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Abstract. The article concerns methodological problems posed by multi-step 
predictive analysis of speech, carried out with a view to estimating vocal 
dysperiodicities. Problems that are discussed are the following. First, the 
stability of the multi-step predictive synthesis filter; second, the decrease of 
quantization noise by means of multiple prediction coefficients; third, the 
implementation of multi-step predictive analyses via lattice filters; fourth, the 
adequacy per se of the multi-step predictive analysis paradigm for estimating 
vocal dysperiodicities. Results suggest that implementations of multi-step 
predictive analyses that are considered to be optimal for speech coding are sub-
optimal for clinical applications and vice versa. Also, multi-step predictive 
analyses as such do not appear to be under all circumstances a paradigm 
adequate for analysing vocal dysperiodicities unambiguously. An alternative is 
discussed, which is based on a generalized variogram of the speech signal. 

1   Introduction 

The presentation concerns issues in clinical applications of bilateral multi-step 
predictive analysis of speech. Multi-step analysis designates the linear prediction of 
the present speech sample by means of samples that are distant. Because the purpose 
is the estimation of dysperiodicities in speech, the prediction distance is assigned to 
the lag for which the correlation between the present and a distant speech frame is 
maximal. This lag is indeed expected to agree with an integer multiple of the vocal 
cycle lengths of voiced speech sounds. In the case of unvoiced sounds or highly 
irregularly voiced sounds, this lag remains mathematically meaningful but is not 
interpreted in terms of the glottal cycle length. Bilateral means that predictive 
analyses are performed to the right and left of the current speech frame and that the 
minimal prediction error is kept and assigned to the vocal dysperiodicity trace. 

Voice disorders, or dysphonias, are common consequences of disease, injury or 
faulty use of the larynx.  A frequent symptom of dysphonia is increased noise in the 
speech signal or lack of regularity of the vocal cycles. Speech analyses are therefore 
carried out routinely in the context of the functional assessment of voice disorders. 

At present, these analyses are most often carried out on steady fragments of 
sustained vowels. The reason is that the signal processing is often based on the 
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assumption that the speech cycles are locally quasi-identical in length and amplitude. 
Therefore, such analyses may fail on sustained vowels or connected speech produced 
by severely hoarse speakers. Studies devoted to vocal dysperiodicities in connected 
speech or vowels including onsets and offsets are therefore comparatively rare. An 
overview of published research is given in [2]. 

Clinicians have, however, expressed the wish to be able to analyze any speech 
fragment produced by any speaker, including vowel onsets and offsets as well as 
connected speech. Arguments in favour are that, compared to stationary speech 
fragments, connected speech is more difficult to produce because of more frequent 
voice onsets and offsets, the voicing of obstruents, the maintaining of voicing while 
the larynx continually ascends and descends in the neck, as well as because of 
intonation and accentuation. 

Qi et al. [1] and Bettens et al. [2] have presented methods that enable estimating 
vocal dysperiodicities without making any strong assumptions with regard to the 
regularity of the vibrations of the vocal folds or recorded speech sounds. These 
methods have been inspired by speech coding based on multi-step linear predictive 
analysis. The method presented by Qi et al. [1] involves a conventional single-step 
predictive analysis followed by a multi-step analysis of the residual error of the 
single-step prediction. In a clinical context, the multi-step prediction error is 
construed as the vocal dysperiodicity trace. 

The method presented by Bettens et al. [2] involves a bilateral multi-step predictive 
analysis. It may be carried out on the speech signal directly or on any other signal 
considered to be clinically apposite, because the method omits the single-step analysis 
and avoids predicting across phonetic boundaries. 

The topic of this article is an examination of methodological problems posed by 
bilateral multi-step predictive analyses when applied clinically. 

2   Models 

Formally, bilateral multi-step prediction is based on models (1). In [2], bilateral 
prediction is called bidirectional. In the present text, the term bilateral is preferred 
because it stresses the distinction between multi-step predictive analyses that are 
carried out to the left and right of the current speech frame, on the one hand, and the 
forward and backward errors involved in the lattice filter implementation of unilateral 
multi-step analyses, on the other. 

