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Abstract. Voice pathologies have become a social concern, as voice and speech 
play an important role in certain professions, and in the general population qual-
ity of life. In these last years emphasis has been placed in early pathology detec-
tion, for which classical perturbation measurements (jitter, shimmer, HNR, etc.) 
have been used. Going one step ahead the present work is aimed to estimate the 
values of the biomechanical parameters of the vocal fold system, as mass, stiff-
ness and losses by the inversion of the vocal fold structure, which could help 
non only in pathology detection, but in classifying the specific patient’s pathol-
ogy as well. The model structure of the vocal cord will be presented, and a 
method to estimate the biomechanical parameters of the cord body structure 
will be described. From these, deviations from normophonic cases, and unbal-
ance between cords may be extracted to serve as pathology correlates. The rele-
vance of deviations and unbalance in Pathology Detection is shown through 
Principal Component Analysis. Results for normal and pathological cases will 
be presented and discussed. 

1   Introduction 

Voice pathology detection is a field of important research area in voice and speech 
processing as it may affect the quality of life of the population, especially in people 
who use voice extensively in their professional activity, as speakers, singers, actors, 
lawyers, broadcasters, priests, teachers, call center workers, etc [13][16][22]. The 
success in treating voice pathologies depend on their early detection, and as such 
simple yet powerful inspection procedures are desirable. Among those procedures 
patient’s voice inspection is a simple, low cost and fast method to obtain an estima-
tion of the presence of pathology, which can be used as a screening routine to decide 
if other specialized inspection methods –as videoendoscopy- are to be used, as these 
being more precise in pathology classification, are at the same time less comfortable, 
more expensive and complicate, and their use should be obliviated if a simple inspec-
tion could help in screening patients before being subject to full inspection proce-
dures. The estimation of biomechanical parameters associated to the structure of the 
phonation organs would suppose an important improvement in the use of voice for 
pathology screening. Up-to-date techniques use time- and frequency-domain estima-
tion of perturbation parameters, which measure the deviation of the specific patient’s 
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voice from certain normal standards [6][20][15][7]. These techniques have revealed 
efficient themselves in the detection of pathology, but supply little information on the 
nature of the pathology. Trying to go one step ahead a study has been initiated to esti-
mate the values of the biomechanical parameters of the vocal fold system (mass, stiff-
ness and losses) from the glottal source obtained from voice after removing the vocal 
tract transfer function. This procedure is well documented in the literature (see for 
example [2] [5] [1]), and produces a trace which can be shown to be directly related 
with the glottal source (the average aperture measured between vocal cords during the 
phonatory cycle) [8]. The use of k-mass vocal fold models [18][3] help in determining 
that there are two main components in the movement of the vocal cord, contributed by 
the structure of the cord: the movement of the bulk muscular tissue of the cord body 
(see Figure 1.a) and a traveling wave known as the mucosal wave [21][17], which is 
contributed by the epithelial tissue of the cord cover (see Figure 1.b). 
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Fig. 1. a) Cross-section of the left vocal cord showing the body and cover structures (taken 
from [19]). b) k-mass model of the body and cover. c) 3-mass model used to establish the  
dynamics of the body-cover system. 

In previous research [8][9] it has been shown that both contributions present in the 
glottal source can be separated to produce two traces, known as the avrage acoustic 
wave or average glottal source (AGS) and the mucosal wave correlate (MWC). Their 
relative energy ratio may be used as a clue for the presence of certain pathologies 
which induce the reduction or complete disappearance of the mucosal wave [14]. In 
the present study the emphasis will be placed in using the average glottal source to 
measure the main biomechanical parameters involved in the dynamics of the cord 
body. For such the model structure of the vocal cord will be presented, and a method 
to estimate the biomechanical parameters of the cord body structure will be described. 
This method is based on hypothesizing that the fingerprint of the cord body dynamics 
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is responsible for the power spectral density (psd) of the AGS, thus allowing the iden-
tification of the biomechanical parameters of the cord body from the theoretical dy-
namical transfer function between forces and speeds in the cord body model. In this 
way a first estimation of the biomechanical parameters is obtained, which can be later 
refined adaptively.  

