 cust3 col shirts
16-2-97 cust3 brown shirts
18-2-97 cust1 pasta
18-2-97 cust1 wine
18-2-97 cust1 chips
18-2-97 cust1 beer
18-2-97 cust2 beer
18-2-97 cust2 beer
18-2-97 cust2 chips
18-2-97 cust2 chips
18-2-97 cust3 pasta

(a)

date cust itemset
11-2-97 cust1 {beer,chips,wine}
11-2-97 cust2 {wine,beer,pasta,chips}
13-2-97 cust1 {chips,beer}
13-2-97 cust2 {jackets,col shirts}
13-2-97 cust3 {wine,beer}
15-2-97 cust1 {pasta,chips}
16-2-97 cust1 {jackets}
16-2-97 cust2 {wine,pasta}
16-2-97 cust3 {chips,col shirts,brown shirts}
18-2-97 cust1 {pasta,wine,chips,beer}
18-2-97 cust2 {beer,chips}
18-2-97 cust3 {pasta}

(b)

name price type
beer 10 beverage
chips 3 snack
wine 20 beverage
pasta 2 food
jackets 100 clothes
col shirt 30 clothes
brown shirt 25 clothes

(c)

Fig. 1. (a) A sample sales table, (b) its transactional representation and (c) the
product table

database D, denoted suppD(X), is the number of transactions in D which are
superset of X . Given a user-defined minimum support σ, an itemset X is called
frequent in D if suppD(X) ≥ σ.

The problem of mining all frequent itemsets in a database is the basis of
the well-known association rule mining task [1]. However, frequent itemsets are
meaningful not only in the context of association rules: they can be used as a
basic mechanism in many other kind of analysis, ranging from classification [39,
40] to clustering [50, 58].

Example 2 (Market Basket Analysis). The classical context for association rule
mining, as well as the most natural way to think about a transaction database,
is the market basket setting, where we have a sales database of a retail store
recording the content of each basket appearing at the cash register. In this con-
text a transaction represent the content of a basket. In Figure 1(a) we have a
relational table where a transaction or basket identifier is not explicitly given;
however one could reconstruct transactions, for instance, grouping items by the
pair (date, cust) as represented in Figure 1(b).

In principle, it is possible to express a query to count frequent itemsets in
conventional SQL. This approach is examined in [57, 32, 52, 2]. For example,

16 F. Bonchi, F. Giannotti, and D. Pedreschi

in Figure 2 it is shown how to compute all 2-itemsets which are frequent in
a relational database. We join sales with itself, with the condition that tID
(transaction identifier) is the same, and the names of the two items are lexico-
graphically different. We group the joined relation by the pair of items involved
and check in the having clause that the group has at least 2 transactions.

SELECT i1.item, i2.item

FROM sales AS i1, sales AS i2

WHERE i1.item < i2.item AND

i1.tID = i2.tID

GROUP BY i1.item, i2.item

HAVING 2 <= COUNT(i1.tID)

Fig. 2. Frequent 2-itemsets computation in SQL

The problem with this approach is that the right optimizations and “tricks”
are beyond the state-of-the-art of conventional optimizers in commercial DBMS.
Therefore a DBMS-based approach can not compete with specific algorithms
employing ad hoc data structures. This is one of the main reasons, together with
the stronger requirements of expressiveness, that justifies the need for specialized
primitives and query languages for knowledge discovery.

1.1 Constraint-Based Pattern Discovery

Recently the research community has turned its attention to more complex kinds
of frequent patterns extracted from more structured data: sequences, trees, and
graphs. All these different kinds of patterns have different peculiarities and ap-
plication fields, but they all share the same computational aspects: a usually
very large input, an exponential search space, and a too large solution set. This
situation – too many data yielding too many patterns – is harmful for two rea-
sons. First, performance degrades: mining generally becomes inefficient or, of-
ten, simply unfeasible. Second, the identification of the fragments of interesting
knowledge, blurred within a huge quantity of mostly useless patterns, is difficult.

Therefore, the paradigm of constraint-based mining was introduced. Con-
straints provide focus on the interesting knowledge, thus reducing the number
of patterns extracted to those of potential interest. Additionally, they can be
pushed deep inside the pattern discovery algorithm in order to achieve better
performance [7, 4, 6, 9, 36, 37, 19, 25, 29, 38, 48, 49, 56, 44].

Definition 3 (Constrained Frequent Itemset Mining). A constraint on
itemsets is a function C : 2I → {true, false}. We say that an itemset I satisfies
a constraint if and only if C(I) = true. We define the theory of a constraint as
the set of itemsets which satisfy the constraint: Th(C) = {X ∈ 2I | C(X)}. Thus
with this notation, the frequent itemsets mining problem requires to compute
the set of all frequent itemsets Th(Cfreq[D,σ]). In general, given a conjunction
of constraints C the constrained frequent itemsets mining problem requires to
compute Th(Cfreq) ∩Th(C).

A Relational Query Primitive for Constraint-Based Pattern Mining 17

According to the constraint-based mining paradigm, the data analyst must
have a high-level vision of the pattern discovery system, without worrying about
the details of the computational engine, in the very same way a database designer
has not to worry about query optimizations. The analyst must be provided
with a set of primitives to be used to communicate with the pattern discovery
system, using a Pattern Discovery Query Language. The analyst just needs to
declaratively specify in the pattern discovery query how the desired patterns
should look like and which conditions they should obey (a set of constraints).
Such rigorous interaction between the analyst and the pattern discovery system,
can be achieved by means of a set of pattern discovery primitives, that should
include:

– the specification of the source data,
– the kind of pattern to be mined,
– background or domain knowledge,
– the representation of the extracted patterns,
– constraints that interesting patterns must satisfy,
– interestingness measures for patterns evaluation.

Providing a query language capable to incorporate all these features may
result, like in the case of relational databases, in a high degree of expressiveness
in the specification of pattern discovery tasks, a clear and well-defined separation
of concerns between logical specification and physical implementation of such
tasks, and easy integration with heterogeneous information sources.

Clearly, the implementation of this vision presents a great challenge. A path to
this goal is indicated in [41] where Mannila introduces an elegant formalization
for the notion of interactive mining process: the term inductive database refers
to a relational database plus the set of all sentences from a specified class of
sentences that are true w.r.t. the data. In other words, the inductive database is a
database framework which integrates the raw data with the knowledge extracted
from the data and materialized in the form of patterns. In this way, the knowledge
discovery process consists essentially in an iterative querying process, enabled
by a query language that can deal either with raw data or patterns.

Definition 4. Given an instance r of a relation R, a class L of sentences (pat-
terns), and a selection predicate q, a pattern discovery task is to find a theory

T h(L, r, q) = {s ∈ L|q(r, s) is true}

The selection predicate q indicates whether a pattern s is considered interesting.
In the constraint-based paradigm, such selection predicate q is defined by a
conjunction of constraints.

1.2 Paper Contribution and Organization

As a step towards the design of an Inductive Database System, in this paper we
present a primitive for constraint-based frequent pattern mining in a relational
context. Such primitive is a simple mechanism which takes a relational table

18 F. Bonchi, F. Giannotti, and D. Pedreschi

in input and extracts from it all frequent patterns which satisfy a given set of
user-defined constraints. Despite its simplicity, the proposed primitive is expres-
sive enough to deal with a broad range of interesting constraint-based frequent
pattern queries,using a comprehensive repertoire of constraints defined over SQL
aggregates.

In this paper we do not deal specifically with the Data Mining Query Language
issue, as our primitive can be embedded in any kind of query language based on
the relational paradigm (SQL-like databases, logic-based deductive databases);
basically we can view our primitive as an operator of the relational algebra.

Therefore, after introducing the primitive for constraint-based pattern mining
we informally assess its expressiveness by means of example queries in SQL-
like and DATALOG-like syntax. Then we concentrate on optimization issues:
we summarize and amalgamates all the algorithmic results in constraint-based
frequent pattern discovery obtained in the last years (2003-05) at Pisa KDD
Laboratory, thus achieving an optimization framework.

The paper is organized as follows. In the next Section we define our primitive
going through a rigorous identification of its basic components and of the con-
straints handled. In Section 3, we advocate the expressiveness and versatility of
our proposal, showing how it can be embedded in query languages of different
flavour. In Section 4 we recall the state-of-the-art classification of constraints
and their properties, which can be exploited in order to achieve an efficient com-
putation. In Section 5 we compose the state-of-the-art of the constraint pushing
techniques in a breadth-first Apriori-like computation, achieving a very efficient
evaluation strategy for our primitive. In particular, we adopt the strategy of
pushing constraints in the computation mainly by means of data-reduction tech-
niques: this approach enables us to exploit the different properties of constraints
all together, and the total benefit is always greater than the sum of the individ-
ual benefits. Finally in Section 6 we conclude by describing on-going work on
constrained frequent pattern discovery at Pisa KDD Laboratory, and drawing
some future research paths.

2 A Primitive for Constraint-Based Mining

In this Section, going through a rigorous identification of all its basic compo-
nents, we provide a definition of a primitive for constraint-based frequent pattern
mining task over a relational database DB.

The first needed component is the data source: which table must be mined
for frequent patterns, and which attributed do identify transactions and items.

Definition 5 (Mining View). Given a database DB any relational expression
V on preds(DB) can be selected as data source, and named mining view.

Definition 6 (Transaction id). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our mining view. Any subset
of attributes T ⊂ sch(V) can be selected as transaction identifier, and named
transaction id.

A Relational Query Primitive for Constraint-Based Pattern Mining 19

Definition 7 (Item attribute). Given a database DB and a relation V derived
from preds(DB). Let V with attributes sch(V) be our mining view. Given a
subset of attributes T ⊂ sch(V) as transaction id, let Y = {y|y ∈ sch(V)\T ∧
T → y does not hold}; we define an attribute I ∈ Y an item attribute provided
the functional dependency T I → Y \I holds in DB.

Proposition 8. Given a relational database DB, a triple 〈V , T , I〉 denoting the
mining view V, the transaction id T , the item attribute I, uniquely identifies a
transactional database, as defined in Definition 1.

We next distinguish between attributes which describe items (descriptive at-
tributes), from attribute which describe transactions (circumstance attributes).

Definition 9 (Circumstance attribute). Given a database DB and a relation
V derived from preds(DB). Let V with attributes sch(V) be our mining view.
Given a subset of attributes T ⊂ sch(V) as transaction id, we define any attribute
A ∈ sch(R) where R is a relation in preds(DB) circumstance attribute provided
that A /∈ T and the functional dependency T → A holds in DB.

Definition 10 (Descriptive attribute). Given a database DB and a relation
V derived from preds(DB). Let V with attributes sch(V) be our mining view.
Given a subset of attributes T ⊂ sch(V) as transaction id, and given I as item
attribute; we define descriptive attribute any attribute A ∈ sch(R) where R is a
relation in preds(DB), provided the functional dependency I → A holds in DB.

Consider the mining view: sales(tID, locationID, time, product, price)
where each attribute has the intended semantics of its name and with tID acting
as the transaction id. Since the functional dependency {tID} → {locationID}
holds, locationID is a circumstance attribute. The same is true for time. We also
have {tID, product} → {price}, and {product} → {price}, thus product is
an item attribute, while price is a descriptive attribute.

Note that, from the previous definitions, transaction id and the item attribute
must be part of the mining view, while circumstance and descriptive attributes
could be also in other relations.

Constraints, as introduced in the previous Section (see Definition 3), describes
properties of itemsets, i.e., a constraint C is a boolean function over the domain
of itemsets: C : 2I → {true, false}. According to this view, constraints are only
those ones defined on item attributes (Definition 7) or descriptive attributes
(Definition 10).

Constraints defined over the transaction id (Definition 6) or over circum-
stance attributes (Definition 9) are not constraints in the strict sense. Indeed,
they can be seen as selection conditions on the transactions to be mined and
thus they can be satisfied in the definition of the mining view. Consider the rela-
tion: sales(tID, locationID, time, product, price) where each attribute
has the intended semantics of its name and with tID acting as the transaction
id. Since the functional dependency {tID} → {locationID} holds, locationID
is a circumstance attribute. The constraints locationID ∈ {Florence, Milan,

20 F. Bonchi, F. Giannotti, and D. Pedreschi

Rome} is not a real constraint of the frequent pattern extraction, indeed it is a
condition in the mining view definition, i.e., it is satisfied by imposing such con-
dition in the relational expression defining the mining view (a select statement
if we embed our primitive in a SQL-like language).

The following Definition lists all kinds of constraints that we consider as
possible input for our primitive.

Definition 11 (Constraints on itemsets). In Table 1 all constraints admit-
ted in our primitive are listed. The following notation is adopted:

– s is an itemset;
– a1, . . . , an are items;
– d is a descriptive attribute;
– d1, . . . , dn are values of a descriptive attribute;
– m is a numeric constant;
– θ ∈ {≤,≥, =}
– aggr ∈ {min, max, sum, avg, count, range, avg, median, var, std, md}

Table 1. Constraints admitted in our primitive

Constraint Description

s ⊇ {a1, . . . , an} itemset contains

s ⊆ {a1, . . . , an} itemset domain

count(s) θ m itemset cardinality

s.d ⊇ {d1, . . . , dn} descriptive attribute contains

s.d ⊆ {d1, . . . , dn} descriptive attribute domain

aggr(s.d) θ m aggregate on descriptive attribute

We have provided all the needed components of our primitive, thus we are
now ready to introduce it.

Definition 12 (Primitive for constraint-based itemset mining). Given
a database DB, let the quintuple 〈V , T , I, σ, C〉 denotes the mining view V , the
transaction id T , the item attribute I, the minimum support threshold σ, and
a conjunction of constraints on itemsets C.

The primitive for constraint-based itemset mining takes in input such quin-
tuple and returns a binary relation recording the set of itemsets which satisfy
C and are frequent (w.r.t. σ) in the transaction database 〈V , T , I〉, and their
supports:

freq(V , T , I, σ, C) = {(I, S) | C(I) ∧ supp〈V,T ,I〉(I) = S ∧ S ≥ σ}

Example 13. A frequent pattern query for the sales table in Figure 1 (a), and
the product table in Figure 1 (c), querying itemsets having a support ≥ 3
(transactions are made grouping by customer and date), and having a total
price ≥ 30, could be simply defined as:

A Relational Query Primitive for Constraint-Based Pattern Mining 21

freq(sales, {date, cust}, item, 3, sum{p | i ∈ I∧product(i, p, t)} ≥ 30) = {(I, S) |

sum{p | i∈ I∧product(i, p, t)}≥ 30 ∧ supp〈sales,{date,cust},item〉(I) =S ∧ S ≥ 3}
The result of such query is a relation (I,S) with the following two entries:
({beer, wine},4) and ({beer, wine, chips},3).

3 Embedding the Primitive into a Query Language

The issue of designing a query language capable of dealing with all requirements
of knowledge discovery process, including definition of interestingness measures
for extracted patterns and ad hoc exploitation of the application specific back-
ground knowledge, is a prominent research goal in data mining. This issue has
been tackled both by a database perspective and a machine learning perspective
(see [24] for a thorough discussion).

The proposal by a database perspective [33] is to combine relational query
languages with data mining primitives in an overall framework capable of specify-
ing data mining problems as an iterative and interactive querying session, where
queries can involve both data and extracted models or patterns, and the result
of a query becomes available for further querying (closure principle). In such
a knowledge discovery system, identified by the term inductive database, query
optimization and execution techniques typically rely on advanced ad hoc data
mining algorithms. Past efforts for developing such languages can be classified
in two categories:

– Developing mining tools tightly integrated with SQL DBMSs, representing
both the source data and the induced patterns in database relations. Mining
queries are specified in an SQL-like language [42, 43, 34, 35, 16, 27, 26, 55, 28,
29, 44].

– Exploiting logic to encode ad hoc data mining tasks and to specify back-
ground knowledge using the same language: typically some DATALOG ex-
tension [57, 53, 54, 21, 22, 14, 23].

On the machine learning side the main effort has been devoted to upgrading
existing “propositional” data mining techniques to first order logic. This ap-
proach is denoted Inductive Logic Programming (ILP). ILP systems construct
logic programs from examples (both positive and negative) and background
knowledge: the challenge is to find a hypothesis that is consistent (w.r.t. negative
examples) and complete (w.r.t. positive examples). The background knowledge
and the hypothesis are expressed in two (not necessarily distinct) languages that
are fixed in advance. In recent years, ILP has broadened its scope to cover stan-
dard data mining tasks such as classification, regression, clustering and associa-
tion rules. This research is triggered by the need to pass from single-relational
to multirelational data mining [20, 18, 17], i.e., a learning setting where every
example is a set of facts or, equivalently, a (small) relational database.

An interesting approach would be to integrate the two different perspective
in an overall framework, where multirelational data mining approach can meet

22 F. Bonchi, F. Giannotti, and D. Pedreschi

the potentials offered by the integration of mining and querying which is typical
of the inductive database approach. A nice tentative in this direction is the logic
language RDM [51] which uses terms for conjunctive queries: both constants
and variables can be conjunctive queries, thus RDM queries can be regarded as
higher order queries that seeks for standard conjunctive queries which satisfy
some given constraints.

Although we are aware of the importance of designing a powerful query lan-
guage for knowledge discovery, in this paper we do not provide yet another
tentative in this direction. Less ambitiously, we provide a simple primitive for
constraint-based frequent pattern queries, which can be embedded in any kind
of query language and system coherent with the relational paradigm.

The rationale for this aim, is in our intention to focalize on the crucial point
of the Data Mining Query Language problem: the hot-spot where an adequate
trade-off between efficiency and expressiveness of the query language has to be
found. The potential efficient evaluation of the proposed primitive is discussed
in Section 4 and 5; here we advocate its adequate expressiveness and versatility
showing how it can be embedded in query languages of different flavour.

Example 14 (Embedding the primitive in a SQL-like language). Consider the
constraint-based frequent pattern query of Example 13. The following is some
SQL-like syntactic sugar to express such query.

MINE PATTERNS Freq_pat, Support
FROM sales
GROUPING item BY day,cust
MINIMUM SUPPORT: 3
CONSTRAINTS ON name
FROM product
HAVING SUM(price) >= 30,

In the first line we define the name of the two output attributes Freq pat and
Support corresponding to the variables I and S of the query in Example 13.
In the FROM clause we indicate the data source, or, in other words, the relation
which plays the role of the mining view (V): note that according to Definition 5
the mining view can be defined by a relational expression; this means that in the
FROM clause we can have a full SQL SELECT clause. In the third line we indicate
that transactions are created grouping the attribute item by the two attributes
day,cust. In other word, we indicate the attribute which plays the role of item
(I), and a list of attributes which play the role of transaction identifier (T).
Note that such grouping is not really performed by the underlying DBMS: this
is just syntactic sugar to express the input parameters for our primitive. In the
fourth line we define the minimum support threshold σ. The last three lines
define the additional constraint on the sum of prices. Since the attribute price
is recorded in a relation different from the mining view we must indicate such
relation (product) and the name of the item attribute in such relation (name).

A Relational Query Primitive for Constraint-Based Pattern Mining 23

An alternative could be to join the two tables in the definition of the mining
view, as follows:

MINE PATTERNS Freq_pat, Support
FROM (SELECT *

FROM sales JOIN product ON item = name
)

GROUPING item BY day,cust
MINIMUM SUPPORT: 3
HAVING SUM(price) >= 30,

However, this requires that the underlying DBMS joins two tables, a costly
operation not really necessary since our primitive can handle constraints defined
on different relations. In general we can have how many clauses of the form
“CONSTRAINTS ON attribute FROM table HAVING constraint” as necessary.

The simple query language whose syntax has been exemplified above, and
whose semantics is indirectly given by Definition 12, seems to be an adequate
trade-off between efficiency and expressiveness. It inherits its efficiency by our
primitive, which is implemented by an ad hoc optimized mining algorithm (see
Section 4 and 5). It is expressive since it allows full SQL definition of the source
data, it can exploit a wide variety of different constraints, and more impor-
tantly, it is geared on frequent itemsets which is a primitive task for many
complex queries. The most famous SQL-like data mining query language, MINE
RULE [42], has not the same flexibility, being geared on association rules, nor
the same efficiency, since it does not exploit constrain-pushing optimizations as
those described in the next Section. MINE RULE allows to express queries for
the mining of association rules whose body and head satisfy some structural con-
straints. In the following Example we show how such template-based queries can
be expressed in a DATALOG-like query language which embeds our primitive
as optimized mining engine.

Example 15 (Embedding the primitive in a DATALOG-like language). Consider
again the relation in Figure 1(a) and (c). Suppose we want to compute simple
association rules having support greater than 5 and confidence greater than 0.4
with exactly two items in the head (one of type beverage and one of type snack)
and at least 3 items in the body.

As usually we can divide the association rule mining problem in two parts: the
mining of frequent itemsets and the subsequent generation of valid rules. For the
first subproblem we can use an inductive query which exploits our primitive in
order to have an efficient mining, while the second post-processing subproblem
can be solved by a simple DATALOG query.

The first inductive rule requires to compute itemsets with the proper support
and containing at least one item of type beverage and one of type snack.

24 F. Bonchi, F. Giannotti, and D. Pedreschi

frequentPatterns(Itemset, Support)← Support = freq(Itemset, X),
X = 〈I|{D, C}〉,
sales(D, C, I),
Support >= 5,
product(L, , beverage),
product(J, , snacks),
{L, J} ⊂ Itemset.

In the head of the rule we have the two output attributes Itemset and
Support. The first clause in the body of the rule states that the variable Support
stores the support of Itemset in the transaction database X. Such database is
obtained from relation sales(D,C,I) (third clause) grouping I by {D,C} (sec-
ond clause). The last three clauses in the body of the rule define the required
constraints.

The second rule is a deductive DATALOG rule which computes the required
association rules from the frequent itemsets by finding frequent itemsets of car-
dinality at least 5, having a frequent subset composed by two items to use as
head of the association rule.

rules(L, R, S, C)← frequentPatterns(I, S),
cardinality(I) >= 5,
frequentPatterns(R, S1),
cardinality(R) = 2,
subset(R, I), difference(I,R, L),
C = S/S1, C >= 0.4.

As pointed out by these examples, our primitive is a propositional mechanism
which works on a single relation, the input mining view. However, it is also possi-
ble in principle to embed the primitive into a multirelational data mining query
language, such as RDM [51], equipped with high-order mechanisms to generate
all possible mining views coherent with the specified item and transaction IDs,
thus obtaining repeated invocation to the primitive on the various admissible
mining views.

4 Constraint Properties and How to Exploit Them

Constrained frequent pattern mining can be seen as a query optimization prob-
lem: given a mining queryQ containing a set of constraints C, provide an efficient
evaluation strategy for Q which is sound and complete (i.e. it finds all and only
itemsets in Th(Cfreq) ∩ Th(C)). A näıve solution to such a problem is to first
find all frequent patterns (Th(Cfreq)) and then test them for constraints satisfac-
tion. However more efficient solutions can be found by analyzing the property of
constraints comprehensively, and exploiting such properties in order to push con-
straints in the frequent pattern computation. Following this methodology, some
classes of constraints which exhibit nice properties have been individuated. In
this Section, by reviewing all basic works on the constrained frequent itemsets
mining problem, we recall a classification of constraints and their properties.

A Relational Query Primitive for Constraint-Based Pattern Mining 25

Loose Anti-Monotone
Monotone

Convertible
Monotone

Anti-Monotone

Convertible
Anti-Monotone

Succinct

Strongly

Fig. 3. Characterization of the classes of commonly used constraints

4.1 Anti-monotone and Succinct Constraints

A first work defining classes of constraints which exhibit nice properties is [44]. In
that paper is introduced an Apriori-like algorithm, named CAP, which exploits
two properties of constraints, namely anti-monotonicity and succinctness, in
order to reduce the frequent itemsets computation. Four classes of constraints,
each one with its own associated computational strategy, are defined:

1. Anti-monotone but not succinct constraints;
2. Anti-monotone and succinct constraints;
3. Succinct but not anti-monotone constraints;
4. Constraints that are neither.

Given an itemset X , a constraint CAM is anti-monotone if ∀Y ⊆ X : CAM (X)⇒
CAM (Y). The frequency constraint is the most known example of a CAM con-
straint. This property, the anti-monotonicity of frequency, is used by the Apri-
ori [3] algorithm with the following heuristic: if an itemset X does not satisfy
Cfreq , then no superset of X can satisfy Cfreq , and hence they can be pruned. This
pruning can affect a large part of the search space, since itemsets form a lattice.
Therefore the Apriori algorithm (see Algorithm1) operates in a level-wise fashion
moving bottom-up on the itemset lattice, from small to large itemsets. At each
iteration k Apriori counts the support of candidate itemsets (i.e. itemsets which
have all subsets frequent) of size k, which are denoted by Ck.

Algorithm 1 Apriori
Input: D, σ
Output: Th(Cfreq[D,σ])
1: C1 ← {{i} | i ∈ I}; k ← 1
2: while Ck �= ∅ do
3: Lk ← count(D, Ck)
4: Ck+1 ← generate apriori(Lk)
5: k + +
6: Th(Cfreq[D,σ]) ← k Lk

26 F. Bonchi, F. Giannotti, and D. Pedreschi

Those ones which have a support greater than the minimum support threshold
σ are frequent itemsets. From the set of frequent itemsets of size k (denoted
by Lk) the set of candidates for the next iteration Ck+1 is generated by the
generate apriori procedure. Other CAM constraints can easily be pushed deeply
down into the frequent itemsets mining computation since they behave exactly
as Cfreq : if they are not satisfiable at an early level (small itemsets), they have
no hope of becoming satisfiable later (larger itemsets). Conjoining other CAM

constraints to Cfreq we just obtain a more selective anti-monotone constraint.
A succinct constraint CS is such that, whether an itemset X satisfies it or

not, can be determined based on the singleton items which are in X . Informally,
given A1, the set of singleton items satisfying a succinct constraint CS , then any
set X satisfying CS is based on A1 , i.e. X contains a subset belonging to A1

(for the formal definition of succinct constraints see [44]). A CS constraint is
pre-counting pushable, i.e. it can be satisfied at candidate-generation time: these
constraints are pushed in the level-wise computation by substituting the usual
generate apriori procedure, with the proper (w.r.t. CS) candidate generation
procedure. For instance, consider the constraint CS ≡ min(X.price) ≤ v, which
is a succinct but not anti-monotone constraint. Given A1 = {i ∈ I | i.price ≤
v}, we have that Th(CS) = {X ∈ 2I | ∃i ∈ X : i ∈ A1}. Therefore this
constraint can be satisfied at candidate-generation time. This can be done using
a special candidate generation procedure, which takes care of the kind of the
given constraint, and produces only candidates which satisfy it. Constraints that
are both anti-monotone and succinct can be pushed completely in the level-wise
computation before it starts (at pre-processing time). For instance, consider the
constraint min(X.price) ≥ v: if we start with the first set of candidates formed
by all singleton items having price greater than v, during the computation we
will generate only itemsets satisfying the given constraint. Constraints that are
neither succinct nor anti-monotone are pushed in the CAP [44] computation by
inducing weaker constraints which are either anti-monotone and/or succinct.

4.2 Monotone Constraints

Monotone constraints work the opposite way of anti-monotone constraints. Given
an itemset X , a constraint CM is monotone if: ∀Y ⊇ X : CM (X)⇒ CM (Y). Since
the frequent itemset computation is geared on Cfreq , which is anti-monotone, CM
constraints have been considered more hard to be pushed in the computation
and less effective in pruning the search space. In fact, many works [4, 19, 15, 13]
have studied the computational problem Th(Cfreq) ∩ Th(CM), proposing some
smart exploration of its search space, but all facing the inherent difficulty of the
computational problem: the CAM -CM tradeoff. Such tradeoff can be described
as follows. Suppose that an itemset has been removed from the search space
because it does not satisfy a monotone constraint. This pruning avoids checking
support for this itemset, but on the other hand, if we check its support and find
it smaller than the frequency threshold, we may prune away all the supersets of
this itemset. In other words, by monotone pruning we risk to lose anti-monotone
pruning opportunities given by the pruned itemset. The tradeoff is clear: pushing

A Relational Query Primitive for Constraint-Based Pattern Mining 27

monotone constraint can save frequency tests, however the results of these tests
could have lead to more effective anti-monotone pruning.

In [7] a completely new approach to exploit monotone constraints by means of
data-reduction is introduced. The ExAnte Property [7, 8] is obtained by shifting
attention from the pattern search space to the input data. Indeed, the CAM -CM
tradeoff exists only if we focus exclusively on the search space of the problem,
while if exploited properly, monotone constraints can reduce dramatically the
data in input, in turn strengthening the anti-monotonicity pruning power. With
data reduction techniques we exploit the effectiveness of a CAM -CM synergy.

The ExAnte property states that a transaction which does not satisfy the
given monotone constraint can be deleted from the input database since it will
never contribute to the support of any itemset satisfying the constraint.

Proposition 16 (ExAnte property [7]). Given a transaction database D and
a conjunction of monotone constraints CM , we define the μ-reduction of D as the
dataset resulting from pruning the transactions that do not satisfy CM : μCM (D) =
{t ∈ D | t ∈ Th(CM)}.
It holds that this data reduction does not affect the support of solution itemsets:

∀X ∈ Th(CM) : suppD(X) = suppμCM
(D)(X).

A major consequence of reducing the input database in this way is that it
implicitly reduces the support of a large amount of itemsets that do not sat-
isfy CM as well, resulting in a reduced number of candidate itemsets generated
during the mining algorithm. Even a small reduction in the database can cause
a huge cut in the search space, because all supersets of infrequent itemsets are
pruned from the search space as well. In other words, monotonicity-based data-
reduction of transactions strengthens the anti-monotonicity-based pruning of
the search space. This is not the whole story, in fact, infrequent singleton items
can not only be removed from the search space together with all their super-
sets, for the same anti-monotonicity property they also can be deleted from all
transactions in the input database (this anti-monotonicity-based data-reduction
is named α-reduction). Removing items from transactions offers another posi-
tive effect: reducing the size of a transaction which satisfies CM can make the
transaction violate it. Therefore a growing number of transactions which do not
satisfy CM can be found. Obviously, we are inside a loop where two different
kinds of pruning (α and μ) cooperate to reduce the search space and the input
dataset, strengthening each other step by step until no more pruning is possible
(a fix-point has been reached).

The ExAMiner Algorithm. The recently introduced algorithm ExAMiner [6,
5], generalizes the ExAnte idea to reduce the problem dimensions at all levels
of a level-wise Apriori-like computation. In this way, the CAM -CM synergy is
effectively exploited at each iteration of the mining algorithm, and not only at
pre-processing as done by ExAnte, resulting in significant performance improve-
ments. The idea is to generalize ExAnte’s α-reduction from singletons level to
the generic level k. This generalization results in the following set of data reduc-

28 F. Bonchi, F. Giannotti, and D. Pedreschi

tion techniques, which are based on the anti-monotonicity of Cfreq (see [6] for
the proof of correctness).

Gk(i): an item which is not subset of at least k frequent k-itemsets can be pruned
away from all transactions in D.

Tk(t): a transaction which is not superset of at least k + 1 frequent k-itemsets
can be removed from D.

Lk(i): given an item i and a transaction t, if the number of frequent k-itemsets
which are superset of i and subset of t is less than k, then i can be pruned
away from transaction t.

Algorithm 2 count&reduce

Input: Dk, σ, CM , Ck, Vk−1

Output: Dk+1, Vk, Lk

1: forall i ∈ I do Vk[i] ← 0
2: forall tuples t in Dk do
3: forall i ∈ t do if Vk−1[i] < k − 1
4: then t ← t \ i
5: else i.count ← 0
6: if |t| ≥ k and CM (t) then
7: forall X ∈ Ck, X ⊆ t do
8: X.count++; t.count++
9: forall i ∈ X do i.count++

10: if X.count = σ then
11: Lk ← Lk ∪ {X}
12: forall i ∈ X do Vk[i] + +
13: if |t| ≥ k + 1 and t.count ≥ k + 1 then
14: forall i ∈ t if i.count < k
15: then t ← t \ i
16: if |t| ≥ k + 1 and CM (t) then
17: write t in Dk+1

In ExAMiner [6] these data reductions are coupled with the μ-reduction for CM
constraints as described in Proposition 16. Essentially ExAMiner is an Apriori-
like algorithm, which at each iteration k − 1 produces a reduced dataset Dk to
be used at the subsequent iteration k. Each transaction in Dk, before participat-
ing to the support count of candidate itemsets, is reduced as much as possible
by means of Cfreq -based data reduction, and only if it survives to this phase,
it is effectively used in the counting phase. Each transaction which arrives to
the counting phase, is then tested against the CM (μ-reduction) , and reduced
again as much as possible, and only if it survives to this second set of reductions,
it is written to the transaction database for the next iteration Dk+1. The pro-
cedure we have just described, is named count&reduce (see Algorithm 2), and
substitutes the usual support counting procedure of Apriori (Algorithm 1).

A Relational Query Primitive for Constraint-Based Pattern Mining 29

In Algorithm 2 in order to implement the data-reduction Gk(i) we use an
array of integers Vk (of the size of Items), which records for each item the
number of frequent k-itemsets in which it appears. This information is then
exploited during the subsequent iteration k + 1 for the global pruning of items
from all transaction in Dk+1 (lines 3 and 4 of the pseudo-code). On the contrary,
data reductions Tk(t) and Lk(i) are put into effect during the same iteration
in which the information is collected. Unfortunately, they require information
(the frequent itemsets of cardinality k) that is available only at the end of the
actual counting (when all transactions have been used). However, since the set of
frequent k-itemsets is a subset of the set of candidates Ck, we can use such data
reductions in a relaxed version: we just check the number of candidate itemsets
X which are subset of t (t.count in the pseudo-code, lines 10 and 18) and which
are superset of i (i.count in the pseudo-code, lines 9 and 14).

4.3 Convertible Constraints

In [48, 49] the class of convertible constraints is introduced, and an FP-growth
based methodology to push such constraints is proposed. A constraint CCAM

is convertible anti-monotone provided there is an order R on items such that
whenever an itemset X satisfies CCAM , so does any prefix of X . A constraint CCM

is convertible monotone provided there is an orderR on items such that whenever
an itemset X violates CCM , so does any prefix of X . In [48, 49], two FP-growth
based algorithms are introduced: FICA to mine Th(Cfreq) ∩ Th(CCAM), and
FICM to mine Th(Cfreq)∩Th(CCM). A major limitation of any FP-growth based
algorithm is that the initial database (internally compressed in the prefix-tree
structure) and all intermediate projected databases must fit into main memory.
If this requirement cannot be met, these approaches can simply not be applied
anymore. This problem is even harder with FICA and FICM: in fact, using
an order on items different from the frequency-based one, makes the prefix-
tree lose its compressing power. Thus we have to manage much greater data
structures, requiring a lot more main memory which might not be available.
Another important drawback of this approach is that it is not possible to take
full advantage of a conjunction of different constraints, since each constraint in
the conjunction could require a different ordering of items.

4.4 Loose Anti-monotone Constraints

In [12] a new class of tougher constraints, which is a proper superclass of convert-
ible anti-monotone, is introduced together with an Apriori-like algorithm which
exploit such constraints by means of data reduction.

Example 17 (var constraint is not convertible). Calculating the variance is an
important task of many statistical analysis: it is a measure of how spread out a
distribution is. The variance of a set of number X is defined as:

var(X) =
∑

i∈X(i− avg(X))2

|X |

30 F. Bonchi, F. Giannotti, and D. Pedreschi

A constraint based on var is not convertible. Otherwise there is an order R
of items such that var(X) is a prefix increasing (or decreasing) function. Con-
sider a small dataset with only four items I = {A, B, C, D} with associated
prices P = {10, 11, 19, 20}. The lexicographic order R1 = {ABCD} is such that
var(A) ≤ var(AB) ≤ var(ABC) ≤ var(ABCD), and it is easy to see that we
have only other three orders with the same property: R2 = {BACD},R3 =
{DCBA},R4 = {CDBA}. But, for R1, we have that var(BC) � var(BCD),
which means that var is not a prefix increasing function w.r.t. R1. Moreover,
since the same holds for R2, R3, R4, we can assert that there is no order R such
that var is prefix increasing. An analogous reasoning can be used to show that
it neither exists an order which makes var a prefix decreasing function.

Following a similar reasoning it can be shown that other interesting con-
straints, such as for instance those ones based on standard deviation (std) or
unbiased variance estimator (varN−1) or mean deviation (md), are not con-
vertible as well. Luckily, all these constraints share a nice property that named
“Loose Anti-monotonicity” [12].

While an anti-monotone constraint is such that, if satisfied by an itemset then
it is satisfied by all its subsets, a loose anti-monotone constraint as such that, if
it is satisfied by an itemset of cardinality k then it is satisfied by at least one of
its subsets of cardinality k− 1. Since some of these interesting constraints make
sense only on sets of cardinality at least 2, in order to get rid of such details,
we shift the definition of loose anti-monotone constraint to avoid considering
singleton items.

Definition 18 (Loose Anti-monotone constraint). Given an itemset X
with |X | > 2, a constraint is loose anti-monotone (denoted CLAM) if: CLAM (X)
⇒ ∃i ∈ X : CLAM (X \ {i})

The next proposition and the subsequent example state that the class of CLAM

constraints is a proper superclass of CCAM (convertible anti-monotone con-
straints).

Proposition 19. Any convertible anti-monotone constraint is trivially loose
anti-monotone: if a k-itemset satisfies the constraint so does its (k − 1)-prefix
itemset.

Example 20. We show that the constraint var(X.A) ≤ v is a CLAM constraint.
Given an itemset X , if it satisfies the constraint so trivially does X \ {i}, where
i is the element of X which has associated a value of A which is the most far
away from avg(X.A). In fact, we have that var({X \ {i}}.A) ≤ var(X.A) ≤ v,
until |X | > 2.Taking the element of X which has associated a value of A which
is the closest to avg(X.A) we can show that also var(X.A) ≥ v is a CLAM

constraint. Since the standard deviation std is the square root of the variance,
it is straightforward to see that std(X.A) ≤ v and std(X.A) ≥ v are CLAM . The
mean deviation is defined as: md(X) = (

∑
i∈X |i− avg(X)|) / |X |. Once again,

we have that md(X.A) ≤ v and md(X.A) ≥ v are loose anti-monotone. It is

A Relational Query Primitive for Constraint-Based Pattern Mining 31

easy to prove that also constraints defined on the unbiased variance estimator,
varN−1 = (

∑
i∈X(i− avg(X))2) / (|X | − 1) are loose anti-monotone.

The next Proposition (see [12] for the proof) indicates how a CLAM constraint
can be exploited in a level-wise Apriori-like computation by means of data-
reduction. It states that if at any iteration k ≥ 2 a transaction is not superset of
at least one frequent k-itemset which satisfy the CLAM constraint (a solution),
then the transaction can be deleted from the database.

Proposition 21. Given a transaction database D, a minimum support threshold
σ, and a CLAM constraint, at the iteration k ≥ 2 of the level-wise computation, a
transaction t ∈ D such that: �X ⊆ t, |X | = k, X ∈ Th(Cfreq[D,σ])∩Th(CLAM) can
be pruned away from D, since it will never be superset of any solution itemsets
of cardinality > k.

As in ExAMiner [6] the anti-monotonicity based data reductions are coupled
with the μ-reduction for CM constraints, similarly we can exploit the above
Proposition for CLAM constraints, by embedding such loose anti-monotonicity
based data reduction with-in the count&reduce procedure (see [12]).

5 Constraint Pushing Optimization

In this section we define an ad hoc optimized algorithm for the evaluation of our
primitive on the basis of the state-of-the-art of constraint pushing techniques
described in the previous Section. The proposed algorithm, is a breadth-first
Apriori-like computation based on data-reduction techniques.

Adopting this kind of algorithmic architecture, i.e., moving level-wise and
reducing data as much as possible, we can exploit different properties of con-
straints all together, and the global reduction benefit is always greater than the
sum of the individual benefits.

In Table 2 we report the properties that our algorithm exploits for each con-
straint admitted in our framework. In the Table we do not report convertibility
property since we do not exploit it. Convertibility, in fact, is well suited for
FP-tree based depth-first algorithms [30, 48, 49] while we adopt an Apriori-like
breadth-first computation. In our framework, the constraint based on the avg
aggregate, which is the prototypical convertible constraint, is pushed in the com-
putation by means of loose anti-monotonicity data reduction, obtaining stronger
benefits. For a deeper discussion on this issue and for empirical comparison of
the two different strategies see [12].

Algorithm 3 implements our primitive. Given freq(V , T , I, σ, C) Algorithm 3
computes Th(Cfreq[D,σ]) ∩ Th(C) where D is given by the triple 〈V , T , I〉 as de-
scribed in Section 2. In the pseudo-code the constraints in the conjunction C are
partitioned in groups w.r.t. their properties. In particular:

– CAM is the conjunction of constraints in C which are anti-monotone but not
succinct;

32 F. Bonchi, F. Giannotti, and D. Pedreschi

Table 2. Properties of the constraints admitted in our primitive

Constraint Properties

S ⊆ V CAM , CS , CLAM

S ⊇ V CM , CS , CLAM

S.A ⊆ V CAM , CS , CLAM

S.A ⊇ V CM , CS , CLAM

min(S.A) ≥ v CAM , CS , CLAM

min(S.A) ≤ v CM , CS , CLAM

max(S.A) ≥ v CM , CS , CLAM

max(S.A) ≤ v CAM , CS , CLAM

count(S) ≤ v CAM , CLAM

count(S) ≥ v CM

count(S.A) ≤ v CAM , CLAM

count(S.A) ≥ v CM

sum(S.A) ≤ v (∀i ∈ S, i.A ≥ 0) CAM , CLAM

sum(S.A) ≥ v (∀i ∈ S, i.A ≥ 0) CM

range(S.A) ≤ v CAM , CLAM

range(S.A) ≥ v CM , CLAM

avg(S.A)θv CLAM

median(S.A)θv CLAM

var(S.A)θv CLAM

std(S.A)θv CLAM

md(S.A)θv CLAM

– CAMS is the conjunction of constraints in C which are both anti-monotone
and succinct;

– CM is the conjunction of constraints in C which are monotone but not suc-
cinct;

– CMS is the conjunction of constraints in C which are both monotone and
succinct;

– CLAM is the conjunction of constraints in C which are loose anti-monotone.

Note that this groups of constraints are not necessarily disjoint.

Example 22. The constraint range(S.A) ≥ v ≡ max(S.A) −min(S.A) ≥ v, is
both monotone and loose anti-monotone. Thus, when we mine frequent itemsets
which satisfy such constraint we can exploit the benefit of having together, in the
same count&reduce procedure, the Cfreq -based data reductions, the μ-reduction
for monotone constraints, and the reduction based on CLAM .

The possibility of exploiting different properties of constraints all together,
exists not only for CM and CLAM constraints (as seen in Example 22), but also
for any other kind of constraints. In fact, all the properties that we exploit are
orthogonal and thus can be combined.

Example 23. Consider now the constraint max(S.A) ≥ v. This constraint is
monotone, succinct and loose anti-monotone. This means that we can exploit all

A Relational Query Primitive for Constraint-Based Pattern Mining 33

these properties by using it as a succinct constraint at candidate generation time,
and using it as a monotone constraint and as a loose anti-monotone constraint
by means of data-reduction at counting time.

Algorithm 3 Constraint-based Frequent Pattern Mining
Input: D, σ, C
Output: Th(Cfreq[D,σ]) ∩ Th(C)

1: L1 ← I
2: C1 ← {{i} | i ∈ I ∧ CAMS ({i}) ∧ CAM ({i})}
3: D1 ← πC1(D)
4: L1,D1 ← count first iteration(D1, σ, C1, CM , CMS)
5: while L1 �= C1 do
6: C1 ← L1;
7: L1,D1 ← count first iteration(D1, σ, C1, CM , CMS)
8: C2 ← generate(L1, CAM , CMS)
9: forall i ∈ L1 do V1[i] ← 0

10: k ← 2
11: while Ck �= ∅ do
12: Lk,Dk+1, Vk ← count&reduce(Dk, σ, CM , CMS , CLAM , Ck, Vk−1)
13: Ck+1 ← generate(Lk, CAM , CMS)
14: k + +
15: for(i = 0; i ≤ k; i + +) do
16: forall X ∈ Li do
17: if CM (X) ∧ CMS (X) ∧ CLAM (X) then return X

Let us briefly describe the pseudo-code in Algorithm 3. First of all, note that
as stated in Section 3 constraints which are both anti-monotone and succinct are
pushed once and for all, at preprocessing, simply by considering in the forthcom-
ing computation singleton items which satisfy them (Line 2). Lines from 3 to 7
together with procedure count first iteration (Algorithm 4), implement the Ex-
Ante pre-processing [7]. Lines from 11 to 14 implements the typical central loop
of the Apriori algorithm, where the generate procedure exploits succinctness and
anti-monotonicity to reduce the set of candidates, and the count&reduce pro-
cedure exploits monotonicity and loose anti-monotonicity. Finally, lines from 15
to 17 implement the post-processing, where possible solution itemsets are check
for satisfaction of those kinds of constraints, for which satisfaction not already
guaranteed.

Our algorithm, by means of data-reduction, exploits a real synergy of all
constraints that the user defines for the pattern extraction: each constraint does
not only play its part in reducing the data, but this reduction in turns strengthens
the pruning power of the other constraints. Moreover data-reduction induces
a pruning of the search space, and the pruning of the search space in turn
strengthens future data reductions.

The orthogonality of the exploited constraint pushing techniques has a twofold
benefit: on one hand all the techniques can be amalgamated together achieving a

34 F. Bonchi, F. Giannotti, and D. Pedreschi

Algorithm 4 count first iteration

Input: D, σ, C, CM , CMS

Output: D1, L1

1: L1 ← ∅;D1 ← ∅
2: forall t ∈ D do
3: if CM (t) ∧ CMS (t) then
4: forall i ∈ t do i.count + +; if i.count + + = σ then L1 ← L1 ∪ {i}
5: D1 ← D1 ∪ t
6: D1 ← πL1(D1)

very efficient computation (for the empirical evaluation of each single technique
we address the interested reader to the respective paper cited in Section 4);
on the other hand the framework can be easily extended to handle to other
constraints.

Another positive effect of adopting an Apriori-like algorithm, is that in the im-
plementation we can exploit all coding tricks and smart data structure that have
been developed in the last decade for the Apriori algorithm (see, for instance,
[45, 46]).

At Pisa KDD Laboratory developed a prototype of the optimized computa-
tional framework in tight collaboration with the authors of [45, 46], within the
P 3D project1.

6 Conclusions and Future Work

In this paper, we introduced a primitive for constraint-based pattern discovery,
which represents a trade-off between simplicity and generality, as well as between
expressiveness and efficiency. The versatility of the primitive is witnessed by
its easy adaption within query languages of different nature; its efficiency is
witnessed by the availability of systematic optimization methods, based on the
properties of the specified constraints. We believe that this trade-off ia a step
forward in the road to a realistic inductive database system. We are also aware
that many issues remain open, and deserve further research:

– how to support user-defined constraints;
– how to integrate condensed representations of patterns in the constraint-

based mining framework [47, 10, 11];
– how to tightly integrate our primitive within a relational DBMS: his issue

is strictly connected with many other open problems, for instance, how to
store and index frequent pattern query results;

– defining constraint-based incremental mining techniques, i.e., how to exploit
the results of previous queries in order to have a more efficient computation
for the forthcoming queries;

– developing a constraint-based mining framework for more complex kinds of
patterns such as sequences and graphs.

1 http://www-kdd.isti.cnr.it/p3d/index.html

A Relational Query Primitive for Constraint-Based Pattern Mining 35

Our objective is to integrate the results of these investigations in a unified
system for exploratory constraint-based pattern discovery.

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets
of items in large databases. In Proceedings of ACM SIGMOD’93.

2. R. Agrawal and K. Shim. Developing tightly-coupled data mining applications on
a relational database system. In Proceedings of KDD’96.

3. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large
Databases. In Proceedings of VLDB’94.

4. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive Constraint
Pushing in frequent pattern mining. In Proceedings of PKDD’03.

5. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Efficient Breadth-first
Mining of Frequent Pattern with Monotone Constraints. To appear in Knowledge
and Information Systems - An International Journal (KAIS). Springer, Berlin.

6. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAMiner: Optimized
level-wise frequent pattern mining with monotone constraints. In Proceedings of
ICDM’03.

7. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. ExAnte: Anticipated data
reduction in constrained pattern mining. In Proceedings of PKDD’03.

8. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Preprocessing for Frequent
Pattern Mining through Data Reduction. To appear in IEEE Intelligent Systems.

9. F. Bonchi and B. Goethals. FP-Bonsai: the Art of Growing and Pruning Small
FP-trees. In Proceedings of PAKDD’04, 2004.

10. F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In
Proceedings of ICDM’04.

11. F. Bonchi and C. Lucchese. On Condensed Representations of Constrained Fre-
quent Patterns. To appear in Knowledge and Information Systems - An Interna-
tional Journal (KAIS). Springer, Berlin.

12. F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern mining.
In Proceedings of PAKDD’05, 2005.

13. J.F. Boulicaut and B. Jeudy. Using constraints during set mining: Should we prune
or not? In Actes des Seizime Journes Bases de Donnes Avances BDA’00.

14. J.F. Boulicaut, P. Marcel, and C.Rigotti. Query driven knowledge discovery in
multidimensional data. In Proceedings of DOLAP’99.

15. C. Bucila, J. Gehrke, D. Kifer, and W. White. DualMiner: A dual-pruning algo-
rithm for itemsets with constraints. In Proceedings of ACM SIGKDD’02.

16. S. Choenni and A. Siebes. Query Optimization to Support Data Mining. In Proc.
of the Int’l. Workshop on Database and Expert Systems Application 1997.

17. L. Dehaspe and L. De Raedt. Dlab: A declarative language bias formalism. In
Proceedings of ISMIS’96.

18. L. Dehaspe and H. Toivonen. Discovery of Frequent Datalog Patterns. Journal of
Knowledge Discovery and Data Mining, 3(1):7–36, 1999.

19. L. De Raedt and S. Kramer. The levelwise version space algorithm and its appli-
cation to molecular fragment finding. In Proceedings of IJCAI’01.

20. S. Džeroski and N. Lavrač, editors. Relational Data Mining. Springer, Berlin, 2001.
21. F. Giannotti and G. Manco. Querying Inductive Databases via Logic-Based User-

Defined Aggregates. In Proceedings of PKDD’99.

36 F. Bonchi, F. Giannotti, and D. Pedreschi

22. F. Giannotti and G. Manco. Making Knowledge Extraction and Reasoning Closer.
In T. Terano, editor, Proceedings of PAKDD’00.

23. F. Giannotti, G. Manco and F. Turini. Specifying Mining Algorithms with Iterative
User-Defined Aggregates. IEEE Trans. Knowl. Data Eng. 16(10): 1232-1246 (2004).

24. F. Giannotti, G. Manco and J. Wijsen. Logical Languages for Data Mining. In
Logics for emerging Applications of Databases. Springer, Berlin, 2003.

25. G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained corre-
lated sets. In Proceedings of ICDE’00).

26. J. Han. Towards On-Line Analytical Mining in Large Databases. Sigmod Records,
27(1):97–107, 1998.

27. J. Han, S. Chee, and J. Chiand. Issues for On-Line Analytical Mining of Data
Warehouses. In Proceedings of DMKD’98.

28. J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A Data Mining
Query Language for Relational Databases. In Proceedings of DMKD’96.

29. J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-based, multidimensional
data mining. Computer, 32(8):46–50, 1999.

30. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of ACM SIGMOD’00.

31. D. Hand, H. Mannila, and P. Smyh. Principles of Data Mining. The MIT Press,
2001.

32. M. Houtsma and A. Swami. Set-oriented mining for association rules in relational
databases. In Proceedings of ICDE’95.

33. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Comm. Of The Acm, 39:58–64, 1996.

34. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Data Mining and Knowledge Discovery, 3(4):373–408, 1999.

35. T. Imielinski, A. Virmani, and A. Abdulghani. DMajor - Application Programming
Interface for Database Mining. Data Mining and Knowledge Discovery, 3(4):347–
372, 1999.

36. B. Jeudy and J.F. Boulicaut. Optimization of association rule mining queries.
Intelligent Data Analysis Journal, 6(4):341–357, 2002.

37. S. Kramer, L. De Raedt, and C. Helma. Molecular feature mining in hiv data. In
Proceedings of ACM SIGKDD’01.

38. L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang. Optimization of constrained
frequent set queries with 2-variable constraints. SIGMOD Record, 28(2), 1999.

39. W. Li, J. Han, and J. Pei. CMAR: Accurate and efficient classification based on
multiple class-association rules. In In Proceedings of ICDM’01.

40. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.
In Proceedings of KDD’98.

41. H. Mannila and H. Toivonen. Levelwise Search and Border of Theories in Knowl-
edge Discovery. Data Mining and Knowledge Discovery, 3:241–258, 1997.

42. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In Proceedings of VLDB’96.

43. R. Meo, G. Psaila, and S. Ceri. A Tightly-Coupled Architecture for Data Mining.
In Proceedings of ICDE’98.

44. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and
pruning optimizations of constrained associations rules. In Proceedings of the ACM
SIGMOD’98.

45. S. Orlando, P. Palmerini, and R. Perego. Enhancing the Apriori Algorithm for
Frequent Set Counting. In Proceedings of DaWak’01.

A Relational Query Primitive for Constraint-Based Pattern Mining 37

46. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and Resource-Aware
Mining of Frequent Sets. In Proceedings of ICDM’02.

47. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In Proceedings of ICDT’99.

48. J. Pei and J. Han. Can we push more constraints into frequent pattern mining?
In Proceedings of ACM SIGKDD’00.

49. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible
constraints. In (Proceedings of ICDE’01).

50. J. Pei, X. Zhang, M. Cho, H. Wang, and P. Yu. Maple: A fast algorithm for
maximal pattern-based clustering. In Proceedings of ICDM’03.

51. L. De Raedt. A logical database mining query language. In Proceedings of ILP’00.
52. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with

relational database systems: Alternatives and implications. In Proceedings of the
ACM SIGMOD’98.

53. W. Shen and B. Leng. A Metapattern-Based Discovery Loop for Integrated Data
Mining - Unsupervised Learning of Relational Patterns. IEEE Trans. on Knowledge
and Data Engineering, 8(6):898–910, 1996.

54. W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for Data Min-
ing. In Advances in Knowledge Discovery and Data Mining, pages 375–398. AAAI
Press/The MIT Press, 1996.

55. A. P. J. M. Siebes and M. L. Kersten. Keso: Minimizing Database Interaction. In
Proceedings of KDD’97.

56. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints.
In Proceedings of KDD’97.

57. D. Tsur, J.D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query flocks: A generalization of association-rule mining. In Pro-
ceedings of ACM SIGMOD’98.

58. M. L. Yiu and N. Mamoulis. Frequent-pattern based iterative projected clustering.
In Proceedings of ICDM’03.

To See the Wood for the Trees:

Mining Frequent Tree Patterns

Björn Bringmann

Lab for Machine Learning, Institute of Computer Science,
Albert-Ludwigs-University Freiburg,

Georges-Köhler-Allee 079, 79100 Freiburg, Germany
bbringma@informatik.uni-freiburg.de

Abstract. Various definitions and frameworks for discovering frequent
trees in forests have been developed recently. At the heart of these frame-
works lies the notion of matching, which determines if a pattern tree
matches a tree in a data set. We compare four notions of tree matching
for use in frequent tree mining and show how they are related to each
other. Furthermore, we show how Zaki’s TreeMinerV algorithm can be
adapted to employ three of the four notions of tree matching. Experi-
ments on synthetic and real world data highlight the differences between
the matchings.

1 Introduction

In recent years, interest has grown in extending the frequent itemset paradigm
to more expressive pattern types such as graphs, trees and sequences. Special
attention has been devoted to semi-structured [1,2,3,4] and more specifically
to tree-structured data [5,6,7]. These approaches aim at finding all frequent
trees in a forest of rooted trees. They differ not only in the algorithms and
implementation details, but more importantly also in the underlying notion of
tree matching. When does one tree match another one? Asai et al. [5], Zaki [6]
and Termier et al. [7] provide different answers to this question. Asai’s notion
is more restrictive than Zaki’s, which is in turn more restrictive than Termier’s.
Termier et al. also have shown that it can be beneficial to work with more
permissive notions of matching. However, this typically comes at a computational
costs. Indeed, due to the expressiveness of their framework, Termier et al. cannot
guarantee completeness, whereas the approaches of Zaki and Asai et al. are
complete.

There are several important real-world applications for tree mining. First of
all, consider the web usage mining problem [8]. Thousands of visitors maneuver
through the well known web-sites like Amazon, Yahoo! and CNN each and ev-
ery day. Most of these sites basically follow a hierarchical structure, i.e. a tree
structure. Data Mining techniques created to handle trees can be used to gather
information from the behavior of the visitors. The toy-example of an online shop
shown in Figure (1) compares tree embedding and tree incorporation which we

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 38–63, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

To See the Wood for the Trees: Mining Frequent Tree Patterns 39

will discuss in paragraph 2.2. While the latter, more expressive definition yields
only one maximally specific pattern, the notion of tree embedding yields two.
According to tree embedding some visitors looked at the blouse and some at
the Fulgoni purse. The single maximally specific pattern according to the notion
of tree incorporation offers some more information: The visitors looking at the
blouse and the visitors looking at the purse are the same persons. This knowledge
might be helpful when restructuring an online-shop to improve accessibility or
placement of advertisements.

Fig. 1. Two visitor subtrees from a hierarchically structured web-site and the maxi-
mally specific patterns with regard to tree embedding and tree incorporation

XML has become a popular way of storing semi-structured data. As Goldfarb
and Prescod write in their book [9]:

XML is a standardized notation for representing structured information.
It is well-formed theoretically and is based on extensive industry experi-
ence. Although XML documents are simple, readily-transmitted character
strings, the notation easily depicts a tree structure. A tree is a natural
structure that is richer than a simple flat list, yet also respectful of cog-
nitive and data processing requirements for economy and simplicity.

XML data thus forms in general a ’source’ for several important data mining do-
mains. In bioinformatics tree structures arise as well. RNA structures essentially
fold as trees. Newly sequenced RNA is compared with known RNA structures
to draw conclusions about the functions of the RNA [10].

In this chapter, we compare the four notions tree inclusion, tree embedding,
tree incorporation, and tree subsumption used in frequent tree mining and show
how they are related to each other. Furthermore, we extend Zaki’s TreeM-
inerV algorithm such that any of the first three named notions (i.e. all but tree
subsumption) can be employed.

The chapter is organized as follows: Section 2 starts with definitions of trees
and related objects. Using these, we formally define the four different notions of
tree matching. In Theorem 1 we discuss the order among these notions. Section 2
ends with the definition of the tree-mining problem. In section 3, all concepts nec-
essary for the tree-mining algorithm are described and the RETRO algorithm
is explained. The following section discusses a novel pruning technique which
reduces the memory consumption and time needed by the algorithm without

40 B. Bringmann

sacrificing any patterns. In section 5, we show two different ways to extract the
maximally specific patterns from the set of frequent patterns found. The experi-
ments in section 6 give insight into the performance of the algorithm employing
different notions and pruning techniques as well as into the amount of patterns
on real and artificial data. Finally, in sections 7 and 8 we touch upon related
work and conclude.

2 Matching Trees

There exist several different matching notions for trees. All notions use a map-
ping function to match the nodes of one tree onto another tree adhering to several
constraints. We will first define trees and several concepts regarding trees. Based
on those concepts, we then define the four notions of matching we discuss in this
chapter.

2.1 Trees

A graph G = (V, E) is a set of vertices V (i.e. nodes), connected by edges
E ⊆ V × V (i.e. links, arcs). The order of a graph is the number of its vertices
|V |. If each edge is an ordered pair of vertices, the graph is a directed graph. A
graph is undirected if each edge is an unordered pair of vertices. A graph can
have labeled vertices, as well as labeled edges. We will denote a label on a vertex
v ∈ V or edge e ∈ E with λ(v) and λ(e) respectively. A sequence of vertices such
that each of its vertices has an edge to its successor vertex is called a path.

A free tree is a graph in which every pair of vertices is connected by exactly
one path. In a rooted tree, the edges are directed (i.e. a rooted tree is a directed
graph) and every node has exactly one incoming edge, except one designated
node v0 called root, which has no incoming edge. Nodes that have no outgoing
edges are called leaves. Every node that is not a leaf is an inner node. In a rooted
tree, a node c is called a child node of p if (p, c) ∈ E. Dually, p is called parent of
c, denoted as p = π(c). If there is a path from a node a to a node d, a is called an
ancestor of d, and d is called a descendant of a. Hence, the root node of a tree is
an ancestor of all other nodes in the tree. We use π∗(d) =def {π(d)} ∪ π∗(π(d))
to denote the set of all ancestors of a node d. For a tree with order k we write k-
tree. In this work we concentrate onto rooted trees, free trees are not investigated.
Hence, we simply use tree to denote a rooted tree. The child nodes of a node can
be ordered. To denote the order from left to right, we use an operator ≺. If the
child nodes of a node are ordered, the tree is called an ordered rooted tree. We
can now define a formal language L composed of all possible labeled, ordered,
rooted trees.

Furthermore, we need a notion of the scope of a node. This is a very useful
notion for tree mining since the following proposition holds:

Proposition 1 (Scope). Given the scope of a node a in a tree it can be checked
in constant time if a second node b of the same tree is an ancestor, descendant,
left or right sibling of a.

To See the Wood for the Trees: Mining Frequent Tree Patterns 41

The scope of a node n is an interval in N. The nodes in a tree are indexed with
their preorder index, i.e. they are enumerated in a depth first manner as depicted
in Figure (2). Thus, the root node has the index 0 and its leftmost child is vertex
1. The rightmost descendant of the k-tree (i.e. the rightmost leaf) has the index
k − 1, where k is the number of nodes in the tree. Using a function γ(x) that
returns the index of node x, the scope [xl, xr] of a node can be defined as:

xl =def γ(x) and xr =def

{
cr if c is the rightmost child of x
γ(x) if x is a leaf. (1)

An example for the depth-first enumeration and the scope-definition is shown in
Figure (2).

[2, 2] [3, 3] [5, 5]

[4, 5][1, 3]

[0, 5]0

4

5

1

32

Fig. 2. A tree with its nodes labeled with their preorder index and each node annotated
with its scope

2.2 Notions of Tree Matching

Previously [11], we presented three notions of tree matching and introduced also
a novel one. In this section, we explain the differences and similarities between
the four different notions in more detail.

First, all notions of matching map a tree p = (Vp, Ep) onto another tree
t = (Vt, Et), using a function ϕ : Vp → Vt. In all four cases, the labels of the
vertices are preserved: A vertex vp ∈ Vp can only be mapped to a vertex vt ∈ Vt

if λ(vp) = λ(vt), i.e. they both have the same labels.
The four notions have further similarities, but none is shared by all four of

them. Figure (3) gives an example where the maximally specific patterns are

Fig. 3. Given a database consisting of the two trees T1 and T2 the four different notions
yield four different sets of (maximally specific) patterns contained in both trees

42 B. Bringmann

different for all four notions. The most restrictive notion, called tree inclusion,
states that a tree p is included in another tree t if there exists a subtree of t
which is identical to p. It is defined as follows:

Definition 1. Tree Inclusion
A tree p = (Vp, Ep) is included in a tree t = (Vt, Et), denoted as matchincl(p, t),
if there exists an injective mapping ϕ : Vp → Vt from the nodes of p to the nodes
of t such that ∀u, v ∈ Vp

λ(u) = λ(ϕ(u)) ∧
u ≺ v ⇔ ϕ(u) ≺ ϕ(v) ∧
π(u) = v ⇔ π(ϕ(u)) = ϕ(v).

Tree inclusion has been extensively studied (in [12]) and can be decided in lin-
ear time. Asai et al. use this definition of matching in their algorithm FreqT.
This notion might be to limited for several cases, but for other cases exactly this
restrictiveness is required. Consider for example the representation of mathemat-
ical formulae as trees shown in Figure 4. In such a tree, each node corresponds to
an operator or function and the leaves represent variables or numbers. Since the
existence or absence of a single operation or function changes the whole meaning
of the subtree, one would want patterns that preserve the parent-child relation-
ship. Thus, more relaxed notions like tree embedding or tree incorporation, which
allow to ’skip’ nodes in a pattern (and thus would extract A as a pattern for all
three trees shown), are not useful here. Tree patterns in a set of formulae could
be used to precalculate or optimize calculations that appear frequently.

Fig. 4. In settings where a single node might influence the meaning of its whole subtree,
tree inclusion will be the notion of choice

A more relaxed notion, called tree embedding, was first proposed in [13] and is
based on an injective mapping preserving labels and ancestor-descendant rela-
tionships in the trees. In other words, we require that a parent-child relationship
appears in the pattern p if and only if the two vertices are on the same path
from the root to a leaf in the the tree t.

Definition 2. Tree Embedding
A tree p = (Vp, Ep) is embedded in a tree t = (Vt, Et), denoted as matchemb(p, t),
if there exists an injective mapping ϕ : Vp → Vt from the nodes of p to the nodes
of t such that ∀u, v ∈ Vp

To See the Wood for the Trees: Mining Frequent Tree Patterns 43

λ(u) = λ(ϕ(u)) ∧
u ≺ v ⇔ ϕ(u) ≺ ϕ(v) ∧
v ∈ π∗(u)⇔ ϕ(v) ∈ π∗(ϕ(u)).

Whereas the notion of tree inclusion is really useful when a node can change the
meaning of its whole subtree, it will often be too restrictive if one deals with
trees that contain some kind of additional or hierarchical information in the
nodes which does not affect the meaning of nodes below. Consider for example
a database of vehicles as in Figure 5, each represented as a hierarchical tree
describing how the vehicle is composed of all its components. In such a case,
trees may contain additional, more detailed information which is not available
for all types of vehicles. Still, the make up of the components might be similar.
Thus, a notion that allows to ’skip’ nodes can be very useful as shown in the
example in Figure 5.

Fig. 5. Not enforcing the preservation of parent-child relationships allows to extract
patterns that show more hidden similarities in the input data

Our definition, termed tree incorporation, is more relaxed than tree embedding
since an ancestor-descendant relationship in the data does not have to hold in
the pattern. Furthermore, it attempts to preserve the order among the children,
but does not enforce it.

Definition 3. Tree Incorporation
A tree p = (Vp, Ep) is incorporated in a tree t = (Vt, Et), denoted as matchicpr

(p, t), if there exists an injective mapping ϕ : Vp → Vt from the nodes of p to the
the nodes of t such that ∀u, v ∈ Vp

λ(u) = λ(ϕ(u)) ∧
u ≺ v ⇐ ϕ(u) ≺ ϕ(v) ∧
v ∈ π∗(u)⇒ ϕ(v) ∈ π∗(ϕ(u)).

The difference between tree incorporation and tree embedding can be described
as follows. Let us consider two disjunct subsets X and Y of a set of trees D as
shown in Figure (6), where all trees xi ∈ X and yj ∈ Y have two nodes labeled
ψ and φ being descendants of a node labeled γ. Furthermore, in a tree xi ∈ X ,
a node labelled ψ is an ancestor of the node labelled φ. For any tree of the other

44 B. Bringmann

Fig. 6. The notion of tree embedding is more restrictive then tree incorporation, hence
the latter one incorporates more information but less detail in the patterns found

subset Y , the nodes labelled ψ and φ are siblings, i.e. they have no ancestor-
descendant relationship. Given an α such that max(|X |, |Y |) < α ≤ |X | + |Y |,
neither the pattern-tree where ψ is ancestor of φ nor the pattern-tree where
ψ is a sibling of φ will be in at least α trees of the set D. With regard to tree
embedding, there are two tree-patterns with ψ being descendant of γ and φ being
descendant of γ that match at least α trees of the set D. In contrast, when using
the notion of tree incorporation, there will be one tree-pattern where ψ and φ are
siblings in at least α trees in D. That way this result will show the information
that the nodes labelled ψ and φ always appear in the same tree, while from the
result using tree embedding this information cannot be obtained.

Fig. 7. The node labelled 5 denoting a bill and a coin respectively, appears as direct
child of the root-node in the pattern

Furthermore, consider the example in Figure 7 where each tree represents the
bills and coins of a currency. Both currencies have coins and bills with similar
values. However, there is a 5 Euro bill but a 5 DM coin. Hence, the pattern that
appears in both trees w.r.t. tree incorporation contains the node labelled 5 as
child of the root node, since it can not be assigned to bill or coin in both cases.
Using tree embedding, the pattern would or contain a coin and/or bill node or
the node labelled 5 but never all three.

Finally, tree subsumption was introduced in [7]. It corresponds to representing
the trees as relational formulae (cf. [14]), i.e. as a conjunction of all π∗, edge and
label relations that hold in the tree. A tree then matches another tree if it θ-
subsumes it. Theta-subsumption defined by Plotkin [15] is commonly employed

To See the Wood for the Trees: Mining Frequent Tree Patterns 45

in the field of inductive logic programming (ILP, cf. [16]) and relational learning.
Termier et al. [7] use this notion of tree subsumption in their TreeFinder
algorithm.

Definition 4. Tree Subsumption
A tree p = (Vp, Ep) is subsumed by a tree t = (Vt, Et), denoted as matchsub(p, t),
if there exists a mapping ϕ : Vp → Vt from the nodes of p to the nodes of t such
that ∀u, v ∈ Vp

λ(u) = λ(ϕ(u)) ∧
v ∈ π∗(u)⇒ ϕ(v) ∈ π∗(ϕ(u)).

2.3 Order Among the Notions

The four notions given above are closely related. Indeed, the following theorem
holds:

Theorem 1.

∀t, p ∈ L
matchincl(p, t)→ matchemb(p, t)→ matchicpr(p, t)→ matchsub(p, t) (2)

Proof(matchincl → matchemb):
Since a parent node is also an ancestor node, i.e. π(x) ∈ π∗(x), it follows that:

if (v = π(u) ⇔ ϕ(v) = π(ϕ(u)))
then (v = π(u) ∈ π∗(u)⇔ ϕ(v) = π(ϕ(u)) ∈ π∗(ϕ(u))).

Hence, if a tree p is included in a tree t, it is also embedded in t. ��

Proof (matchemb → matchicpr):
Given u ≺ v ⇔ ϕ(u) ≺ ϕ(v) and v ∈ π∗(u) ⇔ ϕ(v) ∈ π∗(ϕ(u)), it is obvious
that also u ≺ v ⇐ ϕ(u) ≺ ϕ(v) and v ∈ π∗(u) ⇒ ϕ(v) ∈ π∗(ϕ(u)) hold. Hence,
a tree p embedded in a tree t is also incorporated in t. ��

Proof (matchicpr → matchsub):
Given an injective mapping ϕ from Vp to the nodes of Vt, such that ∀u, v ∈ Vp

(λ(u) = λ(ϕ(u))) ∧ (u ≺ v ⇐ ϕ(u) ≺ ϕ(v)) ∧ (v ∈ π∗(u)⇒ ϕ(v) ∈ π∗(ϕ(u))), it
is obvious that only the part of the conditions required by tree subsumption will
hold as well. Thus, if there exists a mapping ϕ such that a tree p is incorporated
in a tree t it is also subsumed by t. ��

2.4 Generality

On each of the matching notions, a more-general than (more-specific than) rela-
tion � (�) can be defined. Given two trees t, t′ ∈ L the relation can be defined
as

t � t′ ⇔ match(t, t′)

46 B. Bringmann

Hence, a tree t is called more general than a tree t′, if and only if t is a pattern of
t′, according to the tree matching notion used. Corresponding to the four notions
of matching there are four generality relations, i.e. for each matchχ there is a
�χ with χ ∈ {incl, emb, icpr, sub}. All four notions of generality induce a partial
order on the pattern language L. In contrast to the generality notion commonly
used for frequent itemset mining1, none of the four generality notions induces a
lattice over L. Figure (8) gives an example for this. In this example two elements
S, S′ are in the greatest lower bound of the trees T1 and T2 for any of the four
notions. Since in a lattice the infimum (and supremum) are unique, this shows
that no generality notion discussed here induces a lattice over L.

Fig. 8. An example that none of the four tree matching notions induces a lattice over
L. S and S′ are maximally specific generalisations of the set {T1, T2}, i.e. there is no
unique element that is the upper bound for this set.

2.5 Pattern Mining

After defining tree matching notions and therewith generality relations over L,
we can formalize the frequent tree mining problem. As stated before, let L be
a formal language composed of all possible labeled, ordered, rooted trees and
D ⊆ L a database. To count the trees t ∈ D containing a pattern p with regard
to a matching notion χ we define a function dt,χ : L → {0, 1} as

dt,χ(p) =def

{
1 if p �χ t
0 otherwise, (3)

that is 1 if the pattern p occurs at least once in the tree t, and 0 otherwise. The
frequency of a pattern p in D can then be defined as

σD,χ(p) =def Σt∈Ddt,χ(p) (4)

Using this definition, we now can define the task of frequent tree mining:

Given a set of trees D and a minimum frequency α, the task of tree-
mining is to find all patterns p ∈ L with regard to a matching notion χ
such that σD,χ(p) ≥ α holds.

1 In frequent itemset mining as introduced in [17], a pattern t is a set of items, and t
is more general than t′ if and only if t ⊆ t′.

To See the Wood for the Trees: Mining Frequent Tree Patterns 47

All four matching notions can be used for searching patterns that occur with a
minimum frequency.

Definition 5. Antimonotonicity
A constraint or selection predicate q(p) (such as minimum frequency σD,χ(p) ≥
α) is antimonotone with regard to the specialization relation � if and only if

∀g � s ⇒ (q(s) ⇒ q(g)). (5)

The minimum-frequency predicate as defined above is antimonotone with re-
gard to the specialization-relation �, since for any pattern g �χ s it holds
that σD,χ(g) ≥ σD,χ(s). Considering the framework introduced by Mannila and
Toivonen [18], the theory of a database D with regard to a matching notion χ
and a minimum frequency α can be defined as:

Th(L,D, (α, χ)) = {p ∈ L | σD,χ(p) ≥ α}

As a consequence of Theorem 1, the set of frequent trees with regard to a data
set D for tree inclusion is smaller than that for tree embedding, which is in turn
smaller than that for tree incorporation. The set of frequent trees with regard
to tree incorporation finally is smaller than that induced by tree subsumption.
This motivates the use of the notion of matching as a parameter of frequent tree
discovery tasks.

As pointed out by Mannila and Toivonen [18], a set Th ⊆ L can be described
by giving just the positive or the negative border. This helps to reduce the
size for the representation of the solution. While the complete theory Th may
contain thousands of patterns, the borders often contain only a small fraction of
the patterns when compared to the whole version space. The maximally specific
set S, which is the same as the positive border (Bd+), is defined as follows:

Definition 6. Maximally Specific Set - S

S =def {p ∈ Th|∀p′ ∈ L : p � p′ ⇒ p′ /∈ Th} (6)

Minimum support is only one of several constraints that can be used to search
for patterns occurring in a database. As long as the constraint is antimonotone
with regard to the more-general relation, the resulting Th can be represented
by its maximally specific set only. Hence, one could define constraints on tree-
patterns like a maximum number of vertices, a maximum depth, or a maximum
branching factor in a pattern. In addition to this extension, one can also use
the generality relation � to define additional constraints. That will result in
constraints like maximally specific patterns. I.e., given a set of maximally specific
patterns Max ⊂ L there will be only patterns p in the result set such that
∀m ∈ Max : p � m. Please note that the set Max cannot always be reduced to
just one tree, since the generality relation does not induce a lattice over L.

Even further, monotone constraints could be used. I.e., a maximum support
could be defined similar to the minimum support or a set of maximally gen-
eral patterns. Similar to the antimonotonicity of constraints the monotonicity is
defined.

48 B. Bringmann

Definition 7. Monotonicity
A constraint q(p) is monotone with regard to the specialization relation � if and
only if

∀g � s ⇒ (q(g)⇒ q(s)). (7)

If monotone constraints are used the corresponding border must be given to
represent the resulting set Th in a compact way, i.e. only by its borders. This set
G of maximally general patterns is defined analogue to the set S of maximally
specific patterns.

Definition 8. Maximally General Set - G

G =def {p ∈ Th|∀p′ ∈ L : p′ � p ⇒ p′ /∈ Th} (8)

Apart from the maximum and minimum frequency constraints, none of the con-
straints mentioned above requires to query the database. Following the notion
of Ng et al. [19], constraints that do not require to query the database are called
domain constraints. In the context of constraint-based mining one can see the
notion of matching employed as providing a constraint. This type of constraint
is comparable to the so-called class constraints mentioned by Ng et al.

Below we focus on the well known minimum frequency. Most of the other
constraints can be treated in a similar way.

3 Mining Trees

Algorithms for mining frequent trees with regard to all four notions of tree
matching exists. The algorithms for tree inclusion FreqT [5] and tree embed-
ding TreeMinerV [6] work in a levelwise manner. Possible pattern trees are
generated by extending known frequent trees with an additional node. After this
extension, the supports for the new pattern trees are counted. The algorithm for
mining incorporated trees RETRO [11] is an extension to the TreeMinerV
algorithm for embedded trees. Thus, it works similarly, searching for frequent
patterns in a levelwise manner.

However, the algorithm TreeFinder by Termier et al. [7] for mining frequent
tree patterns is quite different. First, the trees are represented as relational for-
mulae similar to representing trees within the Inductive Logic Programming
(ILP) framework [16]. For every edge there is a binary predicate named after the
labels of the nodes that are connected. The two arguments are unique identi-
fiers of the connected nodes. After constructing all edge-predicates, their transi-
tive closure is calculated. The algorithm then searches for all frequent ancestor-
descendant relationships and clusters them. The resulting ancestor-descendant
sets are re-transformed into edges from which a tree is constructed. For an in-
depth explanation we refer the reader to [7].

The algorithm FreqT for searching included trees is not further described
here, since the TreeMinerV algorithm will be extended in a way such that it
can be used for mining frequent trees with regard to tree inclusion, tree embed-
ding, and tree incorporation.

To See the Wood for the Trees: Mining Frequent Tree Patterns 49

3.1 Systematically Enumerating Candidate Tree Patterns

As stated before, the algorithms for tree inclusion (FreqT), tree embedding
(TreeMiner), and tree incorporation (RETRO) work in a levelwise manner.
All three use a method called rightmost expansion to canonically enumerate all
labeled, ordered, rooted trees. This technique was independently proposed by
Zaki [6] and Asai et al. [5]. It works in a levelwise manner, adding a single node to
a known frequent pattern in such a way that every possible candidate pattern will
be generated exactly once. Thus the rightmost expansion is an optimal refinement
operator, since every tree is enumerated but no tree is enumerated several times.
Basically a k-tree is expanded to several k+1-trees Pi by adding new nodes only
to its rightmost path as shown in Figure 9. The new node vk+1 in a pattern Pi is
called rightmost leaf (RML) and the subtree without its RML is called prefix of the
tree, denoted as [Pi]. The rightmost path of a tree is the path from the root node
to the rightmost leaf. For efficient candidate generation the antimonotonicity
of frequent patterns is used (i.e. a specialization s of a pattern p is not more
frequent than p). Thus, we consider only frequent patterns for extension.

Fig. 9. All 3 and 4-trees of the enumerationtree. The nodes are labeled with their
preorder index. New nodes attached at each level are marked.

3.2 Equivalence Classes and Instance Lists

With focus on the rightmost extension, patterns are organized in so called equiv-
alence classes (EQ). An equivalence class contains all patterns that have the same
prefix, i.e. differ in their rightmost leaves only. Each equivalence class contains
the prefix [Pi] only once and for each pattern Pi a tuple 〈λ(RMLi), γ(π(RMLi))〉
that contains the label λ(RMLi) of the new node and the index of the node it is
attached to. If the RML is the root node of the pattern (i.e. the prefix is empty),
this is denoted by a tuple 〈λ(RMLi),−1〉. Since prefix and equivalence class denote
essentially the same concept, [P] is used to denote both, the prefix of a pattern
P and the equivalence class that contains all patterns with the same prefix [P].
If there are no ambiguities, we use 〈λ, γ〉 to refer to a pattern Pi in [Pi]. With
regard to the definition of tree incorporation, a pattern 〈λ, j〉 is a specialization
of a pattern 〈λ, i〉 if j > i and both patterns belong to the same equivalence

50 B. Bringmann

Fig. 10. A sample for four different instances of pattern p incorporated in a database
consisting of two trees a and b. Both trees contain the pattern twice. In a the rightmost
leaves of both instances are different, whereas in tree b their prefix is different. The
grey marked nodes are the reason that there are two instances in each of the trees.

class. Hence, a function ϕ exists that maps the nodes of 〈λ, i〉 to the nodes of
〈λ, j〉 with respect to Definition 3. For example, for the two left-hand 4-trees in
Figure (9), the right one is a specialization of the left one, but not vice versa.

To efficiently count the support of a pattern, the algorithm needs information
about the instances in the data that support this pattern. Let pattern X be a
k-subtree occurring in a tree T , ϕ the mapping from the pattern-nodes to the
nodes of T , and xk refer to the rightmost leaf of X . Following Zaki, we use I(X)
to refer to the instance-list (also known as scope-list) of X . Each element of I(X)
is a triple 〈t, s, m〉 identifying an instance of X where t is the identifier of the
tree T the pattern X occurs in, m =def {γ(ϕ(x0)), γ(ϕ(x1)), . . . , γ(ϕ(xk−1))}
is a list called match label of the prefix of X , and s is the scope of the node
ϕ(xk), which the rightmost leaf of the pattern is mapped to. These instance lists
contain all instances of a pattern with regard to tree embedding. An example is
shown in Figure (10). Here the instance list for the pattern p is

I(p) = { 〈a, [6, 7], (2, 4, 5)〉,
〈a, [7, 7], (2, 4, 5)〉,
〈b, [6, 6], (0, 2, 4)〉,
〈b, [6, 6], (0, 3, 4)〉 }

For tree incorporation, we need the notion of extended instance lists . As stated
before, a pattern 〈λ, j〉 is a specialization of a pattern 〈λ, i〉 if j > i and both pat-
terns belong to the same equivalence class. Hence, every instance that supports
a pattern 〈λ, j〉 is also an instance that supports the pattern 〈λ, i〉. Using this
information, the definition of an extended instance list , containing all instances
that support a pattern X , is as follows:

I∗(X) = I∗(〈λ, i〉) =def ∪j≥iI(〈λ, j〉) (9)

Given an equivalence class [P], we use Zaki’s class extension to obtain equiv-
alence classes containing the successors of the patterns in [P] with regard to the
canonical enumeration scheme. The main idea is to consider each pair of patterns

To See the Wood for the Trees: Mining Frequent Tree Patterns 51

Fig. 11. An example for class extension. A class with two patterns is extended to
obtain all its canonical successors. The grey nodes of each pattern represent the prefix
common to all patterns in the equivalence class.

in the class for extension, including self extension. There can be up to two new
candidates for each pair of patterns to be joined. Zaki’s Theorem [6] formalizes
this notion:

Theorem 2. (Class Extension)
Let [P] be an equivalence class and let 〈x, i〉 and 〈y, j〉 denote any two elements in
the class. Let [Px] denote the class representing extensions of element 〈x, i〉. We
define a join operator ⊗ on the two elements, denoted 〈x, i〉 ⊗ 〈y, j〉, as follows:

〈x, i〉 ⊗ 〈y, j〉 =def

⎧⎪⎪⎨
⎪⎪⎩
{〈y, 0〉} if i = j = −1
{〈y, j〉, 〈y, γ(x)〉} if i = j > −1
{〈y, j〉} if i > j
{} otherwise (i < j)

(10)

Then all possible (k + 1)-subtrees in [Px] with the prefix [P] will be enumerated
by applying the join operator to each unordered pair of elements 〈x, i〉 and 〈y, j〉.

As formalized in the join operation, there can be up to two outcomes of a join
of two patterns. In Figure (11), showing the application of the join operator to
an equivalence class consisting of two patterns, the self join of 〈Z, 0〉 results in
two new patterns.

When two patterns A and B of the same equivalence class are joined, their in-
stance lists are joined to obtain the instances that support the resulting patterns
of the join. The corresponding operation is denoted ∩⊗. Let R = 〈x, i〉 ⊗ 〈y, j〉
denote the resulting set of patterns of the join. As stated before, there can be at
most two elements (i.e. patterns) in R. In one of the elements, r̈, the node with

52 B. Bringmann

label y is a sibling of x and in the other element, ˙̇r, y is a child of x. Either one of
the two elements can be in R. Similarly, the join of the instance lists results in at
most two new instance lists, one for each element in R. When joining the instance
lists I(X) and I(Y) of two patterns X and Y , all pairs x = 〈tx, sx, mx〉 ∈ X
and y = 〈ty , sy, my〉 ∈ Y of instances are considered. For two instances to be
joined, i.e. recombined to a new instance, several conditions have to hold. First,
both instances have to appear in the same tree. Second, both instances have to
be extensions of the same prefix occurrence. Finally, the scopes sx = [lx, ux] and
sy = [ly, uy] of the rightmost leaves of the instances have to be considered. If sy

is contained in sx, the rightmost leaf of y is a descendant of the rightmost leaf
of x. In this case we have a new instance for the pattern ˙̇r. If the rightmost leaf
of y is a sibling (to the right) of the rightmost leaf of x we have a new instance
for r̈. The conditions for a new instance for a pattern r̈ are called out-scope test,
whereas the conditions for a pattern ˙̇r are called in-scope test.

Formally speaking, the out-scope test and the in-scope test for two instances
x = 〈tx, sx, mx〉 and y = 〈ty, sy, my〉 (with sx = [lx, ux] and sy = [ly, uy]) are
defined as follows:

Definition 9. In-Scope Test
Given two instances x = 〈tx, sx, mx〉 and y = 〈ty, sy, my〉 we say that y is in the
scope of x if the following conditions hold:

1. tx = ty
2. mx = my

3. lx < ly ∧ ux ≥ uy

Definition 10. Out-Scope Test
Given two instances x = 〈tx, sx, mx〉 and y = 〈ty , sy, my〉 we say that y is
outscope of x if the following conditions hold:

1. tx = ty
2. mx = my

3. ux < ly

If a new instance z is added to either r̈ or ˙̇r, it is composed by combining the
instances x and y such that z =def 〈ty, sy, my ⊕ γ(RML(x))〉, where the operator
⊕ adds a new element to the end of the list. Thus, the node the rightmost leaf
of x refers to is now part of the match of the new instance.

This notion works for embedded trees. For incorporated as well as for included
trees, some minor changes and extensions have to be made.

For tree incorporation we have already introduced extended instance lists.
These lists contain every instance supporting a pattern with regard to tree in-
corporation. Furthermore the conditions of an out-scope test have to be modified
such that condition 3 reads:

ux < ly ∨ (ly < lx ∧ uy ≥ ux).

To See the Wood for the Trees: Mining Frequent Tree Patterns 53

That way, an out-scope test holds if the node the RML of y is mapped to is a
right-sibling or an ancestor of the node the RML of x is mapped to.

For tree inclusion there are no ancestor-descendant relationships allowed, but
only parent-child relationships. Fortunately, this additional constraint can be
incorporated into the algorithm in the following way. The prefix of a tree, i.e.
the part of the pattern that is common to all patterns in the same equivalence
class is not changed when a pattern is extended. So we have to make sure that
every pattern prefix is consistent with the parent-child constraint, such that only
the rightmost leaves are allowed to be in an ancestor-descendant relationship2.
To achieve the parent-child consistency in the prefix, an extension 〈x, i〉 ⊗ 〈y, j〉
of a pattern 〈x, i〉 is permitted only if the rightmost leaf of 〈x, i〉 is a proper child
of its parent in the instance both nodes are mapped to. To do that, we keep track
of the preorder indices of the nodes in the match-part of a pattern instance. To
refer to a single node in the match m = {γ(ϕ(x0)), γ(ϕ(x1)), . . . , γ(ϕ(xn))}, we
use m[i] = γ(ϕ(xi)). Please note that the elements m[i] in the match m of an
instance are ordered with regard to the prefix order of the nodes xi in the pattern
tree X , i.e. m[i] = γ(ϕ(xi)). In addition, the notion of an instance is changed to
a quadruple 〈t, s, m, p〉 where p is the preorder index of the parent node of the
rightmost leaf in the instance. The other three parts remain as before, i.e. t is
the identifier of the tree, s is the scope of the rightmost leaf of the instance, and
m is the match of the instance. The in-scope and out-scope tests are modified
such that there is an additional condition 4 for both cases which requires:

m[k] = p

where k is the number of nodes in the prefix, i.e. the number of elements in the
match m.

3.3 The RETRO Algorithm

As stated before, the RETRO (Frequent Tree Discovery) algorithm is a mod-
ification of Zaki’s TreeMinerV algorithm. The main differences are the usage
of the extended instance lists and the new condition for the out-scope test. The
algorithm for computing frequent patterns with regard to tree incorporation is
shown in Figure (12).

The first part of the algorithm computes the sets containing all frequent
1-trees (i.e. nodes) and 2-trees. Then the main loop starts by calling the function
Enumerate-Frequent-Subtrees for every frequent 2-tree. The function Enumerate-
Frequent-Subtrees generates all possible refinements of patterns in an EQ [P]. This
is done by joining every pair 〈x, i〉 ⊗ 〈y, j〉 of patterns in [P] including self-joins.
Due to the rightmost expansion it is not allowed to join 〈x, i〉 ⊗ 〈y, j〉 with i < j
which would result in non-canonical expansions. A join results in one or two
new patterns (R). Afterwards the respective instance lists are created by joining
the instance lists of the patterns 〈x, i〉 and 〈y, j〉. Any new pattern that turns
out to be frequent is added to the new equivalence class [Px]. If all frequent
2 This is imposed by the design of the algorithm.

54 B. Bringmann

FrequentTreeDiscovery(D, minsup):
F1 = { frequent 1-subtrees };
F2 = { classes [P]1 of frequent 2-subtrees };
for all [P]1 ∈ F2 do

Enumerate-Frequent-Subtrees([P]1);

Enumerate-Frequent-Subtrees([P]):
for each element (x, i) ∈ [P] do

[Px] = ∅
for each element (y, j) ∈ [P] with i ≥ j do

R = {(x, i) ⊗ (y, j)};
I(R) = {I∗(x, i) ∩⊗ I∗(y, j)};
if for any p ∈ R, p is frequent then [Px] = [Px] ∪ {p};

Enumerate-Frequent-Subtrees([Px]);

Fig. 12. TreeMining Algorithm

patterns of the new equivalence class [Px] are computed further refinements of
these patterns are generated. Thus, the algorithm proceeds depth-first.

The Figure (13) shows one path of the enumeration tree when the algorithm
is applied to the database consisting of the two trees (x), (y). The extended
instance lists are required explicitly in refinement step 3. Without the extended
instance lists the algorithm would not refine further, hence it would not reach
the incorporated pattern p.

Fig. 13. An example for a tree pattern search with the notion of tree incorporation.
Only the search path leading to the most specific pattern (p) in both trees (x), (y)
is shown. The shown pattern is not valid with regard to tree embedding where two
different most specific patterns would be discovered.

4 Instance Pruning

Next to well-known pruning techniques like node pruning and edge pruning [5],
we introduce a novel technique called instance pruning (IP) that reduces the

To See the Wood for the Trees: Mining Frequent Tree Patterns 55

average computation time by 50%. It is not only applicable to the algorithm
working on the novel pattern definition, but also to the TreeMinerV algorithm.

As stated before, dt,χ(X) returns a 1 if there is at least one occurrence of
pattern X in tree t, otherwise it returns 0. Hence, the frequency of a pattern
depends only partly on the number of instances. The idea for IP is to keep
only a subset of the instances necessary to discover all frequent patterns. If
there are different instances of a pattern 〈x, i〉 in tree t, they are represented
in the instance list I〈x, i〉 as I1,0 = 〈t, a0, s〉 and I2,0 = 〈t, b0, r〉. If the pattern

Fig. 14. One of the groups with the match label s = {0, 1, 2, 4} or r = {0, 1, 3, 4} can
be removed, since both would yield the same result in future joins

〈x, i〉 is joined with another pattern 〈y, j〉, all instances in I1 and I2 will be
joined with the respective instances of (y, j). Consider two groups of instances
〈t, a0, s〉, . . . , 〈t, am, s〉 and 〈t, b0, r〉, . . . , 〈t, bn, r〉 of the tree t with match labels
s and r as shown in figure 14. If for every triple 〈t, bk, r〉 there exists a triple
〈t, al, s〉 with al = bk, all triples with the match label r can be removed from the
EQ. This is possible, as for instances in the same tree with the same match label
only the nodes al (or bk) are of relevance for the extension of the instances. If a
match label s includes all nodes bk of a match label r, no instance can be created
out of instances with match label r that cannot be created out of instances with
match label s. This decrease in the number of instances can effectively reduce the
memory consumption of the process. More importantly, it lowers computation
time. Not only the removed instances themselves are not joined anymore, but
also the ones that would have been created by joining them. For databases, with
a low number of labels when compared to the number of nodes, IP can reduce
the computation time by up to 80%.

5 Towards the S-Set

As stated before, the pattern mining algorithm uses a canonical enumeration
scheme for labeled, ordered, rooted trees. Due to this scheme, not every spe-
cialization s is created as a refinement of a more general pattern g. During the
mining process this restriction is very useful, since it assures that no pattern is
generated twice, i.e. it avoids redundancy. However, if we are only interested in
the maximally specific patterns, the enumeration strategy gives rise to a prob-
lem:

If a pattern cannot be refined further using the enumeration strategy,
that does not imply that there is no further valid specialization.

56 B. Bringmann

Fig. 15. Altogether there are 35 generalizations (including the empty tree) for the tree
(p) on the left. The Figure shows only the 12 4-trees.

We focus on the most specific patterns only, i.e. the set of patterns S where
every s ∈ S is frequent, but there is no specialization s′ � s such that s′ is
frequent. A run of the algorithm, cf. Figure (12), yields all patterns that are
found to be frequent during the search process. For the notions matchincl and
matchemb these are all frequent patterns. Since the amount of frequent patterns
with regard to the notion of tree incorporation is very high, (cf. Figure (15))
the algorithm focuses on the set S only. Hence, not all frequent patterns are
generated during the search. Obviously, every pattern that can be refined further
cannot be part of the set S. But due to the canonical enumeration scheme, not
every pattern that cannot be refined further is a maximally specific pattern. An
example is shown in Figure (16). Hence, it is necessary to check if there exists a
possible extension, whether it is canonical or not. Below we describe two ways
to solve this problem.

First, the set S+ containing all patterns that could not be further refined
by the algorithm, which is a superset of the desired set S, can be filtered in a

Fig. 16. The trees s, s′, and s′′ are specializations of the tree g. Whereas s and s′

are canonical refinements which are generated by the rightmost expansion, s′′ is not
generated from g by rightmost expansion. Assume that g and s′′ are frequent but
neither s nor s′ are frequent, there exists no frequent canonical refinement of g but
there is a frequent specialization for g: s′′. I.e., g would not be a maximally specific
pattern.

To See the Wood for the Trees: Mining Frequent Tree Patterns 57

post processing step. This can be done by applying the algorithm on each pair
s1, s2 ∈ S+, s1 �= s2 to search for patterns that appear in both trees, i.e. that
have a frequency of 100%. If there is a pattern p that is equal to s1 and appears
in s2 we know that s1 � s2. Hence, s2 is a specialization of s1 and thus s1

does not belong to the set S. After checking every pair of pattern-trees3 the set
S is obtained. This method can be used for all three matchings tree inclusion,
embedding, and incorporation. Unfortunately, the time-complexity is at O(|S|2).

Fortunately, there is another way to discover if further specializations s′ of a
pattern s exist. Before inserting a frequent pattern s that is not further refinable
into the solution set S it has to be checked if there exists no frequent special-
ization s′ of s. For this, non-canonical expansions of the pattern s have to be
considered as well.

During the search process, the algorithm traces instances of the patterns
found. This trace-data can now be used to search for possible non-canonical
expansions of patterns that cannot be generated with regard to the canonical
enumeration scheme.

There are three possible specializations to consider: (1) A new root node,
i.e. adding a parent node of the current root node to the pattern. (2) A new
child node, i.e. adding a child node of the current root node to the pattern.
(3) Descent of a node, i.e. specializing a pattern by moving a certain node
downwards.

The first specialization, which can basically be described as adding a new
node above the current pattern-root node is straight forward. For each tree t,
we select the node r the pattern’s root node is mapped to. We traverse the path
starting from r to the root of t upwards and count the unique labels of the nodes
seen. If any label’s count reaches the minimum frequency, the search can be
aborted: there exists a possible specialization of the considered pattern adding
a new root node.

In the second case, where a new node is added below the pattern-root to gen-
erate a frequent non-canonical specialization, the process is more complicated.
Since for every pattern p with a node n as some descendant of the root node
there exists a more general pattern p with n as direct child of the root node,
only expansions with new nodes as direct children of the root node have to be
considered. Hence, there are as many possible positions (called bins) for a new
node as the current pattern has direct children of the root node. expansion with
a new node as the rightmost child of the root node, since this is already covered
by the canonical expansion. Every node n that is not already part of the pattern
could appear in a bin to the left as well as to the right of a direct child c of the
root node, if n and c are on the same path to the root node. If a node n does not
lie on a path with any direct child c of the root node, it could appear only in one
bin between two existing children cn, cn+1 of the root node (cf. node B in Figure
17). In general in a tree a node n lies on the same path as every ancestor of n and
on the same path as every node in the subtree of n. Figure (17) shows a pattern
and an instance of the pattern in a data tree. For non-canonical expansions there

3 Of course, patterns that turn out to have a specialization are not reconsidered.

58 B. Bringmann

are two positions x1, x2 for a new node. The node D that is a descendant of A
could appear at both, whereas the nodes B and E could only appear at position
x2. The second possible position for node E would be a canonical expansion and
thus is not considered here. To find possible non-canonical expansions, the algo-
rithm traverses the subtree of each instance root and counts the possible labels
for the bins. If any label reaches the minimum support, we know that there is a
frequent specialization of the pattern.

Fig. 17. Searching for non-canonical expansions the algorithm puts every node that is
not part of the instance in up to two bins. Each bin is located on the left of each child of
the root node. for both bins next to the corresponding between the ’root-childs’ where
they are located.

In the third and last case, no new node is added to the pattern. Instead,
specializations of the pattern are considered where the nodes are moved further
down in the tree. For this, every pair of nodes n1, n2 in the pattern is consid-
ered where n1 is a sibling of n2. The algorithm checks if there is an ancestor-
descendant relationship in the data between the nodes n1 and n2 are mapped
to. If the number of trees in which n1 is an ancestor of n2 is equal to or larger
then the minimum frequency, the pattern considered can be specialized further.
I.e., it is not maximally specific.

If none of the three specializations is possible, the pattern is maximally specific
and can be added to the set S.

5.1 Cardinality of Maximally Specific Sets

Due to Theorem 1, the resulting pattern space with regard to tree incorporation
contains more patterns than of tree embedding, which in turn contains more pat-
terns than that of tree inclusion. In contrast to the whole pattern space, there
is no such relation among the S sets, i.e. the sets containing the most specific
patterns only. Two examples are given in Figure (18) and Figure (19). The first
shows that with the given database and a minimum frequency of two there are
five maximally specific patterns for tree inclusion and six for tree embedding.
With a minimum frequency of three, there are still five maximally specific pat-
terns for tree inclusion, but only four for tree embedding. The example for tree
embedding and tree incorporation in Figure (19) is similar. In the first case, there
are four maximally specific patterns with regard to tree embedding and six for

To See the Wood for the Trees: Mining Frequent Tree Patterns 59

Fig. 18. A database and maximally specific patterns w.r.t. tree inclusion and tree em-
bedding for a minimum support of n=2 and n=3 each. For n=2 there are more maximally
specific patterns for embedding while for n=3 there are more w.r.t. inclusion.

Fig. 19. Two databases and maximally specific patterns w.r.t. tree embedding and tree
incorporation for a minimum support of n = 2 in both cases. In the upper case there
are more maximally specific patterns for incorporation while for the database on the
bottom there are more w.r.t. embedding.

tree incorporation. In the second case, there are more for tree embedding than
for tree incorporation.

6 Experimental Results

A number of experiments were conducted on real-world and synthetic datasets.
The real-world dataset (legcare [20]) consists of an online shop’s web-log, con-
taining 234942 visits. Each visit is regarded as a subtree of the hierarchically
structured web-site. There where 694 unique labels for the database. For the
synthetic dataset we implemented a data generator as described by Zaki [6]. All

60 B. Bringmann

the experiments were performed on a 3.2GHz Intel Pentium 4 with 2GB main
memory, running SUSE 9.0. The algorithms were implemented in C++. For the
tree embedding and tree incorporation, instance pruning is available. We com-
pared the number of frequent patterns found by the algorithms and the size of
the S set on both datasets with different minimum support. To calculate the S
set an additional post-processing step was performed.

Fig. 20. Comparing the amount of the patterns generated during the search (left) and
the size of the maximally specific border (right) of three tree matching notions for
various minimum support levels

Figure (20) shows the number of patterns generated during the search and
the number of patterns contributing to the S set for tree embedding and tree
incorporation on the legcare dataset. As mentioned earlier, the notion of tree
incorporation is more relaxed than tree embedding such that more patterns are
generated and discovered during the search. In contrast to the figures shown
here (Figure 20), there is no order between the notions with regard to the size of
the according S set as explained in the Figures (18, 19). All three notions have
in common that they exhibit exponential growth in the number of most specific
patterns as well as in patterns considered during the search when reducing the
minimum support. For the legcare-dataset there was no effect on computation
time with and without IP. However, using IP, the memory consumption dropped
dramatically for computing frequent pattern sets with minimum support below
10%. For the experiments with the synthetic data, a master-tree with 100 unique
labels and 10000 nodes was generated with a maximum depth and fanout of 10.
From this hypothetical web-site we generated 10000 visits, each a smaller sub-
tree of the master-tree, as database. The graph in Figure (21) shows the results
of experiments on this dataset regarding computation time and the effect of in-
stance pruning. The plot clearly indicates an exponential growth in computation
time when lowering the minimum support. The solid lines depict the required
time with IP. Both, tree embedding and tree incorporation4, show a significant
speedup for low minimum support levels using IP. More experiments on syn-
thetic data sets showed similar behaviour, i.e. the runtimes for the algorithms
using IP are significantly lower, especially at low minimum support levels.
4 Since IP was not implemented for tree inclusion there are no results here.

To See the Wood for the Trees: Mining Frequent Tree Patterns 61

Fig. 21. Comparing the effect of instance pruning for embedding and incorporation on
synthetic data

7 Related Work

The most directly related work to this paper is Zaki’s TreeMinerV [6] as well as
Termier’s TreeFinder [7] and FreqT by Asai [5]. Zaki uses a smart, so-called
vertical representation to facilitate the candidate count enabling a fast mining
process that scales well even with large datasets. We adopted this idea for the
presented treemining algorithm RETRO. Since the definition of tree incorpora-
tion is more general than tree embedding or tree inclusion, the algorithm yields
more patterns even when focusing on the S set only. Therefore it is not surprising
that the algorithm is slower than TreeMinerV. Using the RETRO algorithm
to mine embedded trees there is a significant speedup compared to TreeM-
inerV due to the presented pruning technique. Compared to TreeFinder, it
uses a less general pattern definitions, but all of them are complete with regard
to the maximally specific patterns. For tree inclusion and tree embedding it is
even complete with regard to the whole pattern space.

Other algorithms like FreeTreeMiner by Yun Chi et al. [21] and Hy-
bridTreeMiner [22] work on free trees. Furthermore there exist several al-
gorithms like FreeTreeMiner by Rückert and Kramer [23] which searches for
free-tree patterns in graphs or AGM [1], FSM [2], gSpan [3], and Gaston [24]
that work completely on graphs rather than trees. They are restricted to sub-
graphs consisting of edges and if applied to trees would only discover frequent
trees in the sense of subtree inclusion. The Gaston algorithm realizes the graph
search stepwise. First frequent sequences are mined that are expanded to trees
and later on to graphs.

8 Conclusions

The algorithm presented in this paper improves and expands the TreeMinerV
algorithm. We added support for tree incorporation and and tree inclusion. The
introduced instance pruning technique reduces the computation time as well as
the memory usage of the algorithm in many cases. Since the amount of frequent

62 B. Bringmann

patterns in large databases grows fast when lowering the minimum support it
seams to be useful to calculate the set S of all maximally specific patterns. An
approach how to immediately calculate the set of all maximally specific patterns
by considering non-canonical expansions was presented.

Furthermore, we have shown that there is an order among the four different
matching notions. Each tree that matches another one with regard to tree in-
clusion also matches the same tree with regard to tree embedding. In the same
way, each tree that is embedded in another tree is incorporated in the tree as
well. Finally each incorporated tree is subsumed. Hence, the amount of patterns
grows from tree inclusion, over embedding, incorporation to subsumption. In
contrast this is not true for the set of maximally specific patterns.

With regard to the future, especially in a real-word environment, it would
be nice to have more constraints, like maximally-general or maximally-specific
pattern, to enable the user to focus the search as in MolFea [4]. Furthermore
it would be interesting to extend the tree-mining process to first order logic
which would give a much more expressive language for data and patterns. On
the other hand the frequent patterns discovered could also be used as features
for some classifier as in [25]. Considering the notion of tree incorporation, we still
have to evaluate if the additional cost in time and memory is justified by more
informative patterns. Finally, it depends on the data and on the requirements
of the user which tree matching notion is the best.

Acknowledgments

We sincerely thank Luc De Raedt for motivating this work. We also thank Mo-
hammed Zaki for providing the TreeMiner source code. Further many thanks
to Ulrich Rückert, Albrecht Zimmermann, Kristian Kersting, and Andreas Kar-
wath for constructive comments and helpful suggestions. The real world dataset
was kindly provided by Blue Martini Software.

This work was partly supported by the EU IST project cInQ (Consortium on
discovering knowledge with Inductive Queries). Contract no. IST-2000-26469.

References

1. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining
frequent substructures from graph data. In: Proc. of PKDD. (2000) 13–23

2. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Proc. of ICDM.
(2001) 439–442

3. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: Proc. of
ICDM. (2002) 721–724

4. De Raedt, L., Kramer, S.: The levelwise version space algorithm and its application
to molecular fragement finding. In: Proc. of IJCAI-01. (2001) 853–862

5. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: Proc. of SIAM SDM.
(2002) 158–174

6. Zaki, M.: Efficiently mining frequent trees in a forest. In: Proc. of KDD. (2002)
71–80

To See the Wood for the Trees: Mining Frequent Tree Patterns 63

7. Termier, A., Rousset, M.C., Sebag, M.: Treefinder: a first step towards XML data
mining. In: Proc. of ICDM. (2002) 450–457

8. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: Information and pattern
discovery on the world wide web. In: Proc. of ICTAI. (1997) 558–567

9. Goldfarb, C.F., Prescod, P.: The XML handbook. Prentice Hall (1998) ISBN
0-13-081152-1.

10. Shapiro, B.A., Zhang, K.: Comparing multiple RNA secondary structures using
tree comparisons. Computer Applications in the Biosciences 6 (1990) 309–318

11. Bringmann, B.: Matching in frequent tree discovery. In: Proc. of ICDM. (2004)
335–338

12. Ramesh, R., Ramakrishnan, L.: Nonlinear pattern matching in trees. Journal of
the ACM 39(2) (1992) 295–316

13. Kilpeläinen, P.: Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki (1992)

14. Lloyd, J.W.: Foundations of logic programming; (2nd extended ed.). Springer-
Verlag New York, Inc. (1987)

15. Plotkin, G.D.: A note on inductive generalization. In: Machine Intelligence. Vol-
ume 5. Edinburgh University Press (1970) 153–163

16. Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629–679

17. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proc. of ICMD, Washington, D.C. (1993) 207–216

18. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1 (1997) 241–258

19. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning
optimizations of constrained associations rules. In: SIGMOD ’98: Proceedings of
the 1998 ACM SIGMOD international conference on Management of data, ACM
Press (1998) 13–24

20. Kohavi, R., Brodley, C., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000 orga-
nizers’ report: Peeling the onion. SIGKDD Explorations 2 (2000) 85–98

21. Chi, Y., Yang, Y., Muntz, R.R.: Indexing and mining free trees. In: Proc. of ICDM.
(2003) 509–512

22. Chi, Y., Yang, Y., Muntz, R.R.: Hybridtreeminer: An efficient algorithm for mining
frequent rooted trees and free trees using canonical form. In: Proc. of SSDBM.
(2004) 11–20

23. Rückert, U., Kramer, S.: Frequent free tree discovery in graph data. In: Proc. of
ACM symposium on Applied computing, ACM Press (2004) 564–570

24. Nijssen, S., Kok, J.N.: A quickstart in frequent structure mining can make a
difference. In: Proc. of KDD, ACM Press (2004) 647–652

25. Bringmann, B., Karwath, A.: Frequent SMILES. In: Proc. of LWA (FGML). (2004)
132–137

A Survey on Condensed Representations

for Frequent Sets

Toon Calders1, Christophe Rigotti2, and Jean-François Boulicaut2

1 University of Antwerp, Belgium
toon.calders@ua.ac.be

2 INSA Lyon, LIRIS CNRS UMR 5205, France
{crigotti, jfboulicaut}@liris.cnrs.fr

Abstract. Solving inductive queries which have to return complete col-
lections of patterns satisfying a given predicate has been studied exten-
sively the last few years. The specific problem of frequent set mining
from potentially huge boolean matrices has given rise to tens of effi-
cient solvers. Frequent sets are indeed useful for many data mining tasks,
including the popular association rule mining task but also feature con-
struction, association-based classification, clustering, etc. The research in
this area has been boosted by the fascinating concept of condensed rep-
resentations w.r.t. frequency queries. Such representations can be used
to support the discovery of every frequent set and its support without
looking back at the data. Interestingly, the size of condensed representa-
tions can be several orders of magnitude smaller than the size of frequent
set collections. Most of the proposals concern exact representations while
it is also possible to consider approximated ones, i.e., to trade compu-
tational complexity with a bounded approximation on the computed
support values. This paper surveys the core concepts used in the recent
works on condensed representation for frequent sets.

1 Introduction

Knowledge Discovery in Databases (KDD) is a complex interactive and itera-
tive process which involves many steps. Within the inductive database (IDB)
framework, the needed data mining tasks are formalized as inductive queries
which can be used to generate (mine), manipulate, and apply patterns [33,24].
The IDB framework is appealing because it employs declarative queries instead
of ad-hoc procedural constructs. Since its introduction in [1], one of the most
studied problems has been frequent itemset mining (FIM) and the popular post-
processing of found itemsets into collections of association rules. Originally, this
task has been dedicated to basket data analysis. Given a database of purchases
or transactions, the association rule mining problem is to find associations be-
tween sets of products. In this context, the frequent itemsets correspond to sets
of products that are often purchased together. Since then, the scope of associ-
ation rule mining applications has been broadened towards many data analysis
problems which are based on boolean or O/1 data (e.g., documents, WWW ses-
sions, or microarray experiments can be considered as transactions whose items

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 64–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Survey on Condensed Representations for Frequent Sets 65

are respectively descriptors, uploaded resources or gene expression properties).
Finding the frequent itemsets given a user-defined support threshold is not only
the computationally most intensive step of association rule mining, but also it can
be used for many other mining tasks, e.g., feature construction for classification
or clustering methods. As such, the efficient extraction of frequent itemsets di-
rectly leads to significant performance improvements for many interactive KDD
processes. It is indeed widely recognized that mining frequent itemsets should
be one of the main operations supported by an inductive database management
system.

