

Lecture Notes in Computer Science 3853
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Auke Jan Ijspeert Toshimitsu Masuzawa
Shinji Kusumoto (Eds.)

Biologically Inspired
Approaches
to Advanced
Information Technology

Second International Workshop, BioADIT 2006
Osaka, Japan, January 26-27, 2006
Proceedings

13

Volume Editors

Auke Jan Ijspeert
Swiss Federal Institute of Technology (EPFL)
School of Computer and Communication Sciences
1015 Lausanne, Switzerland
E-mail: auke.ijspeert@epfl.ch

Toshimitsu Masuzawa
Shinji Kusumoto
Osaka University
Graduate School of Information Science and Technology
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
E-mail: {masuzawa,kusumoto}@ist.osaka-u.ac.jp

Library of Congress Control Number: 2005938022

CR Subject Classification (1998): F.1, C.2, H.4, I.2, F.2, I.4

ISSN 0302-9743
ISBN-10 3-540-31253-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31253-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11613022 06/3142 5 4 3 2 1 0

Preface

This book contains 30 articles and three abstracts of invited talks presented
at The Second International Workshop on Biologically Inspired Approaches for
Advanced Information Technology (Bio-ADIT 2006) held at Senri Life Science
Center, Osaka, Japan, on January 26–27, 2006. Bio-ADIT 2006 follows the suc-
cess of the first workshop Bio-ADIT 2004, held at the Swiss Federal Institute of
Technology, Lausanne (EPFL), Switzerland, in January 2004. The workshop is
intended to provide an effective forum for original research results in the field
of bio-inspired approaches to advanced information technologies. It also serves
to foster the connection between biological paradigms and solutions to building
the next-generation information systems. In particular, the aim of the workshop
is to explore and discuss how biologically inspired approaches can help in de-
signing the next generation of information systems which, like their biological
counterparts, will be capable of adaptation, self-organization, replication, and
self-repair.

We were honored to have the participation as invited speakers of three leading
researchers in this field: James C. Liao, Rolf Pfeifer, and Toshio Yanagida. The
invited talks dealt with the very interesting subjects of bio-inspired approaches to
information systems, and provided stimulating ideas to the workshop attendees
to pursue further research in this exciting field.

The articles cover a large range of topics including networking, robotics,
evolutionary computation, neural computation, biochemical networks, reconfig-
urable hardware, and machine vision. The contributions range from basic re-
search in biology and in information technology, to more application-oriented
developments in software and in hardware. To ensure the content quality, each
paper was carefully reviewed by two or three reviewers, and revised accord-
ing to the reviewers’ comments. The papers are divided into 22 oral presenta-
tions and 8 poster presentations. The articles published in this book underline
the international importance of this field of research, with contributions from
China, Germany, India, Japan, Norway, Spain, Sweden, Switzerland, United
Kingdom, and USA. It strongly indicates the importance and world-wide impact
of the field.

We wish to express our appreciation of the efforts of all the authors who
helped to make this book happen. We also gratefully acknowledge the exten-
sive reviewing work carried out by the Technical Program Committee members
and additional reviewers. We are indebted to Daniel Mange and Shojiro Nishio,
General Co-chairs, for managing the workshop. We would also like to again ac-
knowledge the financial support from the 21st Century Center of Excellence
Program of the Ministry of Education, Culture, Sports, Science and Technology

VI Preface

(MEXT) of Japan under the program “New Information Technologies for Build-
ing a Networked Symbiosis Environment”. We would like to acknowledge the
technical support from IEEE ComSom Japan Chapter.

January 2006 Auke Jan Ijspeert
Toshimitsu Masuzawa

Technical Program Committee Co-chairs
Bio-ADIT 2006

Organization

Executive Committee

General Co-chairs Daniel Mange (EPFL, Switzerland)
Shojiro Nishio (Osaka University,
Japan)

Technical Program Auke Jan Ijspeert (EPFL, Switzerland)
Committee Co-chairs Toshimitsu Masuzawa (Osaka University,

Japan)
Special Session Program Chair Hiroshi Shimizu (Osaka University,

Japan)
Finance Chair Toru Fujiwara (Osaka University, Japan)
Publicity Co-chairs Christof Teuscher (UCSD, USA)

Yoshinori Takeuchi (Osaka University,
Japan)

Internet Chair Hideki Tode (Osaka University, Japan)
Publications Chair Shinji Kusumoto (Osaka University,

Japan)
Local Arrangement Chair Tatsuhiro Tsuchiya (Osaka University,

Japan)

Technical Program Committee

Co-chairs Auke Jan Ijspeert (EPFL - Ecole Polytechnique Fédérale de
Lausanne, Switzerland)

Toshimitsu Masuzawa (Osaka University, Japan)
Members Luc Berthouze (Neuroscience Research Institute (AIST),

Japan)
Giovanna Di Marzo Serugendo (University of Geneva,

Switzerland)
Ezequiel Di Paolo (University of Sussex, UK)
Marco Dorigo (IRIDIA - Université Libre de Bruxelles,

Belgium)
Raphael Holzer (EPFL - Ecole Polytechnique Fédérale de

Lausanne, Switzerland)
Koh Hosoda (Osaka University, Japan)
Katsuro Inoue (Osaka University, Japan)
Laurent Itti (University of Southern California, USA)
Satoshi Kurihara (Osaka University, Japan)
Anders Lansner (Stockholm University and Royal Institute

of Technology, Sweden)

VIII Organization

Vincent Lepetit (EPFL - Ecole Polytechnique Fédérale de
Lausanne, Switzerland)

James Liao (University of California, Los Angeles, USA)
Wolfgang Maass (Graz University of Technology, Austria)
Masayuki Murata (Osaka University, Japan)
Alberto Montresor (University of Bologna, Italy)
Mitsuyuki Nakao (Tohoku University, Japan)
Chrystopher Nehaniv (University of Hertforsdshire, UK)
Masahiro Okamoto (Kyushu University, Japan)
Takao Onoye (Osaka University, Japan)
Rolf Pfeifer (University of Zurich, Switzerland)
Hiroshi Shimizu (Osaka University, Japan)
Gregory Stephanopoulos (Massachusetts Institute of

Technology, USA)
Tim Taylor (Timberpost Ltd. Edinburgh, UK)
Gianluca Tempesti (EPFL - Ecole Polytechnique Fédérale de

Lausanne, Switzerland)
Daniel Thalmann (EPFL - Ecole Polytechnique Fédérale de

Lausanne, Switzerland)
Tatsuhiro Tsuchiya (Osaka University, Japan)
Sethu Vijayakumar (University of Edinburgh, UK)
Koichi Wada (Nagoya Institute of Technology, Japan)
Naoki Wakamiya (Osaka University, Japan)
Hans Westerhoff (Vrije Universiteit Amsterdam,

Netherlands)
Masafumi Yamashita (Kyushu University, Japan)
Xin Yao (University of Birmingham, UK)
Tom Ziemke (University of Skovde, Sweden)

Additional Reviewers

Stefano Arteconi
Jonas Buchli
Wei Chen
Peter Eggenberger
Miriam Fend
Julia Handl

Wan Ching Ho
Nobuhiro Inuzuka
Gian Paolo Jesi
Yoshiaki Katayama
Takio Kurita
Dominik Langer

Kenji Leibnitz
Lukas Lichtensteiger
Hiroshi Matsuo
Lars Olsson

Bio-ADIT Steering Committee

Chair Hideo Miyahara (Osaka University, Japan)
Members Albert-Laszlo Barabasi (University of Notre

Dame, USA)

Organization IX

Auke Jan Ijspeert (EPFL, Switzerland)
Daniel Mange (EPFL, Switzerland)
Masayuki Murata (Osaka University, Japan)
Shojiro Nishio (Osaka University, Japan)
Hiroshi Shimizu (Osaka University, Japan)
Hans V. Westerhoff (Vrije Universiteit

Amsterdam, Netherlands)

Sponsoring Institutions

Graduate School of Information Science and Technology, Osaka University
Cybermedia Center, Osaka University
(Under The 21st Century Center of Excellence Program of the Ministry of Ed-
ucation, Culture, Sports, Science and Technology (MEXT), Japan, titled “New
Information Technologies for Building a Networked Symbiosis Environment.”)
IEEE ComSom Japan Chapter (Technical Co-sponsorship)

Table of Contents

Invited Talks

Design of Synthetic Gene-Metabolic Circuits
James C. Liao . 1

Morphological Computation: Connecting Brain, Body, and Environment
Rolf Pfeifer . 2

Single Molecule Nano-Bioscience
Toshio Yanagida . 4

Robotics

Evolving the Walking Behaviour of a 12 DOF Quadruped Using
a Distributed Neural Architecture

Ricardo A. Téllez, Cecilio Angulo, Diego E. Pardo 5

Robot Control: From Silicon Circuitry to Cells
Soichiro Tsuda, Klaus-Peter Zauner, Yukio-Pegio Gunji 20

Networking I

Proposal and Evaluation of a Cooperative Mechanism for Pure P2P
File Sharing Networks

Junjiro Konishi, Naoki Wakamiya, Masayuki Murata 33

Resilient Multi-path Routing Based on a Biological Attractor Selection
Scheme

Kenji Leibnitz, Naoki Wakamiya, Masayuki Murata 48

Packet Classification with Evolvable Hardware Hash Functions – An
Intrinsic Approach

Harald Widiger, Ralf Salomon, Dirk Timmermann 64

Biological Systems

Emergence of Two Power-Laws in Evolution of Biochemical Network;
Embedding Abundance Distribution into Topology

Chikara Furusawa, Kunihiko Kaneko . 80

XII Table of Contents

Microbial Interaction in a Symbiotic Bioprocess of Lactic Acid
Bacterium and Diary Yeast

Hiroshi Shimizu, Sunao Egawa, Agustin K. Wardani,
Keisuke Nagahisa, Suteaki Shioya . 93

Responses of Fluctuating Biological Systems
Tetsuya Yomo, Katsuhiko Sato, Yoichiro Ito, Kunihiko Kaneko 107

Analysis of Fluctuation in Gene Expression Based on Continuous
Culture System

Tadashi Yamada, Makoto Sadamitsu, Keisuke Nagahisa,
Akiko Kashiwagi, Chikara Furusawa, Tetsuya Yomo,
Hiroshi Shimizu . 113

Self-organization

Bio-inspired Computing Machines with Self-repair Mechanisms
André Stauffer, Daniel Mange, Gianluca Tempesti 128

Perspectives of Self-adapted Self-organizing Clustering in Organic
Computing

Thomas Villmann, Barbara Hammer, Udo Seiffert 141

MOVE Processors That Self-replicate and Differentiate
Joël Rossier, Yann Thoma, Pierre-André Mudry,
Gianluca Tempesti . 160

