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Preface

We present in this volume the collection of finally accepted papers of NOLISP
2005 conference. It has been the third event in a series of events related to Non-
linear speech processing, in the framework of the European COST action 277
“Nonlinear speech processing”.

Many specifics of the speech signal are not well addressed by conven-
tional models currently used in the field of speech processing. The purpose
of NOLISP is to present and discuss novel ideas, work and results related to
alternative techniques for speech processing, which depart from mainstream
approaches.

With this intention in mind, we provide an open forum for discussion. Alter-
nate approaches are appreciated, although the results achieved at present may
not clearly surpass results based on state-of-the-art methods.

The call for papers was launched at the beginning of 2005, addressing the
following domains:

1. Non-Linear Approximation and Estimation
2. Non-Linear Oscillators and Predictors
3. Higher-Order Statistics
4. Independent Component Analysis
5. Nearest Neighbors
6. Neural Networks
7. Decision Trees
8. Non-Parametric Models
9. Dynamics of Non-Linear Systems
10. Fractal Methods
11. Chaos Modeling
12. Non-Linear Differential Equations
13. Others

All the main fields of speech processing are targeted by the workshop, namely:

1. Speech Coding: The bit rate available for speech signals must be strictly lim-
ited in order to accommodate the constraints of the channel resource. For
example, new low-rate speech coding algorithms are needed for interactive
multimedia services on packet-switched networks such as the evolving mo-
bile radio networks or the Internet, and nonlinear speech processing offers
a good alternative to conventional techniques. Voice transmission will have
to compete with other services such as data/image/video transmission for
the limited bandwidth resources allocated to an ever growing, mobile net-
work user base, and very low bit rate coding at consumer quality will see
increasing demand in future systems.
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2. Speech Synthesis: New telecommunication services should include the capa-
bility to produce speech in a “natural way”; to this end, much research is
required for improving the voice quality of text-to-speech and concept-to-
speech systems. Enriched output signals of self-excited nonlinear feedback
oscillators are expected to permit matching synthetic voices better to hu-
man voices. In this area, the COST Action has build on results obtained
in signal generation by COST Action 258 “The Naturalness of Synthetic
Speech”.

3. Speaker Identification and Verification: Security in transactions, information
access, etc. is another important question to be addressed in the future, and
speaker identification/verification is perhaps one of the most important bio-
metric systems, because of its feasibility for remote (telephonic) recognition
without additional hardware requirements. This line of work has built on
results from COST Action 250 “Speaker Recognition in Telephony”.

4. Speech Recognition: Speech recognition plays an increasingly important role
in modern society. Nonlinear techniques allow us to merge feature extraction
and classification problem and to include the dynamics of the speech signal
in the model. This is likely to lead to significant improvements over current
methods which are inherently static.

In addition, other topics have been discussed in detail, such as Voice Analysis,
where the quality of the human voice is analyzed (including clinical phonetics
applications) and where techniques for the manipulation of the voice charac-
ter of an utterance are developed, and Speech Enhancement, for the improve-
ment of signal quality prior to further transmission and/or processing by man or
machine.

After a careful review process, 33 papers were accepted for publication, in-
cluding the contribution of two invited speakers. A total of 15 sessions containing
43 papers were accepted for presentation, covering specific aspects like speaker
recognition, speech analysis, voice pathologies, speech recognition, speech en-
hancement and applications.

NOLISP 2005 was organized by the Escola Universitària Politècnica de Mataró,
for the European COST action 277, “nonlinear speech processing”. Sponsorship
was obtained from the Spanish Ministerio de Educación y Ciencia (TEC2004-
20959-E), and Fundació Catalana per a la Recerca i la Innovació. We also want
to acknowledge the support of ISCA, EURASIP and IEEE.

We would like to express our gratitude to the members of the NOLISP orga-
nizing committee, and to all the people who participated in the event (delegates,
invited speakers, scientific committee). The editors would like to address a special
mention to the people who helped in the review process as special or additional
reviewers.
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Finally, we would like to thank Springer, and specially Alfred Hofmann, for
publishing this post-conference proceedings.
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The COST-277 European Action: An Overview 

Marcos Faundez-Zanuy1, Unto Laine, Gernot Kubin,  
Stephen McLaughlin, Bastiaan Kleijn, Gerard Chollet, Bojan Petek,  

and Amir Hussain 

1 Escola Universitaria Politècnica de Mataró, Spain 
faundez@eupmt.es 

Abstract. This paper summarizes the rationale for proposing the COST-277 
“nonlinear speech processing” action, and the work done during these last four 
years. In addition, future perspectives are described. 

1   Introduction 

COST-277 is an innovative approach: so far, cost actions where focused on a single 
application field: Speaker Recognition in Telephony (COST-250), Naturalness of syn-
thetic speech (COST-258) [1], Spoken Language interaction in telecommunication 
(COST-278), etc. However, there are strong arguments for a global approach, which 
considers speech processing from a general point of view, rather than focussing on a 
single topic. Section 2 summarizes the rationale for this general approach and the 
goals of COST-277. Section 3 summarizes the work done inside the framework of 
COST-277 and section 4 is devoted to results and future lines. 

2   Rationale for a Speech Processing COST Action 

The four classical areas of speech processing: 

1. Speech Recognition (Speech-to-Text, StT)  
2. Speech Synthesis (Text-to-Speech, TtS and Code-to-Speech, CtS)  
3. Speech Coding (Speech-to-Code, StC with CtS) and 
4. Speaker Identification &Verification (SV) 

have all developed their own methodology almost independently from the neighbor-
ing areas. (See the white arrows in the Figure 1.) 

This has led to a plurality of tools and methods that are hard to integrate. Some of 
the ideas of COST action were to study the following fundamental questions: 

• Are there any parametric, discrete models or representations for speech useful 
for most or even all of the tasks mentioned?  

• What properties should these representations have? 
• How can the parameters of these models be estimated automatically from  

continuous speech? 
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Fig. 1. Classical, separate speech processing areas (white arrows) and an advanced, multifunc-
tional, integrated platform utilizing common discrete models and representations for speech 
signals 

In Fig. 1 natural, human speech is on the left and its synthetic counterpart on the 
right. Two main methods to compress the speech information are depicted in the 
middle. The “written speech” refers to standard orthography of the language or to 
phonetic writing. The “coded speech” refers to a plurality of different coding methods 
and parametric representations. 

The coded speech is less compressed and may have high quality whereas the writ-
ten speech is strongly compressed and without any side information it has lost, e.g., 
the identity and the emotional state of the speaker. 

The simplest codes, like PCM, can be called one-quality-layer codes or 
representations (see Fig. 2). The code is directly related to one and only one quality, 
attribute or dimensionality, e.g., signal amplitude or sound pressure. These simplest 
coding methods do not apply models. Model free methods lead to universal coding 
where the waveform may represent any type of time varying signal: temperature, 
music, speech etc. 

Two-quality-layer codes and representations make the primary separation between 
source (excitation) and filter (vocal tract and lip radiation).  They apply source-filter 
theory and related models. The filter is typically assumed to be all-pole. All of the 
possible zeroes of the signal together with the temporal fine structures are modeled by 
the source (e.g., CELP). These methods may take into consideration the non-uniform 
frequency resolution of the human auditory system by applying auditory frequency 
scales (PLP, WLP). 

The modeling can be developed further, e.g., by including aspects of articulation 
and/or related spectral dynamics. These codes can be called three-quality-layer codes. 
The corresponding methods and models are here called “discrete models”. Further, 
when more complicated structures are found and coded we approach phonetic quali-
ties, descriptions, and codes (IPA). Finally, linguistic qualities and structures are 
modeled and coded (speech understanding). 
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Fig. 2. Different levels of coding and representations of speech signals 

The “discrete models” area in the middle of Fig. 1 denotes methods that are scal-
able and able to produce variable quality, depending on the purpose and capacity of 
the target system. 

Advanced models and methods may be linear, non-linear or combinations of both. 
The models and methods should not only help to integrate different speech proc-

essing areas, but in addition they should -if possible- posses the following features 
and reflect: 

• Properties of human perception (auditory aspect) 
• Properties related to articulatory movements (motoric aspect) 
• Inherent features of phonemes or subsegmentals 
• Allow mappings between speakers (normalization) 
• Robustness: Insensitivity to ambient noise and channel (wireless and packet-

based ones) distortions  
• Underlying dynamics of the speech signal. 

The parametric models capable of reflecting aspects of speech production could 
help to understand the ”hidden structures” of the speech signal. They could provide 
tools for more detailed analysis and study on the (acoustical) coding principles of 
phones or diphones in different contexts of continuous speech. 

All this should be of help in understanding the mechanisms of the coarticulation, 
too. This problem and weakness in current speech recognition schemes should be 
transformed into power and strength useful in other speech processing areas as well. 
Phonetic research -especially related to articulatory phonetics and subsegmentals- 
could benefit of these new tools and methods. 

Deeper understanding and efficient modeling the reflections of the speech produc-
tion mechanism in continuous speech signal and in its phones are in the focus of 
COST-277. 

Source-filter models are almost always part of speech processing applications such 
as speech coding, synthesis, speech recognition, and speaker recognition technology. 
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Usually, the filter is linear and based on linear prediction; the excitation for the linear 
filter is either left undefined, modeled as noise, described by a simple pulse train, or 
described by an entry from a large codebook. While this approach has led to great ad-
vances in the last 30 years, it neglects structure known to be present in the speech sig-
nal. In practical applications, this neglect manifests itself as an increase in bit rate, a 
less natural speech synthesis, and an inferior discriminating ability in speech sounds. 
The replacement of the linear filter (or parts thereof) with non-linear operators (mod-
els) should enable us to obtain an accurate description of the speech signal with a 
lower number of parameters. This in turn should lead to better performance of practi-
cal speech processing applications. 

For the reasons mentioned above, there has been a growing interest in the usage of 
non-linear models in speech processing. Several studies have been published that 
clearly show that the potential for performance improvement through the usage of 
non-linear techniques is large.  

Motivated by the high potential benefits of this technology, US researchers at well-
known universities and industrial laboratories are very active in this field. In Europe, 
the field has also attracted a significant number of researchers. The COST-277 (Non-
linear speech processing) project is the first step towards the creation of a scientific 
community and the possibility of European collaborative efforts. The initial COST-
277 working plan is published in [2]. 

3   Overview of COST-277 Research Activities 

COST-277 started on June 2001 and will officially finish in June 2005. Section 4.2 
contains a list of participating countries. During these last four years, several meetings, 
workshops and training schools have been organized and articulated the research 
activities. Four main working groups have been established and worked close together: 

1. WG1: Speech Coding. 
2. WG2: Speech Synthesis. 
3. WG3: Speech and speaker recognition. 
4. WG4: Voice Analysis and enhancement. 

The main scientific events inside COST-277 action are described in the next  
subsections. 

3.1   Management Committee Meetings 

The administrative and scientific matters have been discussed in several meetings, 
whose minutes can be found on the website. The three initial MCM (0, 1, 2) have 
been organized for the start up of the action, and the remaining ones have included 
other activities summarized in the next sections. 

MCM-0 (pre-inaugural meeting): September, 1999, Budapest (Hungary) 
MCM-1 (Inaugural meeting): June, 2001, Brussels (Belgium) 
MCM-2 (Unofficial EUROSPEECH meeting): September, 2001, Aalborg (DK) 
MCM-3 (Vietri Sul Mare meeting): 6th/7th December, 2001, Vietri Sul Mare (Italy) 
MCM-4 (Graz meeting): 11th/12th April, 2002, Graz (Austria) 
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MCM-5 (Unofficial EUSIPCO’02 meeting): September, 2002, Toulouse (France) 
MCM-6 (Edinburgh meeting): 2nd/3rd December 2002, Edinburgh (UK) 
MCM-7 (Le Croisic meeting): 20th to 23th May, 2003, Le Croisic (France) 
MCM-8 (Laussane meeting): 5th/6th September, 2003, Laussane (Switzerland) 
MCM-9 (Limerick meeting) : 15th/16th April, 2004, Limerick (Ireland) 
MCM-10 (2nd Vietri sul Mare meeting): 13th-17th September’04 
MCM-11 (Barcelona meeting): 19th-22th April’05 
MCM-12 (Creete meeting): 19th-23th September’05. 

3.2   Special Sessions Organized in Signal Processing Conferences 

Five special session have been organized in well-established conferences: 

1. International Workshop on Artificial Neural Networks (IWANN’01): Held in 
June 2001 in Granada (Spain). 3 technical presentations. 

2. European Speech Processing Conference: Held in September 2002 in Toulouse 
(France). 5 technical presentations. 

3. International Workshop on Artificial Neural Networks (IWANN’03): Held in 
June 2003 in Menorca Island (Spain). 4 technical presentations. 

4. European Speech Processing Conference: Held in September 2004 in Vienna 
(Austria). 5 technical presentations. 

5. International Conference on Artificial Neural Networks (ICANN’05): To be 
held in Poland in September 2005. 

3.3   Workshops 

Two main workshops, named NOLISP, have been organized: 

1. NOLISP’2003: Held in May 2003 in Le Croisic (France). 32 technical  
presentations. 

2. NOLISP’2005: Held in April 2005 in Barcelona (Spain). 42 technical  
presentations. 

3.4   Training Schools 

Two training schools have been organized: 

1. Vietri Sul Mare (Italy): Held in September 2004. 36 technical presentations [4]. 
2. Crete (Greece): To be announced. 

3.5   Short Term Scientific Missions 

Two short term missions have been organized: 

1. STM-1: Held during 19 June 2003 to 21 June 2003 from Belgium (Brussels) to 
Laussane (Switzerland): Synthesis of disordered speech and the insertion of 
voice quality cues into text-to-speech systems. 

2. STM-2: from Graz (Austria) to Canada: research on auditory modeling  
(summer ’04). 
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3.6   EU Framework Programm 6 (FP6) Initiatives 

Two expressions of interest were submitted to the European Commission within the 
FP6 programme:  

1. Advanced Methods for Speech Processing (AMSP): 
http://eoi.cordis.lu/dsp_details.cfm?ID=38399 

2. Human Language Technology Portability (HLTport): 
htt p://eoi.cordis.lu/dsp_details.cfm?ID=32189. 

4   Results and Future Lines 

One of the great successes of COST-277 has been the increase of contributions be-
tween different countries and other COST actions. This has let to deal and study new 
research topics, summarized in section 4.3. 

4.1   Collaboration with Other COST Actions 

COST-219ter: Accessibility for All to Services and Terminals for Next 
Generation Networks 
COST-219ter has showed a strong interest on the work “Enhancement of Disordered 
Male Voices” done by a COST-277 team. Possible future interactions between both 
COST actions are being studied. 

COST-275: Biometric-Based Recognition of People over the Internet 
Several COST-277 members have attended regular workshops of COST-275 and pre-
sented results related to Speaker recognition. In addition, COST-277 has produced the 
COST-277 database for speaker recognition, which is suitable for the study of new 
techniques such as: 

 Speech signal watermarking for improving the security on remote biometric ap-
plications. 

 Speech signal bandwidth extension for improving the naturalness of encoded 
speech. 

This database will be available in 2006 [3]. In addition, a joint brochure was dis-
seminated at major conferences, at the beginning of the action. 

COST-276: Information and Knowledge Management for Integrated Media 
Communication Systems 
Contacts have been established with COST-276 WG-4 due to the interest on Speech 
watermarking. However, although COST-276 has interest on speech watermarking, 
they are more focus on audio (music) watermarking. Thus, COST-277 has a more ma-
ture technology for speech, which will be transferred to COST-276. 

COST-278: Spoken Language Interaction in Telecommunication 
COST-278 members will attend the NOLISP’05 workshop in Barcelona and will 
present some topics and problems that could be addressed with NL speech processing. 
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On the other hand, NL speech feature extraction for speech recognition will be 
presented to COST-278. In addition, a joint brochure was disseminated at major 
conferences, at the beginning of the action. 

4.2   Collaboration Between Different Countries 

In order to summarize the different collaborations between institutions, we have just 
representted in a matrix the collaborations between different countries, made possible 
thanks to COST-277 action. Next diagram summarizes the inter-country collaborations. 

 A B CAN CH CZ D E F UK GR I IRL LT P S SI SK 
A                  
B                  
CAN                  
CH                  
CZ                  
D                  
E                  
F                  
UK                  
GR                  
I                  
IRL                  
LT                  
P                  
S                  
SI                  
SK                  

A shadowed cell means contribution between respective file and row countries 
(joint publications and/or Short Term Missions). 

Country codes 
A Austria 
B Belgium 

CAN Canada 
CH Switzerland 
CZ Czech Republic 
D Germany 
E Spain 
F France 

UK United Kingdom 
GR Greece 

I Italy 
IRL Ireland 
LT Lithuania 
P Portugal 
S Sweden 
SI Slovenia 
SK Slovakia 
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4.3   Scientific Results 

A detailed explanation of scientific achievements is beyond the goal of this paper, and 
can be found in our website www.nolisp2005.org thus, we restrict this section to an 
enumeration of research activities: 

 Analysis and synthesis of the phonatory excitation signal by means of a polynomial 
waveshaper. 

 Modulation frequency and modulation level owing to vocal micro-tremor. 
 Decomposition of the vocal cycle length perturbations into vocal jitter and vocal 

microtremor and comparison of their size in normophonic speakers. 
 Acoustic primitives of phonatory patterns. 
 Multivariate Statistical Analysis of Flat Vowel Spectra with a View to Characteriz-

ing Disordered Voices. 
 Relevance of bandwidth extension for speaker identification and verification. 
 Waveform speech coding using non-linear vectorial predictors. 
 SVM-Based Lost Packets Concealment for ASR Applications Over IP. 
 Space–time representation. 
 Nonlinear masking of a time–space representation of speech. 
 Adaptive nonlinear filtering and recognition with neurons. 
 Nonlinear masking and networks of oscillatory neurons. 
 Speech structure and masking. 
 Speech analysis. 
 What can predictive speech coders learn from speaker recognizers? 
 Nonlinear features for speaker recognition. 
 Speaker recognition improvement using blind inversion of distortions. 
 Isolating vocal noise in running speech via bi-directional double linear prediction 

analysis. 
 On the bandwidth of a shaping function model of the phonatory excitation signal. 
 Speech signal watermarking: a way to improve the vulnerability of biometric  

systems. 

4.4   Future Lines 

COST-277 will officially finish in June 2005. However, a final event will be held in the 
last semester of 2005 in the form of a training school. Afterwards, the Nonlinear speech 
processing community should survive without the European Science Foundation found-
ing. In NOLISP’2003 it was stated the interest for keep on working on this topics, and 
to stay close to the speech processing community, rather than nonlinear processing 
groups (image, communications, etc.). Probably, a good idea would be the establish-
ment of an ISCA Special Interest Group (SIG) on Nonlinear speech processing. 

You can keep informed by looking at the website! 
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Abstract. The present work shows how communication systems benefit from 
fuzzy logic. From signal processing applications, which process bits at the 
physical layer in order to face complicate problems of non-Gaussian noise, to 
practical and robust implementations of these systems and up to higher layers in 
the communication chain, which are engaged in the protocol design. The ability 
for modeling uncertainty with a reasonable trade-off between complexity and 
model accuracy, makes fuzzy logic a promising tool. 

1   Introduction 

Since the introduction of fuzzy logic in the engineering field, this discipline has been 
very successful in automatic control [1] with applications such as autonomous robot 
navigation, auto focus cameras, image analysis and diagnosis systems. A proof of this 
success can be found in the number of companies developing hardware and software 
for developing fuzzy systems (Accel Infotech Pte, Ltd., Adaptive Informations 
Systems, American NeuraLogix, Fujitsu, Oki Electronic, OMRON Corporation, 
Toshiba, SGS-Thomson, Siemens, etc.). 

The present work shows how communication systems benefit also from fuzzy logic 
systems. From signal processing applications that process bits at the physical layer in 
order to face complicate problems of non-Gaussian noise, to practical and robust 
implementations of these systems and up to higher layers in the communication chain, 
which are engaged in the protocol design. The ability for modeling uncertainty with a 
reasonable trade-off between complexity and model accuracy makes fuzzy logic a 
promising tool. 

In the 90’s, Bart Kosko [2-3] and Jerry Mendel [4-5] began to study the application 
of fuzzy logic and set theory to the signal processing field. Since then various works 
have appeared focused on fuzzy logic under the intelligent signal processing framework 
[6-7]. Fuzzy systems are able to build up mathematical models from linguistic 
knowledge and do not require statistical knowledge, although they can incorporate it, 
offering an scalable design with the available information. Communication systems can 
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benefit from these features to gain in robustness and in fast acquisition and tracking, 
as the present work shows in the application of interference canceling in CDMA 
(Code Division Multiplex Systems). Another important feature is that fuzzy systems 
offer also physical interpretability, this helps adjust the parameters of the system in an 
easy and friendly way. The second application presented in this work at bit level takes 
advantage of this feature in order to design a robust beamformer for communication 
signals, resulting in an easy implementable and tunable beamformer when compared 
with other existing techniques in the literature. These applications together with 
others developed by the authors in [8-9] are based on the capability of fuzzy logic to 
implement model-free function approximations. All these works aim to achieve the 
intelligent filtering that Lofti Zadeh in 1954 stated in his work “General filters for 
separation of signal and noise” [10]. We could summarize it saying that intelligent 
and robust filtering consist in decision making. Decision making that should operate 
not with an statistical model but with the available data: “Since the extent to which a 
signal can be separated from noise is ultimately limited by the statistical data 
available to the designer, a more rational approach would be to start with all the 
available data about the signal and noise an try to design a filter that would use it 
fully and most effectively,”[10]. 

However, we should talk about the benefits of fuzzy logic and systems with cau-
tion. If expert or linguistic knowledge is not available to carry out the decision mak-
ing in an “intelligent” way, fuzzy logic systems can be used as filters or classifiers 
that generalize the ones designed on a statistical basis (e.g. minimum mean square 
error, maximum likelihood, maximum a posteriori probability); thus, offering much 
more flexibility and possibilities than the classical statistical systems, but presenting a 
greater complexity that results difficult to cope with. Concerning this aspect, the pre-
sent work compares different fuzzy and non-fuzzy classifiers. In spite of the greater 
flexibility that fuzzy systems offer due to the fuzzy instead of crisp classification 
thresholds, the conclusion is that the fuzzy systems only stand out when expert 
knowledge and not only data is available in the design. 

At the protocol level in the communication stack, known research applications are 
queuing and buffer management, distributed access control, hand-off control, load 
management, routing, call acceptance, policing congestion mitigation, bandwidth 
allocation, channel assignment, network management, etc [11-17]. All of them take 
advantage of: the flexibility of fuzzy logic, its ability to cope with different types of 
inputs and its decision making structure. Protocols are in fact controllers that have to 
make decisions based on many different variables; thus, the appropriateness of fuzzy 
logic. Part of the present chapter is dedicated to applications regarding hand-off 
algorithms [18-19], combining distance measurements with received signal strength 
to decide hand-off while keeping quality of Service. Although the work focuses on 
horizontal hand-off in WLAN (Wireless Local Area Network), we point out that in 
the emerging multimedia systems, hand-off is also considered vertically, as a switching 
between different systems covering the same area and service. As an example, consider 
switching between GPRS, UMTS and a satellite segment, as in [20]. 

Next some of the mentioned applications are presented: section 2 describes the 
interference canceller for CDMA, section 3 is dedicated to the robust beamformer, 
section 4 is devoted to fuzzy classification and finally, section 5 discusses on the use 
of fuzzy logic for hand-off control. Finally conclusions come. For a review of fuzzy 
logic and systems in signal processing we refer to the tutorial in [5].  
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2   Fuzzy Logic Canceller for CDMA 

The new communication standards require high capacity to support the increasing 
demand of multimedia services. In order to achieve the high capacity, the standards 
propose to reduce the cell site and reutilize frequency or codes. However, this strategy 
ask for more sophisticated signal processing techniques that are able to cope with the 
increases level of interference. This section focus on a CDMA system, where K 
spread spectrum users are received at each single-user terminal. The signal model for 
the sample k of the received signal is 

 (1) 

where sk represents the binary information ( )1∈±  of the desired user. The interfer-

ence ik can be either analog or digital and nk models both the thermal noise (AWGN 
or additive white Gaussian noise) and the multiple access interference or MAI as (2) 
formulates 

 
(2) 

where l
ks  is the binary sequence of the undesired user j, and wk is the thermal noise. 

Pj and PN represent the corresponding powers. Next section is devoted to the design of 
the fuzzy canceller. 

2.1   Formulation of the Fuzzy Interference Canceller 

The canceller subtracts the interference signal from the received one in (1). Therefore, 
it is necessary a non-linear filter able to estimate ik in a non-Gaussian noise environ-
ment. When the interference is analog, the conditional mean estimator of (3) is the 
optimal one 

 
(3) 

where p(i/r) represents the a posteriori probability of the interfering signal. Applying 
the Bayes theorem and the signal model in (1), p(i/r) can be equated as 

 

(4) 

where 
T

p p p= − −z r m i , rp embraces all the received samples and mp consists of 

all the possible noise and MAI states. Finally, p(i) is the a priori probability of the 
interference and λp is the a priori probability of the p noise state.  
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Combining (3) and (4) we get the following equation for the conditional mean of 
the interference 

 

(5) 

where wj,l is the product of p(j) and λl . Note that (5) can be seen as a fuzzy system 
with LxQ linguistic rules, exponential membership functions, Sugeno inference and 
centroid defuzzification. In other words, il represents the output centroid for the l-th 
rule, which is weighted by  wjl. Therefore, (5) can be reformulated as (6) 

 

(6) 

where Φj is the fuzzy basis function of rule j. Under high Signal to Noise ratio 
conditions, the fuzzy interference estimator of (6) approximates the maximum a 
posteriori estimator as equated in (7) 

 

(6) 

where Φm is the fuzzy basis function that presents a maximum value, which is close 
 to one. 

2.2   Expert Knowledge in the Fuzzy Interference Canceller 

The fuzzy system is designed based on 4 variables: 3 2 1
ˆ ˆ, , ,k k k ki i r r− − − . In order  

to reduce the fuzzy rule base, the variable rk-1 has been taken as reference of  
the input universe of discourse. Therefore, the input vector x is 

[ ]3 1 2 1 1 1 2 3
ˆ ˆ T T

k k k k k ki r i r r r x x x− − − − −= − − − =x . The fuzzy rule base has the 

following structure 

1 1 2 2 3 3
j j j

j jIf x is A and x is A and x is A THEN y is B with weight w  

where ,j
i jA B   are the input and output fuzzy sets respectively for rule j. The input 

and output variables have been modeled with F=7 fuzzy sets. The mean of the fuzzy 

sets takes the values { }3, 2, 1,0,1,2,3− − −  and the variance equal to 0.5. The fuzzy 

rule base is initialized in order to model the slow evolution of the narrow band inter-
ference when compared with the sampling time [21]. Finally, the weights are tuned by 
the Least Mean Square (LMS) algorithm of (7). 
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(7) 

where the error ek is  

 
(8) 

2.3   Simulations  

Next the fuzzy system has been compared with the two-sided linear filter of [22-23] 
with 10 coefficients. This coefficients and the the centroids of the fuzzy filter have 
been adapted with a decision directed LMS. Fig. 1 shows the Signal to Noise and 
Interference Ratio improvement when the interference is modeled as an autoregres-
sive process. The SNR is equal to 20 dB. 10 Monte Carlo runs have been conducted 
with 660 samples for training each and 8000 for evaluation. Note the better perform-
ance of the fuzzy filter. In Fig. 2 the Bit Error Rate (BER) has been evaluated for 
SNR=20 dB and a multiple access interference of  K=3 users and spreading factor of  
SF=11. As the weighted fuzzy filter takes into account the states of the MAI, it out-
performs both the linear and the non-weighted filter.  

 

Fig. 1. Suppression of an AR interference. SNR= 20 dB. 

Fig. 3 evaluates the performance of the fuzzy filter depending on the Signal to 
Noise ratio (SNR) for SIR equal to –20 dB. The only interference in the scenario has 
been modeled as an autoregressive process. The fuzzy filter has been compared with 
the optimum filter (DDK) and with the minimum mean square error one (MMSE). 
Note that for low power of Gaussian noise (i.e. in an interference limited scenario), 
the fuzzy filter outperforms the other ones. Finally, Fig. 4 shows the fast acquisition 
time of the fuzzy interference canceller due to the initial expert knowledge incorpo-
rated in the rule base. 
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Fig. 2. Suppression of a digital interference. SNR= 20 dB and MAI of 3 users. 
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Fig. 3. Suppression of a digital interference. SIR= -20 dB and autoregressive interference. 

2.4   Conclusions  

The designed fuzzy filter is able to cope with both analog and digital interference 
even in the presence of MAI. On the other hand, due to the difficulty of statistical 
modeling, classical filters, which relay just on statistics, are not able to cope with this 
complex situation. The initial fuzzy rule base is built up from expert knowledge and 
can be trained with data whenever available; thus, approaching to the optimum MAP 
interference estimator. Therefore, the system is scalable with the available informa-
tion and if only a short training is possible, the expert knowledge incorporated in the 
rule base guarantees a better performance than existing interference cancellers. In 
fuzzy systems optimality is pursued by emulating an expert operator. This is the best  
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Fig. 4. Acquisition time 

that can be done in the context of fuzzy logic. It is worth noting, however, that in all 
cases of queuing control where a mathematically optimal solution is known, as it is 
the case of interference estimation in CDMA, the fuzzy system yields precisely the 
same optimal solutions. In addition, in [24] the authors design a hierarchical rule base 
that reduces the computational complexity without degrading performance in most of 
the cases. 

Next section presents a fuzzy beamformer that takes advantage of the fuzzy rule 
base in order to obtain a design close to the physical properties of the scenario and, 
therefore, easy to implement and to adjust when compared to existing non-fuzzy 
beamformers. 

3   Fuzzy-Inference-Based Robust Beamforming 

Adaptive array beamformers are used to spatially discriminate a desired signal from 
the unwanted interferers. They usually operate with the spatial signature or steering 
vector associated with the signal source to be filtered out, and they typically produce a 
constant array response towards that direction while minimizing other contributions 
(see Fig. 5). Significant degradation appears when the desired steering vector is not 
known exactly [25]. It is specially noticeable when the number of snapshots is low 
(i.e. the so called sample support problem) and gets worse for high Signal to Noise 
plus Interference Ratio (SNIR). The phenomenon is that desired information is treated 
as interference and consequently nulled. 

Numerous methods have been proposed. We classify them depending on the 
knowledge they require from the uncertain desired Direction of Arrival or DOA. Tra-
ditional approaches require a nominal DOA and its corresponding uncertainty range 
[26-28]. The approach in these techniques is to gain robustness related to DOA errors 
at the expenses of decreasing interference and noise suppression and in general the 
problem of interference within the uncertainty range for the DOA is not addressed. A 
different approach consists in computing a DOA estimate and proceed as if the DOA 
were already known [29], yielding the so-called Direction-based techniques. Finally, 
the third group of techniques in complexity order contains subspace techniques, as in 
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Fig. 5. An example of spatial linear processing to filter out a signal s(k) in presence of an  
interference i(k) 

[30] or references therein, where the signal plus interference subspace is estimated in 
order to reduce mismatch. However, they also suffer from significant performance 
degradation when the available data doesn't provide good estimates. The above men-
tioned techniques resort to different robust signal processing schemes, as for instance: 
regularization, minimax/worst-case design or Bayesian approaches. 

This paper uses fuzzy logic as another tool worth considering when imprecise a 
priori knowledge of input characteristics makes the sensitivity to deviations from 
assumed conditions an important factor in the design [31]. We derive a direction-
finding based beamformer that describes DOA imprecision by means of fuzzy sets, 
which does not make statistical assumptions on interference and noise. An important 
issue in robust beamforming is the design or adjustment of parameters, whose values 
trade-off between robustness and array gain. In that sense, physical interpretability as 
in the proposed fuzzy techniques is always desirable. 

This part is organized as follows. Section 3.1 states the problem. The fuzzy infer-
ence based beamformers are developed in Section 3.2, Section 3.3 parameter design, 
Section 3.4 presents performance examples and a summary is given in Section 3.5. 

3.1   Problem Statement  

The narrowband beamformer is a linear processor and consists of a set of P complex 
weights that combine the signals received at P sensors with the objective of filtering 
out a signal s(k) (see (9)) that impinges the array from a specific spatial direction  
(see Fig. 5) 

 
(9) 

where k is time index, [ ]1( ) ( ) ( )
T

Pk x k x k=x L  is the complex vector of array obser-

vations, [ ]1( ) ( ) ( )
T

Pk w k w k=w L  is the complex vector of beamformer weights, P 

is the number of array sensors. The base band observation data x(k) is  
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(10) 

where s(k) represents the desired signal contribution, i(k) the interference and n(k) is 
noise. Note that we have decomposed s(k) into desired signal waveform s(k) and 
desired signal steering vector ad, which contains the spatial information. It is easily 
modeled resorting to wave propagation theory and array geometry.  

The weights are chosen accordingly to some optimum criterion, such as maximum 
SNIR, minimum mean square error or minimum power distortionless response 
(MPDR). All of them equate 

 
(11) 

where μ is a scale factor and { }H
x E=R xx  is the data covariance matrix. A beam-

former having this form is often referred to as the “optimum beamformer”. Its per-
formance strongly depends on both ad and Rx in those common practical applications 
where they are obtained through estimation. In this paper we consider no knowledge 
of the desired DOA and that K snapshots are available for the estimation of both the 
covariance matrix and the DOA. The array is assumed to be calibrated, so errors in 
the spatial signature come form the DOA estimate.  

The Sample Matrix Inversion (SMI) method is used for adaptive beamforming. 
The weights are updated every K snapshots using the K-sample covariance matrix of 
(12), as well as the DOA estimate, which is obtained with the Capon estimator; thus, 
obtaining the so-called Capon beamformer. Other estimates are possible, however, 
without loss of generality for the proposed techniques 

 

(12) 

Direction-finding based beamformers suffer from significant performance degrada-
tion when the DOA estimates are not reliable, because of low number of snapshots or 
low SNR. Next section develops an adaptive beamformer which balances the user of 
observed data and approximate DOA knowledge.  

3.2   Fuzzy Inference Based Beamformer  

Assuming partial knowledge about the desired DOA (i.e. a nominal DOA and 
uncertainty region), we aim to use the capability of fuzzy systems to approximate any 
continuous function on a compact (closed and bounded) domain to obtain a reliable 
estimate of s(k). Fuzzy theory states that it is always possible to find a finite number 
of rule patches (which describe the system) to cover the graph of f while keeping the 
distance ( ) ( )f x F x−  as small as we please, being F(x) the fuzzy approximation 

function.  
We consider one input variable to the system, the DOA candidate ud that we extract 

from input data (Capon estimator). In order to take into account DOA errors, we  
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define an interval of possible DOA values, the prior and L fuzzy sets { }, 1...iA i L=  

are placed equispaced along it. They describe the imprecise DOA estimate. As far as 
we are also concerned about practicality and implementation issues, we choose input 
fuzzy sets to be triangular. Their membership degree over the variable u can be ex-
pressed as 

 

(13) 

with  , where udmin-udmax stands for the prior width. Widths 

are set using amp and . 

The choice for the output fuzzy sets follows from the conditional mean beamfomer 
wCM in (14) 

 

 

(14) 

where X represents the available data set and p(ui/X) is the a posteriori probability 
density function (pdf). The global estimation problem is divided into L smaller prob-
lems that assume fixed input parameters ui and that are gain controlled by the prob-
ability of each possible signal incoming direction ui given the data set.  

In light of (14), it is clear that the conditional mean beamformer is optimal as far as 
L is big enough and the a posteriori pdf is assumed perfect. In that asymptotic case, 
the conditional mean beamformer is the optimum beamfomer in the minimum mean 
square error sense. When a finite (and low) number of optimum beamformers are 
available, a fuzzy approximator that does not rely on statistics but on expert knowl-
edge can be derived.  The output fuzzy sets Bi are designed accordingly as singletons 

placed at ( )H
opt iuw x , which, in other words, is the output of the “optimum beamfo-

mer” pointing at ui. Due to philosophy similarities, we use the Bayesinan beamformer 
[28] as a benchmark for comparison. Indeed, it is derived from (14) and uses a para-
metric model for the pdf.  

To completely describe the system, assuming we implement additive fuzzy sys-
tems with singleton fuzzification, product inference and centroid defuzzification [5], 
we establish the rules Ri, i=1…L that relate inputs with outputs: 

Ri: IF the DOA is Ai THEN the desired signal is Bi 
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It can be shown that the final expression of the spatial filter is the one given in (15) 

 

(15) 

Fig. 6 shows an operation example of the beamformer for the case L=3. Note that 
although statistics play an important role in computing both the output fuzzy sets and 
the input to the system, the rules are transparent to statistics and rely to a knowledge 
based approach. Thus, the system is not so model-dependent and consequently model-
limited as for example the Bayesian one. Another important aspect is how we tune 
parameters to incorporate expert knowledge. This is discussed in the next section. 

 

Fig. 6. Beamforming example for the case L=3 

3.3   Parameter Design 

The fitting quality of the designed fuzzy beamformer will strongly depend on the 
election of the parameters related to the input fuzzy sets (width, mean and number) 
and the number of snapshots K. The number of fuzzy sets L is established on 
complexity criteria. For the means and widths, ui and amp respectively, it is possible 
to tune them with learning algorithms such as the stochastic gradient descent on the 
squared error [31]. In that case a training sequence is necessary. For practicality 
reasons, this work only considers the set up of the fuzzy sets widths and keeps fixed  
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Table 1. Heuristic rules for tuning the fuzzy sets widths function of SNR and in-prior SIR 

 

means. It is done heuristically as shown in Table1 in order to make the beamformer 
easy tuning and user friendly. Note that the scenario is described by the SNR and the 
in-prior Signal to Interference ratio (SIR).  

The DOA description by means of fuzzy sets is less critical; actually, good empirical results 
are achieved when a low number of fuzzy sets (L=6) is used.  
If information reaches the sensors spatially spread or distributed over some known 
angular region, it is possible to incorporate this information into the fuzzy system 
thanks to non-singleton fuzzification. 

Finally, the last parameter to fix is the number of snapshots K. It is generally cho-
sen as large as possible to get a good estimate of the data correlation matrix and DOA 
but small enough so that temporal fluctuations may be tracked. Randomness in the 
covariance matrix causes the cancellation of the desired signal in the wopt beamformer 
of (15). One way of diminishing these problems is using diagonal loading [26] at the 
expenses of less interference suppression. 

Next section presents some significative results. 

3.4   Simulations 

We assume a uniform linear array with 10 omnidirectional sensors spaced half a 
wavelength apart. The uncertainty in the DOA of the desired signal is over the region 
[-0.2, 0.2] and it has been equally divided into L=6 intervals. We are mostly interested 
in evaluating the performance of the proposed fuzzy beamformer from the point of 
view of array gain. This figure of merit is defined as 

 

(16) 

where w stands for the weights of the beamfomer, ad for the desired signal steering 
vector and ρn represents noise plus interferers normalized covariance matrix. 

Just to make the understanding of the proposed beamformer easier, the results of 
the fuzzy beamformer formulated in (15) are presented together with those obtained 
by the Minimum Power Distortionless Response (MPDR) beamformer of (11) and the 
Bayesian beamformer of [28]. Note that the fuzzy inference based beamformer com-
bines both philosophies: it is a direction-finding based beamformer, such as the 
MPDR one, and is able to cope with DOA uncertainties such as the Bayesian beam-
former. This fact motivates the election of these two techniques, although they imply 
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less computational complexity. We note in addition that there are many other ap-
proaches, each one having its own advantages, problems and applications, where 
neither is absolutely better than the other. In [28], the Bayesian beamformer is exten-
sively compared with the linearly constrained minimum variance beamformer using 
directional constraints and a subspace beamformer. Thus, for the sake of clarity we do 
not include them in this paper and refer to the conclusions in [28]. The main goal of 
this simulation section is to show that the fuzzy inference beamformer is an alterna-
tive technique easy to implement and worth considering in scenarios with specific 
features such as different interference conditions. 

Next we make a comparative study between the Bayesian and fuzzy beamformers. 
The objective is to see how easy is to adjust parameters in both beamformers. In the 
Bayesian technique, we have to adjust the γ parameter, that establishes the confidence 
given to the calculated a posteriori probabilities. The basic parameter for the fuzzy 
beamformer is the width of the fuzzy sets. In this study, we consider all other vari-
ables without error, i.e. no DOA error, perfect covariance matrix, etc. . . , although the 
presence of interference inside the prior interval plays an important role for deciding 
the signal to be focused. Bayesian beamformer computes itself an estimate of the pdf 
of the DOA from the data, while fuzzy beamformer departs from a given estimate 
(therefore we study it both focusing desired or interferent fonts). The different choices 
for the parameters establish a trade-off between robustness and performance. 

Of key importance is how sensitive the performance of the beamformer is to the 
setting of its design parameters. Thus, high sensitivity implies low practicality of the 
beamformer. Figures 7 and 8 depict the array gain variations along with the fuzzy sets 
widths (fuzzy) and γ parameter (Bayesian), respectively. Three different SNR are 
considered, and an in-prior interference is simulated. Note that there is in general a 
trade-off between array gain at high SNR and acceptable performance at low SNR 
(for the fuzzy beamformer we assume that at SIR < 0dB, the DOA estimate points 
towards the interference). The reader can appreciate the smoother evolution that fuzzy 
beamformer provides. Finally, Fig. 9 shows the robustness or less sensitivity of the 
fuzzy system for different values of DOA misadjustment when compared with the 
Bayesian system. The presence of interference within the uncertainty range of the 
desired signal is not taken into account in the statistical model of the Bayesian beam-
former; thus, its worst performance.  

3.5   Conclusions 

This work makes use of fuzzy logic systems as universal model-free function ap-
proximators and proposes a fuzzy inference based beamformer. The obtained beam-
former is a direction-finding based technique that offers a robust approximation of the 
conditional mean estimate of the desired signal. The term robust is quite wide and this 
work focuses on the problem of DOA uncertainty in scenarios where interference 
signals are present. We note that no constraints have been imposed on the nature of 
the sources (i.e.point or spread). As expected, due to the soft DOA quantization, the 
fuzzy approach presents a “graceful" degradation when the working conditions are 
different from those expected. Additionally, the robustness of the presented beam-
former applies also when adjusting its design parameters (fuzzy sets widths and num-
ber of beams). Because of the fuzzy systems interpretability, the parameters are easy 
to set once the scenario is known, thus demonstrating its practicality. 
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Fig. 7. Bayesian beamformer array gain versus γ value at different SNR, ud=0.14, interferent 
directions uint= [-0.5, 0.6, -0.07] and INR=[20, 20, 0] dB 

 

Fig. 8. Fuzzy beamformer array gain versus fuzzy sets width at different SNR focusing either 
desired or in-prior interference signal. Same scenario as Fig. 7. 

Next section 4 is devoted to fuzzy classification for signal separation in  
2-Dimensional spaces. It shows the greater flexibility that fuzzy systems offer in front 
of classical classifiers. Better results are then obtained in most of the cases, however, 
in order to take advantage of the great potential of fuzzy systems, expert knowledge 
would be needed.  
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DOA misadjustmentDOA misadjustment  

Fig. 9. MMSE versus DOA misadjustment, ud=0, SNR = 0dB, uint={-0.5, 0.6},INR={20, 20} dB 

4   Fuzzy Logic for Signal Classification 

This work addresses the problem of signal separation for 2-Dimensional spaces. In-
stead of resorting to statistical properties of the signals, this work treats the problem 
as one of image segmentation. Variants of known fuzzy classifiers are studied and 
compared with existing techniques, as the Unsupervised Maximum Likelihood 
(MLU) classifier or the watershed technique. The goal is the separation of seismic 
waves collected from experimental data. 

Whenever there is uncertainty in the statistical model, fuzzy logic can be useful. 
This is maybe the case of supervised classification problems when the number of 
training data is low, or when there is lack of knowledge in the underlying parametric 
model as it is the case of geophysical signals, such as the ones addressed in this paper. 
This work aims at seismic wave separation by means of signal classification.  
Section 4.1 reviews a selection of the existing techniques [1,2] and studies how to 
treat fuzziness in order to better manage uncertainty. Section 4.2 applies these tech-
niques to image segmentation for seismic wave separation or identification. Finally 
conclusions come in Section 4.3.  

4.1   Fuzzy Unsupervised Classifiers 

We focus on unsupervised classifiers that are going to be applied to 2-Dimensional 
signal separation, also called image segmentation. The algorithms like clustering or 
fuzzy C-means (FCM) [32-33], unsupervised Maximum Likelihood (MLU) [34] and 
watershed (W) [35] are the ones to be studied. From the simulations that we have 
carried out, we can conclude that a variant of the FCM, the so-called FACM (pro-
posed by Gustafson and Kessel [32-33]), is the one that on average gives a better 
performance.  
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4.1.1   Fuzzy a C-Means 
This algorithm minimizes the following distance of samples xk to the cluster centers vi 
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where D is the dimension of the feature space (e.g. D=3) and  
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where the fuzziness is controlled by factor “m”. 
Along the study that we have carried out we have observed a better performance 

when matrix Ai (the Mahalanobis distance) is introduced to the Fuzzy c-means. In 
this way the Mahalanobis distance defines an ellipsoid with an specific volume cen-
tered at each cluster (that we can refer to an image). Also better performance is ob-
tained if the membership function is designed as  
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Fig. 10. Comparison of membership functions between MLU and FACM (classes with different 
variance show different borders) 
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Note that with respect to the Fuzzy c-means we have incorporated the parameter 
“md”, which helps to better tune the membership function. For md>1, the member-
ship degree of those points close to the cluster center are emphasized with respect to 
those more far apart. 

A more closed mathematical analysis [36] reveals that FACM is like a version of 
the MLU, that uses a more generic kernel function as the Gaussian one used by MLU 
(we can see an example in Fig. 10). Therefore, FACM has more degrees of freedom 
to adapt to the data; thus, offering better results if it is properly tuned. 

4.1.2   Fuzzy Watershed 
The conventional morphological segmentation technique is the watershed transform 
[35]. The idea of watershed is drawn from a topographic analogy. Consider the gray-
level intensity as a topographic relief. Find the minima and “pierce” them. Immerse 
the whole relief into water and let the water flood the areas adjacent to the piercing 
points. As the relief goes down some of the flooded areas will tend to merge; prevent 
this happening by raising infinitely tall dams along the watershed lines. When fin-
ished, the resulting network of dams defines the watershed of the image. Each of the 
lakes that have been formed are called catchment basins and correspond to the result-
ing classes of the classifier. Fig. 11 shows an example of watershed in a section of 
topographic surface. 

 

Fig. 11. Example of watershed in a section of topographic surface 

Note that in the watershed segmentation there is no intersection between regions. 
As there is a great deal of ambiguity in the segmentation process, we studied the pos-
sibility of fuzzy membership degrees to allow the different catchment basins to inter-
sect (in an algorithm that we call fuzzy Watershed or FW). However, the lack of a 
clear feature or knowledge to design the fuzzy membership functions, makes this 
extra degree of freedom in general useless as we show next.  

4.1.3     Simulations 
We have generated 12 different 2-Dimensional data of 100,000 samples each in order 
to evaluate the performance of the studied classifiers. Table 2 shows the probability of 
misclassification and Table 3 the mean error when reconstructing the image from the 
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Table 2. Misclassification error 

Classi-
fier Gaussian 

NonGaus-
sian 

CM 0.2404 0.3505 

FCM 0.2436 0.3536 

ACM 0.1226 0.1693 

FACM 0.1175 0.1446 

MLU 0.1071 0.1455 

Table 3. Reconstruction error 

Classi-
fier 

Gaussian 
NonGaus-

sian 

CM 7.447 10-8 3.056 10-8 

FCM 3.256 10-8 1.755 10-8 

ACM 2.839 10-8 2.240 10-8 

FACM 6.707 10-9 9.397 10-9 

MLU 1.131 10-11 1.305 10-8 

classified data. Although the FACM, the ACM and the UML are very similar in per-
formance, note the better behavior of the FACM in front of the ACM, that is the c-
means with the Mahalanobis distance. Note also the similar performance of the 
FACM and the unsupervised ML, although the UML presents a worst behavior in 
front of non-Gaussian shapes. 

Next section considers in addition the watershed technique and fuzzy variants for 
the seismic image segmentation. 

4.2     Separation of Seismic Signals 

This application departs from a series of temporal signals measured in geological 
prospecting. The aim is to separate the different component waves. 

4.2.1     Introduction to Seismic Prospecting 
Seismic prospecting allows to know the structure of the earth underneath. A small 
explosive detonates on the surface and an array of sensors measures the generated 
waves in the subsoil. There are as many seismic waves as layers (between 6 and  
10 Km of depth), see Fig.12. As the transmission speed of the waves in the different 
materials is known, the subsoil composition can be studied by analyzing the ampli-
tude variations of each wave if the terrain of the surface is known. 
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Fig. 12. Seismic profile 

The generated waves belong to three different classes: i) waves P (primary), ii) 
waves S (secondary), and iii) waves L (long). Waves P are internal and longitudinal 
and fastest than waves S, which are internal but transversal. Waves L are superficial 
and of big amplitude and they cause the damages during the earthquakes. The explo-
sions during seismic prospection cause mainly P and S waves.   

4.2.2   Experimental Data 
The experimental data that has been used in this work consists of a sequence of 47 
temporal signals of 512 samples each, which, after an explosion, have been captured 
by each of the 47 seismic sensors. Fig. 13 shows the data, where we can see 4 differ-
ent waves that separate as they propagate along the array because of the different 
propagation speeds.  

4.2.3   Wave Separation 
Before initiating the separation process, the data are pre-processed by means of the 
wavelet transform, which extracts the most relevant features in order to help the clas-
sifier in the separation process.  

 

Fig. 13. Experimental seismic data: 47 sensors and 512 temporal samples at each sensor 
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Fig. 14. Modulus of the time-frequency representation of sensor 47 

The wavelet transform [6] obtains a representation in time and frequency for each 
of the signals that are measured at each sensor. Fig. 14 shows the modulus (scalo-
gram) of the wavelet transform for sensor number 47. Note that 4 energy centers can 
be observed, which correspond to the 4 different temporal waves that propagate along 
the sensors. The separation is carried out by considering this energy distribution: each 
energy concentration is considered a different class.  

Once the scalogram has been properly divided into segments by the appropriate 
classifier, the inverse wavelet transform is applied in order to obtain the separated 
signal in the time domain. 

Before working with the experimental data, test or synthetic data has been used in 
order to evaluate the different methods described in section 4.1. 15 test signals have 
been generated by mixing different waveforms: sinusoids, wavelet kernels as Morlet 
type, Mexican hat, and Gaussian. 
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Fig. 15. Mean error when recovering each of the 15 temporal signals 
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Fig. 15 shows the results of the unsupervised classifiers: FACM, ML, W and FW 
for each of the 15 temporal mixtures. Note that although the FACM behaves well, it is 
not the best option for all the signals. In general, for low level of superposition in the 
scalogram, the FACM is the best, for medium level, the ML is to be chosen and, fi-
nally, for high superposition level, the W presents the best results. 

When applied to seismic data, the FACM presents an additional advantage when 
compared to the other techniques. FACM does not need to look for the scalogram 
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Fig. 16. Spatial-temporal profile of the seismic signal after separation via watershed 

Class 1 Class 2

Class 3 Class 4

Class 1 Class 2

Class 3 Class 4

Class 1 Class 2

Class 3 Class 4

 

Fig. 17. Spatial-temporal profile of the seismic signal after separation via FACM (m=3, md=4 
and m=2 for background class) 
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maxima image by image in a “manual” way. FACM can be initialized (i.e. cluster 
centers and matrix norm) with an image of well-separated clusters, as for instance the 
image obtained from the last sensor 47, and use the final parameters of one classifica-
tion for initializing the classification of the next image. Thus taking advantage of the 
smooth evolution of the signal from sensor to sensor. We can also add one extra class 
used for background separation, leaving apart all the data points that doesn’t bring 
any energy to the classes. 

After extensive simulations, we can conclude that there are not substantial differ-
ences among the methods, although the FACM behaves in general better than the 
others. As the watershed is the most used technique for image segmentation, in  
Fig. 16 we compare it against FACM in Fig. 17. 

Note in Fig. 16 that from sensor 15, the classes become too close together for the 
watershed to separate them properly. In Fig. 17 these problems disappear because the 
FACM is able to follow the classes thanks to the initialization with signal from sensor 
number 47. Finally, Fig. 18 shows the 4 temporal waves in this last sensor after sepa-
ration with FACM. 

 

Fig. 18. Four waves after separation with FACM, comparison with the temporal signal of  
sensor 47 

4.3   Conclusions 

In this work fuzzy classifiers appear as a good alternative for image segmentation 
with the aim of seismic wave separation. With a proper tuning of their parameters 
their flexibility, when compared to other classifiers, allows them to adapt to many 
classification problems. Specifically, for the seismic wave classification problem the 
devised FACM techniques results in a good trade off between performance and com-
plexity. This paper does not take into account expert knowledge of the seismic signal 
when designing the fuzzy system; thus, leaving open this point, which, to the authors 
believe can give promising results. 
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In the communication field, there is now a growing interest in reconfigurable re-
ceivers and cognitive radio. The study carried out in this work can be directed to blind 
recognition of the communication system in use (i.e. 3G or 3G systems); more spe-
cifically, to blind recognition or classification of the spectrum: channel bandwidth and 
shape, in order to reconfigure the entire architecture of the terminal with the appropri-
ate software.  

Up to now, the present work has applied fuzzy logic for signal filtering or separa-
tion at the bit or sample level. However the decision making of the rule base is also 
very useful for upper communication layers in the protocol stack that take into ac-
count input variables of different nature: congestion state, available load and total 
interference among others.  

5   Fuzzy Logic at the Protocol Level: Horizontal Hand-Off 

We have discussed on the application of fuzzy systems at the bit level so far. How-
ever, one of the main features of fuzzy systems is their explicit decision making. This 
feature is useful to carry out an intelligent filtering, as shown in the previous sections, 
but also to help design communication protocols. A protocol can be viewed as a control 
system, and control systems were one of the main applications of fuzzy logic. Protocols 
have to provide the users with Quality of Service (QoS) and this implies to cope with 
subjective variables, which are imprecise and difficult to quantify, as they depend on the 
user requirements. Analytical solutions do not exist many times for communications 
protocols; therefore, fuzzy control is a promising approach to the problem. 

In this section we focus on the hand-off problem. Hand-off takes place when a mo-
vil terminal changes its cell or access point. When the change is done within the same 
communication system, the hand-off is horizontal and takes place when the QoS of 
the terminal diminishes and can be initiated either by the terminal or by the base sta-
tion. Depending on the size of the area where the movil moves we can talk of micro-
mobility or macromobility (see Fig. 19). The first one requires a hand-off at layer 2 or 
link layer, and the second one at layer 3 or network layer. We are concerned with the 
layer 2 hand-off initiated at the terminal when the received signal power falls below a 
threshold (see Fig. 20). When this occur, the terminal looks for an access point that 
offers it more signal strength. In order to reduce the so-called ping-pong effect among 
cells, the threshold has a hystereris. The hysteresis margin introduces a tolerance level 
above the received signal level from the current BS. In addition, there is a delay in the 
hand-off due to hysteresis. Thus a major obstacle facing the traditional hand-off with 
its hysteresis margin is the speed with which a hand-off can be made. It is for this 
reason that a better solution to hand-off is required, one that provides a fast yet stable 
performance. We propose to use fuzzy logic to design the thresholds so as to reduce 
the delay that the hand-off introduces in the signal transmission. 

The thresholds are going to be design depending on the terminal profile, as for in-
stance, its speed. Fig. 21 shows the proposed fuzzy controller for the hand-off thresh-
old. Three fuzzy sets describe the universe of discourse for the speed and previous 
threshold is described with 5 fuzzy sets. Triangular fuzzy sets, min-max inference and 
centroide defuzzification are chosen for simplicity. The aim of the rule base is to 
optimize the threshold depending on the terminal speed. For high speed we would like 
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to reduce the number of hand-offs because the terminal may go through many cells in 
a short time, thus the threshold should increase. On the other hand, for a slow terminal 
movement we would decrease the threshold level. 

 

Fig. 19. Micromobility vs. macromobility 
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Fig. 20. Hand-off threshold at layer 2 
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Fig. 21. Fuzzy controller for the hand-off threshold 
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Fig. 22. Final received strength for the fuzzy controlled hand-off and for the conventional one 

Fig. 22 plots the final power received by the access point for each of the strategies. 
In average, the fuzzy system offers more power, thus, better quality. However, de-
pending on the application, voice for instance, the abrupt changes in the power might 
not be desirable. In case of file transfer, they are irrelevant. This fact motivates to 
incorporate the service type into the design of the final system. Future work is to 
incorporate more QoS variables in order to take the hand-off decision. Another aspect 
is the so-called  soft hand-off, where two base stations or access points are received 
simultaneously during the hand-off. Fuzzy logic can then been used as an access point 
fusion technique.  
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1 Introduction

Data and signal modeling for images and video sequences is experiencing impor-
tant developments. Part of this evolution is due to the need to support a large
number of new multimedia services. Traditionally, digital images were repre-
sented as rectangular arrays of pixels and digital video was seen as a continuous
flow of digital images. New multimedia applications and services imply a repre-
sentation that is closer to the real world or, at least, that takes into account part
of the process that has created the digital information. Content-based compres-
sion and indexing are two typical examples of applications where new modeling
strategies and processing tools are necessary:

– For content-based image or video compression, the representation based on
an array of pixels is not appropriate if one wants to be able to act on objects,
to encode differently the areas of interest, or to assign different behaviors to
the entities represented in the image. In these applications, the notion of
object is essential. As a consequence, the data modeling has to include, for
example, regions of arbitrary shapes to represent objects.

– Content-based indexing applications are also facing the same kind of chal-
lenges. For instance, the video representation based on a flow of frames is
inadequate for many video indexing applications. Among the large set of
functionalities involved in a retrieval application, let us consider browsing.
The browsing functionality should go far beyond the “fast forward” and
“fast reverse” allowed by VCRs. One would like to have access to a table of
contents of the video and to be able to jump from one item to another. This
kind of functionality implies at least a structuring of the video in terms of
individual shots and scenes. Of course, indexing and retrieval involve also a
structuring of the data in terms of objects, regions, semantic notions, etc.

In both examples, the data modeling has to take into account part of the
creation process: an image is created by projection of a visual scene composed
of 3D objects onto a 2D plane. Modeling the image in terms of regions is an
attempt to know the projection of the 3D object boundaries in the 2D plane.
Video shots detection also aims at finding what has been done during the video
editing process and where boundaries between elementary components have been
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introduced. In both cases, the notion of region turns out to be central in the
modeling process. Note that regions may be spatial connected components but
also temporal or spatio-temporal connected components in the case of video.

Besides the modeling issue, it has to be recognized that most image process-
ing tools are not suited to region-based representations. For example, the vast
majority of low level processing tools such as filters are very closely related to
the classical pixel-based representation of signals. Typical examples include lin-
ear convolution with an impulse response, median filter, morphological operators
based on erosion and dilation with a structuring element, etc. In all cases, the
processing strategy consists in modifying the values of individual pixels by a
function of the pixels values in a local window.

Early examples of region-based processing can be found in the literature in
the field of segmentation. For example, the classical Split & Merge algorithm [1]
defines first a set of elementary regions (the split process) and then interacts
directly on these regions allowing them to merge under certain conditions.

Recently, a set of morphological filtering tools called Connected Operators has
received much attention. Connected operators are region-based filtering tools
because they do not modify individual pixel values but directly act on the con-
nected components of the space where the image is constant, the so-called flat
zones. Intuitively, connected operators can remove boundaries between flat zones
but cannot add new boundaries nor shift existing ones. The related literature
rapidly grows and involves theoretical studies [2, 3, 4, 5, 6, 7, 8, 9, 10], algorithm
developments [11, 12, 13, 14, 15, 16] and applications [17, 18, 19, 20]. The goal of
this paper is 1) to provide an introduction to connected operators for gray level
images and video sequences and 2) to discuss the techniques and algorithms
that have been up to now the most successful within the framework of practical
applications.

The organization of this paper is as follows: The following section introduces
the notation and highlights the main drawbacks of classical filtering strategies.
Then, the next section presents the basic notions related to connected operators
and discuss some early examples of connected operators. In practice, the two
most successful strategies to define connected operators are based either on re-
construction processes or on tree representations. Both approaches are discussed
in separate sections. Finally, conclusions are given in the last section.

2 Classical Filtering Approaches

In this section, we define the notation to be used in the sequel and review some
of the basic properties of interest in this paper [21, 22]. We deal exclusively with
discrete images f [n] or video sequences ft[n] where n denotes the pixel or space
coordinate (a vector in the case of 2D images) and t the time instant in the case
of a video sequence. In the lattice of grey level functions, an image f is said to
be smaller than an image g if and only if:

f ≤ g ⇐⇒ ∀n, f [n] ≤ g[n] (1)
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(a) (b) (c)

(d) (e)

Fig. 1. Example of classical filters: (a) original image, (b) low-pass filter (7x7 average),
(c) median (5x5), (d) opening (5x5), (e) closing (5x5)

An operator ψ acting on an input f is said to be:

• increasing: ∀f, g, f ≤ g =⇒ ψ(f) ≤ ψ(g)
(The order is preserved by the filtering)

• idempotent: ∀f, ψ(ψ(f)) = ψ(f)
(Iteration of the filtering is not needed)

• extensive: ∀f, f ≤ ψ(f)
(The output is always greater than the input)

• anti-extensive: ∀f, ψ(f) ≤ f
(The output is always smaller than the input)

• a morphological filter: if it is increasing and idempotent
• an opening: if it is an anti-extensive morphological filter
• a closing: if it is an extensive morphological filter
• self-dual: ∀f, ψ(f) = −ψ(−f)

(Same processing is for bright & dark components)

Almost all filtering techniques commonly used in image processing are defined
by a computation rule and a specific signal h[n] that may be called impulse
response, window or structuring element. Let us review these classical cases:

– Linear convolution and impulse response: the output of a linear translation-
invariant system is given by: ψh(f)[n] =

∑∞
k=−∞ h[k]f [n − k]. The impulse

response, h[n], defines the properties of the filter. An example of linear fil-
tering result is shown in Fig. 1(b). The original image shown in Fig. 1(a).
As can be seen, most of the details of the original image are attenuated by
the filter (average of size 7x7). However, details are not really removed but
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simply blurred. The characteristics of the blurring is directly related to the
extension and shape of the impulse response.

– Median filter and window: The output of a median filter with window W is
defined by: ψW (f)[n] = Mediank∈W{f [n−k]}. Here also the basic properties
of the filter are defined by its window. An example is shown in Fig. 1(c).
Here, small details are actually removed (for example the texture of the fish).
The major drawback of the filtering strategy is that every region tends to be
round after filtering. This effect is due to the shape of the window combined
with the median processing.

– Morphological erosion/dilation and structuring elements: morphological di-
lation by a structuring element h[n] is defined in a way similar to the
convolution: δh(f)[n] =

∨∞
k=−∞(h[k] + f [n − k]), where

∨
denotes the

supremum (or maximum in the discrete case). The erosion is given by:
εh(f)[n] =

∧∞
k=−∞(h[k] − f [n + k]), where

∧
denotes the infimum (or mini-

mum in the discrete case). In practice, erosion and dilation are seldom used
on their own because they do not preserve the position of contours. For ex-
ample, the dilation enlarges the size of bright components and decreases the
size of dark components by displacing their contours. However, they provide
a simplification effect: a dilation (erosion) removes dark (bright) components
that do not fit within the structuring element. Based on these two primitives,
morphological opening and closing can be constructed.

The opening is given by: γh(f) = δh(εh(f)) and the closing by: ϕh(f) =
εh(δh(f)). These operators are morphological filters (that is, at the same
time, increasing and idempotent). Moreover, the opening is anti-extensive
(it removes bright components) whereas the closing is extensive (it removes
dark components). The Processing results are shown in Fig.s 1(d) and 1(e).
In the case of opening (closing) with a square structuring element of size
5x5, small bright (dark) components have been removed. As can be seen,
the contours remain sharp and centered on their original position. However,
the shape of the components that have not been removed are not perfectly
preserved. In both examples, square shapes are clearly visible in the output
image. This is due to the square shape of the structuring element.

Once a processing strategy has been selected (linear convolution, median,
morphological operator, etc.), the filter design consists in carefully choosing a
specific signal h[n] which may be the impulse response, the window or the struc-
turing element. While most people would say that this is the heart of the filter
design, our point here is to highlight that, for image processing, the use of h[n]
has some drawbacks. In all examples of Fig. 1, h[n] is not related to the input
signal and its shape clearly introduces distortions in the output. The distortion
effect depends on the specific filter, but for a large range of applications requiring
high precision on contours, none of these filtering strategies is acceptable.

To reduce the distortion, one possible solution is to adapt h[n] to the lo-
cal structures of the input signal. This solution may improve the results but
still remains unacceptable in many circumstances. An attractive solution to this
problem is provided by connected operators. Most connected operators used in
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practice rely on a completely different filtering strategy: the filtering is done
without using any specific signal such as an impulse response, a window or a
structuring element. In fact, the structures of the input signal are used to act
on the signal itself. As a result, no distortion related to a priori selected signals
is introduced in the output.

3 Connected Operators

3.1 Definitions and Basic Properties

Gray level connected operators act by merging flat zones. They cannot create new
contours and, as a result, they cannot introduce in the output image a structure
that is not present in the input image. Furthermore, they cannot modify the
position of existing boundaries between regions and, therefore, have very good
contour preservation properties.

Gray level connected operators originally defined in [2] rely on the notion of
partition of flat zones. A partition is a set of non-overlapping connected com-
ponents or regions that fills the entire space. We assume that the connectivity
is defined on the digital grid by a translation invariant, reflexive and symmetric
relation1. Typical examples are the 4- and 8-connectivity. Let us denote by P
a partition and by P(n) the region that contains pixel n. A partial order re-
lationship among partitions can be created: P1 “is finer than” P2 (written as
P1 � P2), if ∀n, P1(n) ⊆ P2(n).

It can be shown that the set of flat zones of an image f is a partition of the
space, Pf . Based on these notions, connected operators are defined as:

Definition 1. (Connected operators) A gray level operator ψ is connected if the
partition of flat zones of its input f is always finer than the partition of flat
zones of its output, that is:

Pf � Pψ(f), ∀f

This definition clearly highlights the region-based processing of the operator:
indeed, regions of the output partition are created by union of regions of the input
partition. An alternative (and equivalent) definition of connected operators was
introduced in [6]. This definition enhances the role of the boundaries between
regions and turns out to be very useful to derive leveling.

Definition 2. (Connected operators) A gray level operator ψ is connected if ∀f
input image and ∀n, n′ neighboring pixels,

ψ(f)[n] �= ψ(f)[n′] =⇒ f [n] �= f [n′].

This definition simply states that if two neighboring pixels of the output image
have two different gray level values, they have also two different gray level values
in the input image, in other words, the operator cannot create new boundaries.
1 In the context of connected operators, several studies have been carried out on the

definition of less usual connectivities. The reader is referred to [22, 23, 24, 9, 8] for
more details on this issue.



42 P. Salembier

New connected operators can be derived from the combination of primitive
connected operators. The following properties give a few construction rules:

Proposition 1. (Properties of connected operators)

– If ψ is a connected operator, its dual ψ∗ defined by: ψ∗(f) = −ψ(−f), is
also connected.

– If ψ1, ψ2 are connected operators, ψ2ψ1 is also connected.
– If {ψi} are connected operators, their supremum

∨
i ψi and infimum

∧
i ψi

are connected.

3.2 Early Examples of Connected Operators

The first known connected operator is the binary opening by reconstruction [25].
This operator eliminates the connected components that would be totally re-
moved by an erosion with a given structuring element and leaves the other com-
ponents unchanged. This filtering approach offers the advantage of simplifying
the image (some components are removed) as well as preserving the contour in-
formation (the components that are not removed are perfectly preserved). It can
be shown that the process is increasing, idempotent and anti-extensive, that is
an opening. Moreover, it was called “by reconstruction” because of the algorithm
used for its implementation. From the algorithmic viewpoint, if X is the original
binary image, the first step is to compute an erosion with a structuring element
Bk of size k, εBk

(X). This erosion is used to “mark” the connected components
that should be preserved. The final result is obtained by progressively dilating
the erosion inside the mask defined by the original image:

1. Y0 = εBk
(X)

2. Yk = δC(Yk−1)
⋂

X , where C is a binary structuring element defining the
connectivity, e.g. square of 3x3 (cross) for the 8-connectivity (4-connectivity).

3. Iterate step 2 until idempotence.

The first gray level connected operator was obtained by a transposition of the
previous approach to the lattice of gray level functions [22, 11]. It is known as
an opening by reconstruction of erosions:

1. g0 = εhk
(f), where f is the input and hk a structuring element of size k.

2. gk = δC(gk−1)
∧

f , where C is a flat structuring element defining the connec-
tivity, e.g. square or cross.

3. Iterate step 2 until idempotence.

It was shown in [2] that this operator is connected. Intuitively, the erosion acts
as a simplification step by removing small bright components. The reconstruction
process restores the contours of the components that have not been completely
removed by the erosion.

There are several ways to construct connected operators and many new op-
erators have been recently introduced. From the practical viewpoint, the most
successful strategies rely on a reconstruction process or on region-tree pruning.
Operators resulting from these two strategies are discussed in the sequel.
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4 Connected Operators Based on Reconstruction
Processes

4.1 Anti-extensive Reconstruction and Connected Operators

The Anti-extensive Reconstruction Process. The most classical way to
construct connected operators is to use an anti-extensive reconstruction process.
It is defined as follows:

Definition 3. (Anti-extensive reconstruction) If f and g are two images (re-
spectively called the “reference” and the “marker” image), the anti-extensive
reconstruction ρ↓(g|f) of g under f is given by:

gk = δC(gk−1)
∧

f and
ρ↓(g|f) = limk→∞ gk

(2)

where g0 = g and δC is the dilation with the flat structuring element defining the
connectivity (3x3 square or cross).

It can be shown that the series, gk, always converges and the limit always exists.
Of course by duality, an extensive reconstruction may be defined:

Definition 4. (Extensive reconstruction) If f and g are two images (respectively
called the “reference” and the “marker” image), the extensive reconstruction
ρ↑(g|f) of g above f is given by:

gk = εC(gk−1)
∨

f and
ρ↑(g|f) = limk→∞ gk

(3)

where g0 = g and εC is the erosion with the flat structuring element defining the
connectivity (3x3 square or cross).

Note that Eqs. (2) and (3) define the reconstruction processes but do not
provide efficient implementations. Indeed, the number of iterations is generally
fairly high. The most efficient reconstruction algorithms rely on the definition of
a clever scanning of the image and are implemented by First-in-First-out (FIFO)
queues. A review of the most popular reconstruction algorithms can be found in
[11]. Here, we describe a simple but efficient one: the basic idea of the algorithm
is to start from the regional maxima of the marker image g and to propagate
them under the original image f . The algorithm works in two steps:

1. The initialization consists in putting in the queue the location of pixels that
are on the boundary of the regional maxima of the marker image. Regional
maxima are the set of connected components where the image has a constant
gray level value and such that every pixel in the neighborhood of the regional
maxima has strictly a lower value. Algorithms to compute regional maxima
can be found in [26].

2. The propagation extracts the first pixel, n, from the queue (note that n is a
pixel of the marker image g). Then, it assigns to each of its neighbors, n′,
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that have a strictly lower gray level value than g[n] (that is, if g[n′] < g[n]),
the minimum between the gray level value of n and the gray level value of
the pixel of the original image at the same location than n′, that is g[n′] =
g[n]

∧
f [n′]. Finally, the pixel n′ is introduced in the queue. This propagation

process has to be carried on until the queue is empty. The algorithm is very
efficient because the image pixels are processed only once.

In practice, useful connected operators are obtained by considering that the
marker image g is a transformation φ(f) of the input image f . As a result, most
connected operators ψ obtained by reconstruction can be written as:

ψ(f) = ρ↓(φ(f)|f) (anti-extensive operator), or
ψ(f) = ρ↑(φ(f)|f) (extensive operator). (4)

In the following, a few examples are discussed.

Size Filtering. The simplest size-oriented connected operator is obtained by
using as marker image, φ(f), the result of an erosion with a structuring element
hk of size k. It is the opening by reconstruction of erosion2:

ψ(f) = ρ↓(εhk
(f)|f) (5)

It can be demonstrated that this operator is an opening. By duality, the closing
by reconstruction is given by:

ψ∗(f) = ρ↑(δhk
(f)|f) (6)

An example of opening by reconstruction of erosion is shown in Fig. 2(a). In this
example, the original signal f has 11 maxima. The marker signal g is created
by an erosion with a flat structuring element which eliminates the narrowest
maxima. Only 5 maxima are preserved after erosion. Finally, the marker is re-
constructed. In the reconstruction, only the 5 maxima that were present after
erosion are visible and narrow maxima have been eliminated. Moreover, the tran-
sitions of the reconstructed signal correspond precisely to the transitions of the
original signal.

As can be seen, the simplification effect, that is the elimination of narrow
maxima is almost perfectly done. However, the preservation effect may be criti-
cized: although the maxima contours are well preserved, their shape and height
are distorted. To reduce this distortion, a new connected operator can be built
on top of the first one. Let us construct a new marker image, m[n], indicating
the pixels where the reconstruction has been inactive, that is where the final
result is equal to the erosion.

m[n] =
{

f [n] , if ρ↓(εhk
(f)|f)[n] = εhk

(f)[n]
0 otherwise. (7)

2 Note that it can be demonstrated that the same operator is obtained by changing
the erosion, εhk

, by an opening, γhk
, with the same structuring element, hk.
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Fig. 2. Size-oriented connected operators: (a) Opening by reconstruction, (b) New
marker indicating where the reconstruction has been inactive and second reconstruction

This marker image is illustrated in Fig. 2(b). As can be seen, it is equal to 0
except for the five maxima that are present after erosion and also for the local
minima. At that locations, the gray level values of the original image, f [n], are
assigned to the marker image. Finally, the second connected operator is created
by the reconstruction of the marker, m under f :

ψ(f) = ρ↓(m|f) (8)

This operator is also an opening by reconstruction. The final result is shown
in Fig. 2(b). The five maxima are better preserved than with the first opening
by reconstruction whereas the remaining maxima are perfectly removed. The
difference between both reconstructions is also clearly visible in the examples of
Fig. 3. The first opening by reconstruction removes small bright details of the
image: the text in the upper left corner. The fish is a large element and is not

(a) (b) (c) (d)

Fig. 3. Size filtering with opening by reconstruction: (a) erosion of the original image of
Fig. 1(a) by a flat structuring element of size 10x10, (b) reconstruction of the erosion,
(c) marker indicating where the first reconstruction has not been active (Eq. 7) and
(d) second reconstruction
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removed. It is indeed visible after the first opening by reconstruction (Fig. 3(b))
but its gray level values are not well preserved. This drawback is avoided by
using the second reconstruction. Finally, let us mention that by duality closings
by reconstruction can be defined. They have the same effect than the openings
but on dark components.

Contrast Filtering. The previous section considered size simplification. A
contrast simplification can be obtained by substituting the erosion in Eq. 5 by
a subtraction of a constant, c, from the original image f :

φ(f) = ρ↓(f − c|f) (9)

This operator, known as λ-max operator, is connected, increasing and anti-
extensive but not idempotent. Its effect is illustrated in Fig. 4(a). As can be
seen, the maxima of small contrast are removed and the contours of the max-
ima of high contrast are well preserved. However, the height of the remaining
maxima are not well preserved. As in the previous section, this drawback can be
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Fig. 4. Contrast-oriented connected operators: (a) Reconstruction of f − c, (b) Second
reconstruction
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Fig. 5. Contrast filtering: (a) λ-max operator, (b) dynamic opening
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removed if a second reconstruction process is used. This second reconstruction
process is exactly the same as the previous one defined by Eq. 7 (m[n] = f [n] if
ρ↓(f − c|f)[n] = f [n] − c). This second connected operator is an opening. It is
called a dynamic opening [27].

The operators effect is illustrated in Fig. 5. Both operators remove maxima
of contrast c lower than 100 gray level values. However, the λ-max operator
produces an output image of low contrast, even for the preserved maxima. By
contrast, the dynamic opening successfully restores the retained maxima.

4.2 Self-dual Reconstruction and Levelings

The connected operators discussed in the previous section were either anti-
extensive or extensive. They allow the simplification of either bright or dark
image components. For some applications, this behavior is a drawback and one
would like to simplify in a symmetrical way all components. From the theoretical
viewpoint, this means that the filter has to be self-dual, that is ψ(f) = −ψ(−f).

With the aim of constructing self-dual connected operators, the concept of
levelings was proposed in [6] by adding some restrictions in Definition 2:

Definition 5. (Leveling) The operator ψ is a leveling if ∀n, n′ neighboring pix-
els, ψ(f)[n] > ψ(f)[n′] =⇒ f [n] ≥ ψ(f)[n] and ψ(f)[n′] ≥ f [n′].

This definition not only states that if a transition exists in the output image,
it was already present in the original image (Definition 2) but also that 1) the
sense of gray level variation between n and n′ has to be preserved and 2) the
variation ‖ψ(f)[n]−ψ(f)[n′]‖ is bounded by the original variation ‖f [n]−f [n′]‖.

The theoretical properties of levelings are studied in [6, 7], in particular:

– Any opening or closing by reconstruction is a leveling.
– If ψ1, ψ2 are levelings, ψ2ψ1 is also a leveling.
– If {ψi} are levelings, their supremum

∨
i ψi, and infimum

∧
i ψi, are levelings.

The most popular technique to create levelings relies on the following self-dual
reconstruction process:

Definition 6. (Self-dual reconstruction) If f and g are two images (respec-
tively called the “reference” and the “marker”image), the self-dual reconstruction
ρ
(g|f) of g with respect to f is given by:

gk = εC(gk−1)
∨

[δC(gk−1)
∧

f ]
= δC(gk−1)

∧
[εC(gk−1)

∨
f ] (equivalent expression) and

ρ
(g|f) = limk→∞ gk

(10)

where g0 = g and δC and εC are respectively the dilation and the erosion with
the flat structuring element defining the connectivity (3x3 square or cross).

An example of self-dual reconstruction is shown in Fig. 6. In this example, the
marker image is constant everywhere except for two points that mark a maximum
and a minimum of the reference image. After reconstruction, the output has only
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Fig. 6. Example of leveling with self-dual reconstruction

one maximum and one minimum. As can be seen, the self-dual reconstruction is
the anti-extensive reconstruction of Eq. 3 for the pixels where g[n] < f [n] and
the extensive reconstruction of Eq. 4 for the pixels where f [n] < g[n].

