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Abstract. The new method of segmented wavelet transform (SegWT)
makes it possible to compute the discrete-time wavelet transform of a sig-
nal segment-by-segment. This means that the method could be utilized
for wavelet-type processing of a signal in “real time”, or in case we need
to process a long signal (not necessarily in real time), but there is insuf-
ficient computational memory capacity for it (for example in the signal
processors). Then it is possible to process the signal part-by-part with
low memory costs by the new method. The method is suitable also for
the speech processing, e.g. denoising the speech signal via thresholding
the wavelet coefficients or speech coding. In the paper, the principle of
the segmented forward wavelet transform is explained and the algorithm
is described in detail.

1 Introduction

There are a number of theoretical papers and practical applications of the wavelet
transform. However, all of them approach the problem from such a point of view
as if we knew the whole of the signal (no matter how long it is). Due to this
assumption, we cannot perform the wavelet-type signal processing in real time in
this sense. Of course there are real-time applications of the wavelet type, but, all
of them utilize the principle of overlapping segments of the “windowed” signal
(see for example [1]). In the reconstruction part of their algorithms they certainly
introduce errors into the processing, because the segments are assembled using
weighted averages.

Processing a signal in “real time” actually means processing it with min-
imum delay. A signal, which is not known in advance, usually comes to the
input of a system piecewise, by mutually independent segments that have to be
processed and, after the modification, sent to the output of the system. This
is typically the case of processing audio signals, in particular speech signals in
telecommunications.

The new method, the so-called segmented wavelet transform (SegWT1), en-
ables this type of processing. It has a great potential application also in cases
1 we introduce abbreviation SegWT (Segmented Wavelet Transform), because SWT

is already reserved for stationary wavelet transform.
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Fig. 1. Signal (top) and its scalogram (bottom). Scalogram is a type of graph repre-
senting the frequency contents of a signal in time. It is constructed from the wavelet
coefficients.

when it is necessary to process a long signal off-line and no sufficient memory
capacity is available. It is then possible to use this new method for equivalent seg-
mentwise processing of the signal and thus save the storage space. In this sense
the SegWT algorithm corresponds to overlap-add and overlap-save algorithms
in Fourier-type linear filtering.

Another possible application of the SegWT algorithm is the instantaneous
visualization of signal using an imaging technique referred to as “scalogram”,
see Fig. 1. The decomposition depth is d = 5 in this Figure. The bigger is
the absolute value of the single coefficient, the lighter is the color saturation
of the respective cell in the graph. In fact, plotting scalogram is a technique
very similar to plotting a spectrogram in real time. In wavelet transformation
there is an advantage in that the signal need not be weighted with windows,
which results in a distortion of the frequency information, as is the case with
the spectrogram. Moreover, there is one more good thing about it: a scalogram
created by means of the SegWT is quite independent of the chosen length of
segment.

In the available literature, this way of performing the wavelet transform is
practically neglected, and this was the reason why our effort was devoted to
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developing modified algorithm. In fact, a modified method of forward wavelet
transform is presented in this paper.

In the next Section the discrete-time wavelet transform (DTWT) algorithm
is presented in detail. This is because we need to have extended knowledge of it
for the derivation of the new method. The subsequent parts are then devoted to
the segmented wavelet transform.

2 The Classical DTWT Algorithm

Algorithm 1. (decomposition pyramid algorithm DTWT)
Let x be a discrete input signal of length s, the two wavelet decomposition
filters of length m are defined, highpass g and lowpass h, d is a positive interger
determining the decomposition depth. Also, the type of boundary treatment
[6, ch. 8] must be known.

1. We denote the input signal x as a(0) and set j = 0.
2. One decomposition step:
(a) Extending the input vector. We extend a(j) from both the left and the

right side by (m − 1) samples, according to the type of boundary treat-
ment.

(b) Filtering. We filter the extended signal with filter g, which can be ex-
pressed by their convolution.

(c) Cropping. We take from the result just its central part, so that the re-
maining “tails” on both the left and the right sides have the same length
m − 1 samples.

(d) Downsampling (decimation). We downsample this vector, e.g. leave just
its even samples (supposing the vector is indexed beginning with 1).

We denote the resulting vector d(j+1) and store it.
We repeat items (b)–(d), now with filter h, denoting and storing the result
as a(j+1).

3. We increase j by one. If it now holds j < d, we return to item 2., in the
other case the algorithm ends.

Remark. After algorithm 1 has been finished, we hold the wavelet coefficients
stored in d + 1 vectors a(d),d(d),d(d−1), . . . ,d(1).

One step of the wavelet decomposition principle can be seen in Figure 2.