Evolutionary Computation

The Evolutionary Emergence of Intrinsic Regeneration in Artificial
Developing Organisms

Diego Federici . 176

Evaluation of Fundamental Characteristics of Information Systems
Based on Photonic DNA Computing

Yusuke Ogura, Rui Shogenji, Seiji Saito, Jun Tanida 192

Hybrid Concentration-Controlled Direct-Proportional Length-Based
DNA Computing for Numerical Optimization of the Shortest Path
Problem

Zuwairie Ibrahim, Yusei Tsuboi, Osamu Ono, Marzuki Khalid 206

Table of Contents XIII

Modeling and Imaging

Modeling of Trees with Interactive L-System and 3D Gestures
Katsuhiko Onishi, Norishige Murakami, Yoshifumi Kitamura,
Fumio Kishino . 222

New Vision Tools from the Comparative Study of an “Old”
Psychophysical and a “Modern” Computational Model

Kuntal Ghosh, Sandip Sarkar, Kamales Bhaumik 236

Photonic Information Techniques Based on Compound-Eye Imaging
Satoru Irie, Rui Shogenji, Yusuke Ogura, Jun Tanida 252

Attractor Memory with Self-organizing Input
Christopher Johansson, Anders Lansner . 265

Networking II

Bio-inspired Replica Density Control in Dynamic Networks
Tomoko Suzuki, Taisuke Izumi, Fukuhito Ooshita,
Hirotsugu Kakugawa, Toshimitsu Masuzawa . 281

Improving the Robustness of Epidemic Communication in Scale-Free
Networks

Takuya Okuyama, Tatsuhiro Tsuchiya, Tohru Kikuno 294

On Updated Data Dissemination Exploiting an Epidemic Model in Ad
Hoc Networks

Hideki Hayashi, Takahiro Hara, Shojiro Nishio . 306

Posters

Modeling of Epidemic Diffusion in Peer-to-Peer File-Sharing Networks
Kenji Leibnitz, Tobias Hoßfeld, Naoki Wakamiya,
Masayuki Murata . 322

A High-Throughput Method to Quantify the Structural Properties of
Individual Cell-Sized Liposomes by Flow Cytometry

Kanetomo Sato, Kei Obinata, Tadashi Sugawara, Itaru Urabe,
Tetsuya Yomo . 330

A User Authentication System Using Schema of Visual Memory
Atsushi Harada, Takeo Isarida, Tadanori Mizuno,
Masakatsu Nishigaki . 338

XIV Table of Contents

A Consideration of Application of Attractor Selection to a Real-Time
Production Scheduling

Hiroaki Chujo, Hironori Oka, Yoshitomo Ikkai, Norihisa Komoda 346

Bio-inspired Organization for Multi-agents on Distributed Systems
Ichiro Satoh . 355

m-ActiveCube; Multimedia Extension of Spatial Tangible User Interface
Kyoko Ueda, Atsushi Kosaka, Ryoichi Watanabe,
Yoshinori Takeuchi, Takao Onoye, Yuichi Itoh, Yoshifumi Kitamura,
Fumio Kishino . 363

Biologically Inspired Adaptive Routing by Mimicking Enzymic
Feedback Control Mechanism in the Cell

Takashi Kawauchi, Tadasuke Nozoe, Masahiro Okamoto 371

An Interest-Based Peer Clustering Algorithm Using Ant Paradigm
Taisuke Izumi, Toshimitsu Masuzawa . 379

Author Index . 387

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, p. 1, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Design of Synthetic Gene-Metabolic Circuits

James C. Liao

Department of Chemical and Biomolecular Engineering,
University of California, Los Angeles

The design approach in engineering has created industrial revolution and modern
civilization. The basis of design is the understanding of key principles underlying the
system of interest. Such an approach has not been explored in biology until recently.
While much remained unknown in the cell, key functional paradigms and many
molecular components have been extensively characterized. The design approach can
now be used in the cell to explore possible applications of biological components
beyond their natural configurations, much like the design of analog computers using
well characterized modules. In addition, the design approach provides an alternative
method to explore design principles used by nature.

However, application of complex design scenarios in the cell has proved
challenging, with the perturbation of cellular networks remaining a concern. Recently,
several synthetic circuits, such as oscillators, toggle switches and feedback loops were
designed and implemented experimentally to function independently from cellular
metabolism and physiology. To enhance control capabilities and create novel
functionalities, another dimension can be added to the synthetic circuit architecture by
integrating both transcriptional and metabolic controls. Implementation of such a
design would require extensive knowledge of an organism’s physiology. To this end,
we chose E. coli as the host due to the extensive knowledge of its metabolic
pathways, metabolic control and transcriptional regulation. We have engineered an
intracellular dynamic feedback controller that senses metabolic state and allows
separation of growth phase and metabolite production phase to improve lycopene
production; we have constructed a gene-metabolic network for artificial cell-cell
communication using acetate as the signalling molecule, thus enabling coordinated
population level control. Recently, we have built a synthetic gene metabolic oscillator
that creates autonomous oscillation between two pools of metabolites. The success of
these circuits demonstrated that the key features in physiological regulation were
correctly captured in the design considerations.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 2 – 3, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Morphological Computation: Connecting Brain,
Body, and Environment

Rolf Pfeifer

Artificial Intelligence Laboratory, Department of Informatics,
University of Zurich, Andreasstrasse 15,

CH-8050 Zurich, Switzerland
pfeifer@ifi.unizh.ch

Traditionally, in robotics, artificial intelligence, and neuroscience, there has been a
focus on the study of the control or the neural system itself. Recently there has been
an increasing interest into the notion of embodiment not only in robotics and artificial
intelligence, but also in the neurosciences, psychology, and philosophy. In this paper,
we introduce the notion of morphological computation and demonstrate how it can be
exploited on the one hand for designing intelligent, adaptive robotic systems, and on
the other for understanding natural systems. While embodiment has often been used
in its trivial meaning, i.e. "intelligence requires a body", the concept has deeper and
more important implications, concerned with the relation between physical and
information (neural, control) processes. Behavior is not the result of brain processes
only, but there is a "task distribution" among brain processes (control), morphology,
and materials. For example, the positioning of the sensors on the agent, the particular
morphology (the anatomy), and the material properties of the muscle-tendon system
(the biomechanical constraints) can be exploited for generating adaptive behavior.
Morphological computation is about connecting brain, body, and environment (e.g.
Pfeifer, et al., 2005, Pfeifer and Gomez, 2005, and Pfeifer and Bongard, 2005).

A number of case studies are presented to illustrate the concept: For sensor
morphology, the Eyebot (Fig. 1), for body morphology and materials, the "Yokoi
hand" (Fig. 2), and for exploitation of the interaction with the environment, the robot
fish "Wanda" (Fig. 3). So, some of the processing is performed not by the brain, but

 a. b.

Fig. 1. Morphological computation through sensor morphology - the Eyebot. The specific non-
homogeneous arrangement of the facets compensates for motion parallax, thereby facilitating
neural processing. (a) Insect eye. (b) picture of the Eyebot.

 Morphological Computation: Connecting Brain, Body, and Environment 3

by the morphology, by the materials, and the interaction with the environment. If we
are to understand how behavior in natural systems comes about, and how we should
design artificial systems, it is not sufficient to deal with control. In order to
comprehend the function of the brain, we must not only look at the brain itself, but at
how the brain is embedded in the physical organism, what the properties of this
organism are, and what specific interactions the agent is engaged in. Similarly, in
order to design good robots, one cannot only program the controller, but all the other
aspects must be designed at the same time.

 a. b.

Fig. 2. The "Yokoi hand". (a) The robot hand. (b) Grasping an object; through the particular
shape of the hand, the deformable materials and the elastic tendons it self-adapts to a large
variety of different bjects without a priori knowledge about their shapes.

a. b.

Fig. 3. The robot fish W0anda". (a) View from above. (b) sideview while swimming. By
exploiting the interaction with the environment, "Wanda" can reach any point in 3D space with
just one degree of freedom of actuation (wiggling its tail fin).

References

Pfeifer, R., Iida, F., and Bongard, J. (2005). New robotics: design principles for intelligent
systems. Artificial Life, January 2005, vol. 11, no. 1-2, 99-120.

Pfeifer, R. and Gomez, G. (2005). Interacting with the real world: design principles for
intelligent systems. Artificial life and Robotics. Vol 9. Issue 1. pp. 1-6.

Pfeifer, R. and Bongard, J. (In press). How the Body Shapes the Way We Think: A New View
of Intelligence. MIT Press.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, p. 4, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Single Molecule Nano-Bioscience

Toshio Yanagida

Formation of soft nano-machines CREST, JST, and
Graduate School of Frontier Bioscience, Osaka University Medical School

http://www.phys1.med.osaka-u.ac.jp/

Biomolecules assemble to form molecular machines such as molecular motors, cell
signal processors, DNA transcription processors and protein synthesizers to fulfill
their functions. Their collaboration allows the activity of biological systems. The
reactions and behaviors of molecular machines vary flexibly while responding to their
surroundings. This flexibility is essential for biological organisms. The underlying
mechanism of molecular machines is not as simple as that expected from analogy
with man-made machines. Since molecular machines are only nanometers in size and
has a flexible structure, it is very prone to thermal agitation. Furthermore, the input
energy level is not much difference from average thermal energy, kBT. Molecular
machines can thus operate under the strong influence of this thermal noise, with a
high efficiency of energy conversion. They would not overcome thermal noise but
effectively use it for their functions. This is in sharp contrast to man-made machines
that operate at energies much higher than the thermal noise. In recent years, the single
molecule detection (SMD) and nano-technologies have rapidly been expanding to
include a wide range of life science. The dynamic properties of biomolecules and the
unique operations of molecular machines, which were previously hidden in averaged
ensemble measurements, have now been unveiled. The aim of our research is to
approach the engineering principle of adaptive biological system by uncovering the
unique operation of biological molecular machines. I survey our SMD experiments
designed to investigate molecular motors, enzyme reactions, protein dynamics, DNA
transcription and cell signaling.

Fig. 1. Single molecule imaging and nano-manipulation of an actomyosin molecular motor.
The position and chemical (ATPase) reaction of a myosin molecule are observed by
evanescence-based fluorescence microscopy and individual mechanical events due to actin and
myosin interaction are detected by optical trapping nanometry.

Evolving the Walking Behaviour of a 12 DOF
Quadruped Using a Distributed Neural

Architecture

Ricardo A. Téllez, Cecilio Angulo, and Diego E. Pardo

GREC Research Group at Technical University of Catalonia, Spain

Abstract. This paper describes how a distributed neural architecture
for the general control of robots has been applied for the generation of a
walking behaviour in the Aibo robotic dog. The architecture described
has been already demonstrated useful for the generation of more simple
behaviours like standing or standing up. This paper describes specifically
how it has been applied to the generation of a walking pattern in a
quadruped with twelve degrees of freedom, in both simulator and real
robot.