2   Estimating Cord Dynamics 

The vocal cords are two folds which can be found in the phonatory system located in 
the larynx supported by a complex structure of cartilage and muscles. These folds can 
be brought to a close contact to stop the flow of air through the respiratory system, 
and under convenient lung pressure can produce a vibration which is the basics of the 
phonation. A good explanation of the phonatory function can be found in [20]. A 
cross section of a vocal cord can be seen in 0.a, showing its tissular structure, which is 
composed by the body and the cover as mentioned before. In Figure 1.b an equiva-
lent k-mass model is presented, where the main structure (the body) has been repre-
sented by a large lump which referred to as Mlb (left cord) and Mrb (right cord). The 
cover is represented by a set of k-1 lumped masses  Mli and Mri, 1≤i≤k-1, linked by 
springs among themselves and to the body mass. Each spring is represented by a stiff-
ness parameter given by Klij (left cord) and Krij (right cord) where i and j refer to the 
masses linked (i,j=0 will point to the body mass). It will be assumed that a loss factor 
Rl,rij will be also associated to each spring to have viscous and other losses into ac-
count. A representation of the vocal fold dynamical relations may be seen in 0.c in-
cluding a body mass and two cover masses. This is the simplest model which can 
grant a proper study of the mucosal wave phenomenon, and has been widely studied 
in the literature ([3][17][18]). The estimation of the cord movement is based on the 
pioneering work by Alku ([2][23]), which has been modified for an iterative imple-
mentation in several steps as shown in Figure 2. 

Step 1 consists in removing the radiation effects from voice s(n) (see Figure3.a) by 
filtering with Hr(z). Step 2 consists in removing the glottal pulse generating model 
Fg(z) by by its inverse Hg(z) from the radiation compensated voice sl(n). In the first  
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Fig. 2. Estimation of the glottal pulse ug(n)  by coupled model estimation and inversion 
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iteration Hg(z) need not be a very precise estimation, as it will be refined by succes-
sive iterations. In step 3 the vocal tract model Fv(z) is estimated from the de-
glottalized voice sv(n). Step 4 will consist in removing the vocal tract model by filter-
ing sv(n) with the vocal tract inverse function Hv(z) to obtain a better estimation of the 
glottal source ug(n). Step 5 produces a more precise model of the glottal source Fg(z), 
which could be used to refine Hg(z). The procedure will repeat steps 2-5 to a desired 
end. The whole process is described in more detail in previous work [8]. The glottal 
source ug(n) as shown in Figure 3.c is composed by the body mass movement (cord 
body dynamics) and by the mucosal wave oscillation produced by the cover masses 
(cord cover dynamics). The mucosal wave correlate will be defined as: 

kggm Wn);n(u)n(u)n(y ∈−=  (1) 

where ym(n) is the mucosal wave correlate, and Wk is the k-th period window on ug(n). 

 

Fig. 3. a) Input voice s(n). b) Glottal source derivative. c) Glottal source ug(n) unfolding 
 points (*). d) Unleveled glottal pulse. 

The effects of vocal tract coupling have been neglected.The traces shown in  
Figure 4.a, b and c are respectively the ground leveled version of the glottal source 
ug(n), the average glottal wave )n(ug , and the leveled glottal pulse. As the average 

glottal source may be associated with the simplest cord body dynamics, the difference 
between the glottal source and the average glottal source may be considered as con-
tributed by the cord cover dynamics, and can be seen as the mucosal wave correlate, 
as shown in Figure 4.d. In the present study emphasis will be placed in adjusting the 
spectral behavior of the mucosal wave correlate to estimate the biomechanical 
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Fig. 4. a) Leveled glottal source, b) average glottal source, c) Leveled glottal pulse, d) cord 
body dynamics: mucosal wave correlate 

parameters of the cord body as described in [8] and [9]. The main hypothesis is that 
the envelope of the power spectral density of the mucosal wave correlate is deter-
mined by the admittance of the cord body dynamics, as explained later. 