The FIM problem has been studied as an inductive querying problem (see,
e.g., [10]) and it is a prototypical task for which the general idea of condensed
representations introduced in [39] has been proved extremely useful. The simple
model introduced in [40] enables to abstract the semantics of inductive queries.
Given a languageL of patterns, the theory of a databaseD w.r.t. L and a selection
predicate C is the collection Th(D,L, C) = {φ ∈ L | C(φ,D) = true}. The
predicate selection or constraint C indicates whether a pattern φ is interesting or
not. We say that computing Th(D,L, C) is the evaluation for the inductive query
C where C is defined as a boolean expression over some primitive constraints. The
FIM problem concerns inductive queries where the data is a set of transactions
(i.e., a potentially huge boolean matrix), the patterns are itemsets (i.e., sets of
columns of the boolean matrix), and the constraint C is reduced to a minimal
support constraint. In the first years, most of the research on the FIM problem
has concentrated on extracting all frequent sets as efficiently as possible. Level-
wise and depth-first search methods based on the anti-monotonicity of minimal
support, and efficient data structures have been studied. Since the first algorithm
AIS [1], there have been important historical gains on performance such as:
improving pruning (Apriori [2]) and counting (e.g., Partition [48], Sampling [49]),
reducing the number of database scans (e.g., DIC [15]), and avoiding explicit
candidate generation (e.g., FP-Growth [32]). This list is not exhaustive, and it
should also be noticed that these approaches are often based on a mix of several
improvements. Often, however, the number of frequent itemsets is so huge that
their storage and support counting require unrealistic resources. This blow-up
happens, for example, when we set the support threshold too low, or when the
data is heavily correlated. Indeed, in the worst case, the number of frequent
itemsets can be exponential in the number of items. Even though typical basket
data is sparse and weakly correlated, many new applications of FIM have turned
to be computationally too hard.

One solution to this problem relies on the condensed representation principle.
The idea is to compute CR ⊆ L which might be as concise as possible such that
deriving Th(D,L, C) from CR can be performed efficiently. In the context of huge
database mining, efficiently means without any further access to D. Using border
sets [40], e.g., the maximal frequent itemsets for FIM [5], might be considered
as a good solution: all the subsets of the maximal frequent itemsets are frequent
itemsets (i.e., this condensed representation is a proper subset of the theory)
and can be derived without looking at the data. In most of the applications of

66 T. Calders, C. Rigotti, and J.-F. Boulicaut

FIM, however, the user wants not only the collection of the frequent patterns but
also their supports (e.g., to compute association rule interestingness measures
like the confidence values). Now, a condensed representation CR must enable to
regenerate not only the patterns, but also the values of an evaluation function
like the support without accessing the data. If the regenerated values are only
approximated, the condensed representation is called approximate. Otherwise,
it is called an exact condensed representation. For a condensed representation,
different characteristics determine its usefulness, depending on the application
area. It is clear that good characteristics are: the size of the representation (the-
oretically and in practice), the efficiency, and the completeness of the algorithms
which compute these representations, the fast and complete generation of useful
information from the representation (e.g., all the frequent itemsets and their
supports, relevant association rules).

Starting from the formalization of ε-adequate representations [39] and its first
concrete application to FIM in [11], many useful condensed representations have
been designed over the last 5 years. The main objective of this survey is to
present, in a synthetic way, the core concepts used in the recent works on con-
densed representation for frequent itemsets, including: Closed Sets [55,43,44,11]
δ-Free Sets [12,13], Disjunction-Free Sets [17,18], Generalized Disjunction-Free
Sets [37], Non-Derivable Itemsets [20], and the unified framework presented
in [21].

The organization of the paper is as follows. In the next section, we recall
some preliminary definitions. Then, we present several condensed representations
in Sections 3 to 6. Section 7 concerns a recent framework which provides a
unified view of most of these representations. Section 8 provides pointers to
representative algorithms for computing condensed representations. Section 9
gives complementary bibliographic information concerning applications. Finally,
Section 10 is a short conclusion.

2 Preliminary Definitions

The FIM problem is by now well known [1]. We are given a set of items I and a
database D of subsets of I (to allow duplicates, D can be defined as a multi-set).
The elements of D are called transactions. An itemset I ⊆ I is a set of items; its
support in D, denoted supp(I,D), is defined as the number of transactions in D
that contain all items of I. An itemset is called σ-frequent in D if its support in
D exceeds σ. The goal is now, given a minimal support threshold and a database,
to compute the collection F(D, σ) of all frequent itemsets and their supports.
We denote itemsets by strings, e.g., abcd denotes the set {a, b, c, d}.

The presentation of most of the condensed representations needs for the con-
cept of negative border introduced in [40]. The negative border of a collection
of itemsets J , denoted Bd−(J) is the collection {X |X ⊆ I ∧X �∈ J ∧ (∀Y ⊂
X, Y ∈ J)}. Intuitively, Bd−(J) contains the smallest itemsets not in J . For in-
stance, Bd−(F(D, σ)) denotes the collection of the smallest (w.r.t. set inclusion)
infrequent itemsets.

A Survey on Condensed Representations for Frequent Sets 67

The last notion that we recall in this section, is anti-monotonicity. It is a
commonly used property leading to safe pruning criteria and efficient pattern
mining (e.g., [40]). A property ρ is anti-monotonic if and only if for all itemsets
X and Y , ρ(X) and Y ⊆ X implies ρ(Y). Clearly, the minimal support property
is anti-monotonic.

3 Closed Sets

This representation is based on the notion of closed set used in formal concept
analysis [51,28], a branch of lattice theory dedicated to the study of the lattice
structure induced by a binary relation (structure called Galois lattice or concept
lattice).

The application of this theory to frequent itemset mining has been proposed
independently by Pasquier et al. in [43,44] and by Zaki and Ogihara in [55].

In this context, an itemset I is said to be closed in D if and only if no proper
superset of I has the same support than I in D. The closure of an itemset I in D,
denoted cl(I), is the unique maximal superset of I having the same support than
I and a closed itemset is equal to its closure. One elegant alternative definition is
to consider the equivalence classes of the itemsets appearing in the same sets of
transactions, i.e., the equivalence classes of the relation “has the same closure”:
closed itemsets are the unique maximal elements of each equivalence class [4].

For a given support threshold, it is thus sufficient to know the collection of
all frequent closed itemsets (denoted FreqClosed) and their supports, to be able
to generate all the frequent itemsets and their supports, i.e., F . For example,
consider an itemset X , if X has no superset in FreqClosed , this means that cl(X)
is not frequent, and thus X can not be frequent. If X has at least one superset in
FreqClosed , then supp(X) = supp(Y) where Y = cl(X) is the smallest superset
of X in FreqClosed .

Let us consider the database containing the following transactions: two trans-
actions {a, b}, two transactions {a, b, c, d} two transactions {a, b, c, d, e} and one
transaction {a, b, c, d, e, f} (see Table 1).

In such a database, for example, the itemset abc is not closed, since it has
the same support (i.e., 5 transactions) than abcd, one of its proper supersets.

Table 1. A toy database

Items

Trans. a b c d e f

t1 1 1 0 0 0 0
t2 1 1 0 0 0 0
t3 1 1 1 1 0 0
t4 1 1 1 1 0 0
t5 1 1 1 1 1 0
t6 1 1 1 1 1 0
t7 1 1 1 1 1 1

68 T. Calders, C. Rigotti, and J.-F. Boulicaut

The itemset abcd is the maximal superset of abc having the same support, and
thus is the closure of abc. If we choose a support threshold of 2 transactions,
then the frequent closed sets are ab, abcd, abcde and their respective supports
are 7, 5 and 3. Having only at hand these frequent closed sets, to generate the
support of abc we consider the smallest frequent closed set that is a superset of
abc. This frequent closed set is abcd and its support (i.e., 5 transactions) gives
us the support of abc.

4 Free Sets

The free sets (also termed δ-free sets) have been introduced in [12,13] and are
based on the notion of δ-strong rule1. Informally, a δ-strong rule is an association
rule of the form X ⇒δ a, where X ⊆ I, a ∈ I \X , and δ is a natural number.
This rule is valid in a database if supp(X)− supp(X ∪ {a}) ≤ δ, i.e., the rule is
violated in no more than δ transactions. Since δ is supposed to be small w.r.t.
|D|, δ-strong rules have a high confidence (in particular confidence 1 when δ = 0).

An itemset Y ⊆ I is a δ-free set if and only if there is no valid δ-strong rule
X ⇒δ a such that X ⊂ Y , a ∈ Y and where by definition a �∈ X .

The set of all frequent δ-free sets, denoted FreqFreeδ, and their supports en-
ables to approximate the support of the frequent non-δ-free sets. Let us consider
Y a frequent non-δ-free set. Then, there exists a valid δ-strong rule X ⇒δ a
such that X ⊂ Y and a ∈ Y . Moreover, Y \ {a} ⇒δ a is also valid. Thus the
support of Y can be approximated by the support of the frequent set Y \ {a}
(more precisely, this support is an upper bound of supp(Y)). If Y \ {a} is a
free-set then we have its support, if not, it can be in turn approximated by the
support of a smaller itemset. This recursive process gives an approximation of
the support of Y . Using this principle, the best approximation is the lowest up-
per bound. Thus, in practice, the support of Y is approximated by the minimal
support value of the frequent δ-free sets that are subsets of Y . The error made
has been formalized using the framework of an ε-adequate representation [39],
and is small on common real datasets [13].

When δ = 0, the support of all frequent non-δ-free sets can be determined ex-
actly. In fact, the 0-free sets corresponds to the key patterns (also called generators)
developed independently in [4], and also used in other works, such as [36]. The fol-
lowing property mentioned by several authors (e.g., [4]) establishes a direct link
between 0-free sets and closed sets: any frequent closed sets is the closure of at least
one frequent 0-free sets. As a result, when considering each (frequent) 0-free set
X , cl(X) is a (frequent) closed set but also X ⇒ cl(X) \X is an association rule
with confidence 1. In fact, 0-free sets are the minimal elements of the already men-
tioned equivalence classes. Since several minimal elements are possible, collections
of 0-free sets are generally larger than collections of closed sets. In our toy example
from Table 1, the 2-frequent 0-free sets are ∅, c, d and e.

Even though the frequent δ-free sets are sufficient to approximate the support
of all frequent non-δ-free sets (or to determine this support exactly when δ = 0),
1 Stemming from the notion of strong rule of [46].

A Survey on Condensed Representations for Frequent Sets 69

they are not sufficient to decide whether an itemset is frequent or not. For this
purpose, the collection of frequent δ-free sets is completed by the collection of
minimal infrequent δ-free itemsets, that can be defined as Bd−(FreqFreeδ)∩Freeδ,
where Freeδ is the collection of δ-free sets. Now, given any itemset Y , if there
exists Z ⊆ Y , such that Z is a minimal infrequent δ-free itemsets, then we know
that Y is not frequent. In the other case, the support of Y can be approximated
as described above.

5 Disjunction-Free Sets

5.1 Simple Disjunction-Free Sets

This representation has been proposed in [17,18] as a generalization of 0-free
sets. It is based on disjunctive rules of the form X ⇒ a ∨ b, where X ⊆ I and
a, b ∈ I \ X . Such a rule is said to be valid if any transaction containing X
contains also a or b (maybe both).

Thus the support of X is equal to the sum of supp(X∪{a}) and supp(X∪{b})
minus supp(X ∪ {a, b}) since the transactions containing X ∪ {a, b} have been
counted both in supp(X ∪ {a}) and supp(X ∪ {b}). So, we have the relation
supp(X∪{a, b}) = supp(X∪{a})+supp(X∪{b})−supp(X) and the satisfaction
of this relation is equivalent to the validity of the rule X ⇒ a ∨ b.

Similarly to δ-free sets, an itemset Y ⊆ I is a disjunction-free set if and only
if there is no valid disjunctive rule X ⇒ a ∨ b, such that X ⊂ Y , a, b ∈ Y and
where by definition a �∈ X and b �∈ X . In the following, the collection of all
frequent disjunction-free sets is denoted FreqDFree.

Knowing all elements in FreqDFree and their supports is not sufficient to de-
termine the support of all frequent itemsets. For that purpose the representation
can be completed in different ways. The representation based on disjunction-free
sets proposed in [17] has been revisited in [36] and [18], leading to reduce the
size of this border2.

Intuitively, FreqDFree must be completed with the collection of all the valid
rules of the form X ⇒ a ∨ b, where X ∈ FreqDFree and X ∪ {a, b} is frequent.
This can be illustrated inductively as follows. Suppose that using FreqDFree (and
the supports of its elements) and the collection of rules defined above, we are
able to compute the support of any itemset having a size lesser or equal to k.
Let us consider a frequent itemset Y such that |Y | = k + 1. If Y is disjunction-
free then Y ∈ FreqDFree and we know its support. If Y is not disjunction-free,
then there exists a valid rule X ⇒ a ∨ b such that X ⊂ Y and a, b ∈ Y . By
definition of a valid rule, Y \ {a, b} ⇒ a ∨ b is also valid. Hence the relation
supp(Y) = supp(Y \ {b}) + supp(Y \ {a}) − supp(Y \ {a, b}) holds. Since Y is
frequent, the itemsets Y \{b}, Y \{a} and Y \{a, b} are also frequent. Moreover,
these three sets have a size strictly lesser than k + 1. Thus, by hypothesis, we
can determine their supports, and then compute supp(Y).

2 The core part of the representation, i.e. the frequent disjunction-free sets (called
frequent disjunction-free generators in [36]), remains the same.

70 T. Calders, C. Rigotti, and J.-F. Boulicaut

5.2 Generalized Disjunction-Free Sets

The generalization of disjunction-free sets towards rules of the form X ⇒ a1 ∨
. . . ∨ ai ∨ . . . ∨ an, has been suggested in [17,18], and explored in [37]. In this
context, an itemset X is a generalized disjunction-free set if and only if for any
value of n > 0, there is no valid rule X \ {a1, . . . , ai, . . . , an} ⇒ a1 ∨ . . . ∨ ai ∨
. . . ∨ an, where {a1, . . . , ai, . . . , an} ⊆ X .

6 Non-derivable Itemsets

In [20], the non-derivable itemsets (NDIs) were introduced as a new condensed
representation. The NDIs rely on a complete set of deduction rules that de-
rive bounds on the support of an itemset. In this section, we first discuss the
deduction rules, and then introduce the representation based on these rules.

6.1 Deduction Rules

In [20], formulas to bound the support of an itemset I, based on the supports of
its subsets were introduced. For all X ⊆ I, the following rule holds:

supp(I) ≤
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) if |I \X | odd

supp(I) ≥
∑

X⊆J⊂I

(−1)|I\J|+1supp(J) if |I \X | even

This rule is denoted RX(I). The rules are based on the inclusion-exclusion prin-
ciple [27]. For a proof of the rules, see [19]. Depending on the subset X of I,
the bound is a lower or an upper bound. If |I \ X | is odd, RI(X) is an upper
bound, otherwise it is a lower bound. Thus, given the supports of all subsets of
an itemset I, we can derive lower and upper bounds on the support of I with
the rules RI(X) for all X ⊆ I.

Notice that these rules reflect the monotonicity principle. Let i ∈ I, then
RI\{i}(I) is the following rule:

supp(I) ≤ supp(I \ {i}) .

In Figure 1, all rules RX(I), for I = abcd and X ⊆ I are given.
We denote the greatest lower bound on I by LB(I) and the least upper bound

by UB(I). In practice it occurs often that LB(I) = UB(I). Such a set I is called
a derivable itemset (DI), since we know without counting its support in the
database, that supp(I) = LB(I) = UB(I). In [20] it was shown that derivability
is monotonic. Hence, if a set I is derivable, then are all its supersets.

Another interesting property proven in [20] is that for a non-derivable itemset,
the interval width, that is, w(I) := UB(I) − LB(I), decreases exponentially in
|I|. Thus, w(I ∪ {j}) ≤ w(I)/2, for every itemset I and item j not in I. This
property guarantees that non-derivable itemsets cannot be very large, because
the intervals can only be halved a logarithmic number of times.

A Survey on Condensed Representations for Frequent Sets 71

supp(abcd) ≥ supp(abc) + supp(abd) + supp(acd) + supp(bcd)
−supp(ab) − supp(ac) − supp(ad) − supp(bc) R∅(abcd)
−supp(bd) − supp(cd) + supp(a) + supp(b)
+supp(c) + supp(d) − supp(∅)

supp(abcd) ≤ supp(a) − supp(ab) − supp(ac) − supp(ad) Ra(abcd)
+supp(abc) + supp(abd) + supp(acd)

supp(abcd) ≤ supp(b) − supp(ab) − supp(bc) − supp(bd) Rb(abcd)
+supp(abc) + supp(abd) + supp(bcd)

supp(abcd) ≤ supp(c) − supp(ac) − supp(bc) − supp(cd) Rc(abcd)
+supp(abc) + supp(acd) + supp(bcd)

supp(abcd) ≤ supp(d) − supp(ad) − supp(bd) − supp(cd) Rd(abcd)
+supp(abd) + supp(acd) + supp(bcd)

supp(abcd) ≥ supp(abc) + supp(abd) − supp(ab) Rab(abcd)
supp(abcd) ≥ supp(abc) + supp(acd) − supp(ac) Rac(abcd)
supp(abcd) ≥ supp(abd) + supp(acd) − supp(ad) Rad(abcd)
supp(abcd) ≥ supp(abc) + supp(bcd) − supp(bc) Rbc(abcd)
supp(abcd) ≥ supp(abd) + supp(bcd) − supp(bd) Rbd(abcd)
supp(abcd) ≥ supp(acd) + supp(bcd) − supp(cd) Rcd(abcd)
supp(abcd) ≤ supp(abc) Rabc(abcd)
supp(abcd) ≤ supp(abd) Rabd(abcd)
supp(abcd) ≤ supp(acd) Racd(abcd)
supp(abcd) ≤ supp(bcd) Rbcd(abcd)
supp(abcd) ≥ 0 Rabcd(abcd)

Fig. 1. Tight bounds on supp(abcd)

The size of the rules RI(X) increases exponentially with the cardinality of
I \X . The number |I \X | is called the depth of rule RI(X). Since calculating all
rules may require a lot of resources, in practise only rules of limited depth are
used. The greatest lower and least upper bounds on the support of I resulting
from evaluation of rules up to depth k are denoted LBk(I) and UBk(I). Hence,
the interval [LBk(I), UBk(I)] is formed by the bounds calculated by the rules
{RX(I) | X ⊆ I, |I \X | ≤ k}.

Example 1. Consider the following database:

TID Items
1 a
2 b
3 c
4 a, b
5 a, c
6 b, c
7 a, b, c

supp(abc) ≥ 0
≤ supp(ab) = 2
≤ supp(ac) = 2
≤ supp(bc) = 2
≥ supp(ab) + supp(ac)− supp(a) = 0
≥ supp(ab) + supp(bc)− supp(b) = 0
≥ supp(ac) + supp(bc)− supp(c) = 0
≤ supp(ab) + supp(ac) + supp(bc)

−supp(a)− supp(b)− supp(c) + supp(∅) = 1

These rules are Rabc(X) when X is respectively abc, ab, ac, bc, a, b, c, and ∅. The
first rule has depth 0, the following three rules depth 1, the next three rules depth

72 T. Calders, C. Rigotti, and J.-F. Boulicaut

2, and the last rule has depth 3. Hence, LB0(abc) = 0, LB2(abc) = 0, UB1(abc) =
2, UB3(abc) = 1. The interval width for abc is UB(abc)− LB(abc) = 1.

For ab, we have the following rules:

supp(ab) ≥ 0 supp(ab) ≤ supp(a) = 4
supp(ab) ≥ supp(a) + supp(b)− supp(∅) = 1 supp(ab) ≤ supp(b) = 4

Therefore, LB(ab) = 1, and UB(ab) = 4. The interval width for ab is 3. Notice
that the interval width for abc is indeed less than half of the interval width for
ab.

6.2 Representation Based on Deduction Rules

In [20], the NDI representation was introduced, based on the deduction rules.
The NDI-representation is defined as follows:

NDIRep(D, σ) := {(I, supp(I,D)) | supp(I,D) ≥ σ,LB(I) �= UB(I)}

From NDIRep, for every set I it can be decided whether or not it is frequent,
and if it is frequent, its support can be derived. This can be seen as follows: every
itemset I that is not in NDIRep is either infrequent, or derivable (or both). We
calculate and compare the bounds LB(I) and UB(I). If they are not equal, I
must be infrequent (otherwise I would have been in NDIRep). If they are equal,
then we know supp(I) = LB(I) = UB(I). In order to calculate the bounds on
the support of I, however, we need to know the support of all subsets of I. This
can be done in an iterative way; first we calculate the bounds on the subsets
of I that are in the border of NDIRep. For these subsets, the bounds can be
calculated. If one of them is infrequent, I must be infrequent as well. Otherwise,
we know the supports of all subsets of I in the border of NDIRep. Subsequently,
we can calculate bounds on the subsets of I that are just above the border, and
so on, until either the supports of all subsets of I are known and we can calculate
the bounds for I, or one of the subsets turned out to be infrequent.

7 Unified View

In [21], a unified view of 0-freeness, disjunction-freeness and non-derivability was
given. In this framework, the notion of a k-free3 set is central, as it captures dif-
ferent properties in several previously studied exact condensed representations.
It was shown that the different representations can be described as a main com-
ponent, that is based on frequent k-free, and a border. We now describe the
main ideas of this unified view.

7.1 k-Free Sets

The k-free sets are a key tool in the unified framework.
3 Notice that the k-free sets are different from the δ-free sets of Section 5.

A Survey on Condensed Representations for Frequent Sets 73

Definition 1.
A set I is said to be k-free, if supp(I) �= LBk(I) and supp(I) �= UBk(I).
A set I is said to be ∞-free, if supp(I) �= LB(I), and supp(I) �= UB(I).
The set of all k-free (∞-free) sets is denoted Freek (Free∞).

As the next property states, these definitions cover freeness, disjunction-freeness,
and generalized disjunction-freeness.

Property 1. [21] Let I be a frequent itemset.

– I is free (δ-free with δ = 0) if and only if I is 1-free
– I is disjunction free if and only if I is 2-free.
– I is generalized disjunction-free if and only if I is ∞-free.

The next property forms the basis of the representations based on k-free sets.

Property 2. k-freeness is anti-monotonic; if a set I is k-free, then all its subsets
are k-free as well. Moreover, if supp(J) = LBk(J) (resp. supp(J) = UBk(J)),
then also supp(I) = LBk(I) (resp. supp(I) = UBk(I)), for all J ⊆ I.

The frequent k-free sets together with the border, that is, the collection

{(I, supp(I)) | I ∈ FFreek} ∪ {(J, supp(J)) | ∀j ∈ J : J \ {j} ∈ FFreek} ,

forms a condensed representation. It can be shown by induction that for every
itemset I, we can derive whether or not it is frequent, and if it is frequent, we
can find its support. For the sets that are frequent and k-free or that are in the
border, the support is known because they are in the representation. Next, let
I be a set such that all its subsets are in the representation. Then the support
of all subsets of I is known, as they are all in the representation. Also, I has
at least one subset J in the border of the k-free sets (otherwise I would have
been in the border itself, and thus in the representation). If J is infrequent,
then I is as well. Otherwise, supp(J) is either LBk(J) or UBk(J). Suppose that
supp(J) = LBk(J). Then we know from Property 2 that also supp(I) = LBk(I).
Since the support of all subsets of I are known, we can calculate LBk(I), and
thus we can derive the support of I. Hence, for all itemsets that contain only
one more item than the sets in the representation, we can find the support. We
can now iteratively repeat this procedure to find the sets that contain two more
items, three more items, and so on, until we have found all frequent itemsets.

7.2 Groups in the Border

Let us recall from Section 5 that frequent free sets alone do not form a condensed
representation. In order to have a condensed representation, part of the border
need to be stored as well. For disjunction-free and generalized disjunction-free
sets, parts of the border are needed as well. The reason that some of the sets of
the border are needed is because otherwise it is impossible to tell why the sets
are not in the representation. For example, for the disjunction-free sets, were

74 T. Calders, C. Rigotti, and J.-F. Boulicaut

they left out because the were infrequent, or because they were not disjunction-
free? And if they are not disjunction-free, what rule should be used to derive the
support? Because of the anti-monotonicity of both frequency and disjunction-
freeness, it suffices to store only the sets on the border; if we know them, we
know the rest as well; either the set on the border is infrequent, and then are all
its supersets as well, or it is not disjunction-free with a certain rule, and in that
case, its supersets are not disjunction-free as well, because of the same rule.

In general, as we illustrated in the previous subsection, this situation applies
for k-free sets as well. Again, some elements of the border are needed to have a
condensed representation.

In [21], a systematic study of which parts of the border are really needed was
made. The border of the frequent k-free sets can be divided into different parts,
based on the deduction rules. For example: the group of infrequent sets in the
border, the group of sets I with supp(I) �= LB1(I), or the group of frequent
sets with supp(I) = LB∞(I). In this way the existing representations could be
improved by storing a smaller part of the border.

7.3 Relations Between the Different Representations

From the unified view of the different representations, many relations between
the representations can be derived. In fact, the k-free based representations form
an interesting hierarchy. The higher k is, the more complex the representation
becomes, but at the same time, the more concise. For example, the disjunction-
free sets are based on the 2-free sets, while the non-derivable itemsets are based
on the∞-free sets. Henceforth, on the one hand, the NDI-representation is more
concise than the disjunction-free representation, but on the other hand, it can
be far more costly to compute it and to derive the support of the sets which are
not in the collection [21].

8 Algorithms

Many algorithms and variants have been proposed to extract condensed repre-
sentations for frequent itemsets. The main principles are similar to the ones that
have been proposed for the extraction of frequent itemsets. This includes two
main aspects, firstly the strategy used to explore the pattern space and secondly
the representation of the database used to count the support of the patterns.

Nearly all algorithms start the exploration from the empty itemset and go
towards larger ones. This is performed either in a levelwise way (i.e., considering
all patterns of size n and then all patterns of size n + 1) or using a depth-first
approach. For the counting steps, three main representations have been adopted.
The first one called horizontal database layout is a very natural one, in which
the database is handle as a list of transactions. The second is based on a vertical
database layout representation, so that for each pattern the algorithms store
the identifiers of the transactions in which this pattern occur. Such a list, called
occurrence list or tid-list, are used to count the support of the pattern and also to
generate the occurrence lists of longer patterns. And finally, the third approach

A Survey on Condensed Representations for Frequent Sets 75

that relies on projected databases, which contain in a compact way, subsets of
the data needed to explore sub-spaces of the whole pattern space.

The main representative algorithms are a combination of these exploration
strategies and database representations. The levelwise strategy is used together
with an horizontal database layout to extract the closed sets by the algorithms
Close [44] and Pascal [4], and also to mine the δ-free sets [12,13], the disjunction-
free sets [17,18] (algorithm HLinHex) and the NDIs [20]. The depth-first strategy
and a projected database approach are combined in the Closet [45] and VLin-
Hex [17,18] algorithms to find respectively closed itemsets and disjunction-free
sets. The vertical database layout has been used conjointly to a depth first ex-
ploration in the Charm [54] and the dfNDI [22] algorithms.

Beyond the usual pruning based on support, the various algorithms used
pruning conditions stemming from properties of the different condensed repre-
sentations (e.g., anti-monotonicity of freeness) to reduce the search space. It
should be noticed that a major effort has been made to obtain efficient imple-
mentations (see, e.g., the first and second Workshop on Frequent Itemset Mining
Implementations [31,6]).

9 Applications

Our goal is not to provide an exhaustive list of applications of condensed repre-
sentations of frequent sets. Instead, we want to point out some typical examples
of such works.

It is obvious that condensed representations of frequent sets can be used
for any application of frequent sets: frequent sets and their supports are just
computed faster from dense and/or correlated data. It is however important to
notice that, when condensed representations enable a high condensation, the re-
generation process might fail due to the size of the complete collection of the
frequent sets. Therefore, it makes sense either to use condensed representations
as cache mechanisms and/or to derive relevant patterns directly from the con-
densed representations. For instance, it is possible to provide summaries or even
covers of large collections of association rules [53,3,30]. One typical application
has been considered in [7] where 0-free sets and their closures are computed from
a boolean gene expression data set. One can also point out the generation of a
synthetic view of rule confidence variations from disjunction-free sets [16]. The
recent Ph.D thesis [41] studies summarization techniques for large collections of
patterns and thus many applications of condensed representations. Association-
based classification (see, e.g., [38]) can also benefit from condensed representa-
tions. For instance, using δ-strong association rules built on δ-free itemsets and
their closures has been proved useful in this context [23]. It is also possible to
exploit condensed representations as patterns for themselves, e.g., closed sets in
boolean gene expression data sets correspond to putative synexpression groups
or transcription modules [8].

Condensed representations can be used for optimizing not only one inductive
query on sets but also sequences of queries on set patterns [34,29]. One condensed

76 T. Calders, C. Rigotti, and J.-F. Boulicaut

representation can also be used as an intermediate representation to mine effi-
ciently another one (see, e.g., the generation of closed sets from disjunction-free
sets [18]). Related to inductive querying on sets, one interesting issue concerns
condensed representation mining when the minimal support constraint is not
the only constraint. This has been considered, e.g., for free sets in [14] and for
closed sets in [9].

Finally, we have removed maximal frequent itemsets from consideration while
it can be useful for some applications where the support of every frequent itemset
is not needed, e.g., feature construction. Indeed, border sets have many appli-
cations. For instance, border sets have been studied extensively in the context
of conjunctions of minimal support and maximal support constraints (see, e.g.,
[25]).

10 Conclusion and Perspectives

This paper has surveyed the core concepts used in the recent works on condensed
representations for frequent sets. These concepts have been proved extremely
useful not only for an algorithmic breakthrough concerning the many applica-
tions of frequent set mining but also for deriving more useful patterns, e.g.,
covers of association rules. An important direction of work, is the detailed com-
parison of practical pros and cons of the different representations. This includes
fair experiments on representative real data sets, to compare (1) the representa-
tion sizes (in number of patterns, and also their true sizes in bytes) and (2) their
related time costs, (not only for their extractions, but also for the generation
of patterns like frequent itemsets, rule covers, and for the derivation of other
condensed representations). All the condensed representations mentioned in this
paper are based on equality or inequality relations on itemset supports. Similar
relation on support have been used by other authors in different contexts, e.g.,
for the approximation of the support of itemsets with negation in [39]. It might
be interesting to consider whether the state-of-the-art in condensed representa-
tions enables or not to consider new data mining tasks based on, e.g., association
rule with negated items.

The condensed representation principle can be applied for many other pattern
domains and more sophisticated types of inductive queries. For instance, a similar
concept of freeness has been studied for functional dependency discovery [42]
and various condensed representations have been studied recently for frequent
sequences, trees or graphs (see, e.g., [50,47,52]). It can be also studied w.r.t. quite
general forms of inductive queries which are arbitrary boolean combinations of
some primitive constraints. The results on using collections of version spaces
as condensed representations for queries that involve arbitrary combinations of
monotonic and anti-monotonic constraints provides an interesting starting point
[26]. Also, the relationship between condensed representations and witnesses [35]
might be explored.

As a conclusion, starting from efficient solutions to the Frequent Itemset Min-
ing problem, the notion of condensed representation has been identified as a core

A Survey on Condensed Representations for Frequent Sets 77

concept for inductive query optimization and its interest goes far beyond simple
KDD processes based on itemsets, say standard association rule mining. We are
pretty confident that this will become one major topic for research in the next
few years, either for innovative applications of frequent pattern mining or for
new pattern domains.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. ACM Int. Conf. on Management of Data
SIGMOD’93, pages 207–216, Washington, D.C., USA, May 1993. ACM Press.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proc. Int. Conf. on Very Large Data Bases VLDB’94, pages 487–499,
Santiago de Chile, Chile, Sept. 1994. Morgan Kaufmann.

3. Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and L. Lakhal. Mining minimal
non-redundant association rules using frequent closed itemsets. In Proc. Int. Conf.
on Deductive and Object-Oriented Databases DOOD’00, volume 1861 of LNCS,
pages 972–986, London, UK, July 2000. Springer-Verlag.

4. Y. Bastide, R. Taouil, N. Pasquier, G. Stumme, and L. Lakhal. Mining frequent
patterns with counting inference. SIGKDD Explorations, 2(2):66–75, Dec. 2000.

5. R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. ACM
Int. Conf. on Management of Data SIGMOD’98, pages 85–93, Seattle, USA, June
1998. ACM Press.

6. R. J. Bayardo, B. Goethals, and M. J. Zaki, editors. Proc. Int. Workshop on
Frequent Itemset Mining Implementations FIMI’04, Brighton, UK, Nov. 2004.

7. C. Becquet, S. Blachon, B. Jeudy, J.-F. Boulicaut, and O. Gandrillon. Strong
association rule mining for large gene expression data analysis: a case study on
human SAGE data. Genome Biology, 12, 2002.

8. J. Besson, C. Robardet, J.-F. Boulicaut, and S. Rome. Constraint-based bi-set
mining for biologically relevant pattern discovery in microarray data. Intelligent
Data Analysis, 9(1):59–82, 2005.

9. F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In
Proc. IEEE Int. Conf. on Data Mining ICDM’04, pages 35–42, Brighton, UK, Nov.
2004. IEEE Computer Press.

10. J.-F. Boulicaut. Inductive databases and multiple uses of frequent itemsets: the
cInQ approach. In Database Technologies for Data Mining - Discovering Knowledge
with Inductive Queries, volume 2682 of LNCS, pages 1–23. Springer-Verlag, 2004.

11. J.-F. Boulicaut and A. Bykowski. Frequent closures as a concise representation
for binary data mining. In Proc. Pacific-Asia Conf. on Knowledge Discovery and
Data Mining PAKDD’00, volume 1805 of LNAI, pages 62–73, Kyoto, JP, Apr.
2000. Springer-Verlag.

12. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by mean of free-sets. In Proc. Principles and Practice of Knowledge Discovery
in Databases PKDD’00, volume 1910 of LNAI, pages 75–85, Lyon, F, Sept. 2000.
Springer-Verlag.

13. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7(1):5–22, 2003.

78 T. Calders, C. Rigotti, and J.-F. Boulicaut

14. J.-F. Boulicaut and B. Jeudy. Mining free itemsets under constraints. In Proc.
Int. Database Engineering and Application Symposium IDEAS’01, pages 322–329,
Grenoble, F, July 2001. IEEE Computer Press.

15. S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and
implication rules for market basket data. In Proc. ACM Int. Conf. on Management
of Data SIGMOD’97, pages 255–264, Tucson, USA, May 1997. ACM Press.

16. A. Bykowski, T. Daurel, N. Méger, and C. Rigotti. Integrity constraints over asso-
ciation rules. In Database Technologies for Data Mining - Discovering Knowledge
with Inductive Queries, volume 2682 of LNCS, pages 311–330. Springer-Verlag,
2004.

17. A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In Proc. ACM Symposium on Principles of Database Systems PODS’01, pages
267–273, Santa Barbara, CA, USA, May 2001. ACM Press.

18. A. Bykowski and C. Rigotti. DBC: A condensed representation of frequent patterns
for efficient mining. Information Systems, 28(8):949–977, 2003.

19. T. Calders. Deducing bounds on the support of itemsets. In Database Technologies
for Data Mining - Discovering Knowledge with Inductive Queries, volume 2682 of
LNCS, pages 214–233. Springer-Verlag, 2004.

20. T. Calders and B. Goethals. Mining all non derivable frequent itemsets. In Proc.
Principles and Practice of Knowledge Discovery in Databases PKDD’02, volume
2431 of LNAI, pages 74–85, Helsinki, FIN, Aug. 2002. Springer-Verlag.

21. T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In
Proc. Principles and Practice of Knowledge Discovery in Databases PKDD’03,
volume 2838 of LNAI, pages 71–82, Cavtat-Dubrovnik, HR, Sept. 2003. Springer-
Verlag.

22. T. Calders and B. Goethals. Depth-first non derivable itemset mining. In Proc.
SIAM Int. Conf. on Data Mining SDM’05, Newport Beach, USA, Apr. 2005.

23. B. Crémilleux and J.-F. Boulicaut. Simplest rules characterizing classes gener-
ated by delta-free sets. In Proc. BCS Int. Conf. on Knowledge Based Systems
and Applied Artificial Intelligence ES’02, pages 33–46, Cambridge, UK, Dec. 2002.
Springer-Verlag.

24. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69–77, 2003.

25. L. De Raedt. Towards query evaluation in inductive databases using version spaces.
In Database Technologies for Data Mining - Discovering Knowledge with Inductive
Queries, volume 2682 of LNCS, pages 117–134. Springer-Verlag, 2004.

26. L. De Raedt, M. Jaeger, S. D. Lee, and H. Mannila. A theory of inductive query
answering. In Proc. IEEE Int. Conf. on Data Mining ICDM’02, pages 123–130,
Maebashi City, JP, Dec. 2002. IEEE Computer Press.

27. J. Galambos and I. Simonelli. Bonferroni-type Inequalities with Applications.
Springer, 1996.

28. B. Ganter and R. Wille. Formal Concept Analysis, Mathematical Foundations.
Springer-Verlag, 1999.

29. A. Giacometti, D. Laurent, and C. T. Diop. Condensed representations for sets of
mining queries. In Database Technologies for Data Mining - Discovering Knowledge
with Inductive Queries, volume 2682 of LNCS, pages 250–269. Springer-Verlag,
2004.

30. B. Goethals, J. Muhonen, and H. Toivonen. Mining non derivable association rules.
In Proc. SIAM Int. Conf. on Data Mining SDM’05, Newport Beach, USA, Apr.
2005.

A Survey on Condensed Representations for Frequent Sets 79

31. B. Goethals and M. J. Zaki, editors. Proc. Int. Workshop on Frequent Itemset
Mining Implementations FIMI’03, Melbourne, Florida, USA, Nov. 2003.

32. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proc. ACM Int. Conf. on Management of Data SIGMOD’00, pages 1 – 12,
Dallas, Texas, USA, May 2000. ACM Press.

33. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

34. B. Jeudy and J.-F. Boulicaut. Using condensed representations for interactive
association rule mining. In Proc. Principles and Practice of Knowledge Discovery
in Databases PKDD’02, volume 2431 of LNAI, pages 225–236, Helsinki, FIN, Aug.
2002. Springer-Verlag.

35. D. Kifer, J. Gehrke, C. Bucila, and W. M. White. How to quickly find a witness.
In Proc. ACM Symposium on Principles of Database Systems PODS’03, pages
272–283, San Diego, USA, June 2003. ACM Press.

36. M. Kryszkiewicz. Concise representation of frequent patterns based on disjunction-
free generators. In Proc. IEEE Int. Conf. on Data Mining ICDM’01, pages 305–312,
San Jose, USA, Nov. 2001. IEEE Computer Press.

37. M. Kryszkiewicz and M. Gajek. Concise representation of frequent patterns based
on generalized disjunction-free generators. In Proc. Pacific-Asia Conf. on Knowl-
edge Discovery and Data Mining PAKDD’02, volume 2336 of LNCS, pages 159–171,
Taipei, Taiwan, 2002. Springer-Verlag.

38. B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rules mining.
In Proc. Int. Conf. on Knowledge Discovery and Data Mining KDD’98, pages 80–
86, New York, USA, 1998. AAAI Press.

39. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed rep-
resentations. In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining
KDD’96, pages 189–194, Portland, USA, 1996. AAAI Press.

40. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

41. T. Mielikäinen. Summarization Techniques for Pattern Collections in Data Mining.
PhD thesis, University of Helsinki, Department of Computer Science, Ph.D. thesis
Report A-2005-1, 2005.

42. N. Novelli and R. Cicchetti. Mining functional and embedded dependencies using
free sets. In Actes Bases de Données Avancées BDA’00, pages 201–220, 2000.

43. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning closed itemset lattices
for association rules. In Actes Bases de Données Avancées BDA’98, Hammamet,
Tunisie, Oct. 1998.

44. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, Jan. 1999.

45. J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for mining frequent
closed itemsets. In Proc. SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery DMKD’00, Dallas, USA, May 2000.

46. G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In
Knowledge Discovery in Databases, pages 229–248. AAAI Press, 1991.

47. U. Rückert and S. Kramer. Generalized version space trees. In Proc. Int. Workshop
on Inductive Databases KDID’03, pages 119–129, Cavtat-Dubrovnik, HR, 2003.
Rudjer Boskovic Institute, Zagreb, HR.

48. A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proc. Int. Conf. on Very Large Data Bases
VLDB’95, pages 432 – 444, Zürich, CH, Sept. 1995. Morgan Kaufmann.

80 T. Calders, C. Rigotti, and J.-F. Boulicaut

49. H. Toivonen. Sampling large databases for association rules. In Proc. Int. Conf.
on Very Large Data Bases VLDB’96, pages 134–145, Mumbay, India, Sept. 1996.
Morgan Kaufmann.

50. J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In Proc.
IEEE Int. Conf. on Data Engineering ICDE’04, pages 79–90, Boston, USA, Apr.
2004. IEEE Computer Press.

51. R. Wille. Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In I. Rival, editor, Ordered Sets, pages 445–470. Reidel, Dordrecht-Boston,
1982.

52. A. Xu and H. Lei. LCGMiner: Levelwise closed graph pattern mining from large
databases. In Proc. Int. Conf. on Scientific and Statistical Database Management
SSDBM’04, pages 421–422, Santorini Island, EL, June 2004. IEEE Computer Press.

53. M. J. Zaki. Generating non-redundant association rules. In Proc. ACM Int. Conf.
on Knowledge Discovery and Data Mining SIGKDD’00, pages 34–43, Boston, USA,
Aug. 2000. ACM Press.

54. M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset
mining. In Proc. SIAM Int. Conf. on Data Mining SDM’02, Arlington, USA, Apr.
2002.

55. M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. In Proc.
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
DMKD’98, pages 1–8, June 1998.

Adaptive Strategies for Mining the Positive

Border of Interesting Patterns: Application to
Inclusion Dependencies in Databases

Fabien De Marchi1, Frédéric Flouvat2, and Jean-Marc Petit2

1 LIRIS, UMR CNRS 5205,
Université Lyon 1, 69622 Villeurbanne, France

2 LIMOS, UMR CNRS 6158,
Université Clermont-Ferrand II, 63177 Aubière, France

Abstract. Given the theoretical framework of Mannila and Toivonen
[26], we are interested in the discovery of the positive border of inter-
esting patterns, also called the most specific interesting patterns. Many
approaches have been proposed among which we quote the levelwise algo-
rithm and the Dualize and Advance algorithm. In this paper, we propose
an adaptive strategy – complementary to these two algorithms – based
on four steps: 1) In order to initialize the discovery, eliciting some el-
ements of the negative border, for instance using a levelwise strategy
until a certain level k. 2) From the negative border found so far, infer-
ring the optimistic positive border by dualization, i.e. the set of patterns
whose all specializations are known to be not interesting patterns. 3) Es-
timating the distance between the positive border to be discovered and
the optimistic positive border. 4) Based on these estimates, carrying out
an adaptive search either bottom-up (the jump was too optimistic) or
top-down (the solution should be very close).

We have instantiated this proposition to the problem of inclusion de-
pendency (IND) discovery. IND is a generalization of the well known
concept of foreign keys in databases and is very important in practice.
We will first point out how the problem of IND discovery fits into the
theoretical framework of [26]. Then, we will describe an instantiation of
our adaptive strategy for IND discovery, called Zigzag, from which some
experiments were conducted on synthetic databases. The underlying ap-
plication of this work takes place in a project called DBA Companion
devoted to the understanding of existing databases at the logical level
using data mining techniques.

1 Introduction

Given the theoretical framework for data mining given in [26], we are interested
in the discovery of the positive border of interesting patterns, also called the most
specific interesting patterns. Many approaches have been proposed among which
we quote the levelwise algorithm [26] and the Dualize and Advance algorithms
[17,30]. In this paper, we propose an adaptive strategy – complementary to these
two main algorithms – based on four steps:

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 81–101, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 F. De Marchi, F. Flouvat, and J.-M. Petit

1. In order to initialize the discovery, eliciting some elements of the negative
border, for instance using a levelwise strategy until a certain level k.

2. From the negative border found so far, inferring the optimistic positive border
which is the set of patterns whose all specializations are known to be not
interesting patterns. In the spirit of the Dualize and Advance algorithm, this
part exploits the idea of monotone dualization, involving the generation of
minimal transversals of an hypergraph.

3. Estimating the distance between the positive border to be discovered and
the optimistic positive border.

4. Based on these estimates, carrying out an adaptive search either bottom-
up (the jump was too optimistic) or top-down (the solution should be very
close).

The basic idea of our proposition is to combine the strength of both levelwise
algorithm and Dualize and Advance algorithm in such a way that:

– ”small” maximal interesting patterns may be found efficiently as well as large
ones, which is drawback of levelwise strategies.

– the number of dualization may be tuned with our adaptive strategy whereas
the number of dualization performed by Dualize and Advance is always
in the size of the positive border (tight bound).

The dualization performed in step 2 is quite similar to that proposed in the
Dualize and Advance algorithm. Nevertheless, instead of starting from interest-
ing patterns as Dualize and Advance algorithm does, we use not interesting pat-
terns to perform the dualization. As a consequence, our proposition contributes
to clarify many works dealing with related problems (e.g. maximal frequent item-
sets [22,5,16,10]) since it gives an exact characterization of the optimistic positive
border of interesting patterns from some subset of interesting patterns.

We have instantiated this proposition to the problem of inclusion dependency
(IND) discovery. IND is a generalization of the well known concept of foreign
keys in databases and is very important in practice. We first point out how the
problem of IND discovery fits into the theoretical framework of borders of theo-
ries only if IND with repeated attributes are allowed. Then, an instantiation of
our adaptive strategy for IND discovery is proposed. From our general propo-
sition, a specific algorithm called Zigzag has been devised for IND discovery.
Some experiments conducted on synthetic databases have been performed and
results are given.

The underlying application of this work takes place in a project called DBA
Companion devoted to the understanding of existing databases at the logical
level using data mining techniques. Whereas physical database design has always
received a lot of attention by the database community, one can quote that,
rather surprisingly, logical database analysis has been less studied despite its
importance for practical applications such as logical database tuning, semantic
query optimization or simply database auditing.

From this simple remark, we have developed a project called DBA Companion
devoted to the understanding of logical database constraints from which logical

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 83

database tuning can be achieved [25,24,11,12]. In this setting, two main data
mining issues need to be addressed: the first one is the design of efficient algo-
rithms for functional dependencies and inclusion dependencies discovery and the
second one is about the interestingness of the discovered knowledge.

Clearly, the contribution made in this paper fits into this project and has been
integrated in our GUI prototype available on-line [23]: its objective is to be able
to connect a database in order to give some insights to DBA/analyst such as:

– the functional dependencies and inclusion dependencies satisfied in her/his
database,

– small examples of her/his database, thanks to Informative Armstrong Data-
bases. The same benefits when the design by example were introduced are
also expected in this slightly different context (database maintenance vs
database design).

Chapter organization. The chapter is organized as follows: Section 2 recalls the
framework of borders of a theory. Section 3 introduces the principle of our ap-
proach for discovering the positive border of interesting patterns within this
theoretical framework. Section 4 applies our proposition on a particular appli-
cation: the discovery of inclusion dependency. Based on this proposition, the
algorithm Zigzag and some experimental results are given. Section 5 quickly
introduces related contributions and we conclude in Section 6.

2 Preliminaries: Borders of a Theory

We recall below some notations and basic results used among this chapter. For
more details, the reader is invited to refer to [26].

Given a database d, a finite language L for expressing patterns or defining
subgroups of the data, and a predicate Q for evaluating whether a pattern ϕ ∈ L
is true or ”interesting” in d, the discovery task is to find the theory of d with
respect to L and Q, i.e. the set Th(L,d,Q) = {ϕ ∈ L|Q(d, ϕ) is true}.

A specialization/generalization relation does often exist between patterns of
L. Such a relation is a partial order on the patterns of L. We say that ϕ is
more general (resp. more specific) than θ, if ϕ θ (resp. θ ϕ).

The relation is a anti-monotone relation with respect to Q if the predicate
Q is anti-monotone wrt , i.e. for all θ, ϕ ∈ L if Q(d, θ) is true and ϕ θ then
Q(d, ϕ) is true.

Given a partial order , the set Th(L,d,Q) can be represented by enumer-
ating only its maximal elements, that is the set

MTh(L,d,Q) = {ϕ ∈ Th(L,d,Q)| for no θ ∈ Th(L,d,Q), ϕ ≺ θ}

A set S of patterns from L such that S is closed downwards under the rela-
tion can be represented by two borders: the positive border of S, denoted by
Bd+(S), and the negative border of S, denoted by Bd−(S). They are defined as
follows: Bd+(S) = {σ ∈ S |� ∃ϕ ∈ S, σ ≺ ϕ} and Bd−(S) = {σ ∈ L \ S |� ∃ϕ ∈
L \ S, ϕ ≺ σ}.

84 F. De Marchi, F. Flouvat, and J.-M. Petit

Obviously, we have Bd+(Th(L,d,Q)) = MTh(L,d,Q).
Let us consider C as the set of all patterns from L. In that case, (C,) is a

poset and let R be a set (the powerset of R is denoted by P(R)). Sometimes an
isomorphism between the posets (C,) and (P(R),⊆) may exist. In that case,
the problem MTh(L,d,Q) is said to be representable as sets.

A function f : C → P(R) is said to be a representation of (C,) as sets if f
is bijective and its inverse is computable, and for all θ and ϕ we have θ ϕ iff
f(θ) ⊆ f(ϕ).

With this supplementary constraint, we have a relationship between the pos-
itive and negative border through the notion of minimal transversal1 of hyper-
graphs.

Consider the hypergraph H(S) on R containing as edges the sets f(ϕ) for
ϕ ∈ Bd+(S), i.e. H(S) = {f(ϕ) | ϕ ∈ Bd+(S)} also noted as H(S) = f(Bd+(S)).
Let TrMin(H) be all minimal transversals of the hypergraph H and H(S) =
{R \X | X ∈ H(S)} the complements of the edges of H(S) in R.

Now the relationship between the positive and negative border may be given:
Theorem 1. [26]

f−1(TrMin(H(S))) = Bd−(S)

Note that S can be reduced to its positive border, i.e. we have:
f−1(TrMin(H(Bd+(S)))) = Bd−(Bd+(S)).

3 Principle of Our Approach

The basic idea is to combine the strength of both levelwise algorithm and Du-
alize and Advance algorithm in such a way that ”small” maximal interesting
patterns may be found efficiently by a levelwise strategy, while ”large” maximal
interesting patterns may be discovered by dualization.

The proposed method consists of a pessimistic exploration of the most general
patterns until a given level k, and then a ”zigzag” between the negative border
in construction and the corresponding optimistic positive border.

3.1 Step 1: A k-Levelwise Approach

In order to initialize the discovery, we would like to elicit the largest possible
subset of the negative border. Therefore, we have chosen to apply a levelwise
strategy since it may be optimal whenever large interesting patterns do not
exist. We apply it until a certain level k, which may be specified by the user
or dynamically defined. As an example, the following heuristic may be used :
”As soon as the negative border does not change enough between two iterations,
stop the levelwise search”. This can be done efficiently without any overhead by
counting at a given level k, the ratio of the number of interesting patterns of
1 A minimal transversal of an hypergraph H is a set of elements X such that (1) X

has a non empty intersection with every element of H and (2) X is minimal w.r.t.
this property.

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 85

size k on the number of candidates patterns of size k whose all generalizations
are interesting.

More formally, this heuristic can be stated as follows:
Given a threshold ε ∈ [0, 1], at any iteration of a levelwise algorithm, let Ck

(resp. Fk) be the candidate patterns (resp. interesting patterns) of size k. If
|Fk|
|Ck| ≥ ε, then stop the levelwise search and the current level gives the value of
k. The choice of ε should be typically close to 1.

At the end, whatever the criterion used to get the value k, the levelwise
algorithm provides 1) the set Bd+

k (Th(L,d,Q)), which can be seen as a subset
of Bd+(Th(L,d,Q)) (in fact, some elements of size k will be removed latter) and
2) the set Bd−k (Th(L,d,Q)), which is a subset of Bd−(Th(L,d,Q)).

3.2 Step 2: The Optimistic Positive Border

The simple remark on which this step is founded is the following: a set of not
interesting patterns makes it possible to prune a certain number of candidates
by anti-monotony, and thus to define an optimistic set of interesting patterns, as
being the set of sentences whose all specializations do not verify the predicate.

Definition 1. Let C be the search space associated to L for the problem of
enumerating MTh(L,d,Q). Let NI ⊆ C be a set such that ∀ϕ ∈ NI,Q(d, ϕ) is
false, i.e. ϕ is not interesting in d.

The optimistic set of interesting patterns with respect to NI, denoted by
Iopt(NI), is defined by: Iopt(NI) = {ϕ ∈ C |� ∃σ ∈ NI, σ ϕ}.

Moreover, the optimistic positive border, denoted by Bd+(Iopt(NI)), is the
set of most specific patterns in Iopt(NI). When clear from context, we will note
Bd+

opt(NI) instead of Bd+(Iopt(NI)). Remark that Bd+
opt(NI) is the same if NI

is restricted to its most general patterns.
In the spirit of the dualization proposed in the Dualize and Advance algorithm

[17], the next theorem states the relation between the optimistic positive border
and the minimal transversals of an hypergraph.

Theorem 2. Let NI ⊆ C be a set of non-interesting patterns in d.
The optimistic positive border w.r.t. NI is such that:

Bd+
opt(NI) = f−1(TrMin(H(NI)))

Proof. Let i ∈ C be a pattern.
First, we show that i ∈ Iopt(NI) ⇔ f(i) is a transversal of H(NI) :
i ∈ Iopt(NI)
⇔ ∀j ∈ NI, j � i
⇔ ∀j ∈ NI, f(j) �⊆ f(i)
⇔ ∀j ∈ NI, f(j) ∩ f(i) �= ∅
⇔ f(i) is a transversal of H(NI).

86 F. De Marchi, F. Flouvat, and J.-M. Petit

Then we show that i is maximal in Iopt(NI) ⇔ f(i) is a minimal transversal of
H(NI) :
Let i ∈ Bd+

opt(NI). Since i ∈ Iopt(NI), f(i) is a transversal of H(NI). Suppose
f(i) is not minimal: ∃X ⊆ R, X transversal of H(NI) and X ⊂ f(i), and thus
f(i) ⊂ X. Then f−1(X) ∈ Iopt(NI) and i ≺ f−1(X), which contradict the fact
that i ∈ Bd+

opt(NI).
Now, let X ∈ TrMin(H(NI)). X is a transversal, then f−1(X) ∈ Iopt(NI).
Suppose that f−1(X) is not maximal: ∃j ∈ Iopt(NI) such that f−1(X) ≺ j.
Then f(j) is a transversal of H(NI) with X ⊆ f(j), and thus f(j) ⊆ X, which
contradicts the fact that X is a minimal transversal.

Remark 1. This result can also be proved as a simple corollary of the theorem
1 since TrMin(TrMin(H)) = H for any hypergraph H [7].

Thanks to this result, the optimistic positive border computation can exploit
the numerous works and results about minimal transversals computation; recent
results can be found in [14,4,9].

An optimization can also be brought to the calculation of Bd+
opt(NI). Indeed,

at each iteration, this set contains at the same time the largest possible inter-
esting patterns, but also all interesting patterns already discovered. The idea
is thus to characterize only new elements of Bd+

opt(NI), ignoring those already
explored. The following result just follows from the theorem 2.

Proposition 1. Let Ik be the set of interesting patterns of size less or equal to
k, NI a set of non-interesting patterns, and n = |R|.

We have:
i ∈ (Bd+

opt(NI) \ Ik)⇐⇒ f(i) ∈ TrMin(H(NI)) and |f(i)| ≤ n− k

In practice, this condition leads to optimize the generation of minimal trans-
versals since candidates exceeding the size allowed can be safely removed.

3.3 Step 3: Getting Estimates on the Optimistic Positive Border

We try to estimate the distance between the positive border to be discovered
and the optimistic positive border in order to guide the search in the next step.

For ϕ ∈ Bd+
opt(NI), two main cases do exist:

– either Q(d, ϕ) is true: the ”jump” was successful.
– or Q(d, ϕ) is false. In that case, we propose to estimate a degree of error in

order to qualify the jump.

Given a new user-defined threshold δ, a database d and a predicate Q, an
error measure ψ defined from L to !, noted ψd,Q(ϕ), we can easily devised two
sub-cases when Q(d, ϕ) is false:

– either ψd,Q(ϕ) ≤ δ : the ”jump” was not successful but solutions should
exist among the nearest generalizations of ϕ.

– or ψd,Q(ϕ) > δ : In that case, the jump was over-optimistic and probably,
no solution does exist among the nearest generalizations of ϕ.

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 87

Moreover, error measures must be restricted to those verifying the following
property:
Property 1. Let ϕ, θ ∈ L. ϕ θ ⇒ ψd,Q(ϕ) ≤ ψd,Q(θ)

Clearly the definition of such error measures is quite application-dependent
and should be done carefully.

Nevertheless, a generic idea to build such error measures can be stated as
follows: ”Computing the ratio of the size of the largest subset of the database so
that the pattern becomes interesting on the size of the database”. More formally,
let ϕ ∈ L such that Q(d, ϕ) is false.

ψd,Q(ϕ) = 1− max{|d
′
| | d

′
⊆ d,Q(d

′
, ϕ) true}

|d|

The interested reader may refer to [19] for other error measure definitions in
the restricted setting of functional dependencies.

3.4 Step 4: Adaptive Behavior

Based on these estimates, many different strategies can be devised in order to
guide the search. Basically, the traversal of the unexplored search space can
be carried out either bottom-up (the jump was too optimistic) or top-down
(the solution should be very close). Many other strategies could be applied to
converge as soon as possible to the positive border of interesting patterns. The
basic idea is to avoid the enumeration of the largest parts of the search space.

Note that many propositions have been made in the setting of maximal fre-
quent itemsets, see for example [22,5,16,10]. The discussion done in [22] is quite
relevant in our context.

Once again, this step is also application-dependent and will not be described
further in this chapter. More details will be given in section 4 in the context of
the discovery of INDs in databases.

4 Application to Inclusion Dependency Discovery

4.1 Preliminaries

Some concepts of the relational databases are briefly recalled (see for example
[1,21] for more details).

Let R be a finite set of attributes. For each attribute A ∈ R, the set of all
its possible values is called the domain of A and denoted by Dom(A). A tuple
over R is a mapping t : R → ∪A∈RDom(A), where t(A) ∈ Dom(A), ∀A ∈ R.
A relation is a finite set of tuples. The cardinality of a set X is denoted by
|X |. We say that r is a relation over R and R is the relation schema of r. If
X ⊆ R is an attribute set2 and t is a tuple, we denote by t[X] the restriction of

2 Letters from the beginning of the alphabet introduce single attributes whereas letters
from the end introduce attribute sets.

88 F. De Marchi, F. Flouvat, and J.-M. Petit

t to X . The projection of a relation r onto X , denoted as πX(r), is defined by
πX(r) = {t[X] | t ∈ r}.

A database schema R is a finite set of relation schemes Ri. A relational
database instance d (or database) over R corresponds to a set of relations ri

over each Ri of R.
An attribute sequence (e.g. X =< A, B, C > or simply ABC) is an ordered

set of attributes. When it is clear from context, we do not distinguish a sequence
from its underlying set.

Two attributes A and B are said to be compatible if Dom(A) = Dom(B).
Two distinct attribute sequences X and Y are compatible if |X | = |Y | = m and
if for j = [1, m], Dom(X [j]) = Dom(Y [j]).

An inclusion dependency (IND) over a database schema R is a statement of
the form Ri[X] ⊆ Rj [Y], where Ri, Rj ∈ R, X ⊆ Ri, Y ⊆ Rj , X and Y are
compatible sequences3.

The size (or arity) of an IND i = R[X] ⊆ R[Y], noted |i| is such that |i| =
|X | = |Y |. We call unary inclusion dependency an IND of size 1.

Let d be a database over a database schema R, where ri, rj ∈ d are relations
over Ri, Rj ∈ R respectively. An inclusion dependency Ri[X] ⊆ Rj [Y] is satisfied
in a database d over R, denoted by d |= Ri[X] ⊆ Rj [Y], if and only if ∀u ∈
ri, ∃v ∈ rj such that u[X] = v[Y] (or equivalently πX(ri) ⊆ πY (rj)).

Let I1 and I2 be two sets of inclusion dependencies, I1 is a cover of I2 if
I1 |= I2 (this notation means that each dependency in I2 holds in any database
satisfying all the dependencies in I1) and I2 |= I1.

A sound and complete axiomatization for INDs was given in [27]. If I is a set
of INDs, we have:

1. (reflexivity) I |= R[A1, ..., An] ⊆ R[A1, ..., An]
2. (projection and permutation) if I |= R[A1, ..., An] ⊆ S[B1, ..., Bn] then

I |= R[Aσ1, ..., Aσm] ⊆ S[Bσ1, ..., Bσm] for each sequence σ1, ..., σm of dis-
tinct integers from {1, ..., n}

3. (transitivity) if I |= R[A1, ..., An] ⊆ S[B1, ..., Bn] et I |= S[B1, ..., Bn] ⊆
T [C1, ..., Cn] then I |= R[A1, ..., An] ⊆ T [C1, ..., Cn]

4. (attribute equality) if I |= R[AB] ⊆ S[CC], then A and B can be substituted
to each other in all satisfied IND expressions.

5. (redundancy) if I |= R[X] ⊆ S[Y], then I |= R[XU] ⊆ S[Y V], where R[U] ⊆
S[V] can be obtained from R[X] ⊆ S[Y] using second inference rule.

4.2 Adequacy to the Framework of Borders of Theories

The finite language L corresponds to the language defining INDs in a database
schema, i.e. a pattern is an IND. The database d is the relational database on
which the discovery of INDs has to be performed and, the predicate Q(d, ϕ) is
3 Usually, the IND definition excludes repeated attributes in the sequences on left

and right-hand sides. In this paper, we adopt a less restrictive framework in order to
ensure a representation as sets for INDs (cf Section 4.2) ; the exclusion of the repeated
attributes is considered after the presentation of the algorithm (cf. Section 4.5).

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 89

the satisfaction of an IND against the database, i.e. Q(d, ϕ) is true ⇐⇒ d |= ϕ.
In other words, an interesting pattern is a satisfied IND.

The problem of IND discovery can be formulated as follows:

Let d be a database, find a cover of all satisfied INDs in d

The number of potentially satisfied INDs, which constitutes the basic search
space, is more than factorial in the number of attributes [18].

In the sequel, we denote by C the search space of INDs, made up of a set of
IND expressions. The aim of this section is to reach a formal definition of C, in
such a way that the IND discovery problem fits into the framework previously
presented.

In order to structure the search space, a specialization / generalization relation
between INDs is proposed in the following definition.

Definition 2. Given i = R[X] ⊆ S[Y] and j = R[X ′] ⊆ S[Y ′] two IND
expressions, we say that j generalizes i (or i specializes j), noted j i, if
X =< A1, ..., An >, Y =< B1, ..., Bn >, and there exists a set of integers
k1 < ... < kl ∈ {1, ..., n} with l ≤ n such that X ′ =< Ak1 , ..., Akl

> and
Y ′ =< Bk1 , ..., Bkl

>.

For example, R[AC] ⊆ S[DF] R[ABC] ⊆ S[DEF]. We note j ≺ i for j i
and j �= i.

Moreover, the satisfaction of an IND in a database d turns out to be anti-
monotone with respect to the relation , which is a requirement to comply with
the theoretical framework introduced in Section 2.
Property 2. Let i, j ∈ C such that j i.

d �|= j ⇒ d �|= i

Thus, any set I of INDs can be represented by two borders: its most specialized
elements, i.e. its positive border Bd+(I) and the most general elements which
does not belong to I, i.e. its negative border Bd−(I).

Clearly, when I is the set of the satisfied INDs in d, Bd+(I) answers the IND
discovery problem.

In order to apply our proposition, we need to exhibit a representation as sets
of the search space C of INDs, i.e. to find a subset lattice (P(R),⊆) isomorph
to (C,). The basic idea is to consider the powerset of unary INDs as a possible
candidate in order to build a bijective function between (P(R),⊆) and (C,).
We shall see in the sequel that we will need to restrict somehow (C,) to comply
with the requirements given in Section 2.

We first define a function, called ens, to transform a given IND into a set of
unary INDs.

Definition 3. Let I1 be the set of unary INDs over R.
The function ens : C −→ P(I1) is defined by:

ens(i) = {j ∈ I1 | j i}
Therefore, each IND can be associated with a set of unary INDs.

90 F. De Marchi, F. Flouvat, and J.-M. Petit

Example 1. Consider i = R[ABC] ⊆ S[EFG], i1 = R[A] ⊆ S[E], i2 = R[B] ⊆
S[F] and i3 = R[C] ⊆ S[G]. Then: ens(i) = {i1, i2, i3}.

Then, the following example points out that, if the domain of ens (i.e. C) is not
carefully defined, the function ens is not injective and ens−1 is not computable.
Example 2. Suppose d = {r1, r2, r3} over the schema R = {R1, R2, R3}, with
R1 = ABC, R2 = DEF and R3 = GHI. For sake of clearness, let us note
i1 = R1[A] ⊆ R2[D], i2 = R1[A] ⊆ R2[E] and i3 = R1[B] ⊆ R3[H]. Then:

– ens(R1[AA] ⊆ R2[DE]) = ens(R1[AA] ⊆ R2[ED]) = {i1, i2}, i.e. the func-
tion ens is not injective.

– ens−1({i1, i3}) is not computable since i1 and i3 are not defined over the
same right-hand side schema.

It is also worth noting that we can now justify through this example the
necessity of accepting repeated attributes in IND definition, since otherwise
ens−1({i1, i2}) could not be defined.

To cope with the first point of the example 2, the search space C has to be
restricted to only one permutation of each IND. Hopefully, thanks to the second
inference rule for INDs (cf Section 4.1), this restriction does not imply any lost
in the discovered knowledge and can be fixed easily: a total order on attributes
has to be enforced on one side of IND. We choose to fix an order on the left-hand
side, cf Definition 4 below.

Now, an interesting property allows us to deal with the second point of the
example 2, making it possible to break up our exploration method into several
independent courses.
Property 3. Let d be a database over a schema R and I the set of satisfied
INDs in d. Let IR→S be INDs from R to S. Then

Bd+(I) =
⋃

(R,S)∈R2

Bd+(IR→S)

Thus, the IND discovery can be made through independent tasks, one for each
couple of relations in the database. During one execution, only INDs defined from
a given relation to another (possibly the same) relation are considered, and thus
the second difficulty pointed out by the example 2 does not occur any more.

We can now restrict the search space C of INDs to a couple of relations in
a database schema. We suppose that a total order exists over attributes, for
instance the lexicographic order can always be used up to a renaming.

Definition 4. Let R be a database schema and (R, S) a couple of relation
schema of R. The search space of INDs over (R, S), denoted by C(R, S) or
just C when (R, S) is clear from the context, is defined by:

C(R, S) = {R[< A1...An >] ⊆ S[< B1...Bn >] | ∀1 ≤ i < j ≤ n,

(Ai < Aj) ∨ (Ai = Aj ∧Bi < Bj)}
where n = min(|R|, |S|).

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 91

Until the end of this chapter, we will use the following notation:

– (R, S) is a couple of relations of R,
– C is the search space of INDs from R to S and
– I1 the set of unary INDs from R to S, i.e. I1 ⊆ C.

We can now give the main result of this section, that is to say that under the
previous assumptions, the IND search space is representable as sets.
Property 4. The function ens : C −→ P(I1) is bijective and its inverse function
ens−1 is computable.

This result can be easily derived from the definition of ens and from the def-
inition of the search space C. The following property follows from the definition
of the function ens and the definition of the relation :
Property 5. Let i and j be two INDs expressions of C.

i j ⇔ ens(i) ⊆ ens(j)

Thus, we have highlighted an isomorphism from (C,) to (P(I1),⊆), that is
to say that the search space of INDs is representable as sets. As a consequence,
each set of INDs in C can be associated with an hypergraph:

Definition 5. Let I ⊆ C. The hypergraph associated with I, denoted by H(I) =
{V, E}, is defined by: V = I1 and E = {ens(i) | i ∈ I}.

4.3 Applying Our Four Steps Approach

In this section, we customize our four steps approach to the problem of IND
discovery. Some properties of INDs will be given to justify our choices.
Step 1: A k-levelwise Approach. Several factors justify to use a levelwise
approach for INDs of ”small” size. The first one is that in practice, a great
proportion of unary IND candidates is not satisfied. Thus a significant part of
the search space is disqualified by anti-monotony, justifying a levelwise approach
for this level.

The second one is that an efficient method was proposed in [11] for unary IND
discovery, based on a data reorganization. The salient feature of this approach
is not to make as many database passes as candidates exist (as it is the case in
general for dependency discovery [26]), but only one database pass for all the
candidates (as it is for example the case for frequent itemsets).

In [26], a levelwise approach is suggested to discover Bd+(I). The algorithm
MIND [11] is based on this idea, using an AprioriGen like candidate generation
[2]. Its effectiveness is based on the presence at each level of many not satisfied
INDs, in order to prune a great part of the remaining space. The experiments
conducted in [11] show that such an approach is scalable according to the num-
ber of tuples and attributes: the greatest database had 90000 tuples and 200
attributes, the IND positive border of the database was composed of four unary
IND and one IND of size 6. Nevertheless, such an approach is not adapted when
large INDs have to be discovered; indeed, to discover an IND i of size n, it is
necessary to have discovered the 2n INDs which generalize i.

As a consequence, we decided to use MIND until a given level k in order to
initialize the search.

92 F. De Marchi, F. Flouvat, and J.-M. Petit

Step 2: The optimistic positive border. From the negative border already
discovered, we may apply the Theorem 2 to infer the so-called optimistic positive
border of INDs.

In fact, a justification for an optimistic approach does exist for IND discovery
and will be formaly stated in Proposition 3. Intuitively, it can be expressed as
follows:

if all generalizations of size k of a candidate IND i are satisfied, then
i has more chances to be satisfied when k increases.

This result is justified by an inference rule4 of Functional Dependencies (FDs)
and INDs given by the following proposition.

Proposition 2. Let {r, s} be a database, C the corresponding IND search space,
and Ik = {i ∈ C | |i| = k, {r, s} |= i}, k ≥ 2.

Let i = R[X] ⊆ S[Y], i ∈ C, |i| = n, n > k such that ∀j ∈ C, |j| = k, j ≺ i, we
have j ∈ Ik.

if ∃Y1 ⊆ Y, |Y1| = k − 1 and s |= Y1 → Y \ Y1 then {r, s} |= i

Proof. Let d = {r, s} be a database and C the corresponding IND search space.
Let i = R[X] ⊆ S[Y] ∈ C an IND expression of arity n ≥ 3, and an integer
k < n. Suppose that all INDs which generalize i, of size lower or equal to k, are
satisfied. And let Y1 ⊆ Y be such that |Y1| = k − 1 and s |= Y1 → Y \ Y1.
Let us put Y \ Y1 = B1...Bn−k+1. We note X1 the sub-sequence of X in which
the position of elements in X correspond to the position of elements of Y1 in Y ,
and A1, ..., An−k+1 the elements of X in which the position of elements in X
correspond to the position respectively of B1, ..., Bn−k+1 in Y .
Let t ∈ r. We have d |= R[X1A1] ⊆ S[Y1B1], since this IND is of arity k. Thus
∃u1 ∈ s such that u1[Y1B1] = t[X1A1]. In the same way, d |= R[X1A2] ⊆
S[Y1B2], then ∃u2 ∈ s such that u2[Y1B2] = t[X1A2]. We know that s |=
Y1 → B2 and thus u1[B2] = u2[B2] since u1[Y1] = u2[Y1]. Thus, u1[Y1B1B2] =
t[X1A1A2]. We can repeat n − k + 1 times the same reasoning, to show that
u1[Y1B1B2...Bnk+1] = t[X1A1A2...Ank+1], and then u1[Y] = t[X]. This is true
for all tuple in r, and we have d |= R[X] ⊆ S[Y].

Example 3. Consider the IND i = R[ABCDEF] ⊆ S[GHIJKL]. Suppose that
the 20 INDs of size 3 which generalize i are satisfied; then if there exists two
attributes of GHIJKL that determine the others, for example GH → IJKL,
we have d |= i.

Thus, the principle justified by this rule is, starting from an explored level k,
to build the highest IND expressions for which all sub-INDs of size k are true.
Notice that the larger k is, the more there are chances that sets of attributes of
size k − 1 determine the others, meeting the conditions of the Proposition 2.

4 The inference rule stated by the Proposition 2 does not form part of the Mitchell
system [27], but of course is inferred by this system which is sound and complete.
The demonstration suggested here seems to be more comprehensible and shorter.

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 93

However, when a suspected large IND i of size n is detected as false, it is
necessary to choose between two alternatives: going back to the level k + 1 ”to
consolidate” basic knowledge, or maintaining an optimistic attitude by testing
INDs which generalize i.

Step 3: Getting estimates on the optimistic positive border. Each time
a candidate generated by an optimistic approach is detected to be false against
the database, we try ”to estimate” the distance between this element and the
positive border of satisfied INDs. The idea is to count the number of tuples which
does not satisfy the IND; we propose for that to use the error measure g′3 [25]
given by:

g′
3(R[X] ⊆ S[Y], d) =

1 − max{|πX(r′)| | r′ ⊆ r, (d − {r}) ∪ {r′} |= R[X] ⊆ S[Y]}
|πX (r)|

Intuitively, g′3 is the proportion of distinct values one has to remove from
πX(r) to obtain a database d′ such that d′ |= R[X] ⊆ S[Y]. Such a computation
can be implemented with SQL queries on top of RDBMS. Clearly, g′3 complies
with the requirement given in the Property 1 (Section 3.3), i.e. j i ⇒ g′3(j) ≤
g′3(i).

Step 4: Adaptive behavior. When an IND i of the optimistic positive border
is false, but with a very small error, one can reasonably hope to find a satisfied
IND among its nearest generalizations. Thus we consider the generalizations of
i from the more specific ones to the most general ones, i.e. implementing a top-
down approach. Inversely when the error is large, i.e. a great number of values
contradicts the IND, we start again the search in a bottom-up fashion. This step
is described in much more details in Algorithm 1 (next section).

4.4 The Algorithm Zigzag

The principle of the Algorithm 1 is to mix top-down and bottom-up approaches
for eliciting the positive border of satisfied INDs. As explained before, one search
is performed for each couple of relation in the input database.

Initially (line 1) a purely pessimistic approach is performed from an adapta-
tion of the levelwise algorithm MIND [11], until the level k fixed by the user
is reached. We then know Ik and NIk, the set of the most specialized satisfied
INDs and the set of the most general not satisfied INDs (resp.) of size smaller
or equal to k. Ik thus corresponds to an initialization of Bd+(I) and NIk to
an initialization of Bd−(I), I being the set of all satisfied INDs. The optimistic
positive border Bd+

opt(NIk) is then computed thanks to the Theorem 2 (line 3)5.
The algorithm terminates when every element of Bd+

opt(NIk) has already been

5 The optimistic positive border generation is not detailed here. We used an adaptation
of the algorithm proposed in [13].

94 F. De Marchi, F. Flouvat, and J.-M. Petit

tested as true in previous passes, i.e. Bd+
opt(NIk)\Bd+(I) is empty (line 4). Oth-

erwise, INDs of Bd+
opt(NIk) \ Bd+(I) are evaluated against the database: Those

satisfied are added to Bd+(I), the others are divided into two groups according
to the committed error: the ”almost true” ones in the optimistic set optDI and
the others in the pessimistic set pessDI. The INDs which generalize the INDs of
optDI are traversed in a top-down fashion, from the most specific to the more
general; Bd+(I) and Bd−(I) are updated accordingly (lines 14 to 21). Lastly,
INDs of size k + 1 which generalize the INDs of pessDI are tested, Bd+(I) and
Bd−(I) are also updated (lines 23 to 26). Bd+

opt(NIk) is then updated for the
next iteration (line 28).

Example 4. Let us consider a database d = {r1, r2} over a schema R =
{R1, R2}, with R1 = ABCDE and R2 = FGHIJ . Suppose that the set of
satisfied unary INDs in d are: {i1 = A ⊆ F, i2 = B ⊆ G, i3 = C ⊆ H, i4 = D ⊆
I, i5 = E ⊆ J}. The Figure 1 represents a subset of the search space of INDs
over R. For sake of clarity, not satisfied unary INDs are not represented since
they are discarded by anti-monotony.
Let us illustrate Algorithm 1 with k = 2 over this toy example. After a levelwise
search until level 2, the initialization is :
Bd+(I) = {AB ⊆ FG, AC ⊆ FH, AD ⊆ FI, AE ⊆ FJ, BC ⊆ GH, BD ⊆
GI, BE ⊆ GJ, CD ⊆ HI, DE ⊆ IJ};
Bd−(I) = {CE ⊆ HJ}.
Bd+

opt(I) is then computed from Bd−(I), i.e. Bd+
opt(I) = {ABCD ⊆ FGHI,

ABDE ⊆ FGIJ} (we omit the details).
These two INDs are tested over the database and let us assume that one is
satisfied while the other one is not:

– ABCD ⊆ FGHI is satisfied and added to Bd+(I), its generalizations being
dropped from Bd+(I). Thus, Bd+(I) = {ABCD ⊆ FGHI, AE ⊆ FJ, BE ⊆
GJ, DE ⊆ IJ}.

– ABDE ⊆ FGIJ is not satisfied and added to Bd−(I): Bd−(I) = {CE ⊆
HJ, ABDE ⊆ FGIJ}. Let us assume now that g′3(ABDE ⊆ FGIJ) is less
than a user-supplied threshold. In that case, the generalizations of ABDE ⊆
FGIJ of size 3 are generated and if they are not already specialized by
an IND of Bd+(I), they are tested against the database. Thus, ABE ⊆
FGJ, ADE ⊆ FIJ and BDE ⊆ GIJ are tested, and if we assume they
are satisfied, Bd+(I) is updated accordingly:
Bd+(I) = {ABCD ⊆ FGHI, ABE ⊆ FGJ, ADE ⊆ FIJ, BDE ⊆ GIJ}.

4.5 Practical Aspects and Optimizations

Dealing with not satisfied unary INDs. In line 2 of algorithm 1, not satisfied
unary INDs are added in the initialization of Bd−(I). In practice, we do not need
to take them into account at one condition: they have to be removed from the
set of unary INDs used during the computation of the complements of minimal
transversal of the hypergraph associated with Bd−(I).

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 95

Algorithm 1 Zigzag : IND cover discovery
Require: a database d over a schema R, an integer k and R, S in R
Ensure: Bd+(I) cover of the satisfied INDs from R to S
1: Compute Ik and NIk from R to S using a levelwise algorithm.
2: Bd+(I) = Ik; Bd−(I) = NIk;
3: Compute Bd+

opt(I) from Bd−(I);

4: while Bd+
opt(I) \ Bd+(I) �= ∅ do

5: optDI = pessDI = ∅;
6: for all i ∈ Bd+

opt(I) \ Bd+(I) do
7: if (g′

3(i,d) = 0) then Bd+(I) = Bd+(I) ∪ {i} \ {j ∈ Bd+(I) | j ≺ i};
8: else
9: Bd−(I) = Bd−(I) ∪ i;

10: if (g′
3(i,d) ≤ ε and|i| > k + 1)

11: then optDI = optDI ∪ {i};
12: else pessDI = pessDI ∪ {i};
13: end for
14: while optDI �= ∅ do
15: candidats = ∪i∈optDI{j | j � i, |j| = |i| − 1 and|j| > k};
16: for all i ∈ candidats do
17: if (d |= i) then Bd+(I) = Bd+(I)∪{i} \ {j ∈ Bd+(I) | j ≺ i}; candidats =

candidats \ {i};
18: else Bd−(I) = Bd−(I) ∪ {i} \ {j ∈ Bd−(I) | i ≺ j};
19: end for
20: optDI = candidats;
21: end while
22: Ck+1 = ∪i∈pessDI{j | j ≺ i, |j| = k + 1};
23: for all i ∈ Ck+1 do
24: if (Bd+(I) |= i or d |= i) thenBd+(I) = Bd+(I) ∪ {i} \ {j ∈ Bd+(I) | j ≺ i};
25: else Bd−(I) = Bd−(I) ∪ {i} \ {j ∈ Bd−(I) | i ≺ j};
26: end for
27: k = k + 1;
28: Compute Bd+

opt(I) from Bd−(I);
29: end while
30: Return Bd+(I).

Dealing with repeated attributes in INDs. The usual IND definition rejects re-
peated attributes in the left ot right-hand sides, since their pratical interest
remains rather limited in databases. Nevertheless, we have pointed out that we
had to have duplicated attributes in order to obtain a representation as sets for
INDs.

In fact we are still able to answer the problem of IND discovery without
duplicate attributes. For that, it is enough to add into the negative border, during
its initialization (line 2 of algorithm 1) the set of INDs of size 2 with repeated
attributes made up of two satisfied unary INDs.

Indeed, consider an IND i having at least one repeated attribute on the left-
hand side6, i.e. i = R[X1AAX2] ⊆ S[Y1BCY2]. Thus there exists at least one
6 The same justification still holds for right-hand side.

96 F. De Marchi, F. Flouvat, and J.-M. Petit

i1=A ⊆ F i3=C ⊆ H i5=E ⊆ Ji2=B ⊆ G

AB ⊆ FG AC ⊆ FH AD ⊆ FI AE ⊆ FJ BC ⊆ GH BD ⊆ GI BE ⊆ GJ

ABC ⊆ FGH

Non satisfied INDs

Satisfied INDs

Negative border

Positive border

i4=D ⊆ I

CD ⊆ HI CE ⊆⊆⊆⊆ HJ DE ⊆ IJ

ABD ⊆ FGI ABE ⊆⊆⊆⊆ FGJ ACD ⊆ FHI ACE ⊆ FHJ ADE ⊆⊆⊆⊆ FIJ BCD ⊆GHI BCE ⊆ GHJ BDE ⊆⊆⊆⊆ GIJ CDE ⊆ HIJ

ABCD ⊆⊆⊆⊆ FGHI ABCE ⊆ FGHJ ABDE ⊆⊆⊆⊆ FGIJ ACDE ⊆ FHIJ BCDE ⊆ GHIJ

ABCDE ⊆ FGHIJ

Fig. 1. A subset of the search space for INDs

IND of size 2, here j = R[AA] ⊆ S[BC], which generalizes i. If j belongs to the
negative border, then i cannot belong to the corresponding optimistic positive
border, according to definition 1.

4.6 Experimental Results

Tests were carried out on synthetic databases in order to show the feasability of
our proposition given in Section 3 on the IND discovery problem.

They were performed on an INTEL Pentium III 500 MHz, with 384 MB of
main memory and running Windows 2000 Pro. The algorithms were implemented
using C++/STL language. The test databases are stored under Oracle 9i, and
data accesses were carried out via ODBC drivers. The tests were conducted
on three databases having 2 relations, with 25 attributes and 90000 tuples in
each relation. The databases differ on the constitution of the positive border of
satisfied INDs to discover:

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 97

– database 1: 10 INDs, with arities of 2,5,6 and 7;
– database 2: 10 INDs, with arities of 3,5,6 and 11;
– database 3: 20 INDs, with arities of 6,8,13,17 and 18;

Table 1 gives execution times for IND discovery using algorithm Zigzag with
k = 2. Times are compared with those given by the levelwise algorithm Mind
[11]. The value for Mind on the third database is an estimate: it multiplies the
number of tests to be carried out with the average cost of a test.

Table 1. Experimental results

database Zigzag Mind

1 1 754 s. 2 790 s.

2 3 500 s. 25 626 s.

3 7 729 s. ≥ 1 year (estimate)

First of all, these results confirm the failure of levelwise approach for large IND
discovery, and thus reinforce the interest of proposing alternatives. Moreover,
algorithm Zigzag makes it possible to reach INDs of size 18 in about only two
hours (while Mind would have taken more than one year!), and thus shows the
feasibility of the approach.

Nevertheless, we were not able to get feedbacks from our experiments on key
paramaters of our propositions such as the impact of adaptive strategies (step
4). This is mainly due to the fact that ”real-life” or synthetic databases are often
not freely available and difficult to generate.

5 Related Works

Maximal interesting pattern mining. Several algorithms exist for discovering
maximal interesting patterns; most of them were proposed in the specific case of
maximal frequent itemsets mining in a transactional database. The goal is always
to avoid an exponential search in the search space by characterizing as fast as
possible large frequent itemsets without exploring their subsets. MaxMiner [5]
uses a levelwise approach to explore the candidate itemsets, using the Rymon’s
enumeration system [29] - in which itemsets are arranged in a non redundant
tree. But when a candidate X is counted over the database, the greatest candi-
date in the subtree of X is also counted; if it is frequent, then all the subtree
can be pruned by anti-monotony of the ”is frequent” property. Jumps done by
MaxMiner depend on the ordering of items used to build the tree and are
therefore quite different from jumps proposed in this paper.

The algorithms Mafia [10] and GenMax [16] use the same technique as
MaxMiner to ”explore” the top of the search space. A difference lies in the fact
that they reduce the number of tests by checking, for each candidate, if it is
not a subset of a frequent itemsets already found. Moreover, Mafia stores the

98 F. De Marchi, F. Flouvat, and J.-M. Petit

database in vertical bitmaps which appear to be extremely effective in practice.
With respect to our optimistic positive border, the pruning of GenMax appears
to be more precise than the MaxMiner pruning, thanks to a lemma which limits
the size of the largest itemset to be explored. Despite of this optimization, their
pruning remains always less precise than our pruning.

The Pincer−Search Algorithm [22] uses a search strategy very close to ours.
After a levelwise initialization, the principle is also to look at the largest not yet
eliminated candidates. However, these large candidates are not characterized in
a formal way.

In [17], the authors propose the Dualize and Advance algorithm. In their ap-
proach, the positive border in construction is always a subset of the positive
border to be discovered. At each step, from some elements of the positive bor-
der already discovered, they generate the corresponding negative border. If one
element of the negative border appears to be satisfied, they generate a special-
ization of it which belongs to the positive border and they re-iterate the process
until each element of the negative border is indeed not satisfied. The same strat-
egy is always made to explore the candidates, i.e. they cannot be guided by an
estimation of the distance to the positive border and the number of dualization,
i.e. minimal transversals computation, cannot be tuned.

Adaptive data mining algorithms. Some algorithms like Mafia [10] or DCI [28]
can adapt themselves to mine frequent itemsets, with respect to the dataset
density and some architectural characteristics (e.g. available memory). Even if
these aspects improve performances, it only concerns choices for data structures;
the mentioned algorithms do not really adapt their strategy to explore the search
space.

In [8,3], the authors studied the addition of user-defined monotone constraint
to facilitate exploration and reduce computation in the frequent pattern min-
ing problem. If pushing monotone constraints can improve the pruning, it can
also reduce the effectiveness of anti-monotone pruning, depending on the char-
acteristics of the dataset. To cope with this difficulty, an adaptive algorithm was
proposed based on an auto-adaptive search strategy.

Inclusion dependency mining. To our knowledge, only few contributions address
a subset of the initial problem of IND discovery: problem declaration [18], unary
IND discovery [6], or theoretical frameworks in which the problem of IND discov-
ery could be solved [26,17]. An interesting contribution addressed the problem
of large IND discovery [20]; the idea is to build an optimistic positive border
starting from a set of known satisfied INDs, by introducing the concept of maxi-
mal hyperclique of a regular hypergraph, a concept very similar to the monotone
dualization.

Note that an ongoing work based on results given in this chapter is currently
done for maximal frequent itemsets from which an adaptive algorithm called
ABS has been proposed [15].

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 99

6 Conclusion

From the theoretical framework of borders of theories, we have proposed a four
steps approach to discover the positive border of interesting patterns. The key
idea is to combine the strength of levelwise algorithms for small ”maximal” inter-
esting patterns with the strength of algorithms based on monotone dualization
[17,30] for large maximal interesting patterns. We have introduced an adaptive
behavior to guide the search from which ”zigzaging” in the search space becomes
possible.

We have applied our proposition to a data mining problem: the discovery of
INDs in databases. An interesting aspect has been to point out the main steps
in order to fit into the theoretical framework of borders. The principle of an
optimistic attitude has been justified by a structural property of the relational
model based on an interaction property between functional dependencies and
inclusion dependencies. An algorithm called Zigzag has been devised and some
experiments performed. Due to the very high cost of testing IND satisfaction
against a database, Zigzag turns out to be more efficient in all configurations
tested, even when the positive border to be discovered is not too far from the
most generalized IND.

This work is integrated in a more general project devoted to DBA assistance
and relational databases logical tuning, called ”DBA Companion” [12].

References

1. S. Abiteboul, R. Hull, and V. Vianu. Fondements des bases de données. Addison
Wesley, 2000.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large
Databases, Santiago de Chile, Chile, pages 487–499, 1994.

3. H. Albert-Lorincz and J.-F. Boulicaut. Mining frequent sequential patterns under
regular expressions: A highly adaptive strategy for pushing contraints. In Proceed-
ings of the Third SIAM International Conference on Data Mining, San Francisco,
CA, USA, 2003. SIAM.

4. J. Bailey, T. Manoukian, and K. Ramamohanarao. A fast algorithm for computing
hypergraph transversals and its application in mining emerging patterns. In IEEE
International Conference on Data Mining (ICDM’03), Floride, USA, pages 485–
488. IEEE Computer Society, November 2003.

5. R. Bayardo. Efficiently mining long patterns from databases. In L. M. Haas
and A. Tiwary, editors, SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA,
pages 85–93. ACM Press, 1998.

6. S. Bell and P. Brockhausen. Discovery of Data Dependencies in Relational
Databases. Technical report, LS-8 Report 14, University of Dortmund, 18p, April
1995.

7. C. Berge. Graphs and Hypergraphs. North-Holland Mathematical Library 6. Amer-
ican Elsevier, 2d rev. ed. edition, 1976.

100 F. De Marchi, F. Flouvat, and J.-M. Petit

8. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Adaptive constraint push-
ing in frequent pattern mining. In PKDD, Cavtat-Dubrovnik, Croatia, September
22-26, 2003, Proceedings, volume 2838 of Lecture Notes in Computer Science, pages
47–58. Springer, 2003.

9. E. Boros, K. Elbassioni, V. Gurvich, and L. Khachiyan. An efficient implementation
of a quasi-polynomial algorithm for generating hypergraph transversals and its
application in joint generation. special issue of Discrete Applied Mathematics.

10. D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset algo-
rithm for transactional databases. In Proceedings of the 17th IEEE International
Conference on Data Engineering, pages 443–452, Heidelberg, Germany, 2001. IEEE
Computer Society.

11. F. De Marchi, S. Lopes, and J.-M. Petit. Efficient algorithms for mining inclusion
dependencies. In Proceedings of the 7thInternational Conference on Extending
Database Technology, volume 2287 of Lecture Notes in Computer Science, pages
464–476, Prague, Czech Republic, 2002. Springer-Verlag.

12. F. De Marchi, S. Lopes, J.-M. Petit, and F. Toumani. Analysis of existing databases
at the logical level: the dba companion project. ACM Sigmod Record, 32(1):47–52,
2003.

13. J. Demetrovics and V. Thi. Some remarks on generating Armstrong and inferring
functional dependencies relation. Acta Cybernetica, 12(2):167–180, 1995.

14. T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and
generating hypergraph transversals. In STOC 2002, Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing, June 2-4, 1998, Montreal, Que-
bec, Canada, pages 14 – 22. ACM Press, 2002.

15. F. Flouvat, F. D. Marchi, and J.-M. Petit. Abs: Adaptive borders search of frequent
itemsets. In FIMI’04, 2004.

16. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In ICDM
2001, Proceedings IEEE International Conference on Data Mining, pages 163–170.
ACM Press, 2001.

17. D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma.
Discovering all most specific sentences. ACM Transaction on Database Systems,
28(2):140–174, 2003.

18. M. Kantola, H. Mannila, K.-J. Räihä, and H. Siirtola. Discovering functional and
inclusion dependencies in relational databases. International Journal of Intelligent
Systems, 7:591–607, 1992.

19. J. Kivinen and H. Mannila. Approximate inference of functional dependencies from
relations. Theoritical Computer Science, 149(1):129–149, 1995.

20. A. Koeller and E. Rundensteiner. Discovery of high-dimentional inclusion depen-
dencies (poster). In International Conference on Data Engineering (ICDE’03).
IEEE Computer Society, 2003.

21. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, 1999.

22. D.-I. Lin and Z. M. Kedem. Pincer search: A new algorithm for discovering the
maximum frequent set. In H.-J. Schek, F. Saltor, I. Ramos, and G. Alonso, edi-
tors, Advances in Database Technology - EDBT’98, 6th International Conference
on Extending Database Technology, Valencia, Spain, March 23-27, 1998, Proceed-
ings, volume 1377 of Lecture Notes in Computer Science, pages 105–119. Springer-
Verlag, 1998.

23. S. Lopes, F. De Marchi, and J.-M. Petit. DBA companion: A tool for logical
database tuning (demo). In 20th Proceedings of the IEEE International Conference
on Data Engineering, page 859, Boston, USA, 2004. IEEE Computer Society.

Adaptive Strategies for Mining the Positive Border of Interesting Patterns 101

24. S. Lopes, J.-M. Petit, and L. Lakhal. Functional and approximate dependencies
mining: Databases and FCA point of view. Special issue of Journal of Experimental
and Theoretical Artificial Intelligence, 14(2/3):93–114, 2002.

25. S. Lopes, J.-M. Petit, and F. Toumani. Discovering interesting inclusion depen-
dencies: Application to logical database tuning. Information Systems, 17(1):1–19,
2002.

26. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

27. J.-C. Mitchell. The implication problem for functional and inclusion dependencies.
Information and Control, 56(3):154–173, 1983.

28. S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resource-aware
mining of frequent sets. In International Conference on Data Mining (ICDM’02),
Maebashi City, Japan, pages 338–345. IEEE Computer Society, 2002.

29. R. Rymon. Search through systematic set enumeration. In B. Nebel, C. Rich, and
W. R. Swartout, editors, International Conference on Principles of Knowledge
Representation and Reasoning (KR’92), Cambridge, USA, pages 539–550. Morgan
Kaufmann, 1992.

30. T. Uno and K. Satoh. Detailed description of an algorithm for enumeration of
maximal frequent sets with irredundant dualization. In B. Goethals and M. J. Zaki,
editors, FIMI ’03, Frequent Itemset Mining Implementations, ICDM’03 Workshop,
volume 90 of CEUR Workshop Proceedings, Melbourne, Florida, USA, 2003.

Computation of Mining Queries:
An Algebraic Approach

Cheikh Talibouya Diop1,4, Arnaud Giacometti1,
Dominique Laurent2, and Nicolas Spyratos3

1 LI, Université de Tours, 41000 Blois, France
giaco@univ-tours.fr

2 LICP, Université de Cergy-Pontoise, 95 302 Cergy-Pontoise Cedex, France
dominique.laurent@dept-info.u-cergy.fr

3 LRI, Université Paris 11, 91405 Orsay Cedex, France
spyratos@lri.fr

4 Université Gaston Berger, Saint-Louis, Senegal
cdiop@ugb.sn

Abstract. Mining frequent queries often requires the repeated execu-
tion of some extraction algorithm for different values of the support, as
well as for different source datasets. This is an expensive process, even
if we use the best existing algorithms. Hence the need for iterative min-
ing, whereby mining results already obtained are re-used to accelerate
subsequent steps in the mining process.

In this paper, we present an approach for the iterative mining of fre-
quent queries. Our approach is based on the notion of mining context,
where a mining context is a set of queries over the same schema. We
define operations on mining contexts, based on the standard relational
algebra, and we also introduce new operators, one of which for computing
frequent queries.

We first study the properties of the operators, then we consider par-
ticular mining contexts using biases for which frequent queries can be
computed using any level-wise algorithm. Iterative mining is obtained
by combining these particular contexts using our set of operations. We
have implemented our approach and conducted experiments that show
its efficiency in mining frequent queries.

1 Introduction

Association rule mining often requires the repeated execution of some extraction
algorithm for different values of the support and confidence thresholds, as well
as for different source datasets. This is an expensive process, even if we use the
best existing algorithms. Hence the need for iterative mining, whereby mining
results already obtained are re-used to accelerate subsequent steps in the mining
process.

In this paper, we present an approach for the iterative mining of frequent
queries that allows to generate multi-dimensional association rules, i.e., associ-
ation rules that involve one or more tables from a given relational database [11].

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 102–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Computation of Mining Queries: An Algebraic Approach 103

However, we do not consider the phase of generating the rules from the frequent
queries.

In our formalism, frequent query mining takes place in a general framework
in which the notion of mining context allows to specify the queries among which
frequent queries are to be mined. Iterative mining is obtained by combining
contexts using known relational algebra operations as well as new operators to
be defined shortly. We call such combinations mining queries, in much the same
way as in relational databases, queries are defined as combinations of relations
using the operations of the relational algebra.

The contribution of the paper is twofold: First, we define and study opera-
tions on contexts that allow to consider complex mining queries and possible op-
timization techniques. Then, we focus on particular mining contexts from which
frequent queries can be computed using standard level-wise algorithms, such as
Apriori ([1]). For these mining contexts we study possible optimizations based
on the properties of the operators introduced in the paper. Next, we present the
main concepts of our approach.

1.1 Contexts and Biases

Whereas most formalisms to represent multi-dimensional association rules are
based on Dalalog and first-order logic ([4,11,19]), we shall use the relational
algebra to combine mining contexts.

In our approach, a context specifies a set of queries having the same schema.
We extend the operators of the relational algebra to contexts and we introduce
new operators that can be used for many purposes, for instance for computing
frequent queries or for selecting queries according to criteria involving other
queries. In this paper, we focus on the problem of mining frequent queries.
Roughly speaking, given a query q, the support of q in an instance I of the
underlying database is the ratio of the cardinality of the answer to q in I with
respect to the cardinality of the answer in I to another query, that we call a
reference query.

We focus on a specific set of mining contexts, whose definition is based on
the notion of mining bias. A mining bias specifies the table in which frequent
queries are to be mined, as well as selection conditions that appear in these
queries. Let us explain these concepts through an example that will serve as a
running example throughout the paper.

Example 1. Consider a database DBSales containing the following tables:

– Cust(Cid, Cjob, Caddr), where Cid, Cjob and Caddr are the ids, jobs and
home addresses of customers, respectively,

– Prod(Pid, P type), where Pid and Ptype are the ids and the types of prod-
ucts, respectively,

– Store(Sid, Sname, Saddr), where Sid, Sname and Saddr are the ids, names
and addresses of stores, respectively,

104 C.T. Diop et al.

– Sales(Cid, P id, Sid, Date), where a tuple 〈c, p, s, d〉 in the Sales table means
that customer c issued a transaction concerning product p in the store s on
date d.

Assume that a user is interested in mining queries involving the jobs and ad-
dresses of customers and the types of products they buy. We can specify this by
the relational expression b1 = Cust �� Sales �� Prod.

Now, assume that, more precisely, this user is interested only in queries dealing
with customers whose job is professor or lawyer, and who buy tea or milk. Then
we can consider the set of selection conditions Σ1 defined by: Σ1 = {Cjob =
Professor, Cjob = Lawyer, P type = Tea, P type = Milk}.

The pair B1 = 〈b1, Σ1〉 is an example of a mining bias, or simply a bias. The
query b1 and the set of selection conditions Σ1 are called the basis and the do-
main of B1, respectively. The bias B1 specifies a context, denoted by C(B1), that
contains all queries of the form σS(b1) where S is a conjunction of some con-
ditions in Σ1. The queries σCjob=Lawyer(b1) and σCjob=Professor∧Ptype=Tea(b1)
are examples of queries in C(B1).

Let us now assume that supports of queries in C(B1) are to be computed with
respect to all customers. In this case, we consider the query r = πCid(Cust) as
the reference query, and for every instance I of DBSales and every query q in
C(B1), we define the support of q in I as the ratio |(πCid(r �� q))(I)|/|r(I)|. If
this ratio is greater than a given support threshold then we say that q is frequent
in I. We note that the set of all frequent queries is a subset of C(B1), and thus
is itself a context.

Following this observation, we define an operator, denoted by freqI , that
takes as input a context C, a support threshold α and a reference query r, and
outputs a set denoted by freqI(C, α, r) which contains queries of C that are
frequent in I with respect to α and r. �

1.2 Composition of Mining Contexts

One of the main contributions of this paper is to show the following: Suppose that
a number of contexts of the form freqI(Ci, αi, r) (i = 1, . . . , k) have already been
computed and stored. Then any new context of the form freqI(C, α, r) where C is
defined as a composition of the contexts Ci can be performed more efficiently than
if it were performed directly, i.e., without reference to the contexts Ci. To this
end, we define operations over contexts similar to those of the relational algebra,
and we study their properties. The following example shows how contexts can
be composed to create new contexts.

Example 2. In the database DBSales of Example 1, assume that we want to
discover relationships between the jobs of customers living in Paris and the
types of products they buy. Denoting by C1 the context C(B1) given previously,
a new context C′1 = σCaddr=Paris(C1) can be defined by applying the selection
condition (Caddr = Paris) on the queries of C1.

Given the new context C′1, let q′1 = σS(σCaddr=Paris(b1)) be a query of C′1.
We can see easily that the answer to q′1 is always included in the answer to the

Computation of Mining Queries: An Algebraic Approach 105

query q1 = σS(b1) of C1. More generally, it can be seen that every query q′1 of C′1
is contained in a query q1 of C1 (in the sense of query containment [20]).

Therefore, the support of every query q′1 of C′1 is less than or equal to the
support of a query q1 of C1. It follows that if a query q′1 of C′1 is frequent, then
it is contained in a frequent query q1 of C1. Conversely, if a query q′1 of C′1 is not
contained in a frequent query q1 of C1, then it can not be frequent.

As a consequence, if we assume that the frequent queries of C1 are stored, this
property can be used to prune some of the candidate queries when computing the
frequent queries of C′1. Moreover, this new pruning step can be done without any
access to the database, implying that the computation of the frequent queries of
C′1 can be accelerated. �

In the remaining of the paper, we show how the above example can be gen-
eralized and how the computation of frequent queries in composed contexts can
be optimized.

1.3 Related Work

So far, several SQL based query languages have been proposed in order to facili-
tate the specification of mining queries [2,9,10,14,19]. To our knowledge, the only
language that allows to combine mining queries is Mine Rule [2]. However, in [2],
the authors consider a single table and concentrate on selections for optimizing
mining queries based on previously computed mining queries. Therefore, our ap-
proach is more general than that of [2], and is based on properties of the relational
algebra, instead of being based on a specific language such as Mine Rule.

We also note that our notion of context is close to the notion of query flock
introduced in [19]. However, the objective of [19] is not to store and use the
results of mining queries in order to optimize new mining queries, but rather to
optimize the computation of a single mining query using query containment.

In [12], the authors propose an algebra for the optimization of inductive
queries. However, they only consider set-theoretic operations, and focus on mono-
tonic queries, in order to design a strategy for the optimization of a single query.
It turns out that our framework is more general than that of [12], and our opti-
mization techniques are different than that of [12].

Storing and using the results of mining queries in order to optimize new mining
queries has also been studied in [15,16,17]. However, these approaches compare
only mining queries defined over a single reference and a single basis (using our
terminology), and they do not propose any composition operations as we do.

In [15,16], the authors consider the traditional case where the source database
contains only one table (the basis in our terminology), whose rows contain sets
of items. In [15], mining queries are compared with respect to three criteria:
the support thresholds, the selection conditions on the source dataset and the
constraints on the patterns. Moreover, the authors use materialized views to
store the results of mining queries already computed.

In [16], mining queries are mainly compared with respect to their support
thresholds, and the authors propose different caching strategies aiming at storing

106 C.T. Diop et al.

only the most useful frequent itemsets that can be used to answer new mining
queries. In [17], the same authors present an extension of their approach, whereby
the source database is not the traditional table, but a data cube.

In this paper, we focus on the case where the source database contains multiple
tables. It follows that we can specify and compare mining queries with different
bases or with different references.

The rest of the paper is organized as follows: In Section 2, we formally define
the notions of mining context and of mining bias, and in Section 3 we extend
the operations of the relational algebra to mining contexts and we study their
properties. The computation of frequent queries is the subject of Section 4, where
we define and study the appropriate operator, which we call the freq operator.
Section 5 deals with mining contexts that are defined using mining biases: we first
show that in this particular case, frequent queries are computed using standard
level-wise algorithms, and then we show how to improve the efficiency of frequent
query discovery. In Section 6, we outline the implementation of our approach and
report experiments. Section 7 concludes the paper and outlines further research
directions based on this work.

2 Mining Context and Mining Bias

2.1 Background

The formalism used in this paper is based on the relational model of databases
([20]). We recall that a relational database schema is a set of relation names,
each of which is associated with a set of attributes. We call schema of a relation
name R the set of attributes associated with R and we denote it by sch(R).
For each attribute A, the possible values for A belong to a specific set of values,
called the domain of A, denoted by dom(A).

In the remainder of this paper, we assume a fixed database schema, DB =
{R1, R2, . . . , Rn}, and we call instance of DB any set of relations I = {r1, r2, . . . ,
rn}, where ri is a relation over sch(Ri), for every i = 1, 2, . . . , n. Given a rela-
tional expression (or query) q, over DB, we call schema of q, denoted by sch(q),
the set of attributes over which q is defined. Moreover, we denote by q(I) the
answer to q in I.

As in [3], if q1 and q2 are two queries such that sch(q1) = sch(q2), we say that
q1 is contained in q2, or that q1 is more specific than q2, denoted by q1 � q2, if
for every instance I we have q1(I) ⊆ q2(I). Queries q1 and q2 are said equivalent,
denoted by q1 ≡ q2, if both q1 � q2 and q2 � q1 hold.

All results reported in this paper are up to query-equivalence, i.e., each query
q is considered to be a representative of its equivalence class.

2.2 Basic Definitions

In this section, we define formally the notions of mining context and mining bias.

Definition 1 - Mining Context. Let X be a relation schema. A mining con-
text C, or simply a context, over X is a finite set of queries, all having X as
their schema. The schema X is called the schema of C, and is denoted by sch(C).

Computation of Mining Queries: An Algebraic Approach 107

Contexts over the same schema can be compared according to two orderings: (1)
set inclusion, and (2) the following ordering based on query-containment.

Definition 2 - Comparison of Contexts. Let C1 and C2 be two contexts of
same schema. C1 is weakly-included in C2, denoted by C1 � C2, if for every q1

in C1, there exists q2 in C2 such that q1 � q2.

Clearly, if C1 ⊆ C2, then C1 � C2, whereas the converse does not hold.

Definition 3 - Mining Bias. A mining bias B, or simply a bias, is a pair
B = 〈b, Σ〉 where:

– b is a relational expression called the basis of B.
– Σ is a set of atomic selection conditions of the form A = a where A is an

attribute in sch(b) and a is a value in dom(A). Σ is called the domain of C.

Denoting by ⊥ and # the selection conditions that are always false and true,
respectively, let Σ∗ be the following set of conjunctive selection conditions:
Σ∗ = {⊥,#} ∪ {(A1 = a1) ∧ . . . ∧ (Ak = ak) | (∀i = 1, . . . , k)(Ai = ai) ∈
Σ and (∀i, j ∈ {1, . . . , k})(i �= j ⇒ Ai �= Aj)}.
The context of B, denoted by C(B), is defined by: C(B) = {σS(b) | S ∈ Σ∗}.

According to Definition 3 above, we have σ�(b) = b and σ⊥(b) = ∅ (where ∅
refers to any query over sch(b) whose answer is empty in any instance of DB).
The roles of ⊥ and # are explained later on in the paper (see Section 5).

We refer to Example 1 and Example 2 for examples of mining contexts and
mining biases. It is easy to see that, in these examples, we have C′1 � C1. Indeed,
every query q′ of C′1 is of the form σCaddr=Paris(q) where q is in C1, which entails
that there exists a query q in C1 such that q′ � q. Note however that we do not
have C′1 ⊆ C1.

3 Operations on Contexts

In this section, we first define operations on contexts by extending the operators
of the relational algebra, and we introduce new operators, called τ-reduction
and γ-reduction. We then study the properties of these operators. Clearly, the
operations defined in this section combine contexts in much the same way as
the operations of the relational algebra combine relations. Therefore, these op-
erations on contexts can be though of as means to specify what we call mining
queries. In other words, in our approach, a mining query is an algebraic expres-
sion on contexts.

3.1 Unary Operations on Contexts

Definition 4 Let C be a context.

1. Given a set of attributes X such that X ⊆ sch(C), the projection of C over X,
denoted by πX(C), is a context over X, defined by: πX(C) = {πX(q) | q ∈ C}.

108 C.T. Diop et al.

2. Given a selection condition S involving only attributes in sch(C), the se-
lection of C with respect to S, denoted by σS(C), is a context over sch(C),
defined by: σS(C) = {σS(q) | q ∈ C}.

3. Given two attributes A ∈ sch(C) and B �∈ sch(C), the renaming of attribute
A by B in C, denoted by ρB←A(C), is a context over (sch(C) \ {A}) ∪ {B},
defined by: ρB←A(C) = {ρB←A(q) | q ∈ C}.

4. Given a selection condition S such that att(S) ⊆ sch(C), the τ -reduction of
C with respect to S, denoted by τS(C), is a context over sch(C), defined by:
τS(C) = {q ∈ C | σS(q) = q}.

5. Given an operator R ∈ {�,�, =} and a query q such that sch(q) = sch(C),
the γ-reduction of C with respect to R and q, denoted by γRq(C), is a context
over sch(C), defined by: γRq(C) = {q′ ∈ C | q′ R q}.

We illustrate these operations on contexts in the following example.

Example 3. First, if we consider the contexts C1 of Example 1 and C′1 of Exam-
ple 2, then we have C′1 = σCaddr=Paris(C1). Moreover, recalling that C1 is meant
to contain queries dealing with customers whose job is either lawyer or professor
and the types of items they buy, it can be seen that attributes such as Date or
Sid have not to be considered. This can be achieved by considering the projec-
tion πX(C1) of C1 where X = {Cid, Cjob, Caddr, P id, P type}. As will be seen
in the paper, considering πX(C1) instead of C1 has no impact on the frequent
queries computed with respect to the set of all customers.

On the other hand, considering the selection Ptype = Tea, the context
τPtype=Tea(C1) contains all queries q of C1 that are equal to σPtype=Tea(q).
More precisely, as in Example 1, consider the queries q1 = σCjob=Lawyer(b1) and
q2 = σCjob=Professor∧Ptype=Tea(b1). Then, clearly, q1 �= σPtype=Tea(q1) whereas
q2 = σPtype=Tea(q2), thus q2 is a query of τPtype=Tea(C1) and q1 is not. We
note that in this case, σPtype=Tea(C1) contains both queries σPtype=Tea(q1) and
σPtype=Tea(q2) (which is equal to q2), showing that σS(C) and τS(C) are in gen-
eral different contexts.

Let us now consider the query q = σCjob=Professor∨Ptype=Tea(b1). Then
γ�q(C1) contains all queries in C1 that deal either with tea or with professors.
For instance the query q2 above belongs to γ�q(C1), whereas q1 does not. �

We note from the previous example that the operations of τ - and γ-reduction
can be seen as selection operations on contexts, whereas the operations of projec-
tion, selection and renaming define contexts containing “new” queries obtained
through the corresponding operations of the relational algebra. Therefore, τ -
and γ-reduction are useful for post-processing the results of previously computed
mining queries. The following proposition states properties of the operations just
defined.

Proposition 1. Let C be a context.