The main target of this paper is to show that our distributed architec-
ture can be applied to complex dynamic tasks like walking. Nevertheless,
by showing this, we also show how a completely neural and distributed
controller can be obtained for a robot as complex as Aibo on a task as
complex as walking. This second result is by itself a new and interesting
one since, to our extent, there are no other completely neural controllers
for quadruped with so many DOF that allow the robot to walk.

Bio-inspiration is used in three ways: first we use the concept of central
pattern generators in animals to obtain the desired walking robot. Second
we apply evolutionary processes to obtain the neural controllers. Third,
we seek limitations in how real dogs do walk in order to apply them to
our controller and limit the search space.

1 Introduction

The generation of a walking behaviour in a quadruped as complex as Aibo is a
hard task. The robot has many degrees of freedom (twelve) and the coordina-
tion of all them to obtain a walking pattern becomes very difficult. In this paper,
we evolve a neural controller for the Aibo robot only using neural networks dis-
tributed all over the robot. We base our design in the creation and utilisation of
Central Pattern Generators (CPGs). Biological CPGs are composed of groups of
neurons, capables of producing oscillatory signals without oscillatory inputs. It
has been discovered that walking movements of cats and dogs are governed by
those elements, and it is thought that humans too behave in the same way [1].
We will implement artificial CPGs using artificial neural networks (ANNs).

CPGs have been already employed by other researchers in the generation of
gaits for robots, like for example by Ijspeert on lamprey [2] and salamander
simulations [3], Kimura et al. on quadrupeds [4, 5] or Collins and Richmon in
quadrupeds too [6]. Our work follows the research line taken by Ijspeert with

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 5–19, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

6 R.A. Téllez, C. Angulo, and D.E. Pardo

their results in the generation of gaits for the lamprey and the salamander, but
we try to slightly improve his results in several points: first, we use a more
complex robot (every leg has three degrees of freedom that must coordinate);
second, we apply it to a real robot; and third, we introduce a general architecture
made of standard blocks (see our previous work [7]).

Previously to the present work, we developed a completely distributed archi-
tecture for the general control of autonomous robots. Our architecture provides
a mechanism for the creation of controllers for autonomous robots in a mod-
ular and distributed way, and the architecture is completely based on neural
networks. It has already been tested on other simpler tasks like standing up or
standing [8], but not in such a complex task like walking. Walking requires spe-
cial considerations since it contains a special dynamic that has to be taken into
account (the robot movement has dependency on previous movement states).
We say that while standing or standing up are static tasks (in the sense that
for each sensory pattern there is a unique motor answer), walking requires the
acquisition of the dynamics of the system, and for each sensory pattern, different
motor answers could be applied, depending on the state of the movement (is not
the same situation having the leg going than having the leg coming, even the
sensory pattern at a specified position is the same).

To overcome the problem of capturing the dynamics of the system, we have
used continuous time recurrent neural networks (CTRNNs), instead of using
simple feed-forward neural nets like in our previous works. These are neural
networks with internal states that allow the capture of the dynamics of a system
and have already successfully been applied to the generation of walking patterns
in other robots [9, 10].

In order to obtain the correct weights for the neural networks for the task we
use neuro-evolution [11]. All the evolutionary process is performed under simu-
lation using the Webots software [12], and once the simulation has the complete
walking behaviour, we transfer the resulting ANNs to the real robot to test its
validity on real life.

This paper is organised as follows: first we describe the architecture used
for the experiments. Then the neural model used is described, followed by a
description of the implementation of the architecture in the problem of walking
generation is exposed in three stages. Last section discuss the results and points
towards future work.

2 Architecture Description

The architecture is based on several uniform modules, composed of ANNs, where
each module is in charge of one sensor or actuator of the robot. Through the
use of a neuro-evolutionary algorithm, modules learn how to cooperate between
them and how to control its associated element, allowing the whole robot to
accomplish the task at hands (in this case, generate a walking pattern). All the
architecture description has been highly inspired by the concepts of society of
mind of Minsky [13] and massive modularity of mind [14].

Evolving the Walking Behaviour of a 12 DOF Quadruped 7

2.1 Hardware

We define the Intelligent Hardware Unit (IHU) as a module created around
a physical device of the robot (sensor or actuator). Every IHU is composed
by a sensor or an actuator and a micro-controller implementing an ANN that
processes the information of its associated device (received sensor information
for sensors, commands sent to the actuator for actuators). We say that the ANN
is in charge of its sensor/actuator. This means that is the neural net the one that
decides which commands must be sent to the actuator, or how a value received
from a sensor must be interpreted. All IHUs are interconnected to each other
in order to be aware of what the other IHUs are doing. So in some sense, the
net is also in charge of deciding what to say to the other elements as well as
to interpret what the others are saying. The structure of a IHU can be seen in
figure 1, and figure 2 shows a neural controller for a simple robotic system with
two sensors and two actuators.

It should be stated that when put several IHU together on a control task,
each element has its own particular vision of the situation because each one is
in charge of its own sensor or actuator. This leads to a situation where each unit
knows what the others are doing but needs to select an action for its controller

Fig. 1. Schematics of an IHU

Fig. 2. Connection schema of four ANNs from four IHUs controlling a simple robot
composed of two sensors and two actuators

8 R.A. Téllez, C. Angulo, and D.E. Pardo

or sensor output, and based on its knowledge of the global situation and that of
its particular device, decides what the next action will be.

Even though in the original definition a microprocessor was required for any
IHU element, on the experiments presented here it has been simulated the exis-
tence of the micro-controllers linked to each device by allocating some proces-
sing time in the robot central processor for each IHU, since it was not physically
possible to have one dedicated micro-controller for each IHU, neither in the si-
mulations, nor in the real robot tests. It will be assumed that the results are not
very different from the original idea.

2.2 Neuro-evolutionary Algorithm

To teach the networks the coordination required for the task a neuro-evolutionary
approach has been selected. For the co-evolution of the different networks and
due to the necessity of evolving different ANNs for different roles on a common
task, a co-evolutionary algorithm is required. By using such kind of algorithm
it is possible to teach to the networks how they must cooperate to achieve a
common goal, when every network has its own an different vision of the whole
system.

The algorithm selected to evolve the nets is the ESP (Enforced Sub-Popula
tions) [15][16], which has been proved to produce good results on distributed
controllers [11]. This algorithm is also in principle free of bias for a special task.
It is a general algorithm which produces good results in systems where several
parts must interact to obtain the general view of the situation.

A chromosome is generated for each IHUs network coding in a direct way the
weights of the network connections.

3 Neuronal Model

For the implementation of each of the neural elements of the IHUs we use a
CTRNN. This type of neural network is composed of a set of neurons modelled
as leaky integrator that compute the average firing frequency of the neuron [17].
All hidden neurons in one network are interconnected to each other (see figure 3).

The equations governing each hidden neuron are the following:

τi
dmi

dt
= −mi +

∑
wijxj

xi = (1 + e(mi+θi))−1

where mi represents the mean membrane potential of neuron i, xi is the short-
term average firing frequency of neuron i, θi is the neuron bias, τi is a time
constant associated with the passive properties of the neuron’s membrane, and
wij is the connection weight from neuron j to neuron i. Calculation of each
neuron output is performed using the Euler method for solving differential equa-
tions with a step of 96 ms. More complicated models for the hidden neurons are

Evolving the Walking Behaviour of a 12 DOF Quadruped 9

Fig. 3. Schematics of the CTRNN used in the walking controller

available and have been demonstrated quite useful in the evolution of gaits for
quadrupeds [18], but they require higher computational resources that we try to
avoid in order to make the robot as autonomous as possible.

For each neural element of the IHUs we use a neural net like the one showed
in the figure 3, where the number of inputs depends on the stage of the evolution
(see next section), the number of hidden units is five, and the number of output
units is one.

For each network it is necessary to evolve the weights, the neuron bias and
the time constant of each hidden neuron. However, as we will see in the next
section, inter-neuron weights, bias and time constant are only evolved in the
first stage (that is the stage that creates the CPGs). Later stages only evolve
the interconnections between different CPGs.

4 Staged Evolution of the Walking Behaviour

For the generation of the walking behaviour we implement the explained ar-
chitecture of section 2. We do not try to indicate that this may be the neural
architecture on real dogs, but to show that our architecture is capable of perfor-
ming the required behaviour.

We implement with our architecture what has been shown to be the way
animals perform rhythmic movements like walking, and it is by implementing
CPGs on each of its joints. In real animals, there is a CPG for each joint and
they are interconnected only with the nearer CPGs. In our case, Aibo’s joints are
composed of a sensor (that obtains the position of the joint at every moment)
and an actuator (that moves the joint). Since our architecture indicates that
there must be an IHU for each sensor and actuator, we implement a CPG for
each joint by the coupling of a neural net for the joint sensor and a neural net
for the joint actuator (see figure 5).

Another difference between real CPGs and our architecture is that in real, only
contiguous CPGs are connected to each other. In our case, as the architecture
specifies, all IHUs must be connected to all IHUs. Then, all CPGs are connected

10 R.A. Téllez, C. Angulo, and D.E. Pardo

Fig. 4. Simulations used for the first and second stages. From left to right: evolving
one leg joints, evolving two leg joints, evolving four leg joints.

to all CPGs. Nevertheless, all connections are not evolved at the same time,
since, if that was the case, the search space for the evolutionary algorithm would
be too high and the required walking solution never be found. For this reason, a
staged evolution should be performed, in order to guide the evolutionary process
a little bit to the correct solution. The different stages for the generation of the
walking are: generation of the CPG oscillator, where a segmental oscillator is
evolved for each type of joint, generation of a layer of joints of the same type
that oscillate in counter phase by using the previously generated CPGs, and
coupling of the three layers to obtain the final walking behaviour.

A very important point is that the generation of the oscillatory patterns is not
performed aside of the robot, it is, we have not evolved an isolated oscillator un-
related to the robot. We evolve the oscillatory pattern over the robot itself (in
the simulation). This allows the neural nets to capture the dynamics of the (si-
mulated) robot, producing an oscillatory signal that takes into account inertias,
decelerations, etc. All these features are important for a robot of the size of Aibo.

Fig. 5. Schematics of the coupling between two neural nets of a joint. This represents
the coupling between the IHU of the joint sensor and the IHU of the joint motor.

