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Abstract. This paper describes how a distributed neural architecture
for the general control of robots has been applied for the generation of a
walking behaviour in the Aibo robotic dog. The architecture described
has been already demonstrated useful for the generation of more simple
behaviours like standing or standing up. This paper describes specifically
how it has been applied to the generation of a walking pattern in a
quadruped with twelve degrees of freedom, in both simulator and real
robot.

The main target of this paper is to show that our distributed architec-
ture can be applied to complex dynamic tasks like walking. Nevertheless,
by showing this, we also show how a completely neural and distributed
controller can be obtained for a robot as complex as Aibo on a task as
complex as walking. This second result is by itself a new and interesting
one since, to our extent, there are no other completely neural controllers
for quadruped with so many DOF that allow the robot to walk.

Bio-inspiration is used in three ways: first we use the concept of central
pattern generators in animals to obtain the desired walking robot. Second
we apply evolutionary processes to obtain the neural controllers. Third,
we seek limitations in how real dogs do walk in order to apply them to
our controller and limit the search space.

1 Introduction

The generation of a walking behaviour in a quadruped as complex as Aibo is a
hard task. The robot has many degrees of freedom (twelve) and the coordina-
tion of all them to obtain a walking pattern becomes very difficult. In this paper,
we evolve a neural controller for the Aibo robot only using neural networks dis-
tributed all over the robot. We base our design in the creation and utilisation of
Central Pattern Generators (CPGs). Biological CPGs are composed of groups of
neurons, capables of producing oscillatory signals without oscillatory inputs. It
has been discovered that walking movements of cats and dogs are governed by
those elements, and it is thought that humans too behave in the same way [1].
We will implement artificial CPGs using artificial neural networks (ANNs).

CPGs have been already employed by other researchers in the generation of
gaits for robots, like for example by Ijspeert on lamprey [2] and salamander
simulations [3], Kimura et al. on quadrupeds [4, 5] or Collins and Richmon in
quadrupeds too [6]. Our work follows the research line taken by Ijspeert with
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their results in the generation of gaits for the lamprey and the salamander, but
we try to slightly improve his results in several points: first, we use a more
complex robot (every leg has three degrees of freedom that must coordinate);
second, we apply it to a real robot; and third, we introduce a general architecture
made of standard blocks (see our previous work [7]).

Previously to the present work, we developed a completely distributed archi-
tecture for the general control of autonomous robots. Our architecture provides
a mechanism for the creation of controllers for autonomous robots in a mod-
ular and distributed way, and the architecture is completely based on neural
networks. It has already been tested on other simpler tasks like standing up or
standing [8], but not in such a complex task like walking. Walking requires spe-
cial considerations since it contains a special dynamic that has to be taken into
account (the robot movement has dependency on previous movement states).
We say that while standing or standing up are static tasks (in the sense that
for each sensory pattern there is a unique motor answer), walking requires the
acquisition of the dynamics of the system, and for each sensory pattern, different
motor answers could be applied, depending on the state of the movement (is not
the same situation having the leg going than having the leg coming, even the
sensory pattern at a specified position is the same).

To overcome the problem of capturing the dynamics of the system, we have
used continuous time recurrent neural networks (CTRNNs), instead of using
simple feed-forward neural nets like in our previous works. These are neural
networks with internal states that allow the capture of the dynamics of a system
and have already successfully been applied to the generation of walking patterns
in other robots [9, 10].

In order to obtain the correct weights for the neural networks for the task we
use neuro-evolution [11]. All the evolutionary process is performed under simu-
lation using the Webots software [12], and once the simulation has the complete
walking behaviour, we transfer the resulting ANNs to the real robot to test its
validity on real life.

This paper is organised as follows: first we describe the architecture used
for the experiments. Then the neural model used is described, followed by a
description of the implementation of the architecture in the problem of walking
generation is exposed in three stages. Last section discuss the results and points
towards future work.