               

  .)()()(

,)()()(

)(

0
,

0
,

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−+=

−++=
=

∑

∑

=

=
M

i
leftileftleft

M

i
rightirigthright

iTnsansne

iTnsansne

ne                                 (1) 

Symbol s(n) is the current speech sample; e(n) is the bilateral multi-step prediction 
error; weights a are the prediction coefficients. For each analysis frame, the multi-step 
prediction error, the energy of which is smallest, is assigned to the dysperiodicity 
trace. The comparison of the present speech frame to frames to the left and right 
guarantees that it is compared at least once to a frame that belongs to the same 
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phonetic segment, provided that the segment is at least two vocal cycles long. The 
selection of the minimum prediction error to the left or right so removes predictions 
that are performed across phonetic boundaries. Cross-boundary prediction errors must 
be discarded, because cycle-to-cycle differences owing to the evolving phonetic 
identity dwarf cycle discrepancies that are due to vocal noise.  

Order M is typically equal to 1 or 2. The purpose of including more than one 
prediction coefficient is the expected reduction of quantization noise. Indeed, lag T is 
an integer, whereas the vocal cycle lengths are likely to be equal to a non-integer 
number of sampling steps. Lags T in relations (1) are determined for each analysis 
frame either by an exhaustive search for the minimum error or by means of the 
empirical inter-correlation between present and lagged frames. In the case of the 
latter, lag T is assigned to the position, within the open lag interval, for which the 
inter-correlation function is a maximum. 

3   Problems and Solutions 

Results show that methods proposed in [1] as well as [2] enable computing markers of 
vocal noise that are plausible and that co-vary with the degree of perceived hoarseness 
of sustained vowels or connected speech. This article is devoted to methodological 
issues that are raised by these proposals, as well as to their solutions. 

3.1   Burg’s Rule 

Multi-step predictive analyses have been implemented by means of lattice filters, the 
coefficients of which obey Burg’s rule [3]. That is, the filter coefficients are 
determined by means of the harmonic mean of unilateral forward and backward 
prediction errors, a choice that guarantees filter stability. A consequence is that the 
filter may be unable to track rapid signal onsets faithfully. Transients may therefore 
give rise to prediction errors that are higher than the prediction errors that one would 
obtain by means of unstable filters. 

Owing to the bilateral analysis, however, this is likely to be a problem only when a 
rapid signal boost ends or a rapid signal drop starts at a phonetic boundary. When no 
risk of cross-boundary prediction is involved, the bilateral analysis turns the 
prediction of onsets into the retro-diction of offsets and vice versa. 

Be that as it may, in the framework of clinical applications linear multi-step 
prediction is carried out for analysis purposes only. Filter stability is therefore not an 
issue and can be omitted in favour of a direct form implementation the coefficients of 
which are determined by means of the conventional covariance method, for instance. 

3.2   Lattice Filter Implementation 

When more than one multi-step prediction coefficient is involved, the prediction error 
obtained by a lattice filter comprises several recent as well as several distant speech samples. 
For instance, when order M is equal to 1, the lattice filter output is the following [3]. 

 ).()1()1()()( 11 TnscTnscnsccnsne TTTTleft −++−+−+= −−                                 (2) 
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Symbol T is the prediction distance in number of samples, s(n) is the nth speech 
sample and cj are the lattice-filter coefficients. Sample s(n-1) in error (2) obscures the 
conceptual simplicity of relations (1) and upsets the straightforward interpretation of 
the multi-step prediction error as a measure of vocal dysperiodicity. The intercalation 
of additional recent samples is typical of the lattice filter implementation and can be 
avoided in the framework of implementations that are direct or involve single 
coefficients only. 

3.3   Multiple Prediction Coefficients 

Relations (1) may involve multiple prediction coefficients. A consequence is that 
the present speech sample is compared to a weighted sum of distant speech 
samples. The goal is to decrease quantization noise. A sample-by-sample 
comparison by means of a single-coefficient multi-step prediction would be easier 
to interpret, however, given the overall objective, which is to estimate vocal 
dysperiodicities. 

A solution consists in decreasing quantization noise by over-sampling first and 
replacing the multiple coefficients by a single one. This removes the risk of 
decreasing genuine vocal noise via the weighted sum that is involved in the distant 
prediction. 

3.4   Multi-step Linear Predictive Analysis as a Paradigm for the Analysis of 
Vocal Dysperiodicities 

This section addresses a basic issue, which is the adequacy per se of the multi-step 
prediction paradigm as a framework for analyzing vocal dysperiodicities. Hereafter, 
one assumes that the multi-step prediction involves a single coefficient the value of 
which is determined by means of the conventional covariance method. The 
conclusions are valid, however, for any implementation of the multi-step predictive 
analysis filter. 

