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1 Introduction

Data and signal modeling for images and video sequences is experiencing impor-
tant developments. Part of this evolution is due to the need to support a large
number of new multimedia services. Traditionally, digital images were repre-
sented as rectangular arrays of pixels and digital video was seen as a continuous
flow of digital images. New multimedia applications and services imply a repre-
sentation that is closer to the real world or, at least, that takes into account part
of the process that has created the digital information. Content-based compres-
sion and indexing are two typical examples of applications where new modeling
strategies and processing tools are necessary:

– For content-based image or video compression, the representation based on
an array of pixels is not appropriate if one wants to be able to act on objects,
to encode differently the areas of interest, or to assign different behaviors to
the entities represented in the image. In these applications, the notion of
object is essential. As a consequence, the data modeling has to include, for
example, regions of arbitrary shapes to represent objects.

– Content-based indexing applications are also facing the same kind of chal-
lenges. For instance, the video representation based on a flow of frames is
inadequate for many video indexing applications. Among the large set of
functionalities involved in a retrieval application, let us consider browsing.
The browsing functionality should go far beyond the “fast forward” and
“fast reverse” allowed by VCRs. One would like to have access to a table of
contents of the video and to be able to jump from one item to another. This
kind of functionality implies at least a structuring of the video in terms of
individual shots and scenes. Of course, indexing and retrieval involve also a
structuring of the data in terms of objects, regions, semantic notions, etc.

In both examples, the data modeling has to take into account part of the
creation process: an image is created by projection of a visual scene composed
of 3D objects onto a 2D plane. Modeling the image in terms of regions is an
attempt to know the projection of the 3D object boundaries in the 2D plane.
Video shots detection also aims at finding what has been done during the video
editing process and where boundaries between elementary components have been
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introduced. In both cases, the notion of region turns out to be central in the
modeling process. Note that regions may be spatial connected components but
also temporal or spatio-temporal connected components in the case of video.

Besides the modeling issue, it has to be recognized that most image process-
ing tools are not suited to region-based representations. For example, the vast
majority of low level processing tools such as filters are very closely related to
the classical pixel-based representation of signals. Typical examples include lin-
ear convolution with an impulse response, median filter, morphological operators
based on erosion and dilation with a structuring element, etc. In all cases, the
processing strategy consists in modifying the values of individual pixels by a
function of the pixels values in a local window.

Early examples of region-based processing can be found in the literature in
the field of segmentation. For example, the classical Split & Merge algorithm [1]
defines first a set of elementary regions (the split process) and then interacts
directly on these regions allowing them to merge under certain conditions.

Recently, a set of morphological filtering tools called Connected Operators has
received much attention. Connected operators are region-based filtering tools
because they do not modify individual pixel values but directly act on the con-
nected components of the space where the image is constant, the so-called flat
zones. Intuitively, connected operators can remove boundaries between flat zones
but cannot add new boundaries nor shift existing ones. The related literature
rapidly grows and involves theoretical studies [2, 3, 4, 5, 6, 7, 8, 9, 10], algorithm
developments [11, 12, 13, 14, 15, 16] and applications [17, 18, 19, 20]. The goal of
this paper is 1) to provide an introduction to connected operators for gray level
images and video sequences and 2) to discuss the techniques and algorithms
that have been up to now the most successful within the framework of practical
applications.

The organization of this paper is as follows: The following section introduces
the notation and highlights the main drawbacks of classical filtering strategies.
Then, the next section presents the basic notions related to connected operators
and discuss some early examples of connected operators. In practice, the two
most successful strategies to define connected operators are based either on re-
construction processes or on tree representations. Both approaches are discussed
in separate sections. Finally, conclusions are given in the last section.

2 Classical Filtering Approaches

In this section, we define the notation to be used in the sequel and review some
of the basic properties of interest in this paper [21, 22]. We deal exclusively with
discrete images f [n] or video sequences ft[n] where n denotes the pixel or space
coordinate (a vector in the case of 2D images) and t the time instant in the case
of a video sequence. In the lattice of grey level functions, an image f is said to
be smaller than an image g if and only if:

f ≤ g ⇐⇒ ∀n, f [n] ≤ g[n] (1)
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(a) (b) (c)

(d) (e)

Fig. 1. Example of classical filters: (a) original image, (b) low-pass filter (7x7 average),
(c) median (5x5), (d) opening (5x5), (e) closing (5x5)

An operator ψ acting on an input f is said to be:

• increasing: ∀f, g, f ≤ g =⇒ ψ(f) ≤ ψ(g)
(The order is preserved by the filtering)

• idempotent: ∀f, ψ(ψ(f)) = ψ(f)
(Iteration of the filtering is not needed)

• extensive: ∀f, f ≤ ψ(f)
(The output is always greater than the input)

• anti-extensive: ∀f, ψ(f) ≤ f
(The output is always smaller than the input)

• a morphological filter: if it is increasing and idempotent
• an opening: if it is an anti-extensive morphological filter
• a closing: if it is an extensive morphological filter
• self-dual: ∀f, ψ(f) = −ψ(−f)

(Same processing is for bright & dark components)

Almost all filtering techniques commonly used in image processing are defined
by a computation rule and a specific signal h[n] that may be called impulse
response, window or structuring element. Let us review these classical cases:

– Linear convolution and impulse response: the output of a linear translation-
invariant system is given by: ψh(f)[n] =

∑∞
k=−∞ h[k]f [n − k]. The impulse

response, h[n], defines the properties of the filter. An example of linear fil-
tering result is shown in Fig. 1(b). The original image shown in Fig. 1(a).
As can be seen, most of the details of the original image are attenuated by
the filter (average of size 7x7). However, details are not really removed but
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simply blurred. The characteristics of the blurring is directly related to the
extension and shape of the impulse response.

– Median filter and window: The output of a median filter with window W is
defined by: ψW (f)[n] = Mediank∈W{f [n−k]}. Here also the basic properties
of the filter are defined by its window. An example is shown in Fig. 1(c).
Here, small details are actually removed (for example the texture of the fish).
The major drawback of the filtering strategy is that every region tends to be
round after filtering. This effect is due to the shape of the window combined
with the median processing.

– Morphological erosion/dilation and structuring elements: morphological di-
lation by a structuring element h[n] is defined in a way similar to the
convolution: δh(f)[n] =

∨∞
k=−∞(h[k] + f [n − k]), where

∨
denotes the

supremum (or maximum in the discrete case). The erosion is given by:
εh(f)[n] =

∧∞
k=−∞(h[k] − f [n + k]), where

∧
denotes the infimum (or mini-

mum in the discrete case). In practice, erosion and dilation are seldom used
on their own because they do not preserve the position of contours. For ex-
ample, the dilation enlarges the size of bright components and decreases the
size of dark components by displacing their contours. However, they provide
a simplification effect: a dilation (erosion) removes dark (bright) components
that do not fit within the structuring element. Based on these two primitives,
morphological opening and closing can be constructed.

