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Abstract. The present work shows how communication systems benefit from 
fuzzy logic. From signal processing applications, which process bits at the 
physical layer in order to face complicate problems of non-Gaussian noise, to 
practical and robust implementations of these systems and up to higher layers in 
the communication chain, which are engaged in the protocol design. The ability 
for modeling uncertainty with a reasonable trade-off between complexity and 
model accuracy, makes fuzzy logic a promising tool. 

1   Introduction 

Since the introduction of fuzzy logic in the engineering field, this discipline has been 
very successful in automatic control [1] with applications such as autonomous robot 
navigation, auto focus cameras, image analysis and diagnosis systems. A proof of this 
success can be found in the number of companies developing hardware and software 
for developing fuzzy systems (Accel Infotech Pte, Ltd., Adaptive Informations 
Systems, American NeuraLogix, Fujitsu, Oki Electronic, OMRON Corporation, 
Toshiba, SGS-Thomson, Siemens, etc.). 

The present work shows how communication systems benefit also from fuzzy logic 
systems. From signal processing applications that process bits at the physical layer in 
order to face complicate problems of non-Gaussian noise, to practical and robust 
implementations of these systems and up to higher layers in the communication chain, 
which are engaged in the protocol design. The ability for modeling uncertainty with a 
reasonable trade-off between complexity and model accuracy makes fuzzy logic a 
promising tool. 

In the 90’s, Bart Kosko [2-3] and Jerry Mendel [4-5] began to study the application 
of fuzzy logic and set theory to the signal processing field. Since then various works 
have appeared focused on fuzzy logic under the intelligent signal processing framework 
[6-7]. Fuzzy systems are able to build up mathematical models from linguistic 
knowledge and do not require statistical knowledge, although they can incorporate it, 
offering an scalable design with the available information. Communication systems can 
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benefit from these features to gain in robustness and in fast acquisition and tracking, 
as the present work shows in the application of interference canceling in CDMA 
(Code Division Multiplex Systems). Another important feature is that fuzzy systems 
offer also physical interpretability, this helps adjust the parameters of the system in an 
easy and friendly way. The second application presented in this work at bit level takes 
advantage of this feature in order to design a robust beamformer for communication 
signals, resulting in an easy implementable and tunable beamformer when compared 
with other existing techniques in the literature. These applications together with 
others developed by the authors in [8-9] are based on the capability of fuzzy logic to 
implement model-free function approximations. All these works aim to achieve the 
intelligent filtering that Lofti Zadeh in 1954 stated in his work “General filters for 
separation of signal and noise” [10]. We could summarize it saying that intelligent 
and robust filtering consist in decision making. Decision making that should operate 
not with an statistical model but with the available data: “Since the extent to which a 
signal can be separated from noise is ultimately limited by the statistical data 
available to the designer, a more rational approach would be to start with all the 
available data about the signal and noise an try to design a filter that would use it 
fully and most effectively,”[10]. 

However, we should talk about the benefits of fuzzy logic and systems with cau-
tion. If expert or linguistic knowledge is not available to carry out the decision mak-
ing in an “intelligent” way, fuzzy logic systems can be used as filters or classifiers 
that generalize the ones designed on a statistical basis (e.g. minimum mean square 
error, maximum likelihood, maximum a posteriori probability); thus, offering much 
more flexibility and possibilities than the classical statistical systems, but presenting a 
greater complexity that results difficult to cope with. Concerning this aspect, the pre-
sent work compares different fuzzy and non-fuzzy classifiers. In spite of the greater 
flexibility that fuzzy systems offer due to the fuzzy instead of crisp classification 
thresholds, the conclusion is that the fuzzy systems only stand out when expert 
knowledge and not only data is available in the design. 

At the protocol level in the communication stack, known research applications are 
queuing and buffer management, distributed access control, hand-off control, load 
management, routing, call acceptance, policing congestion mitigation, bandwidth 
allocation, channel assignment, network management, etc [11-17]. All of them take 
advantage of: the flexibility of fuzzy logic, its ability to cope with different types of 
inputs and its decision making structure. Protocols are in fact controllers that have to 
make decisions based on many different variables; thus, the appropriateness of fuzzy 
logic. Part of the present chapter is dedicated to applications regarding hand-off 
algorithms [18-19], combining distance measurements with received signal strength 
to decide hand-off while keeping quality of Service. Although the work focuses on 
horizontal hand-off in WLAN (Wireless Local Area Network), we point out that in 
the emerging multimedia systems, hand-off is also considered vertically, as a switching 
between different systems covering the same area and service. As an example, consider 
switching between GPRS, UMTS and a satellite segment, as in [20]. 