Evolving the Walking Behaviour of a 12 DOF Quadruped 11

4.1 First Stage: Generation of the CPG Oscillatory Pattern

At this stage we must obtain an oscillator capable of generate an oscillatory
pattern for each type of joint of the robot. Joints in the robot legs are of three
different types that we will call J1, J2 and J3. J1 is in charge of the rotatory
movement, J2 of the lateral movement and J3 of the knee movement. Each joint
is physically implemented using different PID controllers. Also their movement
limits are different. For this reason, we must implement a different type of CPG
for each type of joint (this is, three types of CPGs). Nevertheless, the process for
the generation of each type is exactly the same, been the limitation of movements
the only difference between them.

For each joint, we implement each CPG by the coupling of two CTRNN
networks one for the sensor of the joint and another for the actuator (the motor).
It is like we apply the architecture described in section 2 to a unique joint.

Both nets are interconnected as the architecture specify but each one is in
charge of a different element (the sensor net is in charge of the sensor, and the
motor net is in charge of the motor). At each step of the evolutionary process,
the value of the sensor is read and entered in the sensor IHU. Then the output
is computed and given to the actuator IHU. The output of the actuator IHU
specifies the velocity that has to be applied to the motor, and, after escalation,
it is directly applied to it. The evolution of the oscillatory movement is then
performed over the robot, allowing this to include in the networks the effects of
inertias and general dynamics of the robot leg (see figure 6).

The weights of the nets are evolved using the ESP algorithm and a fitness
function that rewards the production of an oscillatory pattern in the motor joint.
We do not specify the type of pattern to obtain but only that has to be periodic
and between some oscillatory limits. Aibo joints can oscillate between very large
limits, but those are too large for an appropriate walking behaviour. We limit
then here the limits of oscillation by looking at the limits of real dogs and how

Fig. 6. Oscillatory patterns obtained for all three types of joints. Every joint has its
own range of oscillation.

12 R.A. Téllez, C. Angulo, and D.E. Pardo

Table 1. Limits for Aibo joints based on real dogs movements when walking

Joint Max Min Mean
J1, fore 0.3936 -0.5837 -0.0982
J2, fore 0.3702 -0.2163 0.0904
J3, fore 1.1732 0.1435 0.6305
J1, hind 0.0059 -0.7848 -0.4200
J2, hind 0.4215 -0.2163 0.1034
J3, hind 1.6599 0.9907 1.2499

do they perform when walking and making a scale conversion to our robotic dog
[19]. From that gathered data we obtain the limits indicated in table 1.

The fitness function applied to the neuro-evolution algorithm is defined to
reward regular oscillations within the limits of each joint. We want the system
to generate a joint movement around the mean value of the table, and maximal
variance within the limits of each joint. The fitness function is then:

fitness = [V − (A − M)] ∗ C2

been V the variance of the position of the joint during the 200 steps, A its
average value, M the mean value of the joint obtained from table 1, and C the
number of crossings that the joint performed through the mean position value.

Results : For each type of joint we carried ten runs starting with different initial
random populations (weight values between -6 and 6). Each run was composed
of 200 simulation steps of 96 ms on a first stage. After 13 generations all runs
converged to networks capable of maintained oscillations within the range spe-
cified, and the number of steps was augmented to 400 for other ten generations,
and later to 800 steps for five generations more. After this final stage, the net-
works were capable of a continuous oscillatory pattern on an unlimited amount
of time.

As an additional note, indicate that the same oscillatory mechanism was obtai-
ned in some evolutionary test we performed where the CPGs were only composed
of the actuator IHU, it is, no sensor IHU was included and the joint sensor was
directly connected to the motor IHU. However we decided to include the sensor
IHU for architecture’s coherence, and having in mind future benefits. This will
be more discussed in section 5.

4.2 Second Stage: Generation of Three Layers

From previous stage we obtained a group of different CPGs each one for a type
of joint (three types). In this stage we are going to replicate the CPG of each
type in the two fore legs in a first step, and for the four joints in all legs in a
second step.

What we do in this case is to duplicate for each joint the CPG formed by the
couple of two IHUs from one leg to the other. Duplication and new evolution is
performed for one type of joint at a time. Once we have an IHU couple controlling

Evolving the Walking Behaviour of a 12 DOF Quadruped 13

Fig. 7. Connections between four IHUs corresponding to two joints of the same type

each leg, then we apply again the architecture definition, that indicates how
all IHUs must be interconnected between them. This implies that each neural
net will have to add two more inputs coming from the outputs of the other
two neural nets duplicated (see figure 7). The evolutionary process will only
evolve the new connections between IHUs, but not the internal connections of
the neurons obtained from the previous stage. Since the oscillation has already
been obtained in the previous stage, this stage will not have to evolve it, but the
synchronisation between the two CPGs. The type of synchronisation to evolve
will depend on the type of gait required.

In this case, since we want the robot to implement a simple walking gait,
we need a phase relation between those two legs of 180o (in all types of joints).
The fitness function will be then that which punctuates the phase difference
between the legs that is close to those 180o and rewards a continuous movement
of both legs. To implement this function we divided it in three parts: two parts
are the fitness function of the first stage for each leg. The third part is the one
that measures the variance between the movements of both legs, and tries to
maximise it.

Oi = [V i − (Ai − M i)] ∗ C2
i

V L =
1
N

∑
(diffj − AvDiff)

2

fitness = O1 ∗ O2 ∗ V L

where Oi, Vi, Ai, Mi and C are the variance of the position of the joint during
the N steps, the average value, the mean value of the joint obtained from table 1,
and the number of crossings that the joint performed through the mean position
value, respectively, for each joint i. VL is the variance between legs trajectories,
N the number of steps, diffjis the difference of positions between legs for each
evaluation step j, and AvDiff is the average of difference positions between legs.

Results : For each type of joint we carried ten runs to evolve only the connections
between CPGs. Each run was composed of 400 simulation steps of 96 ms. After

14 R.A. Téllez, C. Angulo, and D.E. Pardo

14 generations, 90% of the networks were capable of a counter-phase oscillatory
pattern.

Once we have this two legs oscillatory coupling, we replicated it to the rear
legs, and repeated the evolutionary process to evolve only the weights of the
new connections between the new IHUs. In this case, we needed to evolve 4
connections per network, having a total number of IHUs of 8 per type of joint.
We evolved the whole group by imposing that the oscillations from the fore legs
must have a 90o phase difference with the oscillations from the rear legs. To
impose this condition, we calculated the difference of positions between fore legs
(diff F) and the difference of positions between rear legs (diff R), in the same
way as was done for the oscillation of two legs. Then we calculated the difference
between the differences:

totalDiff = diff F − diff R

So finally the fitness to obtain the coordination was composed of five parts: one
part for each leg that express the necessity of oscillation, one part that express
the necessity of maximal variance between the fore legs, and one last part that
express the necessity of maximal variance between differences fore-rear.

This is specified in the following fitness function.

Oi = [V i − (Ai − M i)] ∗ C2
i

V L =
1
N

∑
(diffj − AvDiff)

2

varF R =
1
N

∑
(diffF Rj − AvDiffF R)

2

fitness = O1 ∗ O2 ∗ O3 ∗ O4 ∗ V L ∗ varF R

where diffF Rj is the difference between the difference of positions for fore
legs and the difference of positions of rear legs for each evaluation step j, and

Fig. 8. Oscillations obtained for each type of joint when two joints are evolved

Evolving the Walking Behaviour of a 12 DOF Quadruped 15

AvDiffF R is the average value of such differences. varF R measures the va-
riance between fore and rear legs.

Results : We carried ten runs for each type of joint. Each run was composed of
400 simulation steps of 96 ms each. After 26 generations, 90% of the networks

Fig. 9. Oscillations obtained for all types of joints in all legs

16 R.A. Téllez, C. Angulo, and D.E. Pardo

were capable of the typical oscillatory walking pattern 0o, 180o, 90o, 270o (for the
legs sequence fore left, fore right, rear left, rear right). The oscillatory patterns
obtained can be seen in figure 8.

4.3 Third Stage: Coupling Between Layers

Last stage is the coupling between layers of joints. From previous stage we have
three different layers, one per type of joint, of four joints of the same type
oscillating together with a walking phase relation. Now we need to connect the
three layers between them in order to have the complete architecture finished.
We will have then to evolve the connections between layers to finally obtain
the whole robot walking with the full architecture completed. The connection
between layers should bring coordination at walking between the different types
of joints that have been evolved separately.

For this stage the fitness function is only the distance d walked by the robot,
when the robot does not fall. Zero otherwise.

fitness =
{

d when final height > 0
0 otherwise

Results : A walking behaviour was obtained after 37 generations for about 88%
of the populations. A sequence of the walking obtained is shown in figure 9.

The resulting ANN based controller was then transferred to the real robot
using the Webots simulator cross-compilation feature that we have collabora-
ted to develop with Cyberbotics. This cross-compilation process takes the exact
controller developed in the simulator (the best of the evolved ones), and auto-
matically translates it to Aibo OPEN-R code that is executed on the real robot.

Fig. 10. Simulated Aibo walking sequence

Fig. 11. Real Aibo walking sequence

Evolving the Walking Behaviour of a 12 DOF Quadruped 17

The result was an Aibo robot that walks in the same manner as the simulated
robot with some minor differences. A sequence of the walking obtained is shown
in figure 10.

5 Discussion

The present paper shows how a distributed architecture can be used for the
generation of gaits in a very complex robot. It also shows that a completely neural
network based controller is possible for the generation of a walking behaviour in
a quadruped of 12 degrees of freedom. Both of them are new results in the area
of autonomous robots and intelligent control systems.

We have implemented each CPG by using two neural nets, one in charge of
the sensor and one in charge of the actuator. In a formal way, the implementa-
tion of a CPG does not require the use of sensor inputs, but the introduction
of the sensor networks could provide the system with a reflex system that may
be helpful in front of unpredicted circumstances [20]. Our architecture does in-
tegrate already the sensor’s feedback into the CPG, but its benefits have not
been studied yet and is part of our future work. In particular, this reflex system
would be integrated into the own CPG walking structure, not being a separated
system, and could benefit the walking style in front of irregular terrain with
small obstacles, allowing the robot to adapt to them and keep walking.