The opening is given by: γh(f) = δh(εh(f)) and the closing by: ϕh(f) =
εh(δh(f)). These operators are morphological filters (that is, at the same
time, increasing and idempotent). Moreover, the opening is anti-extensive
(it removes bright components) whereas the closing is extensive (it removes
dark components). The Processing results are shown in Fig.s 1(d) and 1(e).
In the case of opening (closing) with a square structuring element of size
5x5, small bright (dark) components have been removed. As can be seen,
the contours remain sharp and centered on their original position. However,
the shape of the components that have not been removed are not perfectly
preserved. In both examples, square shapes are clearly visible in the output
image. This is due to the square shape of the structuring element.

Once a processing strategy has been selected (linear convolution, median,
morphological operator, etc.), the filter design consists in carefully choosing a
specific signal h[n] which may be the impulse response, the window or the struc-
turing element. While most people would say that this is the heart of the filter
design, our point here is to highlight that, for image processing, the use of h[n]
has some drawbacks. In all examples of Fig. 1, h[n] is not related to the input
signal and its shape clearly introduces distortions in the output. The distortion
effect depends on the specific filter, but for a large range of applications requiring
high precision on contours, none of these filtering strategies is acceptable.

To reduce the distortion, one possible solution is to adapt h[n] to the lo-
cal structures of the input signal. This solution may improve the results but
still remains unacceptable in many circumstances. An attractive solution to this
problem is provided by connected operators. Most connected operators used in
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practice rely on a completely different filtering strategy: the filtering is done
without using any specific signal such as an impulse response, a window or a
structuring element. In fact, the structures of the input signal are used to act
on the signal itself. As a result, no distortion related to a priori selected signals
is introduced in the output.

3 Connected Operators

3.1 Definitions and Basic Properties

Gray level connected operators act by merging flat zones. They cannot create new
contours and, as a result, they cannot introduce in the output image a structure
that is not present in the input image. Furthermore, they cannot modify the
position of existing boundaries between regions and, therefore, have very good
contour preservation properties.

Gray level connected operators originally defined in [2] rely on the notion of
partition of flat zones. A partition is a set of non-overlapping connected com-
ponents or regions that fills the entire space. We assume that the connectivity
is defined on the digital grid by a translation invariant, reflexive and symmetric
relation1. Typical examples are the 4- and 8-connectivity. Let us denote by P
a partition and by P(n) the region that contains pixel n. A partial order re-
lationship among partitions can be created: P1 “is finer than” P2 (written as
P1 � P2), if ∀n, P1(n) ⊆ P2(n).

It can be shown that the set of flat zones of an image f is a partition of the
space, Pf . Based on these notions, connected operators are defined as:

Definition 1. (Connected operators) A gray level operator ψ is connected if the
partition of flat zones of its input f is always finer than the partition of flat
zones of its output, that is:

Pf � Pψ(f), ∀f

This definition clearly highlights the region-based processing of the operator:
indeed, regions of the output partition are created by union of regions of the input
partition. An alternative (and equivalent) definition of connected operators was
introduced in [6]. This definition enhances the role of the boundaries between
regions and turns out to be very useful to derive leveling.

Definition 2. (Connected operators) A gray level operator ψ is connected if ∀f
input image and ∀n, n′ neighboring pixels,

ψ(f)[n] �= ψ(f)[n′] =⇒ f [n] �= f [n′].

This definition simply states that if two neighboring pixels of the output image
have two different gray level values, they have also two different gray level values
in the input image, in other words, the operator cannot create new boundaries.
1 In the context of connected operators, several studies have been carried out on the

definition of less usual connectivities. The reader is referred to [22, 23, 24, 9, 8] for
more details on this issue.
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New connected operators can be derived from the combination of primitive
connected operators. The following properties give a few construction rules:

Proposition 1. (Properties of connected operators)

– If ψ is a connected operator, its dual ψ∗ defined by: ψ∗(f) = −ψ(−f), is
also connected.

– If ψ1, ψ2 are connected operators, ψ2ψ1 is also connected.
– If {ψi} are connected operators, their supremum

∨
i ψi and infimum

∧
i ψi

are connected.

3.2 Early Examples of Connected Operators

The first known connected operator is the binary opening by reconstruction [25].
This operator eliminates the connected components that would be totally re-
moved by an erosion with a given structuring element and leaves the other com-
ponents unchanged. This filtering approach offers the advantage of simplifying
the image (some components are removed) as well as preserving the contour in-
formation (the components that are not removed are perfectly preserved). It can
be shown that the process is increasing, idempotent and anti-extensive, that is
an opening. Moreover, it was called “by reconstruction” because of the algorithm
used for its implementation. From the algorithmic viewpoint, if X is the original
binary image, the first step is to compute an erosion with a structuring element
Bk of size k, εBk

(X). This erosion is used to “mark” the connected components
that should be preserved. The final result is obtained by progressively dilating
the erosion inside the mask defined by the original image:

1. Y0 = εBk
(X)

2. Yk = δC(Yk−1)
⋂

X , where C is a binary structuring element defining the
connectivity, e.g. square of 3x3 (cross) for the 8-connectivity (4-connectivity).

3. Iterate step 2 until idempotence.

The first gray level connected operator was obtained by a transposition of the
previous approach to the lattice of gray level functions [22, 11]. It is known as
an opening by reconstruction of erosions:

1. g0 = εhk
(f), where f is the input and hk a structuring element of size k.

2. gk = δC(gk−1)
∧

f , where C is a flat structuring element defining the connec-
tivity, e.g. square or cross.

3. Iterate step 2 until idempotence.

It was shown in [2] that this operator is connected. Intuitively, the erosion acts
as a simplification step by removing small bright components. The reconstruction
process restores the contours of the components that have not been completely
removed by the erosion.

There are several ways to construct connected operators and many new op-
erators have been recently introduced. From the practical viewpoint, the most
successful strategies rely on a reconstruction process or on region-tree pruning.
Operators resulting from these two strategies are discussed in the sequel.
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4 Connected Operators Based on Reconstruction
Processes

4.1 Anti-extensive Reconstruction and Connected Operators

The Anti-extensive Reconstruction Process. The most classical way to
construct connected operators is to use an anti-extensive reconstruction process.
It is defined as follows:

Definition 3. (Anti-extensive reconstruction) If f and g are two images (re-
spectively called the “reference” and the “marker” image), the anti-extensive
reconstruction ρ↓(g|f) of g under f is given by:

gk = δC(gk−1)
∧

f and
ρ↓(g|f) = limk→∞ gk

(2)

where g0 = g and δC is the dilation with the flat structuring element defining the
connectivity (3x3 square or cross).

