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Abstract. In this paper we propose the use of nonlinear speech features to    
improve the voice quality measurement. We have tested a couple of features 
from the Dynamical System Theory, namely: the Correlation Dimension and 
the largest Lyapunov Exponent. In particular, we have studied the optimal size 
of time window for this type of analysis in the field of the characterization of 
the voice quality. Two systems of automatic detection of laryngeal pathologies, 
one of them including these features, have been implemented with the purpose 
of validating the usefulness of the suggested nonlinear features. We obtain 
slight improvements with respect to a classical system. 

1   Introduction 

The medical community uses subjective techniques (evaluation of the voice quality by 
the specialist doctor's direct audition) or invasive methods (which allow the direct 
inspection of vocal folds thanks to the use of laryngoscopical techniques) for the 
evaluation and the diagnostic of voice pathologies. The voice quality measurement 
has received much attention during the last decade ([2] [3] [4] [5] are good examples). 
These systems allow us to quantify the voice quality effectively and to document the 
patient's evolution using objective measures. These techniques provide the ability to 
detect quickly and simply laryngeal pathologies; thus they can be applied in preven-
tive medicine and telemedicine environments.  

On the other hand, automatic laryngeal pathologies detection systems have been 
developed [6] [7] [8] [9]. In these works, different success rates are obtained in the 
classification between healthy voices and pathological voices, being evaluated each 
system with different data bases, since a data base of reference does not exist.  

In [1], the authors proposed a classification system to distinguish healthy from 
pathologic voices using a Neuronal Networks (NN). In the feature extraction phase, 
diverse measures based on the High Order Statistics (HOS) were used in addition to a 
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selection of classical voice quality measurements present in the current literature. 
These measurements of the voice quality based on the HOS achieve good results, but 
in exchange for a high computational cost. 

In this work, the viability of the nonlinear dynamic-based speech analysis has been 
studied with the purpose of obtaining information on the voice signal nonlinear    
behavior. The tested nonlinear features are less computationally demanding than 
HOS-based ones. The viability of characterizing the voice signal by means of the 
Lyapunov Exponents has been already suggested in other works [10] [11] . In another 
paper [12] , the utility of the correlation dimension to detect the presence of laryngeal 
pathologies has also been proposed. However, different aspects of these measure-
ments are explored, for example, the optimal size of the time window. Some prelimi-
nary results on this topic are presented in this work. 

2   Nonlinear Dynamical System: The Embedding Theorem 

The Chaos Theory can be used to gain a better understanding and interpretation of 
observed complex dynamical behaviour. Besides, It can give some advantages in 
predicting or controlling such time evolution 13. 

Deterministic dynamical systems describe the time evolution of a system in some 
state space dR⊂Γ . Such an evolution can be described case by ordinary differential 
equations:  

))(()( txFtx =&  (1) 

or in discrete time tnt ∆=  by maps of the form: 

)(1 nn xFx =+  (2) 

Unfortunately, the actual state-vector only can be inferred for quite simple systems, 
and as anyone can imagine, the dynamical system underlying the speech production 
process is very complex. Nevertheless, as established by the "embedding theorem" 14, 
it is possible to reconstruct a state space equivalent to the original one. Furthermore, a 
state-space vector formed by time-delayed samples of the observation (in our case, the 
speech samples) could be an appropriate choice: 

( ) ( ) ( )( )[ ]tTdnsTnsns 1,,, −−−= Kns  (3) 

where ( )ns  is the speech signal, d is the dimension of the state-space vector, T  is a 

time delay and t  means transpose.  

Finally, the reconstructed state-space vector dynamic, ( )n1n ss F=+ , can be 

learned through either local or global models, which in turn will be polynomial    
mappings, neural networks, etc. 

2.1   Correlation Dimension  

The correlation dimension 
2D  gives an idea of the complexity of the dynamics.  A 

more complex system has a higher dimension, which means that more state variables 
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are needed to describe its dynamics. The correlation dimension of a random noise is 
not bounded while the correlation dimension of a deterministic system yields a finite 
value. The correlation dimension can be obtained as follows: 
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where r is the radius around 
iX  and )(xθ  is the step function. Equation [4] converges 

very slowly as r tends to zero. To circumvent this problem, the local slope can be 
estimated: 
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When the length N is significantly large, D2 will converge with the increase of the 
embedding dimension, m. 

2.2   The Largest Lyapunov Exponent 

Chaotic behaviour arises from the exponential growth of infinitesimal perturbations. 
This exponential instability is characterized by the Lyapunov exponents. Lyapunov 
exponents are invariant under smooth transformations and are thus independent of the 
measurement function or the embedding procedure. 