When developing the sequence of actions that would lead us to obtain a
walking controller, we found that it was impossible to obtain a walking controller
if the architecture was directly applied and all the nets (24) were evolved at
the same time. The evolutionary algorithm always found an easier and useless
solution other than walk in order to go forward. This is due to the complexity
of the search space, that makes useless to perform a brute force search. This
is the reason why an evolution by stages was required. But the evolution by
stages has the drawback that a previous knowledge of the situation is required
by the engineer in order to find the best way to implement the stages and
find the good fitness functions, and this is one of the main criticisms against
the evolutionary robotics methods. That is why, neuro evolutionary roboticists
try to avoid as much as possible to introduce their knowledge of the situation,
allowing the robot to find their own solution and not biasing the search of it.
However, we do bet for the use of the engineer knowledge in the application of
the evolutionary process, in order to reduce the search space. We do think it is
necessary because, at difference at how real evolution did, we do have to evolve
the robot controller on an already made robot, meanwhile real evolution evolved
at the same time the structure of the living system and its controller. This puts
us on disadvantage when compared to evolution, and that disadvantage needs to
be overcome by our analysis and knowledge of the situation. This analysis of the
situation should lead to an engineered evolutionary process with some engineer
defined fitness functions, resulting on an equilibred evolutionary process that
should restrict the search space enough but, at the same time, give space enough
to the evolutionary process to explore for the solution. Other approaches are also

18 R.A. Téllez, C. Angulo, and D.E. Pardo

possible, like for example, to imitate real evolution and evolve at the same time
body and controller as some recent works try to implement[21].

Acknowledgements

The authors would like to specially thank Professor Auke J. Ijspeert for insightful
comments on the necessity of division of the search space in order to be able to
find a good solution, and Dr. Olivier Michel for his support on the use of the
simulator.

References

1. Grillner, S.: Neurobiological bases of rhythmic motor acts in vertebrates. Science
228 (1985) 143–149

2. Hallam, J., Ijspeert, A.: 4. In: Using evolutionary methods to parametrize neural
models: a study of the lamprey central pattern generator. Physica-Verlag (2003)
119–142

3. Ijspeert, A.J.: A connectionist central pattern generator for the aquatic and terre-
strial gaits of a simulated salamander. Biological Cybernetics 84 (2001) 331–348

4. Hiroshi Kimura, S.A., Sakurama, K.: Realization of dinamic walking and running
of the quadruped using neural oscillator. Autonomous Robots 7(3) (1999) 247–258

5. Hiroshi Kimura, Y.F., Konaga, K.: Adaptive dynamic walking of a quadruped
robot by using neural system model. Advanced Robot 15 (2001) 859–876

6. Collins, J., Richmond, S.: Hard-wired central pattern generators for quadrupedal
locomotion. Biological Cybernetics 71 (1994) 375–385

7. Téllez, R., Angulo, C.: Evolving cooperation of simple agents for the control of
an autonomous robot. In: Proceedings of the 5th IFAC Symposium on Intelligent
Autonomous Vehicles. (2004)

8. Téllez, R., Angulo, C., Pardo, D.: Highly modular architecture for the general
control of autonomous robots. In: Proceedings of the 8th International Work-
Conference on Artificial Neural Networks. (2005)

9. Seys, C.W., Beer, R.D.: Evolving walking: the anatomy of an evolutionary search.
In: From Animals to Animats: Proceedings of the eighth international conference
on simulation of adaptive behavior. Volume 8. (2004)

10. Mathayomchan, B., Beer, R.: Center-crossing recurrent neural networks for the
evolution of rhythmic behavior. Neural Computation 14 (2002) 2043–2051

11. Yong, H., Miikkulainen, R.: Cooperative coevolution of multiagent systems. Tech-
nical Report AI01-287, Department of computer sciences, University of Texas
(2001)

12. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1) (2004) 39–42

13. Minsky, M.: The Society of Mind. Touchtone Books (1988)
14. Carruthers, P.: The case for massively modular models of mind. In: Contemporary

Debates in Cognitive Science. Blackwell (2005)
15. Gómez, F., Miikkulainen, R.: Solving non-markovian control tasks with neuroevo-

lution. In: Proceedings of the IJCAI99. (1999)
16. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.

Technical Report AI96-248, University of Texas (1996)

Evolving the Walking Behaviour of a 12 DOF Quadruped 19

17. Hopfield, J.: Neurons with graded response properties have collective computa-
tional properties like those of two-state neurons. In: Proc. National Academy of
Sciences USA. Volume 81. (1984) 3088–3092

18. Reeve, R.: Generating walking behaviours in legged robots. PhD thesis, University
of Edinburgh (1999)

19. Nunamaker, D.M., Blauner, P.: Normal and abnormal gait. In: Textbook of small
animal orthopaedics. International veterinary information service, USA (1985)

20. Ijspeert, A.: Locomotion, vertebrate. The handbook of brain theory and neural
networks, second edition (2002) 649–654

21. Pollack, J. B., H.G.S.L.H., Funes, P.: Computer creativity in the automatic design
of robots. LEONARDO 36(2) (2003) 115–121

Robot Control:
From Silicon Circuitry to Cells

Soichiro Tsuda1,�, Klaus-Peter Zauner2, and Yukio-Pegio Gunji1

1 Graduate School of Science and Technology,
Kobe University Nada, Kobe 657-8501, Japan

Fax: +81-78-803-5759
026d874n@y04.kobe-u.ac.jp, yukio@kobe-u.ac.jp

2 School of Electronics and Computer Science,
University of Southampton, SO17 1BJ, United Kingdom

Fax: +44-23-8059-2865
kpz@ecs.soton.ac.uk

Abstract. Life-like adaptive behaviour is so far an illusive goal in robot
control. A capability to act successfully in a complex, ambiguous, and
harsh environment would vastly increase the application domain of
robotic devices. Established methods for robot control run up against
a complexity barrier, yet living organisms amply demonstrate that this
barrier is not a fundamental limitation. To gain an understanding of how
the nimble behaviour of organisms can be duplicated in made-for-purpose
devices we are exploring the use of biological cells in robot control. This
paper describes an experimental setup that interfaces an amoeboid plas-
modium of Physarum polycephalum with an omnidirectional hexapod
robot to realise an interaction loop between environment and plasticity
in control. Through this bio-electronic hybrid architecture the contin-
uous negotiation process between local intracellular reconfiguration on
the micro-physical scale and global behaviour of the cell in a macroscale
environment can be studied in a device setting.

1 The Biological Paradigm

Information processing is essential for life. From the very outset living matter
had to defend its organisation against the onslaught of entropy. Subsequently the
need to compete with rivalling life forms required evermore refined information
processing. As a consequence organisms exhibit an intriguing sophistication in
overcoming computationally difficult challenges. In the area of robotics, where
restrictions in power consumption and size collide with real-time processing re-
quirements for complex data streams, the discrepancy between technology and
nature is particularly apparent.

Although competent artificial autonomous systems capable of successfully
acting in an unknown and unbounded dynamic environment are not in sight,
directing attention on biological systems has brought several issues to the fore.
� Corresponding author.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 20–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Robot Control: From Silicon Circuitry to Cells 21

It is well known that organisms employ a pragmatic tailoring of sensory informa-
tion for their specific needs [1]. Conversely, it has been shown that apparently
complex behaviour requires only relatively simple control structures [2]. Cen-
tral to a reduction in computational requirements for control is the task specific
adaptation of sensors and actuators [3]. In fact the conceptual separation be-
tween sensing, coordinating, and acting may not be tenable for such systems.
Mechanical components of a robot’s structure can become part of the informa-
tion processing architecture [4] and thus behaviour is not reflecting the direct
actions of a controller but emerges from the interaction of control, body and
environment [5, 6].

After what has been stated it may seem that such an approach achieves
efficiency by trading away versatility. Yet, clearly, organisms exhibit an enviable
capability for coping with unknown situations. How can they achieve efficiency
without compromising versatility? Arguably, the key lies in the plasticity of the
architecture that allows for the dynamic formation of sensory, computational,
and effector structures in reciprocation with the environment [7, 8].

The paradigms outlined above have in common that they go beyond the remit
of formal computation by drawing on specific properties of the computing sub-
strate and even extending the latter to include the environment of the robotic
device. Hybrid architectures that interface nature’s computing substrates with
artificial devices open up a path to investigate these paradigms. In the present
context the coupling of biological tissue or whole organisms with robotic de-
vices is of interest. Some of the research in this area is motivated by potential
applications in prosthetics. It has been demonstrated, for instance, that simul-
taneous recordings from populations of neurons can enable rats to control a
robotic arm [9]. Other approaches focus on the the computational properties
of the neural tissue. DeMarse et al. have interfaced cultured rat neurons with a
computer simulated environment to study the effect of closed loop feedback to
the neuronal network [10]. In a similar vein Reger et al. extracted the brain stem
of a fish larva and stimulated it with signals derived from light sensors mounted
on a mobile robot. Neural activity in two regions of the brain stem was used to
control the robot’s movements. We must not omit to mention here the art instal-
lations of Ken Rinaldo. He built a number of different robots that are controlled
by the position to which a fish swims in its tank and he has implemented what
is likely to be the first interaction among robots controlled by organisms (other
than humans) [11].

The direction of the work presented in this paper differs from the aforemen-
tioned in its focus on robot technology. Here the robot does not serve as a
tool for the organism that is in control, nor is it purely a research tool in the
study of biological information processing. The long-term objective of the line
of research described here is the integration of, potentially modified, cells into
made-for-purpose robotic devices.

In the following we first consider the self-organisation and information pro-
cessing properties of single cells, next focus on a specific cell, the plasmodia
of Physarum polycephalum, and then describe a hybrid approach in which a

22 S. Tsuda, K.-P. Zauner, and Y.-P. Gunji

plasmodium is integrated into a robot controller to import the plasticity and
adaptability of a living organism into a device architecture.

2 Cellular Information Processing

Single cells cannot take recourse to specialised tissues such as a nervous sys-
tem for their information processing needs. Nonetheless, even bacteria possess
elaborate signal processing capabilities [12]. Single cell organisms, by necessity,
implement sensors, information processing, and effectors on the molecular level.
In examining what is known about nature’s molecular level computing it becomes
evident that matter is used in a markedly different way than in conventional com-
puting architectures. Information processing mechanisms are tightly coupled to
physiochemical properties of the materials rather than being narrowly constraint
to enact a rigid formalism [13].

Rothstein speculated that living matter has a large amount of information
coded in its structure and used the term ‘instructions’ for the constraints the
system structure imposes on the physicochemical dynamics [14]. This viewpoint
is supported by experimental findings. If cells are cooled to very low temper-
atures all molecules in the cell come almost to a halt. During warming the
linear and angular momenta of the molecules in the cell are randomised. This
procedure erases the dynamic state information of the cell. Nevertheless cells
survive and the cell’s static structure is able to revive the dynamics of the
living state after warming [15]. Instructions in the sense of Rothstein, how-
ever, should not be misconstrued with the careful state preparation required in
programming conventional computing devices which depend crucially on the
initial state for correct operation. On the contrary, indeed, it is found, for
instance, that physicochemical dynamics is able to recreate the intracellular
infrastructure even after the spatial arrangement of practically all enzymes has
significantly been altered by ultracentrifugation [16]. In combination these
observations point to an organisational principle in which cell structure and
cell dynamics mutually maintain each other. Prerequisite for such an organisa-
tion is, what may be called structure-function self-consistency. Not only does the
structure self-organise, as for example in protein folding or virus self-assembly,
but also the functional dynamics arises directly from the physical interaction
of the components following a course determined by free-energy minimisation.
This principle is very different from established information processing
technology where the course of a computation is critically dependent on the
precise preparation of an initial machine state. It does not only contribute
to the robustness and resilience of natural information processors, but, more-
over, allows for more efficient implementations. This is the case, because a
smaller fraction of the architecture is required to establish constraints and the
system state does not need to be tightly constraint with high energy
barriers [17].