It can be shown that the series, gk, always converges and the limit always exists.
Of course by duality, an extensive reconstruction may be defined:

Definition 4. (Extensive reconstruction) If f and g are two images (respectively
called the “reference” and the “marker” image), the extensive reconstruction
ρ↑(g|f) of g above f is given by:

gk = εC(gk−1)
∨

f and
ρ↑(g|f) = limk→∞ gk

(3)

where g0 = g and εC is the erosion with the flat structuring element defining the
connectivity (3x3 square or cross).

Note that Eqs. (2) and (3) define the reconstruction processes but do not
provide efficient implementations. Indeed, the number of iterations is generally
fairly high. The most efficient reconstruction algorithms rely on the definition of
a clever scanning of the image and are implemented by First-in-First-out (FIFO)
queues. A review of the most popular reconstruction algorithms can be found in
[11]. Here, we describe a simple but efficient one: the basic idea of the algorithm
is to start from the regional maxima of the marker image g and to propagate
them under the original image f . The algorithm works in two steps:

1. The initialization consists in putting in the queue the location of pixels that
are on the boundary of the regional maxima of the marker image. Regional
maxima are the set of connected components where the image has a constant
gray level value and such that every pixel in the neighborhood of the regional
maxima has strictly a lower value. Algorithms to compute regional maxima
can be found in [26].

2. The propagation extracts the first pixel, n, from the queue (note that n is a
pixel of the marker image g). Then, it assigns to each of its neighbors, n′,
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that have a strictly lower gray level value than g[n] (that is, if g[n′] < g[n]),
the minimum between the gray level value of n and the gray level value of
the pixel of the original image at the same location than n′, that is g[n′] =
g[n]

∧
f [n′]. Finally, the pixel n′ is introduced in the queue. This propagation

process has to be carried on until the queue is empty. The algorithm is very
efficient because the image pixels are processed only once.

In practice, useful connected operators are obtained by considering that the
marker image g is a transformation φ(f) of the input image f . As a result, most
connected operators ψ obtained by reconstruction can be written as:

ψ(f) = ρ↓(φ(f)|f) (anti-extensive operator), or
ψ(f) = ρ↑(φ(f)|f) (extensive operator). (4)

In the following, a few examples are discussed.

Size Filtering. The simplest size-oriented connected operator is obtained by
using as marker image, φ(f), the result of an erosion with a structuring element
hk of size k. It is the opening by reconstruction of erosion2:

ψ(f) = ρ↓(εhk
(f)|f) (5)

It can be demonstrated that this operator is an opening. By duality, the closing
by reconstruction is given by:

ψ∗(f) = ρ↑(δhk
(f)|f) (6)

An example of opening by reconstruction of erosion is shown in Fig. 2(a). In this
example, the original signal f has 11 maxima. The marker signal g is created
by an erosion with a flat structuring element which eliminates the narrowest
maxima. Only 5 maxima are preserved after erosion. Finally, the marker is re-
constructed. In the reconstruction, only the 5 maxima that were present after
erosion are visible and narrow maxima have been eliminated. Moreover, the tran-
sitions of the reconstructed signal correspond precisely to the transitions of the
original signal.

As can be seen, the simplification effect, that is the elimination of narrow
maxima is almost perfectly done. However, the preservation effect may be criti-
cized: although the maxima contours are well preserved, their shape and height
are distorted. To reduce this distortion, a new connected operator can be built
on top of the first one. Let us construct a new marker image, m[n], indicating
the pixels where the reconstruction has been inactive, that is where the final
result is equal to the erosion.

m[n] =
{

f [n] , if ρ↓(εhk
(f)|f)[n] = εhk

(f)[n]
0 otherwise. (7)

2 Note that it can be demonstrated that the same operator is obtained by changing
the erosion, εhk

, by an opening, γhk
, with the same structuring element, hk.
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Fig. 2. Size-oriented connected operators: (a) Opening by reconstruction, (b) New
marker indicating where the reconstruction has been inactive and second reconstruction

This marker image is illustrated in Fig. 2(b). As can be seen, it is equal to 0
except for the five maxima that are present after erosion and also for the local
minima. At that locations, the gray level values of the original image, f [n], are
assigned to the marker image. Finally, the second connected operator is created
by the reconstruction of the marker, m under f :

ψ(f) = ρ↓(m|f) (8)

This operator is also an opening by reconstruction. The final result is shown
in Fig. 2(b). The five maxima are better preserved than with the first opening
by reconstruction whereas the remaining maxima are perfectly removed. The
difference between both reconstructions is also clearly visible in the examples of
Fig. 3. The first opening by reconstruction removes small bright details of the
image: the text in the upper left corner. The fish is a large element and is not

(a) (b) (c) (d)

Fig. 3. Size filtering with opening by reconstruction: (a) erosion of the original image of
Fig. 1(a) by a flat structuring element of size 10x10, (b) reconstruction of the erosion,
(c) marker indicating where the first reconstruction has not been active (Eq. 7) and
(d) second reconstruction
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removed. It is indeed visible after the first opening by reconstruction (Fig. 3(b))
but its gray level values are not well preserved. This drawback is avoided by
using the second reconstruction. Finally, let us mention that by duality closings
by reconstruction can be defined. They have the same effect than the openings
but on dark components.

Contrast Filtering. The previous section considered size simplification. A
contrast simplification can be obtained by substituting the erosion in Eq. 5 by
a subtraction of a constant, c, from the original image f :

φ(f) = ρ↓(f − c|f) (9)

This operator, known as λ-max operator, is connected, increasing and anti-
extensive but not idempotent. Its effect is illustrated in Fig. 4(a). As can be
seen, the maxima of small contrast are removed and the contours of the max-
ima of high contrast are well preserved. However, the height of the remaining
maxima are not well preserved. As in the previous section, this drawback can be
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Fig. 4. Contrast-oriented connected operators: (a) Reconstruction of f − c, (b) Second
reconstruction
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Fig. 5. Contrast filtering: (a) λ-max operator, (b) dynamic opening
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removed if a second reconstruction process is used. This second reconstruction
process is exactly the same as the previous one defined by Eq. 7 (m[n] = f [n] if
ρ↓(f − c|f)[n] = f [n] − c). This second connected operator is an opening. It is
called a dynamic opening [27].

The operators effect is illustrated in Fig. 5. Both operators remove maxima
of contrast c lower than 100 gray level values. However, the λ-max operator
produces an output image of low contrast, even for the preserved maxima. By
contrast, the dynamic opening successfully restores the retained maxima.

4.2 Self-dual Reconstruction and Levelings

The connected operators discussed in the previous section were either anti-
extensive or extensive. They allow the simplification of either bright or dark
image components. For some applications, this behavior is a drawback and one
would like to simplify in a symmetrical way all components. From the theoretical
viewpoint, this means that the filter has to be self-dual, that is ψ(f) = −ψ(−f).