As in the case of anti-extensive reconstruction, Eq. 10 does not define an
efficient implementation of the reconstruction process. In fact, an efficient im-
plementation of the self-dual reconstruction can be obtained by combination of
the strategies used for anti-extensive and extensive reconstruction processes: the
initialization step consists in putting in the FIFO queue: 1) the boundary pix-
els of marker maxima when the marker is smaller than the reference and 2) the
boundary pixels of marker minima when the marker is greater than the reference.

The propagation step is done in a similar fashion than the one described for
anti-extensive reconstruction: the anti-extensive propagation is used when the
marker is below the reference and the extensive propagation is used when the
marker is above the reference.

In practice, the self-dual reconstruction is used to restore the contour in-
formation after a simplification performed by an operator that is neither ex-
tensive nor anti-extensive. A typical example is an alternating sequential filter:
g = ϕhk

γhk
ϕhk−1γhk−1 . . . ϕh1γh1(f), where ϕhk

and γhk
are respectively a clos-

ing and an opening with a structuring element hk. This example is illustrated in
Fig.s 7(a) and 7(b). Note the simplification effect which deals with both max-
ima and minima, and how the contour distortion introduced by the alternating
sequential filter is removed by the reconstruction. However, from a theoretical
viewpoint, the operator: ρ
(ϕhk

γhk
. . . ϕh1γh1(f)|f) is not self-dual because the

alternating sequential filter itself is not self-dual. In order to create a self-dual
operator, the creation of the marker has also to be self-dual. Fig.s 7(c) and 7(d)
show an example where the marker is created by a median filter (that is self-
dual). This kind of results can be extended to any linear filter and the self-dual
reconstruction can be considered as a general tool that restores the contour in-
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(a) (b) (c) (d)

Fig. 7. Size filtering with leveling: (a) Alternating sequential filter of the original image
of Fig. 1(a), (b) Self-dual reconstruction of the alternating sequential filter, (c) Median
filter and (d) Self-dual reconstruction of the median filter

formation after a filtering process. In other words, the reconstruction allows to
create a connected version ρ
(ψ(f)|f) of any filter: ψ(f).

5 Connected Operators Based on Region-Tree Pruning

5.1 Tree Representations and Connected Operators

The reconstruction strategies discussed in the previous section can be viewed
as tools that work on a pixel-based representation of the image and that pro-
vide a way to create connected operators. In this section, we present a different
approach: the first step of the filtering process is to construct a region-based
representation of the image, then the simplification effect is obtained by direct
manipulation of the tree. The approach may be considered as being conceptu-
ally more complex than the reconstruction however, it provides more flexibility
in the choice of the simplification criterion.

Two region-based representations are discussed in the sequel: the Max-tree /
Min-tree [14] and the Binary Partition Tree [15]. The first one leads to anti-
extensive connected operators whereas the second one is a basis for self-dual
connected operators. Let us discuss first these two region-based representations.

Max-tree and Min-tree. The first representation is called a Max-tree [14]. It
enhances the maxima of the signal. Each tree node Nk represents a connected
component of the space that is extracted by the following thresholding process:
for a given threshold T , consider the set of pixels X that have a gray level value
larger than T and the set of pixels Y that have a gray level value equal to T :

X = {n , such that f [n] ≥ T }
Y = {n , such that f [n] = T } (11)

The tree nodes Nk represent the connected components of X such that X
⋂

Y �=
∅. A simple example of Max-tree is shown in Fig. 8. The original image is made of
7 flat zones identified by a letter {A,...,G}. The number following each letter de-
fines the gray level value of the flat zones. The binary images, X , resulting from
the thresholding with 0 ≤ T ≤ 2 are shown in the center of the figure. Finally,
the Max-tree is given in the right side. It is composed of 5 nodes that repre-
sent the connected components shown in black. The number inside each square
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Fig. 8. Max-tree representation of images

represents the threshold value where the component was extracted. Finally, the
links in the tree represent the inclusion relationships among the connected com-
ponents following the threshold values. Note that when the threshold is set to
T = 1, the circular component does not create a connected component that is
represented in the tree because none of its pixels has a gray level value equal to
1. However, the circle itself is obtained when T = 2. The three regional maxima
are represented by three leaves and the tree root represents the entire support of
the image. The computation of Max-tree can be done in an efficient way (see [14]
for more details).

Binary Partition Tree (BPT). The second example of region-based repre-
sentation of images is the BPT [15]. It represents a set of regions obtained from
an initial partition that we assume to be the partition of flat zones. The leaves
of the tree represent the flat zones of the original signal. The remaining tree
nodes represent regions that are obtained by merging the regions represented by
the children. The root node represents the entire image support. The tree rep-
resents a fairly large set of regions at different scales. Large regions appear close
to the root whereas small details can be found at lower levels. This represen-
tation should be considered as a compromise between representation accuracy
and processing efficiency. Indeed, all possible merging of regions belonging to
the initial partition are not represented in the tree. Only the most “likely” or
“useful” merging steps are represented in the BPT. The connectivity encoded in
the tree structure is binary in the sense that a region is explicitly connected to its
sibling (since their union is a connected component represented by the father),
but the remaining connections between regions of the original partition are not
represented in the tree. Therefore, the tree encodes only part of the neighbor-
hood relationships between the regions of the initial partition. However, as will
be seen in the sequel, the main advantage of the tree representation is that it
allows the fast implementation of sophisticated processing techniques.
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Fig. 9. Example of BPT creation with a region merging algorithm

The BPT should be created in such a way that the most “interesting” or “use-
ful” regions are represented. This issue can be application dependent. However,
a possible solution, suitable for a large number of cases, is to create the tree
by keeping track of the merging steps performed by a segmentation algorithm
based on region merging (see [28, 29] for example). In the following, this informa-
tion is called the merging sequence. Starting from the partition of flat zones, the
algorithm merges neighboring regions following a homogeneity criterion until a
single region is obtained. An example is shown in Fig. 9. The original partition
involves four regions. The regions are indicated by a letter and the number indi-
cates the grey level value of the flat zone. The algorithm merges the four regions
in three steps. In the first step, the pair of most similar regions, B and C, are
merged to create region E. Then, region E is merged with region D to create
region F . Finally, region F is merged with region A and this creates region G
corresponding to the region of support of the whole image. In this example, the
merging sequence is: (B, C)|(E, D)|(F, A). This merging sequence defines the
BPT as shown in Fig. 9.

To completely define the merging algorithm, one has to specify the region
merging order and the region model, that is the model used to represent the
union of two regions. In order to create the BPTs used to illustrate the processing
examples discussed in this paper, we have used a merging algorithm following
the color homogeneity criterion described in [29]. Let us define the merging order
O(R1, R2) and the region model MR:

– Merging order: at each step the algorithm looks for the pair of most similar
regions. The similarity between regions R1 and R2 is defined by:

O(R1, R2) = N1||MR1 − MR1∪R2 ||2 + N2||MR2 − MR1∪R2 ||2 (12)

where N1 and N2 are the numbers of pixels of regions R1 and R2 and
||.||2 denotes the L2 norm. MR represents the model for region R. It con-
sists of three constant values describing the YUV components. The inter-
est of this merging order, compared to other classical criteria, is discussed
in [29].
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– Region model: as mentioned previously, each region is modeled by a con-
stant vector YUV value: MR. During the merging process, the YUV compo-
nents of the union of 2 regions, R1 and R2, are computed as follows [29]:

if N1 < N2 ⇒ MR1∪R2 = MR2

if N2 < N1 ⇒ MR1∪R2 = MR1

if N1 = N2 ⇒ MR1∪R2 = (MR1 + MR2)/2
(13)

As can be seen, if N1 �= N2, the model of the union of two regions is equal to
the model of the largest region.

It should be noticed that the homogeneity criterion has not to be restricted
to color. For example, if the image for which we create the BPT belongs to a
sequence of images, motion information can also be used: in a first stage, regions
are merged using a color homogeneity criterion, whereas a motion homogeneity
criterion is used in the second stage. Fig. 10 shows an example of the Foreman
sequence. In Fig. 10(a), the BPT has been constructed exclusively with the
color criterion described above. In this case, it is not possible to concentrate the
information about the foreground object (head and shoulder regions of Foreman)
within a single sub-tree. For example, the face mainly appears in the sub-tree
hanging from region A, whereas the helmet regions are located below region D.
In practice, the nodes close to the root have no clear meaning because they are
not homogeneous in color. Fig. 10(b) presents an example of BPT created with
color and motion criteria. The nodes appearing as white circles correspond to
the color criterion, whereas the dark squares correspond to a motion criterion.
The motion criterion is formally the same as the color criterion except that the

Original frame

C

A
B

D

(a) Color homogeneity criterion

E

(b) Color and motion homogeneity criteria

Fig. 10. Examples of creation of BPT
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YUV color distance is replaced by the YUV Displaced Frame Difference. The
process starts with the color criterion as in Fig. 10(a) and then, when a given
peak signal to noise ratio (PSNR) is reached, it changes to the motion criterion.
Using motion information, the face and helmet now appear as a single region E.

As can be seen, the construction of a BPT is fairly more complex than the
creation of a Max-tree or a Min-tree. However, BPTs offer more flexibility be-
cause one can chose the homogeneity criterion through the proper selection of
the region model and the merging order. Furthermore, if the functions defining
the region model and the merging order are self-dual, the tree itself is self-dual.
The same BPT can be used to represent f and −f . The BPT representation is
appropriate to derive self-dual connected operators whereas the Max-tree (Min-
tree) is adequate for anti-extensive (extensive) connected operators. Note that
in all cases, trees are hierarchical region-based representations. They encode a
large set of regions and partitions that can be derived for the flat zones partition
of the original image without adding new contours.

Filtering Strategy. Once the representation has been created, the filtering
strategy consists in pruning the tree and in reconstructing an image from the
pruned tree. The global processing strategy is illustrated in Fig. 11. The simpli-
fication effect of the filter is done by pruning because the idea is to eliminate the
image components that are represented by the leaves and branches of the tree.
The nature of these components depends on the tree. In the case of Max-trees
(Min-trees), the components that may be eliminated are regional maxima (min-
ima) whereas the elements that may be simplified in the case of BPTs are unions
of the most similar flat zones. The simplification itself is governed by a criterion
which may involve simple notions such as size, contrast or more complex ones
such as texture, motion or even semantic criteria.

One of the interests of the tree representations is that the set of possible merg-
ing steps is fixed (represented by the tree branches). As a result, sophisticated
pruning strategies may be designed. An example of such strategy deals with
non-increasing simplification criteria. Mathematically, a criterion C assessed on
a region R is said to be increasing if the following property holds:

∀R1 ⊆ R2 ⇒ C(R1) ≤ C(R2) (14)

Assume that all nodes corresponding to regions where the criterion value is
lower than a given threshold should be pruned. If the criterion is increasing, the

Tree
creation Pruning

Image

Max-tree
Min-tree
Binary Partition Tree

Image Image
reconstruction

Fig. 11. Connected operators based on Tree representations
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pruning strategy is straightforward: merge all nodes that should be removed. It
is indeed a pruning strategy since the increasingness of the criterion guarantees
that, if a node has to be removed, all its descendants have also to be removed.
An example of BPT with increasing decision criterion is shown in Fig. 12. The
criterion used to create this example is the size, measured as the number of
pixels belonging to the region, which is indeed increasing. Note that this example
involves a BPT but the same issue also applies to Max/Min-tree representations.

If the criterion is not increasing, the pruning strategy is not straightforward
since the descendants of a node to be removed have not necessarily to be removed.
An example of such criterion is the region perimeter. Fig. 13 illustrates this case.
If we follow either Path A or Path B in Fig. 13, we see that there are some
oscillations of the remove/preserve decisions. In practice, the non-increasingness
of the criterion implies a lack of robustness of the operator. For example, similar
images may produce quite different results or small modifications of the criterion
threshold involve drastic changes on the output.

Fig. 12. Example of increasing criterion (size). If a node has to be removed, all its
descendants have also to be removed. Gray squares: nodes to be preserved, white
circles: nodes to be removed.

Pa
th

 A

Pa
th

 B

Fig. 13. Example of non-increasing criterion (perimeter). No relation exists between
the decisions among descendants (see decisions along path A or path B). Gray squares:
nodes to be preserved, white circles: nodes to be removed.
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Fig. 14. Trellis structure for the Viterbi algorithm. A circular (square) node on the Tree
indicates that the criterion value states that the node has to be removed (preserved).
The trellis on which the Viterbi algorithm is run duplicates the structure of the Tree
and defines a preserve state and a remove state for each tree node. Paths from remove
states to child preserve states are forbidden so that the decisions are increasing.

A possible solution to the non-increasingness of the criterion consists in ap-
plying a transformation on the set of decisions. The transformation should create
a set of increasing decisions while preserving as much as possible the decisions
defined by the criterion. This problem may be viewed as dynamic programming
issue that can be efficiently solved with the Viterbi algorithm.

The dynamic programming algorithm is explained and illustrated in the se-
quel assuming that the tree is binary. The extension to N-ary trees is straightfor-
ward and the example of binary tree is used here only to simplify the notation.
An example of trellis on which the Viterbi algorithm [30] is applied is illus-
trated in Fig. 14. The trellis has the same structure as the tree except that
two trellis states, preserve N P

k and remove N R
k , correspond to each node Nk of

the tree. The two states of each child node are connected to the two states of
its parent. However, to avoid non-increasing decisions, the preserve state of a
child is not connected to the remove state of its parent. As a result, the trel-
lis structure guarantees that, if a node has to be removed, its children have
also to be removed. The cost associated to each state is used to compute the
number of modifications the algorithm has to do to create an increasing set
of decisions. If the criterion value states that the node of the tree has to be
removed, the cost associated to the remove state is equal to zero (no mod-
ification) and the cost associated to the preserve state is equal to one (one
modification). Similarly, if the criterion value states that the node has to be
preserved, the cost of the remove state is equal to one and the cost of the
preserve state is equal to zero3. The cost values appearing in Fig. 14 assume

3 Although some modifications may be much more severe than others, the cost choice
has no strong effect on the final result. This issue of cost selection is similar to the
hard versus soft decision of the Viterbi algorithm in the context of digital commu-
nications [30].
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Fig. 15. Definition of Path and cost for the Viterbi algorithm (see Eqs. 17, 18 and 19)

that nodes N1, N4 and N5 should be preserved and that N2 and N3 should
be removed. The goal of the Viterbi algorithm is to define the set of decisions
such that:

Min
∑

k

Cost(Nk) such that the decisions are increasing. (15)

To find the optimum set of decisions, a set of paths going from all leaf nodes
to the root node is created. For each node, the path can go through either
the preserve or the remove state of the trellis. The Viterbi algorithm is used
to find the paths that minimize the global cost at the root node. Note that
the trellis itself guarantees that this optimum decision is increasing. The op-
timization is achieved in a bottom-up iterative fashion. For each node, it is
possible to define the optimum paths ending at the preserve state and at the
remove state:

– Let us consider a node Nk and its preserve state N P
k . A path Pathk is a

continuous set of transitions between nodes (Nα → Nβ) defined in the trellis:

Pathk = (Nα → Nβ) ∪ (Nβ → Nγ) ∪ ... ∪ (Nψ → Nk) (16)

The path PathP
k starting from a leaf node and ending at that state is com-

posed of two sub-paths4: the first one, PathP,Left
k , comes from the left child

and the second one, PathP,Right
k , from the right child (see Fig. 15). In both

cases, the path can emerge either from the preserve or from the remove state
of the child nodes. If Nk1 and Nk2 are respectively the left and the right
child nodes of Nk, we have:

PathP,Left
k = PathR

k1

⋃
(N R

k1
→ N P

k ) or PathP
k1

⋃
(N P

k1
→ N P

k )

PathP,Right
k = PathR

k2

⋃
(N R

k2
→ N P

k ) or PathP
k2

⋃
(N P

k2
→ N P

k )

PathP
k = PathP,Left

k

⋃
PathP,Right

k

(17)

4 In the general case of an N-ary tree, the number of incoming paths may be arbitrary.



Connected Operators for Signal and Image Processing 57

The cost of a path is equal to the sum of the costs of its individual state
transitions. Therefore, the optimum (lower cost) path can be easily selected:

If Cost(PathR
k1

) < Cost(PathP
k1

)

then { PathP,Left
k = PathR

k1

⋃
(N R

k1
→ N P

k );

Cost(PathP,Left
k ) = Cost(PathR

k1
); }

else { PathP,Left
k = PathP

k1

⋃
(N P

k1
→ N P

k );

Cost(PathP,Left
k ) = Cost(PathP

k1
); }

If Cost(PathR
k2

) < Cost(PathP
k2

)

then { PathP,Right
k = PathR

k2

⋃
(N R

k2
→ N P

k );

Cost(PathP,Right
k ) = Cost(PathR

k2
); }

else { PathP,Right
k = PathP

k2

⋃
(N P

k2
→ N P

k );

Cost(PathP,Right
k ) = Cost(PathP

k2
); }

Cost(PathP
k ) = Cost(PathP,Left

k ) + Cost(PathP,Right
k ) + Cost(N P

k );

(18)

– In the case of the remove state, N R
k , the two sub-paths can only come from

the remove states of the children. So, no selection has to be done. The path
and its cost are constructed as follows:

PathR,Left
k = PathR

k1

⋃
(N R

k1
→ N R

k );

PathR,Right
k = PathR

k2

⋃
(N R

k2
→ N R

k );

PathR
k = PathR,Left

k

⋃
PathR,Right

k ;
Cost(PathR

k ) = Cost(PathR
k1

) + Cost(PathR
k2

) + Cost(N R
k );

(19)

This procedure is iterated bottom-up until the root node is reached. One path
of minimum cost ends at the preserve state of the root node and another path
ends at the remove state of the root node. Among these two paths, the one of
minimum cost is selected. This path connects the root node to all leaves and the
states it goes through define the final decisions. By construction, these decisions
are increasing and are as close as possible to the original decisions.

A complete optimization example is shown in Fig. 16. The original tree in-
volves 5 nodes. The preserve decisions are shown by a square whereas the remove
decisions are indicated by a circle. The original tree does not correspond to a set
of increasing decisions because N3 should be removed but N4 and N5 should be
preserved. The algorithm is initialized by creating the trellis and populating its
states by their respective cost (see Fig. 14). Then, the first step of the algorithm
consists in selecting the paths that go from states N R

4 , N P
4 , N R

5 , N P
5 to states

N R
3 , N P

3 . The corresponding trellis is shown in the upper part of Fig. 16 to-
gether with the corresponding costs of the four surviving paths. The second step
iterates the procedure between states N R

2 , N P
2 , N R

3 , N P
3 and states N R

1 , N P
1 .

Here again, only four paths survive. They are indicated in the central diagram
of Fig. 16. Finally, the last step consists in selecting the path of lowest cost that
terminates at the root states. In the example of Fig. 16, the path ending at the
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Fig. 16. Definition of the optimum decisions by the Viterbi algorithm

remove state of the root node (N R
1 ) has a cost of 3, whereas the path ending

at the preserve state (N P
1 ) has a cost of 1. This last path is taken since it cor-

responds to an increasing set of decisions and involves just one modification of
the original decisions. To find the optimum increasing decisions, one has to track
back the selected path from the root to all leaves. In our example, we see that
the paths hit the following states: N P

1 , N R
2 , N P

3 , N P
4 and N P

5 . The diagram at
the bottom of Fig. 16 shows the final path together with the modified tree. As
can be seen, the only modification has been to change the decision of node N3
and the resulting set of decisions is increasing. A complete example of is shown
in Fig. 17. The original tree corresponds to the one shown in Fig. 13. The Viterbi
algorithm has to modify 5 decisions along path A and one decision along path
B (see Fig. 13) to get the optimum set of increasing decisions.

To summarize, let us say that any pruning strategy can be applied directly
on the tree if the decision criterion is increasing. In the case of a non-increasing
criterion, the Viterbi algorithm can be used to modify the smallest number of
decisions so that increasingness is obtained. These modifications define a pruning
strategy. Once the pruning has been performed, it defines an output partition
and each region is filled with a constant value. In the case of a Max-tree (Min-
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Fig. 17. Set of increasing decisions resulting from the Viterbi algorithm used on the
original tree of Fig. 13. Five decisions along path A and one decision along path B have
been modified. Gray squares: preserve, white circles: remove.

tree), the constant value is equal to the minimum (maximum) gray level value
of the original pixels belonging to the region. As a result, the operator is anti-
extensive (extensive). In the case of a BPT, the goal is to define a self-dual
operator. Therefore, each region of the output partition has to be filled by a
self-dual model, such as the mean or the median of the original pixels belonging
to the region.

5.2 Example of Connected Operators Based on Tree
Representations

Increasing Criterion ⇒ Direct Pruning. The first example deals with sit-
uations where the criterion is increasing. In this case, the comparison of the
criterion value with a threshold directly defines a pruning strategy. A typical ex-
ample is the area opening [12]. One possible implementation of the area opening
consists in creating a Max-tree and in measuring the area (the number of pixels)
Ak contained in each node Nk. If the area Ak is smaller than a threshold, TA,
the node is removed. The area criterion is increasing and the Viterbi algorithm
does not have to be used. It can be shown that the area opening is equal to the
supremum of all possible openings by a connected structuring element involving

(a) (b)

Fig. 18. Area filtering: (a) area opening, γarea, (b) area opening followed by area
closing, ϕareaγarea
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TA pixels. The simplification effect of the area opening is illustrated in Fig. 18(a).
As expected, the operator removes small bright components of the image. If this
simplified image is processed by the dual operator, the area closing, small dark
components are also removed (see Fig. 18(b)).

Using the same strategy, a large number of connected operators can be ob-
tained. For example, if the criterion is the volume:

∑
n∈R f [n] (also increasing),

the resulting operator is the volumic opening [31]. The reader is referred to [15]
to see examples of this situation involving a BPT.

Non-increasing Criterion ⇒ Modification of the Decision (Viterbi al-
gorithm) and Pruning. This situation is illustrated here by a motion-oriented
connected operator [14]. Denote by ft[n] an image sequence where n represents
the pixel coordinates and t the time instant. The goal of the connected operator
is to eliminate the image components that do not undergo a given motion. The
first step is therefore to define the motion model giving for example the dis-
placement field at each position Δ[n]. The field can be constant Δ if one wants
to extract all objects following a translation, but in general the displacement
depends on the spatial position n to deal with more complex motion models.

The sequence processing is performed as follows: each frame is transformed
into its corresponding Max-tree representation and each node Nk is analyzed.
To check whether or not the pixels contained in a given node Nk are moving in
accordance to the motion field Δ[n], a simple solution consists in computing the
Mean Displaced Frame Difference (DFD) of this region with the previous frame:

DFDft−1
ft

(Nk) =
∑

n∈Nk

|ft[n] − ft−1[n − Δ[n]]|/
∑

n∈Nk

1 (20)

In practice, however, it is not very reliable to assess the motion on the basis
of only two frames. The criterion should include a reasonable memory of the
past decisions. This idea can be easily introduced in the criterion by adding a
recursive term. Two mean DFD are measured: one between the current frame ft

and the previous frame ft−1 and a second one between the current frame and the
previous filtered frame ψ(ft−1) (ψ denotes the connected operator). The motion
criterion is finally defined as:

Motion(Nk) = αDFDft−1
ft

(Nk) + (1 − α)DFDψ(ft−1)
ft

(Nk) (21)

with 0 ≤ α ≤ 1. If α is equal to 1, the criterion is memoryless. Low values of
α allow the introduction of an important recursive component in the decision
process. In a way similar to recursive filtering schemes, the selection of a proper
value for α depends on the application: if one wants to detect very rapidly any
changes in motion, the criterion should be mainly memoryless (α ≈ 1), whereas if
a more reliable decision involving the observation of a larger number of frames is
necessary, then the system should rely heavily on the recursive part (0 ≤ α � 1).

The motion criterion described by Eqs. 20 and 21 deals with one set of motion
parameters. Objects that do not follow the given motion produce a high DFD
and should be removed. The criterion is not increasing and the Viterbi algorithm
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(a) (b) (c) (d)

Fig. 19. Example of motion connected operator preserving fixed objects: (a) Original
frame, (b) Motion connected operator ψ, (c) Dual operator: ψ∗ψ(f) and (d) residue:
f - ψ∗(ψ(f)

has to be used. This motion-oriented pruning strategy can be used on Max-tree,
Min-tree or BPT representations.

A motion filtering example relying on a Max-tree is shown in Fig. 19. The
operator goal is to remove all moving objects. The motion model is defined
by: Δ[n] = (0, 0), ∀n. In this sequence, all objects are still except the ballerina
behind the two speakers and the speaker on the left side who is speaking. The
connected operator ψ(f) removes all bright moving objects (Fig. 19(b)). The
dual operator: ψ∗(f) = −ψ(−f) removes all dark moving objects (Fig. 19(c)).
The residue (the difference with the original image) presented in Fig. 19(d) shows
what has been removed by the operator. As can be seen, the operator has very
precisely extracted the ballerina and the (moving) details of the speaker’s face.

The motion connected operator can potentially be used for a large set of
applications. It permits in particular to different ways of handling the motion
information. Indeed, generally, motion information is measured without knowing
anything about the image structure. Connected operators take a different view-
point by making decisions on the basis of the analysis of flat zones. By using
motion connected operators, we can “inverse” the classical approach to mo-
tion and, for example, analyze simplified sequences where objects are following
a known motion. Various connected operators involving nonincreasing criteria
such as entropy, simplicity, perimeter can be found in [14, 15].

5.3 Pruning Strategies Involving Global Optimization Under
Constraint

In this section, we illustrate a more complex pruning strategy involving global
optimization under constraint. To fix the notations, let us denote by C the cri-
terion that has to be optimized (we assume, without loss of generality, that the
criterion has to be minimized) and by K the constraint. The problem is to min-
imize the criterion C with the restriction that the constraint K is below a given
threshold TK. Moreover, we assume that both the criterion and the constraint
are additive over the regions represented by the nodes Nk: C =

∑
Nk

C(Nk) and
K =

∑
Nk

K(Nk). The problem is therefore to define a pruning strategy such
that the resulting partition is composed of nodes Ni such that:

Min
∑
Ni

C(Ni) , with
∑
Ni

K(Ni) ≤ TK (22)
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It has been shown [32] that this problem can be reformulated as the minimiza-
tion of the Lagrangian: L = C+λK where λ is the so-called Lagrange parameter.
Both problems have the same solution if we find λ∗ such that K is equal (or very
close) to the constraint threshold TK. Therefore, the problem consists in using
the tree to find by pruning a set of nodes creating a partition such that:

Min

(∑
Ni

C(Ni) + λ∗ ∑
Ni

K(Ni)

)
(23)

Assume, in a first step, that the optimum λ∗ is known. In this case, the
pruning is done by a bottom-up analysis of the tree. If the Lagrangian value
corresponding to a given node N0 is smaller than the sum of the Lagrangians of
the children nodes Ni, then the children are pruned:

If C(N0) + λ∗K(N0) <
∑
Ni

C(Ni)

+ λ∗ ∑
Ni

K(Ni), prune the children nodes Ni. (24)

This procedure is iterated up to the root node. In practice, the optimum λ∗

is not known and the previous bottom-up analysis is embedded in a loop that
searches for the best λ parameter. The computation of the optimum λ parameter
can be done with a gradient search algorithm. The bottom-up analysis itself is
not expensive in terms of computation since the algorithm has simply to perform
a comparison of Lagrangians for all nodes of the tree. The part of the algorithm
that might be expensive is the computation of the criterion and the constraint
values associated to the regions. Note, however, that this computation has to
be done once. Finally, the theoretical properties depend mainly on the criterion
and on the constraint. In any case, the operator is connected and self-dual.

This type of pruning strategy is illustrated by two examples relying on a
BPT. In the first example, the goal is to simplify the input image by min-
imizing the number of flat zones of the output image: C1 =

∑
Nk

1. In the

(a) (b) (c) (d)

Fig. 20. Example of optimization strategies under a squared error constraint of 31
dB. (a) Minimization of the number of the flat zones, (b) contours of the flat zones
of Fig. 20(a) (number of flat zones: 87, perimeter length: 4491), (c) Minimization of
the total perimeter length, (d) contours of the flat zones of Fig. 20(b) (number of flat
zones: 219, perimeter length: 3684).
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second example, the criterion is to minimize the total length of the flat zones
contours: C2 =

∑
Nk

Perimeter(Nk). In both cases, the criterion has no mean-
ing if there is no constraint because the algorithm would prune all nodes. The
constraint we use is to force the output image to be a faithful approximation
of the input image: the squared error between the input and output images
K =

∑
Nk

∑
n∈Nk

(ψ(f)(n) − f(n))2 is constrained to be below a given thresh-
old. In the examples shown in Fig. 20, the squared error is constrained to be
of at least 31 dB. Fig. 20(a) shows the output image when the criterion is the
number of flat zones. The image is visually a good approximation of the original
image but it involves a much lower number of flat zones: the original image is
composed of 14335 flat zones whereas only 87 flat zones are present in the fil-
tered image. The second criterion is illustrated in Fig. 20(c). The approximation
provided by this image is of the same quality as the previous one (squared error
of 31 dB). However, the characteristics of its flat zones are quite different. The
total length of the perimeter of its flat zones is equal to 3684 pixels whereas
the example of Fig. 20(a) involves a total perimeter length of 4491 pixels. The
reduction of perimeter length is obtained at the expense of a drastic increase of
the number of flat zones: 219 instead of 87. Fig.s 20(b) and 20(d) show the flat
zone contours. As can be seen, the flat zone contours are more complex in the
first example but the number of flat zones is higher in the second one.

This kind of strategy can be applied for a large number of criteria and con-
straints. Note that without defining a tree structure such as a Max-tree or a BPT,
it would be extremely difficult to implement this kind of connected operators.

6 Conclusions

This paper has presented and discussed a region-based processing technique in-
volving connected operators. There is currently an interest in defining processing
tools that do not act on the pixel level but on a region level. Connected operators
are examples of such tools that come from mathematical morphology.

Connected operators are operators that process the image by merging flat
zones. As a result, they cannot introduce any contours or move existing ones.
The two most popular approaches to create connected operators have been re-
viewed. The first one work on a pixel-based representation of the image and
involves a reconstruction process. The operator involves first a simplification
step based on a “classical” operator (such as morphological open, close, low-
pass filter, median filter, etc) and then a reconstruction process. Three kind of
reconstruction processes have been analyzed: anti-extensive, extensive and self-
dual. The goal of the reconstruction process is to restore the contour information
after the simplification. In fact, the reconstruction can be seen as a way to create
a connected version of an arbitrary operator. Note that the simplification effect
is defined and limited by the first step. The examples we have shown include
simplification in terms of size or contrast.

The second second strategy to create connected operators involves three steps:
in the first step, a region-based representation of the input image is constructed.
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Three examples have been discussed: Max-tree, Min-tree and Binary Partition
Tree. In the second step, the simplification is obtained by pruning the tree and,
in the third step, the output image is constructed from the pruned tree. The tree
creation defines the set of regions that the pruning strategy can use to create
the final partition. It represents a compromise between flexibility and efficiency:
on the one hand side, not all possible merging of flat zones are represented in
the tree, but on the other hand side, once the tree has been defined complex
pruning strategies can be defined. In particular, it is possible to deal in a robust
way with nonincreasing criteria. Criteria involving the notions of area, motion
and optimization under a quality constraint have been demonstrated.
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Abstract. The best performing systems in the area of automatic
speaker recognition have focused on using short-term, low-level acous-
tic information, such as cepstral features. Recently, various works have
demonstrated that high-level features convey more speaker information
and can be added to the low-level features in order to increase the ro-
bustness of the system. This paper describes a text-independent speaker
recognition system exploiting high-level information provided by ALISP
(Automatic Language Independent Speech Processing), a data-driven
segmentation. This system, denoted here as ALISP n-gram system, cap-
tures the speaker specific information only by analyzing sequences of
ALISP units. The ALISP n-gram system was fused with an acoustic
ALISP-based Gaussian Mixture Models (GMM) system exploiting the
speaker discriminating properties of individual speech classes. The re-
sulting fused system reduced the error rate over the individual systems
on the NIST 2004 Speaker Recognition Evaluation data.

1 Introduction

In recent years, research has expanded from only using the acoustic content of
speech to trying to utilise high-level information, such as linguistic content, pro-
nunciation and idiolectal word usage. Works examining the exploitation of high-
level information sources have provided strong evidence that gains in speaker
recognition accuracy are possible [1]. [2] explored the possibility of using word
n-gram statistics for speaker verification. This technique although simple, gave
encouraging results. Motivated by the work of [2], [3] applied similar techniques
to phone n-gram statistics. This approach gave good results and was found to be
a useful complementary features when used with short-term acoustic features.
The research of [2] and [3] showed word and phone n-gram based model to
be promising for speaker verification, however these techniques still based on
human transcription of the speech data. The system we are proposing in this
paper is inspired from the system described in [3], except that we used the au-
tomatic segmentation based on Automatic Language Independent Speech Pro-
cessing (ALISP) tools [4] instead of the phonetic one. The ALISP-sequences, are
automatically acquired from the output of the ALISP recognizer with no need
� Supported by the Swiss National Fund for Scientific Research, No. 2100-067043.01/1.

M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 66–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Exploiting High-Level Information Provided by ALISP 67

of transcribed databases. In [5] we have built an ALISP-based GMM system
exploiting the speaker discriminating properties of individual speech classes and
we have shown that the ALISP segments could capture speaker information. In
the ALISP n-gram system we are presenting here, speaker specific information is
captured only by analyzing sequences of ALISP units. The ALISP-based GMM
system and the ALISP n-gram system are combined to complement each other.
The resulting fused system reduces the error rate over the individual systems.

The outline of this paper is the following: In Section 2 more details about
the proposed method are given. Section 3 describes the database used and the
experimental protocol. The evaluation results are reported in Section4. The con-
clusions and perspectives are given in Section 5.

2 System Description

2.1 ALISP Segmentation

The systems described bellow use in the first stage a data-driven segmentation
Automatic Language Independent Speech Processing (ALISP) tools [4]. This
technique is based on units acquired during a data-driven segmentation, where
no phonetic transcription of the corpus is needed. In this work we use 64 classes.
The modelling of the set of data-driven speech units, denoted as ALISP units,
is achieved through the following stages. After the pre-processing step for the
speech data, first Temporal Decomposition is used, followed by Vector Quantiza-
tion providing a symbolic transcription of the data in an unsupervised manner.
Hidden Markov Modeling is further applied for a better coherence of the initial
ALISP units.

2.2 ALISP N-Gram System

The focus here is to capture high-level information about the speaking style of
each speaker. Speaker specific information is captured by analyzing sequences of
ALISP units produced by the data-driven ALISP recognizer. In this approach,
only ALISP sequences are used to model speakers.

For the scoring phase each ALISP-sequence is tested against a speaker specific
model and a background model using a traditional likelihood ratio. The speaker
model, Li, and the background model, LBm, are generated using a simple n-gram
frequency count as follows:

Li(k) =
Ci(k)∑Ni

n=1 Ci(n)
(1)

LBm(k) =
CBm(k)∑NBm

n=1 CBm(n)
(2)

where Ci(k) and CBm(k) represent the frequency count of the ALISP n-gram
type, k, in the speaker data and world data, respectively. Ni and NBm are the
number of all n-gram types in the speaker data and world data, respectively.
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Then for each ALISP n-gram found in the test utterance a score is calcu-
lated using the log-likelihood ratio of the speaker likelihood to the background
likelihood

Sti =
∑K

k=1 (Ct(k).log [Li(k) − LBm(k)])∑M
k=1 Ct(k)

(3)

where Ct(k) represents the number of occurrences of the ALISP n-gram type, k,
in the test utterance t. The sums are over all of the ALISP n-gram types in the
test segment.

Finally, the ALISP n-gram scores are fused together to generate an overall
score for the test segment.

In this work three n-gram (1-gram, 2-gram and 3-gram) systems are built.
The evaluation of their individual performances and their fusion is presented in
section 4.

2.3 ALISP-Based GMM System

This system uses GMMs on a segmental level in order to exploit the different
amount of discrimination provided by the ALISP classes [5]. In this segmental
approach we represent each speaker by 64 GMMs each of them models an ALISP
class. The speaker specific 64 models were adapted from the 64 gender and ALISP
class dependent background models.

During the test phase, each test speech data is first segmented with the 64 AL-
ISP HMM models. Then, each ALISP segment found in the test utterance is
compared to the hypothesized speaker models and to the background model of
the specific ALISP class.

Finally, and after the computation of a score for each ALISP segment, the
segmental scores are combined together to form a single recognition score for
the test utterance. A Multi-Layer Perceptrons (MLP) [6] is used to combine the
individual scores for the ALISP segments.

2.4 Fusion

There are several scenarios for combining the decisions of multiple systems [7].
In [8] we have compared three fusion methods of speaker verification systems: the
linear summation, the Logistic Regression (LR) and the Multi-Layer Perceptron
(MLP). In this work we choose a Multi-Layer Perceptron to fuse the scores from
the various systems. This perceptron has a layer consisting of inputs for each
system, a hidden layer with 5 neurons, and an output layer using sigmoid as
activation function.

3 Experimental Setup

All experiments are done on the NIST’2004 data which is split into two different
subsets: the Development-set and the Evaluation-set, used to test the perfor-
mance of the proposed system.
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The speech parametrization is done with Mel Frequency Cepstral Coefficients
(MFCC), calculated on 20 ms windows, with a 10 ms shift. For each frame
a 15-element cepstral vector is computed and appended with first order deltas.
Cepstral mean substraction is applied to the 15 static coefficients and only bands
in the 300-3400 Hz frequency range are used. The energy and delta-energy are
used in addition during the ALISP units recognition.

During the preprocessing step, after the speech parametrization, we separated
the speech from the non-speech data. The speech activity detector is based on
a bi-Gaussian modeling of the energy of the speech data [9]. Only frames higher
than a certain threshold are chosen for further processing. Using this method,
56% of the original NIST 2004 data are removed.

In the ALISP-based GMM system1, 64 ALISP-specific gender-dependent
background models (with 32 Gaussians) are built and for each target speaker,
64 specific GMM with diagonal covariance matrices is trained via maximum a
posteriori (MAP) adaptation of the Gaussian means of the matching gender
background models. If an ALISP class does not occur in the training data for a
target, the background model of this class becomes that target’s model.

The gender dependent background models for the GMMs and the gender de-
pendent ALISP recognizers, are trained on a total of about 6 hours of data from
(1999 and 2001) NIST data sets. The MLP is trained on the development set.

4 Experimental Results

We present in this section results for “8sides-1side” NIST 2004 task on the eval-
uation data set, as defined in section 3. For this task we dispose of 40 minutes to
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Fig. 1. Speaker verification results for the ALISP-based GMM system, the n-gram
systems and their fusion on the evaluation data set (subset of NIST’04)

1 Based on the BECARS package [10].
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build the speaker model and 5 minutes for the test data (including silences). Per-
formance is reported in term of the Detection Error Tradeoff (DET) curve [11].
Results are compared via Equal Error Rates (EER): the error at the threshold
which gives equal miss and false alarm probabilities.

The Figure 1 shows DET curves of the fusion results. For reference, the four
individual systems are also shown. Fusing the three ALISP n-gram (1-gram,
2-gram, 3-gram) systems lead to an improvement over the individual n-gram
systems. These systems although worse compared to the ALISP-based GMM
system, gave encouraging results.

In the next set of experiments, we fused the ALISP n-gram systems with
the ALISP-based GMM system. Results are clearly showing that the new sys-
tems (ALISP n-gram) are supplying complementary information to the acoustic
system (ALISP-based GMM).

5 Conclusions

In this paper we have presented a speaker verification system based on data-
driven speech segmentation and exploiting high-level information. We have
shown that the fusion of the acoustic ALISP-based GMM system with the n-
gram systems treating high-level information (provided by the ALISP sequence),
improve the speaker recognition accuracy. The great advantage of the proposed
method is that it is not grounded on the usage of transcribed speech data. In
other hand the ALISP data-driven segmentation can be used in different lev-
els in speaker verification systems in order to extract complementary types of
information.
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Abstract. Feature projection by non-linear discriminant analysis (NLDA) can 
substantially increase classification performance. In automatic speech recog-
nition (ASR) the projection provided by the pre-squashed outputs from a one 
hidden layer multi-layer perceptron (MLP) trained to recognise speech sub-
units (phonemes) has previously been shown to significantly increase ASR 
performance. An analogous approach cannot be applied directly to speaker 
recognition because there is no recognised set of "speaker sub-units" to pro-
vide a finite set of MLP target classes, and for many applications it is not 
practical to train an MLP with one output for each target speaker. In this pa-
per we show that the output from the second hidden layer (compression layer) 
of an MLP with three hidden layers trained to identify a subset of 100 speak-
ers selected at random from a set of 300 training speakers in Timit, can pro-
vide a 77% relative error reduction for common Gaussian mixture model 
(GMM) based speaker identification. 

1   Introduction 

Non-linear discriminant analysis (NLDA) based data enhancement by a multi-layer 
perceptron (MLP) has proved to be very effective for improving performance in 
automatic speech recognition (ASR) [6, 15]. This has been achieved by training an 
MLP with one output per phone to estimate phone posterior probabilities, and then 
using this MLP to project each data frame onto an internal representation of the data 
which the MLP has learnt (see Figure 1). This representation may be the net-input 
values to, or output values from, one of its hidden layers or the input to its output 
layer, i.e. the “pre-squashed MLP outputs” (see Figure 2). 

The success of this simple data-driven approach to data enhancement in ASR has 
led to analogous procedures being attempted for speaker recognition. Since clustering 
in the acoustic space is mainly determined by the linguistic content (phones) of the 
speech, and speakers cause variation within these main clusters, the task of enhancing 
discrimination between the target classes (speakers) is more difficult in speaker rec-
ognition. Nevertheless, in [9] positive results with LDA based feature enhancement 
were obtained for speaker identification using Gaussian mixture models (GMMs), 
while in [8, 10] application of the more powerful NLDA based enhancement 
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technique led to improved speaker verification rates, especially when used in combi-
nation with the original MFCC features. 

In [8,10] the main aim of the application of NLDA preprocessing was to reduce 
training/test mismatch by training with data from different handset types. MLP fea-
ture enhancement is already known to be useful for dealing with training/test noise 
mismatch in ASR [15], but it is not yet established whether it will also do well if its 
only aim is to enhance discrimination between speakers. The present article therefore 
concentrates on speaker discrimination in clean speech only, where there is no strong 
mismatch of any kind in signal conditions. 

In [8] (but not in [10]) there was a positive effect of MLP feature enhancement, 
except for short test utterances: MLP-enhanced features led to higher equal error rates 
than the MFCCs from which they were derived for 3 second test utterances, except 
when the MLP was trained on a large amount of training data (2-Session-full, cf. 
Table 2 in [8]). The present work was motivated by the development of speaker 
verification to run on a PDA, for which the enrolment and test data are very limited. 
We therefore concentrate on feature enhancement for limited training and test data, 
for which speaker recognition has not previously been improved by discriminatory 
preprocessing.  

Further, this paper compares the MLP which was successfully applied in [8, 10] 
with several other, simpler architectures, to evaluate the gain in speaker identification 
accuracy obtained by adding extra layers. 

In the present experiment the data enhancement is applied to a speaker identification 
task. The speakers with which the MLP is trained (which we refer to as the speaker 
basis set) are selected at random from the population while maintaining a representative 
balance of gender and dialect region, since this information is often available in a real 
system. As it was not possible to predict the number of speakers required to train the 
MLP, the size of the speaker basis set is varied..Results for several such random, non-
overlapping selections are presented for the MLP which gives the best results. The 
assumption behind the speaker basis selection is that the feature projection learnt for a 
small number of speakers by the MLP is also effective when applied to any other 
speakers. In [11] it is shown that for any given number of basis speakers an automatic 
speaker selection can further enhance speaker identification.  

Before training the speaker model for each new speaker to be enrolled into the 
GMM based speaker recognition system, and also before processing the data for a 
speaker to be recognised, each frame of speech data is now projected by the MLP onto 
its discriminative internal representation (see Fig.1). 

The proposed approach to harness the discriminative power of MLPs for speaker 
recognition is a conceptually simple direct application of MLPs for data enhancement, 
as opposed to the application of an MLP in [7], where the primary task of the MLP 
was phone recognition, or in [10], where the MLP was mainly used to provide 
complementary data features. 

In Section 2 we present the baseline GMM based speaker identification model 
whose performance we are aiming to improve [12]. In Section 3 we give the 
procedure used for the design and training of the MLP which we use for data 
enhancement. Section 4 describes the data features and procedures used for system 
testing and in Section 5 we present experimental results. These results show that the 
data enhancement procedure described can give significantly improved speaker 
recognition performance. This is followed by a discussion and conclusion. 
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Fig. 1. Data enhancement procedure. A small random set of basis speakers, B, is selected from 
the training speakers. This is used to train an MLP with several hidden layers to estimate a-
posteriori probabilities (P) only for speakers in B. All data SX from speakers in the full closed 
set of speakers to be recognised is then passed through the first few layers of the trained MLP 
to produce new data features SY, with enhanced speaker discrimination. 

2   Speaker Identification Baseline 

In GMM based speaker identification a GMM data PDF p(x|S) (1) is trained for each 
speaker for some fixed number M of Gaussians. This models the PDF for a single 
data frame, x, taking no account of the time order of the data frames in the full speech 
sample, X. 
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The GMM design, feature data and database used here (32 Gaussians, MFCC fea-
tures, Timit) are taken from [14]. This simple model gives state-of-the-art speaker 
recognition performance. With Timit (though not with other databases, such as the 
CSLU speaker recognition database) no gain is found in training speaker models by 
adaptation from a global model. 

As in [14], GMMs were trained by k-means clustering, followed by EM iteration. 
This was performed by the Torch machine learning API [3]. We used a variance 
threshold factor of 0.01 and minimum Gaussian weight of 0.05 (performance falling 
sharply if either was halved or doubled). 
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3   MLP Design and Training 

The four MLP types tested are shown in Figure 2. Types a, b, c have previously been 
used successfully for data enhancement in ASR [6,15]. These are all feedforward 
MLPs in which each layer is fully connected to the next. The “neurons” in each layer 
comprise the usual linear net-input function followed by a non-linear squashing func-
tion, which is the sigmoid function for all layers except the output layer, which uses 
the softmax function to ensure that all outputs are positive and sum to 1 [1]. 

Also using Torch [3], each MLP is trained, by gradient descent, to maximise the 
cross entropy objective (i.e. the mutual information between the actual and target 
outputs). We trained in batch mode, with a fixed learning rate of 0.01. The data in 
each utterance was first normalised to have zero mean and unit variance. The esti-
mated probabilities are often close to 0 or 1, and data with such a peaked distribution 
is not well suited as feature data. The enhanced features taken from the trained MLP 
of types a and b are therefore usually taken as the net input values in the output layer, 
prior to squashing. For type c they are normally taken as the squashed output from the 
last hidden layer (these values having less peaked distributions than the outputs from 
the output layer), but here we have used the net input to the second hidden layer as the 
enhanced features from MLPs c and d.  

In ASR the MLP is trained to output a probability for each phoneme. In the model 
used here we select a random subset of the Timit speakers (but balanced for dialect 
region) available for training (the speaker basis set) and train the MLP to output a 
probability for each of these speakers. Although none of the MLPs a-d gave a high 
basis speaker classification score, the test results in Section 5 show that the speaker 
discriminative internal data representation which some of them learn can be very 
beneficial for GMM based speaker modelling. 
 

 

Fig. 2. Four MLP types (a-d) tested for data enhancement. Each active layer is shown as a (net-
input function / non-linear activation function) sandwich. Only the dark sections of each MLP 
were used in data projection. The light parts were used only in training. 

(b)     (a) (c)    (d) 
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4   Test Procedure 

Our baseline system is taken from the state of the art GMM based speaker identifica-
tion system in [14], using the Timit speech database [5], GMMs with just 32 Gaus-
sians, and 19 MFCC features. 

4.1   Baseline Feature Processing 

As in [14], all of the Timit signal data was first downsampled to 8 kHz, to simulate 
telephone line transmission (without downsampling, GMMs already achieve above 
99.7% correct speaker identification using standard MFCC features). No further low- 
or high-pass filters were applied. Also as in [14], MFCC features, obtained using 
HTK [16], were used, with 20ms windows and 10ms shift, a pre-emphasis factor of 
0.97, a Hamming window and 20 Mel scaled feature bands. All 20 MFCC coefficients 
were used except c0. On this database neither silence removal, cepstral mean subtrac-
tion, nor time difference features increased performance, so these were not used. 

4.2   Test Protocol 

Timit does not have a standard division into training, development and test sets which 
is suitable for work on speaker recognition. For this we first divided the 630 speakers 
in Timit into disjoint training, development and test speaker sets of 300, 162 and 168 
speakers respectively. The speaker sets are all proportionally balanced for dialect 
region. 

Data enhancement MLPs a-d (Figure 2) were trained using a speaker basis set of 
between 30 and 100 speakers, again proportionally balanced for dialect region. Within 
dialect region, the speakers are selected at random from the training set. Only one 
frame consisting of 19 MFCC features was used as input, in parallel to the GMM 
baseline system which also used no information of variation of the features over time. 
In each case the number of units in hidden layer 1, and also in hidden layer 3 in MLP 
d, was fixed at 100. The number of units in hidden layer 2 in MLPs c and d was fixed 
at 19 (the same as the number of MFCC features in the baseline system). Performance 
could have been improved by stopping MLP training when identification error on the 
development set (using GMMs trained on data preprocessed by the MLP in its current 
state) stopped increasing. However, in the tests reported here, each MLP was simply 
trained for a fixed number (35) of batch iterations, after which mean squared error on 
the training basis stopped significantly decreasing. 

Each MLP type was tested just once with each number of basis speakers. For the 
best performing MLP (MLP d), test set tests were made with multiple different 
speaker basis sets obtained by dividing the training data into as many equal parts as 
each speaker basis size would permit. Because non-overlapping speaker basis sets 
were used, each speaker from the training data was used once for training the MLP.  

Timit data is divided into 3 sentence types, SX1-5, SI1-3 and SA1-2. To make the 
speaker recognition system text-independent, a GMM for each speaker to be tested 
was trained on MLP projected sentences of type (SX1-2, SA1-2, SI1-2) and tested on 
MLP projected sentences of type (SX4, SX5). Baseline GMMs were trained on MFCC 
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features. The speaker identification procedure was as described in Section 2. Both 
training and testing used Torch [3]. 

5   Test Results 

Test set speaker identification scores, for MLP types a-d against speaker basis size, 
are shown in Table 1 and Figure 3. The baseline identification error was 3.87%.  

The best scoring MLP (MLP d) was then tested many times, for each number of 
basis speakers, also on the test set (Table 2). While results for different repetitions for 
each speaker basis size varied considerably, in 28 out of 30 tests the speaker identifi-
cation error was lower than the baseline error. The optimal size of the speaker basis 
set used for training was 100, giving a relative error reduction of up to 77.0 %. 
 

Number of Basis Speakers

% Evaluation set identification 

MLP

MLP

MLP

MLP

Baseline error

 

Fig. 3. Speaker identification error rate for the 168 speakers in the test set, for data enhance-
ment using MLPs a, b ,c, d, with varying numbers of basis speakers 

Table 1. Test set speaker identification error for MLPs a-d in Fig. 2 against speaker basis size 

speaker 
basis size 

30 50 75 100 
best % relative 
error reduction 

MLP a 10.10 7.74 6.25 6.55 -61.5 

MLP b 9.52 5.06 5.36 5.65 -30.7 

MLP c 6.55 5.36 3.27 3.87 15.5 

MLP d 3.27 2.38 1.79 2.38 53.8 
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Table 2. MLP d speaker identification test set % error against speaker basis size. For each 
number of basis speakers, test-set tests were repeated, using disjoint speaker basis sets, as many 
times as were permitted by the number of available speakers (Baseline error 3.87%). 

repetition \ spkr basis size 30 50 60 75 100 150 

1 3.57 2.68 2.68 2.37 1.49 2.08 

2 2.98 2.68 1.79 2.08 0.89 1.79 

3 3.87 2.08 2.68 3.57 1.49  

4 2.08 2.08 1.79 2.08   

5 3.27 1.79 1.79    

6 4.76 1.49     

7 2.68      

8 3.27      

9 1.49      

10 3.57      

mean % error 3.15 2.13 2.15 2.53 1.29 1.93 

best % rel. error reduction 61.5 61.5 53.7 46.3 77.0 53.7 

6   Discussion 

Results reported show up to 2.98% absolute (77.0% relative) performance improve-
ment over the state of the art baseline on the Timit database. This was achieved with 
minimal fine-tuning and confirms our working hypothesis that the transformation 
learnt by the MLP to separate a random subset of speakers also substantially enhances 
separability between any speakers from the same population. An increase in identifi-
cation accuracy has been found before with LDA when one output was trained for 
each speaker to be recognised [9]. By contrast, our MLP (a), which performs a linear 
separation equivalent to LDA [4], performs on average very badly. However, this 
could be because in our case none of the test speakers are used in training, so that the 
MLP is required to generalise to new speakers. 

It appears that the ability of the features provided by the MLP to enhance speaker 
discrimination increases with the number of hidden layers. However, from the appli-
cation viewpoint it would be advantageous to keep the MLP size and data transforma-
tion complexity to a minimum. It would be interesting to know whether the quality of 
data enhancement can be increased by dividing a given number of neurons into a 
greater number of layers, allowing for a more highly non-linear transformation. 

Because of the large search space of possible MLP configurations, our search is 
still far from being optimised. Our decision to alternate large with small hidden layers 
is based on the intuition that the benefits of non-linear vector space expansion and 
data compression should possibly be balanced. Our choice of MLP types a-c for 
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testing was also guided by what has been used successfully before in ASR [6,15], while 
MLP d was used in [8,10] for speaker recognition feature enhancement. The features it 
produced did not, however, consistently improve speaker verification for shorter test 
utterances, even though the quantity of training data used was at least 4 times larger than 
in our experiments. In future we could try varying layer sizes, and also test the discrimi-
natory power of features from every compressive hidden layer, not just the second. So 
far we have seen performance always increasing with the number of hidden layers used 
in MLP training (while always using just three layers for data enhancement). We have 
yet to find the point where this benefit stops increasing. 

To reduce the amount of experimentation required the number of MLP batch train-
ing iterations was fixed at 35, although it is well known that MLPs tend to overfit to 
training data after the learning curve begins to flatten out. In future we should use 
cross validation testing to permit training to stop when MLP preprocessing maximises 
speaker identification performance on the development set. 

Results are only reported here for multiple random but balanced selections of each 
given number of basis speakers. While the number of speakers selected was always 
large enough to guarantee a fairly representative sample from the full speaker popula-
tion, the somewhat erratic variation in identification performance resulting from dif-
ferent random speaker bases of the same size suggests that it would be instructive to 
see whether more principled methods could be used for basis speaker set selection. 
First results in this direction are reported in [11]. 

7   Conclusion 

Test results reported show that the use of MLP based data enhancement for speaker 
identification using different handsets [8, 10] is also useful for speaker identification 
using very limited clean speech data. The number of target speakers which the MLP is 
trained to recognise must be small enough to avoid the classification problem becom-
ing too difficult to train, but large enough to provide a feature basis sufficient to sepa-
rate all speakers within a large population. The internal representation learnt by this 
MLP in separating the small set of basis speakers provides an enhanced feature vector 
which can improve GMM based speaker recognition performance. This form of data 
enhancement can be applied to speaker verification, as in [8, 10], as well as to speaker 
identification. It can be used with growing speaker sets, of unlimited size, with no 
need for further training as new speakers are added. 
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Abstract. The difficulty of obtaining data from impostors and the scarcity of 
data are two factors that have a large influence in the estimation of speaker-
dependent thresholds in text-dependent speaker verification. Furthermore, the 
inclusion of low quality utterances (background noises, distortion...) makes the 
process even harder. In such cases, the comparison of these utterances against 
the model can generate non-representative scores that deteriorate the correct es-
timations of statistical data from client scores. To mitigate the problem, some 
methods propose the suppresion of those scores which are far from the esti-
mated scores mean. The tecnique results in a ‘hard decision’ that can produce 
errors especially when the number of scores is low. We propose here to take a 
‘softer decision’ and weight scores according to their distance to the estimated 
scores mean. The Polycost and the BioTech databases have been used to show 
the effectiveness of the proposed method. 

1   Introduction 

The speaker verification is the process of deciding whether a speaker corresponds to a 
known voice. In speaker verification, the individual identifies her/himself by means of 
a code, login, card... Then, the system verifies her/his identity. It is a 1:1 process and 
it can be done in real-time. The result of the whole process is a binary decision. An 
utterance is compared to the speaker model and it is considered as belonging to the 
speaker if the Log-Likelihood Ratio (LLR) –the score obtained from the comparison-  
surpasses a predefined threshold and rejected if not. 

In order to compare two systems, it is common to use the Equal Error Rate (EER), 
obtained when the False Acceptance Rate (FAR) and the False Rejection Rate (FRR) 
are equal. However, in real applications, a specific FAR or FRR is usually required. 
In this case, it is necessary to tune the speaker thresholds to achieve the desired rates. 

In a typical Speaker Verification (SV) application, the user enrolls the system by 
pronouncing some utterances in order to estimate a speaker model. The enrollment 
procedure is one of the most critical stages of a SV process. At the same time, it  
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becomes essential to carry out a successful training process to obtain a good perform-
ance. The importance and sensitiveness of the process force us to pay special attention 
on it. Consequently, it is necessary to protect the enrollment procedure by giving the 
user some security mechanisms, like extra passwords or by providing a limited physi-
cal access. A general block diagram of an SV process can be found in Figure 1: 

 
 

 
 
 
 
 
 
 
 

Fig. 1. Block diagram of a SV process 

In real speaker verification applications, the speaker dependent thresholds should 
be estimated a priori, using the speech collected during the speaker models training. 
Besides, the client utterances must be used to train the model and also to estimate the 
threshold because data is scarce. It is not possible to use different utterances for both 
stages.  

In development tasks, the threshold is usually set a posteriori. However, in real ap-
plications, the threshold must be set a priori. Furthermore, a speaker-dependent 
threshold can sometimes be used because it better reflects speaker peculiarities and 
intra-speaker variability than a speaker-independent threshold. The speaker dependent 
threshold estimation method uses to be a linear combination of mean, variance or 
standard deviation from clients and/or impostors. 

Human-machine interaction can elicit some unexpected errors during training due 
to background noises, distortions or strange articulatory effects. Furthermore, the 
more training data available, the more robust model can be estimated. However, in 
real applications, one can normally afford very few enrolment sessions. In this con-
text, the impact of those utterances affected by adverse conditions becomes more 
important in such cases where a great amount of data is not available. Score pruning 
(SP) [1,2,3] techniques suppress the effect of non-representative scores, removing 
them and contributing to a better estimation of means and variances in order to set the 
speaker dependent threshold. The main problem is that in a few cases the elimination 
of certain scores can produce unexpected errors in mean or variance estimation. In 
these cases, threshold estimation methods based on weighting the scores reduce the 
influence of the non-representative ones. The methods use a sigmoid function to 
weight the scores according to the distance from the scores to the estimated scores 
mean. 

A theoretical approach of the state-of-the-art is reported on the next section. The 
weighting threshold estimation method is developed in section 3. The experimental 
setup, the description of the databases and the evaluation with empirical results are 
shown in section 4, followed by conclusions in section 5. 
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2   Theoretical Approach 

Several approaches have been proposed to automatically estimate a priori speaker 
dependent thresholds. Conventional methods have faced the scarcity of data and the 
problem of an a priori decision, using client scores, impostor data, a speaker inde-
pendent threshold or some combination of them. In [4], one can find an estimation of 
the threshold as a linear combination of impostor scores mean ( μ I ) and standard 
deviation from impostors I as follows:  

βσμα +−=Θ )( II
 (1) 

where  and  should be empirically obtained. 
Three more speaker dependent threshold estimation methods similar to (1) are in-

troduced in (2), (3) and (4) [5, 6]: 

2
II σαμ +=Θ  (2) 
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X

σ  is the variance estimation of the impostor scores, and: 

CI μαμα )1( −+=Θ  (3) 

)( ICSI μμα −+Θ=Θ  (4) 

where μc is the client scores mean, SI is the speaker independent threshold and  is a 
constant, different for every equation and empirically determined. Equation (4) is 
considered as a fine adjustment of a speaker independent threshold. 

Another expression introduced in [1] encompasses some of these approaches: 

CII μασβμα )1()( −++=Θ  (5) 

where  and  are constants which have to be optimized from a pool of speakers. 
An approach introduced by the authors in [2] uses only data from clients: 

CC σαμ −=Θ  (6) 

where μC is the client scores mean, C is the standard deviation from clients and  is a 
constant empirically determined. Equation (6) is very similar to (2), but uses standard 
deviation instead of variance and the client mean instead of impostors mean. 

Some other methods are based on FAR and FRR curves [7]. Speaker utterances 
used to train the model are also employed to obtain the FRR curve. On the other hand, 
a set of impostor utterances is used to obtain the FAR curve. The threshold is adjusted 
to equalize both curves. 

There are also other approaches [8] based on the difficulty of obtaining impostor 
utterances which fit the client model, especially in phrase-prompted cases. In these 
cases, it is difficult to secure the whole phrase from impostors. The solution is to use 
the distribution of the ‘units’ of the phrase or utterance rather than the whole phrase. 
The units are obtained from other speakers or different databases. 
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On the other hand, it is worth noting that there are other methods which use differ-
ent estimators for mean and variance. With the selection of a high percentage of 
frames and not all of them, those frames which are out of range of typical frame like-
lihood values are removed. In [9], two of these methods can be observed, classified 
according to the percentage of used frames. Instead of employing all frames, one of 
the estimators uses 95% most typical frames discarding 2.5% maximum and mini-
mum frame likelihood values. An alternative is to use 95% best frames, removing 5% 
minimum values. 

Normalization techniques [10] can also be used for threshold setting purposes. 
Some normalization techniques follow the Bayesian approach while other techniques 
standardise the impostor score distribution. Furthermore, some of them are speaker-
centric and some others are impostor-centric.  

Zero normalization (Znorm) [11, 12, 13] estimates mean and variance from a set of 
impostors as follows: 

I

IM
normM

S
S

σ
μ−

=,
 (7) 

where SM are the client scores, μI is the estimated mean from impostors and I the 
estimated variance from impostors [14]. 

We should also mention another threshold normalization technique such as Test 
normalization (Tnorm) [13, 15], which uses impostor models instead of impostor 
speech utterances to estimate impostor score distribution. The incoming speech utter-
ance is compared to the speaker model and to the impostor models. That is the differ-
ence with regard to Znorm. Tnorm also follows the equation (7). 

Tnorm has to be performed on-line, during testing. It can be considered as a test-
dependent normalization technique while Znorm is considered as a speaker-dependent 
one. In both cases, the use of variance provides a good approximation for the impos-
tor distribution. 

Furthermore, Tnorm has the advantage of matching between test and normalization 
because the same utterances are used for both purposes. That is not the case for 
Znorm. 

Finally, we can also consider Handset normalization (Hnorm) [16, 17, 18]. It is a 
variant of Znorm that normalizes scores according to the handset. This normalization 
is very important especially in those cases where there is a mismatch between training 
and testing. 

Since handset information is not provided for each speaker utterance, a maximum 
likelihood classifier is implemented with a GMM for each handset [17]. With this 
classifier, we decide which handset is related to the speaker utterance and we obtain 
mean and variance parameters from impostor utterances. The normalization can be 
applied as follows: 
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where μI and I are respectively the mean and variance obtained from the speaker 
model against impostor utterances recorded with the same handset type, and SM are 
the client scores. 
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3   Threshold Estimation Based on Weighting Scores 

A threshold estimation method that weights the scores according to the distance dn 
from the score to the mean is introduced [19] in this section. It is considered that a 
score which is far from the estimated mean comes from a non-representative utterance 
of the speaker. The weighting factor wn is a parameter of a sigmoid function and it is 
used here because it distributes the scores in a nonlinear way according to their prox-
imity to the estimated mean. The expression of wn is:  

ndCn e
w −+

=
1

1  (9) 

where wn is the weight for the utterance n, dn is the distance from the score to the 
mean and C is a constant empirically determined in our case. 

The distance dn is defined as: 

snn sd μ−=     (10) 

where sn are the scores and μs is the estimated scores mean. 
The constant C defines the shape of the sigmoid function and it is used to tune the 

weight for the sigmoid function defined in Equation (9). A positive C will provide 
increasing weights with the distance while a negative C will give decreasing values. A 
typical sigmoid function, with C=1 is shown in Figure 2:  

The average score is obtained as follows:  
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Fig. 2. Sigmoid function 
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where wn is the weight for the utterance n defined in (9), sn are the scores and sT is the 
final score.  

The standard deviation is also weighted in the same way as the mean. This method 
is called Total Score Weighting (T-SW). 

On the other hand, it is possible to assign weights different from 1.0 only to a cer-
tain percentage of scores –the least representative- and not to all of them. This method 
is called Partial Score Weighting (P-SW). Normally, the farthest scores have in this 
case a weight different from 1.0. 

4   Experiments 

4.1   The Polycost Database 

The Polycost database has been used for the experiments in this work. It was recorded 
by the participants of the COST250 Project. It is a telephone speech database with 
134 speakers, 74 male and 60 female. The 85% of the speakers are between 20 and 35 
years old. Almost each speaker has between 6 and 15 sessions of one minute of 
speech. Most speakers were recorded during 2-3 months, in English and in their 
mother tongue. Calls were made from the Public Switched Telephone Network 
(PSTN). 

Each session contains 14 items: 4 repetitions of a 7-digit client code, five 10-digit 
sequences, 2 fixed sentences, 1 international phone number and 2 more items of spon-
taneous speech in speaker’s mother tongue. For our experiments, we will use only 
digit utterances in English. 

4.2   The BioTech Database 

One of the databases used in this work has been recorded –among others- by the au-
thor and has been especially designed for speaker recognition. It is called the BioTech 
database and it belongs to the company Biometric Technologies, S.L. It includes land-
line and mobile telephone sessions. A total number of 184 speakers were recorded by 
phone, 106 male and 78 female. It is a multi-session database in Spanish, with 520 
calls from the Public Switched Telephone Network (PSTN) and 328 from mobile 
telephones. One hundred speakers have at least 5 or more sessions. The average num-
ber of sessions per speaker is 4.55. The average time between sessions per speaker is 
11.48 days. 

Each session includes: 

 different sequences of 8-digit numbers, repeated twice. They were the Span-
ish personal identification number and that number the other way round. 
There were also two more digits: 45327086 and 37159268. 

 different sequences of 4-digit numbers, repeated twice. They were one ran-
dom number and the fixed number 9014. 

 different isolated words. 
 different sentences. 
 1 minute long read paragraph. 
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 1 minute of spontaneous speech, suggesting to talk about something related 
to what the user could see around, what (s)he had done at the weekend, the 
latest book read or the latest film seen. 

4.3   Setup 

In our experiments, utterances are processed in 25 ms frames, Hamming windowed 
and pre-emphasized. The feature set is formed by 12th order Mel-Frequency Cepstral 
Coefficients (MFCC) and the normalized log energy. Delta and delta-delta parameters 
are computed to form a 39-dimensional vector for each frame. Cepstral Mean Sub-
traction (CMS) is also applied. 

Left-to-right HMM models with 2 states per phoneme and 1 mixture component 
per state are obtained for each digit. Client and world models have the same topology. 
The silence model is a GMM with 128 Gaussians. Both world and silence models are 
estimated from a subset of their respective databases. 

The speaker verification is performed in combination with a speech recognizer for 
connected digits recognition. During enrolment, those utterances catalogued as "no 
voice" are discarded. This ensures a minimum quality for the threshold setting. 

In the experiments with the BioTech database, clients have a minimum of 5 ses-
sions. It yields 100 clients. We used 4 sessions for enrolment –or three sessions in 
some cases- and the rest of sessions to perform client tests. Speakers with more than 
one session and less than 5 sessions are used as impostors. 4- and 8-digit utterances 
are employed for enrolment and 8-digit for testing. Verbal information verification 
[20] is applied as a filter to remove low quality utterances. The total number of train-
ing utterances per speaker goes from 8 to 48. The exact number depends on the 
number of utterances discarded by the speech recognizer. During test, the speech 
recognizer discards those digits with a low probability and selects utterances which 
have exactly 8 digits. A total number of 20633 tests have been performed for the 
BioTech database, 1719 client tests and 18914 impostor tests.  

It is worth noting that land-line and mobile telephone sessions are used indistinctly 
to train or test. This factor increases the error rates. 

On the other hand, only digit utterances are used to perform tests with the Polycost 
database. After using a digit speech recognizer, those speakers with at least 40 utter-
ances where considered as clients. That yields 99 clients, 56 male and 43 female. 
Furthermore, the speakers with a number of recognized utterances between 25 and 40 
are treated as impostors. If the number of utterances does not reach 25, those speakers 
are used to train the world model. We use 40 utterances to train every client model. 

In the experiments with the Polycost database, 43417 tests were performed, 2926 
client tests and 40491 impostor tests. All the utterances come from landline phones in 
contrast with the utterances that belong to the BioTech database. 

4.4   Results 

In this section, the experiments show the performance of the threshold estimation 
methods proposed here. The following table shows a comparison of the EER for 
threshold estimation methods with client data only, without impostors and for the 
baseline Speaker-Dependent Threshold (SDT) method defined in Equation (6). 
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As it can be seen in Table 1, the T-SW method performs better than the baseline 
and even than the SP method. The P-SW performs better than the baseline too, but not 
than the SP. The results shown here correspond to the weighting of the scores which 
 

Table 1. Comparison of threshold estimation methods in terms of Equal Error Rate 

SDT Baseline SP T-SW P-SW 

EER (%) 5.89 3.21 3.03 3.73 
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Fig. 2. Evolution of the EER with the variation of C 

 

Fig. 3. Variation of the weight (wn) with respecto to the distance (dn) between the scores and 
the scores mean 
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distance to the mean is bigger than the 10% of the most distant score. It has been 
found that the minimum EER is secured when every one of the scores is weighted. It 
means that the optimal case for the P-SW method is the T-SW method. 

In Figure 2, we can see the EER with respect to the constant C. It has been shown 
that the system performs better for a C = -2.75.  

Figure 3 shows the function of the distance and the weight for the best C = -2.75. 
The weight exponentially decreases with the distance. 

Table 2 shows the experiments with speaker-dependent thresholds using only data 
from clients following Equation (6). 

The best EER is obtained for the Score Pruning (SP) method. The T-SW performs 
slightly worse and P-SW is the worst method. SP and SW methods improve the error 
rates with regard to the baseline. Results are given for a constant C = -3.0. 

In Figure 4, the best EER is obtained for C = -3. This value is very similar to the 
one obtained for the BioTech database (C = -2.75). 

Table 2. Comparison of threshold estimation methods for the Polycost database 

SDT Baseline SP T-SW P-SW 

EER (%) 1.70 0.91 0.93 1.08 
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Fig. 4. Evolution of the EER with the variation of C 

The comparison of the results obtained with both databases can be seen in Figure 5. 
First of all, EERs are lower for the Polycost database, mainly due to the fact that utter-
ances are recorded from the PSTN while in the BioTech database calls come from the 
landline phones and the mobile phones. Furthermore, in the experiments with the Bio-
Tech database, some clients are trained for example with utterances recorded from 
fixed-line phones and then tested with utterances from mobile phones and this random 
use of sessions decreases performance. 
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Fig. 5. Comparison of EERs obtained for the BioTech and the Polycost databases 

On the other hand, the improvement obtained with SP and SW methods is larger in 
experiments with the Polycost database where it almost reaches the 50%. 

Otherwise, SP method gives an EER similar to the T-SW method in experiments 
with the Polycost database. On the contrary, T-SW method performs clearly better 
than SP method in the experiments with the BioTech database. The P-SW method is 
the method with the worst performance in both cases. 

5   Conclusions 

The automatic estimation of speaker dependent thresholds has revealed as a key factor 
in speaker verification enrolment. Threshold estimation methods mainly deal with the 
sparseness of data and the difficulty of obtaining data from impostors in real-time 
applications. These methods are currently a linear combination of the estimation of 
means and variances from clients and/or impostor scores. When we have only a few 
utterances to create the model, the right estimation of means and variances from client 
scores becomes a real challenge. 

Although the SP methods try to mitigate main problems by removing the outliers, 
another problem arises when only a few scores are available. In these cases, the sup-
pression of some scores worsens estimations. For this reason, weighting threshold 
methods proposed here use the whole set of scores but weighting them in a nonlinear 
way according to the distance to the estimated mean. Weighting threshold estimation 
methods based on a nonlinear function improve the baseline speaker dependent 
threshold estimation methods when using data from clients only. The T-SW method is 
even more effective than the SP ones in the experiments with the BioTech database, 
where there is often a mismatched handset between training and testing. On the con-
trary, with the Polycost database, where the same handset (landline network) is used, 
both of them perform very similar. 
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Abstract. In this paper an improvement in the generation of the
crypto-graphic-speech-key by optimising the number of parameters is
presented. It involves the selection of the number of dimensions with the
best performance for each of the phonemes. First, the Mel frequency
cepstral coefficients, (first and second derivatives) of the speech sig-
nal are calculated. Then, an Automatic Speech Recogniser, which mod-
els are previously trained, is used to detect the phoneme limits in the
speech utterance. Afterwards, the feature vectors are built using both the
phoneme-speech models and the information obtained from the phoneme
segmentation. Finally, the Support Vector Machines classifier, relying on
an RBF kernel, computes the cryptographic key. By optimising the num-
ber of parameters our results show an improvement of 19.88%, 17.08%,
14.91% for 10, 20 and 30 speakers respectively, employing the YOHO
database.

1 Introduction

The biometrics have been widely developed for access control purposes, but they
are also becoming generators of cryptographic keys [14]. From all the biometrics
voice was chosen for this research since it has the advantage of being flexible. For
instance, if a user utters different phrases the produced key must be different.
This means that by changing a spoken sentence or word the key automatically
changes. Furthermore, the main benefit of using voice is that it can simulta-
neously act as a pass phrase for access control and as a key for encryption of
data that will be stored or transmitted. Moreover, having a key generated by
a biometric is highly desirable since the intrinsic characteristics that holds are
unique for each individual, therefore, it will be difficult to guess.

Given the biometric information it is also possible to generate a private key
and a public key. As an application we can propose the following scenario. A
user utters a pass phrase that operates in two ways: as a generator of a private
and public key and as a pass phrase for accessing his files. If an unauthorised
user tries to access the files with a wrong pass phrase the access will be denied.
But even if the pass phrase is correct the access will be denied since the phonetic
features are not the ones that first generated the cryptographic key. With this

M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 92–99, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. η for different number of users and several types of kernels

Table 1. Value of η for different number of users, LPC and MFCC

Number Glob. Average Glob. Average
of Users LPC η MFCC η

10 .8854 .927
20 .8577 .9088
30 .8424 .9004
50 .8189 .8871

example we can have a view of the potentiality of using the speech signal to
generate such keys. Similar applications can be found in [10].

The results obtained in our previous work explained our proposed system
architecture [4, 5, 7]. In those studies we tested different types of kernels, and
as a result we obtained that the RBF kernel was superior than the linear and
polynomial kernels [7], Figure 1.

We have also examined the parametrisation of the speech with different kinds
of parameters; from here we concluded that the best feature vector for the SVM
is based on the Mel frequency cepstral coefficients - as it is for speech recognition
[4, 5], as shown in table 1.

Lastly, we also investigated the benefit of using the Gaussians’ weights given
by the model and the tuning of the user classifier per phoneme [6].

For the Automatic Speech Recognition (ASR) task is well known that the
optimal number of parameters is around twelve. It is very common to use this
number that SPHINX [15], one of the most prestigious softwares for automatic
speech recognition employs it in its computations. Influenced by this trend, in
our previous work, we had used this number. Consequently, the main purpose
of this work is to improve the generation of the cryptographic-speech-key by
optimising the number of parameters.

The system architecture is depicted in Figure 2 and will be discussed in the
following sections. For a general view, the part under the dotted line shows
the training phase that is performed offline. The upper part shows the online
phase. In the training stage the speech processing and recognition techniques
are used to obtain the model parameters and the segments of the phonemes
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in each user utterance. Afterwards, using the model parameters and the seg-
ments the feature generation is performed. Next, the Support Vector Machine
(SVM) classifier produces its own models according to a specific kernel and bit
specifications. From all those models, the ones that give the best results per
phoneme are selected and compose the final SVM model. Finally, using the last
SVM model the key is generated. The online stage is very much similar to the
training and will repeatedly produce the same key if a user utters the same pass
phrase.

2 Speech Processing and Phoneme Feature Generation

Firstly, the speech signal is divided into short windows and the Mel frequency
cepstral coefficients (MFCC) are obtained. As a result an n-dimension vector,
(n − 1)-dimension MFCCs followed by one energy coefficient is formed. To em-
phasize the dynamic features of the speech in time, the time-derivative (Δ) and
the time-acceleration (Δ2) of each parameter are calculated [13].

Afterwards, a forced alignment configuration of an ASR is used to obtain
a model and the starts and ends of the phonemes per utterance. This ASR
configuration is based on a three-state, left-right, Gaussian-based continuous
Hidden Markov Model (HMM). For this research, the phonemes were selected
instead of words since it is possible to generate larger keys with shorter length
sentences.

Assuming the phonemes are modelled with a three-state left-to-right HMM,
and assuming the middle state is the most stable part of the phoneme represen-
tation, let,

Ci =
1
K

K∑
l=1

WlGl, (1)
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where G is the mean of a Gaussian, K is the total number of Gaussians available
in that state, Wl is the weight of the Gaussian and i is the index associated to
each phoneme.

Given the phonemes’ starts and ends information, the MFCCs for each
phoneme in the utterances can be arranged forming the sets Ru

i,j , where i is
the index associated to each phoneme, j is the j-th user, and u is an index that
starts in zero and increments every time the user utters the phoneme i.

Then, the feature vector is defined as

ψu
i,j = μ(Ru

i,j) − Ci

where μ(Ru
i,j) is the mean vector of the data in the MFCC set Ru

i,j , and Ci ∈ CP

is known as the matching phoneme mean vector of the model. Let us denote the
set of vectors,

Dp = {ψu
p,j | ∀ u, j}

where p is a specific phoneme.
Afterwards, this set is divided in subsets: Dtr

p and Dtest
p . 80% of the total

Dp are elements of Dtr
p and the remaining 20% form Dtest

p . Then, Dtrain
p =

{[ψu
p,j, bp,j ] | ∀ u, j} where bp,j ∈ {−1, 1} is the key bit or class assigned to the

phoneme p of the j-th user.