We will now turn to the the plasmodium of the true slime mold Physarum
polycephalum, to discuss a specific example of a self-organising, robust informa-
tion processing architecture that exhibits the aforementioned properties.

Robot Control: From Silicon Circuitry to Cells 23

3 Characteristics of Physarum Plasmodia

The plasmodial stage of Physarum polycephalum is a single, giant, multi-nuclear
cell. It moves like a large amoeba and is feeding on bacteria. The size of this
amorphous organism ranges from several tens of micrometers to a few meters.
Figure 1 shows the typical organisation of cytoplasm in a plasmodium. An exter-
nal membrane encloses a possibly large mass of cytoplasm. Small cells often rely
on diffusion to communicate materials and signals internal to the cell. For the
giant cells of Physarum polycephalum, however, diffusion among distant parts of
the cell would be exceedingly slow. An active mechanism is therefore required to
coordinate behaviour across the whole organism. A network of tubes spans the
plasmodium and connects to its flat border zone. Cytoplasm oscillates forward
and backward within the tubes. This, so called shuttle streaming, is driven by
hydrostatic pressure gradients along the tubes. The tubes themselves apparently
consist of gelled cytoplasm and tubes are formed, interconnected, resized, and
disassembled to adapt to changes in the environment as well as to growth [18].

Fig. 1. Part of a plasmodium of Physarum polycephalum in developed form. Sheet-like
fringe areas (upper part of the photograph) are connected by a network of tubular
structures (lower part of the photograph). The section shown is 30 mm wide.

3.1 Distributed Information Processing

The dynamic tubular network provides the necessary infrastructure to integrate
information from peripheral zones of the plasmodium and enables this primitive
motile system to respond to local stimuli with a coordinated movement of the
whole organism. If the plasmodium locally touches a food source, it will gather
around it and than cover it. Conversely if an area of the plasmodium comes
into contact with a chemical it finds repulsive (NaCl for instance), the entire
plasmodium will collectively move away from the stimulated region.

The plasmodium shows chemotaxis, phototaxis, thermotaxis and prefers hu-
mid over dry locations. Yet, it does not possess a central processing system
for sensory signals. It relies on distributed information processing and commu-
nication through the shuttle streaming mechanism to generate the appropriate
response to stimuli. The rhythm of the shuttle streaming is known to be synchro-
nised with intracellular chemical oscillation, such as ATP and Ca2+ concentra-
tion [19]. A local attractive stimulus (e.g., glucose or warmth) is first converted

24 S. Tsuda, K.-P. Zauner, and Y.-P. Gunji

to an increase in frequency of the local protoplasm oscillations and similarly
a repellent (e.g., blue light) will lead to a reduced local frequency. The local
oscillations are then communicated through the tubular network to couple to
oscillations modulated by stimuli received at other regions of the cell [20]. Fi-
nally the overall oscillatory pattern of the cytoplasmic streaming gives rise to an
approaching or escaping movement. This signal processing mechanism has been
modelled with a reaction-diffusion system [21] and shown to be size-invariant [22].

Numerous observations have confirmed the versatility of the distributed pro-
cessing implemented by the Physarum polycephalum plasmodium. Nakagaki and
coworkers, for example, showed that the plasmodium can find the shortest
path in a maze [23] and that it can solve small instances of optimisation
problems [24]. Aono recently constructed a novel neural network system driven
by a plasmodium [25]. Some of us implemented self-repairing logic gates with
plasmodia [26], which leads to another aspect of Physarum polycephalum that is
of interest with regard to robot control.

3.2 Self-repair and Robust Behaviour

Among the most enviable features of natural information processing systems is
their robustness. Typically they exhibit both, robust function in face of compo-
nent variation or failure, and robust behaviour in face of unanticipated or para-
doxical situations. Both are difficult to achieve with established robot control
technology. With progressing miniaturisation of robotic devices these features
will become increasingly important. The former because detailed prescriptive
control in fabrication will become economically, if not physically, infeasible [27]
and the latter because the potential application areas for miniaturised robotic
devices call for a high degree of autonomy.

The self-maintenance principle of cells discussed in section 2 in combination
with the distributed organisation described in the previous section endows the
plasmodium with functional robustness. If a tube of a plasmodium is severed,
cytoplasm pumped through the tube will leak into the area surrounding the cut
and gel to seal the tube. This sol-gel state transition of the cytoplasm together
with the fact that a plasmodium typically contains numerous nuclei allows for
much more drastic damage to be overcome. A plasmoidum can be physically
taken apart into small pieces, each of which will seal itself up and survive as a
smaller, individual, fully functional plasmodium. But, moreover, if two plasmodia
get in contact, they can fuse into a single cell and act as one plasmodium after the
fusion. This feature has been exploited by Takamatsu et al. to construct coupled
nonlinear oscillator circuits [28] and the robot control architecture described
below builds on their technique.

As to the phenomena of behavioural robustness in the face of contradictory
stimuli, Nomura observed that a plasmodium surrounded by a repellent chemical
will eventually move towards the repulsive stimuli and break out of the trap [29].
Further studies are needed to establish whether this is the result of random errors
in the information processing cascade that occur with low probability and thus,
after a period of exploration, cause the escape, or whether a more sophisticated

Robot Control: From Silicon Circuitry to Cells 25

mechanism gives rise to the approach of the repellent. Studies with multiple
attractants also indicate a graceful response of the plasmodium [24].

3.3 Plasmodium Properties Used in the Robot Controller

The cell-based robot controller described in the following section draws on many
of the features mentioned so far. A few additional facts are pertinent to the
construction and function of the bio-hybrid control architecture. Plasmodia can
be grown in a desired geometry by means of a negative plastic mask. A disk-
shaped area with a diameter that is small compared to the spatial wavelength
of the shuttle-streaming oscillations will be in synchrony and can be assumed
to be a single oscillator. And, furthermore, if two such areas are connected by a
channel in the mask, the phase wave of an oscillator is propagated only through
tube structures formed in the channel [28].

The cytoplasm flow of the shuttle-streaming leads to oscillations in the local
thickness of the plasmodium cell. Because plasmodia are not sensitive to light
near 600 nm the shuttle-streaming can be monitored through the change in light
absorbance concomitant with the thickness variation. To blue light, however,
the plasmodia show negative phototaxis and blue or white light can therefore be
used as stimuli [30]. In combination these two facts allow for an optical interface
to the plasmodium.

4 Robot Control with Physarum Circuits

In contrast to conventional information processing architectures, the infrastruc-
ture of a cell is in a continual state of flow. This dynamic replacement of
components serves maintenance and facilitates structural reorganisation. Self-
modification is thus inherent in cells. It would be very difficult to capture even
part of this adaptive aspect in a purely artificial device based on current tech-
nology. By taking a hybrid approach that integrates a cell into a robot control
architecture, however, we can experimentally investigate the interaction of a
device that comprises autonomous, self-modifying, and self-maintaining compo-
nents with its environment.

The design of the architecture is illustrated in Fig. 2. Local shuttle streaming
oscillations of a plasmodium are measured and used to affect the phase and

Channels

Oscillators

Light Sensors

Robot Legs

Environment

Light
Irradiation

Oscillation
Data

Light Input

Locomotion

Physarum
Circuit

Robot

Fig. 2. Physarum-Robot-Environment Interaction Loop

26 S. Tsuda, K.-P. Zauner, and Y.-P. Gunji

frequency of leg swing in a six-legged robot. The combined action of the legs
results in a motion of the robot through its environment which is structured by
light sources. Signals from light sensors mounted on the robot are transduced
to white light stimuli for a plasmodium. These stimuli in turn affect the shuttle
streaming and consequently alter the motion of the robot. However, the cell will
respond also with structural reconfiguration. Conrad suggested that in such a
self-modifying system structural improvements are possible if errors destabilise
the structure and termed this process ‘adaptive self-stabilisation’ [31]. We adapt
a similar perspective, which briefly put, can be pictured as follows. A signal
from the environment impinging on the cell gives rise to a local perturbation.
As a consequence, locally, the cell state is not aligned with the global state of
the cell. The cell will strive to reestablish a self-consistent state by updating its
sensory, computational, and effector structures. These structures are of course
highly interdependent and pursuing a self-consistent state may involve a lengthy
cascade of self-modifications, a process here referred to as negotiation between
the local and the global. From the structural changes that accompany the local-
global negotiation process, an altered global behaviour of the cell emerges. For
a formal model of this process see [32].

4.1 The Making of a Cell Circuit

To control the six legs of a hexapod robot we use the star shaped circuit shown
in Fig.3. Each of the six circular wells acts as a nonlinear oscillator and all os-
cillators are coupled through the channels that meet at a single central point.
The plasmodium is patterned by letting it grow into the open parts of a mask
cut from plastic film that is placed on a 3–5 mm layer of 1.5 % agar in a
Petri dish. To fabricate the plastic mask, the circuit pattern with ≈ 1.5 mm
diameter wells and 0.5 mm wide channels is printed with a laser printer on
an overhead projector foil. The wells are cut out with a 1/16” hand punch
(www.fiskars.com) and the channels are cut with a sharp blade under a stereo-
microscope. The distance from the centre of a well to the junction of the six
channels is 3.75 mm.

When the mask is placed on the agar plate it leaves a moist agar region in
the desired geometry exposed and confines this area with the dry plastic surface.
The plasmodium preferentially grows on a moist surface and usually does not
migrate over a dry region. The fact, above mentioned, that plasmodia can be cut
into pieces and will fuse into a single cell allows for a cut-and-paste approach
in filling the mask. Plasmodia are cultured on 1.5 % agar gel plates that are
sprinkled with oat flakes to supply bacteria as food for the plasmodium. A tip
of a plasmodium culture is cut off and placed on the exposed agar gel inside
each well so that it covers the well region (Fig. 3B). The Petri dish with the
developing circuit is then incubated at about 20◦C in the dark for 10 hours.
During incubation the six plasmodia in the wells grow along the exposed agar
surface in the channels (Fig. 3C) and upon meeting in the centre fuse into a
single plasmodium. Approximately four hours after fusion tube structures have
been formed in the channels (Fig. 3D) and the circuit is ready for use.