The covariance method consists in minimizing the energy of the prediction error 
cumulated over a rectangular frame of length N. When a single coefficient is 
involved, one easily shows that the (unilateral) multi-step prediction error is equal to 
the following. 
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From (3) follow solutions (4). Parameter b is a positive gain that is constant over the 
analysis frame. It demonstrates that the prediction coefficient in (3) automatically 
compensates for slow variations of the vocal amplitude. 
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Solutions (4) show that, formally, the multi-step prediction error is not a measure of 
vocal dysperiodicity. The reason is parasitic solution s(n) =-bs(n-T). For a sinusoid of 
period T, for instance, solutions (4) suggest that the multi-step prediction error is a 
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minimum for shifts T/2 and T, of which only the latter has an interpretation in terms 
of the period of the sinusoid. In practice, this means that an exhaustive search for 
optimal shift T is likely to produce erroneous measures of dysperiodicity for phonetic 
segments that are quasi-sinusoidal, i.e. voiced plosives, for example. 

Determining optimal shift T by means of the empirical inter-correlation between 
present and lagged frames is less likely to give rise to parasitic solutions. The 
reason is that the optimal shift is assigned to the lag for which the inter-correlation 
is a maximum. Formally, the removal of parasitic solutions is not guaranteed, 
however. 

Moreover, the interpretation of error E remains ambiguous even when parasitic 
solutions are discarded.  Because of the inter-correlation that is involved in (3), error 
E is a measure of signal dysperiodicity only when the vocal noise is feeble. The 
prediction error turns into a measure of signal energy when the vocal noise is strong 
(Table 1).  

3.5   Generalized Variogram 

A possible alternative is based on the observation that for a periodic signal s(n), 
the following expression is expected to be true for any shift T that is an integer 
multiple of the signal period, assuming that the quantization noise can be 
neglected.  
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In practice, voiced speech segments are locally-periodic at best, speech cycle 
amplitudes are expected to evolve slowly and the glottal cycle length is not known a 
priori. This suggests analyzing the signal frame by frame, squaring expression (5), 
and inserting a positive gain g that is constant over the analysis frame. 
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When gain g = 1, cumulated difference (6) is known as the empirical variogram of 
signal s(n). Length N fixes the frame length. The squaring guarantees that 
difference (6) is a minimum for lags that are integer multiples of the period of the 
signal. 

Gain g enables neutralizing drifts of the signal amplitude that are due to onsets, 
offsets or prosody. Gain g is chosen so that it is always positive and the interpretation 
of generalized variogram V(T) is the same whatever the strength of the vocal noise. A 
definition of g that satisfies these criteria equalizes the signal energies in the present 
and lagged analysis frames.  
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Table 1. Variogram (7) and multi-step prediction error (3) for periodic, odd-periodic and white 
noise signals 

 white noise s(n) = -bs(n-T), b > 0 s(n) = bs(n-T), b > 0 
V Σ[s(n)-s(n-T)]2 4Σs2(n) 0 
E Σs2(n) 0 0 

Inspecting multi-step prediction error (3) and generalized variogram (7) suggests 
that they are proportional when s(n) is approximately equal to s(n-T). Otherwise, 
they are different. Table 1 summarizes the values of expressions (3) and (7) when, 
for example, s(n) = bs(n-T), s(n) = -bs(n-T), b > 0, as well as when s(n) is  
white noise. 

One sees that generalized variogram V is different from zero when the signal is 
odd-periodic and lag T equal to the odd-period. Also, expression V is the cumulated 
squared difference between the present and lagged signal samples, whether the signal 
is deterministic or stochastic. The minimum of V is therefore a measure of signal 
dysperiodicity in the analysis frame. 

On the contrary, the multi-step prediction error E is zero when the signal is 
periodic or odd-periodic and lag T equal to the period or odd-period. Also, error E is 
the cumulated squared difference between the present and lagged signal samples only 
when they are (strongly) correlated. When they are uncorrelated, error E is the signal 
energy. Error E is therefore a measure of signal (un)-predictability. Because 
predictability is a more general property than periodicity, variogram V and error E 
only agree for special instances of signals and lags.  