3 Support Vector Machine

The Support Vector Machine (SVM) Classifier is a method used for pattern
recognition, and was first developed by Vapnik and Chervonenkis [1, 3]. Al-
though SVM has been used for several applications, it has also been employed
in biometrics [12, 11]. For this technique, given the observation inputs and a
function-based model, the goal of the basic SVM is to classify these inputs into
one of two classes. Firstly, the following set of pairs are defined {xi, yi}; where
xi ∈ R

n are the training vectors and yi = {−1, 1} are the labels. The SVM
learning algorithm finds an hyperplane (w, b) such that,

min
xi,b,ξ

1
2
wT w + C

l∑
i=1

ξi

subject to yi(wT φ(xi) + b) ≥ 1 − ξi

ξi ≥ 0

where ξi is a slack variable and C is a positive real constant known as a tradeoff
parameter between error and margin.

To extend the linear method to a nonlinear technique, the input data is
mapped into a higher dimensional space by function φ. However, exact spec-
ification of φ is not needed; instead, the expression known as kernel K(xi, xj) ≡
φ(xi)T φ(xj) is defined. There are different types of kernels as the linear, poly-
nomial, radial basis function (RBF) and sigmoid. In this research, we study just
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SVM techinque using radial basis function (RBF) kernel to transform a feature,
based on a MFCC-vector, to a binary number (key bit) assigned randomly. The
RBF kernel is denoted as K(xi, xj) = e(−γ||xi−xj||2), where γ > 0.

The methodology used to implement the SVM training is as follows. Firstly,
the training set for each phoneme (Dtrain

p ) is formed by assigning a one-bit
random label (bp,j) to each user. Since a random generator of the values (-1
or 1) is used, the assignation is different for each user. The advantage of this
random assignation is that the key entropy grows significantly. Afterwards, by
employing a grid search the parameters C and γ are tuned.

Next, a testing stage is performed using Dtest
p . This research considers just

binary classes and the final key could be obtained by concatenating the bits
produced by each phoneme. For instance, if a user utters two phonemes: /F/ and
/AH/, the final key is K = {f(D/F/), f(D/AH/)}, thus, the output is formed by
two bits.

Finally, the SVM average classification accuracy is computed by the ratio

η =
α

β
. (2)

where α is the classification matches on test data and β is the total number of
vectors in test data.

It is possible to choose the appropriate SVM model that corresponds to a
specific phoneme by making the proper selection of the number of dimensions of
the MFCCs. The SVM model should satisfy that the best average classification
accuracy is obtained by all users in the SVM classifier outcome for that specific
phoneme.

4 Experimental Methodology and Results

The YOHO database was used to perform the experiments [2, 8]. YOHO con-
tains clean voice utterances of 138 speakers of different nationalities. It is a
combination lock phrases (for instance, ”Thirty-Two, Forty-One, Twenty-Five”)
with 4 enrollment sessions per subject and 24 phrases per enrollment session;
10 verification sessions per subject and 4 phrases per verification session. Given
18768 sentences, 13248 sentences were used for training and 5520 sentences for
testing.

The utterances are processed using the Hidden Markov Models Toolkit (HTK)
by Cambridge University Engineering Department [9] configured as a forced-
alignment automatic speech recogniser. The important results of the speech
processing stage are the twenty sets of mean vectors of the mixture of gaus-
sians per phoneme given by the HMM and the phoneme starts and ends of the
utterances. The phonemes used are: /AH/, /AX/, /AY/, /EH/, /ER/, /EY/,
/F/, /IH/, /IY/,/K/, /N/, /R/, /S/, /T/, /TH/, /UW/, /V/, /W/. Following
the method already described, the Dp sets are formed. It is important to note
that the cardinality of each Dp set can be different since the number of equal
phoneme utterances can vary from user to user. Next, subsets Dtrain

p and Dtest
p
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Table 2. η selection for different number of parameters, 10 users

Number 10 12 14 16 18 20 22 selected
of param. coeffcient

/AH/ 87.8096 92.4261 92.7356 93.6197 93.61 93.7548 93.6162 93.7548
/AO/ 93.7447 94.8381 95.6992 95.8155 95.4674 95.8316 96.0202 96.0202
/AX/ 93.749 94.1545 95.3309 95.2892 95.4443 95.2221 95.7978 95.7978
/AY/ 97.281 97.7637 98.6195 98.91 98.7748 98.6099 98.6282 98.91
/EH/ 94.2519 93.4383 95.2082 95.8032 96.3408 96.5322 96.1877 96.5322
/ER/ 95.768 96.416 94.696 94.644 96.424 97.348 95.528 97.348
/EY/ 87.778 88.9529 91.4003 92.0903 92.0439 91.8785 91.6377 92.0903
/F/ 84.9242 85.6039 85.3135 86.0893 86.0493 86.5224 87.1079 87.1079
/IH/ 93.1195 93.4377 94.9087 94.9783 94.3959 95.009 93.8153 95.009
/IY/ 92.9352 93.1194 94.9087 95.2223 95.2971 95.7253 95.213 95.7253
/K/ 86.692 86.046 87.136 86.458 87.894 85.216 86.614 87.894
/N/ 96.4727 97.136 97.5795 97.9698 97.8956 97.9202 98.1033 98.1033
/R/ 87.9715 86.6735 88.5042 89.7945 90.0124 89.9092 89.8415 90.0124
/S/ 87.9832 88.6942 89.6029 90.4101 90.1797 90.065 90.0249 90.4101
/T/ 90.1066 91.0542 92.9159 92.6551 92.629 92.3207 91.6112 92.9159

/TH/ 84.1674 86.7468 87.7692 88.0125 90.7307 91.8087 89.2488 91.8087
/UW/ 93.9652 95.1373 96.0497 96.0256 96.0958 95.5449 96.2957 96.2957
/V/ 92.0974 94.8436 94.6873 95.4097 95.1399 95.3431 95.5893 95.5893
/W/ 90.0719 91.1142 92.9558 92.4098 93.0521 93.2115 92.6727 93.2115

Average 91.0994 91.9787 92.9484 93.2424 93.5514 93.5670 93.3449 93.9247

are constructed. For the training stage, the number of vectors picked per user
and per phoneme for generating the model is the same. Each user has the same
probability to produce the correct bit per phoneme. However, the number of
testing vectors that each user provided can be different.

Following the method a key bit assignation is required. For the purpose of this
research, the assignation is arbitrary. Thus, the keys have liberty of assignation,
therefore the keys entropy can be easily maximised if they are given in a random
fashion with a uniform probability distribution.

The classification of Dp vectors was performed using SVMlight [16]. The be-
haviour of the SVM is given in terms of Equation 2.

The optimisation is accomplished as follows, see Table 2. The accuracy re-
sults η are computed for several number of dimensions. Afterwards, the models
that develop the highest accuracy values are selected and compose a new set
of results. Although Table 2 just shows the outcome for 10 users, the proce-
dure was also executed for 20 and 30 users. The global results are depicted in
Figure 3.

Table 3 shows the global values of η for different number of users, considering
the selection. The statistics were computed as follows: 500 trials were performed
for 10 and 20 users, and 1000 trails were performed for 30 and 50 users.

As shown in the Figure 3 the increment of the number of MFCC coefficients
gives better results than just adjusting to speech known specifications.
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Table 3. Global average for η, after the best perfomance models

Number of users η (%)
10 93.92474737
20 91.60074211
30 90.30173158

5 Conclusion

We have presented a method to improve the generation of a cryptographic key
from the speech signal based on the selection of the best performance for each
of the phonemes. With this method we obtained an improvement of 19.88%,
17.08%, 14.91% for 10, 20 and 30 speakers, from the YOHO database, respec-
tively, compared with our previous results. In addition, it is important to note
that for this task the 18 and 20 dimension vector shows better performance
than 12 dimension vector which is the most common parameter number used in
speech recognition.

For future research, we plan to study the classification techniques, either im-
proving the SVM kernel or by using artificial neural networks. Moreover, it is
important to study the robustness of our system under noisy conditions. Besides,
future studies on a M -ary key may be useful to increase the number of differ-
ent keys available for each user given a fixed number of phonemes in the pass
phrase.
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Abstract. Databases are fundamental for research investigations. This paper 
presents the speech database generated in the framework of COST-277 “Non-
linear speech processing” European project, as a result of European collabora-
tion. This database lets to address two main problems: the relevance of band-
width extension, and the usefulness of a watermarking with perceptual shaping 
at different Watermark to Signal ratios. It will be public available after the end 
of the COST-277 action, in January 2006. 

1   Introduction 

Competitive algorithm testing on a database shared by dozens of research laboratories 
is a milestone for getting significant technological advances. Speaker recognition is 
one of these fields, where several evaluations have been conducted by NIST [1]. In 
this paper, we present the COST-277 database, generated by means of European col-
laboration between three European countries: Spain, Sweden and Austria. However, 
our purpose is not the collection of a new speech database. Rather than this, we have 
generated two new databases using a subset of an existing one [2], with the objective 
to study two new topics that can appear with recent technological advances: 

1. The study of the relevance of bandwidth extension for speaker recognition 
systems. 

2. The study of a watermark insertion for enhanced security on biometric systems. 

A major advantage of database availability is also to set up the evaluation condi-
tions that can avoid some common mistakes done in system designs [3]: 

1. “Testing on the training set”: the test scores are obtained using the training 
data, which is an optimal and unrealistic situation. 

2. “Overtraining”: The whole database is used too extensively in order to opti-
mize the performance. This can be identified when a given algorithm gives ex-
ceptionally good performance on just one particular data set. 

Thus, our database includes different material for training and testing in order to 
avoid the first problem. In addition, the availability of a new database helps to test the 
algorithms over new stuff and thus to check if the algorithms developed by a given 
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laboratory can generalize their results, even in a new topic framework such as band-
width extension and watermarked signals. 

This paper is organized as follows: section 2 describes the database, and section 
three provides some experimental results as reference. 

2   The COST-277 Database 

We have generated two new databases using an existing one. Next section describes 
the original and new databases. 

2.1   Original Database 

Although the original database contains hundreds of speakers, several tasks (isolated 
digits, sentences, free text, etc.), recording sessions, microphones, etc., we have just 
picked up a small subset due to the procedure for database generation is time consum-
ing and occupies a considerable amount of data (more than 2 DVD). 

We have selected two subsets: 

a) ISDN: 43 speakers acquired with a PC connected to an ISDN. Thus, the speech 
signal is A law encoded at a sampling rate fs=8kHz, 8 bit/sample and the 
bandwidth is 4kHz. 

b) MIC: 49 speakers acquired with a simultaneous stereo recording with two dif-
ferent microphones (AKG C-420 and SONY ECM66B). The speech is in wav 
format at fs=16kHz, 16 bit/sample, and the bandwidth is 8kHz. We have just 
used the AKG microphone. 

In both cases we have selected the following stuff for training and testing: 

1. One minute of read text for training 
2. Five different sentences for testing, lasting each sentence about 2-3 seconds. 

All the speakers read the same text and sentences, so it is also possible to perform a 
text-dependent experiment. 

2.2   Bandwidth Extended Database 

A speech signal that has passed through the public switched telephony network 
(PSTN) generally has a limited frequency range between 0.3 and 3.4 kHz. This nar-
row-band speech signal is perceived as muffled compared to the original wide-band 
(0 – 8 kHz) speech signal. The bandwidth extension algorithms aim at recovering the 
lost low- (0 – 0.3 kHz) and/or high- (3.4 – 8 kHz) frequency band given the narrow-
band speech signal. There are various techniques used for extending the bandwidth of 
the narrow-band. For instance, vector quantizers can be used for mapping features 
(e.g., parameters describing the spectral envelope) of the narrow-band to features de-
scribing the low- or high-band [4,5]. The method used in this database is based on 
statistical modelling between the narrow- and high-band [6]. 

The bandwidth extension algorithm has been directly applied to the ISDN original 
database, which is a real situation. However, it is interesting to have a reference of  
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Fig. 1. General pattern recognition system 

a “real” full band signal (see figure 1 for a conceptual diagram). For this purpose, we 
have generated a narrow band signal using the full band signal. We have used the pots-
band routine, which can be downloaded in [7]. This function meets the specifications of 
G.151 for any sampling frequency, and has a gain of –3dB at the passband edges. 

The bandwidth extension algorithm has been tuned for speech signals with POTS 
(plain old telephone service) bandwidth, inside the range [300, 3400]. For this reason, 
we have created the following databases (see table 1): 

Table 1. Speech databases, fs=sampling frequency (kHz), bps= bits per sample 

Name Bandwidth[kHz] fs bps description 

ISDN [0, 4] 8 8 Original 

ISDNb [0.3, 3.4] 8 8 ISDN filtered with potsband 

ISDNc [0.1, 8] 8 8 ISDNb + BW extension 

MIC [0, 8] 16 16 Original 

MICb [0.3,3.4] 16 16 MIC filtered with potsband 

MICc [0.1, 8] 16 16 MICb + BW extension 

            Some experiments with these databases can be found in [8,9]. 

2.3   Watermarked Database 

Watermarking is a possibility to include additional information in an audio signal 
channel without having to sacrifice bandwidth and without the knowledge of the lis-
tener. A widely know application of audio watermarking is digital rights management, 
where the watermark is used to protect copyrights.  

Speech watermarking has been used to include additional information in the analog 
VHF communication channel between pilots and a air traffic controller [10]. Water-
marking for biometric signal processing (e.g. speaker verification) can increase the 
security of the overall system. 
Watermarking for speech signals is different than the usual audio watermarking due to the 
much narrower signal bandwidth. Compared to the 44.1 kHz sampling rate for CD-audio, 
telephony speech is usually sampled at 8 kHz. Therefore, compared CD-audio watermark-
ing, less information can be embedded in the signal. For perceptual hiding usually the 
masking levels have to be calculated. The common algorithms used are optimized for CD-
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audio bandwidth and are computationally very expensive. Another difference is the ex-
pected channel noise. For CD-audio the channel noise is usually rather low. Speech on the 
other side is very often transmitted over noisy channels, in particular true for air traffic 
control voice communication. On the one hand, the channel noise is a disadvantage; on the 
other hand this allows much more power for the watermark signal since the channel noise 
will cover it anyway. The listener expects a certain amount of noise in the signal. A sum-
mary of the differences can be seen in table 2. Figure 2 shows an example of a speech 
frame spectrum with and without watermarking. 

A more in depth explanation of the watermarking algorithm is beyond the scope of 
this paper and can be found in [10]. 

Our previous work [11] stated the convenience for a constant update in security 
systems in order to keep on being protected. A suitable system for the present time 
can become obsolete if it is not periodically improved. Usually, the combination of 
different systems and/ or security mechanisms is the key factor [12] to overcome 
some of these problems [13-14]. One application of speech watermarking is the com-
bination of speaker recognition biometric system with a watermarking algorithm that 
will let to check the genuine origin of a given speech signal [15]. 

Table 2. Audio vs speech watermarking comparison 

 CD-Audio Watermarking Speech watermarking 
Channel noise Should be very low Can be high 
Bandwidth Wideband (20 kHz) Narrowband (4 kHz) 
Allowed distortion Should be not perceivable Low 
Processing delay No issue Very low (for real time 
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Fig. 2. Example of LPC spectrum envelope a speech fragment, with and without perceptual 
weighting compared with the original 
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Watermark floors higher than the SWR aren't included, since it is not useful.  
We have watermarked the MICb database (see table 1) with the following signal to 

watermark ratios (SWR) and watermark floors (WM floor): 

Table 3. Watermark levels ( :included, x: not included in the database) 

SWR WM floor  0 dB  5 dB 10 dB 15 dB 20 dB 

 0 dB x  x  x  x  

 -5 dB   x  x  x  

 -10 dB     x  x  

 -15 dB       x  

 -20 dB         

 -25 dB         

 -30 dB         

3   Algorithm Evaluation 

Speaker recognition [16] can be operated in two ways: 

a) Identification: In this approach no identity is claimed from the person. The 
automatic system must determine who is trying to access. 

b) Verification: In this approach the goal of the system is to determine whether 
the person is who he/she claims to be. This implies that the user must provide 
an identity and the system just accepts or rejects the users according to a suc-
cessful or unsuccessful verification. Sometimes this operation mode is named 
authentication or detection. 

In order to evaluate a given algorithm, we propose the following methodology: for 
each testing signal, a distance measure dijk is computed, where dijk is the distance from 
the k realization of an input signal belonging to person i, to the model of person j. 
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Fig. 3. Proposed data structure 
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The data can be structured inside a matrix. This matrix can be drawn as a three di-
mensional data structure (see figure 3). In our case, N=49 and k=5. 

This proposal has the advantage of an easy comparison and integration of several 
algorithms by means of data fusion, with a simple matrix addition or more generally a 
combination. Once upon this matrix is filled up, the evaluation described in next sec-
tions should be performed. 

3.1  Speaker Identification 

The identification rate finds for each realization, in each raw, if the minimum distance 
is inside the principal diagonal (success) or not (error), and works out the identifica-
tion rate as the ration between successes and number of trials (successes + errors): 

 for i=1:N, 
  for k=1:#trials, 

   if(diik<dijk) ∀ ?j i, then success=success+1 
   else error=error+1 
   end 

  end 
 end 

3.2   Speaker Verification 

Verification systems can be evaluated using the False Acceptance Rate (FAR, those 
situations where an impostor is accepted) and the False Rejection Rate (FRR, those 
situations where a speaker is incorrectly rejected), also known in detection theory as 
False Alarm and Miss, respectively. This framework gives us the possibility of distin-
guishing between the discriminability of the system and the decision bias. The dis-
criminability is inherent to the classification system used and the discrimination bias 
is related to the preferences/necessities of the user in relation to the relative impor-
tance of each of the two possible mistakes (misses vs. false alarms) that can be done 
in speaker verification. This trade-off between both errors has to be usually estab-
lished by adjusting a decision threshold. The performance can be plotted in a ROC 
(Receiver Operator Characteristic) or in a DET (Detection error trade-off) plot [17]. 
DET curve gives uniform treatment to both types of error, and uses a scale for both 
axes, which spreads out the plot and better distinguishes different well performing 
systems and usually produces plots that are close to linear. DET plot uses a logarith-
mic scale that expands the extreme parts of the curve, which are the parts that give the 
most information about the system performance. For this reason the speech commu-
nity prefers DET instead of ROC plots. Figure 4 shows an example of DET plot, and 
figure 5 shows a ROC plot. 

We can use the minimum value of the Detection Cost Function (DCF) for compari-
son purposes. This parameter is defined as [17]: 

  miss miss true fa fa falseDCF C P P C P P= × × + × ×  (1) 

Where Cmiss is the cost of a miss (rejection), Cfa is the cost of a false alarm (accep-
tance), Ptrue is the a priori probability of the target, and Pfalse = 1 − Ptrue. Cmiss= Cfa =1. 
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Fig. 4. Example of a DET plot for a speaker verification system (dotted line) 
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Fig. 5. Example of a ROC plot for a speaker verification system (dotted line) 

Nevertheless, this parameter just summarizes the behaviour for a narrow range of 
operating points in the neighbourhood of the selected threshold. For this reason a 
whole DET or ROC plot is more interesting for system comparison purposes. 

Using the data structure defined in figure 3, we can easily apply the DET curve 
analysis. We just need to split the distances into two sets: intra-distances (those inside 
the principal diagonal), and inter-distances (those outside the principal diagonal). 
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Abstract. This study aims to investigate on how different kinds of pausing 
strategies, such as empty and filled pauses, and phoneme lengthening are used 
by children to shape the discourse structure in Italian, and to identify how many 
of the silent intervals can be attributed to the amount of given and added infor-
mation the speaker is conveying in the speech flow. To this aim a cross-modal 
analysis (video and audio) of spontaneous narratives produced by male and fe-
male children (9 plus-minus 3 months years old) was performed. Empty speech 
pauses were divided into three categories according to their duration: a) short - 
from 0.150 up to 0.500 s long; b) medium - from 0.501 up to 0.900 s long; c) 
long - more than 0.900 s long. The analysis showed that each of the above cate-
gories seems to play a different role in the children discourse organization, 
Children pause, like adults, to recover from their memory the new information 
they try to convey. Higher is the recovery effort, longer is the pausing time. 
Longer are the pauses, lower is the probability that they can be associated to a 
given information Most of the long pauses (96% for female and 94% for male) 
are associated to a change of scene suggesting that long pauses are favored by 
children in signaling discourse boundaries. The consistency, among subjects, in 
the distribution of speech pauses seems to suggest that, at  least in Italian,  there 
is an intrinsic model of timing, probably a very coarse model, that speakers use 
to regulate speech flow and discourse organization. 

1   Introduction 

Spontaneous speech, as well as other types of speech, is characterized by the presence 
of silent intervals (empty pauses) and vocalizations (filled pauses) that do not have a 
lexical meaning. These pausing means play several communicative functions. In fact, 
it has been shown that their occurrence is determined by several factors such as build 
up tension or generate the listener’s expectations about the rest of the story, assist the 
listener in his task of understanding the speaker, signal anxiety, emphasis, syntactic 
complexity, degree of spontaneity, gender, and educational and socio-economical 
information [1, 2, 13, 15, 16, 18].  

Pauses are not only generate by psychological motivations but also as a linguistic 
mean for discourse segmentation. Speakers systematically signal changes in scene, time, 
and event structures using speech pauses. Empty pauses are more likely to coincide with 
boundaries, realized as a silent interval of varying length, at clause and paragraph level 
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[4, 14, 17, 22]. This is particularly true for narrative structures where it has been shown 
that pausing marks the boundaries of narrative units [7, 8, 19, 20, 21, 22].  

Several cognitive psychologists have suggested that pausing strategies reflect the 
complexity of neural information processing. Pauses will surface in the speech stream 
as the end product of a “planning” process that cannot be carried out during speech 
articulation and the amount and length of pausing reflects the cognitive effort related 
to lexical choices and semantic difficulties for generating new information [5, 8, 16].  

Moreover, there is a practical interest in studying pause distribution along speech 
for application on automatic speech synthesis and recognition. Most of the current 
automatic speech systems ignore the effects of pausing, temporal timing, utterance-
final vowel lengthening. Thus, a better knowledge of how pausing strategies affect 
spontaneous speech should be of support in the design of more natural speech synthe-
sis systems and improve the performance of automatic speech recognition systems.   

Along the above guidelines, the aim of the reported experiments was to investigate 
how different kind of pausing strategies, such as empty and filled pauses, and pho-
neme lengthening are used by children to shape the discourse structure in Italian and 
furthermore, to identify how many of the silent intervals can be attributed to the 
amount of “given” and “added” information the speaker is conveying in the speech 
flow.  

2   Definitions 

The present work interprets the concepts of  “given” and “added” according to the 
definition proposed by Chafe [6], which considered as “added” any verbal material 
that produces a modification in the listener’s conscious knowledge, and therefore  
“given” verbal material was intended as not to produce such a modification. More-
over, the label not classified is attributed to speech material such as filled pauses, 
and/or short interruptions (such as “ap*”) that follow empty pauses. Together with the 
above definitions it is necessary to introduce the concept of “changes” that in the 
present work are labels attributed to empty pauses identifying changes in scene, time 
and event structures. In this context, changes could be attributed to any pause inde-
pendently of the kind of speech material (given, added, and not classified) that pre-
cedes them. 

In this context, an empty pause (EP) is a silent interval of more than 0.150 s. Nor-
mally filled pauses (FP) are used to “hold the floor” i.e. preventing interruption by the 
listener while the speaker searches for a specific word [12] and different fillers may 
serve different functions, such as marking a successful memory search (“ah”) or sig-
naling the selection of an example (“oh”). However, in this context, filled pauses 
generally appear as “hum, ehh” because the task and the lack of an interlocutor pre-
clude their use for other functions. Even though phoneme lengthening can appropri-
ately be considered as a filled pause, such potential filled pauses were measured and 
analyzed on a separate ground. Moreover a “clause” is assumed to be “a sequence of 
words grouped together on semantic or functional basis” and a “paragraph” was  
 



110 A. Esposito 

considered as “a sequence of several clauses connected together by the same subject 
or scene”. 

3   Materials and Methods 

The video recordings on which our analysis is based are of narrations by 10 female 
and 4 male children (9 plus-minus 3 months’ years old). The children told the story of 
a 7-minute animated color cartoon they had just seen. The cartoon is of a type familiar 
to Italians children, involving a cat and a bird. The listener in each case was the 
child’s teacher and other children. This kept out stranger-experimenter inhibitions 
from the elicitation setting; i.e., factors that could result in stress and anxiety. Limit-
ing these factors allows us to rule out the “socio-psychological”-type of pause [3]. 
The cartoon has an episodic structure, each episode characterized by a “cat tries to get 
bird/is foiled” narrative arc. Because of the cartoon’s episodic structure, typically 
children will forget entire episodes. Therefore, only two episodes were analyzed, the 
ones that all the children remembered. The data were recorded at the International 
Institute for Advanced Scientific Study, Vietri, Italy. None of the participants was 
aware that speech pauses were of interest. The video was analyzed using commercial 
video analysis software (VirtualDub™). The program allows viewing of video-shots 
in 3-D, and movement forward and backward through the shots. The speech waves, 
extracted from the video, were sampled at 16 kHz and digitalized at 16 bits. The audio 
was analyzed using Speechstation2™ from Sensimetrics. For the audio measurements 
the waveform, energy, spectrogram, and spectrum were considered together, in order 
to identify the beginnings and endings of utterances, filled and empty speech pauses 
and phoneme lengthening. The details of the criteria applied to identify the boundaries 
in the speech waveform are accurately described in Esposito and Stevens [9]. Both the 
video and audio data were analyzed perceptually as well, the former frame-by-frame 
and the latter clause-by-clause. 

4   Preliminary Results 

Tables 1 and 2 report, for each male and female child respectively, the absolute num-
ber of occurrences of various pausing means and their percentage (between brackets) 
over the two episodes. Tables 1 and 2 also report the percentage of empty pauses and 
the percentage of filled pauses and phoneme lengthening for each child. 

Among children, S6 and S8 are whose that uses a higher percentage of empty 
pauses, which is compensated by a reduced number of filled pauses. Moreover, 
among empty pauses, short pauses (33%) are largely more frequent than medium ones 
(10%), which in turn are more frequent than long pauses (6%) suggesting that the 
three duration ranges play a different role in structuring the discourse. Since this is 
generally true also for each subject (except S5), it also suggests that children use a 
similar pause duration strategy to highlight different discourse units. 
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Table 1. Female children: absolute number of occurrence of empty (short, medium, long) pauses, 
filled pauses, and phoneme lengthening (% between brackets) broken down for per child 

Female 
children 

Short   
EP 

Me-
dium 
EP 

Long    
EP 

Filled Vowel 
Length. 

To-
tal 

% of 
EP 

% of 
FP and 
Vowel 

Length. 
S1 21  (22) 15  (16) 8     (9) 29 (31) 21    (22) 94 47 53 
S2 25  (24) 18  (17) 10  (10) 33 (31) 18    (17) 104 53 48 
S3 18  (22) 4      (5) 7     (9) 31 (38) 21    (26) 81 36 64 
S4 61  (52) 2      (1) 1     (1) 33 (28) 21    (18) 118 54 46 
S5 4    (12) 5    (15) 10 (30) 11 (34) 3       (9) 33 57 43 
S6 39  (60) 2      (3) 3     (5) 10 (16) 10    (16) 64 68 32 
S7 20  (26) 7    (10) 1     (1) 21 (27) 28    (36) 77 37 63 
S8 10  (44) 6    (26) 0 6 (26) 1       (4) 23 70 30 
S9 38  (36) 9      (8) 4     (4) 18 (17) 37    (35) 106 48 52 
S10 19  (29) 7    (11) 3     (5) 24 (37) 12    (18) 65 45 55 
Tot.  255 (33) 75  (10) 47   (6) 216 (28) 172  (22) 765 51 49 

Table 2. Male children: absolute number of occurrence of empty (short, medium, long) pauses, 
filled pauses, and phoneme lengthening (% between brackets) broken down for per child 

Male 
children 

Short 
EP 

Medium 
EP 

Long   
EP 

Filled Vowel 
Length. 

To-
tal 

% 
of 
EP 

% of 
FP and 
Vowel 

Length. 
S1 13  (28) 10   (21) 4      (8) 13   (28)  7      (15) 47 57 43 
S2 20  (39)  9    (17) 2      (4) 8     (15) 13     (25) 52 60 40 
S3 25  (45) 10   (18) 3      (5) 7     (12) 11     (20) 56 68 32  
S4     18  (24) 13  (19) 7      (9) 21   (29) 15     (20)  74 52 49 
Tot.  76  (33) 42  (18) 16    (7) 49   (22) 46    (20) 229 59 41 

On overall, filled pauses are frequent as much as phoneme lengthening, even 
though there is a large intra-speaker and inter-speaker variability. Moreover, Tables 1 
and 2 show that pausing means are differently used by different children with some 
child that make use of more filled pauses and vowel lengthening than empty pauses 
(as S3 and S7 for female children), other that does the opposite (as S6 and S8 for 
female children, and S3 for male children), yet other, along their speech, equally dis-
tribute empty and filled pauses.  

Empty pauses, taken separately, are considerably more frequent than filled pauses 
and phoneme lengthening both for male (59% against 21% and 20%) and female 
(51% against 28% and 22%). Moreover, short pauses (33% both for male and female) 
are more frequent than medium ones (18% for male and 10% for female), which in 
turn are more frequent than long pauses (7% for male and 6% female). This is gener-
ally true for each subject (except female S5) suggesting  that children use a similar 
strategy in distributing short, medium and long pauses in their narrations.  
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Table 3. Absolute number of occurrences of short, medium, and long empty pauses associated 
with a given, added, and not classified information, and changes of scene in the discourse struc-
ture. The percentage (between brackets) is computed over the number of pauses in each dura-
tion range. (Results are reported both for male and female children) 

10 Female children Short EP Medium EP Long_EP 

Given 9                 (4%) 2                 (3%) 0                  (0) 
Added 225           (88%) 67             (89%) 36           (77%) 
Not_classified 21               (8%) 6                 (8%) 11           (23%) 
Changes 51             (20%) 61             (81%) 45           (96%) 
 
4 Male children 

   

Given 5                 (6%) 0      0   
Added 65             (86%) 37             (88%) 13           (81%) 
Not_classified 6                 (8%) 5               (12%) 3             (19%) 
Changes 6                 (8%) 14             (33%) 15           (94%) 

To investigate if different duration ranges play a different role in structuring dis-
course units and if the need of pausing is due to the cognitive effort to recall from mem-
ory and lexicalize concepts that are not yet known by the listener, we evaluated the 
amount of given, added and not classified information that precedes each empty pause. 
Table 3 reports the number of short, medium, and long pauses that follow given, added, 
and not classified speech material. Here the label not classified is attributed to speech 
material such as filled pauses, and/or short interruptions (such as “ap*”).  

The number of short, medium and long empty pauses that are associated to a change 
(changes) of scene or paragraph structure is also reported. Note that changes could 
happen independently of the kind of speech material (given, added, and not classified) 
that precedes them and therefore, should not be counted in the total percentage. 

Children pause, like adults, to recover from their memory the new information they 
try to convey to the listeners, showing that higher is the recovery effort, longer is the 
pausing time. As it could be seen in Table 3, most of the pauses follow new added 
information, except for a few short (4% for female and 6% for male) and medium 
(3% only for female) pauses. Most of the long pauses (96% for female and 94% for 
male) are associated to a change of scene suggesting that long pauses are favoured by 
children in signalling discourse boundaries. 

The relationship with the cognitive effort can be easily seen examining the amount 
of long pauses associated with changes of scene, time and event structure. In fact, an 
high percentage of medium (81% for female, 33% for male children) and long (96% 
for female and 94% for male children) pauses are made to signal these changes, 
whereas only a low percentage of short (20% for female and 8% for male children) 
pauses serve this purpose.  

The above data also suggest a predictive scheme for the alternating pattern of cog-
nitive rhythm in the production of spontaneous narratives. In this alternating pattern, 
long pauses account for the highest percentage (96% and 94% for female and male  
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children respectively) of paragraphs or changes followed by medium pauses (81% and 
33% for female and male children respectively). Even though they are more frequent 
than medium and long pauses, short pauses (no longer 0.500 s) have a low probability 
to signal a change of scene (20%) in the flow of the narration. 

Tables 4 and 5 gives, for each child, the number of words (Wds), clauses (Cls) and 
paragraphs (Phs) marked by a pause (#Ps). In this case, filled and empty pauses are 
grouped together. Note that pauses that mark a word boundary can also mark a clause, 
a filler conjunction and a paragraph boundary.  

The results in Tables 4 and 5 show that, on the average, 19% of the word 
boundaries are marked by a pauses independently of the number of words used. The 
pattern is still more reliable at clause and paragraph level where children mark with 
a pause 70% of the clause boundaries and 100% of the paragraph boundaries. There 
is a variability in the above pattern mostly observed among the female children, 
since the female children S5, S6, S8, and S10 pause less than the others at word 
boundaries, and S7 and S9 use also other means (such as vowel lengthening) to 
signal paragraphs boundaries.  

Table 4. Absolute number and percentage (between brackets) of words (Wds), clauses (Cls), 
and paragraphs (Phs) marked by a pause (#Ps) for female children 

10 Female  
children 

Wds     #Ps       (%) Cls      #Ps      (%) Phs       #Ps        (%)  

S1 217       54         (25) 43       31      (72) 10      10          (100) 
S2 249       49         (20) 56       37       (66) 11      11          (100) 
S3 224       43         (19) 39       28        (72) 13      13           (100) 
S4 307       74         (24) 49       36        (73) 15      15          (100) 
S5 118      18          (15) 23       13        (57)  8        8            (100) 
S6 324       47         (15) 68       36        (53) 15      15          (100) 
S7 206       40         (19) 34       26        (76) 9          8            (89) 
S8 149      15         (10) 25       14        (56) 6           6          (100) 
S9 217      45         (21) 41       31        (76) 13       10            (77) 
S10 187       29         (16) 34       23        (68) 11       11          (100) 
Averaged total 2198    414        (19) 412     275      (68) 111      107         (96) 

Table 5. Absolute number and percentage (between brackets) of words (Wds), clauses (Cls), 
and paragraphs (Phs) marked by a pause (#Ps) for male children 

4 Male  
Children 

Wds      #Ps      (%) Cls      #Ps      (%) Phs      #Ps         (%)  

S1 142        29        (20)  21        15       (71) 9          9           (100) 
S2 182        33        (18) 28        20       (71) 6          6           (100) 
S3 218        35        (16) 34        23       (68) 8          8           (100) 
S4 208        49        (24) 37        27       (73) 12        12         (100)  
Averaged total 750       146      (19) 120      85       (71) 35        35         (100)      
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5   Conclusions 

This study was devoted to investigate on the system of rules that underlie children paus-
ing strategy and their psychological bases. The reported data show that empty pauses of 
short, medium, and long duration are largely used by children to signal new information 
to the listeners’ conscious knowledge and only a few among the short (4% for female 
and 6% for male), and medium (3% only for female) empty pauses mark given informa-
tion. This suggests that children pause, like adults [16, 20, 21, 22], to recover from their 
memory the new information they try to convey. Higher is the recovery effort, longer is 
the pausing time. Moreover, longer are the pauses, lower is the probability that they can 
be associated to a given information, supporting the hypothesis that pausing plays the 
functional role of indicating the cognitive effort needed for planning speech.  

Pauses are not only generate by psychological motivations but also as a linguistic 
mean for discourse segmentation. Pauses are used by children to mark words, clause, 
and paragraph boundaries. The results show that a similar percentage of word (19% 
both for male and female children), clause (68% for female and 71% of male chil-
dren) and paragraph (96% of female and 100% of male children) boundaries is 
marked by a pause. Short pauses (67.6% for females and 56.7 for males) than medium 
(19.9% for females and 31.4% for males), that in turn are more frequent than long 
pauses (12.5% for females and 11.9% for males). However, children systematically 
signal changes in scene, time, and event structures using medium (81% for female and 
33% for male) and long pauses (96% for female and 94% for male) suggesting that 
only pauses longer than 0.5 s are favored by children to mark paragraph boundaries 
whereas short pauses rarely served for this function. 

This result favors the hypothesis of an universal model for discourse structure, oth-
erwise we would expect children, being less skilled in the use of the language’s lexi-
con to make more pauses at word level than at the clause and paragraph level. This 
hypothesis is further on supported by the fact in a previous work [10-11] it has been 
shown that in 56% of the cases children’s pauses occur right after the first word in a 
clause, i.e. right after a filler conjunction that signals a major transition in the speech 
flow and serves to plan the message content for the continuation of the discourse. The 
consistency among the subjects in the use of pausing means seems to suggest a very 
coarse and general timing model, that speakers use to regulate speech flow and dis-
course organization. More data are needed to make sense of how this model works, 
since it would be of great utility in the field of human-machine interaction, favoring 
the implementation of more natural speech synthesis and interactive dialog systems.  
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Abstract. Most research on F0 has attempted to model the behaviour of an  
entire linguistic community (e.g of speakers of US or UK English, French, 
Japanese etc). In this research, an attempt is made in two analyses to character-
ize some prosodic aspects of individual differences within the speaker commu-
nity. For this, the statistical distributions of F0 and intensity parameters were 
examined. It was found in the first analysis (34 male speakers, nine speech 
styles) that F0 distributions showed a number of characteristic patterns while in-
tensity distributions did not pattern in any particular fashion. F0 distributions 
fell into four patterns, suggesting four styles of F0 whatever the speech style is. 
This classification was confirmed in our second analysis (11 male speakers, one 
speech task). These various patterns of F0 distributions are discussed with re-
gard to the speech task and to the speaker’s style. 

1   Introduction 

It is a common assumption that speakers activate speech components in a similar 
fashion when they perform the same speech task. Differences among speakers are 
then interpreted in terms of paralinguistic and/or extralinguistic factors.  

A number of current prosodic studies investigate the complex aspects of individual 
variations, in particular in studies related to the “family of emotions”, attitudes and 
sociolinguistic parameters (see e.g.,  the proceedings of Speech Prosody 2004). These 
prosodic variations are mainly characterised by one, or more often several, specific 
patterns which are superimposed on the “neutral” expected prosodic profile. For ex-
ample, in the case of fear, the mean values for speech rate and F0 are increased [3]. 

Other prosodic variations are related to the individual psychological profile (for 
example [4]). Such variations are distinguished by specific interplays between speech 
rate, intensity, F0 and pauses. 

In this paper, statistical distributions of F0 and intensity are investigated. Possible 
differences at this level do not seem to have been considered in previous studies [1]. 

2   Methodology 

For this study, the Machine-Readable Spoken English Corpus (MARSEC) see 
www.rdg.ac.uk/AcaDepts/ll/speechlab/marsec.) was used in two analyses: on the one 
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hand, the intonation and the intensity of 34 male speakers recorded in different speech 
tasks were investigated. This permitted to examine the effect of speech style. On the 
other hand, the intonation and the intensity of 11 male speakers giving a commentary 
on the BBC were analysed. This permitted to examine the effect of individual varia-
tion within a specific speech style.  

For the first study, 23’566 values of F0 for 34 male speakers were extracted from 
the database obtained from MARSEC by Keller [3]. The pitch periods of voiced 
sounds were determined by the position of the maximum of the autocorrelation func-
tion of the sound. All other parameters were kept at default (time step 10 ms, mini-
mum pitch 70 Hz). Intensity values of these voiced sounds were calculated at a time 
step of 1 ms using the default values set in the Praat software. Average f0 and inten-
sity values were calculated for each sound segment on the basis of these measures. 

Nine styles of speech were represented in this database: address, fiction, lecture, 
market, news, poetry, religion, report and sports. 

F0 values were converted into semitones by the formula given in Fant et al. [2]: 
12[Ln(Hz/100)/Ln(2). This formula centers the semitone scale at 100 Hz = 0 semi-
tones, and 67 Hz at about -7 semitones and 318 Hz at about 20 semitones. Frequency 
distributions were computed for each speaker with a stepsize of 0.5 semitones. The 
obtained frequency per semitone step was then weighted by converting the values into 
percentages of total observations per speaker. 

Intensity values were squared-root transformed to better approximate a normal dis-
tribution. Distributions were computed for each speaker with a stepsize of 0.5 -i.e., 
0.25 dB. Then the obtained frequency per intensity level was weighted by converting 
the values into percentages of total observations per speaker. 

For the second study, signals were prealigned with an automatic algorithm written 
by Prof. Eric Keller (IMM, University of Lausanne), and then manually adjusted. 
Acoustic analyses were performed with the public software Praat. The pitch period of 
a sound was determined by the position of the maximum response of the autocorrela-
tion function. The voicing threshold was set to 0.05 and the silence threshold was set 
to 0.15. All other parameters were kept at default values (time step 10 ms, minimum 
pitch 75 Hz).  

F0 values were automatically extracted thanks to a program written by Eric Keller. 
It runs the Praat’s F0 extraction of the input sound. On the basis of the TextGrids, the 
ouput provides F0 values for each voiced sound.  

In both studies, the statistical analyses were performed with DataDesk 6.1, SPSS 
11.0 and XLSTAT 5.1. 

3   Results 

3.1   First Analysis: F0 Results 

Histograms computed in DataDesk, with the same window length and the same num-
ber of intervals show a considerable variation of distributions among speakers.  

This variation was unexpected since the literature does not mention any particular 
issue in this domain. However, noticeable differences are observed by just looking at 
the graphs: some distributions are multimodal and others are not. Some distributions  
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Table 1. Statistical central values of F0 values for 34 male speakers in nine speech tasks 

Statistics

397 4787 1.829037 1.488125 7.4845

901 4283 1.818313 1.454095 .0078a

310 4874 3.338160 2.979429 -.2718a

110 5074 3.080628 2.807319 -2.5968a

1104 4080 4.246489 4.562503 -.9145a

146 5038 4.697262 4.573999 2.0074a

5181 3 1.396632 .911155 -2.6268a

479 4705 5.884802 6.006810 6.8069a

443 4741 5.152599 4.959489 4.7805

3318 1866 6.350111 6.270877 7.0162

590 4594 6.861170 6.853301 4.3922a

451 4733 7.779444 7.268890 13.9594

462 4722 2.637703 2.402813 -.7237a

659 4525 6.940815 6.355093 8.9241

345 4839 2.884157 2.526611 -4.2560a

450 4734 .903066 .498188 -2.0857a

400 4784 5.832542 5.839330 5.6475a

345 4839 7.661769 7.144898 15.0907

503 4681 6.449524 6.289607 5.1909a

587 4597 5.329337 5.291426 3.7066a

169 5015 4.391394 4.838427 -3.7520a

128 5056 3.203771 2.950964 2.4201a

599 4585 3.920015 4.153611 13.4643

139 5045 1.817037 1.750320 3.6033

304 4880 3.765106 3.362408 .6912a

268 4916 .442596 .244106 -2.8346a

111 5073 5.622323 5.555810 -1.0841a

213 4971 3.833997 3.488348 1.9960a

82 5102 .476567 .227052 1.2881a

450 4734 8.118200 8.303180 6.8878a

3300 1884 3.220368 2.730823 -.0904a

423 4761 .228776 .065835 -1.3390a

71 5113 7.660508 7.489997 1.9399

128 5056 5.387478 5.843171 -4.1178a

AMD

BP

BR

CF

CL

CP

DH

DS

GB

GF

GL

JB1

JB2

JC

JH

JM

JS

KG1

KG2

LM

MC

MF

MJ

ms1

ms6

ms7

MW

PD

PF

PR

RF

RSO

ST

VD

Valid Missing

N

Mean Median Mode

Multiple modes exist. The smallest value is showna. 
 

are strongly left-skewed, some others are rather centered. Some distributions are 
peaked, and others are rather flat. 

The three central values computed in SPSS, mean, median and mode, (see Table 1) 
show various patterns. For example, the three central values for speaker JS are very 
close. For many other speakers, the lowest modal value differs considerably from the 
two other central values. 

The computation of weighted frequency distributions permits first the graphical 
superposition of F0 distributions in order to illustrate these variations among speakers 
(see Figure 1). Secondly, this table was used for the computation in XLSTAT of an 
agglomerative hierarchical classification (AHC).  

The AHC algorithm gathers the most similar observation pairs, and then progres-
sively aggregates the other observations or observation groups according to their 
similarity until all observations are in a single group. The settings were as follows:  
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Proportional Distributions of F0 (in ST) for 34 Male Speakers
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Fig. 1. Weighted frequency distributions for 34 male speakers’ F0. The x axis represents semi-
tones calulated by Fant’s equation (2004). This equation sets 100 Hz = 0 st, 70 Hz = 6.17 st, 
200 Hz= 12 st. The y axis represents the percentage of samples. 

 

Fig. 2. Dendogram of the clustering of F0 distributions for 34 male speakers in nine speech 
tasks. The clustering suggests 4 groups. 

spearman’s dissimilarity and complete linkage. In that case, the dissimilarity between 
objects of A and B is the largest dissimilarity between an object of A and an object of 
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B. Aggregation using complete linkage tends to dilate the data space and to produce 
compact clusters. The AHC gives a clustering which classify the speakers according 
to their F0 distributions.It suggests four groups of speakers (Figure 2). 

Group 1 is represented by a unique speaker JH in a unique speech style that is fiction. 
His F0 distribution has a strong left peak and then becomes fairly flat, multimodal and 
broad. Compared to the mean and median, his lowest modal value is very far-off. The 
second group (CP, GB, MW, MC, CL, PD, MF, JB2, BR, RF) is characterised by a 
“normal” height for male speakers with a mean value close to the median value, but 
both values being distant from the lowest modal value. The skewness is positive. The 
third group (BP, DH, AMD, JM, MS1, GF, MS7, PF, RSO) is similar to the second 
group but with a low register of F0. The skewness is positive. In this group, speaker GF 
is badly classified: his three central values are close and high. In the fourth group (JC, 
JB1, KG1, DS, JS,LM,GL, KG2, PR, ST, VD), at least two of the three central values 
are very high and the F0 range is fairly large. The kurtosis is close to 0 or negative. 
Apart from group 1 with a unique speaker, the three other groups show mixed styles of 
speech, i.e., these four classes of F0 distributions are not driven by the speech task. 
When hearing pairs of speech samples according to the leaves of the aggregation, an 
auditive impression of similarity between speakers emerges.  

3.2   First Analysis: Intensity Results 

The same procedure for the computation of histograms and weighted distributions 
were applied to intensity. The superposition of speakers’ intensity distributions illus-
trate a similar pattern irrespective of speaker or speech style (see Figure 3). 

Proportional Distributions of dB (Sqrt) for 34 Male Speakers
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Fig. 3. Weighted frequency distributions for 34 male speakers’ intensity. The x axis represents 
squared-root dB values. The y axis represents the percentage of samples. 



 F0 and Intensity Distributions of Marsec Speakers: Types of Speaker Prosody 121 

3.3   Second Analysis: F0 Results 

Although speakers perform the same speech task, the histograms computed in 
DataDesk, with the same window length and the same number of intervals again show 
a variation of distributions among speakers. Table 2 shows the central values of the 11 
speakers. These variations are visible on the graphical superposition of F0  
 

Table 2. Statistical central values of F0 values (in semitones) for 11 male speakers in one 
speech task 

Statistics

340 436 1343696 9328647 -3.42468a .616 .132 .903 .264

440 336 9954147 9240932 -5.20582a -.018 .116 .578 .232

396 380 8925545 2177622 1.14639a .292 .123 -.118 .245

349 427 0025711 2097615 -.73723 .854 .131 .359 .260

505 271 3760663 3272467 -5.92541a -.400 .109 -.735 .217

441 335 9693586 6377587 4.22985a .340 .116 .881 .232

443 333 0122560 7621997 4.28062a .304 .116 -.195 .231

394 382 0231211 9891787 -2.04784a .190 .123 -.212 .245

517 259 6608246 3251690 -1.83327a 1.013 .107 1.854 .214

345 431 8173770 9574606 2.33616a -.352 .131 .390 .262

402 374 2137634 3857320 -4.29279a -.081 .122 .252 .243

ST2

ST3

ST4

ST5

ST6

ST7

ST8

ST9

ST10

ST11

ST12

Valid Missing
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Multiple modes exist. The smallest value is showna.  

Proportional Distributions of F0 (in st) for 11 male speakers
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Fig. 4. Weighted frequency distributions for 11 male speakers’ F0 in a commentary speech 
task. The x axis represent semi-tones calulated by Fant’s equation (2004). The y axis represents 
the percentage of samples. 
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distributions (see Figure 4). The Kruskall Wallis test confirms that distributions of F0 
(in semitones) differ significantly (Chi-square = 1055.890; df=10; p=.000). 

The agglomerative hierarchical classification suggests three types of F0 distribu-
tions (Figure 5). The first group (ST5, ST10) has the largest positive skewness.  
Speakers in this group have a low F0 register. Group 2 (ST6, ST11) has the largest 
negative skewness. The median is higher than the mean and both are far-off the low-
est modal value. Speakers in this group have a high register of F0. F0 distributions in 
the third group (ST4, ST3, ST2, ST8, ST9, ST12) has a skewness close to 0. All the 
distributions are multimodal. Again, when hearing pairs of speech samples according 
to the leaves of the aggregation, an auditive impression of similarity between speakers 
emerges.  

3.4   Second Analysis: Intensity Results 

Like in the first analysis, the superposition of speakers’intensity distributions illustrate 
a very similar pattern among the speakers in the commentary task (Figure 6). 

 

 

Fig. 5. Dendogram of the clustering of F0 distributions for 11 male speakers in a commentary 
speech task 
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Fig. 6. Weighted frequency distributions for 11 male speakers’ intensity. The x axis represents 
squared-root dB values. The y axis represents the percentage of samples. 
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4   Discussion 

Variations in prosody within a linguistic community are triggered by a number of 
parameters, among others the speech task and the individual style. In this study, it is 
shown that raw data such as distributions of F0 and dB give interesting information in 
this area. 

Our results show that F0 distributions among the speakers are not similar, whether 
the speech task is the same or not. The first difference is related to the heigth of the 
speaker’s register and the way speakers use their register. Some speakers present left 
skewed distributions, meaning that their prefered F0 targets are in the lowest part of 
their register. Some other speakers have right-skewed distributions, meaning that they 
tend to favor F0 targets in the highest part of their register. Beyond the differences in 
terms of high and low register, we found that some speakers prefer activating their 
intonation in a multimodal way - with several preferred F0 targets - and some others 
activate only one preferred F0 target.  The preferred F0 target(s) might be close to the 
two other central values (mean and median) or far-off. These differences sound dif-
ferently and may characterise styles of intonation which are independant of the  
speech task.  

Conversely, it was found in both analyses that intensity distributions are very simi-
lar among the speakers, whether they do perform the same speech task or not. Inten-
sity distributions seem to be less sensitive to the individual characteristics of a 
speaker. Intensity curves are nearly perfectly superposed on each other and to a cer-
tain extent to the speech task. Intensity curves follow the same pattern despite the fact 
that they are not perfectly superposed on each other. 

5   Conclusion 

This paper is a contribution to the study of prosodic variations within the same 
linguistic community. The analyses of F0 and intensity distributions of 34 male 
speakers in nine speech tasks on the one hand, and the analysis of 11 male speakers 
in one speech task on the another hand show two interesting facts. Intensity  
distributions are speaker-independent and to a certain extent are also task-
independent. Only one pattern of distribution emerges, whatever the speaker and the 
speech task are. F0 distributions are task-independent but speaker-dependent. At 
least fours types of F0 distribution were characterised, suggesting four types of 
speaker intonation. 
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Abstract. The transmission protocol of voiced speech is hypothesized to be 
based on a fundamental drive process, which synchronizes the vocal tract 
excitation on the transmitter side and evokes the pitch perception on the 
receiver side. A band limited fundamental drive is extracted from a voice 
specific subband decomposition of the speech signal. When the near periodic 
drive is used as fundamental drive of a two-level drive-response model, a more 
or less aperiodic voiced excitation can be reconstructed as a more or less 
aperiodic trajectory on a low dimensional continuous synchronization manifold 
(surface) described by speaker and phoneme specific coupling functions. In the 
case of vowels and nasals the excitation can be described by a univariate 
coupling function, which depends on the momentary phase of the fundamental 
drive. In the case of other voiced consonants the coupling function may as well 
depend on a delayed fundamental phase with a phoneme specific time delay. 
The delay may exceed the length of the analysis window. The resulting long 
range correlation cannot be analysed or synthesized by models assuming 
stationary excitation.  

1   Introduction 

Speech signals are known to contain obviously non-stationary segments, which 
constitute a cue for stop consonants and which are characterized by isolated, non 
repetitive events with a duration of less than a couple of pitch periods. The present 
study is focussed on segments of speech, which cannot easily be classified as non-
stationary, in particular on sustained voiced segments, which are characterized by 
repetitive time pattern. The vocal tract excitation of voiced speech is generated by a 
pulsatile airflow, which is strongly coupled to the oscillatory dynamics of the vocal 
fold. The excitation is created immediately in the vicinity of the vocal fold and/or 
delayed in the vicinity of a phoneme specific constriction of the vocal tract [1-3]. As 
has been pointed out by Titze [4], a mechanistic model of a dynamical system suitable 
to describe the self-sustained oscillations of the glottis cannot be restricted to state 
variables of the vocal fold alone, but has to be extended by state variables of the sub- 
and supraglottal aerodynamic subsystems.  

Due to the strong nonlinearities of the coupled dynamics non-pathological, 
standard register phonation dynamics is characterized by a stable synchronization or 
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mode locking of several oscillatory subsystems including the two vocal folds. The 
synchronization can furthermore be assumed to have the effect that some of these 
subsystems become topologically equivalent oscillators, whose states are one to one 
related by a continuous mapping with a continuous invers (conjugation) [5, 6]. Due to 
the pronounced mass density difference of about 1:1000 the coupling between the 
airflow and the glottal tissue is characterized by a dominant direction of interaction, 
such that the glottal oscillators can affirmatively be assumed to be a subset of those 
topologically equivalent oscillators. The (conjugation type) synchronization of the 
vocal folds has been described by kinematic and dynamic models [7, 8]. The glottal 
oscillators can be used to define a single glottal master oscillator, which enslaves 
(synchronizes) or drives the other oscillatory degrees of freedom including the higher 
frequency acoustic modes.  

Time series of the electro-glottogram or of the sound pressure signal can more or 
less safely be used to reveal an oscillator, which is topologically equivalent to the 
glottal master oscillator. In the case of nonpathological voiced speech both types of 
observation reveal a unique frequency of voiced phonation, the so called fundamental 
frequency, which is also known to have a perceptional counterpart, the pitch. As has 
already been observed by Seebeck [9], human pitch perception does not rely on 
spectral components of the speech signal in the frequency range of the fundamental 
frequency. In spite of numerous attempts, the extraction of the momentary 
fundamental frequency out of the speech signal has not yet reached the generality, 
precision and robustness of auditive perception and of the analysis based on the 
electro-glottogram [2, 10 -12].  

The time series of successive cycle lengths of oscillators, which are (implicitly 
assumed to be) equivalent to the glottal master oscillator show an aperiodicity with a 
wide range of relevant frequencies reaching from half of the pitch down to less than 
0.1 Hz. Except at the high frequeny end the deviation of the glottal cycle lengths from 
the long term mean forms a non-stationary stochastic process. More or less distinct 
frequency bands or time scales have been described as: subharmonic bifurcation [8], 
jitter, microtremor and prosodic variation of the pitch [7, 12]. As a general feature, 
cycle length differences increase with the time scale, the relative differences ranging 
from less than 1 % up to more than 30%. In spite of the partially minor amplitudes of 
aperiodicity all or most of these frequency bands appear to be perceptionally relevant 
[13]. Some of them are known to play a major role for the non-symbolic information 
content of speech.  

The relevant frequency range of the excitation of voiced speech extends at least 
one order of magnitude higher than the fundamental frequency. It is therefore 
common practice to introduce a time scale separation, which separates the high 
frequency acoustic phenomena of speech signals above the pitch from the 
subharmonic, subacoustic and prosodic ones below the pitch. A simple approach 
towards time scale separation starts with the assumption of a causal frequency gap, 
which separates the frequency range of the autonomous lower frequency degrees of 
freedom from the dependent degrees of freedom (modes) in the acoustic frequency 
range. In the main stream approach of speech analysis this has lead to the more or less 
explicit assumption that the voiced (and unvoiced) excitation is wide sense stationary 
in the analysis window, which is usually chosen as 20 ms [2, 3]. The assumption of 
wide sense stationarity is closely related to the assumption that the excitation process 
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can be described as a sum of a periodic process and filtered white noise with a time 
invariant, finite impulse response filter. In the case of voiced excitation there exists 
multiple evidence that this assumption is not fulfilled [14, 15]. In a first step of 
improvement the voiced excitation has been described as stochastic process in the 
basin of attraction of a low dimensional nonlinear dynamical system [14, 15]. The 
assumption of a low dimensional dynamical system, however, is in contradiction to 
the observed non-stationary aperiodicity of the glottal cycle lengths.  

The present study introduces an analysis of (sustained) speech signals, which does 
not assume a periodic fundamental drive nor an aperiodic drive, which obeys a low 
dimensional dynamics. The assumption of a causal frequency gap is avoided by 
treating the more or less aperiodic voiced broadband excitation as an approximately 
deterministic response of a near periodic, non-stationary fundamental drive, which is 
extracted continuously from voiced sections of speech with uninterrupted phonation 
[16, 17]. The extraction of the fundamental drive includes a confirmation that the 
drive can be interpreted as a topologically equivalent reconstruction of the glottal 
master oscillator which synchronizes the vocal tract excitation [16].  

As an important property of non-pathological, standard register voiced speech the 
state of the fundamental drive is assumed to be described uniquely by a fundamental 
phase, which is related to pitch perception, and a fundamental amplitude which is 
related to loudness perception. Whereas the extraction of the fundamental phase is 
limited to voiced sections of speech, the fundamental amplitude can as well be used 
for the time scale separation of unvoiced sections. The (response related) state of the 
fundamental drive should not be confused with the state of the dynamical system, 
which describes the self-sustained oscillations of the glottis [4]. The phase of the 
glottal master oscillator should rather be compared with a phase, which is suited to 
describe a unique state on the limit cycle, which attracts the self sustained oscillations 
of the glottis.  

As result of a detailed study of the production of vowels (with a sufficiently open 
vocal tract to permit the manipulation of airflow velocity sensors) Teager and Teager 
[18] pointed out that the conversion of the potential energy of the compressed air in 
the subglottal airduct to convective, acoustic and thermal energy happens in a highly 
organized cascade. They observed that the astonishingly complex convective airflow 
pattern within the vocal tract (flow separations, vortex rings, swirly vortices along the 
cavity walls, …) show a degree of periodicity in time, which is comparable to the one 
of the corresponding far field acoustic response.  

Also in the case of sustained voiced fricatives (and of vowel – voiceless fricative 
transitions) the far field acoustic response indicates a causal connection to the glottal 
dynamics [19]. It is therefore plausible to assume that at least a part of the frequency 
range of the convective flow pattern on the upstream side of the fricative specific 
constriction shows a vowel type periodicity. However, there is still a lot of 
speculation about the relevant delays of the cause and effect relationship between the 
primary response and the glottal dynamics. In the case of the fricative specific 
retarded excitation the delay may assume a large value, due to (comparatively slow) 
subsonic convective transport of the relevant action (trigger). The speculation refers 
in particular to the question, whether the subsonic transport is limited to the 
downstream side of the phoneme specific constriction [19] or applies to the whole 
distance starting from the glottis.  
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It cannot be excluded that the delay (or memory) of the subsonic excitation may 
reach the length of the conventional analysis window of 20 ms. In this case the 
resulting long range correlation cannot be analysed affirmatively by conventional 
methods assuming stationary excitation within the analysis window. The continuous 
reconstruction of the glottal master oscillator for segments of uninterrupted phonation 
opens the possibility to describe the excitation as superposition of a direct and a 
delayed phase locked response with correct long range correlation.  

As has also been pointed out by Teager and Teager [18] there are many reasons to 
assume that the human auditive pathway uses analysis tools, which deviate from 
spectral analysis. Teager proposed a phenomenological approach, which is based on 
short term analysis of the distribution of energy in different frequency bands [21].  
The present approach is focussed on a phenolmenological speech production model, 
which extends the validity range of the classical source and filter model, which is also 
grounded on evidence from speech physiology and psychoacoustics and which is 
suited to bring additional light to the complex airflow pattern of voiced consonants, 
which are extremely difficult to analyse in vivo [18], in vitro [19] and in silico [19].  

2   Extraction of the Fundamental Drive 

The amplitude and phase of the fundamental drive are extracted from subband decom-
positions of the speech signal. The decompositions use complex (4th order gamma-
tone) bandpass filters with roughly approximate audiological bandwidths FΔ  and 
with a subband independent analysis – synthesis delay as described in Hohmann [22].  

The extraction of the fundamental phase tψ  is based on an adaptation of the best 
(central) filter frequencies jF  of the subband decomposition to the momentary 
frequency of the glottal master oscillator (and its higher harmonics) [16, 17]. At the 
lower frequency end of the subband decomposition the best filter frequencies jF  are 
centred on the different harmonics of the analysis window specific estimate of the 
fundamental frequency. In the next higher frequency range the best filter frequencies 
are centred on pairs of neighbouring harmonics.  
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As a second feature of human speech it is assumed that voiced segments of speech 
are produced with at least two subbands, which are not distorted by vocal tract 
resonances or additional constrictions of the airflow [17]. In the case of subbands with 
separated harmonics, 61 ≤≤ j , the absence of a distortion is detected by nearly linear 
relations between the unwrapped phases of the respective subband states. For 
sufficiently adapted centre filter frequencies such subbands show an (n:m) phase 
locking. The corresponding phase relations can be interpreted to result from (n:1) and 
(m:1) phase relations to the fundamental drive. The latter ones are used to reconstruct 
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the phase velocity of the fundamental drive. In the case of a subband with paired 
harmonics, 126 ≤< j , the phase relation to the fundamental drive is obtained by 
determining the Hilbert phase of the modulation amplitude of the respective subband.  

The phase velocity of the fundamental drive is used to improve the centre filter 
frequencies. For voiced phones the iterative improvement leads to a fast converging 
fundamental phase velocity tψ&  with a high time and frequency resolution. Based on 
a, so far, arbitrary initial phase, successive estimates of tψ&  lead to a reconstruction of 
the fundamental phase tψ , which is uniquely defined for uninterrupted segments of 
confirmed topological equivalence [17]. The uninterrupted continuation of the 
fundamental phase can even be achieved in cases of a confirmation gap as long as 
there remains an overlap of confirmed analysis windows. The latter feature can e.g. be 
used for the analysis of vowel-nasal transitions (figures 5 and 6).  

The extraction of the fundamental amplitude tA  is based on the assumption, that 
human auditive perception incorporates useful information on the dynamics of 
important sound sources of the human environment in particular on human speech. 
The relevant features of loudness perception concern the scaling of the loudness as 
function of the signal amplitude and the relative weights of the partial loudnesses of in-
dividual subbands [10]. The fundamental amplitude tA  is assumed to be related to loudness 
perception by a power law [17]. The exponent ν/1  is chosen such that the fundamental 
amplitude represents a linear homogenous function of the time averaged amplitudes 

tiA ,  of a synthesis suited set of subbands with approximately audiological bandwidths, 
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Zwicker, Feldtkeller [23] and Moore [10] give an exponent 6.0=ν . Sottek [24] 
cites newer measurements, resulting in an exponent in the range of 3.0=ν . The latter 
value has been adopted in the study. The weights jg  are proportional to inverse 
hearing thresholds. In the range up to 3 kHz they can be roughly approximated by the 
power law  μ

jj hg ≈ , where jh  represents the (integer) centre harmonic number, 
which approximates the ratio 1/ FFj .  The present study uses 1=μ  [3, 23]. The 
synthesis suited set of subbands is generated by replacing the over-complete subband 
set 126 ≤< j  by a set Nj ≤<6 , which is spaced equidistantly on the logarithmic 
frequency scale with 4 filters per octave,  
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The feasibility of the extraction of the fundamental drive as well as the validity of 
its interprettation as a reconstruction of a glottal master oscillator of voiced excitation 
is demonstrated with the help of simultaneous recordings of a speech signal and an 
electro-glottogram, which have been obtained from the pitch analysis database of 
Keele University [25]. The upper panel of figure 1 shows the analysis window for a 
segment of the speech signal, which was taken from the /w/ in the first occurrence of 
the word “wind” spoken by the first male speaker. The lower panel shows the 
reconstruction of the fundamental phase (given in wrapped up form), based on the set 
of separable subbands with the harmonic numbers 2, 3 and 5.  
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Fig. 1. Upper panel: 45 ms of a speech signal, which was taken from the /w/ in the word 
“wind” representing part of a publicly accessible pitch analysis data base [25]. The lower panel 
shows the reconstruction of the fundamental phase ψ  in units of π . The time scale (in units of 
seconds) corresponds to the original one. 
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Fig. 2. Relation of the subband phases jΦ , )6...,,2,1( =j , obtained from the speech signal 
of figure 1, to the fundamental phase ψ . The subbands 2, 3 and 5 are characterized by near 
perfectly linear phase relations, whereas the other subbands are found to be unsuited for the 
reconstruction of the fundamental phase.  
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The near perfectly linear phase locking of these subbands, which is used for the 
reconstruction of the drive, is demonstrated in figure 2. The subband phases jΦ  are 
given in a partially unwrapped form, depending on the respective centre harmonic 
number jh . The enlarged range of the subband phases is normalized by the same 
centre harmonic number. Alternatively the fundamental phase can also be obtained 
from a subband decomposition of the electro-glottogram. The exchangeability of the 
two phase velocities is demonstrated in figure 3, which shows the relation between 
the two fundamental phases for the speech segment, which covers the “win” part of 
the word “wind”, uttered by the first female speaker. The phase shift between the two 
phases did not change significantly during the 160 ms being covered.  
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Fig. 3. Relation between the wrapped up fundamental phase sψ , obtained from the speech 

signal, and the fundamental phase eψ , obtained from the electro-glottogram. Both fundamental 

phases are extracted from 160 ms of uninterrupted voiced speech.  

3   Entrainment of the Primary Response 

In spite of the (temporary) arbitrariness of the initial fundamental phase, the 
reconstructed glottal master oscillator can be used as fundamental drive of a two level 
drive – response model, which is suited to describe voiced speech as secondary 
response [16, 26, 27]. The additional subsystem describes the excitation of the vocal 
tract as primary response of the fundamental drive and the classical secondary 
response subsystem describes the more or less resonant “signal forming” on the way 
through the vocal tract as action of a linear autoregressive filter, which (in a first 
approximation) is assumed as independent of the fundamental phase.  

As a particular advantage of the two-level drive- response model the fundamental 
phase cannot only be interpreted as state variable of the fundamental drive. The  
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Fig. 4. The two-level drive – response model 

unwrapped fundamental phase can also be assumed to be approximately proportional 
to time. As a characteristic simplifying assumption of the two-level drive-response 
model the near periodic time profile of the excitation is replaced by a precisely 
periodic fundamental phase profile [16, 26, 27]. 

In the context of the drive- response model this means that the excitation tE  at 
time t is assumed to be restricted (phase locked or entrained) to a generalized 
synchronization manifold (surface) in the combined state space of the fundamental 
drive and the primary response [28-30]. In the simplest case, the time dependence is 
replaced by a unique dependence on the simultaneous state of the fundamental drive 
[28,29]. More generally, the dependence of the primary response on the fundamental 
drive takes the form of a multi-valued mapping [30], which, however, can be 
expressed as a unique function of the unwrapped fundamental phase tψ ,  

=

==
K

k

t
kttptt p

kicAGAE
0

)exp()(
ψψ .  (4) 

As part of the improved time scale separation the generalized synchronization 
manifold is assumed to be described by the product of the slowly variable 
fundamental amplitude tA  and the potentially fast varying complex coupling 
function )( tpG ψ , the real part of which describes the broadband excitation. To 
generate the mentioned multi-valued mapping (with unique branches) the coupling 
function )( tpG ψ  has to be assumed as a pπ2  periodic function of the unwrapped 
fundamental phase tψ . The integer period number 1≥p  defines the number of 
different branches of the multi-valued mapping. Coupling function )( tpG ψ  can thus 
be well approximated by the finite Fourier series of equation (4), which, however, has 
to be estimated for non-equidistant phases!  

Voiced excitations can be represented by coupling functions with values of p, 
which are distinctly smaller than the number of fundamental cycles within the 
analysis window. The case 1=p  corresponds to the normal voice type characterized 
by a unique mapping and the case 2=p  corresponds to the period doubling voice 
type. The latter voice type can e.g. be identified by observing alternating period 
lengths, a feature, which is described as diplophonia in vocology. When p exceeds the 
number of fundamental cycles within the analysis window, equation (4) is able to 
describe a fully general excitation, including the unvoiced case. The real part of the 
coupling function of the normal voice type, )(1 tG ψ , can be expressed as a 
polynomial in the harmonic functions )cos( tψ  and )sin( tψ . Similar polynomial 
coupling (or waveshaper) functions have been introduced by Schoentgen [31] to 
synthesize vowels with realistic vocal aperiodicities.  
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The excitation parameters kc  cannot be determined independently from the 
parameters which characterize the vocal tract resonances. In the standard approach the 
parameter estimation is performed hierarchically, by making the higher level 
assumption that the excitation has a nearly white (or tilted) spectrum. When dropping 
this assumption, special care has to be taken to avoid numerical instabilities in the 
case of a near periodic fundamental drive. To achieve a comparable numerical 
robustness, it is useful to perform separate parameter estimations for different 
frequency bands and to use optimally chosen (subband specific) time step lengths Δ  
for the autoregressive models. The bandwidths of the subbands should be chosen 
substantially broader than the bandwidths of the vocal tract resonances, which are 
most relevant for the respective subband. It is therefore advantageous to use a 
subband decomposition with larger bandwidths, than the ones used for the extraction 
of the fundamental drive. The band limitation can be used to reduce the number of 
resonances (poles of the autoregressive filter), which are relevant for the respective 
subband. Useful choices are two poles and one subband per octave or one pole and 
two subbands. For simplicity one pole and maximally two subbands of decomposition 
(1) and (3) are chosen. Interpreting excitation tE  of equation (4) as the aggregate of 
the set of subband specific excitations tjE ,  with subband specific coupling functions 

)(, tpjG ψ  and index sets pjS ,  of the Fourier type decomposition, we arrive at the 
following subband specific conditional stochastic process with a two-level  
drive – response model as deterministic part (skeleton) [16, 26, 27],  

tjjttpjttjjtj AGAXbX ,,,, )( ξσψ ++−=Δ+ ,  (5) 

where tjX ,  denotes the complex state of the subband with index j, jb  the complex, 
subband specific resonator parameter, tj ,ξ  a (0,1) Gaussian complex white noise 
process and jtA σ  the standard deviation, which for simplicity has been assumed to 
be not dependent on the fundamental phase. As an important computational advantage 
the estimation of the complex excitation and resonator parameters kjc ,  and jb  can 
be reduced to multiple linear regression. The subband specific summation index set 

pjS ,  in equation (4) is chosen in accordance to the respective bandpass filter. To 
avoid a bad conditioning of the parameter estimation in the case of near periodic 
driving, the index set pjS ,  is pruned by the index, which equals the respective centre 
harmonic number jh . Together with the option, to extend the analysis window due to 
the explicit reconstruction of the non-stationary part, these precautions lead to a 
precise and robust reconstruction of the voiced excitation.  

When the speech signal of the respective analysis window can be described 
successfully by model (5) with a low periodicity 2≤p , the speech signal has a high 

probability to belong to a vowel or a nasal. As is well known (and shown in figures 5 
and 6) vowels and nasals are characterized by the fact that the time points of glottal 
closure can be detected as a unique pulse (or as a unique outstanding slope). Since 
there is no syllable without a vowel kernel, such kernels can be used to resolve the 
arbitrariness of the initial fundamental phase and to calibrate the wrapped up 
fundamental phase in terms of the time interval since the last glottal closure.  
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When the respective speech signal cannot be described successfully by a single low 
period coupling function, the unique reconstruction of the fundamental phase for 
uninterrupted segments of voiced phonation opens the possibility to extend model (5) by 
a retarded (subsonic) excitation which is suited to describe the delayed characteristic 
response of fricatives. According to the more detailed (aeroacoustic) view of speech 
production [18-20] the excitation of voiced fricatives (and of vowel – voiceless fricative 
transitions) should be extended by an additional or alternative coupling function, which 
depends on a delayed fundamental phase with a phoneme (and potentially speaker) 
specific delay τ ,  

tjjttIIjttIjttjjtj AGAGAXbX ,,,,, )()( ξσψψ ττ +++−= −−Δ+ .  (6) 

The average delay τ  between the sonic and the subsonic excitation accounts for 
the additional time, which is needed for the (comparatively slow and quiet) subsonic 
transport of kinetic energy by convective airflow to the phoneme specific site of the 
vocal tract, where the enhanced transformation to acoustic (and thermal) energy takes 
place (typically at the teeth). Assuming a near optimal evolutionary adaptation of 
human speech production leading to a near optimal support of the distinction between 
the sonic coupling function )(, tIjG ψ  and the subsonic one )(, τψ −tIIjG , a typical 
physiological tremor frequency of 7 Hz would correspond to a typical delay time of 
about 35 ms. For delay times in excess of 20 ms, the respective autocorrelation cannot 
be analysed by conventional methods, which assume uncorrelated excitation in  
non-overlapping analysis windows (of typically 20 ms length).  

4   Long Range Correlation in a Vowel – Nasal Diphone 

Contrary to the mainstream view, properties of the excitation can be used 
advantageously as additional cues for phoneme recognition. As a first example, where 
the long range correlation of a voiced speech signal represents a potential cue, the 
vowel- nasal diphone of figure 3 is selected, which represents the transition from the 
vowel to the nasal in the word “wind”. Due to the difference in length and shape of the 
nasal tract compared to the vocal tract, a transition between a nasal and a vowel can be 
discerned by a sudden change of the phase position of the glottal pulse [32] relative to 
the normal position for vowel kernels. Fortunately the shift of the glottal pulse happens 
so fast, that the gap of the confirmation of the topological equivalence of the funda- 
mental drive to the glottal master oscillator is short enough to permit an uninterrupted 
continuation of the fundamental phase. Figures 3, 5 and 6 are obtained with a 30 ms 
time window of analysis and an advancement step size of 5ms. That means that the gap 
of the confirmation of the topological equivalence was shorter than 5 advancement 
steps. Figure 3 confirms the successful continuation of the fundamental phase.  

Figures 5 and 6 reveal a phase shift of about 1/12 of the fundamental cycle. 
Knowing the fundamental frequency of 230 Hz the phase shift can be translated to a 
time shift of about 0.36 ms and a distance shift of about 12 cm. As has been pointed 
out by Kawahara and Zolfaghari [32] the time or distance shift has to be interpreted as 
an effective shift, which includes a group delay difference, which results from 
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differing vocal tract and nasal tract resonances. The latter ones are known to be 
increased by various sinuses, which are coupled to the nasal tract.  

The reconstruction of a continuous fundamental phase for speech segments with 
uninterrupted phonation opens the possibility to complement the analysis of the 
spectral properties of the speech signal by a run time analysis. The run time 
differences may refer either to different paths of the response to the early (sonic) 
acoustic excitation, which is created in the vicinity of the glottis, or to different speeds 
of the action of the fundamental drive on the retarded (subsonic) acoustic excitation, 
which is created in the vicinity of a phoneme specific constriction of the vocal tract. 
The delay of the retarded action results from subsonic transport of convective energy 
to the site of the enhanced production of acoustic energy. The delay depends in 
particular on the relative share of subsonic transport on the way from the glottis to the 
secondary site of acoustic excitation. In the case of the fricatives the high precision 
determination of the delay cannot only be achieved by parameter estimation of the 
delay τ  in equation (6) but also by inspection of the fundamental phase profile of the 
primary (or secondary) response. As has been demonstrated by Jackson and Shadle 
[19] fricatives show characteristic delays of the amplitude (envelope) maximum of the 
subsonic (unharmonic) excitation. Both types of run time differences are potentially 
suited as additional cues for phoneme recognition.  
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Fig. 5. Fundamental phase dependent coupling function )(2, ψjG  reconstructed with 
periodicity 2=p  for the vowel of the first occurrence of the word “wind” used in figure 3. 
The two curves correspond to the odd and even periods. The good agreement can be interpreted 
as a hint to the high robustness of the reconstruction of the excitation. 
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Fig. 6. Fundamental phase dependent coupling function )(2, ψjG  for the nasal of the word 
“wind” of figure 5  
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In the case of the higher frequency subbands of voiced fricatives the interference 
between the responses of the sonic and the subsonic excitation may lead to a sensitive 
dependence on the recent history of the fundamental phase. This mechanism of 
deterministic amplification of the aperiodicity of the fundamental drive process is suited 
to explain (a part of) the typical aperiodicity of the higher frequency subbands of 
sustainable voiced fricatives. The perceptional relevance of the “drive – response chaos” 
of voiced fricatives should be analysed by appropriate psycho-acoustic experiments. 
The described two-level drive – response model is well suited to support such 
experiments.  

5   Discussion and Conclusion 

The present study is based on the link between speech-physiology and psycho-acoustics, 
which results from the phylogenetic and ontogenetic coevolution of the auditive 
pathway and the sound production system in an acoustic environment, which is strongly 
influenced by sound utterances of contemporary members of the own species. The 
assumption that the far field acoustic response of the pulsed turbulent airflow in the 
vocal tract can be described by a low dimensional synchronisation manifold, is a 
remarkable hypothesis, which should be interpreted as result of the ontogenetic 
adaptation of human speech production. The success of the proposed description of non-
pathological voiced speech relies to a large extent on the precision of the reconstructed 
fundamental phase. The robustness and generality of the present method to extract the 
fundamental phase out of a speech signal is not yet comparable to the one of human 
pitch perception. However, the newly established link between speech-acoustics and 
psycho-acoustics can be exploited as a guide to future improvements of the 
reconstruction of the fundamental drive.  

The transmission protocol of voiced human speech is based on the production and 
analysis of complex airflow pattern in the vocal tract of the transmitter. The present 
study demonstrates that the analysis on the receiver side can be focussed on the mode 
locking of the pulsed airflow by replacing the time dependent excitation of the classical 
source - filter model by a fundamental phase dependence which can be described by a 
low dimensional generalized synchronization manifold.  In the simpler cases of vowels 
and nasals the manifold (surface) can be described by a single coupling function, which 
depends on a single fundamental phase. In the case of voiced consonants with a 
phoneme specific constriction of the vocal tract the excitation may have to be extended 
or replaced by a coupling function, which depends on a delayed fundamental phase. The 
evolution of speech has lead to many voiced phonemes, which can be distinguished by 
properties of these coupling functions and the closely related two-level drive - response 
models. To make the coupling functions visible (or audible) with increased precision, a 
voice specific subband decomposition of the speech signal has been proposed, which is 
suited to extract the phase of the fundamental drive with high precision. The extraction 
relies on the fact that non-pathological voiced speech leaves several subbands 
undistorted by vocal tract resonance or phoneme specific constriction of the airflow.  

