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Abstract. Bandwidth demands of communication networks are rising
permanently. Thus, the requirements to modern routers regarding packet
classification are rising accordingly. Conventional algorithms for packet
classification use either a huge amount of memory or have high compu-
tational demands to perform the task. Using a hash function in order to
classify packets is promising regarding both memory and computation
time. However, such a hash function needs to be of high performance
and cheap in hardware costs. These two design goals are contradictory.
To limit the costs of a hardware implementation, known good hash func-
tions, as used for software implementations of encryption algorithms,
are applicable to only a limited extend. To achieve the goals mentioned
above, an adaptive hash function is needed. In this paper, an approach for
a hardware packet classifier using an evolvable hash function is presented.
It consists of an evolutionary algorithm which is entirely implemented in
hardware.

1 Introduction

In state of the art communication technology, an increasing amount of data has
to be transferred. The bandwidth demands of communication networks are rising
permanently. Not only the bandwidth demands but also the service demands on
state of the art network equipment rise as well. Voice over IP (VoIP) traffic,
for example, requires very low latencies. The diversification of data streams in
routers driven by the raising quality-of-service (QoS) demands of customers and
internet service providers accelerates the packet classification problem in routers
rapidly.

1.1 Packet Classification Problem

Network routers must offer a huge variety of services on different flows. These
services comprise routing, rate limiting, access control to networks, virtual band-
width allocation, traffic shaping and policing, and service differentiation. In or-
der to distinguish between different flows, nearly all network components both
at the edge and in the core of a network need a packet classifier. Many of the
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aforementioned services are time sensitive. That is why network routers need
to classify the packets at wire speed in order to add as less latency as possible
before making service decisions.

The classification of packets is based on rules. All rules are stored in a
database. The packet classification problem is to determine the rule, that matches
for an incoming packet. The database has to be searched in order to find the
matching rule. The search must be performed as fast as possible. With higher
bandwidths and a large number of rules, a huge database has to be searched
in a shorter time. Thus, packet classification is a severe problem in state of
the art communication technology for which only limited hardware resources
are available. IP lookups in routers for example should be as fast as possible.
Conventional algorithms [1] must make a tradeoff between classification speed
and memory demands. The algorithms are either implemented in software or in
hardware. The software implementations usually lead to comparative low mem-
ory requirements but very high search latencies. Many of them use tree structures
to classify packets. The HiCuts algorithm [2], for example, partitions the search
space guided by heuristics. Each search leads to a leaf, which consists of a small
number of rules. The leaves can then be searched linearly to find the best match.
The hardware based algorithms on the other hand can perform in wire speed.
But therefore either a huge memory amount or specialized and thus expensive
hardware or memories like ternary content addressable memories (TCAMs) are
required. A TCAM memory array stores all rules (N) in decreasing priority. An
input key is compared to all rules in the array in parallel. The N-bit vector in-
dicating all matching rules is read by an N-Bit priority encoder, which indicates
the address of the highest priority match. The address is used to index a random
access memory (RAM) to find the action associated with the prefix. Besides the
potential high costs, another drawback of hardware implementations is the very
limited number of rules that can be stored [1].

A solution of the packet classification problem can be the use of hash func-
tions. By the use of a hash function, the two main demands to a packet classifier
can be met. Hash functions have a search complexity of ideally O(1). Thus, they
are independent of the number of elements searched. With O(N), memory re-
quirements scale only linearly with the number of classification rules. This paper
presents a hardware packet classifier that is based on a hash function. Section 2
gives a short overview over the basics of evolutionary algorithms. In section 3,
hash functions in general and the evolvable hash functions used for the packet
classifier in particular are characterized. Section 4 summarizes the simulation
results of the implemented hash functions. Section 5 details the implemented
hardware architecture of the packet classifier. Section 6 concludes this paper
and presents an outlook to future work.

2 Evolutionary Algorithms

Evolutionary or genetic algorithms are search algorithms based on the mechan-
ics of natural selection and natural genetics [3]. They combine survival of the
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fittest among string structures with a structured yet randomized information
exchange to form a search algorithm with some of the innovative flair of human
search. In every generation, a new set of artificial creatures based on the bits
and pieces of the old generation is created. Being randomized, genetic algorithms
are not simply random walks trough the search space. They efficiently use his-
torical information to speculate on new search points with expected improved
performance.