4   Methods 

The experimental part of the study involves seven analysis methods, which are listed 
in Table 2. The objective is to investigate whether issues that are discussed above give 
rise to statistically significant differences in the vocal dysperiodicity traces. For each 
method, the length of the rectangular analysis frame was equal to 2.5 milliseconds [2]. 
The analysis frames were non-overlapping, but contiguous. Prediction lag T was 
assigned to the position of the maximum of the inter-correlation between present and 
lagged frames or, when appropriate, to the position of the minimum of the variogram. 
The prediction lag was requested to be within an interval between 2.5 and 20 
milliseconds. This interval includes the phonatory cycle lengths that are typical of 
male and female speakers. Per frame, each analysis method was applied twice, once 
for positive and once for negative lag values, and the minimum prediction error or 
variogram-determined signal difference was kept and assigned to the vocal 
dysperiodicity trace. 

For several analyses, the speech signals, inter-correlation function or variogram 
were interpolated linearly or parabolically. The purpose was to test the use of non-
integer prediction lags.  
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4.1   Analysis Methods 

Table 2. Characteristics of analysis methods 

Label  Analysis  method Nber of coefficients Interpolation 
1 Burg,  covariance-lattice 3 no 
2 covariance 1 no 
3 covariance 3 no 
4 covariance 1 linear 
5 covariance 1 parabolic 
6 variogram n.a. no 
7 variogram n.a. linear 

4.2   Corpora 

The corpora have been sinusoids; as well as vowels and short sentences produced by 
normophonic or dysphonic speakers. Sinusoids as well as speech signals have been 
sampled at 20 kHz. The sinusoids have been contaminated by additive or frequency 
modulation noise. The purpose was to test interpolation with a view to reducing 
quantization noise. 

The speech corpus comprised sustained vowels [a] and two French sentences 
spoken affirmatively by 22 normophonic or dysphonic, male or female speakers. The 
sentences were “le garde a endigué l’abbé” (S1) and “une poule a picoré ton cake” 
(S2). All phonetic segments in sentence S1 are voiced by default, whereas sentence 
S2 comprises voiced as well as unvoiced phonetic segments. The sentences are 
matched grammatically and comprise the same number of syllables. Strident fricatives 
were omitted on purpose. 

4.3   Noise Marker 

The vocal dysperiodicity trace e(n) is summarized by means of a signal-to-
dysperiodicity ratio (SDR) that is defined as follows [1]. Symbol I is the number of 
samples in the total analysis interval. 
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Table 1 shows that SDR → 0 when the signal is white noise and analyzed by 
means of multi-step prediction. On the contrary, SDR → -3 dB when the signal is 
white noise and analyzed by means of the generalized variogram. The reason is that 
variogram (6) is the cumulated squared difference between present and lagged 
samples. Prediction error (3) is, on the contrary, equal to a cumulated squared 
difference between present and lagged samples only when the signal is periodic or 
pseudo-periodic.  
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5   Results and Discussion 

5.1   Sinusoidal Signals 

Analyses of sinusoids confirm that dysperiodicity traces obtained by single-
coefficient multi-step predictive or variogram analyses may be altered by quantization 
noise. SDR values of clean sinusoids sampled at 20 kHz were typically comprised in 
the interval 30 – 40 dB when the sampling frequency was not an integer multiple of 
the frequency of the sinusoid.  

Non-integer lags, determined via interpolation, have been shown to increase the 
distance between vocal and quantization noise. Simulations suggest that interpolation 
moves the SDR values of sampled clean sinusoids to values greater than 65 dB. 

5.2   Sustained Vowels and Running Speech 

Table 3 summarizes the quartiles of the SDR values (in dB) obtained for a corpus 
of sustained vowels [a], including onsets and offsets, and sentences S1 and S2 
spoken by 22 speakers. The labels of the analysis methods agree with the labels 
given in Table 2. The SDR values have been rounded to the nearest decimal after 
the comma. 

For each speech corpus, a single-factor repeated measures analysis of variance of 
the SDR values has been carried out to check whether differences between methods 1 
to 7 are statistically significant. Subsequently, methods have been compared pair-wise 
by means of paired t-tests. The levels of significance of the individual tests have been 
adjusted by means of Bonferroni’s correction to fix to 0.05 the overall level of 
significance of a total of 21 pair-wise comparisons [5]. Statistical analyses of the data 
show the following. 

a) For vowel [a], the analysis of variance shows that the inter-method differences 
are statistically significant (F = 249, p < 0.001). Out of the 21 pair- wise 
comparisons, 17 are statistically significant. Of these, all involve differences 
between analysis methods (covariance-lattice, covariance of order 0 or 2, 
variogram). 