1. For every selection condition S, τS(C) ⊆ C, τS(τS(C)) = τS(C), τS(σS(C)) =
σS(C) and σS(τS(C)) = τS(C).

Computation of Mining Queries: An Algebraic Approach 109

2. For every query q such that sch(q) = sch(C), and every operator R ∈ {�,
�, =}, γRq(C) ⊆ C.

3. For all queries q1 and q2 of schema sch(C), if q1 � q2, then γ�q1(C) ⊆
γ�q2(C) and γ�q2(C) ⊇ γ�q1(C).

Proof: 1. Let S be a selection condition. By definition, we have τS(C) ⊆ C. For
every query q in τS(C), we have q = σS(q). Thus, we have τS(τS(C)) = τS(C).
On the other hand, for every query q ∈ σS(C), there exists q′ ∈ C such that
q = σS(q′). It follows that σS(q) = σS(σS(q′)) = σS(q′) = q, which shows that
σS(q) = q and τS(σS(C)) = σS(C).
On the other hand, it is easy to see that the equality σS(τS(C)) = τS(C) holds,
based on Definition 4(4).
2. This point follows directly from the definition of γ-reduction.
3. Let q1 and q2 be two queries over sch(C) such that q1 � q2. Let q ∈ γ�q1(C).
We have q � q1. Since q1 � q2, we have q � q2, which shows that q ∈ γ�q2(C)
and thus, γ�q1(C) ⊆ γ�q2(C). We can prove in the same way that γ�q2(C) ⊆
γ�q1 (C). Thus, the proof is complete. $

3.2 Binary Operations on Contexts

A context being a set of queries, we consider the standard set-theoretic operators
∪, ∩ and \ over contexts. Moreover, based on these set-theoretic operations, we
define new operations on contexts in a relation-wise manner as follows.

Definition 5 Let C1 and C2 be two contexts.

1. The join of C1 and C2, denoted by C1 �� C2, is a context over sch(C1)∪sch(C2)
defined by:
if C1 �= ∅ and C2 �= ∅ then C1 �� C2 = {q1 �� q2 | q1 ∈ C1 and q2 ∈ C2}
otherwise, C1 �� C2 = ∅.

2. If sch(C1) = sch(C2) = X, the union of C1 and C2, denoted by C1 � C2, is a
context over X defined by:
if C1 �= ∅ and C2 �= ∅ then C1 � C2 = {q1 ∪ q2 | q1 ∈ C1 and q2 ∈ C2}
otherwise, if C1 = ∅ then C1 � C2 = C2 else C1 � C2 = C1.

3. If sch(C1) = sch(C2) = X, the intersection of C1 and C2, denoted by C1 �C2,
is a context over X defined by:
if C1 �= ∅ and C2 �= ∅ then C1 � C2 = {q1 ∩ q2 | q1 ∈ C1 and q2 ∈ C2}
otherwise, C1 � C2 = ∅.

4. If sch(C1) = sch(C2) = X, the difference of C1 and C2, denoted by C1 % C2,
is a context over X defined by:
if C1 �= ∅ and C2 �= ∅ then C1 % C2 = {q1 \ q2 | q1 ∈ C1 and q2 ∈ C2}
otherwise, C1 % C2 = C1.

The following example illustrates the operations defined above.

Example 4. Considering again the database DBSales of Example 1, we recall
that the context C1 = C(B1) is defined from the bias B1 = 〈b1, Σ1〉 where b1 =

110 C.T. Diop et al.

Cust �� Sales �� Prod and Σ1 = {Cjob = Professor, Cjob = Lawyer, P type =
Tea, P type = Milk}.

The context σPtype=Tea∧P=Milk(πX(C1) �� ρP←Ptype(πX(C1))), where X =
sch(b1)\{Pid}, contains queries that refer to those customers who are professors
or lawyers and who buy tea and milk in the same store and on the same date.

On the other hand, the context σPtype=Tea(C1) � σCaddr=Paris(C1) contains
queries that refer to those customers living in Paris, and who buy tea.

Note that this context should not be confused with the context σPtype=Tea(C1)
∩ σCaddr=Paris(C1), which is empty. Indeed, if q is a query in σPtype=Tea(C1) ∩
σCaddr=Paris(C1), then q is in σPtype=Tea(C1), meaning that q is of the form
σPtype=Tea∧S(b1) where S ∈ Σ∗

1 . Since Caddr = Paris is not in Σ1, q cannot be
in σCaddr=Paris(C1). �

The following proposition shows that the operators just defined behave similarly
as their standard conterpart over sets.

Proposition 2. Let C1 and C2 be contexts.

1. πXi(C1 �� C2) � Ci, where Xi = sch(Ci) and i = 1, 2.
2. C1 % C2 � C1.
3. For i = 1, 2, C1 � C2 � Ci and C1 � C2 � Ci.

Proof: Let C1 and C2 be contexts. We first note that if C1 or C2 is empty, then
the proof follows immediately from Definition 5 above. Let us assume that C1
and C2 are not empty.
1. Let q ∈ πXi(C1 �� C2) where Xi = sch(Ci) (i = 1, 2). There exist q1 ∈ C1 and
q2 ∈ C2 such that q = πXi (q1 �� q2). Moreover, we have πXi (q1 �� q2) � qi. Thus,
there exists a query qi ∈ Ci such that q � qi, which shows that πXi(C1 �� C2) � Ci.
2. Let q ∈ C1 % C2. There exist q1 ∈ C1 and q2 ∈ C2 such that q = q1 \ q2.
Moreover, we have (q1 \ q2) � q1. Thus, there exists a query q1 ∈ C1 such that
q � q1, which shows that C1 % C2 � C1.
3. Let q ∈ C1. Since C2 �= ∅, let q2 ∈ C2. Then, we have q = q1 ∪ q2 ∈ C1 � C2.
Moreover, q1 � (q1 ∪ q2). Thus, there exists a query q ∈ C1∪C2 such that q1 � q,
which shows that C1 � C1 � C2. The proof that C1 � C2 � Ci is similar, and thus,
is omitted. Therefore, the proof is complete. $

It is important to note that these properties can be used for query optimiza-
tion in much the same way as in relational databases, where queries are optimized
based on the properties of the relational algebra.

4 The Freq Operator

4.1 Support of a Query

We now define the support of a query. In our approach, the support of a query
is defined with respect to a reference query that specifies the values subject
to counting. It is important to note that, contrary to the operations defined
previously, the freq operator is defined for a particular instance I of DB.

Computation of Mining Queries: An Algebraic Approach 111

Definition 6 - Support of a Query. Let q and r be two queries. For every
instance I, the support of q relatively to r and I, denoted by Sup(q/r, I), is the
following ratio:

Sup(q/r, I) =
|(πK(r �� q))(I)|

|r(I)| , where K = sch(r).

The query r with respect to which the support of q is computed, is called the
reference query.

The following proposition states the basic property of monotonicity of the sup-
port, which is similar to the one used for itemsets in [1].

Proposition 3. Given a reference query r, let q1 and q2 be two queries such
that q1 � q2. Then for every instance I, we have: Sup(q1/r, I) ≤ Sup(q2/r, I).

Proof: Since q1 � q2, then we have πK(r �� q1) � πK(r �� q2), which entails
that Sup(q1/r, I) ≤ Sup(q2/r, I). $

Then, based on standard properties of the relational algebra, we have the
following corollary.

Corollary 1. Given a reference query r, let q1 and q2 be two queries. For every
instance I, we have:

1. Sup(σS(q1)/r, I) ≤ Sup(q1/r, I) where S is a selection condition such that
att(S) ⊆ sch(q1).

2. Sup(πX(q1)/r, I) = Sup(q1/r, I) where X is a set of attributes such that
sch(r) ⊆ X ⊆ sch(q1).

3. Sup(ρB←A(q1)/r, I) = Sup(q1/r, I) where A and B are two attributes such
that A /∈ sch(r) and B /∈ sch(r) ∪ sch(q1).

4. Sup(q1 �� q2/r, I) ≤ Sup(qi/r, I) for i = 1, 2.

Moreover, if sch(q1) = sch(q2) then we also have:

5. Sup(q1 ∩ q2/r, I) ≤ Sup(qi/r, I) for i = 1, 2.
6. Sup(q2 \ q1/r, I) ≤ Sup(q2/r, I).
7. Sup(q2 ∪ q1/r, I) ≥ Sup(qi/r, I) for i = 1, 2.

Proof: Using the notation and the hypotheses in the corollary, the proof is
based on Definition 6 and on the following properties of the relational algebra,
respectively: (1) πK(r �� σS(q1)) = πK(σS(r �� q1)), (2) πK(r �� πX(q1)) =
πK(r �� q1), (3) |(ρB←A(q1))(I)| = |q1(I)|, (4) πK(r �� (q1 �� q2)) ⊆ πK(r �� qi)
for i = 1, 2, (5) q1 ∩ q2 � qi for i = 1, 2, (6) q2 \ q1 � q2, and (7) qi � q1 ∪ q2 for
i = 1, 2. $

Definition 7 - Freq Operator. Let C be a context, α a support threshold
α, and r a reference query. For every instance I of DB, we define a context
freqI(C, α, r) over sch(C) by: freqI(C, α, r) = {q ∈ C | Sup(q/r, I) ≥ α}.

Queries in freqI(C, α, r) are called α-frequent in I, or simply frequent if α
and I are understood.

112 C.T. Diop et al.

4.2 Properties of the Freq Operator

We first give basic properties of the freq operator, and then we study its rela-
tionships to the unary and binary operations defined earlier.

Proposition 4. Let C, C1 and C2 be contexts, r a reference query and I an
instance of DB. For all support thresholds α, α1, α2, the following holds.

1. freqI(C, α, r) ⊆ C.
2. If α2 ≥ α1, then freqI(C, α2, r) ⊆ freqI(C, α1, r).
3. If C1 � C2, then freqI(C1, α, r) � freqI(C2, α, r).
4. If C1 ⊆ C2, then freqI(C1, α, r) ⊆ freqI(C2, α, r).

Proof: Let I be an instance of DB, C a context and r be a reference query.
1. This point follows directly from Definition 7 above.
2. Let α1 and α2 be two support thresholds such that α2 ≥ α1, and q ∈
freqI(C, α, r). We have Sup(q/r, I) ≥ α2, and thus, Sup(q/r, I) ≥ α2 ≥ α1,
which shows that q ∈ freqI(C, α1, r). Therefore, if α2 ≥ α1, then freqI(C, α2, r)
⊆ freqI(C, α1, r).
3. Let C1 and C2 be two contexts such that C1 � C2. Given a support threshold α,
let q1 ∈ freqI(C1, α, r). We have Sup(q1/r, I) ≥ α. On the other hand, since C1 �
C2, there exists a query q2 ∈ C2 such that q1 � q2. It follows that Sup(q2/r, I) ≥
Sup(q1/r, I) ≥ α. Thus, q2 ∈ freqI(C2, α, r), which shows that if C1 � C2, then
freqI(C1, α, r) � freqI(C2, α, r).
4. This case is obvious, and thus, the proof is complete. $

Considering the unary operators, we have the following two propositions.

Proposition 5. Let I be an instance of DB, α a support threshold, and r a
reference query. Let C be a context.

1. For every set of attributes X and every reference query such that sch(r) ⊆
X ⊆ sch(C), freqI(πX(C), α, r) = πX(freqI(C, α, r)).

2. For every selection condition S, freqI(σS(C), α, r) � freqI(C, α, r).
3. For all attributes A and B, freqI(ρB←A(C), α, r) = ρB←A(freqI(C, α, r)).
4. For every selection condition S, freqI(τS(C), α, r) = τS(freqI(C, α, r)).
5. For every operator R ∈ {�,�, =} and query q:

freqI(γRq(C), α, r) = γRq(freqI(C, α, r)).

Proof: Let I be an instance of DB, r a reference query, C a context, X a
subset of sch(C) such that sch(r) ⊆ X , and S a selection condition such that
att(S) ⊆ sch(C).
1. Let q be a query in freqI(πX(C), α, r). There exists a query q′ ∈ C such that
q = πX(q′), and Sup(q/r, I) ≥ α. Using Corollary 1(2), we have Sup(q/r, I) =
Sup(q′/r, I) ≥ α. Thus, q′ ∈ freqI(C, α, r) and q ∈ πX(freqI(C, α, r)), which
shows that freqI(πX(C), α, r) ⊆ πX(freqI(C, α, r)).
Conversely, if q ∈ πX(freqI(C, α, r)), then there exists q′ in freqI(C, α, r) such
that q = πX(q′). Thus, q′ ∈ C, and since Sup(q/r, I) ≥ α, we have q ∈

Computation of Mining Queries: An Algebraic Approach 113

freqI(πX(C), α, r). Therefore, πX(freqI(C, α, r)) ⊆ freqI(πX(C), α, r), which
shows that πX(freqI(C, α, r)) = freqI(πX(C), α, r).
2. Let q ∈ freqI(σS(C), α, r). We have Sup(q/r, I) ≥ α and there exits a query
q′ ∈ C such that q = σS(q′). Using Proposition 3, since q � q′, we have
Sup(q′/r, I) ≥ Sup(q/r, I) ≥ α. Thus, there exists a query q′ ∈ freqI(C, α, r)
such that q � q′, which shows that freqI(σS(C), α, r) � freqI(C, α, r).
3. In the same way, we can easily prove this item using Corollary 1(3).
4. Let q ∈ freqI(τS(C), α, I). By definition, Sup(q/r, I) ≥ α and q = σS(q).
Thus, we have q ∈ freqI(C, α, I) and q ∈ τS(freqI(C, α, r)), which shows that
freqI(τS(C), α, I) ⊆ τS(freqI(C, α, r)).
As it can be seen in a similar way that τS(freqI(C, α, r)) ⊆ freqI(τS(C), α, I),
we have freqI(τS(C), α, r) = τS(freqI(C, α, r)).
5. This property follows directly from Definition 4. Thus, the proof is com-
plete. $

We point out that when considering contexts defined using biases, the result
of Proposition 5(2) can be improved, as stated in the proposition below.

Proposition 6. Let B = 〈b, Σ〉 be a bias, r a reference query and S a selection
condition. For every instance I of DB and every support threshold α, we have:

1. freqI(σS(C(B)), α, r) ⊆ σS(freqI(C(B), α, r)).
2. If S ∈ Σ∗ then freqI(σS(C(B)), α, r) = τS(freqI(C(B), α, r)).

Proof: In both cases, any q in freqI(σS(C(B)), α, r) is such that Sup(q/r, I) ≥ α
and q = σS(σS′(b)) where S′ ∈ Σ∗.
1. Since q � σS′(b), we have Sup(σS′(b)/r, I) ≥ Sup(q/r, I) ≥ α. Therefore,
σS′(b) ∈ freqI(C(B), α, r), and thus q ∈ σS(freqI(C(B), α, r).

2. Since in this case S is in Σ∗, then so is S∧S′, and thus q ∈ freqI(C(B), α, r). As
q = σS(q), we have that q ∈ τS(freqI(C(B), α, r). Thus, freqI(σS(C(B)), α, r) ⊆
τS(freqI(C(B), α, r)). As it can be shown in the same way that freqI(σS(C(B)),
α, r) ⊇ τS(freqI(C(B), α, r)), the proof is complete. $

We note that the properties of the freq operator given so far deal with the
same reference query. However, in practice, changing the reference query can be
useful for the user, as illustrated by the following example. In general, we have
few interesting properties for the freq operator in this case. Nevertheless, the
following example shows a situation where some comparison is possible.

Example 5. Consider the database DBSales, the context C1 and the reference
query r given in Example 1. We recall that queries in C1 are the queries of the
form σS(b1) where b1 = Cust �� Sales �� Prod and S is a conjunctive selection
condition built up from the conditions Cjob = Professor, Cjob = Lawer,
Ptype = Tea and Ptype = Milk. Moreover, we also recall that r = πCid(Cust),
meaning that the supports of queries in C1 are computed with respect to the set
of all customers.

114 C.T. Diop et al.

Assume now that, seeing that queries dealing with professors are frequent, the
user wishes to compute supports with respect to only those customers who buy
products and are professors. Then the corresponding reference query r′ can be
expressed by r′ = πCid(r �� q), where q = σCjob=Professor(b1). In such a case, the
following proposition shows that γ�q(freqI(C1, α, r)) ⊆ freqI(C1, α, r′), meaning
that the frequent queries with respect to r that deal with professors are among
the frequent queries with respect to r′ (which deal with professors). �

Proposition 7. Let I be an instance of DB. Let C be a context. Given a query
q ∈ C and a reference query r, let r′ = πK(r �� q) where K = sch(r). For every
support threshold α, we have: γ�q(freqI(C, α, r)) ⊆ freqI(C, α, r′).

Proof: Let I be an instance of DB, r a reference query with K = sch(r) and
α a support threshold. Let C be a context.
Given a query q ∈ C, let q′ ∈ γ�q(freqI(C, α, r)). By definition, we have q′ � q
and Sup(q′/r, I) ≥ α. Let s1 = πK(r �� q′) and s2 = πK(r′ �� q′) = πK(πK(r ��
q) �� q′). Since r′ � r, we have s2 � s1 and thus s2(I) ⊆ s1(I). Now, we show
that s1(I) ⊆ s2(I). Let t be a tuple in s1(I). There exists a tuple t′ ∈ q′(I) such
that for every attribute A ∈ K∩sch(q′), t′.A = t.A. Since q′ � q, t′ ∈ q(I). Thus,
t ∈ πK(r �� q)(I). It follows that t′ ∈ (πK(r �� q) �� q′)(I) and t ∈ s2(I), which
completes the proof that s1(I) ⊆ s2(I). Since s2(I) ⊆ s1(I) and s1(I) ⊆ s2(I),
we finally have s1(I) = s2(I).

Now, we can compare the support of q′ with respect to r and r′. Since
r′ � r, we have |r′(I)| ≤ |r(I)|. Therefore, Sup(q′/r′, I) = |s2(I)|/|r′(I)| =
|s1(I)|/|r′(I)| ≥ |s1(I)|/|r(I)| = Sup(q′/r, I) ≥ α. Thus, q′ ∈ freqI(C, α, r),
which completes the proof. $

The following proposition states the properties of freq with respect to the
binary operators.

Proposition 8. Let I be an instance of DB, α a support threshold, and r a
reference query. Let C1 and C2 be two contexts.

1. πXi(freqI(C1 �� C2, α, r)) � freqI(Ci, α, r) where Xi = sch(Ci) (i = 1, 2),
and freqI(C1 �� C2, α, r) ⊆ freqI(C1, α, r) �� freqI(C2, α, r).

2. freqI(Ci, α, r) � freqI(C1 � C2, α, r) for i = 1, 2.
3. freqI(C1 � C2, α, r) � freqI(Ci, α, r) for i = 1, 2.
4. freqI(C1 % C2, α, r) � freqI(C1, α, r).

Proof: Let I be an instance of DB, α a support threshold and r a reference
query with K = sch(r). Let C1 and C2 be two contexts.
1. Using Proposition 5(1), we have πXi(freqI(C1 �� C2, α, r)) = freqI(πXi (C1 ��
C2), α, r) (i = 1, 2). Moreover, using Proposition 2(1), we have πXi(C1 �� C2) �
C1. Therefore, using Proposition 4(3), we have freqI(πXi (C1 �� C2), α, r) �
freqI(Ci, α, r).
Now, let q ∈ freqI(C1 �� C2, α, r). There exist a query q1 ∈ C1 and a query
q2 ∈ C2 such that q = q1 �� q2. Moreover, we have Sup(q/r, I) ≥ α. Thus, since
πK(r �� q1 �� q2) � πK(r �� qi) (i = 1, 2), we have Sup(qi/r, I) ≥ Sup(q/r, I) ≥

Computation of Mining Queries: An Algebraic Approach 115

α, which shows that for i = 1, 2, qi ∈ freqI(Ci, α, r). Therefore, there exists
q1 ∈ freqI(C1, α, r) and q2 ∈ freqI(C2, α, r) such that q = q1 �� q2, and so
freqI(C1 �� C2, α, r) ⊆ freqI(C1, α, r) �� freqI(C2, α, r).
The proofs of items 2, 3 and 4 follow directly from Proposition 2(2, 3) and
Proposition 4(3). $

The following proposition states the properties of freq with respect to set-
theoretic operations.

Proposition 9. Let I be an instance of DB. Let α, α1, α2 be support thresholds,
and r a reference query. Let C, C1 and C2 be contexts.

1. For every operator op ∈ {∩, \,∪}, we have:
freqI(C1 op C2, α, r) = freqI(C1, α, r) op freqI(C2, α, r).

2. If α1 ≤ α2, then freqI(C, α2, r) \ freqI(C, α1, r) = ∅ and
freqI(C, α1, r) \ freqI(C, α2, r) = freqI((C \ freqI(C, α2, r)), α1, r).

3. If α1 ≤ α2, then freqI(C, α1, r) ∩ freqI(C, α2, r) = freqI(C, α2, r) and
freqI(C, α1, r) ∪ freqI(C, α2, r) = freqI(C, α1, r).

Proof: 1. We prove this item in the case where op is the intersection operator,
the other proofs being similar. A query q is in freqI(C1∩C2, α, r) if and only if q is
in C1∩C2 and Sup(q/r, I) ≥ α. Thus, q is in freqI(C1∩C2, α, r) if and only if q is
in freqI(C1, α, r) and in freqI(C2, α, r), which shows that freqI(C1 ∩ C2, α, r) =
freqI(C1, α, r) ∩ freqI(C2, α, r).
The proof of the last two items of the proposition is an immediate consequence of
the fact that if α1 ≤ α2, then freqI(C, α2, r) ⊆ freqI(C, α2, r) (see Proposition
4(2)). Thus the proof is complete. $

In the following example, we outline situations in which properties of the freq
operator can be used for optimization.

Example 6. Consider again the database DBSales of Example 1, the reference
query r = πCid(Cust) and the context C1 = C(B1) where B1 = 〈b1, Σ1〉, b1 =
Cust �� Sales �� Prod and Σ1 = {Cjob = Professor, Cjob = Lawyer, P type =
Tea, P type = Milk}. Assume in this example that the context freqI(C1, α, r)
has been computed and stored previously.

If we consider the context C2 = σCjob=Lawyer(C1), then, according to Propo-
sition 6(2), for every support threshold α and every instance I of DBSales, we
have: freqI(C2, α, r) = τCjob=Lawyer(freqI(C1, α, r)).

Thus, it turns out that the frequent queries of C1 that deal with lawyers
are exactly the frequent queries of C2. As a consequence, freqI(C2, α, r) can be
computed without having to access the database.

Now, if we consider the context C′1 = σCaddr=Paris(C1) given in Example
2, according to Proposition 6(1), for every instance I of DBSales, we have:
freqI(C′1, α, r) ⊆ σCaddr=Paris(freqI(C1, α, r)). In this case, if a query q1 of C1 is
not frequent, the corresponding query q′1 = σCaddr=Paris(q1) of C′1 is not frequent
either, and this conclusion is reached without any access to the database. �

116 C.T. Diop et al.

We conclude this section by the following important remark: although useful for
optimization, the properties given so far say nothing about the actual compu-
tation of frequent queries in a given context. We address this problem in the
following section, for contexts defined using mining biases.

5 Computation of Mining Contexts

In this section, we consider contexts that are expressed by a combination of
contexts of the form C(Bi) (where Bi are biases) using the operations given in
this paper (except for � and %).

We first note in this respect that if the freq operator does not occur in the
defining expression, then the definitions given so far allow for the computation
of the corresponding context. On the other hand, we show below that, under
the restrictions stated just above, expressions of the form freqI(C, α, r) can be
computed using any level-wise algorithm.

5.1 The Case of a Single Context

Simple Contexts. We show that given a bias B = 〈b, Σ〉, a support thresh-
old α, a reference query r and an instance I of DB, contexts of the form
freqI(C(B), α, r) can be computed using any level-wise algorithm as in [13].

To this end, we have to show that 〈C(B),�〉 is a lattice. We recall from
Definition 3 that C(B) is the set of all queries σS(b) where S is either ⊥, # or a
conjunctive selection condition built up from atomic selection conditions of Σ.
Let us define the following two operators � and � on selection conditions of Σ∗ :
For all S1 and S2 in Σ∗, define:

– If S1 = ⊥ or S2 = ⊥ then S1 � S2 = ⊥
If S1 = # (respectively S2 = #) then S1 � S2 = S2 (respectively S1)
Otherwise, if S1 ∧ S2 ∈ Σ∗ then S1 � S2 = S1 ∧ S2 else S1 � S2 = ⊥.

– If S1 = ⊥ (respectively S2 = ⊥) then S1 � S2 = S2 (respectively S1)
If S1 = # or S2 = # then S1 � S2 = #
Otherwise, S1 �S2 is the conjunction of all atomic selection conditions (Ai =
ai) that occur in both S1 and S2.

It can be seen that for all queries q1 = σS1(b) and q2 = σS2(b) in C(B), we have:

1. The queries σS1�S2(b) and σS1�S2(b) are in C(B),
2. qi � σS1�S2(b) and qi � σS1�S2(b) for i = 1, 2,
3. σS1�S2(b) = min�{q ∈ C(B) | q1 � q and q2 � q} and

σS1�S2(b) = max�{q ∈ C(B) | q � q1 and q � q2}.

As a consequence, 〈C(B),�〉 is a lattice. Moreover, we recall from Proposition 3
that the support is monotonic with respect to the relation �.

Therefore, in our approach, mining queries of the form freqI(C(B), α, r) are
computed using any level-wise algorithm ([13]). More precisely, the queries in
C(B) are considered level by level, where level k consists of all queries of the

Computation of Mining Queries: An Algebraic Approach 117

form σS(b) such that S is the conjunction of k atomic selection conditions in Σ.
At each level, the relation (r �� b)(I) is scanned once for computing the supports
of the candidate queries. We note also that the computation starts at level 0
with the query b (or σ�(b)) and stops at the latest by considering the empty
query (or σ⊥(b)) which can not be frequent for any support threshold α > 0.

Composed Contexts. We study the computation of contexts of one of the
following forms

– freqI(op1(C(B)), α, r) where op1 is one of the unary operations given in the
previous section, or

– freqI((C(B1) op2 C(B2)), α, r) where op2 is a binary operation in the set {∩,
\, ∪, �, ��}.

Given a bias B = 〈b, Σ〉, the case of a unary operation can be summarized as
follows:

– If op1 is a projection over X such that sch(r) ⊆ X ⊆ sch(b), or a re-
naming or a τ - or γ-reduction, then based on Proposition 5, we know that
freqI(op1(C(B)), α, r) = op1(freqI(C(B), α, r)). Therefore, freqI(C(B), α, r)
is computed first and then the operation op1 is applied to the resulting
context. We note that optimizations are possible in the case of γ- and τ -
reductions. Indeed, at each level in the lattice C(B), it is not necessary to
evaluate the supports of candidate queries not in op1(C(B)).

– If op1 is a selection, then it is easy to see that σS(C(B)) = C(B′), where
B′ = 〈σS(b), Σ〉. Therefore, in this case, the context freqI(C(B′), α, r) is
computed as explained previously in the case of simple contexts.

Now, given two biases B1 = 〈b1, Σ1〉 and B2 = 〈b2, Σ2〉, let us consider the case
of a binary operation op2 in the set {∩, \, ∪, �, ��}.

If op2 is one of the operations ∩, \ or ∪, then based on Proposition 9(1), we
have freqI((C(B1) op2 C(B2)), α, r) = freqI(C(B1), α, r) op2 freqI(C(B2), α, r).
Therefore, in order to compute freqI((C(B1) op2 C(B2)), α, r)), we first compute
freqI(C(B1), α, r) and freqI(C(B2), α, r) and then we apply the operation op2 to
the resulting contexts. As in the case of unary operators, optimizations are pos-
sible in this computation. For example, if op2 is the operator ∩, when computing
freqI(C(B1), α, r), it is not necessary to evaluate the supports of the candidate
queries not in C(B2).

If op2 is either � or ��, then we have the following:

– C(B1) � C(B2) = C(B′), where B′ = 〈b1 ∩ b2, Σ1 ∪Σ2〉, and
– C(B1) �� C(B2) = C(B′), where B′ = 〈b1 �� b2, Σ1 ∪Σ2〉.

Therefore, in these two cases, the computation of freqI((C(B1) op2 C(B2)), α, r)
is achieved through the computation of freqI(C(B′), α, r) as defined above.

We note that the case of the operations � and % cannot be treated as above
because, if op2 is one of these operations, then:

118 C.T. Diop et al.

1. freqI((C(B1) op2 C(B2)), α, r) �= freqI(C(B1), α, r) op2 freqI(C(B2), α, r),
and

2. there is no bias B′ such that C(B1) op2 C(B2) = C(B′).

Summarizing this subsection, we have shown that any context of the form
freqI(C, α, r), where C is a combination of contexts of the form C(Bi) using
any operation, except � and %, can be computed using any level-wise algorithm
as in [13].

5.2 Iterative Computation

In this section, we study how to optimize the computation of mining queries of
the form freqI(C, α, r) under the following assumptions:

1. The context C is an expression using operators introduced in this paper,
except � and %, and involving contexts C(B1), . . . , C(Bk), for some k ≥ 1.

2. The contexts freqI(C(B1), α1, r), . . . , freqI(C(Bk), αk, r) have already been
computed and their positive boundaries are stored in the database.

We first study the case where α = α1 = . . . = αk, and outline the general case
at the end of this section. Before doing so, we briefly review the basic concepts
related to positive boundaries ([13]).

As in [13], we define the positive boundary of the set of frequent queries of a
context C as being the set of all most specific queries in C that are frequent. More
precisely, given a context C, the positive boundary of freqI(C, α, r), denoted by
Bd+

I (C, α, r), is defined by:

Bd+
I (C, α, r) = min

�
(freqI(C, α, r))

Moreover, it is easy to see that freqI(C, α, r) can be computed from its positive
boundary according to the following equality:

freqI(C, α, r) = {q ∈ C | (∃q+ ∈ Bd+
I (C, α, r))(q+ � q)} (1)

We note that this computation can be achieved without accessing the database
and that the supports of the queries in freqI(C, α, r) can be obtained through
one pass over the database, only.

Now, let us consider the case where, in our previous assumptions, we have
α = α1 = . . . = αk. Based on the properties of our operations on contexts, the
following two cases occur:

1. Equality: In this case, freqI(C, α, r) is equal to an expression involving the
contexts freqI(C(Bi), α, r) (i = 1 . . . k). This case occurs for the operators
projection, renaming, τ - and γ-reduction (see Proposition 5(1, 4, 5)), se-
lection (see Proposition 6(2)), or for set-theoretic operators (see Proposi-
tion 9(1)).

Computation of Mining Queries: An Algebraic Approach 119

2. Inclusion: In this case, freqI(C, α, r) is included (weakly or not) in an expres-
sion involving the contexts freqI(C(Bi), α, r) (i = 1 . . . k). This case occurs
for the operators selection (see Proposition 6(1)), join, or � (see Proposi-
tion 8(1, 3)).

In each of these cases, we outline below optimizations for the computation of
freqI(C, α, r).
(1) Equality. In this case, no access to data is needed to obtain freqI(C, α, r).
In order to get the context freqI(C, α, r), one has just to compute the contexts
freqI(C(Bi), α, r) (i = 1, . . . , k) based on equality (1) above, and then to apply
the corresponding operations to these contexts. Moreover, we recall that the
supports of the queries in freqI(C, α, r) can be computed through only one pass
over the data.
(2) Inclusion. In this case, the positive boundaries of the contexts already
computed allow for additional pruning (with respect to standard level-wise al-
gorithms) when generating the candidate queries of level l +1 from the frequent
queries of level l.

To see this, let q be a candidate query in C. We know that freqI(C, α, r) is in-
cluded (weakly or not) in an expression involving the contexts freqI(C(Bi), α, r).
According to the properties given in the previous section, it follows that there ex-
ist queries qi ∈ freqI(C(Bi), α, r) such that πXi(q) � qi, where Xi = sch(C(Bi)).
Thus, for every i = 1, . . . , k, since qi is frequent, there exists q+

i ∈ Bd+
I (C(Bi),

α, r) such that q+
i � qi. Therefore, conversely, if for some i, there is no query

q+
i as above, then q is not frequent and thus, q can be removed from the set of

candidate queries of C. The problem of efficiently testing the existence of q+
i has

been addressed in [6].

Example 7. Given three biases Bi = 〈bi, Σi〉 (i = 1, 2, 3) such that sch(b1) ⊆
sch(b2) and a minimum support threshold α, assume that the contexts freqI(Ci,
α, r) where Ci = C(Bi) (i = 1, 2, 3) have already been computed. Consider the
context C = (σϕ(C1) ∪ πX1(C2)) �� C3 where ϕ is a selection condition and
X1 = sch(C1). Using Propositions 5, 8 and 9, we have:

freqI(C, α, r) � (freqI(C1, α, r) �� freqI(C3, α, r)) ∪
(πX1 (freqI(C2, α, r)) �� freqI(C3, α, r)).

Moreover, let q be a candidate query in C. q is either in σϕ(C1) �� C3 or in
πX1(C2) �� C3. In the first case, q is a query of the form q = σS1∧S3(σϕ(b1) �� b3)
where S1 ∈ Σ∗

1 and S3 ∈ Σ∗
3 . Thus, we have πX1(q) � σS1(b1) and πX1(q) �

σS3(b3). Therefore, if one of the queries σS1(b1) or σS3(b3) is not in freqI(C1, α, r)
or freqI(C3, α, r), then q is not frequent and thus, can be removed from the set
of candidate queries in C.

In the second case, q is a query of the form q = σS2∧S3(πX1 (b2) �� b3) where
S2 ∈ Σ∗

2 and S3 ∈ Σ∗
3 . Thus, we have πX1(q) � πX1(σS2(b2)) and πX1 (q) �

σS3(b3). Therefore, if one of the queries σS2(b2) or σS3(b3) is not in freqI(C2, α, r)
or freqI(C3, α, r), then q is not frequent and thus, can be removed from the set
of candidate queries in C. �

120 C.T. Diop et al.

We terminate this section by considering the general case whereby the contexts
freqI(C(Bi), αi, r) have been computed with respect to different minimum sup-
port thresholds αi (i = 1, . . . , k).

Let α′ = max({α} ∪ {αi | i = 1, . . . , k}). For every i = 1, . . . , k, we have
freqI(C(Bi), α′, r) = {q ∈ freqI(C(Bi), αi, r) | Sup(q/r, I) ≥ α′}. Therefore,
using Bd+

I (C(Bi), αi, r), the set freqI(C(Bi), α′, r) can be computed through
one pass over the data, selecting the queries q in freqI(C(Bi), αi, r) such that
Sup(q/r, I) ≥ α′. After the computation of all sets freqI(C(Bi), α′, r) (i =
1, . . . , k), it is then possible to compute the set F = freqI(C, α′, r), using the
iterative approach presented just above.

If α′ = α, then the computation of freqI(C, α, r) is complete. On the other
hand, if α′ > α, we still have to compute F ′ = freqI(C, α, r)\F . Using Proposi-
tion 9(2), we know that F ′ = freqI(C\F , α, r). However, no further optimization
is possible for queries in C \ F ; one will have to use the standard approach [1].

6 Experimental Results

In order to evaluate the benefits of our iterative approach over non-iterative
computations, we performed several experiments. We first describe the synthetic
data sets used in the evaluation. Then, in the case of a selection, we study in
detail the parameters that influence the gain in computation time. We also give
some summary results in the case of a join.

6.1 Synthetic Data Sets

The data sets used in this paper have been generated in a similar way as in [1].
However, the generator used in [1] has been modified so as to comply with our
environment that uses more than one table. We first summarize our method for
generating data sets and then we give characteristics of the three groups of data
sets that we considered in our experiments.

Given a bias B = 〈b, Σ〉 and a support threshold α, we randomly generate
queries of C(B) that are meant to be frequent in the data set to be generated.
To this end, since a selection condition can be seen as a set of atomic selection
conditions, we first choose randomly a positive number N for the average number
of atomic selection conditions in the frequent queries. Then, N attributes are
randomly chosen and for each of them, a value in the corresponding domain
is randomly selected. The resulting selection conditions from Σ∗ allow to build
tuples that are inserted in the tables of the database under construction. We
note in this respect that, for a given selection condition S in Σ∗, the number of
inserted tuples is set so that the query σS(b) be α-frequent.

In our experiments, we consider a database containing the three relations
Cust, Prod and Sales from our running example. However, in order to increase
the number of attributes, the relations Cust and Prod are defined over 10 at-
tributes each, denoted by X1, . . . , X10 for Cust, and by Y1, . . . , Y10 for Prod.
Different instances of this database have been generated, using different param-
eters settings. These instances are classified in the following three groups:

Computation of Mining Queries: An Algebraic Approach 121

Table 1. First and second groups of data sets, with different sizes of domains
(D10T4S5, D40T4S5 and D80T4S5) and different average sizes of queries (D40T3S5
et D40T5S5)

Data Sets D10T4S5 D40T4S5 D80T4S5 D40T3S5 D40T5S5

Average Size of Patterns 4 4 4 3 5
Size of Domains 10 40 80 40 40
Number of Maximal Patterns 100 100 100 100 100
Cardinality of Cust Table 2,000 2,000 2,000 2,000 2,000
Cardinality of Prod Table 6,000 6,000 6,000 6,000 6,000
Cardinality of Sales Table 54,000 54,000 54,000 54,000 54,000
Minimal Support Threshold 5% 5% 5% 5% 5%

Table 2. Gain of computation time for the first and second groups of data sets

Without Optimization (sec.) D10T4S5 D40T4S5 D80T4S5 D40T3S5 D40T5S5

Evaluation Phase 249 182 577 191 420
Total 282 189 599 197 436
Iterative Approach (sec.)
N-Pass Evaluation 124 55 58 52 127
1-Pass Evaluation 86 32 41 22 100
New Pruning Phase 4 1 7 1 1
Total for N-Pass 224 75 92 59 141
Total for 1-Pass 193 53 81 30 113
Gain for N-Pass 45.0% 69.3% 88.0% 72.6% 69.5%
Gain for 1-Pass 56.0% 81.0% 89.8% 87.3% 75.9%

Group 1 - Instances D10T4S5, D40T4S5 and D80T4S5. In this first
group, the cardinalities of the domains of attributes are 10, 40 and 80, respec-
tively. On the other hand, the minimal support threshold is set to 5%, whereas
the average size of the frequent queries is equal to 4 1. The cardinalities of the
tables Cust, Sales and Prod are 2000, 6000 and 54000, respectively.
Group 2 - Instances D40T3S5 and D40T5S5. In this second group, the
average size of the frequent queries is 3 (instance D40T 3S5) or 5 (instance
D40T 5S5). In both cases, the cardinality of the domains of attributes is set to
40, and the minimal support threshold is equal to 5%.
Group 3 - Instances D10T4S3 and D10T4S5. In this third group, the
instance D10T 4S3 has the same characteristics as the instance D10T 4S5, except
that the minimal support threshold is set to 3%. These two instances have been
considered to study how the value of the minimal support threshold can influence
the gain in computation time.

The characteristics of the data sets in the first and second group are given in
Table 1. For these groups, Table 2 shows the gains in computation time that we

1 Given a bias B = 〈b, Σ〉, the size of a query q = σS(b) ∈ C(B) is the number of all
atomic selection conditions of Σ that occur in S.

122 C.T. Diop et al.

Table 3. Candidate pruning for the first and second groups of data sets

Candidate Pruning D10T4S5 D40T4S5 D80T4S5 D40T3S5 D40T4S5

Pruning Phase (sec.) 4 1 7 1 1
Pruning Time by Candidate (μs) 32.29 13.33 24.98 13.72 11.79
Nb of Candidates before Pruning 123,874 75,022 280,244 72,878 84,851
Nb of Candidates after Pruning 16,425 4,015 4,567 1,517 6,933
Percentage of Pruned Candidates 86.7% 94.6% 98.4% 97.9% 91.8%
Size of Positive boundary 7,568 662 559 690 589

Table 4. Third group of data sets, with different support thresholds

Data Sets D10T4S5 D10T4S3

Average Size of Patterns 4 4
Cardinality of Domains 10 10
Number of Maximal Patterns 100 100
Cardinality of Cust Table 2,000 2,000
Cardinality of Prod Table 6,000 6,000
Cardinality of Sales Table 54,000 54,000
Minimal Support Threshold 5% 3%

Table 5. Gain of computation time for the third group of data sets

Without Optimization (sec.) D10T4S5 D10T4S3

Evaluation Phase 249 338
Total 282 609
Iterative Approach (sec.)
N-Pass Evaluation Phase 124 195
1-Pass Evaluation 86 180
Pruning Phase 4 17
Total for N-Pass 224 616
Total for 1-Pass 193 601
Gain for N-Pass 45.0% 17.7%
Gain for 1-Pass 56.0% 20.2%

Table 6. Candidate pruning for the third group of data sets

Candidate Pruning D10T4S5 D10T4S3

Pruning Phase (sec.) 4 17
Pruning Time by Candidate (μs) 32.29 68.7
Nb. of Candidates before Pruning 123,874 249,009
Nb. of Candidate after Pruning 16,425 55,451
Percentage of Pruned Candidates 86.7% 77.7%
Size of Positive Boundary 7,568 22,230

Computation of Mining Queries: An Algebraic Approach 123

obtain using our iterative approach. To explain these gains, we show in Table 3
some important parameters of the pruning phase used to reduce the execution
times of the mining queries.

In the same way, Table 4 summarizes the characteristics of the data sets in
the third group. The gains in computation time are given in Table 5, whereas
the parameters of the pruning phase are presented in Table 6.

It is important to note that in all these experiments, the positive boundaries
of the mining queries already computed are stored in a cache in main memory.

6.2 Experiments with Synthetic Data

We first discus the experimental results obtained in the case of a selection, and
then we give some summary results in the case of a join. More details on these
experiments can be found in [5].

We recall that in the case of a selection (see Proposition 6), we have to dis-
tinguish two cases. Let B = 〈b, Σ〉 be a mining bias and S be a selection con-
dition. If S belongs to Σ∗, then we know that freqI(σS(C(B)), α, r) is a subset
of freqI(C(B), α, r), since by Proposition 6(2), we have freqI(σS(C(B)), α, r) =
τS(freqI(C(B), α, r)).

Thus, if the positive boundary of freqI(C(B), α, r) is stored, then the gener-
ation of the frequent queries in freqI(σS(C(B)), α, r) can be done without ac-
cessing the database. Moreover, the computation of their supports requires one
pass through the data base. We call this evaluation phase, 1-Pass Evaluation.

On the other hand, if S does not belong to Σ∗, we know that the queries
in freqI(σS(C(B)), α, r) are selections of queries in freqI(C(B), α, r), since by
Proposition 6(1), we have freqI(σS(C(B)), α, r) ⊆ σS(freqI(C(B), α, r)). How-
ever, we do not know if queries in σS(freqI(C(B), α, r)) are frequent or not.
Therefore, we have to compute their supports level-by-level, and we call this
evaluation phase, N -Pass Evaluation.

In order to evaluate the gain in computation time in the case of a selection,
we consider the reference query r = πX1(Sales) and the bias B = 〈Cust ��
Sales �� Prod, Σ〉 where Σ = {Xi = xi | i = 2, . . . , 6 ∧ xi ∈ dom(Xi)} ∪ {Yj =
yj | j = 1, . . . , 5 ∧ yj ∈ dom(Yj)}. First, we compute the set of frequent queries
freqI(C(B), α, r) and store its positive boundary in a cache. Then, we consider
the new context σS(C(B)) where S = #, and we compare:

– the time for the computation of the frequent queries of σS(C(B)) = C(B),
without any optimization, and

– the time for the iterative computation of the frequent queries of σS(C(B))
using the positive boundary of freqI(C(B), α, r).

Since S = # belongs to Σ∗, we recall that the evaluation phase for the com-
putation of the frequent queries in σS(C(B)) can be done in one pass through
the data set. However, we have also measured the gain in computation time
using an N -Pass Evaluation. Such an experiment allows to evaluate the gain in
computation when S belongs or not to Σ∗.

124 C.T. Diop et al.

Let us consider the first group of data sets (D10T 4S5, D40T 4S5 and D80T 4
S5). We observe important gains in computation time in both cases, i.e., 1-Pass
or N -Pass Evaluation (see Table 2). This is due to the fact that about 90% of the
candidates are pruned using the positive boundary. We also note that the gain
in computation time increases with respect to the cardinality of the domains
of attributes. More precisely, if the cardinality of the domains increases, then
the number of candidates increases. Therefore, the number of candidates that
are pruned before evaluation becomes more important and thus, the gain in
computation time is higher.

The same reasoning holds for the second group of data sets (D40T 3S5 and
D40T 5S5). The important gains in computation time are due to the high per-
centages of pruned candidates (97.9% and 91.8%). In that case, we note that
the gains in computation time decrease with respect to the average size of the
frequent queries. Indeed, the bigger the size of the frequent queries, the smaller
the number of candidates to be pruned (the number of candidates being the
same). This is why the gain in computation time decreases when the average
size of the frequent queries varies from 3 to 5.

Finally, considering the instances D10T 4S5 and D10T 4S3, the gain in com-
putation time decreases with respect to the minimal support threshold. This is
due to the fact that if the minimal support threshold decreases, then the number
of frequent queries increases. Therefore, the number of candidates to be pruned
decreases.

To evaluate the gain in computation time in the case of a join, we have
considered two mining biases B1 = 〈b1, Σ1〉 and B2 = 〈b2, Σ2〉 where b1 = Cust ��
Sales and b2 = Sales �� Prod. Using the same data sets as before, we compare
the computation time without optimization to the computation time using our
iterative approach. The gains in computation are given in Table 7.

Table 7. Gain of computation time in case of join of two contexts

Computation Time (sec.) D10
T4S5

D40
T4S5

D80
T4S5

D40
T3S5

D10
T4S5

D10
T4S3

Without Optimization 282 189 599 197 436 609
Iterative Approach 259 133 400 138 298 598
Gain 8.2% 28.6% 33.2% 29.9% 31.7% 1.8%

7 Conclusion and Perspectives

We have introduced a new formalism for the iterative computation of frequent
queries through composition of mining contexts. In our approach, mining con-
texts are sets of queries, and a mining query is a combination of contexts using
operations on contexts. We recall that some of these operators are borrowed from
the standard relational algebra, whereas new operators have been introduced.
Among these new operators, we have specifically studied the freq operator,
which allows to compute the frequent queries in a given context.

Computation of Mining Queries: An Algebraic Approach 125

We have given basic properties of our operators on contexts with the goal
of mining query optimization, in much the same way as query optimization in
relational databases. Then, based on these properties, we have shown that if
we consider particular contexts, called biases, frequent queries can be efficiently
computed. Moreover, we have reported on experiments for mining queries ex-
pressed by biases. In particular, we have shown that our approach results in a
significant reduction in computation time for the computation of frequent queries
of composed contexts.

It is important to notice that our formalism can be seen as an attempt to
define an algebra for inductive databases. Indeed, the relational algebra together
with the operations introduced in this paper constitute the basis for a language
allowing to extract patterns and to query these patterns along with the data
present in the database. Therefore, our approach can be seen as providing some
of the basic ingredients required for the emergence of inductive databases as
specified in [18]. However, in this setting, many important questions remain
open, among which we mention the following:

1. The extension of our work to patterns other than frequent queries. Indeed,
although our framework is very general, we did not consider, for instance, the
case of association rules.
2. The study of the expressive power of the operations. Indeed, it is well known
that the relational algebra has strong connections with first-order logic. There-
fore a similar question seems relevant in our framework. However, this basic
question is far from easy because patterns are formulas, and thus the compari-
son requires more than first-order logic.
3. The optimization of a single query has not been addressed in this paper.
Although we mentioned that standard query optimization techniques can be
used in our approach, we did not provide an actual policy. Preliminary results
have been obtained in the case of conjunctive queries [8], but actual techniques
and algorithms for the optimization of our algebra remain to be studied.
4. As our optimization technique heavily relies on the fact that previously com-
puted contexts are stored, the influence of redundancies in this storage is crucial
in our model. We are currently investigating this research direction, based on
our preliminary work ([7]), and also on the approach of [16,17].

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, pages
309–328. AAAI-MIT Press, 1996.

2. M. Botta, R. Meo, and M. L. Sapino. Incremental execution of the mine rule
operator. Technical Report RT66-2002, University of Turin, Turin, May 2002.

3. A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In Ninth ACM Symposium on Theory of Computing, pages
77–90, 1977.

126 C.T. Diop et al.

4. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. In Data Min-
ing and Knowledge Discovery, volume 3, pages 7–36. Kluwer Academic Publishers,
1999.

5. C.T. Diop. Etude et mise en oeuvre des aspects itératifs de l’extraction de règles
d’association dans une base de données. PhD thesis, Université de Tours, France,
2003.

6. C.T. Diop, A. Giacometti, D. Laurent, and N. Spyratos. Composition of mining
contexts for efficient extraction of association rules. In EDBT’02, volume LNCS
2287, pages 106–123. Springer Verlag, 2002.

7. A. Giacometti, D. Laurent, and C.T. Diop. Condensed representations of sets of
mining queries. In Database Support for Data Mining Support, volume LNCS 2682,
pages 250–269. Springer Verlag, 2004.

8. A. Giacometti, D. Laurent, C.T. Diop, and N. Spyratos. Mining from views : An
incremental approach. International Journal Information Theories & Applications,
9 (Techn. Report LI, Université de Tours, France), 2002.

9. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. Dmql : A data mining query
language for relational databases. In SIGMOD Workshop DMKD’96, pages 27–34,
1996.

10. T. Imielinski and H. Mannila. A database perspective on knowledge discovery. In
Communications of the ACM, volume 39, pages 58–64, 1996.

11. M. Kamber, J. Han, and J. Chiang. Metarule-guided mining of multi-dimensional
association rules using data cubes. In International Conference on Data Mining
and Knowledge Discovery (KDD’97), pages 207–210, Newport Beach, USA, 1997.

12. S.D. Lee and L. De Raedt. An algebra for inductive query evaluation. In IEEE
ICDM, pages 147–154, 2003.

13. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. In Data Mining and Knowledge Discovery, volume 1(3), pages 241–258,
1997.

14. R. Meo, G. Psaila, and S. Ceri. A new sql-like operator for mining association
rules. In 22nd VLDB Conf., pages 122–133, 1996.

15. T. Morzy, M. Wojciechowski, and M. Zakrzewicz. Materialized data mining views.
In PKDD’00, volume LNAI 1910, pages 65–74. Springer Verlag, 2000.

16. B. Nag, P. Deshpande, and D.J. De Witt. Using a knowledge cache for interactive
discovery of association rules. In 5th ACM SIGKDD Conference, pages 244–253,
1999.

17. B. Nag, P. Deshpande, and D.J. De Witt. Caching for multi-dimensional data
mining queries. In Systemics, Cybernetics and Informatics (SCI), 2001.

18. L. De Raedt. A perspective on inductive databases. In SIGKDD Explor. Newsletter,
volume 4(2), pages 69–77, 2002.

19. S. Tsur, J.D. Ullman, S. Abiteboul, C. Clifton, R. Motwani, S. Nestorov, and
A. Rosenthal. Query flocks : A generalization of association-rule mining. In ACM
SIGMOD Conference, pages 1–12, 1998.

20. J.D. Ullman. Principles of Databases and Knowledge-Base Systems, volume 1.
Computer Science Press, 1988.

Inductive Queries on Polynomial Equations

Sašo Džeroski, Ljupčo Todorovski, and Peter Ljubič

Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. Inductive databases (IDBs) contain both data and patterns.
Inductive Queries (IQs) are used to access, generate and manipulate the
patterns in the IDB. IQs are conjunctions of primitive constraints that
have to be satisfied by target patterns: they can be different for different
types of patterns. Constraint-based data mining algorithms are used to
answer IQs.

So far, mostly the problem of mining frequent patterns has been con-
sidered in the framework of IDBs: the types of patterns considered in-
clude frequent itemsets, episodes, Datalog queries, sequences, and molec-
ular fragments. Here we consider the problem of constraint-based mining
for predictive models, where the data mining task is regression and the
models are polynomial equations.

More specifically, we first define the pattern domain of polynomial
equations. We then present a complete and a heuristic solver for this
domain. We evaluate the use of the heuristic solver on standard regres-
sion problems and illustrate its use on a toy problem of reconstructing a
biochemical reaction network. Finally, we consider the use of a combina-
tion of different pattern domains (molecular fragments and polynomial
equations) for practical applications in modeling quantitative structure-
activity relationships (QSARs).

1 Inductive Databases

Inductive databases [12] embody a database perspective on knowledge discovery,
where knowledge discovery processes are considered as query processes. In ad-
dition to normal data, inductive databases contain patterns (either materialized
or defined as views). Data mining operations looking for patterns are viewed as
inductive queries posed to the inductive database. Besides patterns (which are
of local nature), models (which are of global nature) can also be considered.

Given an inductive database that contains data and patterns, several different
types of queries can be posed. Data retrieval queries use only the data and their
results are also data: no pattern is involved in the query. Cross over queries cross
over patterns and data in order to obtain new data. In processing patterns, the
patterns are queried without access to the data: this is what is usually done in
the post-processing stages of data mining. Data mining queries use the data and
their results are patterns: new patterns are generated from the data and this
corresponds to the traditional data mining step. When we talk about inductive
queries, we most often mean data mining queries.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 127–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 S. Džeroski, L. Todorovski, and P. Ljubič

A general formulation of data mining [16] involves the specification of a lan-
guage of patterns and a set of constraints that a pattern has to satisfy with
respect to a given database. The constraints that a pattern has to satisfy can be
divided in two parts: language constraints and evaluation constraints. The first
part only concerns the pattern itself, while the second part concerns the validity
of the pattern with respect to a database. Constraints thus play a central role in
data mining and constraint-based data mining is now a recognized research topic
[2]. The use of constraints enables more efficient induction as well as focusing
the search for patterns on patterns likely to be of interest to the end user.

In the context of inductive databases, inductive queries consist of constraints
and the primitives of an inductive query language include language constraints
(e.g., find association rules with item A in the head) and evaluation primitives.
Evaluation primitives are functions that express the validity of a pattern on a
given dataset. We can use these to form evaluation constraints (e.g., find all item
sets with support above a threshold) or optimization constraints (e.g., find the
10 association rules with highest confidence).

Different types of patterns have been considered in data mining, including
frequent itemsets, episodes, Datalog queries, and graphs. Designing inductive
databases for these types of patterns involves the design of inductive query lan-
guages and solvers for the queries in these languages. For each type of pattern,
or pattern domain, a specific solver is designed, following the philosophy of con-
straint logic programming [4].

While many different types of patterns have been considered in data mining,
constraints have been mostly considered in mining frequent patterns, typically
frequent itemsets and association rules. Some related tasks, such as mining fre-
quent episodes, Datalog queries, molecular fragments, etc., have also been con-
sidered. Here we consider IDBs that contain predictive models in the form of
polynomial equations.

We first define constrains on polynomial equations, including language and
evaluation constraints. We then propose two solvers, a complete and a heuristic
one. We evaluate the use of the heuristic solver on standard regression prob-
lems. Its use is also illustrated on a toy problem of reconstructing a biochemi-
cal reaction network, i.e., re-discovering differential equations that describe its
dynamics. Finally, we consider the use of a combination of different pattern do-
mains (molecular fragments and polynomial equations) for practical applications
in modeling quantitative structure-activity relationships (QSARs). We conclude
with a discussion of the issues raised by considering the task of mining predictive
models in the IDB setting.

2 The Pattern Domain of Polynomial Equations

Here we consider the pattern domain of polynomial equations (EQN). We first de-
fine the language of polynomial equations, then consider syntactic/subsumption
constraints on these. We next define several evaluation primitives for equations
and finally discuss inductive queries in this domain.

Inductive Queries on Polynomial Equations 129

2.1 The Language of Polynomial Equations

In this paper, we will concentrate on polynomial equations. Given a set of vari-
ables V , a polynomial equation has the form T = P , where T is a term and P
is a polynomial over V . A polynomial P has the form

∑r
i=1 consti · Ti, where Ti

are multiplicative terms, and consti are real-valued constants. Of special interest
will be equations that can be used to predict the value of a dependent variable
vd ∈ V . These will have the form vd = P , where P is a polynomial over V \{vd}.

Each term in a polynomial is a finite product of variables from V , i.e., Ti =∏
v∈V vdv,i , where dv,i is (a non-negative integer) degree of the variable in the

term. The degree of 0 denotes that the variable does not appear in the term.
The sum of degrees of all variables in a term is called the degree of the term,
i.e., deg(Ti) =

∑
v∈V dv,i.

The degree of a polynomial is the maximum degree of a term in that polyno-
mial, i.e., deg(P) = maxr

i=1 deg(Ti). The length of a polynomial is the sum of
the degrees of all terms in that polynomial, i.e., len(P) =

∑r
i=1 deg(Ti).

For example, consider a set of variables V = {x, y, z}, where z is chosen to
be a dependent variable. The term x (that is equivalent to x1y0) has degree
1, the term x2y has degree 3, while x2y3 is a term of degree 5. An example
polynomial of degree 4 is 1.2x2y + 3.5xy3. An example polynomial equation is
z = 1.2x2y + 3.5xy3. This equation has r = 2, d = 4, and len(P) = 7.

2.2 Syntactic Constraints

We will consider two types of syntactic constraints on equations: parametric
constraints and subsumption constraints.

Parametric constraints on polynomial equations include setting upper limits
for the degree of a term d (in both the left-hand-side/LHS and right-hand-
side/RHS of the equation), as well as the number of terms in the RHS poly-
nomial. For example, one might be interested in equations of degree at most 3
with at most 4 terms. Such parametric constraints are taken into account by the
equation discovery system LAGRANGE [8].

Of more interest are subsumption constraints, which bear some resemblance
to subsumption/generality constraints on terms/clauses in first-order logic. A
term T1 is a sub-term of term T2 if the corresponding multi-set M1 is subset of
the corresponding multi-set M2. For example, xy2 is sub-term of x2y4Z since
{x, y, y} ⊂ {x, x, y, y, y, y, z}.

The sub-polynomial constraint is defined in terms of the sub-term constraint.
Polynomial p1 is a sub-polynomial of polynomial p2, if each term in p1 is a
sub-term of some term in p2. There are two options here: one may, or may not,
require that each term in p1 is a sub-term of a different term in p2.

In looking for interesting equations, one might consider constraints of the
form: LHS is a sub-term of t, t is a sub-term of LHS, RHS is a sub-polynomial
of p, and p is a sub-polynomial of RHS. Here t and p are a term and a polyno-
mial, respectively. These set upper and lower bounds on the lattice of equation
structures, induced by the relations sub-term and sub-polynomial.

130 S. Džeroski, L. Todorovski, and P. Ljubič

Consider the following constraint: LHS is a sub-term of x2y and both xy
and z are sub-polynomials of RHS. The equation xy = 2x2y2 + 4z satisfies
this constraint, under both interpretations of the sub-polynomial constraint.
The equation x2y = 5xyz, however, only satisfies the constraint under the first
interpretation (different terms in p1 can be sub-terms of the same term in p2).

Subsumption constraints are often used in constraint-based mining of frequent
patterns. They allow the user (domain expert) to specify domain knowledge
and thus prune away large parts of the space of patterns and focus the search
for patterns on parts of the space that are of special interest. We argue that
subsumption constraints can be used in the same manner for mining predictive
models.

2.3 Evaluation Primitives

The evaluation primitives for equations calculate different measures of the degree
of fit of an equation to a given dataset/table. Assume that i is an index that
runs through records/rows of a database table. Denote with yi the value of the
LHS of a given equation on record i (actual value of the dependent variable vd);
with ŷi the value of the RHS as calculated for the same record (predicted value
of vd); and with y the mean value of yi over the table records.

Below we define several measures for the degree of fit for an equation to a
dataset. Two measures commonly used for regression are the mean squared error
(MSE = 1

N

∑N
i=1(yi − ŷi)2) and the multiple correlation coefficient R (defined

as R2 = 1−
N
i=1(yi−ŷi)

2

N
i=1(yi−y)2

) Džeroski and Todorovski [8] use a normalized version

of MSE, denoted by S (S2 =
1
N

N
i=1(yi−ŷi)

2

y2+e−y2).
Various types of prediction error measures are often used. These include

mean absolute error (MeanAE = 1
N

∑N
i=1 |ŷi − yi|), maximum absolute error

(MaxAE = maxN
i=1 |ŷi − yi|), mean square error (MSE = 1

N

∑N
i=1(ŷi − yi)2),

and root mean square error (RMSE =
√

MSE). Most of these are well known
from statistics.

In the machine learning literature, the measure RE, defined as RE2 = 1−R2

is often used to evaluate the performance of regression approaches. Note that
RE2 = MSE/σ2, where σ2 =

∑N
i=1(yi − y)2 is the variance of the dependent

variable vd. This normalization allows for comparisons of performance across
different data sets.

We will also use a MDL (minimal description length) based heuristic function
for evaluating the quality of equations that combines the degree of fit with the
complexity of the equation

MDL(vd = P) = len(P) log N + N log MSE(vd = P),

where len(P) is the length of polynomial P (the sum of the degrees of all terms
in that polynomial) and N the number of training examples (data points in
D). This evaluation function is based on the Akaike and Bayesian information
criteria for regression model selection [9]. While the second term of the MDL

Inductive Queries on Polynomial Equations 131

heuristic function measures the degree of fit of a given equation, the first term
introduces a penalty for the complexity of the equation. Through this penalty
the MDL heuristic function introduces a preference toward simpler equations.

2.4 Inductive Queries in the Domain of Equations

Inductive queries are typically conjunctions of constraints. The primitive con-
straints typically are evaluation and language constraints. Evaluation constraints
set thresholds on acceptable values of the evaluation primitives: M(e, D) < t;
M(e, D) > t, where t is a positive constant/threshold and M is one of the
measures defined above.

Instead of evaluation constraints one can consider optimization constraints.
Here the task is to find (the n best) e so that M(e, D) is maximal / minimal. Lan-
guage constraints, as discussed above, can be parametric and/or subsumption
constraints.

It is rarely the case that an inductive query consists of a single constraint.
Most often, at least one syntactic and at least one evaluation or optimization
constraint would be a part of the query. For example, we might look for the
equations, where the LHS is sub-polynomial of x2y3 and x+z is a sub-polynomial
of the RHS, which have the highest multiple correlation coefficient.

3 LAGRANGE-C: A Complete Solver for the Domain of
Polynomial Equations

Our initial solver for the pattern domain EQN, named LAGRANGE-C, is based
on the equation discovery system LAGRANGE [8], which discovers polynomial
equations. Below, we first briefly describe LAGRANGE and then proceed to
describe LAGRANGE-C.

3.1 Discovering Polynomial Equations with LAGRANGE

LAGRANGE [8] is the first system in the area of computational scientific dis-
covery [15] that can discover both algebraic and ordinary differential equations.
In this way, it can find quantitative laws describing the behavior of dynamic
systems that change their state over time. Given measurements, LAGRANGE
looks for polynomial equations on the set of measured variables and their time
derivatives (rates of change over time).

The input to LAGRANGE is a table of measured values of a set of numeric
variables V . In addition, the values of the following parameters have to be spec-
ified: d is the maximum degree of terms, r is the maximum number of terms,
while tR and tS are thresholds on the R and S measures (evaluation functions).
The task addressed by LAGRANGE is to find all valid equations (for which
R ≤ tR and S ≤ tS) of the form T = P , where T is a term and P a polynomial
of at most r terms, both over variables from V and of degree at most d.

132 S. Džeroski, L. Todorovski, and P. Ljubič

LAGRANGE exhaustively searches the space of polynomial equations that
can be constructed, given the set of variables and the user-specified limits on the
number of terms that can appear in the equations and their degree. LAGRANGE
reports the equations that meet the evaluation constraints, i.e., are above/below
the user specified thresholds for R/S. The main stages of the LAGRANGE
algorithm are given in Table 1.

Table 1. The main stages of the LAGRANGE algorithm

procedure LAGRANGE(V , d, r, tR, tS)

1. Introduce time derivatives D of the measured variables V (optional)
2. Introduce new terms N with multiplication (up to degree d) of variables from

V ∪ D, yielding T = V ∪ D ∪ N
3. Generate and test equations with linear regression

– Generate equation structures (select subsets of T with up to r + 1 terms)
– Select a term (dependent variable) for the RHS from each subset
– Fit coefficients with linear regression, calculate R and S

4. Report the equations that fit the data well, i.e., have R/S values above/below the
user specified threshold tR/tS

To illustrate the workings of LAGRANGE, consider a population dynamics
example [8], where a predator feeds on a prey and measurements of the pop-
ulation sizes/densities N and P are given. LAGRANGE would first introduce
the time derivatives Ṅ and Ṗ . Given d = 2 and r = 2, it would first introduce
the new terms N2, NP, NṄ, NṖ , P 2, P Ṅ , P Ṗ , Ṅ2, Ṅ Ṗ , Ṗ 2, and then
generate subsets of terms (equation structures). The subsets generated include
{N}, {P}, {N, P}, {N, Ṅ}, {N, P, Ṅ}, {N, P, Ṗ}, {N, Ṅ, N2}, {N, Ṅ, NP},
and {P, Ṗ , NP}. With the thresholds set to tR = tS = 0.01, the equations
NP = 160 ·N − 100 · Ṅ and NP = 20 · P + 100 · Ṗ are reported.

3.2 LAGRANGE-C: Using Constraints in LAGRANGE

LAGRANGE-C is an extension of LAGRANGE that includes the ability to take
into account constraints. On the evaluation primitives side, we have extended
LAGRANGE to calculate the values of four measures of degree of fit, in addi-
tion to R and S. These are specified in Section 2 and are: mean absolute error
(MeanAE), maximum absolute error (MaxAE), mean square error (MSE),
and root mean square error (RMSE).

The evaluation constraints can now specify thresholds on each of the above
error measures, just like for R and S. In addition, optimization constraints based
on these can be specified. For example, we may specify that we want the b
best equations according to MeanAE (or any other of the above evaluation
primitives).

On the syntactic constraints side, we have extended LAGRANGE to take
into account sub- and super-polynomial constraints. We can now specify that

Inductive Queries on Polynomial Equations 133

the left-hand side of an equation should be a sub-term or a super-term of a
given term t. Also, we can specify that the right-hand side of an equation should
be a sub-polynomial or a super-polynomial of a given polynomial p.

LAGRANGE-C exhaustively searches the space of equations satisfying the
combination of syntactic constrains given. At present, a conjunction of evalu-
ation constraints or a single optimization constraint can be solved in addition
to syntactic constraints. Only equations satisfying the syntactic constraints are
evaluated for their degree of fit, and those satisfying the evaluation/optimization
constraints are returned.

To illustrate the use of constraints in LAGRANGE-C, let us revisit the pop-
ulation dynamics example from the subsection above. Given the language con-
straints d = 2 and r = 2, LAGRANGE would consider a total of 469 equation
structures before reporting the two valid equations. Namely, there are 14 terms
alltogether, and we can construct

(
14
1

)
+
(
14
2

)
+
(
14
3

)
= 469 equations with at most

3 terms in total.
Suppose we give LAGRANGE-C the constraints that NP should be a subterm

of the LHS and that Ṅ should be a subpolynomial of the RHS, in addition to the
parametric constraints already listed. Given d = 2, this fixes the LHS to NP .
The RHS must have one term that contains Ṅ and can optionally have a second
term, different from the first one. This gives us 5 × 13 = 65 possible equation
structures that are considered by LAGRANGE-C before reporting the equation
NP = 160 ·N − 100 · Ṅ (with the thresholds set to tR = tS = 0.01).

4 CIPER: A Heuristic Solver for the Domain of
Polynomial Equations

While our complete solver LAGRANGE-C is able to take into account con-
straints and thus consider a reduced search-space, it still performs exhaustive
search over this space, just like LAGRANGE [8]. With a slightly larger number
of variables and longer target equations, this becomes infeasible. Hence the need
for a heuristic solver for the pattern domain of polynomial equations.

In this section, we present a heuristic search algorithm CIPER that searches
through the space of polynomial equations and finds one (or several equations)
that satisfies the given set of constraints and has an optimal value of the given
heuristic function. Here CIPER stands for Constrained Induction of Polynomial
Equations for Regression. First, we introduce a refinement operator that gen-
erates more complex equations from simpler ones and thus orders the space of
polynomial equations. Then, we present the heuristic function used to measure
the quality of equations and discuss how constraints are handled in CIPER.
After presenting the search algorithm based on beam search strategy, we look
into how parameter fitting is optimized by taking into account properties of
the refinement operator. Finally, we discuss the relation of CIPER to stepwise
regression methods.

LAGRANGE and LAGRANGE-C look for implicit polynomial equations of
the form T = P , where T is a term and P a polynomial over variables from V .

134 S. Džeroski, L. Todorovski, and P. Ljubič

CIPER, on the other hand, looks for explicit regression equations of the form
vd = P , where vd is a dependent variable and P a polynomial over the remaining
variables from V . The task that CIPER addresses is to find the polynomial P
which satisfies the given language constraints and has the lowest value of the
heuristic function.

4.1 The Refinement Operator

Machine learning and data mining methods typically perform heuristic search
over the space of possible models and patterns. After an initial model/pattern
in this space is chosen (which usually does not fit the data very well), it is then
gradually refined to fit the data. Refinement steps are performed by a so-called
refinement operator and typically involve making small changes to the model,
e.g., adding a condition to the antecedent of a classification rule.

In order to apply heuristic search methods to the task of inducing polynomial
equations, we first order the search space of candidate equations. We introduce
a refinement operator that orders this space according to equation complexity.
Starting with the simplest possible equation and iteratively applying the refine-
ment operator, all candidate polynomial equations can be generated.

Table 2. The refinement operator for ordering the space of polynomial equations

Original (current) equation

vd = r
i=1 consti · Ti

Refined equations that increase r (one for each v ∈ V \ vd)

vd = r
i=1 consti · Ti + constr+1 ∗ v, where ∀i : v �= Ti

Refined equations that increase d (one for each Tj and v ∈ V \ vd)

vd = r
i=1,i�=j consti · Ti + Tj ∗ v, where ∀i �= j : Tj ∗ v �= Ti

Assume we measure the complexity of the polynomial equation vd = P as
len(P). The refinement operator, defined in Table 2, increases the complexity of
the equation by 1, either by adding a new linear term or by adding a variable to
an existing term. First, we can add an arbitrary linear (first degree) term (that
is a single variable from V \{vd}) to the current equation as presented in the first
(upper) part of Table 2. Special care is taken that the newly introduced term
is different from all the terms in the current equation. Second, we can increase
the complexity len(P) by adding a variable to one of the terms Tj in the current
equation. Again, care should be taken that the changed term is different from
all the other terms in the current equation. Note that the refinements of a given
polynomial P are super-polynomials of P . They are minimal refinements in the
sense that they increase the complexity of P by one unit.

The branching factor of the presented refinement operator depends on the
number of variables |V | and number of terms in the current equation r. The

Inductive Queries on Polynomial Equations 135

Fig. 1. The search space of polynomial equations over the set of variables V = {x, y, z},
where z is the dependent variable, as ordered by the refinement operator from Table 2.
Note that for simplicity, real-valued constants are omitted from the equations.

upper bound of the branching factor is O((|V |−1)(r+1)) = O(|V |r), since there
are at most |V | − 1 possible refinements that increase r and at most (|V | − 1)r
possible refinements that increase d.

The ordering of the search space of polynomial equations, defined on the set
of variables V = {x, y, z}, where z is the dependent variable, is presented in
Figure 1. It shows that the defined refinement operator is not optimal, in the
sense that each polynomial equation can be derived more than once. This is due
to the commutativity of the addition and multiplication operators. An optimal
refinement operator can be easily obtained by taking into account the lexical
ordering of the variables in V . Then, only variables (and/or terms) with higher
lexical rank should be added to the terms and/or equations. The dotted nodes
in the graph in Figure 1 denote equations that would not be generated by the
refinement operator that takes into account lexical order. The redundancy due
to the sub-optimality of the refinement operator is taken care of during the beam
search procedure by removing duplicates from the beam (see Section 4.4).

While an optimal refinement operator is desired for complete/exhaustive
search, it may prevent the generation of good equations in greedy heuristic
search. Suppose the polynomials x and z have low heuristic value, while y has a
high heuristic value and x+y is actually the best. Greedy search would choose y
and the optimal refinement operator that takes into account lexicographic order
would not generate x + y.

4.2 The Search Heuristic

Each polynomial equation structure considered during the search contains a
number of generic constant parameters (denoted by consti). In order to evaluate
the quality of an equation, the values of these generic constants have to be fitted
against training data consisting of the observed values of the variables in V .
Since polynomial equations are linear in the constant parameters, the standard
linear regression method can be used for this purpose.

The quality of the obtained equation is evaluated using a degree of fit measure
thatmeasures the discrepancybetween the observed values of vdand the values pre-
dicted using the equation. One such measure is mean squared error (MSE), defined
in Section 2.3. CIPER uses an MDL (minimal description length) based heuristic

136 S. Džeroski, L. Todorovski, and P. Ljubič

function for evaluating the quality of an equation vd = P that combines the degree
of fit (MSE(vd = P)) with the complexity of the equation (len(P)), also defined in
Section 2.3. The latter introduces a preference toward simpler equations.

4.3 Constraints in CIPER

The task of CIPER is to find polynomial equations that express the dependent
variable vd as a polynomial function of the dependent variables V \ vd. The
optimization constraints concern the heuristic function described in the previous
subsection. CIPER takes as input a parameter b and uses heuristic search to find
b polynomial equations that have the highest values of the heuristic.

CIPER also takes as input a set of language constraints, which can be para-
metric or subsumption constraints, as explained in Section 2. These constraints
apply to the polynomial at the right-hand-side of the target equation. They
place bounds on the lattice of equation structures introduced by the refinement
operator defined earlier in this section.

If a constraint specifies that polynomial l should be a sub-polynomial of the
RHS, then it bounds the lattice of equation structures from below. If a constraint
specifies that polynomial u should be a super-polynomial of the RHS, then it
bounds the lattice of equation structures from above. If a RHS structure violates
such a super-polynomial constraint, then all of its refinements will also violate
it (and can consequently be pruned from the search tree).

The parametric constraint on the number of terms limits the number of appli-
cations of the first rule of the refinement operator. The constraint on the degree
of terms limits the number of applications of the second rule of the refinement
operator to a single term. The length of a polynomial is the number of refine-
ment steps needed to reach this polynomial from the simplest equation structure
vd = const. An interesting constraint, which we have not yet considered, would
place a limit on the length of polynomials considered (and thus a limit on the
depth of the refinement graph).

Table 3. A top-level outline of CIPER’s beam search algorithm

procedure CIPER(D, vd, C, b)
1 E0 = simplest polynomial equation (vd = const)
2 E0.MDL = FitParameters(E0, D)
3 Q = {E0}
4 repeat
5 Qr = {refinements of equation structures in Q

that satisfy the language constraints C}
6 foreach equation structure E ∈ Qr do
7 E.MDL = FitParameters(E, D)
8 endfor
9 Q = {best b equations from Q ∪ Qr according to MDL }

10 until Q unchanged during the last iteration
11 print Q

Inductive Queries on Polynomial Equations 137

4.4 The Search Algorithm

CIPER employs beam search through the space of possible equations using the
search algorithm presented in Table 3. The algorithm takes as input a training
data set D containing the values of independent variables and the dependent
variable vd. CIPER also takes as input a set of language constraints C, which
can be parametric or subsumption constraints. The output of CIPER consists
of the b best polynomial equations, according to the MDL heuristic function
defined in the previous section, that satisfy the language constraints in C.

Before the search procedure starts, the beam Q is initialized with the simplest
possible polynomial equations of the form vd = const. The value of the constant
parameter const is fitted against the training data D using linear regression. In
each search iteration, the refinements of the equations in the current beam are
generated (using the refinement operator from Table 2). Those that satisfy the
constraints in C are collected in Qr (line 5).

In case redundant equations are generated due to the sub-optimality of the
refinement operator, the duplicate equations are filtered out from the set Qr.
Linear regression is used to fit the constant parameters of the refinements against
the training data D (lines 6-8). At the end of each search iteration, only the best
b equations, according to the MDL heuristic function, are kept in the beam (line
10). The search stops when the performed iteration does not change the beam.

4.5 Optimization of Parameter Fitting

To evaluate each polynomial equation structure considered during the search,
CIPER fits its constant parameters using least squares linear regression. Let
X be the matrix of measurements of the vector of independent variables V =
(x1, . . . , xn), augmented by a column of ones X = [x1, . . . xn, 1] and y the vector
of measurements of the dependent variable vd. In this case, we are looking for
a vector of constant coefficients c that minimizes the expression ||cX − y||2.
Such a vector of constant coefficients can be computed by using the formula
c = (XT X)−1(XT y).

As we can see, we have to compute the product of the two matrices XT and
X first. Let us take a look at some properties of XT X . Since it is a matrix con-
sisting of scalar products of vectors, the matrix XT X is symmetric. Therefore,
we compute only the values above and on the diagonal.

Note that at each iteration of the beam search, we only consider equation
structures that are refinements of the structures in the current beam. An im-
portant property of the refinement operator is used in CIPER to optimize the
computation of XT X . After we refine an equation, the corresponding X matrix
only changes slightly: a new column is added to the matrix if a new term is
added to the structure, or an existing column is replaced with a new column if
an existing term is multiplied by a variable.

Given that the matrix X only changes slightly for a refined structure, we
do not have to compute XT X anew (from scratch), but can reuse a large part
of the XT X matrix for the original structure. When adding a new variable to

138 S. Džeroski, L. Todorovski, and P. Ljubič

an equation, the dimension of XT X increases by one: we need to calculate are
the scalar products of the newly added variable with all existing variables (plus
the scalar product of newly added variable with itself). In case the refinement
operator multiplies one term with a variable, the size of the XT X matrix remains
the same. We discard the values of the multiplied term (one row and one column),
and we compute the missing scalar products. For an illustration, we refer the
reader to Todorovski et al. [20]. We can optimize the calculation of the product
XT y in a similar fashion: we need to calculate only the scalar product of the
newly added variable and the dependent variable, while the rest of the product
vector remains the same.

The complexity of computing XT X with v variables and N examples is
O(Nv2). The complexity of our optimized approach is O(Nv). For comput-
ing the product XT y, the optimization reduces the complexity from O(Nv) to
O(N).

4.6 Stepwise Regression

The CIPER search algorithm is similar in spirit to the forward stepwise method
for linear regression [9]. The stepwise regression method also starts with the sim-
plest model vd = const and incrementally adds those independent variables to
the model that most significantly improve its fit to the training data. To avoid
overfitting, stepwise regression methods test the significance of the MSE im-
provement gained by refining the current equation and do not take into account
those refinements that do not lead to significant improvements. The significance
of the MSE improvement is based on the F statistic:

F =
MSE(vd = P)−MSE(vd = P ′)

MSE(vd = P ′)
· (m− r − 2),

where vd = P is the current equation, vd = P ′ is the candidate equation with the
newly added term, r is the number of terms in the current equation, and m is
the number of training examples. The improvement is significant, if the obtained
F value is greater than the 95th percentile of the F (1, m − r − 2) distribution
[9]. The stepwise regression method proceeds with greedy search by choosing the
best significant improvement and stops if no significant improvement is possible.

CIPER can be viewed as a stepwise method for polynomial regression with
an MDL (instead of MSE) heuristic function. However, there are several other
important differences between CIPER and the stepwise regression method. In
particular, the refinement operator used in CIPER is better suited for polynomial
regression. While the stepwise regression method can only refine the current
equation by adding a new term to it, CIPER can also add a variable to an
existing term in the current equation. Using this second kind of refinement,
CIPER can generate polynomials of arbitrary degree.

To use the forward stepwise method for polynomial regression, terms of degree
two and higher have to be precomputed and introduced as new independent
variables. This, however, is a serious limitation of the stepwise method, since the

Inductive Queries on Polynomial Equations 139

precomputation of higher degree terms requires the user to specify the maximal
degree of the introduced terms upfront and introduces a potentially huge number
of independent variables. The number of independent variables is of the order
O(|V |d), where d is the maximal degree of precomputed terms.

The huge number of precomputed higher degree terms means a high branching
factor of the stepwise refinement operator. Since it adds a new term to the cur-
rent equation, its branching factor equals the number of independent variables,
i.e., O(|V |d). Note that the branching factor of CIPER’s refinement operator
(O(|V |r)) is linear in the number of independent variables. The lower branch-
ing factor of the refinement operator permits the use of higher beam widths in
CIPER, which is in contrast with the beam width of one (greedy search) used
for stepwise regression.

5 Evaluating CIPER on Standard Regression Datasets

Equation discovery approaches, such as LAGRANGE [8], have been typically
evaluated in terms of the successful rediscovery of quantitative laws. In par-
ticular, data generated from known laws/models has been used. The empha-
sis has mainly been on the comprehensibility and general validity of the laws
found, rather than their predictive power. One of the reasons for this has been
the prohibitive computational complexity of applying exhaustive search to gen-
eral regression problems involving many variables and potentially complex laws.
CIPER, however, uses a heuristic approach for equation discovery, and its com-
putational performance allows its use on standard regression datasets.

In this section, we perform a number of experiments to evaluate CIPER’s
predictive performance. We are especially interested in its performance in com-
parison with the standard regression methods for inducing linear and piecewise
models, implemented in the data mining suite WEKA [25], as well as stepwise
polynomial regression, as described in the previous section. Besides predictive
performance, we also look at the size of the induced models.

The performance of the selected methods is evaluated on thirteen data sets,
taken from the UCI Repository [3] and another publicly available collection of
regression data sets [22]. These data sets have been widely used in other com-
parative studies. Table 4 presents the basic properties the data sets. In addition
to the number of examples and variables, we also list the class variance.

5.1 Experimental Methodology and Settings

In all the experiments presented here, we estimate the predictive performance
on unseen examples using 10-fold cross validation. The predictive performance
of a regression model M is measured in terms of the relative mean squared error
(RE) defined in Section 2.3. RE is a normalized performance measure that allows
for comparisons of performance across different data sets.

We compare the performance of CIPER to the performance of three standard
regression methods implemented in WEKA: linear regression, regression trees,

140 S. Džeroski, L. Todorovski, and P. Ljubič

Table 4. Properties (number of variables n, number of examples m, and class variance
VAR(vd)) of the thirteen regression data sets used in the experiments

Data set n m VAR(vd)

auto price 16 159 3.433·107

baskball 5 96 0.01173
bodyfat 15 252 69.76
cal housing 9 20640 1.331·1010

elusage 3 55 566.0
fried delve 11 40768 24.97
house 8l 9 22784 2.792·109

housing 14 506 84.4196
kin 8nm 9 8192 0.06948
mbagrade 3 61 0.1063
pw linear 11 200 19.92
quake 4 2178 0.03587
vineyard 4 52 18.94

and model trees. The tree-based models are induced with the M5’ algorithm [24].
All algorithms have been used with their default parameter settings. We also
compare CIPER to stepwise polynomial regression (with maximal polynomial
degree of 1, 2, and 3). The default beam width in CIPER is 16.

For pairwise comparison of methods, we calculate the relative error reduction
achieved for a given data set by using method M1 as compared to using method
M2: 1−RE(M1)/RE(M2). The statistical significance of the difference is tested
using the paired t-test (with the sample size equal to the number of folds; the
same folds are used for all methods) with significance level of 99%. A +/− sign
to the right of a figure in Table 5 means that the difference is significant.

5.2 Experimental Results

We present the results of the experiments in Tables 5 and 6. The first table
compares the regression methods in terms of their predictive error, while the
second compares the complexity of the induced models.

Predictive error. CIPER clearly outperforms linear regression and stepwise
linear regression (d = 1) on most of the experimental data sets (and significantly
on five of them). The stepwise regression methods gain accuracy with increasing
the maximal degree of precomputed terms d, but they induce much more complex
models and tend to overfit the training data. Compare, for example, the results
on the house 8L, pw linear, and cal housing data sets. Although insignificant,
the differences in performance are still considerably large, especially for d = 3.
In terms of significant differences, the performance of stepwise regression with
d = 2 and d = 3 are comparable to CIPER.

The results of stepwise regression indicate that further improvement is pos-
sible if we increase d further: however this is intractable for large data sets.
Also, stepwise regression tends to produce more and more complex models as

Inductive Queries on Polynomial Equations 141

Table 5. Predictive performance of CIPER in terms of relative mean squared error
(RE), as compared to stepwise regression (with maximal polynomial degree of 1, 2,
and 3) and three regression approaches from WEKA: linear regression LR , model
trees MT, and regression trees RT. A +/− sign to the right of a figure denotes that
CIPER performed significantly better/worse.

Stepwise regression WEKA
Data set CIPER d = 1 d = 2 d = 3 LR MT RT

auto price 0.1610 0.2426 0.1985 0.3966 0.2168 0.1351 0.2896 +
baskball 0.6334 0.6334 0.6397 0.6218 0.6672 0.6334 0.8351 +
bodyfat 0.0282 0.0285 0.0324 0.0286 0.0295 0.0260 0.1025 +
cal housing 0.2901 0.3639 + 0.3339 0.3510 0.3639 + 0.2376 − 0.2664 −
elusage 0.2720 0.3604 0.2720 0.2720 0.3731 0.3312 0.4827
fried delve 0.1021 0.2773 + 0.1128 0.0436 0.2773 + 0.0765 0.1271
house 8L 0.3793 0.6193 + 0.4370 + 16.1411 0.6191 + 0.3545 0.3932
housing 0.1768 0.2866 + 0.1676 0.1680 0.2858 + 0.1745 0.2550 +
kin 8nm 0.3631 0.5871 + 0.4390 + 0.2684 − 0.5871 + 0.3673 0.4711 +
mbagrade 0.8403 0.8403 0.8450 0.8502 0.8403 0.8403 1.0209
pw linear 0.3936 0.2504 0.1162 0.6122 0.2377 0.1047 0.3264
quake 1.0000 0.9964 0.9964 0.9997 0.9966 1.0035 1.0102
vineyard 0.5347 0.7400 0.6674 0.7679 0.7116 0.7404 0.7207

Average 0.3980 0.4789 0.4044 1.6555 0.4774 0.3865 0.4847

d increases. Finally, the performance of stepwise polynomial regression is very
sensitive to the value of d. Selecting the optimal d value is a nontrivial prob-
lem, since it can differ from one data set to another: for practical reasons, the
selection would be guided by computational complexity issues (the number of
precomputed higher degree terms). The computational complexity of CIPER
compares favorably to the stepwise regression method with d = 3: on average,
CIPER considers 10 times fewer candidate equations than stepwise regression.

The overall accuracy of CIPER compares favorably to the accuracy of RTs:
CIPER is significantly better on five data sets. The relative accuracy improve-
ment is higher for smaller data sets [21], which provide insufficient statistical
support for a number of partial models derived from parts of the data set (as
in RTs and MTs), but a sufficient support for a single equation/model over
the entire data set (as in CIPER). Finally, the overall accuracy of CIPER is
comparable to the accuracy of MTs: MTs significantly outperform polynomial
equations on only one data set. In addition, CIPER has much lower variance (in
the bias-variance decomposition of the predictive error) than RTs and MTs [21].

Model Complexity. We assess the complexity of models based on polynomial
equations in terms of the number of constant parameters #P, length LEN (as
defined in Section 2.1), and polynomial degree DEG. The complexity of tree-
based models is measured with the number of constant parameters in the leaf
nodes #P, and the number of decision (internal) nodes #DN. Note that in
regression trees, #P is the number of leaf nodes.

142 S. Džeroski, L. Todorovski, and P. Ljubič

Table 6. The complexity of the models induced with CIPER as compared to stepwise
regression, linear regression and tree-based models in terms of the number of constant
parameters in the equation #P, polynomial length LEN and degree DEG, as well as
the number of decision nodes #DN for tree-based piecewise models

CIPER Stepwise (d = 2) Regr. Trees Model Trees
Data set #P LEN DEG #P LEN DEG #P #DN #P #DN

auto price 5 5 2 7 10 2 8 7 19 6
baskball 3 2 1 3 3 2 2 1 3 0
bodyfat 8 11 3 4 5 2 16 15 12 5
cal housing 24 81 17 40 71 2 499 498 898 268
elusage 3 3 2 3 3 2 3 2 6 1
fried delve 7 7 2 66 120 2 1919 1918 2356 538
house 8l 35 163 13 34 60 2 266 265 434 127
housing 15 32 4 29 53 2 26 25 56 18
kin 8nm 13 16 2 33 56 2 264 263 409 105
mbagrade 3 2 1 3 2 1 1 0 3 0
pw linear 10 12 2 13 18 2 14 13 12 1
quake 2 1 1 2 1 1 1 0 10 5
vineyard 4 4 2 3 3 2 4 3 6 1

Average 10.5 26.1 4.0 18.5 31.1 1.8 232.5 231.5 324.9 82.7

Table 6 presents the results of the model complexity comparison. CIPER
produces less complex polynomials than stepwise regression with maximal degree
of precomputed terms d = 2. Despite the (two times) higher average degree of
the equations induced with CIPER, they are shorter and have two times fewer
parameters than the equations induced with stepwise regression. The complexity
of the polynomial models is much lower than the complexity of piecewise tree-
based models. The factor of complexity reduction is of the order of a hundred
for both regression and model trees.

6 Using Constraints in Modeling Chemical Reactions

CIPER can also discover differential equations. Like LAGRANGE [8], it can
introduce the time derivatives of system variables by numerical derivation. It can
then look for equations of the form ẋi = P (x1, x2, ..., xn), where ẋi denotes the
time derivative of xi and P (x1, x2, ..., xn) denotes a polynomial of x1, x2, ..., xn.

To illustrate the use of constraints in discovering differential equations, we
address the task of reconstructing a partially specified (toy example) network
of biochemical reactions [7]. Biochemical reactions take place continually in the
metabolic processes of all living organisms. Biochemical kinetics studies the rates
of biochemical reactions and the dynamic change of the concentration of various
reactants (proteins and enzymes) involved in a particular metabolic process [23].
The latter is modeled using ordinary and partial differential equations.

The metabolic process is usually presented graphically as a network of chem-
ical reactions (referred to as a metabolic pathway map). Table 7 gives an ex-

Inductive Queries on Polynomial Equations 143

Table 7. A partially specified network (set) of chemical reactions, where the reactions
are given in the notation {Inputs} → {Outputs}

{x5,x7} → {x1}
{x1} → {x2, x3}
{x1, x2,x7} → {x3}
{x3} → {x4}
{x4} → {x2,x6}
{x4,x6} → {x2}

ample network of chemical reactions. The reactions are given in the notation
{Inputs} → {Outputs}. For example, the first reaction {x5, x7} → x1, takes the
substrate substances x5 and x7 as inputs, and produces a single substance x1.

There are several methods for transforming a metabolic pathway into ordi-
nary differential equations for modeling the change of the concentrations of the
substances involved. One of these models a network of chemical reactions with a
set of polynomial differential equations (see, e.g., [13]). The transformation of a
network to a set of differential equations is performed in the following manner.
The reaction rate is proportional to the concentrations of inputs involved in the
reaction. For example, consider the reaction {x5, x7} → x1, the first in Table 7.
It takes x5 and x7 as inputs, therefore the corresponding term in the equations is
x5 · x7. The reaction rate influences the rate of change of all (input and output)
compounds involved in the equations. Therefore, the term x5 · x7, will appear
in the equations for x1, x5, and x7. In the equation for the output compound
x1 the term positively influences the change rate, while in the equations for the
input compounds the term negatively influences the change rate.

Following the algorithm outlined above, the following set of differential equa-
tions can be composed and used for modeling the network from Table 7:

ẋ1 = 0.8 · x5 · x7 − 0.5 · x1 − 0.7 · x1 · x2 · x7

ẋ2 = 0.7 · x1 + 0.2 · x4 + 0.1 · x4 · x6 − 0.3 · x1 · x2 · x7

ẋ3 = 0.4 · x1 + 0.3 · x1 · x2 · x7 − 0.2 · x3

ẋ4 = 0.5 · x3 − 0.7 · x4 · x6

ẋ5 = −0.6 · x5 · x7

ẋ6 = 0.2 · x4 − 0.8 · x4 · x6

ẋ7 = −0.1 · x1 · x2 · x7 − 0.1 · x5 · x7

These equations were simulated for 1000 time steps of 0.01 from a randomly
generated initial state (where the value of each variable was randomly chosen
from the interval (0,1)). This provides a trace of the behavior of the 7 system
variables over time, suitable for discovering differential equations with CIPER.
Given such a behavior, the task is to reconstruct the metabolic pathway.

The domain of modeling networks of chemical reactions lends itself naturally
to the use of constraints in polynomial equation discovery. On one hand, para-
metric constraints have a natural interpretation. A limit on r, the number of

144 S. Džeroski, L. Todorovski, and P. Ljubič

terms in an equation, corresponds to a limit on the number of reactions a com-
pound is involved in. A limit on d, the degree of terms, corresponds to a limit on
the number of compounds that are input to a chemical reaction. On the other
hand, subsumption constraints can also be used in a natural way. A partially
specified reaction network gives rise to equations that involve subpolynomials of
the polynomials modeling the entire network, as illustrated below.

Let us revisit the network in Table 7. The part of the network given in bold
is assumed to be unknown (except for the fact that x6 and x7 are involved in
the network), while the rest of the network is known. The task at hand is to
reconstruct the complete structure of the network from a given behavior over
time (mentioned above) and the partial structure (assumed to be known). This
is a task of revising an equation-based model [19].

If only the bold part of the network is present, the following equations can be
used to model its behavior.

ẋ1 = −const · x1 + const · x5 − const · x1 · x2

ẋ2 = const · x1 + const · x4 − const · x1 · x2

ẋ3 = const · x1 + const · x1 · x2 − const · x3

ẋ4 = const · x3 − const · x4

ẋ5 = −const · x5

The knowledge of the partial network can be used to constrain the search
through the space of possible equations. The RHS polynomials in the equations
for ẋ1 ... ẋ5 in the partial network should be subpolynomials of the RHS polyno-
mials in the corresponding equations for the complete network. These subpoly-
nomial constraints were given to CIPER together with the behavior trace for all
7 variables. No subsumption constraints were used for the equations defining ẋ6

and ẋ5. No parametric constraints were used for any of the equations. Beams of
size 64 and 128 were used in the experiments.

CIPER then successfully reconstructs the equations for the entire network,
i.e., for each of the 7 system variables, for each of the two beam sizes. Discov-
ery without constraints, however, fails for two of the equations. If we provide
CIPER only with the behavior trace and no constraints, it fails to reconstruct the
equations for ẋ1 (beam 128) and ẋ2 (for both beams) correctly. In addition, un-
constrained search inspects more equations than constrained search: for ẋ2 and
beam 128, unconstrained search considers 18643 equations, while constrained
search considers 12901 equations. For comparison, exhaustive search through all
equations with d ≤ 3 and r ≤ 4 would have to consider 637393 equations.

7 Combining Pattern Domains for Practical Applications:
Towards Inductive Databases for QSAR

Here we first describe the pattern domain of molecular fragments. We then pro-
ceed with a proposal of how to integrate the pattern domains of equations and

Inductive Queries on Polynomial Equations 145

molecular fragments in order to obtain an inductive database for QSAR (Quan-
titative Structure-Activity Relationships). Preliminary experiments in the do-
main of predicting biodegradability, illustrating how the two domains can be
combined, are presented. Finally, two more complex scenarios for integrating
the two pattern domains are considered and their use is illustrated on a problem
from the area of predictive toxicology, namely predicting fish toxicity.

7.1 The Pattern Domain of Molecular Fragments

Here we briefly summarize the pattern domain of molecular fragments, intro-
duced by Kramer and De Raedt [14], in terms of the syntactic constraints and
evaluation primitives considered. The system MolFea, which implements a solver
for this pattern domain, looks for interesting molecular fragments (features) in
sets of molecules. Interestingness is defined as a conjunction of primitive con-
straint that the fragment has to satisfy.

A molecular fragment is defined as a sequence of linearly connected atoms. For
instance, o− c = o is a fragment meaning: ”an oxygen atom with a single bond
to a carbon atom with a double bond to an oxygen atom”. In such expressions
’c’, ’n’, ’o’, etc. denote elements, and ’−’ denotes a single bond, ’=’ a double
bond, ’#’ a triple bond, and ’∼’ an aromatic bond. Only non-hydrogen atoms
are considered. Fragments are partially ordered by the relation ”is more general
than”/”is a subsequence of”: when fragment g is more general than fragment s,
one writes g ≤ s.

Kramer and De Raedt note that the representation of molecular fragments is
relatively restricted compared to some other representations employed in data
mining, such as first-order queries or subgraphs. Although fragments are a rel-
atively restricted representation of chemical structure, it is easy for trained
chemists to recognize the functional group(s) that a given fragment occurs in.
Thus, the interpretation of a fragment reveals more than meets the eye.

The primitive language constraints that can be imposed on unknown target
fragments f are of the form f ≤ p, p ≤ f , ¬(f ≤ p) and ¬(p ≤ f), where
f is the unknown target fragment and p is a specific pattern. This type of
primitive constraint denotes that f should (not) be more specific (general) than
the specified fragment p. E.g., the constraint ’c = o’ ≤ f specifies that f should
be more specific than ’c = o’, i.e., that f should contain ’c = o’ as a subsequence.

The evaluation primitive freq(f, D) denotes the relative frequency of a frag-
ment f on a set of molecules D. The relative frequency is defined as the percent-
age of molecules (from D) covered (by f). Evaluation constraints can be defined
by specifying thresholds on the frequency or relative frequency of a fragment
on a dataset: freq(f, D1) ≤ t and freq(f, D1) ≥ t denote that the relative fre-
quency of f on D should be larger than (resp. smaller than) or equal to t. For
example, the constraint freq(f, Pos) ≥ 0.95 denotes that the target fragments
f should have a minimum relative frequency of 95% on the set of molecules Pos.

The primitive constraints defined above can conjunctively be combined in
order to declaratively specify the target fragments of interest. Note that the
conjunction may specify constraints w.r.t. any number of datasets, e.g. imposing

146 S. Džeroski, L. Todorovski, and P. Ljubič

a minimum frequency on a set of active molecules, and a maximum one on a set of
inactive ones. For example, the constraint (’c = o’ ≤ f)∧¬(f ≤ ’c−c−o−c = o’)
∧freq(f, Deg) ≥ 0.95 ∧ freq(f, NonDeg) ≤ 0.05) queries for all fragments that
include the sequence ’c = o’, are not a subsequence of ’c − c − o − c = o’, have
a frequency on Deg that is larger than 95 percent and a frequency on NonDeg
that is smaller than 5 percent.

7.2 Combining Molecular Fragments and Equations in an Inductive
Database for QSAR

The basic idea of our proposal is to consider the pattern domains of equations
and molecular fragments in a single inductive database. One could then easily use
the results of one inductive query (e.g., the set of interesting features resulting
from a MolFea query) as input to another inductive query (e.g. to find a QSAR
equation for biodegradability). This is of interest as QSAR models most often
take the form of equations and molecular fragments are often used as features.

This is similar to what Kramer and De Raedt [14] do. They look for interesting
features with MolFea, then use these for predictive modeling (classification with
a number of data mining approaches). However, no constraints are used in their
predictive modeling phase. Also, the data mining approach that performs best in
their setup is that of support vector machines, which does not yield interpretable
models.

Each of the two pattern domains offers potentially useful functionality. Taken
by themselves, equations are the approach of choice for QSAR modeling. While
non-linear transformations of bulk features are sometimes used, most often lin-
ear equations are sought. Our constraint-based approach to equation discovery
would allow the QSAR modeler to pose inductive queries that focus the search
on interesting equations, such as: ”find me the best equation that involves fea-
tureX”, supposing featureX is of interest to the QSAR modeler.

Also, molecular fragments (or in general substructures) are often used as fea-
tures in QSAR modeling. Using feature mining in the pattern domain of molec-
ular fragments, the QSAR modeler can find patterns involving substructures of
special interest. These can then be used in QSAR models.

The basic form of exploiting the connection between the two pattern domains
is to use the molecular fragments found by MolFea as input for a data min-
ing query looking for QSAR equations. Here one can exploit the subpolynomial
constraints in the equations pattern domain to ask for equations that contain
a specific molecular fragment: the fragment in question should be a subpoly-
nomial of the RHS of the equation sought. However, additional constraints can
be defined. For example, one may look for equations that involve a subfrag-
ment or superfragment of a given fragment, rather than just the fragment itself.
We have implemented the latter in our system CIPER as an extension of the
subpolynomial/superpolynomial constraint.

At present, we assume all frequent fragments are given and look for equations
that involve the given equations and satisfy the constraints. As an illustration,
in the biodegradability dataset, we may be interested in the two best equations

Inductive Queries on Polynomial Equations 147

that contain only one feature that is a superfragment of ’c = o’. The equations
logHLT = 6.9693− 1.19013∗ c = o and logHLT = 6.91524− 1.24286∗ c− c = o
are returned as a result of this query.

When we are looking for equations involving binary variables, such as the pres-
ence/absence of a molecular fragment in a molecule, we should take into account
that higher degrees of such variables are identical to the variables themselves.
Thus the higher degrees of molecular fragment should not appear in equations.
This can drastically reduce the space of possible equations.

At present, the above is not taken into account explicitly. However, the search
heuristic used in CIPER, which takes into account equation complexity (punishes
complex equations) prevents equations with higher degrees of fragment features
from being chosen. This because such equations have the same accuracy/degree
of fit as the equation with a linear degree of the fragment and higher complexity.

Other constraints might arise from the properties of molecular fragments
and generality/specificity relationships among them, which might be used to
reduce/heuristically prune the space of possible QSAR equations. For example,
when refining a fragment, i.e., making it more specific, the value of the corre-
sponding feature can only go from one to zero for any molecule considered. This
can be used to bind the possible error reduction and also the maximum heuristic
value an equation can achieve.

Originally, our constraint-based approach to equation discovery was meant
for regression problems (with continuous class variable). However, we can easily
adapt it to classification problems where the features are numeric (including
binary features). We can use CIPER to perform classification via regression
(multi-response polynomial regression), an approach shown to perform well in
many cases.

7.3 Experiments on the Biodegradability Dataset

The QSAR application that we consider here is the one of predicting biodegrad-
ability of compounds [6]. The database used was derived from the data in the
handbook of degradation rates [11] and contains the chemical structure and mea-
sured (or estimated) degradation rates for 328 chemicals. In our study we focus
on aqueous biodegradation half life time (HLT) in aerobic conditions. The target
variable (denoted logHLT) is the natural logarithm of the arithmetic mean of
the low and high estimate of the HLT for aqueous biodegradation in aerobic
conditions, measured in hours. Two discretized versions (2-class and 4-class) of
logHLT were also considered.

A global feature of each chemical is its molecular weight. This was included
in the data. Another global feature is logP, the logarithm of the compound’s
octanol/water partition coefficient, used also in the mutagenicity application.
This feature is a measure of hydrophobicity, and can be expected to be important
since we are considering biodegradation in water. The two global features were
used in addition to the discovered molecular fragments in the QSAR models
developed.

148 S. Džeroski, L. Todorovski, and P. Ljubič

Kramer and De Raedt [14] used the two-class version of the biodegradability
dataset to mine for interesting features. They looked for features that are above
a prespecified minimum frequency threshold and below a maximum threshold.
No generality constraints were used. The resulting features (fragments) together
with MolWeight and log P were then used for predictive modeling (classification
with a number of data mining approaches, of which support vector machines
performed best).

For our experiments, the features generated with thresholds of minimum 0.05
and maximum 0.95 were kindly provided by Stefan Kramer. A total of 124
fragments were found by MolFea. Of these, only 69 are distinct, in the sense that
there is at least one compound where one fragment is present and the other is not.
The major reason for getting duplicates is that MolFea reported all fragments
that satisfied the frequency thresholds and not the minimal (maximal) ones:
duplicates can be avoided by taking the borders of the versionspace produced by
MolFea. Only 69 distinct fragments were taken as input for equation discovery.

Table 8. The equation generated by CIPER on the biodegradability dataset

logHLT = 0.0645738*logP - 0.825858*c=o + 0.374477*logP*cl + 0.487245*c-n

+ 2.43385*c~c~c~c~c~c~c~c~c~c~c~c~c~c - 0.529246*c~c~c~c~c

+ 0.757922*n=o + 0.570323*c-c-c~c~c~c~c~c

- 0.632581*c-c-c-o + 0.817581*c-o-c - 0.621152*c-o

+ 0.00231708*MolWeight + 5.94176

Taking the 69 fragments, logP and MolWeight as the independent and
logHLT (or the discretization thereof) as the dependent variable, we applied our
system for equation discovery CIPER to the biodeg dataset. For the continuous
version, the equation in Table 8 was generated by CIPER (with beam 4). For
the two-class and four-class version, classification via regression was performed:
as many equations were produced as the number of classes.

Table 9. The predictive performance of CIPER on the biodegradability dataset, esti-
mated by 10-fold cross validation, as compared to several other learning algorithms

Data version / Algorithm J48(Class via) LinReg(Class via) M5(Class via) CIPER

2 class (acc.) 71.34 74.09 78.05 78.66
4 class (acc.) 56.40 52.24 54.57 56.40

continuous (RE) 0.627 0.560 0.576

The predictive performance of CIPER, estimated by 10-fold cross validation,
was also measured (Table 9). It was compared to the performance of three other
algorithms: J48, Linear Regression and M5. For the latter two, comparison was
done for both the continuous (regression) and the discrete (classification via
regression) versions of the dataset.

Inductive Queries on Polynomial Equations 149

CIPER performs much better than J48 for the two-class version and the
same for the four-class version. It performs better than linear regression (higher
accuracy, lower error / RE). It performs better than M5 for classification via
regression and slightly worse for regression. Overall, CIPER performs best. In
addition, the equation produced can be easily interpreted (e.g., three fused aro-
matic rings greatly contribute to longer degradation time).

7.4 More Complex Scenarios for Combining Pattern Domains

In the previous subsection, we combined two pattern domains in a pipeline fash-
ion: we took the frequent molecular fragments produced by MolFea as features
and fed them into CIPER to find equations. Here we propose two iterative sce-
narios for combining the two pattern domains, where MolFea and CIPER are
ran in a loop and outputs from one are fed as input into the other.

Table 10. An iterative scenario for QSAR with level-wise feature generation

– F0 = Global features
– M ′ = Predictive model induced (by CIPER) on the features from F0

– L = 1
– Repeat

• M = M ′

• FL = FL−1∪ frequent fragments of length L
• M ′ = Predictive model induced (by CIPER) on the features from FL

– Until M ′ is less accurate than M

In the first scenario, given in Table 9, frequent fragments of increasing length
are sought by MolFea and incrementally made available to CIPER to construct
equations: the process is repeated as long as the accuracy of the equations im-
proves. The second scenario is similar, with the added constraint that the RHS
of an equation found by CIPER at a given step has to be a super-polynomial
of the RHS of the equation constructed at the previous step of the scenario.
This is a theory revision scenario, with each model being a revision of the model
constructed at the previous step.

To evaluate the two scenarios above, we consider a dataset from the area of
predictive toxicology [10]. The fish-toxicity dataset comes from the Distributed
Structure-Searchable Toxicity (DSSTox) Public Database Network [17] or more
specifically the EPAFHM toxicity database. The latter contains data about tox-
icity response of the fathead minnow (freshwater fish Pimephales Promelas) for
617 industrial organic chemicals. For each considered chemical, the database
provides several different measures of the minnow’s toxicity response. We focus
here on the median lethal concentration (LC50) in [mg/l], which measures the
concentration of the chemical producing lethality in 50% of test animals after 96
hours of exposure. If more than one bioassay has been conducted for the same

150 S. Džeroski, L. Todorovski, and P. Ljubič

Table 11. A theory revision scenario for QSAR

– F0 = Global features
– M ′ = Equation induced by CIPER on the features from F0

– L = 1
– Repeat

• M = M ′

• FL = FL−1∪ frequent fragments of length L
• M ′ = Equation induced by CIPER on the features from FL, where the RHS

of M is a sub-polynomial of the RHS of M ′

– Until M ′ is less accurate than M

chemical, geometric mean of LC50s is presented. If no mortality, or less than 50%
mortality has been observed at 96 hours, LC50 value is not available. The actual
target variable we want to predict is the negative value of the natural logarithm
of LC50. The data set used in our study contains 574 chemical compounds, for
which both the chemical structure and LC50 value of the activity are available.

Using the pipeline approach to combining the two pattern domains, we obtain
375 frequent molecular fragments and a correlation coefficient of 0.648. If we use
the iterative scenario for level-wise feature generation, fragments up to length
L = 10 are generated and a correlation coefficient of 0.6530 is achieved. Finally,
applying the theory revision scenario generates fragments of length up to L = 11
and yields a correlation coefficient of 0.711.

8 Conclusion

Summary. Here we have considered the problem of predictive modeling via
polynomial equations within the framework of inductive databases (IDBs). We
have defined primitives for the pattern domain of polynomial equations, includ-
ing language constraints (such as sub-polynomial), evaluation primitives, eval-
uation and optimization constraints. We have also shown how to combine such
primitives to form inductive queries in this pattern domain.

We have then presented a complete and a heuristic solver for data mining queries
in this pattern domain, focussing on the latter. The algorithm CIPER performs
heuristic beam search through the space of polynomial equation that satisfy a set of
given language constraints and reports the beam of equations that best satisfy the
optimization constraints. It uses a refinement operator derived from the subsump-
tion (sub-polynomial) relationship between polynomials and a heuristic function
that takes into account both the accuracy and complexity of equations.

We have illustrated the use of the developed approach in two different areas.
We have first applied CIPER to standard regression datasets, where it performs
competitively to existing regression methods while producing more concise mod-
els. We have then shown that constraint-based discovery of polynomial equations
is suitable for modeling the dynamics of chemical reaction networks, since the

Inductive Queries on Polynomial Equations 151

language constraints in our pattern domain naturally correspond to complexity
limits on reaction networks.

Finally, we have shown how the pattern domains of equations and molecu-
lar fragments can be combined into an IDB for QSAR. We first considered a
simple scenario where the output of the discovery of molecular fragments is the
input for equation discovery and illustrated its use on the problem of predict-
ing biodegradability. We then considered two more complex (iterative) scenarios
which interleave inductive queries from the two pattern domains and illustrated
their use on a predictive toxicology problem.

Discussion. The present chapter emphasizes the use of equations as predictive
models in data mining. Regression equations are commonly used for predictive
modeling in statistics, but receive considerably less attention in data mining.
While equation discovery [15] is a recognized research topic within machine
learning, it has been previously mainly used to rediscover quantitative scien-
tific laws, with an emphasis on the comprehensibility and general validity of the
laws found, rather than their predictive power. Here we show that equation dis-
covery can build models that have similar predictive power and lower complexity
as compared to state of the art regression approaches.

In the framework of inductive databases (IDBs), different types of patterns
have been considered within different so-called pattern domains [4]. Most con-
sidered pattern domains concern the discovery of frequent patterns, such as
frequent itemsets, episodes, Datalog queries and sequences. One of the main
contributions of this chapter is that global predictive models (equations) have
been considered in the framework of IDBs, following the same general structure
of a pattern domain as for the discovery of frequent patterns. Predictive modeling
lends itself to being described in terms of the same types of primitives: language
constraints, evaluation primitives, evaluation and optimization constraints, as
shown by defining such primitives for the pattern domain of equations.

Considering predictive models in the same framework as frequent patterns
brings out the contrast between the practice of mining patterns and models.
Techniques for mining frequent patterns typically aim at finding all frequent
patterns that satisfy a user provided set of constraints (such as minimal fre-
quency). On the other hand, predictive modeling techniques heuristically search
for a single model trying to maximize predictive accuracy (usually not taking
into account any other constraints).