The largest Lyapunov exponent can be determined without the explicit construc-
tion of a model for the time series. It considers the representation of the time series as 
a trajectory in the embedding space, and assume that you observe a very close return 

'ns to a previously visited point 
ns . Then one can consider the distance 

'0 nn ss −=∆  as 

an small perturbation, which should grow exponentially in time. Its evolution can be 
followed from the time series:

lnlnl ss ++ −=∆ '
. If one finds that l

ol e  λ∆≈∆ , λ is the 

largest Lyapunov exponent.  

3   New Voice Disorder Parameterisation  

In the current literature, some works suggest the viability of characterizing the voice 
signal by means of the Lyapunov Exponents (for example in synthesis of phonemes 
10 and 11), and characterizing the voice disorder signal by means of the correlation 
dimension 12. 

For the study of the presence of laryngeal pathologies based on the voice re-
cording, it is very common to use recordings of sustained vowels. 

In this work, we have studied which is the optimal size of the time window for the 
nonlinear analysis (Correlation Dimension and the Largest Lyapunov Exponent), with 
the purpose of deciding whether a vowel utterance comes from a healthy or a patho-
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logical voice. Different sizes of time window has been studied: 10, 30, 50, 100, 150, 
300, 500 ms or the whole vowel utterance and pitch-synchronous segments of 3, 5, 7, 
10 pitch periods. 

In the case of obtaining multiple frames for each vowel, the following parameters 
have been extracted for each feature (Correlation Dimension and the Largest 
Lyapunov Exponent): 

• The mean value of the feature P  for the different frames  { }iT
N

: 
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• Variation of the value of the feature along the time: 
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3.1   Voice Database 

The voice signals used in this study were digitalized with a sample frequency of 
22050 Hz and 16 bits per sample. The speaker's voice was recorded with a conven-
tional sound card and a basic microphone. The database consists of 100 voices of 
healthy speakers and 68 voices of pathological speakers. Each sample of the database 
is composed by the five Spanish vowels (‘a’, ‘e’, ‘i’, ‘o’ and ‘u’) pronounced in a 
sustained way by the speakers during approximately two seconds for each vowel. In 
case of pathological speakers there are situations of vocal folds without lesion  
(hypofunction, hyperfunction, vocal fold paralysis,...) and vocal folds with lesion 
(carcinoma, vocal folds nodule, sessile polyp, pedunculated polyp, Reninke’s edema, 
adult papiloma,...). The database has been created contemplating different disphonia 
levels: “light pathological voice”, “moderate pathological voice” and “severe patho-
logical voice.”  

3.2   Evaluation of the Parameterization  

The attractor dimension has been fixed to 2 since the result obtained does not justify 
the increment of the time consuming, and the delay, T, has been estimated to 8  
samples.  

A one-second interval, located in the centre of the utterance, has been studied. This 
alteration has been carried out with the purpose of eliminating the beginning and end 
of the phonation, because it presents a transitory character. This modification has 
been implemented except when the whole vowel is used. 

Four different attributes have been studied: 

• Atrib1: Mean value of the Correlation Dimension. 
• Atrib2: Time Variation of the Correlation Dimension values. 
• Atrib3: Mean value of the Largest Lyapunov Exponent. 
• Atrib4: Time Variation of the Largest Lyapunov Exponent values.  
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A neural network has been used to evaluate the benefits of the different attributes 
in the environment of the automatic pathologies detection. Each attribute has sepa-
rately been evaluated using neural network Multilayer feedforward with 2 hidden 
layers, with Backpropagation train algorithm. Different sizes of asynchronous time 
window have been evaluated of using like evaluation function the success rate in the 
classification. Each attribute has been evaluated separately, differentiating between 
the five vowels. The different sizes of asynchronous time window are: 10, 30, 50, 
100, 150, 300, 500 milliseconds and the whole vowel utterance (‘full’ in the figures). 
The result is showed in the Figures 1, 2, 3 and 4.  