There have been numerous attempts to increase the precision of the spectral analysis 
of voiced speech by introducing a “dynamic time warping” preprocessing step [33] 
which enhances the proportionality between the (artificial) time and the fundamental 
phase. Such a preprocessing step, however, ignores the dynamic nature of the 
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production of voiced speech which involves phoneme specific delays of the primary 
response and a fully dynamic secondary response.  The dynamics of the secondary 
response may show a sensitive resonance behaviour with respect to changes in the time 
scale. A time warping of the speech signal, which enhances the visibility of the 
synchronization manifold of the primary excitation, can thus be expected to have a non-
negligible corrupting effect on the spectrum of the secondary response.  

In the case of vowel – nasal and vowel – fricative transitions, in particular, the 
response of the fundamental drive may show a long range correlation with a delay 
which exceeds the length of the conventional window of analysis. In these cases a phase 
vocoder, which is based on a continuously reconstructed fundamental drive process and 
a related two level drive – response model with appropriate time delays, is expected to 
solve some of the major coarticulation problems of present day phase vocoders, which, 
so far, have prevented them to replace concatenative synthesis in high quality speech 
reconstruction.  
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Abstract. Glottal inverse filtering is a technique used to derive the glot-
tal waveform during voiced speech. Closed phase inverse filtering (CPIF)
is a common approach for achieving this goal. During the closed phase
there is no input to the vocal tract and hence the impulse response of the
vocal tract can be determined through linear prediction. However, a num-
ber of problems are known to exist with the CPIF approach. This review
paper briefly details the CPIF technique and highlights certain associated
theoretical and methodological problems. An overview is then given of
advanced methods for inverse filtering: model based, adaptive iterative,
higher order statistics and cepstral approaches are examined. The advan-
tages and disadvantages of these methods are highlighted. Outstanding
issues and suggestions for further work are outlined.

1 Introduction

Although convincing results for glottal waveform characteristics are reported in
the literature from time to time, a fully automatic inverse filtering algorithm is
not yet available. The benefits of an automatic inverse filtering technique are
considerable. The separation of the speech signal into representative acoustic
components that are feasible from a speech production point of view provides
for a flexible representation of speech that can be exploited in a number of speech
processing applications, including synthesis (e.g. the benefits of including glottal
information in pitch modification schemes is highlighted in [25]), enhancement,
coding [18] and speaker recognition [43]. Such an interactive source filter repre-
sentation offers a compromise representation of speech lying somewhere between
a detailed articulatory model on the one hand and a purely data driven approach
on the other hand. Although a source filter representation is of potential bene-
fit in a number of speech processing applications, one application of particular
interest is the study of pathological voice where direct physical correlations to
the acoustic waveform may be required. The paper is organized as follows: in
Sect. 2 a review of the closed phase inverse filtering technique is given. In Sect. 3
a survey of advanced methods for glottal pulse extraction, highlighting advan-
tages and disadvantages, is presented. Finally in Sect. 4, remaining problems
and suggestions for further work are discussed.
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2 Closed Phase Glottal Inverse Filtering

Following the linear model for voice production, voiced speech can be
represented as:

S (z) = AP (z)G (z)V (z)R (z) , (1)

where A represents the overall amplitude, P (z) is the Z transform of an impulse
train, p (n), G (z) is the Z transform of the glottal pulse, g (n), V (z) is the Z
transform of the vocal tract impulse response, v (n) and R (z) is the Z transform
of the radiation load, r (n). As shown in Fig. 1, glottal inverse filtering requires
solving the equation:

G (z)P (z) =
S (z)

AV (z)R (z)
, (2)

G(z)P(z)V-1(z) R-1(z)
S(z)

X1/A

Fig. 1. Closed phase inverse filtering

that is, to determine the glottal waveform the influence of the vocal tract and
the radiation load must be removed. The radiation load is due to the lip/open
air interface: the unidirectional volume velocity at the lips is radiated in all
directions and is recorded as sound pressure in the far field. Acoustically, the
effect of radiation is a first-order differentiation of the volume velocity at the lips
resulting in a zero at zero frequency. To invert this effect a first-order integrating
filter is used with a pole placed just inside the unit circle to ensure stability. It
is also possible to incorporate the differentiation into an effective driving pulse
of the differentiated glottal flow:

G (z)P (z)R (z) =
S (z)

AV (z)
(3)

Hence, the problem reduces to determining the inverse of the vocal tract transfer
function as shown in Fig. 2.

To solve (3), it is assumed that V (z) is purely minimum phase. Linear pre-
diction is used to model the vocal tract impulse response as an L−order all-pole
filter:

G(z)P(z)R(z)
V-1(z)

S(z) X1/A

Fig. 2. Closed phase inverse filtering to obtain an effective driving function
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V (z) =
A

1 −
∑L

i=1 biz−i
. (4)

Therefore the speech signal at time n can be written as:

s (n) =
L∑

i=1

bisn−i + A(g(n) − g(n − 1)) . (5)

During the closed phase of the glottal cycle the input is assumed to be zero
and the bi’s can be determined. The inverse of this filter is then used to de-
convolve the speech signal resulting in a differentiated glottal flow signal. The
filter coefficients are determined by minimizing the prediction error such that
the filter provides an optimum match to the speech signal [23,53]. The model
order must be chosen such that L is more than double the number of formants
in the frequency range of interest. The covariance method of linear prediction
is used to solve the linear system equation because it gives a better result with
the reduced number of samples available from only considering the closed phase
during a pitch period [36]. To guarantee that the system equation is well defined
a frame length greater than 2ms is required ([19], [53] use 4.75ms intervals). A
number of variations [11,43] exist for determining the closed phase region (or
alternatively a region of formant stationarity which may not correspond exactly
to the closed phase).

Although a number of studies (cited above) have demonstrated the feasibility
of CPIF for use on male speakers in modal register the technique is as yet still
not widely used in speech processing applications. A number of problems persist
with the technique. For inverse filtering it is important that pole representations
provide a match to actual formant data. However, the technique occasionally
estimates poles where there are no formants and sometimes misses formants
[19,29]. In addition, formants with very large bandwidths are sometimes falsely
predicted. It has also been shown that the prediction error may be greater during
the closed phase and hence the minimum of the prediction error does not reliably
indicate the closed glottis interval [11]. Furthermore, the assumed closed phase
interval may have non-zero excitation [22].

2.1 CPIF with a Second Channel

A primary challenge in CPIF is to identify precisely the instants of glottal clo-
sure and opening. Some investigators have made use of the electroglottographic
(EGG) signal to locate the instants of glottal closure and opening [28,29,33,50].
In particular, it is claimed that use of the EGG can better identify the closed
phase in cases when the duration of the closed phase is very short as in higher
fundamental frequency speech (females, children) or breathy speech [50]. Two-
channel methods are not particularly useful for more portable applications of
inverse filtering requiring minimal operator intervention. However, precisely be-
cause they can identify the glottal closure more accurately, results obtained
using the EGG can potentially serve as ‘benchmarks’ by which other approaches
working with the acoustic pressure wave alone can be evaluated.
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3 Advanced Approaches to Glottal Inverse Filtering

Given the difficulties outlined above regarding CPIF, alternative or supplemental
methods for inverse filtering are required and a wide range of alternative methods
has been developed. In the sections which follow, we will consider model-based
approaches, heuristic adaptive approaches and approaches using more sophisti-
cated statistical techniques such as the cepstrum or higher order statistics.

3.1 Model-Based Approaches

A more complete model for speech is as an ARMA (autoregressive moving av-
erage) process with both poles and zeros:

s (n) =
L∑

i=1

bisn−i +
M∑

j=1

ajgn−j + g(n) . (6)

Such an approach allows for more realistic modeling of speech sounds apart from
vowels, particularly nasals, fricatives and stop consonants [37]. Many different
algorithms for finding the parameters of a pole-zero model have been developed
[9,15,30,31,37,45,46]. ARMA modeling approaches have been used to perform
closed phase glottal pulse inverse filtering [49] giving advantages over frame-
based techniques such as linear prediction by eliminating the influence of the
pitch, leading to better accuracy of parameter estimation and better spectral
matching [49].

If the input to the ARMA process described by (6) is modeled as a pulse train
or white noise, the pole-zero model obtained will include the lip radiation, the
vocal tract filter and the glottal waveform. The difficulty with this is that there
is no definitive guide as to how to separate the poles and zeros which model these
different features [35]. However, an extension of pole-zero modeling to include
a model of the glottal source excitation can overcome the drawbacks of inverse
filtering and produce a parametric model of the glottal waveform. In [28], the
glottal source is modeled using the LF model [14] and the vocal tract is modeled
as two distinct filters, one for the open phase, one for the closed phase [42]. Glot-
tal closure is identified using the EGG. In [16,17], the LF model is also used in
adaptively and jointly estimating the glottal source and vocal tract filter using
Kalman filtering. To provide robust initial values for the joint estimation process,
the problem is first solved in terms of the Rosenberg model [44]. One of the main
drawbacks of model-based approaches is the number of parameters which need
to be estimated for each period of the signal [28] especially when the amount of
data is small e.g. for short pitch periods in higher pitched voices. To deal with
this problem, inverse filtering may be used to remove higher formants and the es-
timates can be improved by using ensemble averaging of successive pitch periods.

Modeling techniques need not involve the use of standard glottal source mod-
els. Fitting polynomials to the glottal wave shape is a more flexible approach
which can place fewer constraints on the result. In [33], the differentiated glottal
waveform is modeled using polynomials (a linear model) where the timing of
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the glottis opening and closing is the parameter which varies. Initial values for
the glottal source endpoints plus the pitch period endpoints are found using the
EGG. The vocal tract filter coefficients and the glottal source endpoints are then
jointly estimated across the whole pitch period. This approach is an alternative
to closed phase inverse filtering in the sense that even closed phase inverse filter-
ing contains an implied model of the glottal pulse [33], that is, the assumption of
zero airflow through the glottis for the segment of speech from which the inverse
filter coefficients are estimated. An alternative is to attempt to optimize the in-
verse filter with respect to a glottal waveform model for the whole pitch period
[33]. Interestingly in this approach, the result is the appearance of ripple in the
‘source-corrected’ inverse filter during the closed phase of the glottal source, even
for synthesized speech with zero excitation during the glottal phase, and which
is clearly an analysis artefact due to the inability of the model to account for it
[33]. (Note that the speech was synthesized using the Ishizaka-Flanagan model
[24].) Improvements to the model are presented in [34,48], and the sixth-order
Milenkovic model is used in GELP (Glottal Excited Linear Prediction) [10].

In terms of the potential application of glottal inverse filtering, the main
difficulty with the use of glottal source models in glottal waveform estimation
arises from the influence the models may have on the ultimate shape of the result.
This is a particular problem with pathological voices. The glottal waveforms of
these voices may diverge quite a lot from the idealized glottal models. As a
result, trying to recover such a waveform using an idealized source model as
a template may give less than ideal results. A model-based approach which
partially avoids this problem is described in [43] where non-linear least squares
estimation is used to fit the LF model to a glottal derivative waveform extracted
by closed phase filtering (where the closed phase is identified by the absence of
formant modulation). This model-fitted glottal derivative waveform is the ‘coarse
structure’. The fine structure of the waveform is then obtained by subtraction
from the inverse filtered waveform.

3.2 Adaptive Inverse Filtering Approaches

The key to CPIF is to calculate the vocal tract filter impulse response free of the
influence of the glottal waveform input. In the iterative adaptive inverse filtering
method (IAIF-method) [3], a 2-pole model of the glottal waveform based on the
characteristic 12dB/octave tilt in the spectral envelope [13] is used to remove
the influence of the glottal waveform from the speech signal before estimating
the vocal tract filter. The vocal tract filter estimate is used to inverse filter the
original speech signal to obtain a glottal waveform estimate. The procedure is
then repeated using a higher order parametric model of the glottal waveform
obtained from the initial glottal waveform estimate. As the method removes the
influence of the glottal waveform from the speech before estimating the vocal
tract filter, it does not take a closed phase approach but utilises the whole pitch
period. A flow diagram of the method is shown in Fig. 3. The method relies on
linear prediction and due to the influence of the harmonic structure of the glottal
source, incorrect formant estimation can occur [5]. In particular, the technique



144 J. Walker and P. Murphy

g2(n)

HPF
s(n) shp(n)

G2(z)

V2(z)

Inverse filter LPC-v1

Integrate

LPC-1

g1(n)

V1(z)

G1(z)

Inverse filter

Inverse filter LPC-v2

Integrate

LPC-2

Inverse filter

Fig. 3. The iterative adaptive inverse filtering method

HPF IAIF-1

IAIF-2

s(n)
shp(n) gpa(n)

Pitch synchronism

g(n)

Fig. 4. The pitch synchronous iterative adaptive inverse filtering method

does not perform well for higher fundamental frequency voices [4]. Fig. 4 shows
how IAIF was adapted to a pitch synchronous approach which was introduced
in [5].

Comparing the results of the IAIF method with closed phase inverse filtering
show that the IAIF approach seems to produce waveforms which have a shorter
and rounder ‘closed phase’. In [5] comparisons are made between original and
estimated waveforms for synthetic speech sounds. It is interesting to note that
pitch synchronous IAIF produces a closed phase ripple in these experiments
(when there was none in the original synthetic source waveform). In [6] discrete
all-pole modelling was used to avoid the bias given toward harmonic frequencies
in the model representation. An alternative iterative approach is presented in [1].
The method de-emphasises the low frequency glottal information using high-pass
filtering prior to analysis. In addition to minimising the influence of the glottal
source, an expanded analysis region is provided in the form of a pseudo-closed
phase. The technique then derives an optimum vocal tract filter function through
applying the properties of minimum phase systems.
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3.3 Higher Order Statistics and Cepstral Approaches

These approaches exploit the properties of newer statistical techniques such as
higher order statistics which are theoretically immune to Gaussian noise [32,38].
The bispectrum (third-order spectrum) contains system phase information and
many bispectrum-based blind deconvolution algorithms exist. The properties of
the cepstrum have also been exploited in speech processing. Transformed into
the cepstral domain, the convolution of input pulse train and vocal tract filter
becomes an addition of disjoint elements, allowing the separation of the filter
from the harmonic component [40]. The main drawback with bispectral and
other higher order statistics approaches is that they require greater amounts of
data to reduce the variance in the spectral estimates [21]. As a result, multiple
pitch periods are required which would ordinarily be pitch asynchronous. This
problem may be overcome by using the Fourier series and thus performing a
pitch synchronous analysis [20] or possibly by performing ensemble averaging of
successive pitch periods (as is done in [28]). Cepstral techniques also have some
limitations including the requirement for phase unwrapping and the fact that
the technique cannot be used when there are zeros on the unit circle [41].

It has been demonstrated that the higher order statistics approach can recover
a system filter for speech, particularly for speech sounds such as nasals [20].
Such a filter may be non-minimum phase and when its inverse is used to filter
the speech signal will return a residual which is much closer to a pure pseudo-
periodic pulse train than inverse filters produced by other methods [8,20]. In [8],
the speech input estimate generated by this approach is used in a second step of
ARMA parameter estimation by an input-output system identification method.
Similarly in [27], various ARMA parameter estimation approaches are applied
to the vocal tract impulse response recovered from the cepstral analysis of the
speech signal [39]. There are a few examples of direct glottal waveform recovery
using higher order spectral or cepstral techniques. In [52], ARMA modelling
of the linear bispectrum [12] was applied to speech for joint estimation of the
vocal tract model and the glottal volume velocity waveform using higher-order
spectral factorization [47]. Fig. 5 shows an approach to direct estimation from
the complex cepstrum as suggested by [2] based on the assumption that the
glottal volume velocity waveform may be modeled as a maximum phase system.

4 Discussion

One of the primary difficulties in glottal pulse identification is in the evaluation of
the resulting glottal flow waveforms. There are several approaches which can be
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taken. One approach is to verify the algorithm which is being used for the glottal
flow waveform recovery. Algorithms can be verified by applying the algorithm to
a simulated system which may be synthesized speech but need not be [26,27]. In
the case of synthesized speech, the system will be a known all-pole vocal tract
model and the input will be a model for a glottal flow waveform. The success
of the algorithm can be judged by quantifying the error between the known
input waveform and the version recovered by the algorithm. This approach is
most often used as a first step in evaluating an algorithm [4,5,49,52] and can
only reveal the success of the algorithm in inverse filtering a purely linear time-
invariant system.

It has been shown that the influence of the glottal source on the vocal tract
filter during the open phase is to slightly shift the formant locations and widen
the formant bandwidths [53], that is, the vocal tract filter is in fact time-varying.
It follows then that inverse filtering with a vocal tract filter derived from the
closed phase amounts to assuming the vocal tract filter is time-invariant. Using
this solution, the variation in the formant frequency and bandwidth has to go
somewhere and it ends up as a ripple on the open phase part of the glottal volume
velocity (see for example Fig. 5c in [53]). Alternatively, one could use a time-
varying vocal tract filter which will have different formants and bandwidths in
closed and open phases and the result would be a glottal waveform independent
of the vocal tract [7,29].

However, a common result in inverse filtering is a ripple in the closed phase of
the glottal volume velocity waveform which is most often assumed to illustrate
non-zero air flow in the closed phase: for example, in [50] where this occurs
in hoarse or breathy speech. In [50], it is shown through experiments that this
small amount of air flow does not significantly alter the inverse filter coefficients
(filter pole positions change by < 4%) and that true non-zero air flow can be
captured in this way. However, the non-zero air flow and resultant source-tract
interaction may mean that the ’true’ glottal volume velocity waveform is not
exactly realized [50]. A similar effect is observed when attempting to recover
source waveforms from nasal sounds. Here the strong vocal tract zeros mean
that the inverse filter is inaccurate and so a strong formant ripple appears in the
closed phase [50]. However, the phenomenon of closed phase ripple may also be
an artefact as it often occurs where a time-invariant vocal tract filter has been
derived over a whole pitch period and not from the closed phase only and may
be due to formant localization error [4,28,52].

In addition to discovering an optimum glottal identification algorithm, which
has been the primary focus of the present paper, a number of closely related
issues remain to be addressed. Evaluating what is considered to be a good result
remains largely unresolved - this can be determined precisely for synthesis (for-
mant and bandwidth specification or least mean square of estimates compared
to original glottal flow) but no method exists for testing the result of inverse
filtering real speech. Some advance could come in the form of more detailed
synthesis on the one hand and extracting more knowledge from real speech on
the other hand e.g. investigating source-tract interaction, the time-varying open
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phase transfer characteristics and secondary excitation prior to attempting in-
verse filtering. Another consideration is what characteristics are perceptually
relevant and what characteristics are physically relevant? In [51] some progress
has been made on the former through examination of minimal perceivable dif-
ferences in voice source parameters. For the latter, in correlations with physical
entities such as glottal area, it may be preferable to derive the actual glottal
flow as opposed to the effective glottal flow. Further work on parameterizing the
glottal volume velocity and the voice source (derivative glottal volume velocity)
is still required. An important advance in this direction is that the derived mod-
els must become physically constrained. Finally, on the practical side, general
guidelines for appropriate recording conditions are required. These issues will be
thoroughly reviewed in a follow-up study.
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Abstract. Cepstral analysis is used to estimate the harmonics-to-noise ratio 
(HNR) in speech signals. The inverse Fourier transformed liftered cepstrum 
approximates a noise baseline from which the harmonics-to-noise ratio is 
estimated. The present study highlights the cepstrum-based noise baseline 
estimation process; it is shown to analogous to the action of a moving average 
filter applied to the power spectrum of voiced speech. The noise baseline, 
which is taken to approximate the noise excited vocal tract is influenced by the 
window length and the shape of the glottal source spectrum. Two existing 
estimation techniques are tested systematically using synthetically generated 
glottal flow and voiced speech signals with a priori knowledge of the HNR. 
The source influence is removed using a novel harmonic pre-emphasis 
technique. The results indicate accurate HNR estimation using the present 
approach. A preliminary investigation of the method with a set of normal/ 
pathological data is investigated. 

1   Introduction 

The cepstrum is used to estimate the harmonics-to-noise ratio (HNR) in speech signals [1], [2]. 
The basic procedure presented in [1] is as follows; the cepstrum is produced for a 
windowed segment of voiced speech. The rahmonics are zeroed and the resulting 
liftered cepstrum is inverse Fourier transformed to provide a noise spectrum. After 
performing a baseline correction procedure on this spectrum (the original noise esti-
mate is high), the logarithm of the summed energy of the modified noise spectrum is 
subtracted from the logarithm of the summed energy of the original harmonic spec-
trum in order to provide the harmonics-to-noise ratio estimate (Fig.1), (the need for 
baseline shifting with this approach is clearly explained in the Method section). 

A modification to this technique, [2], illustrates problems with the baseline fitting 
procedure and hence does not adjust the noise baseline but calculates the energy and 
noise estimates at harmonic locations only (Fig.2). In addition, rather than zeroing the 
rahmonics, the cepstrum is low passed filtered to provide a smoother baseline (the 
reason the baseline shifting is not required is due to the window length used as de-
tailed under Method). However the noise baseline estimate is shown to deviate from 
the actual noise level at low frequencies (Fig. 2). Each of these approaches, [1], [2], 
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provide useful analysis techniques and data for studies of voice quality assessment, 
however, to date, neither method has been tested on synthesis data with a priori 
knowledge of the harmonics-to-noise ratio. The present study uses known amounts of 
random noise added to the glottal source to systematically test these techniques. 

When such source signals are convolved with the vocal tract impulse response and 
radiation load the HNR is altered. However, an a priori HNR can still be estimated in 
the time domain by using a synthesized speech signal convolved with a noisy glottal 
source and one convolved with a noise-free source. The influence of the source 
spectrum on the noise baseline estimate is highlighted and is corrected for using a pre-
emphasis technique.  

An alternative cepstral-based approach for extracting a HNR from speech signals is 
estimated in [3]. However, this involves directly estimating the magnitude of the 
cepstral rahmonic peaks, leading to a geometric-mean harmonics-to-noise ratio   
 

 

Fig. 1. HNR estimation using de Krom [1] cepstral baseline technique using a window length 
of 1024 points. The noise level is underestimated due to the baseline shifting process, which 
detects minima at between-harmonic locations. 

 

Fig. 2. HNR estimation using Qi and Hillman [2] cepstral baseline technique (window length 
3200 points) 
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(i.e. an average of the dB harmonics-to-noise ratios at a specific frequency locations), 
which is quite distinct from traditional harmonics-to-noise ratio estimators which 
reflect the average signal energy divided by the average noise energy, expressed in 
dB. This is shown in eqtn. 1 for an N-point DFT, giving harmonic amplitudes, |S|i, 
and noise estimates, |N|i . 
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2   Method 

A periodic glottal source with additive white noise, gen(t) can be written as  

gen(t) = e(t)*g(t)+n(t)                                     (2) 

where e(t) is a periodic impulse train, g(t) is a single glottal pulse and n(t) represents 
aspiration noise.         

Applying a Hanning window, (w)  

gen
w(t)=(e(t)*g(t)+n(t))×w(t)                                      (3) 

The window function, w(t), can be moved inside the convolution, provided the win-
dow length is sufficiently long [4], to give  

gen
w(t)=ew(t)*g(t)+nw(t)        (4) 

Taking the Fourier transform gives  

Gen
w(f)=Ew(f)×G(f)+Nw(f)        (5) 

Taking the logarithm of the magnitude squared values and approximating the sig-
nal energy at harmonic locations, log|Gen

w|h
2 and at between-harmonic locations, 

log|Gen
w|bh

2, gives   

log|Gen
w|h

2=log|Ew(f)×G(f)|2                          (6) 

log|Gen
w|bh

2=log|Nw(f)|2                  (7) 

Although the noise spectrum is broadband, its estimation in the presence of a har-
monic signal can be concentrated at between-harmonic locations i.e. in the spectrum 
of the glottal source signal energy dominates at harmonic locations and noise energy 
dominates at between-harmonic locations. This approximation becomes more exact if 
the spectra are averaged in which case the harmonics approach the true harmonic 
values and the between-harmonics approach the true noise variance [5].  

The cepstral technique is described with reference to Fig.3. An estimate of the 
HNR is obtained by summing the energy at harmonic locations and dividing by the 
sum of the noise energy. Extracting the noise energy baseline via the cepstral tech-
nique can be viewed as an attempt to estimate the noise level for all frequencies,  
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including harmonic locations. It is noted that the cepstrum can be applied to periodic 
glottal source signals, separating the slowly varying glottal spectral tilt from the fast 
variation due to harmonic structure. The baseline is estimated via either of the meth-
ods [1], [2] outlined in the Introduction; in either approach the rahmonics are removed 
in the cepstrum and the resulting cepstrum is inverse Fourier transformed to provide 
the noise baseline i.e. in these analyses it is assumed that the cepstral liftering pro-
vides an estimate of the noise level. As shown in Fig.3, however, the estimated noise 
baseline diverges from the true noise floor at low frequencies. Considering the present 
theoretical derivation (eqtns. (6) and (7) and empirical data (Fig. 3) it can be seen that 
the baseline estimate is in fact influenced by both the source noise and source har-
monic spectral tilt. 

The above analysis applied to a windowed segment of voiced speech gives 

sen
w(t) = [(ew(t)*g(t))+nw(t)]*v(t)*r(t)    (8) 

where v(t) and r(t) represent, respectively, the impulse response of the vocal tract and 
the radiation load, gives  

log|Sen
w(f)|h

2=log|Ew(f)×G(f)|2+log|VR(f)|2                             (9) 

log|Sen
w(f)|bh

2=log|Nw(f)|2+log|VR(f)|2                                 (10) 

where VR(f) is the Fourier transform of v(t) and r(t) combined.  
Again for the speech signal, HNR is estimated by summing the energy at harmonic 

locations and dividing by the summed noise energy estimated via the cepstral baseline 
technique. Now, the noise baseline (which is equivalent to a traditional vocal tract 
transfer function estimate via the cepstrum) is influenced by the glottal source excited 
vocal tract and by the noise excited vocal tract (Fig.2). It is the interpretation of the 
noise baseline as a MA filter that explains the need for baseline fitting in [1]; the  
 

 

Fig. 3. Spectrum of glottal source with 1% additive noise. The solid line represents a single 
spectral estimate. The dashed line represents an average of n spectral estimates. The liftered 
noise baseline is also shown. 
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liftered spectral baseline does not rest on the actual noise level but interpolates the 
harmonic and between harmonic estimates and hence resides somewhere between the 
noise and harmonic levels. As the window length increases (as per [2], for example) 
the contribution of harmonic frequencies to the MA cepstral baseline estimate de-
creases. However, the glottal source still provides a bias in the estimate. 

To remove the influence of the source, pre-emphasis is applied to the glottal 
source, ge

w(t) for the glottal signals and to se
w(t) for the voiced speech signals (i.e. 

noiseless signals). |Gen
w(f)|h and |Sen

w(f)|h are estimated using periodogram averaging 
to provide estimates for ge

w(t) and se
w(t) respectively (Fig.5).  

A pre-emphasis filter, 

h(z)=1-0.97z-1                   (11) 

is applied to these estimates in the frequency domain by multiplying each harmonic 
value by the appropriate pre-emphasis factor.  

3   Analysis 

3.1   Synthesis Parameters 

In order to evaluate the performance of the existing techniques along with the newly 
proposed method, synthesized glottal source and vowel /AH/ waveforms are gener-
ated at five fundamental frequencies (f0s) beginning at 80 Hz increasing in four steps 
of 60 Hz up to 320 Hz, covering modal register. The model described in [6] is 
adopted to synthesize the glottal flow waveform while the vocal tract impulse re-
sponse is modeled with a set of poles. Lip radiation is modeled by a first order differ-
ence operator R(z)=1-z-1. A sampling rate of 10 kHz is used for synthesis. Noise is 
introduced by adding pseudo-random noise to the glottal pulse via a random noise 
generator arranged to give additive noise of a user-specified variance (seven levels 
from std. dev. 0.125%, doubling in steps up to 8 %). The corresponding HNRs for the 
glottal flow waveform are 58 dB to 22 dB, decreasing in steps of 6 dB. However, the 
HNR for the corresponding speech signals vary with f0 due to the differential excita-
tion of glottal harmonics, c.f. [7]. However, a priori knowledge of the HNR can be 
obtained by comparing clean synthesized speech to the glottal plus noise synthesis. 

3.2   Human Voice Signals 

The new HNR technique is tested against a small set of normal/disordered voice data. 
The corpus selected for analysis is comprised of utterances of the vowel “/IY/” by two 
groups of sixteen subjects, each group consisting of eight males and eight females [8]. 
The first group represents healthy subjects, while the second group represents subjects 
with some form of voice pathology. The pathologies, when labeled perceptually, fall 
into the following broad categories: harsh, breathy and harsh, breathy and weak and 
vocal fry. All recordings were performed in an anechoic chamber with a high quality 
microphone Bruel and Kjaer condenser microphone place 6 cm from subject’s lips. In 
all case signals were sampled at 10 kHz sample rate. 
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3.3   Analysis Procedure 

The procedures in [1] and [2] are implemented as outlined in the Introduction. In [1] 
window lengths of 1024, 2048 and 4096 are chosen, while in [2] a window length of 
3200 is chosen, as per the original algorithm descriptions. In the proposed approach, 
the spectrum (2048-point FFT) of the test signal is computed using an analysis win-
dow (Hanning) of 2048 points overlapped by 1024 points. The analysis is applied to a 
1.6 second segment of synthesized speech, providing 14 spectral estimates. The re-
sulting power spectra are averaged (in order to reduce the noise variance at harmonic 
locations) to give a single 2048-point FFT. Harmonic peaks and bandwidths in the 
averaged spectrum are identified, and are modified using a pre-emphasis filter. The 
between-harmonics, which are not pre-emphasized, approach the noise variance in the 
averaged spectrum. The cepstrum is applied to the log spectrum of the pre-
emphasized harmonics with the non pre-emphasized between-harmonics. The noise 
floor is extracted using a rectangular low-pass liftering window to select the first 40 
cepstral coefficients. In order to calculate the noise energy, the extracted baseline is 
transformed back to a linear power spectrum and summed at the harmonic points. A 
sum, representing the signal energy, is taken of the harmonic peaks in the power spec-
trum of the signal (without pre-emphasis). The HNR is calculated as per eqtn.1. 

4   Results 

In order to illustrate the improvement offered by the new method over the existing 
cepstrum-based techniques, the liftered noise baseline is plotted together with the 
spectrum of the glottal source signal (with 1% additive noise) with (Fig.5) and with-
out (Fig.4) pre-emphasis. It can be seen from Fig.4 that without pre-emphasis the 
estimated noise baseline deviates from the true noise floor as a result of the source 
influence on the liftered noise baseline. The result of removing the source influence 
before extracting the noise base line from the cepstrum is depicted in Fig.5 where the 
estimated noise baseline provides a much improved fit to the actual noise floor. 
 

 

Fig. 4. Spectrum of the glottal source and liftered noise baseline, where pre-emphasis is not 
applied in the baseline estimation procedure (not shown). The spectrum is calculated with an 
analysis window length of 2048 points. 
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Fig. 5. Spectrum of the glottal source and liftered noise baseline, where pre-emphasis is ap-
plied in the baseline estimation procedure (not shown). The spectrum is calculated with an 
analysis window length of 2048 points. 

 

Fig. 6. Estimated HNR (solid line, de Krom [1]) versus f0 for synthesized glottal source wave-
forms (dotted line – actual HNR) 

 

Fig. 7. Estimated HNR (solid line, Qi and Hillman [2]) versus f0 for synthesized glottal source 
waveforms (dotted line – actual HNR) 
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The HNR plotted against f0 is shown for (a) de Krom [1] (Fig.6) (b) Qi and Hillman 
[2] (Fig.7) and (c) the new approach (Fig.8). The results of the HNR measurement for 
the synthesized vowel /AH/ with the new method is shown in Fig.9. In order to evalu-
ate the performance of a method, the estimated HNR is compared to the original HNR 
(dotted curve) in the figures. 

5   Discussion 

Increasing the window length moves the baseline closer to the actual noise level. The 
de Krom technique [1] tends to underestimate the baseline due to the fact that minima 
are estimated in the baseline fitting procedure. The Qi and Hillman approach [2] can-
not match the noise level at low frequencies due to the influence of the source.  
 

 

Fig. 8. Estimated HNR (solid line, with the new method) versus f0 for synthesized glottal 
source waveform (dotted line – actual HNR) 

 

Fig. 9. Estimated HNR (with the new method) versus f0 for synthesized vowel /AH/ (dotted 
line – actual HNR) 
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Similar over- and under- estimates of the HNR for synthesized speech are also found 
(not shown). The effect of the source on the liftered noise floor is reduced by pre-
emphasizing the harmonics of the test signal. HNR estimated with the new method 
tracks the corresponding input HNRs with marginal error as illustrated in Fig.8 and 
Fig.9.  

Finally, the new harmonic pre-emphasis, cepstral-based HNR estimator, which has 
been validated with synthesis data, is evaluated against a preliminary set of normal 
and disordered voice data.   

Table 1. Estimated HNR values for healthy and disordered voiced speech (vowel /IY/) 

Normal Sub-
jects 

HNR (dB) Subjects with voice pathology HNR (dB) 

Male 1 18.7 Male 1 (Breathy) 9.6 
Male 2 17.92 Male 2 (Breathy and weak) 8.4 
Male 3 17.59 Male 3 (Harsh) 8.90 
Male 4 19.2 Male 4 (Harsh) 7.15 
Male 5 20.51 Male 5 (Breathy) 3.76 
Male 6 18.6 Male 6 (Breathy and weak) 7.39 
Male 7 19.5 Male 7(Breathy) 6.02 
Male 8 18.33 Male 8 (harsh) 6.68 

Female 1 20.23 Female 1(Breathy and weak) 6.97 
Female 3 26.2 Female2 (Vocal fry) 8.83 
Female 3 26.47 Female 3 (weak) 7.97 
Female 4 22.17 Female4  (Vocal fry) 9.36 
Female 5 24.44 Female 5 (Breathy k) 5.11 
Female 6 19.41 Female2 (Vocal fry) 3.27 
Female 7  21.8 Female 1(harsh) 5.71 
Female 8 19.46 Female2 (Breathy) 3.07 

The difference between the estimated HNR for healthy subjects and subjects with 
voice pathology, shown in Table 1 and Fig., clearly shows the impact of noise in the 
spectrum of the pathologic voice corpus. The HNR for male subjects with healthy 
voice ranges between 17.5 and 20.5 dB with a mean of 18.79 dB and standard devia-
tion of 0.93, while a mean HNR of 22.5dB and std. of 2.78 are observed for healthy 
female subjects. In general 95% of healthy subjects voice samples tested have HNR 
greater that 17dB. The pathologic corpus on the other hand is observed to have lower 
HNR and much higher variance compared with the healthy corpus. Estimated HNR 
ranges between 3-9.6dB for pathologic voice samples. A mean HNR of about 7.23dB 
and 6.2 dB are recorded for male and female subjects (with disordered voice) respec-
tively. An average difference of about 10dB HNR separates the healthy subjects from 
the disordered subjects.  
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Fig. 10. Histogram of the estimated HNR values for normal and disordered corpus 

6   Conclusion 

Two existing cepstral–based HNR estimation techniques are evaluated using synthe-
sized glottal waveforms and speech signals with a priori knowledge of the HNR for 
these signals. The methods provide reasonably consistent estimates of the HNR, 
however, HNR tends to be overestimated in [1] due to the baseline fitting procedure 
underestimating the noise levels and [2] tends to over-estimate the HNR due to the 
underestimate of noise levels due to the influence of the glottal source on the noise 
baseline. A combination of appropriate window length and harmonic pre-emphasis is 
shown to remove the bias due to the glottal source, providing an accurate noise base-
line from which to estimate the HNR. A slight systematic error results due to the 
processing gain of the window. This can be simply adjusted by multiplication by the 
appropriated listed factor for that window. The normal and disordered data for real 
speech are completely separated using the new HNR estimator. However, as stated 
previously the HNR for voiced speech signals will in general have a fundamental 
frequency dependence that needs to be taken into consideration. Further work will 
apply the technique to a larger set of human voice signals and will investigate adapt-
ing the technique for use with shorter analysis windows with a view to analyzing 
continuous speech. In addition, a more detailed characterization of noise in voiced 
speech signals will be investigated.      
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Abstract. Real generalized cepstral analysis is introduced and applied to speech 
deconvolution. Real pseudo cepstrum of the vocal tract model impulse response 
is defined and applied to the analysis of Czech vowels. The energy concentra-
tion measure of the real pseudo cepstrum of the vocal tract model impulse re-
sponse is introduced and evaluated for Czech vowels pronounced by male and 
female speakers. The goal of this investigation is to find a robust and more reli-
able method of vocal tract modeling also for voices with high fundamental fre-
quency, i.e. for female and child voices. From the investigation follows that 
vowel and speaker dependent generalized cepstral analysis can be found which 
is more robust in speech modeling than cepstral and LPC analysis. 

1   Introduction 

In the papers [1-3] a parametric speech modeling approach based on homo-morphic 
signal processing [4] using spectral analysis was presented and applied to speech 
synthesis. 

In 1979 Lim [5] suggested a new nonlinear signal transformation, which converts the 
convolution of two signals, an excitation in the form of a train of pulses and a model 
impulse response, into another convolution, in which the transformed impulse response 
is shorter than the original one and better separated from the excitation. Using this trans-
formation it is possible to deconvolve a speech signal, i.e. to extract the transformed 
impulse response from the transformed speech signal by applying a suitable window 
and after inverse transformation to obtain the impulse response of the vocal tract model 
with greater accuracy than in classical homomorphic deconvolution. Let us call this 
nonlinear signal transformation generalized homomorphic approach. 

In papers [6-8] the principle of generalized homomorphic signal analysis was ap-
plied to speech deconvolution and to vocal tract modeling. A comparison of the com-
putational complexity and of the memory requirements of cepstral IIR and FIR vocal 
tract models may be found in [9]. 

In this paper the principle of generalized homomorphic signal analysis is briefly 
described. We call it real pseudo cepstral analysis and apply it to speech cepstral de-
convolution and to vocal tract modeling. Further the generalized signal analysis is 
used for analysis of Czech vowels uttered by male and female speakers and is com-
pared with results obtained by homomorphic signal analysis. 
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2   Generalized Cepstral Analysis 

At first the procedure proposed by Lim is briefly summarized and applied to speech 
analysis. The voiced speech signal ( )ns  may be described by the convolution 

 ( ) ( ) ( )nhnpns ∗=  .  (1) 

)(np  is the sequence of the vocal tract excitation impulses with the fundamental fre-

quency period L and ( )nh  is the impulse response of the vocal tract model. The parame-

ter L is the fundamental frequency period expressed by the number of speech samples. 
Fourier transform of the convolution (1) leads to  

 ( ) ( ) ( )ωωω HPS ⋅=  . (2) 

)(ωS  represents the speech signal spectrum, ( )ωP  is the spectrum of the excitation 

signal ( )np  and ( )ωH  is the frequency response of the vocal tract model. For spec-

trum calculation we use fast Fourier transform with the dimension FN . 

A new transformation is searched for, which converts the convolution (1) into an-
other convolution 

 ( ) ( ) ( )nhnpns
((( ∗=  (3) 

with shorter “impulse response” ( )nh
(

, which is better recognizable in the transformed 

speech signal ( )ns
(

. The sequences ( )ns
(

, ( )np
(

 and ( )nh
(

 are the transformed sequences 

of the corresponding signals ( )ns , ( )np  and ( )nh  in (1). 
This generally nonlinear transformation is performed in the frequency domain fol-

lowed by inverse Fourier transform. The aim is to find a suitable function ( )( )ωSf  
for speech spectrum transformation. 

In homomorphic signal analysis the function ( )( ) =ωSf ln ( )ωS  is applied in the 

definition of the complex cepstrum. In real cepstrum computation ( )( ) =ωSf ( )ωSln  

is used and for estimation of the autocorrelation sequence in the time domain we 

use ( )( ) ( ) 2ωω SSf = . In [10] a unifying view on cepstral and correlation analysis 

was presented. Lim proposed for the spectrum transformation the function 

 ( )( ) ( )( )γωω SSf = , 11 ≤≤− γ  . (4) 

In this contribution we shall not use the complex spectrum ( )ωS  as the argument 

of the function ( )⋅f , like in the definition of the complex speech cepstrum, but the 

magnitude speech spectrum ( )ωS  as in the computation of the real cepstrum. The 

transformation in the frequency domain is therefore defined as 

( )( ) ( ) γωω SSf = .                (5) 
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The application of this transformation to (2) results in 

 ( ) ( ) ( ) ( ) ( ) ( )ωωωωωω γγ
γγγ

γ HPHPSS
(((

⋅=⋅==  . (6) 

The symbols ( )ωγS
(

, ( )ωγP
(

 and ( )ωγH
(

 are introduced for the Fourier transforms of 

the magnitude spectra transformed with the parameter γ . 
By inverse Fourier transform the convolution in the form of (3) is obtained, but 

with new sequences ( )nsγ
(

, ( )npγ
(

 and ( )nhγ

(
, i.e. 

 ( ) ( ) ( )nhnpns γγγ

((( ∗=  . (7) 

We call the transformed sequences real pseudo cepstra corresponding to the sig-
nals ( )ns , ( )np  and ( )nh , respectively they could be called pseudo correlation se-

quences. Lim calls them spectral root cepstra. 
The real pseudo cepstra are two sided; they have a causal and an anticipative part. 

Since the Fourier transforms in (6) of the real pseudo cepstra are real, for the se-
quences in (7) hold 

( ) ( )nsns −= γγ
((

, ( ) ( )npnp −= γγ
((

, ( ) ( )nhnh −= γγ

((
. 

The pseudo cepstrum ( )npγ
(

 of the periodic excitation contains a quasi periodical 

component with the fundamental period L of the voiced excitation. In the following 
( )npγ

(
 will not be examined. 

As already mentioned in Chapter 1, the aim of the pseudo cepstral approach is the 

robust extraction of the pseudo cepstrum ( )nhγ

(
 by windowing the speech pseudo 

cepstrum ( )nsγ
(

. 
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Fig. 1. Vowel “a” – male voice 
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Fig. 2. Real cepstrum of the vowel “a” – male voice 
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Fig. 3. Real pseudo cepstrum for 1−=γ  of the vowel “a” – male voice 

The inverse pseudo cepstral transformation is performed again in the spectral do-
main. From (6) follows  

( ) ( ),/1 ωω γ
γSS
(

=  

( ) ( ),/1 ωω γ
γPP
(

=                                      (8) 

( ) ( )./1 ωω γ
γHH
(

=  
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Fig. 4. Real pseudo cepstrum for 2.0−=γ of the vowel “a” – male voice 
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Fig. 5. Real pseudo cepstrum for 2.0+=γ of the vowel “a” – male voice 

 



166 R. Vích 

 

The design of the pseudo cepstral vocal tract impulse response ( )nh  can be per-

formed either in the frequency or time domain. This will be shown in Chapter 4. 
We illustrate the generalized homomorphic signal transformation by an example of 

male vowel “a” sampled with the sampling frequency 16=sF kHz. The dimension of the 

applied FFT in speech spectral analysis is 1024=FN . The fundamental frequency period 

of the male speaker is approximately 186=L  ( 860 =F Hz). In Fig.1 we see a part of the 

vowel “a”, in Fig. 2 the causal part of the corresponding real cepstrum, in Figs. 3, 4, 5 
and 6 the causal parts of the corresponding real pseudo cepstra for γ = -1, -0.2, +0.2, +1.  
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Fig. 6. Real pseudo cepstrum for 1+=γ  of the vowel “a” – male voice 

3   Deconvolution in the Pseudo Cepstral Domain 

As shortly mentioned in Chapter 2, the pseudo cepstrum ( )nhγ

(
 can be extracted from 

the transformed speech signal ( )nsγ
(

 using a suitable window. The window type de-

pends on the aim of the application of ( )nhγ

(
. For the evaluation of the effective dura-

tion of the transformed impulse response, i.e. for the calculation of its energy concen-
tration, which is described in chapter 5, we preferably use a rectangular window. If 
we want to design a finite impulse response model of the vocal tract, we use a finite 
window smoothly tapered to zero, like the Hamming or Hann window. In this case we 
can also use as a window the frequency response of a convenient magnitude spectrum 
smoothing filter. This type of windowing will be treated in the following. 
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To simplify the windowing, it is convenient to replace the symmetric two sided se-
quence ( )nsγ

(
 by a one sided causal complex pseudo cepstral sequence corresponding 

to a minimum phase signal. Then the windowing just described can be performed on 
the causal part of the complex pseudo cepstral sequence, but using the right part of the 
considered window only. 

Let us designate the one sided causal complex pseudo cepstrum corresponding to 
( )nsγ

(
 as ( )ns

m,γ
(

. Then holds 

( )
−

==
π

π

γ
γγ ωω

π
dSsns m )(

2

1
0)(,

((   for 0=n   

( ) ( )nsns
m γγ

((
2

,
=        for 0≥n  (9) 

( ) 0
,

=ns
mγ

(         for .0≤n   

The design of the vocal tract impulse response ( )nh  starts now with windowing the 

causal sequence ( )ns
m,γ

(
 by a window of the length LM ≤ . In vocal tract modeling it is 

appropriate to apply a window given by the square of the magnitude response of a filter 
with rectangular finite impulse response, i.e. of a FIR filter of the length 

( )LNK F /int= . This corresponds to the magnitude response of a triangular or Bartlett 

filter with the length )12( −K , where FN  is the dimension of the applied Fast Fourier 

Transform (FFT) and L  is the fundamental period expressed in samples. The result of 
the pseudo cepstral windowing of ( )ns

m,γ
(

 is the transformed impulse response, the 

pseudo cepstrum ( )nh
m,γ

(
. 

4   FIR Vocal Tract Model Design 

The aim of the generalized homomorphic deconvolution is the design of the impulse 
response of the vocal tract model. The cepstral vocal tract model defined in [1-3] was 
of the type infinite impulse response, shortly IIR. In [9] the finite impulse response – 
FIR- cepstral vocal tract model was proposed. In this paper we shall concentrate on 
the always stable pseudo cepstral FIR vocal tract model. 

The determination of the vocal tract model impulse response is performed by the in-
verse pseudo cepstral transform. This inverse transform may be realized in two domains: 

• In the spectral domain using the discrete Fourier transform. This procedure re-
sults in the FIR vocal tract model with linear phase. 

• In the time domain using a recursive relation. In this case we obtain the FIR vo-
cal tract model with minimum phase. 

4.1   Spectral Domain 

Suppose we have estimated the windowed pseudo cepstrum )(
,

nh
mγ

(
. The corre-

sponding magnitude spectrum )(ωγH
(

 is given by Fourier transform and further  

using (8) the magnitude frequency response of the vocal tract model follows 
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       ( ) ( )ωω γ
γγ

/1HH
(

= .              (10) 

By inverse Fourier transform we obtain the two sided symmetric impulse response ( )nhγ  

of the vocal tract model. The transfer function of the pseudo cepstral vocal tract model can 
then be obtained by application of the well known design of FIR filters by windowing [4]. 
The transfer function obtained in this way is of the type FIR with linear phase. 

The design of the impulse response ( )nhγ  of the FIR vocal tract model may be per-

formed directly in the frequency domain without the pseudo cepstrum ( )nh
m,γ

(
. It 

starts with smoothing, i.e. with filtering of the transformed speech spectrum ( ) γωS  

with a FIR filter. In our case we use double filtering with a rectangular filter of the 
length ( )LNK F /int= . This double filtering with a rectangular filter corresponds to 

smoothing with a triangular – Bartlett filter - of the length )12( −K . The result of this 

filtering operation is the approximation of transformed spectrum 

         ( ) ( ) ,
γ

γ ωω HH =
(

               (11) 

from which the frequency response of the vocal tract model (10) results. This ap-
proach may be called deconvolution in the frequency domain. The frequency response 
is then the starting point for the FIR filter design by windowing as already mentioned 
above following Eq. (10). 

4.2   Time Domain 

The second approach of inverse transform of the causal pseudo cepstrum in the time 
domain is based on the application of a recursive formula. The minimum-phase im-
pulse response ( )nh m,γ  of the pseudo cepstral speech model is related with the real 

pseudo cepstrum ( )nh
m,γ

(
 for 1≥n  by the recursive formula  
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The first value of the impulse response is 

( ) ( )00
1

,,
γγγ mm

hh
(

= , 

with 

( )
−
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For 0<n  holds 0)(, =nh mγ . 

This impulse response is one sided, causal and infinite and must be truncated 
by a proper finite smoothly to zero tapered window. The corresponding pseudo 
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cepstral transfer function of the vocal tract model is of the type FIR with mini-
mum phase. 

5   Concentration Measure of the Transformed Impulse Response 

For evaluation of the effective duration of the transformed impulse response ( )nhγ

(
 of 

the vocal tract model we define, according to Lim, the energy concentration measure 
( )γMd  for LpM = , where L is the fundamental frequency period of the voiced exci-

tation and p  is a chosen constant, 10 ≤≤ p . In our experiments we use 95.0=p , i.e. 

we apply for windowing of the transformed impulse response ( )nhγ

(
 a rectangular 

window of length 195.0 += LM . 
The concentration measure is given as 

 ( )
( )

( )
=

==
2/

1
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1
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FN
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M

nh

nh
d

γ

γ
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(
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The low summation index is set 1=n , since ( )0γh
(

 corresponds to the mean value 

of the transformed spectral function ( ) ( ) γ

γ ωω SS =
(

 and it is not convenient to con-

sider it in the concentration measure ( )γMd . For weighting the sequence ( )ns
m,γ

(
 we 

use a rectangular window 1)( =nw , Mn ,...1= . In the following example we evaluate 

( )γMd  for several values of γ  in the interval 11 ≤≤− γ . 

6   Concentration Measure for Male and Female Voices 

In the experiment we evaluate ( )γMd  for Czech vowels uttered by a male and a fe-

male for several values of γ  in the interval 11 ≤≤− γ . We use the stationary parts of 

the sounds a, e, i, o, u sampled with the sampling frequency 16=sF kHz. The dimen-

sion of the applied FFT in speech spectral analysis is 1024=FN . The fundamental 

frequency period of the first male speaker is approximately 186=L  ( 860 =F Hz), for 

the second male speaker 145=L  ( 1100 =F Hz), for the female speaker 91=L  

( 1760 =F Hz). For the second speaker also the voiced consonants m and n and the 

unvoiced fricative s are analyzed. The coefficient 95.0=p  and the frame length for 

male and female voices were set FNN = . For spectrum analysis Hamming window-

ing was applied. 
In Fig. 7 and 8 we see the energy concentration measures ( )γMd  for the two male 

voices and in Fig. 9 for the female voice, as functions of the parameter γ . The 
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concentration measure for the real logarithmic cepstrum ( )0Md  is shown by an asterisk on 

all curves. It corresponds to the value 0=γ . 

It can be seen that the curves ( )γMd  have a maximum in the neighborhood of 

.0=γ  The positions of the maxima depend on the ratio of the numbers of poles and 

zeros of the corresponding speech models, which was already stated in the paper by 
Lim using an experimental signal model. For a system with only zeros in its transfer 
function, i.e. for a finite impulse response system (FIR), the maximum of ( )γMd  is 

located in the neighborhood of .1=γ  In the case of an all pole transfer function, the 

maximum lies at .1−=γ  For an infinite impulse response system (IIR) with equal 

number of poles and zeros the maximum of ( )γMd  is positioned at 0=γ . This 

statement is not peremptory, the maximizing value of γ  depends also on the mutual 
position of the formants and on the fundamental frequency period L , i.e. it is speaker 
dependent. 

When comparing Fig. 7 and Fig. 9 it seems that the speech models for the male and 
female voice have different number of poles and zeros for the same vowel. Further the 
maximum values ( )γMd  for the female voice are mostly smaller than that for the 

male voice, which is given by the shorter fundamental frequency period L  of the 
female voice in relation to the effective length of its transformed speech model im-

pulse response ( )nhγ

(
. 
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Fig. 7. Energy concentration measure ( )γMd  for the first male voice 
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Fig. 8. Energy concentration measure ( )γMd  for the second male voice. Beside the vowels 

also the consonants m, n and s are analyzed. 
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Fig. 9. Energy concentration measure ( )γMd  for the female voice 
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7   Conclusion 

The aim of the pseudo cepstral approach to speech analysis is to achieve greater accu-
racy of the vocal tract model in comparison to the accuracy obtained using cepstral 
speech modeling. The optimum value of the parameter γ  is in relation to the number 
of formants and antiformants and to the fundamental frequency of voiced sounds. The 
pseudo cepstral speech model for 0=γ  corresponds to the cepstral speech model. 

The approximation error of the pseudo cepstral speech model depends on the parame-
ter γ  and on the length and type of the window used for pseudo cepstrum weighting. 

The second goal of this investigation is to find a robust and more reliable method 
of vocal tract modeling also for voices with high fundamental frequency, i.e. for fe-
male and child voices. The signal transformation described in this paper has been 
tested using a synthetic signal with three formants and a variable fundamental fre-
quency [11]. It has been verified that the accuracy of the pseudo cepstral speech 
model is greater than that of the cepstral one, but the difference is not so convincing. 

Pseudo cepstral speech analysis has been applied in the last years also in recogni-
tion of noisy speech, e.g. in papers by Alexandre and Lockwood [12], Zühlke [13] 
and Chilton and Marvi [14]. In these contributions an improvement was registered, 
but for different values of the parameter γ . Another application of generalized 
homomorphic speech analysis is its use for fundamental frequency estimation, which 
is summarized in [15]. 
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Abstract. A new Bispectra Analysis application is presented is this pa-
per. A set of bispectrum estimators for robust and effective voice activity
detection (VAD) algorithm are proposed for improving speech recogni-
tion performance in noisy environments. The approach is based on fil-
tering the input channel to avoid high energy noisy components and
then the determination of the speech/non-speech bispectra by means of
third order auto-cumulants. This algorithm differs from many others in
the way the decision rule is formulated (detection tests) and the do-
main used in this approach. Clear improvements in speech/non-speech
discrimination accuracy demonstrate the effectiveness of the proposed
VAD. It is shown that application of statistical detection test leads to
a better separation of the speech and noise distributions, thus allowing
a more effective discrimination and a tradeoff between complexity and
performance. The algorithm also incorporates a previous noise reduction
block improving the accuracy in detecting speech and non-speech. The
experimental analysis carried out on the AURORA databases and tasks
provides an extensive performance evaluation together with an exhaus-
tive comparison to the standard VADs such as ITU G.729, GSM AMR
and ETSI AFE for distributed speech recognition (DSR), and other re-
cently reported VADs.

1 Introduction

Speech/non-speech detection is an unsolved problem in speech processing and
affects numerous applications including robust speech recognition [1], discon-
tinuous transmission [2, 3], real-time speech transmission on the Internet [4] or
combined noise reduction and echo cancellation schemes in the context of tele-
phony [5]. The speech/non-speech classification task is not as trivial as it ap-
pears, and most of the VAD algorithms fail when the level of background noise
increases. During the last decade, numerous researchers have developed different
strategies for detecting speech on a noisy signal [6, 7] and have evaluated the
influence of the VAD effectiveness on the performance of speech processing sys-
tems [8]. Most of them have focussed on the development of robust algorithms
with special attention on the derivation and study of noise robust features and
decision rules [9, 10, 11]. The different approaches include those based on energy

M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 174–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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thresholds [9], pitch detection [12], spectrum analysis [11], zero-crossing rate [3],
periodicity measure [13], higher order statistics in the LPC residual domain [14]
or combinations of different features [3, 2].

This paper explores a new alternative towards improving speech detection
robustness in adverse environments and the performance of speech recognition
systems. The proposed VAD proposes a noise reduction block that precedes
the VAD, and uses Bispectra of third order cumulants to formulate a robust
decision rule. The rest of the paper is organized as follows. Section 2 reviews
the theoretical background on Bispectra analysis and shows the proposed signal
model. Section 3 analyzes the statistical tests used in this aproach and compare
the speech/non-speech distributions for our decision function based on bispectra
and when noise reduction is optionally applied (see section 4). Section 5 describes
the experimental framework considered for the evaluation of the proposed end-
point detection algorithm. Finally, section 6 summarizes the conclusions of this
work.

2 Model Assumptions

Let {x(t)} denote the discrete time measurements at the sensor. Consider the
set of stochastic variables yk, k = 0, ±1 . . . ± M obtained from the shift of the
input signal {x(t)}:

yk(t) = x(t + k · τ) (1)

where k · τ is the differential delay (or advance) between the samples. This
provides a new set of 2 · m + 1 variables by selecting n = 1 . . .N samples of the
input signal. It can be represented using the associated Toeplitz matrix:

Tx(t0) =

⎛⎜⎜⎝
y−M (t0) . . . y−m(tN )

y−M+1(t0) . . . y−M+1(tN )
. . . . . . . . .

yM (t0) . . . yM (tN )

⎞⎟⎟⎠ (2)

Using this model the speech-non speech detection can be described by using two
essential hypothesis(re-ordering indexes):

Ho =

⎛⎜⎜⎝
y0 = n0

y±1 = n±1
. . .

y±M = n±M

⎞⎟⎟⎠ (3)

H1 =

⎛⎜⎜⎝
y0 = s0 + n0

y±1 = s±1 + n±1
. . .

y±M = s±M + n±M

⎞⎟⎟⎠ (4)

where sk’s/nk’s are the speech (see section /refsec:speech) /non-speech (any
kind of additive background noise i.e. gaussian) signals, related themselves with
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some differential parameter. All the process involved are assumed to be jointly
stationary and zero-mean. Consider the third order cumulant function Cykyl

defined as:
Cykyl

≡ E[y0ykyl] (5)

and the two-dimensional discrete Fourier transform (DFT) of Cykyl
, the bispec-

trum function:

Cykyl
(ω1, ω2) =

∞∑
k=−∞

∞∑
l=−∞

Cykyl
· exp(−j(ω1k + ω2l))) (6)

2.1 Bispectrum Estimators

The set of estimators used in the statistical tests of section 3 are described in
the following1.

Indirect Methods: Sampling the equation 6 and assuming a finite number of
samples, the “indirect” bispectrum estimator can be written as:

Ĉykyl
(n, m) =

M∑
k=−M

M∑
l=−M

Cykyl
· w(k, l) · exp(−j(ωnk + ωml)) (7)

where ωn,m = 2π
M (n, m) with n, m = −M, . . . , M are the sampling frequen-

cies, w(k, l) is the window function (to get smooth estimates [15]) and Cykyl
=

1
N

∑N−1
i=0 y0(ti)yk(ti)yl(ti) = 1

N y0ykyl|t0 . Under the assumption that the bis-
pectrum Cykyl

is sufficiently smooth, the smoothed estimate is known to be
consistent, with variance given by:

var
(
Ĉykyl

(n, m)
)

=
1
N

Sy0Syk
Syl

∫ ∫
w(t, s)dtds (8)

where S is the power spectrum. That is, the data are segmented into possibly
overlapping records; biased or unbiased sample estimates of third-order cumu-
lants are computed for each record and then averaged across records; a lag win-
dow is applied to the estimated cumulants, and the bispectrum is obtained as
the 2−D FFT (fast fourier transform) of the windowed cumulant function. This
is the classical method for estimating the Bispectrum function which is known to
be consistent. An alternative approach is to perform the smoothing W (ωn, ωm)
in the frequency domain.

Direct Methods: The “direct” class of methods for higher-order spctrum
estimation are similar to the “averaged periodogram” or Welch method for
power spectrum estimation [16]. In this approach the data are segmented into

1 A deep discussion can be found in the “HOSA” software toolbox (Higher-Order
Spectral Analysis Toolbox User’s Guide) by Ananthram Swami, Jerry M. Mendel
and Chrysostomos L. (Max) Nikias. http://www.mathworks.com/hosa.html
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possibly overlapping records; the mean is removed from each record, and the
FFT computed; the bispectrum of the Kth record is computed as:

ĈK
ykyl

(n, m) = YK(m)YK(n)YK(m + n) (9)

where YK denotes the FFT of the Kth record. The bispectral estimates are aver-
aged across records, and an optional frequency-domain smoother is also applied.
Brillinger [17] pointed out that the higher order periodogram is asymptotically
“unbiased”, and “consistent” if neighbor frequency smoothing is applied.

Integrated Bispectrum: Various VAD algorithms used to date use an aver-
aged Bispectrum function to obtain the decision rule, i.e. in [18, 19]. The follow-
ing estimation based on Tugnait’s work [20] where the connection between the
cross-spectrum of a given signal x(t) and its square y(t) = x2(t) − E(x2(t)) and
the integrated bispectrum of the signal is established:

Syx(ω) =
1
2π

∫ π

−π

Cx(ω, ω̃)dω̃ =
+∞∑

k=−∞
E(y(t)x(t + k)) exp(jω)dω (10)

This implementation improves VAD efficiency and reduces computational effort
since just a single FFT has to be computed.

The estimation of the bispectrum is deep discussed in [21] and many others,
where conditions for consistency are given. The estimate is said to be (asymptot-
ically) consistent if the squared deviation goes to zero, as the number of samples
tends to infinity.

3 Detection Tests for Voice Activity

The decision of our algorithm is based on statistical tests including the Gen-
eralized Likelihood ratio tests (GLRT) [22] and the Central χ2-distributed test
statistic under HO [23]. We will call them GLRT and χ2 tests. The tests are
based on some asymptotic distributions and computer simulations in [24] show
that the χ2 tests require larger data sets to achieve a consistent theoretical
asymptotic distribution.

GRLT: Consider the complete domain in bispectrum frequency for 0 ≤ ωn,m ≤
2π and define P uniformly distributed points in this grid (m, n), called coarse
grid. Define the fine grid of L points as the L nearest frequency pairs to coarse
grid points. We have that 2M + 1 = P · L. If we reorder the components of
the set of L Bispectrum estimates Ĉ(nl, ml) where l = 1, . . . , L, on the fine
grid around the bifrequency pair into a L vector βml where m = 1, . . . P in-
dexes the coarse grid [22] and define P-vectors φi(β1i, . . . , βPi), i = 1, . . . L;
the generalized likelihood ratio test for the above discussed hypothesis testing
problem:

H0 : μ = μn against H1 : η ≡ μT σ−1μ > μT
n σ−1

n μn (11)
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where μ = 1/L
∑L

i=1 φi and σ = 1/L
∑L

i=1(φi − μ)(φi − μ)T are the maximum
likelihood gaussian estimates of vector C = (Cykyl

(m1, n1) . . .Cykyl
(mP , nP )) ,

leads to the activity voice detection if:

η > η0 (12)

where η0 is a constant determined by a certain significance level, i.e. the proba-
bility of false alarm. Note that:

1. We suppose independence between signal sk and additive noise nk bispec-
trum coeffcients2 thus:

μ = μn + μs; σ = σn + σs (13)

2. The right hand side of H1 hypothesis must be estimated in each frame
(it’s unknown a-priori). In our algorithm the approach is based on the
information in the previous non-speech detected intervals.

These assumptions are very restrictive, indeed, somehow the results shown
in the experimental section allow them. The statistic considered here η is dis-
tributed as a central F2P,2(L−P ) under the null hypothesis. Therefore a Neyman-
Pearson test can be designed for a significance level α.

χ2 Tests: In this section we consider the χ2
2L distributed test statistic[23]:

η =
∑
m,n

2M−1|Γykyl
(m, n)|2 (14)

where Γykyl
(m, n) = |Ĉykyl

(n,m)|
[Sy0(m)Syk

(n)Syl(m+n)]0.5 which is asymptotically distributed

as χ2
2L(0) where L denotes the number of points in interior of the principal

domain. The Neyman-Pearson test for a significant level (false-alarm probability)
α turns out to be:

H1 if η > ηα (15)

where ηα is determined from tables of the central χ2 distribution. Note that the
denominator of Γykyl

(m, n) is unknown a priori so they must be estimated as
the bispectrum function (that is calculate Ĉykyl

(n, m)). This requires a larger
data set as we mentioned above in this section.

4 Noise Reduction Block

Almost any VAD can be improved just placing a noise reduction block in the
data channel before it. The noise reduction block for high energy noisy peaks,
consists of four stages and was first developed in [25]:

i) Spectrum smoothing. The power spectrum is averaged over two consecutive
frames and two adjacent spectral bands.

2 Observe that now we do not assume that nk k = 0 . . . ± M are gaussian.
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ii) Noise estimation. The noise spectrum Ne(m, l) is updated by means of a
1st order IIR filter on the smoothed spectrum Xs(m, l), that is, Ne(m, l) =
λNe(m, l − 1) + (1 − λ)Xs(m, l) where λ = 0.99 and m= 0, 1, ..., NFFT/2.

iii) Wiener Filter (WF) design. First, the clean signal S(m, l) is estimated by
combining smoothing and spectral subtraction and then, the WF H(m, l) is
designed. The filter H(m, l) is smoothed in order to eliminate rapid changes
between neighbor frequencies that may often cause musical noise. Thus, the
variance of the residual noise is reduced and consequently, the robustness
when detecting non-speech is enhanced. The smoothing is performed by
truncating the impulse response of the corresponding causal FIR filter to
17 taps using a Hanning window. With this operation performed in the time
domain, the frequency response of the Wiener filter is smoothed and the
performance of the VAD is improved.

iv) Frequency domain filtering. The smoothed filter Hs is applied in the fre-
quency domain to obtain the de-noised spectrum Y (m, l) = Hs(m, l)X(m, l).

Fig. 1 shows the operation of the proposed VAD on an utterance of the Span-
ish SpeechDat-Car (SDC) database [26]. The phonetic transcription is: [“siete”,
“θinko”, “dos”, “uno”, “otSo”, “seis”]. Fig 1(b) shows the value of η versus
time. Observe how assuming η0 the initial value of the magnitude η over the
first frame (noise), we can achieve a good VAD decision. It is clearly shown how
the detection tests yield improved speech/non-speech discrimination of fricative
sounds by giving complementary information. The VAD performs an advanced
detection of beginnings and delayed detection of word endings which, in part,
makes a hang-over unnecessary. In Fig 2 we display the differences between noise
and voice in general and in figure we settle these differences in the evaluation of
η on speech and non-speech frames.

According to [25], using a noise reduction block previous to endpoint detection
together with a long-term measure of the noise parameters, reports important
benefits for detecting speech in noise since misclassification errors are signifi-
cantly reduced.
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Fig. 1. Operation of the VAD on an utterance of Spanish SDC database. (a) Evaluation
of η and VAD Decision. (b) Evaluation of the test hypothesis on an example utterance
of the Spanish SpeechDat-Car (SDC) database [26].
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Fig. 2. Different Features allowing voice activity detection. (a) Features of Voice
Speech Signal. (b) Features of non Speech Signal.

5 Experimental Framework

Several experiments are commonly conducted to evaluate the performance of
VAD algorithms. The analysis is mainly focussed on the determination of the
error probabilities or classification errors at different SNR levels [11] vs. our VAD
operation point, The work about the influence of the VAD decision on the per-
formance of speech processing systems [8] is on the way. Subjective performance
tests have also been considered for the evaluation of VADs working in combi-
nation with speech coders [27]. The experimental framework and the objective
performance tests conducted to evaluate the proposed algorithm are partially
showed for space reasons (we only show the results on AURORA-3 database)in
this section.

First of all, let’s compare the results we obtain using GLRT over the different
Bispectrum estimators. The results over the Spanish database shows similar
accuracy in voice activity detection depending on the parameters used in each
estimator (resolution or number of FFT points “NFTT”, different smoothing
windows, number of records, etc.) as is shown in 4. Of course the computational
effort of the cross-spectrum estimate, essential in on-line applications, is lower
than the other approaches.
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Fig. 4. Receiving Operating Curve in high noisy condition of Aurora 3 the Spanish-Car
Database using three bispectrum estimators

The ROC curves are frequently used to completely describe the VAD er-
ror rate. The AURORA subset of the original Spanish SpeechDat-Car (SDC)
database [26] was used in this analysis. This database contains 4914 record-
ings using close-talking and distant microphones from more than 160 speakers.
The files are categorized into three noisy conditions: quiet, low noisy and highly
noisy conditions, which represent different driving conditions with average SNR
values between 25dB, and 5dB. The non-speech hit rate (HR0) and the false
alarm rate (FAR0= 100-HR1) were determined in each noise condition being
the actual speech frames and actual speech pauses determined by hand-labelling
the database on the close-talking microphone. These noisy signals represent the
most probable application scenarios for telecommunication terminals (suburban
train, babble, car, exhibition hall, restaurant, street, airport and train station).

In table 1 shows the averaged ROC curves of the proposed VAD (BiSpectra
based-VAD) and other frequently referred algorithms [9, 10, 11, 6] for recordings
from the distant microphone in quiet, low and high noisy conditions. The working
points of the G.729, AMR and AFE VADs are also included. The results show im-
provements in detection accuracy over standard VADs and over a representative
set VAD algorithms [9, 10, 11, 6]. It can be concluded from these results that:

i) The working point of the G.729 VAD shifts to the right in the ROC space
with decreasing SNR.

ii) AMR1 works on a low false alarm rate point of the ROC space but exhibits
poor non-speech hit rate.

iii) AMR2 yields clear advantages over G.729 and AMR1 exhibiting important
reduction of the false alarm rate when compared to G.729 and increased
non-speech hit rate over AMR1.

iv) The VAD used in the AFE for noise estimation yields good non-speech detec-
tion accuracy but works on a high false alarm rate point on the ROC space.
It suffers from rapid performance degradation when the driving conditions
get noisier. On the other hand, the VAD used in the AFE for FD has been
planned to be conservative since it is only used in the DSR standard for that
purpose. Thus, it exhibits poor non-speech detection accuracy working on a
low false alarm rate point of the ROC space.

v) The proposed VAD also works with lower false alarm rate and higher non-
speech hit rate when compared to the Sohn’s [6], Woo’s [9], Li’s [10] and
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Marzinzik’s [11] algorithms in poor SNR scenarios. The BSVAD works ro-
bustly as noise level increases.

The benefits are especially important over G.729, which is used along with a
speech codec for discontinuous transmission, and over the Li’s algorithm, that
is based on an optimum linear filter for edge detection. The proposed VAD also
improves Marzinzik’s VAD that tracks the power spectral envelopes, and the
Sohn’s VAD, that formulates the decision rule by means of a statistical likelihood
ratio test.

It is worthwhile mentioning that the experiments described above yields a first
measure of the performance of the VAD. Other measures of VAD performance
that have been reported are the clipping errors [27]. These measures provide
valuable information about the performance of the VAD and can be used for
optimizing its operation. Our analysis does not distinguish between the frames
that are being classified and assesses the hit-rates and false alarm rates for a first
performance evaluation of the proposed VAD. On the other hand, the speech
recognition experiments conducted later on the AURORA databases will be a
direct measure of the quality of the VAD and the application it was designed for.
Clipping errors are evaluated indirectly by the speech recognition system since
there is a high probability of a deletion error to occur when part of the word is
lost after frame-dropping.

Performance of ASR systems working over wireless networks and noisy en-
vironments normally decreases and non-efficient speech/non-speech detection
appears to be an important degradation source [1]. Although the discrimina-
tion analysis or the ROC curves are effective to evaluate a given algorithm, this
section evaluates the VAD according to the goal for which it was developed by

Table 1. Average speech/non-speech hit rates for SNRs between 25dB and 5dB. Com-
parison of the proposed BSVAD to standard and recently reported VADs.

(%) G.729 AMR1 AMR2 AFE (WF) AFE (FD)
HR0 55.798 51.565 57.627 69.07 33.987
HR1 88.065 98.257 97.618 85.437 99.750
(%) Woo Li Marzinzik Sohn χ2/GLRT
HR0 62.17 57.03 51.21 66.200 66.520/68.048
HR1 94.53 88.323 94.273 88.614 85.192/90.536

Table 2. Average Word Accuracy (%) for the Spanish SDC databases and tasks

Base Woo Li Marzinzik Sohn G.729 AMR1 AMR2 AFE GLRT

Sp.

WM 92.94 95.35 91.82 94.29 96.07 88.62 94.65 95.67 95.28 96.28
MM 83.31 89.30 77.45 89.81 91.64 72.84 80.59 90.91 90.23 92.41
HM 51.55 83.64 78.52 79.43 84.03 65.50 62.41 85.77 77.53 86.70
Ave. 75.93 89.43 82.60 87.84 90.58 75.65 74.33 90.78 87.68 91.80
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assessing the influence of the VAD over the performance of a speech recognition
system. The reference framework considered for these experiments was the ETSI
AURORA project for DSR [28]. The recognizer is based on the HTK (Hidden
Markov Model Toolkit) software package [29].

Table 2 shows the recognition performance for the Spanish SDC databases
for the different training/test mismatch conditions (HM, high mismatch, MM:
medium mismatch and WM: well matched) when WF and FD are performed
on the base system [28]. Again, the VAD outperforms all the algorithms used
for reference, yielding relevant improvements in speech recognition. Note that
the SDC databases used in the AURORA 3 experiments have longer non-speech
periods than the AURORA 2 database and then, the effectiveness of the VAD
results more important for the speech recognition system. This fact can be clearly
shown when comparing the performance of the proposed VAD to Marzinzik’s
VAD. The word accuracy of both VADs is quite similar for the AURORA 2
task. However, the proposed VAD yields a significant performance improvement
over Marzinzik’s VAD for the SDC databases.

6 Conclusions

This paper presented a new VAD for improving speech detection robustness in
noisy environments. The approach is based on higher order Spectra Analysis
employing noise reduction techniques and order statistic filters for the formu-
lation of the decision rule. The VAD performs an advanced detection of begin-
nings and delayed detection of word endings which, in part, avoids having to
include additional hangover schemes. As a result, it leads to clear improvements
in speech/non-speech discrimination especially when the SNR drops. With this
and other innovations, the proposed algorithm outperformed G.729, AMR and
AFE standard VADs as well as recently reported approaches for endpoint de-
tection. We think that it also will improve the recognition rate when it was
considered as part of a complete speech recognition system.
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Abstract. Electropalatography is a well established technique for
recording information on the patterns of contact between the tongue and
the hard palate during speech. It leads to a stream of binary vectors,
called electropalatograms. We are interested in the mapping from the
acoustic signal to electropalatographic information. We present results
on experiments using Support Vector Classification and a combination
of Principal Component Analysis and Support Vector Regression.

1 Introduction

Electropalatography (EPG) [1] is a widely used technique for recording and an-
alyzing one aspect of tongue activity, namely its contact with the hard palate
during continuous speech. It is well established as a relatively non-invasive, con-
ceptually simple and easy-to-use tool for the investigation of lingual activity
in both normal and pathological speech. An essential component of EPG is a
custom-made artificial palate, which is moulded to fit as unobtrusively as possi-
ble against a speaker’s hard palate. Embedded in it are a number of electrodes
(62 in the Reading EPG system, which is considered herein). When contact oc-
curs between the tongue surface and any of the electrodes a signal is conducted
to an external processing unit and recorded. Typically, the sampling rate of such
a system is 100-200 Hz. Thus, for a given utterance, the sequence of raw EPG
data consists of a stream of binary (1 if there is a contact; -1 if there is not)
vectors with both spatial and temporal structure. Figure 1 shows part of such a
stream. Observation of both temporal and spatial details of contact across the
entire palatal region can be very helpful to identify many phonetically relevant
details of lingual activity.

Electropalatography has been succesfully used to study a number of phenom-
ena in phonetic descriptive work, in studies of lingual coarticulation and in the
diagnosis and treatment of a variety of speech disorders. It has also been sug-
gested that visual feedback from EPG might be used in the context of second
language acquisition.

However, there are difficulties in acquiring EPG data. First, each artificial
palate must be individually manufactured from dental moulds of the speaker.

M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 186–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



On the Acoustic-to-Electropalatographic Mapping 187

Fig. 1. Typical EPG sequence. Black squares indicate a contact between the tongue
and the palate.

Second, the artificial palate in the speaker’s mouth may sometimes hinder their
ability to produce normal speech.

What is suggested here is that some means of estimating EPG information
using only the audio signal (which is far more easier to record and handle) as a
source would be beneficial. To this end, we study the mapping from the acoustic
signal to the EPG vectors, namely the acoustic-to-electropalatographic mapping.
We adopt a machine learning point of view, in the sense that we try to infer the
mapping only from the data, without making a priori use of any kind of speech
production related theoretical intuitions.

2 The MOCHA Database

The MOCHA (Multi-Channel Articulatory) [2] database is evolving in a purpose
built studio at the Edinburgh Speech Production Facility at Queen Margaret
University College.

During speech, four data streams are recorded concurrently straight to a com-
puter: the acoustic waveform, sampled at 16kHz with 16 bit precision, together
with laryngograph, electropalatograph and electromagnetic articulograph data.
EPG provides tongue-palate contact data at 62 normalised positions on the hard
palate, defined by landmarks on maxilla. The EPG data are recorded at 200Hz.

The speakers are recorded reading a set of 460 British TIMIT sentences. These
short sentences are designed to provide phonetically diverse material and capture
with good coverage the connected speech processes in English. All waveforms are
labelled at the phonemic level.

The final release of the MOCHA database will feature up to 40 speakers with
a variety of regional accents. At the time of writing this paper three speakers
are available. For the experiments herein, the acoustic waveform and EPG data,
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as well as the phonemic labels for the fsew0 speaker, a female speaker with a
Southern English accent, are used.

3 Overview of Machine Learning Techniques Used

3.1 C-Support Vector Classification

Given n training vectors xi in two classes and a vector y ∈ Rn such that yi ∈
{−1, 1}, we want to find a decision function that separates the two classes in
an optimal (from a Structural Risk Minimization viewpoint) way [3, 4, 5] . The
decision function that the C-SVC algorithm gives is:

f(x) = sgn

(
n∑

i=1

aiyik(x,xi) + b

)
, (1)

where b is a bias terms and the a coefficients are the solution of the quadratic
programming problem:

maximize W (a) = −1
2

∑
ij

aiajyiyjk(xixj)

subject to 0 ≤ ai ≤ C, i = 1, . . . , n, and
∑

i

aiyi = 0.
(2)

Here C, called the penalty parameter, is a parameter defined by the user and
k(xixj) is a special function called the kernel which serves to convert the data
into a higher-dimensional space in order to account for non-linearities in the
decision function. A commonly used kernel is the Radial Basis Function (RBF)
kernel:

k(x,y) = exp(−γ ‖ x − y ‖2), (3)

where the γ parameter is selected by the user.

3.2 ε-Support Vector Regression

The ε-SVR algorithm [6, 5] generalizes the C-SVC algorithm to the regression
case. Given n training vectors xi and a vector y ∈ Rn such that yi ∈ R, we want
to find an estimate for the fuction y = f(x). According to ε-SVR, this estimate is:

f(x) =
n∑

i=1

(a∗
i − ai)k(xi,x) + b, (4)

where the coefficients ai and a∗
i are the solution of the quadratic problem

maximize

W (a, a∗) = −ε

n∑
i=1

(a∗
i + ai) +

n∑
i=1

(a∗
i − ai)yi − 1

2

n∑
i,j=1

(a∗
i − ai)(a∗

j − aj)k(xixj)

subject to 0 ≤ ai, a
∗
i ≤ C, i = 1, . . . , n, and

n∑
i=1

(a∗
i − ai) = 0. (5)
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C > 0 and ε ≥ 0 are chosen by the user. C may be as high as infinity, while
typical values for ε are 0.1 or 0.001.