The estimation of )n(ug  is carried out for each pitch period (cycle) as the subtrac-
tion of a half-wave sinusoidal arch with the same semi-period as the source, using an 
adaptive method to evaluate the amplitude of the arch, based on the minimization of 
the energy of the error between the glottal source ug(n) and the sinusoidal average 
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ωk being the angular frequency associated to the k-th cycle semi-period and τ being 
the sampling period. The optimization of the amplitude of each sinusoidal arch will be 
derived minimizing the cost function L in terms of u0k as 
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3   Estimation of the Body Biomechanical Parameters 

Detecting the cord body mass, stiffness and damping is based on the inversion of the 
integro-differential equation of the one-mass cord model, which for the left vocal cord 
would be 

∫
∞−

++=
t

xllb
xl

lblblbxl dtvK
dt

dv
MRvf  (5) 

where the biomechanical parameters involved are the lumped masses Mlb, the stiffness 
Klb and the losses Rlb. The equivalent model is shown in Figure 5. The estimation of 
the body biomechanical parameters is related to the inversion of this model, associat-
ing the force fxl on the body with the velocity of the cord centre of masses vxl in the 
frequency domain. 

 

 
Fig. 5. Electromechanical equivalent of a cord body 

The relationship between velocity and force in the frequency domain is expressed 
as the cord body admittance. The working hypothesis for the process of biomechani-
cal parameter estimation will be based on the assumption that the envelope of the 
power spectral distribution of the mucosal wave correlate (cover dynamic compo-
nent) is directly related with the square modulus of the input admittance to the elec-
tromechanical equivalent Ybl(s) given as 
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The robust estimation of the model parameters is based in the determination of two 
points on the power spectral density of the cover dynamic component [10] {Tb1, ω1} 
and {Tb2, ω2}, from which the lumped body mass (BM) may be estimated as 
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On its turn the elastic parameter (body stiffness: BS) Klb may be estimated from the 
precise determination of the position of the resonant peak, this being {Tr, ωr} 

2
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whereas the of body losses (BL) may be estimated (but for a scale factor Gb) as 
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Fig. 6. Parametric fitting of the mucosal wave power spectral density for a cycle of the sample 
trace (full line) against the admittance approximation (dot line) 

The estimations obtained from a phonation cycle of a normophonic voice trace have 
been used to reconstruct the approximated square modulus of the admittance, which is 
presented in Figure 6 against the power spectral density of the cover dynamics com-
ponent for comparison. 

Table 1 illustrates the values obtained for the biomechanical parameters of the 
cord body accordingly with two estimation algorithms (direct and adaptative) from a 
2-mass model synthetic voice trace. 

Table 1. Comparison between the biomechanical parameters obtained from (6-9) by direct and 
adaptive estimations 

Estimation method Body Mass (Mlb) Losses (Rlb) Elasticity (Klb) 
Direct (3rd harmonic) 2,1500e-004 5,5331e-005 138.500 
Adaptive 2,6710e-004 5,5331e-005 171.900 

 
 
It may be seen that the divergence between both methods is on the order of a 24%. 

The fact that the mass of the cord body seems to be clearly related to the ratio be-
tween the values of the mucosal wave correlate power spectral density for the first 
and third harmonics if ω1=ωr and ω2=3ωr gives substantial support to the use of this 
parameter as an important distortion measure as certain studies on pathological voice 
suggest [14][4]. 

4   Results for Synthetic Voice 

At this point what seems most crucial is to evaluate the accuracy in the exposed 
method. Obtaining direct in vivo estimations of the biomechanical parameters and 
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voice records from normophonic and pathological cases to establish the accuracy of 
the method seems to be rather difficult. Another more practical approach is to use a k-
mass model of the vocal folds to produce voice traces, assigning a priori known val-
ues for the biomechanical parameters, and use the estimation methods proposed in the 
present study to infer the values of the parameters, comparing the estimates obtained 
against the values introduced in the model. For such 16 voice traces where synthe-
sized using a 2-mass model of the vocal folds. The value of the subglottal mass 
(Ml1=Mr1) was fixed to 0.2 g. The supraglottal mass was varied from 0.005 to 0.05 g. 
(see Figure 7.1.b and c). 