The asynchronous time window has a disadvantage: because the vibration fre-
quency of the vocal folds (picth) of the women is greater than the men, for a certain 
temporal window is obtained different number of periods between men and women. 
In order to be able to make the parameterization process independent of the pitch 
frequency, it is possible dividing the vowel in  pitch-synchronous segments of  3, 5, 7, 
10 pitch periods (To). The result is showed in the Figures 5, 6, 7 and 8.  
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Fig. 1. Results of the study about size of asynchronous time window for "mean value of the 
Correlation Dimension"  
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Fig. 2. Results of the study about size of asynchronous time window for “Time Variation of the 
Correlation Dimension values” 
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 Mean Value of the Maximal Lyapunov Exponent
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Fig. 3. Results of the study about size of asynchronous time window for "mean value of the 
Maximal Lyapunov Exponent” 
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Fig. 4. Results of the study about size of asynchronous time window for “Time Variation of the 
Maximal Lyapunov Exponent values” 
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Fig. 5. Results of the study about size of synchronous time window for "mean value of the 
Correlation Dimension" 

To sum up, it is observed better results dividing the vowel in pitch-synchronous 
segments of 3 pitch periods. It is also observed better results for the attribute “mean 
value of the Correlation Dimension”, during the individual evaluation of the parameter. 
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Variation of the Correlation Dimension
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Fig. 6. Results of the study about size of synchronous time window for “Time Variation of the 
Correlation Dimension values” 
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Fig. 7. Results of the study about size of synchronous time window for "mean value of the 
Maximal Lyapunov Exponent” 
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Fig. 8. Results of the study about size of synchronous time window for “Time Variation of the 
Maximal Lyapunov Exponent values” 
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4   Detector Model  

The voice automatic classification system allows us to discriminate healthy voices 
from pathological ones. It is based on a pattern recognition model. 

These systems are typically structured in three steps, namely: “Voice Acquisition”, 
“Parameterization” and “Classification”. The proposed automatic laryngeal patholo-
gies recognition system follows this structure, illustrated in figure 9. Firstly, it cap-
tures the speaker's voice using a sound card and a microphone. The parameterization 
step uses parameters presented in [1], where a combination of a selection of parame-
ters exposed in the current literature with new parameters based on Higher Order 
Statistics (HOS) was exposed. Finally, a net of classifiers based on Neural Networks 
(NN) is used to classify between healthy and pathological voices.  

Voice acquisition

Parameterization 

Classifier 
 

Fig. 9. Pattern recognition model 

4.1   Parameterization  

The parameterization step uses the same parameters that has been used in [1], where 
the authors made a selection of 17 parameters for the laryngeal pathologies classifica-
tion (in the rest of the paper “classic parameters”), among multiple voice quality char-
acterization parameters well-known in the literature.  

4.1.1   Classic Parameters  
There is no parameter which is completely conclusive in the detection of laryngeal 
pathologies, because each pathology affects the voice in a different way. For example, 
there are pathologies that present a great content of non-stationary noise in the high  
frequency components. On the other hand, other pathologies are characterised by the 
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Table 1. Classic characteristics 

Group of characteristics Name of the attributes 
Quantifying the variation in 

amplitude (shimmer) 
- Variation in the mean quadratic value of each voice 

frame 
- Variation in the highest value of the short time cross 

correlation function of each voice frame 
Quantifying the presence of 

unvoiced frames 
- Relationship between the number of unvoiced 

frames and the total number of frames of the sample 
voice 

- The unvoiced periodicity index of a sample voice 
Quantifying the absence of 

wealth spectral (Hitter) 
- Variation of pitch energy cepstral measure 
- Variation in the first harmonic value in the derived 

cepstrum domain 
- Variation in the first/second harmonic relationship 

value within the derived cepstrum domain 
Quantifying the presence of 

noise 
- Energy spectral balances 
- Spectral distance (based on the spectral module) 
- Spectral distance (based on the spectral phase) 

Quantifying the regularity 
an periodicity of the waveform 
of a sustained voiced voice 

- Value an variation in energy of the slope  of the 
envelope in the autocorrelation function of an AM 
modulated signal 

- Variation of the slope  of the envelope in the auto-
correlation function of an AM modulated signal 

uncertainty of the pitch value throughout the duration of the phonation of a sustained 
voiced sound. This is why classical characteristics have been divided into five groups 
depending on the physical phenomenon that each parameter quantifies: quantifying 
the variation in amplitude (shimmer), quantifying the presence of unvoiced frames, 
quantifying the absence of wealth spectral (Hitter), quantifying the presence of noise 
and quantifying the regularity an periodicity of the waveform of a sustained voiced 
voice. All the classic characteristics used are shown in Table 1. 

4.1.2   New Nonlinear Parameters  
In this work the possibility of using nonlinear features with the purpose of detecting 
the presence of laryngeal pathologies has been explored. The four measures proposed 
will be used: mean value and time variation of the Correlation Dimension and mean 
value and time variation of the Maximal Lyapunov Exponent values. 

4.2   Classifier  

The proposed system is based on the use of a net of classifiers, where each one dis-
criminates frames of a certain vowel. Combinational logic has been added to evaluate 
the success rate of each classifier.  