Next some of the mentioned applications are presented: section 2 describes the 
interference canceller for CDMA, section 3 is dedicated to the robust beamformer, 
section 4 is devoted to fuzzy classification and finally, section 5 discusses on the use 
of fuzzy logic for hand-off control. Finally conclusions come. For a review of fuzzy 
logic and systems in signal processing we refer to the tutorial in [5].  
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2   Fuzzy Logic Canceller for CDMA 

The new communication standards require high capacity to support the increasing 
demand of multimedia services. In order to achieve the high capacity, the standards 
propose to reduce the cell site and reutilize frequency or codes. However, this strategy 
ask for more sophisticated signal processing techniques that are able to cope with the 
increases level of interference. This section focus on a CDMA system, where K 
spread spectrum users are received at each single-user terminal. The signal model for 
the sample k of the received signal is 

 (1) 

where sk represents the binary information ( )1∈±  of the desired user. The interfer-

ence ik can be either analog or digital and nk models both the thermal noise (AWGN 
or additive white Gaussian noise) and the multiple access interference or MAI as (2) 
formulates 

 
(2) 

where l
ks  is the binary sequence of the undesired user j, and wk is the thermal noise. 

Pj and PN represent the corresponding powers. Next section is devoted to the design of 
the fuzzy canceller. 

2.1   Formulation of the Fuzzy Interference Canceller 

The canceller subtracts the interference signal from the received one in (1). Therefore, 
it is necessary a non-linear filter able to estimate ik in a non-Gaussian noise environ-
ment. When the interference is analog, the conditional mean estimator of (3) is the 
optimal one 

 
(3) 

where p(i/r) represents the a posteriori probability of the interfering signal. Applying 
the Bayes theorem and the signal model in (1), p(i/r) can be equated as 

 

(4) 

where 
T

p p p⎡ ⎤= − −⎣ ⎦z r m i , rp embraces all the received samples and mp consists of 

all the possible noise and MAI states. Finally, p(i) is the a priori probability of the 
interference and λp is the a priori probability of the p noise state.  
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Combining (3) and (4) we get the following equation for the conditional mean of 
the interference 

 

(5) 

where wj,l is the product of p(j) and λl . Note that (5) can be seen as a fuzzy system 
with LxQ linguistic rules, exponential membership functions, Sugeno inference and 
centroid defuzzification. In other words, il represents the output centroid for the l-th 
rule, which is weighted by  wjl. Therefore, (5) can be reformulated as (6) 

 

(6) 

where Φj is the fuzzy basis function of rule j. Under high Signal to Noise ratio 
conditions, the fuzzy interference estimator of (6) approximates the maximum a 
posteriori estimator as equated in (7) 

 

(6) 

where Φm is the fuzzy basis function that presents a maximum value, which is close 
 to one. 

2.2   Expert Knowledge in the Fuzzy Interference Canceller 

The fuzzy system is designed based on 4 variables: 3 2 1
ˆ ˆ, , ,k k k ki i r r− − − . In order  

to reduce the fuzzy rule base, the variable rk-1 has been taken as reference of  
the input universe of discourse. Therefore, the input vector x is 

[ ]3 1 2 1 1 1 2 3
ˆ ˆ T T

k k k k k ki r i r r r x x x− − − − −⎡ ⎤= − − − =⎣ ⎦x . The fuzzy rule base has the 

following structure 

1 1 2 2 3 3
j j j

j jIf x is A and x is A and x is A THEN y is B with weight w  

where ,j
i jA B   are the input and output fuzzy sets respectively for rule j. The input 

and output variables have been modeled with F=7 fuzzy sets. The mean of the fuzzy 

sets takes the values { }3, 2, 1,0,1,2,3− − −  and the variance equal to 0.5. The fuzzy 

rule base is initialized in order to model the slow evolution of the narrow band inter-
ference when compared with the sampling time [21]. Finally, the weights are tuned by 
the Least Mean Square (LMS) algorithm of (7). 
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(7) 

where the error ek is  

 
(8) 

2.3   Simulations  

Next the fuzzy system has been compared with the two-sided linear filter of [22-23] 
with 10 coefficients. This coefficients and the the centroids of the fuzzy filter have 
been adapted with a decision directed LMS. Fig. 1 shows the Signal to Noise and 
Interference Ratio improvement when the interference is modeled as an autoregres-
sive process. The SNR is equal to 20 dB. 10 Monte Carlo runs have been conducted 
with 660 samples for training each and 8000 for evaluation. Note the better perform-
ance of the fuzzy filter. In Fig. 2 the Bit Error Rate (BER) has been evaluated for 
SNR=20 dB and a multiple access interference of  K=3 users and spreading factor of  
SF=11. As the weighted fuzzy filter takes into account the states of the MAI, it out-
performs both the linear and the non-weighted filter.  

 

Fig. 1. Suppression of an AR interference. SNR= 20 dB. 

Fig. 3 evaluates the performance of the fuzzy filter depending on the Signal to 
Noise ratio (SNR) for SIR equal to –20 dB. The only interference in the scenario has 
been modeled as an autoregressive process. The fuzzy filter has been compared with 
the optimum filter (DDK) and with the minimum mean square error one (MMSE). 
Note that for low power of Gaussian noise (i.e. in an interference limited scenario), 
the fuzzy filter outperforms the other ones. Finally, Fig. 4 shows the fast acquisition 
time of the fuzzy interference canceller due to the initial expert knowledge incorpo-
rated in the rule base. 
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Fig. 2. Suppression of a digital interference. SNR= 20 dB and MAI of 3 users. 
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Fig. 3. Suppression of a digital interference. SIR= -20 dB and autoregressive interference. 