Genetic algorithms work with a coding of a parameter set, instead of the pa-
rameter set itself. The search is not done from a single point but a population
of points. For determining the quality, a fitness function is used. This fitness
function measures the quality of an artificial creature regarding its purpose. In
contrary to traditional methods, genetic algorithms use probabilistic transition
rules rather than deterministic ones. The mechanism of a simple genetic algo-
rithm involves nothing more than copying strings and swapping partial strings,
bit vectors respectively. These transitions are called operators. A simple genetic
algorithm is composed of three operators: reproduction, crossover, and mutation.

Reproduction is a process in which individuals are copied depending on the
fitness function. A limited number of individuals (the fittest ones) is copied to
form the base of the next generation.

Crossover is a process that simulates sexual reproduction (Figure 1). Parts
of the bit vectors of two individuals A1 and A2 (the parents) are exchanged
producing two offspring (A’1 and A’2) having features of both parents. The
individuals created by the reproduction form a mating pool. Members of the
pool are mated at random. An integer value k between 1 and the length of the
bit vector minus one (l-1) is drawn uniformly. Two new bit vectors are created
by swapping all bits between k+1 and l.

Mutation is a process in which bits of the bit vector of the individuals are
inverted at random positions. The mutation probability is relatively low. A mean
mutation frequency of one mutation per number of bits in the bit vector obtains
good results [3]. However, the best mutation rate may be different for each
application. If the rate is too high, a random search is performed rather than a
genetic algorithm. If it is too low, the speed of the quality improvement of the
genetic algorithm is limited needlessly.

If the genetic algorithm is implemented in a hardware structure, it is called
an evolvable hardware (EHW). According to [4], EHW can be classified into
two categories, extrinsic and intrinsic evolvable hardware. In extrinsic EHW the
genetic algorithm is performed externally in software. As a result, only the best
configuration obtained is downloaded into hardware. This is done once in each
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Fig. 1. Crossover Operator
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generation. In the intrinsic approach, the hardware itself simulates the genetic
algorithm. This has two main advantages. On the one hand, the genetic algorithm
is performed much faster in a specialized hardware than it could be in software on
a general purpose processor. On the other hand, such an evolvable hardware can
operate autonomously in an Field Programmable Gate Array (FPGA) without
an interface to a processor with a software system.

3 Hash Functions

As stated in the introduction, packet classifiers have two main demands, high
classification speed with low latency and low hardware (memory) costs. By the
use of a hash function the two main demands to a packet classifier can be met.
Hash functions have a search complexity of ideally O(1). Thus, they are indepen-
dent of the number of elements searched in. With O(N) the memory need scales
only linearly with the number of classification rules. However, it is problematic
to find a sufficient hash function. It has to be both high performance and of
low hardware costs. It might be easy to find a good hash function for a specific
amount of elements out of a huge search space. But because of changing key
sets in packet classifiers, a hash function, that used to be sufficient, might be
insufficient for a modified key set. A solution for this problem is a permanently
adapting and improving hash function. This goal can be obtained by evolution-
ary computing completely done in hardware. Such an evolvable hardware hash
function is proposed here.

Hash Functions map a value X to its hash value h(X). Usually hash functions
do a conversion from a large domain to a much smaller domain. In case of a
packet classification, i.e., a 32-bit key (destination IP address) is hashed to a 10-
bit wide memory address to store rules for 1024 different keys. Thus, the goal is to
map 2m elements from a search space of 2n to a much smaller search space of 2m.
The quality of the hash function can be determined by measuring the number of
collisions, that occur when hashing all keys into memory. Ideally, every element
hashes to a different value. In that case, a hash function is perfect. That would
mean for the packet classification that the search for a rule corresponding to a
key would be done with just one memory access. Finding such a perfect hash
function is very difficult. Depending on the algorithm or the hardware structure
of that function, there might be no perfect hash function. Normally a hash
function is not perfect. Thus, collisions occur when hashing a number of keys. A
collision occurs if two different values are hashed to the same value (equation 1).