With the aim of constructing self-dual connected operators, the concept of
levelings was proposed in [6] by adding some restrictions in Definition 2:

Definition 5. (Leveling) The operator ψ is a leveling if ∀n, n′ neighboring pix-
els, ψ(f)[n] > ψ(f)[n′] =⇒ f [n] ≥ ψ(f)[n] and ψ(f)[n′] ≥ f [n′].

This definition not only states that if a transition exists in the output image,
it was already present in the original image (Definition 2) but also that 1) the
sense of gray level variation between n and n′ has to be preserved and 2) the
variation ‖ψ(f)[n]−ψ(f)[n′]‖ is bounded by the original variation ‖f [n]−f [n′]‖.

The theoretical properties of levelings are studied in [6, 7], in particular:

– Any opening or closing by reconstruction is a leveling.
– If ψ1, ψ2 are levelings, ψ2ψ1 is also a leveling.
– If {ψi} are levelings, their supremum

∨
i ψi, and infimum

∧
i ψi, are levelings.

The most popular technique to create levelings relies on the following self-dual
reconstruction process:

Definition 6. (Self-dual reconstruction) If f and g are two images (respec-
tively called the “reference” and the “marker”image), the self-dual reconstruction
ρ	(g|f) of g with respect to f is given by:

gk = εC(gk−1)
∨

[δC(gk−1)
∧

f ]
= δC(gk−1)

∧
[εC(gk−1)

∨
f ] (equivalent expression) and

ρ	(g|f) = limk→∞ gk

(10)

where g0 = g and δC and εC are respectively the dilation and the erosion with
the flat structuring element defining the connectivity (3x3 square or cross).

An example of self-dual reconstruction is shown in Fig. 6. In this example, the
marker image is constant everywhere except for two points that mark a maximum
and a minimum of the reference image. After reconstruction, the output has only
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Fig. 6. Example of leveling with self-dual reconstruction

one maximum and one minimum. As can be seen, the self-dual reconstruction is
the anti-extensive reconstruction of Eq. 3 for the pixels where g[n] < f [n] and
the extensive reconstruction of Eq. 4 for the pixels where f [n] < g[n].

As in the case of anti-extensive reconstruction, Eq. 10 does not define an
efficient implementation of the reconstruction process. In fact, an efficient im-
plementation of the self-dual reconstruction can be obtained by combination of
the strategies used for anti-extensive and extensive reconstruction processes: the
initialization step consists in putting in the FIFO queue: 1) the boundary pix-
els of marker maxima when the marker is smaller than the reference and 2) the
boundary pixels of marker minima when the marker is greater than the reference.

The propagation step is done in a similar fashion than the one described for
anti-extensive reconstruction: the anti-extensive propagation is used when the
marker is below the reference and the extensive propagation is used when the
marker is above the reference.

In practice, the self-dual reconstruction is used to restore the contour in-
formation after a simplification performed by an operator that is neither ex-
tensive nor anti-extensive. A typical example is an alternating sequential filter:
g = ϕhk

γhk
ϕhk−1γhk−1 . . . ϕh1γh1(f), where ϕhk

and γhk
are respectively a clos-

ing and an opening with a structuring element hk. This example is illustrated in
Fig.s 7(a) and 7(b). Note the simplification effect which deals with both max-
ima and minima, and how the contour distortion introduced by the alternating
sequential filter is removed by the reconstruction. However, from a theoretical
viewpoint, the operator: ρ	(ϕhk

γhk
. . . ϕh1γh1(f)|f) is not self-dual because the

alternating sequential filter itself is not self-dual. In order to create a self-dual
operator, the creation of the marker has also to be self-dual. Fig.s 7(c) and 7(d)
show an example where the marker is created by a median filter (that is self-
dual). This kind of results can be extended to any linear filter and the self-dual
reconstruction can be considered as a general tool that restores the contour in-
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(a) (b) (c) (d)

Fig. 7. Size filtering with leveling: (a) Alternating sequential filter of the original image
of Fig. 1(a), (b) Self-dual reconstruction of the alternating sequential filter, (c) Median
filter and (d) Self-dual reconstruction of the median filter

formation after a filtering process. In other words, the reconstruction allows to
create a connected version ρ	(ψ(f)|f) of any filter: ψ(f).

5 Connected Operators Based on Region-Tree Pruning

5.1 Tree Representations and Connected Operators

The reconstruction strategies discussed in the previous section can be viewed
as tools that work on a pixel-based representation of the image and that pro-
vide a way to create connected operators. In this section, we present a different
approach: the first step of the filtering process is to construct a region-based
representation of the image, then the simplification effect is obtained by direct
manipulation of the tree. The approach may be considered as being conceptu-
ally more complex than the reconstruction however, it provides more flexibility
in the choice of the simplification criterion.

Two region-based representations are discussed in the sequel: the Max-tree /
Min-tree [14] and the Binary Partition Tree [15]. The first one leads to anti-
extensive connected operators whereas the second one is a basis for self-dual
connected operators. Let us discuss first these two region-based representations.

Max-tree and Min-tree. The first representation is called a Max-tree [14]. It
enhances the maxima of the signal. Each tree node Nk represents a connected
component of the space that is extracted by the following thresholding process:
for a given threshold T , consider the set of pixels X that have a gray level value
larger than T and the set of pixels Y that have a gray level value equal to T :

X = {n , such that f [n] ≥ T }
Y = {n , such that f [n] = T } (11)

The tree nodes Nk represent the connected components of X such that X
⋂

Y �=
∅. A simple example of Max-tree is shown in Fig. 8. The original image is made of
7 flat zones identified by a letter {A,...,G}. The number following each letter de-
fines the gray level value of the flat zones. The binary images, X , resulting from
the thresholding with 0 ≤ T ≤ 2 are shown in the center of the figure. Finally,
the Max-tree is given in the right side. It is composed of 5 nodes that repre-
sent the connected components shown in black. The number inside each square
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Fig. 8. Max-tree representation of images

represents the threshold value where the component was extracted. Finally, the
links in the tree represent the inclusion relationships among the connected com-
ponents following the threshold values. Note that when the threshold is set to
T = 1, the circular component does not create a connected component that is
represented in the tree because none of its pixels has a gray level value equal to
1. However, the circle itself is obtained when T = 2. The three regional maxima
are represented by three leaves and the tree root represents the entire support of
the image. The computation of Max-tree can be done in an efficient way (see [14]
for more details).

