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Abstract. Novel speech features calculated from third-order statistics of 
subband-filtered speech signals are introduced and studied for robust speech 
recognition. These features have the potential to capture nonlinear information 
not represented by cepstral coefficients. Also, because the features presented in 
this paper are based on the third-order moments, they may be more immune to 
Gaussian noise than cepstrals, as Gaussian distributions have zero third-order 
moments. Experiments on the AURORA2 database studying these features in 
combination with Mel-frequency cepstral coefficients (MFCC’s) are presented, 
and some improvement over the MFCC-only baseline is shown when clean 
speech is used for training, though the same improvement is not seen when 
multi-condition training data is used. 

1   Introduction 

Spectral-based acoustic features have been the standard in speech recognition for 
many years, even though they are based on limiting assumptions of the linearity of the 
speech production mechanism [1]. Specifically, mel-frequency cepstral coefficients 
(MFCC), which are calculated using a discrete cosine transform on the smoothed 
power spectrum, and perceptual linear prediction (PLP) cepstral coefficients, similar 
to MFCCs, but based on human auditory models, are used in almost all state-of-the-
art speech recognition systems [1]. While these feature sets do an excellent job of 
capturing linear information of speech signals, they do not encapsulate information 
about nonlinear or higher-order statistical characteristics of the signals, which have 
been shown to exist, and are not insignificant [2-4]. 

As successful as MFCCs have been in the field of speech recognition, performance 
of state-of-the-art systems remains unacceptable for many real applications. One of the 
largest failings of popular spectral features is their poor robustness in the face of 
ambient noise. Many environments in which automatic speech recognition applications 
would be ideal have large amounts of background additive noise that makes voice-
activated systems infeasible. In this paper, we introduce acoustic features based on 
higher-order statistics of speech signals. It is shown that these features, when combined 
with MFCC’s, can produce higher recognition accuracies in some noise conditions.  

The rest of the paper is as follows. Section 2 gives some background on robust 
speech recognition and nonlinear speech recognition. In section 3, computation of the 



278 K.M. Indrebo, R.J. Povinelli, and M.T. Johnson 

proposed features is detailed. Experiments comparing the feature sets including the 
third-order moment features and MFCC's are presented in section 4, and are followed 
by the conclusion in section 5. 

2   Background 

2.1   Robust Speech Recognition 

Robust speech recognition research has focused on subjects such as perceptually 
motivated features, signal enhancement, feature compensation in noise, and model 
adaptation. Perceptual-based features include PLP cepstral coefficients [5] and 
perceptual harmonic cepstral coefficients (PHCC) [6], which have been shown to be 
more robust than MFCCs in the presence of additive noise. Signal enhancement and 
feature compensation include techniques like spectral subtraction [7] and iterative 
wiener filtering [8], as well as more advanced algorithms such as SPLICE (stereo-
based piecewise linear compensation in environments) [9]. While these techniques 
focus on adapting the extracted features, model adaptation methods such as MLLR 
and MAP [10] attempt to adjust the model parameters to better fit the noisy signals.  

Though some progress has been made, the performance of speech recognition 
systems in noisy environments is still far from acceptable. Word error rates for a 
standard large vocabulary continuous speech recognition (LVCSR) task like 
recognition of the 5,000 word Wall Street Journal corpus can drop from under 5% to 
over 20% when Gaussian white noise is added at a signal-to-noise-ratio (SNR) of 
+5dB, even with compensation techniques [9]. Even continuous digit recognition 
word error rates often exceed 10% when faced with high noise levels [11].  

2.2   Nonlinear Features for Speech Recognition 

Recently, work has been done to investigate the efficacy of various feature sets based 
on nonlinear analysis. Dynamical invariants based on chaos theory [12], such as 
Lyapunov exponents and fractal dimension have been used to augment the standard 
linear feature sets [13], as well as nonlinear polynomial prediction coefficients [14]. 
In [15], an AM-FM model of speech production is exploited for extraction of 
nonlinear features. Also, Phase space reconstruction has been used for statistical 
modeling and classification of speech waveforms [16].  

In [17], reconstructed phase spaces built from speech signals that have been 
subband filtered were used for isolated phoneme classification, showing improved 
recognition accuracies over fullband signal phase space reconstruction features. 
However, this approach is infeasible for continuous speech recognition because of its 
high computational complexity. In this paper, nonlinear features from subbanded 
speech signals that are much simpler to compute are introduced. 

