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A. Gallardo-Antoĺın, and F. Dı́az-de-Maŕıa
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Abstract. Automatic Speech Recognition (ASR) is essentially a prob-
lem of pattern classification, however, the time dimension of the speech
signal has prevented to pose ASR as a simple static classification prob-
lem. Support Vector Machine (SVM) classifiers could provide an appro-
priate solution, since they are very well adapted to high-dimensional
classification problems. Nevertheless, the use of SVMs for ASR is by no
means straightforward, mainly because SVM classifiers require an input
of fixed-dimension. In this paper we study the use of a HMM-based seg-
mentation as a mean to get the fixed-dimension input vectors required
by SVMs, in a problem of isolated-digit recognition. Different configu-
rations for all the parameters involved have been tested. Also, we deal
with the problem of multi-class classification (as SVMs are initially bi-
nary classifers), studying two of the most popular approaches: 1-vs-all
and 1-vs-1.

1 Introduction

Hidden Markov Models (HMMs) are, undoubtedly, the most employed core
technique for Automatic Speech Recognition (ASR). During the last decades,
research in HMMs for ASR has brought about significant advances and, conse-
quently, the HMMs are currently accurately tuned for this application. Never-
theless, we are still far from achieving high-performance ASR systems. Some al-
ternative approaches, most of them based on Artificial Neural Networks (ANNs),
were proposed during the last decade ([1], [2], [3], [4] and [5] are some examples).
Some of them tackled the ASR problem using predictive ANNs, while others pro-
posed hybrid (HMM-ANN) approaches. Nowadays, however, the preponderance
of HMMs in practical ASR systems is a fact.

Speech recognition is essentially a problem of pattern classification, but the
high dimensionality of the sequences of speech feature vectors has prevented
researchers to propose a straightforward classification scheme for ASR. Sup-
port Vector Machines (SVMs) are state-of-the-art tools for linear and nonlinear
knowledge discovery [6], [7]. Being based on the maximum margin classifier,
SVMs are able to outperform classical classifiers in the presence of high dimen-
sional data even when working with nonlinear machines.
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Some researchers have already proposed different approaches to speech recog-
nition aiming at taking advantage of this type of classifiers. Among them, [8], [9]
and [10] use different approaches to perform the recognition of short duration
units, like isolated phoneme or letter classification. In [8], the authors carry out
a length adaptation based on the triphone model approach. In [9] and [10], a
normalizing kernel is used to achieve the adaptation. Both cases show the supe-
rior discrimination ability of SVMs. Moreover, in [9], a hybrid approach based on
HMMs has been proposed and tested in a CSR (Continuous Speech Recognition)
task.

Nevertheless, the use of SVMs for ASR is by no means straightforward. The
main problem is the required dimensional normalization, due to the fact that the
usual kernels can only deal with vectors of fixed size. However, speech analysis
generates sequences of feature vectors of variable lengths (due to the different
durations of the acoustic units and the constant frame rate commonly employed).
A possible solution is that showed in [11], where the non-uniform distribution of
analysis instants provided by the internal states of an HMM with a fixed number
of states and a Viterbi decoder is used for dimensional normalization.

Another difficulty is that speech recognition is a problem of multi-class classi-
fication, while in the original formulation, an SVM is a binary classifier. Although
some versions of multi-class SVMs have been proposed, they are computation-
ally expensive. A more usual approach to cope with this limitation is combining
a number of binary SVMs to construct a multi-class classifier. In this paper we
have studied two of the most popular approaches (1-vs-1 and 1-vs-all), testing
it in a specific ASR task.

This paper is organized as follows. In next section, we describe the funda-
mentals of SVMs and we describe the procedures for multiclass implementation.
Afterwards, we make a review of the HMM-guided segmentation method to pro-
duce input vectors with fixed dimension. Then, in Section 4, we present the
experimental framework and the results obtained, explaining the different cri-
terions followed to chose the several parameters of the system. Finally, some
conclusions and further work close the paper.