2.4   Conclusions  

The designed fuzzy filter is able to cope with both analog and digital interference 
even in the presence of MAI. On the other hand, due to the difficulty of statistical 
modeling, classical filters, which relay just on statistics, are not able to cope with this 
complex situation. The initial fuzzy rule base is built up from expert knowledge and 
can be trained with data whenever available; thus, approaching to the optimum MAP 
interference estimator. Therefore, the system is scalable with the available informa-
tion and if only a short training is possible, the expert knowledge incorporated in the 
rule base guarantees a better performance than existing interference cancellers. In 
fuzzy systems optimality is pursued by emulating an expert operator. This is the best  
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Fig. 4. Acquisition time 

that can be done in the context of fuzzy logic. It is worth noting, however, that in all 
cases of queuing control where a mathematically optimal solution is known, as it is 
the case of interference estimation in CDMA, the fuzzy system yields precisely the 
same optimal solutions. In addition, in [24] the authors design a hierarchical rule base 
that reduces the computational complexity without degrading performance in most of 
the cases. 

Next section presents a fuzzy beamformer that takes advantage of the fuzzy rule 
base in order to obtain a design close to the physical properties of the scenario and, 
therefore, easy to implement and to adjust when compared to existing non-fuzzy 
beamformers. 

3   Fuzzy-Inference-Based Robust Beamforming 

Adaptive array beamformers are used to spatially discriminate a desired signal from 
the unwanted interferers. They usually operate with the spatial signature or steering 
vector associated with the signal source to be filtered out, and they typically produce a 
constant array response towards that direction while minimizing other contributions 
(see Fig. 5). Significant degradation appears when the desired steering vector is not 
known exactly [25]. It is specially noticeable when the number of snapshots is low 
(i.e. the so called sample support problem) and gets worse for high Signal to Noise 
plus Interference Ratio (SNIR). The phenomenon is that desired information is treated 
as interference and consequently nulled. 

Numerous methods have been proposed. We classify them depending on the 
knowledge they require from the uncertain desired Direction of Arrival or DOA. Tra-
ditional approaches require a nominal DOA and its corresponding uncertainty range 
[26-28]. The approach in these techniques is to gain robustness related to DOA errors 
at the expenses of decreasing interference and noise suppression and in general the 
problem of interference within the uncertainty range for the DOA is not addressed. A 
different approach consists in computing a DOA estimate and proceed as if the DOA 
were already known [29], yielding the so-called Direction-based techniques. Finally, 
the third group of techniques in complexity order contains subspace techniques, as in 
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Fig. 5. An example of spatial linear processing to filter out a signal s(k) in presence of an  
interference i(k) 

[30] or references therein, where the signal plus interference subspace is estimated in 
order to reduce mismatch. However, they also suffer from significant performance 
degradation when the available data doesn't provide good estimates. The above men-
tioned techniques resort to different robust signal processing schemes, as for instance: 
regularization, minimax/worst-case design or Bayesian approaches. 

This paper uses fuzzy logic as another tool worth considering when imprecise a 
priori knowledge of input characteristics makes the sensitivity to deviations from 
assumed conditions an important factor in the design [31]. We derive a direction-
finding based beamformer that describes DOA imprecision by means of fuzzy sets, 
which does not make statistical assumptions on interference and noise. An important 
issue in robust beamforming is the design or adjustment of parameters, whose values 
trade-off between robustness and array gain. In that sense, physical interpretability as 
in the proposed fuzzy techniques is always desirable. 

This part is organized as follows. Section 3.1 states the problem. The fuzzy infer-
ence based beamformers are developed in Section 3.2, Section 3.3 parameter design, 
Section 3.4 presents performance examples and a summary is given in Section 3.5. 

3.1   Problem Statement  

The narrowband beamformer is a linear processor and consists of a set of P complex 
weights that combine the signals received at P sensors with the objective of filtering 
out a signal s(k) (see (9)) that impinges the array from a specific spatial direction  
(see Fig. 5) 

 
(9) 

where k is time index, [ ]1( ) ( ) ( )
T

Pk x k x k=x L  is the complex vector of array obser-

vations, [ ]1( ) ( ) ( )
T

Pk w k w k=w L  is the complex vector of beamformer weights, P 

is the number of array sensors. The base band observation data x(k) is  
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(10) 

where s(k) represents the desired signal contribution, i(k) the interference and n(k) is 
noise. Note that we have decomposed s(k) into desired signal waveform s(k) and 
desired signal steering vector ad, which contains the spatial information. It is easily 
modeled resorting to wave propagation theory and array geometry.  

