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Abstract. The evolutionary origin of universal statistics in biochemical
reaction networks is studied, to explain the power-law distribution of
reaction links and the power-law distributions of chemical abundances.
Using cell models with catalytic reaction networks, we confirmed that
the power-law distribution in abundances of chemicals emerges by the
selection of cells with higher growth speeds, as suggested in our previous
study. Through the further evolution, this inhomogeneity in chemical
abundances is shown to be embedded in the distribution of links, leading
to the power-law distribution. These findings provide novel insights into
the nature of network evolution in living cells.

1 Introduction

Recent advances in molecular biology have provided detailed knowledge about
individual cellular components and their functions. Despite its enormous success,
it is increasingly clear that the nature of intra-cellular dynamics maintaining the
living state is difficult to be understood only by building up such detailed knowl-
edge of molecules, since a complex network of reactions among these molecules,
such as proteins, DNA, RNA and small molecules, are essential for it. Here, one
possible strategy to extract the nature of intra-cellular dynamics is to search for
universal laws with regard to the networks of intra-cellular reactions common to
all living systems, and then to unravel the dynamics of evolution leading to such
universal features.

Indeed, recent large-scale studies revealed two universal features in cellular
dynamics. First, the power-law distribution of links in reaction networks was dis-
covered in metabolic and other biochemical reaction networks, as is termed as
a scale-free network, where the connectivity distribution P (k) obeys the law
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k−γ with γ ≈ (2 ∼ 3)[2, 3, 4, 5, 6]. Second, the abundances of chemicals in
intra-cellular reaction were found to also exhibit the power-law distributions, as
confirmed at the levels of gene expression [1, 7, 8] and metabolic flux [9]. Here,
the chemical abundances plotted in the order of their magnitude are inversely
proportional to their rank.

However, despite the potential importance of these universal statistical laws,
it is still unclear how they developed through evolution, how they are mutually
related, and what their biological meaning is. As the efficiency of biochemical
reaction process to achieve cellular growth can depend on the statistical distri-
bution of chemical abundances and the network structure, it is then natural to
pursue the possibility that both the two statistical laws appear as a result of
evolution of cellular reaction dynamics. In the present paper, we demonstrate
that this possibility is indeed true, through extensive simulations of evolution of
cells with catalytic reaction networks to achieve higher cellular growth, and by
proposing a theory for the evolutionary link from the abundance distribution to
the network structure.

Employing a simple cell model with catalytic reaction dynamics consisting
of a huge number of chemicals, we first found that a power-law distribution in
abundances of chemical species emerges by selecting cells with higher growth
speeds. Then, this inhomogeneity in the chemical abundances is embedded into
the distribution of links in the reaction networks by further evolutionary process.
This embedding of abundances into the network is shown to be due to the fact
that the probability with which a new reaction path is connected to the chem-
icals is not uniform after selection, but it is higher for a path to be linked to a
chemical that has a larger abundance. This abundance-connectivity correlation
leads to a power-law distribution in reaction networks, as is consistent with the
previous reports in the metabolic networks. On one hand, these findings pro-
vide a novel insight into the evolution of intra-cellular reaction dynamics and
networks. On the other hand, generality of a proposed theoretical mechanism
for the evolutionary embedding of abundance distribution into network connec-
tivity distribution suggests its possible relevance to understand the structure of
biological networks in general.

2 Model

Consider a cell consisting of a variety of chemicals. The internal state of the cell
can be represented by a set of concentrations (x1, x2, · · · , xK), where xi is the
intra-cellular concentration of the chemical species i with i ranging from i = 1 to
K. Depending on whether there is an enzymatic reaction from i to j catalysed
by some other chemical �, the reaction path is connected as (i + � → j + �). The
rate of increase of xj (and decrease of xi) through this reaction is given by xix�,
where for simplicity all of the reaction coefficients were chosen to be equivalent
(= 1) [10].

