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Abstract. The difficulty of obtaining data from impostors and the scarcity of 
data are two factors that have a large influence in the estimation of speaker-
dependent thresholds in text-dependent speaker verification. Furthermore, the 
inclusion of low quality utterances (background noises, distortion...) makes the 
process even harder. In such cases, the comparison of these utterances against 
the model can generate non-representative scores that deteriorate the correct es-
timations of statistical data from client scores. To mitigate the problem, some 
methods propose the suppresion of those scores which are far from the esti-
mated scores mean. The tecnique results in a ‘hard decision’ that can produce 
errors especially when the number of scores is low. We propose here to take a 
‘softer decision’ and weight scores according to their distance to the estimated 
scores mean. The Polycost and the BioTech databases have been used to show 
the effectiveness of the proposed method. 

1   Introduction 

The speaker verification is the process of deciding whether a speaker corresponds to a 
known voice. In speaker verification, the individual identifies her/himself by means of 
a code, login, card... Then, the system verifies her/his identity. It is a 1:1 process and 
it can be done in real-time. The result of the whole process is a binary decision. An 
utterance is compared to the speaker model and it is considered as belonging to the 
speaker if the Log-Likelihood Ratio (LLR) –the score obtained from the comparison-  
surpasses a predefined threshold and rejected if not. 

In order to compare two systems, it is common to use the Equal Error Rate (EER), 
obtained when the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) 
are equal. However, in real applications, a specific FAR or FRR is usually required. 
In this case, it is necessary to tune the speaker thresholds to achieve the desired rates. 

In a typical Speaker Verification (SV) application, the user enrolls the system by 
pronouncing some utterances in order to estimate a speaker model. The enrollment 
procedure is one of the most critical stages of a SV process. At the same time, it  
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becomes essential to carry out a successful training process to obtain a good perform-
ance. The importance and sensitiveness of the process force us to pay special attention 
on it. Consequently, it is necessary to protect the enrollment procedure by giving the 
user some security mechanisms, like extra passwords or by providing a limited physi-
cal access. A general block diagram of an SV process can be found in Figure 1: 

 
 

 
 
 
 
 
 
 
 

Fig. 1. Block diagram of a SV process 

In real speaker verification applications, the speaker dependent thresholds should 
be estimated a priori, using the speech collected during the speaker models training. 
Besides, the client utterances must be used to train the model and also to estimate the 
threshold because data is scarce. It is not possible to use different utterances for both 
stages.  

In development tasks, the threshold is usually set a posteriori. However, in real ap-
plications, the threshold must be set a priori. Furthermore, a speaker-dependent 
threshold can sometimes be used because it better reflects speaker peculiarities and 
intra-speaker variability than a speaker-independent threshold. The speaker dependent 
threshold estimation method uses to be a linear combination of mean, variance or 
standard deviation from clients and/or impostors. 

Human-machine interaction can elicit some unexpected errors during training due 
to background noises, distortions or strange articulatory effects. Furthermore, the 
more training data available, the more robust model can be estimated. However, in 
real applications, one can normally afford very few enrolment sessions. In this con-
text, the impact of those utterances affected by adverse conditions becomes more 
important in such cases where a great amount of data is not available. Score pruning 
(SP) [1,2,3] techniques suppress the effect of non-representative scores, removing 
them and contributing to a better estimation of means and variances in order to set the 
speaker dependent threshold. The main problem is that in a few cases the elimination 
of certain scores can produce unexpected errors in mean or variance estimation. In 
these cases, threshold estimation methods based on weighting the scores reduce the 
influence of the non-representative ones. The methods use a sigmoid function to 
weight the scores according to the distance from the scores to the estimated scores 
mean. 

A theoretical approach of the state-of-the-art is reported on the next section. The 
weighting threshold estimation method is developed in section 3. The experimental 
setup, the description of the databases and the evaluation with empirical results are 
shown in section 4, followed by conclusions in section 5. 
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2   Theoretical Approach 

Several approaches have been proposed to automatically estimate a priori speaker 
dependent thresholds. Conventional methods have faced the scarcity of data and the 
problem of an a priori decision, using client scores, impostor data, a speaker inde-
pendent threshold or some combination of them. In [4], one can find an estimation of 
the threshold as a linear combination of impostor scores mean ( µ I ) and standard 
deviation from impostors σI as follows:  

βσµα +−=Θ )( II
 (1) 

where α and β should be empirically obtained. 
Three more speaker dependent threshold estimation methods similar to (1) are in-

troduced in (2), (3) and (4) [5, 6]: 

2
II σαµ +=Θ  (2) 

where 2ˆ
X

σ  is the variance estimation of the impostor scores, and: 

CI µαµα )1( −+=Θ  (3) 

)( ICSI µµα −+Θ=Θ  (4) 

where µc is the client scores mean, ΘSI is the speaker independent threshold and α is a 
constant, different for every equation and empirically determined. Equation (4) is 
considered as a fine adjustment of a speaker independent threshold. 