Binary Partition Tree (BPT). The second example of region-based repre-
sentation of images is the BPT [15]. It represents a set of regions obtained from
an initial partition that we assume to be the partition of flat zones. The leaves
of the tree represent the flat zones of the original signal. The remaining tree
nodes represent regions that are obtained by merging the regions represented by
the children. The root node represents the entire image support. The tree rep-
resents a fairly large set of regions at different scales. Large regions appear close
to the root whereas small details can be found at lower levels. This represen-
tation should be considered as a compromise between representation accuracy
and processing efficiency. Indeed, all possible merging of regions belonging to
the initial partition are not represented in the tree. Only the most “likely” or
“useful” merging steps are represented in the BPT. The connectivity encoded in
the tree structure is binary in the sense that a region is explicitly connected to its
sibling (since their union is a connected component represented by the father),
but the remaining connections between regions of the original partition are not
represented in the tree. Therefore, the tree encodes only part of the neighbor-
hood relationships between the regions of the initial partition. However, as will
be seen in the sequel, the main advantage of the tree representation is that it
allows the fast implementation of sophisticated processing techniques.
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Fig. 9. Example of BPT creation with a region merging algorithm

The BPT should be created in such a way that the most “interesting” or “use-
ful” regions are represented. This issue can be application dependent. However,
a possible solution, suitable for a large number of cases, is to create the tree
by keeping track of the merging steps performed by a segmentation algorithm
based on region merging (see [28, 29] for example). In the following, this informa-
tion is called the merging sequence. Starting from the partition of flat zones, the
algorithm merges neighboring regions following a homogeneity criterion until a
single region is obtained. An example is shown in Fig. 9. The original partition
involves four regions. The regions are indicated by a letter and the number indi-
cates the grey level value of the flat zone. The algorithm merges the four regions
in three steps. In the first step, the pair of most similar regions, B and C, are
merged to create region E. Then, region E is merged with region D to create
region F . Finally, region F is merged with region A and this creates region G
corresponding to the region of support of the whole image. In this example, the
merging sequence is: (B, C)|(E, D)|(F, A). This merging sequence defines the
BPT as shown in Fig. 9.

To completely define the merging algorithm, one has to specify the region
merging order and the region model, that is the model used to represent the
union of two regions. In order to create the BPTs used to illustrate the processing
examples discussed in this paper, we have used a merging algorithm following
the color homogeneity criterion described in [29]. Let us define the merging order
O(R1, R2) and the region model MR:

– Merging order: at each step the algorithm looks for the pair of most similar
regions. The similarity between regions R1 and R2 is defined by:

O(R1, R2) = N1||MR1 − MR1∪R2 ||2 + N2||MR2 − MR1∪R2 ||2 (12)

where N1 and N2 are the numbers of pixels of regions R1 and R2 and
||.||2 denotes the L2 norm. MR represents the model for region R. It con-
sists of three constant values describing the YUV components. The inter-
est of this merging order, compared to other classical criteria, is discussed
in [29].
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– Region model: as mentioned previously, each region is modeled by a con-
stant vector YUV value: MR. During the merging process, the YUV compo-
nents of the union of 2 regions, R1 and R2, are computed as follows [29]:

if N1 < N2 ⇒ MR1∪R2 = MR2

if N2 < N1 ⇒ MR1∪R2 = MR1

if N1 = N2 ⇒ MR1∪R2 = (MR1 + MR2)/2
(13)

As can be seen, if N1 �= N2, the model of the union of two regions is equal to
the model of the largest region.

It should be noticed that the homogeneity criterion has not to be restricted
to color. For example, if the image for which we create the BPT belongs to a
sequence of images, motion information can also be used: in a first stage, regions
are merged using a color homogeneity criterion, whereas a motion homogeneity
criterion is used in the second stage. Fig. 10 shows an example of the Foreman
sequence. In Fig. 10(a), the BPT has been constructed exclusively with the
color criterion described above. In this case, it is not possible to concentrate the
information about the foreground object (head and shoulder regions of Foreman)
within a single sub-tree. For example, the face mainly appears in the sub-tree
hanging from region A, whereas the helmet regions are located below region D.
In practice, the nodes close to the root have no clear meaning because they are
not homogeneous in color. Fig. 10(b) presents an example of BPT created with
color and motion criteria. The nodes appearing as white circles correspond to
the color criterion, whereas the dark squares correspond to a motion criterion.
The motion criterion is formally the same as the color criterion except that the

Original frame

C

A
B

D

(a) Color homogeneity criterion

E

(b) Color and motion homogeneity criteria

Fig. 10. Examples of creation of BPT
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YUV color distance is replaced by the YUV Displaced Frame Difference. The
process starts with the color criterion as in Fig. 10(a) and then, when a given
peak signal to noise ratio (PSNR) is reached, it changes to the motion criterion.
Using motion information, the face and helmet now appear as a single region E.

As can be seen, the construction of a BPT is fairly more complex than the
creation of a Max-tree or a Min-tree. However, BPTs offer more flexibility be-
cause one can chose the homogeneity criterion through the proper selection of
the region model and the merging order. Furthermore, if the functions defining
the region model and the merging order are self-dual, the tree itself is self-dual.
The same BPT can be used to represent f and −f . The BPT representation is
appropriate to derive self-dual connected operators whereas the Max-tree (Min-
tree) is adequate for anti-extensive (extensive) connected operators. Note that
in all cases, trees are hierarchical region-based representations. They encode a
large set of regions and partitions that can be derived for the flat zones partition
of the original image without adding new contours.

Filtering Strategy. Once the representation has been created, the filtering
strategy consists in pruning the tree and in reconstructing an image from the
pruned tree. The global processing strategy is illustrated in Fig. 11. The simpli-
fication effect of the filter is done by pruning because the idea is to eliminate the
image components that are represented by the leaves and branches of the tree.
The nature of these components depends on the tree. In the case of Max-trees
(Min-trees), the components that may be eliminated are regional maxima (min-
ima) whereas the elements that may be simplified in the case of BPTs are unions
of the most similar flat zones. The simplification itself is governed by a criterion
which may involve simple notions such as size, contrast or more complex ones
such as texture, motion or even semantic criteria.

One of the interests of the tree representations is that the set of possible merg-
ing steps is fixed (represented by the tree branches). As a result, sophisticated
pruning strategies may be designed. An example of such strategy deals with
non-increasing simplification criteria. Mathematically, a criterion C assessed on
a region R is said to be increasing if the following property holds:

∀R1 ⊆ R2 ⇒ C(R1) ≤ C(R2) (14)

Assume that all nodes corresponding to regions where the criterion value is
lower than a given threshold should be pruned. If the criterion is increasing, the

Tree
creation Pruning

Image

Max-tree
Min-tree
Binary Partition Tree

Image Image
reconstruction

Fig. 11. Connected operators based on Tree representations
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pruning strategy is straightforward: merge all nodes that should be removed. It
is indeed a pruning strategy since the increasingness of the criterion guarantees
that, if a node has to be removed, all its descendants have also to be removed.
An example of BPT with increasing decision criterion is shown in Fig. 12. The
criterion used to create this example is the size, measured as the number of
pixels belonging to the region, which is indeed increasing. Note that this example
involves a BPT but the same issue also applies to Max/Min-tree representations.