In the frequent pattern setting, frequency constraints enable pruning of the
space of candidate patterns and using constraints can mean drastic improve-
ments in terms of efficiency. The monotonicity/anti-monotonicity of such con-
straints, used in conjunction with a generality relation on the patterns, is crucial
in this respect. In mining for models, one typically uses constraints (like accu-
racy) that are neither monotonic nor anti-monotonic. In such cases, the search
space over the possible models can still be structured according to the con-
straints, but effective pruning is no longer possible. As a consequence, heuristic
(rather than complete) solvers have to be designed, as was the case in our pattern
domain of polynomial equations.

152 S. Džeroski, L. Todorovski, and P. Ljubič

The use of constraints in predictive data mining is less likely to be driven
primarily by efficiency considerations. This is because constraints there are less
likely to be monotone/anti-monotone, i.e., to enable efficient pruning. In this
context, it is important that the constraints are intuitively understandable for the
domain experts and have natural interpretation in the domain of use. This has
been illustrated by the use of constraints in modeling the dynamics of networks
of chemical reactions.

So far, in the framework of IDBs, different types of patterns have been con-
sidered separately, within different pattern domains. We believe that both global
models (like equations) and local patterns (like molecular fragments) will need to
be considered in IDBs. Moreover, different types of patterns will need to be used
in the same IDB for practical applications, such as QSAR (and other applications
in bioinformatics) [5]. To our knowledge, global models in the form of equations
have so far not been considered in IDBs (even though they are routinely used
in practical applications, such as QSAR) and neither have combinations of local
patterns and such global models.

The focus on individual pattern domains has had as a consequence the focus
on inductive queries for individual data mining steps. However, IDBs in gen-
eral are a promising framework for supporting the entire process of knowledge
discovery. The more complex scenarios for combining molecular fragments and
equations illustrate that IDBs can (at least in principle) support more complex
operations of knowledge discovery that involve several data mining operations
and where (in accordance to the closure principle) the results of one inductive
query are input for another.

Further work. Concerning work on IDBs with predictive models, we have just
began to scratch the surface. Even for the pattern domain of equations there are
several directions for further work. One direction concerns the definition, im-
plementation and use of new constraints, such as bounds on equation length or
similarity constraints. The latter allow the formulation of queries such as: ”find
the equation most similar to e, which has mean absolute error smaller than
x”. Another direction concerns the extension of the pattern domain of equa-
tions towards general equations (non-polynomial ones). Here the connection to
grammar-based equation discovery [18] might prove useful. Finally, extensions
towards other types of regression models (e.g. model trees) as well as classifi-
cation models would be in order. The latter would be especially relevant for
predictive regression (modeling) applications, such as the ones considered in
Section 4.

In the domain of modeling reaction networks, an immediate direction for
further work concerns the further formulation and exploitation of constraints.
For example, instead of a partially specified network with missing reactions, one
might consider a given maximal network of reactions and look for a subnetwork.
In this case, superpolynomial constraints might be used to focus/constrain the
search for equations. Experiments on real data are needed to thoroughly evaluate
the usefulness of our approach for modeling metabolic reaction networks.

Inductive Queries on Polynomial Equations 153

The kinetics of biochemical metabolic pathways is an important potential ap-
plication area of equation discovery and IDBs. The need for quantitative models
of biological processes is growing rapidly, and we expect it to play a significant
role in establishing the kind of mathematical understanding sought from enter-
prises like the Human Physiome Project [1]. We believe that equation discovery
and IDBs of the form proposed here will greatly assist the analysis of the large
quantities of data expected to be available as a result of the project.

Much work remains to be done to achieve IDBs where different pattern do-
mains coexist and can be queried inductively. We have only considered frequent
molecular fragments and predictive equation models, while it is obvious that
many other forms of frequent patterns and predictive models deserve attention.
Of special importance is the integration of such pattern domains and databases
and the design of inductive query languages that would enable IDBs to support
complex, non-trivial processes of knowledge discovery.

Acknowledgments

We acknowledge the support of the cInQ (Consortium on discovering knowledge
with Inductive Queries) project, funded by the European Commission under
contract IST-2000-26469. We would like to thank the cInQ partners for the
cooperation during the cInQ project. Special thanks are due to Luc De Raedt
and Jean-Francois Boulicaut for getting us involved in this research and their
continued support thereof. Thanks to Stefan Kramer for interesting discussions
on the topic of this paper and for providing the MolFea generated features for the
biodegradability dataset. Thanks to Christoph Helma for providing the MolFea
generated features for the fish toxicity dataset.

References

1. J. B. Bassingthwaighte, editor. Web Page of the Physiome Project, 2002 (Web page
update). http://www.physiome.org/

2. R. Bayardo. Constraints in data mining. SIGKDD Explorations, 4(1), 2002.
3. C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

http://www.ics.uci.edu/ ∼ mlearn/MLRepository.html.
4. L. De Raedt. Data mining as constraint logic programming. In Computational

Logic: From Logic Programming into the Future (In honor of Bob Kowalski).
Springer, Berlin, 2002.

5. L. De Raedt and S. Kramer. Inductive databases for bio and chemoinformatics. In
P. Frasconi, R. Shamir (editors), Artificial Intelligence and Heuristic Methods for
Bioinformatics. IOS Press, Amsterdam, 2003.

6. S. Džeroski, H. Blockeel, B. Kompare, S. Kramer, B. Pfahringer, and W. Van Laer.
Experiments in predicting biodegradability. In Proc. Ninth International Confer-
ence on Inductive Logic Programming, pages 80–91. Springer, Berlin, 1999.

7. S. Džeroski, L. Todorovski, and P. Ljubič. Using constraints in discovering dynam-
ics. In Proc. Sixth International Conference on Discovery Science, pages 297-305.
Springer, Berlin, 2003.

154 S. Džeroski, L. Todorovski, and P. Ljubič

8. S. Džeroski and L. Todorovski. Discovering dynamics: from inductive logic pro-
gramming to machine discovery. Journal of Intelligent Information Systems, 4:89–
108, 1995.

9. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, Berlin, 2001.

10. C. Helma, editor. Predictive Toxicology. CRC Press, Boca Raton, FL, 2005.
11. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., and Michalenko, E.M.

1991. Handbook of Environmental Degradation Rates. Lewis Publishers.
12. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Communications of the ACM, 39(11):58–64, 1996.
13. J.R. Koza, W. Mydlowec, G. Lanza, J. Yu, and M.A. Keane. Reverse engineering of

metabolic pathways from observed data using genetic programming. In Proc. Sixth
Pacific Symposium on Biocomputing, pages 434-445. World Scientific, Singapore,
2001.

14. S. Kramer and L. De Raedt. Feature construction with version spaces for bio-
chemical applications. In Proc. Eighteenth International Conference on Machine
Learning, pages 258–265. Morgan Kaufmann, San Francisco, 2001.

15. P. Langley, H. A. Simon, G. L. Bradshaw, and J. M. Żytkow. Scientific Discovery.
MIT Press, Cambridge, MA, 1987.

16. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

17. A. Richard, editor. Distributed Structure-Searchable Toxicity (DSSTox) Pub-
lic Database Network, 2004 (Web page update). http://www.epa.gov/nheerl/

dsstox/.
18. L. Todorovski and S. Džeroski. Declarative bias in equation discovery. In Proc.

Fourteenth International Conference on Machine Learning, pages 376–384. Morgan
Kaufmann, San Francisco, CA, 1997.

19. L. Todorovski, and S. Džeroski. Theory revision in equation discovery. In Proc.
Fourth International Conference on Discovery Science, pages 390-400. Springer,
Berlin, 2001.

20. L. Todorovski, S. Džeroski, and P. Ljubic. Discovery of polynomial equations for
regression. In Proc. Sixth International Multi-Conference Information Society, Vol-
ume A, pages 151-154. Jožef Stefan Institute, Ljubljana, 2003.

21. L. Todorovski, P. Ljubič, and S. Džeroski. Inducing polynomial equations for re-
gression. In Proc. Fifteenth International Conference on Machine Learning, pages
441-452. Springer, Berlin, 2004.

22. L. Torgo. Regression data sets, 2001. http://www.liacc.up.pt/ ∼ ltorgo/Regress-
ion/DataSets.html.

23. E. O. Voit. Computational Analysis of Biochemical Systems. Cambridge University
Press, Cambridge, UK, 2000.

24. Y. Wang and I. H. Witten. Induction of model trees for predicting continuous
classes. In The Proceedings of the Poster Papers of the Eighth European Confer-
ence on Machine Learning, pages 128–137, University of Economics, Faculty of
Informatics and Statistics, Prague, 1997.

25. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, San Mateo, CA, 1999.

Mining Constrained Graphs:

The Case of Workflow Systems

Gianluigi Greco1, Antonella Guzzo2, Giuseppe Manco2,
Luigi Pontieri2, and Domenico Saccà2

1 Department of Mathematics, University of Calabria, Italy
2 ICAR, CNR, Italy

ggreco@mat.unical.it, {guzzo, manco, pontieri, sacca}@icar.cnr.it

Abstract. Constrained graphs are directed graphs describing the con-
trol flow of processes models. In such graphs, nodes represent activities
involved in the process, and edges the precedence relationship among
such activities. Typically, nodes and edges can specify some constraints,
which control the interaction among the activities. Faced with the above
features constrained graphs are widely used in the modelling and analysis
of Workflow processes. In this paper we overview two mining problems
related to the analysis of constrained graphs, namely the analysis of fre-
quent patterns of execution, and the induction of a constrained graph
from a set of execution traces. We discuss some complexity aspects re-
lated to the problem of reasoning and mining on constrained graphs, and
overview two algorithms for the mentioned problems.

1 Introduction

Graph-based models have been widely used in several contexts as an intuitive and
yet formal way of representing several kinds of data, like, e.g., web documents,
chemical compounds, process models, behavioral patterns. Graph structures can
be exploited both for representing a given application domain, and for modelling
relationships between the involved objects, by means of constraints over the un-
derlying graph structure. In this perspective, constrained graphs are a powerful
means for representing many classes of applications requiring complex modelling
structures, and can profitably support reasoning and mining tasks.

As an example, constrained graphs are used in the modelling of workflow
processes. In Workflow Management Systems, the structure of a process is com-
monly represented by a control graph, where nodes correspond to the involved
tasks while edges represent the potential flow of work, i.e., the precedence rela-
tionships defined among the tasks. An example constrained (control flow) graph
is shown in Figure 1, for modelling a toy (OrderManagement) process for han-
dling customers’ orders. Several constraints can be specified over the control
graph, expressing, e.g., conditions for the occurrence of some nodes in the graph
in any execution. For example, some constraints in figure are the following: (i)
exactly one of the outgoing edges of node b must appear in any (execution) in-
stance including b, and (ii) if node l occurs in an instance, both its incoming
edges must appear as well in the same instance.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 155–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

156 G. Greco et al.

authenticate

client

check

stock

ask

suppliers

validate

order plan

decline

order

accept

order

fidelity

discount

fast

dispatch

prepare

bill

a

b

c

f

i

d

g

h

l

m

o

n

client

reliability

receive

order
AND

XOR

XOR

XOR

XOR

AND

OR
OR

OR

register

client

XOR

OR

OR

XOR

Fig. 1. Control flow graph for OrderManagement process

Thus, constraint graphs model the behavior of generic processes, whose ex-
ecutions can be traced and stored into database structures. In this context, a
challenging research direction is the definition of both suitable pattern domains
and mining techniques for the underlying data. Formally, the problem of mining
constrained graphs can be formulated as follows. We are given a graph schema
WS (i.e., a graph in which both nodes and edges must satisfy some specified
constraints). An instance of a graph schema is any subgraph of WS which sat-
isfies the constraints. An example is the subgraph containing nodes a, c, b, i, g
and h in Figure 1. The subgraph describes the processing of an order which is
declined due to a failure in the validation of the order plan. Hence, for a given
pattern language L, a set of instances F and a boolean inductive query Q, we
aim at finding the inductive theory T h(F ,L, Q) = {p ∈ L|Q(F , p)}.

In this paper we describe two different pattern domains. A first case, formerly
studied in [13], raises when patterns are subgraphs of the instances. Here, induc-
tive queries can be used to formulate frequent pattern discovery problems. In
particular, one can be interested in finding the discriminant factors which char-
acterize a desired workflow configuration: essentially, this means finding frequent
patterns containing some given portions of the workflow schema (i.e., finding all
the patterns p satisfying Qf (F , p)∧Q1(F , p)∧ . . .∧Qn(F , p), where Qf (F , p) is
true if p is frequent w.r.t. F , and Qi(F , p) is true if p contains a given subgraph
gi). For example, one could be interested in knowing which activities, among the
ones described in Figure 1, are included within the frequent paths of execution
which also include node h (representing the rejection of an order). Consider, e.g.,
the following toy instances:

a
c

d
g

b
f

i
h a

c
d

g

b i
h

Mining Constrained Graphs: The Case of Workflow Systems 157

Notice that both instances are subgraphs of the schema shown in Figure 1, and
satisfy the constraints specified there. In addition, both the instances comply
with the requirement of containing node h. Now, the subgraph

a c d g h

frequently occurs in both instances, and is characterized by the co-occurrence of
activities c,d, g. Essentially, this means that in the modelled OrderManagement
process, the rejection of an order is often characterized by the lack of availability
of supplies. In a business intelligence perspective, this would require a better
strategy for managing the store.

The challenge in the exemplified pattern domain is the generation of the de-
sired patterns by a smart exploration of the search space, which benefits from
the presence of schema constraints.

Another interesting situation occurs when the schema WS is not known a
priori, although some instances are available and can be examined. In such a
case, inductive queries can be used to formulate and solve the mining problem
of inducing the schema. An example in this setting is the Process mining prob-
lem [12], where data collected during the enactment of a process is exploited to
reconstruct the structure of the process. In more detail, we are given a set F of
instances, and a language of patterns L, modelling graph schemata. A boolean
inductive query QP (F , p) is satisfied whenever p is a process model for F , i.e.,
whenever each instance in F is also an instance of the graph schema represented
by p. Again, many variants of the QP problem can be defined, by requiring, e.g.,
that p contains a given subgraph, or that satisfies a given constraint.

The main challenge here is devising efficient techniques to produce accurate
and yet intuitive process models. As a matter of fact, since many models, in
principle, could support a given set F of instances, a criterion could be devised
to single the ones with satisfactory modelling features. For example, it is reason-
able to require that, besides representing all the instances in F , the discovered
model has a limited description size and admits a minimal number of “spurious”
execution paths, which do not have any correspondence in F .

Objectives. In this paper, we elaborate the above described issues, by defining
a formal model for mining constrained graphs, and by illustrating some efficient
techniques for extracting patterns from graph-based data. In more detail, the
contribution of the paper can be summarized as follows. In section 2, we in-
troduce a formal framework for representing graph-based data, and classes of
constraints over such data. We discuss some complexity results in reasoning on
constrained graphs. Next, we state two mining problems, namely the mining of
constrained subgraphs in section 3, and the induction of graph-based models in
section 4. We discuss some approaches to the solution of the proposed mining
problems, and show that they can be effectively exploited to support reasoning
on constrained graphs. Throughout the paper, we exploit workflow management
as a relevant application context for constrained graphs, and show that the pro-
posed solutions suitably apply to the problem of workflow modelling.

158 G. Greco et al.

Related Work. Mining workflow pattern is emerging as a novel field of research,
promising interesting research issues and raising challenges in workflow appli-
cations. Since it is a pioneering study, techniques for workflow mining can be
preliminary compared with several approaches proposed to mine patterns for
structured or sequential data [2,14,3,25,24]. Moreover, they have also a strong
relation with mining of graph structured data, occurring in several practical
domains such as biology, chemistry and communication networking.

Many papers on graph mining have been proposed in the last years. A first
category of studies applies greedy search to find subgraph patterns [4,33]. These
approaches avoid the high complexity of the graph isomorphism problem, by
mining an incomplete set of characteristic subgraphs. Conversely, a complete
search for frequent subgraphs is guaranteed in WARMR, an ILP-based algo-
rithm proposed by Dehaspe and Toivonen [9]. They formulated the problem of
carcinogenesis prediction of chemical compounds with a set of grounded first or-
der predicates representing graphs and they resolved this problem by combining
ILP method with Apriori-like level wise search. Other approaches performing ei-
ther level-wise search or projection methods to mine a complete set of subgraphs
were proposed as well [17,19,31,32].

In principle, many of the above approaches could be used to mine constrained
graphs. However, the adaptation of the above mentioned methods to workflow
mining is a challenging task, and it results unpractical from both the expres-
siveness and the efficiency viewpoint. Indeed, generation of patterns with such
traditional approaches does not benefit from the exploitation of the executions’
constraints imposed by the workflow schema, such as precedences among activ-
ities, synchronization and parallel executions of activities (see, e.g, [18,29]).

In this setting, more sophisticated techniques have been successfully applied,
in order to derive formal graph models from graph instances. The first example
in the context of Workflow mining is in [1], where the main objective is the
induction of a directed graph model exhibiting a limited number of control flow
constructs.

Other more sophisticated approaches have been devised, relying, e.g., on the
notion of grammar inference [23,5,6,7], or Petri Nets [29,27,28,30,8]. Starting
from workflow logs, i.e., collections of linearized graph instances, the mentioned
approaches propose algorithms for inducing complex control flow constraints.
Further approaches have been devised in [15,16] and [26], where richer repre-
sentation languages are adopted to discover more complex graph structures. In
particular, the former approaches are devoted to the detection of redundancies in
the workflow model, while the latter discover hierarchically structured workflow
processes.

2 An Abstract Model for Constrained Graphs

A significant amount of research has been done in the specification of mecha-
nisms for modelling processes; in particular, several formalisms have been pro-
posed in the area of process modelling for software engineering (see, e.g. [10] for

Mining Constrained Graphs: The Case of Workflow Systems 159

an overview of different proposals). The most widely adopted formalism is the
control flow graph, in which a process is represented by a labelled directed graph
whose nodes correspond to the tasks to be performed, and whose arcs describe
the precedences among them. More specifically, the control flow graph of a pro-
cess P is a tuple CF(P) = 〈A, E, a0, F 〉, where A is a finite set of activities,
E ⊆ (A− F)× (A− {a0}) is a relation of precedences among activities, a0 ∈ A
is the starting activity, F ⊆ A is the set of final activities.

Any connected subgraph I = 〈AI , EI〉 of the control flow graph, such that
a0 ∈ AI and AI∩F �= ∅ is a potential instance of P . In order to model restrictions
on the possible instances, the description of a constrained graph is often enriched
with local and global constraints, which express further relationships among the
activities appearing in the control graph.

In particular, local constraints specify local properties of a given activity, with
respect to its adjacents. For instance, possible local constraints are that an ac-
tivity either can be executed only after all its predecessors are completed.

Most of the approaches proposed in the literature, even though with possibly
different syntaxes, assume that the local constraints can be expressed in terms of
three functions IN, OUTmin, and OUTmax assigning to each node a natural number
(A)→ N) as follows:

– ∀a ∈ A− {a0}, 0 < IN(a) ≤ InDegree(a);
– ∀a ∈ A− F , 0 < OUTmin(a) ≤ OUTmax(a) ≤ OutDegree(a);
– IN(a0) = 0, and ∀a ∈ F , OUTmin(a) = OUTmax(a) = 0.

where InDegree(a) = |{e = (b, a)}|,OutDegree(a) = |{e = (a, b)}| and e ∈ E.
As for the semantics, an activity a can start as soon as at least IN(a) of its

predecessor activities have been completed. Two typical cases are: (i) if IN(a) =
InDegree(a) then a is an and-join activity, for it can be executed only after all of
its predecessors are completed, and (ii) if IN(a) = 1 then a is an or-join activity,
for it can be executed as soon as one of its predecessors is completed. Once
finished, an activity a activates one non-empty subset of its outgoing arcs with
cardinality between OUTmin(a) and OUTmax(a). If OUTmax(a) = OutDegree(a)
then a is a full fork and if also OUTmin(a) = OUTmax(a) then a is a deterministic
fork (also known as ”and-split”), for it activates all of its successor activities.
Finally, if OUTmax(a) = 1 then a is an exclusive fork (also called xor-split in the
literature), for it activates exactly one of its outgoing arcs. Figure 1 shows an
example schema containing the above mentioned constraints.

Global constraints specify relationships among not necessarily connected ac-
tivities. Such constraints are richer in nature and their representation strongly
depends on the particular application domain of the modelled process. Thus,
they are often expressed using complex formalisms. Here, we assume that global
constraints are propositional formulas expressing relationships among the nodes
in A and edges in E. As an example, the constraint f → ¬m states that whenever
activity f occurs, activity m cannot occur. This constraint, referred to Figure 1,
has the intuitive meaning that fidelity discounts cannot be applied to new clients.

160 G. Greco et al.

For a generic process P , a workflow schema for P , denoted by WS(P), is a
tuple 〈CF(P), CL(P), CG(P)〉, where CF(P) is the control flow graph of P , and
CL(P) and CG(P) are sets of local and global constraints, respectively.

Given a subgraph I of CF(P) and a constraint c in CL(P) ∪ CG(P), we write
I |= c whenever I satisfies c in the associated semantics. Moreover, if I |= c for
all c in CL(P) ∪ CG(P) and contains both the starting activity a0 and a final
activity in F , then I is called an instance of WS(P), denoted by I |= WS(P).
When the process P is clear from the context, a workflow schema will be simply
denoted by WS = 〈CF , CL, CG〉.

Example 1. The following is an example instance of the workflow process WS
shown in Figure 1.

a
c

d
g

b
f

i

h

Notice how each node appearing within the instance satisfies the constraints
specified by WS. �

Checking whether a workflow schema admits a successful execution is in-
tractable.

Proposition 1 ([13]). Let WS = 〈CF , CL, CG〉 be a workflow schema. Then,
deciding whether there exists an instance I is NP-complete, but the problem
becomes P-complete if all nodes are full-forks. ��

The above proposition has a strong negative impact: we cannot statically
induce relevant properties of a workflow schema. This justifies the adoption
of data mining techniques, which in principle allow to dynamically induce the
desired properties from the instances resulting from past executions. Precisely,
we assume that each instance is properly stored by the workflow management
system in the log file, which can be seen as a set F = {I1, ..., In} such that
WS |= Ii, for each 1 ≤ i ≤ n. In the following, we denote by I(WS) the set of
all the instances of a given workflow WS.

Deciding whether a subgraph is an instance of WS is tractable although de-
ciding the existence of an instance (i.e., whether I(WS) �= ∅) is not because of
Proposition 1.

Proposition 2 ([13]). Let WS = 〈CF , CL, CG〉 be a workflow schema and I be
a subgraph of CF . Then, deciding whether I is an instance of WS can be done
in polynomial time in the size of E. ��

Usually, logs are stored by means of traces. A workflow trace s over A is a
string in A∗, representing an instance . Given a trace s, we denote by s[i] the i-th
task in the corresponding sequence, and by lenght(s) the length of s. The set of

Mining Constrained Graphs: The Case of Workflow Systems 161

all the tasks in s is denoted by tasks(s) =
⋃

1≤i≤lenght(s) s[i]. Hence, a workflow
log for WS(P), denoted by LP , is a multiset of traces: LP = [s | s ∈ A∗].

Let s be a trace in LP , WS be a workflow schema, and I = 〈AI , EI〉 be an
instance of WS. Then, s is compliant with WS through I, denoted byWS |=I s,
if s is a topological sort of I, i.e., s is an ordering of the activities in AI s.t. for
each (a, b) ∈ EI , i < j where s[i] = a and s[j] = b. Moreover, s is compliant with
WS, denoted by WS |= s, if there exists I with WS |=I s. Finally, a weaker
notion of compliance, which does not rely on the existence of an instance I, can
be defined as WS * s. The latter holds whenever the order of appearance of the
activities in s is compatible with the constraints specified in WS.

Example 2. The following table reports example log traces for the process WS
shown in Figure 1.

s1 : acdbfgih s5 : abicglmn s9 : abficgln s13 : abcidglmn

s2 : abficdgh s6 : acbiglon s10 : acgbfilon s14 : acdbiglmn

s3 : acgbfih s7 : acbgilomn s11 : abcfdigln s15 : abcdgilmn

s4 : abcgiln s8 : abcfgilon s12 : acdbfigln s16 : acbidgln

By considering the instance I of example 1, we can observe that WS |=I s1.
�

Proposition 3. Let WS = 〈CF , CL, CG〉 be a workflow schema and s be a trace
of CF . Then, deciding whether WS |= s is NP-complete, but deciding whether
WS * s and, given an instance I, whether WS |=I s can be done in polynomial
time in the size of E.

Proof. We first show that deciding whether WS |= s is NP-complete. Mem-
bership in NP is trivial. For the hardness, recall that, given a Boolean formula
Φ over variables X1, ..., Xm the problem of deciding whether Φ is satisfiable is
NP-complete. W.l.o.g. assume Φ to be in conjunctive normal form. Then, we
define a workflow schema WS(Φ) = 〈CF , CL, CG〉, where CF = 〈A, E, ao, {Sat}〉,
such that A consists of an initial activity a0, of the activities Xi, TXi, FXi, Bi

for each 0 < i ≤ m, of the activities Cj for each distinct clause j of Φ, and the
activity B, and of a final state Sat . The set of local constraints CL and depen-
dencies in E is defined as follows. Let IN(Sat) = n (where n is the number of
clauses contained in Φ), and IN(a) = 1 for any other activity a �= a0. Moreover:

– For each Xi, (Xi, TXi), (Xi, FXi), (Bi, TXi), (Bi, FXi), (TXi, B), and
(FXi, B) are in E, with constraints OUTmin(Xi) = OUTmax(Xi) = 1 and
OUTmin(Bi) = OUTmax(Bi) = 1. Thus, each time either the activity Xi or Bi

is executed, it is required to make a choice between its possible successors;
note that in our encoding, TXi means that Xi is true, while FXi means that
Xi is false. Finally the arcs (a0, Xi) and (ao, Bi) are in E, and constraints
OUTmin(a) = OUTmax(a) = m + m are added.

162 G. Greco et al.

– For each Cj , we have that (Cj ,Sat) is in E, with constraints OUTmin(Sat) =
OUTmax(Sat) = 1. Moreover, we have (TXi, Cj) ∈ E in the case Xj appears
in the clause Cj , while we have (FXi, Cj) ∈ E in the case Xi appears negated
in the clause Cj . Finally, for each node a ∈ {TXi, FXi}, OUTmin(a) = 1 and
OUTmax(a) = OutDegree(a)− 1.

Global constraints in CG are defined as follows. For each pair of activities of
the form Xi and Bi, there is a constraint stating that the arc (Bi, TXi) (resp.
(Bi, FXi)) cannot occur in the same execution with the arc (Xi, TXi) (resp.
(Xi, FXi)). Moreover, for each activity of the form Xi, there is a constraint
stating that arcs of the form (TXi, Cj) (resp. (FXi, Cj)) cannot occur in the
same execution with arcs (TXi, B) (resp. (FXi, B)); finally, for each activity Xi,
there is a constraint stating that an arc of the form (Bi, TXi) (resp. (Bi, FXi))
implies the activation of the arc (TXi, B) (resp. (FXi, B)).

Consider now a trace s(Φ) = a0B1, ..., BmX1...XmBC1...CmSat . Then, it is
easy to see that WS |= s if and only if Φ is satisfiable.

To conclude the proof observe that (1) in order to decide whetherWS * s it is
sufficient to tests the topological relationships locally induced by s, and that (2)
in order to decide whether WS |=I s it is sufficient to simulate the enactment
of I. Both the above tasks are feasible in polynomial time. ��

3 Mining Frequent Patterns

In this section we address the problem of mining connected frequent patterns
(i.e., subgraphs) in workflow instances. Let us assume that a workflow schema
WS = 〈CF , CL, CG〉 and a multiset of instances F = {I1, ..., In} are given. A
graph p = 〈Ap, Ep〉 ⊆ CF is a F-pattern (cf. F |= p) if there exists I = 〈AI , EI〉 ∈
F such that Ap ⊆ AI and p is the subgraph of I induced by the nodes in Ap. In
the case F = I(WS), the subgraph is simply said to be a pattern.

Let supp(p) = |{I ∈ F|I |= p}|/|F|, be the support of a F -pattern p. Then,
given a real number σ, we consider the following problem:

FCPD(σ): Frequent Connected Pattern Discovery, i.e., finding all the connected
patterns whose support is greater than σ.

A naive algorithm for mining frequent patterns can generate directly connected
subgraphs, and then test in polynomial time whether it is indeed an instance of
WS. A different approach is based on the idea of reducing the number of patterns
to generate. To achieve this aim, we can only consider connected subgraphs p
which are “closed” w.r.t. local and global constraints, i.e., such that p |= c for all
c ∈ CL ∪ CG. We shall denote such graphs weak patterns, or simply w -patterns.

Example 3. Let us consider the workflow graph of Figure 1, and the following
subgraphs.

Mining Constrained Graphs: The Case of Workflow Systems 163

a c

p1

a

b

c

p2

l

p3

g

i l

p4

p1 and p3 are not w -pattern: indeed, a is a deterministic fork (thus triggering the
occurrence of node b), whereas l is an and-join (thus triggering the occurrence
of both i and g). Notice that both p2 and p4 are instead w -patterns, since each
constraint involving the contained nodes is satisfied. �

The following proposition characterizes the complexity of recognition for the
three notions of pattern; in particular, it states that testing whether a graph is
a w -pattern can be done very efficiently in deterministic logarithmic space on
the size of the graph WS.

Proposition 4 ([13]). Let p ⊆ CF . Then

1. deciding whether p is a pattern is NP-complete.
2. given a multiset F of instances, deciding whether p is an F-pattern or

whether p is a w-pattern is computable in polynomial time in the size of
F . ��

It turns out that the notion of weak pattern is the most appropriate from the
computational point of view. Moreover, working with w -patterns rather than
F -patterns is not an actual limitation, since each frequent F -pattern is bounded
by w -patterns, as the following result states.

Lemma 1. Let p be a frequent F -pattern. Then i) there exist a frequent w -
pattern p′ such p ⊆ p′, and ii) each weak pattern p′ ⊆ p is a frequent F -pattern.

��

We stress that a weak pattern is not necessarily an F -pattern nor even a
pattern. We shall use weak patterns to optimize the search space. The algorithm
exploited uses a levelwise theory. Roughly speaking, we incrementally construct
frequent weak patterns, by starting from frequent “elementary” weak patterns
(defined below), and by extending each frequent weak pattern using two basic
operations: adding a frequent arc and merging with another frequent elementary
weak pattern. The correctness follows from the results of Proposition 1, and from
the observation that the space of all connected weak patterns constitutes a lower
semi-lattice, with a particular precedence relation ≺, defined next.

The elementary weak patterns, from which we start the construction of fre-
quent patterns, are obtained as the deterministic closure of single nodes. A pat-
tern is an elementary w -pattern (cf. ew -pattern) for a node a if it is the minimal
(w.r.t. set inclusion) w -pattern containing a. The set of all ew -patterns is de-
noted by EW. Moreover, let p be a weak pattern, then EWp denotes the set of the

164 G. Greco et al.

elementary weak patterns contained in p. Note that given an ew -pattern e, EWe

is not necessarily a singleton, for it may contain other ew -patterns. Moreover,
given a set E′ ⊆ EW, Compl(E′) = EW −

⋃
e∈E′ EWe contains all the elemen-

tary patterns which are neither in E′ nor contained in some element of E′.
We now introduce a precedence relation ≺ among connected weak patterns.

First of all, let us denote by E⊆ the subset of arcs in WS whose source is not
a deterministic fork, i.e., E⊆ = {(a, b) ∈ E | OUTmin(a) < OutDegree(a)}. Given
two connected w -patterns, say p = 〈Ap, Ep〉 and p′ = 〈Ap′ , Ep′〉, p ≺ p′ if and
only if:

a) Ap = Ap′ and Ep′ = Ep ∪ {(a, b)}, where (a, b) ∈ E⊆−Ep and OUTmax(a) >
OutDegreep(a) (i.e., p′ can be obtained from p by adding an arc), or

b) there exists p′′ ∈ Compl(EWp) such that p′ = p∪ p′′ ∪X , where X is either
empty if p and p′′ are connected or contains exactly an edge in E⊆ with
endpoints in p and p′′ (i.e., p′ is obtained from p by adding an elementary
weak pattern and possibly a connecting arc).

Note that ⊥≺ e, for each e ∈ EW.

Example 4. With reference to the workflow graph of Figure 1, let us consider
the subgraphs shown below:

g
p1

h
p2

g
i l

p3

g
i l

h
p4

The subgraphs p1, p2 and p3 are elementary patterns: indeed, p1 is the deter-
ministic closure of g and p2 is the deterministic closure of h, whereas p3 can be
obtained from l. Also, notice that p1 ⊂ p3. p4 is not an elementary pattern, as no
node can generate it. Notice that p2 ≺ p4 and p3 ≺ p4, since p4 = p2∪p3∪{(g, h)}.

�

It can be shown that all the connected weak patterns of a given workflow
schema can be constructed by means of a chain over the ≺ relation. As a con-
sequence, it turns out that the space of all connected weak patterns is a lower
semi-lattice w.r.t. the precedence relation ≺. The algorithm w-find, reported in
Figure 2, exploits an apriori-like exploration of this lower semi-lattice.

At each stage, the computation of Lk+1 (steps 5-14) is carried out by extending
any pattern p generated at the previous stage (p ∈ Lk), in two ways: by adding
frequent edges in E⊆ (addFrequentArc function); or by adding an elementary
weak patterns (addEWFrequentPattern function).

4 Mining Process Models

In this section we address the problem of inducing a model for a given process,
based on data related to past executions. Let us assume that a workflow log

Mining Constrained Graphs: The Case of Workflow Systems 165

Input: A workflow Graph WS, a set F = {I1, . . . , IN} of instances of WS.
Output: A set of frequent F-patterns.
Method: Perform the following steps:

1 L0 := {e|e ∈ EW , e is frequent w.r.t. F};
2 k := 0, R := L0;
3 FrequentArcs := {(a, b)|(a, b) ∈ E⊆, 〈{a, b}, {(a, b)}〉 is frequent w.r.t. F};
4 E⊆

f := E⊆ ∩ FrequentArcs;

5 repeat
6 U := ∅;
7 forall p ∈ Lk do begin
8 U := U ∪ addFrequentArc(p);
9 forall e ∈ Compl(EW p) ∩ L0 do
10 U := U ∪ addFrequentEWPattern(p, e);
11 end
12 Lk+1 := {p|p ∈ U, p is frequent w.r.t. F};
13 R := R ∪ Lk+1;
14 until Lk+1 = ∅;
15 return R;

Function addFrequentEWPattern(p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;
p′ := 〈Ap ∪ Ae, Ep ∪ Ee〉;
if p′ is connected , then return p′ else return addFrequentConnection(p′, p, e);

Function addFrequentConnection(p′ = 〈Ap′ , Ep′ 〉, p = 〈Ap, Ep〉, e = 〈Ae, Ee〉): w-pattern;

S := ∅
forall frequent (a, b) ∈ E⊆

f − Ep s.t. (a ∈ Ap, b ∈ Ae) ∨ (a ∈ Ae, b ∈ Ap) do begin

q := Ap′ , Ep′ ∪ (a, b) ;
if WS |= q then S := S ∪ {q};

end
return S

Function addFrequentArc(p = 〈Ap, Ep〉): pattern;
S := ∅
forall frequent (a, b) ∈ E⊆

f − Ep s.t. a ∈ Ap, b ∈ Ap do begin

p′ := 〈Ap, Ep ∪ (a, b)〉
if WS |= p′ then S := S ∪ {p′};

end
return S

Fig. 2. Algorithm w-find(F ,WS)

LP is given for a process P . In general, a process mining task consists in dis-
covering a workflow schema WS(P), expressed through a suitable constrained
graph, which describes the traces in LP . We are interested in devising a general
approach which is independent of the particular syntax adopted for representing
the global constraints. The solution we propose consists in discovering a set of
alternative schemata having no global constraints, but collectively modelling the
different behavioral patterns, instead of a single schema with global constraints
explicitly expressed. To this purpose, we introduce the notion of disjunctive
workflow schema.

A disjunctive workflow schema for a given process P , denoted by WS∨(P),
is a set {WS1, ...,WSm} of workflow schemata for P , with WSj = 〈CFj , Cj

L, ∅〉,
for 1 ≤ j ≤ m. The size of WS∨(P), denoted by |WS∨(P)|, is the number of
workflow schemata it contains. An instance of any WSj is also an instance of
WS∨, denoted by WS∨ |= I. Moreover, a trace s which is compliant with any
WSj is also compliant with WS∨, denoted by WS∨ |= s.

Hence, givenLP , we aim at discovering a disjunctive schemaWS∨ as “close” as
possible to the actual unknown schemaWS(P) that generated the log, according
to the following soundness and completeness notions. We define soundness of

166 G. Greco et al.

WS∨ w.r.t. LP , the percentage of instances having corresponding traces in the
log, i.e.,

soundness(WS∨,LP) =
|{I | WS∨ |= I ∧ ∃s ∈ LP s.t. WS∨ |=I s}|

|{I | WS∨ |= I}|

The completeness of WS∨ w.r.t. LP , is instead the percentage of traces that are
compliant with some trace in the log, ie.,

completeness(WS∨,LP) =
|{s | s ∈ LP ∧WS∨ * s}|

|{s | s ∈ LP }|

Thus, given two real numbers, namely α and σ, between 0 and 1, we say an in-
duced schema WS∨ is α-sound w.r.t. LP , if soundness(WS∨,LP) ≤ α, whereas
WS∨ is σ-complete w.r.t. LP , if completeness(WS∨,LP) ≥ σ.

Notice that, for any value of α and σ, there always exists a trivial α-sound
and σ-complete disjunctive schema WS∨, consisting in the union of exactly one
workflow (without global constraints) modelling each of the instances in LP .
However, such model is not a syntectic view of the process P , for its size being
|WS∨| = |LP |. We thus introduce a bound on the size of WS∨.

Then, given a workflow log LP for the process P , a real number σ and a
natural number m, we consider the following problem:

MPD(P, σ, m): Maximal Process Discovery, i.e., find a σ-complete disjunctive
workflow schema WS∨, s.t. |WS∨| ≤ m and soundness(WS∨,LP) is maxi-
mal.

Proposition 5 ([11]). MPD(P ,σ,m) is an NP-complete optimization problem
whose set of feasible solutions is not empty. ��

Due to the above intractability result, the MPD problem is tackled with a
greedy approach: in practice, we consider the variant PD problem, which con-
sists in finding a σ-complete disjunctive schema with |WS∨| ≤ m, which is as
sound as possible (i.e., a local optimum). In the rest of the section, we propose
an efficient approach for solving the PD problem. The approach mainly relies
on performing an iterative partitioning of the traces in the log, in order to find
clusters of executions with a similar and unexpected (w.r.t. the local properties)
behavior. Starting with a preliminary schema, which only accounts for the de-
pendencies among the activities of P , the model is iteratively and incrementally
refined by computing a specific workflow schema for each new cluster of traces.
The schemata so obtained constitute a disjunctive workflow schema, which in-
creases its soundness at each refinement step, still preserving its completeness.
The algorithm exploits a “flat”, relational representation of the traces obtained
by projecting the instances on a suitable set of properly defined features.

The approach is encoded in the algorithm ProcessDiscover, shown in Fig-
ure 3, which computes a disjunctive schema WS∨, taking as input a log L and
three thresholds m, σ and maxFeatures (which is an upper bound to the number
of features that can be induced at each refinement step).

Mining Constrained Graphs: The Case of Workflow Systems 167

Input: A log LP , a real number σ, two natural numbers m and mF
Output: A disjunctive workflow schema WS∨ (a solution of PD(P ,σ,m)
Method: Perform the following steps:

1 CFσ(WS1
0) :=minePrecedences(Lp);

2 let WS1
0 be a schema, with L(WS1

0) = LP ;
3 mineLocalConstraints(WS1

0);
3 WS∨ := WS1

0; //Start clustering with the dependency graph only
4 while |WS∨| < m do

5 WSj
i :=leastSound(WS∨);

6 WS∨ := WS∨ − {WSj
i};

7 refineWorkflow(i,j);
8 end while
9 return WS∨;

Procedure refineWorkflow(i: step, j: schema);

1 F :=identifyRelevantFeatures(L(WSj
i), σ, mF, CFσ);

2 R(WSj
i) :=project(L(WSj

i),F);
3 k := |F|;
4 if k > 1 then

5 j := max{j | WSj
i+1 ∈ WS∨};

6 〈WSj+1
i+1 , ...,WSj+k

i+1 〉 := k -means(R(WSj
i));

7 for each WSh
i+1 do

8 WS∨ = WS∨ ∪ {WSh
i+1};

9 CFσ(WSh
i+1) :=minePrecedences(L(WSh

i+1));

10 mineLocalConstraints(WSh
i+1);

11 end for
12 else //Leaf of the tree

13 WS∨ = WS∨ ∪ {WSj
i};

14 end if ;
Function identifyRelevantFeatures(L: log, σ: threshold, mF : max nr. of features, CFσ : control flow graph):

a set of minimal discriminant rules
1 L2 := {[ab] | (a, b) ∈ Eσ};
2 k := 1, R := L2, F := ∅;
3 repeat
4 M := ∅; k := k + 1;
5 forall [ai...aj] ∈ Lk do
6 forall [ajb] ∈ L2 do
7 if [ai+1...aj] 	���σ b is not in F then
8 M := M ∪ [ai...ajb];
9 end for
10 forall p ∈ M of the form [ai...ajb] do
11 if p is σ-frequent in L then Lk+1 := {p};
12 else F := F ∪ {[ai...aj] 	���σ b};
14 F := {[ai...aj] 	���σ b};
15 end if
13 end for
14 R := R ∪ Lk+1;
15 until Lk+1 = ∅;
16 return mostDiscriminant(F ,mF);

Function mostDiscriminantFeatures(F : set of discriminant rules, mF : max nr. of features): set of discriminant
rules;

1 S′ := L; F ′ := ∅;
2 do
3 let φ = argmaxφ′∈F |w(φ′, S′)|;
4 F ′ := F ′ ∪ {φ};
5 S′ := S′ − w(φ, S′);
6 while (|S′|/|LP | > σ) and (F ′ < mF);
7 return F ′;

Fig. 3. Algorithm ProcessDiscover

Notice that for the preliminary schema a control flow graph CFσ, expressing a
minimal set of precedences with at least a given support σ, is computed through
the procedure minePrecedences [1,28]. Each workflow schema WSj

i , eventually
inserted in WS∨, is identified by the number i of refinements needed, and an

168 G. Greco et al.

index j distinguishing the schemata at the same refinement level. Moreover, we
denote by L(WSj

i) the set of traces in the cluster defined by WSj
i . Notice that

initially WS1
0, containing all the traces in LP , is put in WS∨, and in Step 3 we

refine the model by mining some local constraints, too.
At each step, function refineWorkflow is applied to a schema WSj

i ∈ WS∨,
chosen according a greedy heuristic: WSj

i is the least sound schemata among
the ones already discovered.

The function splits the traces of WSj
i into k clusters, which are assigned to

k distinct new schemata, WSj+1
i+1 , ...,WSj+k

i+1 (where j is the maximum index of
the schemata in WS∨ with level i + 1), which are put in WS∨. For each schema
a control flow graph and a set of local constraints are derived, which suitably
model the associated traces.

The algorithm ProcessDiscover converges in at most m steps, and exhibits
the following interesting property.

Lemma 2. Given a disjunctive schema WS∨, with WSj
i ∈ WS∨, the

disjunctive workflow schema WS∨
+, obtained by refining WSj

i through
refineWorkflow(i,j), is such that soundness(WS∨

+) ≥ soundness(WS∨). ��

The clustering of the log traces strongly relies on the procedures identifyRele-
vantFeatures and project. The former finds a set F of relevant features [21,20,22],
whereas the latter projects the traces into a vectorial space whose components
are, in fact, the mined features.

We formalize the key concept of relevant feature through the notion of discrim-
inant rule. Let L be a set of traces, CFσ be a mined control flow, for threshold σ,
and Eσ be the edge set of CFσ. Then a sequence [a1...ah] of tasks is σ-frequent
in L if |{s ∈ L | a1 = s[i1], ..., ah = s[ih] ∧ i1 < ... < ih}|/|L| ≥ σ. We say
that [a1...ah] σ-precedes a in L, denoted by [a1...ah] →σ a, if both [a1...ah] and
[a1...aha] are σ-frequent in L.

A discriminant rule (feature) φ is an expression of the form [a1...ah] ����σ a,
s.t. (i) [a1...ah] is σ-frequent in L, (ii) (ah, a) ∈ Eσ, and (iii) [a1...ah]→σ a does
not hold. Moreover, φ is minimal if (iv) there is no b, s.t. [a1...ah] ����σ b and
[b]→σ a, and (v) there is no j, s.t. j > 1 and [aj...ah] ����σ a.

Example 5. In process OrderManagament, [fil] ����.3 m is a minimal discrimi-
nant rule, prescribing that fidelity discounts are never applied for new clients.
Notice that [dgl] ����.3 o is a minimal discriminant rule as well. �

Again, the identification of the set F of discriminant rules can be carried out
by a level-wise algorithm, as described in Figure 3.

The algorithm selects an optimal subset of features, with cardinality less or
equal to maxFeatures, by exploiting the mostDiscriminantFeatures function,
which works as follows. Let φ be a discriminant rule of the form [ai, ..., aj] ����σ b,
then the witness of φ in L, denoted by w(φ,L), is the set of logs in which
the pattern [ai, ..., aj] occurs. Then, the set of the most discriminant feature

Mining Constrained Graphs: The Case of Workflow Systems 169

is computed through the heuristics of greedily selecting a feature φ covering
the maximum number of traces, among the ones (S′) not covered by previous
selections.

5 Conclusions

In this paper we have introduced the problem of mining constrained graphs,
with particular reference to the case of workflow systems. From an application
viewpoint, the analysis of such models of execution can help in providing facilities
for the human system administrator to monitor the actual behavior of many
process models.

The paper proposes two distinct mining problems, and an overview of suitable
solutions for such problems. In the context of inductive databases, the proposed
problems raise interesting challenges, since the pattern languages introduced are
worth even more complex mining tasks in which sophisticated constraints on
the mining results can be specified. For example, one could be interested which
discriminant factors characterize the failure or the success in the executions, or
which is the choice that more frequently had led to a desired final configuration
(e.g., to the acceptance of the order).

Interestingly, the techniques discussed in the previous sections are the adap-
tation of traditional learning techniques to a more structured domain in which
background knowledge is available, and can be exploited for a smarter explo-
ration of the search space. Indeed, frequent pattern discovery is essentially the
adaptation of the apriori algorithm [2] to the case of workflow systems. More-
over, the Process Mining problem can be seen as a special case of inductive logic
programming, in which the task is the mining of a set of consistent and com-
plete clauses modelling the positive cases, and the latter correspond to log traces.
Both the approaches presented in this paper have been extensively studied from
an experimental point of view in [13,12], thus demonstrating their effectiveness
w.r.t. traditional approaches which do not properly exploit the available domain
knowledge.

In this context, a challenging research direction is to extend the proposed
techniques in a full multirelational setting. Indeed, the proposed model is essen-
tially a propositional model, for it assumes a simplification of the constrained
graphs in which many real-life details are omitted. However, we believe that
the model can be easily updated to cope with more complex constraints, such
as time constraints, pre-conditions and post-conditions, and rules for exception
handling.

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In Proc. 6th Int. Conf. on Extending Database Technology (EDBT’98), pages
469–483, 1998.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
of the 20th Int’l Conference on Very Large Databases, pages 487–499, 1994.

170 G. Greco et al.

3. R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 11th Int. Conf.
on Data Engineering (ICDE95), pages 3–14, 1995.

4. D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description
Length and Background Knowledge. Journal of Artificial Intelligence Research,
1(1):231–255, 1994.

5. J.E. Cook and A.L. Wolf. Automating process discovery through event-data anal-
ysis. In Proc. 17th Int. Conf. on Software Engineering (ICSE’95), pages 73–82,
1995.

6. J.E. Cook and A.L. Wolf. Event-based detection of concurrency. In Proc. 6th Int.
Symposium on the Foundations of Software Engineering (FSE’98), pages 35–45,
1998.

7. J.E. Cook and A.L. Wolf. Software process validation: quantitatively measuring
the correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol.,
8(2):147–176, 1999.

8. A.K.A de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Wei-
jters. Process mining: Extending the a-algorithm to mine short loops. Technical
report, University of Technology, Eindhoven, 2004. BETA Working Paper Series,
WP 113.

9. L. Dehaspe and H. Toivonen. Discovery of Frequent DATALOG Patterns. Data
Mining and Knowledge Discovery, 3(1):7–36, 1999.

10. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of workflow manage-
ment: From process modeling to workflow automation infrastructure. Distributed
and Parallel Databases, 3(2):119–153, 1995.

11. G.Greco, A.Guzzo, G.Manco, and D. Saccà. Mining frequent instances on work-
flows. In Proc. 7th Pacific-Asia Conference (PAKDD’03), pages 209–221, 2003.

12. G.Greco, A.Guzzo, L.Pontieri, and D. Saccà. Mining expressive process models
by clustering workflow traces. In Proc. 8th Pacific-Asia Conference (PAKDD’04),
pages 52–62, 2004.

13. G. Greco, A. Guzzo, G. Manco, and D. Saccà. Mining and reasoning on workflows.
IEEE Trans. on Data and Knowledge Eng., 17(4):519–534, 2005.

14. J. Han, J. Pei, and Y. Yi. Mining frequent patterns without candidate generation.
In Proc. Int. ACM Conf. on Management of Data (SIGMOD’00), pages 1–12, 2000.

15. J. Herbst. Dealing with concurrency in work?ow induction. In Procs. European
Concurrent Engineering Conference, 2000.

16. J. Herbst and D. Karagiannis. Integrating machine learning and workflow man-
agement to support acquisition and adaptation of workflow models. Journal of
Intelligent Systems in Accounting, Finance and Management, 9:67–92, 2000.

17. A. Inokuchi, T. Washi, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proc. 4th European Conf. on Principles
of Data Mining and Knowledge Discovery, pages 13–23, 2000.

18. P. Koksal, S.N. Arpinar, and A. Dogac. Workflow history management. SIGMOD
Recod, 27(1):67–75, 1998.

19. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc. IEEE Int.
Conf. on Data Mining (ICDM’01), pages 313–320, 2001.

20. H. Motoda and H. Liu. Data reduction: feature selection. Handbook of data mining
and knowledge discovery, pages 208–213, 2002.

21. N.Lesh, M.J. Zaki, and M.Ogihara. Mining features for sequence classification.
In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(KDD’00), pages 342–346, 1999.

Mining Constrained Graphs: The Case of Workflow Systems 171

22. B. Padmanabhan and A. Tuzhilin. Small is beautiful: discovering the minimal
set of unexpected patterns. In Proc. 6th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD’00), pages 54–63, 2000.

23. R. Parekh and V. Honavar. Grammar Inference, Automata Induction and Lan-
guage Acquisition. In Handbook of Natural Language Processing. Marcel Dekker,
2000.

24. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-Mine: Hyper-structure
mining of frequent patterns in large databases. In Proc. IEEE Int. Conf. on Data
Mining (ICDM’01), pages 441–448, 2001.

25. J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. Pre-
fixspan: Mining sequential patterns by prefix-projected growth. In Proc. IEEE Int.
Conf. on Data Engineering (ICDE’2001), pages 215–224, 2001.

26. Guido Schimm. Mining most specific workflow models from event-based data.
Business Process Management, pages 25–40, 2003.

27. W.M.P. van der Aalst and B.F. van Dongen. Discovering workflow performance
models from timed logs. In Proc. Int. Conf. on Engineering and Deployment of
Cooperative Information Systems (EDCIS 2002), pages 45–63, 2002.

28. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G.Schimm, and
A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

29. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, 2002.

30. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow mining:
Discovering process models from event logs. IEEE Transactions on Knowledge
and Data Engineering (TKDE). To appear.

31. X. Yan and J. Han. gSpan: Graph-based substructure pattern pining. In Proc.
IEEE Int. Conf. on Data Mining (ICDM’02), 2001. An extended version appeared
as UIUC-CS Tech. Report: R-2002-2296.

32. X. Yan and J. Han. CloseGraph: Mining closed frequent graph patterns. In Proc.
ACM Int. Conf. on Knowledge Discovery and Data Mining (KDD’03), pages 286–
295, 2003.

33. K. Yoshida, H. Motoda, and N. Indurkhya. Graph- based induction as a unified
learning framework. Journal of Applied Intel., 4:297–328, 1994.

CrossMine: Efficient Classification Across

Multiple Database Relations�

Xiaoxin Yin1, Jiawei Han1, Jiong Yang1, and Philip S. Yu2

1 University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
{xyin1, hanj, jioyang}@uiuc.edu

2 IBM T.J. Watson Research Center, Yorktown Heights, N.Y. 10598, USA
psyu@us.ibm.com

Abstract. Most of today’s structured data is stored in relational data-
bases. Such a database consists of multiple relations that are linked
together conceptually via entity-relationship links in the design of re-
lational database schemas. Multi-relational classification can be widely
used in many disciplines including financial decision making and medi-
cal research. However, most classification approaches only work on single
“flat” data relations. It is usually difficult to convert multiple relations
into a single flat relation without either introducing huge “universal re-
lation” or losing essential information. Previous works using Inductive
Logic Programming approaches (recently also known as Relational Min-
ing) have proven effective with high accuracy in multi-relational clas-
sification. Unfortunately, they fail to achieve high scalability w.r.t. the
number of relations in databases because they repeatedly join different
relations to search for good literals.

In this paper we propose CrossMine, an efficient and scalable approach
for multi-relational classification. CrossMine employs tuple ID propaga-
tion, a novel method for virtually joining relations, which enables flex-
ible and efficient search among multiple relations. CrossMine also uses
aggregated information to provide essential statistics for classification. A
selective sampling method is used to achieve high scalability w.r.t. the
number of tuples in the databases. Our comprehensive experiments on
both real and synthetic databases demonstrate the high scalability and
accuracy of CrossMine.

1 Introduction

Relational databases are the most popular format for structured data, and is
thus the richest source of knowledge in the world. There are many real world
applications involving decision making process based on information stored in
relational databases, such as credit card fraud detection and loan application.

� The work was supported in part by National Science Foundation under Grants IIS-
02-09199/IIS-03-08215, and an IBM Faculty Award. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 172–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

CrossMine: Efficient Classification Across Multiple Database Relations 173

Approaches that can perform in-depth analysis on relational data is of crucial
importance in such applications. Therefore, multi-relational data mining has
become a field with strategic importance.

There have been many important approaches for classification, such as neural
networks [11] and support vector machines [6]. They can only be applied to
data represented in single, “flat” relations. Multiple relations in a database are
usually connected via semantic links such as entity-relationship links of an ER
model used in the database design [8]. Data stored in the same relation often
have closer semantic relationship than those reachable via remote links. It is
counter-productive to simply “convert” multi-relational data into a single flat
data relation because such conversion may lead to the generation of a huge
universal relation [8] but lose some essential semantic information carried by the
semantic links in the database design.

Inductive Logic Programming (ILP) [12,10] is the most widely used category
of approaches to multi-relational classification. There are many ILP approaches
[1,3,4,5,13,14,15,18], which use very different philosophies in identifying hypothe-
ses that fit the background knowledge. The ILP approaches achieve good classi-
fication accuracy. Unfortunately, most of them are not highly scalable w.r.t. the
number of relations and the number of attributes in databases, thus are usually
inefficient for databases with complex schemas.

In a database for multi-relational classification, there is one target relation
Rt, whose tuples are called target tuples. Each target tuple is associated with
a class label. To build a good multi-relational classifier, one needs to find good
literals in each non-target relation R that help distinguish positive and negative
target tuples. The target relation can usually join with every non-target relation
via multiple join paths. Thus in a database with reasonably complex schema,
there are a large number of join paths that need to be explored, each leading
to dozens of literals in a certain relation. In order to identify the best literals
and construct good clauses, many ILP approaches repeatedly join the relations
along different join paths and evaluate literals based on the joined relation. This
is very time consuming, especially when the joined relation contains much more
tuples than the target one.

There are two major challenges in multi-relational classification: one is ef-
ficiency and scalability, and the other is the accuracy of classification. When
building a classifier for a database with many relations, the search space is usu-
ally very large, and it is unaffordable to perform exhaustive search. On the other
hand, the semantic linkages usually become very weak after passing through a
long chain of links. Therefore, a multi-relational classifier needs to handle both
efficiency and accuracy problems.

In this paper we propose CrossMine, a scalable and accurate approach for
multi-relational classification. Its basic idea is to propagate the tuple IDs (to-
gether with their associated class labels) from the target relation to other rela-
tions. In the relation to which the IDs are propagated, each tuple t is associated
with a set of IDs, which represent the target tuples that are joinable with t.
Tuple ID propagation is a convenient and flexible method for virtually joining

174 X. Yin et al.

different relations, with as low cost as possible. Tuple IDs can be easily prop-
agated between any two relations, which enables CrossMine to search freely in
multiple relations for good literals and clauses. CrossMine obtains high efficiency
and scalability by tuple ID propagation.

CrossMine uses a sequential covering algorithm, which repeatedly constructs
clauses and removes positive examples covered by each clause. To construct a
clause, it repeatedly searches for the best literal and appends it to the current
clause. During the searching process, CrossMine limits the search space to re-
lations related to the target relation or related to relations used in the clause.
In this way the strong semantic links can be identified and the search process
is controlled in promising directions. On the other hand, the search space of
CrossMine is larger than typical ILP approaches. By using tuple ID propagation
and look-one-ahead, CrossMine considers literal sequences of length up to three
at a time. It achieves both high efficiency and high accuracy by controlling the
search space and identifying strong semantic links.

Unlike most previous approaches on multi-relational classification that only
use simple literals, CrossMine uses both simple literals and literals involving ag-
gregations on attribute values. For example, in the database of a CS department,
a student’s average grade or number of publications might be very important
features for judging the academic performance of a student. The aggregations
provide statistics about the target tuples, which often provide essential informa-
tion for classification.

In many sequential covering algorithms, the negative examples are never re-
moved in the clause building process, which makes the algorithm inefficient for
databases with large numbers of tuples. It is common that before building a
clause, there are much less positive examples than negative ones, which causes
the algorithm to spend a large amount of time to build low-quality clauses. To
address this issue, CrossMine employs a selective sampling method to reduce the
number of negative tuples when the numbers of positive and negative tuples are
unbalanced. This helps CrossMine achieve high scalability w.r.t. the number of
tuples in databases. Our experiments show that the sampling method decreases
the running time significantly but only slightly sacrifices the accuracy.

The remaining of the paper is organized as follows. In Section 2 we intro-
duce the related work. The problem definition is presented in Section 3. Section
4 introduces the idea of tuple ID propagation and its theoretical background.
We describe the algorithm and implementation issues in Section 5. Section 6
describes the negative tuple sampling technique. Experimental results are pre-
sented in Section 7. We made discussions in Section 8 and the study is concluded
in Section 9.

2 Related Work

The most important category of approaches in multi-relational classification is
ILP [12,10], which is defined as follows. Given background knowledge B, a set
of positive examples P , and a set of negative examples N , find a hypothesis H ,
which is a set of Horn clauses such that:

CrossMine: Efficient Classification Across Multiple Database Relations 175

– ∀p ∈ P : H ∪B |= p (completeness)
– ∀n ∈ N : H ∪B |�= n (consistency)

The well known ILP systems include FOIL [18], Golem [14], and Progol [13].
FOIL is a top-down learner, which builds clauses that cover many positive ex-
amples and few negative ones. Golem is a bottom-up learner, which performs
generalizations from the most specific clauses. Progol uses a combined search
strategy. Some recent approaches TILDE [3], Mr-SMOTI [1], and RPTs [15] use
the idea of C4.5 [17] and inductively construct decision trees from relational data.
These approaches are usually more efficient than traditional ILP approaches due
to the divide-and-conquer nature of decision tree algorithm.

Efficiency and scalability are two major issues in ILP. In [4] an approach
was proposed to handle data stored on disks. In [5] the authors proposed an
approach that can evaluate packs of queries which can be handled together.
This approach is similar to CrossMine because both of them can utilize common
prefix of different clauses. But CrossMine can propagate tuple IDs freely among
different relations, which is more convenient in building clauses.

Besides ILP, probabilistic approaches [19,16] are also popular for multi-
relational classification and modelling. Probabilistic relational models [19] is an
extension of Bayesian networks for handling relational data, which can integrate
the advantages of both logical and probabilistic approaches for knowledge rep-
resentation and reasoning. In [16] an approach is proposed to integrate ILP and
statistical modelling for document classification and retrieval.

We take FOIL as a typical example of ILP approaches and show its working
procedure. FOIL is a sequential covering algorithm that builds clauses one by
one. Each clause is built by repeatedly adding literal. At each step, every possible
literal is evaluated and the best one is appended to the current clause. To evaluate
a literal p, p needs to be appended to the current clause c to get a new clause c′.
Then it constructs a new dataset which contains all target tuples satisfying c′,
evaluates p based on the number of positive and negative target tuples satisfying
c′. For databases with complex schemas, the search space is huge and there are
many possible literals at each step. Thus FOIL needs to repeatedly construct
datasets by physical joins to find good literals, which is very time-consuming.
This is also verified by our experiments.

3 Preliminaries

3.1 Basic Definitions

A database D consists of a set of relations, one of which is the target relation Rt,
with class labels associated with its tuples. The other relations are non-target
relations. Each relation may have one primary key and several foreign keys. The
following types of joins are considered in CrossMine:

1. Join between a primary key k and some foreign key pointing to k.
2. Join between two foreign keys k1 and k2, which point to the same primary key

k. (For example, the join between Loan.account-id and Order.account-id.)

176 X. Yin et al.

date

frequency

district−id

Account

account−id

amount

operation

type

account−id

trans−id

Transaction

date

balance

symbol

issue−date

type

disp−id

card−id

Card

type

client−id

disp−id

account−id

Disposition

district−id

gender

client−id

Client

birthdate

District

#lt−2000

#lt−500

#people

region

district−id

name

unemploy95

avg−salary

ratio−urban

#city

#lt−10000

#gt−10000

#crime96

#crime95

unemploy96

den−enter
type

amount

to−account

to−bank

order−id

Order

account−id

payment

duration

amount

date

loan−id

Loan

account−id

Fig. 1. The financial database from PKDD CUP 99

We ignore other possible joins because they do not represent strong seman-
tic relationships between entities in the database. Figure 1 shows an example
database. Arrows go from primary-keys to corresponding foreign-keys. The tar-
get relation is Loan. Each target tuple is either positive or negative, indicating
whether the loan is paid on time.

CrossMine is a clause-based classifier on relational data. In general, each
clause consists of a list of literals and the predicted class. Each literal is ei-
ther a simple literal on the value of an attribute, or an aggregation literal on the
aggregated value of an attribute.

3.2 Literals

In general, a literal is a constraint on a certain attribute in a certain relation. For
example, literal “l1 = Loan(L, , , , >= 12,)” means that the duration of
loan L is no less than 12 months. In relational databases a literal is often defined
based on a certain join path. For example, “l2 = Loan(L, A, , , ,), Account
(A, , monthly,)” is defined on the join path Loan �� Account, which means
that the associated account of a loan has frequency “monthly”.

There are two types of attributes: categorical attributes and numerical at-
tributes. There are three types of literals:

1. Categorical literal: A categorical literal is defined on a categorical at-
tribute. It is a constraint that this attribute must take a certain value, such
as l2 in the above example.

CrossMine: Efficient Classification Across Multiple Database Relations 177

2. Numerical literal: A numerical literal is defined on a numerical attribute.
It contains a certain value and a comparison operator, such as l1, in the
above example.

3. Aggregation literal: An aggregation literal is similar to a numerical literal,
but is defined on the aggregated value of an attribute. It contains an aggre-
gation operator, a certain value, and a comparison operator. For example,
l3 = Loan(L, A, , , ,), Order(, A, , , sum(amount) >= 1000,) is
an aggregation literal, which requires the sum of amount of all orders related
to a loan is no less than 1000. The following aggregation operators can be
used: count, sum, avg.

3.3 Clauses

CrossMine is a clause-based classifier, which aims at finding clauses that dis-
tinguish positive examples from negative ones. Each clause contains a list of
literals, associated with a class label. To integrate the join path into the clauses,
CrossMine uses a form of clauses that is different from the traditional ILP ap-
proaches. Instead of using conventional literal, complex literal is used here as the
element of clauses. A complex literal l̂ contains two parts:

1. prop-path, i.e., propagation path, which indicates how to propagate IDs. For
example, “Loan.account id → Account.account id” indicates propagating
IDs from the Loan relation to the Account relation using the join condition
“Loan.account id = Account.account id”. 1

2. constraint: which indicates the constraint on the relation which the IDs are
propagated to. For example, “Account.frequency = monthly” indicates that
tuples in the Account relation should have value “monthly” on attribute
frequency. The constraint is actually a literal that is either categorical, nu-
merical, or involves aggregation.

A complex literal is usually equivalent to two conventional literals. For exam-
ple, the clause “Loan(L, +) :− Loan(L, A, , , ,), Account(A, , monthly,)”
can be represented by “Loan(+) :− [Loan.account id → Account.account id,
Account.frequency = monthly]”.

A clause contains a list of literals. A target tuple satisfies a clause if and only
if it satisfies every literal of the clause. To judge whether a target tuple t satisfies
a clause c, one needs to join t with tuples in other relations according to the join
path of c. We will introduce how to efficiently find out all target tuples satisfying
a clause later.

We use the database in Figure 2 as an illustrative example. Suppose clause c =
Loan(+) :− [Loan.account id → Account.account id, Account.frequency =
monthly]. We say a tuple t in Loan satisfies c if and only if any tuple in Account
that is joinable with t has value “monthly” in the attribute of frequency. In this
example, there are two tuples (with account-id 124 and 45) in Account that
satisfy the literal “Account(A, , monthly,)”. So there are four tuples (with
loan-id 1, 2, 4, and 5) in Loan that satisfy this clause.
1 The prop-path of a complex literal may be empty if we already have the right tuple

IDs on the relation to which the constraint is applied.

178 X. Yin et al.

Loan

loan-id account-id amount duration payment class

1 124 1000 12 120 +

2 124 4000 12 350 +

3 108 10000 24 500 −
4 45 12000 36 400 −
5 45 2000 24 90 +

Account

account-id frequency date

124 monthly 960227

108 weekly 950923

45 monthly 941209

67 weekly 950101

Fig. 2. A sample database (The last column of Loan relation contains class labels)

3.4 Evaluation of Literals and Clauses

To generate a clause, CrossMine starts at an empty clause, keeps selecting the
best literal and add it to the current clause. At each step, we need to evaluate
every literal and select the best one. Foil gain is used [18] to measure the goodness
of a literal.

Definition 1 (Foil gain). For a clause c, we use P (c) and N(c) to denote the
number of positive and negative examples satisfying c. Suppose the current clause
is c. We use c + l to denote the clause constructed by appending literal l to c.
The foil gain of literal l is defined as follows,

I(c) = − log
P (c)

P (c) + N(c)
(1)

foil gain(l) = P (c + l) · [I(c)− I(c + l)] (2)

Intuitively foil gain(l) represents the total number of bits saved in representing
positive examples by appending l to the current clause. It indicates how much
the predictive power of the clause can be increased by appending l to it.

After generating a clause c, we need to evaluate c by estimating its accuracy.
Suppose there are N+ positive and N− negative tuples satisfying c in the training
set. The accuracy of c can be estimated using the method in [7], which is shown
in the following equation:

Accuracy(c) = (N+ + 1)/(N+ + N− + C) (3)

where C is the number of classes.

4 Tuple ID Propagation

In this section we present the idea of tuple ID propagation and method of finding
good literals with that. In essence, tuple ID propagation is a method for virtually
joining non-target relations with the target relation. It is a convenient method
that enables flexible search in relational databases, and is much less costly than
physical join in both time and space.

CrossMine: Efficient Classification Across Multiple Database Relations 179

4.1 Search for Literals by Joins

Consider the sample database in Figure 2. Suppose we want to compute the foil
gain of literals in a non-target relation, such as Account. We need to find out
for all positive and negative target tuples satisfying each literal l in the Account
relation.

One approach is to join the two relations together and compute the foil gain
of all literals, as shown in Figure 3. With the joined relation, the foil gain of
every literal in both relations can be computed. To compute the foil gain of all
literals on a certain attribute, one only needs to scan the corresponding column
in the joined relation once. It can also handle continuous attribute as in [17]. To
find the best literal on attribute Account.date, one can first sort that column,
then iterate from the smallest value to the largest value, and for each value d,
compute the foil gain of two literals “date ≤ d” and “date ≥ d”.

Loan �	 Account

l-id a-id amount dur pay freq date class

1 124 1000 12 120 monthly 960227 +

2 124 4000 12 350 monthly 960227 +

3 108 10000 24 500 weekly 950923 −
4 45 12000 36 400 monthly 941209 −
5 45 2000 24 90 monthly 941209 +

Fig. 3. The join of Loan and Account

It is quite expensive to use physical joins to evaluate literals for the follow-
ing two reasons. First, in a database with complex schema, there are usually
a large number of join paths that need to be explored. For example, in the
database shown in Figure 1, Loan can join with Account, Order, Transaction
and Disposition. Each of the four relations can join with several other rela-
tions, such as Disposition that can join with Card, Client, or back to Account
and Order. Therefore one needs to repeatedly perform physical joins and cre-
ate many joined relations. Second, there may be much more tuples in a joined
relation than in the target relation. For example, a loan may join with several
orders or dozens of transactions. Thus the joined relation may contain a large
number of tuples when the join path is long.

The above two challenges prevent most traditional ILP approaches from effi-
ciently searching among different relations. In the next section we will introduce
tuple ID propagation, a technique that enables free search in relational databases.
When searching for good literals, one can propagate tuple IDs from any relation
that IDs have been propagated to, which requires much less computation and
data transfer. The tuple IDs can be easily propagated between any two relations,
which makes it possible to “navigate freely” among different relations.

180 X. Yin et al.

4.2 Tuple ID Propagation

Suppose the primary key of the target relation is an attribute of integers, which
represents the ID of each target tuple. Consider the sample database shown
in Figure 4, which has the same schema as in Figure 2. Instead of performing
physical join, the IDs and class labels of target tuples can be propagated to the
Account relation. The procedure is formally defined as follows.

Loan

loan-id account-id amount duration payment class

1 124 1000 12 120 +

2 124 4000 12 350 +

3 108 10000 24 500 −
4 45 12000 36 400 −
5 45 2000 24 90 +

Account

account-id frequency date IDs class labels

124 monthly 960227 1, 2 2+, 0−
108 weekly 950923 3 0+, 1−
45 monthly 941209 4, 5 1+, 1−
67 weekly 950101 – 0+, 0−

Fig. 4. Example of tuple ID propagation

Definition 2 (Tuple ID propagation). Suppose two relations R1 and R2 can
be joined by attributes R1.A and R2.A. Each tuple t in R1 is associated with a
set of IDs in the target relation, represented by idset(t). For each tuple u in R2,
we set idset(u) =

⋃
t∈R1,t.A=u.A idset(t).

The following lemma and its corollary show the correctness of tuple ID prop-
agation and how to compute foil gain from the propagated IDs.

Lemma 1. Suppose two relations R1 and R2 can be joined by attribute R1.A
and R2.A, and R1 is the target relation, with primary key R1.id. All the tuples in
R1 satisfy the current clause (others have been eliminated). The current clause
contains a literal “R1(R1.id, R1.A, · · ·)”, which enables the join of R1 with
R2. With tuple ID propagation from R1 to R2, for each tuple u in R2, idset(u)
represents all target tuples joinable with u, using the join path specified in the
current clause.

Proof. From definition 2, we have idset(u) =
⋃

t∈R1,t.A=u.A idset(t). That is,
idset(u) represents the target tuples joinable with u using the join path specified
in the current clause.

Corollary 1. Suppose two relations R1 and R2 can be joined by attribute R1.A
and R2.A, R1 is the target relation, and all the tuples in R1 satisfy the current

CrossMine: Efficient Classification Across Multiple Database Relations 181

clause (others have been eliminated). If R1’s IDs are propagated to R2, then the
foil gain of every literal in R2 can be computed using the propagated IDs on R2.

Proof. Given the current clause c, for a literal l in R2, such as R2.B = b, its
foil gain can be computed based on P (c), N(c), P (c + l) and N(c + l). P (c)
and N(c) should have been computed during the process of building the current
clause. P (c + l) and N(c + l) can be computed in the following way: (1) find all
tuples t in R2 that t.B = b; (2) with the propagated IDs on R2, find all target
tuples that can be joined with any tuple found in (1) (using the join path specified
in the current clause); and (3) count the number of positive and negative tuples
found in (2).

For example, suppose “Loan(L, +) :− Loan(L, A, , , ,)” is the current
clause. For literal “Account(A, , monthly,)”, we can first find out tuples in
the Account relation that satisfy this literal, which are {124, 45}. Then we can
find out tuples in the Loan relation that can be joined with these two tuples,
which are {1, 2, 4, 5}. We maintain a global table of the class label of each target
tuple. From this table, we know that tuples {1, 2, 4, 5} contain three positive
and one negative examples. With this information we can easily compute the
foil gain of literal “Account(A, , monthly,)”.

Besides propagating IDs from the target relation to relations directly joinable
with it, one can also propagate IDs transitively by propagating the IDs from one
non-target relation to another, according to the following lemma.

Lemma 2. Suppose two non-target relations R2 and R3 can be joined by at-
tribute R2.A and R3.A, and all the tuples in R2 satisfy the current clause (oth-
ers have been eliminated). For each tuple v in R2, idset(v) represents the target
tuples joinable with v (using the join path specified by the current clause). By
propagating IDs from R2 to R3 through the join R2.A = R3.A, for each tuple u
in R3, idset(u) represents target tuples that can be joined with u (using the join
path in the current clause, plus the join R2.A = R3.A).
Proof. Suppose a tuple u in R3 can be joined with v1, v2, · · ·, vm in R2, using
join R2.A = R3.A. Then idset(u) =

⋃m
i=1 idset(vi). A target tuple t is joinable

with any one of v1, v2, · · ·, vm if and only if t.id ∈
⋃m

i=1 idset(vi). Therefore, a
target tuple t is joinable with u (using the join path in the current clause, plus
the join R2.A = R3.A) if and only if t.id ∈ idset(u).

A corollary similar to corollary 1 can be proved for Lemma 2. That is, by
tuple ID propagation between non-target relations, one can also compute the
foil gain based on the propagated IDs.

4.3 Analysis and Constraints

The idea of label propagation was proposed in [2], which propagates class labels
along join paths for evaluating literals. This approach is effective for n-to-1
relationships. But for join paths that involve 1-to-n or n-to-n relationships, it
cannot find the numbers of positive and negative target tuples satisfying each

182 X. Yin et al.

literal. For example, suppose there are 10 tuples in the Loan relation, 5 being
positive and 5 being negative. 4 positive and 5 negative tuples are joinable with 1
account each, while the other positive tuple is joinable with 10 accounts. Suppose
all above accounts satisfy a literal l. Then one can see that there are 5 positive
and 5 negative target tuples satisfying l, indicating that l has low foil gain.
However, if only class labels are propagated, we will not be able to distinguish
class labels from different target tuples, and will say that there are 14 positive
and 5 negatives tuples satisfying l, indicating that l has high foil gain. A real
database usually contains many 1-to-n and n-to-n relationships, thus one needs
to propagate IDs instead of labels when building classifiers.

Tuple ID propagation is a way to perform virtual join. Instead of physically
joining relations, they are virtually joined by attaching the tuple IDs of the tar-
get relation to the tuples of a non-target relation, using a certain join path. In
this way the literals can be evaluated as if physical join is performed. Tuple ID
propagation is a flexible and efficient method. IDs (and their associated class
labels) can be easily propagated from one relation to another. By dong so, lit-
erals in different relations can be evaluated with little redundant computation.
The required space is also small because the IDs do not take much additional
storage space. Moveover, a relation may be associated with multiple set of IDs
corresponding to different join paths. This enables CrossMine to search for good
literals freely across relations.

ID propagation, though valuable, should be enforced with certain constraints.
There are two cases that such propagation could be counter-productive: (1)
propagate via large fan-outs, and (2) propagate via long weak links.

The first case happens if the there are too many tuples that can be produced
via propagation. Suppose after the IDs are propagated to a relation R, it is found
that every tuple in R can be joined to many target tuples and every target tuple
can be joined to many tuples in R. Then the semantic link between R and
the target relation is usually very weak because the link is very unselective.
For example, propagation among people via birth-country links may not be
productive. Therefore, our system discourages propagation if the current link
has very large fan-out.

The second case happens if the propagation goes through long weak links,
e.g., linking a student with his car dealer’s pet (via car, and then dealer) may
not be productive either. From the consideration of both efficiency and accuracy,
our system discourages propagation via such links.

5 Clause Generation

In this section we present CrossMine’s algorithm for generating clauses by tuple
ID propagation. A sequential covering algorithm is developed that repeatedly
builds clauses and removes positive tuples satisfying the clause. To build a clause,
it repeatedly searches for the best literal and adds it to the current clause. This
algorithm is selected because it guarantees the quality of each clause by always
keeping a large number of negative examples, and moreover, its greedy nature
makes it efficient in large databases.

CrossMine: Efficient Classification Across Multiple Database Relations 183

5.1 Finding Best Literal

Suppose CrossMine is searching for the best literal in a certain relation R, and
tuple IDs have been propagated to R so that one will know the target tuples
joinable with each tuple in R. To find the best literal in R, CrossMine evaluates
the literals in each attribute of R. Different algorithms are used for categorical
and numerical attributes.

Suppose the best literal on a categorical attribute Ac is to be found. Suppose
Ac has l values a1, . . . , al. For each value ai, a literal li = [R.Ac = ai] is built.
Then CrossMine scans the values of each tuple on Ac to find out the numbers
of all positive and negative target tuples satisfying each literal li. With this
information, the foil gain of each li can be computed and the best literal can be
found.

Suppose the best literal on a numerical attribute An is to be found, and a
sorted index for values on An has been built beforehand. CrossMine iterates
from the smallest value of An to the largest value. When iterating to each value
vi, all tuples having value vi are found, and their associated IDs are added into
a pool. This pool of IDs represent all target tuples satisfying literal [An ≤ vi].
In this way, one can compute the foil gain of every literal of the form [An ≤ vi]
for every value vi of An. Then CrossMine iterates from the largest value to the
smallest value to evaluate the literals of the form [An ≥ vi]. In this way the best
numerical literal can be found for An.

To search for the best aggregation literal for An, CrossMine first finds some
statistics for each target tuple. By scanning the tuple IDs associated with tuples
in R, for each target tuple t∗, CrossMine can find the tuples in R joinable with
t∗, and calculate the count, sum, and average of the values of those tuples on
An. Then CrossMine computes the foil gain of all aggregation literals using an
approach similar to the approach for finding best numerical literals. In this way
the best aggregation literal can be found.

5.2 Clause Generation Algorithms

Given a relational database with one target relation, CrossMine builds a classifier
containing a set of clauses, each of which contains a list of complex literals and
a class label. The overall idea is to repeatedly build clauses. After each clause is
built, remove all positive target tuples satisfying it. The algorithm is shown in
Figure 5.

To build a clause, one repeatedly searches for the best complex literal and
appends it to the current clause, until the stop criterion is met. A relation is
active if it appears in the current clause, or it is the target relation. Every active
relation is required to have the correct propagated IDs on every tuple before
searching for the next best literal. The algorithm is shown in Figure 6.

The following procedure is used to find the best literal: (1) for every active
relation R̂, find the best complex literal whose constraint applies on R̂ (no ID
propagation involved), and (2) for every relation R̄ that can be joined with some
active relation R̂, propagate IDs from R̂ to R̄, and find the best complex literal on

184 X. Yin et al.

Algorithm 1. Find-Clauses
Input: a relational database D with a target relation Rt.
Output: a set of clauses for predicting class labels of target tuples.

Procedure
clause set R ← emptyset;
do

clause c ← Find-A-Clause();
add c to R;
remove all positive target tuples satisfying c;

while(there are more than 10% positive target tuples left);
return R;

Fig. 5. Algorithm Find-Clauses

Algorithm 2. Find-A-Clause
Input: a relational database D with a target relation Rt.
Output: a clause for predicting class labels of target tuples.

Procedure
clause c ← empty-clause;
set Rt to active;
do

Complex literal l ← Find-Best-Literal();
if foil gain(l) < MIN FOIL GAIN;
then break;
else

c ← c + l;
remove all target tuples not satisfying c;
update IDs on every active relation;
if l.constraint is on an inactive relation
then set that relation active;

while(c.length < MAX CLAUSE LENGTH);
return c;

Fig. 6. Algorithm Find-A-Clause

R̄. Consider the database in Figure 1. Originally only Loan is active. Sup-
pose the first best complex literal is “[Loan.account id → Account.account id,
Account.frequency = monthly]”. Now Account becomes active as well. And we
will try to propagate the tuple IDs from Loan or Account in every possible way
to find the next best literal.

The idea behind the algorithm of building a clause is as follows. Starting
from the target relation Rt, find the best complex literal l̂, which propagates
IDs from Rt to another relation R̄. Then start from either Rt or R̄ to find the
next complex literal. This algorithm is greedy in nature. It extends the clause
using only those literals in either the active relations or the relations directly
joinable with an active relation.

CrossMine: Efficient Classification Across Multiple Database Relations 185

loan−id

client−id

Has−Loan

district−id

gender

client−id

Client

birthdate

District

#people

region

district−id

name

#city

ratio−urban

avg−salary

payment

duration

amount

date

loan−id

Loan

account−id

Fig. 7. Another sample database

The above algorithm may fail to find good literals in databases containing
some relations that are used to join with other relations, such as the database
shown in Figure 7. In this database there is no meaningful literal in the Has Loan
relation. Therefore, the clauses built will never involve any literals on the Client
relation and the District relation.

This problem can be solved using the look-one-ahead method. When search-
ing for the best literal, after IDs have been propagated to a relation R̄, if R̄
contains a foreign-key pointing to relation R̄′, IDs are propagated from R̄ to
R̄′, and used to search for good literals in R̄′. By this method, in the exam-
ple in Figure 7, one can find clauses such as “Loan(+) :− [Loan.loan id →
Has Loan.loan id, Has Loan.client id → Client.client id, Client.birthdate <
01/01/60]”.

With the correct IDs on a relation R̄, one can scan R̄ once to compute the
number of positive and negative target tuples satisfying every literal in R̄, using
the approach in [9]. The algorithm for searching for the best complex literal is
shown in Figure 8.

The above algorithms show the procedure of building clauses in CrossMine.
The basic idea of building a clause is to start from the target relation, keep
appending literals in active relations or relations related to some active relation,
until the stopping criterion is met. The running time of CrossMine is not much
affected by the number of relations in the database, because the size of the search
space is mainly determined by the number of active relations and the number of
joins on each active relation. This is also verified in our experiments on synthetic
databases.

To achieve high accuracy in multi-relational classification, an algorithm should
be able to find most of the useful literals in the database, and builds good clauses
with them. In most commercial databases following E-R model design there are
two types of relations: entity relation and relationship relation. Usually each
entity relation is reachable from some other entity relations via join paths go-
ing through relationship relations. Suppose an entity relation R contains use-
ful information for classification. There are usually many join paths between
R and the target relation Rt, some representing important semantic links. It
is likely that R can be reached from some other useful entity relations through

186 X. Yin et al.

Algorithm 3. Find-Best-Literal
Input: a relational database D with a target relation Rt, and current clause c.
Output: the complex literal with most foil gain.

Procedure
Complex literal lmax ← empty;

for each active relation R̂

Complex literal l ← best complex literal in R̂;
if foil gain(l) > foil gain(lmax)
then lmax ← l;

for each relation R̄
for each key/foreign-key k of R̄

if R̄ can be joined to some active relation R̂ with R̄.k
then

propagate IDs from R̂ to R̄;
l ← best complex literal in R̄;
if foil gain(l) > foil gain(lmax)
then lmax ← l;
for each foreign-key k′ �= k of R̄

propagate IDs from R̄ to relation R̄′

that is pointed to by R̄.k;
l ← best complex literal in R̄′;
if foil gain(l) > foil gain(lmax)
then lmax ← l;

return lmax;

Fig. 8. Algorithm Find-Best-Literal

relationship relations. Therefore, by using the method of look-one-ahead, it is
highly probable that one can utilize the information in R.

Most ILP approaches also perform heuristical search when building clauses.
However, the search spaces of those approaches are usually much smaller than
that of CrossMine. By using complex literals, CrossMine considers two literals at
a time (one for join and another for value constraint). By using look-one-ahead,
it can consider up to three literals together in clause generation. This enables
CrossMine to find good literals and build more accurate classifiers than tradi-
tional ILP approaches. On the other hand, CrossMine is rather different from
joining a large number of relations indiscriminately, such as the “universal rela-
tion” approach. Instead, it limits the search process (i.e., tuple ID propagation)
among only active relations with at most one look-ahead. Thus the search space
is more confined, following more promising and active links than indiscriminate
joins, and thus lead to both high efficiency and classification accuracy.

5.3 Predicting Class Labels with Clauses

After generating clauses, CrossMine needs to predict the class labels of unlabelled
target tuples. CrossMine also needs to predict the class labels of the tuples in

CrossMine: Efficient Classification Across Multiple Database Relations 187

the training set to estimate the accuracy of each clause. Therefore, an efficient
algorithm is needed for finding out all target tuples satisfying each clause.

CrossMine uses an efficient algorithm based on tuple ID propagation to find
out all target tuples satisfying a certain clause c. Suppose c = Rt(+) :− l1, l2,
. . . , lk. (li (1 ≤ i ≤ k) is a complex literal.) The main idea of the algorithm is to
propagate the IDs of all target tuples along the prop-path of each literal li, and
prune all IDs of target tuples not satisfying the constraint of li.

To illustrate this procedure, let us examine an example. Suppose c =
Loan(+) :− [Loan.account id → Account.account id, Account.frequency =
monthly], [Account.district id → District.district id, avg salary > 80000].
First, the IDs of all target tuples are propagated to the Account relation via
the prop-path Loan.account id → Account.account id. All target tuples whose
associated account has value “monthly” on attribute frequency are found, and
the IDs of all the other tuples are pruned. Then the remaining IDs are propa-
gated to the District relation via the prop-path Account.district id→ District.
district id, and target tuples satisfying the second literal are found, which are
all tuples satisfying this clause.

Given a set of target tuples whose class labels need to be predicted, CrossMine
first finds out the tuples satisfying each clause. For each target tuple t, the most
accurate clause that is satisfied by t is found, and the class label of that clause is
used as the predicted class. If multiple classes are presented in the training set,
then for each class C, CrossMine takes tuples of C as positive tuples and all the
other tuples as negative ones to build clauses for class C. The same algorithm is
used for predicting the class labels of unseen tuples.

6 Tuple Sampling

From Algorithm 1 we can see that during the procedure of building clauses, the
number of positive tuples keeps decreasing and the number of negative tuples
remains unchanged. Each clause covers a certain proportion of the remaining
positive tuples (usually 5% to 20%), thus the first several clauses can often cover
the majority of the positive tuples. However, even if most of positive tuples have
been covered, it still takes a similar amount of time to build a clause because all
the negative tuples remain there.

Let c.sup+ and c.sup− be respectively the number of positive and negative
tuples satisfying a clause c. Let c.bg+ and c.bg− be respectively the number of
positive and negative tuples satisfying c when c is built. The accuracy of c can
be estimated using the method in [7], which is shown in the following equation:

Accuracy(c) = (c.sup+ + 1)/(c.sup+ + c.sup− + C) (4)

where C is the number of classes.
In the algorithm described above, c.bg− always equals to the number of nega-

tive tuples. When c.bg+ is small, even if c.bg− is large, the quality of c cannot be
guaranteed. That is, if c.bg+ is small, one cannot be confident that Accuracy(c)
is a good estimate for the real world accuracy of c. Therefore, although much

188 X. Yin et al.

time is spent in building these clauses, the quality of the clauses is usually much
lower than that of the clauses with high bg+ and bg−.

Based on this observation, the following method is proposed to improve its
effectiveness. Before a clause is built, we require that the number of negative
tuples is no greater than NEG POS RATIO times the number of positive tu-
ples. Sampling is performed on the negative tuples if this requirement is not
satisfied. We also require that the number of negative tuples is smaller than
MAX NUM NEGATIVE, which is a large constant.

Here we analyze the improvement on efficiency by sampling. Our experiments
show that, when only a small portion of positive tuples remain, each clause
generated usually covers an even smaller portion of the remaining positive tuples.
The possible reason is that, there are usually many “special positive cases” that
cannot be covered by any good clause. The consequence is that the number
of generated clauses usually increases with the number of target tuples. When
sampling is not used, the time for building each clause is proportional to the total
number of target tuples. Thus the total runtime increases sharply as the number
of tuples increases, because more clauses are needed and longer time is used for
building each clause. When sampling is used, the time for building a clause is
proportional to the number of remaining positive tuples. Because the first several
clauses can often cover the majority of positive tuples, the total number of tuples
decreases sharply after finding them, and the algorithm becomes highly scalable.

When sampling is used, the accuracy of clauses should be estimated in a
different way. Suppose before building clause c, there are P positive and N
negative tuples. N ′ negative tuples are randomly chosen by sampling (N ′ <
N). After building clause c, suppose there are l positive and n′ negative tuples
satisfying c. We need to estimate n, the number of negative tuples satisfying
c. The simplest estimation is n ≈ n′ N

N ′ . However, this is not a safe estimation
because it is quite possible that c luckily excludes most of the N ′ negative
examples but not the others. We want to find out a number n, so that the
probability that n′ ≤ nN ′

N is 0.9. Or to say, it is unlikely that n
N ≤ n′

N ′ .
As we know, N ′ out of N negative tuples are chosen by sampling. Assume

we already know that n negative tuples satisfy c. Consider the event of a nega-
tive tuple satisfying c as a random event. Then n′ is a random variable obeying
binomial distribution, n′ ∼ B(N ′, n

N). n′ can be considered as the sum of N ′

random variable of B(1, n
N). When N ′ is large, according to central limit the-

orem, we have n′
N ′ ∼ N(n

N ,
n
N (1− n

N)

N ′). For a random variable X ∼ N(μ, σ2),
P (X ≥ μ− 1.28σ) ≈ 0.9. So we require

n′

N ′ =
n

N
− 1.28

√
n
N (1− n

N)
N ′ (5)

Let x = n
N and d = n′

N ′ . Equation (5) is converted into

(
1 +

1.64
N ′

)
x2 −

(
2d +

1.64
N ′

)
x + d2 = 0 (6)

CrossMine: Efficient Classification Across Multiple Database Relations 189

Equation (6) can be easily solved with two solutions x1 and x2, corresponding
to the positive and negative squared root in equation (5). The greater solution
x2 should be chosen because it corresponds to the positive squared root. If there
are x2N negative tuples satisfying the clause before sampling, then it is unlikely
that there are less than n′ tuples satisfying the clause after sampling. Therefore,
we use x2N as the safe estimation of n. From the estimated n, we can estimate
the accuracy of c based on equation (4).

7 Experimental Results

We have performed comprehensive experiments on both synthetic databases and
real databases to show the accuracy and scalability of CrossMine. We compare
CrossMine with FOIL [18] and TILDE [3] in every experiment, where the source
code of FOIL and binary code of TILDE are from their authors. CrossMine and
FOIL are run on a 1.7GHz Pentium 4 PC running on Windows 2000 Professional.
TILDE is run on a Sun Blade 1000 workstation. Ten-fold experiments are used
unless specified otherwise.

The following parameters are used in our experiments for testing CrossMine:
MIN FOIL GAIN = 2.5, MAX CLAUSE LENGTH = 6, NEG POS RATIO =
1, and MAX NUM NEGATIVE = 600. Moreover, we have found that the accu-
racy and running time of CrossMine are not sensitive to these parameters.

7.1 Synthetic Databases

To evaluate the scalability of CrossMine, a set of synthetic relational databases
are generated. These databases mimic the real world relational databases. Our
data generator takes the parameters shown in Table 1 to generate a database.
The three columns of Table 1 represent the parameter name, description, and
default value.

To generate the database, we first generate a relational schema with |R| re-
lations, one being the target relation. The number of attributes of each relation
obeys exponential distribution with expectation A and is at least Amin. One of
the attributes is the primary-key. All attributes are categorical, and the number
of values of each attribute (except the primary key) obeys exponential distri-
bution with expectation V and is at least Vmin. Besides these attributes, each
relation has a few foreign-keys, pointing to the primary-keys of other relations.
The number of foreign-keys of each relation obeys exponential distribution with
expectation F and is at least Fmin.

After the schema is generated, we generate clauses that are lists of complex
literals. The number of complex literals in each clause obeys uniform distribution
between Lmin and Lmax. Each complex literal has probability fA to be on an
active relation and probability (1− fA) to be on an inactive relation (involving
a propagation). Only categorical literals are used. The class label of each clause
is randomly generated, but the number of positive clauses and that of negative
clauses differ by at most 20%.

190 X. Yin et al.

Table 1. Parameters of data generator

Name Description Def.

|R| # relations x

Tmin Min # tuples in each relation 50

T Expected # tuples in each relation y

Amin Min # attributes in each relation 2

A Expected # attributes in each relation 5

Vmin Min # values of each attribute 2

V Expected # values of each attribute 10

Fmin Min # foreign-keys in each relation 2

F Expected # foreign-keys in each relation z

|c| # clauses 10

Lmin Min # complex literals in each clause 2

Lmax Max # complex literals in each clause 6

fA Prob. of a literal on active relation 0.25

The generated tuples are added to the database. The target relation has
exactly T tuples. Each target tuple is generated according to a randomly chosen
clause. In this way we also need to add tuples to non-target relations to satisfy
the clause. After all target tuples are generated, we add more tuples to non-
target relations. For each non-target relation R, the number of tuples obeys
exponential distribution with expectation T and is at least Tmin. If R already has
enough tuples, we leave it unchanged. Otherwise we randomly generate tuples
and add them to R until it has enough tuples. We use “Rx.Ty.Fz” to represent
a synthetic database with x relations, expected y tuples in each relation, and
expected z foreign-keys in each relation.

For a multi-relational classification approach, we are most interested in its
scalability w.r.t. the size of database schema, the number of tuples in each re-
lation, and the number of joins involving each relation. Therefore, experiments
are conducted on databases with different number of relations, different number
of tuples in each relation, and different number of foreign-keys in each relation.
In each experiment, the running time and accuracy of CrossMine, FOIL, and
TILDE are compared.

To test the scalability w.r.t. the number of relations, five databases are cre-
ated with 10, 20, 50, 100, and 200 relations respectively. In each database, the
expected number of tuples in each relation is 500 and the expected number of
foreign-keys in each relation is 2.

Figure 9 (a) shows the running time of the three approaches. Ten-fold experi-
ments are used in most tests, and the average running time of each fold is shown
in the figure. If the running time of an algorithm is close to or greater than 10
hours, only the first fold is tested in our experiments. We stop an experiment if
the running time is much greater than 10 hours. From the experimental results,
one can see that CrossMine is thousands of times faster than FOIL and TILDE
in most cases. Moreover, its running time is not affected much by the number of
relations. FOIL and TILDE are not scalable with the number of relations. The

CrossMine: Efficient Classification Across Multiple Database Relations 191

 1

 10

 100

 1000

 10000

 100000

 1e+06

 16 32 64 128

R
un

tim
e

(i
n

se
co

nd
s)

Number of relations

CrossMine
FOIL

TILDE

a) Time vs. #relation

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 16 32 64 128

A
cc

ur
ac

y
(%

)

Number of relations

CrossMine
FOIL

TILDE

b) Accuracy vs. #relation

Fig. 9. Runtime and accuracy on R*.T500.F2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10000 100000

R
un

tim
e

(i
n

se
co

nd
s)

Expected number of tuples

CrossMine
CrossMine with sampling

FOIL
TILDE

a) Time vs. # tuple

 40

 50

 60

 70

 80

 90

 100

 10000 100000

A
cc

ur
ac

y
(%

)

Expected number of tuples

CrossMine
CrossMine with sampling

FOIL
TILDE

b) Accuracy vs. # tuple

Fig. 10. Runtime and accuracy on R20.T*.F2

running time of FOIL increases 9.6 times when the number of relations increases
from 10 to 50, whereas the running time of TILDE increases 17.3 times. The
accuracy of the three approaches are shown in Figure 9 (b). One can see that
CrossMine is more accurate than FOIL and TILDE.

To test the scalability w.r.t. the number of tuples, five databases are cre-
ated with the expected number of tuples in each relation being 200, 500, 1000,
2000, and 5000, respectively. There are twenty relations in each dataset, thus
the expected number of tuples range from 4K to 100K. The expected num-
ber of foreign-keys in each relation is 2. In this experiment, the performance of
CrossMine with sampling is also tested to show the effectiveness of sampling.
Figure 10 (a) shows the running time of the four approaches.

One can see that CrossMine is more scalable than FOIL and TILDE. The
running time of CrossMine increases 8 times when the number of tuples increases
from 200 to 1000, while those of FOIL and TILDE increase 30.6 times and
104 times, respectively. With tuple sampling, CrossMine becomes more scalable
(running time decreases to one third of non-sampling version when the number of
tuples is 5000). The accuracy of the three approaches is shown in Figure 10 (b).
CrossMine is more accurate than FOIL and TILDE, and the sampling method
only slightly sacrifices the accuracy.

192 X. Yin et al.

 1

 10

 100

 1000

 10000

 10000 100000 1e+06

R
un

tim
e

(i
n

se
co

nd
s)

Number of tuples

CrossMine with sampling

a) Time vs. # tuple

 40

 50

 60

 70

 80

 90

 100

 10000 100000 1e+06

A
cc

ur
ac

y(
%

)

Number of tuples

CrossMine with sampling

b) Accuracy vs. # tuple

Fig. 11. Runtime and accuracy on large datasets

 1

 10

 100

 1000

 10000

 100000

 1 1.5 2 2.5 3 3.5 4 4.5 5

R
un

tim
e

(i
n

se
co

nd
s)

Number of foreign-keys

CrossMine
FOIL

TILDE

a) Time vs. #foreign-key

 40

 50

 60

 70

 80

 90

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

ur
ac

y
(%

)

Number of foreign-keys

CrossMine
FOIL

TILDE

b) Accuracy vs. #foreign-key

Fig. 12. Runtime and accuracy on R20.T500.F*

We also test CrossMine (with negative sampling) on large datasets to show
its high scalability. We generate nine datasets with expected number of tuples in
each relation from 200 to 100K. Since there are twenty relations in each dataset,
the expected numbers of tuples range from 4K to 2M. The running time and
accuracy of CrossMine are shown in Figure 11 (a) and (b). It can be seen that
CrossMine is highly scalable for large datasets.

Finally, we test the scalability w.r.t. the number of foreign-keys. Again, five
databases are created with the expected number of foreign-keys in each relation
being 1 to 5. The number of relations is 20 and the expected number of tuples
in each relation is 500. The running time of the three approaches are shown in
Figure 12 (a) and the accuracy are shown in Figure 12 (b). One can see that
CrossMine is not very scalable w.r.t. the number of foreign-keys, although it is
still much more efficient than FOIL and TILDE. Fortunately, in most commer-
cial databases the number of foreign-keys in each relation is quite limited. And
CrossMine is very efficient when this number is not large.

7.2 Real Databases

Experiments are also conducted on two real databases to compare the efficiency
and accuracy of CrossMine, FOIL and TILDE. The first database is the financial

CrossMine: Efficient Classification Across Multiple Database Relations 193

Table 2. Performances on the financial database of PKDD CUP’99

Approach Accuracy Runtime

CrossMine w/o sampling 89.5% 20.8 sec

CrossMine with sampling 88.3% 16.8 sec

FOIL 74.0% 3338 sec

TILDE 81.3% 2429 sec

Table 3. Performances on the Mutagenesis database

Approach Accuracy Runtime

CrossMine 89.3% 2.57 sec

FOIL 79.7% 1.65 sec

TILDE 89.4% 25.6 sec

database used in PKDD CUP 1999. Its schema is shown in Figure 1. We modify
the original database by shrinking the Trans relation which was extremely huge,
and removing some positive tuples in the Loan relation to make the numbers of
positive tuples and negative tuples more balanced. The final database contains
eight relations and 75982 tuples in total. The Loan relation contains 324 positive
tuples and 76 negative ones. The performances on this database is shown in Table
2. All three types of literals are considered in this experiment.

The second database is the Mutagenesis database, which is a frequently used
ILP benchmark. It contains four relations and 15218 tuples. The target relation
contains 188 tuples, in which 124 are positive and 64 are negative. The Muta-
genesis database is pretty small and the sampling method has no influences to
CrossMine. The performances is shown in Table 3.

From the experiments one can see that CrossMine achieves good accuracy and
efficiency. It is much more efficient than traditional ILP approaches, especially
on databases with complex schemas.

8 Discussions

In this paper it is assumed that the dataset can fit in main memory, so that
random access can be performed on tuples in different relations. In some real
applications the dataset cannot fit in main memory. Instead, the data are stored
in a relational database in the secondary storage. However, this will not affect
the scalability of CrossMine. In this section we show that all the operations of
CrossMine can be performed efficiently on data stored on disks.

8.1 Tuple ID Propagation

Tuple ID propagation is the most basic operation of CrossMine. When data is
in main memory, a set of tuple IDs associated with a relation R are stored in

194 X. Yin et al.

a separate array. When data cannot fit in main memory, we can store a set
of tuple IDs as an attribute of R. Since CrossMine limits the fan-out of tuple
ID propagation (Section 4.3), the number of IDs associated with each tuple is
limited, thus the IDs can be stored as a string of fixed or variable length.

In CrossMine, only joins between keys or foreign-keys are considered (Section
3.1). An index can be created for every key or foreign key. When propagating
IDs from R1 to R2, only the tuple IDs and the two joined attributes are needed.
If one of them can fit in main memory, this propagation can be done efficiently.
Otherwise, a join operation can be performed between R1 and R2 to find joinable
tuples and propagated IDs.

8.2 Evaluating Literals

Suppose tuple IDs have been propagated to a relation R, and the best literal on
R need to be identified. If all attributes of R are categorical, then the numbers
of positive and negative target tuples satisfying every literal can be calculated
by one sequential scan on R. With this sequential scan, we can also generate
simple statistics (sum, average, etc.) for every target tuple and every numerical
attribute. The best aggregation literal can be found by these statistics. For a
numerical attribute A, suppose a sorted index has been built on A. Then a
sorted scan on A is needed to find the best literal on A. If this index and the
tuple IDs can fit in main memory, this can be done efficiently.

9 Conclusions and Future Work

Multi-relational classification is an important issue in data mining and machine
learning involving large, real databases. It can be widely used in many disciplines,
such as financial decision making, medical research, and geographical applications.
Many traditional ILP approaches are inefficient and unscalable for databases with
complex schemasbecause they evaluate ahugenumber of clauseswhen selecting lit-
erals. In this paperweproposeCrossMine, an efficient approach formulti-relational
classification. It uses tuple ID propagation to reduce the computational cost dra-
matically, which makes CrossMine highly scalable w.r.t. the size of database
schemas. In the process of building clauses, CrossMine performs search in wider
space than traditional ILP approaches by considering up to three literals at a time.
This enables CrossMine to identify better-quality literals and build more accurate
clauses. Experiments show that CrossMine is highly efficient comparing with the
traditional ILP approaches, and it achieves high accuracy. These features make it
appropriate for multi-relational classification in real world databases.

There are several possible extensions to CrossMine. Although CrossMine
searches a wider space to select better-quality clauses than most ILP approaches,
it is still a greedy algorithm and searches only a small part of the whole search
space. Moreover, it is interesting to study how to integration CrossMine method-
ology with other classification methods (such as SVM, Neural Networks, and
k-nearest neighbors) in the multi-relational environment to achieve even better
accuracy and/or scalability.

CrossMine: Efficient Classification Across Multiple Database Relations 195

References

1. A. Appice, M. Ceci, and D. Malerba. Mining model trees: a multi-relational ap-
proach. In Proc. 2003 Int. Conf. on Inductive Logic Programming, Szeged, Hun-
gary, Sept. 2003.

2. J. M. Aronis, F. J. Provost. Increasing the Efficiency of Data Mining Algorithms
with Breadth-First Marker Propagation. In Proc. 2003 Int. Conf. Knowledge Dis-
covery and Data Mining, Newport Beach, CA, 1997.

3. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of logical decision
trees. In Proc. 1998 Int. Conf. Machine Learning, Madison, WI, Aug. 1998.

4. H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductive logic
programming by learning from interpretations. Data Mining and Knowledge Dis-
covery, 3(1):59-93, 1999.

5. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research, 16:135-166, 2002.

6. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–168, 1998.

7. P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In
Proc. 1991 European Working Session on Learning, pages 151–163, Porto, Portu-
gal, Mar. 1991.

8. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice Hall, 2002.

9. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest: A framework for fast
decision tree construction of large datasets. In Proc. 1998 Int. Conf. Very Large
Data Bases, New York, NY, Aug. 1998.

10. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, 1994.

11. T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
12. S. Muggleton. Inductive Logic Programming. Academic Press, New York, NY,

1992.
13. S. Muggleton. Inverse entailment and progol. In New Generation Computing,

Special issue on Inductive Logic Programming, 1995.
14. S. Muggleton and C. Feng. Efficient induction of logic programs. In Proc. 1990

Conf. Algorithmic Learning Theory, Tokyo, Japan, 1990.
15. J. Neville, D. Jensen, L. Friedland, and M. Hay. Learning Relational Probability

Trees. Proc. 2003 Int. Conf. Knowledge Discovery and Data Mining, Washtington,
DC, 2003.

16. A. Popescul, L. Ungar, S. Lawrence, and M. Pennock. Towards structural logistic
regression: Combining relational and statistical learning. In Proc. Multi-Relational
Data Mining Workshop, Alberta, Canada, 2002.

17. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
18. J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. In Proc. 1993

European Conf. Machine Learning, Vienna, Austria, 1993.
19. B. Taskar, E. Segal, and D. Koller. Probabilistic classification and clustering in

relational data. In Proc. 2001 Int. Joint Conf. Artificial Intelligence, Seattle, WA,
2001.

Remarks on the Industrial Application of

Inductive Database Technologies

Kimmo Hätönen, Mika Klemettinen, and Markus Miettinen

Nokia Research Center, P.O.Box 407, FIN-00045 Nokia Group, Finland
{kimmo.hatonen, mika.klemettinen, markus.miettinen}@nokia.com

Abstract. The research in the area of inductive databases has taken
huge steps forward during recent years. Various results have been pro-
duced and published by many groups all around the world. The next
big challenge for the research community together with industry is to
integrate these results to the existing systems and to enhance current
solutions to better answer to the real world challenges. In this article
we give an industrial perspective for exploring, validating and exploiting
new techniques like inductive databases. We discuss various requirements
that industrial processes set for the methods and tools. Based on our own
ten year experience in the field we also study reasons and background
for why some systems are taken into use and some are not.

1 Introduction

The research in the area of inductive databases (IDB) has taken considerable
steps forward during recent years. Various results have been produced and pub-
lished by many groups all around the world. For example, in recently finished
EU funded research project cInQ (consortium on discovering knowledge with
Inductive Queries, IST-2000-26469) the project participants have published tens
of publications on the application of IDB technologies on different domains like
medical science, bioinformatics, telecommunications and web mining.

One of the challenges that follows successful basic research is how the research
community together with industry could transfer the created compentence to be
applied in the industry. Achieved results should be evaluated and integrated
to existing systems to enhance current solutions to better answer to the real
world challenges. This should be done while the basic research and method
development are continuing.

There are a couple of basic questions that must be considered here. First
of all does the research answer the needs of the community, industry and the
markets? Are the studied problems interesting from applied research point of
view and do they answer practical needs of industry? Another issue is whether
the presented results create added value for the current solutions in such a way
that it is worth for the industry to take the risk to implement them as a part of
existing solutions. Will there be enough markets for the new solutions and will
they enhance the existing solutions in such a way that it will bring leading edge
benefits for the applier?

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 196–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Remarks on the Industrial Application of Inductive Database Technologies 197

If and when the answers to those questions are in the affirmative, what should
be done to convince the industry to apply presented results? What makes an IDB
algorithm or a system succeed in practice?

Answering these questions starts from the needs of an applier. It is essential
to understand what kind of issues affect the application, in what kind of envi-
ronment the algorithm or system is used, who are using it, what it is used for
and what kind of legacy solutions or other resources are available to the users.
In this article we describe and study the conditions in which different types of
telecommunication applications are used. Based on our ten year experience in
the field we identify a set of requirements for data mining (DM) and IDB ap-
plications. They affect the usability and interestingness of IDB research results
from the industrial perspective.

In section 2 we discuss requirements that are introduced by the telecommu-
nication industry set up. In section 3 we present some scenarios about decision
making situations in telecommunication network operation, and in section 4 we
show how some research results have answered to specific tasks and their re-
quirements. In section 5 we line up the results of this paper with earlier studies
made with expert systems and show that actually in both application genres -
when applied to the same industrial domain - similar types of hypotheses apply.

2 Framework for Exploitation

The perspective of an academic researcher differs somewhat from the view point
of an industrial researcher. While the academic researcher is often mainly in-
terested in doing basic research and proving that generally speaking something
is possible and holds, the industrial researcher is usually tied to the real world
and its particular problems and their peculiarities. Very seldom an industrial
researcher can start to work on a new topic without any existing legacy systems
that will continue to be used and to which the new methods must offer back-
ward compatibility. The industrial world sets also many other requirements for
exploiting new methods. For example, the new techniques have to be in line with
the selected product strategy, there must be enough resources to implement the
new methods, there must be customer demand – either explicit or anticipated –
for the application of the methods, and so on, to name a few.

In order to illustrate these demands and where they originate, we present a
model about a tool provider and a user of the provided tools in the telecommun-
ciations domain. For modelling these two worlds we have chosen to use Leavitt’s
diamond model [12]. It describes organisations as four interrelated components:
tasks, technology, persons and structure, where structure represents the organi-
sation as well as external stakeholders such as competitors. The interdependence
between the different components of the model is strong. When one component
changes it also influences the others. For example, changes in technology affect
the way in which individuals relate themselves to the tasks they are responsible
for and to the organisational structure. The model has been used as an analysis
framework for, e.g., information systems [11], information system personnel and

198 K. Hätönen, M. Klemettinen, and M. Miettinen

their roles [15], telecommuting [4], and telecommunication network planning tool
implementation [16].

For our study we separate the model into two views [16]: a developer view
and a user view. The developer view illustrates a method provider or developer
organisation who selects whether DM or IDB techniques are going to be used
in tools. In the user view, a user organisation can be a telecommunication net-
work operator or an IT department of an enterprise. The views are presented in
figures 1 and 2.

Fig. 1. Interactions between data mining application issues from the developer
perspective

Figure 1 shows the application of Leavitt’s diamond model to development of
the DM and IDB domain from the developer perspective. The tasks consist of
requirements management, test data acquisition, method development, method
and tool verification and tool maintenance. The directly involved persons are
analysis experts and tool developers. Technology consists of models, methods,
algorithms, DM tools and environments, programming languages and environ-
ments, software components, data collection and storage solutions, legacy data
management and reporting solutions, GUI solutions and, finally, of the anal-
ysed network and hardware. The structure contains tool users, domain experts,
decision makers, and software tool, component and platform vendors.