The weights are chosen accordingly to some optimum criterion, such as maximum 
SNIR, minimum mean square error or minimum power distortionless response 
(MPDR). All of them equate 

 
(11) 

where µ is a scale factor and { }H
x E=R xx  is the data covariance matrix. A beam-

former having this form is often referred to as the “optimum beamformer”. Its per-
formance strongly depends on both ad and Rx in those common practical applications 
where they are obtained through estimation. In this paper we consider no knowledge 
of the desired DOA and that K snapshots are available for the estimation of both the 
covariance matrix and the DOA. The array is assumed to be calibrated, so errors in 
the spatial signature come form the DOA estimate.  

The Sample Matrix Inversion (SMI) method is used for adaptive beamforming. 
The weights are updated every K snapshots using the K-sample covariance matrix of 
(12), as well as the DOA estimate, which is obtained with the Capon estimator; thus, 
obtaining the so-called Capon beamformer. Other estimates are possible, however, 
without loss of generality for the proposed techniques 

 

(12) 

Direction-finding based beamformers suffer from significant performance degrada-
tion when the DOA estimates are not reliable, because of low number of snapshots or 
low SNR. Next section develops an adaptive beamformer which balances the user of 
observed data and approximate DOA knowledge.  

3.2   Fuzzy Inference Based Beamformer  

Assuming partial knowledge about the desired DOA (i.e. a nominal DOA and 
uncertainty region), we aim to use the capability of fuzzy systems to approximate any 
continuous function on a compact (closed and bounded) domain to obtain a reliable 
estimate of s(k). Fuzzy theory states that it is always possible to find a finite number 
of rule patches (which describe the system) to cover the graph of f while keeping the 
distance ( ) ( )f x F x−  as small as we please, being F(x) the fuzzy approximation 

function.  
We consider one input variable to the system, the DOA candidate ud that we extract 

from input data (Capon estimator). In order to take into account DOA errors, we  
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define an interval of possible DOA values, the prior and L fuzzy sets { }, 1...iA i L=  

are placed equispaced along it. They describe the imprecise DOA estimate. As far as 
we are also concerned about practicality and implementation issues, we choose input 
fuzzy sets to be triangular. Their membership degree over the variable u can be ex-
pressed as 

 

(13) 

with  , where udmin-udmax stands for the prior width. Widths 

are set using amp and . 

The choice for the output fuzzy sets follows from the conditional mean beamfomer 
wCM in (14) 

 

 

(14) 

where X represents the available data set and p(ui/X) is the a posteriori probability 
density function (pdf). The global estimation problem is divided into L smaller prob-
lems that assume fixed input parameters ui and that are gain controlled by the prob-
ability of each possible signal incoming direction ui given the data set.  

In light of (14), it is clear that the conditional mean beamformer is optimal as far as 
L is big enough and the a posteriori pdf is assumed perfect. In that asymptotic case, 
the conditional mean beamformer is the optimum beamfomer in the minimum mean 
square error sense. When a finite (and low) number of optimum beamformers are 
available, a fuzzy approximator that does not rely on statistics but on expert knowl-
edge can be derived.  The output fuzzy sets Bi are designed accordingly as singletons 

placed at ( )H
opt iuw x , which, in other words, is the output of the “optimum beamfo-

mer” pointing at ui. Due to philosophy similarities, we use the Bayesinan beamformer 
[28] as a benchmark for comparison. Indeed, it is derived from (14) and uses a para-
metric model for the pdf.  

To completely describe the system, assuming we implement additive fuzzy sys-
tems with singleton fuzzification, product inference and centroid defuzzification [5], 
we establish the rules Ri, i=1…L that relate inputs with outputs: 

Ri: IF the DOA is Ai THEN the desired signal is Bi 
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It can be shown that the final expression of the spatial filter is the one given in (15) 

 

(15) 

Fig. 6 shows an operation example of the beamformer for the case L=3. Note that 
although statistics play an important role in computing both the output fuzzy sets and 
the input to the system, the rules are transparent to statistics and rely to a knowledge 
based approach. Thus, the system is not so model-dependent and consequently model-
limited as for example the Bayesian one. Another important aspect is how we tune 
parameters to incorporate expert knowledge. This is discussed in the next section. 

 

Fig. 6. Beamforming example for the case L=3 

3.3   Parameter Design 

The fitting quality of the designed fuzzy beamformer will strongly depend on the 
election of the parameters related to the input fuzzy sets (width, mean and number) 
and the number of snapshots K. The number of fuzzy sets L is established on 
complexity criteria. For the means and widths, ui and amp respectively, it is possible 
to tune them with learning algorithms such as the stochastic gradient descent on the 
squared error [31]. In that case a training sequence is necessary. For practicality 
reasons, this work only considers the set up of the fuzzy sets widths and keeps fixed  
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Table 1. Heuristic rules for tuning the fuzzy sets widths function of SNR and in-prior SIR 

 

means. It is done heuristically as shown in Table1 in order to make the beamformer 
easy tuning and user friendly. Note that the scenario is described by the SNR and the 
in-prior Signal to Interference ratio (SIR).  