If the criterion is not increasing, the pruning strategy is not straightforward
since the descendants of a node to be removed have not necessarily to be removed.
An example of such criterion is the region perimeter. Fig. 13 illustrates this case.
If we follow either Path A or Path B in Fig. 13, we see that there are some
oscillations of the remove/preserve decisions. In practice, the non-increasingness
of the criterion implies a lack of robustness of the operator. For example, similar
images may produce quite different results or small modifications of the criterion
threshold involve drastic changes on the output.

Fig. 12. Example of increasing criterion (size). If a node has to be removed, all its
descendants have also to be removed. Gray squares: nodes to be preserved, white
circles: nodes to be removed.

Pa
th

 A

Pa
th

 B

Fig. 13. Example of non-increasing criterion (perimeter). No relation exists between
the decisions among descendants (see decisions along path A or path B). Gray squares:
nodes to be preserved, white circles: nodes to be removed.
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Fig. 14. Trellis structure for the Viterbi algorithm. A circular (square) node on the Tree
indicates that the criterion value states that the node has to be removed (preserved).
The trellis on which the Viterbi algorithm is run duplicates the structure of the Tree
and defines a preserve state and a remove state for each tree node. Paths from remove
states to child preserve states are forbidden so that the decisions are increasing.

A possible solution to the non-increasingness of the criterion consists in ap-
plying a transformation on the set of decisions. The transformation should create
a set of increasing decisions while preserving as much as possible the decisions
defined by the criterion. This problem may be viewed as dynamic programming
issue that can be efficiently solved with the Viterbi algorithm.

The dynamic programming algorithm is explained and illustrated in the se-
quel assuming that the tree is binary. The extension to N-ary trees is straightfor-
ward and the example of binary tree is used here only to simplify the notation.
An example of trellis on which the Viterbi algorithm [30] is applied is illus-
trated in Fig. 14. The trellis has the same structure as the tree except that
two trellis states, preserve N P

k and remove N R
k , correspond to each node Nk of

the tree. The two states of each child node are connected to the two states of
its parent. However, to avoid non-increasing decisions, the preserve state of a
child is not connected to the remove state of its parent. As a result, the trel-
lis structure guarantees that, if a node has to be removed, its children have
also to be removed. The cost associated to each state is used to compute the
number of modifications the algorithm has to do to create an increasing set
of decisions. If the criterion value states that the node of the tree has to be
removed, the cost associated to the remove state is equal to zero (no mod-
ification) and the cost associated to the preserve state is equal to one (one
modification). Similarly, if the criterion value states that the node has to be
preserved, the cost of the remove state is equal to one and the cost of the
preserve state is equal to zero3. The cost values appearing in Fig. 14 assume

3 Although some modifications may be much more severe than others, the cost choice
has no strong effect on the final result. This issue of cost selection is similar to the
hard versus soft decision of the Viterbi algorithm in the context of digital commu-
nications [30].
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Fig. 15. Definition of Path and cost for the Viterbi algorithm (see Eqs. 17, 18 and 19)

that nodes N1, N4 and N5 should be preserved and that N2 and N3 should
be removed. The goal of the Viterbi algorithm is to define the set of decisions
such that:

Min
∑

k

Cost(Nk) such that the decisions are increasing. (15)

To find the optimum set of decisions, a set of paths going from all leaf nodes
to the root node is created. For each node, the path can go through either
the preserve or the remove state of the trellis. The Viterbi algorithm is used
to find the paths that minimize the global cost at the root node. Note that
the trellis itself guarantees that this optimum decision is increasing. The op-
timization is achieved in a bottom-up iterative fashion. For each node, it is
possible to define the optimum paths ending at the preserve state and at the
remove state:

– Let us consider a node Nk and its preserve state N P
k . A path Pathk is a

continuous set of transitions between nodes (Nα → Nβ) defined in the trellis:

Pathk = (Nα → Nβ) ∪ (Nβ → Nγ) ∪ ... ∪ (Nψ → Nk) (16)

The path PathP
k starting from a leaf node and ending at that state is com-

posed of two sub-paths4: the first one, PathP,Left
k , comes from the left child

and the second one, PathP,Right
k , from the right child (see Fig. 15). In both

cases, the path can emerge either from the preserve or from the remove state
of the child nodes. If Nk1 and Nk2 are respectively the left and the right
child nodes of Nk, we have:

PathP,Left
k = PathR

k1

⋃
(N R

k1
→ N P

k ) or PathP
k1

⋃
(N P

k1
→ N P

k )

PathP,Right
k = PathR

k2

⋃
(N R

k2
→ N P

k ) or PathP
k2

⋃
(N P

k2
→ N P

k )

PathP
k = PathP,Left

k

⋃
PathP,Right

k

(17)

4 In the general case of an N-ary tree, the number of incoming paths may be arbitrary.
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The cost of a path is equal to the sum of the costs of its individual state
transitions. Therefore, the optimum (lower cost) path can be easily selected:

If Cost(PathR
k1

) < Cost(PathP
k1

)

then { PathP,Left
k = PathR

k1

⋃
(N R

k1
→ N P

k );

Cost(PathP,Left
k ) = Cost(PathR

k1
); }

else { PathP,Left
k = PathP

k1

⋃
(N P

k1
→ N P

k );

Cost(PathP,Left
k ) = Cost(PathP

k1
); }

If Cost(PathR
k2

) < Cost(PathP
k2

)

then { PathP,Right
k = PathR

k2

⋃
(N R

k2
→ N P

k );

Cost(PathP,Right
k ) = Cost(PathR

k2
); }

else { PathP,Right
k = PathP

k2

⋃
(N P

k2
→ N P

k );

Cost(PathP,Right
k ) = Cost(PathP

k2
); }

Cost(PathP
k ) = Cost(PathP,Left

k ) + Cost(PathP,Right
k ) + Cost(N P

k );

(18)

– In the case of the remove state, N R
k , the two sub-paths can only come from

the remove states of the children. So, no selection has to be done. The path
and its cost are constructed as follows:

PathR,Left
k = PathR

k1

⋃
(N R

k1
→ N R

k );

PathR,Right
k = PathR

k2

⋃
(N R

k2
→ N R

k );

PathR
k = PathR,Left

k

⋃
PathR,Right

k ;
Cost(PathR

k ) = Cost(PathR
k1

) + Cost(PathR
k2

) + Cost(N R
k );

(19)

This procedure is iterated bottom-up until the root node is reached. One path
of minimum cost ends at the preserve state of the root node and another path
ends at the remove state of the root node. Among these two paths, the one of
minimum cost is selected. This path connects the root node to all leaves and the
states it goes through define the final decisions. By construction, these decisions
are increasing and are as close as possible to the original decisions.