Figure 2 shows the model from the data mining and IDB applications user
perspective. The essential tasks – basically making decisions in different types
of situations – are related to network operation and development. Such tasks in-
clude, for example, configuring a new network segment, optimising the services
in some cells or fixing acute and critical faults. The technology component con-
sists of numerous items of the application domain and the monitored network, its

Remarks on the Industrial Application of Inductive Database Technologies 199

Fig. 2. Interactions between data mining application issues from the user perspective

structure and parameterisation. The topic of this article, DM and IDB methods,
is seen as technology embedded in domain specific tools from the perspective
of the engineers and other operator staff using them. From their perspective,
these tools should be integrated to the legacy data management and reporting
solutions that still offer the major functionality of the monitoring system. From
the user perspective, the structure contains analysis experts, tool developers,
customers and competitors.

These views are interdependent. For example, the technology component of
the user view is linked with the task component of the developer view as the
developed methods and tools are the key results that are used by the users.
Also the analysis experts and tool developers of the persons component in the
developer view can be modeled to be in the structure component of the user
view, and vice versa.

The interdependence between the two views is a reason for conflicts since the
needs of developers and users are contradicting [16]. For example, from the user
point of view the tools should make the execution of simple network analysis
tasks very fast whereas from the developer point of view the tools should be
easy to implement and maintain.

The successful exploitation of DM and IDB tools requires understanding of the
requirements set for the tools from the user point of view. If those requirements
are not met, then the users very easily just do not use the new technology but
stick with the existing solutions and their direct enhancements.

When users are selecting their tools, they set requirements for the possi-
ble candidates. For applications in industrial production these requirements are
quite strict and the technological excellence is only one aspect in the selection
process. Other requirements are set for understandability, integrability, effective-

200 K. Hätönen, M. Klemettinen, and M. Miettinen

ness, continuation of development, guaranteed support and maintenance, and so
on. If these requirements are not met by the tool and its seller, the method or tool
might be abandoned without a second look at its technological achievements.

Below we point out some connections in the user view that affect the accept-
ability of new technologies. These are, e.g., connections between

– technology and persons,
– technology and tasks, and
– technology and structure.

2.1 Technology and Persons

Persons who use DM and IDB in user organisations can be, e.g., technicians, top
level domain experts or top managers with a lot of experience in the business.
A common factor among all of them is that they are typically skilled in what
they are doing, namely in running telecommunications networks. They probably
don’t know too much about statistics or data mining techniques.

This sets a requirement for any proposed tool or method: it must provide
results using the terminology and semantics of the application domain. For ex-
ample, pure statistical figures without a good explanation about what causes
them and what they tell to an analyst are not necessarily understandable for
a domain expert. In other words, the tool provider has to attach a semantic
interpretation in application domain terms to each used statistical figure.

As observed, experts are willing to assist in the development and adopt a
planning tool if it provides immediate and accurate results to them already
during the development period [16]. This is most probably true also with any
DM or IDB tool. This is essential, since without the domain knowledge that the
experts provide, the developer is not able to do the needed semantic localisation
of the tool to the application domain. If the method is easy to understand and
provides accurate results, experts will use it to assist them in their daily tasks,
to play around with it and provide the semantic connection by themselves. This
will require also a user friendly and usable user interface for the method.

2.2 Technology and Tasks

DM and IDB tools. In network operation there are plenty of different tasks
with different time constraints. The most urgent task is to fix critical faults that
disturb communications of a large number of mobile phones. These faults are
monitored and, if detected, analysed online 24 hours per day. Less critical faults
are analysed in priority order based on daily fault and performance reports.
Every now and then the operator personnel go through the whole network in
order to detect cells that are not working optimally.

For all of the above mentioned analysis tasks the operator has plenty of mon-
itoring and reporting tools that follow up different parts and aspects of the
network. Any DM or IDB tool is an enhancement for the existing tools. They
should assist the persons in their tasks, which they are used to perform based on
the information provided by the existing tools. These tools are typically tightly

Remarks on the Industrial Application of Inductive Database Technologies 201

linked to different management applications, with which the operators tune and
fix the network remotely. This setup requires proper input and output interfaces
to the new enhancements, which have to be integrated to the existing infrastruc-
ture.

Network structure. The structure and parameterisation of the network
evolves constantly. Quite a large number of cell configurations – e.g., one percent
out of thousands of cells – are updated on a weekly basis. This sets a challenge
for the personnel: the so called normal or optimal value ranges of several indica-
tors derived from a cell group or a cell are constantly changing. These changes
have to be identified from the series of measurement values and verified against
general domain knowledge.

On-line exploration vs. offline DM. In telecommunications there are plenty
of different decision making situations, which have different time frames and
characteristics. The role of DM and IDB applications in the domain is to support
these decision tasks.

The shortest decision making loops have been automated. There are closed
control loops that monitor one or more indicator time series and adjust process
parameters as a response to the incoming data. For these control functions the
DM and IDB applications can provide information about the effects of different
traffic and configuration combinations. This information can be extracted off-line
either from a history data set or a simulated laboratory data set.

Another natural target for support are strategic decisions, which are based on
data and information in various formats coming from several different sources.
Analysis of this information closely resembles a classical data mining process,
where also analysis experts are involved.

Probably the hardest target for decision support are the tactical and short
term strategic decisions, where the time to do the decision is limited, the problem
occurs either very seldom or is totally new and for which no analysis expert is
available. In these tasks the DM and IDB tools have to be so easy to use that a
domain expert is able to quickly extract needed information by himself. There
is no room for iteration or full scale data exploration, but in spite of that the
analysis has to be well focused and straightforward to use.

2.3 Technology and Structure

Analysis experts. One of the most critical differences between developer and
user views is in the role of analysis experts. They are DM and IDB experts that
develop used methods. In the developer view they are in the persons component.
This means that they are available inside the organisation and actively taking
part in different tasks.

In the user view, analysis experts are in the structure component. They are
not part of the organisation using the tools and methods but rather externals,
probably personnel of a tool provider or some consulting company. This makes
them temporary options for any continuous analysis task. They might be used for

202 K. Hätönen, M. Klemettinen, and M. Miettinen

giving training in the roll-out phase of a tool, but later it is usually an expensive
option to use constant consultations.

Competitors. A basis for all the user organisation acquisitions is the amount
of expected utility. The utility can be in a form of more effective operations
and cost savings, improved product quality, new and impressive services and so
on. If it is possible to manage the business with the old existing infrastructure
and the expected utility that could be gained with the new solutions are less
than what is required to update the old system and maintain the new one, then
the acquisition will not be made. For example, if updating the legacy solution
would require re-programming some of the central building blocks of the existing
system and thus re-testing and debugging of all the solutions depending on it,
the expected utility gain has to be very large before the organisation is willing
to consider taking the risk of updating the system.

One element in the structure component – competitors – are the source for
the need to upgrade operation solutions. If competitors are able to achieve lower
maintenance costs by using more efficient analysis tools, this probably drives the
organisation towards considering to use them. Otherwise, if their running costs
are higher than those of the competitors, it will mean losing profits in the longer
run.

3 Decision Making Scenarios in Telecommunications

In telecommunication business there are plenty of different types of decision mak-
ing situations. They vary from very fast optimisation decisions to large strategic
decisions about the infrastructure and business opportunities. The common as-
pect for all of these is that there are more data available than can be analysed.
Therefore, DM and IDB tools provide very promising alternatives for different
decision making tasks. In this section we give examples of tasks that were in-
cluded in the tasks component of the user view in section 2.

3.1 Knowledge Extraction

DM and IDB methods are used in the knowledge extraction task to discover
knowledge that can be either encoded into the applications running the short
term control loops or integrated to the knowledge base of expert systems. As
an example of a knowledge extraction task we introduce a task of finding rules
and patterns for an alarm correlation engine. These tasks are typically executed
offline and the execution closely resembles the classical knowledge extraction
process [5].

Rule and pattern extraction. In a network management system there are
plenty of tools that use some sort of rule, pattern, or expression base to filter
incoming data and/or to identify different conditions in the network. These in-
clude, e.g., spam filters, alarm correlators, expert systems identifying faults and

Remarks on the Industrial Application of Inductive Database Technologies 203

so on. Knowledge bases of these applications require constant maintenance and
updating.

New rules can be found by analysing the collected data and identifying possi-
ble signs of searched conditions. When there appears to be a new kind of problem
that can not be dealt with the knowledge already included in the system, then
new rules have to be defined. Also, when such a system is for the first time
installed into the network, a rulebase has to be created and localised for that
particular network. This creation can be done by analysing the recent history
data and by identifying possible extensions to existing knowledge.

The extracted rules can be either based on propositional logic (e.g., rules
containing only event types) or predicate logic. The latter type of rules describe
dependencies between parameterised event types, so that an operator can see
not only event type sequences, but also what kind of parameter combinations
occur in the event sequences. These sequential patterns and rules derived from
them can be very helpful, since they represent real causalities in the network’s
behaviour.

3.2 On-Line Support for Tactical Decisions

Operators monitor the network state and events in the network elements to
ensure integrity and security in a telecom network. This monitoring is based on
data collected from the network elements. Suitable data for this purpose are,
e.g., different security application logs, and operating system and application
logs from the various nodes in the network.

Decisions made based on the monitoring are typically so called tactical deci-
sions. Their objective is to optimise performance of the network by tuning the
configuration or fixing different problems around the network. The decisions are
made on-line. This is to say that there are quite strict time limits for the tasks.
Typically analysed situations are searches for cells with lowered performance
and when such cells are found, analysis of their performance and surroundings
in order to identify the root cause for the trouble.

Performing routine searches for deviating behaviour. An operator anal-
yses the event or alarm log contents with the goal of finding indications of system
failures or security breaches. The analysis software presents him sufficient infor-
mation from which he recognises deviating behaviour and identifies the relevant
factors related to this deviation. Based on this information, more thorough anal-
ysis of the problem can be undertaken.

In practice, the operator browses the log data and views analysis reports
produced by the analysis system. An analysis report shows frequently occurring
log entry patterns, thus quickly giving an overview of the most common activities
in the network element. Individual occurrences of such log rows that belong to
some log entry pattern are removed from the analysis view. This reduces the
amount of shown data and makes it thus easier for the network monitoring
officer to find seldomly occurring, or unique, events in the network.

204 K. Hätönen, M. Klemettinen, and M. Miettinen

Investigating a discovered malfunction in the network. Every now and
then there occurs a malfunction in the network. Usually signs of such malfunction
are detected by, e.g., the alarm system that generates a set of alarms describ-
ing the situation. The task is to find out reasons for the alarms. The operator
investigates information that is related to the alarms and alarming elements.
He views the overall picture of the situation and focuses on interesting details
in that. To do this, the operator looks at views of logs that are related to the
alarming element. He analyses the alarm sequences and switches, if necessary, to
a view, where the details of all log entries coming from the element are visible.
The role of DM and IDB tools in this kind of task is to filter redundant event
sequences and to show connections between related alarms.

3.3 Off-Line Support for Strategic Decisions

In strategic decision making, system performance data, expected development
scenarios in customer behaviour and external factors are combined with the
risk policy and company values. The management of the company selects a
probable scenario of the future as a basis of decisions and defines required actions.
The data used for the scenario creation – especially if coming from external
sources – can be in various formats and requires interpretation for the DM
methods. Strategic decision tasks typically require either the same kind of on-
line support as tactical decision making described above, or they can be more
like the knowledge extraction tasks presented in section 3.1.

Churn analysis. An expert analyses data about customers who have recently
changed their operator away from the company. He tries to understand why they
left and if there was anything the company could have done better to keep the
customers. He pays attention especially to those customers and customer groups
who were among the most profitable ones. An outcome of the effort can be a list
of suggestions for improvements in marketing, pricing, and investment policies.
The analysis can be based on the traffic profiles of the users as well as events
preceding the change.

3.4 Data Management

IDB methods provide potential enhancements for different data management
tasks, for example, for semantic compression methods.

Event logs produced by different network elements and functions have to be
stored for a certain period of time. Security-related logs, for example, might be
needed several months or even years after their creation in order to properly
analyse security breaches that took place long time ago. Due to the huge volume
of the data it has to be compressed for storage. Such a form of compression should
be used that the data is all the time queryable without prior decompression.

This kind of semantic compression can be done by discovering patterns of fre-
quently repeating items from the log data and using these patterns as a codebook
for compressing the data. When log data arrive to be deposited in the log data

Remarks on the Industrial Application of Inductive Database Technologies 205

repository, they are mined for such frequent patterns. Some of these frequent
patterns (i.e. such that have the most suitable statistical properties) are selected
to be used in building a codebook that is used to encode the log data. When the
most suitable attribute patterns have been found, the log data are compressed
using the created codebook and stored in the repository in compressed format.

4 User Tasks and Solution Examples

The cInQ project has developed several techniques that can be used in assisting
telecommunication network operation tasks. Most of them are modifications and
enhancements for the calculation of frequent patterns and their derivatives. In
this section we discuss how they can be used to handle log analysis problems.

The telecommunication networks produce large amounts of different types of
events that are logged in central monitoring points. These events include log
entries reflecting normal operation of the network as well as alarm information
about faults and problems that occur.

The log files may be very large. During one day, millions of lines might be
accumulated into a log file. A solution to browse the data is either to search
for patterns that are known to be interesting with high probability or to filter
out patterns that most probably are uninteresting. A system can assist in this
but the evaluation of interestingness is left to an expert. To be able to make the
evaluation an expert has to check the found log entries. Often he has to return
to the original log file and iteratively check all probably interesting entries and
their surroundings.

In the log analysis, there are at least two kinds of problems present. In the
pool of discovered information - among the interesting pieces - there are facts,
e.g., patterns or relations, that have been generated between items or patterns of
items that can not have any interdependence with each other, and large amounts
of (often very similar) proper facts that are of no or very low interest. These two
problem areas have characterised the work in the telecommunications application
area during the cInQ project.

We show how frequent patterns and their derivatives can be used to assist
in different types of telecom operation tasks and what kind of issues have to
be considered in applying these techniques. We start in section 4.1 with tasks
concerning knowledge extraction either for different tools or off-line decision
making. Both of these tasks can be assisted by data mining projects following
the classical knowledge extraction process [5]. Then we discuss on-line support
for tactical decision making and special system functionalities, which require
good usability and understandability or even automation from the tools used.

4.1 Knowledge Extraction for Tools and Off-Line Tasks

Frequent patterns are value or event combinations that occur often together in
the data. They provide information, which can be used to find rules or patterns
of correlated or otherwise searched event combinations. Thus they are useful in

206 K. Hätönen, M. Klemettinen, and M. Miettinen

knowledge discovery tasks described in sections 3.1 and 3.3. A pattern is called
frequent if the number of its occurrences in the data is larger than a given
threshold. The patterns capture common value combinations that occur in the
logs and often they cover also most of the volume of the data. A formal definition
of frequent patterns can be found, e.g., in [6].

The execution of algorithms for finding frequent patterns easily becomes un-
tractable. Algorithms try to overcome this by using effective methods to prune
and limit the search space. Unfortunately, however, the log data contain a lot of
redundant value combinations that make most of these algorithms reach their
limits very soon. This happens especially when the interesting patterns are not
those that occur most often in the data.

Frequent patterns provide a representation of the data for several methods
that extract different types of rules from the data set. These rules can then be
integrated to existing knowledge bases in industrial systems. Such formalisms
are, e.g., association rules and structural rules.

Association rules [1,2] describe local correlations between values in the
database. Their direct derivative, episode rules (see, e.g. [14]), find frequent
event type combinations. The biggest problem with algorithms searching for
rules is that they easily provide an overwhelming amout of them. Different types
of methods, like statistical descriptors or interactive browsing environments have
been suggested in order to simplify identification of interesting rules.

Another form of rules that can be found based on frequent patterns are so
called structural rules. For finding structural rules in data streams, modified
sequence mining methods can be employed. One approach is the algorithm Mi-
neSeqLog [13]. These algorithms are able to find not only propositions between
event types like episode rules but also the parameter combinations attached to
the event types. Also the usability of these rules suffers from the easily over-
whelming size of the result.

When we consider to use DM and IDB tools in telecommunication network
operation, we have to take into account what is available for the end user and
what is not. If we look at figure 2 in section 2, we can see that the technology as
well as persons components consist of strong competence on the domain. There
are plenty of knowledge and data about the network and its structure as well
as data collected from the network. How would it be possible to take advantage
of them? One possibility is to use the available structural information to steer
the analysis and to filter the results. These results, achieved by the DM and
IDB methods, can then be verified with available legacy network inspection and
analysis solutions.

Domain structures in filtering irrelevant frequent patterns. In the net-
work there are all the time plenty of independent processes going on. These
processes emit alarms, when they get disturbed by faults. It often happens that
many independent processes get simultaneously affected by a fault and they all
start to alarm, not necessarily about the fault itself, but about its secondary
reflections. Thus, generated alarms and log entries actually carry second-hand

Remarks on the Industrial Application of Inductive Database Technologies 207

information about the incident. They do not necessarily identify the primary
fault at all.

Alarms that network processes emit are collected to centralised monitoring
points. This makes the analysis even more difficult, because at each monitoring
point, the symptoms and reflections of separated problems are merged into one
information flow. The combined flow also contains entries caused by normal
maintenance operations or by natural phenomena like thunderstorms.

A starting point for a network analyst in a fault condition is always localisation
and isolation of the fault, i.e., finding the area where the problem is located and
identifying all network elements that are affected by the fault. Localisation and
isolation is based on the assumption that it is probable that the fault itself is
local although its reflections are widespread. In this situation alarms coming from
the same network element or its direct neighbours are related to one reflection
of the fault. After the localisation has been done it is easier to do the actual
identification of the fault.

Episode and association rule based techniques [2,14,9,10] have been used in
semi-automatic knowledge acquisition from alarm data in order to collect the
required knowledge for knowledge based systems like alarm correlators. Given
such rules holding in an alarm database, a fault management expert is able to
verify whether the rules are useful or not. Some of the rules may reflect known
causal connections, some may be irrelevant, while some rules give new insight
to the behaviour of the network elements. Selected rules can be used as a basis
for correlation patterns for alarm correlation systems. However, if no constraints
are applied, the discovered result set of, say, episode rules might become huge
and contain mostly trivial, uninteresting or even impossible rules.

The basic methods for finding episodes use event distances in time but ignore
all the other knowledge about the domain. There is, however, plenty of other
useful domain knowledge, e.g., topological information, available from telecom-
munications networks [8]. Also different taxonomies and definitions of control
hierarchy and data flows between objects are usually available. This background
knowledge can be used as a basis for domain specific distance measures. These
distance measures can then be used to prune out accidental event occurences
that are caused by simultaneous but independent phenomena in the network.

Distance measures. In a general case a data set can be seen as a collection of
events so that each event has attached properties, which include event type and
its occurrence time. Traditionally event time and type have been seen as more
important than other properties such as cancellation time and severity of the
event. However, this is not necessarily always the case. Any one of the properties
can be used as a target for pattern mining. Depending on the application and
the data set, some other properties than traditional time and type might be even
more informative.

In earlier analyses the time has been used as the only property that separates
possible event patterns from each other. In our research, also domain structures
have been introduced for the same purpose [8]. In general, there might be several
different types of constraining distance measures that could be used. The most

208 K. Hätönen, M. Klemettinen, and M. Miettinen

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Frequent set size

N
um

be
r

of
 fr

eq
ue

nt
 s

et
s

c=0
c=1
c=2
c=4
No constr.

Fig. 3. Number of frequent sets with different values of constraining topological
distance

important ones are property distances like distance in time, domain distances,
and characteristics distances like the frequency of the type in the data set. The
fourth type of constraints are the ones that are deduced from the previous mining
results or that are set by the user, in order to reduce the amount of results and
to focus on the most interesting phenomena.

Property distances are distance measures that are defined using event prop-
erties. Such a property can be, e.g., beginning or cancellation time of an event.
These can be computed without seeing anything else than a data set or part of
it. The distance between beginning or cancellation times of two events might be
computed without knowing anything else about the domain.

Domain distances are defined by using additional domain knowledge, e.g., a
control structure of a telecommunication network. In order to be able to compute
distances over these structures, additional information of the domain in a form
of a model is needed.

Characteristics distance is defined by the local statistical characteristics that
can be computed from the data set. For example, frequencies of event types or
average activity times of their instances can differ from each other so much that
it is obvious that event types can not be related to each other. Another such a
characteristic that can separate event types, is the distribution over time. An
event type’ s occurrences can be evenly distributed all over the data set from
its beginning to its end. On the other hand, another event type might be as
numerous in the data but it might be concentrated in a short peak.

Remarks on the Industrial Application of Inductive Database Technologies 209

Using of this kind of constraints that are based on knowledge available at
the user organisation, improves quality of results of DM tasks. For example,
according to our studies [8], as has been depicted in figure 3, introducing these
constraints and domain specific distance measures reduced the size of the result-
ing set of association and episode rules. The average intrestingness of a single
rule was also increased because purely accidental rules were not included in the
result. Figure 3 shows how the number of frequent sets of different sizes varies,
when the distance constraint c is changed. The distance constraint defines how
many steps over the network topology there can be between sources of events
so that events can be included in an occurrence of a frequent episode. When
c = 0, then the events have to come from the same element. As can be seen, if
the constraint is loosened the number of sets soon becomes overwhelming.

4.2 On-Line Support for Tactical Decision Making

In on-line support tasks described in section 3.2 the domain expert is alone.
Tasks emerge constantly and there is no time for consultation nor money to
hire analysis experts to assist the domain experts all the time in their daily
routines. There are some network problems that repeat every now and then
and in which a network expert can easily identify the problem and find the
reason for it. However, there are plenty of situations in which the problem or its
symptoms are practically unknown and where the cause is hidden somewhere in
the network. Especially in these situations the tools that are available for the
analysis should be able to parse and structure information from the data in such
a way that a domain expert is able to find the reason for the trouble.

If we again think about the strengths and resources that a telecommunica-
tion operator organisation has for these situations, we find out that the domain
knowledge, data about the network structure and its performance measurements
and logs are the assets to be used. As was mentioned above, the organisations
hardly have deep knowledge on DM or IDB methods. Therefore, the tools and
methods have to be simple and usable. As the time requirements are strict, the
tools have to be such that no or only little iteration is needed.

These kind of requirements set hard limitations for the developers. As the situ-
ations and problems, where the tools are needed, can be diverse, the information
requirement identification is hard. The tools have to provide understandable re-
sults for a domain expert in different situations and a domain expert has to be
able to focus the investigation on the essential information.

The requirements lead to solutions that are general in a way that the same
method can be applied to data from multiple sources without big modifications
in parameterisation. The user can then focus the analysis by selecting the data
sources in such a way that the appropriate information is included in the data.
The number of methods must not be large and they must be fairly simple to
use and understand, since the user training for each method has to be provided
for the domain experts. The methods have to provide information by using the
same concepts and terminology that domain experts are using in their work. If
the methods can extract such information out of the data and provide linkage

210 K. Hätönen, M. Klemettinen, and M. Miettinen

to legacy solutions that can be used to verify the findings, then the experts are
most probably willing to accept the new tools to their daily use.

Comprehensive log compression for on-line log analysis support. As
was mentioned above, frequent patterns capture the common value combinations
that occur in the logs and often contain most of the volume of the data. A set
of frequent patterns can be condensed furthermore by means of, e.g., closed fre-
quent itemsets [17,3]. Closed sets form natural inclusion graphs between different
frequent sets. This type of representation is quite understandable for an expert
and can be used to create hierarchical views. These condensed representations
can be extracted directly also from highly correlated and/or dense data, i.e., in
contexts, where the approaches that compute the whole collection of frequent
patterns are intractable [17,3,20,18]. The condensed representations can also be
used to regenerate efficiently the whole collection of frequent patterns, possibly
partially and on the fly.

Comprehensive Log Compression (CLC) [6] is a method based on the compu-
tation of a condensed representation of frequent patterns. We use this represen-
tation as an entry point to the data. The method provides a way to dynamically
characterise and combine log data entries before they are shown to a human
observer. It finds frequently occurring patterns from dense log data and links
patterns to the data as a data directory. It is also possible to separate recurring
data and analyse it separately. In many cases, this reduces the amount of data
needed to be evaluated by an expert to a fraction of the original volume.

This type of representation is general w.r.t. different log types. Frequent pat-
terns can be generated from most of the logs that have structure and contain
repeating symbolic values in their fields. The CLC method summarises the most
frequent value combinations in entries. This gives either a human expert or
computationally more intensive algorithms a chance to continue with data that
doesn’t contain too common and trivial entries. Based on our experience with
real-life log data, e.g., large application and firewall logs, the original data set of
tens of thousands of rows can often be represented by just a couple of identified
patterns and the exceptions not matching these patterns.

In figure 4 we show two days of firewall log data. The number of frequent sets
computed with different threshold values varies in both examples around 10 000.
We were able to reduce set of frequent sets into a set of about one hundred closed
sets. From these closed sets we were able to select about 10 that covered more
than 98% of lines in each data set. In the first data set (Day 1) there were 5 358
lines and in the second set (Day 2) there were 15 588 lines. Please, note that
the scale of the y-axis is logarithmic.

The CLC-method extracts metainformation from the log transactions and
uses it to summarise redundant value combinations without losing any essential
information. The method first analyses the log data and searches for closed
itemsets. When linked with the transactions, which support them, these sets
and their inclusion graph can be used as navigational links to the dataset.

Remarks on the Industrial Application of Inductive Database Technologies 211

51050100
10

0

10
1

10
2

10
3

10
4

10
5

Frequency threshold (#)

Day1

Frequent sets
Closed sets
Selected sets

51050100
10

0

10
1

10
2

10
3

10
4

10
5

Day2

Frequency threshold (#)

Frequent sets
Closed sets
Selected sets

Fig. 4. Number of different types of results derived from two days of firewall log data

4.3 IDB for Data Management

DM and IDB methods can be integrated also to the lower levels of the analysis
systems. This is actually one of the targets that have been set for the IDB
research. The results can be used to speed up and simplify further analysis
and minimise the storage space needed for the data and intermediate results.
Requirements that can be set for this kind of integrated functionalities are,
however, quite strict. The integrated functions have to work in feasible time and
space with all kinds of available data, they have to be well tested, they have to
work automatically without human operation, and they must not interfere with
the legacy solutions that are used simultaneously.

Queryable log compression for data management. Closed sets can further
be used to create so called condensation formulae. These formulae are used to
identify and remove repetitive value combinations from log entries represented
in database as transactions. The condensation formulae are stored together with
the remaining parts of the data. If the original log file or its representation as
a database table is needed, the formulae can be used to restore it completely –
no information will be lost. This compression method is called Queryable Log
Compression (QLC) [7]. It is an enhancement of the CLC method. In the QLC
the data are compressed in such a way that it is possible to evaluate queries on
the compressed data without a preceding decompression operation.

5 Discussion

In this article we have discussed several different aspects that affect the accep-
tance of advanced research results to industrial applications. Probably the most
important thing is to understand the difference between the user view and the
researcher/developer view: how they differ and what the requirements are that

212 K. Hätönen, M. Klemettinen, and M. Miettinen

users have to set for any new technology, method or system before it can be
accepted.

During the cInQ project we made a couple of observations about the factors
that help academic results to mature and to realise in products. These obser-
vations are related to research target setting, relations between technology and
persons, and relations between structure and persons components in the user
view.

In setting research objectives, challenging targets are needed to motivate re-
searchers in their work. These targets are some technology generations ahead
of the current solutions used in industrial applications. To overcome this gap
between legacy systems and technologies developed as research results is a chal-
lenge. Because of this it can happen that the research targets are set high,
researchers achieve almost the targets and the industry is able to adopt only
basic steps leading to the new results. However, even these basic steps might be
valuable for the industry.

As was found also in research on planning tool development [16], it is vital
for any developed network analysis or management tool to provide immediate
results for domain experts. This observation can be made also from our research
history. If such results exists, and if it is easy for the domain expert to use the
tool and to interpret its results, he is willing to spend his time on playing around
with the tool and provide needed domain knowledge and ideas to the developers.
Without this kind of knowledge sources, academic and industrial reseachers will
be left out in the cold to play with demonstration data sets without a real
connection to the application domain and its peculiarities.

Another observation that relates to the connection between the technology
and persons components in the user view, was that the phase results of the
research, e.g., demonstration prototypes have to be such that they are fairly easy
to interface to the existing infrastructure. This is important because otherwise
the users are not able to test results in their own environment with their own
data, which is needed to create confidence in the new methods. If this is not
done, the users are likely to abandon the results with arguments like “Looks
nice but our data is much too complex!”

Close connection to existing systems helps researchers also to understand
where the actual problems are. This is important especially in understanding
what kind of data will be available and what their properties concerning volume,
quality and frequency are. This might be used in demonstrating the benefits of
the new technology. For example, the starting situation and its problems can be
used to show the starting point of the research. It is then possible to create a
contrast against this situation and show how new methods and ways of doing
things improve the situation remarkably.

One requirement that relates to the structure component of the user view, is
that in the user environment people know a lot about the domain and its opera-
tion. They might be totally ignorant with respect to DM or IDB techniques. For
them the most important objective is to get the network cells working properly.
If tools are too difficult to use or they require constant adjustment or multiple

Remarks on the Industrial Application of Inductive Database Technologies 213

iterations they will not be used if the expected results won’t be transcendent
when compared to results that can be acieved with conventional tools.

6 Conclusions

From an industrial perspective, basic research on new scientific methods becomes
concrete through new innovations and evidence on how these new innovations im-
prove the state of the art methods currently exploited in the companies. To prove
the advantages of innovations, notable efforts shouldbe spent so that the evaluation
is not only done superficially, but that the methods and concepts are understood
in a way that can lead to dissemination within the company – and beyond.

Let’s take as a concrete example the cInQ EU project the work of which this
paper refers to. During the first year of the cInQ project, the research concen-
trated on new innovations (algorithms, concepts, theories, etc.). The second year
concentrated more on experiments and evaluation of the methods developed. For
example, we made in-depth tests with different closed set algorithms in order
to evaluate their performance compared to the earlier solutions. The motivation
behind the tests was to show that the algorithms were faster than the existing
ones and that the limits of tractable computation could be pushed forward.

In the spirit of the planned growing trend during the second cInQ year, the
last year of the cInQ project concentrated on application, evaluation and dissem-
ination of the cInQ project methods and results. During the third year we took
up the basic questions presented already in the introduction: “Does the research
answer the needs of the community, industry and/or the markets?” and “Do the
new algorithms and research results bring added value w.r.t. the available and
existing solutions?”. This was because theoretically nice properties do not neces-
sarily turn into exploitable solutions. How to convince research community and
industry that IDB and condensed representations are useful (especially while the
research area is still young and evolving), and to ensure successful continuation
for the work?

From an industrial and exploitation perspective, the results of the cInQ
project were promising. For example, biologists received new information from
genes thanks to algorithms and methods developed; e.g., an original technique
based on Galois connections that processes the transposed matrices while com-
puting the frequent sets of genes [19]. Likewise, we were able to increase in-house
competences and received also concrete evidence – based on the experiments and
evaluations performed – on the practical usefulness of both constraint-based min-
ing [8] and query-based approach (Comprehensive Log Compression (CLC) [6]
and Queryable Lossless Log Database Compression (QLC) [7] methods building
upon the closed itemsets [17,3] approach).

As the positive experiences from the cInQ project show, through fruitful com-
bination of innovation and evaluation, the results of a basic research project
can have possibilities to “sneak in” to research prototypes within companies, to
generate more application-oriented projects (even bilateral) between academic
and industrial partners, and provide added value to the research community in
general.

214 K. Hätönen, M. Klemettinen, and M. Miettinen

However, as discussed in this paper, there is still a long way to go in under-
standing the needs of the end users, matching the developer and user perspec-
tives, dealing with the challenges in industrial application due to, e.g., legacy
systems, and aligning the basic research with exploitation. If we keep in mind
these challenges and learn to act accordingly, we are one step further in building
bridges between basic research and industrial application.

Acknowledgements

Part of this research was co-funded by consortium on discovering knowledge
with Inductive Queries (cInQ). The cInQ project was funded by the Future
and Emerging Technologies arm of the IST Programme (Contract no. IST-2000-
26469). We also wish to thank all the partners and colleagues from the cInQ
project for the co-operation.

References

1. Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings SIGMOD’93, pages 207–
216, Washington, USA, May 1993. ACM Press.

2. Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast discovery of association rules. In Advances in Knowledge
Discovery and Data Mining, pages 307–328. AAAI Press, 1996.

3. Jean-François Boulicaut and Artur Bykowski. Frequent closures as a concise rep-
resentation for binary data mining. In Proceedings PAKDD’00, volume 1805 of
LNAI, pages 62–73, Kyoto, JP, April 2000. Springer-Verlag.

4. T. Bui, K. Higa, V. Sivakumar, and J. Yen. Beyond telecommuting: Organizational
suitability of different modes of telework. In Proceedings of the 29th Annual Hawaii
International Conference on System Sciences, pages 344–353, Maui, Hawaii, USA,
1996.

5. Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data
mining to knowledge discovery: An overview. In Usama M. Fayyad, Gregory
Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, pages 1 – 34. AAAI Press, Menlo
Park, CA, 1996.

6. Kimmo Hätönen, Jean François Boulicaut, Mika Klemettinen, Markus Mietti-
nen, and Cyrille Masson. Comprehensive log compression with frequent patterns.
In Proceedings of Data Warehousing and Knowledge Discovery - DaWaK 2003
(DaWaK’03), Prague, Czech Republic, Sept 2003. Springer-Verlag.

7. Kimmo Hätönen, Perttu Halonen, Mika Klemettinen, and Markus Miettinen.
Queryable lossless log database compression. In Proceedings of the 2nd Inter-
national Workshop on Knowledge Discovery in Inductive Databases - (KDID’03),
Cavtat-Dubrovnik, Croatia, Sept 2003.

8. Kimmo Hätönen and Mika Klemettinen. Domain structures in filtering irrelevant
frequent patterns. In Pier Luca Lanzi, Rosa Meo, and Mika Klemettinen, editors,
Database support for data mining applications, number 2682 in LNCS. Springer-
Verlag, 2004.

Remarks on the Industrial Application of Inductive Database Technologies 215

9. Kimmo Hätönen, Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, and
Hannu Toivonen. Knowledge discovery from telecommunication network alarm
databases. In Proceedings of the 12th International Conference on Data Engineer-
ing (ICDE’96), pages 115 – 122, New Orleans, Louisiana, February 1996. IEEE
Computer Society Press.

10. Kimmo Hätönen, Mika Klemettinen, Heikki Mannila, Pirjo Ronkainen, and Hannu
Toivonen. TASA: Telecommunication alarm sequence analyzer, or ”How to enjoy
faults in your network”. In Proceedings of the 1996 IEEE Network Operations and
Management Symposium (NOMS’96), pages 520 – 529, Kyoto, Japan, April 1996.
IEEE.

11. P. Keen. Information systems and organizational change. Communications of the
ACM, 24(1):24–33, 1981.

12. H Leavitt. Applying organizational change in industry: Structural, technological
and humanistic approaches. In J. March, editor, Handbook of Organizations. Rand
McNally, Chicago, Illinois, USA, 1965.

13. Sau Dan Lee and Luc De Raedt. Mining logical sequences. In Pier Luca Lanzi,
Rosa Meo, and Mika Klemettinen, editors, Database support for data mining ap-
plications, number 2682 in LNCS. Springer-Verlag, 2003. (to appear).

14. Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery, 1(3):259 – 289,
1997.

15. F. Niederman and J. Trower. Industry influence on IS personnel and roles. In
Proceedings of the 1993 Conference on Computer Personnel Research, pages 226–
233, St Louis, Missouri, USA, 1993.

16. Jukka K. Nurminen. Modelling and implementation issues in circuit and network
planning tools. PhD thesis, Helsinki University of Technology, Systems Analysis
Laboratory, P.O.Box 1100, FIN-02015 HUT, FINLAND, May 2003.

17. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of
association rules using closed itemset lattices. Information Systems, 24(1):25–46,
January 1999.

18. Jian Pei, Jiawei Han, and Runying Mao. CLOSET an efficient algorithm for mining
frequent closed itemsets. In Proceedings SIGMOD Workshop DMKD’00, Dallas,
USA, May 2000.

19. François Rioult, Céline Robardet, Sylvain Blachon, Bruno Crémilleux, Olivier Gan-
drillon, and Jean-François Boulicaut. Mining concepts from large sage gene ex-
pression matrices. In Proceedings of the 2nd International Workshop on Knowledge
Discovery in Inductive Databases - (KDID’03) co-located with ECML-PKDD 2003,
Cavtat-Dubrovnik, Croatia, Sept 2003.

20. Mohammed Javeed Zaki. Generating non-redundant association rules. In Proceed-
ings SIGKDD’00, pages 34–43, Boston, USA, August 2000. ACM Press.

How to Quickly Find a Witness

Daniel Kifer1,�, Johannes Gehrke1, Cristian Bucila1, and Walker White2

1 Cornell University
2 University of Dallas

Abstract. The subfield of itemset mining is essentially a collection of algo-
rithms. Whenever a new type of constraint is discovered, a specialized algorithm
is proposed to handle it. All of these algorithms are highly tuned to take advan-
tage of the unique properties of their associated constraints, and so they are not
very compatible with other constraints. We present a more unified view of mining
constrained itemsets such that most existing algorithms can be easily extended to
handle constraints for which they were not designed a-priori. We apply this tech-
nique to mining itemsets with restrictions on their variance — a problem that has
been open for several years in the data mining community.

1 Introduction

Constrained Itemset Mining is a very important data mining problem [15]. It can be
stated as follows. Let I be a set of distinct “items” (where an item is an undefined prim-
itive). A transaction t is a set of items (a nonempty subset of I) and a database D is a
multiset of transactions. In constrained itemset mining, we would like to find all subsets
of I that satisfy a constraint, a user-defined property designed to tailor the output of the
data mining algorithm to the user’s preferences. Such constraints can be the traditional
“minimum support constraint”, where we are only interested in sets X ⊆ I such that
there exist at least s transactions t ∈ D with X ⊆ t, or more complex constraints such
as “the average price of the items has to be larger than c”, or “the variance of the prices
of the items has to be smaller than c”. Three important classes of constraints have been
studied: monotone, antimonotone, and convertible constraints [15,18]; each class has
its own set of efficient mining algorithms [14,18,16,6,7,8]. Some of these algorithms
have a certain degree of flexibility – they can efficiently mine constraints from several
of these classes simultaneously.

For example, several algorithms can simultaneously mine monotone and antimono-
tone constraints [16,6,7,8], or mine convertible combined with either monotone or anti-
monotone constraints [18]. Unfortunately, as we will show later, the flexibility of these
algorithms is very limited, especially when convertible constraints are involved.

We present a unified framework for constrained itemset mining that applies to any
type of constraint. Our framework is based on the concept of efficiently finding a wit-
ness, which is a single itemset X on which we can test whether the constraint holds.
This test will provide information about properties of other itemsets. That information

� Supported by NSF.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 216–242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How to Quickly Find a Witness 217

can then be used for pruning the search space. The notion of a witness has concep-
tual implications. For example, we now can efficiently mine all three types of con-
straints simultaneously (by finding witnesses for each constraint), and we can also mine
complicated constraints that are neither monotone, antimonotone, nor convertible. As a
demonstration, we will introduce an efficient algorithm for finding a witness for con-
straints involving the variance of a set of items.

In developing this framework, we make the following contributions:

– We introduce the concept of a witness, which decouples the strategy for traversing
the search space from the efficiency of pruning it (using constraints). This trans-
forms the traversal strategy from a necessary restriction on an algorithm into an
optimization heuristic. To illustrate the concept of a witness, we show a very effi-
cient algorithm for finding a witness for a large class of functions which we call
stable functions. (Section 2)

– We show how to efficiently find a witness for the constraints var(S) ≤ c and
var(S) ≥ c, and therefore show how to prune using those constraints - a prob-
lem that has been open in the literature for several years. (Section 3)

– We outline several heuristics that further improve the efficiency of finding wit-
nesses. (Section 4)

For the remainder of this section, we take the reader on a short tour of the relevant
issues motivating our approach. We introduce some terminology and helpful notation in
Section 1.1, and then give an overview of our results in Section 1.2. Readers interested
in the more technical aspects should continue on to Section 2.

1.1 Preliminaries

Let I be a set of distinct “items” (where an item is an undefined primitive). A transaction
t is a set of items (a nonempty subset of I) and a databaseD is a multiset of transactions.
Given a function whose domain is I, such as price : I → R, we extend it to sets of
items in the natural way, e.g., price(S) is the multiset {price(x) : x ∈ S}. We are
also given a real-valued function whose domain is 2I , the powerset of I. An example
of such a function is support(S), which is the number of transactions in D that are
supersets of S. We will use such functions to define constraints. For example, if we
want to find all sets of items that have support greater than some constant c, we say we
are mining with the constraint support(S) > c.

Let us now examine some classes of constraints.

Definition 1 (Antimonotone). A constraint P is antimonotone if whenever A ⊆ B ⊆
I then P (B)⇒ P (A), or equivalently, ¬P (A) ⇒ ¬P (B).

Definition 2 (Monotone). A constraint Q is monotone if whenever A ⊆ B ⊆ I then
Q(A)⇒ Q(B), or equivalently, ¬Q(B)⇒ ¬Q(A).

Note that both antimonotonicity and monotonicity are useful properties. Once we
know that itemset A does not satisfy an antimonotone constraint P we don’t need to
look at supersets of A, and if itemset B satisfies P then we know that all subsets of B

218 D. Kifer et al.

satisfy P . Similarly, once we know that B does not satisfy a monotone constraint Q we
don’t need to look at B’s subsets, and if A satisfies Q then so do all supersets of A.

These two classes of constraints have another useful feature: they are both closed
under logical conjunction (AND). If P1 and P2 are antimonotone (resp., monotone)
constraints then so is P1 ∧ P2 and we can use existing algorithms to prune with this
compound constraint.

To define convertible constraints, we need to discuss the notion of a prefix. Fix an
ordering on the elements of I. We can therefore treat S1 ⊆ I and S2 ⊆ I as two
sequences. Let �1 be the length of S1, and �2 be the length of S2. Then S1 is a prefix of
S2 if �1 ≤ �2 and the first �1 elements of S2 are exactly S1.

Definition 3 (Convertible [18]). A constraint R is convertible monotone if there is
an ordering ω1 such that whenever S1 is a prefix of S2 then R(S1) ⇒ R(S2) (i.e.,
¬R(S2) ⇒ ¬R(S1)) and R is convertible antimonotone if there is an ordering ω2

such that if T1 is a prefix of T2 then R(T2) ⇒ R(T1) (i.e. ¬R(T1) ⇒ ¬R(T2)). R is
convertible if it is both convertible monotone and convertible antimonotone.

In order to prune with convertible constraints efficiently, an algorithm must ex-
amine itemsets in a restricted order. An example of a convertible constraint is R ≡
avg(price(S)) > c. If the items are sorted by price in ascending order then R is con-
vertible monotone; if the items are sorted in descending order then R is convertible
antimonotone. Similarly, the constraint avg(price(S)) < c is also convertible.1 But
suppose we want to mine with the following constraint that involves the functions price
and weight: (

avg(price(S)) ≤ c
)
∧
(

avg(weight(S)) ≤ d
)

If we assume that price and weight are not correlated, then this conjunction of convert-
ible constraints is not convertible. Thus existing algorithms for convertible constraints
will not prune efficiently - they will use only one of these constraints and then post-
process the output. This is an unfortunate situation, since many interesting predicates
are conjunctions of convertible monotone or convertible antimonotone constraints.

1.2 Catching a Witness: An Overview

As an elementary example, suppose that I = {a, b, c, d} and that database D consists
of the following sets: {a, b, c}, {b, c, d}, {b, c},{b, d}. Assume we are interested in all
subsets of I that have support ≥ 2. To find these sets, we must enumerate all possible
subsets of I and then test this property for each of them. At one point we will consider
the set {a}. It is included in only one set in D and therefore it is not interesting to
us. We could add more elements to {a}, in fact we could add any subset of {b, c, d}
(call this set F({a})) to get another set in our enumeration. However, support is an
antimonotone constraint and so any set containing {a} will have support less than 2.
Thus we can prune from consideration all sets X such that {a} ⊆ X ⊆ F({a}) ∪ {a}
— 8 sets in all. Let us call this collection of sets A({a}). We say that {a} is a negative

1 Note that we can replace < by ≤ and > by ≥ without changing any of the properties stated so
far.

How to Quickly Find a Witness 219

{}

{b}

{b,c}

{b,c,d}

{a}

{a,c}

{a,c,d}

{a,b}

{a,b,c}

{a,b,c,d}

{c}

{a,d}

{d}

{b,d} {c,d}

{a,b,d}

Fig. 1. An enumeration of a, b, c, d

witness forA({a}) because once we know that our constraint does not hold for {a}, we
know it does not hold for any set in A({a}). If {a} had been included in more than one
transaction in D, then we could not conclude anything about all sets inA({a}) and we
would have to examine them further. Thus having {a} as a witness for A({a}) allows
us to prune a large part of the search space. In general, if P holds for {a} implies P
holds for all sets inA({a}) then we call {a} a positive witness forA({a}) with respect
to P and a negative witness with respect to ¬P .

A property P can have both positive and negative witnesses. If X is a positive wit-
ness then P (X) = true implies that P (Y) = true for all Y ∈ A(X) and so we save
time by not evaluating P (Y). If X is a negative witness (then it is a positive witness for
¬P) then P (X) = false implies that P (Y) = false for all Y ∈ A(X) and so we
save time by pruningA(X).

Let us investigate how witnesses actually work when mining with constraints. Each
itemset mining algorithm enumerates candidate itemsets in some order, for example
through a tree structure (see Figure 1 for an enumeration for a, b, c, d) that is traversed
in a depth-first or breadth-first manner. When we examine a set X , we need to find
a witness for the subtree rooted at X . In simple cases, such as mining with a single
antimonotone constraint, X is this witness, whereas in other cases finding a witness is
not so trivial.

For an example where X is not a witness for A(X), suppose that the prices of
a, b, c, d are 1, 7, 6, 5, respectively, and that we are interested in all sets whose aver-
age is at least 6. If we examine node {a} in Figure 1 then clearly the average price
of {a} does not tell us much about the average price of nodes in A({a}), the subtree
rooted at {a}. However, if we add to {a} all items with price ≥ 6 we obtain the can-
didate witness {a, b, c}. Since we added as many items with price ≥ 6 as possible, if
{a, b, c} does not have an average≥ 6, then no set inA({a}) can have an average≥ 6,
and thus {a, b, c} is a negative witness. The average price of {a, b, c} actually is less
than 6 and so same is true for any set in A({a}). Thus this witness allows us to prune
the complete subtree. Had the price of item a been 5 or higher, the witness would not
give us enough information and we would have to traverse A({a}). Thus finding wit-
nesses for constraints involving an average is rather straightforward: we add all items
with value greater than the threshold to obtain the witness itemset, and then we test its
average.

220 D. Kifer et al.

Now let us consider a more difficult case. Assume that our constraint states that the
variance of the prices must be ≤ k (or ≥ k) for some constant k. Now when we ex-
amine node {a}, good witnesses are elements inA({a}) that have maximal or minimal
variance. But how do we find an element with maximal variance? Intuitively, the vari-
ance of a set is large if the elements are far away from the average. This motivates the
following simple algorithm: we add to {a} the item x that is furthest from the average
of {a}, then add the item y that is furthest away from the average of {a, x}, etc. This
simple algorithm overlooks the subtlety that we want to add elements that are furthest
away from the average of the final witness, rather than the average of {a} – but we
do not know the average of the final witness a priori. Nevertheless, as we will show in
Section 2, a variant of this algorithm actually finds the itemset with maximal variance.

Now let us consider the case where we want to find an itemset with minimal variance.
Intuitively we want to include items that are close to the average of the final witness,
but not items that are far from the average. Here we run into the same subtlety — the
average we are talking about is the average of the witness, not the average of {a}.
These subtleties present significant hurdles to the development of an efficient algorithm
for finding a witness. As examples, assume that we are currently examining node X in
a search tree. The following two approaches are doomed to fail:

First Algorithm

1. Start at C = I (all of the items).
2. Remove from C the element in C \ X which is furthest away from the current

average of C, and return true if this new set has variance ≤ k
3. Repeat step 2.

Second Algorithm

1. Start at C = X .
2. Add to C the element closest to avg(C), and return true if this new set has variance
≤ k

3. Repeat step 2.

We can construct an example where both algorithms fail to return the correct witness.
Let X be {45, 55}, the set of two items with prices 45 and 55, respectively. Assume that
the subtree rooted at X contains the following items: 1, 000, 000 items with price 100;
999, 999 items with price 0; one item with price 30 and another item with price 15.
From this example it is clear that there is only one set with minimal variance and we
obtain it by adding to X all elements with price 100. Let k be slightly larger than the
minimal variance but smaller than the variance of any other set containing X . The first
algorithm will fail because it will add the item with price 30. The second algorithm will
fail because the average of all prices is slightly less than 50, and thus the algorithm will
remove all items with price = 100.

From this example we see that we can lower the variance by adding a “dense clus-
ter” — many items with similar values. If we order the items on a line by price and
slide an appropriately sized window, we may be able to find a good cluster that lowers
the variance enough. In Section 3.2 we will explain the structure of such a window.
However, the size of the window depends not only on the values of the elements in the

How to Quickly Find a Witness 221

window, but also on the number of elements the window contains. In fact, as we slide
the window, it can shrink: as the left endpoint of the window moves to the right, the
right endpoint of the window might move to the left! In Section 3.2, using subtle rea-
soning about the structure of the space, we describe an algorithm that finds a witness in
time linear in the number of items.

2 Witnesses

The execution of a typical data mining algorithm for antimonotone constraints looks
like a tree. At the root is the empty set and all other nodes are non-empty sets of items. A
child is a superset of its parent and contains one more item than its parent (see Figure 1
for an example). Let n be some node in the tree. Let B(n) be the set of items associated
with n, and let Free(n) be the collection of items that can be added to B(n). Free(n)
is the minimal set such that for any descendant n′ of n, B(n′) = B(n) ∪ J where
J ⊆ Free(n). For example in Figure 1, if B(n) = {a, b} then Free(n) = {c, d}. Let
A(n) be the collection of sets X such that B(n) ⊆ X ⊆ B(n) ∪ Free(n). As is done
in practice, we assume constraints have the following form: f(X)#c where # is either
<,≤, > or ≥; c is a constant; X is a set; and f is a real-valued function whose domain
is 2I , the powerset of I.

Definition 4 (Witness). Given a fixed constant c, node n and a function f : 2I → R,
a set Yn ∈ A(n) is called a large witness if

f(Yn) ≤ c ⇒ ∀X ∈ A(n) : f(X) ≤ c

A set Zn ∈ A(n) is called a small witness if

f(Zn) ≥ c ⇒ ∀X ∈ A(n) : f(X) ≥ c

For a general predicate P , Wn ∈ A(n) is a positive witness if

P (Wn) = true⇒ ∀X ∈ A(n) : P (X) = true

and Wn is a negative witness if

P (Wn) = false⇒ ∀X ∈ A(n) : P (X) = false

The intuition behind this nomenclature is that a set in A(n) that maximizes f (over
A(n)) is a large witness and a set that minimizes f is a small witness. When it is unam-
biguous, the notational dependency on n will be dropped. We will use Y to represent a
large witness and Z to represent a small witness. Note that

f(Y) < c⇒ ∀X ∈ A : f(X) < c

and
f(Z) > c⇒ ∀X ∈ A : f(X) > c

When we are mining for itemsets X that satisfy f(X) ≥ c, if f(Yn) < c then
clearly we can prune out A(n) — we do not need to look at any set in that collection.

222 D. Kifer et al.

If f(Yn) ≥ c then we do not have enough information to prune and must examine the
children of n. If f(Zn) ≥ c then we do not need to evaluate f on the sets in A(n) —
we know the result will be greater than or equal to c. If f(Zn) < c then we do not have
enough information and must examine the children of n. Analogous statements are true
when we have constraints f(X)#c, where # is >, <, or ≤.

2.1 Comparison to Existing Methods

When mining with antimonotone constraints, such as support(X) > c, then for any
node n, clearly B(n) is a negative witness and B(n) ∪ Free(n) is a positive witness.
For monotone constraints, such as support(X) < c, B(n) is a positive witness and
B(n) ∪ Free(n) is a negative witness. For the function support(X), B(n) is a large
witness and B(n) ∪ Free(n) is a small witness (clearly a small or large witness is
negative or positive depending on the inequality used in the constraint). Thus we have
generalized pruning with monotone and antimonotone constraints. Most algorithms that
prune with monotone and/or antimonotone constraints can easily be modified to search
for witnesses in order to prune efficiently.

Witness-based pruning can also handle many convertible constraints. One of the
most interesting convertible constraints is average (i.e., average price). Assuming all
items have a price,

Yn = B(n) ∪ {x ∈ Free(n) : price(x) ≥ c}

is clearly a large witness, and

Zn = B(n) ∪ {x ∈ Free(n) : price(x) ≤ c}

is a small witness.
Naively, it may take O(Free(n)) time to find a witness and calculate its average.

However, we just need to know the average of a witness and this can be maintained
incrementally in constant time per node. Algorithm 1 shows this technique applied to
a simple depth-first algorithm for antimonotone constraints. Note the O(I) initializa-
tion step done once at the beginning of the algorithm. We can apply this technique in a
straightforward manner to many other algorithms for mining monotone and antimono-
tone constraints, including DualMiner [8]. One advantage of this technique is that the
modified algorithms can handle conjunctions of constraints. This is possible by sim-
ply searching for a witness for each constraint. Thus our technique can efficiently find
sets of items X such that R ≡ avg price(X) < c ∧ avg weight(X) < d, whereas
an algorithm designed for convertible constraints cannot prune with R — despite the
fact that R is simply a conjunction of convertible constraints. Another advantage of our
approach is that the presence of a conjunction of several constraints does not restrict
the order in which nodes can be evaluated. This gives our technique an extra degree of
freedom for optimization of traversal strategies with heuristics. Note that our technique
can even be used to modify existing algorithms for convertible constraints.

Let us introduce some notation before we discuss some conceptual extensions. For
convenience we will start identifying items xi with their prices (price(xi)). Since sev-
eral items may have the same price we are now dealing with multisets and as a reminder

How to Quickly Find a Witness 223

Algorithm 1 : AVGminer
Require: antimonotone P , node n,Free(n), Zsum, Zcount
1: if n =root then
2: Free(n) ← I
3: Zsum ←

x∈Free,price(x)≤c

price(x)

4: Zcount ←
x∈Free,price(x)≤c

1

5: else if ¬P (n) ∨ Zsum/Zcount > c then
6: RETURN (no set in A satisfies both constraints)
7: else if P (n) ∧ avg(price(n)) ≤ c then
8: OUTPUT B(n)
9: end if

10: Temp ← Free(n)
11: while Temp �= ∅ do
12: choose some x ∈ Temp; Temp ← Temp \ {x}
13: if x ≤ c then
14: Zsum ← Zsum − x; Zcount ← Zcount − 1
15: end if
16: create child n′ such that B(n′) = B(n) ∪ {x}
17: AVGminer(P ,n′,Temp,Zsum + x,Zcount + 1)
18: end while

of this fact,⊕ will represent multiset union and% will represent multiset set-difference.
Therefore when we talk about a set in A we are really talking about a multiset.

The same witnesses that work for average also work for a more general class, the
class of stable functions, as introduced in the following definition.

Definition 5. A real-valued function f is stable if, for any c

f(A), f({x}) ≥ c ⇒ f(A⊕ {x}) ≥ c, and

f(A), f({x}) ≤ c ⇒ f(A⊕ {x}) ≤ c.

The predicates f(S) ≥ c and f(S) ≤ c are called stable constraints.

Examples of stable functions are average, median, and even linear combinations of
moments. A linear combination of moments has the form

f(X) =
∑

j

aj

n

n∑
i=1

xj
i =

n∑
i=1

∑
j

ajx
j
i

n
=

n∑
i=1

f({xi})

n

and is clearly stable. The following theorem shows how to find witnesses Y and Z for
stable functions, such that f(Y) ≥ c ⇒ f(X) ≥ c and f(Z) ≤ c ⇒ f(X) ≤ c, for all
X ∈ A.

Theorem 1. Let n be a node and f a stable function. Then

f(B(n)⊕ {x ∈ Free(n) : f(x) ≤ c}) ≤ c

if and only if ∃X ∈ A(n) such that f(X) ≤ c.

224 D. Kifer et al.

Also

f(B ⊕ {x ∈ Free(n) : f(x) ≥ c}) ≥ c

if and only if ∃X ∈ A(n)such thatf(X) ≥ c.

Proof. We only prove the first statement, as the second is similar. One direction is
obvious. Assume there is some X ∈ A such that f(X) ≤ c. Since f is stable, it follows
by induction that f(X % {x ∈ Free : f(x) > c}) ≤ c. Then, f(B ⊕ {x ∈ Free :
f(x) ≤ c}) = f(X % {x ∈ Free : f(x) > c} ⊕ {x ∈ Free%X : f(x) ≤ c}) ≤ c.

��

A stable function f is invertible if given f({x1, x2, . . . , xk}) and xi (for 1 ≤ i ≤ k)
we can compute f({x1, . . . , xi−1, xi+1, . . . , xk}). In this case we can use the same
approach we used for average to maintain (in constant time per node) the value of f
of a witness. For example, linear combinations of moments are invertible. It should be
noted that the common convertible constraints are included in the class of invertible
stable functions.

3 Mining Variance

We now apply our framework to solve an open problem: mining variance. Our solution
essentially reduces the problem from finding itemsets to searching for a particular node
in a lattice. The following key property will be used extensively.

Lemma 1. If M is a multiset and c, d ∈ R such that

|d− avg(M)| ≥ |c− avg(M)|,

then we have

var(M ⊕ {d}) ≥ var(M ⊕ {c}).

While we provide a formal proof below, this claim is intuitively obvious; the further
away an element is from the average, the larger the variance. This leads to the following
simple corollary.

Corollary 1. If c ∈ M and either d ≥ c ≥ avg(M) or d ≤ c ≤ avg(M) then
var(M % {c} ⊕ {d}) ≥ var(M).

Proof (of Lemma 1). Assume |d − avg(M)| ≥ |c − avg(M)|. Let n = |M |. Given a
constant k,

var(M ⊕ {k}) =
k2 +

∑
M

x2
i

n + 1
−

(
k +
∑
M

xi

)2

(n + 1)2

=
k2 +

∑
M

x2
i

n + 1
−

k2 + 2k
∑
M

xi +
(∑

M

xi

)2

(n + 1)2

How to Quickly Find a Witness 225

Thus

var(M ⊕ {d})− var(M ⊕ {c}) =
d2 − c2

n + 1
−

d2 − c2 + 2(d− c)
∑
M

xi

(n + 1)2

=
n

(n + 1)2
[
(d2 − c2)− 2(d− c) avg(M)

]
The last equation is nonnegative if and only if

(d− c)(d + c) ≥ (d− c)2 avg(M) (1)

Case 1. If d, c ≥ avg(M) then by hypothesis d ≥ c and so Equation (1) is satisfied.
Case 2. If d, c ≤ avg(M) then by hypothesis d ≤ c and clearly d + c ≤ 2 avg(M).

Therefore, Equation (1) is also satisfied.
Case 3. If d ≥ avg(M) ≥ c then d − c ≥ 0 and by hypothesis d − avg(M) ≥

avg(M)− c and so d + c ≥ 2 avg(M). Thus Equation (1) is satisfied.
Case 4. Finally, if d ≤ avg(M) ≤ c then d− c ≤ 0 and by hypothesis avg(M)− d ≥

c− avg(M) and so 2 avg(M) ≥ d + c. Even in this case Equation (1) is satisfied.
��

To find itemsets that satisfy var(X) > c we need to prune sets where var(X) ≤ c.
Thus we need to find a witness Y such that var(Y) ≤ c ⇒ var(X) ≤ c for any X ∈ A.
The next subsection shows how this is done.

3.1 Finding Maximal Variance

An obvious choice for such a witness Y is a set in A(n) that has maximal variance. We
begin by examining what such a witness looks like. For any set S let mink(S) be the
k smallest elements of S and maxk(S) be the k largest elements of S. Ties are broken
according to some convention >κ; that is if a = b with a ∈ X and b /∈ X then

– if a > avg(X) let a >κ b
– if a ≤ avg(X) then a <κ b

We break all other ties arbitrarily.

Lemma 2. Given a node n, then for any element X in A(n) with maximal variance,
there exist two nonnegative integers L and R such that

X = B(n)⊕min
L
{y ∈ Free : y ≤ avg(X)}

⊕max
R
{y ∈ Free : y > avg(X)}

Proof. We need only show the existence of L, as the existence of R is analogous. Let
S1 = {y ∈ X % B : y ≤ avg(X)} and let F1 = {y ∈ Free : y ≤ max(S1)}. If
S1 = ∅ then L = 0 and if S1 = F1 then L = |S1|. Otherwise, let m = max(S1) and
choose y = min(F1%S1). If y = m then L = |S1| and we are done by the tie-breaking
convention. The only other possibility is y < m, in which case it is further away from
avg(X) than m and, since y /∈ X , by Corollary 1 we can replace m with y in X to
increase the variance. Clearly this case can’t happen and so a suitable L always exists.

��

226 D. Kifer et al.

In other words, in addition to B, X contains the Lth most extreme elements on the
left and the Rth most extreme elements on the right.

A naive approach to finding a witness Y would look at all pairs of integers L, R
and use Lemma 2, but that would result in an O(|Free |2) algorithm. We need to find
the elements that are furthest away from the average of Y without knowing what this
average is. Because of this subtlety, it is surprising not only that a linear time algorithm
exists, but also that this algorithm is greedy.

However, we have one precondition. Before we begin to mine, we must sort all el-
ements by value. The sorted order of Free(n) can easily be maintained by most algo-
rithms as they examine different nodes n. Thus we pay a one-time O(|I| log |I|) startup
cost – which is not so bad considering how much time mining algorithms take – and
a constant cost per node maintaining this order. Algorithm 2 shows the witness-search
algorithm. It returns true if the witness has variance greater than c, false otherwise.

Algorithm 2 : Maximal Variance
Require: node n, Free(n) is sorted
1: C0 ← B(n), i ← 0
2: if var(C0) > c then
3: RETURN true
4: end if
5: Temp ← Free(n)
6: while Temp �= ∅ do
7: choose x ∈ Temp with |x − avg(Ci)| largest
8: (ties broken arbitrarily)
9: Ci+1 ← Ci ⊕ {x}

10: if var(Ci+1) > c then
11: RETURN true
12: else if var(Ci−1) ≥ max var(Ci), var(Ci+1) , i ≥ 1 then
13: RETURN false
14: end if
15: i ← i + 1
16: end while
17: RETURN false

In algorithm 2 we keep adding elements that are furthest away from the current
average until we find a Y ∈ A with var(Y) > c or we reach the stopping condition
at line 12. The stopping condition essentially says that we get two chances to keep the
variance growing.

In order to show that this algorithm is correct, we need to show two things: that it
visits an element with maximal variance when a witness exists, and that the condition
for returning “false” is correct. The first half of this correctness claim is covered by the
theorem below.

Theorem 2. Without any stopping conditions, Algorithm 2 will visit an element inA(n)
with maximal variance.

How to Quickly Find a Witness 227

Proof. Let T be the set B(n)⊕Free(n). Without stopping conditions, the execution of
this algorithm produces a chain of sets B(n) = C0 ⊂ C1 ⊂ · · · ⊂ Ck = T and for
all i, |Ci+1 % Ci| = 1. If T has maximal variance then we are done. If not, let j be the
largest index such that Cj is a subset of an element with maximal variance but Cj+1 is
not. If Cj has maximal variance then we are done. Otherwise, let M be some superset
of Cj that has maximal variance. Also let c = Cj+1 %Cj . By definition, c is chosen by
the algorithm because it is the free element furthest away from avg(Cj).

Because of symmetry, we can assume c ≥ avg(Cj). By the definition of c we know
that M%Cj can only contain elements less than c. If some element is larger, it is further
away from avg(Cj); if some element equals c, then we can just replace it with c without
affecting variance, which violates the definition of Cj . This means that c ≥ avg(M)
since we can not add M % Cj to Cj and increase the average beyond c.

From Corollary 1, we know that M %Cj contains no element≥ avg(M). Otherwise
we could replace it with c and the variance will not decrease. Therefore max(M%Cj) =
m < avg(M).

Now we claim that avg(Cj) ≥ m. If this is not the case, then m > avg(Cj) and
adding M % Cj to Cj would not raise the average past m. This implies m ≥ avg(M),
which cannot happen. Thus avg(Cj) ≥ m and adding M %Cj to Cj would only lower
the average. Since Cj ⊂ M , it follows that avg(Cj) ≥ avg(M). If δ = min(M % Cj)
(which is < avg(M)) it also follows that avg(Cj) ≥ avg(M % {δ}). As c is the free
element furthest away from avg(Cj), we see that

c− avg(M % {δ}) ≥ c− avg(Cj) ≥ avg(Cj)− δ

≥ avg(M % {δ})− δ ≥ 0

By Lemma 1 var(M %{δ}⊕{c}) ≥ var(M), a contradiction. Therefore the greedy
algorithm visits the node with the largest variance.

��

So all that is left is to show that if we reach the stopping condition, then no witness
exists.

Theorem 3. Let Ci be a multiset such that varCi+1 ≤ varCi and varCi+2 ≤ varCi.
Then for any j ≥ i, var(Cj) ≤ var(Ci).

The proof of Theorem 3 is rather involved, it is useful to first see an example moti-
vating it. The implication of Theorem 3 is that if no set has variance greater than c, then
we will find this out two iterations after we reach a node with maximal variance. The
reason for this is that the variance does not grow monotonically, but instead zigzags.
This is clear from the following example.

Example 1. Let B = {−40,−40, 40, 40} and Free = {−42,−42, 42, 42}. The chain
of sets produced is

228 D. Kifer et al.

C0 = {−40,−40, 40, 40} var(C0) = 1600

C1 = C0 ⊕ {42} var(C1) = 1562.24

C2 = C1 ⊕ {−42} var(C2) = 1654
2
3

C3 = C2 ⊕ {42} var(C3) = 1634
2
7

C4 = C3 ⊕ {−42} var(C4) = 1682

To prove Theorem 3, we need the following two lemmas.

Lemma 3. var(Ci) ≥ var(Ci+1) if and only if d = Ci+1 % Ci satisfies the condition

n(d− avg(Ci))2 ≤ (n + 1) var(Ci), where n = |Ci|

Alternatively, if Ci has average 0 and sum of squares Q, then n2d2 ≤ (n + 1)Q.

Proof. Let X = Ci, n = |X | and Y = Ci+1. Let d = Y % X . First suppose that
avg(X) = 0 and without loss of generality assume that d ≥ 0. Because of the way
d is selected, |d| ≥ |c| for any c ∈ T % X . Let Q be the sum of squares in X . Since
var(X) ≥ var(Y),

var(Y)− var(X) =
Q + d2

n + 1
− d2

(n + 1)2
− Q

n
=

nd2 −Q

n(n + 1)
− d2

(n + 1)2
≤ 0

This is true if and only if

(n2 + n)d2 − (n + 1)Q− nd2

n(n + 1)
≤ 0

⇔ n2d2 − (n + 1)Q
n(n + 1)

≤ 0

⇔ n2d2 − (n + 1)Q ≤ 0

⇔ n2d2 ≤ (n + 1)Q

If X does not have average 0 then since variance is translation invariant, we can
apply this result to

X ′ = {x− avg(X) : x ∈ X}
and to Q′ =

∑
x∈X

(x− avg(X))2, d′ = d− avg(X). Now Q′ is just n var(X) and so

n(d− avg(X))2 ≤ (n + 1) var(X)

��

To state the next Lemma, we use the following convention: when k is an integer and
S is a multiset, we use k · S to denote k multiset unions of S with itself.

How to Quickly Find a Witness 229

Lemma 4. Let C be a set, a be an element and let D ≥ var(C) and p ∈ Z+ be
constants. If

var(C ⊕ (p · {a})) > D

then

(a− avg(C))2 >
|C|+ 1
|C| D

Proof. Let Q = var(C). Let C′ = {x − avg(C) : x ∈ C} and let n = |C| and
b = a − avg(C). Clearly avg(C′) = 0 and var(C′) = Q. The quantity nQ is the sum
of squares of C′ and var(C′ ⊕ (p · {b})) = var(C ⊕ (p · {a})).

var(C ⊕ (p · {a})) ≥ D ⇒ var(C′ ⊕ (p · {b})) ≥ D

⇒ nQ + pb2

n + p
− p2b2

(n + p)2
≥ D

⇒ (n + p)nQ + (n + p)pb2 − p2b2 ≥ D(n + p)2

⇒ (n + p)nQ + npb2 ≥ D(n + p)2

⇒ (n + p)nD + npb2 ≥ D(n + p)2

⇒ npb2 ≥ npD + p2D

⇒ b2 ≥ D + pD/n ≥ n + 1
n

D

��

Proof (of Theorem 3). Let n = |Ci| and e = Ci+1 % Ci, f = Ci+2 % Ci+1. This
theorem is obvious if n < 2 so we can assume that n ≥ 2. Without loss of generality
we can assume that avg(Ci) = 0 and that e > 0.

Let Q be the sum of squares of Ci. Suppose there exists a j > i such that var(Cj) >
var(Ci). Then let J = Cj . Let a be the largest value in J % Ci and b be the smallest
value. Clearly a = e and b ≤ f . a satisfies the conditions in Lemma 3. If a2 ≤ Q

n then
this theorem is obviously true, so we can assume a2 > Q

n . Since f is at least as far from

avg(Ci+1) as b, Lemma 1 implies that var(Ci⊕{a, b}) ≤ var(Ci). Thus if b ≤ −
√

Q
n

then by Lemma 1,

var(Ci ⊕ {a, b}) ≥ var

(
Ci ⊕

{√
Q

n
,−
√

Q

n

})
= var(Ci)

So b > −
√

Q
n , which means that |a| > |b| and a + b > 0.

From J we will inductively construct a multiset J∗ such that var(J∗) ≥ var(J). Let
J0 = J and given Jk, pick some element c from the set

H = {x ∈ Jk % Ci : a > x > b}

If c ≥ avg(Jk) then we know a > c and so let Jk+1 = Jk % {c} ⊕ {a}. Similarly,
if c ≤ avg(Jk) then we know c > b and so let Jk+1 = Jk % {c} ⊕ {b}. By Lemma

230 D. Kifer et al.

1, var(Jk+1) ≥ var(Jk). If H is empty and we cannot choose an element c, then let
J∗ = Jk. Clearly J∗ = Ci ⊕ (p · {a, b})⊕ (q · {x}) for some integers p and q, where
x is either a or b.

Now suppose q ≥ 1 and x is the element b. If p = 0 then a is further away from
avgJ∗ % {b} than b. If p ≥ 1 then

avg J∗ % {b} ≤ p(a + b)/(n + 2p + q) ≤ (a + b)/2

and so a is also further away from avgJ∗ % {b} than b. By Lemma 1, var(J∗ % {b} ⊕
{a}) ≥ var(J) and

J∗ % {b} ⊕ {a} = Ci ⊕ ((p + 1) · {a, b})⊕ ((q − 2) · {b})

Note this is also true when q = 1 if we interpret B ⊕ (−1) · A as B % A. Using this
argument repeatedly, we get the set

Ci ⊕ ((p + ,q/2-) · {a, b})⊕ ((q mod 2) · {a})

which has variance ≥ var(J∗). Thus, without loss of generality we can assume that x
is the element a.

By hypothesis, var(Ci)− var(Ci+2) ≥ 0, and so

var(Ci)− var(Ci+2) =
Q

n
− Q + a2 + b2

n + 2
+

(a + b)2

(n + 2)2

=
2Q− na2 − nb2

n(n + 2)
+

(a + b)2

(n + 2)2
≥ 0

which implies that 2Q
n − a2 − b2 + (a+b)2

n+2 ≥ 0.
Let I = Ci ⊕ (p · {a, b}). Then we have that

var(Ci)− var(I) =
Q

n
− Q + pa2 + pb2

n + 2p
+

p2(a + b)2

(n + 2p)2

=
2pQ− npa2 − npb2

n(n + 2p)
+

p2(a + b)2

(n + 2p)2

=
p

n + 2p

(
2Q

n
− a2 − b2 +

p(a + b)2

n + 2p

)

=
p

n + 2p

(
2Q

n
− a2 − b2 +

p(n + 2)
n + 2p

(a + b)2

n + 2

)

=
p

n + 2p

(
2Q

n
− a2 − b2 +

pn + 2p

n + 2p

(a + b)2

n + 2

)

=
p

n + 2p

(
2Q

n
− a2 − b2 +

(a + b)2

n + 2

)
=

≥ p

n + 2p
(var(Ci)− var(Ci+2)) ≥ 0

How to Quickly Find a Witness 231

Thus var(I) ≤ var(Ci) and J∗ = I ⊕ (q · {a}). By Lemma 4, it is only possible
for var(J∗) > var(Ci) if (a − avg(I))2 > n+1

n var(Ci). Since a + b ≥ 0, we have
a ≥ avg(I) ≥ 0 and so a ≥ (a− avg(I)) ≥ 0.

From Lemma 3

var(Ci)
n + 1

n
≥ a2 ≥ (a− avg(I))2

Therefore var(J∗) cannot be larger than var(Ci), and so when the variance of a set is
not less than the variance of either its two successors, its variance is not less than the
variance of any of its successors.

��

Given Theorems 2 and 3, we now know that Algorithm 2 is correct. However, it is
important to note that it is also optimal.

Theorem 4. If there exists a set X with var(X) ≥ c, then Algorithm 2 will find the
shortest path to any node whose variance ≥ c.

Proof. Let Ci be the chain of sets from the proof of Theorem 2. We call a node X quick
if var(X) ≥ c and if ∀Y ∈ (B, T), then |Y | ≤ |X | ⇒ var(Y) < c. We need to show
that for some i, Ci is quick.

Quickness is a maximality property. Therefore, to complete the proof, we simply
carry out the proof of Theorem 2, substituting “quick” for “maximal variance”.

��

3.2 A Small Witness for Variance

Now that we know how to find a large witness Y , we need an algorithm to find a witness
Z such that var(Z) > c ⇒ var(X) > c for all X ∈ A. This is a much more difficult
problem. To see why, note that we indirectly used the following property to show that a
greedy algorithm worked for finding maximal variance.

Lemma 5. For any constant h, if var(Y) ≥ h and var(X) ≥ h then var(X ⊕ Y) ≥ h.

Proof. For convenience, let A =
∑

yi∈Y

yi and B =
∑

yi∈Y

y2
i and n = |Y |. Also let C =∑

xi∈X

xi and D =
∑

xi∈X

x2
i and m = |X |. Since variance is invariant under translation,

we can assume that the elements of X and Y are nonnegative. We know that

var(Y) =
B

n
− A2

n2
≥ h ⇒ B ≥ nh +

A2

n

var(X) =
D

m
− C2

m2
≥ h⇒ D ≥ mh +

C2

m

Therefore

B + D ≥ nh +
A2

n
+ mh +

C2

m

= h(n + m) +
mA2 + nC2

mn

232 D. Kifer et al.

= h(n + m) +
(mn + m2)A2 + (mn + n2)C2

mn(m + n)

≥ h(n + m) +
mnA2 + mnC2 + 2mnAC

mn(m + n)

= h(n + m) +
A2 + C2 + 2AC

m + n

= h(n + m) +
(A + C)2

m + n

This implies h ≤ B+D
m+n −

(A+C)2

(m+n)2 = var(X ⊕ Y).
��

This allowed us to add elements that had the largest effect on the variance with-
out worrying too much about the structure of the set we were creating. The constraint
var(X) < c does not have a similar property and this suggests that a greedy algorithm
to find a witness Z does not exist. Thus the intuitive algorithms in Section 1.2 do not
work. Instead, the following lemma describes what a witness should look like.

Lemma 6. For any element X in (B, T) with minimal variance, there exist two non-
negative integers L and R such that

X = B(n)⊕max
L
{y ∈ Free : y ≤ avg(X)}

⊕min
R
{y ∈ Free : y > avg(X)}

Proof. The proof is analogous to that of Lemma 2 and again assumes that ties are
broken according to the convention >κ.

��

In other words, if we order the points in Free on a line, X contains B(n) and only
the points in some window of size L + R over this line.

It is clear from Lemma 6 that if there exists a set X with var(X) < c then there
exists a witness Z with var(Z) < c and that Z is the multiset union of B(n) and some
window over Free(n). The next lemma states that this window does not have to be too
big.

Lemma 7. Let C be a set, a ∈ C, n = |C| and let D ≥ var(C). If (a − avg(C %
{a}))2 > n

n−1D then var(C % {a}) < D

Proof. We prove the lemma by contradiction. Assume var(C%{a}) ≥ D. Without loss
of generality, assume avg(C % {a}) = 0. Let Q be the sum of squares of C %{a}. So,
we have Q ≥ (n− 1)D and (n− 1)a2 > nD. Then var(C) = (Q+ a2)/n− a2/n2 =
(nQ + (n − 1)a2)/n2 > (nQ + nD)/n2 ≥ (n(n − 1)D + nD)/n2 = D. Thus,
var(C) > D, contradiction, therefore var(C % {a}) < D.

��

We can derive an easy O(|Free |2) search algorithm using Lemma 6, but it is possible
to do better. The algorithm to determine if there is a set Z with var((Z)) ≤ c is a

How to Quickly Find a Witness 233

two-step sliding window algorithm. In the first step, we start with a window whose
right endpoint is the largest element in Free. We slide the window to the left until the
right endpoint is no longer greater than or equal to avg(B(n)). If we have not found a
witness, we repeat the same thing, but on the left hand side. We can reflect all points
around the y-axis (i.e. multiply them by −1) without affecting the variance of any set,
and so by symmetry we only need to describe the first step of the algorithm.

We can use Lemma 7 to define a suitable window. Note that the window size depends
on the number of points in the window. We also have no guarantees that the window
associated with the witness (by Lemma 6) is the same size as the algorithm’s window.
Therefore we must be careful about checking for witnesses to avoid a quadratic search
algorithm. Once again, the algorithm assumes the elements of Free are maintained in
sorted order. Let F be the array of elements of Free sorted in descending order. Given
the index r of the right endpoint, we want the largest � such that

Tr,� = {F [r],F [r + 1], . . . ,F [�]} ⊕B(n) (2)

satisfies the following properties.

1. F [r]− avg(Tr,� %F [r]) ≤
√

ck/(k − 1) - where |Tr,� %F [r]| = k − 1
2. F [r]−F [�] ≤ 2

√
ck/(k − 1)

infinity

avg(B(n))

F[l] F[r]

F[r+1]

F[r+2]

Window Moves

Fig. 2. The Window

The first condition states that we do not want the right endpoint to be further away
from the average (without the endpoint) than allowable by the hypothesis of Lemma 7.
Thus given a right endpoint, we know what the smallest allowable average is. Condition
2 states that we do not want the left endpoint to be further away from this quantity than is
allowable by Lemma 7. The window defined by r and � is Wr, our target window for r.

The window associated with a set M of minimal variance is a subset of Wr for some
r. To see why, suppose this were not the case. Then one of the two conditions is false.
This means that either the left endpoint or the right endpoint of M ’s window is too far
from avg(M), so by Lemma 7 we can remove this endpoint and decrease the variance
further. Hence all of these lemmas provide us with the following result.

Theorem 5. Let Z be a witness which has a window associated to it as in Lemma 6.
Then there exists a witness Z ′ whose window is a subset of the window of Z , and the
window of Z ′ is contained in a target window Wr for some r.

234 D. Kifer et al.

For some choices of r, it may not be possible to get a window which brings the
average close enough to F [r]. In this case set � to be the largest integer such that the set
in equation (2) satisfies

1*. F [r]−F [�] ≤
√

ck/(k − 1) but
F [r]− avg(Tr,� %F [r]) >

√
ck/(k − 1)

The intuition behind this idea is that we add all the elements that are greater than or
equal the minimum average allowed by Lemma 7. If this cannot get the average (with-
out F [r]) high enough, then no window will. But if this does move the average close
enough, we can keep adding elements that satisfy condition 2. In any case we can move
the left endpoint to the left until we reach � and we will recognize � as soon as we see it.
Note that this does not change the truth of Theorem 5 since this added definition only
enlarges windows that would have had length 0 otherwise.

The problem with target windows is that sliding this window to the left may cause
the left endpoint to move to the right. In other words, it is possible that Wr+1 ⊆ Wr

and therefore sliding this window over F may require an O(|F|2) computation. For
example, supposeF [r] = F [r+1] and equality holds in condition 1. Sliding the window
over would cause the average to move further away from F [r + 1] and thus violate
condition 1. Because of this our algorithm will maintain a window larger than the target
window by simply leaving the left endpoint fixed in such cases. Furthermore, if the left
endpoint is defined by condition 1*, the left endpoint will never move to the right.

Algorithms 3 and 4 show how to slide the window.

Algorithm 3 : SlideWindow
Require: r,

1: r ← r + 1
2: if var(Tr,�) ≤ c then
3: RETURN (true, r,
)
4: end if
5:
 ← ExpandWindow(r,
)
6: if var(Tr,�) ≤ c then
7: RETURN (true,r,
)
8: else
9: RETURN (false,r,
)

10: end if

Notice that ExpandWindow (Algorithm 4) checks the variance as it moves the left
boundary. Since the left and right endpoints shift in one direction only, the variance can
be computed in constant time by incrementally maintaining the number of elements in
the window, their sum, and the sum of their squares. If the algorithm finds a witness,
then it returns immediately and SlideWindow (Algorithm 3) will know this.

The main algorithm is shown in Algorithm 5, where we assume, for simplicity, that
F [−1] = ∞. This algorithm returns true if there is an element with var ≤ c and false
otherwise.

As this algorithm is a little involved, we present the following illustrative example.

How to Quickly Find a Witness 235

Algorithm 4 : ExpandWindow
Require: r,

1: while
 < |I| − 1 do
2: k ← |Tr,�+1|
3: if F [r] − F [
 + 1] ≤ ck/(k − 1) then
4:
 ←
 + 1 (Condition 1*)
5: else if F [r]−avg(Tr,�+1� F [r]) ≤ ck/(k − 1), F [r]−F [
 + 1] ≤ 2 ck/(k − 1)

then
6:
 ←
 + 1
7: else
8: BREAK
9: end if

10: if var(Tr,�) ≤ c then
11: BREAK
12: end if
13: end while
14: RETURN

Algorithm 5 : SmallVar
1: r ← −1,
 ← 0
2: while F [r] ≥ avg(B(n)) do
3: (result, r,
) ← SlideWindow(r,
)
4: if result =true then
5: RETURN true
6: end if
7: end while
8: Repeat with window to the left of avg(B(n)).
9: RETURN false

Example 2. Let B = {−20, 20} and F = Free = {30, 10, 0,−10,−30}. Also let
c = 200. Our algorithm starts with r = −1, � = 0. Clearly F [−1] = ∞ is larger than
avg(B(n)), so we slide. We now set r = 0 and hence

Tr,� = {30} ⊕B = {−20, 20, 30}

As var(Tr,�) = 700, we expand the window.
We start with k = 2,F [r] = 30, andF [�+1] = 10. ThenF [r]−F [�+1] = 20 while√
ck/(k − 1) = 20. So we increment � by one. Furthermore, as var(Tr,�) ≈ 466.7 >

250, we have not necessarily found a set of minimal variance yet. So we continue the
loop.

Now k = 3, F [r] = 30, and F [� + 1] = 0. Then F [r] − F [� + 1] = 30 while√
ck/(k − 1) ≈ 17.3, so line 3 of ExpandWindow is no longer true. Furthermore,

avg(Tr,�+1 −F [r]) = avg({−20, 0, 10, 20}) = 2.5

and henceF [r]−avg(Tr,�+1−F [r]) = 27.5. This is not less than
√

ck/(k − 1) ≈ 17.3,
so we are done with this iteration of ExpandWindow.

236 D. Kifer et al.

Again, F [0] = 30 > avg(B(n)), so we slide r = 1, � = 1. As var(Tr,�) ≈ 433.3,
we expand the window. We start with k = 2, F [r] = 10, and F [� + 1] = 0. As
10 <

√
ck/(k − 1) = 20, we increment � by one. As var(Tr,�) ≈ 291.7 > 250, we

continue the loop.
Now we have � = 2, k = 3. F [r] − F [� + 1] = 20, while

√
ck/(k − 1) ≈ 17.3.

However,

F [r]− avg(Tr,�+1 −F [r]) = 10− avg({−20,−10, 0, 20}) = 12.5

Furthermore,F [r]−F [�+1] ≤ 2
√

ck/(k − 1), so now we have satisfied the condition
on line 5 of ExpandWindow. We increment � by one again. Now we have that

Tr,� = {−20,−10, 0, 10, 20}

As var(Tr,�) = 250, we continue with our loop.
However, it is easy to check that the set Tr,� = {−20,−10, 0, 10, 20} is the one of

minimal variance. Hence the remaining steps of the algorithm will determine that none
of the itemsets in this lattice satisfy the constraint, and so we can prune them all.

Note that this algorithm runs in O(|F|) time because variance is computed once
each time we move the right endpoint and once each time we move the left endpoint.
Although SlideWindow is called O(|F|) times, it either does not move the left endpoint
(hence doing a constant unit of work) or it moves the left endpoint to the left. Thus
overall it does O(|F|) + O(|F|)=O(|F|) units of work.

Correctness is given by the following theorem.

Theorem 6. If there is some set in A with variance not greater than c then SmallVar
(Algorithm 5) will find one such set.

Lemma 8 (The Expanding Window). If there exists a witness Z with var(Z) ≤ c
and and window defined by right endpoint a and left endpoint b then if d > b and
avg(Z) − F [d] ≤

√
c(|Z|+ 1)/|Z| then there is a witness Z ′ with var(Z ′) ≤ c and

window defined by endpoints a and d.

Proof. If d = b + 1 then this is obvious by Lemma 4. If d > b + 1 then this is true by
induction.

��

Proof (of Theorem 6).
The algorithm’s window can be in 3 states.

State 1: The window satisfies condition 1*.
State 2: The window satisfies conditions 1 and 2.
State 3: The left endpoint didn’t move and the previous window satisfied conditions
1 and 2 (otherwise the current window satisfies condition 1* and is in state 1).

It is clear that if the algorithm is in state 1, sliding the window will only move it to states
1 or 2. If it is in state 2 then it will only go to states 2 or 3. Finally, if it is in state 3, it
can go to any other state.

How to Quickly Find a Witness 237

We already know that there exists a witness Z that is characterized by Lemma 6
– it has an associated window. By Lemma 7 we can restrict ourselves to only look
for witnesses whose right endpoints are close enough to the average of the rest of the
witness (i.e. satisfy condition 1). Without loss of generality we can assume that the
window is minimal in the sense that no witness has an associated window that is a
proper subset of this. By symmetry, we can also assume that the right endpoint of this
window is not less than avg(B(n)). Thus by sliding the algorithm’s window over to the
left, at some point the right endpoint r of the algorithm window will also be the right
endpoint of the minimal witness.

When this happens, by Theorem 5, the target window, Wr, contains the window
of the minimal witness. When the algorithm window is in states 2 or 3 and has right
endpoint r, it will contain the target window and therefore the window of the minimal
witness. Since r is also the right endpoint of the window of the minimal witness, the
algorithm window with right endpoint r can not satisfy condition 1* and so it will not
be in state 1. Thus it is sufficient to prove two things.

(i) If the algorithm is in states 2 or 3 and a witness’s window is contained within the
algorithm’s current window and both windows have the same right endpoint, then
the algorithm will find this out.

(ii) If the window of a witness is inside the algorithm’s window and the algorithm’s
window is in state 1, then when we slide the window it will still contain the window
of a witness.

We prove property (ii) first. If the window satisfies condition 1* and a witness has
its window inside the algorithm’s window, then we test if var(Tr,�) ≤ c. If the variance
is greater than c then we claim there is a witness Z whose window is inside of this
window, but that the window of the witness has a right endpoint different from r. If
there was a witness whose right endpoint was r then by condition 1*, F [r] is far away
from avgZ % {F [r]}, and by Lemma 7 Z % {F [r]} is also a witness. Furthermore,
the right endpoint of this witness’s window will still be larger than avg(B(n)) by the
minimality assumption. At this point the algorithm would slide the window over and
the window of Z would still be contained in the algorithm’s window.

Property (i) follows by induction. The inductive hypothesis will also maintain the
fact that if the algorithm window is in state 3 then if the window of a witness is inside
the algorithm’s window, then we can extend the left boundary of the witness’s window
to the left endpoint of the algorithm’s window and so create a set with variance not
greater than c.

The base case of the induction is the beginning of the algorithm. The first window
must be either in state 1 or 2. If it is in state 1 then property (i) is vacuously true for the
first algorithm window. If it is in state 2, let r be the right endpoint. ExpandWindow will
initially start with the with right and left endpoints r and r and will check if we have a
witness whose window has right endpoint r every time it moves the left endpoint. Thus
we will know if a witness’s window is inside the algorithm window and shares a right
endpoint with it.

Let g(r) be the largest integer such that

F [r]−F [g(r)] ≤
√

ck/(k − 1)

238 D. Kifer et al.

where k = |Tr,g(r)|. Note that g(r) = � if condition 1* holds and g(r) ≤ � for states 2
and 3. We will left r1, �1 be the boundaries of the previous algorithm window and r2, �2

be the boundaries of the current window. As we can treat any occurrence of state 1 as
the initial state, the inductive step has five cases.

Case (I). The current window is in state 2 and the previous window is in state 1. Since
the algorithm explicitly checks for the variance of Tr2,�1 , . . . Tr2,�2 , we must show that
we do not miss anything by not checking the variance of Tr2,r2 , . . . , Tr2,�1−1. Since
�1 = g(r1) ≤ g(r2) it is sufficient to show that we do not need to check the variance of
Tr2,r2 , . . . , Tr2,g(r2)−1. Suppose there is a witness Z whose window has right endpoint
r and left endpoint L between r2 and g(r2) − 1. Because the witnesses must satisfy
condition 1, the distance between avgZ and F [g(r2)] is not greater than the distance
between F [r] and F [g(r2)]. Since |Z| ≤ |Tr2,g(r2)| and

(|Z|+ 1)/|Z| ≥ (|Tr2,g(r2)|+ 1)/|Tr2,g(r2)|

the g(r2) and Z satisfy the conditions of the Expanding Window Lemma. So Tr2,g(r2)

would also be a witness and would be explicitly checked by the algorithm.

Case (II). Both the current window and the previous window are in state 2. Once again
we must show that we do not miss anything by not checking the variance of the sets
Tr2,r2 , . . . , Tr2,�1−1. Suppose there is a witness Z whose window has right endpoint r
and left endpoint L between r2 and �1−1. If L ≤ g(r2) then we use the same arguments
as in Case (I). Otherwise L > g(r2) ≥ g(r1) and so Tr1,L must satisfy Condition 1.
But if Tr2,L were a witness then by Lemma 4 so is Tr1,L and this would have been
discovered by the inductive hypothesis.

Case (III). The current window is in state 2 and the previous window is in state 3. Again
we show that we do not miss anything by not checking the variance of Tr2,r2 , . . . ,
Tr2,�1−1. Suppose there is a witness Z whose window has right endpoint r and left
endpoint L between r2 and �1−1. Then the window of the witness is bounded by r1, �1

and so by the inductive hypothesis we can extend its left endpoint and so Tr2,L will
have var ≤ c. This set will then be checked by the algorithm.

In the last two cases, the current state is 3. We must show that any witness whose
window fits inside the algorithm’s current window can have its left endpoint extended
to the algorithm’s window’s left endpoint. From this it follows that if a witness has
right endpoint equal to r2, then the variance of Tr2,�2 is ≤ c and this is checked by the
algorithm. If �2 ≤ g(r2) then we should actually be in state 3. Therefore �2 > g(r2).

Case (IV). The current window is in state 3 and the previous window is in state 2.
In this case �1 = �2 and Tr1,�2 satisfies both conditions 1 and 2 but Tr2,�2 does not.
Since the fewer the elements in the window, the larger 2

√
ck/(k − 1) is, condition 2

is automatically satisfied. Hence condition 1 must be false. Thus if there is a witness
whose window has endpoints R, L where r2 ≤ R ≤ L < �2 and if avg(TR,L) ≥ F [�2]
then

| avg(TR,L)−F [�2]| ≤
√

ck/(k − 1)

where k− 1 = |Tr1,�2 |. Since k∗ = |TR,L| < |Tr1,�2 |, we have | avg(TR,L)−F [�2]| ≤√
c(1 + |TR,L|)/|TR,L| and we can use the Expanding Window Lemma. If, on the other

How to Quickly Find a Witness 239

hand avg(TR,L) < F [�2] thenF [�2] is closer to avg(TR,L) thanF [R] is and because of
our restriction on witnesses we can again use the Expanding Window Lemma to expand
the left endpoint from L to �2.

Case (V). Both the current window and the previous window are in state 3. This follows
trivially from the inductive hypothesis since r1 ≤ r2 and �1 = �2 and so the current
algorithm window is contained in the previous algorithm window.

��
3.3 Variance in Higher Dimensions

The definitions of average and variance easily extend to multi-dimensional spaces. For
a d-dimensional vector space (d > 1), let −→x = (x1, x2, . . . , xd).

avg(S) =
1
|S|
∑
−→x ∈S

−→x =
1
|S|

⎛
⎝∑

−→x ∈S

x1, . . . ,
∑
−→x ∈S

xd

⎞
⎠

and

var(S) =

∑
−→x ∈S

||−→x − avg(S)||2

|S|
where ||−→x −−→y || represents the Euclidean distance between−→x and−→y . From Lemmas 2
and 6 we see that witnesses for variance in one-dimension have a nice structure because
all the points can be ordered. This is no longer true in higher dimensions and so the algo-
rithms for variance fall apart. To see this, let us extend Algorithm 2 to two-dimensions:
given a node n, we keep adding to B(n) the element in Free(n) that is furthest from the
current average. Suppose B(n) consists of the point (0, 0) and Free(n) consists of the
points {(5, 0), (0, 5), (3.01, 4.01)}. The point (3.01, 4.01) is furthest away from (0, 0)
and is added to our candidate witness: {(0, 0), (3.01, 4.01)} and its variance is 6.28505.
After this the point (5, 0) is added (the variance increases to 7.79782) and finally (0, 5)
is added and the variance becomes 9.70129. However, the algorithm never considers
the set {(0, 0), (5, 0), (0, 5)}, which achieves the maximum variance 11.1111.

4 Heuristics

In practice, we do not always want to run a linear time (or greater) search algorithm
to find a witness. Although a linear time algorithm may allow us to prune away an
exponential number of sets, sometimes our negative witness satisfies the constraint. In
those cases we cannot prune away A(n) and our time is wasted.

There are two techniques to deal with this problem. It may be possible to amortize
the cost of the search by maintaining state that avoids redundant computation. For ex-
ample, when we showed how to mine average, we maintained the average of the witness
incrementally instead of recomputing it every time.

When amortization is not possible, we can use heuristics to tell us when to run the
search algorithm. For example, if we are mining with a constraint var(S) < c then we
want to prune sets with variance greater than or equal to c. We can use the observation

240 D. Kifer et al.

that the higher the value of var(B(n)), the less likely that var(S) < c for some S ∈ A.
Thus we can set some threshold τ on var(B(n)), and if the variance is larger than the
threshold we search for witness. A similar approach works for the constraint var(S) >
c. A heuristic can also be based on some precomputed statistics.

When using such constraints we can also benefit from a heuristic which chooses the
order in which elements are added to B(n) to create children of B(n). Thus we can
try to arrange it so that we see many nodes n for which B(n) has high variance. One
such heuristic could be to order all items (in descending order) by their distance from
the overall average of I. This is very similar to the approach taken by the convertible
algorithms [18].

We should note that in most cases amortization is possible by avoiding redundant
computation. For example, suppose we have the constraint var(S) > c and that we are
currently examining a node n. We run Algorithm 2 but find a set with variance > c.
We cannot prune the subtree rooted at n but we can amortize the cost of the search. Let
a1, a2, . . . , ak be the elements that were added to B(n) by the algorithm in that order.
Because we cannot prune, we will eventually have to visit the nodes represented by the
sets B(n) ⊕ {a1}, B(n) ⊕ {a1, a2}, B(n) ⊕ {a1, a2, a3}, etc, in order to traverse the
subtrees rooted at those nodes.

If we run the algorithm at those nodes we will get the same witness as when we
ran it at n. Thus at those nodes we can choose not to run the algorithm. Since we visit
these nodes anyway, the amortized cost of the search is at most a constant per node plus
the cost of maintaining this information. By doing a depth-first traversal of nodes, we
can arrange it so that the next k nodes that the algorithm traverses are these k nodes
for which we already know the result of the witness search. In this case, maintaining
extra state is constant per node. Otherwise we just need to maintain two numbers - the
smallest ai that is at least avg(B(n)) and the largest aj that is less than avg(B(n)).
Then whenever we come to a node of the form B(n)⊕J (where J ⊆ {a1, a2, . . . , ak})
we do not have to run the algorithm again since the same witness is also valid.

Similarly, if we had the constraint var(S) ≤ c, we run Algorithm 5 on a node n only
to discover a set with variance ≤ c. Again we cannot prune the subtree rooted an n.
We let a1, . . . , ak be the consecutive sequence of points that define the window of the
witness we have found. Clearly this would also be a witness when we examine a node
represented by B(n) ⊕ J (where J ⊆ {a1, . . . , ak}). We still have to traverse to these
nodes to examine their subtrees, however we do not need to run the algorithm again.
To maintain this state we need just two numbers – the left and right endpoints of the
window of this witness.

5 Related Work

Agrawal et al. first introduced the problem of mining frequent itemsets as a first step
in mining association rules [1]. They also considered item constraints such as an item
must or must not be contained in an association rule. Agrawal and Srikant introduced
the Apriori algorithm and some variations of it [3,2]. Srikant et al. generalized this min-
ing problem to item constraints over taxonomies [20]. Other types of constraints were
introduced later by Ng et al. [15,14]. These papers introduced the concepts of antimono-

How to Quickly Find a Witness 241

tone and succinct constraints and presented methods for using them to prune the search
space. These classes of constraints were also studied in the case of 2-variable constraints
[12] and along with monotone constraints were further generalized and studied by Pei et
al. [18,16]. Boulicant and Jeudy presented algorithms for mining frequent itemsets with
both antimonotone and non-antimonotone constraints [6,7]. However they assume that
the minimal itemsets satisfying the monotone constraint are easy to compute, that the
minimum size of such itemsets is one, and that there is no gap in the sizes of itemsets
that satisfy all the constraints - assumptions that frequently do not hold. This problem
was also given a theoretical treatment by Gunopoulos et al. [10]. DualMiner is the first
algorithm that simultaneously uses both monotone and antimonotone constraints for
pruning the search space [8]. Some recent papers study the problem in the context of
multi-attribute data of high dimensionality [19] or take another approach to the prob-
lem, such as not pushing the constraints deeply into the mining process, but enforcing
the constraints in a final phase [11]. Another approach is a pre-processing algorithm
called ExAnte which reduces the search space and the size of the transaction database
[5]. This technique has also been pushed deeper into the mining process [4]. Other pa-
pers present specializations of previous algorithms, based on FP-trees [13] or based on
projected databases [17].

References

1. R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items
in large databases. In P. Buneman and S. Jajodia, editors, Proc. SIGMOD 1993, pages 207–
216. ACM Press, 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast Discovery of
Association Rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data Mining, chapter 12, pages 307–328.
AAAI/MIT Press, 1996.

3. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. VLDB 1994, pages 487–499. Morgan
Kaufmann, 1994.

4. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Examiner: Optimized level-wise
frequent pattern mining with monotone constraint. In ICDM, pages 11–18. IEEE Computer
Society, 2003.

5. F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data reduction
in constrained pattern mining. In N. Lavrac, D. Gamberger, H. Blockeel, and L. Todorovski,
editors, PKDD, volume 2838 of Lecture Notes in Computer Science, pages 59–70. Springer,
2003.

6. J. Boulicaut and B. Jeudy. Using constraints during set mining: Should we prune or not,
2000.

7. J.-F. Boulicaut and B. Jeudy. Mining free itemsets under constraints. In International
Database Engineering and Application Symposium, pages 322–329, 2001.

8. C. Bucila, J. E. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning algorithm for
itemsets with constraints. In Proc. SIGKDD 2002, Edmonton, Alberta, Canada, July 2002.

9. A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors. SIGMOD 1999, Philadephia, Penn-
sylvania, USA. ACM Press, 1999.

10. D. Gunopulos, H. Mannila, R. Khardon, and H. Toivonen. Data mining, hypergraph transver-
sals, and machine learning. In Proc. PODS 1997, pages 209–216, 1997.

242 D. Kifer et al.

11. J. Hipp and U. Guntzer. Is pushing constraints deeply into the mining algorithms really what
we want? SIGKDD Explorations, 4(1):50–55, 2002.

12. L. V. S. Lakshmanan, R. T. Ng, J. Han, and A. Pang. Optimization of constrained frequent
set queries with 2-variable constraints. In Delis et al. [9], pages 157–168.

13. C. K.-S. Leung, L. V. Lakshmanan, and R. T. Ng. Exploiting succinct constraints using
fp-trees. SIGKDD Explorations, 4(1):31–39, 2002.

14. R. T. Ng, L. V. S. Lakshmanan, J. Han, and T. Mah. Exploratory mining via constrained
frequent set queries. In Delis et al. [9], pages 556–558.

15. R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained association rules. In L. M. Haas and A. Tiwary, editors, Proc.
SIGMOD 1998, pages 13–24. ACM Press, 1998.

16. J. Pei and J. Han. Can we push more constraints into frequent pattern mining? In ACM
SIGKDD Conference, pages 350–354, 2000.

17. J. Pei and J. Han. Constrained frequent pattern mining: A pattern-growth view. SIGKDD
Explorations, 4(1):31–39, 2002.

18. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with convertible con-
straints. In ICDE 2001, pages 433–442. IEEE Computer Society, 2001.

19. C.-S. Perng, H. Wang, S. Ma, and J. L. Hellerstein. Discovery in multi-attribute data with
user-defined constraints. SIGKDD Explorations, 4(1):56–64, 2002.

20. R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. In Proc.
KDD 1997, 1995.

Relevancy in Constraint-Based Subgroup

Discovery

Nada Lavrač1,2 and Dragan Gamberger3

1 Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Nova Gorica Polytechnic, Vipavska 13, 5000 Nova Gorica, Slovenia

3 Rudjer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia

Abstract. This chapter investigates subgroup discovery as a task of
constraint-based mining of local patterns, aimed at describing groups
of individuals with unusual distributional characteristics with respect
to the property of interest. The chapter provides a novel interpretation
of relevancy constraints and their use for feature filtering, introduces
relevancy-based mechanisms for handling unknown values in the exam-
ples, and discusses the concept of relevancy as an approach to avoiding
overfitting in subgroup discovery. The proposed approach to constraint-
based subgroup mining, using the SD algorithm, was successfully applied
to gene expression data analysis in functional genomics.

1 Introduction

One of the formulations of data mining [19] involves the specification of the
language of patterns and a set of constraints that a pattern has to satisfy with
respect to a given database. The constraints that a pattern has to satisfy can
be divided in two parts: language constraints and evaluation/optimization con-
straints. The first concern the form of patterns (e.g., find if-then rules with a
target class in the rule head), while the second concern the validity of patterns
on a given dataset. The latter can be either evaluation constraints (e.g., find all
rules with support above a given threshold) or optimization constraints (e.g.,
find three best rules with highest confidence).

Constraint-based data mining is now a recognized research topic [3]. The use of
constraints enables more efficient induction as well as focusing the search for pat-
terns likely to be of interest to the end-user. While constraint-based data mining
research has been—until recently—mostly focused on mining frequent itemsets
and association rules, mining frequent episodes and molecular fragments, this
chapter focuses on constraint-based subgroup discovery, i.e., constraint-based
mining of individual if-then rules of the form

Class← Cond

where Class in the rule consequent is a property of interest which is the goal
of investigation (the target class), and rule antecedent Cond is a conjunction of
features (attribute–value pairs).

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 243–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

244 N. Lavrač and D. Gamberger

Having defined the pattern language of if-then rules, we proceed by informally
defining the subgroup discovery task, while the formal definition of constraint-
based subgroup discovery, involving the definition of language constraints and
evaluation/optimization constraints, is the topic of Section 2.

The subgroup discovery task is informally defined as follows [26,7,16]: Given a
population of individuals and a specific property of individuals that we are inter-
ested in, find population subgroups that are statistically ‘most interesting’, e.g.,
are as large as possible and have the most unusual distributional characteristics
with respect to the property of interest.

In the particular task addressed in this chapter the goal of subgroup discovery
is to uncover characteristic properties of population subgroups by building short
rules which are of high quality. In our approach to subgroup discovery high
quality, on the one hand, means that the distribution of classes of instances
covered by the rule are statistically significantly different from the distribution
in the training set in favour of large coverage of the target class instances, and
on the other hand, it means avoidance to overfit the training set.

We restrict the subgroup discovery task to learning from class-labeled data,
and induce individual rules (describing individual subgroups) from labeled train-
ing examples (labeled positive if the property of interest holds, and negative
otherwise), thus targeting the process of subgroup discovery to uncovering prop-
erties of a selected target population of individuals with the given property of
interest. Despite the fact that this form of rules suggests that standard super-
vised classification rule learning could be used for solving the task, the goal of
subgroup discovery is to uncover individual rules/patterns, as opposed to the
goal of standard supervised learning, aimed at discovering rulesets/models to be
used as accurate classifiers of yet unlabeled instances [7].

This chapter introduces the constraint-based subgroup discovery task by
defining the constraints used in the heuristic SD subgroup discovery algorithm
[7].1 We proceed by discussing constraint-based approaches used in data prepro-
cessing: elimination of irrelevant features and handling of unknown values. Both
data preprocessing steps are investigated within the concept of relevancy with
the purpose of increasing the quality of induced rules. By reducing the total
number of features—through the elimination of features that are less relevant—
it enables more effective search for rules with good covering properties while
preventing that inclusion of less relevant features or their conjunctions would
degrade the quality of rules due to overfitting the training set.

We have successfully applied the proposed approaches to data preprocessing
and constraint-based subgroup mining using the SD algorithm on a problem of
gene expression data analysis in functional genomics. Gene expression monitor-
ing by DNA microarrays (gene chips) provides an important source of informa-
tion that can help in understanding many biological processes. The database
we analyze consists of a set of gene expression measurements (examples), each

1 Note that, in contrast with most constraint-based data mining approaches which ex-
haustively enumerate all solutions satisfying the given constraints, the SD algorithm
performs heuristic search.

Relevancy in Constraint-Based Subgroup Discovery 245

corresponding to a large number of measured expression values of a predefined
family of genes (attributes). Each measurement in the database was extracted
from a tissue of a patient with a specific disease; this disease is the class for the
given example. The domain, described in [25,8] and used in our experiments,
is a typical scientific discovery domain characterised by a large number of at-
tributes compared to the number of available examples. As such, this domain is
especially prone to overfitting, as it is a domain with 14 different cancer classes
and only 144 training examples in total, where the examples are described by
16063 attributes presenting gene expression values.

While the standard goal of machine learning is to start from the labeled ex-
amples and construct models/classifiers that can successfully classify new, pre-
viously unseen examples, our main goal is to uncover interesting patterns/rules
that can help to better understand the dependencies between classes (diseases)
and attributes (gene expressions values). The experiments were performed sepa-
rately for each cancer class so that a two-class learning problem was formulated
for each cancer class as a target. For each of these tasks a complete procedure
consisting of feature construction, handling of missing values, elimination of ir-
relevant features, and induction of subgroup descriptions in the form of rules was
repeated. Using the SD subgroup discovery algorithm [7], for each class a single
rule with maximal quality value was selected. The induced short rules, with 2–4
features in the rule consequent, were evaluated on an independent test set. Good
prediction results for classes with relatively many training instances measured
on an independent test set, as well as expert interpretation of induced rules
prove the effectiveness of described methods for avoiding overfitting in scientific
discovery tasks.

The paper is structured as follows. The constraint-based subgroup mining
task is introduced in Section 2. In Section 3 the background is presented: related
work on relevancy, our previous work on relevancy as an approach to feature fil-
tering, as well as the ROC space and the TP/FP space providing a framework
for the analysis of feature relevancy. Section 4 introduces new definitions of rele-
vancy, reinterpreting feature relevancy and rule relevancy in the TP/FP space.
Handling of unknown values within the relevancy concept, aimed at avoiding
overfitting and inducing robust rules, is the topic of Section 5. Section 6 dis-
cusses the particular choice of the language of features and the interpretation of
marginal values as unknown values in the functional genomics domain. Section 7
introduces the functional genomics domain in more detail, where the task is to
distinguish between different cancer types. Experimental results show the bene-
fits of proposed handling of unknown values and feature/rule relevancy filtering
in this scientific discovery task.

2 Constraint-Based Subgroup Discovery with SD

Subgroup discovery is a form of supervised inductive learning of subgroup de-
scriptions of the target class. As in all inductive rule learning tasks, the language
bias is determined by the syntactic restrictions of the pattern language and the

246 N. Lavrač and D. Gamberger

vocabulary of terms in the language. In this work the hypothesis language is
restricted to simple if-then rules of the form Class← Cond, where Class is the
target class and Cond is a conjunction of features. Features are logical condi-
tions that have values true or false, depending on the values of attributes which
describe the examples in the problem domain: subgroup discovery rule learning
is a form of two-class propositional inductive rule learning, where multi-class
problems are solved through a series of two-class learning problems, so that each
class is once selected as the target class while examples of all other classes are
treated as non-target class examples.

The goal of rule construction are rules with optimal covering properties on
the available example set. A rule with ideal covering properties would be true for
all target class (positive) examples and false for all non-target class (negative)
examples. Target class examples covered by rule R are called true positives (TP),
while non-target class examples covered by the rule are called false positives
(FP).2 All remaining non-target class examples not covered by the rule are
called true negatives (TN). An ideal rule would be characterized by TP = P
and TN = N , where P is the set of positive examples, N the set of negative
examples, and E = P ∪N .

In this work, subgroup discovery is performed by the SD algorithm, an itera-
tive beam search rule learning algorithm [7]. The input to SD consists of a set of
examples E and a set of features F that can be constructed for the given exam-
ple set. The output of the SD algorithm is a set of rules with optimal covering
properties on the given example set. The SD algorithm is implemented in the
on-line Data Mining Server (DMS), publicly available at http://dms.irb.hr.3

2.1 The SD Algorithm

The goal of subgroup discovery algorithm SD (presented in [7] and—for com-
pleteness of this paper—outlined also in Figure 1) is to search for rules R that
maximize qg(R) = TP

FP+g , where TP are true positives, FP are false positives,
and g is a generalization parameter. High quality rules will cover many target
class examples and a low number of non-target class examples. The number of
tolerated non-target class cases, relative to the number of covered target class
cases, is determined by parameter g. For low g (g ≤ 1), induced rules will have
high specificity (low false alarm rate) since covering of every single non-target
class example is made relatively very ‘expensive’. On the other hand, by selecting
a high g value (g > 10 for small domains), more general rules will be generated,
covering also non-target class instances.

Algorithm SD takes as its input the complete training set E and the feature set
L, where features l ∈ L are logical conditions constructed from attribute values
2 We should have used the notation TP (R) and FP (R) for positive and negative ex-

amples covered by rule R, but—for simplicity—argument R is occasionally omitted.
3 The publicly available Data Mining Server and its constituent subgroup discovery

algorithm SD can be tested on user submitted domains with up to 250 examples and
50 attributes. The variant of the SD algorithm used in gene expression data analysis
was not limited by these restrictions.