The DOA description by means of fuzzy sets is less critical; actually, good empirical results 
are achieved when a low number of fuzzy sets (L=6) is used.  
If information reaches the sensors spatially spread or distributed over some known 
angular region, it is possible to incorporate this information into the fuzzy system 
thanks to non-singleton fuzzification. 

Finally, the last parameter to fix is the number of snapshots K. It is generally cho-
sen as large as possible to get a good estimate of the data correlation matrix and DOA 
but small enough so that temporal fluctuations may be tracked. Randomness in the 
covariance matrix causes the cancellation of the desired signal in the wopt beamformer 
of (15). One way of diminishing these problems is using diagonal loading [26] at the 
expenses of less interference suppression. 

Next section presents some significative results. 

3.4   Simulations 

We assume a uniform linear array with 10 omnidirectional sensors spaced half a 
wavelength apart. The uncertainty in the DOA of the desired signal is over the region 
[-0.2, 0.2] and it has been equally divided into L=6 intervals. We are mostly interested 
in evaluating the performance of the proposed fuzzy beamformer from the point of 
view of array gain. This figure of merit is defined as 

 

(16) 

where w stands for the weights of the beamfomer, ad for the desired signal steering 
vector and ρn represents noise plus interferers normalized covariance matrix. 

Just to make the understanding of the proposed beamformer easier, the results of 
the fuzzy beamformer formulated in (15) are presented together with those obtained 
by the Minimum Power Distortionless Response (MPDR) beamformer of (11) and the 
Bayesian beamformer of [28]. Note that the fuzzy inference based beamformer com-
bines both philosophies: it is a direction-finding based beamformer, such as the 
MPDR one, and is able to cope with DOA uncertainties such as the Bayesian beam-
former. This fact motivates the election of these two techniques, although they imply 
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less computational complexity. We note in addition that there are many other ap-
proaches, each one having its own advantages, problems and applications, where 
neither is absolutely better than the other. In [28], the Bayesian beamformer is exten-
sively compared with the linearly constrained minimum variance beamformer using 
directional constraints and a subspace beamformer. Thus, for the sake of clarity we do 
not include them in this paper and refer to the conclusions in [28]. The main goal of 
this simulation section is to show that the fuzzy inference beamformer is an alterna-
tive technique easy to implement and worth considering in scenarios with specific 
features such as different interference conditions. 

Next we make a comparative study between the Bayesian and fuzzy beamformers. 
The objective is to see how easy is to adjust parameters in both beamformers. In the 
Bayesian technique, we have to adjust the γ parameter, that establishes the confidence 
given to the calculated a posteriori probabilities. The basic parameter for the fuzzy 
beamformer is the width of the fuzzy sets. In this study, we consider all other vari-
ables without error, i.e. no DOA error, perfect covariance matrix, etc. . . , although the 
presence of interference inside the prior interval plays an important role for deciding 
the signal to be focused. Bayesian beamformer computes itself an estimate of the pdf 
of the DOA from the data, while fuzzy beamformer departs from a given estimate 
(therefore we study it both focusing desired or interferent fonts). The different choices 
for the parameters establish a trade-off between robustness and performance. 

Of key importance is how sensitive the performance of the beamformer is to the 
setting of its design parameters. Thus, high sensitivity implies low practicality of the 
beamformer. Figures 7 and 8 depict the array gain variations along with the fuzzy sets 
widths (fuzzy) and γ parameter (Bayesian), respectively. Three different SNR are 
considered, and an in-prior interference is simulated. Note that there is in general a 
trade-off between array gain at high SNR and acceptable performance at low SNR 
(for the fuzzy beamformer we assume that at SIR < 0dB, the DOA estimate points 
towards the interference). The reader can appreciate the smoother evolution that fuzzy 
beamformer provides. Finally, Fig. 9 shows the robustness or less sensitivity of the 
fuzzy system for different values of DOA misadjustment when compared with the 
Bayesian system. The presence of interference within the uncertainty range of the 
desired signal is not taken into account in the statistical model of the Bayesian beam-
former; thus, its worst performance.  

3.5   Conclusions 

This work makes use of fuzzy logic systems as universal model-free function ap-
proximators and proposes a fuzzy inference based beamformer. The obtained beam-
former is a direction-finding based technique that offers a robust approximation of the 
conditional mean estimate of the desired signal. The term robust is quite wide and this 
work focuses on the problem of DOA uncertainty in scenarios where interference 
signals are present. We note that no constraints have been imposed on the nature of 
the sources (i.e.point or spread). As expected, due to the soft DOA quantization, the 
fuzzy approach presents a “graceful" degradation when the working conditions are 
different from those expected. Additionally, the robustness of the presented beam-
former applies also when adjusting its design parameters (fuzzy sets widths and num-
ber of beams). Because of the fuzzy systems interpretability, the parameters are easy 
to set once the scenario is known, thus demonstrating its practicality. 
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Fig. 7. Bayesian beamformer array gain versus γ value at different SNR, ud=0.14, interferent 
directions uint= [-0.5, 0.6, -0.07] and INR=[20, 20, 0] dB 

 

Fig. 8. Fuzzy beamformer array gain versus fuzzy sets width at different SNR focusing either 
desired or in-prior interference signal. Same scenario as Fig. 7. 