X �= Y ; h(X) = h(Y ) (1)

Those collisions must be resolved. This can be done in two different ways [5].
One way is to rehash h(Y) with another hash function that hashes an m-bit
value to another m-bit value until no collision occurs and a free entry in the
hash memory is found. Another way is to perform a linear collision resolution.
For a linear collision resolution a constant value is added to the hash value. This
is done until a free memory entry was found. The constant must be a prime
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number or at least a number which is relatively prime to the number of memory
entries. This is required to assure that all existing memory entries are searched
before reaching the original entry. In the simplest case the constant is 1. As
mentioned above, the quality of a hash function can be measured by counting
the number off collisions that occur when all keys are hashed into memory. A
perfect hash function would not create any collision. The worst hash function
on the other hand would be one that hashes all values to the same hash value.
In that case, the maximum number of collisions that would occour is n2−n

2 . To
limit the number of collisions and to therefore increase the lookup performance,
the memory load is usually limited to 1

2 . This means 2m elements are hashed to
(m+1)-bit wide hash values and stored in a memory with 2m+1 entries.

Memories accessed by hash functions have the great advantage of fast updates.
Both insertions and deletions can be achieved very fast. They have the same
complexity as searching. To insert a new entry in a hash memory, the key has to
be hashed. Then the memory has to be searched on the bases of h(key) until an
empty entry was found. The new entry can be inserted at this position. Deletion
is a little more complicated, as the corresponding memory entry cannot simply
be freed but must be marked as deleted. Freeing is only possible when rehashing
the complete memory. Thus, insertions are not only done when a free memory
position is found but also at memory positions that are marked as deleted.

3.1 Evolvable Hardware Hash Functions

To be able to perform many key lookups in a packet classifier with the utilization
of a hash function, the hash function should be implemented in hardware. The
database of a packet classifier is not static: Permanently rules are added or
removed. Thus, a hash function, that used to be sufficient and of good quality
for a specific database, gets insufficient with the changes of the database.

A hash function is needed that can be implemented easily and efficiently in
hardware. To adapt at any time to an actual set of keys, the hash function
shall evolve autonomously. Thus, a complete hardware evolution comes to pass.
This is realized by constantly traversing an evolution pipeline comparable with
the one in [6]. The system is implemented both as a SystemC software model
and a fully synthesizable VHDL description for implementation into an FPGA. A
linear collision resolution for the hash functions is used. In the following sections,
different hardware architectures of hash functions are explored to determine their
potential.

3.2 Hash Architecture 1 and 2

A promising architecture which is high performing and relatively cheap in hard-
ware costs is shown in Figure 2. In the following it is referred to as hash1. It
consists of a number of multiplexer elements. The multiplexers are controlled
by registers. Those registers form the genome of the hash function. For every
output signal, two multiplexer outputs are connected via an xor function. To
hash an N-bit value to an M-bit value, 2 · M N-to-1 multiplexers are needed. As
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Fig. 2. Architecture of an Evolvable Hash Function (hash1)

every multiplexer can multiplex any of the input bits to its output, controlling
a multiplexer demands log2(N) bits. These bits controlling the function of the
multiplexers form the genome of the hash function. Thus, to hash N bits to M
bits, a genome size as stated in expression 2 is needed. To hash 1024 32-bit keys
a hash function with a genome size of 100 bit is required.

2 · M · log2(N) (2)

A variant of the above introduced architecture was developed as well
(Figure 3). In the following, it is referred to as hash2. Here the genome is en-
larged to increase the possibilities for evolutionary development. It is a two-stage
architecture. We use the elements consisting of two multiplexers connected by
an xor in the first stage. In the second stage, first stage results are mixed up by
multiplexers. To hash N bit to M bit a genome size as stated in expression 3 is
needed. To hash 1024 32-bit keys a hash function with a genome size of 370 bit
is needed.