Another expression introduced in [1] encompasses some of these approaches: 

CII µασβµα )1()( −++=Θ  (5) 

where α and β are constants which have to be optimized from a pool of speakers. 
An approach introduced by the authors in [2] uses only data from clients: 

CC σαµ −=Θ  (6) 

where µC is the client scores mean, σC is the standard deviation from clients and α is a 
constant empirically determined. Equation (6) is very similar to (2), but uses standard 
deviation instead of variance and the client mean instead of impostors mean. 

Some other methods are based on FAR and FRR curves [7]. Speaker utterances 
used to train the model are also employed to obtain the FRR curve. On the other hand, 
a set of impostor utterances is used to obtain the FAR curve. The threshold is adjusted 
to equalize both curves. 

There are also other approaches [8] based on the difficulty of obtaining impostor 
utterances which fit the client model, especially in phrase-prompted cases. In these 
cases, it is difficult to secure the whole phrase from impostors. The solution is to use 
the distribution of the ‘units’ of the phrase or utterance rather than the whole phrase. 
The units are obtained from other speakers or different databases. 
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On the other hand, it is worth noting that there are other methods which use differ-
ent estimators for mean and variance. With the selection of a high percentage of 
frames and not all of them, those frames which are out of range of typical frame like-
lihood values are removed. In [9], two of these methods can be observed, classified 
according to the percentage of used frames. Instead of employing all frames, one of 
the estimators uses 95% most typical frames discarding 2.5% maximum and mini-
mum frame likelihood values. An alternative is to use 95% best frames, removing 5% 
minimum values. 

Normalization techniques [10] can also be used for threshold setting purposes. 
Some normalization techniques follow the Bayesian approach while other techniques 
standardise the impostor score distribution. Furthermore, some of them are speaker-
centric and some others are impostor-centric.  

Zero normalization (Znorm) [11, 12, 13] estimates mean and variance from a set of 
impostors as follows: 

I
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 (7) 

where SM are the client scores, µI is the estimated mean from impostors and σI the 
estimated variance from impostors [14]. 

We should also mention another threshold normalization technique such as Test 
normalization (Tnorm) [13, 15], which uses impostor models instead of impostor 
speech utterances to estimate impostor score distribution. The incoming speech utter-
ance is compared to the speaker model and to the impostor models. That is the differ-
ence with regard to Znorm. Tnorm also follows the equation (7). 

Tnorm has to be performed on-line, during testing. It can be considered as a test-
dependent normalization technique while Znorm is considered as a speaker-dependent 
one. In both cases, the use of variance provides a good approximation for the impos-
tor distribution. 

Furthermore, Tnorm has the advantage of matching between test and normalization 
because the same utterances are used for both purposes. That is not the case for 
Znorm. 

Finally, we can also consider Handset normalization (Hnorm) [16, 17, 18]. It is a 
variant of Znorm that normalizes scores according to the handset. This normalization 
is very important especially in those cases where there is a mismatch between training 
and testing. 

Since handset information is not provided for each speaker utterance, a maximum 
likelihood classifier is implemented with a GMM for each handset [17]. With this 
classifier, we decide which handset is related to the speaker utterance and we obtain 
mean and variance parameters from impostor utterances. The normalization can be 
applied as follows: 

)(

)(
, handset

handsetS
S

I

IM
normM σ

µ−
=  (8) 

where µI and σI are respectively the mean and variance obtained from the speaker 
model against impostor utterances recorded with the same handset type, and SM are 
the client scores. 
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3   Threshold Estimation Based on Weighting Scores 

A threshold estimation method that weights the scores according to the distance dn 
from the score to the mean is introduced [19] in this section. It is considered that a 
score which is far from the estimated mean comes from a non-representative utterance 
of the speaker. The weighting factor wn is a parameter of a sigmoid function and it is 
used here because it distributes the scores in a nonlinear way according to their prox-
imity to the estimated mean. The expression of wn is:  

ndCn e
w −+

=
1

1  (9) 

where wn is the weight for the utterance n, dn is the distance from the score to the 
mean and C is a constant empirically determined in our case. 