3.3 Principal Component Analysis

PCA [7, 1] is a transform that chooses a new coordinate system for a data set
such that the greatest variance by any projection of the data set comes to lie
on the first axis, the second greatest variance on the second axis, and so on.
The new axes are called the principal components. PCA is commonly used for
reducing dimensionality in a data set while retaining those characteristics of the
data set that contribute most to its variance by eliminating the later principal
components.

The direction w1 of the first principal component is defined by

w1 = arg max
‖w‖=1

E{wTx)2} (6)

where w1 is of the same dimension as the data vectors x. Having determined
the direction of the first k − 1 principal components, the direction of the kth
component is:

wk = arg max
‖w‖=1

E

⎧⎨⎩wT

(
x −

k−1∑
i=1

wiwi
T x

)2
⎫⎬⎭ . (7)

In practice, the computation of the wi can be simply accomplished using the
sample covariance matrix E{xxT } = C. The wi are then the eigenvectors of C
that correspond to the largest eigenvalues of C.

4 Data Processing

The MOCHA database includes 460 utterances of the fsew0 speaker. In order to
render these data into input-output pairs suitable for our purposes, we proceed
as follows.

First, based on the label files we omit silent parts from the beginning and
end of the utterances. During silent stretches the tongue can possibly take any
configuration, something that could pose serious difficulties to our task.

Next, we perform a standard Mel Frequency Spectral Analysis [8] on the
acoustic signal with the VOICEBOX Toolkit [9], using a window of 16ms (256
points) with a shift of 5ms (this is to match the 200Hz sampling rate of the
EPG data). We use 30 filterbanks and calculate the first 13 Mel Frequency
Cepstral Coefficients. Then, we normalize them in order have zero mean and
unity standard deviation.

In order to account for the dynamic properties of the speech signal and cope
with the temporal extent of our problem, we just use a commonplace in the
speech processing field spatial metaphor for time. That is, we construct input
vectors spanning over a large number of acoustic frames. Based on some previous
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Fig. 2. Distributions of EPG events (a) in tthe training set (b) in the test. The bigger
the square, the bigger the difference between positive and negative examples. Black
squares indicate excess of positive examples and white squares excess of negative
examples.

small-scale experiments of ours, we construct input vectors consisting of the
MFCCs of 17 frames: the frame in question, plus the 8 previous ones, plus the 8
next ones.

Thus, we end up with training examples with a 221-dimensional (17 × 13)
real-valued vector as input and a 62-dimensional binary vector as output. We
split our data into two big halves: the even-numbered utterances constitute an
“extended training set”, and the odd-numbered ones an “extended test set”.
Each one has more than 100.000 examples.

But, since SVR training is a relatively slow process, using the whole “extended
training set” for training would merely be out of the question. We would like
a reduced training set, that is somehow “representative” of the whole corpus.
Knowing (from the label files) the phonemic label of each of our “extended
training set” examples, we randomly select 200 training examples corresponding
to every one of the 44 distinct phonemic labels. Since some phonemic labels have
less than 200 examples in the dataset, we end up with 8686 training examples.

Finally, for our test set, we simply use 10 utterances spanning across our
whole “extended test set”. This test set consists of 5524 examples.

In both our final training and test sets, the distributions of the output among
the EPG points values vary considerably, ranging from EPG points with a nearly
equal number of positive (contacts, value 1) and negative (non-contacts, value -1)
examples, to points with a 100% of examples belonging to one of the two classes.
This fact is depicted graphically in Figure 2.

5 Training and Results

We follow two approaches to the mapping between the MFCCs and the EPG
data. For the first one, we make the working assumption that every EPG event (a
contact or a non-contact at a certain electrode and point in time) is independent
of neighbouring (in space and time) EPG events. Thus, the problem of estimating
EPG patterns, becomes a problem of training 62 binary classifiers.

The C-SVC algorithm then offers a straightforward way to independently deal
with each one of these classification tasks, where the input is the MFCC vector
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Fig. 3. Principal Components of the EPG data. Each value is represented by a square
of size proportional to its absolute value and color black or white whether it is positive
or negative.

(constructed as described previously) and the output is a binary value describing
the activity of the EPG point in question.

We consider the RBF kernel with γ = 0.0045 and select C = 1, based on
heuristics found in [10] The experiments are conducted using the LIBSVM soft-
ware package [11].

For our second approach to the mapping, we consider accounting for the
spatial relationships in the EPG data by applying PCA. We perform PCA on
the “extended training set” and keep the 37 first principal components (depicted
in Figure 3), which are the ones with eigenvalues larger than the 1/100 of the
largest eigenvalue.

PCA transforms the output data by moving them into a new space. In this
space the output values are real, so we have to solve 37 regression problems. We
use ε-SVR for this task.

Just before SVR training we perform two further preprocessing steps on our
(PCA transformed) output data. Firstly we center them so that the mean value
of every channel is zero, and, secondly we scale them by four times their standard
deviation, so that they roughly lie in the interval (−1, 1), something crucial for
SVR training.

For the actual ε-SVR training, we use the RBF kernel with γ = 0.0045 and
select C = 1 and ε = 0.1. In testing, we need to invert the processes of scaling,
centering and PCA.

For assessing the performance of are classifiers (even though we used regres-
sion in our second approach, the final outcome is still a set of classifiers) we
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Fig. 4. Classification Rates for (a) the SVC approach (b) the PCA+SVR approach

Fig. 5. AUCs for (a) the SVC approach (b) the PCA+SVR approach

use two metrics. The first one is the absolute classification rate (in the sec-
ond approach by assigning positive output values as contacts, and negative as
non-contacts), and the second one is the area under the ROC curve (AUC) [12].
The results are presented in Table 1 and Figures 4, 5. The convention used in
the figures is that the size of the black squares is proportional to the value of
the metric, while white squares indicate EPG points where the specific metric is
meaningless (i.e. there is no AUC when all the examples in the test set belong
the same class).

6 Conclusion

We applied two methods to the acoustic-to-electropalatographic mapping task,
the first of which (SVC) does not take into account the spatial interrelationships
inherent in the EPG data, while the second one (PCA+SVR) does.

The chance level (defined as the average percentage of the class with the
most examples among the EPG points) of the data in the test set we used was
85,60%. Both the methods we applied exceed by far this chance level. For the
SVC approach the average classification rate is 92,34%, and for the PCA+SVR
approach 92,44%.

Between the two approaches, the differences in performance in terms of clas-
sification rates is small. The PCA+SVR approach improves upon SVC’s classifi-
cation rate only by 0,1%. Nevertheless, the ROC curves (with the exception of a
couple of EPG points) are in general much better for the PCA+SVR, leading to
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Table 1. Performances of the sets of classifiers in terms of Classification Rates and
AUCs. Also shown the percentages of contacts in the training and test sets.

Training Set Test Set SVC PCA+SVR
EPG Point % Contacts % Contacts Class. Rate AUC Class. Rate AUC

1 16,39 25,53 86,50 0,80 87,56 0,93
2 9,73 16,56 87,65 0,72 88,49 0,93
3 4,02 6,95 93,21 0,54 93,72 0,85
4 8,85 17,20 85,16 0,61 86,12 0,88
5 18,26 30,90 85,63 0,80 86,73 0,94
6 24,41 36,75 86,77 0,85 86,93 0,93
7 26,80 38,78 83,87 0,82 83,74 0,92
8 12,66 15,06 88,38 0,74 88,07 0,88
9 7,52 8,64 92,32 0,59 91,96 0,88
10 3,64 3,86 96,20 0,44 96,18 0,86
11 3,48 4,38 95,49 0,43 95,49 0,74
12 10,17 12,51 89,34 0,64 89,68 0,84
13 24,56 36,35 83,73 0,81 83,80 0,93
14 38,61 49,64 84,29 0,84 83,69 0,92
15 44,02 55,70 87,13 0,87 86,55 0,94
16 9,46 7,46 93,25 0,60 93,12 0,84
17 1,54 1,41 98,57 0,43 98,53 0,59
18 0,46 0,52 99,48 0,41 99,44 0,54
19 0,93 1,19 98,81 0,39 98,75 0,72
20 2,75 3,01 96,92 0,51 96,90 0,70
21 10,98 12,65 89,68 0,59 89,43 0,81
22 50,43 61,62 87,38 0,88 87,64 0,94
23 40,24 47,07 84,43 0,84 84,76 0,92
24 2,60 1,18 98,82 0,43 98,82 0,83
25 0,22 0,24 99,76 0,80 99,76 0,53
26 0,01 0,00 100,00 - 100,00 -
27 0,06 0,18 99,82 0,80 99,82 0,39
28 0,56 0,49 99,51 0,56 99,51 0,69
29 7,03 6,97 93,54 0,51 93,10 0,80
30 39,17 48,21 82,35 0,81 81,88 0,91
31 54,93 59,92 88,00 0,88 88,49 0,95
32 10,47 8,85 93,54 0,62 93,28 0,89
33 0,10 0,00 100,00 - 100,00 -
34 0,00 0,00 100,00 - 100,00 -
35 0,00 0,00 100,00 - 100,00 -
36 0,16 0,18 99,82 0,80 99,82 0,91
37 10,76 9,41 92,98 0,66 92,99 0,92
38 68,77 71,54 91,75 0,92 91,60 0,97
39 79,33 77,34 91,02 0,87 90,41 0,94
40 28,63 24,80 86,01 0,75 85,97 0,91
41 0,67 0,67 99,33 0,29 99,33 0,90
42 0,01 0,00 100,00 - 100,00 -
43 0,00 0,00 100,00 - 100,00 -
44 3,50 2,41 97,52 0,43 97,59 0,86
45 39,90 37,74 84,12 0,80 85,03 0,93
46 90,24 88,90 94,21 0,82 93,72 0,94
47 92,44 90,39 91,67 0,67 91,71 0,85
48 43,33 39,66 80,52 0,76 81,77 0,90
49 4,82 5,38 94,73 0,40 94,73 0,86
50 0,25 0,18 99,82 0,21 99,82 0,88
51 1,66 1,67 98,33 0,49 98,37 0,88
52 9,84 9,49 90,80 0,51 91,13 0,85
53 69,12 69,37 84,90 0,82 84,79 0,92
54 97,54 98,21 98,21 0,90 97,18 0,90
55 93,84 92,85 93,79 0,63 94,41 0,86
56 85,74 84,32 86,08 0,52 86,51 0,81
57 11,19 10,90 90,53 0,50 90,35 0,87
58 1,51 1,39 98,61 0,40 98,48 0,84
59 5,45 6,03 94,77 0,50 94,68 0,92
60 26,62 23,57 80,25 0,61 81,44 0,83
61 87,95 85,48 87,22 0,57 87,93 0,81
62 89,79 87,44 88,50 0,65 89,30 0,79

Overall 92,34 0,64 92,44 0,85

a remarkable increase in the average AUC, as shown in Table 1. Figure 6 shows
the ROC curves for some characteristic EPG points.

So, it is mainly the improvement of the ROC curves achieved with the
PCA+SVR approach, that makes it a better choice of an approach between
the two. This agrees with the intuition that the PCA+SVR approach should be
better, since it takes into account the spatial structure of the problem at hand.
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Fig. 6. ROC curves for some EPG points. Dashed-dotted curves correspond to the
SVC approach, solid curves to the PCA+SVR approach.

One drawback of our experimental setup was that we trained our machines
using only a small set of training examples, selected by a rather ad hoc procedure.
As a future work direction, we might employ a more structured approach (i.e.
clustering) in order to select training examples. Or, we might directly experiment
with more data. Training time is always an issue, but recent findings in the
machine learning field, such as Cross-Training [13], seem quite promising in the
direction of speeding up things.

As a second future work direction, we could try to account for the temporal
structure of our problem, i.e. the fact that the activity of a certain EPG point
is depended on its activity at previous time instants. This is a difficult problem,
though there are promising proposals from the machine learning field, such as
the HMM–SVM method [14].
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Abstract. The article concerns methodological problems posed by multi-step 
predictive analysis of speech, carried out with a view to estimating vocal 
dysperiodicities. Problems that are discussed are the following. First, the 
stability of the multi-step predictive synthesis filter; second, the decrease of 
quantization noise by means of multiple prediction coefficients; third, the 
implementation of multi-step predictive analyses via lattice filters; fourth, the 
adequacy per se of the multi-step predictive analysis paradigm for estimating 
vocal dysperiodicities. Results suggest that implementations of multi-step 
predictive analyses that are considered to be optimal for speech coding are sub-
optimal for clinical applications and vice versa. Also, multi-step predictive 
analyses as such do not appear to be under all circumstances a paradigm 
adequate for analysing vocal dysperiodicities unambiguously. An alternative is 
discussed, which is based on a generalized variogram of the speech signal. 

1   Introduction 

The presentation concerns issues in clinical applications of bilateral multi-step 
predictive analysis of speech. Multi-step analysis designates the linear prediction of 
the present speech sample by means of samples that are distant. Because the purpose 
is the estimation of dysperiodicities in speech, the prediction distance is assigned to 
the lag for which the correlation between the present and a distant speech frame is 
maximal. This lag is indeed expected to agree with an integer multiple of the vocal 
cycle lengths of voiced speech sounds. In the case of unvoiced sounds or highly 
irregularly voiced sounds, this lag remains mathematically meaningful but is not 
interpreted in terms of the glottal cycle length. Bilateral means that predictive 
analyses are performed to the right and left of the current speech frame and that the 
minimal prediction error is kept and assigned to the vocal dysperiodicity trace. 

Voice disorders, or dysphonias, are common consequences of disease, injury or 
faulty use of the larynx.  A frequent symptom of dysphonia is increased noise in the 
speech signal or lack of regularity of the vocal cycles. Speech analyses are therefore 
carried out routinely in the context of the functional assessment of voice disorders. 

At present, these analyses are most often carried out on steady fragments of 
sustained vowels. The reason is that the signal processing is often based on the 
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assumption that the speech cycles are locally quasi-identical in length and amplitude. 
Therefore, such analyses may fail on sustained vowels or connected speech produced 
by severely hoarse speakers. Studies devoted to vocal dysperiodicities in connected 
speech or vowels including onsets and offsets are therefore comparatively rare. An 
overview of published research is given in [2]. 

Clinicians have, however, expressed the wish to be able to analyze any speech 
fragment produced by any speaker, including vowel onsets and offsets as well as 
connected speech. Arguments in favour are that, compared to stationary speech 
fragments, connected speech is more difficult to produce because of more frequent 
voice onsets and offsets, the voicing of obstruents, the maintaining of voicing while 
the larynx continually ascends and descends in the neck, as well as because of 
intonation and accentuation. 

Qi et al. [1] and Bettens et al. [2] have presented methods that enable estimating 
vocal dysperiodicities without making any strong assumptions with regard to the 
regularity of the vibrations of the vocal folds or recorded speech sounds. These 
methods have been inspired by speech coding based on multi-step linear predictive 
analysis. The method presented by Qi et al. [1] involves a conventional single-step 
predictive analysis followed by a multi-step analysis of the residual error of the 
single-step prediction. In a clinical context, the multi-step prediction error is 
construed as the vocal dysperiodicity trace. 

The method presented by Bettens et al. [2] involves a bilateral multi-step predictive 
analysis. It may be carried out on the speech signal directly or on any other signal 
considered to be clinically apposite, because the method omits the single-step analysis 
and avoids predicting across phonetic boundaries. 

The topic of this article is an examination of methodological problems posed by 
bilateral multi-step predictive analyses when applied clinically. 

2   Models 

Formally, bilateral multi-step prediction is based on models (1). In [2], bilateral 
prediction is called bidirectional. In the present text, the term bilateral is preferred 
because it stresses the distinction between multi-step predictive analyses that are 
carried out to the left and right of the current speech frame, on the one hand, and the 
forward and backward errors involved in the lattice filter implementation of unilateral 
multi-step analyses, on the other. 
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Symbol s(n) is the current speech sample; e(n) is the bilateral multi-step prediction 
error; weights a are the prediction coefficients. For each analysis frame, the multi-step 
prediction error, the energy of which is smallest, is assigned to the dysperiodicity 
trace. The comparison of the present speech frame to frames to the left and right 
guarantees that it is compared at least once to a frame that belongs to the same 
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phonetic segment, provided that the segment is at least two vocal cycles long. The 
selection of the minimum prediction error to the left or right so removes predictions 
that are performed across phonetic boundaries. Cross-boundary prediction errors must 
be discarded, because cycle-to-cycle differences owing to the evolving phonetic 
identity dwarf cycle discrepancies that are due to vocal noise.  

Order M is typically equal to 1 or 2. The purpose of including more than one 
prediction coefficient is the expected reduction of quantization noise. Indeed, lag T is 
an integer, whereas the vocal cycle lengths are likely to be equal to a non-integer 
number of sampling steps. Lags T in relations (1) are determined for each analysis 
frame either by an exhaustive search for the minimum error or by means of the 
empirical inter-correlation between present and lagged frames. In the case of the 
latter, lag T is assigned to the position, within the open lag interval, for which the 
inter-correlation function is a maximum. 

3   Problems and Solutions 

Results show that methods proposed in [1] as well as [2] enable computing markers of 
vocal noise that are plausible and that co-vary with the degree of perceived hoarseness 
of sustained vowels or connected speech. This article is devoted to methodological 
issues that are raised by these proposals, as well as to their solutions. 

3.1   Burg’s Rule 

Multi-step predictive analyses have been implemented by means of lattice filters, the 
coefficients of which obey Burg’s rule [3]. That is, the filter coefficients are 
determined by means of the harmonic mean of unilateral forward and backward 
prediction errors, a choice that guarantees filter stability. A consequence is that the 
filter may be unable to track rapid signal onsets faithfully. Transients may therefore 
give rise to prediction errors that are higher than the prediction errors that one would 
obtain by means of unstable filters. 

Owing to the bilateral analysis, however, this is likely to be a problem only when a 
rapid signal boost ends or a rapid signal drop starts at a phonetic boundary. When no 
risk of cross-boundary prediction is involved, the bilateral analysis turns the 
prediction of onsets into the retro-diction of offsets and vice versa. 

Be that as it may, in the framework of clinical applications linear multi-step 
prediction is carried out for analysis purposes only. Filter stability is therefore not an 
issue and can be omitted in favour of a direct form implementation the coefficients of 
which are determined by means of the conventional covariance method, for instance. 

3.2   Lattice Filter Implementation 

When more than one multi-step prediction coefficient is involved, the prediction error 
obtained by a lattice filter comprises several recent as well as several distant speech samples. 
For instance, when order M is equal to 1, the lattice filter output is the following [3]. 

 ).()1()1()()( 11 TnscTnscnsccnsne TTTTleft −++−+−+= −−                                 (2) 
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Symbol T is the prediction distance in number of samples, s(n) is the nth speech 
sample and cj are the lattice-filter coefficients. Sample s(n-1) in error (2) obscures the 
conceptual simplicity of relations (1) and upsets the straightforward interpretation of 
the multi-step prediction error as a measure of vocal dysperiodicity. The intercalation 
of additional recent samples is typical of the lattice filter implementation and can be 
avoided in the framework of implementations that are direct or involve single 
coefficients only. 

3.3   Multiple Prediction Coefficients 

Relations (1) may involve multiple prediction coefficients. A consequence is that 
the present speech sample is compared to a weighted sum of distant speech 
samples. The goal is to decrease quantization noise. A sample-by-sample 
comparison by means of a single-coefficient multi-step prediction would be easier 
to interpret, however, given the overall objective, which is to estimate vocal 
dysperiodicities. 

A solution consists in decreasing quantization noise by over-sampling first and 
replacing the multiple coefficients by a single one. This removes the risk of 
decreasing genuine vocal noise via the weighted sum that is involved in the distant 
prediction. 

3.4   Multi-step Linear Predictive Analysis as a Paradigm for the Analysis of 
Vocal Dysperiodicities 

This section addresses a basic issue, which is the adequacy per se of the multi-step 
prediction paradigm as a framework for analyzing vocal dysperiodicities. Hereafter, 
one assumes that the multi-step prediction involves a single coefficient the value of 
which is determined by means of the conventional covariance method. The 
conclusions are valid, however, for any implementation of the multi-step predictive 
analysis filter. 

The covariance method consists in minimizing the energy of the prediction error 
cumulated over a rectangular frame of length N. When a single coefficient is 
involved, one easily shows that the (unilateral) multi-step prediction error is equal to 
the following. 
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From (3) follow solutions (4). Parameter b is a positive gain that is constant over the 
analysis frame. It demonstrates that the prediction coefficient in (3) automatically 
compensates for slow variations of the vocal amplitude. 
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Solutions (4) show that, formally, the multi-step prediction error is not a measure of 
vocal dysperiodicity. The reason is parasitic solution s(n) =-bs(n-T). For a sinusoid of 
period T, for instance, solutions (4) suggest that the multi-step prediction error is a 
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minimum for shifts T/2 and T, of which only the latter has an interpretation in terms 
of the period of the sinusoid. In practice, this means that an exhaustive search for 
optimal shift T is likely to produce erroneous measures of dysperiodicity for phonetic 
segments that are quasi-sinusoidal, i.e. voiced plosives, for example. 

Determining optimal shift T by means of the empirical inter-correlation between 
present and lagged frames is less likely to give rise to parasitic solutions. The 
reason is that the optimal shift is assigned to the lag for which the inter-correlation 
is a maximum. Formally, the removal of parasitic solutions is not guaranteed, 
however. 

Moreover, the interpretation of error E remains ambiguous even when parasitic 
solutions are discarded.  Because of the inter-correlation that is involved in (3), error 
E is a measure of signal dysperiodicity only when the vocal noise is feeble. The 
prediction error turns into a measure of signal energy when the vocal noise is strong 
(Table 1).  

3.5   Generalized Variogram 

A possible alternative is based on the observation that for a periodic signal s(n), 
the following expression is expected to be true for any shift T that is an integer 
multiple of the signal period, assuming that the quantization noise can be 
neglected.  
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In practice, voiced speech segments are locally-periodic at best, speech cycle 
amplitudes are expected to evolve slowly and the glottal cycle length is not known a 
priori. This suggests analyzing the signal frame by frame, squaring expression (5), 
and inserting a positive gain g that is constant over the analysis frame. 
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When gain g = 1, cumulated difference (6) is known as the empirical variogram of 
signal s(n). Length N fixes the frame length. The squaring guarantees that 
difference (6) is a minimum for lags that are integer multiples of the period of the 
signal. 

Gain g enables neutralizing drifts of the signal amplitude that are due to onsets, 
offsets or prosody. Gain g is chosen so that it is always positive and the interpretation 
of generalized variogram V(T) is the same whatever the strength of the vocal noise. A 
definition of g that satisfies these criteria equalizes the signal energies in the present 
and lagged analysis frames.  
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Table 1. Variogram (7) and multi-step prediction error (3) for periodic, odd-periodic and white 
noise signals 

 white noise s(n) = -bs(n-T), b > 0 s(n) = bs(n-T), b > 0 
V Σ[s(n)-s(n-T)]2 4Σs2(n) 0 
E Σs2(n) 0 0 

Inspecting multi-step prediction error (3) and generalized variogram (7) suggests 
that they are proportional when s(n) is approximately equal to s(n-T). Otherwise, 
they are different. Table 1 summarizes the values of expressions (3) and (7) when, 
for example, s(n) = bs(n-T), s(n) = -bs(n-T), b > 0, as well as when s(n) is  
white noise. 

One sees that generalized variogram V is different from zero when the signal is 
odd-periodic and lag T equal to the odd-period. Also, expression V is the cumulated 
squared difference between the present and lagged signal samples, whether the signal 
is deterministic or stochastic. The minimum of V is therefore a measure of signal 
dysperiodicity in the analysis frame. 

On the contrary, the multi-step prediction error E is zero when the signal is 
periodic or odd-periodic and lag T equal to the period or odd-period. Also, error E is 
the cumulated squared difference between the present and lagged signal samples only 
when they are (strongly) correlated. When they are uncorrelated, error E is the signal 
energy. Error E is therefore a measure of signal (un)-predictability. Because 
predictability is a more general property than periodicity, variogram V and error E 
only agree for special instances of signals and lags.  

4   Methods 

The experimental part of the study involves seven analysis methods, which are listed 
in Table 2. The objective is to investigate whether issues that are discussed above give 
rise to statistically significant differences in the vocal dysperiodicity traces. For each 
method, the length of the rectangular analysis frame was equal to 2.5 milliseconds [2]. 
The analysis frames were non-overlapping, but contiguous. Prediction lag T was 
assigned to the position of the maximum of the inter-correlation between present and 
lagged frames or, when appropriate, to the position of the minimum of the variogram. 
The prediction lag was requested to be within an interval between 2.5 and 20 
milliseconds. This interval includes the phonatory cycle lengths that are typical of 
male and female speakers. Per frame, each analysis method was applied twice, once 
for positive and once for negative lag values, and the minimum prediction error or 
variogram-determined signal difference was kept and assigned to the vocal 
dysperiodicity trace. 

For several analyses, the speech signals, inter-correlation function or variogram 
were interpolated linearly or parabolically. The purpose was to test the use of non-
integer prediction lags.  
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4.1   Analysis Methods 

Table 2. Characteristics of analysis methods 

Label  Analysis  method Nber of coefficients Interpolation 
1 Burg,  covariance-lattice 3 no 
2 covariance 1 no 
3 covariance 3 no 
4 covariance 1 linear 
5 covariance 1 parabolic 
6 variogram n.a. no 
7 variogram n.a. linear 

4.2   Corpora 

The corpora have been sinusoids; as well as vowels and short sentences produced by 
normophonic or dysphonic speakers. Sinusoids as well as speech signals have been 
sampled at 20 kHz. The sinusoids have been contaminated by additive or frequency 
modulation noise. The purpose was to test interpolation with a view to reducing 
quantization noise. 

The speech corpus comprised sustained vowels [a] and two French sentences 
spoken affirmatively by 22 normophonic or dysphonic, male or female speakers. The 
sentences were “le garde a endigué l’abbé” (S1) and “une poule a picoré ton cake” 
(S2). All phonetic segments in sentence S1 are voiced by default, whereas sentence 
S2 comprises voiced as well as unvoiced phonetic segments. The sentences are 
matched grammatically and comprise the same number of syllables. Strident fricatives 
were omitted on purpose. 

4.3   Noise Marker 

The vocal dysperiodicity trace e(n) is summarized by means of a signal-to-
dysperiodicity ratio (SDR) that is defined as follows [1]. Symbol I is the number of 
samples in the total analysis interval. 
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Table 1 shows that SDR  0 when the signal is white noise and analyzed by 
means of multi-step prediction. On the contrary, SDR  -3 dB when the signal is 
white noise and analyzed by means of the generalized variogram. The reason is that 
variogram (6) is the cumulated squared difference between present and lagged 
samples. Prediction error (3) is, on the contrary, equal to a cumulated squared 
difference between present and lagged samples only when the signal is periodic or 
pseudo-periodic.  
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5   Results and Discussion 

5.1   Sinusoidal Signals 

Analyses of sinusoids confirm that dysperiodicity traces obtained by single-
coefficient multi-step predictive or variogram analyses may be altered by quantization 
noise. SDR values of clean sinusoids sampled at 20 kHz were typically comprised in 
the interval 30 – 40 dB when the sampling frequency was not an integer multiple of 
the frequency of the sinusoid.  

Non-integer lags, determined via interpolation, have been shown to increase the 
distance between vocal and quantization noise. Simulations suggest that interpolation 
moves the SDR values of sampled clean sinusoids to values greater than 65 dB. 

5.2   Sustained Vowels and Running Speech 

Table 3 summarizes the quartiles of the SDR values (in dB) obtained for a corpus 
of sustained vowels [a], including onsets and offsets, and sentences S1 and S2 
spoken by 22 speakers. The labels of the analysis methods agree with the labels 
given in Table 2. The SDR values have been rounded to the nearest decimal after 
the comma. 

For each speech corpus, a single-factor repeated measures analysis of variance of 
the SDR values has been carried out to check whether differences between methods 1 
to 7 are statistically significant. Subsequently, methods have been compared pair-wise 
by means of paired t-tests. The levels of significance of the individual tests have been 
adjusted by means of Bonferroni’s correction to fix to 0.05 the overall level of 
significance of a total of 21 pair-wise comparisons [5]. Statistical analyses of the data 
show the following. 

a) For vowel [a], the analysis of variance shows that the inter-method differences 
are statistically significant (F = 249, p < 0.001). Out of the 21 pair- wise 
comparisons, 17 are statistically significant. Of these, all involve differences 
between analysis methods (covariance-lattice, covariance of order 0 or 2, 
variogram). 

Table 3. Quartiles of the SDR values (in dB) obtained for a corpus of sustained vowels [a], 
including onsets and offsets, and sentences S1 and S2 spoken by 22 speakers 

Method label 1 2 3 4 5 6 7
First quartile 23.5 16.8 17.0 16.7 16.7 16.7 16.7 

Median 26.7 20.2 20.6 20.3 20.4 20.1 20.2 [a] 
Third quartile 28.7 22.4 22.9 22.6 22.8 22.4 22.6 
First quartile 19.5 14.4 14.6 14.4 14.4 14.2 14.2 

Median 22.3 17.2 17.4 17.2 17.1 17.2 17.1 S1
Third quartile 24.6 18.1 18.4 18.1 17.9 18.0 18.0 
First quartile 19.0 16.7 17.2 16.6 15.7 16.5 16.8 

Median 22.6 18.3 18.5 18.2 17.7 18.1 18.1 S2
Third quartile 24.4 19.7 20.0 19.4 19.2 19.6 19.4 
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b) For sentence S1, the analysis of variance shows that the inter-method 
differences are statistically significant (F = 129, p < 0.001). Of the 21 pair-
wise comparisons, 16 are statistically significant. Of these, 15 pairs involve 
differences between analysis methods (covariance-lattice, covariance of order 0 
or 2, variogram). One pair differs by the interpolation method (linear versus 
parabolic). 

c) For sentence S2, the analysis of variance shows that the inter-method 
differences are statistically significant (F = 67, p < 0.001). Of the 21 pair-wise 
comparisons, 15 are statistically significant. Of these, all involve differences 
between analysis methods (covariance-lattice, covariance of order 0 or 2, 
variogram). 

Results therefore suggest that different analysis methods cause SDR values to differ 
statistically significantly. Possible explanations are the following. 

a) The covariance-lattice implementation (Table 3, column 1) implicates running 
averages of the recent as well as distant samples. The original purpose of 
involving several prediction coefficients has been the decrease of quantization 
noise. Results suggest that multiple prediction coefficients decrease genuine 
vocal noise as well as quantization noise. 

Also, the lattice filter is stable. Stability would let one expect a boost of the 
prediction error because of an increased difficulty in tracking rapid transients. 
This is not observed. This would suggest that either the corresponding error 
increase is masked by the decrease of genuine vocal noise owing to local 
averaging (2), or by the bilateral analysis (1) that turns onsets into offsets.  

b) The 3-coefficient covariance method (Table 3, column 3) involves a running 
average of the distant samples only. The original purpose has been the decrease 
of quantization noise. Single-coefficient covariance analyses omit this local 
smoothing. As a consequence, single-coefficient (column 2) and 3-coefficient 
(column 3) covariance analyses give rise to SDR values that differ statistically 
significantly. Inspecting data averages suggests that the corresponding SDR 
values typically differ by less than 1 dB. The difference is due to a decrease of 
the genuine vocal noise by local averaging rather than to a decrease of the 
quantization noise.  

c) The variogram (Table 3, columns 6 and 7) involves an energy-normalisation 
coefficient the mathematical properties of which differ from those of the 
prediction coefficients implicated in methods labelled 1 to 5. Consequently, 
SDR values obtained by variogram and linear predictive analyses differ 
statistically significantly. Inspection of the data averages suggests, however, 
that SDR values obtained via 1-coefficient covariance and variogram analyses 
typically differ by less than 1 dB.  Simulations indeed show that variogram and 
1-coefficient linear predictive analyses give comparable SDR values as long as 
these are greater than roughly 10 dB [4].  

Statistical analyses show that interpolation does not cause the SDR values to increase 
statistically significantly for a same analysis method. The purpose of interpolation is 
to decrease quantization noise. Inspecting data averages suggests that SDR differences 
owing to interpolation are typically less than 0.1 dB. A possible explanation is that, in 
the absence of interpolation, the SDR ceiling owing to quantization noise is in the 
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vicinity of 30 dB. Therefore, quantization noise is negligible compared to vocal noise 
in signals the SDR value of which is typically 17 dB. 

6   Conclusion 

Implementations of linear predictive analyses that are considered to be optimal for 
speech coding are sub-optimal for clinical applications and vice versa. For clinical 
applications, the recommended implementation would involve a single prediction 
coefficient the value of which is fixed by means of a conventional covariance method. 
Interpolation or over-sampling would be the preferred method for decreasing 
quantization noise. Moreover, the presentation shows that multi-step prediction is not 
a paradigm that would enable interpreting under all circumstances the prediction error 
as a trace of the vocal dysperiodicity. The generalized variogram of the speech signal 
is an alternative that does not admit any ambiguity in interpretation. 

References 

[1] Qi Y., Hillman R. E., and Milstein C. (1999) ‘‘The estimation of signal to-noise ratio in 
continuous speech for disordered voices,’’J.Acoust. Soc. Am. 105, 4, 2532–2535. 

[2] Bettens F., Grenez F. and Schoentgen J. (2005) “Estimation of vocal dysperiodicities in 
disordered connected speech by means of distant-sample bidirectional linear predictive 
analysis”, J. Acoust. Soc Am., 117, 1, 10 pp. 

[3] Ramachandran R., and Kabal P. (1989) ‘‘Pitch prediction filters in speech 
coding,’’IEEETrans. Acoust., Speech, Signal Process. 37, 4, 467–478. 

[4] Dessalle, E. (2004) “Estimation en ligne des dispériodicités vocals dans la parole 
connectée”, unpublished Master Thesis, Université Libre de Bruxelles, Bruxelles. 

[5] Moore D., McCabe G. (1999) “Introduction to the practice of statistics”, Freeman, New 
York. 



M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 206 – 218, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Optimal Size of Time Window in Nonlinear Features for 
Voice Quality Measurement 

Jesús B. Alonso1, Fernando Díaz-de-María2, Carlos M. Travieso1,  
and Miguel A. Ferrer1 

1 Dpto. de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, 
Campus de Tafira, 35017 - Las Palmas de Gran Canaria, Spain 
{jalonso, ctravieso, mferrer}@dsc.ulpgc.es 

http://www.gpds.ulpgc.es/index.htm 
2 Dpto. de Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, 

Avda. de la Universidad, 30, 28911 Leganes (Madrid), Spain 
fdiaz@tsc.uc3m.es 

Abstract. In this paper we propose the use of nonlinear speech features to    
improve the voice quality measurement. We have tested a couple of features 
from the Dynamical System Theory, namely: the Correlation Dimension and 
the largest Lyapunov Exponent. In particular, we have studied the optimal size 
of time window for this type of analysis in the field of the characterization of 
the voice quality. Two systems of automatic detection of laryngeal pathologies, 
one of them including these features, have been implemented with the purpose 
of validating the usefulness of the suggested nonlinear features. We obtain 
slight improvements with respect to a classical system. 

1   Introduction 

The medical community uses subjective techniques (evaluation of the voice quality by 
the specialist doctor's direct audition) or invasive methods (which allow the direct 
inspection of vocal folds thanks to the use of laryngoscopical techniques) for the 
evaluation and the diagnostic of voice pathologies. The voice quality measurement 
has received much attention during the last decade ([2] [3] [4] [5] are good examples). 
These systems allow us to quantify the voice quality effectively and to document the 
patient's evolution using objective measures. These techniques provide the ability to 
detect quickly and simply laryngeal pathologies; thus they can be applied in preven-
tive medicine and telemedicine environments.  

On the other hand, automatic laryngeal pathologies detection systems have been 
developed [6] [7] [8] [9]. In these works, different success rates are obtained in the 
classification between healthy voices and pathological voices, being evaluated each 
system with different data bases, since a data base of reference does not exist.  

In [1], the authors proposed a classification system to distinguish healthy from 
pathologic voices using a Neuronal Networks (NN). In the feature extraction phase, 
diverse measures based on the High Order Statistics (HOS) were used in addition to a 
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selection of classical voice quality measurements present in the current literature. 
These measurements of the voice quality based on the HOS achieve good results, but 
in exchange for a high computational cost. 

In this work, the viability of the nonlinear dynamic-based speech analysis has been 
studied with the purpose of obtaining information on the voice signal nonlinear    
behavior. The tested nonlinear features are less computationally demanding than 
HOS-based ones. The viability of characterizing the voice signal by means of the 
Lyapunov Exponents has been already suggested in other works [10] [11] . In another 
paper [12] , the utility of the correlation dimension to detect the presence of laryngeal 
pathologies has also been proposed. However, different aspects of these measure-
ments are explored, for example, the optimal size of the time window. Some prelimi-
nary results on this topic are presented in this work. 

2   Nonlinear Dynamical System: The Embedding Theorem 

The Chaos Theory can be used to gain a better understanding and interpretation of 
observed complex dynamical behaviour. Besides, It can give some advantages in 
predicting or controlling such time evolution 13. 

Deterministic dynamical systems describe the time evolution of a system in some 
state space dR⊂Γ . Such an evolution can be described case by ordinary differential 
equations:  

))(()( txFtx =&  (1) 

or in discrete time tnt Δ=  by maps of the form: 

)(1 nn xFx =+  (2) 

Unfortunately, the actual state-vector only can be inferred for quite simple systems, 
and as anyone can imagine, the dynamical system underlying the speech production 
process is very complex. Nevertheless, as established by the "embedding theorem" 14, 
it is possible to reconstruct a state space equivalent to the original one. Furthermore, a 
state-space vector formed by time-delayed samples of the observation (in our case, the 
speech samples) could be an appropriate choice: 

( ) ( ) ( )( )[ ]tTdnsTnsns 1,,, −−−= Kns  (3) 

where ( )ns  is the speech signal, d is the dimension of the state-space vector, T  is a 

time delay and t  means transpose.  

Finally, the reconstructed state-space vector dynamic, ( )n1n ss F=+ , can be 

learned through either local or global models, which in turn will be polynomial    
mappings, neural networks, etc. 

2.1   Correlation Dimension  

The correlation dimension 
2D  gives an idea of the complexity of the dynamics.  A 

more complex system has a higher dimension, which means that more state variables 
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are needed to describe its dynamics. The correlation dimension of a random noise is 
not bounded while the correlation dimension of a deterministic system yields a finite 
value. The correlation dimension can be obtained as follows: 
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where r is the radius around 
iX  and )(xθ  is the step function. Equation [4] converges 

very slowly as r tends to zero. To circumvent this problem, the local slope can be 
estimated: 
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When the length N is significantly large, D2 will converge with the increase of the 
embedding dimension, m. 

2.2   The Largest Lyapunov Exponent 

Chaotic behaviour arises from the exponential growth of infinitesimal perturbations. 
This exponential instability is characterized by the Lyapunov exponents. Lyapunov 
exponents are invariant under smooth transformations and are thus independent of the 
measurement function or the embedding procedure. 

The largest Lyapunov exponent can be determined without the explicit construc-
tion of a model for the time series. It considers the representation of the time series as 
a trajectory in the embedding space, and assume that you observe a very close return 

'ns to a previously visited point 
ns . Then one can consider the distance 

'0 nn ss −=Δ  as 

an small perturbation, which should grow exponentially in time. Its evolution can be 
followed from the time series:

lnlnl ss ++ −=Δ '
. If one finds that l

ol e  λΔ≈Δ ,  is the 

largest Lyapunov exponent.  

3   New Voice Disorder Parameterisation  

In the current literature, some works suggest the viability of characterizing the voice 
signal by means of the Lyapunov Exponents (for example in synthesis of phonemes 
10 and 11), and characterizing the voice disorder signal by means of the correlation 
dimension 12. 

For the study of the presence of laryngeal pathologies based on the voice re-
cording, it is very common to use recordings of sustained vowels. 

In this work, we have studied which is the optimal size of the time window for the 
nonlinear analysis (Correlation Dimension and the Largest Lyapunov Exponent), with 
the purpose of deciding whether a vowel utterance comes from a healthy or a patho-
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logical voice. Different sizes of time window has been studied: 10, 30, 50, 100, 150, 
300, 500 ms or the whole vowel utterance and pitch-synchronous segments of 3, 5, 7, 
10 pitch periods. 

In the case of obtaining multiple frames for each vowel, the following parameters 
have been extracted for each feature (Correlation Dimension and the Largest 
Lyapunov Exponent): 

• The mean value of the feature P  for the different frames  { }iT
N

: 

=

=
N

i
iP P

N
M

1

1  (7) 

• Variation of the value of the feature along the time: 

{ } =
−−

−
=

N

i
ii

i
P PP

PN
V

2
1max

1

)1(

1  (8) 

3.1   Voice Database 

The voice signals used in this study were digitalized with a sample frequency of 
22050 Hz and 16 bits per sample. The speaker's voice was recorded with a conven-
tional sound card and a basic microphone. The database consists of 100 voices of 
healthy speakers and 68 voices of pathological speakers. Each sample of the database 
is composed by the five Spanish vowels (‘a’, ‘e’, ‘i’, ‘o’ and ‘u’) pronounced in a 
sustained way by the speakers during approximately two seconds for each vowel. In 
case of pathological speakers there are situations of vocal folds without lesion  
(hypofunction, hyperfunction, vocal fold paralysis,...) and vocal folds with lesion 
(carcinoma, vocal folds nodule, sessile polyp, pedunculated polyp, Reninke’s edema, 
adult papiloma,...). The database has been created contemplating different disphonia 
levels: “light pathological voice”, “moderate pathological voice” and “severe patho-
logical voice.”  

3.2   Evaluation of the Parameterization  

The attractor dimension has been fixed to 2 since the result obtained does not justify 
the increment of the time consuming, and the delay, T, has been estimated to 8  
samples.  

A one-second interval, located in the centre of the utterance, has been studied. This 
alteration has been carried out with the purpose of eliminating the beginning and end 
of the phonation, because it presents a transitory character. This modification has 
been implemented except when the whole vowel is used. 

Four different attributes have been studied: 

• Atrib1: Mean value of the Correlation Dimension. 
• Atrib2: Time Variation of the Correlation Dimension values. 
• Atrib3: Mean value of the Largest Lyapunov Exponent. 
• Atrib4: Time Variation of the Largest Lyapunov Exponent values.  

 



210 J.B. Alonso et al. 

A neural network has been used to evaluate the benefits of the different attributes 
in the environment of the automatic pathologies detection. Each attribute has sepa-
rately been evaluated using neural network Multilayer feedforward with 2 hidden 
layers, with Backpropagation train algorithm. Different sizes of asynchronous time 
window have been evaluated of using like evaluation function the success rate in the 
classification. Each attribute has been evaluated separately, differentiating between 
the five vowels. The different sizes of asynchronous time window are: 10, 30, 50, 
100, 150, 300, 500 milliseconds and the whole vowel utterance (‘full’ in the figures). 
The result is showed in the Figures 1, 2, 3 and 4.  

The asynchronous time window has a disadvantage: because the vibration fre-
quency of the vocal folds (picth) of the women is greater than the men, for a certain 
temporal window is obtained different number of periods between men and women. 
In order to be able to make the parameterization process independent of the pitch 
frequency, it is possible dividing the vowel in  pitch-synchronous segments of  3, 5, 7, 
10 pitch periods (To). The result is showed in the Figures 5, 6, 7 and 8.  
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Fig. 1. Results of the study about size of asynchronous time window for "mean value of the 
Correlation Dimension"  
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Fig. 2. Results of the study about size of asynchronous time window for “Time Variation of the 
Correlation Dimension values” 
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 Mean Value of the Maximal Lyapunov Exponent
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Fig. 3. Results of the study about size of asynchronous time window for "mean value of the 
Maximal Lyapunov Exponent” 
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Fig. 4. Results of the study about size of asynchronous time window for “Time Variation of the 
Maximal Lyapunov Exponent values” 
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Fig. 5. Results of the study about size of synchronous time window for "mean value of the 
Correlation Dimension" 

To sum up, it is observed better results dividing the vowel in pitch-synchronous 
segments of 3 pitch periods. It is also observed better results for the attribute “mean 
value of the Correlation Dimension”, during the individual evaluation of the parameter. 



212 J.B. Alonso et al. 

Variation of the Correlation Dimension
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Fig. 6. Results of the study about size of synchronous time window for “Time Variation of the 
Correlation Dimension values” 
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Fig. 7. Results of the study about size of synchronous time window for "mean value of the 
Maximal Lyapunov Exponent” 
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Fig. 8. Results of the study about size of synchronous time window for “Time Variation of the 
Maximal Lyapunov Exponent values” 
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4   Detector Model  

The voice automatic classification system allows us to discriminate healthy voices 
from pathological ones. It is based on a pattern recognition model. 

These systems are typically structured in three steps, namely: “Voice Acquisition”, 
“Parameterization” and “Classification”. The proposed automatic laryngeal patholo-
gies recognition system follows this structure, illustrated in figure 9. Firstly, it cap-
tures the speaker's voice using a sound card and a microphone. The parameterization 
step uses parameters presented in [1], where a combination of a selection of parame-
ters exposed in the current literature with new parameters based on Higher Order 
Statistics (HOS) was exposed. Finally, a net of classifiers based on Neural Networks 
(NN) is used to classify between healthy and pathological voices.  

Voice acquisition

Parameterization 

Classifier 
 

Fig. 9. Pattern recognition model 

4.1   Parameterization  

The parameterization step uses the same parameters that has been used in [1], where 
the authors made a selection of 17 parameters for the laryngeal pathologies classifica-
tion (in the rest of the paper “classic parameters”), among multiple voice quality char-
acterization parameters well-known in the literature.  

4.1.1   Classic Parameters  
There is no parameter which is completely conclusive in the detection of laryngeal 
pathologies, because each pathology affects the voice in a different way. For example, 
there are pathologies that present a great content of non-stationary noise in the high  
frequency components. On the other hand, other pathologies are characterised by the 
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Table 1. Classic characteristics 

Group of characteristics Name of the attributes 
Quantifying the variation in 

amplitude (shimmer) 
- Variation in the mean quadratic value of each voice 

frame 
- Variation in the highest value of the short time cross 

correlation function of each voice frame 
Quantifying the presence of 

unvoiced frames 
- Relationship between the number of unvoiced 

frames and the total number of frames of the sample 
voice 

- The unvoiced periodicity index of a sample voice 
Quantifying the absence of 

wealth spectral (Hitter) 
- Variation of pitch energy cepstral measure 
- Variation in the first harmonic value in the derived 

cepstrum domain 
- Variation in the first/second harmonic relationship 

value within the derived cepstrum domain 
Quantifying the presence of 

noise 
- Energy spectral balances 
- Spectral distance (based on the spectral module) 
- Spectral distance (based on the spectral phase) 

Quantifying the regularity 
an periodicity of the waveform 
of a sustained voiced voice 

- Value an variation in energy of the slope  of the 
envelope in the autocorrelation function of an AM 
modulated signal 

- Variation of the slope  of the envelope in the auto-
correlation function of an AM modulated signal 

uncertainty of the pitch value throughout the duration of the phonation of a sustained 
voiced sound. This is why classical characteristics have been divided into five groups 
depending on the physical phenomenon that each parameter quantifies: quantifying 
the variation in amplitude (shimmer), quantifying the presence of unvoiced frames, 
quantifying the absence of wealth spectral (Hitter), quantifying the presence of noise 
and quantifying the regularity an periodicity of the waveform of a sustained voiced 
voice. All the classic characteristics used are shown in Table 1. 

4.1.2   New Nonlinear Parameters  
In this work the possibility of using nonlinear features with the purpose of detecting 
the presence of laryngeal pathologies has been explored. The four measures proposed 
will be used: mean value and time variation of the Correlation Dimension and mean 
value and time variation of the Maximal Lyapunov Exponent values. 

4.2   Classifier  

The proposed system is based on the use of a net of classifiers, where each one dis-
criminates frames of a certain vowel. Combinational logic has been added to evaluate 
the success rate of each classifier.  

The structure of the proposed classifier is similar to the one proposed in [1], and 
represented in figure 10. Five NN–based vowel classifiers have been used to dis-
criminate between healthy and pathological vowels, one for each vowel. The inputs of 
each vowel classifier are the feature vectors of the sequence of frames in which the  
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Fig. 10. Classification System Scheme 

vowel corresponding to this classifier has been divided. The length of each frame is a 
three pitch period, for a voiced sound, or 30 ms if it is an unvoiced sound (typical of 
the pathological voices). Only the 500 central milliseconds of the vowel have been 
considered to avoid considering the frames that exhibit non-stationary behaviour at 
the beginning and end of each vowel.  

The dependence of the parameters on the analysed vowel has been taken into ac-
count, as pointed out by Jacques Koreman and Manfred Pützer [15]. Consequently, a 
"vowel classifier" has been used for each vowel, such as  is shown in figure 10.  

First of all, each "vowel classifier" emits an estimation dependent on whether the 
analysed vowel is related to a "healthy vowel" or to "pathological vowel". Secondly, the 
results of the different vowel classifiers are evaluated by means of  an “output logic”.  

In each “vowel classifier”, the different voice frame are evaluated in two neural 
networks, and an assessment is emitted: “healthy frame" or "pathological frame”. If 
70% or more of the frames correspond to healthy frame, the analysed vowel will be 
labelled as  a "healthy vowel", otherwise it will be labelled as a "pathological vowel." 
The scheme of a vowel classifier is shown in figure 11. In this study, normalized data 
(zero-mean and variance one)  have been used. 

The characteristics of the Neural Network are described in the table 2. 
The output logic will indicate that the voice sample corresponds to a "pathological 

voice" if two or more vowels are classified as "pathological vowels", whereas the 
voice sample will be classified as a "healthy voice" if only one vowel or none of them 
are classified as "pathological vowels".  

 Neural Network
 " Healthy Voice "

Neural Network
 " Pathology Voice "

Logic

Vector of parameters i 

Vector of parameters i 

Output Neural Network
"Healthy Voice" 
for the vector of parameters i 

Output Neural Network
"Pathology Voice" 
for the vector of parameters i 

Decision: "Healthy Vowel" / "Pathology Vowel"

 

Fig. 11. Classification System Scheme 
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Table 2. Characteristics of the Neural Network 

Characteristic Neural Network 
“Healthy Voice” 

Neural Network 
“Pathological Voice” 

Number of Layer  2 2 
Number of inputs Number of parameters  Number of parameters 
Number of neurons in the first layer 40 40 

T
op

ol
og

y 

Number of outputs 50 50 
Maximum Threshold  of  absolute error 0.01 0.01 
Maximum Threshold  of  relative error 0.015 0.015 
Maximum number of epochs  10000 10000 
Training method Back-propagation Back-propagation 

Hidden layer: “tansig” Hidden layer: “tansig” 

T
ra

in
in

g 

No linear function 
Output layer: “purelin” Output layer: “purelin” 

5   Results 

Two systems have been compared using the same data base. The first one, only works 
with the “classic parameters”, while the second one uses both “classic” and “nonlin-
ear” parameters, obtaining the results displayed in Tables 2 and 3. 

A global success rate of 91,77% is obtained using "classic parameters", whereas a 
global success rate of 92,76% using "classic parameters” and “nonlinear” parameters. 
These results show the utility of  new parameters. 

Table 3. Success Rate using “Classic characteristics” 

Input 

 
Healthy 

Voice 
Pathological 

Voice 
Healthy 

Voice 
95.65 % 12.10 % 

O
ut

pu
t 

Pathological 
Voice 

4.35 % 87.90 % 

Table 4. Success Rate using “Classic characteristics + New parameters” 

Input 

 
Healthy 

Voice 
Pathological 

Voice 

Healthy 
Voice 

96.12 % 10.60 % 

O
ut

pu
t 

Pathological 
Voice 

3.88 % 89.40 % 
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6   Conclusions  

In this work, the possibility of using nonlinear features to improve the performance of 
an automatic detector of laryngeal pathologies has been explored.   

Two features have been tested: Correlation Dimension and the Largest Lyapunov 
Exponent. In particular, the system works with their mean value and variation. 

An experimental study aiming at selecting the best size for the time window of the 
nonlinear analysis has been conducted, concluding that the best option is using a 
pitch-synchronous window containing three periods. 

Finally, the results of the classification system including the mean value and varia-
tion of the correlation dimension are slightly better than those achieved by the system 
using only the classic parameters. 

Though the improvement is slight, we consider it an encouraging result, since the 
research is currently in the first stages. Further work is necessary in diverse directions. 
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Abstract. Support Vector Machines (SVMs) have become a popular tool for 
discriminative classification. An exciting area of recent application of SVMs is 
in speech processing. In this paper discriminatively trained SVMs have been in-
troduced as a novel approach for the automatic detection of voice impairments. 
SVMs have a distinctly different modelling strategy in the detection of voice 
impairments problem, compared to other methods found in the literature (such a 
Gaussian Mixture or Hidden Markov Models): the SVM models the boundary 
between the classes instead of modelling the probability density of each class. 
In this paper it is shown that the scheme proposed fed with short-term cepstral 
and noise parameters can be applied for the detection of voice impairments with 
a good performance.  

1   Introduction 

Voice diseases are increasing dramatically nowadays due mainly to unhealthy social 
habits and voice abuse. These diseases have to be diagnosed and treated at an early 
stage, especially larynx cancer. Acoustic analysis is a useful tool to diagnose such 
diseases; furthermore, it presents two main advantages: it is a non-invasive tool, and 
provides an objective diagnosis, being a complementary tool to those methods based 
on the direct observation of the vocal folds using laryngoscopy. 

The state of the art in acoustic analysis allows to estimate a large amount of long-
term acoustic parameters such the pitch, jitter, shimmer, Amplitude Perturbation Quo-
tient (APQ), Pitch Perturbation Quotient (PPQ), Harmonics to Noise Ratio (HNR), 
Normalized Noise energy (NNE), Voice Turbulence Index (VTI), Soft Phonation 
Index (SPI), Frequency Amplitude Tremor (FATR), Glottal to Noise Excitation 
(GNE), and many others [1-8], conceived to measure the quality and “degree of nor-
mality” of voice records. Former studies [9;10] show that the detection of voice al-
terations can be carried out by means of the before mentioned long-term estimated 
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acoustic parameters, so each voice frame is quantified by a single vector. However, 
their reliable estimation is based on an accurate measurement of the fundamental 
frequency: a difficult task, especially in the presence of certain pathologies.  

In the last recent years newer approaches are found using short-time analysis of the 
speech or electroglottographic (EGG) signal. Some of them, address the automatic 
detection of voice impairments from the excitation waveform collected with a laryn-
gograph [11] or extracted from the acoustic data by inverse filtering [12]. However, 
due to the fact that inverse filtering is based on the assumption of a linear model, such 
methods do not behave well when pathology is present due to non-linearities intro-
duced by pathology in itself.  

On the other hand, it is well known that the acoustic signal itself contains informa-
tion about the vocal tract and the excitation waveform as well. The basic idea for this 
research is to use a non-parametric approach able of modeling the effects of patholo-
gies on both the excitation (vocal folds) and the system (vocal tract), although through 
the present research emphasis has been placed in pathologies affecting mainly to the 
vocal folds.  

In this study, a novel approach to detect the presence of pathology from voice re-
cords is proposed and discussed by means of short-time parameterization of the 
speech signal. The automatic detection of voice alterations is addressed by means of 
Support Vector Machines (SVM) using non-parametric short-term Mel Frequency 
Cepstral Coefficients (MFCC) [13] complemented with short-term noise measure-
ments. Each voice record is characterized with as many vectors as time frames are 
produced from each speech sample. The detection is carried out for each frame, and 
the final decision is taken establishing a threshold over the frame account classified as 
normal or pathological.  

The present study is focused on those organic pathologies resulting in an affection of 
the vocal folds, which are due most of the times to vocal misuse, and reveal themselves 
as a modification of the excitation organ morphology (i.e. vocal folds), which may re-
sult in the increment of mass or rigidity of certain organs, thus resulting in a different 
pattern of vibration altering the periodicity (bimodal vibration), reducing higher modes 
of vibration (mucosal wave), and introducing more turbulent components in the voice 
record. Within this group the following pathologies can be enumerated among others: 
polyps, nodules, paralysis, cysts, sulcus, edemas, carcinomas, etc. [14] 

2   Database 

This study has been carried out using the database developed by the Massachusetts 
Eye and Ear Infirmary Voice and Speech Lab [15], due mainly to its availability. 
The speech samples were collected in a controlled environment and sampled with 
16-bit resolution. A downsampling with a previous half band filtering has been 
done to adjust every utterance to the sampling rate of 25 kHz. The acoustic samples 
correspond to sustained phonations of vowel /ah/ from patients (males and females) 
with normal voices and a wide variety of organic, neurological, traumatic, and psy-
chogenic voice disorders. 
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We have considered only a subset of all the possible files, 53 normal and 173 
pathological voices, according to [16]. This decision was adopted to avoid recordings 
without a diagnosis and because features sex and age are uniformly distributed be-
tween the two classes. The length of normal files is around 3 seconds, whereas patho-
logical files are around 1 second, because people with voice disorders have more 
difficulties to sustain a vowel during 2 or 3 s. 

3   Methodology 

Fig. 1 shows a block diagram describing the process set up for the detection of voice 
alterations. A short description of each step is presented in the following sections. 

 

Fig. 1. Block diagram of the speech pathology detector: preprocessing front-end, feature extrac-
tion and detection module 

3.1   Pre-processing 

Each recording from the database contains one “target value” (class label) and several 
“attributes” (features). These features are calculated from short-time windows ex-
tracted from the speech utterances. The window length was selected to contain at least 
two consecutive pitch periods (2·T0) [17] even for the lowest fundamental frequency, 
so feature extraction was performed using a 40 ms Hamming windows, with an over-
lap of 50% between adjacent frames. The frame rate thus obtained is 50 frames/s. 

As the pre-processing front-end divides the speech signals into overlapping frames, 
the feature extraction block produces the input vectors that will be used to train and 
test the classifier. The total amount of vectors generated by the system is around 
16700, each one corresponding to a framed window. Around 48% of them correspond 
to normal voices, and the remaining 52% to pathological ones. 

3.2   Parameterization 

Through this approach, the detection of voice disorders is carried out by means of 
short-time features. For each frame the following features were extracted: a) 11 
MFCCs; b) 3 noise measurements: Harmonics to Noise Ratio (HNR), Normalized 
Noise Energy (NNE), and Glottal to Noise Excitation Ratio (GNE); c) the energy of 
the frame; d) and the first temporal derivatives (Δ) extracted from each enumerated 
parameter. The final feature vector had dimension 30 (11 MFCCs, 3 Noise features, 
Energy, and 15 Δ). A brief description of these parameters is given next. 

Calculation of the MFCC parameters: MFCCs have been calculated following a 
non-parametric modeling method, which is based on the human auditory perception 



222 J.I. Godino-Llorente et al. 

system. The term mel refers to a kind of estimate related to the perceived frequency. 
The mapping between the real frequency scale (Hz) and the perceived frequency scale 
(mels) is approximately linear below 1 kHz and logarithmic for higher frequencies. 
The bandwidth of the critical band varies accordingly to the perceived frequency [13]. 
Such mapping converts real into perceived frequency and matches with the idea that a 
well trained speech therapist is able, most of the times, to detect the presence of a 
disorder just listening the speech.   

MFCCs can be estimated using a parametric approach derived from Linear Predic-
tion Coefficients (LPC), or using a non-parametric FFT-based approach. However, 
FFT-based MFCCs typically encode more information from excitation, while LPC-
based MFCCs remove the excitation. Such an idea is demonstrated in [18], were FFT-
based MFCCs are found to be more dependent on high-pitched speech resulting from 
loud or angry speaking styles than LPC-based MFCCs, witch were found more sensi-
tive to additive noise in speech recognition tasks. This is so because LPC-based 
MFCCs ignore the pitch-based harmonic structure seen in FFT-based MFCCs.  

FFT-based MFCC parameters are obtained calculating the Discrete Cosine Trans-
form (DCT) over the logarithm of the energy in several frequency bands as in ec. 1: 
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where k=(1:M); M being the band number in mel scale; Wk(j) is the triangular weight-
ing function associated with the kth mel band in mel scale, , and X(j) is the NFFT-
point magnitude spectrum (j=1:NFTT).  

Each band in the frequency domain is bandwidth dependant of the filter central fre-
quency. The higher the frequency is, the wider the bandwidth is.  

The alterations related with the mucosal waveform due to an increase of mass are 
reflected in the low bands of the MFCC, whereas the higher bands are able to model 
the noisy components due to a lack of closure. Both alterations are reflected as noisy 
components with poor outstanding components and wide band spectra. The spectral 
detail given by the MFCC can be considered good enough for our purpose.  

Noise features. MFCCs have been complemented with three classical short-term 
measurements, specifically developed to measure the degree of noise present due to 
disorders: Harmonics to Noise Ratio (HNR), Normalized Noise Energy (NNE), and 
Glottal to Noise Excitation Ratio (GNE). The aim of these features is to separate the 
contribution of the excitation and the noise present, that is much higher in pathologi-
cal conditions.  

Harmonics to Noise Ratio (HNR). This parameter [3] is a measurement of the voice 
pureness. It is based on calculating the ratio of the energy of the harmonics related to 
the noise energy present in the voice (both measured in dB). Such measurement is 
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carried out from the speech cepstrum, removing the energy present at the rahmonics 
by liftering. The resulting liftered cepstrum provides a noise spectrum which is sub-
tracted from the original cepstrum. The result is a spectrum that contains only the 
harmonic components. After performing a baseline correction, the modified noise 
spectrum is subtracted from the original log spectrum in order to provide the HNR 
ratio estimation.  

Normalized Noise Energy (NNE). This parameter [4] is a measurement of the noise 
present in the voice respect to the total energy (i.e. NNE is the ratio between the 
energy of noise and total energy of the signal -both measured in dB). Such meas-
urement is carried out from the speech spectrum, separating by comb filtering the 
contribution of the harmonics in the frequency domain, from the valleys (noise). 
Between the harmonics, the noise energy is directly obtained from the spectrum. 
Within a harmonic, the noise energy is assumed to be the mean value of both adja-
cent minima in the spectrum.  

Glottal to Noise Excitation Ratio (GNE).  This parameter [8] is based on the correla-
tion between Hilbert envelopes of different frequency channels extracted from the 
inverse filtering of the speech signal. The bandwidth of envelopes is 1 kHz, and fre-
quency bands are separated 500 Hz. Triggered by a single glottis closure, all the fre-
quency channels are simultaneously excited, so that the envelopes in all channels 
share the same shape, leading to high correlation between the envelopes. The shape of 
each excitation pulse is practically independent of preceding or following pulses. In 
case of turbulent signals (noise, whisper) a narrowband noise is excited in each fre-
quency channel. These narrow band noises are uncorrelated (if the windows that de-
fine adjacent frequency channels do not overlap too much). The GNE is calculated 
picking the maximum of each correlation functions between adjacent frequency 
bands. The parameter indicates whether a given voice signal originates from vibra-
tions of the vocal folds or from turbulent noise generated in the vocal tract.  

Temporal derivatives. A representation better showing the dynamic behavior of 
speech can be obtained by extending the analysis to include the temporal derivatives 
of the parameters among neighbor frames. First (Δ) derivative has been used in the 
present study. To introduce temporal order into the parameter representation, let’s 
denote the mth coefficient at time p by cm[p] [13]: 

[ ] [ ]
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where μ is an appropriate normalization constant and (2K+1) is the number of frames 
over which the computation is performed. 

For each frame p, the result of the analysis is a vector of L coefficients, to which 
another L-dimensional vector giving the first time derivative is appended; that is:  
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where o[p] is a feature vector with 2·L elements.  
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Fig. 2. Filter impulse response to calculate the Δs of the temporal sequence of parameters. The 
filter coefficients are ak={0.067, 0.05, 0.033, 0.017, 0, -0.017, -0.033, -0.05, -0.067}. 

The derivatives provide relevant information about the dynamics of the short-time 
variation in the parameters. A priori, these features have been considered significant  
because, due to the presence of disorders a lower degree of stationarity may be ex-
pected in the speech signal [11]. Therefore, larger temporal variations of the parame-
ters may be expected. Another reason to complement the feature vectors with speed is 
that SVMs do not consider any temporal dependence by themselves as Hidden 
Markov Models (HMM) do [19]. The calculation of Δ has been achieved by means of 
anti-symmetric Finite Impulse Response (FIR) filters to avoid phase distortion of the 
temporal sequence (Fig. 2).  

3.3   Pattern Classification: The SVM Detector 

A support vector machine (SVM) [20] is a two-class classifier constructed from sums 
of a kernel function K(·,·): 
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tors xi are support vectors and obtained from the training set by an optimization proc-
ess [20]. The target values are either 1 or -1 depending upon whether the correspond-
ing support vector is in class 0 or class 1. For classification, a class decision is based 
upon whether the value, f(x), is above or below a threshold.  

The kernel K(·,·) is constrained to have certain properties (the Mercer condition), 
so that K(·,·) can be expressed as:  
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where b(x) is a mapping from the input space to a possibly infinite dimensional space. 
In this paper, a Radial Basis Function (RBF) kernel (ec. 7) has been used.   
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Fig. 3. Basis of the Support Vector Machine 

The optimization condition relies upon a maximum margin concept (Fig. 3). For a 
separable data set, the system places a hyperplane in a high dimensional space so that 
the hyperplane has maximum margin. The data points from the training set lying on 
the boundaries are the support vectors in ec. 5. For the RBF kernel, the number of 
centers, the centers themselves xi, the weights αi, and the threshold b are all calculated 
automatically by the SVM training by an optimization procedure. The training imply 
adjusting the parameter of the kernel, γ, and a penalty parameter, C, of the error term 
(a larger C value corresponds to assign a higher penalty to errors). The goal is to iden-
tify good (C, γ) pairs, so that the classifier can accurately predict unknown data.  

3.4   Evaluation Procedure 

Results are obtained following a cross-validation strategy, according to which the 
training and validation process of the model is repeated 10 times.  

In each repetition, the database is split randomly into two subsets: first one, with 
the 70% of the files, is used for training the model, and the second one, with the re-
maining 30%, is used to evaluate the generalization of the model. Each subset keeps 
the same proportion of normal and pathological files as the original data set. The 
division of the database into training and evaluation sets was carried out in a file basis 
(not in a frame basis) in order to prevent the system from learning speaker-related 
features and so to favor the generalization. Both male and female voices have been 
mixed indistinctly in the two sets. 

The final estimations of the model's performance are achieved averaging the 10 
partial results. These values are presented by means of a confusion matrix (as shown 
in Figure I), based on the number of frames correctly or incorrectly classified. 

For computing the results on a file basis, all the scores corresponding to the frames 
of a given file are averaged, thus obtaining a single score per file. With these file 
scores, a new threshold value that maximizes the correct classification rate within the 
training set is established. Then, the threshold is employed to compute the system's 
performance with the validation set. Finally, the confusion matrix file-based is filled, 
averaging the 10 trials. 
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The Detection Error Tradeoff (DET) [21] and Receiver Operating Characteristic 
(ROC) [22] curves have been used for the assessment of detection performance (Fig. 6). 
ROC displays the diagnostic accuracy expressed in terms of sensitivity against 
(1-specificity) at all possible threshold values in a convenient way. In the DET curve we 
plot error rates on both axes, giving uniform treatment to both types of error, and use a 
scale for both axes which spreads out the plot and better distinguishes different well 
performing systems and usually produces plots that are close to linear. 
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Fig. 4. Contour plot (penalty parameter C vs. γ) to show the cell where the detector performs 
better. The grid selected is (C, γ)=(104, 10-3). 

Table 1. Confusion matrix to show the performance of the classifier in terms of frame and file 
accuracy; a) True negative (TN) or correct rejection: the detector found no event (normal voice) 
when none was present; b) True positive (TP) or correct detection: the detector found an event 
(pathological voice) when one was present; c) False negative (FN) or false rejection: the detector 
found no event (normal) when present (pathological); d) False positive (FP) or false alarm: the 
detector found an event (pathological) when none was present (normal); e) Sensitivity: probability 
for an event to be detected given that it is present; f) Specificity: probability for the absence of an 
event to be detected given that it is absent; g) Efficiency: probability for the correct detection and 
rejection. Results are given for the Equal Error Rate point  
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4   Results    

Data were normalized into the interval [-1, 1] before feeding the net. The parameters 
(C, γ ), were chosen to find the average optimum accuracy. At each (C, γ ) grid, ten 
sets were sequentially used following the previously commented cross-validation 
scheme. The grid finally selected is (C, γ)=(104, 10-3) (Fig. 4).   

Table 1 shows the performance of the detector in terms of frame and file accuracy. 
The specificity of the system may be increased at the expense of sensitivity shifting the 
threshold used for the detection (Fig. 5). Table 1, Fig. 6a and Fig. 6b reveals that the 
Equal Error Rate (EER) point is around 6% and 5% for the frame and file accuracy 
respectively. The results shown are a little bit worse (in terms of accuracy around the 
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Fig. 5. Cumulative false alarm and false rejection plot. The Equal Error Rate point is shown.    
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Fig. 6. a) DET plot to show the False Alarm vs. Miss Probability (False Negative) for the frame 
accuracy; b) DET for the file accuracy 
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Fig. 7. ROC plot to show the False Alarm vs. Correct Detection (True Positive) probability 

Equal Error Rate point) to those obtained using generative methods such as the 
classical Gaussian Mixture Models (GMM) [23;24] (Fig. 6 and Fig. 7).  

The classical GMM approach [23;24] seems to be more linear in terms of the DET 
plot than the SVM. However, in biomedical applications is better to get a false alarm 
than a false negative, and the SVM seems to have a better behavior when increasing 
the false alarm probability shifting the threshold (Fig. 6a and Fig. 6b).  

5   Conclusions 

The paper has shown a system to automatically detect voice pathologies, based on a 
SVM detector and a combination of several short term features. MFCC parameters 
had been previously used for laryngeal pathology detection [25], and they had demon-
strated a good performance, surpassing other short time features like linear prediction 
based measurements.  The noise features had also been employed before, generally to 
assess their correlation with perceptual evaluations of vocal quality (in terms of 
hoarseness, breathiness, etc). However, they had never been used in combination with 
MFCC features to detect voice pathologies.  

The proposed detection scheme may be used for laryngeal pathology detection. 
Concerning the accuracy, it can be shown that the efficiency is around 94,1±2% 
(frame accuracy) and 95±2% (file accuracy). Around the EER point the accuracy is 
worse to that obtained using a GMM based detector. However, in biomedical applica-
tions is better to get a false alarm than a false negative, and the SVM seems to have a 
better behavior when increasing the false alarm probability shifting the threshold. We 
might conclude that both approaches are complementary. A fusion of the discrimina-
tive (SVM) and the generative (GMM) approach is proposed to be used in the future 
for the detection of voice disorders. The fusion of both classifiers is expected to im-
prove the overall efficiency of the system keeping in mind that the decision criteria of 
both systems are rather different.  
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The current study opens up the way to extend this method for classification tasks 
between different disorders (polyps, nodules, cists, etc) or perceptual vocal qualities: 
hoarseness, breathiness, etc.  
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Abstract. The presentation concerns the simulation of disordered voices. The 
phonatory excitation model is based on shaping functions, which are nonlinear 
memoryless input-output characteristics that transform a trigonometric driving 
function into a synthetic phonatory excitation signal. The shaping function 
model enables controlling the instantaneous frequency and spectral brilliance of 
the phonatory excitation via two separate parameters. The presentation 
demonstrates the synthesis of different types of dysperiodicities via a 
modulation of the amplitude and instantaneous frequency of the harmonic 
driving function. The voice disorders that are simulated are short- and long-
term perturbations of the vocal frequency and cycle amplitude, biphonation, 
diplophonia and raucity. Acoustic noise due to turbulent airflow is modeled by 
means of additive white noise. 

1   Introduction 

Often, human speech production is mimicked by means of a linear model of speech 
production, which represents voiced speech by means of a periodic pulse sequence 
that is filtered by the vocal tract transfer function [1]. Natural voices, especially 
disordered voices, are not simply periodic, however. 

Vocal dysperiodicities may have several causes. One distinguishes dysperiodicities 
that are due to (i) the vocal fold dynamics, e.g. diplophonia, biphonation and random 
cycle lengths; (ii) external perturbations, such as phonatory jitter and frequency 
tremor; (iii) turbulence noise, i.e. additive noise. 

Motivations for developing synthesizers able to simulate vocal dysperiodicities are 
the following. First, the simulation of vocal dysperiodicities may enable discovering 
acoustic features of perceptual traits of hoarse voices, as well as facilitate the training 
of clinicians evaluating disordered voices perceptually. Second, a better 
understanding of the perceptual effects of vocal dysperiodicities may enable 
improving the naturalness of synthetic speech. Third, synthetic test signals may be 
used to calibrate analysis methods of vocal dysperiodicity. Fourth, synthetic reference 
signals may mark perceptual boundaries within which disordered voices are 
perceptually classified by clinicians. 

Existing synthesizers of disordered voices, based on the Liljencrants-Fant model, for 
instance, do not enable controlling the instantaneous glottal cycle length [2]. This 
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means that any change of the vocal cycle length must be synchronized with the onset 
or offset of the glottal excitation pulse. Also, the Liljencrants-Fant model requests 
resetting all other model parameters to guarantee area balance. Finally, the bandwidth 
evolves unpredictably while modulating the model parameters to simulate vocal 
dysperiodicities. The risk of aliasing is not nil, because the bandwidth of concatenated-
curve models is not known a priori. 

We therefore propose to synthesize the phonatory excitation, which is the acoustic 
signal that is generated at the glottis by the vibrating vocal folds and pulsatile airflow, 
by means of shaping functions. A shaping function is an operator that transforms a 
trigonometric driving function into any desired waveform.  

The shaping function-based model has the following desirable properties. First, the 
instantaneous frequency and harmonic richness of the signal are controlled by two 
separate parameters, which are the instantaneous frequency and amplitude of the 
driving function. These parameters can be varied continuously and asynchronously. 
Second, the instantaneous amplitude, frequency, and harmonic richness of the 
synthetic vocal excitation, and the shaping function coefficients that encode speaker 
identity, can be set independently. 

2   Model 

A shaping function is a memoryless input-output characteristic that transforms a cycle 
of a harmonic into any desired shape [3]. The shaping function used here consist in an 
equivalent polynomial formulation of the Fourier series. The relation between the 
Fourier series of a signal and its shaping function model is demonstrated hereafter. 

2.1   Model I: Fourier Series Representation  

Under some mild assumptions, a discrete signal y(n) of cycle length N can be 
approximated by a Fourier series truncated at the Mth harmonic. 
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In series (1), coefficients ak and bk encode the shape of a cycle of signal y, and 
constant N is the cycle length. Changing N generates signals with the same cycle 
shape, but with different cycle lengths. 

If N is a real number, series (1) can be rewritten as follows. 
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with θ n+1 = θ n + 2πfΔ . Symbol f is the instantaneous frequency and Δ the sampling 
step. Letting f assume real values introduces quantization errors of one sample at most 
in the cycle length. This error depends on the sampling frequency, which must be 
chosen accordingly. 
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A signal with a fixed cycle shape, but with arbitrary instantaneous frequency, can 
therefore be synthesized by means of series (2). The default cycle shape is set by 
means of a glottal cycle template.  

The harmonic richness or spectral balance (i.e. brightness of timbre) of the 
synthetic signal may be fixed by a parameter that modifies the Fourier coefficients ak 

and bk. Indeed, non-linear oscillators are known to output signals the shape of which 
coevolves with signal amplitude. Often, the lower the amplitude is the more sinus-like 
is the shape. This suggest letting evolve Fourier coefficients as follows. 

ak − > a'k = Akak,

bk − > b'k = Akbk .
with  0 < A < 1. (3) 

Transform (3) is loosely inspired by [3]. Series (2) then becomes the following. 
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Series (4) demonstrates that the harmonics decrease the faster the higher their order, 
when parameter A is less than one. 

By means of series (4), several types of dysperiodicity may be simulated by 
modulating parameter A and instantaneous frequency f. These modulations may 
introduce aliasing. To facilitate the control of the bandwidth of series (4), it is 
reformulated polynomially. 

2.2   Model II: Distortion Function Representation 

It has been shown elsewhere that series (2) can be rewritten as a sum of powers of 
cosines (5) [3][4]. 
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The relation between polynomial coefficients ck and dk and Fourier coefficients ak and 
bk is given by expressions (7) and (9) [3][4]. 
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with  
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with  
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To set the spectral brilliance of the synthetic excitation, polynomials F and G may 
be driven by trigonometric functions, the amplitude of which differ from unity. 
Representation (5) then generalizes to the following. 

)]cos([)sin()]cos([)( nnn AGAAFny θθθ += . (11) 

The harmonic richness decreases and increases with amplitude A. Increasing A 
above 1 is not recommended, however. Indeed, increasing A > 1 is equivalent to 
extrapolating the cycle shape, the outcome of which lacks plausibility as soon as A 
exceeds unity by more than a few percent.  
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By means of model (11), several types of dysperiodicities may be simulated by 
modulating the amplitude and frequency of the trigonometric driving sine and cosine. 
Aliasing is avoided on the condition that the upper bound of the effective bandwidth 
of the modulated driving functions times the order of the shaping polynomials is less 
than half the sampling frequency [5]. The respect of this condition can be guaranteed 
by low-pass filtering the modulated harmonic excitation before insertion into 
polynomials F and G. Aliasing is indeed easier to avoid while modulating a harmonic, 
than while modulating a full-bandwidth Fourier series (4). 

2.3   Phonatory Excitation  

Parameter A does not influence the mean value of Fourier series (4). Indeed, if the 
average of the glottal cycle template equals zero, series (4) is rewritten as follows. 
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One sees that the average of each cycle remains zero, whatever the value of A.  
This is not true of trigonometric polynomial (11). Indeed, if A is zero, polynomial 

(11) is equal to c0 which involves a linear combination of Fourier coefficients ak that 
are different from zero. 

Also, the average of a cycle must be zero, whatever its amplitude, because the 
phonatory excitation is an acoustic signal. To warrant this property mathematically, 
the derivative of polynomial (11) is taken. Indeed, in the framework of the modeling 
of the phonatory excitation signal, the phonatory excitation is conventionally 
considered to be the derivative of the glottal airflow rate [2]. The derivative 
mathematically guarantees that the average of a glottal excitation pulse is zero as well 
as that its amplitude goes to zero with driving function amplitude A [3]. 