2 Architecture Description

The architecture is based on several uniform modules, composed of ANNs, where
each module is in charge of one sensor or actuator of the robot. Through the
use of a neuro-evolutionary algorithm, modules learn how to cooperate between
them and how to control its associated element, allowing the whole robot to
accomplish the task at hands (in this case, generate a walking pattern). All the
architecture description has been highly inspired by the concepts of society of
mind of Minsky [13] and massive modularity of mind [14].
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2.1 Hardware

We define the Intelligent Hardware Unit (IHU) as a module created around
a physical device of the robot (sensor or actuator). Every IHU is composed
by a sensor or an actuator and a micro-controller implementing an ANN that
processes the information of its associated device (received sensor information
for sensors, commands sent to the actuator for actuators). We say that the ANN
is in charge of its sensor/actuator. This means that is the neural net the one that
decides which commands must be sent to the actuator, or how a value received
from a sensor must be interpreted. All IHUs are interconnected to each other
in order to be aware of what the other IHUs are doing. So in some sense, the
net is also in charge of deciding what to say to the other elements as well as
to interpret what the others are saying. The structure of a IHU can be seen in
figure 1, and figure 2 shows a neural controller for a simple robotic system with
two sensors and two actuators.

It should be stated that when put several IHU together on a control task,
each element has its own particular vision of the situation because each one is
in charge of its own sensor or actuator. This leads to a situation where each unit
knows what the others are doing but needs to select an action for its controller

Fig. 1. Schematics of an IHU

Fig. 2. Connection schema of four ANNs from four IHUs controlling a simple robot
composed of two sensors and two actuators
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or sensor output, and based on its knowledge of the global situation and that of
its particular device, decides what the next action will be.

Even though in the original definition a microprocessor was required for any
IHU element, on the experiments presented here it has been simulated the exis-
tence of the micro-controllers linked to each device by allocating some proces-
sing time in the robot central processor for each IHU, since it was not physically
possible to have one dedicated micro-controller for each IHU, neither in the si-
mulations, nor in the real robot tests. It will be assumed that the results are not
very different from the original idea.

2.2 Neuro-evolutionary Algorithm

To teach the networks the coordination required for the task a neuro-evolutionary
approach has been selected. For the co-evolution of the different networks and
due to the necessity of evolving different ANNs for different roles on a common
task, a co-evolutionary algorithm is required. By using such kind of algorithm
it is possible to teach to the networks how they must cooperate to achieve a
common goal, when every network has its own an different vision of the whole
system.

The algorithm selected to evolve the nets is the ESP (Enforced Sub-Popula
tions) [15][16], which has been proved to produce good results on distributed
controllers [11]. This algorithm is also in principle free of bias for a special task.
It is a general algorithm which produces good results in systems where several
parts must interact to obtain the general view of the situation.

A chromosome is generated for each IHUs network coding in a direct way the
weights of the network connections.

3 Neuronal Model

For the implementation of each of the neural elements of the IHUs we use a
CTRNN. This type of neural network is composed of a set of neurons modelled
as leaky integrator that compute the average firing frequency of the neuron [17].
All hidden neurons in one network are interconnected to each other (see figure 3).

The equations governing each hidden neuron are the following:

τi
dmi

dt
= −mi +

∑
wijxj

xi = (1 + e(mi+θi))−1

where mi represents the mean membrane potential of neuron i, xi is the short-
term average firing frequency of neuron i, θi is the neuron bias, τi is a time
constant associated with the passive properties of the neuron’s membrane, and
wij is the connection weight from neuron j to neuron i. Calculation of each
neuron output is performed using the Euler method for solving differential equa-
tions with a step of 96 ms. More complicated models for the hidden neurons are
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Fig. 3. Schematics of the CTRNN used in the walking controller

available and have been demonstrated quite useful in the evolution of gaits for
quadrupeds [18], but they require higher computational resources that we try to
avoid in order to make the robot as autonomous as possible.

For each neural element of the IHUs we use a neural net like the one showed
in the figure 3, where the number of inputs depends on the stage of the evolution
(see next section), the number of hidden units is five, and the number of output
units is one.

For each network it is necessary to evolve the weights, the neuron bias and
the time constant of each hidden neuron. However, as we will see in the next
section, inter-neuron weights, bias and time constant are only evolved in the
first stage (that is the stage that creates the CPGs). Later stages only evolve
the interconnections between different CPGs.

4 Staged Evolution of the Walking Behaviour

For the generation of the walking behaviour we implement the explained ar-
chitecture of section 2. We do not try to indicate that this may be the neural
architecture on real dogs, but to show that our architecture is capable of perfor-
ming the required behaviour.