Relevancy in Constraint-Based Subgroup Discovery 247

Algorithm SD: Subgroup Discovery
Input: E = P ∪ N (E training set, |E| training set size,

P positive (target class) examples, N negative (non-target class)
examples)

L set of all defined features (attribute values), l ∈ L
Parameter: g (generalization parameter, 0.1 < g, default value 1)

min support (minimal support for rule acceptance)
beam width (maximal number of rules in Beam and New Beam)

Output: S = {TargetClass ← Cond} (set of rules R formed of beam width
best conditions Cond)

(1) for all rules in Beam and New Beam (i = 1 to beam width) do
initialize the rule condition to be empty, Cond(i) ← {}
initialize rule quality to zero, qg(R) ← 0

(2) while there are improvements in Beam do
(3) for all rules in Beam (i = 1 to beam width) do
(4) for all l ∈ L do
(5) form new rule R by forming a new condition as a conjunction of the

condition from Beam and feature l, Cond(i) ← Cond(i) ∧ l
(6) compute the quality of a new rule as qg(R) = TP

F P+g

(7) if TP
|E| ≥ min support and if qg(R) is larger than the quality of any

rule in New Beam and if the new rule R is relevant do
(8) replace the worst rule in New Beam with new rule R and

reorder the rules in New Beam with respect to their quality
(9) end for features
(10) end for rules from Beam
(11) Beam ← New Beam
(12) end while

Fig. 1. Heuristic beam search rule construction algorithm SD

describing the examples in E. If SD is used in the expert-guided framework,
varying the value of g enables the expert to guide subgroup discovery in the
TP/FP space, trying to minimize FP (plotted on the X-axis) and maximize TP
(plotted on the Y -axis). See Section 3.3 for details on the relationship between
the TP/FP space and the ROC (Receiver Operating Characteristic) space [23].

2.2 Constraints Used in the SD Algorithm

In the constraint-based data mining framework, a formal definition of subgroup
discovery involves a set of constraints that induced subgroup descriptions have
to satisfy. In the SD subgroup discovery algorithm the following constraints are
used to formalize the SD constraint-based subgroup discovery task.

Language constraints

– Individual subgroup descriptions have the form of rules Class ← Cond,
where Class is the property of interest (the target class), and Cond is a

248 N. Lavrač and D. Gamberger

conjunction of features (conditions based on attribute value pairs) defined
by the language describing the training examples.

– For discrete (categorical) attributes, features have the form Attribute =
value or Attribute �= value, for continuous (numerical) attributes they have
the form Attribute > value or Attribute ≤ value. Note that features can
have values true and false only, that every feature has its logical complement
(for feature f1 being A1 = v1 its logical complement f1 is A1 �= v1, for A2 >
v2 its logical complement is A2 ≤ v2), and that features are different from
binary valued attributes because for every attribute at least two different
features are constructed.
To formalize feature construction, let values vix (x = 1..kip) denote the kip

different values of attribute Ai that appear in the positive examples and wiy

(y = 1..kin) the kin different values of Ai appearing in the negative examples.
A set of features F is constructed as follows:
• For discrete attributes Ai, features of the form Ai = vix and Ai �= wiy

are generated.
• For continuous attributes Ai, similar to [6], features of the form Ai ≤

(vix +wiy)/2 are generated for all neighboring value pairs (vix, wiy), and
features Ai > (vix + wiy)/2 for all neighboring pairs (wiy , vix).

• For integer valued attributes Ai, features are generated as if Ai were
both discrete and continuous, resulting in features of four different forms:
Ai ≤ (vix + wiy)/2, Ai > (vix + wiy)/2, Ai = vix, and Ai �= wiy.

– To simplify rule interpretation and increase rule actionability, subgroup dis-
covery is aimed at finding short rules. This is formalized by a language
constraint that every induced rule R has to satisfy: rule size (i.e., the num-
ber of features in Cond) has to be below a user-defined threshold: size(R) ≤
MaxRuleLength (in the experiments described in Section 7 this threshold
was set to 4).

Evaluation/optimization constraints

– To ensure that induced subgroups are sufficiently large, each induced rule R
must have high support, i.e., sup(R) ≥ MinSup, where MinSup is a user-
defined threshold, and sup(R) is the relative frequency of correctly covered
examples of the target class in examples set E:

sup(R) = p(Class · Cond) =
n(Class · Cond)

|E| =
|TP |
|E|

– Other evaluation/optimization constraints have to ensure that the induced
subgroups are highly significant (ensuring that the class distribution of ex-
amples covered by the subgroup description will be statistically significantly
different from the distribution in the training set). This could be achieved in
a straight-forward way by imposing a significance constraint on rules, e.g., by

Relevancy in Constraint-Based Subgroup Discovery 249

requiring that rule significance sig(R) is above a user-defined threshold.4

Instead, in the SD subgroup discovery algorithm [7] the following rule qual-
ity measure assuring rule significance, implemented as a heuristic in rule
construction, is used:

qg(R) =
|TP |

|FP |+ g
(1)

It was shown in [7] that by using this optimization constraint (choose the
rule with best qg(R) value in beam search of best rule conditions), rules
with a significantly different distribution of covered positives and negatives,
compared to the prior distribution in the training set, are induced. In the
experiments described in Section 7, for every two-class problem the rule with
the best qg(R) value for a fixed value g = 5 has been selected.

3 Background

This section provides the background for this research: some pointers to the
related work on relevancy, the concept of feature relevancy based on p/n pairs of
examples, as well as an introduction to the ROC space and the TP/FP space.

3.1 Related Work on Relevancy

The problem of attribute and feature relevancy has been addressed already in
early inductive concept learning research [20]. This problem is actually encoun-
tered by every inductive learner. Usually, at each step of learning, the choice
of the ‘best’ or ‘most informative’ attribute or feature needs to be made. This
choice is frequently based on the distribution of positive and negative examples
covered by the rule/hypothesis before and after attribute selection [24]. Whereas
in most learning systems the selection of significant or informative features is
part of the learning process, the theory of relevancy presented in this chapter is
aimed at pointing out which features constitute a set of relevant features and
which features are irrelevant and can be discarded, without even entering the
‘best feature’ competition. Such filtering of irrelevant features can thus be done

4 To test significance, the likelihood ratio statistic is used as in CN2 [5] to measure the
difference between the class probability distribution in the set of training examples
covered by the rule and the class probability distribution in the set of all training
examples, computed as follows: 2 i n(Classi.Cond). log n(Classi.Cond)

n(Classi)·p(Cond)
, where for

each class Classi, n(Classi.Cond) denotes the number of instances of Classi in the
set where the rule body holds true, n(Classi) is the number of Classi instances,

and p(Cond) (i.e., rule coverage computed as n(Cond)
N

) plays the role of a normal-
izing factor. Note that although for each generated subgroup description one class
is selected as the target class, the significance criterion measures the distributional
unusualness unbiased to any particular class; as such, it measures the significance of
rule condition only: sig(Class ← Cond) = sig(Cond).

250 N. Lavrač and D. Gamberger

in preprocessing of the set of training examples. Whereas most other algorithms
only consider the ‘local training set’ (e.g., a subset of examples covered by the
currently developed rule, or a subset of examples in the currently developed node
of a decision tree) when deciding about the importance/relevance of attributes
or features, we are concerned with finding ‘globally relevant’ features w.r.t. the
entire set of training examples.

The problem of relevancy has recently attracted much attention in the con-
text of feature subset selection in propositional learning [12,18]. An extensive
discussion of different approaches to feature (attribute) subset selection can be
found in [11], which distinguishes between filter and wrapper approaches, and
introduces the notions of totally irrelevant, weakly relevant and strongly relevant
features. In this categorisation, our work belongs to filter approaches which elim-
inate totally irrelevant features in preprocessing. Filtering approaches include,
among others, different versions of the RELIEF algorithm [9,13], the FOCUS
algorithm [1] and an approach to feature selection proposed in [22].

While relevancy of features has extensively been studied, relevancy of rules has
only recently attracted much interest of researchers, especially in the context of
rule filtering and suppression in rule postprocessing. Recent work by Morishita
and Sese [21] shows how to efficiently prune rules via statistical metrics, by
taking into the account convex optimization constraints. An effective approach
to rule suppression has been implemented already in EXPLORA [10] to eliminate
redundant subgroups. Rule/subgroup R2 is evaluated as redundant relative to a
rule R1 with a higher quality q(R1) when q(R2) < affinity(R2, R1) · q(R1) and
the affinity of two subgroups is defined as:

affinity(R2, R1) =
(
|R1 ∩R2|
|R2|

)α

=
(

n(Cond1 · Cond2)
n(Cond2)

)α

(2)

where Ri stands for a rule of the form Class← Condi. The parameter α (with
default value 1) can be used to control the number of suppressions. The user can
increase (or decrease) α to get fewer (or more) resulting subgroups.

3.2 Theory of Relevancy Based on p/n Pairs of Examples

The main aim of the theory of relevancy, described in [14,15], is to reduce the
hypothesis space by the elimination of irrelevant features. Consider a two-class
learning problem in which examples e ∈ E are tuples of truth-values of features
F . Training set E is represented as a table where rows correspond to training
examples and columns correspond to features. A sample table is shown in Ta-
ble 1. An element in the table has the value true when the example satisfies the
condition (feature) in the column of the table, otherwise its value is false.

Definition 1: p/n pairs
A p/n pair is a pair of training examples where p ∈ P and n ∈ N .

Relevancy in Constraint-Based Subgroup Discovery 251

Definition 2: Coverage of p/n pairs
Let F denote a set of features. Feature f ∈ F covers a p/n pair iff feature f has
value true for p and value false for n.5

The notion of p/n pairs can be used to prove important properties of features
if the hypothesis language L defining the feature set F is rich enough to allow
for a complete and consistent rules R to be induced from the set of training
examples E.6 Let F ′ ⊆ F . It can be shown that a complete and consistent rule
R can be found using only features from set F ′ iff for each possible p/n pair from
the training set E there exists at least one feature f ∈ F ′ that covers the p/n
pair. The statement, formulated as a theorem for building complete and consis-
tent hypotheses in classification rule learning, was proved in [15]. Its importance
for the theory of relevance is manifold. First, it points out that when deciding
about the relevancy of features it will be significant to detect which p/n pairs
are covered by the feature. Second, it implies that useless features are those that
do not cover any p/n pair. An important property of pairs of features can now
be defined—coverage of features—which was defined in [14,15] as follows.

Definition 3: Coverage of features
Let f ∈ F . Let E(f) denote the set of all p/n pairs covered by feature f . Feature
frel covers feature f (i.e., frel is more relevant than f) iff E(f) ⊆ E(frel).

Example 1. Consider a domain with two positive examples, P = {p1, p2}, two
negative examples N = {n1, n2}, and six features where fi is a logical comple-
ment of fi, illustrated in Table 1.

Table 1. Training examples represented as vectors of truthvalues of features

Examples Features

Ex. Cl. f1 f1 f2 f2 f3 f3

p1 ⊕ false true true false false true
p2 ⊕ false true false true true false
n1 � true false true false true false
n2 � false true false true false true

In this example feature f1 does not cover any p/n pair, E(f1) = ∅, therefore
it can be eliminated as irrelevant for rule learning. Its logical complement f1

5 Notice that in the standard machine learning terminology we could reformulate the
definition of coverage of p/n pairs as follows: feature f covers a p/n pair iff f covers
(has value true for) the positive example p and does not cover (has value false for)
the negative example n.

6 The training set may include noise but there should be no contradictions, i.e. exam-
ples with same attribute values labeled by different class names.

252 N. Lavrač and D. Gamberger

covers two p/n pairs, E(f1) = {p1/n1, p2/n1}. Feature f2 covers one p/n pair,
E(f2) = {p1/n2} and its logical complement f2 covers only the pair built of p2

and n1. Although f2 is a logical complement of f2, the sets of p/n pairs covered
by f2 and f2 are different, therefore both the feature and its complement are
considered as relevant for rule learning. ��

3.3 The ROC Space and the TP/FP Space

A point in the ROC space (ROC: Receiver Operating Characteristic) [23] shows
classifier performance in terms of false alarm or false positive rate FPr =

|FP |
|TN |+|FP | = |FP |

|N | (plotted on the X-axis), and sensitivity or true positive rate

TPr = |TP |
|TP |+|FN | = |TP |

|P | (plotted on the Y -axis).
A point (FPr, TPr) depicting rule R in the ROC space is determined by the

covering properties of the rule. The ROC space is appropriate for measuring the
success of subgroup discovery, since rules/subgroups whose TPr/FPr tradeoff
is close to the diagonal can be discarded as insignificant; the reason is that the
rules with TPr/FPr on the diagonal have the same distribution of covered posi-
tives and negatives as the distribution in the training set. Conversely, significant
rules/subgroups are those sufficiently distant from the diagonal. Subgroups that
are optimal under varying TPr/FPr tradeoffs form a convex hull called the
ROC curve. Figure 2 presents seven rules on the convex hull (marked by cir-
cles), including X1 and X2, while two rules B1 and B2 below the convex hull
(marked by +) are of lower quality in terms of their TPr/FPr tradeoff.

Fig. 2. The left-hand side figure shows the ROC space with a convex hull formed of
seven rules that are optimal under varying TPr/FPr tradeoffs, and two suboptimal
rules B1 and B2. The right-hand side presents the positions of the same rules in the
corresponding TP/FP space.

It was shown in [16] that for rule R, the vertical distance from the (FPr, TPr)
point to the ROC diagonal is proportional to the significance of the rule. Hence,
the goal of a subgroup discovery algorithm is to find subgroups in the upper-
left corner area of the ROC space, where the most significant rule would lie in
point (0, 1) representing a rule covering only positive and none of the negative
examples (FPr = 0 and TPr = 1).

Relevancy in Constraint-Based Subgroup Discovery 253

An alternative to the ROC space is the so-called TP/FP space (see the right-
hand side of Figure 2), where FPr on the X-axis is replaced by |FP | and TPr
on the Y -axis by |TP |.7 The TP/FP space is equivalent to the ROC space when
comparing the quality of subgroups induced in a single domain. The reminder
of this paper considers only this simpler TP/FP space representation.

4 Interpretation of Relevancy in the TP/FP Space

The concept of feature coverage introduced in this section is important as a
relevancy constraint used in rule learning. The concept is not valid only for
features but also for conjunctions of features and for complete rules.

Filtering based on absolute and relative relevancy introduced in this section
can be applied in every domain. While the aim of absolute relevancy is to pro-
vide the minimal quality constraint required for every feature (rule), relative
relevancy aims to ensure that only the best among available features will enter
the rule construction process. The definition of relative irrelevancy is very useful
because it does not depend on user-defined constraints. Relevancy-based filtering
is therefore applicable in all feature-based machine learning applications [14]. It
is useful also as a preprocessing filter for other symbolic learners such as decision
tree learners, because complete attributes can be eliminated as irrelevant if all
features generated for these attributes are detected as relatively or absolutely
irrelevant.

4.1 Relative Relevancy

Let us now re-interpret the notions introduced in Sections 3.2 and 3.3 from the
point of view of feature relevancy.

Definition 4: Coverage of features (revisited Definition 3)
Feature frel covers feature f (i.e., feature frel is more relevant than f) iff
true positives of f are a subset of true positives of frel and true negatives
of f are a subset of true negatives of frel, i.e., iff TP (f) ⊆ TP (frel) and
TN(f) ⊆ TN(frel) (see Figure 3).

Definition 5: Relative relevancy
Feature f is relatively irrelevant iff there exists another feature frel such that
frel covers f .

Theorem 1.
If feature frel covers feature f and feature grel covers g then frel ∧ grel covers
f ∧ g.

7 The TP/FP space can be turned into the ROC space by simply normalizing the TP
and FP axes to the [0,1]x[0,1] scale.

254 N. Lavrač and D. Gamberger

Fig. 3. The concept of relative relevancy illustrated by features f and frel. Feature f
is relatively irrelevant because TP (f) ⊆ TP (frel) and TN(f) ⊆ TN(frel).

It is trivial to prove this theorem by first fixing one of the two conjuncts
grel = g and showing that TP (f∧g) ⊆ TP (frel∧g) and TN(f∧g) ⊆ TN(frel∧g).
Next, the same relationship can be shown also for the case when grel covers g.8

��
Relative relevancy of features is an important concept as feature f is not

necessarily irrelevant because of its low |TP | or |TN | values but because there
exists another more relevant feature with better covering properties. Therefore
a relevancy filter using the concept of relative relevancy of features will never
eliminate a feature that could potentially be relevant in conjunction with other
features, as the more relevant feature which caused its elimination will take its
role in the conjunction. Relative relevance ensures the quality of induced rules
and, even more importantly from the point of view of avoiding overfitting, it
ensures that rule learners will use only the best features available.

Consider now the simplest form of rules, whose conditions consist of a single
feature. Suppose such rules are plotted in the TP/FP space, meaning that each
feature represents a point in the TP/FP space. The more distant a feature is
from the diagonal, the more significant is the feature. ‘Good’ features are those as
close as possible to point (0, P) in TP/FP space. The left-hand side of Figure 4
presents the concept of relative relevancy. As |TP (f)| ≤ |TP (frel)|, feature

8 Theorem 1 can be proved also for the logical OR operation frel∨grel. Consequently, if
for feature f there exists another feature frel with the property that if in any rule f is
substituted by frel the rule quality measured by the number of correct classifications
|TP | and |TN | does not decrease, then frel can be always used instead of f , and
feature f can be eliminated as irrelevant.

Relevancy in Constraint-Based Subgroup Discovery 255

Fig. 4. The left-hand side figure presents the concept of relative relevancy while the
right-hand side figure presents the concept of absolute relevancy

frel is plotted higher along the TP -axis. As |TN(f)| ≤ |TN(frel)|, therefore
|FP (frel)| ≤ |FP (f)|, and feature frel is plotted more to the left (closer to the
TP -axis) along the FP -axis than feature f .

Figure 4 shows feature f , a shaded area in the upper-left corner of f showing
a part of the TP/FP space of features frel that are potentially more relevant
than f , and a shaded area in the lower-right corner of frel showing the part of
the space of features that are potentially irrelevant due to the existence of frel.
Note that not all features left-up of f are more relevant and not all features
right-down of frel are irrelevant, but only those that satisfy Definition 4.

4.2 Total Relevancy

In addition to irrelevant features defined through relative relevancy, also totally
irrelevant features—those which are totally useless for distinguishing between
the classes—can be eliminated in preprocessing.

Definition 6: Total irrelevancy
Feature f with |TP (f)| = 0 or |TN(f)| = 0 is totally irrelevant.

4.3 Absolute Relevancy

In order for a feature to be acceptable as a building block of rule conditions
representing some genuine dependencies between classes and attribute values,
the feature itself must have appropriate covering properties on the training set.
These can be defined in terms of user-defined support constraints.

Definition 7: Absolute irrelevancy
Feature f that has either |TP (f)| < MinTP or |TN(f)| < MinTN is absolutely
irrelevant, for MinTP and MinTN being user defined constraints.

For low values of MinTP and MinTN , feature f with |TP (f)| < MinTP is
true for a small number of target class examples, and feature g with |TN(g)| <
MinTN is false for a small number of non-target class examples. Such small
numbers may be due to statistical chance so that it seems reasonable not to

256 N. Lavrač and D. Gamberger

Fig. 5. The selection of the optimal MinTP constraint based on the properties of a
previously detected good rule R

use features with either of these properties in the rule construction process. The
part of the TP/FP space of absolutely irrelevant features is represented by the
shaded area of the right-hand side figure of Figure 4.

Although the significance of rules is proportional to their distance from the
diagonal in the TP/FP space (Figure 2), this property is not appropriate as a
quality criterion for features. As logical combinations of features lying on the
diagonal or very near to it can result in very significant conjunctions of features
(rules), only relative and absolute relevancy constraints defined in this work are
considered as appropriate for feature filtering.

By conjunctions of features, the generated rule will have |TP | equal or smaller
than the smallest |TP | value of the features forming a conjunctive subgroup de-
scription. In contrast, the |TN | value of a rule will be at least as large as the
largest |TN | of the used features. This is the reason why MinTP is typically
selected higher than MinTN (see the right-hand side figure of Figure 4) and
it can be as large as the minimal estimated number of examples that must be
covered by a subgroup of acceptably high quality for the domain. The problem
with absolute irrelevancy is that both MinTP and MinTN are user defined
constraints and that any value, regardless how high it is, can not guarantee that
a feature is actually relevant. A practical suggestion is to start with their low
values of these constraints and after that to experiment with higher values. The
optimal point is just before a significant decrease of covering properties of in-
duced rules can be noticed. A good starting values for gene expression domains
are MinTP = |P |/2 and MinTN =

√
|N | which have been used in all the

experiments reported in Section 7. The selection of these constraints is not very
critical for the final result because the majority of absolutely irrelevant features
is detected also as relatively irrelevant. With mentioned MinTP and MinTN
values in gene expression domains more than 90% of absolutely irrelevant fea-
tures were detected as being also relatively irrelevant.

Relevancy in Constraint-Based Subgroup Discovery 257

4.4 Analysis of Absolute Relevancy Constraints in the TP/FP
Space

The major problem of the concept of absolute relevancy is the selection of appro-
priate MinTP and MinTN constraints. In cases when rules are built exclusively
as conjunctions of features (as in the SD algorithm), the problem can be at least
partially solved by the analysis of the MinTP constraint in the TP/FP space.

Let us suppose that in the process of rule construction rule R (that could
be also a single feature) represents the best solution detected so far or that we
are able to estimate its properties based on previous experiments in the domain.
The position of rule R in the TP/FP space is determined by its TP (R) and
FP (R) values. In Figure 5 the line drawn through this point presents the line
connecting all the points in the TP/FP space that have the same rule quality
qg as rule R. For various quality measures the slope of the line is different. For
the qg(R) measure used in the SD algorithm [7] the slope is equal to |TP (R)|

|FP (R)|+g .9

This line cuts the TP axis in point A with value |FP (A)| = 0 and some positive
value |TP (A)|. Setting MinTP = |TP (A)| is a good choice for the MinTP
constant because any conjunctive combination with a feature which has |TP |
value below |TP (A)| can, in an ideal case, lead to a rule lying below point A and
therefore have a lower quality than the already detected rule R. For the qg(R)
measure this value is g · |TP (R)|

|FP (R)|+g .10 It can be noted that a better intermediate
rule R (with higher |TP (R)| and lower |FP (R)| values) enables the selection of
a higher MinTP value, resulting in the elimination of more features and faster
search without a decrease in the final rule quality. This property can be used
so that the MinTP value is adjusted dynamically to the best detected solution
so far. The result is feature relevancy detection during the rule construction
process. For very time consuming algorithms it can be useful to first detect a
good R by a fast heuristic search algorithm in advance before starting the main
rule construction process, ensuring that relevancy filtering can be done before
starting the rule construction process.

The described analysis can not help us to estimate the optimal MinTN value.
In cases when rules are built by disjunctive instead of conjunctive connections of
features, analogous reasoning is valid, which helps to select good MinTN values
but then MinTP should be estimated and selected by the user.

4.5 Relevancy of Rules

The defined relations of relative and absolute relevancy are valid not only for
rules consisting of a single feature but they can be applied to any logical com-
bination of features that can be constructed in the rule induction process, as
well as to complete rules. This property is very important because it can signif-
icantly reduce the time and space complexity of learning algorithms. In the SD
9 For example, for the weighted relative accuracy measure, WRAcc [16], the slope of

the line equals |P |
|N| .

10 When the WRAcc rule quality measure is used, the optimal MinTP value for rule
R equals |TP (R)| − |FP (R)| · |P |

|N| .

258 N. Lavrač and D. Gamberger

algorithm, the properties of relative and absolute relevancy are tested in each of
its iterations for all the constructed conjunctive combinations of features. In SD,
the MinTP absolute relevancy constraint is implemented by the user-defined
MinSup constraint, while the MinTN constraint is ensured by setting the ab-
solute relevancy threshold for all the generated features.

5 Using the Concept of Relevancy in Handling of
Unknown Values

The concept of relevancy can be used in handling of unknown values based on the
guideline that by the elimination/replacement of unknown values the relevancy of
features should not increase. By following this guideline, the approach proposed in
this section contributes to preventing data overfitting, especially in domains with a
large number of unknownattribute values.Theproposed approach is different from
typical procedures for handling unknown values such as considering the unknown
value as an additional regular value or substituting of the unknown value by the
most common or by a proportional fractional value [4].

To ensure that unknown value handling will not increase feature relevancy, an
attribute with an unknown value in a positive example is—in all features con-
structed from this attribute—replaced by value false, while an unknown value
occurring in a negative example is replaced by value true in all features con-
structed from the same attribute.

Table 2. Features generated from an attribute with value unknown (?) have value
false if the example is positive, and value true if the example is negative. Feature
values generated from unknown attribute values are presented in bold.

Examples Attributes Features
Ex. Cl. X Y X = A X �= A X = P X �= P Y > 3 Y ≤ 3

p1 ⊕ A 5 true false false true true false
p2 ⊕ ? 4 false false false false true false
p3 ⊕ P ? false true true false false false
n1 � ? 2 true true true true false true
n2 � A ? true false false true true true
n3 � P 1 false true true false false true

Example 2. Consider a domain with three positive examples, three negative ex-
amples, two attributes (one discrete and one continuous-valued), four features
generated for the discrete attribute, and two (out of possibly many) features
for the attribute with continuous values. The domain is presented in Table 2.
It can be noticed that for known attribute values a feature and its complement
always have different truth values, but for unknown attribute values all features
have the same value: false if the example is positive and true if the example is
negative. ��

Relevancy in Constraint-Based Subgroup Discovery 259

6 Using the Concept of Relevancy in Gene Expression
Data Preprocessing

In some domains, like in the gene expression domain, there is a possibility
to choose between different types of attributes and when confronted with this
choice, the preference should be given to those leading to more relevant features.

6.1 Choice of the Language of Features

Gene expression scanners measure signal intensity as continuous values which
form an appropriate input for data analysis. The problem is that for continu-
ous valued attributes there can be potentially many boundary values separating
the classes, resulting in many different features for a single attribute. There is
also a possibility to use presence call (signal specificity) values computed from
measured signal intensity values by the Affymetrix GENECHIP software. The
presence call has discrete values A (absent), P (present), and M (marginal).
Subgroup discovery as well as filtering based on feature and rule relevancy are
applicable both for signal intensity and/or the presence call attribute values.
Typically, signal intensity values are used [17] because they impose less restric-
tions on the classifier construction process and because the results do not depend
on the GENECHIP software presence call computation. For subgroup discovery
we prefer the later approach based on presence call values. The reason is that
features presented by conditions like Gene = P is true (meaning that Gene is
present, i.e., expressed) or Gene = A is true (meaning that Gene is absent, i.e.,
not expressed) are very natural for human interpretation and that the approach
can help in avoiding overfitting, as the feature space is very strongly restricted,
especially if the marginal value M is encoded as value unknown.

6.2 Handling Unknown Values and Feature Filtering

In the gene expression domain the M value is handled as an unknown value
because we do not want to increase the relevance of features generated from
attributes with M values. As for the other two values, A and P , it holds that two
features for gene X , X = A and X �= P , are identical (see Table 2). Consequently,
for every gene X there are only two distinct features X = A and X = P . As
suggested in Section 5, unknown values coming from marginal attribute values
in positive examples are replaced by value false, while in negative examples they
are replaced by value true.

Example 3. The approach applied in gene expression data analysis is illustrated
in Table 3. The table presents five positive and four negative examples for one of
the target classes in the gene expression domain. Only features generated from
presence call values of three attributes (genes) are presented.

Observe that in this example, following Definition 5 of relative relevancy,
feature X = A is relatively irrelevant because of feature Y = A, and feature
X = P is relatively irrelevant because of feature Z = A. Consequently, both
features generated for gene X can be eliminated as irrelevant. ��

260 N. Lavrač and D. Gamberger

Table 3. Training examples represented as vectors of truthvalues of features. Notice
that value M (marginal) is treated as an unknown attribute value.

Examples Genes Features
Ex. Cl. X Y Z X = A X = P Y = A Y = P Z = A Z = P

p1 ⊕ A A A true false true false true false
p2 ⊕ P P A false true false true true false
p3 ⊕ A A P true false true false false true
p4 ⊕ P P A false true false true true false
p5 ⊕ M A A false false true false true false
n1 � A P P true false false true false true
n2 � P P P false true false true false true
n3 � M M A true true true true true false
n4 � P P A false true false true true false

7 Experiments in Functional Genomics

The gene expression domain, described in [25,8] is a domain with 14 differ-
ent cancer classes and 144 training examples in total. Eleven classes have 8
examples each, two classes have 16 examples and only one has 24 examples.
The examples are described by 16063 attributes presenting gene expression val-
ues. In all the experiments we have used gene presence call values (A, P , and
M) to describe the training examples. The domain can be downloaded from
http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi. There is also an in-
dependent test set with 54 examples. The standard goal of machine learning is to
start from such labeled examples and construct classifiers that can successfully
classify new, previously unseen examples. Such classifiers are important because
they can be used for diagnostic purposes in medicine and because they can help
to understand the dependencies between classes (diseases) and attributes (gene
expressions values).

The experiments were performed separately for each cancer class so that a
two-class learning problem was formulated where the selected cancer class was
the target class and the examples of all other classes formed non-target class
examples. In this way the domain was transformed into 14 inductive learning
problems, each with the total of 144 training examples and between 8 and 24
target class examples. For each of these tasks a complete procedure consist-
ing of feature construction, elimination of irrelevant features, and induction of
subgroup descriptions in the form of rules was repeated. Finally, using the SD
subgroup discovery algorithm [7], for each class a single rule R with maximal
qg(R) value was selected, for qg(R) = |TP |

|FP |+g being the heuristic of the SD algo-
rithm and g = 5 as the generalization parameter default value. The rules for all
14 tasks consisted of 2–4 features. The procedure was repeated for all 14 tasks
with the same default parameter values. The induced rules were tested on the
independent example set.

There are very large differences among the results on the test sets for various
classes (diseases) and the precision higher than 50% was obtained for only 5 out

Relevancy in Constraint-Based Subgroup Discovery 261

of 14 classes. There are only three classes (lymphoma, leukemia, and CNS) with
more than 8 training cases and all of them are among those with high precision
on the test set, while for only two out of eleven classes with 8 training cases
(colorectal and mesothelioma) high precision was achieved. The classification
properties of rules induced for classes with 16 and 24 target class examples
(lymphoma, leukemia and CNS) are comparable to those reported in [25] (see
Table 4), while the results on eight small example sets with 8 target examples
were poor. An obvious conclusion is that the use of the subgroup discovery
algorithm is not appropriate for problems with a very small number of examples
because overfitting can not be avoided in spite of the heuristics used in the
SD algorithm and the additional domain-specific techniques used to restrict the
hypothesis search space. But for larger training sets the subgroup discovery
methodology enabled effective construction of relevant rules.

Table 4. Covering properties on the training and on the independent test set for rules
induced for three classes with 16 and 24 examples. Sensitivity is |TP |

|P | , specificity is
|TN|
|N| , while precision is defined as |TP |

|TP |+|F P | .

Cancer Training set Test set
Sens. Spec. Prec. Sens. Spec. Prec.

lymphoma 16/16 128/128 100% 5/6 48/48 100%
leukemia 23/24 120/120 100% 4/6 47/48 80%
CNS 16/16 128/128 100% 3/4 50/50 100%

7.1 Experiments in Feature Filtering

In the rest of this chapter experiments are performed on three classes with
a sufficient number of training instances—lymphoma, leukemia, and CNS—for
which induction of significant rules was possible. Table 5 shows the summary
of results obtained by different experiments in eliminating irrelevant features.
For absolute relevance default values MinTP = |P |/2 and MinTN =

√
|N | as

proposed in Section 4.3 were used.

Task 1. In the real domain with 16063 attributes both concepts of absolute
and relative relevancy were very effective in reducing the number of features.
About 60% of all features were detected as absolutely irrelevant while relative
irrelevancy was even more effective as it managed to eliminate up to 75% of all
the features. Their combination resulted in the elimination of 75%–85% of all
the features. These results are presented in the first row of Table 5. The set of all
features in these experiments was generated so that for each gene (attribute) two
features were constructed (Gene = A and Gene = P), followed by eliminating
totally irrelevant features (with |TP | = 0 or |TN | = 0), which substantially
reduced the total number of features.

262 N. Lavrač and D. Gamberger

Table 5. This table presents mean numbers of constructed features for the lymphoma,
leukemia, and CNS domains. Presented are the total number of features (All), the num-
ber of features after the elimination of totally irrelevant features (Total), the number
of features after the elimination of absolutely irrelevant features (Absolute), and the
number of features after the elimination of absolutely and relatively irrelevant features
(Relative). These three values are shown for the following training sets: the real train-
ing set with 16063 genes (with 32126 gene expression activity values, constructed as
Gene = A and Gene = P), a randomly generated set with 16063 genes, and a set with
32126 genes which is a combination of 16063 real and 16063 random attributes.

Tasks All Total Absolute Relative

Task 1 Real domain
with 16063 att. 32126 23500 9628 4445

Task 2 Randomly generated
domain with 16063 att. 32126 27500 16722 16722

Task 3 Combination of
16063 real and
16063 randomly
generated attributes 64252 51000 26350 15712

Task 2. Another domain with 16063 completely randomly generated attribute
values was also constructed, and the same experiments were repeated on this
artificial domain as for the real gene expression domain. The results (repeated
with five different randomly generated attribute sets) were significantly different:
there were only about 40% of absolutely irrelevant features and practically no
relatively irrelevant features. The results are presented in the second row of
Table 5. Comparing the results for the real and for the randomly generated
domain, especially large differences can be noticed in the performance of relative
relevancy. It is the consequence of the fact that in the real domain there are some
features that are really relevant; they cover many target class examples and a
few non-target class examples and in this way they make many other features
relatively irrelevant. The results prove the importance of relative relevancy for
domains in which strong and relevant dependencies between classes and attribute
values exist.

Task 3. The experiments with feature relevancy continued with another domain
with 32126 attributes, generated as the combination of two previous domains
with 16063 attributes each: the real and the randomly generated domain. The
results are presented in the last row of Table 5. After the elimination of absolutely
irrelevant features the number of features is equal to the sum of features that
remained in the two independent domains with 16063 attributes. In contrast,
relative relevancy was much more effective. Besides eliminating many features
from the real attribute part it was now possible to eliminate also a significant
part of features of randomly generated attributes.

Summary of the experiments. Figure 6 illustrates the results presented in
Table 5 with one added domain with 32126 randomly generated attributes. From

Relevancy in Constraint-Based Subgroup Discovery 263

Fig. 6. Mean numbers of features for the three domains (lymphoma, leukemia, and
CNS) for the following training sets: real training set with 16063 attributes of gene
expression activity values, a randomly generated set with 16063 attributes, a randomly
generated set with 32126 attributes, and a set which is a combination of 16063 real
and 16063 random attributes

this analysis it is obvious that the elimination of features is very effective in real
domains. The same result were confirmed in experiments with domains with only
8 target class examples. It is important that in domains which are combinations
of real and random attributes the proposed feature filtering methodology is effec-
tive: in Task 3 less features remained after feature elimination (15712 features)
than in Task 2 (16722 features). This proves that the presented methodology,
especially relative relevancy, can be very useful in avoiding overfitting by re-
ducing the hypothesis search space through the elimination of non-significant
dependencies between attribute values and classes. This property is important
because it can be assumed that among 16063 real attributes there are many of
them which are irrelevant with respect to the target class.

7.2 Examples of Induced Rules

For three classes (lymphoma, leukemia, and CNS) with more than 8 training
cases the following rules were induced by the constraint-based subgroup dis-
covery approach involving relevancy filtering and handling of unknown values
described in this chapter.

Lymphoma class:
(CD20 receptor EXPRESSED) AND
(phosphatidylinositol 3 kinase regulatory alpha subunitNOT EXPRESSED)

264 N. Lavrač and D. Gamberger

Leukemia class:
(KIAA0128 gene EXPRESSED) AND
(prostaglandin d2 synthase gene NOT EXPRESSED)
CNS class:
(fetus brain mRNA for membrane glycoprotein M6 EXPRESSED) AND
(CRMP1 collapsin response mediator protein 1 EXPRESSED)

The expert interpretation of the results yields several biological observations:
two rules (for the lymphoma and leukemia classes) are judged as reassuring and
one (the CNS class) has a plausible, albeit partially speculative explanation.
Namely, the best-scoring rule for the lymphoma class in the multi-class cancer
recognition problem contains a feature corresponding to a gene routinely used
as a marker in diagnosis of lymphomas (CD20), while the other part of the
conjunction (phosphatidylinositol, the PI3K gene) seems to be a plausible bi-
ological co-factor. The best-scoring rule for the leukemia class contains a gene
whose relation to the disease is directly explicable (KIAA0128, Septin 6). Both
M6 and CRMP1 appear to have multifunctional roles in shaping neuronal net-
works, and their function as survival (M6) and proliferation (CRMP1) signals
may be relevant to growth promotion and CNS malignancy.

Both good prediction results on an independent test set (Table 4) as well
as expert interpretation of induced rules prove the effectiveness of described
methods for avoiding overfitting in scientific discovery tasks.

8 Conclusions

This chapter reinterprets the theory of relevancy, described in [14,15], as rele-
vancy constraints applied in a constraint-based subgroup discovery. Although
the target is the induction of rules presenting subgroup descriptions, the re-
sults concerning the concept of relevancy are more general and valid for any
feature-based rule learner. The chapter presents the theory of feature relevancy
in the context of ROC analysis and provides an experimental evaluation of the
usefulness of feature elimination in a functional genomics domain. We have im-
plemented domain dependent restrictions by using discrete instead of continuous
attribute values, and domain independent restrictions by the elimination of irrel-
evant features. Interpretation of marginal gene values as unknown values helped
in reducing the feature space and ensured the robustness of induced rules. The
proposed subgroup discovery framework proved to be useful for solving scientific
discovery tasks.

Acknowledgments

This work was supported by the Slovenian Ministry of Higher Education, Science
and Technology, and the Croatian Ministry of Science, Education and Sport.

Relevancy in Constraint-Based Subgroup Discovery 265

References

1. H. Almuallim and T.G. Dietterich. Learning with many irrelevant features, In
Proceedings of the 9th National Conference on Artificial Intelligence, The MIT
Press, 547–552, 1991.

2. R.J. Bayardo, R.Agrawal, and D.Gunopulos. Constraint-based rule mining in large,
dense databases. In Proc. of the 15th Conference on Data Engineering, 188-197,
1999.

3. R.J. Bayardo, editor. Constraints in Data Mining. Special issue of SIGKDD Ex-
plorations, 4(1), 2002.

4. I. Bruha and F. Franek. Comparison of various routines for unknown attribute
value processing. Journal of Pattern Recognition and Artificial Intelligence 10(8):
939–955, 1996.

5. P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):
261–283, 1989.

6. U.M. Fayyad and K.B. Irani. On the handling of continuous-valued attributes in
decision tree generation. Machine Learning 8: 87–102, 1992.

7. D. Gamberger and N. Lavrač. Expert-guided subgroup discovery: Methodology
and application. Journal of Artificial Intelligence Research 17: 501–527, 2002.

8. D. Gamberger, N. Lavrač, F. Železný, and J. Tolar. Induction of comprehensi-
ble models for gene expression datasets by the subgroup discovery methodology.
Journal of Biomedical Informatics 37:269–284, 2004.

9. K. Kira and L.A. Rendell. A practical approach to feature selection, In Proceedings
of the 9th International Conference on Machine Learning, Morgan Kaufmann, 249–
256, 1992.

10. W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In
Advances in Knowledge Discovery and Data Mining, 249–271, MIT Press, 1996.

11. R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intelli-
gence, Special Issue on Relevance, 97: 273-324, 1997.

12. D. Koller and M. Sahami. Toward optimal feature selection. Proceedings of the
13th International Conference on Machine Learning, Morgan Kaufmann, 284–292,
1996.

13. I. Kononenko. Estimating attributes: Analysis and extensions of Relief, In Proceed-
ings of the 7th European Conference on Machine Learning, LNAI 784, Springer,
171–182, 1994.

14. N. Lavrač, D. Gamberger, and P. Turney. A relevancy filter for constructive induc-
tion. IEEE Intelligent Systems and their Applications 13: 50–56, 1998.

15. N. Lavrač, D. Gamberger and V. Jovanoski. A study of relevance for learning in
deductive databases. Journal of Logic Programming 40: 215–249, 1999.

16. N. Lavrač, B. Kavšek, P. Flach and L. Todorovski. Subgroup discovery with CN2-
SD. Journal of Machine Learning Research, 5: 153–188, 2004.

17. J. Li and L. Wong. Geography of differences between two classes of data. In Proc. of
6th European Conference on Principles of Data Mining and Knowledge Discovery
(PKDD2002), Springer, 325–337, 2002.

18. H. Liu and H. Motoda, editors. Feature Selection for Knowledge Discovery and
Data Mining. Kluwer, 1998.

19. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3): 241–258, 1997.

20. R.S. Michalski. A theory and methodology of inductive learning, In: R. Michalski,
J. Carbonell and T. Mitchell (eds.) Machine Learning: An Artificial Intelligence
Approach, Tioga, 83–134, 1983.

266 N. Lavrač and D. Gamberger

21. S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning.
In Proceedings of the Nineteenth Symposium on Principles of Database Systems,
226–236, 2000.

22. A.L. Oliveira and A.Sangiovanni-Vincentelli. Constructive induction using a non-
greedy strategy for feature selection. In Proceedings of the 9th International Con-
ference on Machine Learning, Morgan Kaufmann, 354–360, 1992.

23. F. Provost and T. Fawcett. Robust classification for imprecise environments. Ma-
chine Learning, 42(3): 203–231, 2001.

24. J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, (1993).
25. S. Ramaswamy et al. Multiclass cancer diagnosis using tumor gene expression

signatures. In Proc. Natl. Acad. Sci. USA, 98(26): 15149–15154, 2001.
26. S. Wrobel. An algorithm for multi-relational discovery of subgroups. In Proceed-

ings of the 1st European Symposium on Principles of Data Mining and Knowledge
Discovery, Springer, 78–87, 1997.

A Novel Incremental Approach to Association Rules
Mining in Inductive Databases�

Rosa Meo, Marco Botta, Roberto Esposito, and Arianna Gallo

Dipartimento di Informatica, Università di Torino, Italy
{meo, botta, esposito, gallo}@di.unito.it

Abstract. Constraints-based mining languages are widely exploited to enhance
the KDD process. In this paper we propose a novel incremental approach to ex-
tract itemsets and association rules from large databases. Here incremental is used
to emphasize that the mining engine does not start from scratch. Instead, it ex-
ploits the result set of previously executed queries in order to simplify the mining
process. Incremental algorithms show several beneficial features. First of all they
exploit previous results in the pruning of the itemset lattice. Second, they are able
to exploit the mining constraints of the current query in order to prune the search
space even more. In this paper we propose two incremental algorithms that are
able to deal with two — recently identified — types of constraints, namely item
dependent and context dependent ones. Moreover, we describe an algorithm that
can be used to extract association rules from scratch in presence of context de-
pendent constraints.

1 Introduction

The problem of mining association rules and, more generally, that of extracting frequent
sets from large databases has been widely investigated in the last decade [1,2,3,4,5,6].
These researches addressed two major issues: on one hand, performance and efficiency
of the extraction algorithms; on the other hand, the exploitation of user preferences
about the patterns to be extracted, expressed in terms of constraints. Constraints are
widely exploited also in data mining languages, such as in [5,7,8,9,10,11] where the
user specifies in each data mining query, not only the constraints that the items must
satisfy, but also different criteria to create groups of tuples from which itemsets will be
extracted. Constraint-based mining languages are also the main key factor of inductive
databases [12], proposed in order to leverage decision support systems. In inductive
databases, the user explores the domain of a mining problem submitting to the system
many mining queries in sequence, in which subsequent queries are very often a refine-
ment of previous ones. This might be, if not properly addressed, a huge computational
workload. This problem becomes even more severe considering that these queries are
typically instances of iceberg queries [13], well-known to be expensive on very large
databases such as common data warehouses. In such systems the intelligent exploitation
of user constraints becomes the key factor for a successful exploration of the problem
search space [14]. The same occurs also in “dense” datasets, in which the volume of

� This work has been funded by EU FET project cInQ (IST-2000-26469).

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 267–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 R. Meo et al.

the result set (the frequent itemsets) compared to the input data is particularly large. In
these cases, constraints are exploited to make a problem tractable that otherwise would
require a non affordable computational workload [15].

In this application context, in order to speed up the query execution time, it makes
sense to exploit the effort already done by the DBMS with previous queries. In fact,
inductive databases can materialize the result of (some of the) previous queries. In this
way, previous results are available to the mining engine which can “reuse” some of the
information contained in them in order to reduce the workload. Indeed, since nowadays
the storage space is critic to a lesser extent, our aim is to reduce as much as possible
the computational work of the data mining engine. Furthermore, we suppose that the
mining engine works in an environment similar to a data warehouse, in which database
content updates occur rarely and in known periods of time. This greatly simplifies the
task, since previous results are considered up to date and can be usefully exploited to
speed up the execution of current queries. Therefore, we suggest that the execution plan
of a constraint-based query should take into consideration also the results of previous
queries, already executed and readily available. The necessity of storing and exploitiong
a collection of query results, has been recognized previously also in [16] in which they
propose a rule query language for the postprocessing of rules based on their statistical
properties or elements.

We present here an incremental approach (originally proposed in [17]) that computes
the result of a query starting from the result of a previous, more general query. The
new result is computed by enforcing on the previous result set the new constraints. We
notice that several “incremental” algorithms have been developed in the data mining
area [18,19,20,21], but they address a different issue: how to efficiently revise the result
set of a mining query when the database source relations get updated with new data. In
this Chapter we show that the new incremental query evaluation technique is beneficial
and reduces the system response time. First of all because previous results allow pruning
of the itemset lattice. Secondly, because the mining constraints of the current query
allow to prune the search space even more. Of course, we assume that the system relies
on an optimizer who is entitled to recognize query equivalence and query containment
relationships in order to identify the most convenient result from which starting the
incremental computation. [22] describes a prototype of such an optimizer and shows
that its execution time is negligible (in the order of milliseconds) for most practical
applications.

Our main contributions here, are two incremental algorithms that provide a fast so-
lution to the case of query containment. The first one exploits the somewhat implicit
assumption made in almost all previous works in constraint-based mining: properties
on which users define constraints are functionally dependent on the item to be extracted,
i.e., the property is either always true or always false for all occurrences of a certain item
in the database. In this case, it is possible to establish the satisfaction of the constraint
considering only the properties of the item itself, that is, separately from the context of
the database in which the item is found (e.g., the purchase transaction). In [22], we char-
acterized the constraints that are functionally dependent on the item extracted and called
them item dependent (ID) constraints. The exploitation of these constraints proves to be
extremely useful for incremental algorithms. Indeed, ID constraints allow the selection

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 269

of the valid itemsets in advance, based on their characteristics, that hold separately from
the transactions in which itemsets are found. Similar reasoning occurs also for succinct
constraints [23] with the difference that these latter consist in properties to be evaluated
on each single item separately from the other items of the itemset. In other words, they
do not foresee aggregate properties on itemsets.

In [22], another class of constraints, namely the context dependent (CD) constraints,
was introduced as well. Context dependent constraints occur very often in many impor-
tant application domains, such as in business (e.g., analysis of stock market data) [24]
in science (e.g., meteorological forecast) [25] but also in the traditional applications of
data mining, such as in market basket analysis [26].

In order to offer a first grip to the intuition about this novel concept, let us explain
it by means of a simple example which applies to the analysis of stock market data. To
this purpose, we assume that the database to be analyzed contains the attributes:

date — the date of interest;
stock — the name of the stock;
price — a categorical attribute assuming values in {increased, not varied,

decreased}.

In such a context, the user may be interested in whether there exists any (negative)
correlation between groups of stock items. For instance, it may want to associate stocks
for which price=increased with ones for which price=decreased instead.
As an example of the result, he/she may find useful to discover that .when price of
AT&T and Microsoft stocks increase, then the price of Sun Microsystems decreases
with a probability of 78%/.

In this case, the stock price, which is the feature on which constraints are evalu-
ated, does not depend only on the stock, but it also depends on another variable (time).
Time and stock together provide the context in which price is determined. Therefore, in
contrast to ID constraints, the satisfaction of CD constraints cannot be decided without
reading the contextual information present in the database transaction. While, in the
simplest situations, the problem may be solved by filtering the database relation before
the mining process, such a filtering is not possible when different predicates are given
for the body part and the head part of the rules or when constraints on aggregates must
hold on the sets. In this latter cases, CD constraints proved to be very difficult to be
dealt with. In fact, a CD constraint is not necessarily satisfied by a certain itemset in
all its instances in the database. And this fact has big influence on the possibilities of
pruning that constraints allow on the lattice search space. In fact, even if an itemset,
satisfying a CD constraint within a transaction, satisfies one of the well studied prop-
erties of monotonicity or anti-monotonicity over the itemset lattice, the same properties
do not necessarily hold for that itemset in the whole database. Unfortunately, most of
the state of the art algorithms [4,23,27], are based instead on the principle that those
properties hold for a certain pattern database wide.

As far as incremental mining is concerned, the presence of a CD constraint in a
query implies that one needs to carefully check whether the constraints are satisfied by
scanning the transaction table. In the following, we present a new algorithm which is
able to deal with context dependent constraints. We show that incremental algorithms
are valuable tools even in this setting.

270 R. Meo et al.

Despite the lack of studies on algorithms dealing with contextual characteristics of
itemsets, CD constraints have revealed to be of a certain importance in the extraction
of knowledge from databases. For instance, in [26] the authors claim it is important to
identify the contextual circumstances in which patterns hold. They propose to reason
on circumstances organizing them in a lattice and searching there the most general cir-
cumstances in which patterns hold. Their work, however, restricts reasoning on circum-
stances to conjunctive statements and makes no use of available query results. On the
contrary, CD constraints proposed here can be organized with no restriction and queries
are allowed to contain general boolean predicates. Secondly, the proposed approach
makes a significant usage of available results of previous queries (if the incremental ap-
proach results effective with respect to a conventional execution, i.e., by scratch). The
incremental option for a data mining algorithm is of course preferable in an inductive
database system, since it allows the exploitation of all the available informations in the
system in order to speed up the response time.

The rest of the paper is organized as follows. Section 2 presents some preliminary
definitions, discusses the properties of queries of the containment relationship. Section 3
and Section 4 present two incremental algorithms able to deal with item dependent and
context dependent constraints respectively. Section 5 shows a first set of experimental
assessments of the incremental algorithms. In order to fully evaluate the validity of the
incremental algorithms in general and with a fair comparison, since in literature there
are no algorithms that extract association rules with context dependent constraints, we
propose in Section 6 a baseline miner algorithm (called CARE) that is non-incremental
and is able to extract association rules with item or context dependent constraints. Fi-
nally, in Section 7 we study the worthiness of the incremental approach using the CARE
algorithm as a baseline miner. Section 8 draws some conclusions.

2 Preliminary Definitions and Notation

Let us consider a database instance D and let T be a database relation having the schema
TS={A1, A2, . . . , An}. A given set of functional dependencies Σ over the attribute
domains dom(Ai), i = 1..n is assumed to be known.

As a running example, let us consider a fixed instance of a market basket analy-
sis application in which T is a Purchase relation that contains data about customer
purchases. In this context, TS is given by {tr, date, customer, product,
category, brand, price, qty}, where:tr is the purchase transaction identi-
fier, customer is the customer identifier,date is the date in which the purchase trans-
action occurred, product is the purchased product identifier, category is the cate-
gory to which the product belongs, brand is the manufacturer of the product, price
is the product price, and qty is the quantity purchased in transaction tr. The Σ rela-
tion is {product→ price, product→ category, product→ brand, {tr,
product} → qty, tr → date, tr → customer}. It should be noted, however,
that the validity of the framework is general, and that it does not depend on either the
mining query language or the running database example.

Of course, the above schema could also be represented over a set of relations and di-
mensions adopting the usual data warehouse star schema. However, the non-normalized

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 271

form is more readily explained as well as more common in a data mining environment.
In fact, data mining practitioners usually preprocess the data warehouse in order to ob-
tain a database schema similar to the one introduced.

As above mentioned, the system tries to exploit past results in order to react more
promptly to user requests. In order to work, such a system must be able to recognize
that syntactically different queries are, actually, similar. The following definition, which
introduces the notion of grouping equivalence, allows the system to recognize that two
ways of partitioning the database are equivalent. Clearly, this could be done by building
the partitions and checking whether they are identical. However, this approach is clearly
too costly. Instead, our approach is to exploit known domain knowledge in order to
obtain an answer without actually accessing the database.

Definition 1. Grouping equivalence relationship.
Two sets of attributes K1 and K2 are said to be grouping equivalent if and

only if for any relation T defined on TS:

∀t1, t2 ∈ T : t1[K1] = t2[K1]⇔ t1[K2] = t2[K2]

where t1[K1] is the projection of the tuple t1 on the attributes in K1.

Put in other words: K1 and K2 are grouping equivalent if and only if K1 ↔ K2

(where↔ denotes a bidirectional functional dependence).

Example 1. As we pointed out, the grouping equivalence relation has been intro-
duced as a tool to distinguish whether two set of attributes partition the database in
the same way. The following table reports a case where the set of attributes {tr}
and {date,customer} are grouping equivalent, while, for instance {date} and
{product} are not.

tr data customer product

1 10/1/2005 CustomerA Milk
1 10/1/2005 CustomerA Bread
1 10/1/2005 CustomerA Beer
2 10/1/2005 CustomerB Meat
2 10/1/2005 CustomerB Biscuits
3 12/1/2005 CustomerA Milk
3 12/1/2005 CustomerA Biscuits

Let us notice, however, that this example is an oversimplification of what expressed in
Definition 1. In fact, here it is reported only a single database instance and we asked to
check the grouping equivalence relationship on it. The definition, instead, requires the
relation to hold for all database instances of a given database schema. This actually
implies that the relation must be checked using known functional dependencies.

Sets of attributes that are grouping equivalent form a grouping equivalence class
E. As an example of the usefulness of this concept, let us notice that if two queries
differ only for the way the relations are grouped and the grouping attributes used in

272 R. Meo et al.

the two queries are in the same equivalence class, then the two queries are bound to be
equivalent.

We assume to know about a set of grouping equivalence classes E1 . . . Ej .

Example 2. In the Purchase example, the following non trivial equivalence class
may be found:

E1= {{tr}, {date, customer}, {tr, date}, {tr, customer}, {tr,
date, customer}}.

In writing a mining query, the user must specify, among the others, the following
parameters:

– The item attributes, a set of attributes whose values constitute an item, i.e., an el-
ement of an itemset. The language allows one to specify possibly different sets of
attributes, one for the antecedent of association rules (body), and one for the con-
sequent (head).

– The grouping attributes needed in order to decide how tuples are grouped for the
formation of each itemset. The grouping attributes, for the sake of generality and
expressiveness of the language, can be decided differently in each query according
to the purposes of the analysis.

– The mining constraints specify how to decide whether an association rule meets the
user needs. In general, a mining constraint takes the form of a boolean predicate
which refers to elements of the body or of the head (possibly on the values of any
of the attributes in TS, e.g., kind of product, price or quantity). Since we want to
allow different constraints on the body and on the head of the association rules, we
admit two separate constraint expressions for each part of the rule.

– An expression over a number of statistical measures used to reduce the size of the
result set and to increase the relevance of the results. This evaluation measures are
evaluated only on the occurrences of the itemsets that satisfy the mining constraints.

Usually in market basket analysis, when the user/analyst wants to describe by means
of itemsets the most frequent sales occurred in purchase transactions, the grouping at-
tribute is tr (the transaction identifier) and the itemsets are formed by the projection
on product of sets of tuples selected from one group. However, for the sake of gen-
erality and of the expressive power of the mining language, grouping can be decided
differently in each query. For instance, if the analyst wants to study the buying behavior
of customers, grouping can be done using the customer attribute, or if the user wants
to study the sales behaviour over time he/she can group by date or by week or month
in the case these attributes were defined.

Users may exploit the mining constraints in order to discard uninteresting itemsets
and to improve the performances of the mining algorithm.

More formally, a mining query for the extraction of association rules is described as
the 7-tuple:

Q = (T, G, IB, IH , ΓB, ΓH , Ξ)

where: T is the database table; G is the set of grouping attributes; IB and IH are the set
of item attributes respectively for the body and the head of association rules; ΓB and

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 273

ΓH are boolean expressions of atomic predicates specifying constraints for the body
and for the head of association rules; Ξ is an expression on some statistical measures
used for the evaluation of each rule.

We define an atomic predicate to be an expression in the form:

AiθvAi

where θ is a relational operator such as <,≤, =, >,≥, �=, and vAi is a value from the
domain of attribute Ai.

Ξ is defined to be a conjunction in which each term has the form

ξθv

where ξ is a statistical measure for the itemset evaluation, v is a real value, and θ is
defined as above.

For the sake of simplicity, in this paper we focus on the support count and confi-
dence statistical measures. The extension to other measures should be straightforward.
The support count is the number of distinct groups containing both the itemsets in the
association rule. Confidence is the ratio between the association rule support and sup-
port of the body.

Example 3. The query

Q=(Purchase, {tr}, {product}, {product},
price>100, price≥200,

support count≥20 AND confidence≥0.5)

over the Purchase relation (first parameter) extracts rules formed by products in
the body (third parameter) associated to products in the head (fourth parameter),
where all the products in the rule have been sold in the same transaction (second pa-
rameter). Moreover, the price of each product in the body must be greater than 100
(fifth parameter) and the price of each product in the head must be greater or equal
to 200 (sixth parameter). Finally, the support count of the returned rules must be at
least 20 and the confidence of the rules at least 0.5. Even if the query syntax we gave
is best suited for the purposes of this paper, it is quite unfriendly when it comes to un-
derstandability. Many languages have been proposed in the literature that can easily
express the kind of constraints we introduced in this paper. For instance, query Q could
be expressed in the Minerule [8] language as follows:

MINERULE Q
SELECT DISTINCT 1..n product AS BODY, 1..n product AS HEAD, SUP-

PORT, CONFIDENCE

WHERE BODY.price> 100 AND HEAD.price≥ 200
FROM Purchase
GROUP BY tr
EXTRACTING RULES WITH SUPPORT COUNT:20, CONFIDENCE: 0.5

Now that we have seen how constraint-based mining queries are formed, let us de-
fine two particular types of constraints: the item dependent constraints and the context
dependent ones. In the following, we will denote by X → Y a functional dependency
(FD) between two attribute sets X (LHS) and Y (RHS) in the database schema TS.

274 R. Meo et al.

Definition 2. Dependency set.
A dependency set of a set of attributes X contains all the possible RHS that can be

obtained from X following a FD X → Y in Σ (direct or transitive) such that there is
no X ′ ⊂ X such that X ′ → Y .

As we did for equivalence classes, we assume to know about a set of dependency
sets.

Example 4. The dependency set of {product} is {category, price,
brand}.The dependency set of {tr} is {customer, date} while the dependency
set of {tr, product} is {qty}. As a consequence, one can safely assume that:

– the value of product can be used to determine the values of attributes
category, price, and brand;

– the value of tr and product uniquely determines the value of qty.

Definition 3. Context dependent and item dependent constraints.
Given a query

Q = (T, G, IB, IH , ΓB, ΓH , Ξ)

let us consider an atomic predicate P(A) ∈ ΓB (respectively ΓH). P(A) is defined to be
an item dependent constraint if and only if A belongs to the dependency set of I ′, where
I ′ ⊆ IB (respectively, I ′ ⊆ IH). If P(A) is not an item dependent constraint, then it is a
context dependent constraint.

A query Q is said to be item dependent if all atomic predicates in ΓB and ΓH are
item dependent constraints. If Q is not item dependent, then it is context dependent.

We notice that an itemset I satisfies an item dependent constraint either in any
database group in which it occurs, or in none. This immediately implies the following:

Lemma 1. Statistics for itemsets with item dependent constraints.
An itemset I that satisfies an item dependent constraint in a mining query has a

statistical measure that is a function of the total number of groups in which I occurs in
the given database instance.

On the contrary, a context dependent constraint might possibly be satisfied by some,
but not all, occurrences of itemset I. Then, the statistical measure cannot be evaluated
on the number of groups in which the itemset appears. In fact, this number may dif-
fer from (i.e., be larger than) the number of groups in which the itemset satisfies the
constraint.

We now give some properties that allow to identify the existence of the contain-
ment relationship between two mining queries. These conditions provide the theoretical
ground supporting the algorithms that we discuss in Section 3 and 4. Through all the
discussion we will denote with Q the query issued by the user at the present time and
that we want to “optimize”, and with Qi the ones in the past queries repository.

To begin with, we notice that not all Qi are suitable candidates for testing the con-
tainment relationship. In fact, many of them may be built using features which imme-
diately hinder the possibility of finding the relationship to hold. In the following, we

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 275

present a simple test which can be used to filter out those queries very efficiently. Fur-
ther work is probably needed under this viewpoint, but for the moment we consider this
aspect as future work. For the time being, we define the concept of candidate queries
for containment of Q (that is those queries that may contain Q) as follows.

Definition 4. Candidates for query containment of Q.
Let us consider

Qi = (T, Gi, Ii
B, Ii

H , Γ i
B, Γ i

H , Ξi)
Q = (T, G, IB , IH , ΓB, ΓH , Ξ)

A previous query Qi is a candidate for containment of Q, if the following conditions
hold:

1. Gi is in the same grouping equivalence class of G
2. Ii

B is in the same grouping equivalence class of IB

3. Ii
H is in the same grouping equivalence class of IH

Therefore, a first criterion for selecting the candidate queries for containment of Q
can be based on testing the above three conditions. That is, we require that the queries
are “grouping equivalent” (i.e., both the queries partition the input data in the same
groups) and that they use an “equivalent” description for the items in the body and in
the head part of the association rules.

Let us denote by R the set of association rules returned by Q and by Ri the set of
association rules returned by Qi.

Theorem 1. Properties of Query Containment.
Given

Qi = (T, Gi, Ii
B, Ii

H , Γ i
B, Γ i

H , Ξi)
Q = (T, G, IB , IH , ΓB, ΓH , Ξ)

Let Qi be a candidate for containment of Q.
Let the following hypothesis of entailment between constraints of Q and Qi be ful-

filled:

ΓB ⇒ Γ i
B

ΓH ⇒ Γ i
H

Ξ ⇒ Ξi

Under these conditions, R ⊆ Ri. Furthermore, the support count (sup count) of
an association rule r ∈ R is upper bounded by the support count (sup counti) of the
same rule in Ri.

Proof. Assuming that Qi is a candidate for containment of Q implies that Q and Qi

partition the database in the same groups and extract from them the same sets of po-
tential association rules. That is, if the two queries did not contain any constraint, then
their result sets would be identical. Let us call the result set of the unconstrained query

276 R. Meo et al.

R′. In order to prove the containment relation, it is left to show that any rule r which
is selected from R′ by Q is also selected by Qi. This is actually immediate, in fact, for
any such rule: r ∈ R ⇒ ΓB(r)∧ΓH (r)∧Ξ(r) ⇒ Γ i

B(r)∧Γ i
H (r)∧Ξi(r) ⇒ r ∈ R′.

Here, the first and the last implications hold since, by definition, a rule belongs to the
result set of a query Q′ if and only if it belongs to the unconstrained version of Q′ and
satisfies all the constraints in it. The middle entailment, instead, is directly implied by
the assumptions of the theorems.

Moreover, any itemset which satisfies ΓB in a database group also satisfies Γ i
B in the

same group. The same holds for the head constraints. In addition, there might exist some
database groups in which Γ i

B and Γ i
H are satisfied, but ΓB or ΓH are not. Therefore,

the support count of any rule r in Ri is bound to be not lower than the support count of
r in R.

The following lemma specializes the previous theorem for queries with item depen-
dent constraints.

Corollary 1. Query containment with item dependent constraints.
Under the same hypotheses of Theorem 1, let us also assume that the queries are

item dependent. Then, a rule r ∈ R∩Ri has the same support count in both Q and Qi.
A rule r, such that r ∈ Ri but r �∈ R, has a support count equal to zero in Q.

Proof. By definition, an item dependent constraint is satisfied by all the occurrences of
a given itemset in the database or by none. Thus, an association rule in R that satisfies
ΓB and ΓH satisfies also Γ i

B and Γ i
H in the same number of groups (and thus satisfies

both Ξ and Ξi). Therefore its support count will be the same in both the result sets.
However, a rule in Ri which does not satisfy ΓB and ΓH will not satisfy them in all

the database groups in which it occurs. Thus, it will have a support count equal to zero
in Q.

3 An Incremental Algorithm for Item Dependent Constraints

In a previous work [22], we showed that item dependent constraints are particularly
desirable from the viewpoint of the optimization of languages for data mining. In par-
ticular, we showed that we can obtain the result of a newly posed query Q by means of
set operations (unions and intersections) on the results of previously executed queries.
We qualify this approach to itemset mining as incremental because instead of comput-
ing the itemsets from scratch it starts from a set of previous results. In this paper, we
are interested in studying the situation of query containment, that is, to consider situa-
tions in which query Q imposes a more restrictive set of constraints with respect to a
previous query, here denoted with Qi. In this paper, we show that item dependent con-
straints can also be exploited to simplify the problem of incremental mining. In fact, it
turns out that, in order to retrieve the desired rules, it suffices to identify the rules in the
previous results that satisfy the new constraints. As the results in Section 2 imply, this
is not generally true in a situation involving context-dependent constraints. In fact, in
the latter case, one needs to carefully update the statistical measures of the rules as well
(see Section 4).

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 277

In Section 2, we showed that under the item dependency assumption, whenever a
query Qi is found to contain Q, it is rather easy to extract the new results from past
ones. In fact, it suffices to search in Ri those rules which satisfy the requirements of Q
and to copy them verbatim (along with their support counts) into the new result set.

A sketch of this incremental approach is reported in Algorithm 1. The algorithm is
very simple: it checks which of the rules in Ri satisfy the constraints in Q and updates
R accordingly. It is important to notice that testing ΓB and ΓH is a feasible and effi-
cient operation. In fact, since the constraints are item dependent, their evaluation does
not require to access the whole (possibly huge) facts table. On the contrary, it merely
requires to access the dimension tables and to check the constraints using the informa-
tions found therein. Since those tables does usually fit into the main memory or in the
DBMS buffer memory, this rarely becomes a demanding operation. In addition, the Ξ
constraint is also easily checked by using the statistical measures stored together with
the rules in the past result.

Algorithm 1: Item Dependent (ID) incremental algorithm

Data : Ri = {b → h} : old result set;
Q = (T, G, IB , IH , ΓB , ΓH , Ξ) : the query issued by the user;

Result : R : the set containing the rules satisfying Q

R ← ∅;
foreach r ∈ Ri do

if ΓB(r) ∧ ΓH(r) ∧ Ξ(r) then
R ← R ∪ {r};

end
end

4 An Incremental Algorithm for Context Dependent Constraints

In this section we propose an incremental algorithm which is able to construct the
result of a new mining query Q starting from a previous result Ri even when the
mining constraints are not item dependent. At the best of our knowledge this is the
first attempt to write a mining algorithm able to deal with context dependent con-
straints [3,4,11,28,29,30].

The algorithm is best described by considering two separate steps. In the first one, the
algorithm reads rules from Ri and builds a data structure which keeps track of them. We
call this structure the BHF (Body-Head Forest) and describe it in Section 4.1. We notice
that since the BHF is built starting from a previous result set and represent only rules
found therein, this corresponds to a first pruning of the search space. In fact, subsequent
operations will simply disregard rules that do not appear in it (the correctness of this
approach is implied by Theorem 1).

In the second step, the algorithm considers two relations Tb = {< i, g > |i ∈
IB , g ∈ G, ΓB is true} and Th = {< i, g > |i ∈ IH , g ∈ G, ΓH is true}, containing
the items and the group identifiers (GIDs) that satisfy the mining constraints in query
Q. Tb and Th are obtained by evaluating the constraints on the fact table. Their role is

278 R. Meo et al.

to keep track of the context in which the itemsets appear. In fact, the context dependent
constraints require that their validity is checked group by group. The two relations fullfil
this purpose. We notice that this is another point in which the search space is pruned.
In fact, the constraints are evaluated on the database and the items which do not satisfy
the mining constraints are removed, once and for all, from the input relations.

Finally, the algorithm updates the counters in the BHF data structure accordingly to
the itemsets found in Tb and Th. The counters are then used to evaluate the statistical
measures needed to evaluate whether the constraint Ξ is satisfied.

4.1 Description and Construction of the BHF

A BHF is a forest containing a distinguished tree (the body tree) and a number of
ancillary trees (head trees). The body tree is intended to summarize the itemsets which
will be found in the body part of the rules. Importantly, in any tree, an itemset B is
represented as a single path and vice versa. In the node corresponding to the end of a
path, it is stored a head tree and the (body) support counter.

Analogously, the head tree (associated to the itemset B) is intended to summarize
the itemsets that will appear in the head part of the rules (having the body equal to B).
A head tree is similar in structure to a body tree with the exception that there are no
head trees associated to the end of any path. A path in a head tree corresponds to an
itemset H and is associated to a counter which stores the support of the rule.

Figure 1 gives a schematic representation of a BHF.
In the following, we will make use of the following notation: given a node n belong-

ing to a body tree or to a head tree, we denote with n.child(i) the body (respectively
the head) tree rooted in the node n in correspondence of the item i. For instance, in the
root node of the BHF reported in Figure 1, there are four items, and three non-empty
children; root.child(a) denotes the body node containing the items c, d, and z. In a sim-
ilar way we denote the head tree corresponding to a particular item i in a node n using
the notation n.head(i). We also assume that both body elements and head elements are
sorted in an unspecified but fixed order. We denote with B[k] (respectively with H [k])
the k-th element of the body B (respectively head H) w.r.t. this ordering. Finally, in
many places we adopt the standard notation used for sets in order to deal with BHF
nodes. For instance, we write i ∈ n in order to specify that item i is present in node n;
we write n ∪ i in order to denote the node obtained from n by the addition of item i.

Procedure insertRule
Data : root : the BHF root node

B → H : the rule to be inserted
headTree ← insertBody(root, B, 1) ;
insertHead(headTree, H, 1);

Procedure insertRule describes how a rule is inserted in the BHF structure. The
procedure consists in two steps. In the first one, the body B of the rule is inserted in the
body tree (see Function insertBody) and the node n corresponding the end of the path

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 279

associated to B is determined. In the second one, the head is inserted and attached to n
(see Procedure insertHead).

We notice that the hierarchical structure of the BHF describes a compressed version
of a rule set. In fact, two rules B1 → H1 and B2 → H2 share a sub path in the body
tree provided that B1 and B2 have a common prefix. Analogously they share a sub path
in a head tree provided that B1 ≡ B2 and H1 and H2 have a common prefix.

Function insertBody
Data : n : a BHF node

B : an itemset
k : an integer

if B[k] �∈ n then
n ← n ∪ B[k]

end
if k < size(B) then

insertBody(n.child(B[k]), B, k + 1)
else

return n.head(B[k])
end

Procedure insertHead
Data : n : a BHF node

H : an itemset
k : an integer

if H [k] �∈ n then
n ← n ∪ H [k]

end
if k < size(H) then

insertHead(n.child(H [k]), H, k + 1)
end

4.2 Description of the Incremental Algorithm

Here, we assume that a BHF has been initialized using the rules in the previous result
set Ri (but with their support count equal to zero: it will adjusted in the following step).
We will show how the BHF is updated and the rules are extracted in order to build the
novel result set R.

In the following we will denote with:

– T ITEM
b [g] ≡ {i | (g, i) ∈ Tb} and with T ITEM

h [g] ≡ {i | (g, i) ∈ Th} the set of
items in group g that satisfy the body and the head constraints, respectively.

– T GID
b ≡ {g | (g, i) ∈ Tb} and with T GID

h ≡ {g | (g, i) ∈ Th} the set of GIDs in
Tb and in Th, respectively.

– T GID
b [i] ≡ {g | (g, i) ∈ Tb} and with T GID

h [i] ≡ {g | (g, i) ∈ Th} the set of group
identifiers in which item i satisfies the body and the head constraints, respectively.

280 R. Meo et al.

a

c

d

z

c

d

z

d

z

d

z

z

body tree head trees

f

g

m

Fig. 1. Example of BHF

– τ the support threshold chosen by the user
– r.body the body of rule r and with r.head the head of rule r

For the sake of readability, we reported in Algorithm 5 a simplified version of the
incremental algorithm which has the advantage of making its intended behavior clear.
We believe it is self explanatory. Instead, the implemented version greatly improves on
the simple, reported one. Let us now assume that the working of Algorithm 5 is clear.
We now try to give an idea of how the implemented version works and improve on it.
The main difference is that in order to avoid the checking of each and every rules in the
BHF (see Procedure incrRuleSupp), the algorithm performs a depth first search in the
BHF. In this way it is able to find all the rules which need their support to be updated
for a given group g without actually enumerate all possible rules.

Let us illustrate the way the implemented algorithm proceeds by means of an ex-
ample. Let us assume that the BHF in Figure 1 is given, and for group g it holds
T ITEM

b [g] = {a, c, z} and T ITEM
h [g] = {f, l}. In order to update the support counters

in the BHF tree, the algorithm proceeds as follows. The root of the body tree is exam-
ined in order to check which of the items it contains are in {a, c, z}. The item “a” is
found and its support counter is therefore incremented (we recall that the supports of
the body part of the rules are needed in order to evaluate the rules confidence values).
Since T ITEM

h [g] �= ∅, the head tree associated to “a” is examined. As a result, the al-
gorithm increments the support counters associated to the items in T ITEM

h [g]. That is

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 281

the ones corresponding to the rules having “a” in their body and any subset of {f, l} in
their head.

Once the updating of the counters in the head tree rooted in “a” is complete, the
algorithm examines the rest of the body tree. In the root node of the sub tree rooted in
“a”, the algorithm searches whether it contains items belonging to {c, z}. It finds item
“c” and increments its support. As in the previous case, the algorithm examines the head
tree associated to this item and updates the support counters accordingly.

Then, the sub tree rooted in “c” is examined in a similar way. Whenever a body tree
node does not contain any items in T ITEM

b [g], the algorithm backtracks to its ancestor
looking for items in T ITEM

b [g] that have not been “visited” yet in that node.

Algorithm 5: Context Dependent (CD) incremental algorithm

Data : Tb, Th

Result : R2

for all GID g ∈ T GID
b do

incrRuleSupp(BHF, T ITEM
b [g], T ITEM

h [g])

end
for all rule r ∈ BHF do

if Ξ(r) then
R2 ← R2 ∪ r

end
end

5 Results

The two incremental algorithms presented in this paper have been assessed on a
database instance, describing retail data, generated semi-automatically. We generated
a first approximation of the fact table (purchases) using the synthetic data genera-
tion program described in [31]. The program has been run using parameters |T | = 25,
|I| = 10, N = 1000, |D| = 10, 000, i.e., the average transaction size is 25, the average

Procedure incrRuleSupp
Data : a BHF,

Tb, Th

Result : It updates the support counters in the BHF
for all r ∈ BHF do

if r.body⊆ T ITEM
b [g] then

r.body.support++;
if r.head⊆ T ITEM

h [g] then
r.support++;

end
end

end

282 R. Meo et al.

size of potentially large itemsets is 10, the number of distinct items is 1000 and the total
number of transactions is 10.000. Then, we updated this initial table by adding some
attributes which provide the details (and the contextual information) of each purchase.
We added some item dependent features (such as “category of product” and “price”)
and some context dependent features (such as “discount” and “quantity”). The values
of the additional attributes have been generated randomly using uniform distributions
on the respective domains1.

We note here how a single fact table suffices for the objectives of our experimen-
tation. While, in fact, the characteristics of the database instance (e.g., total database
volume and data distribution) are determinant in order to study the behavior of mining
algorithms, this is not so when we are up to study incremental algorithms. Indeed, as
simple complexity considerations point out, the important parameters from the view-
point of the performance study of incremental algorithms are the selectivity of the min-
ing constraints (which determine the volume of data to be processed from the given
database instance) and the size of the previous result set.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Predicate Selectivity

Mining
Preprocessing

(a) Constraint selectivity vs execution time

 0

 1

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000 2500 3000

S
ec

on
ds

Number of rules in R1

Mining
Preprocessing

(b) Volume of previous result vs execution
time

Fig. 2. Empirical evaluation of the item dependent (ID) incremental algorithm

In Figure 2(a) we report the performances of the item dependent incremental al-
gorithm (ID) as the selectivity of the mining constraints changes. We experimented
different constraints on the item dependent attributes, letting the constraints selectivity
vary from 0% to 100% of the total number of items. In Figure 2(a) we sampled twenty
points. Figure 2(b) tests the same algorithm, but it lets vary the number of rules in the
previous result set. Again we sampled twenty points (in the range 0 . . . 3220). The two
figures report the total amount of time needed by the algorithm to complete. In partic-
ular, the bars, which represent the single experiments, are divided in two components:
the preprocessing time (spent in querying the database to retrieve and store in main
memory the items that satisfy the constraints), and the core mining time (needed by the
algorithm to read the previous result set and to filter out those rules that do not satisfy
the constraints any more).

1 The dataset can be downloaded from www.cinq-project.org

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 283

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ec

on
ds

Predicate Selectivity

Mining
Preprocessing

(a) Constraint selectivity vs execution time

 0

 5

 10

 15

 20

 25

 30

 35

 0 500 1000 1500 2000 2500 3000

S
ec

on
ds

Number of rules in R1

Mining
Preprocessing

(b) Volume of the previous result vs execu-
tion time

Fig. 3. Empirical evaluation of the CD incremental algorithm

Figures 3(a) and 3(b) report the performances of the context dependent (CD) algo-
rithm. The figures report again the total execution time, specifying how much time was
spent for preprocessing and for the core mining task. It is worth noticing, that the CD
incremental algorithm performs a greater amount of work with respect to the ID algo-
rithm because the problem it solves is far more complex. In fact, in the preprocessing
phase the algorithm must retrieve all the group/item pairs satisfying the constraints and
access to them in order to build and update the BHF data structure. Only then, it can
retrieve the results from the BHF structure.

A couple of points are worth noting. The execution times of both algorithms increase
almost linearly with the increase of the two parameters (constraint selectivity and pre-
vious results), but, as it was expected, the item dependent incremental algorithm runs
much faster than its counterpart.

Moreover, as the experiments in Section 7 will show, both the algorithms are faster
than CARE, a new algorithm (that we introduce in the following section) which, nev-
ertheless, is capable of solving a class of more difficult problems - mining association
rules in presence of context-dependent constraints.

CARE, as the most of the algorithms, operates starting from scratch. We emphasize
here, that, at the best of our knowledge, CARE is the only mining algorithm capable
of dealing with context dependent constraints. Hence, comparisons with other mining
algorithms on the field of context dependent constraints are difficult to be made. Our
guess is that any state of the art mining algorithm should be able to outperform CARE,
on problems defined in terms of item dependent constraints, due to the lower generality
of the problem they face.

Interestingly, nevertheless, thanks to the good performances of incremental algo-
rithms also on problems with context dependent constraints, one has always the choice
of avoiding the use of CARE. This is done by running first the mining algorithm of his
choice (on the problem defined by the query but without the context dependent con-
straints) and then applying the incremental algorithm on top of it (with the addition of
context dependent constraints). The issue of which choice is the most promising is out
of the scope of this paper. However, we believe that the answer is likely to depend on
the problem at hand. In particular, whenever the mining constraints select a very small

284 R. Meo et al.

part of the original dataset, CARE is likely to be very fast. On the contrary, whenever
the result set is small, the incremental algorithm seems more efficient.

6 The Constrained Association Rules Extractor Algorithm

CARE (Constrained Association Rules Extractor) is an algorithm which has been de-
signed to extract association rules in presence of context dependent constraints. Con-
text dependent constraints do not allow the classical two phases algorithms (first, find
frequent itemsets, second, extract association rules), because frequency count and con-
straint satisfaction interact. In principle, a levelwise algorithm, such as Apriori [31],
might be used, provided that at each iteration the constraint is checked on the database.
We decided to develop CARE starting from Partition [32], since it has been shown to
perform better than Apriori on many databases.

Even if CARE can work with item dependent constraints, its main purpose is to pro-
vide a first and simple solution to the problem posed by CD constraints, thus providing a
baseline comparison for incremental algorithms. However, it is necessary to notice that
CARE is still under development in order to overcome its limitations: it is not able to
deal with cross mining constraints, such as BODY.feature1 < HEAD.feature1,
or aggregate constraints, such as sum(BODY.quantity) > val. Its main features
are the following:

– in contrast with any published algorithm we are aware of, CARE uses two separate
structures for storing items to be put in the body and items to be put in the head of
an association rule. This is needed because constraints on the body items might be
different from constraints on the head items.

– It maintains for each item a list of group identifiers (gidlists) of the transactions in
which the item appears, as done, for instance, in Partition [32]. This allows, on one
hand, to scan the database only twice, and on the other hand, to keep all needed
information to combine body items and head items. In a future implementation, on
dense databases, bitmaps will be used to efficiently store and operate on gidlists.

In a constrained mining framework, items must be frequent and satisfy the additional
mining constraints. In the general settings we are considering, items in the body of a
rule should satisfy a mining constraint ΓB , whereas items in the head of a rule should
satisfy a possibly different mining constraint ΓH . Such constraints can be evaluated a
posteriori, i.e., at the time rules are extracted from frequent itemsets, only if the con-
straints are item dependent.

In the general case of context dependent constraints (e.g., BODY.qty > 2 ∧
HEAD.qty = 1), items might satisfy the constraints ΓB or ΓH in some transactions
and not in others, thus influencing the frequency with which an item that satisfies the
mining constraints occurs. Moreover, as already said, since the same item in a transac-
tion might satisfy only one of the two constraints ΓB and ΓH , it is necessary to maintain
separate structures for storing body itemsets and head itemsets. In particular, there is a
structure (named BH) for the items satisfying the constraints on the body. Each entry
of this structure contains a triple < i,Bgids, HH >, where i is an item, Bgids is a list
of group identifiers (gidlists) in which the item is found in the source table, and HH is a

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 285

structure containing the items satisfying the constraints on the head. In this way, every
item that can be in the body of a rule is associated with the set of items that can be put in
the head of such a rule. This structure is very similar to the BHF previously described,
as it only contains the root nodes of the forest. In the following, we will use set nota-
tion for the abstract description of the algorithms, while in the actual implementation
of these structures we used hashmaps, for efficiency reasons.

Algorithm 7: The CARE algorithm

Data Structures:
Data : Tb, Th;

ε minimum support threshold;
Result : R

BH = { < i, Bgids, HH > |i ∈ IB,
Bgids = T GID

b [i], |Bgids| ≥ ε,
HH = {< j, Hgids > |j ∈ IH ,
Hgids = Bgids ∩ T GID

h [j], |Hgids| ≥ ε}
}

R = buildRules(BH, ε);
return R;

CARE works in two steps: in the first step, BH is initialized by scanning the tables
Tb and Th. Then, the rules are extracted through a recursive process.

The full sketch of CARE is reported in Algorithm 7.
Rules are extracted from the BH structure by first creating a body itemset (see func-

tion buildRules that in turn calls buildBody), then creating the corresponding head
itemsets for that body (see function buildHead), and repeating the process recursively
for all items in the BH structure. Note that each itemset in the body (head) is obtained
by union of the current body (head) with another item in the BH structure (HH struc-
ture). The gidlist of the candidate itemset is obtained by intersection of the respective
gidlists of the two “ancestor” itemsets and its cardinality is finally tested to verify the
support constraint.

Function buildRules
Data : BH the BH structure ;

ε minimum support threshold;
Result : R
while (BH �= ∅) do

let e =< i, Bgids, HH >∈ BH;
BH = BH − {e};
R = R ∪ buildBody(({i}, Bgids), BH, HH, ε);

end
return R;

286 R. Meo et al.

Function buildBody
Data : (CurrentBodyItemset, CurrentGids) current body information ;

BH the body-head structure ;
ε minimum support threshold;

Result : R the rules extracted
R = buildHead(CurrentBodyItemset, HH, (∅, CurrentGids), ε);
while (BH �= ∅) do

let e =< i, Bgids, HH >∈ BH;
BH = BH − {e};
newgids = Bgids ∩ CurrentGids;
if |newgids| ≥ ε then

newBody = CurrentBodyItemset ∪ {i};
R = R ∪ buildHead(newBody, HH, (∅, newgids), ε);
R = R ∪ buildBody((newBody, newgids), BH, ε);

end
end
return R;

Function buildHead
Data : CurrentBodyItemset current body items ;

HH the Head structure ;
(CurrentHeadItemset, CurrentGids) current head information ;
ε minimum support threshold;

Result : R the rules extracted
R = ∅;
while (HH �= ∅) do

let e =< i, Hgids >∈ HH;
HH = HH − {e};
newgids = Hgids ∩ CurrentGids;
if |newgids| ≥ ε then

newHead = CurrentHeadItemset ∪ {i};
R = R ∪ {CurrentBodyItemset → newHead};
R = R ∪ buildHead(CurrentBodyItemset, HH, (newHead, newgids), ε);

end
end
return R;

Let us illustrate the process through a simple example. Suppose we are given the
source table reported in Table 1 and that we want to extract rules that satisfy the follow-
ing constraints:

– BODY.qty≥1 ∧ HEAD.qty≥5
– minimum support count = 2

After reading the source table filtered by body constraints and head constraints,
CARE builds the BH structure as reported in Table 2.

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 287

Table 1. Example of a source table

gid item qty
A 2

1 B 7
C 8
A 1

2 C 6
A 1

3 B 6
C 1

Table 2. The BH structure built from the source table in Figure 1

body item gidlist HH structure

A 1,2,3
head item gidlist

B 1,3
C 1,2

C 1,2,3
head item gidlist

B 1,3

It should be noted that there is no entry for body item B, because, even though item
B is frequent, there are no frequent items for the head associated to B, i.e., no rules with
B in the body can be extracted.

Afterwards, buildRules is called and rules are extracted in the following order:

– A→ B
– A→ C
– AC→ B
– C→ B

i.e., for every body, buildHead is called to build the corresponding heads. Then,
buildBody is called recursively to build larger and larger bodies. Finally, the next item
in the BH structure is taken into consideration and the process repeated.

Of course, a number of optimizations might be implemented by accurately com-
puting gidlist intersections and storing intermediate results. However, the current im-
plementation is sufficiently efficient to be used for comparison with the incremental
algorithms presented in the following sections.

7 Comparison Between the CD Incremental Algorithm and CARE

In this section we compare the performances of the CD incremental algorithm with
CARE. In the experiments, we want to observe how the dimensions of the problem
impact on the performances of the two algorithms. Thus, we designed the experiments
by varying one dimension at a time, so that the influence of each dimension is observed

288 R. Meo et al.

separately with respect to the other ones. The dimensions are (as already pointed out
in Section 5): the selectivity of the mining predicates, the support threshold, and the
volume (number of rules) of the previous result set. For each experiment, we report the
running time of the two algorithms. We notice that, in general, the problem parameters
have a different impact on the two algorithms. For instance, the support threshold is
probably the parameter which has the highest impact on CARE running time, but the
same time, it affects the running time of the incremental algorithm only in a marginal
way. Moreover, the size of the result set of a previous (more general) query usually
is not an interesting parameter for mining algorithms although it is probably the most
important one for the incremental algorithm.

The two algorithms have been assessed on the purchases database we introduced
in the previous section. Some preliminary considerations on the influence that the ty-
pology of the dataset has on the incremental algorithms are necessary.
purchases is a sparse dataset. In sparse data, roughly speaking, the volume of re-

sults of a mining query, compared with the volume of the original database, is reduced
and lower with respect to dense datasets at equal conditions (such as support threshold
and constraints selectivity). We believe the main results on the behavior of the incre-
mental algorithm we present in this Section with experiments on a sparse dataset should
be still valid on a dense dataset with some differences. First, on a dense dataset the im-
pact of I/O operations for reading the source database is less important if compared with
the I/O required for reading the previous result set. This would constitute a disadvan-
tage for the incremental algorithm. Second, in a dense dataset, the larger previous result
set would allow a minor pruning on the search space which, on the other side, would be
larger because data in a dense dataset are much more correlated. As a conclusion, the
volume of the previous result set and that one of the search space should be two issues
that should counterbalance each other. However, more insights on dense datasets are
reserved for further work.

Extensive preliminary results on purchases showed that the incremental algo-
rithm is substantially faster than CARE when a reduced previous result set is available.
Indeed, this latter one allows incremental algorithms to do much pruning on the itemsets
search space which finally results in a decisive advantage for the incremental algorithm.
Hence, here, we want to test the incremental algorithms in a more stressing situation.
We assumed that we have a single previous query available, which contained a very
low support threshold (namely: 0.0085) and very loose predicates. As a result, the in-
cremental algorithms have at their disposal in the BHF data structures a previous, very
large (and thus not filtering) result set, composed of 158,336 rules. In the experiments,
the current query is representative of a typical business-value scenario with a medium
volume (6056 rules): find all the rules which appeared in 1.2 percent of the transactions
and that contained costly to average priced items (“price ≥ 1000”).

In the first pool of experiments, we varied just the size of the previous result set. We
started from a previous result set which contained 7,931 rules (i.e., 5% of the total), and
increased this number repeatedly until the whole volume of the 158,336 rules is reached.
Figure 4 reports the result of the experiments. The number (N) of rules contained in
the previous result set is plotted against the total running time of the two algorithms
(y-axis). Here, we stress the fact that the two algorithms solve the same problem, but

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 289

 0

 50

 100

 150

 200

 250

 0 20000 40000 60000 80000 100000 120000 140000 160000

R
un

ni
ng

 ti
m

e
(s

)

Number of previous rules

CARE Incr

Fig. 4. CARE vs Incremental algorithm, as the cardinality of the previous query result set varies

while the incremental algorithm exploits the result of a previous query, CARE starts
from scratch. As we can see, the running time of the incremental algorithm is very
low in correspondence to low values of N (the number of rules in the previous result
set). Then it increases linearly with N. We want to remark here this linear behavior is
desirable, i.e., the scalability of incremental algorithms with respect to one of the main
dimensions of the problem. On the other side, since the running time of CARE does not
change with the tested parameter, the time spent by the incremental algorithm to solve
the problem is bound to overcome the running time of CARE in the limit (i.e., when
only a large volume of the previous result is available). In the experiment, this happens
for N = 65, 998 (accordingly to the line which interpolates the displayed data), but it
should be noted that this value highly depends on the running time of CARE, i.e., on
the support value and on the constraints of the current query. One may wonder why
the incremental algorithm does not succeed in showing a better behavior than CARE in
all situations (since the incremental algorithm has at its disposal more information than
CARE). The answer is that the incremental algorithm has been thought and optimized
in order to be extremely fast whenever a good (i.e., restricted and thus filtering) previous
answer could be found in the system memory. In order to achieve the desired filtering of
the search space, it mainly enforces the initial pruning provided by the results it reads
from the disk. This, on one side, allows the algorithm to benefit from a very fast support
counters update schema (and allows also a single pass over the database). On the other
side, however, it forces the algorithm to read from disk another complete source of
information that reveals a choice less competitive when its volume is large (and the
pruning not sufficient). In conclusion, the incremental algorithm is a desirable strategy
when a reduced previous result is available (if compared with the search space).

290 R. Meo et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.005 0.01 0.015 0.02 0.025 0.03

R
un

ni
ng

 ti
m

e
(s

)

Minimum support

CARE Incr

Fig. 5. CARE vs Incremental algorithm, as the support threshold of the current query varies

The trade off between the two algorithms is made evident once again by the re-
sults reported in the second set of experiments, shown in Figure 5, where the support
threshold (x-axis) is plotted against the running time of the algorithms (y-axis). The pre-
vious result set contains the total volume of the large, above mentioned, previous result
(158,336 rules). The mining constraints in current query are the same as the ones in the
previous set of experiments but the support threshold in the current query varies between
0.0085 (the value set in the adopted, previous query) and 0.03. As it was expected, the
incremental algorithm is much less affected by changes of the support threshold than
CARE. In particular, we can see that its running time drops almost immediately to about
260 seconds and then it does not change very much. The reason for the drop in the ex-
ecution time is that as the support threshold decreases, the number of rules given as
output increases. Hence, it turns out that, in the current settings, the algorithm takes
about 260 seconds to update the 158,336 support counters in BHF structure, while the
rest of the time is spent in saving the result on the database. On the contrary, CARE
by exploiting the antimonotonicity property of the constraints on minimum support,
outperforms the incremental algorithm as the support threshold becomes high enough
(reaching the lower bound of 100 seconds). Notably, according to the results reported in
Figure 4, the chances are that if the previous query had contained less than 50,000 rules
(instead of the 158, 336 present in the current setting), then the incremental algorithm
would have outperformed CARE (with execution times lower than 100) no matter the
value of the support threshold!

In the last pool of experiments, we set the support threshold equal to 0.0085, the
previous results contain 158,336 rules, and let the selectivity of the constraints vary
from 0.9010 to 0.9849. Figure 6 reports the results. As usual, the y-axis reports the total

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 291

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

R
un

ni
ng

 ti
m

e
(s

)

Constraint selectivity

CARE Incr

Fig. 6. CARE vs Incremental algorithm, as the constraints in the current query vary

running time of the algorithms, while the x-axis reports the percentage of the source
table selected by the mining constraints (i.e., it reports the ratio between the number
of rows that satisfy the constraints and the cardinality of the source table). As we can
see the running time of both algorithms increases with the percentage of selected rows.
Interestingly, this result suggests that the incremental algorithm, despite being faster on
larger datasets, does not run as fast when the size of the database become smaller. This
is probably due to the overhead the incremental algorithm suffers in order to build the
BHF data structure. In order to check this hypothesis, we plotted in Figure 7 the total
time needed by the algorithms in order to build the result once the preprocessing steps
were completed2. As it can be seen, the “core” operations are consistently cheaper in
the case of the incremental algorithm (this is expected, since it avoids the costly opera-
tions needed to manage the gid lists which are necessary in case of context dependent
constraints).

In summary, the use of the incremental algorithm, is very often a winning choice
when a suitable past result can be found. However, the choice between an incremental

2 Which steps of each algorithm contribute to the preprocessing is hard to be stated objectively
since the two algorithms make rather different choices in their early steps. However, we de-
cided to consider as preprocessing the steps that are performed before the exploration of the
itemsets search space occurs, which is usually a typical operation of the core data mining
algorithm. In the case of CARE, we considered the time spent in reading the database as a
preprocessing step since it is needed to fill the data structures used later on. In the case of the
incremental algorithms we considered as pre-processing the time spent in building the BHF
data structure, but not the time spent reading the DB since this one is interleaved with the
“navigation” and management of the search space.

292 R. Meo et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

R
un

ni
ng

 ti
m

e
(s

)

Constraint selectivity

CARE Incr

Fig. 7. CARE vs Incremental algorithm, as the constraints of the current query vary (times re-
ported without the preprocessing time)

strategy and a non-incremental one should be made taking into account how the change
of the problem dimensions affect the two strategies. In particular, it seems to be clear
that whenever a very small previous result can be found, the incremental algorithm is
hardly outperformed: it searches a small space and it builds the information needed to
find the rules very efficiently. However, when the size of the previous result set grows
larger, a “traditional” miner may win, especially when the support threshold is high.
In this case, in fact, one looses both the advantages of the incremental algorithm: the
algorithm will spend a large part of the time in building the BHF structure out of the
previous result, and will probably search a larger space w.r.t. the space searched by
algorithms which exploit the antimonotonicity of support.

8 Conclusions

In this paper we proposed a novel “incremental” approach to constraint-based mining
which makes use of the information contained in previous results to answer new queries.
The beneficial factors of the approach are that it uses both the previous results and the
mining constraints, in order to reduce the itemsets search space.

We presented two incremental algorithms. The first one deals with item dependent
constraints, while the second one with context dependent constraints. We note how the
latter kind of constraints has been identified only recently and that there is very little
support for them in current mining algorithms. However, the difficulty to solve mining
queries with context dependent constraints can be partially overcome by combining

A Novel Incremental Approach to Association Rules Mining in Inductive Databases 293

the “traditional” algorithms proposed so far in the literature, and the context dependent
incremental algorithm proposed in this paper.

Moreover, we described a non-incremental algorithm (CARE) for the extraction of
constrained association rules, in order to provide a direct comparison for the incremen-
tal ones. CARE is specifically designed to deal with context dependent constraints on
both the body and the head of association rules and is, to the best of our knowledge, the
only one of this type.

In Section 5 and in Section 7, we evaluated the incremental algorithms on a pretty
large dataset. The results show that the approach reduces drastically the overall execu-
tion time. Whenever we have a small previous result to exploit, or when the support
threshold is small, we believe the improvement is absolutely necessary in many practi-
cal data mining applications, in data warehouses and inductive database systems.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in
large databases. In: Proc.ACM SIGMOD Conference on Management of Data, Washington,
D.C., British Columbia (1993) 207–216

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of as-
sociation rules. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R., eds.:
Knowledge Discovery in Databases. Volume 2. AAAI/MIT Press, Santiago, Chile (1995)

3. Srikant, R., Vu, Q., Agrawal, R.: Mining association rules with item constraints. In: Pro-
ceedings of 1997 ACM KDD. (1997) 67–73

4. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning opti-
mizations of constrained associations rules. In: Proc. of 1998 ACM SIGMOD Int. Conf.
Management of Data. (1998) 13–24

5. Tsur, D., Ullman, J.D., Abiteboul, S., Clifton, C., Motwani, R., Nestorov, S., Rosenthal, A.:
Query flocks: A generalization of association-rule mining. In: Proceedings of 1998 ACM
SIGMOD Int. Conf. Management of Data. (1998)

6. Chaudhuri, S., Narasayya, V., Sarawagi, S.: Efficient evaluation of queries with mining
predicates. In: Proc. of the 18th Int’l Conference on Data Engineering (ICDE), San Jose,
USA (2002)

7. Imielinski, T., Virmani, A., Abdoulghani, A.: Datamine: Application programming interface
and query language for database mining. KDD-96 (1996) 256–260

8. Meo, R., Psaila, G., Ceri, S.: A new SQL-like operator for mining association rules. In:
Proceedings of the 22st VLDB Conference, Bombay, India (1996)

9. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O.: DMQL: A data mining query language
for relational databases. In Proc. of SIGMOD-96 Workshop on Research Issues on Data
Mining and Knowledge Discovery (1996)

10. Wang, H., Zaniolo, C.: User defined aggregates for logical data languages. In: Proc. of
DDLP. (1998) 85–97

11. Perng, C.S., Wang, H., Ma, S., Hellerstein, J.L.: Discovery in multi-attribute data with user-
defined constraints. ACM SIGKDD Explorations 4 (2002) 56–64

12. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communica-
tions of the ACM 39 (1996) 58–64

13. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.: Computing iceberg
queries efficiently. In: Proceeding of VLDB ’98. (1998)

14. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proc. of the 26th Int’l
Conference on Very Large Databases (VLDB), Cairo, Egypt (2000) 307–316

294 R. Meo et al.

15. Jeudy, B., Boulicaut, J.F.: Optimization of association rule mining queries. Intelligent Data
Analysis 6 (2002) 341–357

16. Tuzhilin, A., Liu, B.: Querying multiple sets of discovered rules. In: KDD ’02: Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. (2002)

17. Baralis, E., Psaila, G.: Incremental refinement of mining queries. In: Proc. of First Interna-
tional Conference on Data Warehousing and Knowledge Discovery. Volume 1676 of Lecture
Notes in Computer Science., Springer (1999) 173–182

18. Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of discovered association rules
in large databases: an incremental updating technique. In: ICDE96 12th International Con-
ference on Data Engineering, New Orleans, Louisiana, USA (1996)

19. Lee, S.D., Cheung, D., Kao, B.: A general incremental technique for maintaining discovered
association rules. In: Proceedings of the 5th International Conference On Database Systems
For Advanced Applications, Melbourne, Australia (1997) 185–194

20. Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An efficient algorithm for the incremental
updation of association rules in large databases. In: KDD. (1997) 263–266

21. Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom, J.: Performance issues in incremen-
tal warehouse maintenance. In: Proceedings of Twenty-Sixth International Conference on
Very Large Data Bases. (2000) 461–472

22. Meo, R., Botta, M., Esposito, R.: Query rewriting in itemset mining. In: Proceedings of the
6th International Conference On Flexible Query Answeringd Systems. LNAI 3055, Springer
(2004)

23. Leung, C.K.S., Lakshmanan, L.V.S., Ng, R.T.: Exploiting succinct constraints using fp-trees.
ACM SIGKDD Explorations 4 (2002) 40–49

24. Lu, H., Feng, L., Han, J.: Beyond intratransaction association analysis: mining multidimen-
sional intertransaction association rules. ACM Trans. Inf. Syst. 18 (2000) 423–454

25. Feng, L., Dillon, T.S., Liu, J.: Inter-transactional association rules for multi-dimensional con-
texts for prediction and their application to studying meteorological data. Data Knowledge
Engineering 37 (2001) 85–115

26. Grahne, G., Lakshmanan, L.V.S., Wang, X., Xie, M.H.: On dual mining: From patterns
to circumstances, and back. In: Proceedings of the 17th International Conference on Data
Engineering. (2001)

27. Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: a dual-pruning algorithm for
itemsets with constraints. In: Proceedings of 2002 ACM KDD. (2002) 42–51

28. Bayardo, R., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense
databases. In: Proceedings of the 15th Int’l Conf. on Data Engineering, Sydney, Australia
(1999)

29. Lakshmanan, L.V.S., Ng, R., Han, J., Pang, A.: Optimization of constrained frequent set
queries with 2-variable constraints. In: Proceedings of 1999 ACM SIGMOD Int. Conf. Man-
agement of Data. (1999) 157–168

30. Raedt, L.D.: A perspective on inductive databases. ACM SIGKDD Explorations 4 (2002)
69–77

31. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In:
Proceedings of the 20th VLDB Conference, Santiago, Chile (1994)

32. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for mining association
rules in large databases. In: Proceedings of the 21st VLDB Conference, Zurich, Switzerland
(1995)

Employing Inductive Databases in Concrete

Applications

Rosa Meo1, Pier Luca Lanzi2, Maristella Matera2,
Danilo Careggio1, and Roberto Esposito1

1 Università di Torino, Dipartimento di Informatica,
corso Svizzera 185, I-10149, Torino, Italy
{meo, careggio, esposito}@di.unito.it

2 Politecnico di Milano, Dipartimento di Elettronica e Informazione,
Piazza Leonardo da Vinci, 32, I-20133, Milano, Italy

{lanzi, matera}@elet.polimi.it

Abstract. In this paper we present the application of the inductive
database approach to two practical analytical case studies: Web usage
mining in Web logs and financial data. As far as concerns the Web do-
main, we have considered the enriched XML Web logs, that we call con-
ceptual logs, produced by specific Web applications. These ones have been
built by using a conceptual model, namely WebML, and its accompany-
ing CASE tool, WebRatio. The Web conceptual logs integrate the usual
information about user requests with meta-data concerning the Web site
structure. As far as concerns the analysis of financial data, we have con-
sidered the trade stock exchange index Dow Jones and studied its com-
ponent stocks from 1997 to 2002 using the so-called technical analysis.
Technical analysis consists in the identification of the relevant (graphi-
cal) patterns that occur in the plot of evolution of a stock quote as time
proceeds, often adopting different time granularities. On the plots the
correlations between distinctive variables of the stocks quote are pointed
out, such as the quote trend, the percentage variation and the volume of
the stocks exchanged. In particular we adopted candle-sticks, a figurative
pattern representing in a condensed diagram the evolution of the stock
quotes in a daily stock exchange. In technical analysis, candle-sticks have
been frequently used by practitioners to predict the trend of the stocks
quotes in the market.

We then apply a data mining language, namely MINE RULE, to these
data in order to identify different types of patterns. As far as Web data
is concerned, recurrent navigation paths, page contents most frequently
visited, and anomalies such as intrusion attempts or a harmful usage of
the resources are among the most important patterns. As far as concerns
the financial domain, we searched for the sets of stocks which frequently
exhibited a positive daily exchange in the same days, so as to constitute
a collection of quotes for the constitution of the customers’ portfolio, or
the candle-sticks frequently associated to certain stocks, or finally the
most similar stocks, in the sense that they mostly presented in the same
dates the same typology of candle-stick, that is the same behaviour in
time.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 295–327, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 R. Meo et al.

The purpose of this paper is to show that the exploitation of the
nuggets of information embedded in the data and of the specialised min-
ing constructs provided by the query languages, enables the rapid cus-
tomization of the mining procedures following to the users’ need. Given
our experience, we also claim that the use of queries in advanced lan-
guages, as opposed to ad-hoc heuristics, eases the specification and the
discovery of a large spectrum of patterns.

1 Introduction

In this paper we present two case studies, the mining of the Web log of a Uni-
versity Department and the analysis of financial data, Dow Jones index of the
market stock exchange in a long period of time. We conducted the analysis by
means of the exploitation of a query language for association rule mining – MINE
RULE – and used it in a fashion typical to inductive databases. This choice has two
purposes: (i) analyzing the concrete domain data and extracting interesting, us-
able and actionable patterns; (ii) evaluating the usability and expressive power
of the mining query language by itself and inside the context of an inductive
database approach.

For the analysis of Web domain, we have adopted WebML conceptual logs [11],
that are Web logs enriched with novel information with respect to standard Web
logs. Indeed, they have been obtained by integration of (ECFL) Web server logs
with information on the Web design application and information on the Web
pages content.

For the analysis of the financial domain, we adopted technical analysis, a ty-
pology of analysis that relies upon the study of the quotes plots in their temporal
evolution. In particular, we adopted a typology of pattern named candle-stick.
We searched in the data many configurations of these patterns, and some of
them have been considered for a long time by the practitioners of the field a
predictive tool for the determinant changes in the market stock quotes.

Inductive databases were proposed in [14] to leverage decision support systems
by means of the application of specific mining languages to the analysis of data
stored in databases. Thus, the user/analyst can interact with the system during
the knowledge discovery process in a similar way as with a DBMS, that is, by
specifying interesting data mining patterns with queries that in turn retrieve
and store in the database the discovered information.

The adoption of this case study had also purpose to verify and experiment the
suitability of some knowledge discovery (KDD) scenarios for inductive databases.
KDD scenarios have been produced as a set of characteristic queries solving
some frequently asked questions (mining problems) by users/analysts in order
to recover from frequently occurring problems. We devolped some of these KDD
scenarios inside the cInQ project (http://www.cinq-project.org), an european
funded project and a consortium of universities and industries launched in order
to evaluate the feasibility of inductive databases and of mining languages to
extract interesting and actionable patterns from real data-sets.

The case studies are nowadays domains of extreme importance.

Employing Inductive Databases in Concrete Applications 297

For the first case study, the analysis of Web logs, we identified three main
typologies of user needs for which the association rules could constitute an aid:
(i) the identification of frequent crawling paths by the users (Web structure and
Web usage analysis), (ii) the identification of user communities and (iii) the
identification of critical situations (anomalies, security attacks, high traffic) in
which the information system could be placed.

The first topic allows the customization and construction of adaptive Web
sites and recommender systems. The second one is important for customer rela-
tionship management and business applications (e.g, e-commerce). The third one
is essential to the management of computer security for a reliable, efficient and
available information system and its Web front-end and also to the credibility
of Internet iteself.

To solve the first need the association rules that are searched for are those ones
that identify sets of pages most frequently accessed by a consistent number of
users. Furthermore, these sets of pages could have related information content.
In these cases the discovered crawling paths could identify the most valuable
information content and therefore could suggest a potential restructuring of the
design of the Web site (e.g., by making easier the search for those pages by
the creation of ad-hoc indexes or by fast access paths). This aspect is strictly
correlated to the construction of a dynamical and adaptive Web site that is
able to learn by previously submitted requests, changes accordingly to the user
in order to fit best to its probable, future requests. Furthermore, the acquired
knowledge allows the enhancement of the Web site with the potentialities of a
recommender system, that suggests the user the preferable paths and interesting
contents he/she could search for, on the basis of the frequently observed user
visits and of the user profiles.

The second topic is very important for customer relationship management
and many business applications, e.g., e-commerce applications and targeted
marketing.

The third topic is also very important and the application of data mining
in this field could give a consistent aid in information system administration
as well as in computer security management. Indeed, nowadays we continuously
observe the verification of dangerous situations in which our information systems
are placed under attacks or are blocked by a highly congested traffic. Therefore,
the searched association rules will try to give a descriptive profile of situations
that frequently end in generation of errors by the Web server (situations that
mostly correspond to hackers’ attacks) such as repeated sequences of operations
or services or the usage of a certain browsers or operating systems. Another
kind of useful association rules tries to provide a profile of critical users, either
because they request frequently a large volume of data or because they are often
associated to certain typologies of errors returned by the system.

We had in addition the motivations to augment the quality of a Web ap-
plication site, which is nowadays very important for a company (especially for
e-commerce applications) since it reflects the immage of the company and might
constitute its success or failure.

298 R. Meo et al.

The second case study, the stock trading, had also very concrete motivations.
Of course, the analysis of financial data and a better understanding of the stocks
market behavior and evolution are of extreme importance in stock trading: it
might allow investors to regain faith in the market, reducing the investors’ risks,
their losses and increasing the gains. An efficient data mining activity on this type
of data is very important, since nowadays trading mainly occurs on-line and real-
time, and is a very demanding process since it requires the real time operativity
from every internet access point on huge volumes of stream data. Furthermore,
the capability to make in advance the right prediction has enormous importance
since the negotiation activity of stocks is a very rapid process, and involves huge
flows of money: in this context, the right operation at the right time can make
the investors gain or save huge volumes of money.

In this context, the main user needs are coarsely the following.

(i) Detect the best performing stocks in order to compose the portfolio. Possi-
bly this consists also in the identification of the most similar stocks, once again,
in order to acquire better knowledge on the stocks quotes behavior.

(ii) Detect the patterns configurations, in the stock quotes, that most fre-
quently were associated to particular situations in the market, such as a high
instability, and allowed to predict a consistent variation in stocks quotes.

(iii) Verification of some principles in technical analysis, principles that usu-
ally have acquired the consent of practitioners, but not always have gained the
approval of statisticians and experts in economics. One of some principles, origi-
nally proposed by Dow Jones, but also confirmed by the most rigorous economists
is the fact that a consistent increase in the volumes exchanged of a stock corre-
sponds also to a notable variation in the prices of the same stock.

The paper is organized as follows. Section 2 provides an overview of the first
application presented: the analysis of Web logs. Section 3 describes the MINE
RULE operator briefly and the Web Log case study. Section 4 describes the sec-
ond application: the analysis of financial data by the adoption of concepts of
technical analysis (candle-sticks). In these latter Sections we provided also the
KDD scenarios made of queries that allowed us to obtain useful results, and for
each of them we provided a detailed description. Sections 5 and 6 respectively
provide an evaluation of obtained results and some guidelines of using induc-
tive databases in the analyzed application domains. Finally Section 7 draws the
conclusions.

2 Application 1: Web Log Analysis

Current Web applications are very complex and highly sophisticated software
products, whose quality, as perceived by users, can heavily determine their suc-
cess or failure. A number of methods have been proposed for evaluating the
quality of Web applications. In particular, Web usage mining methods are em-
ployed to analyze how users exploit the information provided by the Web site.
For instance, showing those navigation patterns which correspond to high Web
usage, or those which correspond to early leaving [17,27].