The distance dn is defined as: 

snn sd µ−=     (10) 

where sn are the scores and µs is the estimated scores mean. 
The constant C defines the shape of the sigmoid function and it is used to tune the 

weight for the sigmoid function defined in Equation (9). A positive C will provide 
increasing weights with the distance while a negative C will give decreasing values. A 
typical sigmoid function, with C=1 is shown in Figure 2:  

The average score is obtained as follows:  
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Fig. 2. Sigmoid function 
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where wn is the weight for the utterance n defined in (9), sn are the scores and sT is the 
final score.  

The standard deviation is also weighted in the same way as the mean. This method 
is called Total Score Weighting (T-SW). 

On the other hand, it is possible to assign weights different from 1.0 only to a cer-
tain percentage of scores –the least representative- and not to all of them. This method 
is called Partial Score Weighting (P-SW). Normally, the farthest scores have in this 
case a weight different from 1.0. 

4   Experiments 

4.1   The Polycost Database 

The Polycost database has been used for the experiments in this work. It was recorded 
by the participants of the COST250 Project. It is a telephone speech database with 
134 speakers, 74 male and 60 female. The 85% of the speakers are between 20 and 35 
years old. Almost each speaker has between 6 and 15 sessions of one minute of 
speech. Most speakers were recorded during 2-3 months, in English and in their 
mother tongue. Calls were made from the Public Switched Telephone Network 
(PSTN). 

Each session contains 14 items: 4 repetitions of a 7-digit client code, five 10-digit 
sequences, 2 fixed sentences, 1 international phone number and 2 more items of spon-
taneous speech in speaker’s mother tongue. For our experiments, we will use only 
digit utterances in English. 

4.2   The BioTech Database 

One of the databases used in this work has been recorded –among others- by the au-
thor and has been especially designed for speaker recognition. It is called the BioTech 
database and it belongs to the company Biometric Technologies, S.L. It includes land-
line and mobile telephone sessions. A total number of 184 speakers were recorded by 
phone, 106 male and 78 female. It is a multi-session database in Spanish, with 520 
calls from the Public Switched Telephone Network (PSTN) and 328 from mobile 
telephones. One hundred speakers have at least 5 or more sessions. The average num-
ber of sessions per speaker is 4.55. The average time between sessions per speaker is 
11.48 days. 

Each session includes: 

 different sequences of 8-digit numbers, repeated twice. They were the Span-
ish personal identification number and that number the other way round. 
There were also two more digits: 45327086 and 37159268. 

 different sequences of 4-digit numbers, repeated twice. They were one ran-
dom number and the fixed number 9014. 

 different isolated words. 
 different sentences. 
 1 minute long read paragraph. 
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 1 minute of spontaneous speech, suggesting to talk about something related 
to what the user could see around, what (s)he had done at the weekend, the 
latest book read or the latest film seen. 

4.3   Setup 

In our experiments, utterances are processed in 25 ms frames, Hamming windowed 
and pre-emphasized. The feature set is formed by 12th order Mel-Frequency Cepstral 
Coefficients (MFCC) and the normalized log energy. Delta and delta-delta parameters 
are computed to form a 39-dimensional vector for each frame. Cepstral Mean Sub-
traction (CMS) is also applied. 

Left-to-right HMM models with 2 states per phoneme and 1 mixture component 
per state are obtained for each digit. Client and world models have the same topology. 
The silence model is a GMM with 128 Gaussians. Both world and silence models are 
estimated from a subset of their respective databases. 

The speaker verification is performed in combination with a speech recognizer for 
connected digits recognition. During enrolment, those utterances catalogued as "no 
voice" are discarded. This ensures a minimum quality for the threshold setting. 

In the experiments with the BioTech database, clients have a minimum of 5 ses-
sions. It yields 100 clients. We used 4 sessions for enrolment –or three sessions in 
some cases- and the rest of sessions to perform client tests. Speakers with more than 
one session and less than 5 sessions are used as impostors. 4- and 8-digit utterances 
are employed for enrolment and 8-digit for testing. Verbal information verification 
[20] is applied as a filter to remove low quality utterances. The total number of train-
ing utterances per speaker goes from 8 to 48. The exact number depends on the 
number of utterances discarded by the speech recognizer. During test, the speech 
recognizer discards those digits with a low probability and selects utterances which 
have exactly 8 digits. A total number of 20633 tests have been performed for the 
BioTech database, 1719 client tests and 18914 impostor tests.  

It is worth noting that land-line and mobile telephone sessions are used indistinctly 
to train or test. This factor increases the error rates. 