We implement with our architecture what has been shown to be the way
animals perform rhythmic movements like walking, and it is by implementing
CPGs on each of its joints. In real animals, there is a CPG for each joint and
they are interconnected only with the nearer CPGs. In our case, Aibo’s joints are
composed of a sensor (that obtains the position of the joint at every moment)
and an actuator (that moves the joint). Since our architecture indicates that
there must be an IHU for each sensor and actuator, we implement a CPG for
each joint by the coupling of a neural net for the joint sensor and a neural net
for the joint actuator (see figure 5).

Another difference between real CPGs and our architecture is that in real, only
contiguous CPGs are connected to each other. In our case, as the architecture
specifies, all IHUs must be connected to all IHUs. Then, all CPGs are connected
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Fig. 4. Simulations used for the first and second stages. From left to right: evolving
one leg joints, evolving two leg joints, evolving four leg joints.

to all CPGs. Nevertheless, all connections are not evolved at the same time,
since, if that was the case, the search space for the evolutionary algorithm would
be too high and the required walking solution never be found. For this reason, a
staged evolution should be performed, in order to guide the evolutionary process
a little bit to the correct solution. The different stages for the generation of the
walking are: generation of the CPG oscillator, where a segmental oscillator is
evolved for each type of joint, generation of a layer of joints of the same type
that oscillate in counter phase by using the previously generated CPGs, and
coupling of the three layers to obtain the final walking behaviour.

A very important point is that the generation of the oscillatory patterns is not
performed aside of the robot, it is, we have not evolved an isolated oscillator un-
related to the robot. We evolve the oscillatory pattern over the robot itself (in
the simulation). This allows the neural nets to capture the dynamics of the (si-
mulated) robot, producing an oscillatory signal that takes into account inertias,
decelerations, etc. All these features are important for a robot of the size of Aibo.

Fig. 5. Schematics of the coupling between two neural nets of a joint. This represents
the coupling between the IHU of the joint sensor and the IHU of the joint motor.
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4.1 First Stage: Generation of the CPG Oscillatory Pattern

At this stage we must obtain an oscillator capable of generate an oscillatory
pattern for each type of joint of the robot. Joints in the robot legs are of three
different types that we will call J1, J2 and J3. J1 is in charge of the rotatory
movement, J2 of the lateral movement and J3 of the knee movement. Each joint
is physically implemented using different PID controllers. Also their movement
limits are different. For this reason, we must implement a different type of CPG
for each type of joint (this is, three types of CPGs). Nevertheless, the process for
the generation of each type is exactly the same, been the limitation of movements
the only difference between them.

For each joint, we implement each CPG by the coupling of two CTRNN
networks one for the sensor of the joint and another for the actuator (the motor).
It is like we apply the architecture described in section 2 to a unique joint.

Both nets are interconnected as the architecture specify but each one is in
charge of a different element (the sensor net is in charge of the sensor, and the
motor net is in charge of the motor). At each step of the evolutionary process,
the value of the sensor is read and entered in the sensor IHU. Then the output
is computed and given to the actuator IHU. The output of the actuator IHU
specifies the velocity that has to be applied to the motor, and, after escalation,
it is directly applied to it. The evolution of the oscillatory movement is then
performed over the robot, allowing this to include in the networks the effects of
inertias and general dynamics of the robot leg (see figure 6).

The weights of the nets are evolved using the ESP algorithm and a fitness
function that rewards the production of an oscillatory pattern in the motor joint.
We do not specify the type of pattern to obtain but only that has to be periodic
and between some oscillatory limits. Aibo joints can oscillate between very large
limits, but those are too large for an appropriate walking behaviour. We limit
then here the limits of oscillation by looking at the limits of real dogs and how

Fig. 6. Oscillatory patterns obtained for all three types of joints. Every joint has its
own range of oscillation.
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Table 1. Limits for Aibo joints based on real dogs movements when walking

Joint Max Min Mean
J1, fore 0.3936 -0.5837 -0.0982
J2, fore 0.3702 -0.2163 0.0904
J3, fore 1.1732 0.1435 0.6305
J1, hind 0.0059 -0.7848 -0.4200
J2, hind 0.4215 -0.2163 0.1034
J3, hind 1.6599 0.9907 1.2499

do they perform when walking and making a scale conversion to our robotic dog
[19]. From that gathered data we obtain the limits indicated in table 1.

The fitness function applied to the neuro-evolution algorithm is defined to
reward regular oscillations within the limits of each joint. We want the system
to generate a joint movement around the mean value of the table, and maximal
variance within the limits of each joint. The fitness function is then:

fitness = [V − (A − M)] ∗ C2

been V the variance of the position of the joint during the 200 steps, A its
average value, M the mean value of the joint obtained from table 1, and C the
number of crossings that the joint performed through the mean position value.