Robot Control: From Silicon Circuitry to Cells 27

A B

C D

Fig. 3. Physarum circuit. The plasmodium is patterned as six oscillators with star
coupling by means of a negative plastic mask (A). Panel (B) to (D) show snapshots
of the plasmodia growth. Shortly after preparation (B), 5 hours after preparation (C),
and the fully developed circuit 10 hours after preparation (D).

4.2 The Robotic Platform and Cell-Robot Interface

A simple six-legged robot with a hexagonal body and radial leg swing provides
a platform with excellent static stability. There is no possibility for mechanical
interference among the actuators, even if every leg performs random motions and
on a flat surface the robot will not tip over. This robot, depicted in Fig. 4, can
move and sense omnidirectional and offers numerous possible gate patterns with
only a single degree of freedom per leg. If groups of legs are driven in anti-phase
the robot exhibits directional movement. The legs of the robot are driven by
six servos controlled through a serial interface with a PC. The robot is equipped
with six light sensors that feed into six channels of a sound card in the PC. A
flexible wire bundle connects the robot with the PC.

Now, to implement the interaction loop shown in Fig. 2, the robot needs to be
bi-directionally interfaced with the Physarum circuit. The thickness variation of
the plasmodium on the one side and its phototactic response on the other side
allow for an all-optical interface. Figure 5 shows the overall architecture, the
software for which was implemented in Tcl/Tk (cf., wiki.tcl.tk) using the Snack
library (www.speech.kth.se/snack/).

One direction will transmit signals received by the robot’s sensors to the
plasmodium. The signals that arrive at the sound card of the PC are interpreted

28 S. Tsuda, K.-P. Zauner, and Y.-P. Gunji

A B

Robot Body

Servo

Robot Leg

Fig. 4. A tethered hexapod robot (A) is used for its stance stability and gait flexibility.
Each leg has only one degree of freedom and swings radial to the body (B). Whether
a leg is in contact with the ground during its move will depend on the position of the
other legs.

Projector

CCD Camera

Plastic Film

Light Source with Bandpass Filter

PC Robot
Thickness
Oscillation

Data

Sensory
Data

Light
Input

Locomotion

Fig. 5. Cellular robot controller. See text for details.

by the PC and translated into an entry from a fixed image table. Each image in
the table has a different white pattern on black background. The image selected
from the table is projected with a data projector onto the Physarum circuit in
such a way that the white patterns (indicated by dashed rectangular boxes in the
left of Fig. 5) fall on the channels that connect the wells in the circuit and thus
locally stimulate the circuit. Each light sensor on the robot has a corresponding
white bar in the projected pattern.

The other direction of the cell-robot interface will transmit the response of
the plasmodium to the actuators of the robot. To this end the Petri dish with the
fully developed circuit is placed on a cold light source which is bandpass filtered
(NT46-152, www.edmundoptics.com) to the spectral region near 600 nm. A CCD
camera mounted above the Petri dish detects the red light transmitted through
the Physarum circuit. For each well the 8-bit brightness values of pixels from
the central region are averaged and used to calculate an amplitude signal for

Robot Control: From Silicon Circuitry to Cells 29

the oscillator comprised by the part of the plasmodium in that well. To suppress
camera noise, a moving average over a window of 15 samples is used as final out-
put signal of the well. The signal from the six oscillators typically have a period
of one to two minutes—too long to be ideal for directly driving the legs of the
robot. The plasmodial oscillators, however can be coupled to software oscillators
that drive the six robot legs at a higher frequency, yet preserve the phase rela-
tionship of the physarum circuit wells. This form of coupling also compensates
for the typical variations in amplitude of the signals measured from different
wells. The phase relationships among the six legs determine the locomotion of
the robot and as a consequence lead to changes in the light levels received by
the robot’s sensors and accordingly the white light stimulation received by the
circuit—thus closing the interaction loop.

4.3 Physarum Oscillatory Behaviour

Experiments with a model of coupled nonlinear oscillators confirmed that
the robotic platform is capable of directed motion and of direction change when
the legs are driven by the oscillators. These experiments showed that changes in
the phase relationship among the legs are sufficient to switch between different
gait modes.

Our current experiments focus therefore on the phase relationship of the wells
in the six-oscillator configuration described in section 4.1. The plasmoidum is
known to be active even without food over several days and will go into a dormant
state if starved longer. Measurements over extended time periods are therefore
possible. We generally conduct experiments with the circuits for 5–10 hours. A
typical behaviour of this circuit is shown in Fig. 6. The transitions among phase
patterns that are visible in the figure are spontaneous, no stimulus has been
applied over the time period depicted.

Stable global in-phase, anti-phase, and rotational oscillations have been ob-
served. Brief periods of unstable oscillations also occur. These oscillations are
inherent to the physiology of the plasmodium and occur even without external
stimulation. Preliminary experiments with light stimulation indicate that local
stimuli can affect the global circuit mode. For instance, we have observed two os-
cillators located directly opposite each other change from in-phase to anti-phase
oscillation immediately after a light stimulus was removed. At present, however,
we do not have enough data to establish the nature of this phenomenon. To
further investigate the effect of local stimuli on the global oscillation patterns,
we have recently modified the experimental procedure to also irradiate the wells
with white light (interrupting the stimulus briefly to permit the measurement of
transmitted red light).

As noted above, anti-phase oscillations are effective to generate one-directional
movement of the robot. Conversely unstable oscillatory patterns typically result
in a change of orientation of the robot. As a consequence, despite the robot’s
morphological symmetry, it will move in a different direction after a phase of
unstable oscillations, even if the plasmodium returns to the previous anti-phase
pattern.

30 S. Tsuda, K.-P. Zauner, and Y.-P. Gunji

Time [s]

P
os

iti
on

Fig. 6. Spontaneous change in phase relation among the six oscillators of the circuit
shown in Fig.3. The graph represents the binarised thickness oscillation rhythm for
the oscillators. No stimulus was applied. The six horizontal bands from top to bottom
correspond to oscillator wells 1–6, numbered counterclockwise from the upper right
(one-a-clock) position. Black lines represent an increase and white vertical lines a de-
crease in thickness. The horizontal axis represents time with the total length of the
graph corresponding to 1000s. Several spontaneous transitions among synchronisation
patterns are observed over this time period.

5 Discussion and Perspective

Purposeful operation in a complex ambiguous environment requires versatility
rather than controllability. With the current information technology paradigm
finding more complex or efficient behavioural strategies is paraphrased as a prob-
lem of proper tuning of system parameters and components. But for a system
that is required to operate in an ill-defined real world environment, the estab-
lished concept does not work. The set of key parameters to be considered is
bound to be vague and one cannot predetermine all of the possibilities at one’s
disposal. Nature evolved information processors that are up to this challenge.
The plasticity that is a prerequisite for evolutionary progress at the same time
opens a path to continual self-adaptation. The architecture of such a system is
a response to the current and past interaction with the environment and does
in general not have a fixed organisation. The system structure is in a perpetual
state of change while local alterations to sensors and signal processing cascades
affect the global behaviour which in turn requires a re-alignment of local struc-
ture. This local-global negotiation process replaces the tuning of parameters in
a conventional system which is necessarily as much ad hoc as it is a priori. This
crucial difference between natural and artificial information processors has re-
ceived considerable attention in the theoretical literature (for pointers see the
citations in sections 1, 2, and 4). An experimental approach from an information
processing perspective, however, has been difficult.

Although our experiments are at an early stage, we expect that the bio-
hybrid architecture presented above will open a path in this direction. From our
experience so far, we conclude that the plasmodium of Physarum polycephalum
is well suited to study device architectures based on autonomous components.
At this stage many questions are open. We currently study the effect of the light

Robot Control: From Silicon Circuitry to Cells 31

input signals on circuits to gain a better understanding of what the determinants
of the observed transitions in the phase patterns are. We are also investigating
how the repertoire of phase patterns relates to circuit topology.

On a longer perspective, we expect robust biological cells such as those of
molds and thermophilic bacteria to become an integral part of technological
devices. We believe that the efficient and quality controlled nano-fabrication
offered by biological cells may turn out to be a suitable way of obtaining highly
integrated, robust information processors, at least for niche applications.

Acknowledgements

The authors thank Masashi Aono for helpful discussions. The research reported
here was supported in part by the Science and Technology Agency of Japan
through the Center of Excellence (COE) program.

References

1. J. Y. Lettvin, H. R. Maturana, W. S. McCulloch, and W. H. Pitts. What the frog’s
eye tells the frog’s brain. Proc. Inst. Radio Engr., 47:1940–1951, 1959. Reprinted in
The Mind: Biological Approaches to its Functions, W. C. Corning and M. Balaban,
(Eds.), 1968, pp. 233–258.

2. V. Braitenberg. Experiments in Synthetic Psychology. MIT Press, Cambridge, MA,
1984.

3. B. Webb. View from the boundary. Biological Bulletin, 200(2):184–189, 2001.
4. B. Hasslacher and M. W. Tilden. Living machines. Robotics and Autonomous

Systems, pages 143–169, 1995.
5. R. D. Beer. Intelligence as Adaptive Behavior, an Experiment in Computational

Neuroethology. Academic Press, 1990.
6. H. J. Chiel and R. D. Beer. The brain has a body: adaptive behavior emerges from

interaction of nervous system, body and environment. Trends In Neuroscience,
12:553–557, 1997.

7. H. R. Maturana and F. J. Varela. Autopoiesis and Cognition: The Realization of
the Living, volume 42 of Boston Studies in the Philosophy of Science. D. Reidel
Publishing, Dordecht, Holland, 1980.

8. P. Cariani. Some epistemological implications of devices which construct their own
sensors and effectors. In F. J. Varela and P. Bourgine, editors, Toward a Practice of
Autonomous Systems: Proceedings of the First European Conference on Artificial
Life, pages 484–493, Cambridge, MA, 1992. MIT Press.

9. J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis. Real-time
control of a robot arm using simultaneously recorded neurons in the motor cortex.
Nature neuroscience, 2(7):664–670, 1999.

10. T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter. The neurally
controlled animat: Biological brains acting with simulated bodies. Autonomous
Robots, 11:305–310, 2001.

11. K. Rinaldo. Augmented fish reality. ARS Electronica Center, Linz, 2004. See also:
http://accad.osu.edu/~rinaldo/works/augmented/.

12. J. Adler and W.-W. Tso. “Decision”-making in bacteria: Chemotactic response of
Escherichia coli to conflicting stimuli. Science, 184:1292–1294, 1974.