The structure of the proposed classifier is similar to the one proposed in [1], and 
represented in figure 10. Five NN–based vowel classifiers have been used to dis-
criminate between healthy and pathological vowels, one for each vowel. The inputs of 
each vowel classifier are the feature vectors of the sequence of frames in which the  
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Fig. 10. Classification System Scheme 

vowel corresponding to this classifier has been divided. The length of each frame is a 
three pitch period, for a voiced sound, or 30 ms if it is an unvoiced sound (typical of 
the pathological voices). Only the 500 central milliseconds of the vowel have been 
considered to avoid considering the frames that exhibit non-stationary behaviour at 
the beginning and end of each vowel.  

The dependence of the parameters on the analysed vowel has been taken into ac-
count, as pointed out by Jacques Koreman and Manfred Pützer [15]. Consequently, a 
"vowel classifier" has been used for each vowel, such as  is shown in figure 10.  

First of all, each "vowel classifier" emits an estimation dependent on whether the 
analysed vowel is related to a "healthy vowel" or to "pathological vowel". Secondly, the 
results of the different vowel classifiers are evaluated by means of  an “output logic”.  

In each “vowel classifier”, the different voice frame are evaluated in two neural 
networks, and an assessment is emitted: “healthy frame" or "pathological frame”. If 
70% or more of the frames correspond to healthy frame, the analysed vowel will be 
labelled as  a "healthy vowel", otherwise it will be labelled as a "pathological vowel." 
The scheme of a vowel classifier is shown in figure 11. In this study, normalized data 
(zero-mean and variance one)  have been used. 

The characteristics of the Neural Network are described in the table 2. 
The output logic will indicate that the voice sample corresponds to a "pathological 

voice" if two or more vowels are classified as "pathological vowels", whereas the 
voice sample will be classified as a "healthy voice" if only one vowel or none of them 
are classified as "pathological vowels".  

 Neural Network
 " Healthy Voice "

Neural Network
 " Pathology Voice "

Logic

Vector of parameters i 

Vector of parameters i 

Output Neural Network
"Healthy Voice" 
for the vector of parameters i 

Output Neural Network
"Pathology Voice" 
for the vector of parameters i 

Decision: "Healthy Vowel" / "Pathology Vowel"

 

Fig. 11. Classification System Scheme 
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Table 2. Characteristics of the Neural Network 

Characteristic Neural Network 
“Healthy Voice” 

Neural Network 
“Pathological Voice” 

Number of Layer  2 2 
Number of inputs Number of parameters  Number of parameters 
Number of neurons in the first layer 40 40 

T
op

ol
og

y 

Number of outputs 50 50 
Maximum Threshold  of  absolute error 0.01 0.01 
Maximum Threshold  of  relative error 0.015 0.015 
Maximum number of epochs  10000 10000 
Training method Back-propagation Back-propagation 

Hidden layer: “tansig” Hidden layer: “tansig” 

T
ra

in
in

g 

No linear function 
Output layer: “purelin” Output layer: “purelin” 

5   Results 

Two systems have been compared using the same data base. The first one, only works 
with the “classic parameters”, while the second one uses both “classic” and “nonlin-
ear” parameters, obtaining the results displayed in Tables 2 and 3. 

A global success rate of 91,77% is obtained using "classic parameters", whereas a 
global success rate of 92,76% using "classic parameters” and “nonlinear” parameters. 
These results show the utility of  new parameters. 

Table 3. Success Rate using “Classic characteristics” 

Input 

 
Healthy 

Voice 
Pathological 

Voice 
Healthy 

Voice 
95.65 % 12.10 % 

O
ut

pu
t 

Pathological 
Voice 

4.35 % 87.90 % 

Table 4. Success Rate using “Classic characteristics + New parameters” 

Input 

 
Healthy 

Voice 
Pathological 

Voice 

Healthy 
Voice 

96.12 % 10.60 % 

O
ut

pu
t 

Pathological 
Voice 

3.88 % 89.40 % 
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6   Conclusions  

In this work, the possibility of using nonlinear features to improve the performance of 
an automatic detector of laryngeal pathologies has been explored.   

Two features have been tested: Correlation Dimension and the Largest Lyapunov 
Exponent. In particular, the system works with their mean value and variation. 

An experimental study aiming at selecting the best size for the time window of the 
nonlinear analysis has been conducted, concluding that the best option is using a 
pitch-synchronous window containing three periods. 

Finally, the results of the classification system including the mean value and varia-
tion of the correlation dimension are slightly better than those achieved by the system 
using only the classic parameters. 

Though the improvement is slight, we consider it an encouraging result, since the 
research is currently in the first stages. Further work is necessary in diverse directions. 
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