In practice, the coefficients of polynomials F and G are computed on the base of a 
template flow rate and the derivative of polynomials (11) is taken. To avoid the 
dependency of the amplitude of the phonatory excitation on phonatory frequency, this 
derivative is taken with respect to phase instead of time. Consequently, the phonatory 
excitation is written as follows, assuming that phase θ  is continuous and derivable. 
Discretization of phase θ  is carried out after the derivation. 

e(θ) = d

dθ
{F[Acos(θ)] + Asin(θ)G[Acos(θ)]}, with 10 ≤≤ A . (13) 

Figure 1 summarises the simulation of the phonatory excitation. First, a template 
cycle of the glottal flow rate is selected, e,g. the glottal flow rate that is given by the 
Fant model. The Fourier coefficients are computed numerically and the polynomial 
coefficients are obtained by means of matrixes (7) and (9). The polynomial 
coefficients are inserted into derivative (13). The derivative of the flow rate is then 
obtained by driving (13) with a sine and cosine. This signal is construed as the 
phonatory excitation. To avoid aliasing, the modulated sine and cosine are low-pass 
filtered so that the product of the upper bound of their effective bandwidth with the 
order of (13) is less than half the sampling frequency.  
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Fig. 1. Phonatory excitation model 

Instantaneous frequency, spectral balance and speaker identity are controlled via 
dinstinct parameters. Instantaneous frequency and harmonic richness are controlled 
via the instantaneous frequency and amplitude of the trigonometric driving functions. 
Speaker identity (i.e. the default cycle shape) is encoded via the polynomial 
coefficients. The instantaneous control of frequency and spectral balance is illustrated 
in Figures 2 and 3. 

 

Fig. 2. Synthetic phonatory excitation, the instantaneous frequency of which evolves linearly 
from 75 to 200 Hz. The vertical axis is in arbitrary units and the horizontal axis is labeled in 
number of samples. 

Modulated 
driving functions 
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Fig. 3. Synthetic phonatory excitation for which driving amplitude A evolves from zero to one 
and from one to zero. The vertical axis is in arbitrary units and the horizontal axis is labeled in 
number of samples. 

2.4   Vocal Tract Model 

To simulate the propagation of the phonatory excitation through the vocal tract, a 
concatenation of cylindrical tubelets is used. Each tubelet has the same length. For 
each tubelet, viscous, thermal and wall vibrations losses are modeled by means of 
filters [8]. A conical tubelet the opening of which is controlled, is added at the lip-end 
of the vocal tract model to simulate the transition at the lips from one-dimensional to 
three-dimensional wave propagation. In practice, this conical tubelet is quasi-
cylindrical, because the high-pass filtering involved in the 3-D radiation has already 
been taken into account via the modeling of the derivative of the glottal air flow rate. 

3   Synthesis of Disordered Voices 

3.1   Vocal Jitter and Microtremor 

Jitter and microtremor designate small stochastic cycle-to-cycle perturbations and 
low-frequency modulations of the glottal cycle lengths respectively. Jitter and 
microtremor are therefore inserted into the phonatory excitation model by perturbing 
the instantaneous frequency of the driving function by two random components [6]. 
Consequently, the discrete-time evolution of the phase of the sinusoidal driving 
function is written as follows. 

)(2 01 nnnn mjf ++Δ+=+ πθθ  . (14) 

Symbol f0 is the unperturbed instantaneous vocal frequency; Δ is the time step; jn is 
uniformly distributed white noise that simulates intra-cycle frequency perturbations 
that give rise to jitter; mn is uniformly distributed white noise filtered by a linear 
second order filter, which sets the microtremor frequency and bandwidth, which is 
typically 3 Hz and 4 Hz respectively.  

Investigating relations between perturbations of the phonatory excitation and the 
speech signal demonstrates that vocal shimmy and amplitude tremor are due to 
modulation distortion by the vocal tract. Modulation distortion converts frequency 
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into amplitude perturbations. Vocal amplitude tremor also involves tremor of the 
articulators, which modulates the formant frequencies [7]. 

3.2   Diplophonia 

Diplophonia here refers to periodic phonatory excitation signals the mathematical 
period of which comprises several unequal glottal cycles. A repetitive sequence of 
different glottal cycle shapes can be simulated by modulating the amplitude of the 
driving function (15) because it influences the spectral balance of the phonatory 
excitation.  

)./sin(10 QAAA nn θ+=   (15) 

Parameter A0 is the mean value of driving amplitude A. Symbol A1 is the amplitude of 
the modulation of driving amplitude A. Parameter Q sets the number of different 
glottal cycle shapes within the mathematical period of the vocal excitation. In 
practice, parameter Q is a ratio of two small integers. 

Similarly, a modulation of the instantaneous frequency of the driving function may 
simulate a repetitive sequence of glottal cycles of unequal lengths. The temporal 
evolution of the amplitude and phase of the driving function are then written as follows. 

)]./sin([2 101 Qff nnn θπθθ +Δ+=+   (16) 

Parameter f0 is the mean value of the instantaneous frequency of the synthetic 
phonatory signal and f1 is the amplitude of the modulation. Parameter Q sets the 
number of different glottal cycle length within the mathematical period of the vocal 
excitation. In practice, parameter Q is a ratio of two small integers. 

3.3   Biphonation 

Biphonation is characterized by discrete spectra with irrational quotients of the 
frequencies of some of the partials. As a consequence, biphonation is also described by 
a sequence of glottal cycles of different shapes and lengths. But, in this case, two glottal 
cycles are never exactly identical. Consequently, biphonation is simulated by means of 
expressions similar to (15) and (16). The difference is that parameter Q is equal to an 
irrational number. Physiologically speaking, biphonation implies quasi-independence of 
the vibrations of at least two structures (e.g. left and right vocal folds). 

3.4   Random Cycle Lengths 

Contrary to jitter, which is due to external perturbations of a dynamic glottal regime 
that is periodic, random vocal cycle lengths are the consequence of a random 
vibratory regime of the vocal folds. The relevant model parameter is therefore the 
total cycle length. In the framework of model (14), the selection of a new 
instantaneous frequency is synchronized with the onset of the excitation cycle. The 
statistical distribution of the cycle lengths is requested to be a gamma distribution. 
The gamma distribution is the simplest distribution that enables setting independently 
the variance of positive cycle lengths and their average. Speech characterized by 
random vocal cycles is perceived as rough. 
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3.5   Turbulence Noise 

Turbulence noise is taken into account by means of additive noise, which simulates 
the acoustic effect of excessive turbulent airflow through the glottis. These 
turbulences are expected to occur when the glottis closes. Uniformly distributed white 
noise is therefore added to the phonatory excitation signal when it is negative. No 
noise is added when the signal is positive or zero. 

4   Methods 

The template flow rate used to compute the coefficients of the shaping polynomials is 
a synthetic cycle mimicked by means of the Liljencrants-Fant model. Its Fourier 
coefficients are computed numerically, 40 cosine coefficients and 40 sine coefficients. 
The polynomial coefficients are obtained from the Fourier coefficients by means of 
linear transformations (7) and (9). The modulated sinusoidal driving function is sampled 
at 100 kHz. The anti-aliasing filter is chosen so that its attenuation is –5dB at 1/M+1 
times half the sampling frequency, with M+1 equal to the order of polynomials (13). 

The simulated vocal tract shape is fixed on the base of published data. The number 
of cylindrical tubelets used in the vocal tract model is comprised between 20 and 30.  

5   Results 

Preliminary tests show that the model that is presented here enables synthesizing 
vocal timbres that are perceived as plausible exemplars of disordered voices. We here 
illustrate graphically the ability of the synthesizer to simulate different vocal timbres 
by means of examples of synthetic diplophonic, biphonic and rough voices.  

Figure 4 shows an example of diplophonia obtained by modulating the driving 
functions following expression (15) and (16) with Q set to two. 

 

Fig. 4. Synthetic excitation signal simulating diplophonia. The horizontal axis is labeled in 
number of samples and the vertical axis is in arbitrary units. 
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Fig. 5. Synthetic excitation signal simulating biphonation. The horizontal axis is labeled in 
number of samples and the vertical axis is in arbitrary units. 

 

Fig. 6. Synthetic excitation signal simulating random vibrations. The horizontal axis is labeled 
in number of samples and the vertical axis is in arbitrary units. 

Figure 5 shows an example of biphonation obtained by modulating the driving 
functions following expression (15) and (16) with Q set to Euler’s number e. This 
setting is for demonstration purposes only and does not claim to be typical of 
biphonation observed in human speakers. 

Figure 6 shows an example of rough voice (i.e. random glottal cycle lengths). The 
instantaneous frequencies have been randomly selected from a gamma distribution in 
synchrony with the onsets of the cycles. The mean and standard deviation of the 
gamma distribution have been equal to 100 Hz and 25 Hz respectively. 

6   Conclusion 

The presentation concerns a simulation of disordered voices. The model is based on a 
nonlinear memoryless input-output characteristic that transforms a trigonometric 
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driving function into a synthetic phonatory excitation signal. Dysperiodicities are 
simulated by modulating the amplitude and/or frequency of the trigonometric driving 
function. The model enables synthesizing a wide range of vocal phenomena, such as 
jitter, microtremor, diplophonia, biphonation, raucity and breathiness. Preliminary 
tests show that voices may be simulated that are perceived as plausible exemplars of 
voice disorders.  
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Abstract. Voice pathologies have become a social concern, as voice and speech 
play an important role in certain professions, and in the general population qual-
ity of life. In these last years emphasis has been placed in early pathology detec-
tion, for which classical perturbation measurements (jitter, shimmer, HNR, etc.) 
have been used. Going one step ahead the present work is aimed to estimate the 
values of the biomechanical parameters of the vocal fold system, as mass, stiff-
ness and losses by the inversion of the vocal fold structure, which could help 
non only in pathology detection, but in classifying the specific patient’s pathol-
ogy as well. The model structure of the vocal cord will be presented, and a 
method to estimate the biomechanical parameters of the cord body structure 
will be described. From these, deviations from normophonic cases, and unbal-
ance between cords may be extracted to serve as pathology correlates. The rele-
vance of deviations and unbalance in Pathology Detection is shown through 
Principal Component Analysis. Results for normal and pathological cases will 
be presented and discussed. 

1   Introduction 

Voice pathology detection is a field of important research area in voice and speech 
processing as it may affect the quality of life of the population, especially in people 
who use voice extensively in their professional activity, as speakers, singers, actors, 
lawyers, broadcasters, priests, teachers, call center workers, etc [13][16][22]. The 
success in treating voice pathologies depend on their early detection, and as such 
simple yet powerful inspection procedures are desirable. Among those procedures 
patient’s voice inspection is a simple, low cost and fast method to obtain an estima-
tion of the presence of pathology, which can be used as a screening routine to decide 
if other specialized inspection methods –as videoendoscopy- are to be used, as these 
being more precise in pathology classification, are at the same time less comfortable, 
more expensive and complicate, and their use should be obliviated if a simple inspec-
tion could help in screening patients before being subject to full inspection proce-
dures. The estimation of biomechanical parameters associated to the structure of the 
phonation organs would suppose an important improvement in the use of voice for 
pathology screening. Up-to-date techniques use time- and frequency-domain estima-
tion of perturbation parameters, which measure the deviation of the specific patient’s 
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voice from certain normal standards [6][20][15][7]. These techniques have revealed 
efficient themselves in the detection of pathology, but supply little information on the 
nature of the pathology. Trying to go one step ahead a study has been initiated to esti-
mate the values of the biomechanical parameters of the vocal fold system (mass, stiff-
ness and losses) from the glottal source obtained from voice after removing the vocal 
tract transfer function. This procedure is well documented in the literature (see for 
example [2] [5] [1]), and produces a trace which can be shown to be directly related 
with the glottal source (the average aperture measured between vocal cords during the 
phonatory cycle) [8]. The use of k-mass vocal fold models [18][3] help in determining 
that there are two main components in the movement of the vocal cord, contributed by 
the structure of the cord: the movement of the bulk muscular tissue of the cord body 
(see Figure 1.a) and a traveling wave known as the mucosal wave [21][17], which is 
contributed by the epithelial tissue of the cord cover (see Figure 1.b). 
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Fig. 1. a) Cross-section of the left vocal cord showing the body and cover structures (taken 
from [19]). b) k-mass model of the body and cover. c) 3-mass model used to establish the  
dynamics of the body-cover system. 

In previous research [8][9] it has been shown that both contributions present in the 
glottal source can be separated to produce two traces, known as the avrage acoustic 
wave or average glottal source (AGS) and the mucosal wave correlate (MWC). Their 
relative energy ratio may be used as a clue for the presence of certain pathologies 
which induce the reduction or complete disappearance of the mucosal wave [14]. In 
the present study the emphasis will be placed in using the average glottal source to 
measure the main biomechanical parameters involved in the dynamics of the cord 
body. For such the model structure of the vocal cord will be presented, and a method 
to estimate the biomechanical parameters of the cord body structure will be described. 
This method is based on hypothesizing that the fingerprint of the cord body dynamics 
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is responsible for the power spectral density (psd) of the AGS, thus allowing the iden-
tification of the biomechanical parameters of the cord body from the theoretical dy-
namical transfer function between forces and speeds in the cord body model. In this 
way a first estimation of the biomechanical parameters is obtained, which can be later 
refined adaptively.  

2   Estimating Cord Dynamics 

The vocal cords are two folds which can be found in the phonatory system located in 
the larynx supported by a complex structure of cartilage and muscles. These folds can 
be brought to a close contact to stop the flow of air through the respiratory system, 
and under convenient lung pressure can produce a vibration which is the basics of the 
phonation. A good explanation of the phonatory function can be found in [20]. A 
cross section of a vocal cord can be seen in 0.a, showing its tissular structure, which is 
composed by the body and the cover as mentioned before. In Figure 1.b an equiva-
lent k-mass model is presented, where the main structure (the body) has been repre-
sented by a large lump which referred to as Mlb (left cord) and Mrb (right cord). The 
cover is represented by a set of k-1 lumped masses  Mli and Mri, 1≤i≤k-1, linked by 
springs among themselves and to the body mass. Each spring is represented by a stiff-
ness parameter given by Klij (left cord) and Krij (right cord) where i and j refer to the 
masses linked (i,j=0 will point to the body mass). It will be assumed that a loss factor 
Rl,rij will be also associated to each spring to have viscous and other losses into ac-
count. A representation of the vocal fold dynamical relations may be seen in 0.c in-
cluding a body mass and two cover masses. This is the simplest model which can 
grant a proper study of the mucosal wave phenomenon, and has been widely studied 
in the literature ([3][17][18]). The estimation of the cord movement is based on the 
pioneering work by Alku ([2][23]), which has been modified for an iterative imple-
mentation in several steps as shown in Figure 2. 

Step 1 consists in removing the radiation effects from voice s(n) (see Figure3.a) by 
filtering with Hr(z). Step 2 consists in removing the glottal pulse generating model 
Fg(z) by by its inverse Hg(z) from the radiation compensated voice sl(n). In the first  
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Fig. 2. Estimation of the glottal pulse ug(n)  by coupled model estimation and inversion 
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iteration Hg(z) need not be a very precise estimation, as it will be refined by succes-
sive iterations. In step 3 the vocal tract model Fv(z) is estimated from the de-
glottalized voice sv(n). Step 4 will consist in removing the vocal tract model by filter-
ing sv(n) with the vocal tract inverse function Hv(z) to obtain a better estimation of the 
glottal source ug(n). Step 5 produces a more precise model of the glottal source Fg(z), 
which could be used to refine Hg(z). The procedure will repeat steps 2-5 to a desired 
end. The whole process is described in more detail in previous work [8]. The glottal 
source ug(n) as shown in Figure 3.c is composed by the body mass movement (cord 
body dynamics) and by the mucosal wave oscillation produced by the cover masses 
(cord cover dynamics). The mucosal wave correlate will be defined as: 

kggm Wn);n(u)n(u)n(y ∈−=  (1) 

where ym(n) is the mucosal wave correlate, and Wk is the k-th period window on ug(n). 

 

Fig. 3. a) Input voice s(n). b) Glottal source derivative. c) Glottal source ug(n) unfolding 
 points (*). d) Unleveled glottal pulse. 

The effects of vocal tract coupling have been neglected.The traces shown in  
Figure 4.a, b and c are respectively the ground leveled version of the glottal source 
ug(n), the average glottal wave )n(ug , and the leveled glottal pulse. As the average 

glottal source may be associated with the simplest cord body dynamics, the difference 
between the glottal source and the average glottal source may be considered as con-
tributed by the cord cover dynamics, and can be seen as the mucosal wave correlate, 
as shown in Figure 4.d. In the present study emphasis will be placed in adjusting the 
spectral behavior of the mucosal wave correlate to estimate the biomechanical 
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Fig. 4. a) Leveled glottal source, b) average glottal source, c) Leveled glottal pulse, d) cord 
body dynamics: mucosal wave correlate 

parameters of the cord body as described in [8] and [9]. The main hypothesis is that 
the envelope of the power spectral density of the mucosal wave correlate is deter-
mined by the admittance of the cord body dynamics, as explained later. 

The estimation of )n(ug  is carried out for each pitch period (cycle) as the subtrac-
tion of a half-wave sinusoidal arch with the same semi-period as the source, using an 
adaptive method to evaluate the amplitude of the arch, based on the minimization of 
the energy of the error between the glottal source ug(n) and the sinusoidal average 

)n(ug  as 
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with 

kkokg Wn);nsin(u)n(u ∈= τω  (3) 

ωk being the angular frequency associated to the k-th cycle semi-period and τ being 
the sampling period. The optimization of the amplitude of each sinusoidal arch will be 
derived minimizing the cost function L in terms of u0k as 
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3   Estimation of the Body Biomechanical Parameters 

Detecting the cord body mass, stiffness and damping is based on the inversion of the 
integro-differential equation of the one-mass cord model, which for the left vocal cord 
would be 

∞−
++=

t

xllb
xl

lblblbxl dtvK
dt

dv
MRvf  (5) 

where the biomechanical parameters involved are the lumped masses Mlb, the stiffness 
Klb and the losses Rlb. The equivalent model is shown in Figure 5. The estimation of 
the body biomechanical parameters is related to the inversion of this model, associat-
ing the force fxl on the body with the velocity of the cord centre of masses vxl in the 
frequency domain. 

 

 
Fig. 5. Electromechanical equivalent of a cord body 

The relationship between velocity and force in the frequency domain is expressed 
as the cord body admittance. The working hypothesis for the process of biomechani-
cal parameter estimation will be based on the assumption that the envelope of the 
power spectral distribution of the mucosal wave correlate (cover dynamic compo-
nent) is directly related with the square modulus of the input admittance to the elec-
tromechanical equivalent Ybl(s) given as 
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The robust estimation of the model parameters is based in the determination of two 
points on the power spectral density of the cover dynamic component [10] {Tb1, ω1} 
and {Tb2, ω2}, from which the lumped body mass (BM) may be estimated as 
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2
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2
lb TT

TT
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−
−

=
ωω

ω
 (7) 

On its turn the elastic parameter (body stiffness: BS) Klb may be estimated from the 
precise determination of the position of the resonant peak, this being {Tr, ωr} 

2
rlblb MK ω=  (8) 

whereas the of body losses (BL) may be estimated (but for a scale factor Gb) as 
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Fig. 6. Parametric fitting of the mucosal wave power spectral density for a cycle of the sample 
trace (full line) against the admittance approximation (dot line) 

The estimations obtained from a phonation cycle of a normophonic voice trace have 
been used to reconstruct the approximated square modulus of the admittance, which is 
presented in Figure 6 against the power spectral density of the cover dynamics com-
ponent for comparison. 

Table 1 illustrates the values obtained for the biomechanical parameters of the 
cord body accordingly with two estimation algorithms (direct and adaptative) from a 
2-mass model synthetic voice trace. 

Table 1. Comparison between the biomechanical parameters obtained from (6-9) by direct and 
adaptive estimations 

Estimation method Body Mass (Mlb) Losses (Rlb) Elasticity (Klb) 
Direct (3rd harmonic) 2,1500e-004 5,5331e-005 138.500 
Adaptive 2,6710e-004 5,5331e-005 171.900 

 
 
It may be seen that the divergence between both methods is on the order of a 24%. 

The fact that the mass of the cord body seems to be clearly related to the ratio be-
tween the values of the mucosal wave correlate power spectral density for the first 
and third harmonics if ω1=ωr and ω2=3ωr gives substantial support to the use of this 
parameter as an important distortion measure as certain studies on pathological voice 
suggest [14][4]. 

4   Results for Synthetic Voice 

At this point what seems most crucial is to evaluate the accuracy in the exposed 
method. Obtaining direct in vivo estimations of the biomechanical parameters and 
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voice records from normophonic and pathological cases to establish the accuracy of 
the method seems to be rather difficult. Another more practical approach is to use a k-
mass model of the vocal folds to produce voice traces, assigning a priori known val-
ues for the biomechanical parameters, and use the estimation methods proposed in the 
present study to infer the values of the parameters, comparing the estimates obtained 
against the values introduced in the model. For such 16 voice traces where synthe-
sized using a 2-mass model of the vocal folds. The value of the subglottal mass 
(Ml1=Mr1) was fixed to 0.2 g. The supraglottal mass was varied from 0.005 to 0.05 g. 
(see Figure 7.1.b and c). 

On its turn the springs linking both masses to the reference wall (Kl1=Kr1) were set 
to 110 g.sec-2 whereas the stiffness linking subglottal and supraglottal masses 
(Kl12=Kr12) was varied from 5 to 255 g.sec-2 in alternating steps as shown in 
Figure 7.3.b and c. The value for the theoretical pitch generated by the model values 
was fixed to 120 Hz for all cases. The value of the losses was fixed to 4.10-2 g.sec-1 
for the whole set of traces. A model of the acoustic tube (vocal tract) with 64 sections 
for the vowel /a/ was chained to the vocal fold model to generate vowel-like voice. 
Traces lasting 0.5 sec. were generated at a sampling frequency of 48.000 Hz. These 
were treated as described in section 2 to obtain the mucosal wave correlate, and used 
in determining its power spectral density and the body biomechanical parameters as 
 

 

Fig. 7. 1.a) Estimated values for cord body masses. 1.b) Model values for subglottal masses. 
1.c) Model values for supraglottal masses. 2.a) Estimated values for cord body losses. 2.b) 
Model values for subglottal and supraglottal losses. 3.a) Estimated values for cord body elastic-
ity. 3.b) Model values for subglottal and supraglottal elasticity. 3.c) Model values for interelas-
ticity. 4.a) Estimated values for the pitch. 4.b) Model values for pitch. 
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Table 2. Values of the estimated body parameters for the set of synthetic voice traces plotted in 
Figure 7 

File No. Mb Rb Kb fp 
1  2.660e-004  5.456e-005  122.255  107.900
2  2.539e-004  4.638e-005  126.641  112.400
3  1.793e-004  3.369e-005  98.919  118.201
4  2.714e-004  5.262e-005  145.814  116.665
5  2.643e-004  3.607e-005  132.950  112.873
6  2.838e-004  5.156e-005  151.128  116.149
7  2.046e-004  4.041e-005  94.956  108.414
8  2.850e-004  5.090e-005  168.515  122.384
9  2.064e-004  3.790e-005  112.653  117.584

10  1.591e-004  2.221e-005  100.238  126.342
11  1.700e-004  3.184e-005  94.090  118.407
12  2.385e-004  3.424e-005  140.773  122.277
13  1.971e-004  3.562e-005  107.553  117.576
14  2.334e-004  3.723e-005  142.443  124.347
15  1.726e-004  3.239e-005  100.078  121.194
16  2.300e-004  4.238e-005  134.663  121.771

Means: 2.260e-004 4.000e-005 123.354 117.780
Std. Dev.: 4.264e-005 9.060e-006 22.972 5.344

 

described in section 3. The resulting estimations are displayed in Table 2 and listed in 
Figure 7. It may be appreciated from Figure 7 that the estimation of the body mass is 
centered around the value fixed in the model for the subglottal masses, the estimates  
showing slight apparent contamination by crosstalk from the supraglottal masses. This 
is also the case of body stiffness, where a small influence from the interelasticity seems 
to slightly contaminate the estimates. Interelasticity crosstalk seems to exert also some 
influence in the estimation of the losses. The estimation of the pitch as obtained from 
the power spectral density of the unfolded glottal source is also reasonable. The disper-
sion of the parameters as seen from Table 2 seems to be in the order of a 25 %. 

The referencing of traces has been carried out comparing the mass and elasticity 
average estimates against the values used in the models. The relative gains for mass 
and elasticity coefficients have been found to be Gma=0.0056, Gka=0.0040, which are 
in good agreement. The absolute referencing for the determination of the losses is 
very much related to the energy of the trace as obtained from its autocorrelation func-
tion, and is still under study. Practical estimations have yielded the value of  
Gra= 32.53 for this set of experiments, but the question is not closed yet. Another 
important question is the issue of mass unbalance, as it is of most interest to infer 
mass differences between cords related to several critical pathologies. This study is 
being conducted defining the common and differential modes of cord vibration, and 
from these a contribution associated to each cord body could be established. The same 
may be said for cord stiffness. A slight unbalance between waveform cycles may be 
observed in Figure 4.a) and c). As estimations of mass, stiffness and losses will be 
available by cycles, the unbalance of these parameters (BMU – Body Mass  
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Unbalance, BLU – Body Losses Unbalance and BSU – Body Stiffness Unbalance) 
may be defined as 

( ) ( )
( ) ( )
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where 1≤k≤K is the cycle window index and  bkbkbk K̂and,R̂,M̂  are the k-th cycle 
estimates of mass, losses and stiffness on a given voice sample (intra-speaker). Other 
parameters of interest are the deviations of the average values of mass, losses and 
compliance for the j-th sample bjbjbj K̂and,R,M  relative to average estimates from a 
normophonic set of speakers (inter-speaker) as  
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these parameters are known as BMD (Body Mass Deviation), BLD (Body Losses 
Deviation) and BSD (Body Stiffness Deviation).  

5   Results from Natural Voice 

A variant of Principal Component Analysis (PCA) known as multivariate measure-
ments analysis (see [12], pp. 429-30) Hierarchical Clustering and have been used with 
the distortion parameters given in Table 3 [11]. 

PCA is conceived as the optimal solution to find the minimum order of a linear 
combination of random variables xj showing the same variance as the original set, 
where the components of xj correspond to different observations (samples) of a given 
input parameter (j-th parameter) for a set of 20 normophonic and 20 pathologic sam-
ples (4 samples with polyps, 6 samples with bilateral nodules, 5 samples with Re-
inke's Edema, and 5 samples with reflux inflammation) as listed in Table 4. 

Table 3. List of parameters estimated from voice 

Coeff. Description 
x1 pitch 
x2 jitter 

x3-5 shimmer-related 
x6-7 glottal closure-related 
x8-10 HNR-related 
x11-14 mucosal wave psd in energy bins 
x15-23 mucosal wave psd singular point values 
x24-32 mucosal wave psd singular point positions 
x33-34 mucosal wave psd singularity profiles 
x35-37 biomechanical parameter deviations (11) 
x38-40 biomechanical parameter unbalance (10) 
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Table 4. Values of x35-39 for the samples studied. Sample conditions are: N – Normophonic; 
 BP – Bilateral Polyp; LVCP – Left Vocal Cord Polyp; BRE – Bilateral Reinke’s Edema; BN – 
Bilateral Noduli; LR – Larynx Reflux; RE – Reinke’s Edema; RVCP – Right Vocal Cord Polyp. 

Trace Condit. BMD BLD BSD BMU BLU 
001 N -0.632 -0.136 -0.540 0.027 0.039 
003 N -0.154 -0.145 -0.137 0.079 0.056 
005 N -0.039 -0.299 -0.213 0.078 0.044 
007 N -0.492 -0.461 -0.573 0.036 0.046 
00A N -0.542 -0.207 -0.567 0.065 0.064 
00B N? 1.320 0.642 1.250 0.149 0.191 
00E N -0.054 0.012 -0.128 0.159 0.098 
010 N -0.408 0.164 -0.491 0.115 0.103 
018 N -0.031 -0.205 -0.167 0.078 0.076 
01C N -0.557 -0.315 -0.581 0.058 0.052 
024 N? 0.631 1.330 1.200 0.120 0.124 
029 N 0.101 -0.111 0.416 0.057 0.048 
02C N -0.329 -0.253 -0.079 0.035 0.040 
02D N -0.227 -0.193 0.022 0.116 0.053 
032 N -0.507 -0.019 -0.367 0.038 0.071 
035 N 0.424 -0.302 -0.021 0.099 0.065 
043 N 0.219 0.156 0.466 0.059 0.030 
047 N -0.497 1.070 -0.180 0.076 0.052 
049 N -0.157 0.160 0.029 0.113 0.079 
04A N -0.005 1.770 0.073 0.098 0.075 
065 BP 0.240 7.490 3.220 0.835 0.712 
069 LVCP 0.560 3.490 2.460 0.408 0.318 
06A BRE 0.142 2.860 1.760 0.300 0.331 
06B BN 0.427 3.860 2.150 0.339 0.326 
06D BN 0.573 3.540 2.160 0.338 0.339 
071 BRE 0.417 3.210 1.870 0.306 0.348 
077 LR 2.000 3.170 3.660 0.460 0.320 
079 RE 0.658 2.860 2.170 0.396 0.333 
07E BN 0.843 2.990 2.340 0.328 0.303 
07F LR 0.420 2.850 1.950 0.332 0.309 
083 LR 0.253 2.880 1.900 0.391 0.333 
092 BRE 0.216 2.750 1.720 0.469 0.353 
098 RE 0.187 2.830 1.720 0.360 0.339 
09E BN 1.400 11.700 5.510 0.637 0.518 
09F LR 0.062 2.920 1.660 0.309 0.334 
0A0 RVCP 0.156 3.020 1.720 0.333 0.338 
0A9 LVCP 0.012 3.600 1.660 0.293 0.311 
0AA LR -0.091 2.970 1.600 0.268 0.315 
0B4 BN 0.154 4.280 1.870 0.305 0.338 
0CA BN -0.057 3.040 1.630 0.310 0.361 

 

These samples were processed to extract the set of 40 parameters listed in Table 3, 
of which two subsets were defined for classification: S1={x2-39}, including most of the 
parameters available, and S2={x2, x3, x8, x35-39} including jitter, shimmer, HNR, devia-
tions (BMD, BLD and BSD), and unbalances (BMU and BLU). The results of the 
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clustering process are shown in Figure 8 as biplots against the two first principal 
components from PCA analysis. It may be seen that the clustering process assigned 
most of normophonic samples to one cluster (with the exception of 00B and 024) both 
for S1 as well as for S2. The results using S2 are given in Table 5. 

Table 5. Clustering results for S2 

Cluster Samples 
c21 (o) 001, 003, 005, 007, 00A, 00E, 010, 018, 01C, 029, 02C, 02D, 032, 035, 043, 

047, 049, 04A 
c22 ( ) 00B, 024, 065, 069, 06A, 06B, 06D, 071, 077, 079, 07E, 07F, 083, 092, 098, 

09E, 09F, 0A0, 0A9, 0AA, 0B4, 0CA 

 

Fig. 8. Left) Clusters for S1. Right) Clusters for S2. 

To further clarify the analysis a 3D plot of the results vs the three most relevant in-
put parameters in S2 as established by PCA is presented in Figure 9. The most rele-
vant parameter according to this combination seems to be BSD (x37). The larger x37, 
the stiffer the cord and the less normophonic the production. The second most rele-
vant parameter seems to be jitter (x2). The third most relevant parameter is BLD (x36) 
associated to the profile of the spectral profile peak (Q factor). 

The behaviour of cases 00B and 024, classified as pathological by PCA analysis 
deserves a brief comment. These appear in Figure 9 (encircled) not quite far from 
normal cases 001-04A, but showing a stiffness that doubles those of normophonic  
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Fig. 9. 3D Clustering Plot showing the separation in the manifold defined by the parameter 
subset {x37, x2 and x36} – ordered by relevance 

samples. Apparently this detail was determinant in their classification as not normo-
phonic by PCA. This fact was confirmed by their values for the BSD in Table 4, 
being 1.25 and 1.2 respectively, or 225% and 220%. 

6   Conclusions 

Through the present paper the possibility of obtaining indirect estimates of the vocal 
cord biomechanical parameters from the voice trace has been shown. This could open 
new possibilities for the non-invasive distant exploration of patients both for pathol-
ogy detection and classification by analysis of the voice trace. The method is still 
subject to revision to take into account the influence of second-order biomechanical 
parameters. Its possible extension to unbalanced parameter estimation is also under 
study. The methodology presented detects biomechanical unbalance from voice re-
cords for pathology detection by common pattern recognition techniques. Normo-
phonic samples show small unbalance indices, as opposed to pathologic ones. There 
is not a specific pattern of unbalance related to a given pathology (although more 
cases need to be studied). Biomechanical parameter unbalance is a correlate to pa-
thology quantity rather than quality. Although mild pathologies may appear as nor-
mophonic from subjective analysis the use of the proposed methods may spot them 
and help in keeping trace of their evolution in time. Adequately combining classical 



 Voice Pathology Detection by Vocal Cord Biomechanical Parameter Estimation 255 

distortion parameters with deviation parameters renders fairly good results in pathol-
ogy detection. These conclusions need to be confirmed by more experiments. 
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Abstract. Automatic Speech Recognition (ASR) is essentially a prob-
lem of pattern classification, however, the time dimension of the speech
signal has prevented to pose ASR as a simple static classification prob-
lem. Support Vector Machine (SVM) classifiers could provide an appro-
priate solution, since they are very well adapted to high-dimensional
classification problems. Nevertheless, the use of SVMs for ASR is by no
means straightforward, mainly because SVM classifiers require an input
of fixed-dimension. In this paper we study the use of a HMM-based seg-
mentation as a mean to get the fixed-dimension input vectors required
by SVMs, in a problem of isolated-digit recognition. Different configu-
rations for all the parameters involved have been tested. Also, we deal
with the problem of multi-class classification (as SVMs are initially bi-
nary classifers), studying two of the most popular approaches: 1-vs-all
and 1-vs-1.

1 Introduction

Hidden Markov Models (HMMs) are, undoubtedly, the most employed core
technique for Automatic Speech Recognition (ASR). During the last decades,
research in HMMs for ASR has brought about significant advances and, conse-
quently, the HMMs are currently accurately tuned for this application. Never-
theless, we are still far from achieving high-performance ASR systems. Some al-
ternative approaches, most of them based on Artificial Neural Networks (ANNs),
were proposed during the last decade ([1], [2], [3], [4] and [5] are some examples).
Some of them tackled the ASR problem using predictive ANNs, while others pro-
posed hybrid (HMM-ANN) approaches. Nowadays, however, the preponderance
of HMMs in practical ASR systems is a fact.

Speech recognition is essentially a problem of pattern classification, but the
high dimensionality of the sequences of speech feature vectors has prevented
researchers to propose a straightforward classification scheme for ASR. Sup-
port Vector Machines (SVMs) are state-of-the-art tools for linear and nonlinear
knowledge discovery [6], [7]. Being based on the maximum margin classifier,
SVMs are able to outperform classical classifiers in the presence of high dimen-
sional data even when working with nonlinear machines.
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Some researchers have already proposed different approaches to speech recog-
nition aiming at taking advantage of this type of classifiers. Among them, [8], [9]
and [10] use different approaches to perform the recognition of short duration
units, like isolated phoneme or letter classification. In [8], the authors carry out
a length adaptation based on the triphone model approach. In [9] and [10], a
normalizing kernel is used to achieve the adaptation. Both cases show the supe-
rior discrimination ability of SVMs. Moreover, in [9], a hybrid approach based on
HMMs has been proposed and tested in a CSR (Continuous Speech Recognition)
task.

Nevertheless, the use of SVMs for ASR is by no means straightforward. The
main problem is the required dimensional normalization, due to the fact that the
usual kernels can only deal with vectors of fixed size. However, speech analysis
generates sequences of feature vectors of variable lengths (due to the different
durations of the acoustic units and the constant frame rate commonly employed).
A possible solution is that showed in [11], where the non-uniform distribution of
analysis instants provided by the internal states of an HMM with a fixed number
of states and a Viterbi decoder is used for dimensional normalization.

Another difficulty is that speech recognition is a problem of multi-class classi-
fication, while in the original formulation, an SVM is a binary classifier. Although
some versions of multi-class SVMs have been proposed, they are computation-
ally expensive. A more usual approach to cope with this limitation is combining
a number of binary SVMs to construct a multi-class classifier. In this paper we
have studied two of the most popular approaches (1-vs-1 and 1-vs-all), testing
it in a specific ASR task.

This paper is organized as follows. In next section, we describe the funda-
mentals of SVMs and we describe the procedures for multiclass implementation.
Afterwards, we make a review of the HMM-guided segmentation method to pro-
duce input vectors with fixed dimension. Then, in Section 4, we present the
experimental framework and the results obtained, explaining the different cri-
terions followed to chose the several parameters of the system. Finally, some
conclusions and further work close the paper.

2 SVM Fundamentals

2.1 SVM Formulation

An SVM is essentially a binary classifier capable of guessing whether an input
vector x belongs to a class y1 = +1 or to a class y2 = −1. The decision is made
according to the following expression:

g(x) = w · φ(x) + b, (1)

where φ(x) : �n �→ �n′
, (n << n′), is a nonlinear function which maps the

vector x to a feature space with higher dimensionality (possibly infinite) where
classes are linearly separable, and w defines the separating hyper-plane in such
a space.
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What makes SVMs more effective than other methods based on linear discrim-
inants is the learning criterion, because instead of minimizing only the empirical
risk, they also try to minimize the structural risk, being the solution found a
compromise between the empirical error and the generalization capability.

The solution is given by the following minimization problem:

min
w,b,ξi

1
2
w · w + C

N∑
i=1

ξi, (2)

[3pt]subject to yi(w · φ(xi) + b) ≥ 1 − ξi, (3)
[3pt]ξi ≥ 0, for i = 1, · · · , N, (4)

where xi ∈ �n, i = 1, . . . , N are the training vectors corresponding to the
labels yi ∈ {±1}, and the parameter C establishes the compromise between
error minimization and generalization capability.

The SVM is usually solved introducing the restrictions in the minimizing
function using Lagrange multipliers, leading to the maximization of the Wolfe
dual:

Ld =
n∑

i=1

αi −
n∑

i=1

n∑
j=1

yiyijαiαjφ
T (xi)φ(xj) (5)

with respect to αi and subject to
∑n

i=1 αi = 0 and 0 ≤ αi ≤ C. This problem
is quadratic and convex, so its convergence to a global minimum is guaranteed
using quadratic programming (QP) schemes. The value of w and b can be recov-
ered from the Lagrange multipliers αi, that are associated with the first linear
restriction in the SVM formulation:

w =
N∑

i=1

αiyiφ(xi),

[3pt]b =
∑

j

αjyjφ(xi) · φ(xj) + yi, ∀i. (6)

According to (6), only vectors with an associated αi �= 0 will contribute to
determine the weight vector w and, therefore, the separating boundary, and they
receive the name of support vectors.

Generally, function φ(x) is not explicitly known (in fact, in most of the cases
its evaluation would be impossible as long as the feature space dimensionality
can be infinite). However, we don’t actually need to know it, since the only we
need to evaluate are the dot products φ(xi) ·φ(xj) that, by using what has been
called the kernel trick, can be evaluated using a kernel function K(xi,xj).

By this way, the form that finally adopts an SVM is:

g(x) =
N∑

i=1

λiyiK(xi,x) + b. (7)



260 D. Mart́ın-Iglesias et al.

The most widely used kernel functions are the gaussian radial basis function,

K(xi,xj) = exp

(
−‖xi − xj‖2

2γ2

)
, (8)

with an associated feature space of infinite dimensionality, and the polynomial
kernel

K(xi,xj) = (1 + xi · xj)
p
, (9)

which associated feature space are the polynomials up to grade p.

2.2 Multiclass SVM

Besides of the necessity of using input vectors with fixed-length, there is another
important issue that must be solved whenever we work with SVMs for ASR.
While in speech recognition we have to make a decision among several classes,
support vector machines were originally designed for binary classification and
their generalization to the multi-class case is still an on-going research field.

Although some of the proposed approaches make a reformulation of the SVM
equations to consider all classes at once, this option is very expensive computa-
tionally and, therefore, we haven’t consider them in this work.

Another different approach is combining results of several binary classifiers
to construct a multi-class classifier. We have experimented with two different
versions of this method. The former consists in comparing each class against all
the rest (1-vs-all) while in the latter each class is confronted against all the other
classes separately (1-vs-1) [12].

In the 1-vs-all method we have to construct k SVMs (with k the number
of classes) and in the 1-vs-1 k(k − 1)/2, but, since in the second approach the
number of training vectors for each class is smaller, the necessary computational
effort can be ever lower in the latter case, as shown in [13].

For the 1-vs-1 alternative we have used the implementation described in [14],
where error correcting codes are used to compare the outputs of the classifiers,
and, for the 1-vs-all approach, we obtained the probability-like outputs using the
implementation in [15]. Afterwards, the outputs of the binary 1-vs-all classifiers
were compared, and the most probable class among the ones showing a positive
output was chosen (positive meaning that the binary classifier had selected the
‘one’ against the ‘rest’).

3 Feature Extraction and Dimensional Normalization

Since the speech signal is quasi-stationary, speech analysis must be performed
on a short-term basis. Typically, the speech signal is divided into a number of
overlapping time windows and a speech feature vector is computed to represent
each of these frames. The size of the analysis window, wa, is usually of 20-30
ms. The frame period, Tf , (the time interval between two consecutive analysis
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windows) is set to a value between 10 and 15 ms. Habitually, wa = KTf , where
K is called the overlapping factor.

With respect to the feature vectors themselves, for each analysis window,
twelve Mel-Frequency Cepstral Coefficients (MFCC) are obtained using a mel-
scaled filter-bank with 40 channels. Then, the log-energy, the twelve delta-
cepstral coefficients and the delta-log energy are appended, making a total vector
dimension of 26.

Typically, the values of wa and Tf are kept constant for every utterance that,
on the other hand, exhibits a different time duration. Consequently, the speech
analysis generates sequences of feature vectors of variable length. As we have
already mentioned, a normalization of these lengths is required to use SVM
classifiers.

In a previous work [11], three procedures to perform this dimensional nor-
malization are proposed. Two of them were very straightforward approaches
consisting on adjusting either the analysis window size or the frame period to
obtain a fixed number of time analysis instants. The third one, more sophisti-
cated, used and HMM-based segmentation to select the time analysis instants.
The next subsection describes this last method, that is the one selected for the
experiments conducted in this work.

3.1 Non-uniform Distribution of Analysis Instants

An appropriate selection of the time instants at which the speech signal is anal-
ysed can presumably improve the classification results.

To determine the appropriate analysis instants, we propose to use the implicit
information in the segmentation made by HMM, i.e., to consider those instants
at which state transitions occur (very likely related to those at which the changes
of the speech spectra happen).

This HMM-guided parameterization procedure consists of two main stages.
The first stage is a HMM classifier (a Viterbi decoder) that yields the best se-
quence of states for each utterance and also provides a set of state boundary time
marks. The second stage extracts the speech feature vectors at the time instants
previously marked. For the first stage, we have used left-to-right continuous
density HMMs with three Gaussian mixtures per state. Each HMM represents a
whole-word and consists of Ns states with the topology shown in Figure 1. These
models have been trained using only the training set of the speech database and
the conventional parameterization module used for the baseline experiments.
In particular, the speech parameters con-sists of 12 MFCC, the log-energy, 12
delta-MFCC and the delta-log energy, extracted using a frame period of 10 ms
and an analysis Hamming window of 25 ms.

As mentioned before, these acoustic models are used to generate alignments
at state level for each utterance in the speech database. In this process, each
utterance is compared to each of the HMMs and only the segmentation produced
by the acoustic model yielding the best score is saved for the next stage. Note
that the obtained seg-mentation may not be correct, even when the utterance
is properly recognized by the HMM-based system. Segmentation errors may
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Fig. 1. HMM topology

produce some degradation in the per-formance of the whole system, however, for
our task, the results obtained show that the segmentation is accurate enough.
Anyway, it is necessary to consider this issue for further research.

In the second stage, the feature vectors are extracted at the time instants
derived from the HMM-guided segmentation. In particular, a 25 ms analysis
window is sub-sequently located at these time instants. In this way, the number
of feature vectors per utterance used as the SVM input turns out to be equal
to the number of states (Ns), determined by the HMM topology. In our case,
the number of states was fixed to 17 (the same number of states we use for
HMM-based recognition).

4 Experimental Results

4.1 Baseline System and Database

We have used a database consisting of 72 speakers and 11 utterances per speaker
for the 10 Spanish digits. This database was recorded at 8 kHz in clean con-
ditions. Since this database is not large enough to achieve reliable speaker-
independent results, we have used a 9-fold cross validation to artificially extend
it. Specifically, we have split each database into 9 balanced groups; 8 of them
for training and the remaining one for testing, averaging the results afterwards.
In summary, we use a total of 7,920 words for testing our systems.

The baseline HMM-based ASR system is an isolated-word, speaker indepen-
dent system developed using the HTK package [16]. Left-to-right HMMs with
continuous observation densities were used. Each of the whole-digit models con-
tains a different number of states (which depends on the number of allophones in
the phonetic transcription of each digit) and three Gaussian mixtures per state.

For the baseline experiment with the HMM classifier, a Hamming window
with a width of 30 ms was used and the feature vectors (consisting of 12 MFCC,
the log-energy, 12 delta-MFCC and the delta-log energy) were extracted once
every 10 ms.

We have tested our systems in clean conditions and in presence of additive
noise. For that purpose, we have corrupted our database with two kinds of noises,
namely: white noise and the noise produced by a F16 plane. Both noises have
been extracted from the NOISEX database [17] and added to the speech signal
to achieve a signal-to-noise ratio of 12 dB. As we have used clean speech for
estimating the acoustic models (in both, HMM and SVM-based recognizers),
the noises are only added for testing the recognition performance.
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4.2 Selecting Parameters for the SVM-Based Recognizer

In order to get the best performance possible for the system proposed, we have
to select properly the values of the different parameters involved. Specifically,
we must answer the following questions:

1. What is the best kernel and which are the best parameters for it?
2. How many states must we use in the HMM-segmentation procedure?
3. When must we extract the features, in the transitions between states, or

between two transitions, when the voice is stationary?
4. What’s the best window size? Does it depend on the length of the utter-

ance?
5. Which parameterization should we use and what is the best normalization

procedure?

It is hard to make a guess a priori for these questions. However, the an-
swer will have a great impact in the recognition rates reached for our system.
For this reason, we ran a set of experiments with different values for all these
configuration parameters.

We have used the RBF kernel (eq. (8)) in all the experiments, finding values
for γ and for the regularization parameter C of the SVM by using grid search.
However, we didn’t find a significant difference among the different values tried
(about 1% in the recognition rate).

Regarding the number of the states of the HMMs used for the segmentation,
we have the problem that the different words in the dictionary have different
lengths. This implies that for a given number of states, some words can be
oversampled while, for others, we won’t have taken a number of parameters
large enough. For both SVM classifiers (1-vs-all and 1-vs-1), we have finally
used a 15 state HMM to produce the sampling instants in which the speech
signal is analysed. Thus, in this case we use 15 feature vectors per utterance as
the SVM input. The number of 15 was chosen because with less, the recognition
rate was poor, and with more, the computational cost was very high, while the
improvement in recognition was not so noticeable.

Once selected the most adequate number of states for the HMMs, is necessary
to determine the best moment to extract parameters for the SVM. This moment
could correspond with the transition between two states, which is associated with
a change in the spectrum, or with the time when the voice is stationary, between
two transitions. We have tried the two schemes and, even, a combination of both,
but all the results were very similar. We finally decided to extract parameters in
the transitions between states.

As long as we are using a fixed number of states for all words, and these
words can have very different durations, one could think that it would be a
good idea to adjust the size of the window used, making it wider depending
on the length between samples (i.e. transitions between states). In Figure 2 is
illustrated this approach. In the final implementation, however, as the results
with a variable window didn’t differ from those obtained with the fixed one, we
used the standard fixed window of 30 ms.
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Fig. 2. Parameter extraction using a fixed window size a), and a size depending on the
length between transitions b)

Table 1. Word Accuracy Rate (%) obtained with four different normalizations of
the speech features: only subtracting the mean value of each parameter, dividing the
result between the standard deviation of each parameter, dividing between the standard
deviation of all parameters together and dividing between the maximum value of each
parameter

HMM SVM 1-vs-All SVM 1-vs-1
Clean 12dB WN Clean 12dB WN Clean 12dB WN

Baseline 99.89 36.92 99.72 39.44 99.72 37.07
xi = xi − x̄i 99.42 41.67 99.51 40.68 99.5 39.87
xi = xi−x̄i

σxi
99.08 31.19 98.8 34.17 98.72 33.29

xi = xi−x̄i
σx

98.32 33.24 98.48 32.23 98.6 31.2
xi = xi−x̄i

max(xi)
99.34 49.4 99.35 50.73 99.35 50.6

Table 2. Recognition results obtained with the two proposed hybrid HMM-SVM-
based classifiers for two types of noises (white and F16). Results obtained with the
conventional HMM-based ASR system are presented as well.

Clean White F16
(SNR=12 dB) (SNR=12 dB)

HMM-based ASR 99.34% 49.4% 59.31%

Hybrid HMM-SVM ASR 99.35% 50.73% 59.47%
system(1-vs-all)

Hybrid HMM-SVM ASR 99.35% 50.6% 59.42%
system(1-vs-1)

Concerning parameterization, we used the same as in the baseline experiment
(12 MFCC + logE + Δ + Δ-logE). However, an important issue in HMMs,
and even more in SVMs, is the normalization used. We tried four different types
of normalization, as we can see in Table 1. Although with clean speech the
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rates without normalization are slightly better, with noisy speech the results
obtained subtracting the mean to each parameter and dividing them between
their maximum values are the best ones.

4.3 Experiments and Results

On Table 2 are shown the best word recognition rates obtained with both alter-
natives of the multiclass SVM-based system and in comparison to those achieved
by the HMM-based system. As it can be observed, the SVM classifiers performed
only slightly better than the baseline system. The explanation for this is that,
when HMM fails, the segmentation obtained is far from the optimal and so, the
SVMs don’t have very much to do. However, even so, SVMs outperforms the
HMM-based system in all experiments, getting an improvement of more than
1% in the presence of white noise.

If we compare the two approaches proposed for recognition with SVMs, we
can see that results with 1-vs-all performs better than 1-vs-1. However, rates
obtained with both methods are again very close.

5 Conclusions and Further Work

In this paper, we have proposed two different approaches to a multiclass SVM
classifier (1-vs-all and 1-vs-1) with application to a specific ASR task. Experi-
mental results have shown that recognition rates obtained with SVM-based sys-
tems are very close to that achieved by a conventional HMM-based ASR system
in clean conditions. However, in noisy environments, differences are enlarged,
getting the 1-vs-all SVM-based classifier the best results.

Although the improvement obtained for the system proposed is not very large,
from our point of view, the results are very encouraging since HMM-based sys-
tems have been accurately tuned during the last three decades for automatic
speech recognition, while speech recognition based on SVMs is a new field of
study with a big margin for improvement.

With respect to the further work, we consider several lines: first of all, it would
be desirable to find an alternative method of getting a fixed-dimension input,
avoiding by this way the problem of a bad segmentation when the HMM fails.
Some method based on the behaviour of the derivative of the spectral features
could be considered.

Also, since the parameterization used is specially designed for a back-end
based on HMMs, it would be interesting to explore alternative parameterizations.
Currently, we are completing the first experiments with LSP parameters and the
results outperform those showed here.

Finally, we expect to extend the SVM framework for ASR by using string
kernels, which has been used with success in tasks as protein [14] and text [17]
classification. These kernels, based mainly on the Fisher score and other score
spaces, work in conjunction with a generative model, such as an HMM, and can
deal with sequences of different length.
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Abstract. The segment boundaries produced by the Synface low la-
tency phoneme recogniser are analysed. The precision in placing the
boundaries is an important factor in the Synface system as the aim is
to drive the lip movements of a synthetic face for lip-reading support.
The recogniser is based on a hybrid of recurrent neural networks and
hidden Markov models. In this paper we analyse the look-ahead length
in the Viterbi-like decoder affects the precision of boundary placement.
The properties of the entropy of the posterior probabilities estimated by
the neural network are also investigated in relation to the distance of the
frame from a phonetic transition.

1 Introduction

The Synface system [1] uses automatic speech recognition (ASR) to derive the
lip movements of an avatar [2] from the speech signal in order to improve the
communication over the telephone for hearing impaired people.

The recogniser, based on a hybrid of artificial neural networks (ANN) and
hidden Markov models (HMM), has been optimised for low latency processing
(look-ahead lengths in the order of tens of milliseconds). The effect of limiting the
look-ahead length has been investigated in [3, 4] by means of standard evaluation
criteria, such as recognition accuracy, number of correct symbols and percent
correct frame rate.

However, in applications such as this, where the alignment of the segment
boundaries is essential, standard evaluation criteria hide important information.

In this study the recognition results from the Synface recogniser are analysed
in more detail showing how the boundary placement in some cases is dependent
on the look-ahead length.

The use of neural networks allows the estimation of the posterior probabilities
of a class given an observation. The entropy of those probabilities is shown
to assume local maxima close to phonetic transitions, which makes it a good
candidate for a predictor of phonetic boundaries.
� This research was funded by the Synface European project IST-2001-33327 and

carried out at the Centre for Speech Technology supported by Vinnova (The Swedish
Agency for Innovation Systems), KTH and participating Swedish companies and
organisations.
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The rest of the paper is organised as follows: Section 2 describes the recogniser
and the data used in the experiments. Section 3 displays examples extracted
from the sentence material in the test set. Section 4 explains the method and
the measures analysed in the experiments. Finally Section 5 presents the results
of the analysis and Section 6 concludes the paper.

2 The Framework

2.1 The Recogniser

The Synface recogniser is a hybrid of recurrent neural networks (RNNs), and
hidden Markov models (HMMs). The input layer of the RNN contains thirteen
units that represent the Mel frequency cepstral coefficients C0, ..., C12.

The single hidden layer contains 400 units and is fully connected with the
input and output layers with direct and time delayed connections. Moreover,
the hidden layer is connected to itself with time delayed connections.

The activities of the output layer represent the posterior probability P (xi|O)
of each of the N = Np + Nn acoustic classes xi, given the observation O. The
acoustic classes include Np phonetic classes and Nn noise and silence classes.
The total number N of output units depends on the language, see Section 2.2.

The posterior probabilities are fed into a Viterbi-like decoder where the look-
ahead length can be varied. The recognition network specified by a Markov chain
defines a loop of phonemes, where every phoneme is represented by a three state
left-to-right HMM.

2.2 Data

The recognizer was trained on the SpeechDat database [5] independently on
three languages (Swedish, English and Flemish). The experiments in this paper
refer to Swedish. The Swedish database has been divided into a training, a
validation and a test set, with 33062, 500 and 4150 utterances, respectively. The
Mel frequency cepstral coefficients were computed at every 10 msec.

Phonetic transcriptions have been obtained with forced alignment. For part
of the test utterances, the transcriptions have been manually checked in order
to obtain a more reliable reference of the test data.

The phonetic transcriptions used in the following use SAMPA symbols [6]
with a few exceptions [7] presented in Table 1. The total number of acoustic
classes is 50 for Swedish, with 46 phonemes and 4 kinds of noise/silence.

Table 1. Modification of the SAMPA phonetic symbols

original } 2 { 9 @
modified uh ox ae oe eh
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Fig. 1. Example of recognition results with varying look-ahead length. The sentence
contains the phrase “N̊agon teknisk...” (“Some technical...”). See detailed information
in the text.

3 Observations

3.1 Boundaries and Latency

Fig. 1 shows an example from the phrase “N̊agon teknisk...” (“Some techni-
cal...”). The spectrogram and waveform are shown together with a number of
transcription panes. From the top: the reference transcription (trans), the max-
imum a posteriori solution (map) obtained selecting for each frame the phonetic
class corresponding to the neural network output node with the highest activity,
the approximated Viterbi solution (lat=1,7) with look-ahead 1 to 7, and finally
the standard Viterbi solution.

It can be seen from the figure that the boundary placement is strongly de-
pendent on the look-ahead length whenever there is ambiguity in the posterior
probability estimates. For example, the transitions between O and n, between e
and k and between k and the next symbol, do not present any difficulties. The
transition between t and e (t = 0.47 sec), on the other hand, is more problematic
as the segment e is partly confused with E and O (see map solution). This has
an effect on the final solution that strongly depends on the look-ahead length 1.

Some standard evaluation criteria for speech recognition (e.g. accuracy and cor-
rect symbols) compute the similarity between the recognition and the reference
string of symbols by aligning the two sequences and counting the number of inser-
tions I, deletions D, and substitutions S obtained in the process. Other measures
(e.g. percent correct frame rate) work with equally spaced frames in time.

1 Note, however, that from the application point of view, this particular case should
not be considered as an error as E and e are mapped to the same visemic class (they
share the same visual properties).
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Table 2. Insertions, Substitutions, Deletions, % Correct symbols, Accuracy and %
correct frame rate for the example in Fig. 1

map lat=1 lat=2 lat=3 lat=4 lat=5 lat=7 viterbi
I 4 4 2 1 1 1 0 0
S 1 1 1 1 1 1 1 1
D 0 0 0 0 0 0 0 0

%Corr 80 80 80 80 80 80 80 80
Acc 0 0 40 60 60 60 80 80
%cfr 58.5 58.5 63.4 65.8 68.3 70.7 70.7 73.2

In the example in Fig. 1 there is one substitution (O with o:) in all conditions,
no deletion and a number of insertions as indicated in Table 2.

The table shows how the accuracy is affected by insertions, deletions and sub-
stitutions, but not by boundary position. On the other hand, the percent correct
frame rate, also shown in the table, measures the overlap in time of correctly
classified segments, but does not take the boundaries explicitly into account.
This motivates a more detailed study on the errors in boundary alignment.

3.2 Boundaries and Entropy

Fig. 2 shows an example from the phrase “...lägga fram fakta...” (“...present
facts...”). In this case the entropy of the posterior probabilities estimated by the
output nodes of the neural network is displayed for each frame together with the
reference transcription.

It is clear that at each transition from a phonetic segment to the next, the
entropy assumes a local maximum. Note in particular that in the transition
between f and a the maximum is shifted backward, compared to the reference
transcription. In this case the position of the reference boundary is set at the
onset of voicing (t = 1.715 sec) whereas the “entropy” boundary is more related

File: /afs/md.kth.se/tmh/home/speech/giampi/proj/corpora/SpeechDat/sv/fdb5000/cd01/fixed1sv/block00/ses0009/a10009s5.sva   Page: 1 of 1   Printed: Tue Jun 28 21:45:38
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Fig. 2. Example of time evolution of the entropy. The sentence contains the phrase
“...lägga fram fakta...” (“...present facts...”).
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to the onset of the articulation. The choice of one boundary or the other is
questionable. From the application point of view the boundary indicated by the
maximum in the entropy is more informative, as it is related to a change in
articulation that is more visually relevant.

The figure indicates that the entropy may be a good predictor of phonetic
transitions.

4 Method

The experiments in this study aim at evaluating the precision of boundary place-
ment at different latency conditions, and at investigating whether the frame-by-
frame entropy of the posterior probabilities of the phonetic classes can be used
as a predictor of the phonetic boundaries.

Two kinds of measures are therefore considered: the first relates the recogni-
tion boundaries to the reference boundaries. The second relates the entropy (or
a quantity extracted from the entropy) measured over a frame to the position of
the frame with respect to the reference boundaries.

00 012345 1 2 1 0 0 0 0 1 2 2 1 0 0 1 2 3

reference boundaries

frames

distance (frame)

recognition boundaries

distance (boundary)4 0 1 1

beginning of file end of file

32

Fig. 3. Example computation of the distance between couple of boundaries and be-
tween a frame and a boundary

The way the distance is measured in the two cases is exemplified in Fig. 3. The
reference boundaries are in the middle line. The line above shows the recognition
boundaries with the distance from the nearest reference boundary. Note that
beginning and end of the speech file are not considered as boundaries. The
line below the reference shows the frames and their distance from the reference
boundaries: frames adjacent to a transition have distance 0.

We use the term displacement when the distance is considered with a sign
(negative displacement indicates that the recognition boundary is earlier than
the reference). The displacement is interesting when evaluating whether there is
a bias in the position of the recognition transitions.

4.1 Entropy

Given the posterior probabilities P (xi|O(n)), i ∈ [1, N ] of the acoustic class xi

given the observation O(n) at frame n, the entropy of the frame is defined as

e(n) = −
N∑

i=1

P (xi|O(n)) log2 P (xi|O(n))
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The entropy varies as a function of the uncertainty in the classification of
each frame. As shown by the observations in the previous section, we can expect
uncertainty to be higher at phonetic boundaries, but there are many sources of
uncertainty that need be considered.

For example, some phonemes are intrinsically more confusable than others,
some speakers are harder to recognise, or there might be noise in the recordings
that increases the entropy.

In order to reduce the effect of the first of these factors, the mean entropy was
computed for each phoneme and subtracted from the frame by frame entropy
in some evaluations. Fig. 4 shows the boxplot of the entropy for each of the
phonemes, as a reference.

As the focus is on the evolution of the entropy in time, the first and second
derivative defined as e′(n) = e(n) − e(n − 1) and e′′(n) = e′(n + 1) − e′(n) have
been also considered. The definition of the second derivative assures the maxima
and minima of e′′(n) correspond to the maxima and minima of e(n). Note that
given the rate of variation of the entropy in function of time (frames) the first
derivative e′(n) should not be expected to be close to zero in correspondence of
a maximum of e(n). On the other hand a negative value of the second derivative
e′′(n) is a strong indicator of a maximum in e(n) for the same reason.

A: C E E: I N O S U Y a ae ae: b d e e: eh f fil g h i: j k

1
2

3
4

entropy versus phoneme

en
tr

op
y

l m n o: oe oe: ox ox: p r rd rl rn rs rt s sil sp spk t u0 u: uh: v y:

1
2

3
4

en
tr

op
y

Fig. 4. Box plot of the frame entropy for each phonemic class. The maximum entropy
is log2 N = 5.64 bits.
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Fig. 6. Distribution of the relative displacement of the recognition boundaries to the
reference for varying latency

5 Analysis

5.1 Boundaries and Latency

Fig. 5 shows the distribution of the recognition boundaries displacement (in
frames) with respect to the reference. The latency in this case is three frames
(30 msec), as used in the Synface prototype. The figure shows that there is no
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global bias in the position of the boundaries. More than 80% of the boundaries
are within 2 frames (20 msec) from the reference.

The effect of varying the latency is shown in Fig. 6. The total number of
boundaries decreases with larger latency (the number of insertions is reduced),
but the distribution of the displacements from the reference is very similar. This
implies that the extra transitions inserted at low latencies have the same dis-
tribution in time than the correct transitions. A better measure of correctness
in the position of phoneme boundaries would disregard insertions of extra tran-
sitions. A simple way of doing this is to select from the recognition results a
number of transitions equal to the reference. The drawback of such an approach,
similarly to the % correct symbol measure, is that solutions with a high number
of insertions are more likely to contain a higher number of correct answers. This
is the reason why this approach was not considered in this study.
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Fig. 7. Box plot of the entropy at varying distances from the nearest reference bound-
ary. In the second and third plots the entropy is normalised to the mean for each
phoneme in the reference and recognition transcription, respectively.
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Fig. 8. Box plot of the first and second derivative in time of the entropy at varying
distance from the nearest reference boundary

5.2 Boundaries and Entropy

The distribution of the entropy for different distances from the a phonetic tran-
sition are displayed in Fig. 7 with box plots. The three figures show the un-
normalised entropy, the entropy normalised with the average for every phoneme
in the reference transcription and the same normalisation but referring to the
recognition transcription (with three frames latency). All plots show that the
entropy increases in the neighbourhood of a phonetic transition (distance from
the boundary equals 0). In the normalised cases the variation around the median
is reduced.

Even in the normalised cases, the large variation around the median shows
that the frame-by-frame entropy needs to be improved to be a good enough
predictor of phonetic boundaries.

Fig. 8 shows the distributions of the first and second derivative depending
on the distance from a phonetic boundary. As explained in Section 4 the first
derivative assumes values far from zero at boundaries, which indicates that the
entropy has a strong variation in time. The second derivative often assumes
negative values, suggesting there might be a maximum of the entropy or at least
a convex shape of the entropy curve.

6 Conclusions

This article analyses the phonetic transitions obtained with a low latency
phoneme recogniser. It shows that the distribution of displacements of the recog-
nition boundaries, with respect to the reference transcription, do not vary sig-
nificantly with the latency, in spite of the increased number of insertions at low
latency conditions.
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We propose to use the entropy of the posterior probabilities estimated by a
neural network in connectionist speech recognition, as a predictor of the phonetic
boundaries. A dependency of the entropy with the distance from a phonetic
transition has been found. However, in order to use this measure as a predictor
of phonetic boundaries, a number of interfering factors should be removed. The
use of dynamic features, such as the first and second derivative might serve this
purpose.

References

1. Karlsson, I., Faulkner, A., Salvi, G.: SYNFACE - a talking face telephone. In: Proc.
Eurospeech. (2003) 1297–1300

2. Beskow, J.: Trainable articulatory control models for visual speech synthesis. Jour-
nal of Speech Technology (in press)

3. Salvi, G.: Truncation error and dynamics in very low latency phonetic recogni-
tion. In: ISCA Tutorial and Research Workshop on Non-linear Speech Processing
(NOLISP), Le Croisic, France. (2003)

4. Salvi, G.: Dynamic behaviour of connectionist speech recognition with strong la-
tency constraints. Speech Communication (in press)

5. Elenius, K.: Experience from collecting two swedish telephone speech databases.
International Journal of Speech Technology 3 (2000) 119–127

6. Gibbon, D., Moore, R., Winski, R., eds.: SAMPA computer readable phonetic
alphabet, Part IV, section B. In: Handbook of Standards and Resources for Spoken
Language Systems. Mouton de Gruyter, Berlin and New York (1997)

7. Lindberg, B., Johansen, F.T., Warakagoda, N., Lehtinen, G., Kac̆ic̆, Z., Z̆gank, A.,
Elenius, K., Salvi, G.: A noise robust multilingual reference recogniser based on
SpeechDat(II). In: 6th Intern. Conf. on Spoken Language Processing. Volume III.
(2000) 370–373



M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 277 – 283, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Third-Order Moments of Filtered Speech Signals 
for Robust Speech Recognition 

Kevin M. Indrebo, Richard J. Povinelli, and Michael T. Johnson 

Dept. of Electrical and Computer Engineering, Marquette University, 
Milwaukee, Wisconsin, USA 

{kevin.indrebo, richard.povinelli, 
mike.johnson}@Marquette.edu 

Abstract. Novel speech features calculated from third-order statistics of 
subband-filtered speech signals are introduced and studied for robust speech 
recognition. These features have the potential to capture nonlinear information 
not represented by cepstral coefficients. Also, because the features presented in 
this paper are based on the third-order moments, they may be more immune to 
Gaussian noise than cepstrals, as Gaussian distributions have zero third-order 
moments. Experiments on the AURORA2 database studying these features in 
combination with Mel-frequency cepstral coefficients (MFCC’s) are presented, 
and some improvement over the MFCC-only baseline is shown when clean 
speech is used for training, though the same improvement is not seen when 
multi-condition training data is used. 

1   Introduction 

Spectral-based acoustic features have been the standard in speech recognition for 
many years, even though they are based on limiting assumptions of the linearity of the 
speech production mechanism [1]. Specifically, mel-frequency cepstral coefficients 
(MFCC), which are calculated using a discrete cosine transform on the smoothed 
power spectrum, and perceptual linear prediction (PLP) cepstral coefficients, similar 
to MFCCs, but based on human auditory models, are used in almost all state-of-the-
art speech recognition systems [1]. While these feature sets do an excellent job of 
capturing linear information of speech signals, they do not encapsulate information 
about nonlinear or higher-order statistical characteristics of the signals, which have 
been shown to exist, and are not insignificant [2-4]. 

As successful as MFCCs have been in the field of speech recognition, performance 
of state-of-the-art systems remains unacceptable for many real applications. One of the 
largest failings of popular spectral features is their poor robustness in the face of 
ambient noise. Many environments in which automatic speech recognition applications 
would be ideal have large amounts of background additive noise that makes voice-
activated systems infeasible. In this paper, we introduce acoustic features based on 
higher-order statistics of speech signals. It is shown that these features, when combined 
with MFCC’s, can produce higher recognition accuracies in some noise conditions.  

The rest of the paper is as follows. Section 2 gives some background on robust 
speech recognition and nonlinear speech recognition. In section 3, computation of the 
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proposed features is detailed. Experiments comparing the feature sets including the 
third-order moment features and MFCC's are presented in section 4, and are followed 
by the conclusion in section 5. 

2   Background 

2.1   Robust Speech Recognition 

Robust speech recognition research has focused on subjects such as perceptually 
motivated features, signal enhancement, feature compensation in noise, and model 
adaptation. Perceptual-based features include PLP cepstral coefficients [5] and 
perceptual harmonic cepstral coefficients (PHCC) [6], which have been shown to be 
more robust than MFCCs in the presence of additive noise. Signal enhancement and 
feature compensation include techniques like spectral subtraction [7] and iterative 
wiener filtering [8], as well as more advanced algorithms such as SPLICE (stereo-
based piecewise linear compensation in environments) [9]. While these techniques 
focus on adapting the extracted features, model adaptation methods such as MLLR 
and MAP [10] attempt to adjust the model parameters to better fit the noisy signals.  

Though some progress has been made, the performance of speech recognition 
systems in noisy environments is still far from acceptable. Word error rates for a 
standard large vocabulary continuous speech recognition (LVCSR) task like 
recognition of the 5,000 word Wall Street Journal corpus can drop from under 5% to 
over 20% when Gaussian white noise is added at a signal-to-noise-ratio (SNR) of 
+5dB, even with compensation techniques [9]. Even continuous digit recognition 
word error rates often exceed 10% when faced with high noise levels [11].  

2.2   Nonlinear Features for Speech Recognition 

Recently, work has been done to investigate the efficacy of various feature sets based 
on nonlinear analysis. Dynamical invariants based on chaos theory [12], such as 
Lyapunov exponents and fractal dimension have been used to augment the standard 
linear feature sets [13], as well as nonlinear polynomial prediction coefficients [14]. 
In [15], an AM-FM model of speech production is exploited for extraction of 
nonlinear features. Also, Phase space reconstruction has been used for statistical 
modeling and classification of speech waveforms [16].  

In [17], reconstructed phase spaces built from speech signals that have been 
subband filtered were used for isolated phoneme classification, showing improved 
recognition accuracies over fullband signal phase space reconstruction features. 
However, this approach is infeasible for continuous speech recognition because of its 
high computational complexity. In this paper, nonlinear features from subbanded 
speech signals that are much simpler to compute are introduced. 

3   Third-Order Moment Feature Computation 

An approach based on time-domain filtering of speech signals is taken for 
computation of the nonlinear features. An utterance is parameterized by first filtering 
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the signal into P subbands that have cutoffs and bandwidths derived from the Mel-
scale. Each of these signals is then broken into frames with lengths of 25.6 ms, 
updated every 10 ms. The third-order moment of the signal amplitudes of each of 
these channels is calculated for each frame, and the set of these coefficients form a 
feature vector. Log energy of the unfiltered signal frame is appended to these features, 
which are then orthogonalized using a principle component analysis (PCA). In the 
experiments presented in this paper, 20 filter channels are used, and the PCA reduces 
the dimension third-order moment feature space to 13. 

Because much of the information that distinguishes speech sounds is contained in the 
power spectrum, it is not expected that these features by themselves would carry enough 
information to compete with MFCC features. Therefore, the proposed features are 
appended to the baseline MFCC feature vector for modeling and recognition of speech. 

There are two advantages to this approach. First, nonlinear information that may be 
useful for recognition that is not captured by traditional features is added to the 
recognizer. Also, because some types of noise have approximately Gaussian statistical 
distributions, and Gaussian distributions have zero third-order moments, the proposed 
features my be less affected by additive noise than MFCC’s. This conjecture is tested 
by comparing a combined feature set of MFCC’s and the proposed features to a 
baseline feature set of only MFCC’s for use in noisy speech recognition. 

4   Experiments 

The preliminary recognition experiments are run using the AURORA2 database [18]. 
This corpus contains utterances of connected digits corrupted with different types and 
levels of noise. There are eleven words: the digits zero through nine and “oh”. Two sets 
of experiments were run. In the first set the models were trained using clean speech 
signals, and tested on test set A, which contains four different types of noise 
 

 

Fig. 1. Recognition accuracies for speech corrupted by subway noise 
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at varying SNR levels. The second set of experiments used models trained on the 
multi-condition training set in AURORA2, and the tests were performed on test set A 
and test set B, which has four different types of noise. The multi-condition training set 
has the same noise types as test set A, providing a matched noisy training-test 
scenario. The noise types in test set B are not included in any training signals.  
HTK [19] is the software used for experimentation. Each word is modeled using a 16-
state left-to-right diagonal covariance Hidden Markov Model (HMM). Additionally, a 
3-state silence model and single-state short pause model are implemented. The frame 
rate is 10 ms, with frame lengths of 25.6 ms. 

Two types of feature sets are used. The baseline feature vector is a 39-element vector 
of 12 MFCC’s, log energy, and the first and second time derivatives. The second feature 

 

Fig. 2. Recognition accuracies for speech corrupted by babble noise 

 
Fig. 3. Recognition accuracies for speech corrupted by car noise  
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set is a 45-element vector composed of the 39-coefficient MFCC vector concatenated 
with 6 coefficients from the PCA of the third-order moment space. 

Figures 1-4 show the recognition accuracies for the two feature types on the four 
different noise types of AURORA’s test set A, using models trained on clean speech 
signals. These noises are subway, babble, car noise, and exhibition hall, respectively. The 
accuracies are plotted against the SNR levels, ranging from 0 to 20 dB. It can be seen that, 
except for the babble noise case, the MFCC-only features give better recognition 
accuracies at 20 dB SNR. The MFCC and third-order moment concatenation feature 
vector, however, outperforms the MFCC-only set in most of the lower SNR cases. 

 
Fig. 4. Recognition accuracies for speech corrupted by exhibition hall noise 

Table 1. Average recognition accuracies for models trained on corrupted speech 

Feature type Test set A Test set B 
MFCC’s 88.22% 84.10% 

Combined features 80.98% 61.37% 

Table 1 shows the accuracies of models trained on the multi-condition training set 
and tested on both test sets A and B for the MFCC feature set and the combined 
feature set, averaged over all the noise types and SNR levels from 0 to 20 dB. This 
table shows that when the models are trained on speech corrupted with different types 
and levels of noise, the addition of the third-order moment features does not improve 
upon the MFCC baseline, even degrading the performance significantly. 

5   Conclusion 

A new type of acoustic feature extraction method was presented based on higher-order 
statistics of subband filtered speech signals, and tested on noisy speech signals. The 
results show that the combination of traditional MFCC features and these new features 
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can improve the robustness of speech recognition systems when the speech models are 
trained on clean speech data. The largest improvement is seen when the speech signals 
used for recognition are corrupted by babble noise. However, when the speech models 
are trained on clean speech, the performance of the recognition degrades compared to 
MFCC only features. For these features to be useful in real systems, some adaptive 
combination may be necessary, so that information from third-order moment features is 
only used when it will improve the recognition estimates of the recognition system. 
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Abstract. Speech feature extraction methods are commonly based on
time and frequency processing approaches. In this paper, we propose a
new framework based on sub-band processing and non-linear prediction.
The key idea is to pre-process the speech signal by a filter bank. From
the resulting signals, non-linear predictors are computed. The feature
extraction method involves the association of different Neural Predictive
Coding (NPC) models. We apply this new framework to phoneme classi-
fication and experiments carried out with the NTIMIT database show an
improvement of the classification rates in comparison with the full-band
approach. The new method is also shown to give better performance than
the traditional Linear Predictive Coding (LPC), Mel Frequency Cepstral
Coding (MFCC) and Perceptual Linear Prediction (PLP) methods.

1 Introduction

Speech feature extraction stages are commonly based on time and frequency
processing methods. Indeed, the most widely used method is the Mel Frequency
Cepstral Coding (MFCC) but the Linear Predictive Coding (LPC) is also pop-
ular. The success of the MFCC is partly due to the sub-band processing based
on a Mel-scale filter bank.

The filter banks are usually designed according to an auditory system [1].
Several models have been proposed for speech feature extraction [15], [8], [10], [6].
Among the many advantages of sub-band processing approaches, the enhanced
robustness is a key issue. For instance in speech coding [7], [17] and in speech
enhancement [12], the filter banks have been shown to significantly improve the
performance in noisy environments.

From a classification point of view, the division of the whole frequency do-
main into sub-bands and the application of diverse strategies in different bands
is a possible way of achieving error rates reduction. In speaker recognition ap-
plications [2], it is known that some sub-bands retain more speaker dependent
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features and similar ideas have been followed in speech recognition. Work by
Allen et al. [1] has shown that the linguistic message is decoded in different
sub-bands and the final decision involves merging the information from these
sub-bands [11].

In this paper, we are interested in the combining sub-band processing and non-
linear predictive methods. The key idea is to divide the whole frequency domain
into sub-bands and then employ non-linear predictors for feature extraction. The
combination of filter banks and predictors is widely used for speech coding. The
purpose of this paper is to compare full-band non-linear predictors for feature
extraction with the proposed sub-band based approaches.

The paper is organized as follows. Section 2 is dedicated to the description of
the new sub-band based feature extractor. Then, section 3 presents the non-linear
predictor used, namely: The Neural Predictive Coding (NPC). We then present
the experimental conditions and the comparative performance of the system
for different phoneme groups. Finally, we present some concluding remarks and
future work suggestions.

2 Non-linear Predictive Sub-band Feature Extractor

Traditionally, linear and non-linear predictors are computed directly from speech
signal samples. In speech coding and in speech enhancement, it has been shown
that such an approach is not adapted for noisy environments. Several meth-
ods have been proposed [7] and among them the combination of filter banks
and predictors. In feature extraction, similar ideas have been investigated. The
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vector
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Fig. 1. Non-Linear Predictive Sub-band Based Feature Extraction
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Perceptual Linear Prediction (PLP) [9] is one example which involves the modi-
fication of the spectrum (through auditory knowledge) and then using an all-pole
modelling method like in the LPC.

The principle of the proposed feature extraction method is described in
figure 1. The first stage aims to pre-process the speech signal by a filter bank.
The following stage involves extraction of the features. Instead of using energy
from the sub-bands, the Neural Predictive Coding (NPC) model is used. The
features are extracted from signals resulting from the pre-processing stage. In
this work, the sub-bands are achieved by modifying the spectra of input signals.
The FFT based analysis filter bank employed here can be efficiently implemented
using a bank of band-pass filters.