Next section 4 is devoted to fuzzy classification for signal separation in  
2-Dimensional spaces. It shows the greater flexibility that fuzzy systems offer in front 
of classical classifiers. Better results are then obtained in most of the cases, however, 
in order to take advantage of the great potential of fuzzy systems, expert knowledge 
would be needed.  



24 A. Pérez-Neira et al. 

 

DOA misadjustmentDOA misadjustment  

Fig. 9. MMSE versus DOA misadjustment, ud=0, SNR = 0dB, uint={-0.5, 0.6},INR={20, 20} dB 

4   Fuzzy Logic for Signal Classification 

This work addresses the problem of signal separation for 2-Dimensional spaces. In-
stead of resorting to statistical properties of the signals, this work treats the problem 
as one of image segmentation. Variants of known fuzzy classifiers are studied and 
compared with existing techniques, as the Unsupervised Maximum Likelihood 
(MLU) classifier or the watershed technique. The goal is the separation of seismic 
waves collected from experimental data. 

Whenever there is uncertainty in the statistical model, fuzzy logic can be useful. 
This is maybe the case of supervised classification problems when the number of 
training data is low, or when there is lack of knowledge in the underlying parametric 
model as it is the case of geophysical signals, such as the ones addressed in this paper. 
This work aims at seismic wave separation by means of signal classification.  
Section 4.1 reviews a selection of the existing techniques [1,2] and studies how to 
treat fuzziness in order to better manage uncertainty. Section 4.2 applies these tech-
niques to image segmentation for seismic wave separation or identification. Finally 
conclusions come in Section 4.3.  

4.1   Fuzzy Unsupervised Classifiers 

We focus on unsupervised classifiers that are going to be applied to 2-Dimensional 
signal separation, also called image segmentation. The algorithms like clustering or 
fuzzy C-means (FCM) [32-33], unsupervised Maximum Likelihood (MLU) [34] and 
watershed (W) [35] are the ones to be studied. From the simulations that we have 
carried out, we can conclude that a variant of the FCM, the so-called FACM (pro-
posed by Gustafson and Kessel [32-33]), is the one that on average gives a better 
performance.  
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4.1.1   Fuzzy a C-Means 
This algorithm minimizes the following distance of samples xk to the cluster centers vi 
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where D is the dimension of the feature space (e.g. D=3) and  
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where the fuzziness is controlled by factor “m”. 
Along the study that we have carried out we have observed a better performance 

when matrix Ai (the Mahalanobis distance) is introduced to the Fuzzy c-means. In 
this way the Mahalanobis distance defines an ellipsoid with an specific volume cen-
tered at each cluster (that we can refer to an image). Also better performance is ob-
tained if the membership function is designed as  
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where   
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ik k i i k id = − −x v A x v   (21) 
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Fig. 10. Comparison of membership functions between MLU and FACM (classes with different 
variance show different borders) 



26 A. Pérez-Neira et al. 

 

Note that with respect to the Fuzzy c-means we have incorporated the parameter 
“md”, which helps to better tune the membership function. For md>1, the member-
ship degree of those points close to the cluster center are emphasized with respect to 
those more far apart. 

A more closed mathematical analysis [36] reveals that FACM is like a version of 
the MLU, that uses a more generic kernel function as the Gaussian one used by MLU 
(we can see an example in Fig. 10). Therefore, FACM has more degrees of freedom 
to adapt to the data; thus, offering better results if it is properly tuned. 

4.1.2   Fuzzy Watershed 
The conventional morphological segmentation technique is the watershed transform 
[35]. The idea of watershed is drawn from a topographic analogy. Consider the gray-
level intensity as a topographic relief. Find the minima and “pierce” them. Immerse 
the whole relief into water and let the water flood the areas adjacent to the piercing 
points. As the relief goes down some of the flooded areas will tend to merge; prevent 
this happening by raising infinitely tall dams along the watershed lines. When fin-
ished, the resulting network of dams defines the watershed of the image. Each of the 
lakes that have been formed are called catchment basins and correspond to the result-
ing classes of the classifier. Fig. 11 shows an example of watershed in a section of 
topographic surface. 

 

Fig. 11. Example of watershed in a section of topographic surface 

Note that in the watershed segmentation there is no intersection between regions. 
As there is a great deal of ambiguity in the segmentation process, we studied the pos-
sibility of fuzzy membership degrees to allow the different catchment basins to inter-
sect (in an algorithm that we call fuzzy Watershed or FW). However, the lack of a 
clear feature or knowledge to design the fuzzy membership functions, makes this 
extra degree of freedom in general useless as we show next.  