(2 · N + M) · log2(N) (3)

3.3 Hash Architecture 3

In [7], a hardware architecture of a hash function is presented. In the following
it is referred to as hash3. The presented architecture was adapted slightly to
improve its performance and to limit the hardware costs. The hash function
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Fig. 3. Architecture of an Evolvable Hash Function (hash2)
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Fig. 4. Architecture of an Evolvable Hash Function (hash3)

matches the structure of FPGAs very well. It mainly consists of four-input-look
up tables (LUTs). In those LUTs any logical 4-input function can be performed.
To code the function 16 bit are needed. The logical functions are mapped to the
FPGAs LUTs. Every slice of i.e. a Virtex2 FPGA comprises of two LUTs. As all
LUTs have four inputs, to map an N bit wide key, N

4 parallel LUTs are needed
for one complete stage. Every stage is followed by a register controlled switch
matrix. All but the last switch N

4 inputs to N outputs. The last matrix switches
N
4 inputs to M outputs.

[(
N · log2

(
N

4

))
+

N

4
· 16

]
· (S − 1) + M · log2

(
N

4

)
+

N

4
· 16 (4)

For the whole function with an N-bit key and M-output bits and a depth of S
stages a genome as given in expression 4 is needed. To hash 1024 32-bit keys a
four staged hash function with a genome size of 830 bit is needed.

4 Simulation Results

The evolvable system comprises the complete evolutionary algorithm. It works
autonomously and without any control of a software system. Thus, it is an in-
trinsic EHW. It was implemented as a SystemC model. The model is functional
identical to the VHDL implementation, which is described in chapter 5. All three
hash functions were implemented and evaluated with different key sets of up to
hundred thousand 32-bit keys. The keys were generated randomly. The memory
load of the hash memory was set to different levels ranging from 37% to 87%.
All hash functions evolved over thousand generations.
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In Figure 5, the graphs reveal, that the architectures of the hash functions per-
formed differently. The hash functions build of multiplexers (hash1 and hash2)
showed great performance. The average of required memory accesses over all
keys scales only very slightly. For a memory load of 50%, both architectures
hash1 and hash2 show a comparable performance. The average number of mem-
ory accesses over all keys stored in the memory remains below four even with 217

keys. Finding an entry in a sorted list of 217 keys, sixteen accesses are needed
on average. Four accesses outperform the sixteen memory accesses of a sorted
list remarkably. The architecture consisting of LUT rows (hash3) showed poorer
performance. It scales almost linearly with the size of the key sets. Even with
just 8192 keys, an average of 17 memory accesses is needed. Even at this rela-
tively small number of keys, the sorted list outperforms the hash function with
just twelve memory accesses. Thus, the architecture is not applicable for imple-
mentation in a packet classifier.

When using a memory with a load of 75%, hash1 and hash2 perform well, too.
Searching for one of 217 keys requiress six memory accesses on average. Never-
theless the performance has decreased by about 50%. Here we make a tradeoff
between search time and memory demands. However, it has to be mentioned
that the theoretical upper bound for searching in the memory with the help of a
hash function is still O(N). Even if the average memory accesses needed are very
low, the worst keys require far more than log2(N) memory accesses. This is the
case at least for the memories with a load of 75%, as emanating from Figure 6.

It shows that the number of needed memory accesses for particular keys are
extremely high. Especially when the memory load is at 75%, the maximum
needed memory accesses are at 80 for hash1 and at 166 for hash2 respectively.
When the memory load was as high as 87%, the worst case memory accesses
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needed where at 262 (hash1) and 283 (hash2). Whereas the hash functions with
a memory load of 50% show a better performance. Here the maximum needed
memory accesses are at 42 (hash1) and 47 (hash2). That is why a memory
load of 50% should not be exceeded in a system implementation, as the penalty
for the worst case is rising quickly. The memory demand of such architecture
has a complexity of O(N). As the hash function evolves constantly, repetitive
rehashing of the keys in the memory is required. To do so, there have to be
two memory blocks of which one is used in the data path while the other one
is rehashed. That means if the memory load is limited to 50%, exactly 4 · N
memory locations are required to store keys and classification rules.