2 SVM Fundamentals

2.1 SVM Formulation

An SVM is essentially a binary classifier capable of guessing whether an input
vector x belongs to a class y1 = +1 or to a class y2 = −1. The decision is made
according to the following expression:

g(x) = w · φ(x) + b, (1)

where φ(x) : �n �→ �n′
, (n << n′), is a nonlinear function which maps the

vector x to a feature space with higher dimensionality (possibly infinite) where
classes are linearly separable, and w defines the separating hyper-plane in such
a space.
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What makes SVMs more effective than other methods based on linear discrim-
inants is the learning criterion, because instead of minimizing only the empirical
risk, they also try to minimize the structural risk, being the solution found a
compromise between the empirical error and the generalization capability.

The solution is given by the following minimization problem:

min
w,b,ξi

1
2
w · w + C

N∑

i=1

ξi, (2)

[3pt]subject to yi(w · φ(xi) + b) ≥ 1 − ξi, (3)
[3pt]ξi ≥ 0, for i = 1, · · · , N, (4)

where xi ∈ �n, i = 1, . . . , N are the training vectors corresponding to the
labels yi ∈ {±1}, and the parameter C establishes the compromise between
error minimization and generalization capability.

The SVM is usually solved introducing the restrictions in the minimizing
function using Lagrange multipliers, leading to the maximization of the Wolfe
dual:

Ld =
n∑

i=1

αi −
n∑

i=1

n∑

j=1

yiyijαiαjφ
T (xi)φ(xj) (5)

with respect to αi and subject to
∑n

i=1 αi = 0 and 0 ≤ αi ≤ C. This problem
is quadratic and convex, so its convergence to a global minimum is guaranteed
using quadratic programming (QP) schemes. The value of w and b can be recov-
ered from the Lagrange multipliers αi, that are associated with the first linear
restriction in the SVM formulation:

w =
N∑

i=1

αiyiφ(xi),

[3pt]b =
∑

j

αjyjφ(xi) · φ(xj) + yi, ∀i. (6)

According to (6), only vectors with an associated αi �= 0 will contribute to
determine the weight vector w and, therefore, the separating boundary, and they
receive the name of support vectors.

Generally, function φ(x) is not explicitly known (in fact, in most of the cases
its evaluation would be impossible as long as the feature space dimensionality
can be infinite). However, we don’t actually need to know it, since the only we
need to evaluate are the dot products φ(xi) ·φ(xj) that, by using what has been
called the kernel trick, can be evaluated using a kernel function K(xi,xj).

By this way, the form that finally adopts an SVM is:

g(x) =
N∑

i=1

λiyiK(xi,x) + b. (7)
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The most widely used kernel functions are the gaussian radial basis function,

K(xi,xj) = exp

(
−‖xi − xj‖2

2γ2

)
, (8)

with an associated feature space of infinite dimensionality, and the polynomial
kernel

K(xi,xj) = (1 + xi · xj)
p
, (9)

which associated feature space are the polynomials up to grade p.

2.2 Multiclass SVM

Besides of the necessity of using input vectors with fixed-length, there is another
important issue that must be solved whenever we work with SVMs for ASR.
While in speech recognition we have to make a decision among several classes,
support vector machines were originally designed for binary classification and
their generalization to the multi-class case is still an on-going research field.

Although some of the proposed approaches make a reformulation of the SVM
equations to consider all classes at once, this option is very expensive computa-
tionally and, therefore, we haven’t consider them in this work.

Another different approach is combining results of several binary classifiers
to construct a multi-class classifier. We have experimented with two different
versions of this method. The former consists in comparing each class against all
the rest (1-vs-all) while in the latter each class is confronted against all the other
classes separately (1-vs-1) [12].

In the 1-vs-all method we have to construct k SVMs (with k the number
of classes) and in the 1-vs-1 k(k − 1)/2, but, since in the second approach the
number of training vectors for each class is smaller, the necessary computational
effort can be ever lower in the latter case, as shown in [13].