This approach is different from traditional feature extraction methods in that
we propose to pre-process the signal by a filter bank. The first stage can be
designed to reflect auditory knowledge - and feature extractors based on auditory
models usually compute the energy of the sub-bands. In our model, the second
stage is based on a non-linear feature extractor: The NPC model. The next
section is dedicated to the description of this model.

3 Neural Predictive Coding

The Neural Predictive Coding (NPC) model [5], [3] is a non-linear extension of
the well-known LPC encoder. Like in the LPC framework with the AR model, the
vector code is estimated by prediction-error minimization. The main difference
lies in the fact that the model is non-linear and it is a connectionnist model:

ŷk = F (yk) =
∑
j

ajσ(wTyk) (1)

Where F is the prediction function realized by the neural model. ŷk is the pre-
dicted sample. yk the prediction context: yk = [yk−1,yk−2, ...,yk−λ]T and λ is
the length of the prediction window. w and a represent the first and the output
layer weights. σ is a non-linear activation function, namely the sigmoid function
in our case.

The key idea is to use the NPC model as a non-linear auto-regressive model.
As in the LPC framework for the predictor coefficients, the NPC weights repre-
sent the vector code. It is well-known that the weights can be considered as a
representation of the input vector. A drawback of this method is that non-linear
models have no clear physical meanings [14]. The solution weights can be very
different for a same minimum of the prediction error. In our approach, we impose
constraints on the weights.

3.1 Description

The NPC model is a Multi-Layer Perceptron (MLP) with one hidden layer (cf.
figure 2). In our case, only the output layer weights are used as the coding
vector (instead of using all the neural weights). For this purpose we consider
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that the function F realized by the model, under convergence assumptions, can
be decomposed into two functions: Gw (w first layer weights) and Ha (a output
layer weights):

Fw,a(yk) = Ha ◦ Gw(yk) (2)

With ŷk = Ha(zk) and zk = Gw(yk).
As one can note, the NPC structure allows the use of a different prediction

window’s length independent of the size of the coding vector, which is contrary
to the case of the LPC structure.

For the layers’ specialization, the learning phase is realized in two stages.
First, the parameterization phase involves the learning of all the weights using
the prediction error minimization criterion:

Q =
K∑

k=1

(yk − ŷk)2 =
K∑

k=1

(yk − F (yk))2 (3)

With y represents the speech signal, ŷ the predicted speech signal, k the samples
index and K the number of samples respectively.

In this phase, only the first layer weights w (which constitute the NPC encoder
parameters) are retained. Since the NPC encoder is set up by the parameters
defined in the previous phase, the second phase, called the coding phase, involves
the computation of the output layer weights a (vector code). This is done also
by prediction error minimization but only the output layer weights are updated.
One can note that the output function is linear (cf. equation 1), so once can
readily employ the Levinson algorithm for the LPC model. In our case, in order
to ensure consistency with the previous parameterization phase, the update is
done using the backpropagation algorithm.

Finally, one can note that the first layer weights w are common to all the
speech signal frames while the second layer weights a are specific to each frame.
For each frame, a feature vector a is computed by prediction error minimization.

4 Evaluation and Discussion

4.1 Experimental Conditions

The NTIMIT database [13] is used in this experiment and in particular, the
two first regions (DR1, DR2). By using this database, we carry out speech
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recognition at telephone quality. One can note that the telephone bandwidth
is approximately limited to 300-3400Hz. We focus on the processing of front
vowels (/ih/, /ey/, /eh/, /ae/), voiced plosives (/b/, /d/, /g/) and unvoiced
plosives (/p/, /t/, /k/). This choice can be justified by the fact that the classi-
fication of these phonemes is known to be difficult and they are also often used.
For training and test databases, we use the division proposed by the database.

The classification is carried out by GMM (with 16 centers and a diagonal
assumption) and it operates as a frame by frame classification (with a frame size
of 32ms with 16ms of overlapping). The dimension of the features is set to 12.

The proposed feature extractor is based on sub-band processing but deter-
mining the optimal number of sub-bands is still an open issue. In Mel-scale
filter banks, this number is about 20. We evaluate the comparative performance
of our model with 2 sub-bands (300-1140Hz, 1046-3400Hz) and 4 sub-bands
(300-765Hz, 700-1640Hz, 1515-2700Hz, 2100-3400Hz) [16]. For the first case, we
extract 6 NPC coefficients (in each sub-band) and for the second one, we extract
3 NPC coefficients in order to keep a dimension 12 for the feature vector.

We make comparisons with three traditional methods, namely the LPC,
MFCC and PLP. And in order to evaluate the comparative performance of the
sub-band NPC approach, we also implement an equivalent full-band NPC model.

4.2 Results

The classification rates for the NPC model in the different sub-bands are grouped
in 1 which show that the performance of both the sub-band models is better
than the full-band model. These preliminary results shows that the sub-band
approach, by dividing the whole frequency domain, can be effective for phoneme
classification. Indeed the phoneme dependent features are also known to be dis-
tributed non-linearly among different sub-bands [1], [11] and a diverse sub-band
processing approach can therefore prove more effective for extracting such fea-
tures. However, for the 4 sub-bands model, the performance decreases compared
to the 2-sub band model. This needs to be further investigated and could be
partly due to the lack of optimised data for each band, and/or the uniform
(linear) spacing of all the bands.

Table 1. Classification rates for different sub-bands (vowels)

Phoneme Full-band 2 sub-bands 4 sub-bands
/ih/, /ey/, /eh, /ae/ 49.03 52.4 50.89

Table 2. Classification rates: improvements by non-linear and sub-band methods

Phoneme LPC MFCC PLP NPC Sub-Band NPC
/ih/, /ey/, /eh, /ae/ 35.22 48.12 45.12 49.03 52.4
/b/, /d/, /g/ 54.13 59.23 57.21 62.24 63.87
/p/, /t/, /k/ 44.10 51.45 46.98 49.36 52.56
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The classification rates for the different methods are presented in table 2. For
voiced phonemes, the performances can be seen to be improved by the use of
non-linear methods even in the case of the plosives (NPC: 62.24%, Sub-band
NPC:63.87 %).

In the case of unvoiced plosives, the performance of the sub-band method
is found to be slightly better than the more complex and state-of-art MFCC
method (MFCC:51.45%, Sub-band NPC: 52.56%). On the other hand, the sub-
band method is seen to further outperform the full-band approach (Full-band:
49.36%, Sub-band: 52.56%).

5 Conclusion

In this paper, we propose a new framework for speech feature extraction com-
prising a combination of filter banks and non-linear predictors. The filter banks
act to pre-process the signal in individual frequency bands. In this way, we can
apply different (optimised) strategies in each band for feature extraction. The
features are extracted by the help of a non-linear feature extractor, namely the
Neural Predictive Coding (NPC) model. The obtained features are decorrelated
since they are extracted using different models. This characteristic, decorrelation
can also be very useful for classification purposes [4].

The preliminary results obtained in this paper using the NTIMIT database
show that the proposed sub-band based NPC method can offer superior perfor-
mance compared to both the full-band NPC approach and the three traditional
methods: MFCC, LPC and PLP.

In our approach, determination of the optimal number and spacing of the sub-
bands is still an open issue, which is currently being further investigated. For
future work, we will incorporate an explicit discriminant criterion between the
NPC models as part of the proposed sub-band framework. We also aim to look
at other interesting applications such as speaker recognition and speech/music
discrimination.
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Abstract. An important topic in Automatic Speech Recognition (ASR)
is to reduce the effect of noise, in particular when mismatch exists be-
tween the training and application conditions.

Many noise robutness schemes within the feature processing domain
use as a prerequisite a noise estimate prior to the appearance of the
speech signal which require noise robust voice activity detection and as-
sumptions of stationary noise. However, both of these requirements are
often not met and it is therefore of particular interest to investigate meth-
ods like the Quantile Based Noise Estimation (QBNE) mehtod which
estimates the noise during speech and non-speech sections without the
use of a voice activity detector. While the standard QBNE-method uses
a fixed pre-defined quantile accross all frequency bands, this paper sug-
gests adaptive QBNE (AQBNE) which adapts the quantile individually
to each frequency band.

Furthermore the paper investigates an alternative to the standard
mel frequency cepstral coefficient filter bank (MFCC), an empirically
chosen Speech Band Emphasizing filter bank (SBE), which improves the
resolution in the speech band.

The combinations of AQBNE and SBE are tested on the Danish
SpeechDat-Car database and compared to the performance achieved by
the standards presented by the Aurora consortium (Aurora Baseline and
Aurora Advanced Fronted). For the High Mismatch (HM) condition,
the AQBNE achieves significantly better performance compared to the
Aurora Baseline, both when combined with SBE and standard MFCC.
AQBNE also outperforms the Aurora Baseline for the Medium Mismatch
(MM) and Well Matched (WM) conditions. Though for all three con-
ditions, the Aurora Advanced Frontend achieves superior performance,
the AQBNE is still a relevant method to consider for small foot print
applications.

1 Introduction

Car equipment control and the rapidly growing use of mobile phones in car
environments have developed a strong need for noise robust automatic speech
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recognition systems. However, ASR in car environments is still far from achieving
sufficient performance in the presence of noisy conditions.

While significant efforts are needed both in the acoustic modelling domain and
in the feature processing domain of speech research, the present paper focusses
on the latter in the context of standard Hidden Markov modelling of acoustic
units.

One feature processing method proposed by Stahl et al. is Quantile Based
Noise Estimation (QBNE) which estimates the noise during speech and non-
speech sections without the explicit use of a voice activity detector [1].

In QBNE the noise estimate is based on a predefined quantile (q-value) being
constant for all frequencies and independent of the characteristics of the noise. In
an attempt to adapt to the noise characteristics of the data, this paper suggests
adaptive QBNE (AQBNE) in which the q-value is determined independently for
each frequency according to the characteristics of the data for that particular
frequency. This gives a non-linear noise estimate compared to QBNE.

While the standard MFCC is motivated mainly from perceptual considera-
tions, we suggest in this paper to consider a Speech Band Emphasizing (SBE)
filter bank which has the purpose to better focus on the speech information
available in the signal.

The paper is organised as follows. In section 2 QBNE, spectral subtraction,
AQBNE and the SBE filter bank are described in further details. In section 3,
the experimental framework, based on the Danish SpeechDat-Car database, is
described. In section 4 the experimental results are presented and compared to
the performance achieved by the Aurora consortium. In section 5 the conclusions
are drawn.

2 Methods

2.1 Quantile Based Noise Estimation and Spectral Subtraction

QBNE, as proposed in [1], is a method based on the assumption that each
frequency band contains only noise at least the q’th fraction of time, even during
speech sections. This assumption is used to estimate a noise spectrum N(ω, i)
from the spectrum of the observed signal X(ω, i) by taking the maximum value of
the q-quantile in every frequency band. For every frequency band ω the frames
of the entire utterance X(ω, i), i = 0, · · · , I, are sorted so that |X(ω, i0)| ≤
|X(ω, i1)| ≤ · · · ≤ |X(ω, iI)|, where i denotes the frame number. This means
that for each frequency band the data is sorted by amplitude in ascending order.
From this the q-quantile noise estimate is defined as:

N̂(ω) = |X(ω, iqI�)| (1)

Fig. 1 shows a plot of the sorted data for a sample utterance. The curves
in the figure corresponds to different frequencies. The chosen q-value can be
seen as a vertical dashed line in the figure. The intersection between the vertical
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Fig. 1. Data sorted by amplitude for different frequency bands (q = 0.5). Only a few
frequencies are plotted.

line and each frequency curve is the noise estimate for the corresponding
frequency.

Ideally, the noise can be eliminated from the observed signal by applying
amplitude spectral subtraction in which the observed signal X(ω) is modeled as
a speech signal S(ω) to which uncorrelated noise N(ω) is added.

The amplitude spectrum of the speech is estimated by subtracting a weigthed
amplitude spectrum of the estimated noise from the amplitude spectrum of the
observed signal:

|Ŝ(ω)| = |X(ω)| − η|N̂(ω)| (2)

where η, the weighting constant, in the present experiments has been choosen to
η = 2.5. This value was found to be an optimal value in [1]. To avoid negative
amplitude, the implemented spectral subtraction in its final form is as follows:

|Ŝ(ω)| = max
(
|X(ω)| − η|N̂(ω)| , γ|N̂(ω)|

)
(3)

The value of γ, the fraction of the estimated noise, is set to 0.04, which has
been found to be a reasonable value in [1].
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2.2 Adaptive QBNE

The rationale behind AQBNE is to adapt to the utterances and noise levels
by adjusting the quantile individually for each frequency band. The primary
purpose of the method is to be able to train with low noise utterances (lab.
recordings) and test with high noise utterances (application recordings) without
the typical associated performance degradation.

When training with low noise data the recognizer models will contain a much
more detailed description of the utterance compared to what is possible to ob-
tain by eliminating the noise from a high noise test utterance. Fig. 2 shows two
spectograms of an utterance synchroneously recorded with a headset microphone
(A) and a hands free microphone placed at the rear view mirror (B). In Fig. 2B
a larger part of the information in the speech is below the noise floor compared
to Fig. 2A. These two signals represent typical training and test signals in a
high mismatch scenario. The purpose of introducing AQBNE is two-fold. First,

A. Headset microphone

B. Hands free microphone

Fig. 2. Two spectograms of the same utterance recorded with two different micro-
phones. A. with a headset microphone. B. with a hands free microphone at the rear
view mirror.
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the purpose is to provide a better noise-estimate in the high-noise signals. Sec-
ond, the purpose is to let the signal (A) be more equal to the signal (B) during
training, resulting in a model that does not describe the utterance at a level
of detail that is unobtainable under test. For the second purpose, however, ex-
periments have then to reveal to what extent the increased performance under
mismatched conditions is at the expense of decreased performance under well
matched conditions.

AQBNE is developed by examining quantile plots as shown in Fig. 3. First ob-
serve that frequency bands with high noise contains more energy in the majority
of the utterance than low noise frequency bands. This leads to the assumption
that a smaller q-value is desired for the high noise frequency bands and a higher
q-value is desired for the low noise frequency bands. Statistically a low fixed
q-value corresponds to a low noise estimate for all frequency bands and a higher
fixed q-value to a higher noise estimate. By adapting the q-value to the noise
level of the frequency band the low and high noise utterances will converge to
similar representations when the noise is eliminated, which subsequently should
lead to better ASR performance.
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Fig. 3. Data sorted by amplitude for different frequency bands for a low noise (solid
black) and high noise (dashed black) speech signal. The solid gray curve is the q-
estimation curve, and the dashed gray line is the minimum allowed q-value.
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In contrast to the fixed q-value method in QBNE (represented by a vertical
line in Fig. 1 in subsection 2.1), the q-value in AQBNE is determined by a q-
estimation curve as shown in Fig. 3. The intersection between this curve and
each frequency curve is the noise estimate for the corresponding frequency. The
vertical dashed line in Fig. 3 refers to the minimum desired q-value.

The q-estimation curve is defined as follows:

f(q) = e(qmin−q)τ (4)

where qmin is the minimum allowed q-value and τ is the slope of the curve.
Define q̃ as the q-value associated with the intersection of the q-estimation

curve and the frequency curve, then q̃ is the solution of:

f(q̃) = |X(ω, iq̃I�)| (5)

The noise estimate is then defined by

N̂(ω) = |X(ω, iq̃I�)| (6)

and subsequently used as the noise estimate during spectral subtraction.

2.3 Speech Band Emphasizing Filter Bank

The predominant parametric representation of features in speech is Mel Fre-
quency Cepstrum Coefficients (MFCC), introduced in 1980 by Davis and Mer-
melstein as an improvement to Linear Frequency Cepstrum Coefficients
(LFCC) [2].

The method compresses the spectral information by applying the psycho
acoustic theory of critical bands combined with a mel scale warping of the fre-
quency axis, in order to more closely resemble human perception.

The method is implemented by applying a mel filter bank to the speech signal
consisting of half overlapping triangular filters linearly distributed on the mel
scale:

Hertz2Mel{f} = 2595 log
(

1 +
f

700

)
(7)

The output from each filter is integrated to produce the reduced and warped
spectrum which is then transformed into cepstrum coefficients. Fig. 4 (top) shows
the mel filter bank with 23 triangular filters as specified in the ETSI ES 201 108
standard [3].

While both the mel-scale and critical band assumptions are well founded
theoretically as well as experimentally they do not necessarily translate to robust
ASR. As Fig. 4 (top) reveals the filters in the mel filter bank are concentrated
with maximum resolution at low frequencies.

With the purpose to better focus on the speech information avaliable in the
signal, we will investigate a speech band emphasizing (SBE) filter bank, where
the filter concentration is empirically chosen to be highest at 1500Hz and to
decrease with higher and lower frequencies. To define the distribution using the
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Fig. 4. The mel filter bank compared to the Speech Band Emphasizing filter bank
(SBE). The continuous lines are the normalized derivatives of the mapping functions
of Eq. 7 and 8indicating the concentration of triangular filters (importance functions).

existing framework the mapping function between Hertz and mel is replaced by
a new mapping function between Hertz and the imaginary unit SBE:

Hertz2SBE{f} = 12 000 000f + 4500f2 − f3 (8)

Instead of distributing the triangular filters linearly on the mel scale the filters
are now distributed linearly on the SBE scale, which is defined by Eq. 8. The
resulting SBE filter bank is illustrated in Fig. 4 (bottom).

The mapping function in Eq. 8 is obtained by first defining an importance
function. This function attains values between 0 and 1, where 1 indicates ”most
important” and 0 indicates ”least important”. The importance function of the
SBE scale is defined by the polynomial (depicted as a continuos line in Fig. 4
(bottom)):

i(f) =
−(f − 1500Hz)2

(4000Hz − 1500Hz)2
+ 1 (9)
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The mapping function is the indefinite integral of the importance function
with the arbitrary constant discarded (or set to a convenient value):

Hertz2SBE{f} = I(f) =
∫

i(f)df (10)

Because the unit SBE has no physical meaning or interpretation, any scale
factor can be applied to simplify the expression. In particular Eq. 8 is scaled by
18 750 000 to make the highest order coefficient unity.

3 Experimental Framework

To evaluate the methodology an experimental framework based on the Danish
SpeechDat-Car Digits Database is used, which is part of the Aurora-3 database [4].
The corpus comprises 2457 utterances recorded in a car under different noise con-
ditions, 265 utterances for quiet (motor idling, car stopped), 1513 utterances for
low noise (town traffic or low speed on rough road) and 679 utterances for high
noise (high speed on rough road). Each utterance is recorded synchroneously
by two microphones Close Talking (CT) and Hands Free (HF) using a sample
rate of 16 kHz and a 16 bit quantization. This results in a total of 4914 speech
recordings.

Training and test definitions proposed by the Aurora consortium is used which
divide the test in three parts: Well Match (WM), Medium Mismatch (MM) and
High Mismatch (HM). In WM training and test are performed under all condi-
tions for both microphones. Because of the matched conditions under training
and test the WM scenario does not reveal the frontends ability to adapt to un-
expected noise during test. In MM training is performed at low noise level and
tested at high noise level, both with the HF microphone. MM is primarily a test
of the frontends ability to suppress additive noise. In HM training is performed
at all noise levels with the CT microphone and tested at high noise level with
the HF microphone. HM is primarily a test of independence of microphone type,
placement and distance relative to the speaker.

The speech recognizer used in Aurora is based on whole word HMMs. The
structure of each HMM is a simple left-to-right model 16-state 3-mixture per
state for each digit. The silence model is a 3-state 6-mixture and the short pause
model is a 1-state 6-mixture. The HMM parameters are estimated using Viterbi
training and Baum-Welch re-estimation procedure. To build and manipulate the
HMM’s the Hidden Markov Model Toolkit (HTK) is used [5].

4 Experimental Results

The baseline reference is a 32 bit floating point precision C implementation of
the Aurora standard frontend (WI007) which is supplied with SpeechDat-Car
and fully specified in the ETSI ES 201 108 standard [3].

To enable easy implementation of the various methods an extensible clone
of this frontend has been written in Java using 64 bit floating point precision.
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Table 1. Results with mel filter bank

Frontend WM MM HM Average AI
Aurora Baseline 80.13 51.56 33.61 58.50 -
Aurora Adv. Frontend 93.37 81.49 79.59 85.77 -
QBNE
q=0.40 84.60 66.80 21.72 62.65 3.73
q=0.45 84.19 68.10 35.95 66.50 14.99
q=0.50 83.77 65.23 38.05 65.85 14.40
q=0.55 81.58 63.80 38.63 64.62 12.77
q=0.60 80.46 63.15 40.68 64.46 13.29
Adaptive QBNE
qmin=0.30, τ=10 83.77 64.06 53.68 69.35 25.23
qmin=0.30, τ=15 85.12 67.45 36.32 66.74 15.29
qmin=0.35, τ=10 82.60 65.36 48.46 68.03 21.65
qmin=0.35, τ=15 83.10 66.67 41.22 66.88 17.40
qmin=0.40, τ=10 81.58 64.97 51.95 68.36 23.47
qmin=0.40, τ=15 82.24 65.49 48.54 67.95 21.61
qmin=0.45, τ=10 80.33 65.23 18.84 59.67 -1.61
qmin=0.45, τ=15 81.05 66.02 49.81 67.98 22.32

Table 2. Results with SBE filter bank

Frontend WM MM HM Average AI

SBE baseline 82.04 54.43 31.59 59.76 1.40
SBE + Adv. Frontend N/A N/A N/A - -
QBNE
q=0.40 84.94 67.97 12.88 60.99 -1.88
q=0.45 83.49 71.74 32.21 66.56 14.33
q=0.50 83.75 70.83 46.15 69.83 24.22
q=0.55 81.22 68.49 23.20 62.26 4.29
q=0.60 80.78 65.76 36.82 64.53 12.35
Adaptive QBNE
qmin=0.30, τ=10 81.82 69.14 45.33 68.26 21.49
qmin=0.30, τ=15 83.92 70.57 31.47 66.14 13.20
qmin=0.35, τ=10 82.00 66.93 48.79 68.42 22.66
qmin=0.35, τ=15 81.84 69.66 36.65 66.28 15.40
qmin=0.40, τ=10 81.22 62.37 60.63 69.48 27.98
qmin=0.40, τ=15 82.69 68.36 49.81 69.45 24.73
qmin=0.45, τ=10 79.27 66.02 42.86 65.53 16.27
qmin=0.45, τ=15 81.84 67.45 52.90 69.57 25.99

Average is weighted 0.4WM+0.35MM+0.25HM. AI is the weighted average of the
improvements for each of the three test conditions compared to baseline. Best accuracy
in each category is in boldface.
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This frontend is the baseline for all relative improvement calculations, and will
be denoted baseline. This frontend has also been implemented with the SBE
filter bank in place of the mel filter bank. It is denoted SBE baseline. All tested
methods are implemented as extensions to these two frontends.

The results are reported in table 1 for methods implemented on the baseline
frontend, and in table 2 for methods implemented on the SBE baseline frontend.
Table 1 also shows the equivalent results obtained using the Aurora Advanced
Frontend as reported in [6].

The first three columns are the accuracies obtained for each of the three test
conditions. The averages are calculated as a weighting of these three results with
the equation 0.4WM+0.35MM+0.25HM. The rightmost column is a weighted
average of the improvement in each of the three results compared to baseline,
using the same weighting. For each method the best accuracies are typeset in
boldface.

The SBE filter bank performs slightly better than the mel filter bank. QBNE
shows even greater improvements, especially with the SBE filter bank. Adaptive
QBNE which sought to improve high mismatch performance succeeds ind this
regard, yielding even better results than QBNE, again especially in combination
with the SBE filter bank.

Fig. 5 shows a graphical approach of method comparison. For each method and
test condition, the best score is selected, and the improvement to baseline is calcu-
lated. The white columns are methods implemented on baseline (mel filter bank)
and grey columns are methods implemented on SBE baseline (SBE filter bank).

AQBNE is a clear advantage over QBNE in the high mismatch scenario with
an 80.39% improvement compared to a 21.04% improvement for QBNE with mel
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Fig. 5. Comparison of methods by improvement to baseline. For each method, the best
result for each of the three test conditions is selected.
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filter bank. It achieves this without significantly compromising the performance
in WM and MM, reflected in an average improvement of 27.98% compared to
14.99% for QBNE with mel filter bank. Given the very small computational
impact of the method, compared to QBNE, it is a relevant improvement in all
ASR applications.

Furthermore it is evident that the SBE filter bank in general improves recog-
nition performance, and especially combines well with both QBNE and AQBNE.

Finally, it is observed that for MFCC the Aurora Advanced Frontend achieves
superior performance compared to AQBNE. So far the SBE frontend has not
been integrated with the Aurora Advanced Frontend in order to compare the
two feature representations.

5 Conclusion

In this paper the task of eliminating unwanted noise from a speech signal
recorded in a noisy car environment has been investigated. Two methods have
been considered seperately and in combination.

The first method is Quantile Based Noise Estimation (QBNE), which esti-
mates the noise during both speech and non-speech sections. Adaptive QBNE
(AQBNE) is suggested and concluded to improve the standard QBNE. In ad-
dition an empirically chosen Speech Band Emphasizing filter bank (SBE) is
suggested as an alternative to the standard mel filter bank.

The experiments conducted on the Danish SpeechDat-Car database show that
SBE generally show an improvement over the standard mel filter bank (Aurora
baseline), achieving significant increases in recognition performance when com-
bined with both QBNE and AQBNE.

Specifically AQBNE with SBE achieved remarkable results under highly mis-
matched training and test conditions with an 80.39% improvement compared to
a 21.04% improvement for QBNE with mel filter bank. The average improvement
for SBE with AQBNE was as high as 27.98% compared to 14.99% for QBNE
with mel filter bank.

Though for all test conditions, the Aurora Advanced Frontend achieves supe-
rior performance compared to AQBNE, the AQBNE is still a relevant method
to consider for small foot print applications. In addition, it is relevant to investi-
gate the integration of the AQBNE and SBE methods into the Aurora Advanced
Frontend.
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Abstract. Multilingual speech recognition system is required for tasks
that use several languages in one speech recognition application. In this
paper, we propose an approach for multilingual speech recognition by
spotting consonant-vowel (CV) units. The important features of spotting
approach are that there is no need for automatic segmentation of speech
and it is not necessary to use models for higher level units to recognise
the CV units. The main issues in spotting multilingual CV units are the
location of anchor points and labeling the regions around these anchor
points using suitable classifiers. The vowel onset points (VOPs) have been
used as anchor points. The distribution capturing ability of autoassocia-
tive neural network (AANN) models is explored for detection of VOPs
in continuous speech. We explore classification models such as support
vector machines (SVMs) which are capable of discriminating confusable
classes of CV units and generalisation from limited amount of training
data. The data for similar CV units across languages are shared to train
the classifiers for recognition of CV units of speech in multiple languages.
We study the spotting approach for recognition of a large number of CV
units in the broadcast news corpus of three Indian languages.

1 Introduction

The main objective of continuous speech recognition system is to provide an ef-
ficient and accurate mechanism to transcribe human speech into text. Typically,
continuous speech recognition is performed in the following two steps: (1) speech
signal to symbol (phonetic) transformation, and (2) symbol to text conversion.
Two approaches are commonly used for subword unit based continuous speech
recognition. The first approach is based on segmentation and labelling [1]. In this
approach, the continuous speech signal is segmented into subword unit regions
and a label is assigned to each segment using a subword unit classifier. The main
limitation of this approach is the difficulty in automatic segmentation of continu-
ous speech into subword unit regions of varying durations. Because of imprecise
articulation and coarticulation effects, the segment boundaries are manifested
poorly. The second approach to speech recognition is based on building word
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models as compositions of subword unit models, and recognising sentences by
performing word-level matching and sentence level matching using word models
and language models respectively [1]. The focus of this approach is on recog-
nising higher level units of speech such as words and sentences rather than on
recognising subword units.

In this paper, we propose an approach for multilingual speech recognition by
spotting subword units. Specifically, we consider a method for spotting subword
units using vowel onset points (VOPs) as anchor points and labelling the regions
around these VOPs using suitable classifiers. The important features of spotting
approach are that there is no need for automatic segmentation of speech and it is
not necessary to use models for higher level units to recognise the subword units.
The symbols that capture the phonetic variations of sounds are suitable units for
signal to symbol transformation. Pronunciation variation is more systematic at
the level of syllables compared to the phoneme level. Syllable-like units such as
consonant-vowel (CV) units are important information-bearing sound units from
production and perception point of view [2]. Therefore, we consider CV units of
speech as the basic subword units for speech recognition. In Indian languages,
the CV units occur with high frequency.

The distribution capturing ability of autoassociative neural network (AANN)
models is explored for detection of VOPs in continuous speech [3]. An important
issue for the development of a suitable classification system for the recognition
of CV units in Indian languages is the large number of these units. Combination
of more than 30 consonants and 10 vowels of a language result in a set of about
300 CV units. Further, there are many regional languages across the country.
Difficulties in the development of multilingual speech recognition systems are
due to the presence of several new classes, degree of overlapping of classes and
frequency of occurrence of a given class in different languages. The difficulties
in designing a multilingual system are also due to variability among the data
set, amount of training data and large number of CV classes. Also, many of the
CV units have similar acoustic features. Additionally, the number of examples
available in a corpus is not the same for all the units. There may be many units
for which only a small number of examples are available. We consider a data
sharing approach for development of classification system by combining same
type of CV classes across the Indian languages [4]. We consider support vector
machine (SVM) based classifiers due to their ability of generalization from lim-
ited training data and also due to their inherent discriminative learning [5]. The
variability among the data set and more number of classes in multiple languages
has less effect on the recognition performance when SVMs are used for classifi-
cation [4]. However, the application of SVMs to speech recognition problems has
been limited to smaller vocabulary tasks due to computational complexity. To
reduce the computational complexity, we propose nonlinear compression of large
dimensional input pattern vectors using the dimension reduction capability of
autoassociative neural network models [6] [7]. We demonstrate the CV spotting
based approach to continuous speech recognition for sentences in multiple Indian
languages.
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The paper is organised as follows: In Section 2, we discuss the issues in spotting
CV units. The description of speech corpus used in the studies is given in Section
3. Studies on detection of VOPs in continuous speech utterances are described
in Section 4. In Section 5, we present the studies on recognition of multilingual
CV units. The system for spotting multilingual CV units in continuous speech is
described in Section 6. In this section the spotting approach is illustrated with an
example. Studies on recognition of CV units by processing the segments around
the hypothesised VOPs in continuous speech utterances are also presented in
this section.

2 Issues in Spotting Multilingual CV Units

Strategies for spotting subword units in continuous speech have been based on
training the classifiers to recognise only the segments of the continuous speech
signal belonging to subword units and reject all other segments. The models
thus trained to classify or reject are then used to scan the speech signal contin-
uously and hypothesise the presence or absence of the corresponding subword
units. This strategy is similar to the keyword spotting approaches [8]. The main
limitation of this strategy based on scanning is that a large number of spuri-
ous hypotheses are given by the spotting system [9]. For spotting CV units in
continuous speech, we consider an approach based on detection of VOPs and
labelling the segments around the VOPs using SVM based CV classifier [4] [10].
The main issues in spotting CV units in the proposed approach are development
of a method for detection of VOPs with good accuracy and development of an
SVM based classifier capable of discriminating large number of CV classes.

2.1 Detection of Anchor Points

Figure 1 shows the significant events in the production of a typical CV unit.
Utterances of CV units consists of all or a subset of the following significant
speech production events: Closure, burst, aspiration, transition and vowel [11].
The vowel onset point (VOP) is the instant at which the consonant part ends
and the vowel part begins in a CV utterance [12]. It is obvious that all the
CV units have a distinct VOP in their production [11] [13]. Because every CV
utterance has a VOP, the VOPs can be used as anchor points for CV spotting.
This approach requires detection of VOPs in continuous speech with a good
accuracy. The VOPs of all CV segments in a continuous speech utterance should
be detected with minimum deviation. Since labelling will be done only for the
segments around the VOPs detected, the effect of any VOP not being detected
is that the CV segment around that VOP will not be recognised. Therefore it
is important to minimise the number of missing errors by the VOP detection
method. The effect of spurious VOPs being detected is that segments around
them will also be given to the CV classifier for labelling.

In the method proposed in [13], a multilayer feedforward neural network
(MLFFNN) model is trained to detect the VOPs by using the trends in the
speech signal parameters at the VOPs. The input layer of the network contains
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Fig. 1. Significant events in the production of the CV unit /kha/ with VOP at sample
number 3549

9 nodes and the output layer has 3 nodes. One of the output nodes is labeled
as VOP node to indicate the presence of the VOPs, and the other two nodes
are labeled as pre-VOP and post-VOP to indicate the absence of VOPs. The
signal energy, residual energy and spectral flatness parameters extracted from
two frames around the VOP and the ratio of the parameters in the two frames
are used to form an input vector. Two other such vectors are also extracted from
each CV utterance. One vector is derived from two frames in the region before
the VOP for representing the pre-VOP region. Another vector is derived from
two frames in the region after the VOP for representing the post-VOP region.
An MLFFNN classifier is trained using the vectors extracted from the three dif-
ferent regions of each utterance. For detection of VOP in a CV utterance using
the network trained as above, a parameter vector extracted at every 10 msec
is given as input to the network. The parameter vector is extracted from two
frames, with one frame starting at the point under consideration and another
frame starting 20 msec after this point. Thus the speech signal of a CV utterance
is scanned by the network to detect the VOP. The point at which the output
for the VOP node of the network is maximum is hypothesised as the VOP of
the CV utterance. This method requires a large number of training examples to
capture the trends in speech signal parameters at the VOP.

In another method for detection of VOPs, we consider AANN models [3]. A
five layer AANN model, shown in Fig. 2, with compression layer in the middle has
important properties suitable for distribution capturing, data compression, and
extraction of higher order correlation tasks [14] [7]. We explore the distribution
capturing of feature vectors by the AANN models to hypothesise the consonant
and vowel regions and then detect VOPs in continuous speech. In Section 4, we
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describe the method used for VOP detection in continuous speech using AANN
models.

2.2 Classifier for Recognition of Multilingual CV Segments

Hidden Markov models (HMM) are used in most speech recognition systems.
These models use maximum likelihood (ML) approach for training. The incre-
mental model optimization approach in ML framework simplifies the training
process, but loses discriminative information in the process [15]. This is due to the
fact that training data corresponding to other models are not considered during
the optimization of parameters for a given model. Training by optimization over
the entire pattern space gives better discriminative power to the models since
the models now learn patterns that need to be discriminated. Multilayer feed-
forward neural network (MLFFNN) models and support vector machine (SVM)
models are good at this type of learning since the training involves optimiza-
tion over entire pattern space [5]. The MLFFNN models have been shown to
be suitable for pattern recognition tasks because of their ability to form com-
plex decision surfaces. In order to obtain a better classification performance it is
necessary to tune the design parameters such as structure of network, number
of epochs, learning rate parameter and momentum. For better generalization,
it is necessary to have large amount of training data. But arriving at optimal
parameters for complex recognition problem using MLFFNN models is a diffi-
cult proportion. SVM models have attained prominence due to their inherent
discriminative learning and generalization capabilities from the limited training
data. These models learn the boundary regions between patterns belonging to
two classes by mapping the input patterns into a higher dimensional space, and
seeking a separating hyperplane so as to maximize its distance from the closest
training examples. In the next section, we describe the speech corpus used in
the studies.

3 Speech Data and Representation

Speech corpus consisting of recording of television broadcast news bulletins for
three Indian languages namely, Tamil, Telugu and Hindi is used in our studies.
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Table 1. Description of broadcast news speech corpus used in studies

Description Language
Tamil Telugu Hindi Multilingual

Number of bulletins 33 20 19 72
News readers (Male:Female) (10:23) (11:9) (6:13) (27:45)
Number of bulletins used for training (Male:Female) 27 (8:19) 16 (9:7) 16 (5:11) 59 (22:37)
Number of bulletins used for testing (Male:Female) 6 (2:4) 4 (2:2) 3 (1:2) 13 (5:8)
Number of CVs (Cs:Vs) 324 (27:12) 432 (36:12) 360 (36:10) 432 (36:12)
Number of CV units used for the study 123 138 103 196
Number of CV segments in the training data 44,612 43,491 22,109 1,10,212
Number of CV segments used for training which are 43,541 41,725 20,236 1,05,502
covered by number of CV units used for the study
Percentage of number of CV segments used 97.53% 95.93% 91.52% 95.72%
Range of frequency of occurrence for 39 to 1,633 40 to 2,037 40 to 1,264 40 to 2,826
the units in the training data
Number of CV segments in the test data covered by 10,293 11,347 4,137 25,777
number of CV units used for the study
Speech sentences considered for testing 1,416 1,348 630 3,094

Each bulletin (session) contains 10 to 15 minutes of speech from a single (male
or female) speaker. The CV utterances in the corpus are excised and labeled
manually. A brief description of the speech corpus used in our studies is given in
Table 1. Interpretation of the contents of the table for Tamil language data is as
follows: On the whole, 33 bulletins, read by 10 male and 23 female speakers are
collected. The data in 27 bulletins read by 8 male speakers and 19 female speakers
is used for training. The data in the remaining 6 bulletins by 2 male speakers
and 4 female speakers is used for testing. There are 27 consonants and 12 vowels
leading to a total of 324 CV units. The CV units have different frequencies of
occurrence in the speech corpus. The CV units that occur at least 50 times in
the corpus are considered in our studies. This results in a set of 123 CV classes
for Tamil language. Out of a total of 44,612 CV segments in the training data,
43,541 segments (i.e., 97.53%) belong to these 123 CV classes. The frequency of
occurrence for these classes in the training data varies from 39 to 1,633. The test
data includes about 10,293 CV segments belonging to the 123 CV classes. There
are 1,416 continuous speech sentences available for testing. A similar description
for the speech corpora of Telugu, Hindi and multiple languages is also given in
Table 1.

Short-time analysis of the speech signal of the CV utterances is performed
using a frame size of 20 msec duration with a shift of 5 msec. Each frame is repre-
sented by a parametric vector consisting of 12 mel-frequency cepstral coefficients
(MFCC), energy, their first order derivatives and their second order derivatives
[16] [17]. The dimension of the parametric vector for each frame is 39.

Models based on SVMs are suitable for classification of fixed dimensional pat-
terns. However, durations of CV utterances vary not only for different classes,
but also for a particular CV class. It is necessary to develop a method for rep-
resenting the CV utterances by fixed dimensional patterns. It is useful to iden-
tify the region before the VOP as corresponding to the manner of articulation
(MOA), the transition region after VOP to the place of articulation (POA), and
the remaining portion to the steady vowel (V). Generally it is difficult to isolate
these regions precisely. Moreover, the acoustic characteristics of each region will
influence the other regions. Thus, all the three regions need to be represented



Spotting Multilingual CV Units of Speech Using Neural Network Models 309

together as a single pattern vector [11] [18]. Since the vowel region is prominent
in the signal due to its large amplitude characteristics, and also due to its peri-
odic excitation property, it is easy to locate this event compared to other speech
production events [13]. The information necessary for classification of CV utter-
ances can be captured by processing a portion of the CV segment containing
parts of the closure and vowel region, and all of the burst, aspiration, and tran-
sition regions. The closure, burst and aspiration regions are present before the
VOP. The transition and vowel regions are present after the VOP. To capture
the acoustic characteristics of the CV units, it is necessary to represent each of
these units as a sequence of frames, and extract the spectral information corre-
sponding to each frame. A segment of typically 50 to 100 msec duration around
the VOP contains most of the information necessary for classification of the CV
utterances. This segment can be processed to derive a fixed dimensional pattern,
automatically from a varying duration segment of a CV unit [13]. Portions of a
CV utterance in the beginning and the end are not included in the fixed dura-
tion segment, since they may be affected by the coarticulation effects. From the
analysis of broadcast news data it is observed that, the average minimum dura-
tion of segments for a CV class is 80 msec. Therefore a 65 msec segment around
the VOP is used to represent each CV segment. Once the VOP is detected, five
overlapping frames are considered to the left of VOP and five to the right. Thus
each CV segment is represented by a 390-dimensional pattern vector. In the next
section, we describe the method used for VOP detection in continuous speech
using AANN models.

4 System for Detection of VOPs in Continuous Speech
Utterances

A five layer AANN model to capture distribution of feature vectors is shown
in Fig. 2. In this model the input and output layers have the same number of
units, and all these units are linear. For each CV class, two AANN models (one
corresponding to the consonant region and the other to the vowel region) are
developed. For training the AANN model corresponding to the consonant region,
the fifth frame to the left of the manually marked VOP frame is selected from
each of the training examples. For training the AANN model corresponding to
the vowel region we consider the VOP frame and the fourth frame to the right
of VOP frame. The model corresponding to a region of a CV class captures the
distribution of feature vectors. The distribution is expected to be different for
the consonant and vowel regions of a class. The distribution of feature vectors of
a region is captured using a network structure 39L 60N 4N 60N 39L, where L
refers to linear units and N refers to nonlinear units. The integer value indicates
the number of units in that particular layer. The activation function for the
nonlinear units is a hyperbolic tangent function. The network is trained using
error backpropagation algorithm in pattern mode for 1000 epochs.

For detection of VOPs in continuous speech, each frame is given as input to
the pairs of AANN models of all the CV classes. From the evidence available
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Fig. 3. Block diagram of the system for detection of VOPs in continuous speech. Ec(k)
and Ev(k) are the evidence obtained from consonant and vowel region models of kth class
respectively. H(k) is hypothesised region of the current frame by the models of class k.

in the outputs of the models of a class, the hypothesised region of the frame is
obtained as the region of the model with higher evidence. The hypotheses from
the models of different CV classes are used to assign the frame to the consonant
or vowel region. In this way we obtain a sequence of region labels for the sequence
of frames of the continuous speech utterance. VOP frames are identified as those
frames, at which there is a change of labels from consonant to vowel. The block
diagram of the system for detection of VOPs in continuous speech utterances is
shown in Fig. 3.

We study the performance of the VOP detection method using AANN mod-
els. For comparison we consider the method based on MLFFNN model described
in Section 2.1 [13]. The performance is measured in terms of the number of
matching, missing and spurious hypotheses of VOPs. The VOPs detected with
a deviation upto 25 msec are considered as the matching hypotheses. When the
deviation of hypothesised VOP is more than 25 msec or there is no hypothe-
sised VOP around an actual VOP, the VOPs of such segments are considered
as the missing hypotheses. When there are multiple hypotheses within 25 msec
around an actual VOP or the hypothesised VOP does not fall in this range,
such hypotheses are considered as spurious ones. For testing we consider the
utterances of 120, 120 and 60 sentences selected at random from 1416, 1348,
and 630 sentences for Tamil, Telugu and Hindi languages, respectively. These
300 sentences consist of a total number of 3924 syllable-like units corresponding
to 1580, 1648 and 696 actual VOPs from sentences of Tamil, Telugu and Hindi
languages, respectively. These VOPs have been marked manually. For each utter-
ance the hypothesised VOPs are determined by the MLFFNN and AANN based
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Table 2. Comparison of the average performance of different methods for detection of
VOPs in continuous speech. The performance is given as a percentage of total number
of VOPs in the continuous speech utterances, for the matching, missing and spurious
hypotheses.

Method VOP detection performance (in %)
Matching hypotheses Missing hypotheses Spurious hypotheses

MLFFNN 68.80 31.19 33.10
AANN 68.62 31.37 6.21

methods. The average performance of different VOP detection methods for the
data of three languages is given in Table 2. It is seen from Table 2 that the
performance of both the methods is nearly the same for matching case. How-
ever, the VOP detection method based on AANN gives significantly less number
of spurious VOPs. Many of the missing VOPs in case of AANN based method
are observed to be for CV units whose consonants are semivowels, fricatives
and nasals.

5 Classification System for Recognition of Multilingual
CV Units

In this section, we describe a multilingual system in which data sharing approach
is considered for recognition of frequently occurring CV units of three Indian lan-
guages. This approach is motivated by the commonality among CV classes across
Indian languages. The similar CV classes from different languages are derived
from Indian language TRANSliteration (ITRANS) code [19]. The ITRANS code
was chosen, as it uses the same symbol across the Indian languages to represent
a given sound. A summary of the description of the database used for the de-
velopment of multilingual CV recognition system is given in the last column of
Table 1. The number of CV classes with at least 50 examples in the data set is
123, 138, and 103 for Tamil, Telugu and Hindi respectively, leading to a total of
364 classes. Out of these 364 classes, 27, 25, and 28 classes are unique to Tamil,
Telugu and Hindi, respectively. The number of CV classes common to any two
languages is 64. There are 52 CV classes common to all the three languages.
The union of the set of CV classes in three languages gives a set of 196 CV
classes for multilingual data. The number of segments available for training the
models of these classes is 1,05,502, and the number of segments in the test data
set is 25,777. Thus sharing of data across languages leads to availability of large
training data sets, but variability in the data of a class is also increased.

As explained in Section 3, each CV utterance is represented by a pattern vec-
tor of dimension 390. To reduce computational complexity, we propose nonlinear
compression of the large dimensional input pattern vectors using AANN models
[6][7]. The block diagram of the system for recognition of multilingual CV units is
shown in Fig. 4. It consists of three stages. In the first stage, the 390-dimensional
input pattern vector x is compressed to a 60-dimensional vector, using an AANN
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with structure 390L 585N 60N 585N 390L. These compressed pattern vectors
are used to train the SVM classifier. One-against-the-rest approach is used for
decomposition of the learning problem in n-class pattern recognition into sev-
eral two-class learning problems [20]. SVM models are generated by assigning
one model to each class, and training this model by considering data from all
the three languages. An SVM is constructed for each class by discriminating
that class against the remaining (n − 1) classes. The recognition system based
on this approach consists of n number of SVMs. The set of training examples
{{(xi, k)}Nk

i=1}n
k=1 consists of Nk number of examples belonging to kth class,

where the class label k ∈ {1, 2, . . . , n}. All the training examples are used to
construct an SVM for a class. The SVM for the class k is constructed using a set
of training examples and their desired outputs, {{(xi, yi)}Nk

i=1}n
k=1. The examples

with yi = +1 are called positive examples, and those with yi = −1 are called
negative examples. An optimal hyperplane is constructed to separate positive
examples from negative examples. The separating hyperplane (margin) is cho-
sen in such a way as to maximize its distance from the closest training examples
of different classes [5]. The support vectors are those data points that lie closest
to the decision surface, and therefore are the most difficult to classify. For a
given pattern x around a VOP, the evidence Dk(x) is obtained from each of the
SVMs. In the decision logic, the class label k associated with the SVM that gives
maximum evidence is hypothesised as the class of the pattern x representing the
CV segment around VOP.

The recognition system is developed using the SVM models trained with com-
pressed pattern vectors. The recognition system is also developed using the SVM
models trained with 390-dimensional uncompressed vectors. The recognition per-
formance of the SVM models trained with 390-dimensional uncompressed vec-
tors and the models trained with 60-dimensional compressed vectors is given in
Table 3. In comparison with uncompressed case, the classification performance
is nearly the same for reduced dimension. Thus it is possible to compress the



Spotting Multilingual CV Units of Speech Using Neural Network Models 313

Table 3. Classification performance of CV recognition systems using compressed and
uncompressed pattern vectors in multiple languages

Language Classification performance (in %)
Compressed Uncompressed

Multilingual 45.31 45.10

Table 4. Comparison of the k-best classification performance for multilingual CV
recognition systems

System k−best classification performance (in %)
k=1 k=2 k=3 k=4 k=5

HMM 41.32 47.46 50.80 52.91 54.57
SVM 45.31 57.62 64.00 68.08 71.03

390-dimensional pattern vectors to 60-dimensional vectors without affecting the
classification performance.

The studies in this section show that it is possible to compress large di-
mensional pattern vectors to reduced dimensional vectors without affecting the
classification performance of the SVM based classifiers. The compression also
leads to a significant reduction in the computational complexity of the kernel
operations in the SVM models.

The k-best recognition performance of the multilingual system for 196 CV
classes is given in Table 4. For comparison, the performance of the hidden Markov
model (HMM) based systems is also obtained. A CV segment is analyzed frame
by frame, with a frame size of 20 msec and a frame shift of 5 msec. Each frame is
represented by a parametric vector consisting of 12 MFCC coefficients, energy,
their first order derivatives, and their second order derivatives. In this case, the
dimension of each frame is 39. A 5-state, left-to-right, continuous density HMM
using multiple mixtures with diagonal covariance matrix is trained for each CV
class. The number of mixtures is 2 for the CV classes with a frequency of occur-
rence less than 100 in the training data. The number of mixtures is 4 for those
CV classes whose frequency of occurrence lies between 100 and 500. For other
classes, the number of mixtures is 8. All the frames of a CV segment are used in
training and testing the HMM based system. The recognition performance of CV
segments for the HMM based system is also given in Table 4. It is seen from Ta-
ble 4 that the SVM based multilingual system performs significantly better than
that based on HMMs. The SVMs use discriminative information in the process of
learning, whereas HMM models are trained using the maximum likelihood (ML)
methods. The ML framework does not use discriminative information. Due to
this fact, there is a significant difference (71.03% vs 54.57%) in the 5-best clas-
sification performance of SVM and HMM based systems. In the next section,
we describe CV recognition system using SVM models for classifying the CV
segments around hypothesised VOPs.
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6 Spotting CV Units in Continuous Speech

The block diagram of the integrated system for spotting multilingual CV units
in continuous speech utterances is given in Fig. 5. The speech signal is given
as input to the VOP detection module to locate VOPs in it. The short-time
analysis is performed on 65 msec segment around each of the hypothesised VOPs
to extract 390-dimensional MFCC based pattern vectors. This pattern vector
is compressed using an AANN model. The compressed pattern vector is given
to the multilingual CV recognition system to hypothesise the CV class of the
current segment. Thus a sequence of hypothesised CV units is obtained for a
given speech utterance.

For illustration, we consider a Tamil language continuous speech utterance
/kArgil pahudiyilirundu UDuruvalkArarhaL/ consisting of 16 syllables (kAr, gil,
pa, hu, di, yi, li, run, du, U, Du, ru, val, kA, rar, haL) whose waveform is shown
in Fig. 6(a). The hypothesised region labels obtained using the VOP detection
system are shown in Fig. 6(b). The label C corresponds to the consonant region
and V to the vowel region. Using the procedure described in Section 4, the VOPs
are detected. The hypothesised locations in terms of sample numbers (320, 720,
2440, 3760, 4800, 5560, 6200, 7480, 9480, 11120, 12080, 13240, 14560, 16960) are
shown in Fig. 6(c). For comparison we consider manually marked VOP locations
(280, 2360, 3800, 4920, 5480, 6320, 7400, 8200, 9440, 11160, 12080, 12520,
13200, 14520, 15840, 16960) shown in Fig. 6(d).

It is seen that there are three VOPs (their sample numbers are indicated in
boldface) that have been missed around the locations 8200, 12520, and 15840
corresponding to the syllables /ru/, /ru/, and /ra/, respectively. The VOP at
location 720 is hypothesised as spurious VOP. For the segments around the
hypothesised VOPs, the five CV class alternatives given by the multilingual CV
recognition system (developed in Section 5) are given in Table 5. It is seen that
for most of the segments the actual CV class of the segment is present among
the alternatives. The correctly identified classes in the CV lattice are written
in boldfaces. The segment around the hypothesised location 11120 has been
hypothesised as /mu/, where as the actual syllable is /U/. This belongs to the
case in which the vowel is in the initial portion of a word. Recognition of only

Continuous Speech 
Hypothesised VOPs Compression of Pattern Vectors

Compressed
Signal

System

MultilingualPattern Vectors
CV Recognition

Fixed Dimension

Sequence of 
Hypothesised
CV UnitsVOP Detection

System Pattern Extraction Pattern Vectors

Fig. 5. Block diagram of the multilingual continuous speech recognition system based
on spotting CV units
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Fig. 6. Plots of the (a) Waveform of the speech signal, (b) Hypothesised region labels
for each frame, (c) Hypothesised VOPs, and (d) Manually marked (actual) VOPs for
the Tamil language sentence /kArgil pahudiyilirundu UDuruvalkArarhaL/

Table 5. The classes hypothesised by the multilingual CV classifier for a continuous
speech utterance /kArgil pahudiyilirundu UDuruvalkArarhaL/. The alternative classes
for the segment around a hypothesised VOP are given in a row of the lattice. The entries
in the last column represent position of actual CV in hypothesised alternatives.

VOP locations (in sample numbers) Lattice of hypothesised CVs Actual Position
Actual Hypothesised 1 2 3 4 5 syllable

280 320 pA kA vA ha shu kAr 2
— 720 kA pA hA na pa — —

2360 2440 gi yE hi ya yai gil 1
3800 3760 hA pA pa sA sa pa 3
4920 4800 hu gu mu vu pu hu 1
5480 5560 bI vi Ti Ni dI di 5
6320 6200 yi lA li zi tI yi 1
7400 7480 li ni ru ja lai li 1
8200 — VOP Missed run —
9440 9480 du Ru ja dE rA du 1
11160 11120 mu kU va pO vA U 1
12080 12080 Du da dA nA tu Du 1
12520 — VOP Missed ru —
13200 13240 va da kai hi vA val 1
14520 14560 kA ka ga cha zA kA 1
15840 — VOP Missed rar —
16960 16960 ha kA ka ga sa haL 1

vowels is not addressed in the current studies. All the classes hypothesised by
the recognition system are of type CV.

We study the performance of the spotting approach for recognition of CV
units for a large number of sentences in three Indian languages. For testing we
consider 300 sentences from different languages consisting of a total number of
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3924 syllable-like units corresponding to 1580, 1648 and 696 actual VOPs from
sentences of Tamil, Telugu and Hindi languages, respectively. These VOPs have
been marked manually. For each sentence the hypothesised VOPs are determined
by the AANN method explained in Section 4. The VOPs that are detected with a
deviation upto 25 msec are about 68.62% and there are about 6.21% of spurious
VOPs. About 74.63% of the CV segments have been correctly recognised in five
alternatives by spotting the CV segments around the detected VOPs.

7 Summary and Conclusions

In this paper, we have addressed the issues in spotting based approach for recog-
nition of consonant-vowel (CV) units in multiple languages. The approach is
based on using the vowel onset points (VOPs) as anchor points and then classi-
fying the segments around VOPs using a classifier. Autoassociative neural net-
work (AANN) models are used for detecting VOPs in continuous speech. The
methods for minimising the number of missing VOPs have to be explored. We
use support vector machine (SVM) based classifier for recognition of CV seg-
ments around the hypothesised VOPs. To reduce the computational complexity
of kernel operations in the SVM models, we perform nonlinear compression us-
ing AANN models for compression of pattern vectors. The results show that it
is possible to compress the 390-dimensional pattern vectors to 60-dimensional
vectors without affecting the classification performance. We proposed a data
sharing approach for the development of multilingual CV recognition system.
Though the variability among the data of a class is more and the number of CV
classes is larger for the multilingual system, it has less effect on the recognition
performance when SVMs are used for classification. However, classification per-
formance of the hidden Markov model (HMM) based system is affected more by
the large number of classes. The hypothesised CV sequence can be processed to
perform word-level matching and sentence-level matching to recognise complete
sentences.
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Abstract. In this paper, new Wiener filtering based binaural sub-band schemes 
are proposed for adaptive speech-enhancement. The proposed architectures 
combine a Multi-Microphone Sub-band Adaptive (MMSBA) system with 
 Wiener filtering in order to further reduce the in-coherent noise components re-
sulting from application of conventional MMSBA noise cancellers. A human 
cochlear model resulting in a non-linear distribution of the sub-band filters is 
also employed in the developed schemes. Preliminary comparative results 
achieved in simulation experiments using anechoic speech corrupted with real 
automobile noise show that the proposed structures are capable of significantly 
outperforming the conventional MMSBA scheme without Wiener filtering. 

1   Introduction 

The goal of speech enhancement systems is either to improve the perceived quality of 
the speech, or to increase its intelligibility. Classical methods based on full-band multi-
microphone noise cancellation  implementations which attempt to model acoustic 
path transfer functions can produce excellent results in anechoic environments with 
localized sound radiators [1], however performance deteriorates in reverberant envi-
ronments. Adaptive sub-band processing has been found to overcome these limita-
tions [2] in general time-varying noise fields. However the type of processing for each 
sub-band must take effective account of the characteristics of the coherence between 
noise signals from multiple sensors. Several experiments have shown that noise co-
herence can vary with frequency, in addition to the environment under test and the 
relative locations of microphones. The above evidence implies that processing appro-
priate in one sub-band, may not be so in another, hence supporting the idea of involv-
ing the use of diverse processing in frequency bands, with the required sub-band 
processing being identified from features of the sub-band signals from the multiple 
sensors. Dabis et al. [1] used closely spaced microphones in a full-band adaptive noise 
cancellation scheme involving the identification of a differential acoustic path transfer 
function during a noise only period in intermittent speech. A Multi-Microphone Sub-
Band Adaptive (MMSBA) speech enhancement system has been described  which ex-
tends this method by applying it within a set of linearly spaced sub-bands provided by 
a filter-bank [2]-[4]. Nevertheless, it must be noted that the MMSBA scheme assumes 
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noisy speech input to both (or all) system sensors, in contrast to the practically restric-
tive ‘classical’ full-band speech enhancement schemes,  where speech signal occurs 
only at the primary input sensor [1]. This makes the MMSBA solution more practi-
cally realizable. However, a proper method for detecting noise-only periods is  
assumed available within the MMSBA scheme. In this paper, the novel use of Wiener 
filtering (WF) within a binaural MMSBA scheme is investigated, in order to more ef-
fectively deal with residual incoherent noise components that may result from the  
application of conventional MMSBA schemes. This work originally extends that re-
cently reported in [5] where a sub-band adaptive noise cancellation scheme utilizing 
WF was developed for the monaural case. Performance of the proposed binaural WF 
based approach is compared with the conventional MMSBA scheme (without WF) 
quantitatively and qualitatively using informal subjective listening tests, for the case 
of a real speech signal corrupted with simulated noise. 

2   MMSBA Schemes Employing WF 

Two or more relatively closely spaced microphones may be used in an adaptive noise 
cancellation scheme [1], [3] to identify a differential acoustic path transfer function 
during a noise only period in intermittent speech. The extension of this work, termed 
the Multi-Microphone sub-band Adaptive (MMSBA) speech enhancement system, 
applies the method within a set of sub-bands provided by a filter bank as shown in 
Figure 1a). The filter bank can be implemented using various orthogonal transforms 
or by a parallel filter bank approach. In this work, the sub-bands are distributed non-
linearly according to a cochlear distribution, as in humans, following the Greenwood 
[6] model, in which the spacing of the sub-band filters is given by: 

( ) (10 ).axF x A k= −  (1) 

where x is the proportional distance from 0 to 1 along the cochlear membrane and 
F(x) are the upper and lower cut-off frequencies for each filter obtained by the limit-
ing value of x. For the human cochlea, values of A=165.4, a=2.1 and k=0.88 are rec-
ommended and chosen here. The conventional MMSBA approach considerably im-
proves the mean squared error (MSE) convergence rate of an adaptive multi-band 
LMS filter compared to  both the conventional  wideband  time-domain and  fre-
quency domain LMS filters, as shown in [3][4]. It is assumed in this work that the 
speaker is close enough to the microphones so that room acoustic effects on the 
speech are insignificant, that the noise signal at the microphones may be modelled as 
a point source modified by two different acoustic path transfer functions, and that an 
effective voice activity detector (VAD) is available. 

In the proposed MMSBA architecture, Wiener filtering (WF) operation has been 
applied in two different ways: at the output of each sub-band adaptive noise canceller 
as shown in Fig.1a, and at the global output of the original MMSBA scheme as shown 
in Fig. 1b. In the rest of this paper, the new MMSBA scheme employing WF in the 
sub-bands is termed MMSBA-WF, whereas the one employing wide-band (WB) WF 
is termed MMSBA-WBWF. In both the proposed architectures, the role of WF is to 
further mitigate the residual noise effects on the original signal to be recovered,  
following application of MMSBA noise-cancellation processing. 
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Fig. 1. (a) WF based MMSBA systems. (b) Subband Processing unit(SBP). 

2.1   Diverse SBP Options 

A significant advantage of using sub-band processing (SBP) for speech enhancement 
within the MMSBA scheme is that it allows for diverse processing in each sub-band 
in order to simultaneously effectively cancel both the coherent and incoherent noise 
components present in real reverberant environments. The SBP can be accomplished 
in a number of ways (Fig.1b), as follows: 

− No Processing. Examine the noise power in a sub-band and if below (or the SNR 
above)  some arbitrary threshold, then the signal in that band need not be modified.  

− Intermittent coherent noise canceller. If the noise power is significant and the 
noise between the two channels is significantly correlated in a sub-band, then 
perform adaptive intermittent noise cancellation, wherein an adaptive filter may 
be determined which models the differential acoustic-path transfer function be-
tween the microphones during the noise alone period. This can then be used in a 
noise cancellation format during the speech plus noise period  (assuming short 
term constancy) to process the noisy speech signal.  

− Incoherent noise canceller. If the noise power is significant but not highly correlated 
between the two channels in a sub-band, then the incoherent noise cancellation ap-
proach of Ferrara-Widrow [7] be applied during the noisy speech period. 

In this paper, we employ the above three SBP options and implement the process-
ing using the Least Mean Squares (LMS) algorithm to perform the adaptation. For the 
derivation of the WF theory in the next section, we define , ,j j jX S N%% %  as the global 
output, the reconstructed signal and the residual noise component at the j-th SBP out-
put (or, equivalently, the adaptive noise canceller output of j band) respectively. The 
following relationship can be assumed to hold due to un-correlation between the noise 
and the desired signal at each band: 

.j j jX S N= +%% %  (2) 
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In the original MMSBA, all jx%  sub-band noise canceller outputs are summed (at 

the reconstruction section) to yield the global MMSBA output y% (in the following 

capitalized letters will denote the corresponding variables in the frequency domain): 

.j j
j j

Y S N S N= + = +% %% % %  (3) 

2.2   Wiener Filtering (WF) 

The coefficient of a Wiener filter [8] are calculated to minimize the average squared 
distance between the filter output and a desired signal, assuming stationarity of the 
involved signals. This can be easily achieved in the frequency domain yielding:  

( ) ( ) ( )( ).DY YYW f P f P f=  (4) 

where ( )D f  is the desired signal, ( ) ( ) ( )Ŝ f W f Y f=  is the Wiener filter output, 

( )Y f the Wiener filter input and  ( ) ( ),YY DYP f P f  are the power spectrum of ( )Y f  

and the cross power spectrum of ( ) ( ),Y f D f  respectively. If we apply such a solu-

tion to the case where the global signal is given by addition of noise and signal (to be 
recovered), and moving from the assumption that noise and signal are uncorrelated (as 

,j jS N% %  are) we can derive the following from (4): 

( ) ( ) ( ) ( )( ).
j jj j j j

j N NS S S SW f P f P f P f= +% % % % % %  
(5) 

where ( ) ( ),
j jj j N NS SP f P f% % % %  are the signal and noise power spectra. Note that, in this 

task, the desired signal is jS% . It must be observed that such a formulation can be eas-

ily extended to the case when involved signals are not stationary, by simply periodi-
cally recalculating the filter coefficients for every block l of sN  signal samples. In 

this way the filter adapts itself to the average characteristics of the signals within the 
blocks and becomes block-adaptive. Moreover, the presence of VAD is a pre-requisite 
to making the Wiener filtering operation effective: in noise alone period, a precise es-
timation of noise power spectrum can be performed and then used in (5), assuming 
that its properties are still the same when the signal power spectrum is calculated dur-
ing the noisy speech period. The former approximation is carried out iteratively by us-

ing the power spectrum of Wiener filter global output ( )ˆ
jS f .  

Note that the above derivations are readily applicable to MMSBA-WF architecture 
as follows. Similar to (2) and (3), the following holds at j-th band Wiener filter 
output: 

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ,j j j j j
j j

X S N Y S N S N= + = + = +  (6) 
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where ŷ  is the new global output yielded from the reconstruction section. However, 

same considerations can be made when MMSBA-WBWF is dealt with, simply adapt-
ing the equations to the new situation where WF occurs after the reconstruction  
section. Specifically, taking (3) into account, implies: 

ˆˆ ˆ .w w w wY W Y S N= = +%  (7) 

where w stands for wide-band processing, since WF operation is applied directly to 
MMSBA output y%  to form the new Wiener filtered output ˆwy . 

2.3   Recursive Magnitude Squared Coherence (MSC) Metric for Selecting SBP 

The Magnitude Squared Coherence (MSC) has been applied by Bouquin and Faucon 
[9] to noisy speech signals for noise reduction and also successfully employed as a 
VAD for the case of spatially uncorrelated noises. In this work, following [4] we use a 
modified MSC as a part of a system for selecting an appropriate SBP option within 
the MMSBA system. Assuming that the speech and noise signals are independent, the 
observations received by the two microphones are: 

; .p p p r r rx s n primary x s n reference= + = +  (8) 

where , ,,p r p rs n  represent  the clean speech signal and the additive noise, respec-

tively. For each block l  and frequency bin kf ;the coherence function is given by: 

( , ) ( , ) ( , ) ( , )
p r p p r rk X X k X X k X X kf l P f l P f l P f lρ =  (9) 

where ( , )
p rX X kP f l  is the cross-power spectral density, ( , )

p pX X kP f l  and ( , )
r rX X kP f l  

are the auto-power spectral 

*( , ) ( , 1) (1 ) ( , ) ( , ).
p r p rX X k X X k p k r kP f l P f l X f l X f lβ β= − + −  (10) 

where β  is a forgetting factor. During the noise alone period, for each overlapped 

and Hanning windowed block l  we compute the Magnitude Squared Coherence 
(MSC) averaged over all the overlapped blocks (at each frequency bin) as 

2

1

1
( ) ( , ) .

l

k k
i

f f i
l

ρ
=

=MSC  
(11) 

The above recursively averaged MSC criterion can thus be used as a means for de-
termining the level of correlation between the disturbing noise sources within the 
various frequency bands (by averaging the above MSC over each respective linearly 
or non-linearly spaced sub-band), during the noise alone period in intermittent speech, 
and consequently selecting the right SBP option, as discussed in section 2.1.  

On initial trials, a threshold value around 0.55 for the adaptive MSC has been cho-
sen for distinguishing between highly correlated and weakly correlated sub-band 
noise signals. For 50% block overlap, a forgetting factor of 0.8β =  has been found to 
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be adequate. The above MSC metric was successfully tested for a range of realistic 
SNR values (from -3dB to 25dB) using both simulated and real reverberant data. 

3   Simulation Results 

In this section the two new MMSBA-based WF approaches are compared to the 
original MMSBA approach (without WF) in order to investigate their relative  
effectiveness. For experimental purposes, a real anechoic speech signal ( )s k  is used 

as the desired signal, whilst the noise signals are generated according to the two fol-
lowing schemes. 

1. reference noise signal ( )n k   is chosen to be a random signal, from which two dif-

ferent noise sources (one for primary and one for the reference channel) are derived 
and summed with ( )s k  to form 1 2,x x  as in (8). 

2. ( ) ( )1 2,n k n k  are chosen to be real stereo car noise sequences recorded in a Ferrari 

Mondial T (1991 Model), using an Audio Technica AT9450 stereo microphone 
mounted on a SONY DCR-PC3-NTSC video camera and a sampling frequency of 
44.1 kHz; the noise sequences were manually added to the anechoic speech sen-
tence to manufacture different SNR cases. 

The value of the initial SNR, namely iSNR , is used as a reference for the three 

SNR improvements calculated at the output of each of the speech enhancement struc-
tures under study, namely: the original MMSBA (without WF), MMSBA-WF and 
MMSBA-WBWF. Taking into account the un-correlation between noise and signal on 
the same channel, we can define the SNR at the output level as: 

( ) ( ) ( ) ( ).o YY NN NNSNR f P f P f P f= −% % % % % %  (12) 

where the involved power spectra are related to signals described by (3). Similar for-
mulas can be derived considering power spectra in (6) and (7), for MMSBA-WF and 
MMSBA-WBWF respectively. Moreover it has to be said that ( )NNP f% %  is calculated 

over a sub-range of the noise alone period where noise cancellers are assumed to have 
converged, since this is the noise power spectrum expected to occur when the desired 
signal is present. On this basis, ( )ˆ ˆNN

P f  and ( )ˆ ˆ
f fN N

P f  are obtained from Wiener 

filtered versions for the two different schemes addressed. Choices for various experi-
mental parameter values were selected on a trial and error basis: speech signal number 
of samples corresponding to a 2s long speech sentence; noise signal number of sam-
ples (in the manually defined noise alone period) corresponding to 0.2s of noise (for 
both situations addressed); number of iterations of WF operation: 5; number of sub-
bands: 4; number of taps or order of FIR adaptive sub-band filters: 32. 

Let us consider the results relative to the synthetic noise case study. 

• Coherent Noise: The intermittent coherent noise-canceller approach is only em-
ployed as the SBP option in each band. Table 1 summarizes the results obtained  
using the three MMSBA approaches: from which it can be seen that MMSBA-WF 



324 A. Hussain, S. Squartini, and F. Piazza 

and MMSBA-WBWF both deliver an improved SNR performance over the origi-
nal MMSBA approach.  

• Incoherent Noise: In this case the value of the recursive MSC metric is used to 
employ both intermittent and FW SBP options, with the former option used in the 
first sub-band (with a high MSC) and the latter in the other three bands (with a low 
MSC). This is justified by the coherence characteristics of available stereo noise 
signal. It can be seen from Table 2 that the choice of sub-band WF (within the 
MMSBA-WF scheme) gives the best results in this case, due to its operation in the 
sub-bands with diverse SBP, resulting in more effective noise cancellation in the 
frequency domain, compared to the wide-band WF processing (within the 
MMSBA-WBWF scheme). 

Now we can focus our attention to the in-car recorded noise case study. 

− Coherent Noise: In the first experimental case study, simulated coherent noise 
over all four bands is used (with a MSC>0.55 in each band), for which the inter-
mittent coherent noise-canceller approach is thus employed as the SBP option in 
each band. Table 3 summarizes the results obtained using the three MMSBA ap-
proaches: from which it can be seen that MMSBA-WF and MMSBA-WBWF both 
deliver an improved SNR performance over the original MMSBA approach. It is 
also evident that the choice of sub-band WF (within the MMSBA-WF scheme) 
gives the best results, as expected, due to its operation in the sub-bands resulting in 
more effective noise cancellation in the frequency domain, compared to the wide-
band WF processing (within the MMSBA-WBWF scheme). 

− Incoherent Noise: In this more realistic case, simulated incoherent noise over two 
of the four bands is used. Accordingly in this test case, both intermittent and 
Ferrara-Widrow SBP options are utilized, the former in the first two sub-bands 
with highly correlated noises (MSC>0.55 in each band), and the former for the 
other two bands (with MSC<0.55). Table 4 summarizes the results, from which an 
even stronger impact of WF operation in the sub-bands (MMSBA-WF processing) 
is evident. 

Note that application of the classical wide-band noise cancellation approach, 
namely the MMSBA with number of bands set to one and a wideband FIR filter order 
of 256 (equivalent to product of number of sub-bands and sub-band filter order) was 
actually found to degrade the speech quality resulting in a negative SNR improvement 
value, which is hence not shown in the Table 1-4. This finding of the inability of clas-
sical wideband processing to enhance the speech in real automobile environments is 
consistent with the results reported in [2][3]. Finally, informal listening tests using 
random presentation of the processed and unprocessed signals to three young male 
adults of normal hearing, also confirmed the MSSBA-WF processed speech to be 
both  enhanced in SNR and of significantly better perceived quality than that obtained 
by all the other conventional wide-band and sub-band methods.  

4   Conclusions 

Two multi-microphone sub-band adaptive speech enhancement systems employing 
Wiener filtering and a human cochlear model filterbank have been presented. Prelimi-
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nary comparative results achieved in simulation experiments demonstrate that the pro-
posed WF based MMSBA schemes are capable of improving the output SNR of speech 
signals with no additional distortion apparent, compared to the conventional MMSBA 
scheme (without WF). The MMSBA-WF architecture employing sub-band WF seems 
to be the most promising whose improved performance is due to the ability of WF to 
further reduce the residual in-coherent sub-band noise components resulting from 
MMSBA application. A detailed theoretical analysis is now proposed to define the at-
tainable performance, in addition to employing other perceptive evaluation measures 
such as the perceptually weighted segmental SNR, Bank Spectral Distortion (BSD) and 
Perceptual Evaluation of speech Quality (PESQ) scores. What is also needed is further 
extensive testing (using formal subjective listening tests) with a variety of real data (i.e., 
acquired through recordings in various real environments), in order to further assess and 
quantify the relative advantages of the new speech enhancement schemes.  

Table 1. Case A. Synthetic noise. Relative average SNR improvements for all architectures in-
volved (over 10 runs). Standard deviation values are directly depicted on the bars. 
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Table 2. Case B. Synthetic noise. Relative average SNR improvements for all architectures 
involved (over 10 runs). Standard deviation values are directly depicted on the bars. 
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Table 3. Case A. Real in-car noise. Relative average SNR improvements for all architectures 
involved (over 10 runs). Standard deviation values are directly depicted on the bars. 
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Table 4. Case B. Real in-car noise. Relative average SNR improvements for all architectures 
involved (over 10 runs). Standard deviation values are directly depicted on the bars. 
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Finally, further work is currently in progress on employing non-linear sub-band 
adaptive filtering and cross-band effects (to mimic human lateral inhibition effects) 
within the binaural MMSBA scheme. These could prove to be more effective in deal-
ing with the non-Gaussian nature of speech and non-linear distortions in the electro-
acoustic transmission systems.  
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Abstract. In this work, we develop and compare noise suppression fil-
tering systems based on maximum a posterior probability (MAP) and cu-
mulative distribution function equalization (CDFE) estimation of speech
spectrum. In these systems, we use a double-gamma modeling for both
the speech and noise spectral components, in which the distributions
are adapted to the actual parameters in each frequency bin. The perfor-
mances of the proposed systems are tested using the Aurora database
they are shown to be better than conventional systems derived from the
MMSE method. Whereas the MAP-based method performed best in the
SNR improvement, the CDFE-based system provides a lower musical
noise level and shows a higher recognition rate.

1 Introduction

Noise reduction is an important problem in speech and audio processing. Among
single channel approaches, the statistical methods for speech spectrum estima-
tion have been frequently used [1]. The MMSE and MAP estimations for the
Gaussian model of the speech spectrum were proposed by Ephraim and Malah
[2] and Wolfe and Godsill [3], respectively. Later, a MAP based on the super-
gaussian modeling of speech was derived by Lotter[4] and the MMSE based on
gamma modeling was investigated by Martin [5],[6]. However, in both cases, the
prior distribution parameters were chosen blindly without any adaptation. In
previous work, we proposed an improved version of MAP estimation for the
speech spectral magnitude by using generalized gamma modeling of the speech
spectral magnitude [6]. However, that work was limited by the Gaussian assump-
tion of the noise spectrum and therefore, was not effective under certain noise
conditions. In this work, we extend gamma modeling for both speech and noise
spectra and derive the MAP and cumulative distribution equalization (CDFE)
estimation for the spectral components. As in our previous work [7], the prior
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distribution is adapted from observed signals and the estimations are derived
for an arbitrary set of distribution parameters. The reason for applying MAP
or CDFE instead of MMSE is that, the last generally provides non closed form
solution, which is complicated even for numerical methods. Cumulative distribu-
tion equalization has frequently been used in data-driven approaches, where the
empirical histogram is used. In this work, we show that, this method can also be
usefully applied in the model-based manner, where the cumulative distribution
function (cdf) is used. To overcome the difficulties of applying cdf, we develop
an cdf estimation method via the characteristic function, which implies a multi-
plication for the additive model. The organization of this paper is as follows. In
section 2, we describe the double-gamma modeling of the speech and noise spec-
tral components. Section 3 contains a review of the MMSE estimation of speech
spectral estimation. In sections 4 and 5, we develop the MAP and CDFE estima-
tion of speech spectral components using the proposed modeling of speech and
noise. In section 6, we reports an experimental evaluation of implemented noise
suppression filtering systems, and section 7 is a summary of the present work.

2 Statistical Modeling of Speech and Noise Spectral
Components

2.1 Double-Gamma Modeling of Speech and Noise Spectra

Consider the additive model of the noisy speech as below:

X[k, m] = S[k, m] + N[k, m], (1)

where X[k, m], S[k, m], and N[k, m] are noisy, clean speech and noise complex
spectrum. The pair [k, m] indicates the frequency-frame index. Each complex
spectrum is presented in terms of the spectral components (real and imaginary
parts) as follows:

C[k, m] = CR[k, m] + jCI [k, m]. (2)

The following assumptions are assumed for speech and noise spectral com-
ponents: (1) spectral components are independent and zero-mean, (2) spectral
component pdf is symmetrical, (3) The variances of spectral components are
power density and determined at each frequency-frame index [k, m]. In this work,
we investigated double-gamma modeling for both speech and noise.

pdouble−gamma (C [k, m]) =
bab−1

2σb
C [k, m] Γ (a)

Cb−1 [k, m] exp
(

−b
C [k, m]
σC [k, m]

)
(3)

As an alternative, the conventional Gaussian model is also investigated and
noted as follows:

pgauss (C [k, m]) =
1√

2πσC [k, m]
exp

(
− C2 [k, m]

2σ2
C [k, m]

)
, (4)

where C [k, m] denotes the spectral component (real or imaginary part) and
σ2

C [k, m] denotes the local power density at each frequency-frame index [k, m].
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Note that the normalization condition
〈
C2

〉
= σ2

C implies the following relation-
ship between a and b:

a (a + 1)
b2 = 1 → b =

√
a (a + 1), (5)

Since the spectral components are assumed to be identical independent vari-
ables, the additive model of the complex noisy speech spectral (3) can be simply
denoted in terms of the spectral component as

X = S + N, (6)

where each symbol in (5) corresponds to the real and imaginary parts of com-
plex spectrum. The following three models of the speech and noise distribu-
tions are consequently investigated in this work: Gaussian/Gaussian (Model 1),
gamma/Gaussian (Model 2) and gamma/gamma (Model 3).

2.2 Actual Adaptation of the Modeled Distribution Parameters

Since the prior distributions of speech and noise are scaled by their local power
densities (3), which are estimated separately, the prior parameter should be
adapted from each observed noisy speech. In this work, we develop a parameter
estimation method, in which the prior pdf is adapted in each frequency bin.
As done in our previous work [7], the high-order moments of observed noisy
speech spectrum are used to derive estimation equation. In this case, it is done
for both the speech and noise prior pdf. For the gamma-speech, Gaussian-noise
model (Model 1), the four moments of the noisy speech spectral component are
expressed as 〈

X4〉 = σ̄4
SM4 (aS) + σ̄4

NM4 (aN ) + 6σ̄2
S σ̄2

N , (7)

where the fourth moments of the noise and speech spectral components are given
below following the Gaussian distribution,

M4 (aN) = 3, (8)
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Fig. 1. Example of double-gamma estimation of speech spectral components
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Fig. 2. Example of double-gamma estimation of noise spectral components

and through gamma distribution as

M4 (aS) =
(aS + 2)(aS + 3)

b2
S

. (9)

Substituting (8) and (9) into (7) and taking (5) into account, the speech prior
distribution parameter is given in a closed-form solution. Analogously, for the
speech-gamma and noise-gamma model (model 3), the distribution parameter is
estimated using the pair of fourth-order and sixth-order moments of the observed
noisy spectrum. Figures 1 and 2 show examples of double-gamma parameter
estimation for a noisy speech signal under the 5dB street noise condition.