5 Hardware Architecture of the Packet Classifier

The System was implemented in VHDL. Functionally it equals the SystemC
model used for the simulations exactly. The packet classifier consists of two main
elements. The data path and the evolution pipeline. The classifier is completely
described in VHDL and was implemented into a Xilinx Virtex2 FPGA. The
packet classification is done at wire speed. So no external memory is designated to
buffer the data packets. Only a FIFO build of internal block RAMs of the FPGA
stores the packets until the classification rule is extracted from the memory.

5.1 Data Path

In the data path, incoming packets are parsed and the key is extracted. The
packet is stored in a buffer until the corresponding classification rule has been
extracted from the memory. Based on the key the packet is classified. The key
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Fig. 7. The hash value for the key 10 is 4. Searching for key 10 leads to memory address
4 in the first run. As the stored key is not equal to 10, the next address is h(key)+3
= 7. As the stored key is not equal to 10 either, the next address is h(key)+3+3=2.
At memory entry 2 the right correct is found and the corresponding rule is returned.
Three memory accesses were needed.

is hashed by the evolvable hash function. Using the hash value h(key) as start
address, the memory is searched. If the stored key does not comply with the
search key, a collision occurred. Using linear collision resolution, the next read
address in the memory is set to: h(key) + prime. The prime number is con-
figurable. Adding the prime number to the read address is repeated until the
correct entry or an empty memory entry is found. In Figure 7, an example of
such memory access is given. When the correct entry is validated by comparing
the search key with the one stored in the memory, the classification rule together
with the packet is sent to the output of the classifier. To solve the problem of
numerous memory accesses, a small cache can be implemented to the memory
module. The eight worst keys, which produce many memory accesses can be held
in that cache and therefore be read out in just one memory access. This would
improve the overall quality of the packet classifier. However, this feature has
yet to be implemented to the packet classifier. The classifiers key parser module
extracts the search keys from the incoming packets. The module can extract any
combination of bits from a data packet. The bits, the key consists of, can be
configured at any time. The bit mask for the key is stored in a memory block
which is accessed through a configuration port. The generic architecture of the
key parser allows the configuration of the width of the search key at implemen-
tation time while the actual bits of the key can be changed while the classifier
is in use. In that way, the code guarantees high flexibility.

As the hash function changes during operation of the packet classifier perma-
nently, it needs a repeating reconfiguration. In addition a permanent rehashing
of the memory is required. This would interrupt the packet classification process
very often for a quite substantial time. This is the reason why the data path
consists of two independent hash functions and hash memories. While one path
is used for the normal operation of the packet classifier, the other one can adapt
to a new evolved and better performing hash function. The reconfiguration of
the unused hash function is done without affecting the one used in the data
path. Furthermore, the time intensive rehashing of the memory can be done as
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well without interference. The time for the rehashing process depends on the
one hand on the number of memory elements to be rehashed and on the other
hand on the traffic the classifier is exposed to. To be able to rehash the unused
memory, the one utilized in the data path is needed to provide the information
that is to be rehashed. In order to not interfere with the functionality, data reads
for rehashing can only be gathered when the utilized memory is in an idle state.
Memory accesses from the key parser always have the highest priority. Therefore
the duration of the rehash process is not determined. When the inactive memory
is rehashed and the hash function is reconfigured, the data path is switched to
the new configured path. If the maximum memory load is limited to 50% as it
is mentioned above, the memory demand of the classifier is 4 times the number
of keys. The memory can be implemented either with the internal block RAMs
of the FPGA or by using an external memory. A V4FX40 FPGA, i.e., has a
total of over 2.5 million bits of block RAM. Assuming a key size of 32 bit and
a rule size of 16 bit for classification, 13500 different rules can be stored inter-
nally. Therefore, classifiers with small and medium rule sets can be implemented
without using external memories.