4.1.3     Simulations 
We have generated 12 different 2-Dimensional data of 100,000 samples each in order 
to evaluate the performance of the studied classifiers. Table 2 shows the probability of 
misclassification and Table 3 the mean error when reconstructing the image from the 
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Table 2. Misclassification error 

Classi-
fier Gaussian 

NonGaus-
sian 

CM 0.2404 0.3505 

FCM 0.2436 0.3536 

ACM 0.1226 0.1693 

FACM 0.1175 0.1446 

MLU 0.1071 0.1455 

Table 3. Reconstruction error 

Classi-
fier 

Gaussian 
NonGaus-

sian 

CM 7.447 10-8 3.056 10-8 

FCM 3.256 10-8 1.755 10-8 

ACM 2.839 10-8 2.240 10-8 

FACM 6.707 10-9 9.397 10-9 

MLU 1.131 10-11 1.305 10-8 

classified data. Although the FACM, the ACM and the UML are very similar in per-
formance, note the better behavior of the FACM in front of the ACM, that is the c-
means with the Mahalanobis distance. Note also the similar performance of the 
FACM and the unsupervised ML, although the UML presents a worst behavior in 
front of non-Gaussian shapes. 

Next section considers in addition the watershed technique and fuzzy variants for 
the seismic image segmentation. 

4.2     Separation of Seismic Signals 

This application departs from a series of temporal signals measured in geological 
prospecting. The aim is to separate the different component waves. 

4.2.1     Introduction to Seismic Prospecting 
Seismic prospecting allows to know the structure of the earth underneath. A small 
explosive detonates on the surface and an array of sensors measures the generated 
waves in the subsoil. There are as many seismic waves as layers (between 6 and  
10 Km of depth), see Fig.12. As the transmission speed of the waves in the different 
materials is known, the subsoil composition can be studied by analyzing the ampli-
tude variations of each wave if the terrain of the surface is known. 
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Fig. 12. Seismic profile 

The generated waves belong to three different classes: i) waves P (primary), ii) 
waves S (secondary), and iii) waves L (long). Waves P are internal and longitudinal 
and fastest than waves S, which are internal but transversal. Waves L are superficial 
and of big amplitude and they cause the damages during the earthquakes. The explo-
sions during seismic prospection cause mainly P and S waves.   

4.2.2   Experimental Data 
The experimental data that has been used in this work consists of a sequence of 47 
temporal signals of 512 samples each, which, after an explosion, have been captured 
by each of the 47 seismic sensors. Fig. 13 shows the data, where we can see 4 differ-
ent waves that separate as they propagate along the array because of the different 
propagation speeds.  

4.2.3   Wave Separation 
Before initiating the separation process, the data are pre-processed by means of the 
wavelet transform, which extracts the most relevant features in order to help the clas-
sifier in the separation process.  

 

Fig. 13. Experimental seismic data: 47 sensors and 512 temporal samples at each sensor 
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Fig. 14. Modulus of the time-frequency representation of sensor 47 

The wavelet transform [6] obtains a representation in time and frequency for each 
of the signals that are measured at each sensor. Fig. 14 shows the modulus (scalo-
gram) of the wavelet transform for sensor number 47. Note that 4 energy centers can 
be observed, which correspond to the 4 different temporal waves that propagate along 
the sensors. The separation is carried out by considering this energy distribution: each 
energy concentration is considered a different class.  

Once the scalogram has been properly divided into segments by the appropriate 
classifier, the inverse wavelet transform is applied in order to obtain the separated 
signal in the time domain. 

Before working with the experimental data, test or synthetic data has been used in 
order to evaluate the different methods described in section 4.1. 15 test signals have 
been generated by mixing different waveforms: sinusoids, wavelet kernels as Morlet 
type, Mexican hat, and Gaussian. 
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10 0 
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Reconstruction mean error
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Fig. 15. Mean error when recovering each of the 15 temporal signals 
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Fig. 15 shows the results of the unsupervised classifiers: FACM, ML, W and FW 
for each of the 15 temporal mixtures. Note that although the FACM behaves well, it is 
not the best option for all the signals. In general, for low level of superposition in the 
scalogram, the FACM is the best, for medium level, the ML is to be chosen and, fi-
nally, for high superposition level, the W presents the best results. 

When applied to seismic data, the FACM presents an additional advantage when 
compared to the other techniques. FACM does not need to look for the scalogram 
 

Class 1 Class 2

Class 3 Class 4

Class 1 Class 2

Class 3 Class 4

 

Fig. 16. Spatial-temporal profile of the seismic signal after separation via watershed 
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Fig. 17. Spatial-temporal profile of the seismic signal after separation via FACM (m=3, md=4 
and m=2 for background class) 
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maxima image by image in a “manual” way. FACM can be initialized (i.e. cluster 
centers and matrix norm) with an image of well-separated clusters, as for instance the 
image obtained from the last sensor 47, and use the final parameters of one classifica-
tion for initializing the classification of the next image. Thus taking advantage of the 
smooth evolution of the signal from sensor to sensor. We can also add one extra class 
used for background separation, leaving apart all the data points that doesn’t bring 
any energy to the classes. 

After extensive simulations, we can conclude that there are not substantial differ-
ences among the methods, although the FACM behaves in general better than the 
others. As the watershed is the most used technique for image segmentation, in  
Fig. 16 we compare it against FACM in Fig. 17. 