Results : For each type of joint we carried ten runs starting with different initial
random populations (weight values between -6 and 6). Each run was composed
of 200 simulation steps of 96 ms on a first stage. After 13 generations all runs
converged to networks capable of maintained oscillations within the range spe-
cified, and the number of steps was augmented to 400 for other ten generations,
and later to 800 steps for five generations more. After this final stage, the net-
works were capable of a continuous oscillatory pattern on an unlimited amount
of time.

As an additional note, indicate that the same oscillatory mechanism was obtai-
ned in some evolutionary test we performed where the CPGs were only composed
of the actuator IHU, it is, no sensor IHU was included and the joint sensor was
directly connected to the motor IHU. However we decided to include the sensor
IHU for architecture’s coherence, and having in mind future benefits. This will
be more discussed in section 5.

4.2 Second Stage: Generation of Three Layers

From previous stage we obtained a group of different CPGs each one for a type
of joint (three types). In this stage we are going to replicate the CPG of each
type in the two fore legs in a first step, and for the four joints in all legs in a
second step.

What we do in this case is to duplicate for each joint the CPG formed by the
couple of two IHUs from one leg to the other. Duplication and new evolution is
performed for one type of joint at a time. Once we have an IHU couple controlling
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Fig. 7. Connections between four IHUs corresponding to two joints of the same type

each leg, then we apply again the architecture definition, that indicates how
all IHUs must be interconnected between them. This implies that each neural
net will have to add two more inputs coming from the outputs of the other
two neural nets duplicated (see figure 7). The evolutionary process will only
evolve the new connections between IHUs, but not the internal connections of
the neurons obtained from the previous stage. Since the oscillation has already
been obtained in the previous stage, this stage will not have to evolve it, but the
synchronisation between the two CPGs. The type of synchronisation to evolve
will depend on the type of gait required.

In this case, since we want the robot to implement a simple walking gait,
we need a phase relation between those two legs of 180o (in all types of joints).
The fitness function will be then that which punctuates the phase difference
between the legs that is close to those 180o and rewards a continuous movement
of both legs. To implement this function we divided it in three parts: two parts
are the fitness function of the first stage for each leg. The third part is the one
that measures the variance between the movements of both legs, and tries to
maximise it.

Oi = [V i − (Ai − M i)] ∗ C2
i

V L =
1
N

∑
(diffj − AvDiff)

2

fitness = O1 ∗ O2 ∗ V L

where Oi, Vi, Ai, Mi and C are the variance of the position of the joint during
the N steps, the average value, the mean value of the joint obtained from table 1,
and the number of crossings that the joint performed through the mean position
value, respectively, for each joint i. VL is the variance between legs trajectories,
N the number of steps, diffjis the difference of positions between legs for each
evaluation step j, and AvDiff is the average of difference positions between legs.

Results : For each type of joint we carried ten runs to evolve only the connections
between CPGs. Each run was composed of 400 simulation steps of 96 ms. After
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14 generations, 90% of the networks were capable of a counter-phase oscillatory
pattern.

Once we have this two legs oscillatory coupling, we replicated it to the rear
legs, and repeated the evolutionary process to evolve only the weights of the
new connections between the new IHUs. In this case, we needed to evolve 4
connections per network, having a total number of IHUs of 8 per type of joint.
We evolved the whole group by imposing that the oscillations from the fore legs
must have a 90o phase difference with the oscillations from the rear legs. To
impose this condition, we calculated the difference of positions between fore legs
(diff F ) and the difference of positions between rear legs (diff R), in the same
way as was done for the oscillation of two legs. Then we calculated the difference
between the differences:

totalDiff = diff F − diff R

So finally the fitness to obtain the coordination was composed of five parts: one
part for each leg that express the necessity of oscillation, one part that express
the necessity of maximal variance between the fore legs, and one last part that
express the necessity of maximal variance between differences fore-rear.

This is specified in the following fitness function.

Oi = [V i − (Ai − M i)] ∗ C2
i

V L =
1
N

∑
(diffj − AvDiff)

2

varF R =
1
N

∑
(diffF Rj − AvDiffF R)

2

fitness = O1 ∗ O2 ∗ O3 ∗ O4 ∗ V L ∗ varF R

where diffF Rj is the difference between the difference of positions for fore
legs and the difference of positions of rear legs for each evaluation step j, and

Fig. 8. Oscillations obtained for each type of joint when two joints are evolved
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AvDiffF R is the average value of such differences. varF R measures the va-
riance between fore and rear legs.