For the 1-vs-1 alternative we have used the implementation described in [14],
where error correcting codes are used to compare the outputs of the classifiers,
and, for the 1-vs-all approach, we obtained the probability-like outputs using the
implementation in [15]. Afterwards, the outputs of the binary 1-vs-all classifiers
were compared, and the most probable class among the ones showing a positive
output was chosen (positive meaning that the binary classifier had selected the
‘one’ against the ‘rest’).

3 Feature Extraction and Dimensional Normalization

Since the speech signal is quasi-stationary, speech analysis must be performed
on a short-term basis. Typically, the speech signal is divided into a number of
overlapping time windows and a speech feature vector is computed to represent
each of these frames. The size of the analysis window, wa, is usually of 20-30
ms. The frame period, Tf , (the time interval between two consecutive analysis
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windows) is set to a value between 10 and 15 ms. Habitually, wa = KTf , where
K is called the overlapping factor.

With respect to the feature vectors themselves, for each analysis window,
twelve Mel-Frequency Cepstral Coefficients (MFCC) are obtained using a mel-
scaled filter-bank with 40 channels. Then, the log-energy, the twelve delta-
cepstral coefficients and the delta-log energy are appended, making a total vector
dimension of 26.

Typically, the values of wa and Tf are kept constant for every utterance that,
on the other hand, exhibits a different time duration. Consequently, the speech
analysis generates sequences of feature vectors of variable length. As we have
already mentioned, a normalization of these lengths is required to use SVM
classifiers.

In a previous work [11], three procedures to perform this dimensional nor-
malization are proposed. Two of them were very straightforward approaches
consisting on adjusting either the analysis window size or the frame period to
obtain a fixed number of time analysis instants. The third one, more sophisti-
cated, used and HMM-based segmentation to select the time analysis instants.
The next subsection describes this last method, that is the one selected for the
experiments conducted in this work.

3.1 Non-uniform Distribution of Analysis Instants

An appropriate selection of the time instants at which the speech signal is anal-
ysed can presumably improve the classification results.

To determine the appropriate analysis instants, we propose to use the implicit
information in the segmentation made by HMM, i.e., to consider those instants
at which state transitions occur (very likely related to those at which the changes
of the speech spectra happen).

This HMM-guided parameterization procedure consists of two main stages.
The first stage is a HMM classifier (a Viterbi decoder) that yields the best se-
quence of states for each utterance and also provides a set of state boundary time
marks. The second stage extracts the speech feature vectors at the time instants
previously marked. For the first stage, we have used left-to-right continuous
density HMMs with three Gaussian mixtures per state. Each HMM represents a
whole-word and consists of Ns states with the topology shown in Figure 1. These
models have been trained using only the training set of the speech database and
the conventional parameterization module used for the baseline experiments.
In particular, the speech parameters con-sists of 12 MFCC, the log-energy, 12
delta-MFCC and the delta-log energy, extracted using a frame period of 10 ms
and an analysis Hamming window of 25 ms.

As mentioned before, these acoustic models are used to generate alignments
at state level for each utterance in the speech database. In this process, each
utterance is compared to each of the HMMs and only the segmentation produced
by the acoustic model yielding the best score is saved for the next stage. Note
that the obtained seg-mentation may not be correct, even when the utterance
is properly recognized by the HMM-based system. Segmentation errors may
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Fig. 1. HMM topology

produce some degradation in the per-formance of the whole system, however, for
our task, the results obtained show that the segmentation is accurate enough.
Anyway, it is necessary to consider this issue for further research.

In the second stage, the feature vectors are extracted at the time instants
derived from the HMM-guided segmentation. In particular, a 25 ms analysis
window is sub-sequently located at these time instants. In this way, the number
of feature vectors per utterance used as the SVM input turns out to be equal
to the number of states (Ns), determined by the HMM topology. In our case,
the number of states was fixed to 17 (the same number of states we use for
HMM-based recognition).