Employing Inductive Databases in Concrete Applications 299

Web usage mining is mainly performed on the server side, and therefore is
based on information found in log files, containing data about single user page
access requests, represented in one of the available standard formats [25,4,25].
Accordingly, Web Usage Mining approaches rely heavily on the preprocessing
of log data as a way to obtain high level information regarding user navigation
patterns and ground such information into the actual data underlying the Web
application [26,9,5]. Preprocessing generally includes four main steps:

– Data cleaning, for removing information that is useless for mining purposes,
e.g.: requests for graphical contents, such as banners or logos; navigations
performed by robots and webspiders.

– Identification of user sessions, for extracting full users navigation paths from
the poor information available in Web logs. This step can be very demand-
ing [26], especially due to the adoption of proxy servers by applications,
which do not allow the unique identification of users from Web logs.

– Content and structure information retrieval, for mapping users page requests
into the actual information of visited pages.

– Data formatting, for preparing data obtained through the previous three
steps for being processed by the actual mining algorithms.

Notwithstanding the preprocessing effort, in most of the cases the information
extracted is usually insufficient and with much loss of the available information
at the Web design level, such as the complete knowledge about the structure
and content organization of a Web application [23,6].

The approach we present in this paper is different with respect to other meth-
ods so far proposed, in that Web Usage Mining is directly integrated into the Web
application development process. We use a conceptual model for Web application
design (WebML) and its supporting case tool (WebRatio) for the development
of Web applications that are able to produce rich Web logs (conceptual logs).
Conceptual logs provide the mining phase with some of the necessary informa-
tion with no loss and no additional cost: the content and hypertext structure of
the application (originally determined by the application design) which can be
now easily tailored on specific mining techniques. Furthermore, this specifica-
tion is accompanied by the parameters that allow the instantiation of dynamic
pages, the identifier of the unit of information in pages, the structure of the
Web site recorded as a further specification of the typology of unit (e.g., content
unit or index unit) and last but not least, the identifier of the user crawling
session which allows to determine the main relevant activities performed on the
application Web site by the users.

In the rest of this section, we shortly illustrate the main features of the
adopted model, WebML (Web Modeling Language) [2,3], and of the rich logs
that WebML-based applications produce.

2.1 WebML and WebRatio

WebML (Web Modeling Language) is a visual language for specifying the content
structure of a Web application, as well as the organization and presentation of

300 R. Meo et al.

such a content in a hypertext [2,3]. It mainly consists of the Data Model and
the Hypertext Model.

The WebML Data Model adopts the Entity-Relationship primitives for rep-
resenting the organization of the application data.

The WebML Hypertext Model allows the description of how data, specified in
the data model, are published through elementary units, called content units,
whose composition makes up pages ; it also specifies how content units and pages
are interconnected to constitute site views, i.e., the application front-end. The
WebML Hypertext Model includes:

The WebML Hypertext Model includes:
– The composition model, concerning the definition of pages and their inter-

nal organization in terms of elementary pieces of publishable content, called
content units. Content units offer alternative ways of arranging data dynam-
ically extracted from entities and relationships of the data schema.

– The navigation model, describing links between pages and content units,
which have to be provided to facilitate information location and browsing.

– The content management model, which consists of a set of units for specifying
operations for creating and updating content.

Besides the visual representation, WebML primitives are also provided with
an XML-based representation, suitable to specify those properties that would
not be conveniently expressed by a graphical notation.

WebRatio is the CASE tool supporting the WebML-based development
(http://www.webratio.com). The core of WebRatio is a code generator, based
on XML and XSL technologies, which is able to process WebML conceptual
schemas, by translating their visual specification into concrete page templates,
and generate automatically the application code. The resulting Web applications
feature a three-tier architecture, in which all the relevant dimensions of a dy-
namic application are covered: data extraction from the data sources, code for
managing the business logic, and page templates for the automatic generation
of the front-end.

3 Mining Conceptual Logs

Conceptual logs are standard log files integrated with information available from
the Application Server logs, from WebML application runtime, and of concep-
tual schema of the underlying Web application. In this Section we describe the
typology of information contained in these Web logs. We also present the KDD
scenarios for this specific application domain, i.e., the sequences of queries in
a constraint-based mining language (MINE RULE) which allowed us to obtained
useful, interesting and actionable patterns for Web administrators, Web appli-
cation designers and application analysts.

3.1 DEI Web Application Conceptual Logs

The Web site of DEI (Department of Electronic and Information) collects one
fourth of the overall clickstream directed to Politecnico di Milano, Italy. We

Employing Inductive Databases in Concrete Applications 301

collected the Web logs of the first consecutive 3 months in 2003. The original
Web log stored by the Web server (Apache http server), was 60 MBytes large
and is constituted by a relation that has the following information:

RequestID: the identifier of the request made by the user of a Web page;
IPcaller: IP address from which the request is originated; very often it is a

proxy IP, that masks the real identification of the user.
Date: date of the request,
TS: time stamp of the request,
Operation: the kind of operation request (for instance, get or put)
Page URL: URL of the page to be transfered as a consequence of the request,
Protocol: transfer protocol used (such as TCP/IP),
Return Code: code returned by the Web server to the user,
Dimension: dimension in bytes of the page,
Browser: name of the browser from which the request is originated,
OS Type: type of the Operating System.

To this main, standard information collected by Web server, WebML and
WebRatio design applications add other information.

Jsession: identifier of the user crawling session that spams over the single page
requests. User crawling sessions are identified by an enabled Java browser
by the Java thread identifier of a Web crawling.

Page: identifier of the page generated by the application server. Very often a
page is generated dynamically but this identifier is always the same for each
page.

UnitID: identifier of an atomic piece of information contained in a page. This
identifier gives information on the type of content of a page.

OID: identifier of an object (for instance, a professor, a course, a pubblication)
whose content is shown in a page. This object identifier is used by the ap-
plication server to instantiate in different ways dynamic pages according to
the object itself. For instance, all professor pages obey to the same template
that shows personal data, photo, description of the curriculum vitae of the
person and of its research area. Instead, the real information that is shown
for each person changes accordingly to the professor, and therefore to the
OID parameter that identifies the person.

Order: ordering number in which content units are presented in the page.

The Web Log contained almost 353 thousands user sessions, constituted each
by an average of 12 page requests, for a total of more than 4.2 millions of page
requests. The total number of pages (dynamic, instantiated by means of OIDs)
was 38554.

3.2 MINE RULE

MINE RULE is an SQL-like operator for mining association rules in relational
databases. A detailed description can be found in [20]. This operator extracts a

302 R. Meo et al.

set of association rules from the database and stores them back in the database
in a separate relation.

Let us explain the operator with the aid of a simple example on WebLogTable,
containing the information of the conceptual log described in Section 3.1. The
following MINE RULE statement extracts rules that aim to provide a descrip-
tion of the situations that generate frequently an error in the Web server (a
favorite situation for attacks). WebLogTable has been grouped by RequestId;
requested rules associate values of 〈Operation, Browser, PageURL〉 with values
of Return Code. Selected rules will have a value of returned code corresponding
to an error (WHERE clause). Rules will have a support and a confidence greater
than the minimum requested values (respectively 0.2 and 0.4).

MINE RULE SituationsRuturnCodes AS
SELECT DISTINCT 1..n Operation, Browser, Page Url AS BODY,

1..n Return Code AS HEAD, SUPPORT, CONFIDENCE
WHERE HEAD.Return Code LIKE ’%error%’

FROM WebLogTable
GROUP BY RequestId
EXTRACTING RULES WITH SUPPORT:0.2, CONFIDENCE:0.4

This statement extracts each rule as an association of attribute values occurring
within single tuples. In other statement cases, rule elements are constituted by
values of the same attribute (e.g., Page URL) occurring in different tuples (e.g.,
requests) of the same group (e.g., date).

The main features of MINE RULE are:

– Selection of the relevant set of data for a data mining process. This feature
is applied at different granularity levels (row level or at the group level, with
the group condition).

– Definition of the structure of the rules (single or multi-dimensional associa-
tion rules) and cardinality of the rule body and head.

– Definition of constraints applied at different granularity levels. Constraints
belong to different categories: constraints applied at the rule level (mining
conditions instantiated by a WHERE clause), constraints applied at a group
level (instantiated by a HAVING predicate) and constraints applied at the
cluster level (cluster conditions). For lack of space we will not make use of
cluster condition in this paper.

– Definition of rule evaluation measures. Practically, the language allows to
define support and confidence thresholds.1 Support of a rule is computed on
the total number of groups in which it occurs and satisfies the given con-
straints. Confidence is analogously computed (ratio between the rule support
and the support of the body satisfying the given constraints).

3.3 Analysis of Web Logs with MINE RULE

We have imported into a relational DBMS (mysql) conceptual logs obtaining
a table named WebLogTable. In this Section we describe in detail the KDD
1 Theoretically, also other measures, based on body and head support, could be used.

Employing Inductive Databases in Concrete Applications 303

scenarios, composed of a sequence of pre-processing, mining and post-processing
queries that we have designed for discovery of useful patterns in the Web logs.
These queries can be conceived as a sort of template that can be used to gather
descriptive patterns from Web logs, useful to solve some frequent, specific or
critical situations.

Analysis of Users that Visit the Same Pages. This analysis aims at dis-
covering Web communities of users on the basis of the pages that they frequently
visited.

Pre-processing Query. The mining request could be preceded by a pre-processing
query selecting only those page requests that occurred frequently (above a certain
threshold) thus allowing to neglet the rare page requests.

Mining Query. This query finds the associations between sets of users (IP ad-
dresses) that have all visited a certain number of same pages. In particular this
number of pages is given in terms of support of the rules. (In this example,
support is computed over the requested pages, since grouping is made according
to the requested pages). It is an open issue whether the discovered regularities
among IP addresses occur because these IP addresses have been commonly used
by the same users in their pages crawling. Indeed, this phenomenon could put
in evidence the existence of different IP addresses dynamically assigned to the
same users.

MINE RULE UsersSamePages AS
SELECT DISTINCT 1..n IPcaller AS BODY, 1..n IPcaller AS HEAD,

SUPPORT, CONFIDENCE
FROM WebLogTable
GROUP BY Page Url
EXTRACTING RULES WITH SUPPORT:0.001, CONFIDENCE:0.4

In order to instantiate in a meaningful way the preceding query, we had to
perform some exploratory analysis of the source table, which is necessary to de-
rive some meaningful values for the support threshold. Indeed, since the number
of groups in which the source table is partitioned is decided by the grouping
clause in the specific MINE RULE query, we had to launch a standard SQL query
to derive the total number of page Urls contained in the WebLogTable. This
number was 38554. Therefore, the minimum support threshold must be higher
than 1/38554, otherwise every possible sets of user’s IP addresses that acciden-
tally requested one single common page would be recovered by the system. With
the value of 0.001 for the minimum support we extracted 421 rules which de-
creases to 151 with a value of minimum confidence equal to 0.4. As a further
work it would be interesting to extract some condensed representation of the set
of frequent rules, such as a set of non redundant rules as proposed in [29,22].

Examples of some obtained results. In practice, in our experiments we discov-
ered that the most frequently co-occurring IP addresses belong to Web crawlers
engines or big entities, such as universities.

304 R. Meo et al.

A similar query would occur if we wish to discover user communities which
share the same user profile in terms of usage of the network resources. In this case,
we would add constraints (in the mining condition, for instance) on the volume
of the data transferred as a consequence of a user request. In this case examples
of discovered patterns are the requests of frequent download of materials for
courses, or documentation provided in the users’ home pages.

Post-processing Query. As a post-processing query instead we could be interested
in finding those pages that have been all visited most frequently by certain sets
of users. This is a query that crosses-over extracted patterns and original data.
With this request we could also discard from the discovered patterns those ones
belonging to Web crawlers engines.

These post-processing queries are possible because MINE RULE system stores
the discovered rules in the database. The main table, contains the rules, in terms
of identifiers of body and head itemsets and of the rules statistical measures
(which, in the current implementation are simply support and confidence). The
secondary table, contains the details of the elements of rule body and head
itemsets (in terms of the body and head schemas specified in the SELECT clause
of the query).

The following two query scenarios aim at performing Web structure mining.

Most Frequent Crawling Paths

Pre-processing Query. As in previous case, the mining request can be preceded
by a pre-processing selecting only those page requests that occurred frequently.

Mining Query. This query returns sequences of pages (ordered by date of visit)
frequently visited.

MINE RULE FreqSeqPages AS
SELECT DISTINCT 1..2 Page Url AS BODY, 1..1 Page Url AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.Date = HEAD.Date and BODY.TS < HEAD.TS
FROM WebLogTable
GROUP BY IPcaller
EXTRACTING RULES WITH SUPPORT:0.002, CONFIDENCE:0.4

You can notice that in this case we grouped by user (IPcaller) and searched
for sets of pages frequently occurring in the visits of a sufficient number of
users (support). Notice also that we used a mining condition to constrain the
temporal ordering between pages in antecedent and consequent of rules, thus
ensuring the discovery of sequential patterns. We limited the search to ordered
sets pages requestes in the same day by the same user IP, temporally ordered
(see condition on time stamps). We also counted the total number of distinct
groups in order to evaluate a meaningful value for the support threshold and we
obtained that it was equal to 406. Thus minimum threshold was setted higher
than 1/406 = 0.002. With this value we obtained 7415 rules which reduced to
1773 setting the confidence threshold.

Employing Inductive Databases in Concrete Applications 305

Examples of some obtained results. In practice, examples of resulting interesting
patterns showed that requests of a research center page, or research expertise
area were later followed by the home page of a professor. We interpreted this
as a hint to the fact that people preferred to reach the personal pages by mean
of a secondary access point (the research center or reserach area index) instead
of the more direct index to the personal home pages. This was perhaps a sign
that the general index of the global institution on people home pages was too
slow inducing requests to be preferentially directed to other more little and more
efficient indices.

Post-processing Query. A post-processing query can discover the sets of IP ad-
dresses originating the frequently occurring page requests. Again, this query
crosses over patterns and data. We discovered by this query some publicly avail-
able IPs, of some well-known internet providers in Italy.

Units that Occur Frequently Inside Users Crawling Sessions. One of
the main advantages gained by the conceptual web logs is the knowledge of the
information content of the pages. These content units can give us a more precise
information on the reasons why certain pages are frequently requested by the
users. The following query extracts associations between two sets of content units
that appeared together in at least a certain number of crawling sessions.

MINE RULE UnitsSessions AS
SELECT DISTINCT 1..n UnitID AS BODY, 1..n UnitID AS HEAD,

SUPPORT, CONFIDENCE
FROM WebLogTable
GROUP BY Jsession
EXTRACTING RULES WITH SUPPORT:0.05, CONFIDENCE:0.4

Examples of some obtained results. With this query we discovered that the units
that most frequently co-occurred in visits are the structural components of the
Web site, such as indexes, overview page of the personnel, map pages of the
site, and so on. The results of this query could be used by the Web application
designers to restructure the site in order to make easier the search for those units
that frequently co-occur in user visits.

Anomalies Detection. This query tries to determine the associations between
pages and users that caused a bad authentication error when making access to
those pages. Therefore, this query wants to determine those pages that could be
effectively used by callers as a way to enter illegally into the information system.

Pre-processing Query. The mining request was preceded by a pre-processing
query selecting only those page requests that occurred a sufficient number of
times. This discards those requests that have been mistakenly submitted by the
user (a wrongly typed password), that if not repeated many times, cannot be
considered an intrusion attempt.

306 R. Meo et al.

MINE RULE BadAuthentication AS
SELECT DISTINCT 1..1 IPcaller AS BODY, 1..n Page Url AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.IPcaller = HEAD.IPcaller
FROM WebLogTable WHERE Return Code=’bad authentication’
GROUP BY Date
EXTRACTING RULES WITH SUPPORT:0.03, CONFIDENCE:0.4

You can notice that WHERE Return Code=’bad authentication’ is effec-
tively a pre-processing operation that selects only the portion of interest of Web
logs. In this query we grouped source data by date, thus identifying patterns (as-
sociation of users to page requests) that are frequent in time. Notice that mining
condition WHERE BODY.IPcaller = HEAD.IPcaller ensures that page requests
(head) effectively were originated by the callers associated to them (body).

The total number of obtained rules was 80 which decreased to 72 with the
confidence threshold.

Examples of some obtained results. Some examples of retrieved patterns are
provided by those attempts of change of passwords, or downloading of some
reserved information.

High Traffic Users

Pre-processing query. Similarily to previous queries, also this data mining query
could be preceded by a pre-processing step, selecting only the frequent page
requests. Indeed, rare page requests can be neglected.

Mining query. This query returns the associations between two sets of user IP
addresses from which a request of pages is characterized by a large volume of
data. This constraint is enforced by means of a preprocessing predicate WHERE
dimension>=1024 that selects only those requests generating high volume of
traffic on the network.

MINE RULE HighTrafficUsers AS
SELECT DISTINCT 1..n IPcaller AS BODY, 1..n IPcaller AS HEAD,

SUPPORT, CONFIDENCE
FROM WebLogTable

WHERE dimension>=1024
GROUP BY date
EXTRACTING RULES WITH SUPPORT:0.03, CONFIDENCE:0.4

Notice that we grouped the input relation by date thus identifying the users
that request pages characterized by a high volume frequently in time.

Post-processing query. A cross-over query can discover those pages originating
the frequently occurring page requests.

Employing Inductive Databases in Concrete Applications 307

Examples of some obtained results. As examples of discovered patterns there
are the requests of frequent download of materials for courses, or documentation
provided in user home pages.

Errors Correlated to Usage of an Operating System. This query returns
associations between the operating system and the error code frequently returned
by the Web server.

MINE RULE OSErrors AS
SELECT DISTINCT 1..1 OStype AS BODY, 1..n Return Code AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.OStype=HEAD.OStype
FROM WebLogTable WHERE Return Code LIKE ’%error%’
GROUP BY Date
EXTRACTING RULES WITH SUPPORT:0.01, CONFIDENCE:0.4

Notice the pre-processing predicate (WHERE Return Code ..) that selects
only the page requests that result in some errors. The total number of retrieved
rules was 296. This query is similar to query named BadAuthentication for the
discovery of anomalies and can be useful to test the reliability and robustness of
a new Web application.

Users that Visit Frequently Certain Pages. This request aims at discov-
ering if recurrent requests of a set of pages from a certain IP exist. This puts in
evidence the fidelity of the users to the service provided by the Web site.

MINE RULE UsersPages AS
SELECT DISTINCT 1..1 ipaddress AS BODY, 1..2 Page Url AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.ipaddress = HEAD.ipaddress
FROM WebLogTable
GROUP BY RequestId
EXTRACTING RULES WITH SUPPORT:0.001, CONFIDENCE:0.4

As in previous experiments we setted the minimum support threshold after a
prior inspection of the total number of received requests (which was equal to 4.2
millions). However, the mining condition reduced the number of effective groups
from which a valid association rule was present. Also, the support threshold
helped to reduce the volume of the result which finally contained only 421 rules.

Examples of some obtained results. Examples of patterns we discovered are pro-
vided by the pages that allow the download of material, such as course slides
and research papers published publicly in the personal home pages. Other simi-
lar queries, on content units (instead of pages) are also a useful suggestion and
allow to acquire a lower granularity in discovering the user crawling paths. Pat-
terns resulting from this request confirm the previous results (the most recurrent

308 R. Meo et al.

requests are download of materials from the Web site). This observation gave
to system administrators useful informations to manage the bandwidth of the
network in more optimized ways.

3.4 Query Execution Times

Figure 1 reports for completeness the execution times of queries in the experi-
ments on Web log. You can observe one bar representing the execution time of
each component of the system in execution (parser, optimizer of the execution
plan, pre-processing phase, data mining itemset and rules extraction phases).
With this experiment we can also compare the relative impact on execution
times of the various components. In another Chapter of this book we discussed in
detail the algorithms and the data structures adopted by the MINE RULE system
for executing some of the queries. In particular, that Chapter can be consulted
to obtain more information on the particular strategy adopted to execute the
queries when mining conditions are boolean expressions of terms in the form
[BODY|HEAD].<Attribute> <ComparisonOperator> <Attribute-Value> and
no clustering condition is present. That Chapter discusses mainly on the opportu-
nity to develop a constraint incremental evaluation strategy exploiting previous
queries results, stored in the database. It compares this incremental strategy

Query Times for Web Logs

0

1

2

3

4

5

6

7

Fre
qS

eq
P
ag

B
ad

A
ut

he
nt

ic
at

H
ig
hT

ra
ffi
c

O
S
Err

or
s

U
se

rs
Pag

es

S
itu

at
io
ns

Queries

T
im

e
s

 (
lo

g
a

ri
th

m
ic

 s
c

a
le

)
(s

)

Parse

Optimization

Pre-proc

Itemsets

Rules

Tot DM Algo

Fig. 1. Query Execution Times in Experiments on Web Logs

Employing Inductive Databases in Concrete Applications 309

Correlation Between Times and Volume

of Results in Experiments on Web Log

0

1

10

100

1000

1 10 100 1000 10000

Number of Rules (logarithmic scale)

E
x
e
c
u

ti
o

n
 T

im
e
s
 (

s
)

(l
o

g
a
ri

th
m

ic
 s

c
a
le

)

CARE Algo

Generalised Algo

Fig. 2. Correlation Between Times and Volume of Results in Experiments on Web Log

with a strategy that works from scratch (the algorithm is called CARE). Still,
in this Chapter we present only queries executed from scratch. Indeed, since the
various scenarios have just the purpose to address typical domain-specific situ-
ations they are un-correlated (one with respect to the others). Therefore, they
cannot be solved with the proposed incremental strategy.

[1] can be consulted to obtain details on the execution algorithm that ad-
dresses the general cases of a MINE RULE statement (called generalised algo-
rithm). In fact, MINE RULE can be instantiated in very different queries, com-
prising different constraint typologies and even retrieving multi-dimensional
rules. For instance, the generalised algorithm takes care when (i) body or
head schemas are different or defined on a list of attributes; when (ii) “cross”
mining conditions are present (i.e., conditions between BODY and HEAD, under
the form BODY.<Attribute> <ComparisonOperator> HEAD.<Attribute>); (iii)
conditions on clusters or aggregate functions are specified. Therefore, a rich set
of different algorithms has been implemented in the system in order to better
exploit the specificity of each query (in terms of constraints typologies and prop-
erties, regularities in the selected source data, such as functional dependencies
between the attributes in the rules and in the mining condition).

Moreover, in Figure 2 it is possible to observe the diagram showing the correla-
tion between query execution times and number of rules in the results (scales are
logarithmic). You can immediately observe that they are approximately linearly
correlated. However, the trend in execution times of the generalised algorithm

310 R. Meo et al.

is much more severe, because of course it addresses a general and more complex
problem at the expenses of efficiency.

4 Application 2: Financial Data Analysis

4.1 Dow Jones Stocks Exchange Index

Dow and Jones, two economists of the XX century, with a set of articles ap-
peared in 1900-02 in Wall Street Journal, defined a set of few stocks whose
value could have been used with the purposes of monitoring the evolution of the
USA economy. Initially stocks were grouped in two sets: transportation com-
panies and industrial companies (energy production, mineral extraction, and so
on). Nowadays, the index named Dow Jones 30 contains 30 stocks of companies
still strictly connected to production activities in USA, such as Microsoft, In-
tel, AT&T, General Motors, Mc Donalds’, etc... and is still used as a meter of
judgement on the evolution and wealth of the american economy because it is
grounded on some big companies whose core activity is the production of con-
sumers’ goods or services. However, it is very much dynamic and in a temporal
interval of few years it can change a significant part of its constituting stocks.

In Figure 3 we report the daily percentage variation of Dow Jones index from
1896 till 2003.

4.2 Technical Analysis

As opposed to fundamental analysis, which is based on the study of the corpora-
tions’ activity under a macro economic view [10], technical analysis is based on
the a-posteriori study of the stocks quote trend. Technical analysis [24,13,15,8,24]
has been founded at the beginning of the XX century by some economists such
as Dow, Hamilton and Rhea.

Fig. 3. Dow Jones index percentual daily change from 1896 to 2003

Employing Inductive Databases in Concrete Applications 311

Some Foundation Hypothesis of Technical Analysis

– Quote is considered as the synthesis of the investors’ confidence in the stock
intrinsic value [18];

– investors (psycological) reactions to certain events are always the same and
will repeat in the future [16];

– current trend in quotes will continue until some event makes it change. This
is useful for the detection of patterns that determine the inversion of the
quote trend.

Technical analysis is based on the feeling that the quote of a stock is based on
the investors’ faith in that stock value at the moment, and this determines that
quotes have a cyclic evolution, able to reach a maximum value or a minimum
value in a certain period of time (named as resistance and support respectively).
The ability to determine these values is very important for the stock market
analyzers because helps investors to determine the best time to sell or buy the
stocks [19].

Another important event that analyzers try to determine is the point in time
when the quotes of a stock change their trend (from positive to negative or
viceversa). Indeed, for an investor who wishes to sell his/her stocks, the best
time to sell them is the point in which the trend from positive becomes negative.
At this point, the stock reached its maximum value and afterwards it will start
to decrease its value. Therefore, if the investor sells in this point in time he/she
will be able to make the best profit from the sold. Analogously for the purchase:
the best point in time to buy a stock is when the trend from negative turns into
positive. At this time the stock value has reached the minimum value and from
this time on, it will start to increase making the customer spend more for the
same stocks.

4.3 Japanese Candle-Sticks

Candle-sticks have been originally proposed by Japanese market analyzers to
study the rice market. A single candle-stick represents the synthesis of the ex-
changed stocks occurred in one period of time (such as a date or a week) for a
given stock. Graphically it is similar to box-plot used for exploratory and de-
scriptive data analysis: it is constituted by a box located in a time x quote
dimension plot, whose horizontal borders identify the open and close value of
the stock in that time period. A candle-stick is colored as follows.

Black candle-stick: represents a time period in which the open value is higher
than the close value. This identifies a period in which the stock lost part of
its value.

White candle-stick: represents a time period in which the open value is lower
than the close value. This identifies a period in which the stock gained part
of its value.

Two vertical lines might depart from the box borders: the lower line represents
the minimum value reached in the period while the higher the maximum. If some

312 R. Meo et al.

Fig. 4. Two candle-sticks and their usage in daily stock quotes plots

Evening star:

signal of start

of bear market

(fall in quotes)

Bullish doji star:

signal of trend inversion

toward the positive

Morning star:

signal of start

of bull market

(rise in quotes)

Harami:

A signal of indecision

or major weakness

of the current trend

Fig. 5. Some representative candle-sticks and their predictive meaning

of these lines are absent it means that the minimum or the maximum value is
reached with the open or close value (Figure 4 on the left).

The right part of Figure 4 shows an example of box-plots positioned in a
time x quote graph. This offers an immediate and visual representation of the
evolution of the value of a stock in the time, with candle-sticks providing the
quality (positive or negative) of the stock exchange period.

For a long time, technical analysts have used candle-sticks to grasp with
a visual representation the evolution of quotes in time. They have elaborated
many configurations of the different candle-sticks in time, some of which are

Employing Inductive Databases in Concrete Applications 313

reported in Figure 5 with a brief explanation of their meaning. Some technical
analysts considered these patterns as an “alarm” able to predict in conjunction to
other observational elements (such as the volume of exchanges) the immediate
evolution of stocks quotes. This is based on the principle that the quote of a
stock is determined by the sell/buy law by investors themselves. Indeed, their
willingness to buy or sell is determined by the market reactions to certain events
which tend to repeat in the future. Therefore, the quote of a stock represents
the “summa” of the willingness of the investors to buy the stocks and on their
confidence in the stock intrinsic value.

4.4 Analysis of Dow Jones 30 Stocks Exchange with MINE RULE

We downloaded data on the daily market exchanges of stocks in Dow Jones 30,
from 1997 till 2002, transformed it in relational form and imported in a DBMS
(mysql). Since the index is very dynamic and some stocks were changed during
this period, some of the analysis were performed on a subset of this time period
(such as one or two years, only). The data set we collected is 2.5 MB large, and
contains the following information for every date:

date: the date of the trade exchange;
ticker: the symbol identifying the stock;
open: the opening value of the stock;
close: the closing value of the stock;
min: the minimum value of the stock;
max: the maximum value of the stock;
volume: the total number of exchanged stocks of a ticker in the date.

In the following we report the KDD scenarios we developed for this financial
application domain.

Frequent Candle-Stick Sequences. The following statement returns the
pairs of candle-sticks that have been found in two successive dates by a rele-
vant number of different stocks.

MINE RULE frequent-candle-sticks-sequences AS
SELECT DISTINCT 1..1 candle-stick AS BODY,

1..1 candle-stick AS HEAD, SUPPORT, CONFIDENCE
WHERE BODY.date=HEAD.date-1
FROM dj30quotes
GROUP BY ticker
EXTRACTING RULES WITH SUPPORT:0.30, CONFIDENCE:0.40

As you will be able to see in Section 4.5 in which the execution times of
the queries are reported, this query had one of the worst performance (though
the number of retrieved rules with these support and confidence thresholds is
low: only 78). However, notice the mining condition is checking all the possible
consecutive dates in the temporal interval of 5 years, which is a quite large
domain.

314 R. Meo et al.

Examples of some obtained results. We launched this statement on the stock
quotes of different years, separately, and compared the results. We noticed
for example that in years 1997, 1998 and 1999, the following candle-stick se-
quence, a black candle-stick immediately followed by a white one, has
been found much more frequently than in later years, 2000, 2001 and 2002
(between 23% and 76% of all the stocks). In fact, in the first years in-
vestors obtained high profits (Dow Jones index roughly doubled its value)
and fostered good faith in the market; on the contrary, in later years,
great losses were experienced. We believe that this sequence can be inter-
preted as a signal of trading which is going to be soon saturated (intu-
itively, that everyone is willing to buy). However, in years 2000-2002, we found
that sequences made by three consecutive candle-sticks including only
black candle-sticks and white candle-sticks with both the tails (i.e.,
such as that the minimum and maximum laid outside of the body of the candle-
stick) were surprisingly much more frequent than in previous years (their fre-
quency was almost doubled). Our interpretation to this is that this type of
candle-stick sequence might be a signal of a “nervous” market, which is a sign of
indecision and might constitute a suggestion of refrain from a new investment.

Pairs of Stocks with Similar Behavior. This statement searches for the
stocks with a similar behavior in time. The similarity of behavior is decided
according to the common candle-sticks types the two stocks show in the same
dates.

MINE RULE similar-tickers AS
SELECT DISTINCT 1..1 ticker AS BODY, 1..1 ticker AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.candle-stick = HEAD.candle-stick
FROM dj30quotes
GROUP BY date
EXTRACTING RULES WITH SUPPORT:0.30, CONFIDENCE:0.40

Examples of some obtained results. In Figure 6 we show the plot of quotes in 2002
of the pair of stocks in the result that are most similar: Hewlett-Packard and
Microsoft Corp. You can notice actually how much they are similar. Another
set of very similar tickers is composed by Home Depot Inc., Walt Disney-Dis-
ney C., JP Morgan Chase Co. and American Express Inc.

Verification of Price Percentage Variation by Volumes. The main aim of
the following queries is the verification of one of the most well-known principles
in stock trading [18]: increasing volumes in the exchanges of a stock is a signal
of a broader participation among investors; that is, contextually to increasing
volumes one could expect a great movement in prices.

Pre-processing query. We preceded the real mining query with a pre-processing
query with the purpose to identify the high volumes. This query computes for

Employing Inductive Databases in Concrete Applications 315

Fig. 6. Comparison between plot of Hewlett-Packard and Microsoft stock daily quotes
in 2002

each stock and each date the ratio r between the exchanged volume (i.e. the
number of exchanged stocks) in the day and the average volume exchanged in
the whole year. In this way we could label each stock exchange date with a
boolean attribute called high volume.

We considered for the identification of high volume dates, for any single stock,
different values of the ratio r. In this example, we experimented a value of
r = 300% uniform for all the stocks and selected in source relation only the
stock exchanges characterized by a high volume.

Furthermore, with the aid of another query, we found also the percentage
change in quotes during the day computed with respect to the close price of the
previous day, called varp, defined as follows:

varp =
(close− open)

open

Analogously to what is done with high volumes, we are interested in high
variations in prices, and labeled each date with high varp if

varp >= 5% ∨ varp <= −5%

Both high volume and high varp will be used in the following mining query.

316 R. Meo et al.

Mining query. This statement searches for frequent associations (in time, i.e.,
occurred in a large number of weeks of the year) between a high volume and a
high percentage variation of price of the same stock in the same date.

MINE RULE VarpByVols AS
SELECT DISTINCT 1..1 high_volume AS BODY, 1..1 high_varp AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.ticker=HEAD.ticker AND BODY.date=HEAD.date
FROM dj30quotes
GROUP BY week
EXTRACTING RULES WITH SUPPORT:0.001, CONFIDENCE:0.001

Examples of some obtained results. From the obtained results, we can say that
86% of the exchanges in which the price percentage variation (varp) is above
5% or below −5% occurs with a volume greater than 125% of the daily volume,
averaged on the whole year. This confirms the initial hypothesis we wanted to
test.

The above query needed a certain amount of preparation tests, since we had
to discover the value of the ratio r and of the percentage variation varp that
best confirm the evidence. In Section 5 we will discuss more on the KDD process
that was necessary to prepare the source data with a discretization step (obtain
the boolean derived attributes high volume and high varp).

Stocks with White Candle-Stick in the Same Date. The following search
is motivated by the necessity of identifying a set of stocks suitable to constitute
the investors’ portfolio.

Pre-processing query. Similarly to previous query, we performed a pre-processing
query selecting the stock exchanges occurred with high volumes. (We considered
again the same values used previously).

Mining query. We launched the following mining query on the stocks in 1997,
the first year in the observed time period, and searched for the pair of stocks that
frequently had a white candle-stick in the same dates with a relevant percentage
of price variation.

MINE RULE white-candle-stick-pairs AS
SELECT DISTINCT 1..1 ticker AS BODY, 1..1 ticker AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.candle-stick-type=’white’ AND

HEAD.candle-stick-type=’white’ AND
BODY.varp>5 AND HEAD.varp>5

FROM dj30quotes
GROUP BY date
EXTRACTING RULES WITH SUPPORT:0.01,CONFIDENCE:0.40

Employing Inductive Databases in Concrete Applications 317

Examples of some obtained results. This query returns 870 rules. The ones that
show the highest support and confidence are constituted by six stocks such as
UBS AG, General Electric, Honeywell, Intel, Merck & Co. and Procter &
Gamble. We can notice how among all the rules, many of them are redundant.
What is really meaningful in this case is the condensed representation of itemsets
that occur in the same situations (dates): the concepts, in Formal Concept Anal-
ysis [28,21,22]. Further work on the MINE RULE system, which actually does
not provide support for a condensed representation of itemsets, is still needed to
improve the representation of itemsets in a way that is more meaningful.

Post-processing. This step was used to evaluate the portfolio composed by pre-
viously selected stocks. This portfolio was monitored for the following 4 years
and outperformed Dow Jones index from 5% to 11% in any year. Furthermore,
it gained in each single year from the 5% to 29% of the total investment. This
is a very useful result and is a first demonstration of the practical usefulness of
these techniques.

Discovery of Frequent Doji Star Candle-Sticks in Time. The following
statement searches for the pairs of successive dates in which most of the stocks
show a doji star candle-stick. Specialized literature on technical analysis consid-
ers this pattern as a signal of reversal of trend followed by a signal of indecision
of the market. It can be viewed as an alarm signal. Indeed, we discovered this
pattern in spring and in autumn of 2002. An example of this pattern can be ob-
served in Figure 5 under the name of bullish doji star that is very similar to the
doji star pattern with the exception that the first candle-stick is white instead
of black. In the following MINE RULE, you can observe the mining condition

HEAD.open + 0.003 ∗HEAD.open > HEAD.close AND

HEAD.open− 0.003 ∗HEAD.open < HEAD.close

which serves to search for the cross pattern with a tolerance between the open
and the close value of a 0.3%. In fact, a perfect match would be very unprobable.
Notice, how this tolerance in the comparison between open and close values plays
a similar role to soft comparison in fuzzy query languages, since it allows us to
test a predicate under some weaker conditions, necessary in the stock financial
domain in which a certain amount of noise is always present.

MINE RULE freq-doji-star-candle-sticks-in-time AS
SELECT DISTINCT 1..1 date AS BODY, 1..1 date AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.date=HEAD.date-1 AND

BODY.close>BODY.open AND BODY.close<HEAD.open AND
(HEAD.open +0.003*HEAD.open > HEAD.close AND
HEAD.open -0.003*HEAD.open < HEAD.close)

FROM dj30quotes

318 R. Meo et al.

Fig. 7. Quotes plot of Microsoft stock in the time period (2 months) immediately
following a bullish doji star occurrence

GROUP BY ticker
EXTRACTING RULES WITH SUPPORT:0.30, CONFIDENCE:0.40

86 total rules were discovered for all the tickers. In Figure 7 we report the stock
trend immediately following the detection of a bullish doji star in Microsoft
stock and indeed, you can notice how the trend is usually significantly positive,
especially in the first part of the evolution. A bullish doji star is the opposite: it
corresponds to a signal of indecision followed by a reversal in the market trend.
We also checked for the presence of this pattern in a stock, like Microsoft Corp.,
that is the stock characterized by the highest capitalization in the market.

Discovery of Morning Star Candle-Sticks. The following statements search
for the dates in which most of the stocks show a morning star candle-stick

Employing Inductive Databases in Concrete Applications 319

pattern. As you might recall, this pattern is composed by three candle-sticks,
so that we need in this case two separate MINE RULE statements: the first one,
called 1st-part-morning-star searches for the first part of the pattern (first
two candles); the second one, 2nd-part-morning-star is needed for the second
part (second and last candle). Finally, a simple SQL query joins the results looking
for the complete pattern where the first part of the pattern is followed by the
second part for the same stock and in an immediately successive date. Of course,
the intermediate candle must be the same in the two parts of the pattern. Of
course this methodology could be extended for patterns of arbitrary length and
thus to the discovery of sequential patterns.

MINE RULE 1st-part-morning-star AS
SELECT DISTINCT 1..1 date AS BODY, 1..1 date AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.date=HEAD.date-1 AND BODY.close<BODY.open AND

BODY.close>HEAD.close AND HEAD.close>HEAD.open
FROM dj30quotes
GROUP BY ticker
EXTRACTING RULES WITH SUPPORT:0.30, CONFIDENCE:0.40

MINE RULE 2nd-part-morning-star AS
SELECT DISTINCT 1..1 date AS BODY, 1..1 date AS HEAD,

SUPPORT, CONFIDENCE
WHERE BODY.date=HEAD.date-1 AND BODY.close>BODY.open AND

BODY.close<HEAD.open AND HEAD.close>HEAD.open
FROM dj30quotes
GROUP BY ticker
EXTRACTING RULES WITH SUPPORT:0.30, CONFIDENCE:0.40

90 and 131 occurrences, respectively of the first and second part of the
morning-star pattern, were discovered in the five years.

Post-processing. A post-processing standard SQL query performs the join be-
tween the result of the 1st-part-morning-star query and of the 2nd-part--
morning-star query taking care that the head of the first part coincides with
the body of the second part. This guarantees that the two parts of a morning-
star candle-stick pattern are effectively found in two consecutive days. In 2002,
only 29 occurrences of the complete pattern were discovered. (We tested this
query only on one year because the intermediate table for the 5 years was too
large to perform the join in the database with a reasonable time).

One final observation concerns how some fuzzy conditions, similar to what
done for query freq-doji-star-candle-sticks-in-time could be useful to
gain a certain amount of flexibility in evaluating the time interval between the
occurrence of the first and the second part of the candle-stick pattern.

SELECT D1 ticker, D1.date
FROM dj30quotes2002 D1, dj30quotes2002 D2, dj30quotes2002 D3,

320 R. Meo et al.

1st-part-morning-star F, 2nd-part-morning-star S
WHERE D1.ticker=D2.ticker AND D2.ticker=D3.ticker AND

D1.date=F.body AND D2.date=F.head AND
S.body=D2.date AND D3.date=S.head

Examples of some obtained results. The results confirm that these candle-stick
patterns are quite rare. (In 2002, they were present mainly in August and De-
cember, a period in which the market raised again).

4.5 Query Execution Times

Figure 8 reports for completeness the execution times of queries in the exper-
iments on Dow Jones 30. You can notice how the execution times of the join
query has evaluation times comparable to the extraction of rules by MINE RULE.

Moreover, in Figure 9 it is possible to observe the diagram showing the cor-
relation between query execution times and the number of rules in the results
(scales are logarithmic). You can immediately observe that they are clustered
around a central point with the exception of some outliers. If we go to ob-
serve with more attention of which queries they consists of, we can see that the
best query (first outlier for the generalised algorithm, working with a cross-
condition between body and head) is similar tickers which has a simple

Query Times for Dow Jones 30

0

1

2

3

4

5

6

7

8

fre
q_ca

ndle_se
q

sim
ila

r_
tic

ke
rs

va
rp

ByV
ols

white
-c

andle-s
tic

k

fre
q_doji_

sta
r

1st-
part-

m
orn

ing

2nd-p
art-

m
orn

ing

join
1st

and
2nd

part

Queries

T
im

e
s

 (
lo

g
a

ri
th

m
ic

 s
c

a
le

)
(s

)

Parse

Optimization

Pre-proc

Rules Extraction

Tot DM algo

Fig. 8. Query Execution Times in Experiments on Dow Jones 30

Employing Inductive Databases in Concrete Applications 321

Correlation Between Times and Number of Rules

in Experiments on Dow Jones

0

50

100

150

200

1 100 10000 1000000

Number of Rules (logarithmic scale)

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
s

Generalised Algo

CARE Algorithm

white-candle-stick-pairs

similar-tickers

frequent-candle-sticks-sequences

Fig. 9. Correlation Between Times and Volume of Results in Experiments on Dow
Jones

mining condition (evaluated on equality on a little set of values: the 10 dif-
ferent candle-sticks). Instead, the worst query for the generalised algorithm is
frequent candle sticks sequences: it must evaluate the cross mining condi-
tion on the set of different trading dates, which is pretty big in a time interval
of some years (4764 values). Finally you can observe again that CARE algorithm
works much faster than the generalised algorithm. Indeed, in this experiment,
white-candle-stick-pairs evaluated 189660 candidate rules in a lower time
than the time required by the generalised algorithm to retrieve only 78 rules
(but on different mining conditions). However, we must observe again, as we did
already with the experiments on Web log, that this confirms the fact that this
is the price to pay to have the possibility to treat more general conditions in
queries. For instance, cross mining conditions (i.e., a comparison between body
and head features) could be very important in practical applications.

5 Evaluation of Discovered Knowledge

In previous Section we reported the sequences of queries submitted to MINE RULE
system in order to discover useful knowledge in practical applications, such as
the analysis of Web logs for Web usage mining, and of financial data (Dow Jones,
in particular). We can draw now some conclusions on the discovered patterns.

322 R. Meo et al.

In order to be useful, discovered patterns must be:

1. interesting for the user/analyst
2. actionable, in the sense that immediate actions/decisions can be taken as a

consequence of their observation.

In constrained based mining the first point is immediately fulfilled by the
retrieved patterns, because by definition extracted patterns satisfy user de-
fined constraints. Indeed, constraints are provided by the analyst to the sys-
tem in order to identify the desired patterns and discard all the remaining
ones. Desired patterns could be the interesting ones for many reasons. First
of all because they occur frequently, and therefore they refer to a statistically
relevant number of events occurred in the application domain. Secondarily be-
cause some user constraints are able to discriminate the properties of the de-
sired pattern class with respect to some contrasting classes. However, notice
that sometimes it is not easy to identify the right constraint (or at least the
right constant value in a comparison). For instance, in some of the examples,
as in freq-doji-star-candle-sticks-in-time we adopted a sort of “fuzzy”
constraints. In other cases, such as in VarpByVols, a preparatory session was nec-
essary. We generated derived attributes (for the ratio between daily exchange
and average volume and for the price percentage variation) and discretised them
in two boolean attributes (high volume and high varp). The discretization was
tested several times (using different thresholds) and the results used later, during
the mining step.

The second point is more difficult to establish in an absolute sense. Usually,
a post-processing phase, following the proper mining phase is necessary to es-
tablish if the retrieved patterns are actionable. Generally, a cross-over query
that retrieves the original data in which a pattern occurs is necessary to reveal
in which way or which data representing real life entities are involved in the
phenomena described by the patterns themselves. For instance, in the Web ap-
plication domain, if patterns describing users attempts to change passwords, or
putting in evidence which user configuration settings more frequently are corre-
lated to system errors are employed to identify the users causing the problem,
those patterns are immediately actionable because are self explaining. Other
patterns, such as patterns on the users’ most frequent crawling paths, are more
difficult to translate immediately in some actions on the Web applications be-
cause might indicate a high value path or content in the Web application or
non perfectly adequate tools (such as search engines or indexes) in the site, as
well. In this latter case, this might involve a new design of the application, the
hypertext structure and of main the content areas that organise the Web site.
Finally, the discovered patterns could also identify two content areas that are
contextually correlated but could not require the involvement of a new Web site
design. This is the case in which it is necessary providing the users with some
additional suggestions on the pages where the user could find some content in
which he/she could be interested in (see recommending systems). As regards the
financial domain, an example of an actionable pattern is constituted by the pairs
of stocks exhibiting frequently a white candle-stick because they can be used to

Employing Inductive Databases in Concrete Applications 323

suggest the composition of users’ portfolios. However, we should observe that in
this case we discovered many rules that Another example, is the detection of a
bullish doji star pattern which is a suggestion for investors to perform a sell or
buy of stocks.

6 Guidelines for Using an Inductive Database in the Web
Mining Application Domain

In previous Sections we have described the process we underwent for mining
a Web site. This process is briefly summarised here in order to give the user
an abstraction on this process, of the difficulties in which he might be involved
applying an inductive database to the analysis of a Web application load, to the
identification of the profile of the users in terms of frequent visits and to the
usability of the Web site.

These steps are very much alike to the traditionally well-known KDD process
for the discovery of knowledge from a database:

1. customization and storage of the Web log
2. preparation of the data
3. individuation and selection of the interesting data
4. mining phase
5. post-processing of the result
6. interpretation

The customisation and storage of the Web log corresponds to the step of
loading and integration of the data that are relevant to the analysis. This step
comprises the memorization of all the elements that result useful during the
analysis, such as user identification, user session identification, Web crawlers
robot exclusions (because they automatically spam all the Web sites and thus
show a typology of interaction with the Web application that is not leaded by
the real information content displayed by the pages).

Preparation of the data is a step that is often necessary for increasing the
performance of the following mining phase. It consists in the selection of the
data that probably will be involved in the interested patterns. Therefore this
phase allows pruning of large volumes of data that will not contribute to the
searched patterns. For instance, if we are looking for frequent crawling paths by
users, we can immediately discard all those requests referring to pages that have
been requested a little number of times. On the contrary, if we want to identify
the top k pages in the user preferences, we should probably discard requests to
those pages that, although the most frequently selected, do not provide the user
the final content he is really looking for. These pages are probably some indexes
and the map or overview pages of the Web site – in conclusions, those elements
that structurally are needed to the crawling of the Web site itself.

Individuation and selection of the interesting data consists in definition of the
constraints (and of their parameters values) that define the interesting patterns
for the user and will probably later result in actionable patterns.

324 R. Meo et al.

Some examples are provided, for instance, by the patterns that describe the
profile of those users whose requests frequently provide the greatest traffic load
over the net; the parameter values in this case express the volume in bytes that
defines a congested traffic situation.

The mining phase consists in the execution of the mining query provided by
the user and incorporating user constraints on the prepared and selected data.
It results in a set of patterns that will later be post-processed in the following
phase either for visualisation or for evaluation purposes.

Post-processing can consist in pattern selection, for eliminating pattern re-
dundancies and increase the quality of the result, or further queries over both
patterns and data. Cross-over queries are often necessary in order to evaluate
pattern actionability. For instance, if a pattern describes the top k most fre-
quently occurred pair of pages, we probably would also be interested in the
pages themselves, in their content and discover in which way they are related to
each other. Probably also an interesting issue is the profile of the users who fre-
quently requested (at least one of) them. All these questions can be answered by
some post-processing queries that do a cross-over between discovered patterns
and the available data both in the Web log and in the Web site.

Interpretation phase inspects both the results of the mining phase and the
results of the post-processing phase and decide how to translate in practice the
results obtained by previous phases (pre-processing, mining, post-processing)
and the deployment. Results of this phase consists either in actions over the
Web application design or in the decision of performing further queries, starting
again to execute some steps of the discovery cycle, either from the first step, the
second or the third step (customisation and storage of the Web log, preparation
or selection of interesting data).

7 Conclusions

We presented the application of inductive databases to two practically important
case studies. The first one is the analysis of Web logs of the main Web application
of a University Department. The Web log was a conceptual log, obtained by
integration of standard (ECFL) Web server logs with information on Web design
application and Web pages content information. The second one is the analysis
of stocks quotes from the Dow Jones index, from 1998 till 2003. We adopted
Japanese candle-sticks, a descriptive pattern proposed in technical analysis to
determine in conjunction with other relevant events the main occurrences in time
of certain relevant events in the evolution of stocks quotes.

With both these applications we applied and evaluated the usability and
expressive power of a mining query language – MINE RULE. The purpose was
to verify its feasiblility in practice to solve real case problems and experiment
the suitability of some KDD scenarios, developed for inductive databases.

KDD scenarios have been previously produced as a set of characteristic
queries solving some frequently asked questions (mining problems) from induc-
tive database end users/analysts in order to recover from frequently occurring

Employing Inductive Databases in Concrete Applications 325

problems in their environment. We showed the possibility to employ these sce-
narios by means of the mining query languages.

The result of the queries provides us also an evaluation of the expressive
power of the designed mining languages for inductive databases in CInQ project
on the development of inductive databases (EU project IST-2000-26469), e.g.,
MINE RULE. It proved to be simple but yet a powerful query language for mining,
because with the aid of few template queries the user is able to afford the main
critical problems respectively in Web usage mining and in financial technical
analysis. Indeed, this mining language is provided with expressive constraints
and querying predicates (on single or aggregate properties) that are suitable to
extract the description patterns needed to analyse the actual data.

In the Web domain application obtained patterns can be exploited for the
definition of effective navigation and composition of hypertext elements to be
adopted for improving the Web site usability. We also obtained some concrete
examples of interesting or suspicious event that are useful to the end-users (Web
and system administrators).

In the financial domain, obtained patterns can be effectively used to detect
stock quotes evolutionary similarities, to select the stocks for the formation of
the investors portfolios and to study the stock trade behavior in general.

The examples of query we provided show that the mining language is pow-
erful, and at the same time versatile because its operational semantics seems
to be the basic one. The grouping clause (that corresponds to described enti-
ties), the rule attributes selection (that corresponds to observed entities) and
the support computation (that corresponds to statistical relevance of the rules)
allow the users, in some of their combinations to specify completely different and
new problems simply by adoption of a different choice of attributes in grouping,
rules and conditions. The results of the different mining queries can then be
composed with standard SQL queries (in pre- and post-processing phase) form-
ing a sequence of queries that constitute a KDD scenario for the application of
an inductive database to the particular domain analyzed. Indeed these experi-
ments allow us to claim that Mannila and Imielinski’s initial view on inductive
databases [14] was correct: <<There is no such thing as real discovery, just a
matter of the expressive power of the query languages>>.

References

1. M. Botta, R. Meo, and C.Malangone. Association rules extraction with mine rule
operator. Technical report, RT73-2003, Dipartimento di Informatica, University of
Torino, Italy, April 2003.

2. Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language (webml):
a modeling language for designing web sites. In Proc. of WWW9 Conference, May
2000.

3. Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and
Maristella Matera. Designing Data-Intensive Web Applications. Morgan Kauf-
mann, San Francisco, CA, 2002.

4. Apache Cocoon. Cocoon. http://xml.apache.org/cocoon/.

326 R. Meo et al.

5. R. Cooley. Web Usage Mining: Discovery and Application of Interesting Patterns
from Web Data. PhD thesis, University of Minnesota, 2000.

6. R. Cooley, P.N. Tan, and J. Srivastava. Discovery of Interesting Usage Patterns
from Web Data. LNCS/LNAI. Springer Verlag, 2000.

7. G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from
time series. In Proceedings of the 1997 ACM SIGKDD International Conference,
ACM SIGKDD, 1997.

8. D.Brown and R.Jennings. On technical analysis. Review of Finance Studies, 2:527–
551, 1989.

9. Federico Michele Facca and Pier Luca Lanzi. Mining interesting knowledge from
weblogs: A survey. Technical Report 2003.15, Dipartimento di Elettronica e Infor-
mazione. Politecnico di Milano., April 2003.

10. J. Farrell. Portfolio Management: Theory and Application. McGraw-Hill, 1997.

11. P. Fraternali, M. Matera, and A. Maurino. Conceptual-level log analysis for the
evaluation of web application quality. In Proceedings of LA-Web’03, Santiago,
Chile, November 2003. IEEE Computer Society, 2003.

12. T.-C. Fu, F.L. Chung, V. Ng, and R. Luk. Pattern discovery from stock time series
using self-organizing maps. In Proceedings of the 1997 ACM SIGKDD International
Conference, ACM SIGKDD, 2001.

13. G.Ramazan. The predictability of security returns with simple trading rules. The
Journal of Empirical Finance, 5:347–359, 1998.

14. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Coomunications of the ACM, 39(11):58–64, November 1996.

15. A. Ito. Empirical evaluation of technical analysis: A synthesis. Technical report,
International University of Japan, November 1999.

16. M.C. Jensen. Random walks and technical theories: Some additional evidence. The
Journal of Finance, (25):469–482, 1970.

17. R. Kohavi and R. Parekh. Ten supplementary analyses to improve e-commerce web
sites. In Proceedings of the Fifth WEBKDD Workshop: Webmining as a premise to
effective and intelligent Web Applications, ACM SIGKDD, Washington, DC, USA,
2003. Springer-Verlag.

18. L.Blume, D.Easley, and M.O’Hara. Market statistics and technical analysis: the
role of trading volumes. The Journal of Finance, 49:153–181, 1994.

19. A. W. Lo, H. Mamaysky, and J. Wang. Foundations of technical analysis: Com-
putational algorithms, statistical inference, and empirical implementation. The
Journal of Finance, LV(4):1705–1765, August 2000.

20. R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules.
Journal of Data Mining and Knowledge Discovery, 2(2), 1998.

21. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining
of association rules using closed itemset lattices. Inf. Syst., 24(1):25–46, 1999.

22. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Mining bases
for association rules using closed sets. In Proceedings of the 16th International
Conference on Extending Databases, IEEE, 2000.

23. P. Pirolli, J. Pitkow, and R. Rao. Silk from a sow’s ear: Extracting usable structures
form the web. In Proc. of CHI 96 Conference. ACM Press, April 1996.

24. M. Pring. An introduction to Technical Analysis. McGraw-Hill, 1997.

Employing Inductive Databases in Concrete Applications 327

25. John R. Punin, Mukkai S. Krishnamoorthy, and Mohammed J. Zaki. Logml: Log
markup language for web usage mining. In R. Kohavi, B. Masand, M. Spiliopoulou,
and J. Srivastava, editors, WEBKDD 2001 - Mining Web Log Data Across All Cus-
tomers Touch Points, Third International Workshop, San Francisco, CA, USA,
August 26, 2001. Revised Papers, volume 2356 of Lecture Notes in Computer Sci-
ence, pages 88–112. Springer, 2002.

26. Jaideep Srivastava, Robert Cooley, Mukund Deshpande, and Pang-Ning Tan.
Web usage mining: Discovery and applications of usage patterns from web data.
SIGKDD Explorations, 1(2):12–23, 2000.

27. M. Teltzrow and B. Berendt. Web-usage-based success metrics for multi-channel
businesses. In Proceedings of the Fifth WEBKDD Workshop: Webmining as a
premise to effective and intelligent Web Applications, ACM SIGKDD, Washington,
DC, USA, 2003. Springer-Verlag.

28. R. Wille. Concept lattices and conceptual knowledge systems. Computers and
Mathematics with Applications, 23:493, 1992.

29. Mohammed Zaki. Mining non-redundant association rules. Data Mining and
Knowledge Discovery, 9:223–248, 2004.

Contribution to Gene Expression Data Analysis

by Means of Set Pattern Mining

Ruggero G. Pensa1, Jérémy Besson1,2,
Céline Robardet3, and Jean-François Boulicaut1

1 INSA Lyon, LIRIS CNRS UMR 5205,
F-69621 Villeurbanne cedex, France

{Ruggero.Pensa, Jeremy.Besson, Jean-Francois.Boulicaut}@insa-lyon.fr
2 UMR INRA/INSERM 1235,
F-69372 Lyon cedex 08, France

3 INSA Lyon, PRISMA,
F-69621 Villeurbanne cedex, France
Celine.Robardet@insa-lyon.fr

Abstract. One of the exciting scientific challenges in functional ge-
nomics concerns the discovery of biologically relevant patterns from gene
expression data. For instance, it is extremely useful to provide putative
synexpression groups or transcription modules to molecular biologists.
We propose a methodology that has been proved useful in real cases.
It is described as a prototypical KDD scenario which starts from raw
expression data selection until useful patterns are delivered. It has been
validated on real data sets. Our conceptual contribution is (a) to em-
phasize how to take the most from recent progress in constraint-based
mining of set patterns, and (b) to propose a generic approach for gene
expression data enrichment. Doing so, we survey our algorithmic break-
through which has been the core of our contribution to the IST FET
cInQ project.

1 Introduction

Thanks to a huge research and technological effort, one of the challenges for
molecular biologists is to discover knowledge from data generated at very high
throughput. Indeed, different techniques (including microarray [1] and SAGE [2])
enable to study the simultaneous expression of (tens of) thousands of genes in
various biological situations or experiments. Such data can be seen as expression
matrices in which the expression level of genes (the attributes or columns) are
recorded in various biological situations (the objects or rows). A toy example of
a gene expression matrix is in Fig. 1a. Exploratory data mining techniques are
needed that can, roughly speaking, be considered as the search for interesting
bi-sets, i.e., sets of biological situations and sets of genes which are associated in
some way. Indeed, it is interesting to look for groups of co-regulated genes, also
known as synexpression groups [3], for which a reasonable assumption is that
they participate in a common function within the cell. The association between

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 328–347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Contribution to Gene Expression Data Analysis 329

a set of co-regulated genes and the set of biological situations that gives rise to
this co-regulation is called a transcription module and their discovery is a major
goal in functional genomics since it paves the way to a better understanding of
gene regulation networks.

The use of hierarchical clustering (see, e.g., [4]) is quite popular among practi-
tioners. Genes are grouped together according to similar expression profiles. The
same can be done on biological situations. Thanks to the appreciated vizualiza-
tion component introduced with [4], biologists can identify sets of genes that are
co-regulated in some sets of situations. Global patterns like partitions provide
an a priori interesting “global picture” of similarity structures in the whole data.
The results of most of the clustering algorithms are non overlapping groups of
genes. It means that a given gene belongs to one and only one cluster while
we already know genes which clearly participate to various biological functions.
Furthermore, their heuristic nature can lead to different results. Co-clustering or
bi-clustering techniques do not change fundamentally the problem: the benefit
comes from an assessment of the association between both partitions, i.e., sets of
genes and sets of situations but we still get non overlapping partitions based on
a local optimization process [5,6]. In other terms, we get a global pattern which
capture some more or less expected phenomena.

A complementary approach is to look for collections of local patterns in the
gene expression data. Heuristic statistical methods have been proposed to iden-
tify a priori interesting bi-sets from raw numerical data (see, e.g., [7,8]). A
promising direction of research is to consider complete constraint-based mining
techniques on boolean gene expression data sets. The completeness assumption
means that every pattern from the pattern language which satisfies the defined
constraints has to be returned (e.g., every frequent set, every closed set) and,
in this case, we use non heuristic methods. In these data sets, boolean gene
expression properties are encoded, e.g., over-expression, strong variation, co-
regulation. We get boolean data sets which are also called in some application
domains transactional data sets.

Let O denotes a set of objects or rows (e.g., biological situations) and P
denotes a set of properties or columns (e.g., genes). For instance, expression
properties can be encoded into a boolean matrix r ⊆ O×P . (oi, gj) ∈ r denotes
that gene j has the encoded expression property in situation i. For deriving a
boolean context from raw gene expression data, we generally apply discretization
operators that, depending of the chosen expression property, compute thresholds
from which it is possible to decide between wether the true or the false value must
be assigned. On our toy example in Fig. 1, O = {h1, h2, h3, h4, d1, d2, d3, d4} and
P = {g1, g2, . . . , g8}. A value “1” for a biological situation and a gene means
that the gene is up (greater than |t|) or down (lower than −|t|) regulated in this
situation. Using threshold t = 0.4 for Fig. 1a leads to the boolean matrix in
Fig. 1b.

Local pattern discovery tasks can be performed when searching for puta-
tive synexpression groups or transcription modules. To compute synexpression
groups, we can extract the so-called frequent itemsets (sets of genes) from the de-

330 R.G. Pensa et al.

rived boolean contexts. Notice that sets of genes that are frequently co-regulated
can be post-processed into association rules [9,10].

In our boolean toy example (Fig. 1), the genes from {g2, g5} are in relation
with {h1, h2, h4, d3}.

The relevancy of the extracted patterns can be improved by considering the
frequent closed itemsets which are the frequent maximal sets of genes whose
encoded expression properties are shared by a same set of biological situations.
For instance, {g2, g4, g5, g7} is a closed itemset because g4 and g7 are the other
genes which are in relation with each element from {h1, h2, h4, d3}. Formally
these local patterns are the set components of formal concepts [11]. A formal
concept is a maximal set of genes associated to a maximal set of situations,
e.g., ({h1, h2, h4, d3}, {g2, g4, g5, g7}) in the data from Fig. 1b. Such patterns can
indeed be considered as putative transcription modules [12,13,14].

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8

h1 0.1 -0.5 0.3 0.7 3 0.2 6.1 -0.1
h2 0.2 -0.6 0.4 0.5 1.2 0.1 4.2 -0.5
h3 0.2 -0.3 0.9 0.1 0.4 5 0.5 -0.1
h4 2.1 -0.7 -0.2 0.6 4.1 0.3 5.3 -0.3
d1 0.2 -0.8 0.2 -0.5 0.4 6.3 0.4 -0.6
d2 2.3 -0.4 0.1 0.7 -5.1 0.4 5.8 -0.2
d3 1.2 -0.6 0.1 0.6 3.6 0.3 6.2 -0.1
d4 1.6 0.1 0.3 0.6 2.8 0.4 4.9 0.1

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8

h1 0 1 0 1 1 0 1 0
h2 0 1 0 1 1 0 1 1
h3 0 0 1 0 0 1 1 0
h4 1 1 0 1 1 0 1 0
d1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0
d3 1 1 0 1 1 0 1 0
d4 1 0 0 1 1 0 1 0

(a) (b)

Fig. 1. A gene expression matrix (a) and a derived boolean context (b)

This paper is a methodological paper. It abstracts our practice in several real-
life gene expression data analysis projects to disseminate a promising practice
within the scientific community. Our methodology covers the whole KDD process
and not just the mining phase. Starting from raw gene expression data, it sup-
ports the analysis and the discovery of transcription modules via a constraint-
based bi-set mining approach from computed boolean data sets. The generic
process is described within the framework of inductive databases, i.e., each step
of the process can be formalized as a query on data and/or patterns that satisfy
some constraints [15,16]. It leads us to a formalization of boolean gene expression
data enrichment. We already experimented a couple of practical instances of this
approach and it has turned to be crucial for increasing the biological relevancy
of the extracted patterns.

Details about each step of the method and the algorithms or solvers which
have been developed in the context of the cInQ project have been already pub-
lished. Therefore, we avoid most of the technical details, just emphasizing the
main algorithmic principles and the methodological added-value of our “in silico”
approach for transcription module discovery.

Contribution to Gene Expression Data Analysis 331

The main publications which are associated to this method are:

– Preprocessing numerical gene expression data to encode boolean gene ex-
pression properties [9,17].

– Using AC-Miner [18] for computing frequent closed sets and interesting
association rules between boolean gene expression properties [9];

– Computing putative transcription modules as formal concepts with a AC-
Miner-like algorithm [12,13];

– Using D-Miner for computing putative transcription modules as formal
concepts under monotonic constraints [19,14];

– Boolean gene expression data enrichment [20,14].
– Post-processing putative transcription modules [21].

2 Classical Approaches in Gene Expression Data Analysis

From a technical point of view, traditional gene expression data analysis is based
on similarities between expression profiles. The expression profile of a gene, is the
sequence of its expression values in different biological situations. For example,
in the drosophila melanogaster data set (see [22]), the expression levels of about
4 000 genes are measured for a number of time points during the drosophila
life cycle. Studying the expression profile of each gene, it is possible to observe
the behavior of such a gene during the whole life cycle. A typical analysis task,
is to compare expression profiles two by two, noticing the principal differences
and similarities between two expression profiles. This is clearly not feasible when
thousands of genes are involved. An important contribution to gene expression
data analysis is due to Eisen et al. (see [4]). They consider a technique based on
hierarchical clustering which enables to compare expression profiles of thousands
of genes simultaneously. Genes sharing similar expression profiles are grouped
together in the same subtree structure of the resulting dendrogram. This sup-
ports the analysis for finding putatively cooperating genes. Dually, biological
situations can be processed with the same clustering algorithm. The resulting
structure enables to associate groups of genes to groups of situations in which
these genes are co-expressed. For instance, in Fig. 2, we can observe dendrograms
for the data set in Fig. 1a. Such an approach can be used for identifying some
patterns like putative transcription modules.

One major problem concerning such a technique is that searching transcrip-
tion modules is not that simple. For instance, most of the traditional clustering
algorithms, including [4], provide non overlapping (bi-)clusters: one gene (resp.
one situation) is associated to only one cluster. Moreover, similarities are com-
puted by considering the whole collection of gene or situation vectors. From the
biological point of view, we know that a gene can participate in various biolog-
ical functions, in different cells and environmental conditions, and at the same
time, it is not influenced by the whole set of situations. Therefore, traditional
unsupervised clustering techniques are not really oriented to the discovery of
transcription modules and synexpression groups, even though they remain use-
ful for exploratory analysis of gene expression data sets.

332 R.G. Pensa et al.

Fig. 2. Dendrograms obtained after a hierarchical clustering on the data from Fig. 1a

A solution can come from local patterns, i.e., patterns which hold in part
of the data. For example, the signature algorithm (see [7,8]) enables to find
some putative transcription modules starting from a set of known genes. These
techniques however heuristically compute some a priori interesting patterns. It
makes sense to look at the recent breakthrough concerning complete algorithms
for local set pattern mining.

3 A KDD Approach for Gene Expression Analysis

We introduce our KDD-based methodology for gene expression data analysis. It
exploits our results in several domains like constraint-based data mining, prepro-
cessing of gene expression raw data, and postprocessing of pattern collections.
It has been proved useful for supporting the search of putative transcription
modules.

We decided to work on Boolean gene expression data sets instead of numeri-
cal data sets. Boolean gene expression data sets encode boolean gene expression
properties. The main advantage is that beside encoding techniques based on
raw value discretizations, an expert knowledge can be used for assessing the en-
coding (e.g., checking that computed property is consistent with some available
knowledge). A second advantage is that we can add other boolean properties
of genes within the same context (e.g., the fact that a gene is or not associ-
ated to a given transcription factor). The main drawback is that many different
point of views can be considered on a phenomenon like over-expression and the
proposed encoding techniques have parameters (i.e., thresholds) that can not be

Contribution to Gene Expression Data Analysis 333

fixed easily. Of course, if the boolean data do not capture well the chosen prop-
erty, then most of the patterns extracted from it will be irrelevant. Therefore, we
have designed a method for fixing encoding method parameters. Once boolean
gene expression data sets are available, we have considered the extraction of set
patterns like closed sets, association rules, and formal concepts. The number of
discovered patterns can be huge and it happens that the computation turns to
be untractable. To increase both the relevancy and the tractability of this task,
we have considered user-defined constraints which can be pushed into the extrac-
tion phase. The final step consists in post-processing the extracted patterns by
deducing new information on data, and exploiting it for further mining tasks. We
have also designed a technique to visualize similarities between extracted pat-
terns by means of a user-friendly graphical representation. This post-processing
has been proved useful to support pattern interpretation by biologists.

3.1 Pre-processing

We assume that raw expression data, i.e., a function that assigns a real expression
value to each couple (o, g) ∈ O × P is available and that some tasks have been
selected by the molecular biologists. A typical example concerns the discovery of
putative transcription modules that involve at least a given set of genes that are
already known to be co-regulated in a given class of biological situations, e.g.,
diabetic ones.

Due to the lack of space, we do not consider the typical data manipulation
statements that are needed, e.g., for data normalization, data cleaning, gene
and/or biological situation selection according to some background knowledge
(e.g., removing housekeeping genes from consideration).

Discretization. This step concerns gene expression property encoding and is
obviously crucial. The simplest case concerns the computation of a boolean ma-
trix r ⊂ O × P which encode a simple expression property for each gene in
each situation, e.g., over-expression1. Different algorithms can be applied and
parameters like thresholds have to be be chosen. For instance, [9] introduces
three techniques for encoding gene over-expression:

– “Mid-Ranged”. The highest and lowest expression values in a biological sit-
uation are identified for each gene and the mid-range value is defined. Then,
for a given gene, all expression values that are strictly above the mid-range
value give rise to value 1, 0 otherwise.

– “Max - X% Max”. The cut off is fixed w.r.t. the maximal expression value
observed for each gene. From this value, we deduce a percentage X of this
value. All expression values that are greater than the (100 - X)% of the Max
value give rise to value 1, 0 otherwise.

1 Not only it is possible to consider several attributes per gene for one property, e.g.,
one for “strong overexpression” and one for “suspected strong-expression” but also
one can decide to encode various properties per gene like “up-regulation” and “down-
regulation”.

334 R.G. Pensa et al.

– “X% Max”. For each gene, we consider the biological situations in which its
level of expression is in X% of the highest values. These genes are assigned
to value 1, 0 for the others.

These techniques give different points of view on the over-expression biological
phenomenon and it is unclear which one performs better. The impact of the cho-
sen technique and the used parameters on both the quantity and the relevancy of
the extracted patterns is crucial. For instance, the density of the discretized data
depends on the discretization parameters and the cardinalities of the resulting sets
(collections of itemsets, association rules or formal concepts) can be very different.
We clearly need a method to evaluate different boolean encoding (different tech-
niques and/or various parameters) of the same raw data and thus a framework
to support user decision about the discretization from which the mining process
can start. Our thesis is that a good discretization might preserve some proper-
ties that can be already observed from raw data. Let E denote a gene expression
matrix. Let {Bini, i = 1..b} denote a set of different discretization operators and
{ri, i = 1..b} a set of boolean contexts obtained by applying these operators, i.e.
∀i = 1..b, ri = Bini(E). Let S : Rn,m)−→ R denote an evaluation function that
measure the quality of the discretization of a gene expression matrix. We say that
a boolean context ri is more valid than another context rj w.r.t the S measure if
S(ri) > S(rj). In [17], we studied an original method for such an evaluation. We
suggest to compare the similarity between the dendrogram generated by a hierar-
chical clustering algorithm (e.g., [4]) applied to the raw expression data and the
dendrograms generated by the same algorithm applied to each derived boolean
matrix. Given a gene expression matrix E and two derived boolean contexts ri

and rj , we can choose the discretization that leads to the dendrogram which is the
most similar to the one built on E. The idea is that a discretization that preserves
the expression profile similarities is considered more relevant. A simple measure
of similarity between dendrograms has been studied and experimentally validated
on various gene expression data sets.

Let O = {o1, . . . , on} denote the set of n objects. Let T denote a binary tree
built on O. Let L = {l1, . . . , ln} denote the set of n leaves of T associated to
O for which, ∀i ∈ [1 . . . n] , li ≡ oi. Let B = {b1 . . . bn−1} denote the set of the
n−1 internal nodes of T generated by a hierarchical clustering algorithm starting
from L. By construction, we consider bn−1 = r, where r denotes the root of T .
Let us define the two sets:

δ (bi) = {bj ∈ B | bj is a descendent of bi}
τ (bi) = {lj ∈ L | lj is a descendent of bi} .

We want to measure the similarity between a tree T and a reference tree Tref

built on the same set of objects O. For each node bi of T , we define the following
score (denoted SB and called BScore):

SB (bi, Tref) =
∑

bj∈δ(bi)

aj

Contribution to Gene Expression Data Analysis 335

aj =
{ 1

|τ(bj)| , if ∃bk ∈ Tref | τ (bj) = τ (bk)
0, otherwise

(1)

To obtain the similarity score of T w.r.t. Tref (denoted ST and called TScore),
we consider the BScore value on the root, i.e.:

ST (T, Tref) = SB (r, Tref) (2)

As usually, it is interesting to normalize the measure to get a score between 0
(for a tree which is totally different from the reference) and 1 (for a tree which
is equal to the reference). In the TScore measure, since its max value depends
on the tree morphology, we can normalize by ST (Tref , Tref):

ST (T, Tref) =
ST (T, Tref)

ST (Tref , Tref)
(3)

ST (T, Tref) = 0 means that T is totally different from Tref , i.e., there are no
matching nodes between T and Tref . Indeed, ST (T, Tref) = 1 means that T is
totally similar to Tref , i.e., every node in T matches with a node in Tref . Given
two trees T1 and T2 and a reference Tref , if ST (T1, Tref) < ST (T2, Tref), then
T2 is said to be more similar to Tref than T1 according to TScore.

We can apply this technique to both the situation and gene trees. Indeed,
we obtain two different similarity scores. To consider a unique TScore, we can
compute the mean between the two scores. However, in order to force the general
similarity score to be equal to 0 when at least one of the two scores is equal to
0, we prefer to use the square root of the product of the two similarity scores:

SAT (Tg, Ts, Tref) =
√

ST (Tg, Tref) · ST (Ts, Tref)

where Tg and Ts denote respectively the dendrograms for genes and situations.
Let us apply this technique to the gene expression matrix in Fig. 1a. We decide

to evaluate the set of discretization operators Bini, where i = 1..10, and such
that values in the matrix whose absolute value is greater than i×10−1 are coded
with a “1” in the boolean matrix, while the other expression values are coded
with a “0” (e.g., for i = 5, the threshold is set to 5 × 10−1 = 0, 5). Therefore,
we can obtain ten different boolean contexts and we process each of them with
the same hierarchical clustering algorithm. Then we compare the resulting gene
and situation dendrograms with those obtained by clustering the original real
expression matrix from Fig. 1a. The results are presented in Fig. 3. We can
observe that for a threshold of 0.4 the square root of the product between the
gene similarity score and the situation similarity score is maximal. If we discretize
the raw data from Fig. 1a with such a threshold, we obtain the boolean context
given in Fig. 1b.

Boolean Gene Expression Data Enrichment. We can mine boolean gene
expression matrices for frequent sets of genes and/or situations, association rules
between genes and/or situations, formal concepts, etc. In the following, we focus

336 R.G. Pensa et al.

Fig. 3. Similarity scores w.r.t. threshold values

on mining phases that compute formal concepts. When the extractions are fea-
sible, many patterns are discovered (up to several millions) while only a few of
them are interesting. It is however extremely hard to decide of the interesting-
ness characteristics a priori. We now propose a powerful approach for improving
the relevancy of the extracted formal concepts by boolean data enrichment. It
can be done a priori with some complementary information related to genes
and/or situations. For instance, we can add information about the known func-
tions of genes as it is recorded in various sources like Gene Ontology [23]. Other
information can be considered like the associated transcription factors. A simple
way to encode this kind of knowledge consists in adding a row to r for each
gene property. Dually, we can add some properties to the situations vectors. For
instance, if we know the class of a group of situations (e.g. diabetic vs. non dia-
betic individuals) we can add a column to r. We can also add boolean properties
about, e.g., cell type or environmental features. Enrichment of boolean data can
be performed by more or less trivial data manipulation queries from various
bioinformatics databases. r′ ⊂ O′ × P ′ will denote the relation of the enriched
boolean context.

In Fig. 4a, we add three gene properties tf1, tf2 and tf3. A value “1” for a
gene and a property means that this gene has the property. For instance, tf1

could mean that the gene is regulated by a given transcription factor. Dually, in
Fig. 4b, we consider two classes of situations, namely cH and cD. A value “1” for a
situation and a class means that this situation belongs to the class but this could
be interpreted in terms of situation properties as well. For instance, cD (resp.
cH) could mean whether biological situations are diabetic (resp. healthy) ones. In

Contribution to Gene Expression Data Analysis 337

the data in Fig. 4b, a formal concept like ({d2, d3, d4, tf1, tf3}, {g1, g4, g5, g7, cD})
informs us about a “maximal rectangle of true values” that involves four genes,
regulated by two transcription factors tf1 and tf2 in three situations that are
of class cD. This could reveal sets of genes that are co-regulated in diabetic
situations but not in healthy ones. We will discuss later how iterative enrichment
enables to improve the relevancy of the extracted patterns.

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8

h1 0 1 0 1 1 0 1 0
h2 0 1 0 1 1 0 1 1
h3 0 0 1 0 0 1 1 0
h4 1 1 0 1 1 0 1 0
d1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0
d3 1 1 0 1 1 0 1 0
d4 1 0 0 1 1 0 1 0

tf1 1 0 0 1 1 0 1 1
tf2 0 1 0 1 1 0 1 0
tf3 1 1 0 1 1 0 1 0

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8 cH cD

h1 0 1 0 1 1 0 1 0 1 0
h2 0 1 0 1 1 0 1 1 1 0
h3 0 0 1 0 0 1 1 0 1 0
h4 1 1 0 1 1 0 1 0 1 0
d1 0 1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0 0 1
d3 1 1 0 1 1 0 1 0 0 1
d4 1 0 0 1 1 0 1 0 0 1

tf1 1 0 0 1 1 0 1 1 1 1
tf2 0 1 0 1 1 0 1 0 1 1
tf3 1 1 0 1 1 0 1 0 1 1

(a) (b)

Fig. 4. Two examples of enriched boolean microarray contexts

3.2 Pattern Extraction

Constraint-Based Extraction of Formal Concepts. We consider here for-
mal concept extraction from eventually enriched boolean contexts.

Definition 1 (Bi-set). A bi-set (T, G) is a couple of sets such that T ⊆ O
and G ⊆ P. We often use the term rectangle to denote bi-sets: clearly, a bi-set
defines a combinatorial rectangle in the boolean matrix, i.e., up to permutations
over rows and columns.

Definition 2 (1-rectangle). A bi-set (T, G) is a 1-rectangle in r (constraint
C1R(T, G)) iff ∀t ∈ T and ∀g ∈ G then (t, g) ∈ r. When a bi-set (T, G) is not a
1-rectangle, we say that it contains 0 values.

Definition 3 (Formal concept). A bi-set (T, G) is a concept in r iff (T, G)
is a 1-rectangle and ∀T ′ ⊆ O\T, T ′ �= ∅, (T ∪ T ′, G) is not a 1-rectangle and
∀G′ ⊆ P\G, G′ �= ∅, (T, G ∪G′) is not a 1-rectangle. A concept (T, G) is thus a
maximal 1-rectangle. We denote the associated constraint as CConcept(T, G, r).

Thanks to the mathematical properties of formal concepts [11] (e.g., each
formal concept is built on closed sets for both dimensions), a first approach to
extract the complete collection of formal concepts consists in computing the
whole collection of closed itemsets and their associated objectsets. This can be

338 R.G. Pensa et al.

done by slightly modifying existing algorithms for extracting closed sets (see,
e.g., [24] for a survey). Indeed, in some applications, we can use frequent closed
set mining with a 0 frequency threshold. In our biological contexts, the number
of genes (items) is very large (up to thousands) and it is often impossible to
use these algorithms to perform this task. However, in many gene expression
data sets, the number of biological situations, i.e., of objects, is quite small. As
a result, a simple transposition of the matrix solves the problem [12,13]. When
the number of objects increases, this technique is however no more tractable.

To overcome this problem (i.e., working on boolean gene expression matrices
whose none of the two dimensions is small enough), we have been considering
the definition and the use of constraints which enable to reduce both the search
space and the solution space. It is indeed possible to consider formal concepts
whose one set component is large enough [25]. We have studied the possibility
to enforce constraints on both components.

Definition 4 (Constraints on formal concepts). Assume that (T, G) is a
formal concept in r.
Minimal size constraints:

(T, G) satisfies the constraint Ct(r, σ1, T) iff |T | ≥ σ1.
(T, G) satisfies the constraint Cg(r, σ2, G) iff |G| ≥ σ2.

Syntactical constraints:
(T, G) satisfies the constraint CInclusion(r, X, G) iff X ⊆ G.
(T, G) satisfies the constraint CInclusion(r, X, T) iff X ⊆ T .

Minimal area constraint:
(T, G) satisfies the constraint Carea(r, σ, (T, G)) iff |T | × |G| ≥ σ.

These constraints are quite obvious to interpret for end-users, here molecular
biologists. Properties of constraints have been studied extensively and mono-
tonicity properties can lead to major optimizations.

Definition 5 (Monotonic and anti-monotonic constraints). Let be a
partial order on a set S. A constraint C on S is said monotonic (resp. anti-
monotonic) w.r.t. iff ∀ s1, s2 ∈ S, if s1 s2 and C(s1) (resp. C(s2)) is
satisfied then C(s2) (resp. C(s1)) is also satisfied.

Let us now define our partial order on bi-sets.

Definition 6 (Partial order). The partial order on bi-sets is defined as
follows: (T1, G1) (T2, G2) iff T1 ⊆ T2 and G1 ⊆ G2.

Given this partial order, the constraints introduced in Definition 4 are mono-
tonic. We have proposed the D-Miner algorithm for computing every formal
concept which satisfies a given monotonic constraint [19]. It generates the for-
mal concept candidates w.r.t. the chosen partial order such that the defined
constraints can be pushed deeply into the extraction phase. More precisely, D-
Miner first computes a list H of 0-rectangles composed of an object and the
items which are not in relation with it. Then, it builds a tree whose root is the
bi-set (O,P). Each node (T, G) is recursively split using an element (a, b) of H ,

Contribution to Gene Expression Data Analysis 339

such that a ∩ T �= ∅ and b ∩G �= ∅, until H is empty: the left child is (T \ a, G)
whereas the right one is (T, G \ b). Another constraint denoted Cleft has to be
pushed to avoid the computation of sub-concepts such that each leaf of the tree
is finally a formal concept. Constraint Cleft is used to check that all the children
of (T \a, G) contain at least one item in b. To illustrate this process, we consider
in Fig 5 the extraction of formal concepts (T, G) from r2 (see Table 1) with an
area larger than 4, i.e., satisfying Carea(r2, 4, ((T, G)). Underlined bi-sets are the
leaves which do not satisfy either Cleft or Carea.

Table 1. Context r2 (left) and its corresponding H list

g1 g2 g3

t1 0 0 1

t2 1 0 1

t3 0 0 1

t4 1 0 1

(t1, g1g2)
(t2, g2)

(t3, g1g2)
(t4, g2)

(t1t2t3t4, g1g2g3)

(t1, g1g2)

(t2t3t4, g1g2g3)

(t2, g2)

(t3t4, g1g2g3)

(t3, g1g2)

(t4,g1g2g3)

Carea(4)

(t3t4, g3)

Cleft

(t2t3t4, g1g3)

(t3, g1g2)

(t2t4,g1g3) (t2t3t4, g3)

Cleft

(t1t2t3t4, g3)

(t2, g2)

(t1t2t3t4, g3)

(t3, g1g2)

(t1t2t3t4, g3)

(t4, g2)

(t1t2t3t4, g3)

Fig. 5. Formal concept computation on r2

In r2, we have only two formal concepts with an area greater or equal to 4:
({t2, t4}, {g1, g3)} and ({t1, t2, t3, t4}, {g3}).

It is quite useful to use these constraints in enriched contexts. For instance
we can search for potentially interesting bi-sets that involve a minimum number
of genes (more than γ) to ensure that the extracted formal concepts are not due
to noise. They must also be made of enough (say ≥ 3) biological situations from

340 R.G. Pensa et al.

D = {d1, .., d4} and few (say ≤ 1) biological situations of H = {h1, .., h4} or
vice versa. In other terms, the potentially interesting bi-sets (T, G) are formal
concepts that verify the following constraints as well:

(|TH | ≥ 3 ∧ |TD| ≤ 1 ∧ |G| ≥ γ) (4)
∨ (|TD| ≥ 3 ∧ |TH | ≤ 1 ∧ |G| ≥ γ) (5)

where TH and TD are the subsets of T that concern respectively the biological
situations from H (e.g., healthy individuals) and the ones from D (e.g., diabetic
patients). Notice that this constraint which is the disjunction of Equation 4 and
Equation 5 is a disjunction of a conjunction of monotonic and anti-monotonic
constraints on 2O and 2P . Using D-Miner, we push the monotonic ones, i.e.:

q1 : CConcept(T, G, r) ∧ Ct(r, 3, TH) ∧ Cg(r, γ, G).

q2 : CConcept(T, G, r) ∧ Ct(r, 3, TD) ∧ Cg(r, γ, G).

Applying the previously defined constraints to the data set in Fig. 4a (using
D-Miner, then post-processing the pattern collection to check non monotonic
ones), we get the two following formal concepts:

({h1, h2, h4, d3, tf2, tf3}, {g2, g4, g5, g7}) for q1 with γ = 1
({h4, d2, d3, d4, tf1, tf3}, {g1, g4, g5, g7}) for q2 with γ = 1

In this example, g1 and g2 are putative interesting genes, each of them char-
acterizes only one class of situations represented in the data set. Moreover, all
these genes are regulated by the same transcription factor tf3. This could mean
that they are involved in the same biological function of the cell.

Another way to proceed, is to consider the class properties cH and cD that we
added into the boolean context in Fig. 4b. We can easily perform an extraction
of formal concepts under the following constraints:

q3 : CConcept(T, G, r) ∧ CInclusion(r, cH , G) ∧ Cg(r, γ, G) ∧ Ct(r, γ′, TH).

With γ = 3 and γ′ = 3, two formal concepts satisfy such a constraint:

({h1, h2, h4, tf2, tf3}, {g2, g4, g5, g7, cH})
({h1, h2, h4, tf1, tf2, tf3}, {g4, g5, g7, cH})

Then, we can ask for a second collection with all the formal concepts (T, G) such
that the class attribute cD is included in G:

q4 : CConcept(T, G, r) ∧ CInclusion(r, cD, G) ∧ Cg(r, γ, G) ∧ Ct(r, γ′, TD).

The formal concepts resulting from the execution of the second query, with γ = 3
and γ′ = 3, are:

({d2, d3, d4, tf1, tf3}, {g1, g4, g5, g7, cD})
({d2, d3, d4, tf1, tf2, tf3}, {g4, g5, g7, cD})

Contribution to Gene Expression Data Analysis 341

Notice that gene g2 appears only in the first class of patterns, while g1 appears
only in the second class. In other words, using queries q3 and q4 we focus on the
same putative interesting genes (and the same situations) obtained with queries
q1 and q2. The difference is that we use here only monotonic constraints that
can be efficiently pushed by D-Miner.

Let us compare these results with a classical gene expression data analysis
approach. If we observe the dendrogram obtained by applying a hierarchical
clustering algorithm to the raw data set (see Fig. 2), we can notice that only
gene g4 and g7 are grouped together. Other genes belonging to the pattern
extracted before are relatively far (w.r.t. the height of the branches), from g4

and g7. It is interesting to notice that genes g2 and g5 are considered as not
belonging to the same cluster of g4 and g7, even for a relatively “high” cut.

3.3 Post-processing and Iteration

Formal concept extraction, even constraint-based mining, can produce large
numbers of patterns, especially in the first iteration of the KDD process, i.e.,
when very few information can be used to further constrain the bi-sets to be
delivered. Notice also that, from a practical perspective, not all the specified
constraints can be pushed into the mining algorithm: some of these constraints
have to be checked in a post-processing phase. For instance, we can exploit non
monotonic constraints defined in Equation 4 and Equation 5 (i.e., |TD| ≤ 1 and
|TH | ≤ 1) that can not be pushed within D-Miner.

KDD processes are clearly complex iterative processes for which obtained re-
sults can give rise to new ideas for more relevant constraint-based mining phases
(inductive queries) or data manipulations. When a collection of patterns has been
computed, it can be used for deriving new boolean properties. In particular, let
us assume that we got two sets of patterns that can characterize two classes of
genes and, dually, two classes of situations. Therefore, we can define two new
class properties related to genes and their dual class properties related to sit-
uations. The boolean context r′ can then be extended towards r′′ ⊂ O′′ × P ′′.
Considering our running example, we can associate a new property pH (resp. pD)
for the genes not belonging to the formal concepts which are returned by q4 (resp.
q3). It leads to the enriched boolean context given in Fig. 6. New constraints on
the classes can be used for the next mining phase. New set size constraints can
be defined as well. As a result, a new iteration will provide a new collection of
formal concepts which is more relevant according to the user current task. Each
time a collection of formal concepts is available, we can decide either to analyze
it by hand, e.g., studying each genes separately, or looking for new boolean data
enrichment and revisited constraints for the next iteration. Also, genes to which
we can associate new functions, are the best candidates to be chosen for iterating
the KDD process and take advantage of larger seed sets of genes.

In any cases, at the end of the process, we have a set of putative interesting
genes and a set of putative interesting situations. Iterations can be stopped when
we have a set of putative interesting genes that can be easily studied by hand. A
priori knowledge is very important at this point. In our running example, we did

342 R.G. Pensa et al.

Genes

Sit. g1 g2 g3 g4 g5 g6 g7 g8 cH cD

h1 0 1 0 1 1 0 1 0 1 0
h2 0 1 0 1 1 0 1 1 1 0
h3 0 0 1 0 0 1 1 0 1 0
h4 1 1 0 1 1 0 1 0 1 0
d1 0 1 0 1 0 1 0 1 0 1
d2 1 0 0 1 1 0 1 0 0 1
d3 1 1 0 1 1 0 1 0 0 1
d4 1 0 0 1 1 0 1 0 0 1

tf1 1 0 0 1 1 0 1 1 1 1
tf2 0 1 0 1 1 0 1 0 1 1
tf3 1 1 0 1 1 0 1 0 1 1

pH 0 1 1 0 0 1 0 1 1 1
pD 1 0 1 0 0 1 0 1 1 1

Fig. 6. A new enriched boolean context

not introduced any additional information about known genes, i.e., genes that
are already known as being directly involved in the analyzed problem. However,
studying interactions between genes whose functions are already identified, and
new putative interesting genes discovered by means of our methodology, can help
biologists to suggest putative functions for new genes.

An other important problem concerns the postprocessing of formal concept
collections. We need efficient techniques to support the subjective search for in-
teresting patterns. In [21], we introduced an “Eisen-like” visualization technique,
that enables to group similar formal concepts by means of a hierarchial cluster-
ing algorithm. We defined a distance between two formal concepts and then a
distance between two clusters of formal concepts. For the first step, we use the
symmetrical set difference Δ between two sets Si and Sj : SiΔSj = Si∪Sj\Si∩Sj .

Definition 7. (Distance between two formal concepts) Assume that ci =
(Ti, Gi) and cj = (Tj , Gj) are two formal concepts, the distance d between ci

and cj is defined as

d (ci, cj) =
1
2
|TiΔ Tj |
|Ti ∪ Tj |

+
1
2
|GiΔ Gj |
|Gi ∪Gj |

(6)

where |S| denotes the cardinality of S.

To compute the distance between two clusters of formal concepts, we associate
a pseudo-concept to each cluster. A pseudo-concept is a unique representation
for all the formal concepts within a cluster. It is composed of two fuzzy sets, one
set of genes and one set of biological situations: a degree of membership αi (a
real number between 0 and 1) is associated to each element ei of the referential
set (i.e., O or P). Value 0 (resp. value 1) denotes that the element does not
belong (resp. belongs) to the set.

Contribution to Gene Expression Data Analysis 343

Definition 8. (Pseudo-concept) A pseudo-concept is denoted by (T ′, G′, N) ⊆
O′ ×P ′ ×N with O′ = O× [0; 1] and P ′ = P × [0; 1]. The weight N denotes the
number of formal concepts represented by the pseudo-concept.

It is possible to generalize the distance d for measuring the similarity between
pseudo-concepts. The classical fuzzy set operators (indexed with f) are used:

S1 ∪f S2 = {(o, max{α1, α2}) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}
S1 ∩f S2 = {(o, min{α1, α2}) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}
S1 \f S2 = {(o, α1 − α2) | o ∈ O, (o, α1) ∈ S1 and (o, α2) ∈ S2}
|S1|f =

∑
o∈O

α, (o, α) ∈ S1

Thanks to this approach, we can reduce the impact of concept multiplication
in noisy boolean data and support the post-processing of tens of thousands of
formal concepts.

Example 1. In the boolean context from Fig. 1b, twelve formal concepts (with
at least one gene and one situation) can be extracted:

Concept1 : ({h1, h2, h3, h4, d2, d3, d4}, {g7})
Concept2 : ({h3, d1}, {g8})
Concept3 : ({h3}, {g3, g6, g}7)
Concept4 : ({h1, h2, h4, d1, d2, d3, d4}, {g4})
Concept5 : ({h1, h2, h4, d2, d3, d4}, {g4, g5, g7})
Concept6 : ({h1, h2, h4, d1, d3}, {g2, g4})
Concept7 : ({h1, h2, h4, d3}, {g2, g4, g5, g7})
Concept8 : ({h4, d2, d3, d4}, {g1, g4, g5, g7})
Concept9 : ({h2, d1}, {g2, g4, g8})
Concept10 : ({d1}, {g2, g4, g6, g8})
Concept11 : ({h2}, {g2, g4, g5, g7, g8})
Concept12 : ({h4, d3}, {g1, g2, g4, g5, g7})

By applying a hierarchical clustering associated to a simple visualization tech-
nique (using Treeview from [4]), we provide the pictures (rectangles) in Fig. 7.

a) b)

Fig. 7. Situation (a) and gene (b) rectangles resulting of a hierarchical clustering of
concepts

344 R.G. Pensa et al.

A dark-colored cell in the rectangle means that the related gene (or situation)
is present in the related formal concept. Notice that groups of similar formal
concepts can be identified by looking for relatively dense red zones either in the
situation rectangle or in the gene rectangle.

Thanks to this graphical approach and in contrast to the dendrograms ob-
tained with a simpler approach (see Fig. 2), we can notice a strong correlation
between genes involved in previously extracted patterns (g1,g2,g4,g5,g7), and a
disposition of situations which is more consistent w.r.t. their class values.

4 Biological Validations

The method and the techniques we have considered in the previous sections
have been applied with success to different real-life data sets and problems. In
some experiments, we have considered well-documented gene expression data sets
(i.e., containing accurate biological knowledge) to validate the methods by re-
discovery (see, e.g., [17,20]). We have also applied this approach to original gene
expression data sets from which new biological knowledge has been extracted.
For instance, in [9], the authors have used closed sets (and more precisely some
association rules derived from them) to derive biologically relevant knowledge
from human SAGE data [26]. The selection on the SAGE data concerns the
expression level of 822 genes measured in 74 biological situations (cancerous
and not cancerous tissues belonging to various human organs). After an over-
expression encoding by means of the “Max - X% Max” method (see Section 3.1),
homogeneous closed sets of genes have been studied in detail and, among others,
it enabled to suggest a putative function for an EST-encoded protein.

A successful application of constraint-based extraction of formal concepts (see
Section 3.2) to an original microarray data set has been described in [14]. Each
DNA microarray contains the RNA expression level of about 20 000 genes before
and after a perfusion of insulin in human skeletal muscle [27]. It is a nice example
of gene expression data enrichment: the considered context encodes information
about different gene properties that are biologically relevant (expression level
for healthy people and for diabetic patients, regulation by known transcription
factors). The set O of situations was thus partitioned into the set H, the set
D and a set of transcription factors F . After a typical data preprocessing (e.g.,
removing genes whose none of their transcription factors are known), the final
boolean context contained 104 objects (94 transcription factors and 10 biological
situations, 5 for healthy individuals and 5 for diabetic patients) and 304 genes.
Even though a formal concept discovery from such a boolean context has turned
out to be very hard, pushing monotonic constraints has enabled to get signifi-
cant results. Potentially interesting bi-sets (T, G) were considered as the formal
concepts satisfying the following constraints:

(|TH | ≥ 4 ∧ |TD| ≤ 2 ∧ |G| ≥ γ) (7)
∨ (|TD| ≥ 4 ∧ |TH | ≤ 2 ∧ |G| ≥ γ) (8)

Contribution to Gene Expression Data Analysis 345

The authors have considered in details one of the extracted formal concept
which is particularly interesting as it contains genes which are either up-regulated
or down-regulated after insulin stimulation, this being based on the homology
of their promotor DNA sequences (associated transcription factors) [14]. This is
indeed a kind of results we hardly get with classical approaches like [4].

5 Conclusion

We have considered data mining methods and tools which can support knowl-
edge discovery from gene expression data. A prototypical KDD scenario which
takes the most from recent progress in constraint-based set pattern mining has
been described. Importantly, some of our results on algorithms have been in-
deed motivated by the gene expression data mining task. For instance, it has
motivated the design of D-Miner because of the failure of available algorithms
for closed set mining on biological data sets of interest. Concrete instances of
this scenario have been considered in several real-life gene expression data anal-
ysis problems, including the whole human SAGE [13] data and the microrray
data described in [27]. We better understand the crucial issues of boolean gene
expression property encoding. Also, boolean gene expression data enrichment
appears to be a powerful technique for supporting the iterative search of rel-
evant patterns w.r.t. a given analysis task. The perspectives of this research
include the need for fault-tolerant formal concept mining, i.e., strong associa-
tions which might however accept some exceptions, but also the multiple uses
of the extracted patterns. For instance, local patterns like formal concepts could
be used in complementarity with (bi-)clustering techniques, typically to support
accurate (bi-)cluster characterization.

Acknowledgements. Most of the results reported in this paper have been
obtained during the cInQ IST-2000-26469 European project funded by the Eu-
ropean Union. Our research on methodological approaches to gene expression
data analysis is also partially funded by CNRS ACI MD46 Bingo. Finally, we
would like to thank our colleagues in molecular biology, Olivier Gandrillon and
Sophie Rome who have provided such nice challenges for data mining.

References

1. DeRisi, J., Iyer, V., Brown, P.: Exploring the metabolic and genetic control of gene
expression on a genomic scale. Science 278 (1997) 680–686

2. Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene ex-
pression. Science 270 (1995) 484–487

3. Niehrs, C., Pollet, N.: Synexpression groups in eukaryotes. Nature 402 (1999)
483–487

4. Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of
genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95 (1998) 14863–
14868

346 R.G. Pensa et al.

5. Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Pro-
ceedings DS’01. Number 2226 in LNCS, Springer-Verlag (2001) 323–335

6. Dhillon, I., Mallela, S., Modha, D.: Information-theoretic co-clustering. In: Pro-
ceedings ACM SIGKDD 2003, ACM (2003) 1–10

7. Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y., Barkai, N.: Revealing
modular organization in the yeast transcriptional network. Nature Genetics 31
(2002) 370–377

8. Bergmann, S., Ihmels, J., Barkai, N.: Iterative signature algorithm for the analysis
of large-scale gene expression data. Physical Review 67 (2003)

9. Becquet, C., Blachon, S., Jeudy, B., Boulicaut, J.F., Gandrillon, O.: Strong as-
sociation rule mining for large gene expression data analysis: a case study on hu-
man SAGE data. Genome Biology 12 (2002) See http://genomebiology.com/2002/
3/12/research/0067.

10. Creighton, C., Hanash, S.: Mining gene expression databases for association rules.
Bioinformatics 19 (2003) 79 – 86

11. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In Rival, I., ed.: Ordered sets. Reidel (1982) 445–470

12. Rioult, F., Boulicaut, J.F., Crémilleux, B., Besson, J.: Using transposition for
pattern discovery from microarray data. In: Proceedings ACM SIGMOD Workshop
DMKD’03, San Diego (USA) (2003) 73–79

13. Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut,
J.F.: Mining concepts from large SAGE gene expression matrices. In: Proceedings
KDID’03 co-located with ECML-PKDD 2003, Catvat-Dubrovnik (Croatia) (2003)
107–118

14. Besson, J., Robardet, C., Boulicaut, J.F., Rome, S.: Constraint-based concept
mining and its application to microarray data analysis. Intelligent Data Analysis
journal 9 (2005) 59–82

15. Boulicaut, J.F., Klemettinen, M., Mannila, H.: Modeling KDD processes within
the inductive database framework. In: Proceedings DaWaK’99. Volume 1676 of
LNCS., Florence, I, Springer-Verlag (1999) 293–302

16. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4
(2003) 69–77

17. Pensa, R., Leschi, C., Besson, J., Boulicaut, J.F.: Assessment of discretization tech-
niques for relevant pattern discovery from gene expression data. In: Proceedings
4th ACM SIGKDD Workshop BIOKDD’04, Seattle (USA), ACM (2004) 24–30

18. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal 7 (2003) 5–22

19. Besson, J., Robardet, C., Boulicaut, J.F.: Constraint-based mining of formal con-
cepts in transactional data. In: Proceedings PAKDD’04. Volume 3056 of LNAI.,
Sydney (Australia), Springer-Verlag (2004) 615–624

20. Pensa, R., Besson, J., Boulicaut, J.F.: A methodology for biologically relevant
pattern discovery from gene expression data. In: Proceedings DS’04. Volume 3245
of LNAI., Padova (Italy), Springer-Verlag (2004) 230–241

21. Robardet, C., Pensa, R., Besson, J., Boulicaut, J.F.: Using classification and visu-
alization on pattern databases for gene expression data analysis. In: Proceedings
PaRMa’04 co-located with EDBT 2004. Volume 96 of CEUR Workshop Proceed-
ings., Heraclion - Crete, Greece (2004)

22. Arbeitman, M., Furlong, E., Imam, F., Johnson, E., Null, B., Baker, B., Krasnow,
M., Scott, M., Davis, R., White, K.: Gene expression during the life cycle of
drosophila melanogaster. Science 297 (2002) 2270–2275

Contribution to Gene Expression Data Analysis 347

23. Ashburnerand, M., Ball, C., Blake, J., Botstein, D., et al.: Gene ontology: tool
for the unification of biology. the gene ontology consortium. Nature Genetics 25
(2000) 25–29

24. Goethals, B., Zaki, M.: Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations FIMI 2003, Melbourne, USA (2003)

25. Stumme, G., Taouil, R., Bastide, Y., Pasqier, N., Lakhal, L.: Computing iceberg
concept lattices with TITANIC. Data & Knowledge Engineering 42 (2002) 189–222

26. Lash, A., Tolstoshev, C., Wagner, L., Schuler, G., Strausberg, R., Riggins, G.,
Altschul, S.: SAGEmap: A public gene expression resource. Genome Research 10
(2000) 1051–1060

27. Rome, S., Clément, K., Rabasa-Lhoret, R., Loizon, E., Poitou, C., Barsh, G.S.,
Riou, J.P., Laville, M., Vidal, H.: Microarray profiling of human skeletal muscle
reveals that insulin regulates 800 genes during an hyperinsulinemic clamp. Journal
of Biological Chemistry (2003) 278(20):18063-8.

Boolean Formulas and Frequent Sets

Jouni K. Seppänen and Heikki Mannila

HIIT Basic Research Unit, Lab. Computer and Information Science,
FI-02015 Helsinki University of Technology, Finland

{Jouni.Seppanen, Heikki.Mannila}@hut.fi

Abstract. We consider the problem of how one can estimate the support
of Boolean queries given a collection of frequent itemsets. We describe an
algorithm that truncates the inclusion-exclusion sum to include only the
frequencies of known itemsets, give a bound for its performance on dis-
junctions of attributes that is smaller than the previously known bound,
and show that this bound is in fact achievable. We also show how to
generalize the algorithm to approximate arbitrary Boolean queries.

1 Introduction

Algorithms for mining frequent itemsets continue to be a subject of recent data
mining research [GZ03] long after the original publications [AIS93, AMS+96].
Less attention has been received by the question of how one can utilize the
frequent itemsets one has mined. The original motivation was provided by as-
sociation rules, but we claim that the collection of frequent itemsets is good for
much more than rule mining: they give us a picture of the joint distribution of
the data, and can therefore be used to approximately evaluate Boolean queries
over the original data.

The simple idea of approximating exponentially long inclusion-exclusion sums
using a small collection of frequent itemsets was considered in [MT96]. Thus the
frequent sets can be seen as a condensed representation of the data. In this
paper we give a more thorough presentation of the issues involved. We sharpen
Theorem 5 in [MT96], which shows that the approximation error for a disjunctive
query is bounded by 2b−2/b, where b is the size of the negative border. Here
we prove a bound of

(
b

�b/2�
)
/b, and give a family of examples for which this

bound is reached. Our main contribution is the generalization of the discussion
to arbitrary Boolean formulas.

Related work includes using maximum entropy to approximate the joint dis-
tribution [PMS00, PS01] and linear programming to find upper and lower bounds
for queries [BSH04]. These approaches share the problem that they require ex-
ponential space in the number of attributes involved. There has also been much
work on reducing the size of the itemset collection, such as free-sets [BBR00] and
non-derivable sets [CG02]. However, most such work concentrates on algorithms
for discovering itemsets, not on using the itemsets obtained to evaluate queries.

The rest of this paper is structured as follows. We start in Section 2 from the
almost trivial case of estimating conjunctive queries, introducing notation and

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 348–361, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Boolean Formulas and Frequent Sets 349

showing the general idea of the results that follow. In Section 3 we discuss the
much more interesting case of disjunctive queries, and in Section 4 we generalize
our results to arbitrary Boolean queries.

2 Conjunction of Attributes

The goal of this section is to introduce our notation and the basic task in a
simple setting. Throughout the paper, we will denote by U a set of attributes or
items, and by r a binary relation over U : that is, r is a multiset of tuples T ⊂ U .
Itemsets are arbitrary subsets of U , denoted by X or Y . We will denote by g(X)
the fraction of tuples in r that are equal to X , and call this quantity the exact
frequency of X . By contrast, the frequency f(X) is the fraction of tuples that
contain all attributes in X . Thus

f(X) =
∑

Y ⊃X

g(X).

An itemset is called frequent if its frequency is at least a predefined threshold σ.
The collection of σ-frequent itemsets is denoted Fσ. As is well known, this col-
lection is downward closed : given itemsets X ⊂ Y ∈ Fσ, we have X ∈ Fσ. We
will in general denote by F an arbitrary downward closed collection of itemsets.

The task that we are interested in is estimating the result of a Boolean query ϕ.
For now, we let ϕ be simply a conjunction of attributes: let C ⊂ U be any itemset,
and let

ϕ =
∧

C =
∧

A∈C

A.

We say that a tuple T ∈ r supports ϕ, denoted T |= ϕ, if T includes every
attribute in the query. The frequency of the query f(ϕ) is the fraction of tuples
in r that support ϕ. In the case of conjunctions, one sees immediately that a
tuple T supports ϕ if and only if C ⊂ T , and thus the frequency of the query ϕ
is equivalent to the frequency of the itemset C.

We can now present the task Approximate Query(Fσ, ϕ): given the col-
lection Fσ of frequent itemsets, and a Boolean query ϕ, find an estimate f̂(ϕ)
that should be close to f(ϕ). Any solution to this task will be evaluated on
its worst-case accuracy, i.e., how far from the actual frequency it can be. The
measure of accuracy that we will use is the maximum absolute value of the error
e(ϕ) = f(ϕ)− f̂(ϕ).

It is of course easy to come up with a simple and fairly accurate solution, which
we name Truncate Sum (for reasons that will become clear later): f̂(ϕ) = f(C)
if C ∈ Fσ, otherwise f̂(ϕ) = 0. Again, C is the set of attributes in the conjunc-
tion ϕ. If C ∈ Fσ, we have f̂(ϕ) = f(ϕ) and therefore e(ϕ) = 0. Otherwise, we
know that 0 ≤ f(C) < σ, which implies that |e(ϕ)| ≤ σ. Thus our bound for the
maximum absolute error is σ. We have shown the following result:

Proposition 1. For a conjunction of attributes ϕ, Truncate Sum yields re-
sults to Approximate Query that have maximal absolute error σ.

350 J.K. Seppänen and H. Mannila

3 Disjunction of Attributes

In this section we consider the case where ϕ is a disjunction of attributes. The
main results are that the worst-case error of Truncate Sum can be bounded
by an expression that depends exponentially on the size of the negative border
(which will be defined later), and that this worst-case bound cannot be decreased
at all: that is, there are collections of frequent sets where the bound holds with
equality.

We now investigate queries of the form

ϕ =
∨

D =
∨

A∈D

A.

A tuple T ∈ r supports the query if at least one of the attributes in D appears
in T : in logical notation, T |= ϕ if D ∩ T �= ∅. The frequency of ϕ is, again, the
fraction of tuples that support ϕ. A basic result in combinatorics is that this
frequency can be obtained by the inclusion-exclusion principle:

f(ϕ) =
∑

X⊂D

[X �= ∅] (−1)|X|+1f(X). (1)

Here, and in the sequel, we avoid long sum conditions in subscripts by using the
“Iverson notation”

[P] =

{
1, P is true,
0, P is false,

popularized by Knuth [Knu92].
The inclusion-exclusion principle is fine if we know the frequency of every

itemset X that is a subset of D. If we do not, our approach is to compute the
sum over all itemsets whose frequencies we do know:

f̂(ϕ) =
∑

X⊂D

[∅ �= X ∈ Fσ] (−1)|X|+1f(X). (2)

The exponentially long sum (1) is truncated to the terms (2) that we know; thus
the name Truncate Sum. The error made in the approximation is

e(ϕ) =
∑

X⊂D

[X ∈ G] (−1)|X|+1f(X),

where by G we denote the family of non-frequent sets, i.e., the complement of Fσ.
An intuition for this estimate is provided by the well-known Bonferroni in-

equalities, which state that if our collection Fσ happens to contain exactly the
itemsets of size at most k, then the error is bounded by the sum of frequencies of
itemsets of size k + 1. [GS96] The proof is simple, although not entirely trivial:
the error consists of exponentially many terms, which happen to mostly cancel
out. We would like to prove analogues of the Bonferroni inequalities for our more
general case.

We start from a simple upper bound that is not very interesting in itself but
will be used in the proof of Theorem 1. Recall that G is the complement of Fσ.

Boolean Formulas and Frequent Sets 351

Lemma 1. For a disjunction of attributes ϕ =
∨

D,

|e(ϕ)| ≤
∑
X∈G

(
|X |⌈
|X |/2

⌉)g(X).

Proof. We write the frequency as a sum over tuples: f(X) = |r|−1
∑

T∈r[T ⊃ X],
and therefore

e(ϕ) = |r|−1
∑
T∈r

∑
X⊂T

[X ∈ G] (−1)|X|+1.

One way of proving the Bonferroni inequalities is based on pairing up most of
the tuples in G; we proceed similarly.

We first introduce some notation: t = |T |, and t′ = 3t/24. It is well known that
the power set P(T) can be written as a union of

(
t
t′
)

disjoint chains, where a chain
means a collection C of sets where given any two sets X, Y ∈ C, either X ⊂
Y or Y ⊂ X . [Bol88, Theorem 1 of Section 4] The construction of Bollobás
yields chains that are symmetric and consist of consecutive sets: if we write C =
{X1, X2, . . . , Xk } with X1 ⊂ X2 ⊂ . . . Xk, then |X1| + |Xk| = d and |Xj+1| =
|Xj |+ 1 for all 1 ≤ j < k. Thus, if d is odd, each chain C is of even length, and
the alternating sum

∑
X∈C(−1)|X|+1 is zero. If d is even, the chains from the

construction are of odd length. However, we can remove one attribute A from T ,
perform the construction on T \ {A } to obtain a collection of

(
d−1
d′−1

)
chains, and

then add to the collection a duplicate of each chain with A added to every set:
the result is a partition of P(T) into 2

(
t−1
t′−1

)
=
(

t
t′
)

chains, each of which consists
of an even number of consecutive sets.