Next, some nutrients were supplied from the environment by transporta-
tion through the cell membrane with the aid of some other chemicals, i.e.,
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“transporters”. Here, we assumed that the transport activity of a chemical is
proportional to its concentration, and the rate of increase of xi by the transporta-
tion is given by Dxm(i)(Xi −xi), where m(i)-th chemical acts as the transporter
for the nutrient i and xm(i) is concentration of mi-th chemical. The parameter
D is a transport constant, and the constant Xi is the concentration of the i-th
chemical in the environment. In addition, we took into account the changes in
cell volume, which varies as a result of transportation of chemicals into the cell
from the environment. For simplicity, we assumed that the volume is propor-
tional to the sum of chemicals in the cell, which can increase by the intake of
nutrients. The concentrations of chemicals are diluted due to increases in volume
of the cell, Based on the above assumption, this dilution effect is equivalent to
imposing the which imposes the restriction

∑
i xi = 1. When the volume of a cell

is doubled due to nutrient intake, the cell is assumed to divide into two identical
daughter cells.

To summarize these processes, the dynamics of chemical concentrations in
each cell are represented as

dxi/dt = Ri − xi

∑

j

Rj (1)

with

Ri =
∑

j,�

Con(j, i, �) xj x� −
∑

j′,�′

Con(i, j′, �′) xi x �′

(+Dxm(i)(Xi − xi)), (2)

where Con(i, j, �) is 1 if there is a reaction i+� → j+�, and 0 otherwise, while the
last term in Ri is added only for the nutrients, and represents its transportation
into a cell from the environment. The last term in dxi/dt with the sum of Rj

gives the constraint of
∑

i xi = 1, due to the growth of the volume.
Of course, how these reactions progress depends on the intra-cellular reaction

network. Here, we study the evolution of the network in a GA-like rule, by gen-
erating slightly modified networks and selecting those that grow faster. First, n
mother cells are generated, where the connection paths of catalytic network were
chosen randomly such that the number of incoming, outgoing, and catalyzing
paths of each chemical is set to the initial path number kinit. From each of n
mother cells, m mutant cells were generated by random addition of one reaction
path to the reaction network of the parent cell. Then, reaction dynamics were
simulated for each of the n × m cells to determine the growth speed of each cell,
i.e., the inverse of the time required for division. Within the cell population,
n cells with faster growth speeds were selected as the mother cells of the next
generation, from which m mutant cells were again generated in the same manner.

3 Result: Power Laws in Abundances and Network
Structure Achieved Through Evolution

A number of network evolution simulations were performed using several differ-
ent initial networks, different parameters and various settings. We found that all
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Fig. 1. Rank-ordered concentration distributions of chemical species. Distributions
with several different generations are superimposed using different colors. The solid
line indicates the power-law x ∝ n−1 for the reference. This power-law of chemical
abundance is established around the 10th generation, and is sustained for further evo-
lutions in the network. In the simulation, the growth speeds of 10×2000 networks were
measured, and the top 10 networks with regards to the growth speed were chosen for
the next generation. The parameters were set as K = 1000, D = 4.0, and kinit = 4.
Chemicals xm for m < 5 are considered as nutrient chemicals, and the concentration
of them in the environment are set as Xm = 0.2. For each nutrient chemical, one
transporter chemical is randomly chosen from all other chemicals.

of the simulations indicated common statistical properties with regard to both
reaction dynamics and topology of networks. Here, we present an example of
simulation results to show the common properties of our simulations.

The rank-ordered concentration distributions of chemical species in several
generations are plotted in Fig.1, in which the ordinate indicates the concentra-
tion of chemical species xi and the abscissa shows the rank determined by xi.
The slope of the rank-ordered concentration distribution increased with gener-
ation, and within a few generations converged to a power-law distribution with
an exponent -1, which was maintained over further generations. Or equivalently,
the distribution p(x) of the species with abundance x is proportional to x−2 [13].