4 Experimental Results

4.1 Baseline System and Database

We have used a database consisting of 72 speakers and 11 utterances per speaker
for the 10 Spanish digits. This database was recorded at 8 kHz in clean con-
ditions. Since this database is not large enough to achieve reliable speaker-
independent results, we have used a 9-fold cross validation to artificially extend
it. Specifically, we have split each database into 9 balanced groups; 8 of them
for training and the remaining one for testing, averaging the results afterwards.
In summary, we use a total of 7,920 words for testing our systems.

The baseline HMM-based ASR system is an isolated-word, speaker indepen-
dent system developed using the HTK package [16]. Left-to-right HMMs with
continuous observation densities were used. Each of the whole-digit models con-
tains a different number of states (which depends on the number of allophones in
the phonetic transcription of each digit) and three Gaussian mixtures per state.

For the baseline experiment with the HMM classifier, a Hamming window
with a width of 30 ms was used and the feature vectors (consisting of 12 MFCC,
the log-energy, 12 delta-MFCC and the delta-log energy) were extracted once
every 10 ms.

We have tested our systems in clean conditions and in presence of additive
noise. For that purpose, we have corrupted our database with two kinds of noises,
namely: white noise and the noise produced by a F16 plane. Both noises have
been extracted from the NOISEX database [17] and added to the speech signal
to achieve a signal-to-noise ratio of 12 dB. As we have used clean speech for
estimating the acoustic models (in both, HMM and SVM-based recognizers),
the noises are only added for testing the recognition performance.
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4.2 Selecting Parameters for the SVM-Based Recognizer

In order to get the best performance possible for the system proposed, we have
to select properly the values of the different parameters involved. Specifically,
we must answer the following questions:

1. What is the best kernel and which are the best parameters for it?
2. How many states must we use in the HMM-segmentation procedure?
3. When must we extract the features, in the transitions between states, or

between two transitions, when the voice is stationary?
4. What’s the best window size? Does it depend on the length of the utter-

ance?
5. Which parameterization should we use and what is the best normalization

procedure?

It is hard to make a guess a priori for these questions. However, the an-
swer will have a great impact in the recognition rates reached for our system.
For this reason, we ran a set of experiments with different values for all these
configuration parameters.

We have used the RBF kernel (eq. (8)) in all the experiments, finding values
for γ and for the regularization parameter C of the SVM by using grid search.
However, we didn’t find a significant difference among the different values tried
(about 1% in the recognition rate).

Regarding the number of the states of the HMMs used for the segmentation,
we have the problem that the different words in the dictionary have different
lengths. This implies that for a given number of states, some words can be
oversampled while, for others, we won’t have taken a number of parameters
large enough. For both SVM classifiers (1-vs-all and 1-vs-1), we have finally
used a 15 state HMM to produce the sampling instants in which the speech
signal is analysed. Thus, in this case we use 15 feature vectors per utterance as
the SVM input. The number of 15 was chosen because with less, the recognition
rate was poor, and with more, the computational cost was very high, while the
improvement in recognition was not so noticeable.

Once selected the most adequate number of states for the HMMs, is necessary
to determine the best moment to extract parameters for the SVM. This moment
could correspond with the transition between two states, which is associated with
a change in the spectrum, or with the time when the voice is stationary, between
two transitions. We have tried the two schemes and, even, a combination of both,
but all the results were very similar. We finally decided to extract parameters in
the transitions between states.