On its turn the springs linking both masses to the reference wall (Kl1=Kr1) were set 
to 110 g.sec-2 whereas the stiffness linking subglottal and supraglottal masses 
(Kl12=Kr12) was varied from 5 to 255 g.sec-2 in alternating steps as shown in 
Figure 7.3.b and c. The value for the theoretical pitch generated by the model values 
was fixed to 120 Hz for all cases. The value of the losses was fixed to 4.10-2 g.sec-1 
for the whole set of traces. A model of the acoustic tube (vocal tract) with 64 sections 
for the vowel /a/ was chained to the vocal fold model to generate vowel-like voice. 
Traces lasting 0.5 sec. were generated at a sampling frequency of 48.000 Hz. These 
were treated as described in section 2 to obtain the mucosal wave correlate, and used 
in determining its power spectral density and the body biomechanical parameters as 
 

 

Fig. 7. 1.a) Estimated values for cord body masses. 1.b) Model values for subglottal masses. 
1.c) Model values for supraglottal masses. 2.a) Estimated values for cord body losses. 2.b) 
Model values for subglottal and supraglottal losses. 3.a) Estimated values for cord body elastic-
ity. 3.b) Model values for subglottal and supraglottal elasticity. 3.c) Model values for interelas-
ticity. 4.a) Estimated values for the pitch. 4.b) Model values for pitch. 
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Table 2. Values of the estimated body parameters for the set of synthetic voice traces plotted in 
Figure 7 

File No. Mb Rb Kb fp 
1  2.660e-004  5.456e-005  122.255  107.900
2  2.539e-004  4.638e-005  126.641  112.400
3  1.793e-004  3.369e-005  98.919  118.201
4  2.714e-004  5.262e-005  145.814  116.665
5  2.643e-004  3.607e-005  132.950  112.873
6  2.838e-004  5.156e-005  151.128  116.149
7  2.046e-004  4.041e-005  94.956  108.414
8  2.850e-004  5.090e-005  168.515  122.384
9  2.064e-004  3.790e-005  112.653  117.584

10  1.591e-004  2.221e-005  100.238  126.342
11  1.700e-004  3.184e-005  94.090  118.407
12  2.385e-004  3.424e-005  140.773  122.277
13  1.971e-004  3.562e-005  107.553  117.576
14  2.334e-004  3.723e-005  142.443  124.347
15  1.726e-004  3.239e-005  100.078  121.194
16  2.300e-004  4.238e-005  134.663  121.771

Means: 2.260e-004 4.000e-005 123.354 117.780
Std. Dev.: 4.264e-005 9.060e-006 22.972 5.344

 

described in section 3. The resulting estimations are displayed in Table 2 and listed in 
Figure 7. It may be appreciated from Figure 7 that the estimation of the body mass is 
centered around the value fixed in the model for the subglottal masses, the estimates  
showing slight apparent contamination by crosstalk from the supraglottal masses. This 
is also the case of body stiffness, where a small influence from the interelasticity seems 
to slightly contaminate the estimates. Interelasticity crosstalk seems to exert also some 
influence in the estimation of the losses. The estimation of the pitch as obtained from 
the power spectral density of the unfolded glottal source is also reasonable. The disper-
sion of the parameters as seen from Table 2 seems to be in the order of a 25 %. 

The referencing of traces has been carried out comparing the mass and elasticity 
average estimates against the values used in the models. The relative gains for mass 
and elasticity coefficients have been found to be Gma=0.0056, Gka=0.0040, which are 
in good agreement. The absolute referencing for the determination of the losses is 
very much related to the energy of the trace as obtained from its autocorrelation func-
tion, and is still under study. Practical estimations have yielded the value of  
Gra= 32.53 for this set of experiments, but the question is not closed yet. Another 
important question is the issue of mass unbalance, as it is of most interest to infer 
mass differences between cords related to several critical pathologies. This study is 
being conducted defining the common and differential modes of cord vibration, and 
from these a contribution associated to each cord body could be established. The same 
may be said for cord stiffness. A slight unbalance between waveform cycles may be 
observed in Figure 4.a) and c). As estimations of mass, stiffness and losses will be 
available by cycles, the unbalance of these parameters (BMU – Body Mass  
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Unbalance, BLU – Body Losses Unbalance and BSU – Body Stiffness Unbalance) 
may be defined as 