3 The Method of Segmented Wavelet Transform

3.1 Motivation and Aim of the Method

Regularly used discrete-time wavelet transform (see Section 2) is suitable for
processing signals “off-line”, i.e. known before processing, even if very long. The
task for the segmented wavelet transform, SegWT, is naturally to allow signal
processing by its segments, so that in this manner we get the same result (same
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a(j)

a(j+1) d(j+1)

h, ↓ 2 g, ↓ 2

Fig. 2. One step of the wavelet decomposition. Approximate coefficients of the j-th
level (vector a(j)) are decomposed into approximate and detail coefficients of level j +1
via filtering with h and g and decimation (denoted ↓ 2).

wavelet coefficients) as in the ordinary DTWT case. In this problem, the fol-
lowing parameters play a crucial role.

m wavelet filter length, m > 0,
d transform depth, d > 0,
s length of segment, s > 0.

The derivation of the SegWT algorithm requires a very detailed knowledge of
the DTWT algorithm. Thanks to this it is possible to deduce fairly sophisticated
rules how to handle the signal segments. We have found that in dependence on
m, d, s, it is necessary to extend every segment from the left by an exact number
of samples from the preceding segment and from the right by another number
of samples from the subsequent segment. However, every segment has to be
extended by a different length from the left and the right, and these lengths can
also differ from segment to segment! Also the first and the last segments have
to be handled in a particular way.

3.2 Important Theorems Derived from the DTWT Algorithm

Before we introduce detailed description of the SegWT algorithm, several the-
orems must be presented. More of them and their proofs can be found in [5,
ch. 8]. We assume that the input signal x is divided into S ≥ 1 segments of
equal length s. Single segments will be denoted 1x,2x, . . . ,Sx. The last one can
be of a length lower than s. See Fig. 3.

By the formulation that the coefficients (or more properly two sets of coef-
ficients) from the k-th decomposition level follow-up on each other we mean a
situation when two consecutive segments are properly extended see Figs. 3, 4,
so that applying the DTWT2 of depth k separately to both the segments and
joining the resultant coefficients together lead to the same set of coefficients as
computing it via the DTWT applied to the two segments joined first.

2 With step 2(a) omitted.
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Fig. 3. Scheme of signal segmentation. The input signal x (a) is divided into segments
of equal length, the last one can be shorter than this (b); the n-th segment of x is
denoted by nx.

Theorem 1. In case that the consecutive segments have

r(k) = (2k − 1)(m − 1) (1)

common input signal samples, the coefficients from the k-th decomposition level
follow-up on each other.

Thus, for a decomposition depth equal to d it is necessary to have r(d) =
(2d− 1)(m − 1) common samples in the two consecutive extended segments.

The aim of the following part of the text is to find the proper extension of
every two consecutive signal segments. We will show that the length of such
extension must comply with the strict rules derived from the theorems below.

The extension of a pair of consecutive segments, which is of total length r(d),
can be divided into the right extension of the first segment (of length P ) and the
left extension of the following segment (of length L), while r(d) = P+L. However,
the lengths L ≥ 0, P ≥ 0 cannot be chosen arbitrarily. The lengths L, P are not
uniquely determined in general. The formula for the choice of extension Lmax,
which is unique and the most appropriate in case of real-time signal processing,
is given in Theorem 2.

Theorem 2. Let a segment be given whose length including its left extension is
l. The maximal possible left extension of the next segment, Lmax, can be computed
by the formula

Lmax = l − 2d ceil
(

l − r(d)
2d

)
. (2)

The minimal possible right extension of the given segment is then naturally

Pmin = r(d) − Lmax. (3)

For the purposes of the following text, it will be convenient to assign the
number of the respective segment to the variables Lmax, Pmin, l, i.e. the left
extension of the n-th segment will be of length Lmax(n), the right extension
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Fig. 4. Illustration of extending of the segments

will be of length Pmin(n) and the length of the original n-th segment with the
left extension joined will be denoted l(n). Using this notation we can rewrite
equation (3) as

Pmin(n) = r(d) − Lmax(n + 1). (4)

Let us now comment on the special situation of the first or the last seg-
ment. These naturally represent the “boundaries” of the signal. The discrete-
time wavelet transform uses several modes how to treat the boundaries and we
must preserve these modes also in our modified algorithm. Therefore we must
treat the first and the last segment separately and a bit differently from the
other segments. For details and proofs we again refer to [5]. The appropriate
procedure is to extend the first segment from the left by r(d) zero samples, i.e.
Lmax(1) = r(d), and to process it using Algorithm 4. Similarly the last segment
has to be extended by r(d) zeros from the right and processed using Algorithm 5.