Indeed, the emergence of such power-law by selecting cells with higher growth
speeds is a natural consequence of our previous study [1]. In our previous study,
we found that there is a critical amount of nutrient uptakes beyond which the cell
cannot grow continuously. When the nutrient uptake is larger than the critical
amount, the flow of nutrients from the environment is so fast that the internal
reactions transforming them into chemicals sustaining ‘metabolism’ and trans-
porters cannot keep up. At this critical amount of nutrient uptake, the growth
speed of a cell becomes maximal, and the power-law distribution of chemical
abundance appears in the intra-cellular dynamics. This power-law distribution
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at the critical state is maintained by a hierarchical organization of catalytic
reactions, and based on this catalytic hierarchy, the observed exponent -1 can
be explained using a mean field approximation. Experimentally, the power-law
distributions of chemical abundances were confirmed in large-scale gene expres-
sion data of various organisms and tissues, including yeast, nematodes, human
normal and cancer tissues, and embryonic stem cells, which suggests that the
intra-cellular reaction dynamics in real cell systems universally lie close to the
critical state (see [1] for the details).

In the evolutionary dynamics of the present simulations, to increase the
growth speed of cells, change in the network which enhances the uptake of nu-
trients from the environment is favored. This nutrient uptake is facilitated by
increasing the concentrations of transporters, while if the uptake of nutrient is
too large, the cell can no longer grow continuously due to the excess of the criti-
cal amount of them, as mentioned above. Now, with the evolutionary process as
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Fig. 2. Evolution of the network topology. (a), Connectivity distribution P (k) of
chemical species obtained from the network of the 1000th generation. The solid line in-
dicates the power-law P (k) ∝ k−3. For comparison, the distribution of krand, obtained
by a randomly generated reaction network with the same number of paths with the
network of 1000th generation, is shown. (b), Probability q(x) that a path to a chemi-
cal with abundance x is selected in evolution. The probabilities for incoming (qin(x)),
outgoing (qout(x)), and catalyzing paths (qcat(x)) are plotted. The data were obtained
by 1.5 × 105 trials of randomly adding a reaction path to the network of the 200th
generation, and the paths giving the top 0.05% growth speeds were selected.
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shown in Fig.1, the nutrient uptakes increase to accelerate the growth speed of
cells, until further mutations of the network may result to exceed the above crit-
ical value of the nutrient uptake. Here, successive increase in the growth speed
by the ‘mutation’ to the reaction network is possible only when the enhance-
ment of nutrient uptakes by it is in step with the increase in the other catalytic
activities. As a natural consequence, selected are such networks that the nutri-
ent uptake is kept near this critical point, where successive catalytic reaction
process maximizes the use of nutrients, and form a power-law distribution of
abundances.

Next, we investigated the topological properties of the reaction networks. The
connectivity distributions P (k) of chemical species obtained from the network of
the 1000th generation are plotted in Fig.2a, where kin, kout and kcat indicate the
numbers of incoming, outgoing and catalyzing paths of chemicals, respectively.
These distributions were fitted by power-laws with an exponent close to -3. Thus,
a scale-free network was approached through evolution, while this power-law
behavior was maintained for further evolutionary processes.

As shown in Fig.3, in this simple model, the evolved reaction network formed
a cascade structure in which each chemical species was mainly synthesized from
more abundant species. That is, almost no chemical species disrupted the flow
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Fig. 3. Changes in the network structure. The abscissa shows the rank determined by
the abundance of substrate i, and the ordinate shows the rank for the product j: the
top left is the most abundant and the bottom right is the least abundant. A point is
plotted when there is a reaction path i → j, while the abundance of catalyst for the
reactions is given by different colors determined by rank. As each product is dominantly
synthesized from one of the possible paths, we plotted only the path with the highest
flow, since the use of reaction paths from a chemical is quite uneven, and such a path
with the highest flow can characterize the flow through the chemicals. (a), The network
at the 10th generation, where the network structure is rather random, even though the
power-law in abundance has already been established. (b), The network at the 1000th
generation. Only a small number of paths are located in the upper-right triangular
portion of the figure, indicating that almost all chemical species were synthesized from
more abundant species.
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of chemical reaction from the nutrients, as the network approached that with
optimal cell growth. It should also be noted that the reaction dynamics for each
chemical were also inhomogeneous in that synthesis of each chemical species
had a dominant reaction path. Such uneven use of local reaction paths was also
reported previously in real metabolic networks [9].