Note in Fig. 16 that from sensor 15, the classes become too close together for the 
watershed to separate them properly. In Fig. 17 these problems disappear because the 
FACM is able to follow the classes thanks to the initialization with signal from sensor 
number 47. Finally, Fig. 18 shows the 4 temporal waves in this last sensor after sepa-
ration with FACM. 

 

Fig. 18. Four waves after separation with FACM, comparison with the temporal signal of  
sensor 47 

4.3   Conclusions 

In this work fuzzy classifiers appear as a good alternative for image segmentation 
with the aim of seismic wave separation. With a proper tuning of their parameters 
their flexibility, when compared to other classifiers, allows them to adapt to many 
classification problems. Specifically, for the seismic wave classification problem the 
devised FACM techniques results in a good trade off between performance and com-
plexity. This paper does not take into account expert knowledge of the seismic signal 
when designing the fuzzy system; thus, leaving open this point, which, to the authors 
believe can give promising results. 
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In the communication field, there is now a growing interest in reconfigurable re-
ceivers and cognitive radio. The study carried out in this work can be directed to blind 
recognition of the communication system in use (i.e. 3G or 3G systems); more spe-
cifically, to blind recognition or classification of the spectrum: channel bandwidth and 
shape, in order to reconfigure the entire architecture of the terminal with the appropri-
ate software.  

Up to now, the present work has applied fuzzy logic for signal filtering or separa-
tion at the bit or sample level. However the decision making of the rule base is also 
very useful for upper communication layers in the protocol stack that take into ac-
count input variables of different nature: congestion state, available load and total 
interference among others.  

5   Fuzzy Logic at the Protocol Level: Horizontal Hand-Off 

We have discussed on the application of fuzzy systems at the bit level so far. How-
ever, one of the main features of fuzzy systems is their explicit decision making. This 
feature is useful to carry out an intelligent filtering, as shown in the previous sections, 
but also to help design communication protocols. A protocol can be viewed as a control 
system, and control systems were one of the main applications of fuzzy logic. Protocols 
have to provide the users with Quality of Service (QoS) and this implies to cope with 
subjective variables, which are imprecise and difficult to quantify, as they depend on the 
user requirements. Analytical solutions do not exist many times for communications 
protocols; therefore, fuzzy control is a promising approach to the problem. 

In this section we focus on the hand-off problem. Hand-off takes place when a mo-
vil terminal changes its cell or access point. When the change is done within the same 
communication system, the hand-off is horizontal and takes place when the QoS of 
the terminal diminishes and can be initiated either by the terminal or by the base sta-
tion. Depending on the size of the area where the movil moves we can talk of micro-
mobility or macromobility (see Fig. 19). The first one requires a hand-off at layer 2 or 
link layer, and the second one at layer 3 or network layer. We are concerned with the 
layer 2 hand-off initiated at the terminal when the received signal power falls below a 
threshold (see Fig. 20). When this occur, the terminal looks for an access point that 
offers it more signal strength. In order to reduce the so-called ping-pong effect among 
cells, the threshold has a hystereris. The hysteresis margin introduces a tolerance level 
above the received signal level from the current BS. In addition, there is a delay in the 
hand-off due to hysteresis. Thus a major obstacle facing the traditional hand-off with 
its hysteresis margin is the speed with which a hand-off can be made. It is for this 
reason that a better solution to hand-off is required, one that provides a fast yet stable 
performance. We propose to use fuzzy logic to design the thresholds so as to reduce 
the delay that the hand-off introduces in the signal transmission. 

The thresholds are going to be design depending on the terminal profile, as for in-
stance, its speed. Fig. 21 shows the proposed fuzzy controller for the hand-off thresh-
old. Three fuzzy sets describe the universe of discourse for the speed and previous 
threshold is described with 5 fuzzy sets. Triangular fuzzy sets, min-max inference and 
centroide defuzzification are chosen for simplicity. The aim of the rule base is to 
optimize the threshold depending on the terminal speed. For high speed we would like 
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to reduce the number of hand-offs because the terminal may go through many cells in 
a short time, thus the threshold should increase. On the other hand, for a slow terminal 
movement we would decrease the threshold level. 

 

Fig. 19. Micromobility vs. macromobility 
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Fig. 20. Hand-off threshold at layer 2 
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Fig. 21. Fuzzy controller for the hand-off threshold 
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Fig. 22. Final received strength for the fuzzy controlled hand-off and for the conventional one 

Fig. 22 plots the final power received by the access point for each of the strategies. 
In average, the fuzzy system offers more power, thus, better quality. However, de-
pending on the application, voice for instance, the abrupt changes in the power might 
not be desirable. In case of file transfer, they are irrelevant. This fact motivates to 
incorporate the service type into the design of the final system. Future work is to 
incorporate more QoS variables in order to take the hand-off decision. Another aspect 
is the so-called  soft hand-off, where two base stations or access points are received 
simultaneously during the hand-off. Fuzzy logic can then been used as an access point 
fusion technique.  
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