On the other hand, only digit utterances are used to perform tests with the Polycost 
database. After using a digit speech recognizer, those speakers with at least 40 utter-
ances where considered as clients. That yields 99 clients, 56 male and 43 female. 
Furthermore, the speakers with a number of recognized utterances between 25 and 40 
are treated as impostors. If the number of utterances does not reach 25, those speakers 
are used to train the world model. We use 40 utterances to train every client model. 

In the experiments with the Polycost database, 43417 tests were performed, 2926 
client tests and 40491 impostor tests. All the utterances come from landline phones in 
contrast with the utterances that belong to the BioTech database. 

4.4   Results 

In this section, the experiments show the performance of the threshold estimation 
methods proposed here. The following table shows a comparison of the EER for 
threshold estimation methods with client data only, without impostors and for the 
baseline Speaker-Dependent Threshold (SDT) method defined in Equation (6). 
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As it can be seen in Table 1, the T-SW method performs better than the baseline 
and even than the SP method. The P-SW performs better than the baseline too, but not 
than the SP. The results shown here correspond to the weighting of the scores which 
 

Table 1. Comparison of threshold estimation methods in terms of Equal Error Rate 

SDT Baseline SP T-SW P-SW 

EER (%) 5.89 3.21 3.03 3.73 
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Fig. 2. Evolution of the EER with the variation of C 

 

Fig. 3. Variation of the weight (wn) with respecto to the distance (dn) between the scores and 
the scores mean 
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distance to the mean is bigger than the 10% of the most distant score. It has been 
found that the minimum EER is secured when every one of the scores is weighted. It 
means that the optimal case for the P-SW method is the T-SW method. 

In Figure 2, we can see the EER with respect to the constant C. It has been shown 
that the system performs better for a C = -2.75.  

Figure 3 shows the function of the distance and the weight for the best C = -2.75. 
The weight exponentially decreases with the distance. 

Table 2 shows the experiments with speaker-dependent thresholds using only data 
from clients following Equation (6). 

The best EER is obtained for the Score Pruning (SP) method. The T-SW performs 
slightly worse and P-SW is the worst method. SP and SW methods improve the error 
rates with regard to the baseline. Results are given for a constant C = -3.0. 

In Figure 4, the best EER is obtained for C = -3. This value is very similar to the 
one obtained for the BioTech database (C = -2.75). 

Table 2. Comparison of threshold estimation methods for the Polycost database 

SDT Baseline SP T-SW P-SW 

EER (%) 1.70 0.91 0.93 1.08 
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Fig. 4. Evolution of the EER with the variation of C 

The comparison of the results obtained with both databases can be seen in Figure 5. 
First of all, EERs are lower for the Polycost database, mainly due to the fact that utter-
ances are recorded from the PSTN while in the BioTech database calls come from the 
landline phones and the mobile phones. Furthermore, in the experiments with the Bio-
Tech database, some clients are trained for example with utterances recorded from 
fixed-line phones and then tested with utterances from mobile phones and this random 
use of sessions decreases performance. 
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Fig. 5. Comparison of EERs obtained for the BioTech and the Polycost databases 

On the other hand, the improvement obtained with SP and SW methods is larger in 
experiments with the Polycost database where it almost reaches the 50%. 

Otherwise, SP method gives an EER similar to the T-SW method in experiments 
with the Polycost database. On the contrary, T-SW method performs clearly better 
than SP method in the experiments with the BioTech database. The P-SW method is 
the method with the worst performance in both cases. 

5   Conclusions 

The automatic estimation of speaker dependent thresholds has revealed as a key factor 
in speaker verification enrolment. Threshold estimation methods mainly deal with the 
sparseness of data and the difficulty of obtaining data from impostors in real-time 
applications. These methods are currently a linear combination of the estimation of 
means and variances from clients and/or impostor scores. When we have only a few 
utterances to create the model, the right estimation of means and variances from client 
scores becomes a real challenge. 

Although the SP methods try to mitigate main problems by removing the outliers, 
another problem arises when only a few scores are available. In these cases, the sup-
pression of some scores worsens estimations. For this reason, weighting threshold 
methods proposed here use the whole set of scores but weighting them in a nonlinear 
way according to the distance to the estimated mean. Weighting threshold estimation 
methods based on a nonlinear function improve the baseline speaker dependent 
threshold estimation methods when using data from clients only. The T-SW method is 
even more effective than the SP ones in the experiments with the BioTech database, 
where there is often a mismatched handset between training and testing. On the con-
trary, with the Polycost database, where the same handset (landline network) is used, 
both of them perform very similar. 
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