3 MMSE Estimation

In general, the MMSE estimation is given by the conditional expectation,

Ŝ = E [S|X] =

∞∫
−∞

Sp (X, S) dS

p (X)
=

∞∫
−∞

Sp (X |S) p (S)dS

∞∫
−∞

p (X |S) p (S) dS

, (10)

where the conditional pdf p (X |S) is given by the noise pdf and the prior distri-
bution p (S) is the Gaussian (3) or double-gamma distribution (4). The MMSE
estimation of the speech spectral components for the Gaussian modeling of noise
and speech spectra yields the conventional Wiener filtering:

Ŝ =
σ2

S

σ2
S + σ2

N

X. (11)

The MMSE estimation using gamma prior was investigated by R.Martin
[5],[6], for two special cases of double-gamma distribution, including the Lapla-
cian distribution, in which a closed-form solutions are given. However, the MMSE
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in other cases of gamma modeling does not yield a closed-form solution of the
estimation. For our proposed system, where the prior distribution parameters
are adapted from each observed signal, the numerical calculation of integral (10)
should be implemented. However the main drawback of this method is highly
expensive computational cost and therefore we don’t use this method for our
system.

4 MAP Estimation

MAP is a general estimation method and is used in this work to estimate the
speech spectral components. In contrast to the estimations presented in [3] and
[7], where the spectral magnitude domain was uses, in this work, we use the
spectral components domain to derive the estimation. The advantage of using
this domain is that exactly matches the additive model of noisy speech and
the estimation is given not only for the Gaussian model of noise spectrum. The
general form of MAP estimation

Ŝ = argmax
S

log (p (S|X)) = arg max
S

log (p (X |S) p (S)) , (12)

yields an equation of the derivatives

∂

∂S
[log (p (X |S)) + log (p (S))] = 0. (13)

Since the MAP estimation for the model 1 implies the classical Wiener filter,
we begin this section with model 2.

4.1 Model 2: Gamma Speech and Gaussian Noise

For this model, the conditional and prior distributions are derived as follows:

∂

∂S
[log (p (X |S))] =

X − S

σ2
N

, (14)

∂

∂S
[log (p (S))] =

(aS − 1)
S

− sign (S)
bS

σS
. (15)

Equations (14) and (15) imply the following second-order equation for the gain
function G = Ŝ

X :

G2 − G

(
1 − sign (X) bS√

γξ

)
+

(aS − 1)
γ

= 0, (16)

where: γ = X2

σ2
N

, and ξ = σ2
S

σ2
N

are posterior and prior SNRs, respectively which
are estimated separately [2]. Obtaining a closed form solution for the MAP esti-
mation is important because then the global maximum of posterior probability
in (12) can be found strictly:

G = max
{

u ±
√

u2 + v, 0
}

, (17)
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where

u =
(

0.5 − sign (X) bS√
4γξ

)
, (18)

v =
(aS − 1)

4γ
. (19)

4.2 Model 3: Gamma Speech and Gamma Noise

For this model, the conditional distribution in (13) can be expressed as

∂

∂S
[log (p (X |S))] = − (aN − 1)

X − S
− sign (X − S)

bN

σN
. (20)

Analogously, a second order equation for the gain function is derived.

G2 − G

⎛⎝1 − (aS + aN − 2)
√

γsign (X)
(
bN − bS√

ξ

)
⎞⎠ +

(aS − 1)
√

γsign (X)
(
bN − bS√

ξ

) = 0. (21)

The solution of Eq.(21) is given in the same manner as for (17).

5 Cumulative Distribution Function Equalization

One remaining problem of the above MAP estimation is the relative sensitiv-
ity to the ”poor fit” prior estimation, or other words it requires a sufficiently
”good” prior. Therefore, in addition to the MAP estimation, we investigate an
alternative estimation based on cumulative distribution function equalization
(CDFE).

5.1 Cumulative Distribution Function Equalization

This method (CDFE) was originally called as histogram equalization and has
been used in data-driven approaches. In this work, we investigate the use of
cdf for the model-based approaches, in which modeled distributions are used.
The principle of this method is to identify a non-linear transform from noisy
to clean features, which matches the cumulative distribution function. Denoting
the general equalization

ŝ = g (x) , (22)
the criterion for our estimation here is expressed as

Fg(x) (g (x)) = Fs (s) . (23)

The key point of the method is that, the cumulative distribution function
(cdf) is invariant though arbitrary nonlinear functional, that is,

Fg(x) (g (x)) = Fx (x) . (24)

From (23) and (24), the ”best” nonlinear transform is obtained by equalizing
cdf of noisy to clean signals.

g (x) = F−1
s (Fx (x)) (25)
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5.2 Model 1: Gaussian Speech and Gaussian Noise

For Gaussian modeling of both noise and speech spectral components, the noisy
speech spectral components are also Gaussian

X ∼ N
(
0, σ2

S + σ2
N

)
. (26)

Since both cdf FX (.), and FS (.) are Gaussian, the CDFE operation is carried
out without any difficulties.

5.3 CDF Estimation Via the Characteristic Function

CDFE has the following main problem. Excepting the Gaussian model considered
above, the cdf of noisy speech, presented as an addition of speech and noise,
has no analytical form. To overcome this problem, we develop a cdf estimation
method by using the characteristic function as follows:

F (x) =

⎧⎪⎪⎨⎪⎪⎩
1

1
2 − sign (x) 2

π

2π∫
ε

f(u)
u sin (ux) du

0

x ≥ m + 4σ
m + 4σ > x > m − 4σ,
x ≤ m − 4σ

(27)

where f(u) denotes the characteristic function [8] of noisy speech spectral com-
ponents. The main point here is that the characteristic function of the additive
model (6) is multiple and therefore convenient for implementation. Note that,
according to the symmetrical assumption of the pdf of speech and noise spectral
components, the characteristic function of noisy speech is always a real function.

5.4 Model 2: Gamma Speech and Gaussian Noise

Denoting characteristic function of the Gaussian distribution of noise and double-
gamma distribution of speech spectral components, respectively, as follows:

fN (u) = e−
u2σ2

N
2 , (28)

fS (u) = Re

[(
aS

aS − iu

)bS
]

= cos
(

bSa cos
(

a2
S

a2
S + u2

))
, (29)

the characteristic function of the noisy speech spectral component is obtained
by multiplying (28) and (29). The CDFE is then derived using (27) and (25).

5.5 Model 3: Gamma Speech and Gamma Noise

For gamma modeling of both speech and noise spectral components, the cdf of
noisy speech spectral components is estimated from the characteristic functions
of speech and noise and is denoted by

fX (u) = cos
(

bNa cos
(

a2
N

a2
N + u2

))
cos

(
bSa cos

(
a2

S

a2
S + u2

))
. (30)
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6 Experiment

The proposed noise suppression filtering systems are tested using AURORA2 to
determine the ASR performance [10], where the speech enhancement is applied
for both testing and training databases. The noise and signal powers are esti-
mated using the minimum statistic [9] and decision directed [2]. The three models
of speech and noise modeling described above are investigated. Each system is
identified according to the estimation method (MMSE,MAP ,CDFE) and the
assumed models (1, 2, 3). For reference, the Ephraim-Malah LSA version based
on Gaussian modeling [1] is also implemented. The reference MMSE versions

Fig. 3. ASR relative improvement of clean training: overall results

Fig. 4. ASR relative improvement of multi-conditions training: overall results
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Table 1. Listening test: Q1-Which one is less distorted? Q-2 Which one is less noisy?
Q-3 Which one is best?

Q Subway Babble Car Exhibition RestaurantStreet Airport Station

1 CDFE-1 CDFE-2 CDFE-3 CDFE-3 CDFE-3 CDFE-3 CDFE-2 CDFE-2
2 MAP-2 MAP-2 MAP-2 MAP-2 CDFE-3 CDFE-3 MAP-2 MAP2
3 CDFE-1 CDFE-2 MAP-2 CDFE-3 CDFE-3 CDFE-1 MAP-2 CDFE-2

Table 2. Best ASR performance in each noise condition

Cond. Subway Babble Car Exhibition RestaurantStreet Airport Station

CL CDFE-1 CDFE-2 MAP-2 MAP-2 CDFE-3 CDFE-3 MAP-2 CDFE-2
MT CDFE-1 MAP-2 MAP-2 CDFE-1 CDFE-3 CDFE-3 MAP-2 CDFE-2

Table 3. SNR improvement-Overall results [dB]

Meth WF CDFE-1 LSA MMSE-2MAP-2CDFE-2 MMSE-3 MAP-3CDFE-3

dB 3.25 3.52 4.25 5.65 6.32 6.07 5.45 6.11 6.12

using Laplacian/Gaussian and Laplacian/Laplacian modeling of speech and
noise [5] are implemented. A simple listening test is performed with four subjects
listening to 25 random chosen utterances of each noise conditions. Table 1 shows
the results of the listening test, table 2 shows the best method in terms of ASR
for each noise condition, and table 3 shows the noise reduction comparison in
terms of SNR improvement. From the tables, we can conclude that, CDFE-3 is
superior to other methods only for the restaurant and street noise conditions.
Meanwhile, the MAP-2 is dominated in SNR improvements. The overall results
of ASR performance using clean HMM and multi-conditions training are shown
in Figure 3-4. The results in Figure 3 indicates that, CDFE-2 performs the best,
as CDFE-3 is even worse than CDFE-1. For multi conditions training, the best
performances are shown by the CDFE-1 and CDFE-2. This means that, double-
gamma model for speech always performs better than Gaussian model but the
Gaussian modeling is better for noise modeling under most of noise conditions.

7 Conclusion

We develop a maximum posterior probability and cumulative distribution equal-
ization method for the speech spectral estimation using the double-gamma
modeling of speech and noise spectral components. The main point of the
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proposed method is that a solution is given for an arbitrary set of prior dis-
tributions and therefore it is possible to combine the estimation method to a
prior adaptation to improve the performances of system. Double-gamma mod-
eling of speech and noise spectral component was shown to be adaptable to the
actual distribution, without any use of a training data. The results of the ex-
perimental evaluation shows the advantage of the proposed MAP and CDFE
comparing to the conventional MMSE method. Gamma modeling is superior
to the Gaussian for the speech spectral modeling in all cases, but is better for
noise modeling only for some particular noise conditions (restaurant and street).
The CDFE shows the best ASR performance, while the MAP is better in noise
reduction.

References

1. Y. Ephraim, “Statistical model based speech enhancement systems,”IEEE Proc.,
vol. 80, pp. 1526-1555, 1992.

2. Y. Ephraim, and D. Malah, “Speech enhancement using a MMSE log-spectral
amplitude estimations,” IEEE Trans. ASSP, Vol. 33, No. 2, pp.443-445, 1985.

3. P. Wolfe and S. Godsill, “Simple alternatives to the Ephraim suppression rule for
speech enhancement”, IEEE Workshop on Statistical Signal Processing, 2001.

4. T. Lotter and P. Vary “Noise Reduction by Maximum A Posteriori Spectral Ampli-
tude Estimation with Supergaussian Speech Modeling,” in Proc. IWAENC, Kyoto,
Japan, 2003.

5. R. Martin, B. Colin, “Speech enhancement in DFT domain using Laplacian pri-
ors,” in Proc. IWAENC, Kyoto, Japan, 2003.

6. R. Martin, “Speech enhancement using MMSE Short Time Spectral Estimation
with Gamma Speech Prior,”in Proc.ICASSP 02, Orlando Florida,USA, 2002.

7. T.H. Dat, K. Takeda, and F. Itakura, ”Generalized gamma modeling of speech
and its online estimation for speech enhancement,” in Proc. ICASSP, Philadelphia,
USA,2005.

8. E Parzen, ”On estimation of a probability density function and mode,” emp Ann.
Math. Statist V.33 pp.1065-1076, 1962.

9. R. Martin, “Noise power spectral estimation based on optimal smoothing and
minimum statistics” IEEE Trans. ASSP, Vol. 9, No.5, pp.504-512, 2001.

10. H. Hirsch, D. Pearce, ”The AURORA experimental framework for the performance
evaluation of speech recognition systems under noisy conditions,” in ISCA ITRW
ASR, 2000.



M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 338 – 347, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Modeling Fluctuations of Voiced Excitation for Speech 
Generation Based on Recursive Volterra Systems 

Karl Schnell and Arild Lacroix 

Institute of Applied Physics, Goethe-University Frankfurt, 
Frankfurt am Main, Germany 

{Schnell, Lacroix}@iap.uni-frankfurt.de 

Abstract. For the modeling of the speech production system linear models are 
widely used. However, not all features of speech can be covered by linear sys-
tems. Therefore nonlinear systems are interesting in speech processing. In this 
contribution a time variable recursive Volterra system is used to model the fluc-
tuations of the voiced excitation while a linear system models the resonances of 
the speech production system. The estimation of the Volterra system is per-
formed by a prediction algorithm. The prediction problem is solved with the aid 
of an approximation by series expansion. Speech examples show that the use of 
a time variable Volterra system improves the naturalness of the synthetic 
speech. 

1   Introduction 

Linear systems provide adequate modeling of the resonances of the vocal tract. The 
parameters of the linear system can be estimated by linear prediction or inverse filter-
ing. The speech signal is described by the linear model only partially [1] and [2], 
therefore an estimation by a nonlinear system is performed with respect to the residual 
signal, obtained after applying linear prediction to the speech signal. The estimation 
for the Volterra system is based on nonlinear prediction. Since in the residual signal 
the linear relations of the speech signal are almost eliminated, the nonlinear predictor 
consists of nonlinear terms only.  

2   Nonlinear Prediction 

The prediction ˆ( )x n  of a signal value ( )x n  is performed by a combination of prod-

ucts of previous signal values ( ) ( )x n i x n k− ⋅ −  with , 0i k > . For a signal x  the pre-

diction error e is defined as the difference between the estimated value x̂  and the 
actual value x : 

          2
1 1

ˆ( ) ( ) ( ) ( ) ( , ) ( ) ( ) .
= =

′= − = − ⋅ − −
M i

i k

e n x n x n x n h i k x n k x n i      (1) 

In (1) the second-order kernel 2h  is assumed symmetrically resulting in 

2 2( , ) ( , )h i k h i k′ =  for i=k and 2 2( , ) 2 ( , )h i k h i k′ = ⋅  for i k≠ . The coefficients of the 



 Modeling Fluctuations of Voiced Excitation for Speech Generation 339 

predictor are optimal if the expected value 2E[ ( ) ]e n  is minimized; this is approxi-

mated by 2( ) min,e n →  representing the least squares approach. 

2.1   Prediction Based on Vectors 

If the analyzed signal ( )x n  is a finite signal of length L the prediction (1) can be de-

scribed in a vector notation  

          2 ,
1 1

ˆ ( , )x x e x e
= =

′= + = ⋅ +
M i

i k
i k

h i k  

with the vectors:          
( )

( )

T

T
,

(0), (1), , ( 1)

( ) ( ), ( 1) ( 1), .

x

x

= −

= − − − + − +

K

Ki k

x x x L

x i x k x i x k
     

(2) 

The indices i and k of the vectors ,i kx  are assigned to a single index λ resulting in    

   ,i kλ′ =x x  and 2( ) ( , )a h i kλ ′=    with   

( 1) ( 2)( 2) / 2k i M i iλ = + − − − −  

1

ˆ ( )a λ
λ

λ
Λ

=
= + = ⋅ +x x e x e . 

(3) 

 
 

 
(4) 

The error of the approximation ˆ| | | |= −e x x  is to be minimized. Equation (4) 

represents a vector expansion of the vector x  by the vectors λx  representing a vec-

tor space of dimension ( 1) / 2M MΛ = + . It is assumed that the vectors λx  are inde-

pendent; if a vector depends on other vectors, the vector and the corresponding coef-
ficient can be omitted from the procedure reducing the dimension; however, this is 
most unlikely for the intended application. The basis vectors λx  are not necessarily 

orthogonal among each other. The determination of the optimal parameters can be 
performed with the aid of a transformation, converting the vectors λx  into an or-

thogonal basis λv  with , 0 fori k i k= ≠v v . This can be achieved by using the 

formula  

   
1

2
1

,
for 1i i

i
i i

λ
λ λ λ

−

=

′
′= − ⋅ = ΛK

x v
v x v

v
, (5) 

recursively starting with 1 1′=v x . The orthogonalization procedure is known under 

the name Gram-Schmidt.  The vector expansion of equation (4) can be formulated 
with the orthogonal vectors λv  

   
1

ˆ ( )b λ
λ

λ
Λ

=
= + = ⋅ +x x e v e . 

 
(6) 
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Therefore the optimal coefficients b of the vector expansion can be easily obtained 
by the dot product ,  of the vector x  and the orthogonal basis vectors λv  

   
2

,
( )b λ

λ
λ =

x v

v
, (7) 

yielding | | min=e . Then the coefficient vector T( (1), (2),... ( ))b b b= Λb  of the basis 

{ }λv  is converted back into the coefficient vector T( (1), (2),... ( ))a a a= Λa  of the 

basis { }λ′x . This is performed with the aid of the matrix T
1 2( , ,.., )Λ=  by 

= ⋅a b  . The matrix can be calculated iteratively starting with the identity matrix. 
The iteration steps are performed by 

   
1

2
1

,
: for 1

i
i k

i i k
k k

i
−

=

′
= − ⋅ = ΛK

x v

v
. (8) 

Finally the resulting coefficients ( )a λ  of the vector a  are mapped into the coeffi-

cients 2 ( , )h i k′  by inverting the assignment of equation (3).   

3   Analysis of Residual of Speech 

The nonlinear system is used to model the fluctuations of voiced speech. These fluc-
tuations are caused mainly by the voiced excitation and its interaction with the vocal 
tract. Therefore at first the speech signal is inverse-filtered by LPC-analysis represent-
ing the conventional linear prediction. The parameters for the nonlinear system are 
estimated from the residual of speech; to enable a time variability of the parameters 
the analysis is performed blockwise in short time intervals. For that purpose the resid-
ual signal is segmented into overlapping segments. The segments consist of a whole 
number of pitch periods. The overlapping of the segments is about one period. The 
nonlinear prediction yields for every segment a diagonal matrix 2 ( , )h i kλ′  of estimated 

coefficients; the index λ  represents the analyzed λ -th segment. Since the statistic of 
the segments varies, the estimated coefficients vary, too. The variations of the coeffi-
cients from segment to segment model the fluctuations of the speech. The estimation 
of the coefficients is affected by windowing, too. Therefore it is favorable that the 
segments are sufficiently wide, to limit the fluctuations caused by segmentation. 
Segment lengths are used between two and five periods. 

4   Synthesis 

4.1   Synthesis Structure of Volterra Systems 

The prediction error filter (1) is suitable for the analysis of signals while the inverse 
system of the prediction error filter can be used for synthesis. The inverse system 

1
2H −  of (1) has a recursive structure:  
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          2
1 1

( ) ( ) ( , ) ( ) ( )
= =

′= + ⋅ − −
M i

i k

y n x n h i k y n k y n i .     (9) 

The recursive Volterra system is used to model the fluctuations of the voiced exci-
tation. To introduce variations, the parameters of the nonlinear system are time vari-
able. The whole system of the voiced excitation is shown in figure 1. The recursive 

Volterra system 1
2H −  is excited by an impulse train corresponding to the fundamental 

frequency. The subsequent de-emphasis system 1 1 1
1 2( ) 1 ((1 )(1 ))− − −= − −P z k z k z  

is a linear filter containing two real poles.  The nonlinear prediction described in sec-
tion 2 and 3 yields for every segment a set 2 ( , )h i kλ′  of coefficients with λ  represent-

ing the analyzed λ -th segment. During the synthesis the parameters of the system 
1

2H −  are controlled by the parameter matrices 2 ( , )h i kλ′  consecutively indicated in 

fig. 1. Since the coefficients are updated for every period, the pulse train 1u  varies 

from period to period. Fig. 2 shows the output of the system caused by the excitation 
of the impulse train before and after the de-emphasis. The variations of the coeffi-

cients of 1
2H −  cause fluctuations of the processed impulses 1u  depicted in fig. 2(a). 

Applying de-emphasis to 1u  these fluctuations produce changing ripples in the signal 

2u , as can be seen in fig. 2(b). The signal 2u  can be interpreted as glottal pulses. The 

occurrence of ripples in the glottis signal is a known phenomenon, caused by nonlin-
earities due to glottal flow and vocal tract interaction [2]. The sets of coefficients 

2 ( , )h i kλ′  for fig. 2 are obtained from the analysis of the residual of the vowel /a:/, 
with a sampling rate of 16 kHz. The order M of the nonlinear prediction is 18 and the 
analyzed segments consist of 4 periods. The absolute values of the impulse response 

of 1
2H −  converge rather fast towards values close to zero, so that the effective length 

of the impulse response is shorter than one pitch period, whereas the impulse response 
is actually infinite. Since the overlapping of the impulse responses can be neglected,  
 

 

Fig. 1. Generation of voiced excitation: Excitation of the time variable recursive Volterra  

system 1
2H −  by an impulse train resulting in 1u , filtering by the linear system 1( )−P z  for de-

emphasis resulting in 2u  
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Fig. 2. Time signals of voiced excitation: (a) Impulse train 1u  processed by the time variable 
nonlinear system; (b) voiced excitation 2u  applying de-emphasis to 1u  

 
no problems with instabilities occurred in our investigation. The greater the order M is 
chosen for analysis and synthesis the longer is the effective impulse response. Large 

numbers of M may cause instable systems. Since 1
2H −  is a nonlinear system, the 

amplitude of the exciting impulse train affects also the shape of the signals 1u  and 

2u . To ensure stable systems the amplitude of the exciting impulse train should not 

be too high. The degree of periodicity can be adjusted by the choice of M, the ana-
lyzed segment length, and by the amplitude of the impulse train. 

4.2   Synthesis of Stationary Sounds 

The recursive Volterra system 1
2H −  is a component in the speech production system 

which can be seen in fig. 3. The linear system ( )H z  in fig. 3 models the resonance 

structure of the vocal tract and the real pole system 1( )P z −  realizes the de-emphasis. 

During the synthesis the parameters of the system 1
2H −  are controlled by the parame-

ter matrices 2 ( , )h i kλ′  consecutively with max[1,2,3,..., ]λ λ= , modeling the fluctua-

tions of the voiced excitation. For that purpose a set of matrices 2 ( , )h i kλ′  is stored. If 

the increasing index λ  reaches the maximal index maxλ , the index λ  is set to a 

random integer smaller than 5. To demonstrate the effect of the time variable nonlin-
ear system in the following example the vowel /a:/ is analyzed and resynthesized with 
constant fundamental frequency without any jitter. At first the speech signal is filtered 
by a repeated adaptive pre-emphasis realized by a linear prediction of first order de-

termining the poles of the system 1( )P z− . Then the speech signal of the vowel /a:/ is 

filtered by a conventional linear prediction and the residual is analyzed blockwise as 
described before. The linear system ( )H z  is in this case the standard  
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Fig. 3. Systems involved in the synthesis of voiced speech: Excitation of the time variable 

recursive Volterra system 1
2H −  by an impulse train, filtering by a linear system consisting of 

1( )P z −  for de-emphasis and ( )H z  for the resonances of the vocal tract 

all-pole model obtained from linear prediction. To show the impact of the nonlinear 
system, the spectra of the resynthesized vowel /a:/ are shown in fig. 4, synthesized 
with and without the recursive Volterra system. The use of the time variable Volterra 
system causes nonperiodicities, which can be seen in fig. 4(b). In contrast the synthe-
sized signal shown in fig. 4(a) is exactly periodic without the nonlinear system. 
 

 

Fig. 4. Spectra of the vowel /a:/: (a) Synthesized without the nonlinear system; (b) synthesized 
with the nonlinear system; (c) original signal 
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It is known, that a nonperiodic component is favorable with respect to the naturalness 
of synthetic speech [3]. The spectrum of the original signal used for the analysis is 
shown in fig. 4(c). It can be seen that the spectral envelopes of the spectra 4(a)-(c) 
aresimilar, however the fine structure of the spectrum 4(b) is comparable to that of the 
spectrum of real speech 4(c) in contrast to the fine structure of the spectrum in fig. 
4(a). The fine structure of the spectrum is affected by the degree of harmonicity. Ad-
ditionally to the nonlinear system a noise component may be included in the excita-
tion, to further increase the nonperiodicity especially in the high frequency range.  

It should be mentioned that the time variable system modeling the fluctuations con-
sists of nonlinear terms only, without additional linear terms. Synthesis results have 
been generated also with linear terms alone and in combination with nonlinear terms 

in 2H  and 1
2H −  respectively. However, the inclusion of linear terms decreases the 

speech synthesis quality. 

4.3   Synthesis of Words 

Besides of resynthesis of stationary vowels, the excitation is used for a parametric 
synthesis which includes a lossy tube model as linear system ( )H z  in fig. 3. The  

 

 

Fig. 5. Spectra of a segment of the first part of the diphthong /aI/: (a) Generated by parametric 
synthesis without time variable Volterra system; (b) generated by parametric synthesis with 
time variable Volterra system; (c) obtained from a segment of diphone [v-aI] 
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Fig. 6. Spectrograms of synthesized word [lavi:n@] by parametric synthesis with lossy tube 
model: (a) Excitation consists of an impulse train without the nonlinear system; (b) excitation 
consists of an impulse train including the nonlinear system 

lossy tube model is based on the standard lossless tube model realized in lattice struc-
ture extended by the frequency dependent losses of the vocal tract and the lip termina-
tion. The parameters of the lossy tube model are reflection coefficients which can be 
converted into pseudo vocal tract areas. The reflection coefficients are estimated from 
diphones by an optimization algorithm [4]. For the analysis the diphones are seg-
mented into overlapping frames. The estimation algorithm yields a parameter vector 
for each frame. For the synthesis the parameter vectors are used one after the other. 
To smooth the discontinuities at the diphone joints, the model parameters are linearly 
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interpolated in the description of logarithmic areas. Fig. 5 shows short-time spectra of 
the parametric synthesis and of real speech representing the beginning of the diph-
thong /aI/ which is part of a synthesized word. The time variable nonlinear system 
reduces the periodicity especially in the high frequency range which can be seen in 
fig. 5(b). Fig. 5(c) shows a spectrum of a segment of the diphthong /aI/ which is part 
of the diphone analyzed for the parametric synthesis. Since the parametric synthesis 
makes use of transitions between the diphones, the spectral envelopes of the synthe-
sized speech in fig. 5(a), (b) are only approximately comparable with the spectral 
envelope of real speech in fig. 5(c). The fine structure in 5(b) is closer to that of real 
speech 5(c) in contrast to the fine structure in 5(a). 

In fig. 6 spectrograms of the synthesized German word [lavi:n@] are shown. The 
spectrograms result from the parametric diphone synthesis with and without the time 
variable Volterra system. The fundamental frequency is chosen constant for this ex-
ample. It can be seen that especially in the high frequency range the degree of har-
monicity in fig 6(b) is lower than in fig 6(a) due to the time variable nonlinear system. 
The degree of harmonicity can be further decreased as described in section 4.1. 

Fig. 7 shows segments of the vowel /a/ of the synthesized time signal of [lavi:n@]. 
It can be seen that the use of the time variable Volterra system introduces variations 
from period to period. 

 

 

Fig. 7. Segment of the synthesized word [lavi:n@] representing the vowel /a/: (a) Excitation 
consists of an impulse train without the nonlinear system; (b) excitation consists of an impulse 
train with the nonlinear system. Arrows indicate fluctuations resulting from the time variable 
Volterra system. 

5   Conclusions 

The fluctuations of voiced speech from period to period can be modeled by a time 
variable recursive Volterra system which is excited by an impulse train. The output of 
the recursive Volterra system is a processed pulse train which varies from period to 
period due to the time variability of the nonlinear system. The parameters of the 
nonlinear system are estimated from the residual of an isolated spoken vowel. The 
degree of fluctuations is affected by the length of the analyzed segments, by the num-
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ber of coefficients of the Volterra system, and by the amplitude of the exciting im-
pulse train. It has been explained how the nonlinear system can be integrated into the 
speech production system of a parametric synthesis. Examples show that the intro-
duced fluctuations are favorable with respect to the naturalness of the synthesized 
speech. 
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Abstract. In current speech technology, linear prediction dominates.
The linear vocal tract model is well justified biomechanically, and lin-
ear prediction is a simple and well understood signal processing task.
However, it has been established that, in voiced sounds, the vocal folds
exhibit a high degree of nonlinearity. Hence there exists the need for
an approach to modelling the behaviour of the vocal folds. This paper
presents a simple, nonlinear, biophysical vocal fold model. A comple-
mentary discrete model is derived that reflects accurately the energy
dynamics in the continuous model. This model can be implemented eas-
ily on standard digital signal processing hardware, and it is formulated
in such a way that a simple form of nonlinear prediction can be carried
out on vocal fold signals. This model could be of utility in many speech
technological applications where low computational complexity synthesis
and analysis of vocal fold dynamics is required.

1 Introduction

The linear signal processing of speech is a well developed science, having a long
history of association with the science of linear acoustics. Referring to Fig. 1, the
use of linear acoustics is well justified biophysically, since a realistic representa-
tion of the vocal organs is obtained by assuming that the influence of the vocal
tract is that of an acoustic tube that acts as a linear resonator, amplifying or
attenuating the harmonic components of the vocal folds during voiced sounds.
This resonator can be represented in discrete-time as a digital filter [1].

Access to biophysical speech parameters enables certain technology such as
communications (e.g. wireless mobile telephone systems), clinical, therapeutic
and creative manipulation for multimedia. For example, linear prediction [2]
can be used to find vocal tract parameters: thus much effort has been directed
towards the application of this particular analysis tool to speech signals. The re-
sults of such work are an efficient set of techniques for linear prediction of speech
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Nasal Cavity

Oral Cavity

Vocal
Folds

Tongue
Lips

Velum

Trachea

Pharyngeal
Cavity

Fig. 1. Arrangement of vocal organs inside the head and neck

that now form a fundamental part of current technology [3]. However, empirical
and numerical investigation and modelling of the vocal folds has revealed a high
degree of nonlinearity, therefore the use of the same linear tools is inappropriate.
Hence there exists a need for a similar approach to modelling the behaviour of
the vocal fold oscillation.

For typical technological applications, where computational power is at a
premium lumped models are to be preferred over full, continuum mechanical
models because they capture only the important, relevant dynamical effects.
Progress on such lumped models has been steady [4], and there exist a range
of models of varying complexity (see, for example, the two mass models of [5]
and [6]).

This paper presents a simple, practical, continuous model of vocal fold be-
haviour, and an appropriate discrete counterpart, as described in [7]. The model
has only five parameters and can be integrated using only simple computational
operations of existing digital signal processing hardware. The discrete coun-
terpart is derived using a specialised integration technique that replicates the
long-term energy properties of the continuous model, thus alleviating problems
of numerical discretisation error. Furthermore, the model is quasi-linear and
thus forms a natural extension to linear prediction, for which efficient, paramet-
ric identification techniques have already been developed. It exhibits nonlinear
oscillation due to the existence of a stable limit cycle that captures the en-
ergy balancing inherent to typical stable intonations in continuous speech. The
model also captures the observed asymmetry of flow rate output behaviour that
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is important to the timbral character of individual speakers. It is also only two-
dimensional and thus yields readily to straightforward analysis techniques for
planar dynamical systems.

There are two main applications of the model. The first is to synthesise speech
signals. Here, the output of the discrete vocal fold model un is fed directly
into the input of a standard, linear model of the vocal tract and lip radiation
impedance, to obtain a discrete pressure signal pn. The input to the vocal fold
model is a set of parameters, usually changing in time, that represent the change
in configuration of the vocal organs (such as the muscles of the larynx and the
lungs) as particular speech sounds are articulated.

The second main application is analysis by parameter identification. Here
quasi-linear prediction is used to identify the five parameters of the model di-
rectly from discrete measurements of the vocal fold flow rate signal un. Typically,
this signal will be obtained by inverse linear digital filtering of the speech pres-
sure signal from recordings obtained using a microphone.

Figure 2 shows flow diagrams of both synthesis and analysis applications.

Discrete
Vocal Fold
Model

Vocal Tract
Digital Filter

Radiative
Digital Filter

u n

v n

p n

Speech
Pressure
Signal

Speech
Parameters

R,A,K,C,B

Inverse
Linear
Prediction

Inverse
Radiative
Digital Filter

Quasi-
Linear
Prediction

w n

p n

Speech
Pressure
Signal

u n

Speech
Parameters

R,A,K,C,B

Fig. 2. (Left) Typical arrangement of forward signal processing when the model is
used for speech synthesis applications, (Right) Similarly for parameter identification
(analysis) applications
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2 Deriving the Continuous Model

Figure 3 shows the geometric setup and configuration of the model of the vocal
folds. We assume inviscid, laminar air flow in the vocal tract. The areas of the
two points A and B in the vocal folds are:

aA = 2lxA, aB = 2lxB (1)

where xA, xB are the positions of points A and B. Point A is assumed to be
stationary, therefore xA is a parameter of the model.

x

xB

A

d

l

Vocal Tract

Lungs

(air flow direction)

aB

Side
View

Top
View

PS

Fig. 3. Geometry and configuration of the nonlinear vocal fold model

The Bernoulli pressure at both points is:

1
2
ρ0

U2

a2
A

+ PA = PS,
1
2
ρ0

U2

a2
B

+ PB = PS (2)

where U is the air flow rate through the vocal folds, ρ0 is the equilibrium density
of air, and PS is the (static) lung pressure.

At the top of the vocal folds, a jet is assumed to form such that there is no
air pressure. Therefore PB = 0 and so:

U = 2l

√
2PS

ρ0
xBΦ (xB) (3)
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where the Heaviside step function Φ(x) is used to indicate that there is no air
flow when point B is negative (the vocal folds are completely closed at the top).
Therefore the air flow rate is proportional to the position of xB when positive:

U ∝ xB , xB > 0 (4)

The pressure at point A is:

PA = PS − 1
2
ρ0

U2

a2
A

= PS

[
1 − Φ (xB)

x2
B

x2
A

]
(5)

and the force acting on the vocal fold tissue is assumed to be the average of that
at points A and B:

F =
1
2

(PA + PB) ld =
1
2
ldPS

[
1 − Φ (xB)

x2
B

x2
A

]
(6)

where l and d are the length and height of the folds respectively.
From now on we write x = xB for convenience. For the vocal folds, the tissue

is assumed to have the following, nonlinear stress-strain relationship [8]:

s (x, ẋ) = kx + axẋ (7)

where k is the stiffness of the vocal fold tissue that depends highly upon the
tightness of the vocal muscles in the larynx. The parameter a controls the extent
of velocity-dependent stiffness of the vocal folds. It is this velocity-dependence
[8] of the relationship that causes the important time asymmetry of the vocal
fold flow rate signal U which is observed in real speech signals [9].

With damping effects of the vocal fold tissue proportional to the velocity the
equation of motion for the system is:

mẍ + rẋ + s (x, ẋ) = F = b − cΦ (x)x2 (8)

where b = PS ld/2, c = PSld/(2x2
A) and r is the frictional damping constant that

depends upon the biomechanical properties of vocal fold tissue.

3 Deriving the Discrete Model

Making use of the discrete variational calculus [10] we can derive the discrete
equations of motion as:

m

(
xn+1 − 2xn + xn−1

Δt2

)
+ r

(
xn − xn−1

Δt

)
+

axn

(
xn − xn−1

Δt

)
− b + kxn + cΦ (xn)x2

n = 0 (9)
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where n is the time index and Δt is the time difference between samples of a
speech signal. Such a discretisation has a discrete energy expression that repre-
sents the mechanical energy in the vocal folds:

En =
1
2

(xn+1 − xn)2 +
1
2
Kx2

n (10)

and the corresponding rate of change of discrete energy is:

dEn = − (xn+1 − xn)
[
R (xn+1 − xn) + Axn (xn+1 − xn) − B + Cx2

n

]
(11)

where:

R =
rΔt

m
, A =

aΔt

m
, B =

bΔt2

m
, K =

kΔt2

m
, C =

cΔt2

m
(12)

The discrete equations of motion (9) can be used as an explicit integrator for
the model:

xn+1 = 2xn − xn−1 − R (xn − xn−1)−
Axn (xn − xn−1) + B − Kxn − CΦ (xn)x2

n (13)

This is a quasi-linear discrete system for which the method of quasi-linear pre-
diction, described in the next section, can be used to obtain the parameters from
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Fig. 4. Typical vocal fold model behaviour with R = 0.001, A = −0.007, B = 0.00025,
K = 0.00026 and C = 0.00024. (a) Time series xn, (b) Two-dimensional embedding of
xn with embedding delay τ = 60. Thick black line is the limit cycle.
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Fig. 5. Typical vocal fold model behaviour xn with R = 0.03125, A = −0.0375, B =
0.000234, K = 3.906e−6 and C = 0.0002343. (a) Time series xn, (b) Two-dimensional
embedding of xn with embedding delay τ = 60. Thick black line is the limit cycle.

a recording of the vocal fold behaviour using a straightforward matrix inversion.
The discrete output flow rate is:

un = 2l

√
2PS

ρ0
xnΦ (xn) (14)

Figures 4 and 5 show typical behaviour of the vocal fold model for certain
ranges of parameters. Figure 4 shows oscillation in a limit cycle, and Fig. 5
shows asymmetric oscillation, with the rising slope being slower than the falling
slope. This is typical of vocal fold behaviour as identified from real, voiced speech
signals [9].

In general, when we have obtained a recorded pressure signal pn we cannot
know the real scale. In other words, the recording equipment leads to unknown
amplification. This means that, subsequently, the scaling factor 2l

√
2PS
ρ0

in equa-
tion (14) cannot be known. Similarly, there is an additional ambiguity for the
mass parameter m which cannot be resolved. This implies that the parameters
are scaled by some unknown factor. Therefore we can only compare values ob-
tained from different recordings, and the parameters have no absolute physical
interpretation.
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4 Quasi-linear Prediction for Parametric Identification

Since the position of point A in the vocal folds, by equation (4), is proportional
to the discrete flow rate signal un, we assume, initially that xn = un. Then we
exclude all values of un that are negative. Then, by defining the residual error
as:

en = xn+1 − 2xn + xn−1 + R (xn − xn−1)+

Axn (xn − xn−1) − B + Kxn + CΦ (xn)x2
n (15)

we can extend the linear prediction process [2], assuming that en has a zero-mean,
independent Gaussian distribution. This leads to the least-squares solution to
find the best fit parameters of the model.

For a non-negative speech signal of length N the system that is the solution
to the least-squares problem is:

N−1∑
n=2

Ma = −
N−1∑
n=2

d (16)

where:
a =

[
R A B K C

]T (17)

The 5 × 5 system matrix is:

M =

⎡⎢⎢⎢⎢⎣
x2

n − 2xnxn−1 + x2
n−1 x3

n − 2x2
nxn−1 + xnx2

n−1 xn−1 − xn

x3
n − 2x2

nxn−1 + xnx2
n−1 x4

n − 2x3
nxn−1 + x2

nx2
n−1 xnxn−1 − x2

n

xn−1 − xn xnxn−1 − x2
n 1

x2
n − xnxn−1 x3

n − x2
nxn−1 −xn

Φ (xn)x2
n (xn − xn−1) Φ (xn) x3

n (xn − xn−1) −Φ (xn)x2
n

· · ·

· · ·

x2
n − xnxn−1 Φ (xn)x2

n (xn − xn−1)
x3

n − x2
nxn−1 Φ (xn)x3

n (xn − xn−1)
−xn −Φ (xn)x2

n

x2
n −Φ (xn)x3

n

Φ (xn) x3
n −Φ (xn)x4

n

⎤⎥⎥⎥⎥⎦ (18)

and:

d =

⎡⎢⎢⎢⎢⎣
xn+1xn−1−xn+1xn + 2x2

n−3xnxn−1 + x2
n−1

xn+1xnxn−1−xn+1x
2
n + 2x3

n−3x2
nxn−1 + xnx2

n−1
xn+1−2xn + xn−1

2x2
n−xn+1xn−xnxn−1

−Φ (xn)x2
n (xn+1−2xn + xn−1)

⎤⎥⎥⎥⎥⎦ (19)

The coefficients, a of the quasi-linear model, taken together with the residual en

and the initial conditions x1, x2 as a set, form a one-one representation of the
modelled data xn, and we can exactly reconstruct xn using only this information.
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5 Discussion and Conclusions

This paper has introduced a new, simplified model of vocal fold dynamics. Mak-
ing use of variational integration methods, a corresponding discrete counterpart
is derived. This discrete model can then be used to synthesise vocal fold flow
rate signals or used to identify model parameters from estimated vocal fold flow
rate signals obtained from speech pressure recordings.

The main advantage of this model is that it captures the overall features of vo-
cal fold oscillation (limit cycles, open/close quotient and pulse asymmetry) whilst
the computational complexity is low, meaning that it can be implemented on
standard digital signal processing hardware. The corresponding disadvantage is
that certain interesting vocal pathologies cannot be replicated, for example creaky
voice which is suggested to originate from period doubling bifurcations [11].

In a related study, this model has been used to identify and resynthesise
estimated vocal fold flow rate signals. Discovering that the model was capable
of replicating actual flow rate signals with some successes and some failures,
the suggested method for parametric identification is to ensure positivity of
all parameters (non-negative least squares [12]), and subsequently reversing the
sign of the parameter A. This guarantees that the parameters conform to the
modelling assumptions.
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Abstract. In this paper we present a method for blind deconvolution of linear 
channels based on source separation techniques, for real word signals. This 
technique applied to blind deconvolution problems is based in exploiting not the 
spatial independence between signals but the temporal independence between 
samples of the signal. Our objective is to minimize the mutual information be-
tween samples of the output in order to retrieve the original signal. In order to 
make use of use this idea the input signal must be a non-Gaussian i.i.d. signal. 
Because most real world signals do not have this i.i.d. nature, we will need to 
preprocess the original signal before the transmission into the channel. Likewise 
we should assure that the transmitted signal has non-Gaussian statistics in order 
to achieve the correct function of the algorithm. The strategy used for this pre-
processing will be presented in this paper. If the receiver has the inverse of the 
preprocess, the original signal can be reconstructed without the convolutive  
distortion. 

1   Introduction 

Many researches have been done in the identification and/or the inversion of linear 
and nonlinear systems. These works assume that both the input and the output of the 
system are available [14]; they are based on higher-order input/output cross-
correlation [3], bispectrum estimation [12, 13] or on the application of the Bussgang 
and Prices theorems [4, 9] for nonlinear systems with Gaussian inputs. However, in 
real world situations, one often does not have access to the distortion input. In this 
case, blind identification of the system becomes the only way to solve the problem. In 
this paper we propose to adapt the method presented in [17, 18] for blind deconvolu-
tion by means of source separation techniques, to the case of real world signals 
which are non i.i.d. This is done by means of a stage of preprocessing before send-
ing the signal and post-processing stage after the reception and deconvolution. The 
paper is organized as follows. The source separation problem is described in Sec-
tion 2. The model and assumptions for applying these techniques to blind deconvo-
lution are presented in Section 3. Section 4 contains the proposed preprocessing and 
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post-processing stages, and the simulation results are presented in Section 5, before 
concluding in Section 6. 

2   Source Separation Review 

The problem of source separation may be formulated as the recovering of a set of 
unknown independent signals from the observations of mixtures of them without any 
prior information about either the sources or the mixture [10, 6]. The strategy used in 
this kind of problems is based in obtaining signals as independent as possible at the 
output of the system. In the bibliography multiple algorithms have been proposed for 
solving the problem of source separation in instantaneous linear mixtures. These algo-
rithms range from neural networks based methods [1], cumulants or moments meth-
ods [7, 5], geometric methods [15] or information theoretic methods [2]. In real world 
situations, however, the majority of mixtures can not be modeled as instantaneous 
and/or linear. This is the case of the convolutive mixtures, where the effect of channel 
from source to sensor is modeled by a filter [11]. Also the case of the post-nonlinear 
(PNL) mixtures, where the sensor is modeled as a system that performs a linear mix-
ture of sources plus a nonlinear function applied to its output, in order to take into 
account the possible non-linearity of the sensor (saturation, etc.)  [16]. 

Mathematically, we can write the observed signals in source separation problem of 
instantaneous and linear mixtures as (see figure 1): 

( ) ( )
=

=
n

j
jiji tsate

1

 (1) 

where A={
ija } is the mixing matrix. It is well known that such a system is blindly 

invertible if the source signals are statistically independent and we have no more than 
one Gaussian signal. 

A solution may be found by minimizing the mutual information function between 
the outputs of the system yi: 

 

s1(t)
s2(t)

sn(t)

en(t)

yn(t)

y1(t)
e1(t)

y2(t)

unknown
(mixing system)

observation
(demixing system)

input output

A B

 

Fig. 1. Block diagram of the mixture system and blind demixing system. Both matrix A and 
signals si(t) on the mixture process are unknown. 
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A related problem with blind separation is the case of blind deconvolution, which 
is presented in figure 2, and can be expressed in the framework of Equation (1). De-
velopment of this framework is presented in the following section. 

 

w  h

 s(t)  y(t)

unknown
(convolution  system)

observation
(deconvolution system)

 e(t)

input output

 

Fig. 2. Block diagram of the convolution system and blind deconvolution system. Both filter h 
and signal s(t) on the convolution process are unknown. 

3   Model and Assumptions 

We suppose that the input of the system S={s(t)}is an unknown non-Gaussian inde-
pendent and identically distributed (i.i.d.) process. We are concerned by the estima-
tion of s(t) from the system’s output e. This implies the blind inversion of a filter. 
From figure 2, we can write the output of filter h in a similar form that obtained in 
source separation problem, Equation 1, but now with vectors and matrix of infinite 
dimension: 

Hse =   

where: 

( ) ( ) ( )
( ) ( ) ( )++

−+
=

...............

......

......

...............

ththth

ththth
H

12

11

 

 

 

is a Toeplitz matrix of infinite dimension and represents the action of filter h to the 
signal s(t). This matrix h is nonsingular provided that the filter h is invertible, i.e. h-1 
exists and satisfies h-1∗h = h∗h-1 = δ0, where δ0 is de Dirac impulse. The solution to 
invert this systems and the more general nonlinear systems (Wiener systems) are 
presented and studied in [17, 18] where a Quasi-nonparametric method is presented. 
In the particular case of windowed signals, h is of finite length, and the product h-1∗h 
yields a Dirac impulse with a delay. 
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3.1   Summary of the Deconvolution Algorithm 

From figure 2 we can write the mutual information of the output of the filter w using 
the notion of entropy rates of stochastic processes [12] as:  

( ) ( )( ) ( )

( )( ) ( )YHyH

y,...,yHtyH
T

limYI TT

T

TtT

−=

−
+

= −
−=∞→

τ
12

1
 (2) 

where τ is arbitrary due to the stationary assumption. The input signal S={s(t)} is an 
unknown non-Gaussian i.i.d. process, Y={y(t)} is the output process and y denotes a 
vector of infinite dimension whose t-th entry is y(t). We shall notice that I(Y) is al-
ways positive and vanishes when Y is i.i.d. 
After some algebra, Equation (2) can be rewritten as [10]: 

( ) ( )( ) ( ) [ ]εθ
π

τ
π

θ EdetwlogyHYI
t

jt −−=
+∞

−∞=

−
2

02

1

 
(3) 

To derive the optimization algorithm we need the derivative of I(Y) with respect to 
the coefficients of w filter. For the first term of Equation (3) we have: 

( )( )
( )

( )
( ) ( )( ) ( ) ( )( )y y

H y y
E y E e t y

w t w t

τ τ
ψ τ τ ψ τ

∂ ∂
= − = − −
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 (4) 

where ψy(u)=(logPy)’(u) is the score function. The second term is: 
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where one recognizes the {−t}-th coefficient of the inverse of the filter w, which we 
denote ( )w t− .  Combining Equations (5) and (6) leads to:  

( )
( ) ( ) ( )( )[ ] ( )twytxE
tw

YI
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∂ τψτ

 

 

that is the gradient of I(Y) with respect to w(t). Using the concept of natural or relative 
gradient, the gradient descendent algorithm will be finally as: 

( ) ( )( )[ ]{ } w*ytxEww y δτψτμ +−+←   

It is important to notice that blind deconvolution is a different problem than source 
separation. In our blind deconvolution scenario the objective is to recover an un-
known signal filtered by an unknown filter, using only the received (observed) signal. 
The main idea, proposed in [17, 18] is to use independence criteria, as in source sepa-
ration problems, for deal with this problem. The relationship between source separa-
tion and deconvolution is shown in figure 3. 
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.  

Fig. 3. Relationship between deconvolution and source separation. In source separation we 
force spatial independence between samples of different signals (at the same time instant). On 
the other hand, in deconvolution we impose this independence between samples of the unique 
signal at different times (time independence). 

4   Application to Real World Signals 

When signals are sent from the transmitter to the receiver, they suffer changes in their 
waveform form due to the effect of the transmission channel. In real systems, usually 
the transmission channel is unknown, and therefore the effect over the signals is uncer-
tain. In this case, the use of an equalizer is necessary in order to ensure that the received 
signal is exactly the sent signal. Our proposed method uses directly the signal of interest 
to blindly estimate the inverse of the transmission channel, without the need of any 
other technique for equalizing the channel. In order to apply this method to real world 
signals we have to deal, as shown in previous Section with the fact that the signals are 
usually not i.i.d., so we can not use this method directly. In order to use it, we need to 
preprocess the input signal to ensure its temporal independence between samples and 
also to ensure its non-Gaussian distribution. In this section we present these preprocess-
ing and post-processing stages in experiments done with speech signals. 

4.1   Whitening of the Signal 

Speech signals have a clear correlation structure, and therefore are not i.i.d. In order 
to use source separation techniques for blind deconvolution a preprocessing stage is 
necessary and it consists on a whitening of the original signal by means of an inverse 
LPC filter.  
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Fig. 4. Left: wave form of Vowel /a/ and the prediction residual. Right: Comparison of the 
normalized autocorrelations of the vowel signal and the residual of the LPC. 

The use of a LPC preprocessing is useful in the case of signals that can be modeled 
as autoregressive processes. This is the case of speech signal or string and wind in-
struments, which were our test signals. In figure 4 we can see the autocorrelation 
sequence of a speech segment corresponding to the vowel /a/, before and after the 
whitening filter. Note that the prediction residual has peaks at multiples of the pitch 
frequency, and the residual in between these peaks is reduced. 

The resulting residual after the whitening filter is an i.i.d. signal with a Gaussian 
distribution. Consequently it will be necessary to change de probability density func-
tion of the i.i.d. signal in order to acquire the necessary conditions to apply the decon-
volution process on the receiver. 

4.2   Des-Gaussianity of the Signal 

In figure 5 we show the quantiles of the signal and the residual vs. the quantiles of a 
Gaussian distribution. One can see that the whitened signal has a nearly linear relation 
and is symmetric. For the purposes of the algorithm that we propose the signal can be 
considered Gaussian. 

In order to change its probability density function, we propose a method based on 
the following observations:  

1. Speech signals are periodic signals, with a fundamental period (pitch fre-
quency). 

2. A whitening filter removes all the components and keeps only the non-
predictable part that corresponds precisely to the excitation of the speech sig-
nal (the pitch), and to the excitation of the instrument, with its fundamental 
period. 

Starting from these observations we propose the following method: 

1. Normalize the whitened signal provided by a LPC filter in a way that the 
maximums associated whit the periodic excitation been around ±1. 

2. Pass the result signal trough a nonlinear function that maintains the peak val-
ues but modify substantially all the other values, therefore the pdf.  We pro-
pose  two functions for this task: 
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Fig. 5. Plot of the quantiles of the whitened signal versus probability of a Gaussian. One can 
observe the Gaussianity of the distribution. 

2.1. exponential function x(·)n: attenuate all the values between two consecu-
tive peaks.  

2.2. tanh(·): amplify all the values between two consecutive peaks. 

The effect of this process will be that the output signal will maintain important 
parts of the signal (the peaks of the series) and will change the form of the distribu-
tion. In the next figure we can see the proposed method: 

 
Fig. 6. The proposed preprocessing stage, composed by a whitening filter M and a nonlinear 
function k(·) preserving the most important part of the input signal. This stage is applied before 
sending the (unknown) signal through the transmitter channel. 

5   Experimental Results 

The input signal is a fragment of speech signal, preprocessed as shown in the dia-
gram of figure 5. This is the signal that we want to transmit through an unknown 
channel. Our objective is to recover the original signal s’(t) only from the received 
observation e(t). 

 

  M

pre-processing stage

k (.)  s(t) s’(t) 
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Fig. 7. On the upper part of the figure, the proposed preprocessing stage, and the convolution 
system. On the lower part, the blind deconvolution system and the post-processing stage. 
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Fig. 8. Poles and zeros of h. We observe two zeros outside the unit circle, so the filter is of non-
minimum phase. 
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Fig. 9. On the left, the LPC residue of the signal superposed with the residual after the non-
linear operation. On the right, the quantile of the processed residual versus the quantiles of a 
Gaussian distribution. 

 

Fig. 10. On the left, filter coefficients evolution of the inverse filter w. The convergence is 
attained at 150 iterations approx. On the right, convolution between filter h and its estimated 
inverse w. The result is clearly a delta function. 

Consider, now, the filter h as a FIR filter with coefficients: h=[0.826,-
0.165,0.851,0.165,0.810]. Figure 8 show that h has two zeros outside the unit circle, 
which indicates that h is non-minimum phase. The system that we propose will al-
ways yield a stable equalizer because it computes a FIR approximation of the IIR 
optimal solution. The algorithm was provided with a signal of size T = 500. The size 
of the impulse response of w was set to 81. In the pre-processing stage the length of 
LPC was fixed at 12 coefficients and nonlinear function (des-Gaussianity) was  
k(u) = u3. 

In figure 9, on the left we show the prediction residual, before and after a cubic 
non-linearity. On the right we show a quantile plot of the residual vs. a Gaussian dis-
tribution. It can be seen that it does not follow a linear relation. The results showed in 
figure 10 prove the good behavior of the proposed algorithm, i.e. we perform cor-
rectly the blind inversion of the filter (channel). The recovered signal at the output of 
the system has the spectrum showed in figure 11. We can see how, although we have 
modified in a nonlinear manner the input signal in the preprocess stage, the spectrum 
matches the original because non-linear function k(·) preserve the structure of the  
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Fig. 11. Input signal spectrum (continuous line), output signal spectrum (dotted line) and LPC 
spectrum (Thick line). We can observe the similarity of these spectrums at low frequencies. The 
main difference is related to the high part of the spectrum of the reconstructed signal, which is 
due to the fact that the LPC reconstruction allocates resources to the parts of the spectrum with 
high energies. 

residual (non-predictable part) of the signal. The difference between harmonic peaks 
of speech signal and background noise is about 40 dB. 

Similar experiments have been done with music signals, which are also non i.i.d. 
signals and have strong correlations between samples due to the resonance character-
istics of the instruments. In this case, similarly to the previous experiments, the results 
are quite good, using the same parameters (non-linear function k, LPC order, etc.). 

6   Summary 

In this paper we have presented a method for blind deconvolution of channel applied 
to real world signals. This method is based on source separation techniques, which 
can estimate the inverse of a channel if the original signal is non-Gaussian and i.i.d. In 
order to apply this result to real world signals we will need to preprocess the original 
signal using a whitening stage by means of an inverse LPC filter and applying after a 
non-linear function for des-Gaussianity the signal. Thereby we modify the density 
probability function without changing the non predictable part of the signal. In recep-
tion, after the deconvolution of the signal, we need a post-processing stage by means 
of the inverse of the LPC filter in order to reconstruct the original signal. 

For a future works we are studying other possibilities in order to apply source sepa-
ration techniques to linear or non-linear channel deconvolution problems with real 
world signals. Our preliminary work indicated that we can effectively invert the nonlin-
ear convolution by means of source separation techniques [10, 11] but for a non station-
ary signal it is necessary to study how we can preprocess this signals to insure the i.i.d. 
and non Gaussian distribution necessary conditions to apply these techniques. 
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Abstract. The new method of segmented wavelet transform (SegWT)
makes it possible to compute the discrete-time wavelet transform of a sig-
nal segment-by-segment. This means that the method could be utilized
for wavelet-type processing of a signal in “real time”, or in case we need
to process a long signal (not necessarily in real time), but there is insuf-
ficient computational memory capacity for it (for example in the signal
processors). Then it is possible to process the signal part-by-part with
low memory costs by the new method. The method is suitable also for
the speech processing, e.g. denoising the speech signal via thresholding
the wavelet coefficients or speech coding. In the paper, the principle of
the segmented forward wavelet transform is explained and the algorithm
is described in detail.

1 Introduction

There are a number of theoretical papers and practical applications of the wavelet
transform. However, all of them approach the problem from such a point of view
as if we knew the whole of the signal (no matter how long it is). Due to this
assumption, we cannot perform the wavelet-type signal processing in real time in
this sense. Of course there are real-time applications of the wavelet type, but, all
of them utilize the principle of overlapping segments of the “windowed” signal
(see for example [1]). In the reconstruction part of their algorithms they certainly
introduce errors into the processing, because the segments are assembled using
weighted averages.

Processing a signal in “real time” actually means processing it with min-
imum delay. A signal, which is not known in advance, usually comes to the
input of a system piecewise, by mutually independent segments that have to be
processed and, after the modification, sent to the output of the system. This
is typically the case of processing audio signals, in particular speech signals in
telecommunications.

The new method, the so-called segmented wavelet transform (SegWT1), en-
ables this type of processing. It has a great potential application also in cases
1 we introduce abbreviation SegWT (Segmented Wavelet Transform), because SWT

is already reserved for stationary wavelet transform.

M. Faundez-Zanuy et al. (Eds.): NOLISP 2005, LNAI 3817, pp. 368–378, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Signal (top) and its scalogram (bottom). Scalogram is a type of graph repre-
senting the frequency contents of a signal in time. It is constructed from the wavelet
coefficients.

when it is necessary to process a long signal off-line and no sufficient memory
capacity is available. It is then possible to use this new method for equivalent seg-
mentwise processing of the signal and thus save the storage space. In this sense
the SegWT algorithm corresponds to overlap-add and overlap-save algorithms
in Fourier-type linear filtering.

Another possible application of the SegWT algorithm is the instantaneous
visualization of signal using an imaging technique referred to as “scalogram”,
see Fig. 1. The decomposition depth is d = 5 in this Figure. The bigger is
the absolute value of the single coefficient, the lighter is the color saturation
of the respective cell in the graph. In fact, plotting scalogram is a technique
very similar to plotting a spectrogram in real time. In wavelet transformation
there is an advantage in that the signal need not be weighted with windows,
which results in a distortion of the frequency information, as is the case with
the spectrogram. Moreover, there is one more good thing about it: a scalogram
created by means of the SegWT is quite independent of the chosen length of
segment.

In the available literature, this way of performing the wavelet transform is
practically neglected, and this was the reason why our effort was devoted to
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developing modified algorithm. In fact, a modified method of forward wavelet
transform is presented in this paper.

In the next Section the discrete-time wavelet transform (DTWT) algorithm
is presented in detail. This is because we need to have extended knowledge of it
for the derivation of the new method. The subsequent parts are then devoted to
the segmented wavelet transform.

2 The Classical DTWT Algorithm

Algorithm 1. (decomposition pyramid algorithm DTWT)
Let x be a discrete input signal of length s, the two wavelet decomposition
filters of length m are defined, highpass g and lowpass h, d is a positive interger
determining the decomposition depth. Also, the type of boundary treatment
[6, ch. 8] must be known.

1. We denote the input signal x as a(0) and set j = 0.
2. One decomposition step:
(a) Extending the input vector. We extend a(j) from both the left and the

right side by (m − 1) samples, according to the type of boundary treat-
ment.

(b) Filtering. We filter the extended signal with filter g, which can be ex-
pressed by their convolution.

(c) Cropping. We take from the result just its central part, so that the re-
maining “tails” on both the left and the right sides have the same length
m − 1 samples.

(d) Downsampling (decimation). We downsample this vector, e.g. leave just
its even samples (supposing the vector is indexed beginning with 1).

We denote the resulting vector d(j+1) and store it.
We repeat items (b)–(d), now with filter h, denoting and storing the result
as a(j+1).

3. We increase j by one. If it now holds j < d, we return to item 2., in the
other case the algorithm ends.

Remark. After algorithm 1 has been finished, we hold the wavelet coefficients
stored in d + 1 vectors a(d),d(d),d(d−1), . . . ,d(1).

One step of the wavelet decomposition principle can be seen in Figure 2.

3 The Method of Segmented Wavelet Transform

3.1 Motivation and Aim of the Method

Regularly used discrete-time wavelet transform (see Section 2) is suitable for
processing signals “off-line”, i.e. known before processing, even if very long. The
task for the segmented wavelet transform, SegWT, is naturally to allow signal
processing by its segments, so that in this manner we get the same result (same
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a(j)

a(j+1) d(j+1)

h, ↓ 2 g, ↓ 2

Fig. 2. One step of the wavelet decomposition. Approximate coefficients of the j-th
level (vector a(j)) are decomposed into approximate and detail coefficients of level j +1
via filtering with h and g and decimation (denoted ↓ 2).

wavelet coefficients) as in the ordinary DTWT case. In this problem, the fol-
lowing parameters play a crucial role.

m wavelet filter length, m > 0,
d transform depth, d > 0,
s length of segment, s > 0.

The derivation of the SegWT algorithm requires a very detailed knowledge of
the DTWT algorithm. Thanks to this it is possible to deduce fairly sophisticated
rules how to handle the signal segments. We have found that in dependence on
m, d, s, it is necessary to extend every segment from the left by an exact number
of samples from the preceding segment and from the right by another number
of samples from the subsequent segment. However, every segment has to be
extended by a different length from the left and the right, and these lengths can
also differ from segment to segment! Also the first and the last segments have
to be handled in a particular way.

3.2 Important Theorems Derived from the DTWT Algorithm

Before we introduce detailed description of the SegWT algorithm, several the-
orems must be presented. More of them and their proofs can be found in [5,
ch. 8]. We assume that the input signal x is divided into S ≥ 1 segments of
equal length s. Single segments will be denoted 1x,2x, . . . ,Sx. The last one can
be of a length lower than s. See Fig. 3.

By the formulation that the coefficients (or more properly two sets of coef-
ficients) from the k-th decomposition level follow-up on each other we mean a
situation when two consecutive segments are properly extended see Figs. 3, 4,
so that applying the DTWT2 of depth k separately to both the segments and
joining the resultant coefficients together lead to the same set of coefficients as
computing it via the DTWT applied to the two segments joined first.

2 With step 2(a) omitted.
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x

1x
2x

3x
4x

5x
6x

(a)

(b)

Fig. 3. Scheme of signal segmentation. The input signal x (a) is divided into segments
of equal length, the last one can be shorter than this (b); the n-th segment of x is
denoted by nx.

Theorem 1. In case that the consecutive segments have

r(k) = (2k − 1)(m − 1) (1)

common input signal samples, the coefficients from the k-th decomposition level
follow-up on each other.

Thus, for a decomposition depth equal to d it is necessary to have r(d) =
(2d− 1)(m − 1) common samples in the two consecutive extended segments.

The aim of the following part of the text is to find the proper extension of
every two consecutive signal segments. We will show that the length of such
extension must comply with the strict rules derived from the theorems below.

The extension of a pair of consecutive segments, which is of total length r(d),
can be divided into the right extension of the first segment (of length P ) and the
left extension of the following segment (of length L), while r(d) = P+L. However,
the lengths L ≥ 0, P ≥ 0 cannot be chosen arbitrarily. The lengths L, P are not
uniquely determined in general. The formula for the choice of extension Lmax,
which is unique and the most appropriate in case of real-time signal processing,
is given in Theorem 2.

Theorem 2. Let a segment be given whose length including its left extension is
l. The maximal possible left extension of the next segment, Lmax, can be computed
by the formula

Lmax = l − 2d ceil
(

l − r(d)
2d

)
. (2)

The minimal possible right extension of the given segment is then naturally

Pmin = r(d) − Lmax. (3)

For the purposes of the following text, it will be convenient to assign the
number of the respective segment to the variables Lmax, Pmin, l, i.e. the left
extension of the n-th segment will be of length Lmax(n), the right extension



Method for Real-Time Signal Processing Via Wavelet Transform 373

. . .

. . .

n−1x

nx

n+1x

n+2x

Fig. 4. Illustration of extending of the segments

will be of length Pmin(n) and the length of the original n-th segment with the
left extension joined will be denoted l(n). Using this notation we can rewrite
equation (3) as

Pmin(n) = r(d) − Lmax(n + 1). (4)

Let us now comment on the special situation of the first or the last seg-
ment. These naturally represent the “boundaries” of the signal. The discrete-
time wavelet transform uses several modes how to treat the boundaries and we
must preserve these modes also in our modified algorithm. Therefore we must
treat the first and the last segment separately and a bit differently from the
other segments. For details and proofs we again refer to [5]. The appropriate
procedure is to extend the first segment from the left by r(d) zero samples, i.e.
Lmax(1) = r(d), and to process it using Algorithm 4. Similarly the last segment
has to be extended by r(d) zeros from the right and processed using Algorithm 5.

Theorem 3. The length of the right extension of the n-th segment, n = 1, 2, . . . ,
S − 2, must comply with

Pmin(n) = 2d ceil
(ns

2d

)
− ns, (5)

and the length of the left extension of the (n + 1)-th segment is Lmax(n + 1) =
r(d) − Pmin(n).

Remark. From (5) it is clear that Pmin is periodic with respect to s with period
2d, i.e. Pmin(n + 2d) = Pmin(n).

This relation and also some more can be seen in Table 1.

Theorem 4. (on the total length of segment)
After the extension the n-th segment (of original length s) will be of total length

∑
(n) = r(d) + 2d

[
ceil

(ns

2d

)
− ceil

(
(n − 1)s

2d

)]
. (6)
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Table 1. Example - lengths of extensions for different lengths of segments s. The depth
of decomposition is d = 3 and the filter length is m = 16.

s n 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

512 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Pmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

(n) 617 617 617 617 617 617 617 617 617 617 617 617 617 . . .

513 Lmax(n) 105 98 99 100 101 102 103 104 105 98 99 100 101 . . .

Pmin(n) 7 6 5 4 3 2 1 0 7 6 5 4 3 . . .

(n) 625 617 617 617 617 617 617 617 625 617 617 617 617 . . .

514 Lmax(n) 105 99 101 103 105 99 101 103 105 99 101 103 105 . . .

Pmin(n) 6 4 2 0 6 4 2 0 6 4 2 0 6 . . .

(n) 625 617 617 617 625 617 617 617 625 617 617 617 625 . . .

515 Lmax(n) 105 100 103 98 101 104 99 102 105 100 103 98 101 . . .

Pmin(n) 5 2 7 4 1 6 3 0 5 2 7 4 1 . . .

(n) 625 617 625 617 617 625 617 617 625 617 625 617 617 . . .

516 Lmax(n) 105 101 105 101 105 101 105 101 105 101 105 101 105 . . .

Pmin(n) 4 0 4 0 4 0 4 0 4 0 4 0 4 . . .

(n) 625 617 625 617 625 617 625 617 625 617 625 617 625 . . .

517 Lmax(n) 105 102 99 104 101 98 103 100 105 102 99 104 101 . . .

Pmin(n) 3 6 1 4 7 2 5 0 3 6 1 4 7 . . .

(n) 625 625 617 625 625 617 625 617 625 625 617 625 625 . . .

518 Lmax(n) 105 103 101 99 105 103 101 99 105 103 101 99 105 . . .

Pmin(n) 2 4 6 0 2 4 6 0 2 4 6 0 2 . . .

(n) 625 625 625 617 625 625 625 617 625 625 625 617 625 . . .

519 Lmax(n) 105 104 103 102 101 100 99 98 105 104 103 102 101 . . .

Pmin(n) 1 2 3 4 5 6 7 0 1 2 3 4 5 . . .

(n) 625 625 625 625 625 625 625 617 625 625 625 625 625 . . .

520 Lmax(n) 105 105 105 105 105 105 105 105 105 105 105 105 105 . . .

Pmin(n) 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

(n) 625 625 625 625 625 625 625 625 625 625 625 625 625 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...
. . .

This expression can acquire only one of two values, either

r(d) + 2d ceil
( s

2d

)
or r(d) + 2d ceil

( s

2d

)
− 2d. (7)

The relations presented in this Theorem are apparent in Table 1.

3.3 The Algorithm of Segmented Wavelet Transform

The algorithm SegWT (Algorithm 2 below) works such that it reads (receives)
single segments of the input signal, then it extends – overlaps them in a proper
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way, then it computes the wavelet coefficients in a modified way and, in the end,
it easily joins the coefficients.

Algorithm 2. Let the wavelet filters g,h of length m, the decomposition depth
d, and the boundary treatment mode be given. The segments of length s > 0
of the input signal x are denoted 1x,2x,3x, . . .. The last segment can be shorter
than s.

1. Set N = 1.
2. Read the first segment, 1x, and label it “current”. Extend it from the left by

r(d) zero samples.
3. If the first segment is at the same time the last one

(a) It is the case of regular wavelet transform. Compute the DTWT of this
single segment using Algorithm 1.

(b) The Algorithm ends.
4. Read (N + 1)-th segment and label it “next”.
5. If this segment is the last one

(a) Join the current and next segment together and label it “current”. (The
current segment becomes the last one now.)

(b) Extend the current vector from the right by r(d) zero samples.
(c) Compute the DTWT of depth d from the extended current segment using

Algorithm 5.
Otherwise
(d) Compute Lmax for the next segment and Pmin for the current segment

(see Theorem 2).
(e) Extend the current segment from the right by Pmin samples taken from

the next segment. Extend the next segment from the left by Lmax samples
taken from the current segment.

(f) If the current segment is the first one, compute the DTWT of depth
d from the extended current segment using Algorithm 4. Otherwise
compute the DTWT of depth d from the extended current segment using
Algorithm 3.

6. Modify the vectors containing the wavelet coefficients by trimming off a
certain number of redundant coefficients from the left side, specifically:
at the k-th level, k = 1, 2, . . . , d − 1, trim off r(d − k) coefficients from the
left.

7. If the current segment is the last one, then in the same manner as in the
last item trim the redundant coefficients, this time from the right.

8. Store the result as Na(d),Nd(d),Nd(d−1), . . . ,Nd(1).
9. If the current segment is not the last one

(a) Label the next segment “current”.
(b) Increase N by 1 and go to item 4.

Remark. If the input signal has been divided into S > 1 segments, then
(S − 1)(d + 1) vectors of wavelet coefficients

{ ia(d), id(d), id(d−1), . . . ,id(1)}S−1
i=1 .
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are the output of the Algorithm. If we join these vectors together in a simple way,
we obtain a set of d + 1 vectors, which are identical with the wavelet coefficients
of signal x.
Next we present the “subalgorithms” of the SegWT method.

Algorithm 3. This algorithm is identical with Algorithm 1 with the exception
that we omit step 2(a), i.e. we do not extend the vector.

The next two algorithms serve to process the first and the last segment.

Algorithm 4. This algorithm is identical with Algorithm 1 with the exception
that we replace step 2(a) by the step:

Modify the coefficients of vector a(j) on positions r(d − j) − m + 2, . . . ,
r(d − j), as it corresponds to the given boundary treatment mode.

Algorithm 5. This algorithm is identical with Algorithm 1 with the exception
that we replace step 2(a) by the step:

Modify the coefficients of vector a(j) on positions r(d − j) − m + 2, . . . ,
r(d−j), as it corresponds to the given boundary treatment mode, however
this time taken from the right side of a(j).

3.4 Corollaries and Limitations of the SegWT Algorithm

In this part of the text we will derive how many coefficients we are able to
compute from each segment with SegWT. The minimum length of a segment
will also be derived.

Theorem 5. Let the decomposition depth d be given and let ñx be the extension
of the n-th segment nx of original length s. Then we will compute

qmax(n) =

⎧⎨⎩ ceil
( s

2d

)
for

∑
(n) = r(d) + 2d ceil

( s

2d

)
ceil

( s

2d

)
− 1 for

∑
(n) = r(d) + 2d ceil

( s

2d

)
− 2d

(8)

wavelet coefficients at level d from x.

Corollary 1. (the minimum length of a segment)
Let the decomposition depth d be given. Assuming S > 2d + 1, the length of the
original segment, s, must satisfy the condition s > 2d.

It is clear from the description that the time lag of Algorithm 2 is one segment
(i.e. s samples) plus the time needed for the computation of the coefficient from
the current segment. In a special case when s is divisible by 2d it holds even
Pmin(n) = 0 for every n ∈ N (see Theorem 3), i.e. the lag is determined only by
the computation time!
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3.5 A Few Examples

Now we present a few examples of SegWT performance which follow from the
above Theorems.

Example 1. For d = 4 and m = 12, the minimum segment length is just 16
samples. When we set s = 256, Pmin will always be zero and Lmax = r(4) = 165.
The length of every extended segment will be 256 + 165 = 421 samples.

Example 2. For d = 5 and m = 8, the minimum segment length is 32 samples.
When we set s = 256, Pmin will always be zero and Lmax = r(5) = 217. The
length of every extended segment will be 256 + 217 = 473 samples.

Example 3. For d = 5 and m = 8 we set s = 300, which is not divisible by 25.
Thus Pmin and Lmax will alternate such that 0 ≤ Pmin ≤ 31 and 186 ≤ Lmax ≤
217. The length of every extended segment will be 256 + r(5) = 473 samples.

4 Conclusion

The paper contains a description of the algorithm which allows us to perform the
wavelet transform in real time. The algorithm works on the basis of calculating
the optimal extension (overlap) of signal segments, and subsequent performance
of the modified transform.

In the future it would be convenient to improve the computational effectivity
by reducing redundant computations at the borders of the segments, as it follows
from the Algorithm 2. There is also a chance to generalize the SegWT method
to include biorthogonal wavelets and more general types of decimation [2,4].

Another important part of the future work is the derivation of an efficient
counterpart to the introduced method – the segmented inverse transform. In
fact, we made first experience with such development. It turned out that the al-
gorithm will have to be quite complicated and, above all, that the time lag in the
consecutive forward-inverse processing will be, unfortunately, always nonzero.

Acknowledgements. The paper was prepared within the framework of No.
102/04/1097 and No. 102/03/0762 projects of the Grant Agency of the Czech
Republic and COST Project No. OC277.
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wavelet transform. In Wavelets: Time-Frequency Methods and Phase Space, In-
verse Problems and Theoretical Imaging, editors J.-M. Combes, A. Grossman, P.
Tchamitchian. pp. 298–304, Springer-Verlag, Berlin (1989)



378 P. Rajmic

3. Mallat, S.: A Wavelet Tour of Signal Processing. 2nd edition, Academic Press (1999)
ISBN 0-12-466606-X

4. Nason, G.P., Silverman, B.W.: The stationery wavelet transform and some statisti-
cal applications. In Wavelets and Statistics, volume 103 of Lecture Notes in Statis-
tics, editors A. Antoniadis, G. Oppenheim, pp. 281–300, Springer-Verlag, New York
(1995)

5. Rajmic, P.: Využit́ı waveletové transformace a matematické statistiky pro separaci
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Solé-Casals, Jordi 357
Squartini, Stefano 318

Takeda, Kazuya 328
Thorsen, Thomas 291
Toutios, Asterios 186

Travieso, Carlos M. 206

Vı́ch, Robert 161

Walker, Jacqueline 139
Wu, Dalei 72

Yegnanarayana, B. 303

Zarader, Jean-Luc 284
Zellner Keller, Brigitte 116


	Frontmatter
	The COST-277 European Action: An Overview
	Neuro-fuzzy Logic in Signal Processing for Communications: From Bits to Protocols
	Connected Operators for Signal and Image Processing
	Speaker Recognition
	Exploiting High-Level Information Provided by ALISP in Speaker Recognition
	MLP Internal Representation as Discriminative Features for Improved Speaker Recognition
	Weighting Scores to Improve Speaker-Dependent Threshold Estimation in Text-Dependent Speaker Verification
	Parameter Optimization in a Text-Dependent Cryptographic-Speech-Key Generation Task
	The COST-277 Speech Database

	Speech Analysis
	Children's Organization of Discourse Structure Through Pausing Means
	F0 and Intensity Distributions of Marsec Speakers: Types of Speaker Prosody
	A Two-Level Drive -- Response Model of Non-stationary Speech Signals
	Advanced Methods for Glottal Wave Extraction
	Cepstrum-Based Estimation of the Harmonics-to-Noise Ratio for Synthesized and Human Voice Signals
	Pseudo Cepstral Analysis of Czech Vowels
	Bispectrum Estimators for Voice Activity Detection and Speech Recognition

	Voice Pathologies
	On the Acoustic-to-Electropalatographic Mapping
	Issues in Clinical Applications of Bilateral Multi-step Predictive Analysis of Speech
	Optimal Size of Time Window in Nonlinear Features for Voice Quality Measurement
	Support Vector Machines Applied to the Detection of Voice Disorders
	Synthesis of Disordered Voices
	Voice Pathology Detection by Vocal Cord Biomechanical Parameter Estimation

	Speech Recognition
	A Speech Recognizer Based on Multiclass SVMs with HMM-Guided Segmentation
	Segment Boundaries in Low Latency Phonetic Recognition
	Third-Order Moments of Filtered Speech Signals for Robust Speech Recognition
	New Sub-band Processing Framework Using Non-linear Predictive Models for Speech Feature Extraction
	Noise Robust Automatic Speech Recognition with Adaptive Quantile Based Noise Estimation and Speech Band Emphasizing Filter Bank
	Spotting Multilingual Consonant-Vowel Units of Speech Using Neural Network Models

	Speech Enhancement
	Novel Sub-band Adaptive Systems Incorporating Wiener Filtering for Binaural Speech Enhancement
	Maximum a Posterior Probability and Cumulative Distribution Function Equalization Methods for Speech Spectral Estimation with Application in Noise Suppression Filtering

	Applications
	Modeling Fluctuations of Voiced Excitation for Speech Generation Based on Recursive Volterra Systems
	A Simple, Quasi-linear, Discrete Model of Vocal Fold Dynamics
	Blind Channel Deconvolution of Real World Signals Using Source Separation Techniques
	Method for Real-Time Signal Processing Via Wavelet Transform

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