Table 3. Quartiles of the SDR values (in dB) obtained for a corpus of sustained vowels [a], 
including onsets and offsets, and sentences S1 and S2 spoken by 22 speakers 

Method label 1 2 3 4 5 6 7
First quartile 23.5 16.8 17.0 16.7 16.7 16.7 16.7 

Median 26.7 20.2 20.6 20.3 20.4 20.1 20.2 [a] 
Third quartile 28.7 22.4 22.9 22.6 22.8 22.4 22.6 
First quartile 19.5 14.4 14.6 14.4 14.4 14.2 14.2 

Median 22.3 17.2 17.4 17.2 17.1 17.2 17.1 S1
Third quartile 24.6 18.1 18.4 18.1 17.9 18.0 18.0 
First quartile 19.0 16.7 17.2 16.6 15.7 16.5 16.8 

Median 22.6 18.3 18.5 18.2 17.7 18.1 18.1 S2
Third quartile 24.4 19.7 20.0 19.4 19.2 19.6 19.4 
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b) For sentence S1, the analysis of variance shows that the inter-method 
differences are statistically significant (F = 129, p < 0.001). Of the 21 pair-
wise comparisons, 16 are statistically significant. Of these, 15 pairs involve 
differences between analysis methods (covariance-lattice, covariance of order 0 
or 2, variogram). One pair differs by the interpolation method (linear versus 
parabolic). 

c) For sentence S2, the analysis of variance shows that the inter-method 
differences are statistically significant (F = 67, p < 0.001). Of the 21 pair-wise 
comparisons, 15 are statistically significant. Of these, all involve differences 
between analysis methods (covariance-lattice, covariance of order 0 or 2, 
variogram). 

Results therefore suggest that different analysis methods cause SDR values to differ 
statistically significantly. Possible explanations are the following. 

a) The covariance-lattice implementation (Table 3, column 1) implicates running 
averages of the recent as well as distant samples. The original purpose of 
involving several prediction coefficients has been the decrease of quantization 
noise. Results suggest that multiple prediction coefficients decrease genuine 
vocal noise as well as quantization noise. 

Also, the lattice filter is stable. Stability would let one expect a boost of the 
prediction error because of an increased difficulty in tracking rapid transients. 
This is not observed. This would suggest that either the corresponding error 
increase is masked by the decrease of genuine vocal noise owing to local 
averaging (2), or by the bilateral analysis (1) that turns onsets into offsets.  

b) The 3-coefficient covariance method (Table 3, column 3) involves a running 
average of the distant samples only. The original purpose has been the decrease 
of quantization noise. Single-coefficient covariance analyses omit this local 
smoothing. As a consequence, single-coefficient (column 2) and 3-coefficient 
(column 3) covariance analyses give rise to SDR values that differ statistically 
significantly. Inspecting data averages suggests that the corresponding SDR 
values typically differ by less than 1 dB. The difference is due to a decrease of 
the genuine vocal noise by local averaging rather than to a decrease of the 
quantization noise.  

c) The variogram (Table 3, columns 6 and 7) involves an energy-normalisation 
coefficient the mathematical properties of which differ from those of the 
prediction coefficients implicated in methods labelled 1 to 5. Consequently, 
SDR values obtained by variogram and linear predictive analyses differ 
statistically significantly. Inspection of the data averages suggests, however, 
that SDR values obtained via 1-coefficient covariance and variogram analyses 
typically differ by less than 1 dB.  Simulations indeed show that variogram and 
1-coefficient linear predictive analyses give comparable SDR values as long as 
these are greater than roughly 10 dB [4].  

Statistical analyses show that interpolation does not cause the SDR values to increase 
statistically significantly for a same analysis method. The purpose of interpolation is 
to decrease quantization noise. Inspecting data averages suggests that SDR differences 
owing to interpolation are typically less than 0.1 dB. A possible explanation is that, in 
the absence of interpolation, the SDR ceiling owing to quantization noise is in the 
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vicinity of 30 dB. Therefore, quantization noise is negligible compared to vocal noise 
in signals the SDR value of which is typically 17 dB. 

6   Conclusion 

Implementations of linear predictive analyses that are considered to be optimal for 
speech coding are sub-optimal for clinical applications and vice versa. For clinical 
applications, the recommended implementation would involve a single prediction 
coefficient the value of which is fixed by means of a conventional covariance method. 
Interpolation or over-sampling would be the preferred method for decreasing 
quantization noise. Moreover, the presentation shows that multi-step prediction is not 
a paradigm that would enable interpreting under all circumstances the prediction error 
as a trace of the vocal dysperiodicity. The generalized variogram of the speech signal 
is an alternative that does not admit any ambiguity in interpretation. 
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