5.2 Evolution Module

The evolution module performs the whole evolutionary process completely in
hardware. It consists of six functional elements. The evolution is performed per-
manently, stopping only if a perfect hash function was found. Perfect means that
all key are hashed to a different value. The evolutionary algorithm used in the
hardware is the following: On reset of the system, four individuals, representing
four different genomes of the hash function, are generated (pseudo)randomly
by a linear feedback shift register (LFSR). The number of bits k, the genome
consists of, arises from expressions three, four, or five depending on the chosen
hash function. From these four parents an offspring of twelve is generated by
random as well. The best of the parents does not have a bias to be chosen with
a higher probability. The offspring is then mutated. Due to a simple and effi-
cient hardware implementation the mutation probability p is always as stated
in equation 5.
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p =
1
2k

; 2k ≤ l < 2k+1 (5)

On average, between one and two bits of a genome are mutated. After muta-
tion, the fitness of the offspring f(x) is evaluated. The fitness of an individual is
measured by counting all collisions that occur. It is the difference between the
theoretically maximal number of collisions and the actual number of collisions c
that occur when hashing n keys (equation 6).

f(x) =
n2 − n

2
− c (6)

The four fittest individuals out of the offspring and the fittest parent form the
new parent generation. To prevent the fitness form decreasing from one gener-
ation to another, the fittest parent is always included in the survivor selection.
The new four parents are the starting point for the new run through the evo-
lution module. The used evolutionary operators in the evolutionary algorithm
are reproduction and mutation. The crossover operator was set aside. As men-
tioned above, the evolution module consists of six functional blocks (Figure 9).
An evolution cycle starts at the genome update module. This module holds the
four individuals of the parent generation in a block RAM. It has an interface to
the data path, to update the genome of the hash functions in the data path. A
LFSR in the child select module selects twelve times one of the parents for the
new offspring. This is done by random and without taking into account the dif-
ferences in fitness of the parents. The selected genome is read out of the genome
update module and transferred in double word portions to the mutate module.
The mutate module consists in principle of 32 LFSRs. Every LFSR is respon-
sible for mutating one bit of the genome part at the input of the module. The
probability of the mutation of one bit is according to equation 6 between 1

l and
2
l . After being mutated, the genome is used for configuring the hash function
used for fitness evaluation. The fitness evaluation module computes the fitness
of the actual genome. This is done by holding a memory that has a bit position
for every entry of the hash memory. All existent keys are read out of the one
memory in the data path that is not in use. Incoming keys are hashed and the
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Fig. 9. Structure of the Evolution Module
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memory is checked at the position of the hash value. If the memory indicates a
free position, it is marked as used. Otherwise a collision counter is incremented
and a new memory position is computed by the linear collision resolution. By
counting all the collisions that occur when inserting all key to the memory the
fitness is measured. After being evaluated the genomes of the offspring are trans-
ferred to the survivor selection module, where the four fittest ones are selected
and transferred to the genome update module as the new parent generation.

5.3 Performance

The evolutionary algorithm especially the computation of the fitness of a hash
function is extremely demanding regarding the computation time. During simu-
lation four individuals, which produced an offspring of twelve, were evolved. To
evolve 1000 generations with 100.000 keys with the SystemC model, a compu-
tation time of more than a day was needed on a 3.2 GHz machine. A software
implementation of the evolutionary algorithm would probably have a computa-
tion time consumption comparable to the model. That is why the whole system
was implemented in hardware, consisting of the data path and the evolution
module. The most time consuming and thus performance critical module is the
functional element evaluating the fitness. The fitness evaluation has a complexity
of O(N2). If the initial hash function hashes all keys to the same value, N2−N

2
collisions can occur when storing N keys to the memory. This is the worst case.
But as the initial genome of the hash function is always chosen randomly, its
quality is always better. The simulations showed that the initial hash functions
produce at worst 20 million collisions for 217 keys. The fitness evaluation mod-
ule can compute one collision per clock cycle. Thus, for the above example of
217 keys and an offspring of twelve, approximately 240 million clock cycles are
needed. On a 125 MHz FPGA, the first generation would evolve in less than
two seconds. The evolution rate increases rapidly with the hash function getting
fitter. This is without any optimizations in the fitness evaluation. In Figure 10,
the results of a simulation run with the ModelSim simulator are drawn. Here an
evolution of 2048 32-bit wide keys has been performed. The keys were produced
by a random generator. Running with 125 MHz, it took the system 1.84 seconds
to evolve 1000 generations. As the fitness of the evolving system reached a very
high value very fast, the graph is limited to twenty generations. The number
of collisions occurring with the fittest individual was 187311 in the first gen-
eration (92.46 memory accesses per key) and after twenty generations limited
to 923 (1,45 accesses per key). After the whole 1000 generations the number of
collisions reached 845 (1,41 accesses per key).