A complete optimization example is shown in Fig. 16. The original tree in-
volves 5 nodes. The preserve decisions are shown by a square whereas the remove
decisions are indicated by a circle. The original tree does not correspond to a set
of increasing decisions because N3 should be removed but N4 and N5 should be
preserved. The algorithm is initialized by creating the trellis and populating its
states by their respective cost (see Fig. 14). Then, the first step of the algorithm
consists in selecting the paths that go from states N R

4 , N P
4 , N R

5 , N P
5 to states

N R
3 , N P

3 . The corresponding trellis is shown in the upper part of Fig. 16 to-
gether with the corresponding costs of the four surviving paths. The second step
iterates the procedure between states N R

2 , N P
2 , N R

3 , N P
3 and states N R

1 , N P
1 .

Here again, only four paths survive. They are indicated in the central diagram
of Fig. 16. Finally, the last step consists in selecting the path of lowest cost that
terminates at the root states. In the example of Fig. 16, the path ending at the
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Fig. 16. Definition of the optimum decisions by the Viterbi algorithm

remove state of the root node (N R
1 ) has a cost of 3, whereas the path ending

at the preserve state (N P
1 ) has a cost of 1. This last path is taken since it cor-

responds to an increasing set of decisions and involves just one modification of
the original decisions. To find the optimum increasing decisions, one has to track
back the selected path from the root to all leaves. In our example, we see that
the paths hit the following states: N P

1 , N R
2 , N P

3 , N P
4 and N P

5 . The diagram at
the bottom of Fig. 16 shows the final path together with the modified tree. As
can be seen, the only modification has been to change the decision of node N3
and the resulting set of decisions is increasing. A complete example of is shown
in Fig. 17. The original tree corresponds to the one shown in Fig. 13. The Viterbi
algorithm has to modify 5 decisions along path A and one decision along path
B (see Fig. 13) to get the optimum set of increasing decisions.

To summarize, let us say that any pruning strategy can be applied directly
on the tree if the decision criterion is increasing. In the case of a non-increasing
criterion, the Viterbi algorithm can be used to modify the smallest number of
decisions so that increasingness is obtained. These modifications define a pruning
strategy. Once the pruning has been performed, it defines an output partition
and each region is filled with a constant value. In the case of a Max-tree (Min-
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Fig. 17. Set of increasing decisions resulting from the Viterbi algorithm used on the
original tree of Fig. 13. Five decisions along path A and one decision along path B have
been modified. Gray squares: preserve, white circles: remove.

tree), the constant value is equal to the minimum (maximum) gray level value
of the original pixels belonging to the region. As a result, the operator is anti-
extensive (extensive). In the case of a BPT, the goal is to define a self-dual
operator. Therefore, each region of the output partition has to be filled by a
self-dual model, such as the mean or the median of the original pixels belonging
to the region.

5.2 Example of Connected Operators Based on Tree
Representations

Increasing Criterion ⇒ Direct Pruning. The first example deals with sit-
uations where the criterion is increasing. In this case, the comparison of the
criterion value with a threshold directly defines a pruning strategy. A typical ex-
ample is the area opening [12]. One possible implementation of the area opening
consists in creating a Max-tree and in measuring the area (the number of pixels)
Ak contained in each node Nk. If the area Ak is smaller than a threshold, TA,
the node is removed. The area criterion is increasing and the Viterbi algorithm
does not have to be used. It can be shown that the area opening is equal to the
supremum of all possible openings by a connected structuring element involving

(a) (b)

Fig. 18. Area filtering: (a) area opening, γarea, (b) area opening followed by area
closing, ϕareaγarea



60 P. Salembier

TA pixels. The simplification effect of the area opening is illustrated in Fig. 18(a).
As expected, the operator removes small bright components of the image. If this
simplified image is processed by the dual operator, the area closing, small dark
components are also removed (see Fig. 18(b)).

Using the same strategy, a large number of connected operators can be ob-
tained. For example, if the criterion is the volume:

∑
n∈R f [n] (also increasing),

the resulting operator is the volumic opening [31]. The reader is referred to [15]
to see examples of this situation involving a BPT.

Non-increasing Criterion ⇒ Modification of the Decision (Viterbi al-
gorithm) and Pruning. This situation is illustrated here by a motion-oriented
connected operator [14]. Denote by ft[n] an image sequence where n represents
the pixel coordinates and t the time instant. The goal of the connected operator
is to eliminate the image components that do not undergo a given motion. The
first step is therefore to define the motion model giving for example the dis-
placement field at each position ∆[n]. The field can be constant ∆ if one wants
to extract all objects following a translation, but in general the displacement
depends on the spatial position n to deal with more complex motion models.

The sequence processing is performed as follows: each frame is transformed
into its corresponding Max-tree representation and each node Nk is analyzed.
To check whether or not the pixels contained in a given node Nk are moving in
accordance to the motion field ∆[n], a simple solution consists in computing the
Mean Displaced Frame Difference (DFD) of this region with the previous frame:

DFDft−1
ft

(Nk) =
∑

n∈Nk

|ft[n] − ft−1[n − ∆[n]]|/
∑

n∈Nk

1 (20)

In practice, however, it is not very reliable to assess the motion on the basis
of only two frames. The criterion should include a reasonable memory of the
past decisions. This idea can be easily introduced in the criterion by adding a
recursive term. Two mean DFD are measured: one between the current frame ft

and the previous frame ft−1 and a second one between the current frame and the
previous filtered frame ψ(ft−1) (ψ denotes the connected operator). The motion
criterion is finally defined as:

Motion(Nk) = αDFDft−1
ft

(Nk) + (1 − α)DFDψ(ft−1)
ft

(Nk) (21)

with 0 ≤ α ≤ 1. If α is equal to 1, the criterion is memoryless. Low values of
α allow the introduction of an important recursive component in the decision
process. In a way similar to recursive filtering schemes, the selection of a proper
value for α depends on the application: if one wants to detect very rapidly any
changes in motion, the criterion should be mainly memoryless (α ≈ 1), whereas if
a more reliable decision involving the observation of a larger number of frames is
necessary, then the system should rely heavily on the recursive part (0 ≤ α � 1).

The motion criterion described by Eqs. 20 and 21 deals with one set of motion
parameters. Objects that do not follow the given motion produce a high DFD
and should be removed. The criterion is not increasing and the Viterbi algorithm
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(a) (b) (c) (d)

Fig. 19. Example of motion connected operator preserving fixed objects: (a) Original
frame, (b) Motion connected operator ψ, (c) Dual operator: ψ∗ψ(f) and (d) residue:
f - ψ∗(ψ(f)

has to be used. This motion-oriented pruning strategy can be used on Max-tree,
Min-tree or BPT representations.

A motion filtering example relying on a Max-tree is shown in Fig. 19. The
operator goal is to remove all moving objects. The motion model is defined
by: ∆[n] = (0, 0), ∀n. In this sequence, all objects are still except the ballerina
behind the two speakers and the speaker on the left side who is speaking. The
connected operator ψ(f) removes all bright moving objects (Fig. 19(b)). The
dual operator: ψ∗(f) = −ψ(−f) removes all dark moving objects (Fig. 19(c)).
The residue (the difference with the original image) presented in Fig. 19(d) shows
what has been removed by the operator. As can be seen, the operator has very
precisely extracted the ballerina and the (moving) details of the speaker’s face.