4 Mechanism: Embedding the Power Law in Abundances
into Network Structure

The reason why the scale-free-type connectivity distribution emerges in this evo-
lution is explained by selection of preferential attachment of paths to the chem-
icals with larger abundances. Note that the power-law distribution of chemical
abundance has already been established through evolution. Here, we found that
when a new reaction path is attached to an abundant chemical species, it gives a
larger influence on the whole cellular state, as is expected from reaction kinetics.
As a natural consequence, change in the growth speed after the mutation of the
network is also larger when a path is attached to an abundant chemical species, as
shown in Fig.4. Thus, when a certain number of cells with higher growth speeds
are selected from the mutant pool, the probability that those selected cells have
new links to such abundant chemicals is statistically higher than those expected
from random change without selection. Therefore, there is a positive correlation
between the abundance of chemical species and the probability that new links
are added to such species in evolutionary dynamics, that is, the preferential at-
tachment to such abundant chemicals appears. To represent this probability, we
use variable q(x) which indicates the probability that a new reaction path is at-
tached to a chemical with abundance x after selection. For example, assume that
change of the growth speed by the addition of a path outgoing from a chemical
increases linearly with its abundance x. This assumption is rather natural since
the degree of influence on the cellular state is generally proportional to the flux
of the reaction path added to the network, i.e., the product of substrate and
catalyst abundances. In this simple case, qout(x), which represents the probabil-
ity of attachment for outgoing path will increase linearly with x, even though
the network change is random. Here, the connectivity distribution P (kout) is
obtained by the transformation of variable as follows. Suppose that the proba-
bility of selection of a path attached to a chemical with abundance x is given
by q(x), then the path number k ∝ q(x). By the transformation k = q(x), the
distribution

P (k) =
dx

dk
p(x) =

p(q−1(k))
q′(q−1(k))

(3)

is obtained. By applying the abundance power-law p(x) ∝ x−2, we obtain P (k) =
k−(α+1)/α when q(x) = xα. Consequently, a scale-free network with exponent -2
should be evolved if qout(x) ∝ x.

Numerically, we found that the probabilities qout(x) and qcat(x) were fit-
ted by q(x) ∝ xα with α ≈ 1/2, as shown in Fig.2b. Then, using the above
transformation the connectivity distribution was obtained as P (k) = k−3. Here,
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Fig. 4. Changes in growth speed with addition of a reaction path. Reaction paths
were added to the network of the 200th generation from the 100th, 500th and 900th
most abundant chemical species to investigate the changes in growth speed, while
product and catalyst of the path were chosen randomly. Here, the concentrations of
100th, 500th and 900th most abundant chemicals were 1.80 × 10−3, 2.03 × 10−4 and
2.98×10−5, respectively. The histograms show growth speeds obtained by 20000 trials.
In some trials, the growth speeds decreased markedly with the addition of a path, as
the amount of nutrient uptake exceeded the limit of cellular dynamics. For the paths
from the 100th, 500th and 900th most abundant chemical species, 39%, 23% and 4%
of such trials showed growth speeds of less than the given threshold (we choose 12.38),
respectively. Such data are not plotted in the figure. As shown in the figure, adding
a reaction path from a more abundant chemical was more effective in changing the
growth speed of the cell.

it is interesting to note that the connectivity distribution observed from real
metabolic and other biochemical networks follows the power-law P (k) ∝ k−γ

with γ between 2 and 3, as often seen in experimental data [2, 3].
The probability q(x) is determined through the evolutionary process. To clar-