Results : We carried ten runs for each type of joint. Each run was composed of
400 simulation steps of 96 ms each. After 26 generations, 90% of the networks

Fig. 9. Oscillations obtained for all types of joints in all legs
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were capable of the typical oscillatory walking pattern 0o, 180o, 90o, 270o (for the
legs sequence fore left, fore right, rear left, rear right). The oscillatory patterns
obtained can be seen in figure 8.

4.3 Third Stage: Coupling Between Layers

Last stage is the coupling between layers of joints. From previous stage we have
three different layers, one per type of joint, of four joints of the same type
oscillating together with a walking phase relation. Now we need to connect the
three layers between them in order to have the complete architecture finished.
We will have then to evolve the connections between layers to finally obtain
the whole robot walking with the full architecture completed. The connection
between layers should bring coordination at walking between the different types
of joints that have been evolved separately.

For this stage the fitness function is only the distance d walked by the robot,
when the robot does not fall. Zero otherwise.

fitness =
{

d when final height > 0
0 otherwise

Results : A walking behaviour was obtained after 37 generations for about 88%
of the populations. A sequence of the walking obtained is shown in figure 9.

The resulting ANN based controller was then transferred to the real robot
using the Webots simulator cross-compilation feature that we have collabora-
ted to develop with Cyberbotics. This cross-compilation process takes the exact
controller developed in the simulator (the best of the evolved ones), and auto-
matically translates it to Aibo OPEN-R code that is executed on the real robot.

Fig. 10. Simulated Aibo walking sequence

Fig. 11. Real Aibo walking sequence
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The result was an Aibo robot that walks in the same manner as the simulated
robot with some minor differences. A sequence of the walking obtained is shown
in figure 10.

5 Discussion

The present paper shows how a distributed architecture can be used for the
generation of gaits in a very complex robot. It also shows that a completely neural
network based controller is possible for the generation of a walking behaviour in
a quadruped of 12 degrees of freedom. Both of them are new results in the area
of autonomous robots and intelligent control systems.

We have implemented each CPG by using two neural nets, one in charge of
the sensor and one in charge of the actuator. In a formal way, the implementa-
tion of a CPG does not require the use of sensor inputs, but the introduction
of the sensor networks could provide the system with a reflex system that may
be helpful in front of unpredicted circumstances [20]. Our architecture does in-
tegrate already the sensor’s feedback into the CPG, but its benefits have not
been studied yet and is part of our future work. In particular, this reflex system
would be integrated into the own CPG walking structure, not being a separated
system, and could benefit the walking style in front of irregular terrain with
small obstacles, allowing the robot to adapt to them and keep walking.

When developing the sequence of actions that would lead us to obtain a
walking controller, we found that it was impossible to obtain a walking controller
if the architecture was directly applied and all the nets (24) were evolved at
the same time. The evolutionary algorithm always found an easier and useless
solution other than walk in order to go forward. This is due to the complexity
of the search space, that makes useless to perform a brute force search. This
is the reason why an evolution by stages was required. But the evolution by
stages has the drawback that a previous knowledge of the situation is required
by the engineer in order to find the best way to implement the stages and
find the good fitness functions, and this is one of the main criticisms against
the evolutionary robotics methods. That is why, neuro evolutionary roboticists
try to avoid as much as possible to introduce their knowledge of the situation,
allowing the robot to find their own solution and not biasing the search of it.
However, we do bet for the use of the engineer knowledge in the application of
the evolutionary process, in order to reduce the search space. We do think it is
necessary because, at difference at how real evolution did, we do have to evolve
the robot controller on an already made robot, meanwhile real evolution evolved
at the same time the structure of the living system and its controller. This puts
us on disadvantage when compared to evolution, and that disadvantage needs to
be overcome by our analysis and knowledge of the situation. This analysis of the
situation should lead to an engineered evolutionary process with some engineer
defined fitness functions, resulting on an equilibred evolutionary process that
should restrict the search space enough but, at the same time, give space enough
to the evolutionary process to explore for the solution. Other approaches are also
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possible, like for example, to imitate real evolution and evolve at the same time
body and controller as some recent works try to implement[21].
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