As long as we are using a fixed number of states for all words, and these
words can have very different durations, one could think that it would be a
good idea to adjust the size of the window used, making it wider depending
on the length between samples (i.e. transitions between states). In Figure 2 is
illustrated this approach. In the final implementation, however, as the results
with a variable window didn’t differ from those obtained with the fixed one, we
used the standard fixed window of 30 ms.
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Fig. 2. Parameter extraction using a fixed window size a), and a size depending on the
length between transitions b)

Table 1. Word Accuracy Rate (%) obtained with four different normalizations of
the speech features: only subtracting the mean value of each parameter, dividing the
result between the standard deviation of each parameter, dividing between the standard
deviation of all parameters together and dividing between the maximum value of each
parameter

HMM SVM 1-vs-All SVM 1-vs-1
Clean 12dB WN Clean 12dB WN Clean 12dB WN

Baseline 99.89 36.92 99.72 39.44 99.72 37.07
xi = xi − x̄i 99.42 41.67 99.51 40.68 99.5 39.87
xi = xi−x̄i

σxi
99.08 31.19 98.8 34.17 98.72 33.29

xi = xi−x̄i
σx

98.32 33.24 98.48 32.23 98.6 31.2
xi = xi−x̄i

max(xi)
99.34 49.4 99.35 50.73 99.35 50.6

Table 2. Recognition results obtained with the two proposed hybrid HMM-SVM-
based classifiers for two types of noises (white and F16). Results obtained with the
conventional HMM-based ASR system are presented as well.

Clean White F16
(SNR=12 dB) (SNR=12 dB)

HMM-based ASR 99.34% 49.4% 59.31%

Hybrid HMM-SVM ASR 99.35% 50.73% 59.47%
system(1-vs-all)

Hybrid HMM-SVM ASR 99.35% 50.6% 59.42%
system(1-vs-1)

Concerning parameterization, we used the same as in the baseline experiment
(12 MFCC + logE + ∆ + ∆-logE). However, an important issue in HMMs,
and even more in SVMs, is the normalization used. We tried four different types
of normalization, as we can see in Table 1. Although with clean speech the
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rates without normalization are slightly better, with noisy speech the results
obtained subtracting the mean to each parameter and dividing them between
their maximum values are the best ones.

4.3 Experiments and Results

On Table 2 are shown the best word recognition rates obtained with both alter-
natives of the multiclass SVM-based system and in comparison to those achieved
by the HMM-based system. As it can be observed, the SVM classifiers performed
only slightly better than the baseline system. The explanation for this is that,
when HMM fails, the segmentation obtained is far from the optimal and so, the
SVMs don’t have very much to do. However, even so, SVMs outperforms the
HMM-based system in all experiments, getting an improvement of more than
1% in the presence of white noise.

If we compare the two approaches proposed for recognition with SVMs, we
can see that results with 1-vs-all performs better than 1-vs-1. However, rates
obtained with both methods are again very close.

5 Conclusions and Further Work

In this paper, we have proposed two different approaches to a multiclass SVM
classifier (1-vs-all and 1-vs-1) with application to a specific ASR task. Experi-
mental results have shown that recognition rates obtained with SVM-based sys-
tems are very close to that achieved by a conventional HMM-based ASR system
in clean conditions. However, in noisy environments, differences are enlarged,
getting the 1-vs-all SVM-based classifier the best results.

Although the improvement obtained for the system proposed is not very large,
from our point of view, the results are very encouraging since HMM-based sys-
tems have been accurately tuned during the last three decades for automatic
speech recognition, while speech recognition based on SVMs is a new field of
study with a big margin for improvement.

With respect to the further work, we consider several lines: first of all, it would
be desirable to find an alternative method of getting a fixed-dimension input,
avoiding by this way the problem of a bad segmentation when the HMM fails.
Some method based on the behaviour of the derivative of the spectral features
could be considered.

Also, since the parameterization used is specially designed for a back-end
based on HMMs, it would be interesting to explore alternative parameterizations.
Currently, we are completing the first experiments with LSP parameters and the
results outperform those showed here.

Finally, we expect to extend the SVM framework for ASR by using string
kernels, which has been used with success in tasks as protein [14] and text [17]
classification. These kernels, based mainly on the Fisher score and other score
spaces, work in conjunction with a generative model, such as an HMM, and can
deal with sequences of different length.
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