5.4 Increasing the Computation Speed

There are different ways to increase the speed of the evolutionary process. As
the time for fitness evaluation dominates the system computation time, the main
attention regarding optimizations must refer to that hardware module. There are
different ways for speeding up the fitness evaluation.
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Fig. 10. Fitness of the ModelSim simulation of the packet classifier. The fitness is
scaled to 1. Meaning a perfect hashing results in a fitness value of one.

One is the parallel implementation of one fitness evaluation element per off-
spring. This would increase the evaluation performance by a factor of twelve, as
the fitness of all offspring would be computed at the same time. The computation
time is bound to the offspring with the worst fitness. When looking for collisions
while evaluating the fitness, a memory interleaving can be used. A linear collision
resolve strategy is used. Thus, when the hash value of a key is known, all possible
memory positions are known as well. The n-th possible position is at memory
address h(key) + n · prime. With that knowledge, many potential memory posi-
tions can be checked in parallel which speeds up the fitness evaluation process.
A third way of speeding up the fitness evaluation is to stop evaluating when the
number of collisions an offspring produces exceeds the number of collisions of
the four best elements of the offspring. As only the four best elements of the
offspring are selected for survival, the computation of an offspring element can
be stopped, when it is clear, that the element is not among this group. This way
the mean computation time for the fitness evaluation can be reduced.

In order to optimize the evolutionary algorithm, it might be useful to adapt
the mutation rate according to the variance of the finesses of all the offspring.
This method has been proposed in [7]. When the variance is high, the mutation
rate should be decreased. When it is low, the mutation rate can be increased.

5.5 Implementation

The packet classifier was implemented into a Xilinx Virtex2 FPGA (XC2V4000-
6-BF957). 2800 slices and 34 block RAMs are needed for the implementation of
a packet classifier which can store 2048 classification rules with 32-bit keys and
16-bit rules. The implemented hash function is hash1.
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6 Conclusion and Outlook

Both the simulations of the model and the implemented hardware showed that
a packet classifier consisting of an evolvable hash function can be very efficient.
The time complexity is roughly O(1) and the memory demand is O(N), even
for very large rule sets. The actual used hash function is always designed for the
momentary rule set by the hardware evolution. Evolving constantly, the hash
function improves over time and adapts to changes in the rule set. These are
excellent characteristics.

However, a drawback of the actual implementation is the limited range of ap-
plication. At the moment the size of the key on which a rule search bases is con-
figurable but still after implementation constant. That means, that for standard
router applications, where longest prefix searches basing on keys with different
lengths are the main application, the packet classifier is not very well suited. The
mapping could only be done by setting the prefixes to the standard length. That
would lead of course to huge redundancy. To map, i.e., a 28-bit prefix to a 32-bit
key, 16 different keys with the same rule would have to be stored in memory. This
problem can be solved by the use of multiple hash functions as presented in [8].
Here hash functions of different widths are used to do the prefix search. However,
prefixes not matching any of the widths would still produce redundant entries.

The speed of evolutionary process has still to be increased in order to make
faster adaptation to changing key sets possible. The four different possibilities
that have been presented in this paper must be implemented in hardware. It
has to be determined how the improvement of the fitness evaluation module
can speed up the evolutionary process. Furthermore, the behavior of the packet
classifier with real databases must be researched. At this moment only fabricated
data basing on random functions has been used to demonstrate the behavior.
Thirdly, the influence of the use of a small cache in the data path to solve the
problem of numerous memory accesses for some keys must be tested.

A final evolving system could be implemented in a dynamically reconfigurable
environment as mentioned in [9]. In such a system the hash functions would
not need to consist of register controlled multiplexers. Instead there are just
wires from input to output and some combinatorial logic. The wires are simply
rerouted to evolve to a new generation. This is achieved by the FPGAs par-
tial reconfigurability. The whole area of the FPGA, where the hash function is
implemented, is reconfigured.
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