The motion connected operator can potentially be used for a large set of
applications. It permits in particular to different ways of handling the motion
information. Indeed, generally, motion information is measured without knowing
anything about the image structure. Connected operators take a different view-
point by making decisions on the basis of the analysis of flat zones. By using
motion connected operators, we can “inverse” the classical approach to mo-
tion and, for example, analyze simplified sequences where objects are following
a known motion. Various connected operators involving nonincreasing criteria
such as entropy, simplicity, perimeter can be found in [14, 15].

5.3 Pruning Strategies Involving Global Optimization Under
Constraint

In this section, we illustrate a more complex pruning strategy involving global
optimization under constraint. To fix the notations, let us denote by C the cri-
terion that has to be optimized (we assume, without loss of generality, that the
criterion has to be minimized) and by K the constraint. The problem is to min-
imize the criterion C with the restriction that the constraint K is below a given
threshold TK. Moreover, we assume that both the criterion and the constraint
are additive over the regions represented by the nodes Nk: C =

∑
Nk

C(Nk) and
K =

∑
Nk

K(Nk). The problem is therefore to define a pruning strategy such
that the resulting partition is composed of nodes Ni such that:

Min
∑

Ni

C(Ni) , with
∑

Ni

K(Ni) ≤ TK (22)
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It has been shown [32] that this problem can be reformulated as the minimiza-
tion of the Lagrangian: L = C+λK where λ is the so-called Lagrange parameter.
Both problems have the same solution if we find λ∗ such that K is equal (or very
close) to the constraint threshold TK. Therefore, the problem consists in using
the tree to find by pruning a set of nodes creating a partition such that:

Min

(
∑

Ni

C(Ni) + λ∗ ∑

Ni

K(Ni)

)

(23)

Assume, in a first step, that the optimum λ∗ is known. In this case, the
pruning is done by a bottom-up analysis of the tree. If the Lagrangian value
corresponding to a given node N0 is smaller than the sum of the Lagrangians of
the children nodes Ni, then the children are pruned:

If C(N0) + λ∗K(N0) <
∑

Ni

C(Ni)

+ λ∗ ∑

Ni

K(Ni), prune the children nodes Ni. (24)

This procedure is iterated up to the root node. In practice, the optimum λ∗

is not known and the previous bottom-up analysis is embedded in a loop that
searches for the best λ parameter. The computation of the optimum λ parameter
can be done with a gradient search algorithm. The bottom-up analysis itself is
not expensive in terms of computation since the algorithm has simply to perform
a comparison of Lagrangians for all nodes of the tree. The part of the algorithm
that might be expensive is the computation of the criterion and the constraint
values associated to the regions. Note, however, that this computation has to
be done once. Finally, the theoretical properties depend mainly on the criterion
and on the constraint. In any case, the operator is connected and self-dual.

This type of pruning strategy is illustrated by two examples relying on a
BPT. In the first example, the goal is to simplify the input image by min-
imizing the number of flat zones of the output image: C1 =

∑
Nk

1. In the

(a) (b) (c) (d)

Fig. 20. Example of optimization strategies under a squared error constraint of 31
dB. (a) Minimization of the number of the flat zones, (b) contours of the flat zones
of Fig. 20(a) (number of flat zones: 87, perimeter length: 4491), (c) Minimization of
the total perimeter length, (d) contours of the flat zones of Fig. 20(b) (number of flat
zones: 219, perimeter length: 3684).
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second example, the criterion is to minimize the total length of the flat zones
contours: C2 =

∑
Nk

Perimeter(Nk). In both cases, the criterion has no mean-
ing if there is no constraint because the algorithm would prune all nodes. The
constraint we use is to force the output image to be a faithful approximation
of the input image: the squared error between the input and output images
K =

∑
Nk

∑
n∈Nk

(ψ(f)(n) − f(n))2 is constrained to be below a given thresh-
old. In the examples shown in Fig. 20, the squared error is constrained to be
of at least 31 dB. Fig. 20(a) shows the output image when the criterion is the
number of flat zones. The image is visually a good approximation of the original
image but it involves a much lower number of flat zones: the original image is
composed of 14335 flat zones whereas only 87 flat zones are present in the fil-
tered image. The second criterion is illustrated in Fig. 20(c). The approximation
provided by this image is of the same quality as the previous one (squared error
of 31 dB). However, the characteristics of its flat zones are quite different. The
total length of the perimeter of its flat zones is equal to 3684 pixels whereas
the example of Fig. 20(a) involves a total perimeter length of 4491 pixels. The
reduction of perimeter length is obtained at the expense of a drastic increase of
the number of flat zones: 219 instead of 87. Fig.s 20(b) and 20(d) show the flat
zone contours. As can be seen, the flat zone contours are more complex in the
first example but the number of flat zones is higher in the second one.

This kind of strategy can be applied for a large number of criteria and con-
straints. Note that without defining a tree structure such as a Max-tree or a BPT,
it would be extremely difficult to implement this kind of connected operators.

6 Conclusions

This paper has presented and discussed a region-based processing technique in-
volving connected operators. There is currently an interest in defining processing
tools that do not act on the pixel level but on a region level. Connected operators
are examples of such tools that come from mathematical morphology.

Connected operators are operators that process the image by merging flat
zones. As a result, they cannot introduce any contours or move existing ones.
The two most popular approaches to create connected operators have been re-
viewed. The first one work on a pixel-based representation of the image and
involves a reconstruction process. The operator involves first a simplification
step based on a “classical” operator (such as morphological open, close, low-
pass filter, median filter, etc) and then a reconstruction process. Three kind of
reconstruction processes have been analyzed: anti-extensive, extensive and self-
dual. The goal of the reconstruction process is to restore the contour information
after the simplification. In fact, the reconstruction can be seen as a way to create
a connected version of an arbitrary operator. Note that the simplification effect
is defined and limited by the first step. The examples we have shown include
simplification in terms of size or contrast.

The second second strategy to create connected operators involves three steps:
in the first step, a region-based representation of the input image is constructed.
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Three examples have been discussed: Max-tree, Min-tree and Binary Partition
Tree. In the second step, the simplification is obtained by pruning the tree and,
in the third step, the output image is constructed from the pruned tree. The tree
creation defines the set of regions that the pruning strategy can use to create
the final partition. It represents a compromise between flexibility and efficiency:
on the one hand side, not all possible merging of flat zones are represented in
the tree, but on the other hand side, once the tree has been defined complex
pruning strategies can be defined. In particular, it is possible to deal in a robust
way with nonincreasing criteria. Criteria involving the notions of area, motion
and optimization under a quality constraint have been demonstrated.
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