Theorem 3. The length of the right extension of the n-th segment, n = 1, 2, . . . ,
S − 2, must comply with

Pmin(n) = 2d ceil
(ns

2d

)
− ns, (5)

and the length of the left extension of the (n + 1)-th segment is Lmax(n + 1) =
r(d) − Pmin(n).

Remark. From (5) it is clear that Pmin is periodic with respect to s with period
2d, i.e. Pmin(n + 2d) = Pmin(n).

This relation and also some more can be seen in Table 1.

Theorem 4. (on the total length of segment)
After the extension the n-th segment (of original length s) will be of total length

∑
(n) = r(d) + 2d

[
ceil

(ns

2d

)
− ceil

(
(n − 1)s

2d

)]
. (6)
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Table 1. Example - lengths of extensions for different lengths of segments s. The depth
of decomposition is d = 3 and the filter length is m = 16.

s n 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

512 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Pmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
�

(n) 617 617 617 617 617 617 617 617 617 617 617 617 617 . . .

513 Lmax(n) 105 98 99 100 101 102 103 104 105 98 99 100 101 . . .

Pmin(n) 7 6 5 4 3 2 1 0 7 6 5 4 3 . . .
�

(n) 625 617 617 617 617 617 617 617 625 617 617 617 617 . . .

514 Lmax(n) 105 99 101 103 105 99 101 103 105 99 101 103 105 . . .

Pmin(n) 6 4 2 0 6 4 2 0 6 4 2 0 6 . . .
�

(n) 625 617 617 617 625 617 617 617 625 617 617 617 625 . . .

515 Lmax(n) 105 100 103 98 101 104 99 102 105 100 103 98 101 . . .

Pmin(n) 5 2 7 4 1 6 3 0 5 2 7 4 1 . . .
�

(n) 625 617 625 617 617 625 617 617 625 617 625 617 617 . . .

516 Lmax(n) 105 101 105 101 105 101 105 101 105 101 105 101 105 . . .

Pmin(n) 4 0 4 0 4 0 4 0 4 0 4 0 4 . . .
�

(n) 625 617 625 617 625 617 625 617 625 617 625 617 625 . . .

517 Lmax(n) 105 102 99 104 101 98 103 100 105 102 99 104 101 . . .

Pmin(n) 3 6 1 4 7 2 5 0 3 6 1 4 7 . . .
�

(n) 625 625 617 625 625 617 625 617 625 625 617 625 625 . . .

518 Lmax(n) 105 103 101 99 105 103 101 99 105 103 101 99 105 . . .

Pmin(n) 2 4 6 0 2 4 6 0 2 4 6 0 2 . . .
�

(n) 625 625 625 617 625 625 625 617 625 625 625 617 625 . . .

519 Lmax(n) 105 104 103 102 101 100 99 98 105 104 103 102 101 . . .

Pmin(n) 1 2 3 4 5 6 7 0 1 2 3 4 5 . . .
�

(n) 625 625 625 625 625 625 625 617 625 625 625 625 625 . . .

520 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Pmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
�

(n) 625 625 625 625 625 625 625 625 625 625 625 625 625 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
. . .

This expression can acquire only one of two values, either

r(d) + 2d ceil
( s

2d

)
or r(d) + 2d ceil

( s

2d

)
− 2d. (7)

The relations presented in this Theorem are apparent in Table 1.

3.3 The Algorithm of Segmented Wavelet Transform

The algorithm SegWT (Algorithm 2 below) works such that it reads (receives)
single segments of the input signal, then it extends – overlaps them in a proper
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way, then it computes the wavelet coefficients in a modified way and, in the end,
it easily joins the coefficients.

Algorithm 2. Let the wavelet filters g,h of length m, the decomposition depth
d, and the boundary treatment mode be given. The segments of length s > 0
of the input signal x are denoted 1x,2x,3x, . . .. The last segment can be shorter
than s.

1. Set N = 1.
2. Read the first segment, 1x, and label it “current”. Extend it from the left by

r(d) zero samples.
3. If the first segment is at the same time the last one

(a) It is the case of regular wavelet transform. Compute the DTWT of this
single segment using Algorithm 1.

(b) The Algorithm ends.
4. Read (N + 1)-th segment and label it “next”.
5. If this segment is the last one

(a) Join the current and next segment together and label it “current”. (The
current segment becomes the last one now.)

(b) Extend the current vector from the right by r(d) zero samples.
(c) Compute the DTWT of depth d from the extended current segment using

Algorithm 5.
Otherwise
(d) Compute Lmax for the next segment and Pmin for the current segment

(see Theorem 2).
(e) Extend the current segment from the right by Pmin samples taken from

the next segment. Extend the next segment from the left by Lmax samples
taken from the current segment.

(f) If the current segment is the first one, compute the DTWT of depth
d from the extended current segment using Algorithm 4. Otherwise
compute the DTWT of depth d from the extended current segment using
Algorithm 3.