ify the reason for q(x) ∼ xα with α < 1 in outgoing and catalyzing paths, we
investigated the relationship between substrate abundance x and catalyst abun-
dance y of a path to be selected. For this, we simulated changes in growth speeds
by random addition of a reaction path to the network of 200th generation. For
1.5 × 105 trials, paths giving 0.05% of the highest growth speeds were regarded
as being selected, and are plotted in Fig.5 as blue points on the x-y plane, while
others are plotted as red points. As shown in the figure, a path with small flux
is not selected since adding such path cannot change the cellular state enough,
while a path with large flux is not selected also, since such large change destroys
hierarchical structure of catalytic reactions, which results the decrease of nutri-
ent intakes or exceeding the critical point so that the “cell” can no longer grow.
Then, the fluxes of the selected paths satisfy ∆ < xy < ∆ + δ, with ∆ and δ
being constants. We also found that the density of paths to be selected is almost
constant in the above region. Consequently, for each chemical x, the probability
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Fig. 5. Relationship between substrate abundance x and catalyst abundance y for the
selected paths. A randomly chosen reaction path was added to the network of the 200th
generation, and the growth speed of a cell after adding the path was simulated. For
1.5×105 trials, paths giving 0.05% of the highest growth speedss were regarded as being
selected, and are plotted as blue points on the x-y plane, while others are plotted as
red points. As shown, the selected paths satisfy ∆ < xy < ∆ + δ, with ∆ = 3.8 × 10−8

and δ = 4.0 × 10−6, respectively.

that such a path exists is given by the probability that there is such a partner
chemical with abundance y, which satisfies ∆/x < y < (∆ + δ)/x.

That is,

q(x) =
∫ (∆+δ)/x

∆/x

p(z)dz ≈ p(∆/x)(δ/x) (4)

By using the equation (1), we obtain

P (k) =
−p(∆/y)

(p(y) + ydp(y)/dy))y2 , (5)

with yp(y) = k. Indeed, if p(x) = x−2, the above expressions lead to q(x) ∝ x,
as well as P (k) = k−2. This expression holds when the evolved network is just
at the critical point. The evolved network is near this critical point but there is
a slight deviation, as can be seen in the deviation from the power-law in Fig.1,
for small abundance of chemicals. Note that the asymptotic behavior for large
k is given for small y. Then, the asymptotic behavior for large k is given by
P (k) ≈ 1/((p(y) + ydp(y)/dy)) depends on p(y) for small y. If the asymptotic
behavior of p(y) for small y is given by y−β with β < 2, then P (k) ≈ kβ/(1−β).
As β < 2, the exponent of the power is smaller than -2. For example, for β = 3/2
(which corresponds to the relationship between x and rank n as x ∼ n−2 for large
n, as seen in Fig.1), P (k) ≈ k−3 is obtained. In general, even if the behavior of
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p(y) for small y is not fitted by a power-law, its increase with y → 0 is slower
than y−2. Then the decrease of P (k) with k is faster than k−2, as often seen in
experimental data [2, 3].

On the other hand, the probabilities qin(x) to have incoming path after selec-
tion show no dependence on the chemical abundance x, and therefore the above
explanation is not directly applicable for the incoming paths. As for incoming
paths, we have found ‘hot’ chemical species which facilitate the synthesis of the
transporters for the nutrient uptakes, while others promote the formation of cas-
cade structure of reaction dynamics as shown in Fig.3. These hot species have
higher probability to acquire incoming path after selection. Such inhomogeneity
of the probability among chemicals results in the inhomogeneity of the number
of incoming paths as shown in Fig.2a. Still, further studies are necessary if such
inhomogeneity results in the same power law as qout(x) and qcat(x).

5 Universality

Through several simulations, we have found that the emergence of two statistical
features here is quite general and we expect that does not rely on the details
of our model. To be specific, we have first checked the results by changing the
initial conditions of the simulation, i.e., the initial concentrations of chemicals
and the reaction network in the first cell, and confirmed that the results are in-
dependent of the initial conditions. Next, we have studied a model by changing
parameters. Still, by restricting parameter values at which a cell reproduces ef-
ficiently, Zipf’s law for abundances is generally observed. Furthermore, we have
found the Zipf’s law for the following class of models, for a cell that reproduces
efficiently:

1. universality against network structure: we have studied the models with ho-
mogeneous as well as highly inhomogeneous path distribution. The distribu-
tion includes Gaussian and the power laws (i.e., the scale-free network).

2. universality against parameter distribution: instead of homogeneous param-
eter values for for reaction and diffusion coefficients, studied is the case with
distributed parameters depending on each chemical species. The distribution
includes Gaussian and log-normal.