We can thus assume that there is a partition T = C1 ∪ C2 ∪ · · · ∪ Cm of T
into m =

(
t
t′
)

disjoint chains, such that
∑

X∈Cj
(−1)|X|+1 = 0 for each chain Cj .

Now ∑
X⊂T

[X ∈ G] (−1)|X|+1 =
m∑

j=1

∑
X∈Cj

[X ∈ G] (−1)|X|+1.

Every chain Cj that is wholly contained in either Fσ or G contributes 0 to this
sum. Every other chain contributes either 0 or ±1. Therefore,

∣∣∣∑
X⊂T

[X ∈ G] (−1)|X|+1
∣∣∣ ≤ m =

(
t

t′

)
.

The claim follows by observing that g(X) = |r|−1
∑

T∈r[T = X]. �

Recall that the Bonferroni inequalities, which apply to the case where Fσ

consists of all itemsets of size at most k, give an error bound related to the
itemsets of size k+1. An analogue of the size k+1 itemsets that is both intuitively
appealing and practically useful is the negative border Bd− [MT96], defined as
the family of minimal non-frequent sets:

Bd− = {X ∈ G | Y ∈ Fσ ∀Y � X }.

352 J.K. Seppänen and H. Mannila

Note that if Fσ consists of sets of size at most k, then Bd− is exactly the family
of sets of size k + 1. The practical usefulness stems from the famous Apriori
algorithm, which computes the family Fσ and finds Bd− as a byproduct of its
stopping condition [AMS+96].

We will prove a lemma connecting the negative border to the error e(ϕ). First,
we need to define some more notation: GD is the set of non-frequent subsets of D,

GD = {X | X ∈ G, X ⊂ D },

and the negative border relative to D, denoted Bd−
D, consists of the minimal sets

in GD. Note that Bd−
D ⊂ Bd−, since if X is minimal in GD, all subsets of X are

in Fσ, and therefore X is minimal also in G. We will also need the concept of
exact frequency of X relative to D, defined for X ⊂ D as the fraction of tuples
whose intersection with D is X , which we can write as

gD(X) = f
(∧

A∈X

A ∧
∧

A∈D\X

¬A
)
.

Lemma 2. Consider the query ϕ =
∨

D. If Bd−
D �= { ∅ }, the algorithm Trun-

cate Sum has an error of

e(ϕ) =
∑

∅�=E⊂Bd−
D

(−1)|E|+| E|gD

(⋃
E
)
. (3)

To illustrate the lemma, consider some simple examples. If Bd−
D consists of a

single set B �= ∅, the error is an inclusion-exclusion sum

e(ϕ) =
∑
X

[B ⊂ X ⊂ D] (−1)|X|+1f(X),

which is of course exactly the expression for (−1)|B|+1gD(B).
Likewise, if Bd− is the two-set family {B1, B2 } with Bj ∩D �= ∅ for j = 1, 2,

we obtain

e(ϕ) =
∑
X

[B1 ⊂ X ⊂ D or B2 ⊂ X ⊂ D] (−1)|X|+1f(X).

We can use inclusion-exclusion to decompose the condition on X :

[B1 ⊂ X ⊂ D or B2 ⊂ X ⊂ D]
= [B1 ⊂ X ⊂ D] + [B2 ⊂ X ⊂ D]− [B1 ∪B2 ⊂ X ⊂ D]

Thus we can break the formula for e(ϕ) into three components, which sum up
to gD(B1), gD(B2) and −gD(B1 ∪B2). The proof of the lemma is a straightfor-
ward extension of this idea.

Boolean Formulas and Frequent Sets 353

Proof of Lemma 2. The error is given by

e(ϕ) =
∑
X

[X ∈ GD] (−1)|X|+1f(X). (4)

We can rewrite the condition X ∈ GD in terms of the minimal sets in GD as
follows: We have X ∈ GD if and only if X ⊃ B for some B ∈ Bd−

D. We apply
inclusion-exclusion on the Iverson function:

[X ∈ GD] =
∑

B∈Bd−
D

[B ⊂ X ⊂ D]−
∑

B1,B2∈Bd−
D

[B1 ∪B2 ⊂ X ⊂ D] + · · ·

=
∑

∅�=E⊂Bd−
D

(−1)|E|+1
[⋃

E ⊂ X ⊂ D
]
.

Plugging this in the error sum (4) and changing the order of summation, we
obtain

e(ϕ) =
∑

∅�=E⊂Bd−
D

(−1)|E|+1
∑
X

[⋃
E ⊂ X ⊂ D

]
(−1)|X|+1f(X).

It now suffices to show that for Y ⊂ D,

(−1)|Y |gD(Y) =
∑
X

[Y ⊂ X ⊂ D] (−1)|X|f(X),

for then letting Y =
⋃
E yields (3). This is an easy exercise in inclusion-exclusion:

given a tuple T ∈ r, write T = R ∪ S with R ⊂ D, S ⊂ U \D. The tuple will
contribute (−1)|R| to all terms corresponding to X ⊂ R∪S. In the case R = Y ,
the contribution is exactly (−1)|Y |; otherwise, the contributions cancel out. �

Based on the lemma, we can prove an analogue to the Bonferroni inequalities
that gives, however, rather larger bounds than the Bonferroni case.

Theorem 1. For a disjunction of attributes ϕ =
∨

D, the absolute error |e(ϕ)|
of Truncate Sum is bounded by(|Bd−

D|⌈
|Bd−

D|/2
⌉)|Bd−

D|−1
∑

X∈Bd−
D

f(X).

Proof. Arrange the sum (3) in the form

e(ϕ) =
∑

X∈GD

ν(X)gD(X).

For the coefficients ν(X) we have

ν(X) = (−1)|X|
∑

E⊂Bd−
X

[⋃
E = X

]
(−1)|E|.

354 J.K. Seppänen and H. Mannila

In this sum, the condition
[⋃
E = X

]
defines an upwards-closed subfamily of

the powerset of Bd−
X . We know from Lemma 1 that the absolute value of this

alternating sum is bounded by
(

m
m′
)

with m = |Bd−
X | and m′ = 3m/24.

Arrange also the sum
∑

X∈Bd−
D

f(X) in the form

∑
X∈GD

μ(X)gD(X).

We have for the coefficients μ(X)

μ(X) =
∑

Y ∈Bd−
D

[Y ⊂ X] = |Bd−
X | > 0

for all X ∈ GD. The ratio |ν(X)|/μ(X) is bounded by
(

m
m′
)
/m, and this bound

is largest for X = D. Thus

|e(ϕ)| ≤
∑

X∈GD

|ν(X)|gD(X) ≤
∑

X∈GD

(
max

|ν(X)|
μ(X)

)
μ(X)gD(X)

≤
(|Bd−

D|⌈
|Bd−

D|/2
⌉)|Bd−

D|−1
∑

X∈Bd−
D

f(X).
(5)

�
Using the inequality f(X) < σ for X ∈ Bd−, we can obtain a form of the

bound that is independent of the actual frequencies of sets in the border.

Corollary 1. For a disjunction of attributes ϕ =
∨

D,

e(ϕ) ≤
(|Bd−|⌈
|Bd−|/2

⌉)σ.

Thus, the bound depends superpolynomially on the size of the border. A
natural question is whether the bound can be decreased. We will next show
that the answer is negative: the bound is in the worst case tight. The example
will have a small negative border. The key part in the proof is constructing the
family Fσ so that when Lemma 1 is used in the proof of Theorem 1, equality
holds. This is the case when the minimal families E ⊂ Bd−

X that satisfy the
condition

⋃
E = X are exactly of size

⌈
|Bd−

X |/2
⌉
.

Theorem 2. There exists a set U , a relation r over U , and a downward-closed
collection of itemsets F such that for the disjunctive query ϕ =

∨
U the absolute

error of Truncate Sum is

|e(ϕ)| =
(|Bd−|⌈
|Bd−|/2

⌉)|Bd−|−1
∑

X∈Bd−
f(X).

Boolean Formulas and Frequent Sets 355

Proof. Choose integer parameters p > k > 1; p will be the number of sets in
the negative border, and we will see later that choosing p = 2k + 1 suits our
purposes well. We will need n =

(
p
k

)
attributes: let U = [n] = { 1, . . . , n }.

We will set up Bd− so that for all families E ⊂ Bd−, |E| ≤ k implies
⋃
E �= U ,

and |E| > k implies
⋃
E = U . To achieve this, we first enumerate all the k-element

subsets of [p]; there are n of them, and we will name them K1, K2, . . . , Kn in
any arbitrary order. Then for all q ∈ [p], we define Wq as the set of those i
such that q /∈ Ki. Let Bd− = {Wq | q ∈ [p] }. Note that Bd− is an antichain,
since all sets Wq have the same number of elements; thus we can define F as
the downward-closed collection of sets that are not supersets of any sets in Bd−,
and Bd− will automatically be the negative border corresponding to F .

We must now prove the assertion that for E ⊂ Bd−,
⋃
E = U if and only

if |E| > k. Given any collection E of border sets, we can write E = {Wq | q ∈ Q }
for some index set Q ⊂ [p]. If |E| = |Q| ≤ k, some set Ki must be a superset of
the index set Q, since we have enumerated all k-element subsets of [p]. But then
we have that i /∈

⋃
E , and thus

⋃
E �= U . Conversely, if

⋃
E �= U , there must be

some i /∈
⋃
E , and therefore for all q ∈ Q we must have q ∈ Ki, because i /∈ Wq.

But this means that Q ⊂ Ki, and therefore |E| = |Q| ≤ |Ki| = k. We have thus
shown that

⋃
E = U if and only if |E| > k.

We will let ϕ =
∨

U over all the attributes. Thus, the terms gD(X) will be
the usual exact frequencies g(X) and the family Bd−

D will be the usual negative
border Bd−. We will also let g(U) = 1 and g(X) = 0 for all X /∈ F , X �= U . We
can let g(X) be some sufficiently high number for all X ∈ F so that F = Fσ for
some σ.

Now we are in a position to apply Lemma 2. The sum over E ⊂ Bd− becomes
a sum over those E for which

⋃
E = U , since g(

⋃
E) = 0 otherwise. By the

construction, these are exactly those E such that |E| > k. Thus

e(ϕ) =
∑

E⊂Bd−
(−1)|E|+|r| [|E| > k] = (−1)|r|

n∑
j=k+1

(−1)j

(
p

j

)
.

It is an easy proof by induction that

n∑
j=k+1

(−1)j

(
p

j

)
= (−1)k+1

(
p− 1

k

)
.

If we now let p = 2k + 1, we have

|e(ϕ)| =
(

2k

k

)
=
(|Bd−|
|Bd−|/2

)
.

Since we have f(X) = 1 for all X ∈ Bd−, the frequency sum of sets in the border
is
∑

X [X ∈ Bd−] f(X) = |Bd−| = |Bd−
D|. This completes the proof. �

356 J.K. Seppänen and H. Mannila

While the construction creates a small number of sets in the border, there
are of course many sets that are “almost” in the border, which is not true in
the usual Bonferroni situation. The following theorem is another analogue of the
Bonferroni inequalities.

Theorem 3. Define the thick negative border Bd−
∗ as the family of itemsets

that are not frequent but that have at least one frequent subset. Then

e(ϕ) ≤
∑

X∈Bd−
∗

f(X).

Proof. Again, we will write e(ϕ) as a sum over all tuples T ∈ r. We will show
that the contribution made by T toward e(ϕ) is bounded by the number of sets
in Bd−

∗ that include T , which implies the claimed upper bound.
First of all, if T ∈ Fσ, the contribution is zero. Otherwise, the contribution is

∑
X⊂T

[X /∈ Fσ] (−1)|X|+1. (6)

Select any attribute A ∈ T , and delete from the sum (6) all pairs X, Y /∈ Fσ

such that Y = X ∪ {A }. What we have left is

∑
X⊂T

[X /∈ Fσ] [X \ {A } ∈ Fσ] (−1)|X|+1.

All sets fulfilling both conditions of the sum are in Bd−
∗ ∩ P(T), and thus the

absolute value of the contribution is bounded by |Bd−
∗ ∩ P(T)|. Summing these

inequalities for all contributions yields

|e(ϕ)| ≤
∑
T∈R

|Bd−
∗ ∩ P(T)| ≤

∑
T∈R

|Bd−
∗ | =

∑
X∈Bd−

∗

f(X). �

We have proved two theorems for upper-bounding the absolute error: Theo-
rems 1 and 3. Both theorems are problematic in practice: the bound of Theo-
rem 1 grows exponentially, and the thick border of Theorem 3 can be very large.
It would be useful to find a bound for Truncate Sum in-between these two
theorems. Note that the construction of Theorem 2 creates a large number of
maximal frequent sets. By analogy with the negative border, one can define the
positive border Bd+ as the collection of these sets. For the construction, Bd+ is
large and Bd− is small; in many practical cases, Bd+ is smaller and Bd− larger.
The set Bd+ ∪ Bd− is worth investigating, and we conjecture (again [Man02])
that

e(ϕ) ≤
∑
X

[X ∈ Bd− ∪ Bd+] f(X).

Boolean Formulas and Frequent Sets 357

4 General Queries

In this section we will generalize the preceding discussion: we will define Trun-
cate Sum for arbitrary Boolean formulas ϕ, and prove counterparts of Lemma 2
and Theorem 1. The bounds provided by these results can be even larger than
the disjunction-specific bounds of the previous section.

Let now ϕ be an arbitrary Boolean formula, i.e., an expression consisting
of negation ¬, conjunction ∧, disjunction ∨ and attributes A ∈ U . We define
the semantics of such formulas in the usual way: T |= ϕ if ϕ is true when the
attributes are substituted by their values in T . The goal remains the same: to
approximate f(ϕ), the fraction of tuples supporting ϕ, given the collection Fσ

of σ-frequent itemsets.
The support of the query formula can obviously be written as

f(ϕ) =
∑
X

[X |= ϕ] g(X).

We denote the coefficients ζ(X) = [X |= ϕ]. What we want to do is write

f(ϕ) =
∑
X

ξ(X)f(X)

with suitable new coefficients ξ(X), and then truncate the sum, obtaining

f̂(ϕ) =
∑
X

[X ∈ Fσ] ξ(X)f(X).

To compute the new coefficients, we can use inclusion-exclusion: since

g(X) =
∑
Y

[Y ⊃ X] (−1)|Y \X|f(Y),

we have

f(ϕ) =
∑
X

ζ(X)g(X) =
∑
X

∑
Y

ζ(X) [Y ⊃ X] (−1)|Y \X|f(Y)

=
∑
Y

f(Y)
∑
X

ζ(X) [Y ⊃ X] (−1)|Y \X|.

The required coefficients are thus given by

ξ(Y) =
∑
X

[X ⊂ Y] (−1)|Y \X|ζ(X).

Next we prove a generalization of Lemma 2.

Lemma 3. When ϕ is an arbitrary Boolean formula with exact-frequency coef-
ficients ζ(X) = [X |= ϕ] and the border Bd− does not contain the empty set,

e(ϕ) =
∑
X

ν(X)g(X),

358 J.K. Seppänen and H. Mannila

where

ν(X) = (−1)|X|
∑

∅�=E⊂Bd−
X

(−1)|E|+1
∑
Y

[
X \
⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y).

Proof. The error is

e(ϕ) =
∑
X

[X ∈ G] ξ(X)f(X)

=
∑
X,Y

[X ∈ G] f(X) [Y ⊂ X] (−1)|X\Y |ζ(Y).

Again we apply inclusion-exclusion on the condition X ∈ G:

[X ∈ G] =
∑

∅�=E⊂Bd−
(−1)|E|+1

[
X ⊃

⋃
E
]
,

obtaining

e(ϕ) =
∑

∅�=E⊂Bd−
(−1)|E|+1

∑
X,Y

[
X ⊃

⋃
E
]
f(X) [Y ⊂ X] (−1)|X\Y |ζ(Y)

=
∑

∅�=E⊂Bd−
(−1)|E|+1

∑
Y

(−1)|Y |ζ(Y)
∑
X

[
X ⊃

⋃
E ∪ Y

]
(−1)|X|f(X)

=
∑

∅�=E⊂Bd−
(−1)|E|+1

∑
Y

(−1)|Y |+| E∪Y |ζ(Y)g
(⋃

E ∪ Y
)
.

Regrouping the terms yields

e(ϕ) =
∑
X

g(X)(−1)|X|
∑

∅�=E⊂Bd−
X

(−1)|E|+1
∑
Y

[
X \
⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y),

which is the claim. �

To see that this generalizes Lemma 2, let ϕ =
∨

D. Then ζ(X) = [X∩D �= ∅].
Consider the sum over Y :∑

Y

[
X \
⋃
E ⊂ Y ⊂ X

]
(−1)|Y |[Y ∩D �= ∅]. (7)

We may assume that
⋃
E ⊂ X , since the outer sum is taken over E ⊂ Bd−

X .
Furthermore, if

⋃
E contains any attribute A that is not in D, we can pair up

terms corresponding to Y 5 A and Y \ {A }, and thus show that the sum (7)
is 0. On the other hand, if X contains any attributes that are in D but not
in
⋃
E , the Iverson function [Y ∩D �= ∅] is always 1, and since

⋃
E �= ∅, and the

sum (7) is seen to compute the difference in number of even and odd subsets
of
⋃
E , which is of course 0.

Boolean Formulas and Frequent Sets 359

Assume now that X =
⋃
E ∪ Z with

⋃
E ⊂ D and Z ∩D = ∅. We thus have

for Z ⊂ Y ⊂ X that [Y ∩D �= ∅] = [Y �= Z], and the sum (7) becomes−(−1)|Z| =
(−1)|X\ E|+1 = (−1)|X|+| E|+1, since

⋃
E ⊂ X .

We have shown for all X that∑
∅�=E⊂Bd−

X

(−1)|E|+1
∑
Y

[
X \
⋃
E ⊂ Y ⊂ X

]
(−1)|Y |ζ(Y)

=
∑

∅�=E⊂Bd−
X

[⋃
E ⊂ D

] [
(X \

⋃
E) ∩D = ∅

]
(−1)|E|+| E|.

The result of Lemma 2 follows by noting that for X ⊂ D

gD(X) =
∑
Y

[Y ∩D = ∅] g(X ∪ Y)

and rearranging terms.
The coefficients ν(X) used in the statement of the lemma have already played

a role in proving Theorem 1: the key part was showing that |ν(X)| ≤ 2|Bd−
X | for

disjunctions ϕ. A natural question then is, how large can |ν(X)| be for general
queries? To answer this question, we rearrange the sum as

ν(X) = (−1)|X|
∑
Y

[Y ⊂ X] (−1)|Y |ζ(Y)
∑

∅�=E⊂Bd−
X

(−1)|E|+1
[
X \
⋃
E ⊂ Y

]
. (8)

Denote by S the innermost sum. We can rewrite it in the form

S =
∑

∅�=E⊂Bd−
X

[
X \ Y ⊂

⋃
E
]
(−1)|E|+1,

which is seen to be an inclusion-exclusion sum over the upwards-closed subfamily{
E ⊂ Bd−

X

∣∣∣ ⋃ E ⊃ X \ Y
}

(9)

of the powerset of Bd−
X . Applying Lemma 1 to this sum, we have for |S| an upper

bound of
(

p
�p/2�
)
, where p = |Bd−

X |. Combining this with the fact that ζ(Y) is
always 0 or 1, we obtain

|ν(X)| ≤ 2|X|−1

(|Bd−
X |

3|Bd−
X |/24

)
.

We thus have the following analogue of Theorem 1.

Theorem 4. For an arbitrary query ϕ, the absolute error |e(ϕ)| of Truncate
Sum is bounded by

2|U|−1

(|Bd−|
3|Bd−|/24

)
|Bd−|−1

∑
X∈Bd−

f(X).

360 J.K. Seppänen and H. Mannila

The bound in the general case is even larger than the one in the disjunction
case. How close to the bound can we come? Consider the sum (8). The form
of the alternating sum over Y suggests that a parity-like function would be a
difficult case: if ζ(Y) = 1 if and only if |Y | is even, the sum becomes

ν(X) = (−1)|X|
∑

Y ⊂X

[
|Y | even

]
S,

where S is the inclusion-exclusion sum mentioned in the proof of Theorem 4.
The bound for |S| used Lemma 1, where it is easy to see that equality holds if
the upwards-closed family (9) consists of those sets E ⊂ Bd−

X that have |E| =⌈
|Bd−

X |/2
⌉
. But for Y = ∅ exactly this is achieved by the construction in the

proof of Theorem 2. For larger sets Y ⊂ X , S is smaller; however, this suffices
to show that if the statement of Theorem 4 is to be strengthened, one cannot
simply decrease the general bound for |S|, but more careful analysis of the double
sum (8) is required.

5 Conclusion and Future Work

We have described the Approximate Query problem and analyzed the Trun-
cate Sum algorithm, expanding upon the foundations in [MT96]. The results
are disappointing in a sense: for the simple-looking query class of disjunctions
of attributes, the behavior is not even polynomial in the size of the border.
However, this is a worst-case situation that may not be very realistic in practi-
cal, sparse datasets. In the proof of Theorem 1, the key inequality (5) is based
upon bounding the ratio |ν(X)|/μ(X). However, the ratio is multiplied by the
quantity gD(X), the exact frequency of X when the data is projected to the at-
tributes in D, and in sparse data it is reasonable that this quantity should vanish
for most large itemsets X . This observation suggests a modified algorithm: when
mining the frequent itemsets, remove from the data those tuples where the ratio
would be large, and store them separately; if the data is sparse, there should not
be too many of these tuples. Queries can be computed exactly for the difficult,
dense tuples, and approximated for the easy part of the data condensed into the
frequent itemset representation.

More generally, assume that there is space for storing some extra information
along with the frequent itemsets. The question then is, what is a good class of
information to store in order to approximate a wide variety of queries?

Another avenue for future research is to use the information inherent in fre-
quent itemsets in some way other than truncating the inclusion-exclusion sum.
In the Bonferroni case, Linial and Nisan have shown that if the frequencies are
known for sets X with |X | ≥ Ω(

√
|D|), there are good approximations to f(

∨
D)

using multipliers other than ±1, and if the frequencies are known only for sets X
with |X | ≤ O(

√
|D|), no approximation can be very good [LN90]. It would be

interesting to extend this approach to the general case of frequent itemsets that
do not form such a level family, and to queries more general than disjunctions.

Boolean Formulas and Frequent Sets 361

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association
rules between sets of items in large databases. In SIGMOD ’93, pages
207–216, 1993.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivo-
nen, and A. Inkeri Verkamo. Fast discovery of association rules. In Us-
ama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ra-
masamy Uthurusamy, editors, Advances in Knowledge Discovery and Data
Mining, chapter 12, pages 307–328. AAAI Press, 1996.

[BBR00] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Ap-
proximation of frequency queries by means of free-sets. In PKDD ’00,
volume 1910 of LNCS, pages 75–85. Springer, 2000.

[Bol88] Béla Bollobás. Combinatorics: set systems, hypergraphs, families of vectors
and combinatorial probability. U Cambridge, 1988.

[BSH04] Artur Bykowski, Jouni K. Seppänen, and Jaakko Hollmén. Model-
independent bounding of the supports of Boolean formulae in binary data.
In Rosa Meo, Pier Luca Lanzi, and Mika Klemettinen, editors, Database
Support for Data Mining Applications: Discovering Knowledge with Induc-
tive Queries, volume 2682 of LNAI, pages 234–249. Springer, 2004.

[CG02] Toon Calders and Bart Goethals. Mining all non-derivable frequent item-
sets. In PKDD ’02, volume 2431 of LNAI, pages 74–85. Springer, 2002.

[GS96] Janos Galambos and Italo Simonelli. Bonferroni-type Inequalities with
Applications. Probability and its Applications. Springer, 1996.

[GZ03] Bart Goethals and Mohammed J. Zaki, editors. Proceedings of the Work-
shop on Frequent Itemset Mining Implementations (FIMI–03), volume 90
of CEUR-WS, Melbourne, Florida, 2003. http://CEUR-WS.org/Vol-90/.

[Knu92] Donald E. Knuth. Two notes on notation. Am. Math. Monthly, 99(5):403–
422, 1992.

[LN90] Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Com-
binatorica, 10(4):349–365, 1990.

[Man02] Heikki Mannila. Local and global methods in data mining: Basic tech-
niques and open problems. In P. Widmayer, F. Triguero, R. Morales,
M. Hennessy, S. Eidenbenz, and R. Conejo, editors, Automata, Languages
and Programming, volume 2380 of LNCS, pages 57–68. Springer, 2002.

[MT96] Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and
condensed representations. In KDD ’96, pages 189–194, Portland, Oregon,
August 1996. AAAI Press.

[PMS00] Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Probabilistic models
for query approximation with large sparse binary datasets. In UAI, 2000.

[PS01] Dmitry Pavlov and Padhraic Smyth. Probabilistic query models for trans-
action data. In KDD ’01, 2001.

Generic Pattern Mining Via Data Mining

Template Library�

Mohammed J. Zaki, Nilanjana De, Feng Gao, Paolo Palmerini��,
Nagender Parimi, Jeevan Pathuri, Benjarath Phoophakdee, and Joe Urban

Computer Science Department, Rensselaer Polytechnic Institute, Troy NY 12180

Abstract. Frequent Pattern Mining (FPM) is a very powerful paradigm
for mining informative and useful patterns in massive, complex datasets.
In this paper we propose the Data Mining Template Library, a collec-
tion of generic containers and algorithms for data mining, as well as
persistency and database management classes. DMTL provides a sys-
tematic solution to a whole class of common FPM tasks like itemset, se-
quence, tree and graph mining. DMTL is extensible, scalable, and high-
performance for rapid response on massive datasets. A detailed set of
experiments show that DMTL is competitive with special purpose al-
gorithms designed for a particular pattern type, especially as database
sizes increase.

1 Introduction

Frequent Pattern Mining (FPM) is a very powerful paradigm which encompasses
an entire class of data mining tasks, namely those dealing with extracting infor-
mative and useful patterns in massive datasets representing complex interactions
between diverse entities from a variety of sources. These interactions may also
span multiple-scales, as well as spatial and temporal dimensions. FPM is ideally
suited for categorical datasets, which include text/hypertext data (e.g., news ar-
ticles, web pages), semistructured and XML data, event or log data (e.g., network
logs, web logs), biological sequences (e.g. DNA/RNA, proteins), transactional
datasets, and so on. FPM techniques are able to extract patterns embedded in
different subspaces within very high dimensional, massive datasets. FPM is very
well suited to selecting or constructing good features in complex data and also
for building global classification models of the datasets [26].

The specific tasks encompassed by FPM include the mining of increasingly
complex and informative patterns, in complex structured and unstructured rela-
tional datasets, such as: Itemsets or co-occurrences [1] (transactional, unordered
data), Sequences [2,24] (temporal or positional data, as in text mining, bioin-
formatics), Tree patterns [25,3] (XML/semistructured data), and Graph pat-

� This work was supported by NSF Grant EIA-0103708 under the KD-D program,
NSF CAREER Award IIS-0092978, and DOE Early Career PI Award DE-FG02-
02ER25538.

�� The work was done while Paolo was at RPI.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 362–379, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generic Pattern Mining Via Data Mining Template Library 363

terns [10,13,21,22] (complex relational data, bioinformatics). Figure 1 shows ex-
amples of these different types of patterns; in a generic sense a pattern denotes
links/relationships between several objects of interest. The objects are denoted
as nodes, and the links as edges. Patterns can have multiple labels, denoting
various attributes, on both the nodes and edges.

The current practice in frequent pattern mining basically falls into the para-
digm of incremental algorithm improvement and solutions to very specific prob-
lems. While there exist tools like MLC++ [12], which provides a collection of
algorithms for classification, and Weka [20], which is a general purpose Java li-
brary of different data mining algorithms including itemset mining, these systems
do not have an unifying theme or framework, there is little database support,
and scalability to massive datasets is questionable. Moreover, these tools are not
designed for handling complex pattern types like trees and graphs.

Our work seeks to address all of the above limitations. In this paper we
describe Data Mining Template Library (DMTL), a generic collection of al-
gorithms and persistent data structures, which follows a generic programming
paradigm [4]. DMTL provides a systematic solution for the whole class of pattern
mining tasks in massive, relational datasets. The main contributions of DMTL
are as follows:

– The design and implementation of generic data structures and algorithms to
handle various pattern types like itemsets, sequences, trees and graphs.

– Design and implementation of generic data mining algorithms for FPM, such
as depth-first and breadth-first search.

– Persistent data structures for supporting efficient pattern frequency compu-
tations using a tightly coupled database (DBMS) approach.

– Native support for both a vertical and horizontal database formats for highly
efficient mining.

– DMTL’s support for pre-processing steps like data mapping and discretiza-
tion of continuous attributes and creation of taxonomies. etc.

One of the main attractions of a generic paradigm is that the generic algo-
rithms for mining are guaranteed to work for any pattern type. Each pattern
has a list of properties it satisfies, and the generic algorithm can utilize these
properties to speed up the mining. We conduct a detailed set of experiments
to show the scalability and efficiency of DMTL for different pattern types like
itemsets, sequences, trees and graphs. Our results indicate that DMTL is com-
petitive with the special purpose algorithms designed for a particular pattern
type, especially with increasing database sizes.

1.1 Related Work

Previous research in integrating mining and databases has mainly looked at
SQL support. DMQL [8] is a mining query language to support common mining
tasks. MSQL [9] is an extension of SQL to generate and selectively retrieve sets
of rules from a large database. The MINE RULE SQL operator [15] and Query

364 M.J. Zaki et al.

flocks [18] extend the semantics of association rules, allowing more generalized
queries to be performed. A comprehensive study of several architectural alter-
natives for database and mining integration were studied in [16]. This body of
work is complementary to ours, since these SQL operators can be used as a front
end to DMTL. Also, DMTL is optimized for the class of frequent patterns.

There has been limited work in integrating other mining tasks with databases.
A middleware for classification was proposed in [5]; it decomposes and schedules
classification primitives over a back-end SQL database. Two generic SQL oper-
ations called count-by-group (for class histograms) and compute-tuple-distances
(for point distances) were identified in [6] for classification and clustering tasks,
respectively.

2 Preliminaries

The problem of mining frequent patterns can be stated as follows: Let N =
{x1, x2, . . . , xnv} be a set of nv distinct nodes or vertices. A pair of nodes (xi, xj)
is called en edge. Let L = {l1, l2, . . . , lnl

}, be a set of nl distinct labels. Let Ln :
N → L, be a node labeling function that maps a node to its label Ln(xi) = lj ,
and let Le : N × cE → L be an edge labeling function, that maps an edge to its
label Le(xi, xj) = lk.

A pattern P is simply a relation on N , P ⊆ N × N , that is P = {(xi, xj) |
xi, xj ∈ N}, such that P satisfies some user-specified conditions C (i.e., C(P)
is true). It is also intuitive to represent a pattern P as a graph (PV , PE), with
labeled vertex set PV ⊂ N and labeled edge set PE = {(xi, xj) | xi, xj ∈ PV }.
The number of nodes in a pattern P is called its size. A pattern of size k is called a
k-pattern. In some applications P is a symmetric relation, i.e., (xi, xj) = (xj , xi)
(unordered edges), while in other applications P is anti-symmetric, i.e., (xi, xj) �=
(xj , xi) (ordered edges). A path in P is a set of distinct nodes {xi0 , xi1 , xin}, such
that (xij , xij+1) in an edge in PE for all j = 0 · · ·n − 1. The number of edges
gives the length of the path. If xi and xj are connected by a path of length n we
denote it as xi <n xj . Thus the edge (xi, xj) can also be written as xi <0 xj .

Given two patterns P and Q, we say that P is a subpattern of Q (or Q is
a super-pattern of P), denoted P Q if and only if there exists a 1-1 mapping
f from nodes in P to nodes in Q, such that for all xi, xj ∈ PV : i) Ln(xi) =
Ln(f(xi)), ii) Le(xi, xj) = Le(f(xi), f(Xj)), and iii) (xi, xj) ∈ PV iff (if and
only if) (f(xi), f(xj)) ∈ QV . In some cases we are interested in embedded
subpatterns. P is an embedded subpattern of Q if: i) Ln(xi) = Ln(f(xi)), iii)
Le(xi, xj) = Le(f(xi), f(Xj)), and iii) (xi, xj) ∈ PV iff f(xi) <l f(xj), i.e.,
f(xi) is connected to f(xj) on some path. If P Q we say that P is contained
in Q or Q contains P .

A database D is just a collection (a multi-set) of patterns. A database pattern
is also called an object. Let O = {o1, o2, . . . , ono}, be a set of no distinct object
identifiers (oid). An object has a unique identifier, given by the function O(di) =
oj , where di ∈ D and oj ∈ O. The number of objects in D is given as |D|.

Generic Pattern Mining Via Data Mining Template Library 365

TREE GRAPH

CB

A

A CA
1 2 3 4

B

SEQUENCE (A−−>AB−−>C)

A B C D
1

ITEMSET (ABCD)

CB

A

A
1

A
1

2

3

3 3

4

4
4

5

2

Fig. 1. FPM Instances

The absolute support of a pattern P in a databaseD is defined as the number of
objects in D that contain P , given as πa(P,D) = |{P d | d ∈ D}|. The (relative)
support of P is given as π(P,D) = πa(P,D)

|D| . A pattern is frequent if its support
is more than some user-specified minimum threshold, i.e., if π(P,D) ≥ πmin.
A frequent pattern is maximal if it is not a subpattern of any other frequent
pattern. A frequent pattern is closed if it has no super-pattern with the same
support. The frequent pattern mining problem is to enumerate all the patterns
that satisfy the user-specified πmin frequency requirement (and any other user-
specified conditions).

The main observation in FPM is that the sub-pattern relation defines a
partial order on the set of patterns. If P Q, we say that P is more general than
Q, or Q is more specific than P . The second observation used is that if Q is
a frequent pattern, then all sub-patterns P Q are also frequent. The different
FPM algorithms differ in the manner in with they search the pattern space.

2.1 FPM Instances

Some common types of patterns include itemsets, sequences, trees, and graphs,
as shown in Figure 1. In fact, every pattern can be modeled as a graph; the
nodes (xi) are shown under each circle and the node labels (Ln(xi)) are shown
inside the circle, whereas edge labels have been omitted.

In an itemset [1] no two nodes have the same label. Let V = {x1, x2, · · ·xk} be
a node set such that Ln(xi) �= Ln(xj) for all xi, xj ∈ V , and Ln(xi) < Ln(Xi+1

366 M.J. Zaki et al.

for all 1 ≤ i ≤ k − 1. There are several possible formulation of the itemset
pattern: i) vertex-only: An itemset pattern P is just a of vertices, i.e., PV = V
and PE = ∅, ii) linear: Figure 1 shows another formulation, where the itemset
is defined as PV = V , and PE = {(xi, xi+1)|xi, xi+1 ∈ PV }, iii) clique: A third
alternative is to represent itemset P as a clique, i.e., PV = V and PE = {(xi, xj) |
i < j and xi, xj ∈ PV }.

In sequence mining [2], a sequence is modeled as an ordered list of itemsets,
and thus the different nodes in a sequence can have the same label. We can
model a sequence pattern P as being made up of a sequence of n itemsets P i,
i = 1, · · ·n, using the linear formulation (as shown in Figure 1); note that using
the vertex-only formulation is problematic, since it results in a disconnected
pattern. Thus P has a vertex set made up of n disjoint subsets PV =

⋃n
i=1 P i

V .
The edge set P contains all the edges within P i (consecutive and undirected),
and PE contains, a directed edge for every pair of consecutive itemsets, i.e., from
the last node of P i to the first node of P i+1.

In tree mining [25,3], typically rooted, ordered and labeled trees are consid-
ered. Thus a tree pattern P consists of the vertex set PV = {r, x1, x2, · · ·}, where
r is a special node called root. A tree pattern must satisfy all tree properties,
namely i) the root has no parent, i.e., (xi, r) �∈ PE for any xi ∈ PV , ii) the edges
are directed, i.e., if (xi, xj) ∈ PE , then (xj , xi) �∈ PE), iii) a node has only one
parent, i.e., if (xi, xj) ∈ PE , then (xk, xj) �∈ PE for any xk �= xi, iv) the tree is
connected, i.e., for all xi ∈ PV , there exists a path from the root r to xi, and v)
tree has no cycles. Furthermore for ordered trees the order of a nodes’ children
matters. This means that there is an ordering of edges in PE , such that (xi, xj)
comes before (xi, xk) in PE only if xj is before xk in the ordering of xi’s children.

Finally, by definition a pattern can model any general graph, as well as any
special constraints that might appear in graph mining [10,13,21], such as con-
nected graphs, or induced subgraphs. It is also possible to model other patterns
such as DAGs (directed acyclic graphs).

3 DMTL: Data Structures and Algorithms

The C++ Standard Template Library (STL) provides efficient, generic imple-
mentations of widely used algorithms and data structures, which tremendously
aid effective programming. Like STL, DMTL is a collection of generic data min-
ing algorithms and data structures. In addition, DMTL provides persistent data
and index structures for efficiently mining any type of pattern or model of in-
terest. The user can mine custom pattern types, by simply defining the new
pattern types, but there is no need to implement a new algorithm, since any
generic DMTL algorithm can be used to mine them. Since the mined models
and patterns are persistent and indexed, this means the mining can be done
efficiently over massive databases, and mined results can be retrieved later from
the persistent store.

Following the ideology of generic programming, DMTL provides a standard-
ized, general, and efficient implementation of frequent pattern mining tasks by

Generic Pattern Mining Via Data Mining Template Library 367

isolating the concept of data structures or containers, as they are called in generic
programming, from algorithms. DMTL provides container classes for represent-
ing different patterns (such as itemsets and sequences) and collection of pat-
terns, containers for database objects (horizontal and vertical), and containers
for temporary mining results. These container classes support persistency when
required.

Generic algorithms, on the other hand are independent of the container and
can be applied on any valid container. These include algorithms for performing
intersections of the vertical lists [23,24,25] for itemsets or sequences or other pat-
terns. Generic algorithms are also provided for mining itemsets and sequences
[1,17,23,24], as well as for finding the maximal or closed patterns [7,27]. Fi-
nally DMTL provides support for the database management functionality, pre-
processing support for mapping data in different formats to DMTL’s native
formats, as well as for data transformation (such as discretization of continuous
values).

In this section we focus on the containers and algorithms for mining. In later
sections we discuss the database support in DMTL as well as support for pre-
processing and post-processing.

Figure 2 shows the different DMTL container classes for PMT and the rela-
tionship among them. At the lowest level set the different kinds of pattern-types
one might be interested in mining (such as itemsets, sequences, and several
variants). A pattern is uses the base pattern-type classes to provide a generic
container. There are several pattern family types (such as pvector, plist, etc.)

pvector plist partial−order

PatFamType

Pattern Family

Pattern Persistency Manager

Pattern Type

Itemset Sequence GraphTree

Fig. 2. DMTL Container Hierarchy

368 M.J. Zaki et al.

which together with a persistency manager class make up different pattern family
classes. More details on each class appears below.

3.1 Pattern

In DMTL a pattern is a generic container, which can be instantiated as an
itemset, sequence, tree or a graph, specified as Pattern<class P> by means
of a template argument called pattern-type (P). A generic pattern is simply a
pattern-type whose frequency we need to determine in a larger collection or
database of patterns of the same type.

3.2 Pattern Type

This allows users to select the type of pattern they want to mine, and as long
as certain operations are defined on the pattern-type all the generic algorithms
provided by DMTL can be used. The main source of flexibility of PMT is that
developers can easily define new types of patterns to suit their needs and once
the operations are defined on them all the generic algorithms of DMTL can
be used on the new pattern types. For example, an itemset can be defined as
pattern-type vector<int>, denoting a set of items (int in this case), A se-
quence pattern-type can defined as list<vector<int>>, denoting an ordered
list of itemsets. If we want to include a time field along with the different itemsets
in a sequence, we can define a new sequence type as follows list<pair<time,
vector<int>>>, i.e., a list of (time,vector<int>) pairs, where time is a
user-defined type to note when each event occurs. All algorithms are guaranteed
to work with any pattern type.

3.3 Pattern Family

In addition to the basic pattern classes, most pattern mining algorithms op-
erate on a collection of patterns. The pattern family is a generic container
PatternFamily<class PatFamType> to store groups of patterns, specified by
the template parameter PatFamType. PatFamType represents some persistent
class provided by DMTL, that provides seamless access to the members, whether
they be in memory or on disk. All access to patterns of a family is through the
iterator provided by the PatFamType class. PatternFamily provides generic op-
erations to add and remove patterns to/from the family, to find the maximal or
closed patterns in the family, as well as a count() function that finds the sup-
port of all patterns, in the database, using functions provided by the database
class.

3.4 Pattern Family Type

DMTL provides several persistent classes to store groups of patterns. Each such
class is templatized on the pattern-type (P) and a persistency manager class PM.
An example is pvector<class P, class PM>, a persistent vector class. It has

Generic Pattern Mining Via Data Mining Template Library 369

the same semantics as a STL vector with added memory management and persis-
tency. Thus a pattern family for itemsets can be defined in terms of the pvector
class as follows: PatternFamily<pvector<Itemset, PM>>. Another class is
plist<P,PM>. Instead of organizing the patterns in a linear structure like a vec-
tor or list, another persistent family type DMTL class, partial-order<P,PM>,
organizes the patterns according to the sub-pattern/super-pattern relationship.
While pvector and partial-order provide the same interface, certain operations
will be more efficient in one class than the other. For example, inserts and dele-
tions are cheaper for plists, while the maximality and closed testing functions
will be cheaper for partial-orders, since the patterns are already organized ac-
cording to sub/super-pattern relation.

3.5 Persistent Containers

An important aspect of DMTL is to provide a user-specified level of persistency
for all DMTL classes. To support large-scale data mining, DMTL provides au-
tomatic support for out-of-core computations, i.e., memory buffer management,
via the persistency manager class PM. The PatternFamilyType class uses the
persistency manager (PM) to support the buffer management for patterns. The
details of implementation are hidden from PatternFamily; all generic algorithms
continue to work regardless of whether the family is (partially) in memory or
on disk. The implementation of a persistent container (like pvector) is similar to
the implementation of a volatile container (like STL vector); the difference being
that instead of pointers one has to use offsets and instead of allocating memory
using new one has to request it from the persistency manager class. More details
on the persistency manager will be given later.

We saw above that PatternFamily uses the count() function to find the sup-
port of all patterns in the family, in the database; at the end of count() all
patterns have their support field set to their frequency in the database. DMTL
provides native support for both the horizontal and vertical database formats.
The generic count() algorithm does not impose any restriction on the type of
database used, i.e., whether it is horizontal or vertical. The count() function
uses the interface provided by the DB class, passed as a parameter to count(),
to get pattern supports. More details on the DB class and its functions will be
given later.

3.6 Generic Mining Algorithms

The pattern mining task can be viewed as a search over the pattern space
looking for those patterns that match the minimum support constraint. For
instance in itemset mining, the search space is the set of all possible subsets
of items. Various search strategies are possible leading to several popular vari-
ants of the mining algorithms. DMTL provides generic algorithms encapsulating
these search strategies; by their definition these algorithms can work on any
type of pattern: Itemset, Sequence, Tree or Graph. An example is the generic al-
gorithm DFS-Mine<class PatFamType> (PatternFamily<PatFamType> &pf,

370 M.J. Zaki et al.

DB &db, ...) , which mines the frequent patterns using a depth-first search
(DFS) [23,24]. The generic DFS mining algorithm takes in a pattern family
and the database. The types of patterns and persistency manager are specified
by the pattern family type. The DFS algorithm in turn relies on other generic
subroutines for creating equivalence classes, for generating candidates, and for
support counting. There is also a generic BFS-Mine that performs Breadth-First
Search [1,17] over the pattern space.

4 DMTL: Persistency and Database Support

DMTL is the back-end server that actually provides the persistency, and index-
ing support for both the patterns and the database. DMTL supports DMTL
by seamlessly providing support for memory management, data layout, high-
performance I/O, as well as tight integration with database management sys-
tems (DBMS). It supports multiple back-end storage schemes including flat files,
embedded databases, and relational or object-relational DBMS. DMTL also pro-
vides persistent pattern management facilities, i.e., mined patterns can them-
selves be stored in a pattern database for retrieval and interactive exploration.

DMTL provides native database support for both the horizontal [1] and ver-
tical [23,24,25] data formats. In the horizontal approach, each object has an oid
along with the itemset comprising the object. Thus object with oid = 1 is the
set {A, C, T, W}. In contrast, the vertical format maintains for each label (and
itemset) its oid list, a set of all oids where it occurs. For example, the label A
appears in oids 1, 3, 4, and 5. Thus its oid list is given as 1345 (omitting set
notation).

It is also worth noting that since in many cases the database contains the
same kind of objects as the patterns to be extracted (i.e., the database can be
viewed as a pattern family), the same database functionality used for horizontal
format can be used for providing persistency for pattern families. It is relatively
straightforward to store a horizontal format object, and by extension, a family of
such patterns, in any object-relational database. Thus the persistency manager
for pattern families can handle both the original database and the patterns that
are generated while mining. DMTL provides the required buffer management so
that the algorithms continue to work regardless of whether the database/patterns
are in memory or on disk.

4.1 Vertical Attribute Tables

To provide native database support for objects in the vertical format, DMTL
adopts a fine grained data model, where records are stored as Vertical Attribute
Tables (VATs). Given a database of objects, where each object is characterized
by a set of properties or attributes, a VAT is essentially the collection of objects
that share the same values for the attributes. For example, for a relational ta-
ble, cars, with the two attributes, color and brand, a VAT for the property
color=red stores all the transaction identifiers of cars whose color is red. The
main advantage of VATs is that they allow for optimizations of query intensive

Generic Pattern Mining Via Data Mining Template Library 371

applications like data mining where only a subset of the attributes need to be
processed during each query. As was mentioned earlier these kinds of vertical
representations have proved to be useful in many data mining tasks [23,24,25].

In DMTL there is typically one VAT per pattern. A VAT is an entity composed
of a body, which contains the list of object identifiers in which a given pattern
occurs. For storing database sequences a VAT needs, in addition, a time field
for each occurrence of the pattern. For tree and graph patterns the body type is
different. A VAT is defined as VAT<class V>, where V is a vat-type class.

Depending on the pattern type being mined the vat-type class may be differ-
ent. For instance for itemset mining it suffices to keep only the object identifiers
where a given itemset appears. In this case the vat-type is simply an int (as-
suming that oid is an integer). On the other hand for sequence mining one needs
not only the oid, but also the time stamp for the last AV pair in the sequence.
For sequences the vat-type is then pair<int, time>, i.e., a pair of an int,
denoting the oid, a nd time, denoting the time-stamp. Different vat-types must
also provide operations like equality testing (for itemsets and sequences), and
less-than testing (for sequences; a oid-time pair is less then another if they have
the same oid, and the first one happens before the second).

Given the generic setup of a VAT, DMTL defines a generic algorithm to
join/intersect two VATs. For instance in vertical itemset mining, the support
for an itemset is found by intersection the VATs of its lexicographic first two
subsets. A generic intersection operation utilizes the equality operation defined
on the vat-type to find the intersection of any two VATs. On the other hand in
vertical sequence mining the support of a new candidate sequence is found by
a temporal join on the VATs, which in turn uses the less-than operator defined
by the vat-type. Since the itemset vat-type typically will not provide a less-than
operator, if the DMTL developer tries to use temporal intersection on itemset
vat-type it will generate a compile time error! This kind of concept-checking
support provided by DMTL is extremely useful in catching library misuses at
compile-time rather than at run-time.

DMTL provides support for creating VATs during the mining process, i.e.,
during algorithms execution, as well as support for updating VATs (add and
delete operations). In DMTL VATs can be either persistent or non-persistent.
Finally DMTL uses indexes for a collection of VATs for efficient retrieval based
on a given attribute-value, or a given pattern.

4.2 Storage and Persistency Manager

The database support for VATs and for the horizontal family of patterns is
provided by DMTL in terms of the following classes, which are illustrated in
Figure 3.

Vat-type: A class describing the vat-type that composes the body of a VAT,
for instance int for itemsets and pair<int,time> for sequences.

VAT<class V>: The class that represents VATs. This class is composed of a
collection of records of vat-type V.

372 M.J. Zaki et al.

H

B

H

B

H

B

H

B

H

B

H

B

MetaTable<V,PM>

VAT<V> VAT<V>

DB<V,PM>

Buffer<V>

Intersect(VAT &v1, VAT &v2)

Get_Vats()

Get_Vat_Body()

Storage<PM> Storage<PM>

Fig. 3. DMTL: High level overview of the different classes used for Persistency

Storage<class PM>: The generic persistency-manager class that implements
the physical persistency for VATs and other classes. The class PM provides
the actual implementations of the generic operations required by Storage. For
example, PM metakit and PM gigabase are two actual implementations of
the Storage class in terms of different DBMS like Metakit [19], a persistent
C++ library that natively supports the vertical format, and Gigabase [11],
an object-relational database. Other implementations can easily be added as
long as they provide the required functionality.

MetaTable<class V, class PM>: This class represents a collection of VATs. It
stores a list of VAT pointers and the adequate data structures to handle
efficient search for a specific VAT in the collection. It also provides physical
storage for VATs. It is templatized on the vat-type V and on the Storage
implementation PM.

DB<class V, class PM>: The database class which holds a collection of Meta-
tables. This is the main user interface to VATs and constitutes the database
class DB referred to in previous sections. It supports VAT operations such
as intersection, as well as the operations for data import and export. The
double template follows the same format as that of the Metatable class.

Buffer<class V>: A fixed-size main-memory buffer to which VATs are written
and from which VATs are accessed, used for buffer management to provide
seamless support for main-memory and out-of-core VATs (of type V).

A diagram of the class interaction is displayed in Figure 3. As previously stated,
the DB class is the main DMTL interface to VATs and the persistency manager

Generic Pattern Mining Via Data Mining Template Library 373

for patterns. It has as data members an object of type Buffer<V> and a collection
of MetaTables<V,PM>.

The Buffer<V> class is composed of a fixed size buffer which will contain as
many VAT bodies. When a VAT body is requested from the DB class, the buffer
is searched first. If the body is not already present there, it is retrieved from disk,
by accessing the Metatable containing the requested VAT. If there is not enough
space to store the new VAT in the buffer, the buffer manager will (transparently)
replace an existing VAT with the new one. A similar interface is used to provide
access to patterns in a persistent family or the horizontal database.

The MetaTable class stores all the pointers to the different VAT objects. It
provides the mapping between the patterns, called header, and their VATs, called
the body, via a hashed based indexing scheme. In the figure the H refers to a
pattern and B its corresponding VAT. The Storage class provides for efficient
lookup of a particular VAT object given the header.

4.3 VAT Persistency

VATs can be in one of three possible states of persistence:

– volatile: the VAT is fully loaded and available in main memory only.
– buffered: the VAT is handled as if it were in main memory, but it is actually

kept on disk in an out-of-core fashion.
– persistent: the VAT is disk resident and can be retrieved after the program

execution, i.e.: the VAT is inserted in the VATdatabase.

Volatile VATs are created and handled by directly accessing the VAT class
members. Buffered VATs are managed from the DB class through Buffer func-
tions. Buffered VATs must be inserted into the file associated with a Metatable,
but when a buffered VATis no longer needed, its space on disk can be freed. A
method for removing a VAT from disk is provided in the DB class. If such method
is not called, then the VAT will be persistent, i.e., it will remain in the metatable
and in the storage associated with it after execution.

4.4 Buffer Management

The Buffer class provides methods to access and to manage a fixed size buffer
where the most recently used VATs/patterns are stored for fast retrieval. The
idea behind the buffer management implemented in the Buffer class is illus-
trated in Figure 4.

A fixed size buffer is available as a linear block of memory of objects of
type V. Records are inserted and retrieved from the buffer as linear chunks of
memory. To start, the buffer is empty. When a new object is inserted, some data
structures are initialized in order to keep track of where every object is placed so
it can be accessed later. Objects are inserted one after the other in a round-robin
fashion. When there is no more space left in the buffer, the least recently used
(LRU) block (corresponding to one entire VAT body, or a pattern) is removed.
While the current implementation provides a LRU buffering strategy, as part
of future work we will consider more sophisticated buffer replacement strategies
that closely tie with the mining.

374 M.J. Zaki et al.

curr=0

curr=8

curr=2

curr=3

free=10

free=2

free=1

free=7

_index

_index

_index

(empty)

3−7

_index

8−1

0 9

90 3

30 8 9

0−2

0−2

3−7

Fig. 4. Buffer Management: The buffer manager keeps track of the current position in
the buffer (curr), the amount of free space (free), and an index to keep track of where
an object is. As new objects are inserted these are updated and when an existing object
is replaced when the buffer becomes full.

4.5 Storage

Physical storage of VATs and pattern families can be implemented using different
storage systems, such as a DBMS or ad-hoc libraries. In order to abstract the
details of the actual system used, all storage-related operations are provided in
a generic class, Storage. Implementations of the Storage class for MetaKit [19]
and Gigabase [11] backends are provided in the DMTL. Other implementations
can easily be added as long as they provide the required functionality.

The DB class is a doubly templated class where both the vat-type and the
storage implementation need to be specified. An example instantiation of a DB
class for itemset patterns would therefore be DB<int,PM metakit> or DB<int,
PM gigabase>.

5 DMTL: Pre-processing Support

DMTL provides support for dynamic mapping of data into VATs at run-time
over the same base database using a mapping class, which transforms original
attribute values into mapped values according to a set of user specified mapping
directives, contained in a configuration file. For every input database there has
to be an XML configuration file. For the definition of the syntax of such file, we

Generic Pattern Mining Via Data Mining Template Library 375

follow the approach presented in [14] by Talia et al.. The format of such file is
the following.

<?xml version="1.0"?>
<!DOCTYPE Datasource SYSTEM "dmtl config.dtd">
<Data model=relational source=ascii file>

<Access> [...] </Access>
<Structure>

<Format> [...] </Format>
<Attributes> [...] </Attributes>

</Structure>
</Data>

5.1 Attributes

Configuration used for mapping attribute values are contained in the <Struc-
ture> section. The <Format> section contains the characters used as record
separator and field separator. An <Attribute> section must be present for each
attribute (or column) in the input database. Such section might be something
like: <Attribute name="price" type="continuous" units="Euro" ignore=
"yes"> [...] </Attribute>. Possible attributes for the <Attribute> tag
are: name: the name of the attribute, type: one of continuous, discrete, cate-
gorical, units: the unit of measure for values (currency, weight, etc.), ignore:
should a VAT be created for this attribute or not.

5.2 Mapping

The mapping information is enclosed in the <Mapping> section. Mapping can be
different for categorical, continuous or discrete fields. For continuous values we
can specify a fixed step discretization within a range:

<Attribute name="price" type="continuous">
<Mapping min="1.0" max="5.0" step=".5">0
</Mapping> </Attribute>

In this case the field price will be mapped to (max-min)/step = (5-1)/.5
= 10 values, labeled with integers starting from 0. It is also possible to specify
non-uniform discretizations, omitting the step attribute and explicitly specifying
all the ranges and labels. For categorical values we can also specify a mapping,
that allows for taxonomies or other groupings.

6 Experiments

DMTL is implemented using C++ Standard Template Library [4]. We present
some experimental results on the time taken by DMTL to load databases and to

376 M.J. Zaki et al.

 0.1

 1

 10

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Itemset Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
ECLAT

 0.01

 0.1

 1

 10

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Itemset Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
ECLAT

 1

 10

 100

 1000

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Sequence Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
SPADE

 0.1

 1

 10

 100

 1000

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Sequence Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
SPADE

 1

 10

 100

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Tree Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
TreeMiner

 0.1

 1

 10

 100

 1000

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Tree Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
TreeMiner

 1

 10

 100

 1000

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

T
ot

al
 T

im
e

(s
ec

)

Minimum Support (%)

Graph Mining - Minsup VS Time (100K DB)

Metakit
Flat

Gigabase
gSpan

 0.1

 1

 10

 100

 10 100 1000

T
ot

al
 T

im
e

(s
ec

)

Database Size (K)

Graph Mining - DB Size VS Time (0.2% Minsup)

Metakit
Flat

Gigabase
gSpan

Fig. 5. Itemset, Sequence, Tree and Graph Mining: Effect of Minimum Support and
Database Size

Generic Pattern Mining Via Data Mining Template Library 377

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

T
o

ta
l T

im
e

 (
se

c)

Transactions (thousands)

Tree Conversion

Flat
Metakit

Gigabase

 0

 10

 20

 30

 40

 50

 60

 70

 10 100 1000

T
o

ta
l T

im
e

 (
se

c)

Transactions (thousands)

Graph Conversion

Flat
Metakit

Gigabase

Fig. 6. Database Conversion and Loading Times

perform different types of pattern mining on them. We used the IBM synthetic
database generator [1] for itemset and sequence mining, the tree generator from
[25] for tree mining and the graph generator by [13], with sizes ranging from
10k to 1000k (or 1 million). The experiment were run on a Pentium4 2.8Ghz
Processor with 6GB of memory, running Linux.

Figure 5 shows the DMTL mining time versus the specialized algorithms for
itemset mining (ECLAT [23]), sequences (SPADE [24]), trees (TreeMiner [25])
and graphs (gSpan [21]). For the DMTL algorithms, we show the time with a flat-
file (Flat) persistency manager/database, with the metakit backend (Metakit)
and the gigabase backend (Gigabase). The left hand column shows the effect of
minimum support on the mining time for the various patterns. We find that for
all pattern types DMTL is within a factor of 10 of the specialized algorithms
even as we decrease the minimum support on a database with 100K records. The
column on the right hand size shows the effect of increasing database sizes on
these algorithms. We find that as the number of objects increase the gap between
DMTL algorithms and the specialized ones starts to decrease. We expect that as
we increase the number of records, the specialized algorithms will break down,
while DMTL will continue to run since it explicitly manages the memory buffers.
Comparing the three backend implementations, we find that the flatfile approach
has a slight edge, but the object-oriented gigabase database backend is almost
as fast. On the other hand the embedded database Metakit is generally slower.

Figure 6 shows the time taken to convert the input data into VATs. The times
are shown for the three different backends (flat, metakit and gigabase) for upto 1
million objects. We find that these three approaches are roughly the same, with
the maximum difference being a factor of 2.

7 Conclusions

In this paper we describe the design and implementation of the DMTL proto-
type for an important subset of FPM tasks, namely mining frequent itemsets,

378 M.J. Zaki et al.

sequences, trees, and graphs. Following the ideology of generic programming,
DMTL provides a standardized, general, and efficient implementation of frequent
pattern mining tasks by isolating the concept of data structures or containers,
from algorithms. DMTL provides container classes for representing different pat-
terns, collection of patterns, and containers for database objects (horizontal and
vertical). Generic algorithms, on the other hand are independent of the con-
tainer and can be applied on any valid pattern. These include algorithms for
performing intersections of the VATs, or for mining.

The generic paradigm of DMTL is a first-of-its-kind in data mining, and we
plan to use insights gained to extend DMTL to other common mining tasks like
classification, clustering, deviation detection, and so on. Eventually, DMTL will
house the tightly-integrated and optimized primitive, generic operations, which
serve as the building blocks of more complex mining algorithms. The primitive
operations will serve all steps of the mining process, i.e., pre-processing of data,
mining algorithms, and post-processing of patterns/models. Finally, we plan to
release DMTL as part of open-source, and the feedback we receive will help drive
more useful enhancements. We also hope that DMTL will provide a common
platform for developing new algorithms, and that it will foster comparison among
the multitude of existing algorithms.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Inkeri Verkamo. Fast
discovery of association rules. In U. Fayyad and et al, editors, Advances in Knowl-
edge Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, CA,
1996.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In 11th Intl. Conf. on
Data Engg., 1995.

3. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Satamoto, and S. Arikawa. Effi-
cient substructure discovery from large semi-structured data. In 2nd SIAM Int’l
Conference on Data Mining, April 2002.

4. M. H. Austern. Generic Programming and the STL. Addison Wesley Longman,
Inc., 1999.

5. S. Chaudhri, U. Fayyad, and J. Bernhardt. Scalable classification over SQL
databases. In 15th IEEE Intl. Conf. on Data Engineering, March 1999.

6. A. Freitas and S. Lavington. Mining very large databases with parallel processing.
Kluwer Academic Pub., Boston, MA, 1998.

7. K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. In 1st
IEEE Int’l Conf. on Data Mining, November 2001.

8. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining query
language for relational databases. In 1st ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, June 1996.

9. T. Imielinski and A. Virmani. MSQL: A query language for database mining. Data
Mining and Knowledge Discovery: An International Journal, 3:373–408, 1999.

10. A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In 4th European Conference on Principles
of Knowledge Discovery and Data Mining, September 2000.

Generic Pattern Mining Via Data Mining Template Library 379

11. Konstantin Knizhnik. Gigabase, object-relational database management system.
http://sourceforge.net/projects/gigabase.

12. R. Kohavi, D. Sommerfield, and J. Dougherty. Data mining using mlc++, a ma-
chine learning library in c++. International Journal of Artificial Intelligence Tools,
6(4):537–566, 1997.

13. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In 1st IEEE Int’l
Conf. on Data Mining, November 2001.

14. C. Mastroianni, D. Talia, and P. Trunfio. Managing heterogeneous resources in
data mining applications on grids using xml-based metadata. In Proceedings of
The 12th Heterogeneous Computing Workshop, 2002.

15. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In 22nd Intl. Conf. Very Large Databases, 1996.

16. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
databases: alternatives and implications. In ACM SIGMOD Intl. Conf. Manage-
ment of Data, June 1998.

17. R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and per-
formance improvements. In 5th Intl. Conf. Extending Database Technology, March
1996.

18. D. Tsur, J.D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query
flocks: A generalization of association rule mining. In ACM SIGMOD Intl. Conf.
Management of Data, June 1998.

19. Jean-Claude Wippler. Metakit. http://www.equi4.com/metakit/.
20. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann Publishers, 1999.
21. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In IEEE

Int’l Conf. on Data Mining, 2002.
22. X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. In ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, August 2003.
23. M. J. Zaki. Scalable algorithms for association mining. IEEE Transactions on

Knowledge and Data Engineering, 12(3):372-390, May-June 2000.
24. M. J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine

Learning Journal, 42(1/2):31–60, Jan/Feb 2001.
25. M. J. Zaki. Efficiently mining frequent trees in a forest. In 8th ACM SIGKDD

Int’l Conf. Knowledge Discovery and Data Mining, July 2002.
26. M. J. Zaki and C.C. Aggarwal. Xrules: An effective structural classifier for xml

data. In 9th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining,
August 2003.

27. M. J. Zaki and C.-J. Hsiao. ChARM: An efficient algorithm for closed itemset
mining. In 2nd SIAM International Conference on Data Mining, April 2002.

Inductive Querying for Discovering Subgroups

and Clusters�

Albrecht Zimmermann and Luc De Raedt

Chair of Machine Learning, Institute of Computer Science,
Albert-Ludwigs-University, Freiburg, Georges-Köhler-Allee 079,

79110 Freiburg, Germany
{azimmerm, deraedt}@informatik.uni-freiburg.de

Abstract. We introduce the problem of cluster-grouping and show
that it integrates several important data mining tasks, i.e. subgroup
discovery, mining correlated patterns and aspects from clustering. The
problem of cluster-grouping can be regarded as a new type of inductive
optimization query that asks for the k best patterns according to a con-
vex criterion. The algorithm CG for solving cluster-grouping problems is
presented and the underlying mechanisms are discussed. The approach
is experimentally evaluated on a number of real-life data sets. The re-
sults indicate that the algorithm improves upon the subgroup discovery
algorithm CN2-WRAcc and is competitive with the clustering algorithm
CobWeb.

Keywords: clustering, subgroup discovery, correlated pattern mining,
inductive querying, constraint-based mining.

1 Introduction

Many problems and settings are described in the machine learning and data
mining literature. The techniques that will be addressed in this paper include:
subgroup discovery [1,2], clustering [3,4], and correlated pattern mining [5].

In subgroup discovery, the goal is to find groups (often in the form of conjunc-
tive rules c1∧ ...∧cn 	 a) that are statistically over- or under-represented w.r.t.
a particular target attribute a and thus, since they show unexpected behaviour,
are considered interesting. For instance, the group smoker is an interesting sub-
group w.r.t. cancer, as smokers have a higher probability of having cancer. Cor-
related pattern mining [5,6] can be viewed as an extension of subgroup discovery
where one is looking for interesting rules (w.r.t. statistical criteria such as χ2)
but with no fixed target attribute. Subgroup discovery is thus closely related to
rule learning, while correlated pattern mining is more similar to association rule
discovery. In clustering [3,4], the goal is to compute interesting groups, and in
conceptual clustering, it is furthermore desired to obtain symbolic descriptions
of the clusters.
� A 3-page abstract of this paper appeared as Albrecht Zimmermann, Luc De Raedt:

Cluster-Grouping: From Subgroup Discovery to Clustering. ECML 2004: 575–577.

J.-F. Boulicaut et al. (Eds.): Constraint-Based Mining, LNAI 3848, pp. 380–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inductive Querying for Discovering Subgroups and Clusters 381

Although these three techniques are in the literature perceived as being quite
different, it turns out that they share a number of characteristics. The key con-
tribution of this paper is the introduction of the cluster-grouping problem that
subsumes subgroup discovery [1,2], clustering [3], and correlated pattern mining
[5]. Cluster-grouping is concerned with finding rules b1∧...∧bk 	 h1∨...∨hn that
score best w.r.t. an interestingness function σ and a data set E . Cluster grouping
rules state that for examples covered by the condition part b1 ∧ ...∧ bn it is pos-
sible to reliably predict the attributes hi in the conclusion part. To address the
cluster-grouping problem, we develop the branch-and-bound algorithm CG that
utilizes the convexity of different evaluation functions. It significantly extends the
correlated pattern mining framework by Morishita et al. [5], in that it general-
izes Morishita et al.’s approach to an arbitrary dimension. CG is experimentally
validated against the heuristic CN2-WRAcc algorithm [1] for subgroup discov-
ery and the CobWeb algorithm [3] for conceptual clustering. The experiments
show that CG typically finds better (even optimal) subgroups while exploring
less candidates than CN2-WRAcc, and that CG finds cluster definitions in the
form of conjunctions, which are competitive in terms of Category Utility [7] with
the clusters found by CobWeb.

The cluster grouping problem can be viewed as a novel type of inductive query
[8,9], in which one is interested in the k best rules with regard to the interest-
ingness function σ. This type of query thus looks for the k optimal rules, which
explains why we employ a branch-and-bound algorithm. This is an inductive
optimization query which differs from the typical type of constraints used, in
which one can decide whether a pattern satisfies the constraint independently of
the other patterns in the space. Still, cluster-grouping queries are both declara-
tive and powerful as they can be used to find optimal solutions for a wide range
of mining tasks, i.e. subgroup discovery, correlated pattern mining as well as
clustering.

We proceed as follows. In the next section we introduce the necessary nota-
tions used throughout the paper, and define the problem. In section 3, we explain
how cluster-grouping unifies the data mining tasks mentioned. In the fourth sec-
tion, we discuss the upper bound computation which is necessary for efficiently
solving the problem and in section 5 present the algorithm developed. We evalu-
ate our approach in section 6 and finally, we touch upon related work, formulate
our conclusions and discuss future research directions in sections 7 and 8.

2 Preliminaries

We consider the problem of cluster-grouping as one of learning interesting, i.e.
strongly correlating, rules on a given data set.

2.1 Rules

Let A = {A1, ..., Ad} be a set of ordered attributes and V [A] = {V1, ..., Vp} the
domain of A. An instance e is then a tuple 〈v1, ..., vd〉 with vi ∈ V [Ai]. A multiset
E = {e1, ..., en} is called a data set.

382 A. Zimmermann and L. De Raedt

Definition 1 (Literal). A literal l is an attribute-value-pair A = v with v ∈
V [A]. An instance 〈v1, ..., vd〉 is covered by a literal l of the form Ai = v iff
vi = v.

Definition 2 (Rule). A rule r is of the form b ⇒ h with b = l1 ∧ ... ∧ li the
rule body, and h = l′1∨ ...∨ l′d the rule head. An instance e is covered by b iff it
is covered by all its literals and it is covered by the entire rule r iff it is covered
by at least one literal in h as well.

2.2 Interestingness Measures

As mentioned above we consider interesting rules to be rules that have a strong
correlation between their body and their head. It is necessary to define the notion
of support, when working with correlation measures:

Table 1. Contingency table for b ⇒ h1

h1 ¬h1

b sup(b ⇒ h1) = y1 sup(b ⇒ ¬h1) = x − y1 sup(b) = x
¬b sup(¬b ⇒ h) = m1 − y1 sup(¬b ⇒ ¬h1) = n − m1 − (x − y1) sup(¬b) = n − x

sup(h1) = m1 sup(¬h1) = n − m1 n

Definition 3 (Support). For a literal l, we define

sup(l) = |{e | e is covered by l}|

the support of l. Similarly, the support of a rule body b is defined as

sup(b) = |{e | e is covered by b}|

and of a rule with a single consequent

sup(b ⇒ h) = |{e | e is covered by b ∧ e is covered by h}|

For the remainder of this paper, we will use the following notation to refer to
occurrence counts of rules:

Definition 4 (Occurrence Counts). For a given rule b⇒ h1 ∨ ...∨ hd and a
given data set E we define:

n = |E|, mi = sup(hi), x = sup(b), yi = sup(b ⇒ hi)

To facilitate the use of correlation measures, occurrence counts are often or-
ganized in contingency tables. A contingency table for a rule body having two
values (i.e. true and false) and a single binary-valued target literal is shown in
Table 1. Note that the sum of the cells in a row (column) is equal to the margins
of the table, i.e. the rightmost (down-most) entry in a row (column). Correla-
tionmeasures compare for a given cell the product of the corresponding margins

Inductive Querying for Discovering Subgroups and Clusters 383

to the cell count, thus comparing expected to observed frequency, and score the
difference. Comparing the expected and observed frequency for the upper left
cell would e.g. in the χ2-measure take the form (y1−m1x/n)2

m1x/n .

Example 1. Consider as an example a database consisting of 50 instances (n),
for half of which “heavy” is true (m1). Assume furthermore that “strong eater”
occurs with support 10 (x) in the database. If eight of the ten instances for which
“strong eater” is true also have “heavy”=true (y1), then the χ2 measure would
give the deviation of expected from observed frequency for the upper left cell a
score of 1.8.

Table 2. Pseudo-Contingency table for b ⇒ h1 ∨ h2

h1 ¬h1 h2 ¬h2
b sup(b ⇒ h1) sup(b ⇒ ¬h1) sup(b ⇒ h2) sup(b ⇒ ¬h2) sup(b) = x
¬b sup(¬b ⇒ h1) sup(¬b ⇒ ¬h1) sup(¬b ⇒ h2) sup(¬b ⇒ ¬h2) sup(¬b) = n − x

sup(h1) = m1 sup(¬h1) = n − m1 sup(h2) = m2 sup(¬h2) = n − m2 n

Normally, increasing the number of involved literals leads to an increase of
dimension of the contingency table to capture all dependencies among the lit-
erals. Since we are not interested in the dependencies between the hi, we use
tables such as the one in Table 2. We call this kind of table a pseudo-contingency
table. The main difference w.r.t. a regular high-dimensional contingency table,
a so-called multi-way table, is that the margin of a row is not equal to the
sum of row-cells anymore. Calculation of a correlation measure still consists of
comparing the product of the margins to the cell count.

Definition 5 (Stamp Point). For a given data set E every rule r of the form
b ⇒ h1∨ ...∨hd induces a tuple 〈x, y1, ..., yd〉 of variables introduced in definition
4. This tuple is called the stamp point of r, denoted sp(r), cf. [5].

Consider now an interestingness measure such as χ2, Category Utility, Infor-
mation Gain, or Weighted Relative Accuracy defined on a pseudo-contingency
table. Since n and the m i are constant for a given data set, a given interesting-
ness measure σ(r) can be defined as a function of d + 1 variables

σ : Nd+1)→ R,

mapping the stamp point sp(r) to a real number.

Example 2. This means that sp(“strong eater”⇒“heavy”)=〈10, 8〉, a devia-
tion that is quantified by χ2(〈10, 8〉) = 4.5. Lets also consider “sportive” as
interesting. Under the assumption that among all instances that are matched by
“strong eater”=true, three also have “sportive”=true, we arrive at the stamp
point sp(“strong eater”⇒“heavy”∨“sportive”) = 〈10, 8, 3〉, and if furthermore
“sportive”’s frequency on the entire dataset is 30, χ2(〈10, 8, 3〉) = 10.397.

384 A. Zimmermann and L. De Raedt

Now we are able to define the cluster-grouping problem:

Definition 6 (Cluster-Grouping Problem).
Given:

– A set of literals L
– A data set E
– An interestingness measure σ
– A set of target literals T

Find:
The set of k rules expressible in L having the highest value of σ on E w.r.t. the
given target literals T .

3 Unifying Several Data Mining Tasks

Let us now formulate the three data mining tasks mentioned before, i.e. cor-
related pattern mining, subgroup discovery and conceptual clustering, in the
framework introduced above.

3.1 Correlated Pattern Mining

The correlated pattern mining task was introduced by Morishita and Sese [5]
in the context of itemset mining. Their main motivation lies in the fact that
association rules with very high confidence might still carry no information.
Therefore, using a correlation measure to evaluate the quality of rules found will
result in more interesting relationships. The task of correlated pattern mining can
be formulated as a cluster-grouping problem with the following characteristics:

Let I = {I1, ..., Iz}, ∀I ∈ I : V [I] = {false, true} the set of items,

– L = {I = true | I ∈ I}
– E a transaction data base
– σ is a correlation measure such as χ2

– T a single literal l ∈ L

While Morishita and Sese restrict their approach to the classical itemset set-
ting, the use of a correlation measure would also allow the mining of negative re-
lationships, i.e. the expansion of L to include literals of the form i = false, i ∈ I,
would allow one to find relationships in which the absence of an item correlates
with the presence of another.

3.2 Subgroup Discovery

Lavrač et al. [1] argue convincingly that a rule learning algorithm such as CN2
[10], used together with a metric measuring positive correlation such as Weighted
Relative Accuracy (WRAcc) [11], can be employed to find subgroups, i.e., subsets

Inductive Querying for Discovering Subgroups and Clusters 385

of a data set that show unexpected behaviour with regard to a specific target at-
tribute. The subgroup discovery problem can be formulated as a cluster-grouping
problem in the following way:

Let At ∈ A be the target attribute we are interested in.

– L = {A = v | A ∈ A \ {At}, v ∈ V [A]}
– E a data set
– σ is WRAcc
– T = {At = v | v ∈ V [At]}

Lavrač et al. employ beam search to find subgroups. Depending on the beam
size, this approach may lead to suboptimal rules being found. Additionally, if
there are several best subgroups the wrong beam size might cause the exclusion
of some of them.

3.3 Conceptual Clustering

The goal in conceptual clustering is to group instances in a data set into groups
that exhibit high intra-cluster similarity and high inter-cluster dissimilarity. In-
stances are considered similar if they agree on the values of many attributes.
One measure for judging the quality of a set of clusters is Category Utility. The
task of conceptual clustering - with binary attributes only - can be formulated
as a cluster-grouping task with the following characteristics:

Let A = {A1, ..., Ad}, ∀A ∈ A : V [A] = {false, true} be a set of attributes:

– L = {A = v | A ∈ A, v ∈ V [A]}
– E a data set
– σ is Category Utility
– T all literals of the form A = true, A ∈ A

The well-known clustering algorithm CobWeb [3] aims at finding clusters with
high Category Utility. The drawbacks of CobWeb lie in the fact that it processes
instances iteratively, possibly leading to a sub-optimal solution, and that the
direct assignment of instances to clusters might lead to clusters that cannot be
described using a conjunction of literals. Instead, CobWeb characterizes clusters
by conditional probabilities on attribute-value pairs. For high-dimensional data
this representation is probably not very human-readable; additionally, it makes
assignments of future instances to clusters somewhat more difficult.

3.4 Contribution

The key contribution of this paper is 1) the introduction of the cluster-grouping
problem that makes abstraction of these three problem settings and 2) the for-
mulation of an algorithm that allows one to tackle the cluster-grouping problem.

386 A. Zimmermann and L. De Raedt

The algorithm will always output the solution or solutions achieving the high-
est value of σ. Usually, this can only be guaranteed by considering all possible
rules which is often computationally not feasible. This problem is solved using
pruning techniques that are derived from the observation that many correlation
measures (such as the ones mentioned above) are in fact convex functions.

4 Upper Bound on Convex Correlation Measures

While the cluster-grouping task can be tackled using a heuristic algorithm, such
an approach would not be guaranteed to find the optimal rules while an exhaus-
tive technique is not feasible for higher-dimensional data (and therefore a large
set of literals). Based on the convexity of correlation measures it is however pos-
sible to calculate an upper bound on the future value of σ for specializations of
a given rule. This upper bound is used to prune away parts of the search space
known not to produce interesting solutions and focus the search on promising
parts of the search space.

4.1 Convexity

Convexity is formally defined as follows.

Definition 7 (Convexity). A function f : D)→ R is convex iff D is a convex
set and ∀x1, x2 ∈ D, λ ∈ [0, 1] : f(λx1 + (1− λ)x2) ≥ λf(x1) + (1 − λ)f(x2).

It can be proven that χ2, WRAcc, and Category Utility as well as other
correlation measures fulfill the second criterion.

For the definition to hold it is also necessary for the domain of the function
to form a convex set. A set S ⊂ Nn is convex if there are no points a and b in
S such that there is a point on the line between a and b that does not belong
to S. We will argue below following paragraph why this holds for the domain of
the correlation functions mentioned above.

Let r denote a rule of the form b⇒ h1 ∨ ... ∨ hd, b′ a specialization, that
is an extension with at least one literal, of b, r′ of the form b′ ⇒ h1 ∨ ... ∨ hd,
and sp(r), sp(r′) the corresponding stamp points. Define Sact = {sp(r′)} as the
set of actual stamp points of all rules r′ whose rule body is a specialization
of b. This set is unknown until all specializations of b have been created and
evaluated on the data set. However, instead of computing Sact, one can try to
approximate it by the set of possible stamp points Sposs ⊇ Sact. The approxi-
mation is possible because the stamp point sp(r) = 〈x, y1, ..., yd〉 constrains all
sp(r′)poss = 〈x′, y′

1, ..., y
′
d〉 ∈ Sposs in the following way:

1. x ≥ x′ ≥ 0
2. ∀i : x ≥ yi ≥ 0
3. ∀i : yi ≥ y′

i ≥ 0
4. ∀i : x′ − y′

i ≥ x− yi

Inductive Querying for Discovering Subgroups and Clusters 387

Each of these inequalities defines one or more convex sets in d+1-dimensional
space. Since Sposs is the intersection of all these sets it is a convex set itself. Sposs

is the domain of σ given b. Convex functions take their extreme values at the
points forming the convex hull of their domain D [12]. So by evaluating σ on the
points forming the convex hull of Sposs, it is possible to obtain an upper bound
for the value that σ can take on any point sp(r′) ∈ Sposs. Since Sact is a subset
of Sposs, this upper bound is also an upper bound on the value of σ on any point
of Sact.

y

x0,0 x−y,0

y,y x,y

Fig. 1. Actual stamp points sp(r′) and convex hull of Sposs for 〈x, y〉(taken from [5])

For the two-dimensional case, the convex hull of Sposs is the parallelogram
defined by the vertices 〈x, y〉, 〈y, y〉, 〈x−y, 0〉, 〈0, 0〉 as shown in Figure 1. These
vertices are derived by computing the four points 〈xmax, ymax〉, 〈xmin, ymax〉,
〈xmax, ymin〉, 〈xmin, ymin〉, while taking into account the four inequalities above.

Example 3. Continuing our example, if the body of the rule is extended, e.g.
with “strong smoker”, at most 10 instances are covered by the new rule body.
Among those, maximally 8 will have “heavy”=True. Should “strong smoker”
and “heavy” correlate negatively, the presence of “strong smoker” would reduce
the number of instances in which “heavy” was present, which also means that
the total number of instances covered is reduced. Any future stamp point will
therefore be inside the parallelogram defined by 〈0, 0〉, 〈8, 8〉, 〈2, 0〉, 〈10, 8〉.

For computing the upper bound on σ, the points 〈x, y〉 and 〈0, 0〉 do not
have to be considered. The first point describes a specialization with the same
coverage as the current rule. Since such a specialization is expected to generalize
less well to as yet unseen examples, we give preference to the rule already found.
The second denotes a rule that does not cover any examples, which renders it
useless. Therefore, ubσ(b) = max{σ(y, y), σ(x− y, 0)}.

Example 4. Continuing our example from above, this means that for σ being
χ2, ubχ2(r) = max{9.52, 2.08}, given x = 10, y1 = 8. Since 9.52 is larger than

388 A. Zimmermann and L. De Raedt

χ2(x, y1) = 4.5 there might be a specialization of T that discriminates better than
r itself and therefore exploring this search path is worthwhile.

4.2 Extension to Higher Dimensions

The approach described above was introduced by Morishita and Sese [5]. Their
work is however restricted to a single binary target literal. To calculate an upper
bound for the type of rules given in Definition 2, an extension to higher dimen-
sions is necessary. Even though this extension is not too difficult, two problems
arise:

Firstly, the number of convex hull points grows exponentially with the dimen-
sionality of the data since all combinations of minimum and maximum values
for x and the yi have to be considered, meaning that |{min, max}|d = 2d points
would have to be evaluated. Secondly, it is insufficient to simply consider yi as
maximum value of y′

i and 0 as minimum. Instead, the dependencies between
different yi have to be considered.

Both of these problems can be somewhat lessened by enumerating the convex
hull points in a different manner. This approach was first applied by Morishita
and Sese [13] to the problem of clustering numerical values into clusters describ-
able by binary attributes. To make the enumeration technique more understand-
able, consider Category Utility as an example. Category Utility for two clusters
is defined as:

CU(C1, C2) =
1
2

∑
C∈{C1,C2}

P (C)
∑
A∈A

∑
v∈V[A]

P (A = v | C)2 − P (A = v)2

Now consider the case that membership in the first of the two clusters is based
on whether an instance is covered by a rule body br (for a given set of binary
target attributes At). If the instance is not covered by br, it is assigned to the
second cluster. In that case, Category Utility can be re-written as:

CU(br,At) =
1

2
b∈{br,¬br}

P (b)
A∈At v∈{true, false}

P (b ⇒ A = v)2

P (b)2
− P (A = v)2

This formula can be simplified by pushing the 1
2P (b) into the sum:

CU(br,At) =
A∈At v∈{true, false} b∈{br,¬br}

1

2
P (b)

P (b ⇒ A = v)2

P (b)2
− P (A = v)2 ,

so that the total Category Utility can be expressed as the sum of several partial
Category Utilities:

CU(br,At) =
∑

A∈At

CU(br, {A})

Inductive Querying for Discovering Subgroups and Clusters 389

Note that while Category Utility is used in this example the same property
holds for correlation measures such as χ2, WRAcc, Information Gain and oth-
ers if the relations between the target attributes are ignored as in the cluster-
grouping setting.

The set At corresponds to the tuple 〈y1, . . . , yd〉, with every single Ai ∈ At cor-
responding to a yi. Formulated in the stamp point notation, the above equation
thus becomes:

CU(x, y1, ..., yd) =
d∑

i=1

CU(x, yi),

and the maximization of CU the maximization of the sum of the partial Category
Utilities :

max
〈x′,y′

1,...,y′
d〉

CU(x′, y′
1, . . . , y

′
d) = max

〈x′,y′
1,...,y′

d〉

d∑
i=1

CU(x′, y′
i).

This alone does not make the maximization process easier since all 2d points
on the convex hull would still have to be evaluated. The number of computations
would decrease if the maximization could happen for each term of the sum
independently of the others. If this would be done for arbitrary x′, the maximal
values for different terms could induce conflicting values for x′, resulting in an
inconsistent stamp point. But for fixed x′ each of the d terms can be maximized
separately and if x′ takes all values in [0, x], we are not losing any solutions:

max
〈x′,y′

1,...,y′
d〉

d∑
i=1

CU(x′, y′
i) = max

0≤x′≤x

{
d∑

i=1

max
y′

i

CU(x′, y′
i)

}

For each of the y′ this maximum is independent of the other y′
i. The minimum

and maximum values yi
min, yi

max are determined by the values x′ and yi. Thus,
maximizing the partial Category Utility turns into calculating it for the minimum
and maximum value and keeping the larger one:

max
0≤x′≤x

{
d∑

i=1

max
y′

i

CU(x′, y′
i)

}
= max

0≤x′≤x

{
d∑

i=1

max
y′

i∈{yi
min,yi

max}
CU(x′, y′

i)

}

Therefore for a given x′, 2d calculations have to be performed. Since x′ = 0
and x′ = x can be ignored, following the argument in the last paragraph of
section 4.1, a total of 2d(x − 2) calculations have to be performed to compute
the upper bound on the values of σ for a given br.

5 The CG-Algorithm

In this section we present the algorithm CG for cluster-grouping. We also explain
the upper bound calculation in more depth.

390 A. Zimmermann and L. De Raedt

CG
E - data set
σ - correlation measure

P := {�}, τ := −∞, S := ∅
while P �= ∅

bmp := arg maxub(b){b ∈ P}
C := ρ(bmp)
∀ci ∈ C

compute sp(ci), calculate σ(ci)
ubσ(ci) :=UpperBound(sp(ci))
τ := max{τ, σ(ci)}

S := {s ∈ S | σ(s) = τ} ∪ {c ∈ C | σ(c) = τ}
P := {p ∈ P | ubσ(p) ≥ τ} ∪ {c ∈ C | ubσ(c) ≥ τ}

return S

Fig. 2. The CG algorithm

The cluster-grouping algorithm CG (listed in Figure 2) is essentially a branch-
and-bound algorithm. Starting from the most general rule body (denoted by
#), in each iteration the rule body bmp ∈ P with the highest upper bound is
specialized. We use an optimal refinement operator ρ:

Definition 8 (Optimal Refinement Operator). Let L be a set of literals, ≺
a total order on L, τ ∈ R.

ρ(b) = {b ∧ li | li ∈ L, ubσ(li) ≥ τ, ∀l ∈ r : l ≺ li}

is an optimal refinement operator.

The operator ensures that each rule body will be created and evaluated at
most once during a run of the algorithm. Since only literals are added whose
upper bound exceeds the threshold, the resulting specializations have a chance
of exceeding or matching the current threshold. The created specializations are
then evaluated on the data set and the σ-scores and upper bounds are calculated.
All specializations whose upper bound is not above the threshold τ are pruned.
If possible, the threshold is raised. For the case shown in the Figure 2, the best
score seen so far is used as threshold, but the algorithm can be trivially modified
so that k best rules are found. Specializations whose score matches the current
threshold are added to the set of solutions S. The set of promising rule bodies P
is pruned using the threshold and all specializations whose upper bound exceeds
τ are added.

5.1 Upper Bound Computation

As the upper bound is so essential for the mining process, we explain the algo-
rithm for computing it in greater detail.

Inductive Querying for Discovering Subgroups and Clusters 391

UpperBound
σ - correlation measure
〈x, y1, ..., yd〉 - stamp point

x′ = 1
ubσ = 0
while x′ ≤ x − 1
∀i ∈ {1, ..., d}

yi
max = min{x′, yi}, yi

min = max{0, yi − (x − x′)}
addi = max{σ(x′, yi

max), σ(x′, yi
min)}

ubσ = max{ubσ, d
i=1 addi}

x′ + +
return ubσ

Fig. 3. Algorithm for calculating the upper bound on σ

It works as follows. The loop runs from 1 through x − 1 (since x′ = 0 and
x′ = x do not have to be considered). For each possible x′ value the correspond-
ing maximum and minimum values yi

max, yi
min of a variable y′

i, given yi and
x′, are calculated. Maximizing the correlation measure for fixed x′ amounts to
maximizing the terms σ(x′, y′

i). This is achieved by evaluating the measure for
each maximum and minimum value yi

max, yi
min and choosing the larger value of

those two to be added to the σ value for the current x′. The largest of these
x− 2 correlation values is taken as the upper bound on σ.

To calculate the maximum value of σ for a given x′, it is necessary to derive
the minimum and maximum value for each y′

i while considering the inequalities
in section 4.1. The details of deriving those extreme values are described in the
following paragraphs.

Minimum-Maximum-Derivation. From inequality 2 it follows that y′
i cannot

be greater than x′ and inequality 3 states that y′
i ≤ yi. Therefore yi

max can be
calculated as yi

max = min {x′, yi}.
Since the yi are occurrence counts in a data set, they cannot become nega-

tive. Inequality 4 finally has to be understood in the following way: since every
instance that is counted for a yi is also counted for x, a decrease in yi has to be
accompanied by a decrease in x. This means that yi

min cannot always be set to
zero. If the difference between x′ and x is less than yi, yi must not be decreased
by more than that difference. Therefore yi

min = max {0, yi − (x − x′)}.

Example 5. Lets consider two values for x′ during the loop. For x′ = 9,
y′
1 ≤ min{8, 9}, and since only one instance less would be covered, even if

“heavy”=True held for this instance, the occurrence of “heavy” cannot sink
below 7. Thus 7 ≤ y′

1 ≤ 8. By similar reasoning one arrives at 2 ≤ y′
2 ≤ 3.

For x′ = 4 the situation is somewhat different. Since x was reduced by 6 and
each of the instances not covered anymore might have included “heavy”=True
and “sportive”=True, the minimum values for y′

1 and y′
2 are max{0, 8− 6 = 2}

392 A. Zimmermann and L. De Raedt

and max{0, 3 − 6 = −3} respectively. Similarly, their value is bounded by the
respective values of the yi and x′ = 4. This leads to 2 ≤ y′

1 ≤ 4 and 0 ≤ y′
2 ≤ 3.

6 Experimental Evaluation

Let us now investigate the applicability and performance of the CG algorithm
on the three tasks addressed in this paper: correlated pattern mining, subgroup
discovery and conceptual clustering.

The data sets employed in the experiments were selected from the UCI Ma-
chine Learning Repository [14]. Since the approach is limited to data sets de-
scribed by binary attributes, continuous attributes were discretized and nominal
attributes binarized. Two options for discretization were employed. In the näıve
version, the mean value of an attribute is computed and taken as a threshold.
For some data sets this leads to unbalanced attributes. For these sets, we also
split the attribute values into two equal frequency bins. They are denoted with
a trailing “-equal” in the name

6.1 Correlated Pattern Mining

Since the rules mined by Morishita and Sese are special cases of clustering group-
ing rules and the pruning technique is based on the same principles, it follows
that the CG algorithm is applicable to correlated pattern mining and also that
it will produce the same solution as Morishita and Sese’s approach. We therefore
repeat no experiments on this task.

6.2 Subgroup Discovery

To evaluate CG on subgroup discovery, we compare it with CN2-WRAcc [1] in
two settings. The first setting corresponds to the inner loop of the CN2-WRAcc
algorithm that employs beam search to find the best rule; the second one to the
full CN2-WRAcc implementation that incorporates the covering algorithm.

CN2-WRAcc Beam Search. As argued before, this setting corresponds to
cluster-grouping. Whereas CG guarantees to find the optimal rules, the CN2-
WRAcc beam search is heuristic and offers no guarantees of optimality. There-
fore, in a first set of experiments concerning subgroup discovery, we investigate
(1) to what extent CN2-WRAcc beam search finds optimal rules and also (2)
how the CG algorithm compares with beam search in terms of efficiency. As the
criterion for the optimality (1), we computed all optimal rules using CG, and
verified whether CN2-WRAcc finds any optimal rule (OF in the tables) and all
rules with optimal values (AF). With regard to (2), we compared the number of
candidate rules that were evaluated by the two algorithms. Because the perfor-
mance of beam search depends heavily on the beam-size, we experimented with
different beam sizes.

Inductive Querying for Discovering Subgroups and Clusters 393

Table 3. Number of Candidate Rules evaluated and Optimality of Subgroups found
by Beam Search

Data Set BS1Avg BS5Avg BS10Avg CGMin CGMax CGAvg AF OF
Car 85 278 483 21 102 45 Yes Yes
Zoo 2133 9173 17630 147 5775 1525 No∗ Yes
Nursery 141 498 970 27 274 85 Yes Yes
Breast-W 529 1882 3539 91 99 95 Yes Yes
Voting Record 301 1139 2162 33 36 35 Yes Yes
Mushroom 1806 7674 15006 172 219 196 No∗∗ No∗∗

Soybean 2036 9076 17712 1943557 2097405 2007660 No∗ No∗

(13116+) (468869+) (284680+)

∗Not for all classes, for some not for all beam sizes
∗∗Not for all beam sizes
+Break value f = 5

The first column of Table 3, BS1Avg, denotes the number of candidate pat-
terns evaluated during a search with beam size 1 by CN2, BS5Avg and BS10Avg

for beam size 5 and 10 accordingly. The columns CGMin and CGMax denote
the minimum and maximum number of candidates generated by CG. For CG
those numbers vary with the class considered, whereas for CN2 these numbers
are quite close to one another for the different classes. This also explains why
for CN2 we report on the average values. In addition, the average number of
candidates CGAvg is reported to show the general behavior of the algorithm.

In most cases there is a substantial reduction in the number of candidate rules
considered during the search process even when the CG-algorithm is compared
to the greedy (i.e. beam size 1) approach. The difference is even more pronounced
for wider beams. For those cases where more candidate rules are considered by
CG, the beam search algorithm often either fails to uncover all interesting rules
or finds suboptimal ones. This also happens in cases in which the beam size
approach evaluates more rules than CG.

The experiments also show that increasing the beam size does not necessarily
lead to better results. For the first class considered in the soybean data set, beam
sizes 10 and 15 induce incomplete rule sets while beam sizes 4 and 5 generate
the correct results, showing the difficulty of guessing the right beam size. The
most likely explanation for this effect is probably that locally good solutions
are kept, that are excluded by narrower beams. If those solutions have a large
number of refinements they replace promising rules that would have been kept
for specialization in runs with smaller beam sizes. It might be interesting to
further investigate this phenomenon. The circumstances under which not (all)
optimal rules are found are denoted by the asterisks.

In some cases the CG algorithm investigates an excessive amount of candidate
rules. The effect occurs especially for rather small values of σ and is due to the
upper bound being overly optimistic. We therefore built a variant that is no
longer guaranteed to find the optimal rules: whenever the pruning threshold
is raised the number of candidate rules considered so far is memorized. Once

394 A. Zimmermann and L. De Raedt

f times that number of candidates has been visited without improvement of
the pruning threshold the search is terminated. The cutoff value f has to be
determined by the user. This version of the algorithm behaves like a local search
approach, assuming that failure to find a higher value in the (rather extensive)
neighborhood of the currently best solution means that a global maximum has
been found. This variant is computationally less expensive than CG, while it still
finds all optimal rules on the studied data sets even for small value of f (f = 5).

CN2-WRAcc Sequential Covering. In the second experiment, we employ
the sequential covering algorithm as a wrapper around CG and the CN2-WRAcc
beam search procedure. This corresponds to the original setting addressed by
CN2-WRAcc. The results are shown below (Table 4).

To consider the most favourable efficiency results for CN2-WRAcc, we report
only the minimum and maximum number of candidate rules considered using
beam-size 1. Wider beams will generate more candidate patterns. Averaging
these numbers is not really sensible since the impact of the number of iterations
per class is obviously strong. These results are contrasted with those for CG.
The last two columns convey the same information as in Table 3. To allow for a
fair comparison we considered larger beam sizes for CN2-WRAcc when deciding
whether the algorithm was capable of finding (all) optimal rules. The results
for sequential covering are in line with and confirm those for the underlying
components.

Table 4. Number of Candidate Rule evaluated and Optimality of Subgroups found by
the Sequential Covering Approach

Data Set BS1Min BS1Max CGMin CGMax CGAvg AF OF
Car 76 651 21 203 101 Yes Yes
Zoo 2109 2153 147 5775 1525 No∗ Yes
Nursery 129 292 27 274 95 Yes Yes
Breast-W 3703 6349 739 1382 1061 Yes Yes
Voting Record 903 903 2235 34659 18447 Yes Yes

(4480+) (3358+)
Mushroom 3558 8376 805 5638 3222 No∗∗ No∗∗

∗Not for all classes, for some not for all beam sizes
∗∗Not for all beam sizes
+Break value f = 5

6.3 Clustering

In the third experiment, we evaluate the performance of a hierarchical clustering
algorithm based on CG with Category Utility. CG is used to find the best rule
w.r.t. to Category Utility on the original data set. The rule found is used to split
the data set into two subsets. CG is then called recursively on these subsets.

Inductive Querying for Discovering Subgroups and Clusters 395

The algorithm continues until the best Category Utility on a subset falls below
a user-specified criterion. In this way, a kind of decision tree is induced that
can be used to assign future instances to the clusters. We compare our clus-
tering approach to the well-known clustering algorithm CobWeb. We employed
the Weka [15] implementation of CobWeb in our experiments. For each data set
with c classes, the two clustering algorithms were run until they constructed c
clusters. This was enforced by setting the minimal threshold for further refining
clusters to an adequate value.1 This was done to provide a fair basis for com-
parison. Furthermore, because CobWeb is incremental and sensitive to the order
in which the examples are presented, the CobWeb results were averaged over 10
randomized orders.

The results are shown in Table 5. The evaluation criteria employed to compare
the performance of both algorithms are:

– Rand Index [16] for comparing the agreement of the clusterings found,
– Category Utility of the discovered solutions.

The Rand index is the fraction of pairwise grouping decisions on which the
two clusterings agree. Let E = {e1, ..., en} be a data set and C1, C2 two clusterings
of E . For each pair of instances ei, ej, Cl either assigns them to the same cluster
or to different clusters. Let pos be the number of decision where ei, ej are in
the same cluster in both clusterings and neg the number of decisions where they
belong to different clusters in both Cl. The Rand Index is defined as:

Rand(C1, C2) =
pos + neg

n ∗ (n− 1)/2

Table 5. Category Utility and Rand Index for clusterings found

Data set CU CG CU CobWeb Rand Index
Breast-W 0.62 0.6496 ± 0.0001 0.91675 ± 0.006
Breast-W-equal 1.088 1.147 ± 1.95 ∗ 10−5 0.93093 ± 0.0025
Credit-A 0.379 0.374 ± 0.0178 0.95283 ± 0.148
Credit-A-equal 0.6241 0.6243 ± 0.00067 0.9959 ± 0.0034
Glass 0.301 0.291 ± 0.0125 0.90391 ± 0.081
Hepatitis 0.446 0.459 ± 0.0142 0.83667 ± 0.0534
Iris 0.5369 0.5321 ± 0.0083 0.91952 ± 0.0799
Sick 0.2132 0.2077 ± 0.0171 0.98196 ± 0.0567
Voting Record 1.362 1.468 ± 0.0001 0.85753 ± 0.0043
Zoo (6 clusters) 0.6398 0.6349 ± 0.005 0.994093 ± 0.0043
Zoo (5 clusters) 0.7187 0.7196 ± 0.004 0.964357 ± 0.0056

As can be seen in Table 5, the results of CG are comparable with those
of CobWeb. Indeed, the Category Utilities of the obtained clusterings are very
1 Due to the different orderings of the examples, CobWeb sometimes finds 5 clus-

ters and sometimes 6 in the zoo data set. Therefore, both 5 cluster and 6 cluster
experiments were performed using CG as well.

396 A. Zimmermann and L. De Raedt

similar. Sometimes, CG is slightly better, sometimes CobWeb is. Furthermore,
the Rand Index indicates that the agreement between the clusters found is high,
more than 90% in all but two cases.

On the other hand, CG computes definitions of the clusters, whereas CobWeb
does not. Therefore, as a final means of comparison, we employed the rule learner
PART [17], available within Weka, on the clusters produced by CobWeb. This
procedure allows one to obtain conjunctive rules describing the clusters com-
puted by CobWeb, which can then be compared to the conjunctive descriptions
generated by the CG.

Table 6. Rules learned on CobWeb clusters using PART

Data set CobWeb/CG-Rules Assignment Accuracy
Breast-W Superset 97.8%
Breast-W-equal Superset/Specializations 97.8%
Credit-A Same 100%
Credit-A-equal Same/Superset 99.7%
Glass Superset/Specializations 98.6%
Hepatitis Superset/Specializations 94.2%
Iris Same/Different 99.3%/100%
Sick Same/Superset 100%
Voting Record Superset 96.3
Zoo (6 clusters) Same 97%
Zoo (5 clusters) Same/Generalizations 98%

Table 6 shows the results of this evaluation. For each data set the relation
between rules learned on the CobWeb clusters and the rules computed by CG is
listed. Additionally, the right column, labeled Assignment Accuracy, shows
the fraction of instances that those rules would be assign to their correct clusters.
This is used as a measure for how well CobWeb’s clusters can be described by
conjunctive rules.

There are varying relations between CG’s and CobWeb’s rules. Superset
means that the CobWeb rules form a superset of the CG rules, Specializations
that they are specializations (Generalizations analogous), Same that the same
set of rules was found. Several entries for one data set denote that several Cob-
Web solutions (due to different ordering of instances) induced different rule sets
and therefore different relations.

A special case is the iris data set. On some CobWeb solutions PART induced
rules that were completely different from CG rules. Those had no misassign-
ments. The rules learned using PART provide further evidence that the results
obtained by CobWeb and CG are closely related. As CobWeb does not enforce
conjunctive descriptions of the clusters during its search process, it is more flex-
ible in assembling the clusters. However, because of the involvement of all at-
tributes in the representation the results are also less interpretable. Because the
resulting clusters are so close, CG seems preferable as it also produces symbolic
descriptions.

Inductive Querying for Discovering Subgroups and Clusters 397

7 Related Work

The CG algorithm is a substantial extension of the Morishita and Sese algorithm
for correlated pattern mining. They have also developed a clustering algorithm
based on their technique [13], the main difference being that their goal is to
cluster numerical values (gene expression levels) using interclass variance. They
also aim at describing the clusters found by conjunctions of binary attributes to
make the resulting clusters more human-understandable.

The cluster-grouping problem is also related to feature selection in concep-
tual clustering and semi-flexible prediction [18,19]. Talavera’s [18] motivation for
feature selection in conceptual clustering is somewhat related to our motivation
insofar as he is aiming for better comprehensibility, exclusion of irrelevant fea-
tures and more efficient clustering processes (both when creating and using the
clusters). There is also some similarity in where in the algorithm the feature
selection happens, since it is redone for each node in the hierarchical clustering
tree. This is called local or dynamic selection. The main differences are two-fold:
firstly, Talavera’s work still retains CobWeb’s representation and only achieves
better comprehensibility by reducing the number of considered attributes. Sec-
ondly, in his approach each attribute is scored before the actual clustering step,
whereas CG performs feature selection as part of the clustering process itself.

Cardie [19] defines semi-flexible prediction as learning to predict a set of
features known a priori as opposed to inflexible prediction (classification) and
flexible prediction (clustering). Her approach involves automated feature selec-
tion for each attribute to be predicted separately. These features are then used
in subsequent independent prediction of the attributes. In contrast, we attempt
to predict a disjunction of attributes from a shared set of antecedents instead.

Finally, cluster-grouping is in many aspects related to the confirmatory in-
duction setting in the Tertius system by Flach et al. [20]. As in CG, rules with
disjunctive rule heads are found. It is interesting to note in this context that the
rule head is treated as a single target while CG treats each literal separately.
Flach’s work abstracts from the general correlation setting in which correlation
is symmetric and instead focuses on the number of counter-instances to a given
rule, thus considering only directed associations. Using an optimistic estimate
(an upper bound) they prune non-promising candidates and find and rank op-
timal rules. Focusing on counter instances only allows more flexibility regarding
the rule head, i.e. the set of literals need not be fixed.

8 Conclusion and Future Work

We have introduced the problem of cluster-grouping and argued that it unifies
several popular data mining tasks. We developed the algorithm CG, a branch-
and-bound algorithm that relies on convex correlation functions to find opti-
mal solutions. The cluster-grouping framework lends itself in a natural way for
inductive querying. However, rather than imposing normal constraints, cluster-
grouping queries are a form of optimization query, in that they look for the k
best patterns.

398 A. Zimmermann and L. De Raedt

We have shown that our approach is an extension of Morishita’s and Sese’s
work in that it allows one to deal with several target attributes. We have provided
experimental evidence that the CG algorithm is well-suited for subgroup discov-
ery in that it offers significant advantages when compared to the CN2-WRAcc
approach, albeit sometimes at the cost of efficiency. CG is also competitive with
one of the best-known clustering algorithms, CobWeb, while creating better in-
terpretable solutions.

Further research will proceed in several directions. First, as can be seen in
the experiments, the effectiveness of the pruning step depends strongly on the
tightness of the upper bound calculated. Therefore, it is desirable to tighten
future support estimates and therefore attainable values of σ. Second, since
Information Gain is also convex, the technique should in principle be usable in
the formation of multi-variate decision trees [21]. Third, probably necessary for
usage with decision trees and an interesting extension in itself is the question of
how to extend the CG to handle target attributes having more than two values.
Fourth, since Foil-Gain is similar to Information Gain and also (under certain
assumptions) a convex function, extension of the CG algorithm to first-order
logic should be possible. Finally, in the context of inductive querying, some new
challenges are raised by optimization queries. Most notably, the question arises
as to whether we can integrate inductive optimization queries with the more
traditional monotonic and anti-monotonic constraints that have been employed
within the inductive querying literature.

Acknowledgments

We sincerely thank Shinichi Morishita and Jun Sese for helpful discussion and
comments on our work. We also thank our fellow researchers for constructive
comments and helpful suggestions.

This work was partly supported by the EU IST project cInQ (consortium on
discovering knowledge with Inductive Queries), contract no. IST-2000-26469.

References

1. Todorovski, L., Flach, P.A., Lavrač, N.: Predictive performance of weighted relative
accuracy. In Zighed, D.A., Komorowski, H., Zytkow, J.M., eds.: PKDD 2000, Lyon,
France, Springer (2000) 255–264

2. Klösgen, W.: Efficient discovery of interesting statements in databases. Journal of
Intelligent Information Systems 4 (1995) 53–69

3. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning 2 (1987) 139–172

4. Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., Freeman, D.: Autoclass:
A bayesian classification system. In Laird, J.E., ed.: ICML 1988, Ann Arbor,
Michigan, USA, Morgan Kaufmann (1988) 54–64

5. Morishita, S., Sese, J.: Traversing itemset lattices with statistical metric pruning.
In: Proceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, Dallas, Texas, USA, ACM (2000) 226–236

Inductive Querying for Discovering Subgroups and Clusters 399

6. Bay, S.D., Pazzani, M.J.: Detecting group differences: Mining constrast sets. Data
Mining and Knowledge Discovery 5 (2001) 213–246

7. Gluck, M.A., Corter, J.E.: Information, uncertainty, and the utility of categories.
In: Proceedings of the 7th Annual Conference of the Cognitive Science Society,
Irvine, California, USA, Lawrence Erlbaum Associate (1985) 283–287

8. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
mun. ACM 39 (1996) 58–64

9. Raedt, L.D.: A perspective on inductive databases. SIGKDD Explorations 4 (2002)
69–77

10. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3 (1989)
261–283

11. Lavrač, N., Flach, P.A., Zupan, B.: Rule evaluation measures: A unifying view. In
Džeroski, S., Flach, P.A., eds.: ILP 1999, Bled, Slovenia, Springer (1999) 174–185

12. Horst, R., Tuy, H.: Global Optimization - Deterministic Approaches. Springer
(1996)

13. Sese, J., Morishita, S.: Itemset classified clustering. In Boulicaut, J.F., Esposito,
F., Giannotti, F., Pedreschi, D., eds.: PKDD 2004, Pisa, Italy, Springer (2004)
398–409

14. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
15. Frank, E., Witten, I.H.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann (1999)
16. Rand, W.M.: Objective criteria for evaluation of clustering methods. Journal of

the American Statistical Association 66 (1971) 846–850
17. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.

In Shavlik, J.W., ed.: ICML 1998, Madison, Wisconsin, USA, Morgan Kaufmann
(1998) 144–151

18. Talavera, L.: Dynamic feature selection in incremental hierarchical clustering.
In de Mántaras, R.L., Plaza, E., eds.: ECML 2000, Barcelone, Catalonia, Spain,
Springer (2000) 392–403

19. Cardie, C.: Using decision trees to improve case-based learning. In: ICML 1993,
Amherst, Massachusetts, USA, Morgan Kaufmann (1993) 25–32

20. Flach, P.A., Lachiche, N.: Confirmation-guided discovery of first-order rules with
Tertius. Machine Learning 42 (2001) 61–95

21. Murthy, S.K.: On Growing Better Decision Trees from Data. PhD thesis, John
Hopkins University, Baltimore, Maryland, USA (1997)

Author Index

Bayardo, Roberto J. 1
Besson, Jérémy 328
Bonchi, Francesco 14
Botta, Marco 267
Boulicaut, Jean-François 64, 328
Bringmann, Björn 38
Bucila, Cristian 216

Calders, Toon 64
Careggio, Danilo 295

De Marchi, Fabien 81
De, Nilanjana 362
De Raedt, Luc 380
Diop, Cheikh Talibouya 102
Džeroski, Sašo 127

Esposito, Roberto 267, 295

Flouvat, Frédéric 81

Gallo, Arianna 267
Gamberger, Dragan 243
Gao, Feng 362
Gehrke, Johannes 216
Giacometti, Arnaud 102
Giannotti, Fosca 14
Greco, Gianluigi 155
Guzzo, Antonella 155

Han, Jiawei 172
Hätönen, Kimmo 196

Kifer, Daniel 216
Klemettinen, Mika 196

Lanzi, Pier Luca 295
Laurent, Dominique 102

Lavrač, Nada 243
Ljubič, Peter 127

Manco, Giuseppe 155
Mannila, Heikki 348
Matera, Maristella 295
Meo, Rosa 267, 295
Miettinen, Markus 196

Palmerini, Paolo 362
Parimi, Nagender 362
Pathuri, Jeevan 362
Pedreschi, Dino 14
Pensa, Ruggero G. 328
Petit, Jean-Marc 81
Phoophakdee, Benjarath 362
Pontieri, Luigi 155

Rigotti, Christophe 64
Robardet, Céline 328

Saccà, Domenico 155
Seppänen, Jouni K. 348
Spyratos, Nicolas 102

Todorovski, Ljupčo 127

Urban, Joe 362

White, Walker 216

Yang, Jiong 172
Yin, Xiaoxin 172
Yu, Philip S. 172

Zaki, Mohammed J. 362
Zimmermann, Albrecht 380

	Frontmatter
	The Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery
	A Relational Query Primitive for Constraint-Based Pattern Mining
	To See the Wood for the Trees: Mining Frequent Tree Patterns
	A Survey on Condensed Representations for Frequent Sets
	Adaptive Strategies for Mining the Positive Border of Interesting Patterns: Application to Inclusion Dependencies in Databases
	Computation of Mining Queries: An Algebraic Approach
	Inductive Queries on Polynomial Equations
	Mining Constrained Graphs: The Case of Workflow Systems
	CrossMine: Efficient Classification Across Multiple Database Relations
	Remarks on the Industrial Application of Inductive Database Technologies
	How to Quickly Find a Witness
	Relevancy in Constraint-Based Subgroup Discovery
	A Novel Incremental Approach to Association Rules Mining in Inductive Databases
	Employing Inductive Databases in Concrete Applications
	Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining
	Boolean Formulas and Frequent Sets
	Generic Pattern Mining Via Data Mining Template Library
	Inductive Querying for Discovering Subgroups and Clusters
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