6. Modify the vectors containing the wavelet coefficients by trimming off a
certain number of redundant coefficients from the left side, specifically:
at the k-th level, k = 1, 2, . . . , d − 1, trim off r(d − k) coefficients from the
left.

7. If the current segment is the last one, then in the same manner as in the
last item trim the redundant coefficients, this time from the right.

8. Store the result as Na(d),Nd(d),Nd(d−1), . . . ,Nd(1).
9. If the current segment is not the last one

(a) Label the next segment “current”.
(b) Increase N by 1 and go to item 4.

Remark. If the input signal has been divided into S > 1 segments, then
(S − 1)(d + 1) vectors of wavelet coefficients

{ ia(d), id(d), id(d−1), . . . ,id(1)}S−1
i=1 .
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are the output of the Algorithm. If we join these vectors together in a simple way,
we obtain a set of d + 1 vectors, which are identical with the wavelet coefficients
of signal x.
Next we present the “subalgorithms” of the SegWT method.

Algorithm 3. This algorithm is identical with Algorithm 1 with the exception
that we omit step 2(a), i.e. we do not extend the vector.

The next two algorithms serve to process the first and the last segment.

Algorithm 4. This algorithm is identical with Algorithm 1 with the exception
that we replace step 2(a) by the step:

Modify the coefficients of vector a(j) on positions r(d − j) − m + 2, . . . ,
r(d − j), as it corresponds to the given boundary treatment mode.

Algorithm 5. This algorithm is identical with Algorithm 1 with the exception
that we replace step 2(a) by the step:

Modify the coefficients of vector a(j) on positions r(d − j) − m + 2, . . . ,
r(d−j), as it corresponds to the given boundary treatment mode, however
this time taken from the right side of a(j).

3.4 Corollaries and Limitations of the SegWT Algorithm

In this part of the text we will derive how many coefficients we are able to
compute from each segment with SegWT. The minimum length of a segment
will also be derived.

Theorem 5. Let the decomposition depth d be given and let ñx be the extension
of the n-th segment nx of original length s. Then we will compute

qmax(n) =

⎧⎨
⎩

ceil
( s

2d

)
for

∑
(n) = r(d) + 2d ceil

( s

2d

)

ceil
( s

2d

)
− 1 for

∑
(n) = r(d) + 2d ceil

( s

2d

)
− 2d

(8)

wavelet coefficients at level d from x.

Corollary 1. (the minimum length of a segment)
Let the decomposition depth d be given. Assuming S > 2d + 1, the length of the
original segment, s, must satisfy the condition s > 2d.

It is clear from the description that the time lag of Algorithm 2 is one segment
(i.e. s samples) plus the time needed for the computation of the coefficient from
the current segment. In a special case when s is divisible by 2d it holds even
Pmin(n) = 0 for every n ∈ N (see Theorem 3), i.e. the lag is determined only by
the computation time!
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3.5 A Few Examples

Now we present a few examples of SegWT performance which follow from the
above Theorems.

Example 1. For d = 4 and m = 12, the minimum segment length is just 16
samples. When we set s = 256, Pmin will always be zero and Lmax = r(4) = 165.
The length of every extended segment will be 256 + 165 = 421 samples.

Example 2. For d = 5 and m = 8, the minimum segment length is 32 samples.
When we set s = 256, Pmin will always be zero and Lmax = r(5) = 217. The
length of every extended segment will be 256 + 217 = 473 samples.

Example 3. For d = 5 and m = 8 we set s = 300, which is not divisible by 25.
Thus Pmin and Lmax will alternate such that 0 ≤ Pmin ≤ 31 and 186 ≤ Lmax ≤
217. The length of every extended segment will be 256 + r(5) = 473 samples.

4 Conclusion

The paper contains a description of the algorithm which allows us to perform the
wavelet transform in real time. The algorithm works on the basis of calculating
the optimal extension (overlap) of signal segments, and subsequent performance
of the modified transform.

In the future it would be convenient to improve the computational effectivity
by reducing redundant computations at the borders of the segments, as it follows
from the Algorithm 2. There is also a chance to generalize the SegWT method
to include biorthogonal wavelets and more general types of decimation [2,4].

Another important part of the future work is the derivation of an efficient
counterpart to the introduced method – the segmented inverse transform. In
fact, we made first experience with such development. It turned out that the al-
gorithm will have to be quite complicated and, above all, that the time lag in the
consecutive forward-inverse processing will be, unfortunately, always nonzero.

Acknowledgements. The paper was prepared within the framework of No.
102/04/1097 and No. 102/03/0762 projects of the Grant Agency of the Czech
Republic and COST Project No. OC277.
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