3   Third-Order Moment Feature Computation 

An approach based on time-domain filtering of speech signals is taken for 
computation of the nonlinear features. An utterance is parameterized by first filtering 
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the signal into P subbands that have cutoffs and bandwidths derived from the Mel-
scale. Each of these signals is then broken into frames with lengths of 25.6 ms, 
updated every 10 ms. The third-order moment of the signal amplitudes of each of 
these channels is calculated for each frame, and the set of these coefficients form a 
feature vector. Log energy of the unfiltered signal frame is appended to these features, 
which are then orthogonalized using a principle component analysis (PCA). In the 
experiments presented in this paper, 20 filter channels are used, and the PCA reduces 
the dimension third-order moment feature space to 13. 

Because much of the information that distinguishes speech sounds is contained in the 
power spectrum, it is not expected that these features by themselves would carry enough 
information to compete with MFCC features. Therefore, the proposed features are 
appended to the baseline MFCC feature vector for modeling and recognition of speech. 

There are two advantages to this approach. First, nonlinear information that may be 
useful for recognition that is not captured by traditional features is added to the 
recognizer. Also, because some types of noise have approximately Gaussian statistical 
distributions, and Gaussian distributions have zero third-order moments, the proposed 
features my be less affected by additive noise than MFCC’s. This conjecture is tested 
by comparing a combined feature set of MFCC’s and the proposed features to a 
baseline feature set of only MFCC’s for use in noisy speech recognition. 

4   Experiments 

The preliminary recognition experiments are run using the AURORA2 database [18]. 
This corpus contains utterances of connected digits corrupted with different types and 
levels of noise. There are eleven words: the digits zero through nine and “oh”. Two sets 
of experiments were run. In the first set the models were trained using clean speech 
signals, and tested on test set A, which contains four different types of noise 
 

 

Fig. 1. Recognition accuracies for speech corrupted by subway noise 
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at varying SNR levels. The second set of experiments used models trained on the 
multi-condition training set in AURORA2, and the tests were performed on test set A 
and test set B, which has four different types of noise. The multi-condition training set 
has the same noise types as test set A, providing a matched noisy training-test 
scenario. The noise types in test set B are not included in any training signals.  
HTK [19] is the software used for experimentation. Each word is modeled using a 16-
state left-to-right diagonal covariance Hidden Markov Model (HMM). Additionally, a 
3-state silence model and single-state short pause model are implemented. The frame 
rate is 10 ms, with frame lengths of 25.6 ms. 

Two types of feature sets are used. The baseline feature vector is a 39-element vector 
of 12 MFCC’s, log energy, and the first and second time derivatives. The second feature 

 

Fig. 2. Recognition accuracies for speech corrupted by babble noise 

 
Fig. 3. Recognition accuracies for speech corrupted by car noise  
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set is a 45-element vector composed of the 39-coefficient MFCC vector concatenated 
with 6 coefficients from the PCA of the third-order moment space. 

Figures 1-4 show the recognition accuracies for the two feature types on the four 
different noise types of AURORA’s test set A, using models trained on clean speech 
signals. These noises are subway, babble, car noise, and exhibition hall, respectively. The 
accuracies are plotted against the SNR levels, ranging from 0 to 20 dB. It can be seen that, 
except for the babble noise case, the MFCC-only features give better recognition 
accuracies at 20 dB SNR. The MFCC and third-order moment concatenation feature 
vector, however, outperforms the MFCC-only set in most of the lower SNR cases. 

 
Fig. 4. Recognition accuracies for speech corrupted by exhibition hall noise 

Table 1. Average recognition accuracies for models trained on corrupted speech 

Feature type Test set A Test set B 
MFCC’s 88.22% 84.10% 

Combined features 80.98% 61.37% 

Table 1 shows the accuracies of models trained on the multi-condition training set 
and tested on both test sets A and B for the MFCC feature set and the combined 
feature set, averaged over all the noise types and SNR levels from 0 to 20 dB. This 
table shows that when the models are trained on speech corrupted with different types 
and levels of noise, the addition of the third-order moment features does not improve 
upon the MFCC baseline, even degrading the performance significantly. 

5   Conclusion 

A new type of acoustic feature extraction method was presented based on higher-order 
statistics of subband filtered speech signals, and tested on noisy speech signals. The 
results show that the combination of traditional MFCC features and these new features 
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can improve the robustness of speech recognition systems when the speech models are 
trained on clean speech data. The largest improvement is seen when the speech signals 
used for recognition are corrupted by babble noise. However, when the speech models 
are trained on clean speech, the performance of the recognition degrades compared to 
MFCC only features. For these features to be useful in real systems, some adaptive 
combination may be necessary, so that information from third-order moment features is 
only used when it will improve the recognition estimates of the recognition system. 
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