3. universality against reaction kinetics: studied is the case with higher order
catalytic reaction (for example to include the reaction kinetics xjx

2
� instead

of xjx� in eq.(2) for all chemicals)
4. universality against the form of transport of nutrient chemicals: studied is

the cases with active transport mediated by some chemical, as well as passive
diffusion term for the transport of nutrient.

5. universality against the condition for the cell division: Instead of setting a
threshold for cell division by the sum of all chemicals, the condition is set for
the amount of a specific chemical accumulated.

For all the cases, the power law distribution is obtained when the cell volume
increase is optimal. Hence we believe that the result is general when a reaction
network system that synthesizes chemicals in a cell shows recursive growth.
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Now it is expected that the Zipf’s law generally emerges through evolution,
for a ”cell” system consisting of the following processes:

(i) intra-cellular reaction dynamics within cells
(ii) intake of nutrients (that may depend on the internal chemical concentra-

tion)
(iii) synthesis of chemicals through the above process lead to the cell growth so

that the cell is divided when a certain condition is satisfied
(iv) evolutionary process together with this cell division, i.e., random mutations

to reaction networks and selection of cells with higher growth speed,

since the higher growth in cell is selected through (iv) and the Zipf’s law in
abundances is generally reached for a cell with optimal growth. Furthermore, as
the embedding mechanism is also general, the evolution to power law in network
paths is also expected to be rather universal.

Indeed, we have performed simulations with several different evolutionary
criteria, and the results are essentially same, as long as the degree of mutation
is not large. For example, when we assume that the probability to be selected as
parent cells of the next generation is proportional to cellular growth speed, the
evolutionary dynamics is qualitatively same as those presented here. As another
example, we have performed simulations in which a fixed (large) number of cells
is put in a given environment and when a cell divides into two cells, a randomly
chosen cell is removed to keep a total cell number constant, instead of introducing
discrete generations as in Genetic algorithm rule adopted in the present paper.
In such rules of simulation also, cells having higher growth speeds are selected,
and the power-law distribution of chemical abundances emerges as a result of
evolutionary dynamics[14].

6 Summary and Discussion

In the present paper, we have shown that the power law in abundances of chemi-
cals and network paths naturally emerges through evolution, by taking a class of
cell models consisting of catalytic reaction networks. It is shown that the power
law in abundances is later embedded into that of network path distribution,
while the relation between the two powers is analyzed.

With regard to evolution of reaction networks, preferential attachment to a
more connected node has often been discussed [2, 15]. In the previous models,
preference of path attachment is simply defined as a function of number of ex-
isting paths, and the origin of such preference in evolutionary dynamics remains
obscure. On the other hand, our study is different from them in two important
respects. First, the dynamics of chemical abundance in the networks were in-
troduced explicitly (described as node ‘strength’ in [16]), while previous models
generally considered only the topological structure of the network. Second, se-
lection only by cellular growth speed results in such a preference, even though
attachment itself is random. Here, we found that more abundant chemical species
acquired more reaction links as attachments of new links to such chemicals have
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both a greater influence on the cellular state and a higher probability of being
selected. With these mechanisms, the power-law in abundance is naturally em-
bedded in the intracellular reaction network structure through evolution, which
is simply a process of selecting cells with faster growth speeds.

As discussed, the emergence of the power-law distribution of chemical abun-
dance is expected to be a universal feature of growing cells, since this feature
seems to necessarily appear in any systems having both intra-cellular reaction
dynamics and intake of nutrients from an environment, when the cellular growth
speed is maximized. Similarly, our simulations support that the evolutionary
dynamics toward the power-law distribution of reaction path numbers emerges
when cells having higher growth speeds are selected and mutations are randomly
added to reaction networks. An important point here is that the emergence of
universal features is independent of details of the system, as long as the condi-
tions required for such features are satisfied. The power-laws of both abundance
and connectivity, which are often observed in intracellular reactions, can be sim-
ply consequences of our mechanism by Darwinian selection.
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