( ) ( )
( ) ( )
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where 1≤k≤K is the cycle window index and  bkbkbk K̂and,R̂,M̂  are the k-th cycle 
estimates of mass, losses and stiffness on a given voice sample (intra-speaker). Other 
parameters of interest are the deviations of the average values of mass, losses and 
compliance for the j-th sample bjbjbj K̂and,R,M  relative to average estimates from a 
normophonic set of speakers (inter-speaker) as  
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these parameters are known as BMD (Body Mass Deviation), BLD (Body Losses 
Deviation) and BSD (Body Stiffness Deviation).  

5   Results from Natural Voice 

A variant of Principal Component Analysis (PCA) known as multivariate measure-
ments analysis (see [12], pp. 429-30) Hierarchical Clustering and have been used with 
the distortion parameters given in Table 3 [11]. 

PCA is conceived as the optimal solution to find the minimum order of a linear 
combination of random variables xj showing the same variance as the original set, 
where the components of xj correspond to different observations (samples) of a given 
input parameter (j-th parameter) for a set of 20 normophonic and 20 pathologic sam-
ples (4 samples with polyps, 6 samples with bilateral nodules, 5 samples with Re-
inke's Edema, and 5 samples with reflux inflammation) as listed in Table 4. 

Table 3. List of parameters estimated from voice 

Coeff. Description 
x1 pitch 
x2 jitter 

x3-5 shimmer-related 
x6-7 glottal closure-related 
x8-10 HNR-related 
x11-14 mucosal wave psd in energy bins 
x15-23 mucosal wave psd singular point values 
x24-32 mucosal wave psd singular point positions 
x33-34 mucosal wave psd singularity profiles 
x35-37 biomechanical parameter deviations (11) 
x38-40 biomechanical parameter unbalance (10) 
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Table 4. Values of x35-39 for the samples studied. Sample conditions are: N – Normophonic; 
 BP – Bilateral Polyp; LVCP – Left Vocal Cord Polyp; BRE – Bilateral Reinke’s Edema; BN – 
Bilateral Noduli; LR – Larynx Reflux; RE – Reinke’s Edema; RVCP – Right Vocal Cord Polyp. 

Trace Condit. BMD BLD BSD BMU BLU 
001 N -0.632 -0.136 -0.540 0.027 0.039 
003 N -0.154 -0.145 -0.137 0.079 0.056 
005 N -0.039 -0.299 -0.213 0.078 0.044 
007 N -0.492 -0.461 -0.573 0.036 0.046 
00A N -0.542 -0.207 -0.567 0.065 0.064 
00B N? 1.320 0.642 1.250 0.149 0.191 
00E N -0.054 0.012 -0.128 0.159 0.098 
010 N -0.408 0.164 -0.491 0.115 0.103 
018 N -0.031 -0.205 -0.167 0.078 0.076 
01C N -0.557 -0.315 -0.581 0.058 0.052 
024 N? 0.631 1.330 1.200 0.120 0.124 
029 N 0.101 -0.111 0.416 0.057 0.048 
02C N -0.329 -0.253 -0.079 0.035 0.040 
02D N -0.227 -0.193 0.022 0.116 0.053 
032 N -0.507 -0.019 -0.367 0.038 0.071 
035 N 0.424 -0.302 -0.021 0.099 0.065 
043 N 0.219 0.156 0.466 0.059 0.030 
047 N -0.497 1.070 -0.180 0.076 0.052 
049 N -0.157 0.160 0.029 0.113 0.079 
04A N -0.005 1.770 0.073 0.098 0.075 
065 BP 0.240 7.490 3.220 0.835 0.712 
069 LVCP 0.560 3.490 2.460 0.408 0.318 
06A BRE 0.142 2.860 1.760 0.300 0.331 
06B BN 0.427 3.860 2.150 0.339 0.326 
06D BN 0.573 3.540 2.160 0.338 0.339 
071 BRE 0.417 3.210 1.870 0.306 0.348 
077 LR 2.000 3.170 3.660 0.460 0.320 
079 RE 0.658 2.860 2.170 0.396 0.333 
07E BN 0.843 2.990 2.340 0.328 0.303 
07F LR 0.420 2.850 1.950 0.332 0.309 
083 LR 0.253 2.880 1.900 0.391 0.333 
092 BRE 0.216 2.750 1.720 0.469 0.353 
098 RE 0.187 2.830 1.720 0.360 0.339 
09E BN 1.400 11.700 5.510 0.637 0.518 
09F LR 0.062 2.920 1.660 0.309 0.334 
0A0 RVCP 0.156 3.020 1.720 0.333 0.338 
0A9 LVCP 0.012 3.600 1.660 0.293 0.311 
0AA LR -0.091 2.970 1.600 0.268 0.315 
0B4 BN 0.154 4.280 1.870 0.305 0.338 
0CA BN -0.057 3.040 1.630 0.310 0.361 

 

These samples were processed to extract the set of 40 parameters listed in Table 3, 
of which two subsets were defined for classification: S1={x2-39}, including most of the 
parameters available, and S2={x2, x3, x8, x35-39} including jitter, shimmer, HNR, devia-
tions (BMD, BLD and BSD), and unbalances (BMU and BLU). The results of the 



 Voice Pathology Detection by Vocal Cord Biomechanical Parameter Estimation 253 

clustering process are shown in Figure 8 as biplots against the two first principal 
components from PCA analysis. It may be seen that the clustering process assigned 
most of normophonic samples to one cluster (with the exception of 00B and 024) both 
for S1 as well as for S2. The results using S2 are given in Table 5. 

Table 5. Clustering results for S2 

Cluster Samples 
c21 (o) 001, 003, 005, 007, 00A, 00E, 010, 018, 01C, 029, 02C, 02D, 032, 035, 043, 

047, 049, 04A 
c22 (◊) 00B, 024, 065, 069, 06A, 06B, 06D, 071, 077, 079, 07E, 07F, 083, 092, 098, 

09E, 09F, 0A0, 0A9, 0AA, 0B4, 0CA 

 

Fig. 8. Left) Clusters for S1. Right) Clusters for S2. 

To further clarify the analysis a 3D plot of the results vs the three most relevant in-
put parameters in S2 as established by PCA is presented in Figure 9. The most rele-
vant parameter according to this combination seems to be BSD (x37). The larger x37, 
the stiffer the cord and the less normophonic the production. The second most rele-
vant parameter seems to be jitter (x2). The third most relevant parameter is BLD (x36) 
associated to the profile of the spectral profile peak (Q factor). 

The behaviour of cases 00B and 024, classified as pathological by PCA analysis 
deserves a brief comment. These appear in Figure 9 (encircled) not quite far from 
normal cases 001-04A, but showing a stiffness that doubles those of normophonic  
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Fig. 9. 3D Clustering Plot showing the separation in the manifold defined by the parameter 
subset {x37, x2 and x36} – ordered by relevance 

samples. Apparently this detail was determinant in their classification as not normo-
phonic by PCA. This fact was confirmed by their values for the BSD in Table 4, 
being 1.25 and 1.2 respectively, or 225% and 220%. 

6   Conclusions 

Through the present paper the possibility of obtaining indirect estimates of the vocal 
cord biomechanical parameters from the voice trace has been shown. This could open 
new possibilities for the non-invasive distant exploration of patients both for pathol-
ogy detection and classification by analysis of the voice trace. The method is still 
subject to revision to take into account the influence of second-order biomechanical 
parameters. Its possible extension to unbalanced parameter estimation is also under 
study. The methodology presented detects biomechanical unbalance from voice re-
cords for pathology detection by common pattern recognition techniques. Normo-
phonic samples show small unbalance indices, as opposed to pathologic ones. There 
is not a specific pattern of unbalance related to a given pathology (although more 
cases need to be studied). Biomechanical parameter unbalance is a correlate to pa-
thology quantity rather than quality. Although mild pathologies may appear as nor-
mophonic from subjective analysis the use of the proposed methods may spot them 
and help in keeping trace of their evolution in time. Adequately combining classical 
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distortion parameters with deviation parameters renders fairly good results in pathol-
ogy detection. These conclusions need to be confirmed by more experiments. 
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