32 S. Tsuda, K.-P. Zauner, and Y.-P. Gunji

13. K.-P. Zauner. Molecular information technology. Critical Reviews in Solid State
and Material Sciences, 30(1):33–69, 2005.

14. J. Rothstein. Information, measurement, and quantum mechanics. Reprinted in:
H. S. Leff and A. F. Rex (Eds.), Maxwell’s Demon—Entropy, Information, Com-
puting, pp. 104–108, Bristol: Adam Hilger, 1990., 1951.

15. A. I. Skoultchi and H. J. Morowitz. Information storage and survival of biological
systems at temperatures near absolute zero. Yale J. Biol. Med., 37:158–163, 1964.

16. H. Kondo, M. Yamamoto, and M. Watanabe. Reversible intracellular displacement
of the cytoskeletal protein and organelles by ultracentrifugation of the sympathetic
ganglion. J. Submicrosc. Cytol. Pathol., 24:241–250, 1992.

17. Michael Conrad. The price of programmability. The Universal Turing Machine:
A Half-Century Survey, pages 285–307, 1988.

18. W. Korohoda, L. Rakoczy, and T. Walczak. On the control mechanism of pro-
toplasmic streamings in the plasmodia of Myxomycetes. Acta Protozoologica,
VII(29):363–373, 1970.

19. T. Ueda, K. Matsumoto, and Y. Kobatake. Spatial and temporal organization
of intracellular adenine nucleotides and cyclic nucleotides in relation to rhythmic
motility in physarum plasmodium. Experimental Cell Research, 162(2):486–494,
February 1986.

20. A. C. H. Durham and E. B. Ridgway. Control of chemotaxis in physarum poly-
cephalum. The Journal of Cell Biology, 69:218–223, 1976.

21. H. Miura and M. Yano. A model of organization of size invariant positional informa-
tion in taxis of physarum plasmodium. Progress of Theoretical Physics, 100(2):235–
251, 1998.

22. Y. Miyake, S. Tabata, H. Murakami, M. Yano, and H. Shimizu. Environmental-
dependent self-organization of positional information field in chemotaxis of
physarum plasmodium. Journal of Theoretical Biology, 178:341–353, 1996.

23. T. Nakagaki, H. Yamada, and A. Toth. Intelligence: Maze-solving by an amoeboid
organism. Nature, 407:470, 2000.

24. T. Nakagaki, R. Kobayashi, Y. Nishiura, and T. Ueda. Obtaining multiple separate
food sources: behavioural intelligence in the physarum plasmodium. R. Soc. Proc.:
Biol. Sci., 271(1554):2305–2310, 2004.

25. M. Aono. Personal communication, 2004.
26. S. Tsuda, M. Aono, and Y.-P. Gunji. Robust and emergent physarum logical-

computing. BioSystems, 73:45–55, 2004.
27. K.-P. Zauner. From prescriptive programming of solid-state devices to orchestrated

self-organisation of informed matter. In J.-P. Banâtre, J.-L. Giavitto, P. Fradet,
and O. Michel, editors, Proceedings of UPP 2004, Unconventional Programming
Paradigms, 15–17 September, Le Mont Saint-Michel, France, volume 3566 of LNCS,
pages 47–55. Springer, 2005.

28. A. Takamtsu, T. Fujii, and I. Endo. Control of interaction strength in a network of
the true slime mold by a microfabricated structure. BioSystems, 55:33–38, 2000.

29. S. Nomura. Symbolization of an object and its freedom in biological systems. PhD
thesis, Kobe University, 2001.

30. T. Ueda, Y. Mori, T. Nakagaki, and Y. Kobatake. Action spectra for superoxide
generation and UV and visible light photoavoidance in plasmodia of physarum
polycephalum. Photochemistry and Photobiology, 48:705–709, 1988.

31. M. Conrad. Emergent computation through self-assembly. Nanobiology, 2:5–30,
1993.

32. Y.-P. Gunji, T. Takahashi, and M. Aono. Dynamical infomorphism: form of endo-
perspective. Chaos, Solitons and Fractals, 22:1077–1101, 2004.

Proposal and Evaluation of
a Cooperative Mechanism

for Pure P2P File Sharing Networks

Junjiro Konishi, Naoki Wakamiya, and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University,
1–5 Yamadaoka, Suita-shi, Osaka 565–0871, Japan

{j-konisi, wakamiya, murata}@ist.osaka-u.ac.jp

Abstract. To provide application-oriented network services, a variety
of overlay networks are deployed over physical IP networks. Since they
share and compete for the same physical network resources, their selfish
behaviors affect each other and, as a result, their performance deteri-
orates. Our research group considers a model of overlay network sym-
biosis, where overlay networks coexist and cooperate to improve their
application-level quality of service (QoS) while sustaining influences from
the physical network and other overlay networks. In this paper, we pro-
pose a mechanism for pure P2P networks of file-sharing applications to
cooperate with each other. In our proposal, cooperative peers establish
logical links among two or more P2P networks, and messages and files are
exchanged among cooperative P2P networks through these logical links.
For efficient and effective cooperation, we also propose an algorithm for
selection of these cooperative peers. Simulation results show that our
proposed mechanism improves the search efficiency of P2P file-sharing
applications and reduces the load in P2P networks.

1 Introduction

To provide application-oriented network services, a variety of overlay networks
are deployed over physical IP networks. Each overlay network independently
measures network conditions such as the available bandwidth and latency
through active or passive measurement schemes. Based on its observations, each
overlay network controls traffic, chooses routes, and changes topologies in a self-
ish manner to satisfy its own application-level QoS. Since overlay networks share
and compete for the same physical network resources, their selfish behaviors af-
fect each other and their performance deteriorates [1, 2]. For example, to com-
municate faster with other nodes, a node measures bandwidth and latency to
other nodes and changes its neighborship accordingly. As a result, the load in
the physical network dynamically changes and consequently the quality of com-
munication perceived by other overlay networks which compete for the same
links and routers in the physical networks deteriorates. Those affected over-
lay networks then adapt data rate, routes, and topologies to satisfy or improve
their application-level QoS. This further affects other overlay networks and it

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 33–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 J. Konishi, N. Wakamiya, and M. Murata

causes frequent changes of routing and introduces congestions in the physical
network. Finally, the selfish behavior of overlay networks trying to improve their
application-level QoS in fact results in the deterioration of application-level QoS.

Recently there are several publications on cooperative overlay networks
to enhance their collective performance and efficiently utilize network re-
sources [3, 4, 5, 6]. In [3], the authors investigate a spectrum of cooperation among
competing overlay networks. For example, they propose an architecture where
overlay networks cooperate with each other in inter-overlay routing where a mes-
sage from one overlay network is forwarded to another which provides a shorter
path to the destination. In [4], mechanisms are proposed to exchange information
among overlay networks without knowing the destination addresses by using an
overlay network called i3 (Internet Indirection Infrastructure) network. The i3
network is an network architecture consisted of some servers. In the i3 network,
a user sends trigger messages with a service identifier and user’s address to the
i3 network. A service provider sends packet messages with a service identifier to
the i3 network. The i3 network transfers packet messages to users whose trigger
messages have the same or similar service identifier.

The analysis on coexistence of competitors has been investigated in the field
of biology. In an ecosystem, organisms live together in the same environment
with direct and/or indirect interactions with each other. In [7], the authors
established a mathematical model of the metabolic pathways of bacterial strains
to elucidate mechanisms of coexistence of living organisms of closely related
species. They revealed that the coexistence emerged not only from interactions
among competitors, but also from changes of their internal states.

Taking inspirations from biology, our research group considers the symbio-
sis among competing overlay networks [8]. We regard an overlay network as an
organism. In the model of symbiotic overlay networks, overlay networks in a
system evolve, interact with each other, and dynamically change internal struc-
tures, but they still behave in a selfish manner, as living organisms in the same
environment do. Overlay networks meet and communicate with each other in
a probabilistic way. Overlay networks that benefit from each other reinforce
their relationship, eventually having many inter-overlay links, and merging one
overlay network. Otherwise, they separate from each other. All evolutions, inter-
actions, and internal changes are performed in a self-organizing way. Each node
independently decides its behavior based only on locally available information.
Symbiosis among overlay networks emerges as a consequence of the independent
and autonomous behaviors of nodes and networks.

For this purpose, we need mechanisms for overlay networks to communicate
with each other as in biological systems. In this paper, we propose a mechanism
for pure P2P networks of file-sharing applications to interact and cooperate with
each other in an efficient and effective way. In a P2P network, hosts called peers
directly communicate with each other and exchange information without the
mediation of servers. According to user’s intention, peers consisting in a P2P
network behave on its own decision as an individual does in a group or society.
One typical example of P2P applications is a file-sharing system. Gnutella and

Proposal and Evaluation of a Cooperative Mechanism 35

Peer C

New File

Get !!Logical Link

4
.R

e
s
p
o
n
s
e

1
.Q

u
e
ry

2.Relay

2.Rel
ay2.Relay

2.R
ela

y

3.Re
spon

se

5.Request

6.Transmit

Peer A

Peer B

Peer DPeer E

Peer F

2.R
ela

y

Peer C

New File

Get !!Logical Link

4
.R

e
s
p
o
n
s
e

1
.Q

u
e
ry

2.Relay

2.Rel
ay2.Relay

2.R
ela

y

3.Re
spon

se

5.Request

6.Transmit

Peer A

Peer B

Peer DPeer E

Peer F

2.R
ela

y

Fig. 1. Flooding in a pure P2P file-sharing network

Winny are categorized as pure P2P networks without a server for searching files.
Thus, a peer has to find the desired file by itself by emitting a query message into
the network. Other peers in the network reply to the query with a response mes-
sage and relay the query to their neighbor peers (Fig.1). Flooding, in which a peer
relays a query message to every neighbor peer, is a powerful scheme for finding a
desired file in a P2P network. However, it has been pointed out that the flooding
scheme lacks scalability because the number of query messages that traverses a
network significantly increases with the growth in the number of peers [9].

The cooperation among pure P2P networks is accomplished by exchanges of
search and reply messages among them through logical connections established
among so-called cooperative peers. With such cooperation, we can expect that
search messages are disseminated more effectively and a peer finds file more effi-
ciently. Since a peer receives more reply messages for a file, it can choose a more
appropriate peer, i.e., faster and more reliable, among many candidate peers,
leading to a higher application-level QoS. Furthermore, when a P2P network is
disconnected by failures or disappearance of peers, search and reply messages
can propagate among separated parts of the P2P networks through cooperative
P2P networks. However, to accomplish the efficient and effective cooperation
without introducing much load on logical and physical networks, some careful
considerations must be made. For example, if a cooperative peer is located at
the edge of a P2P network, it has to set a large TTL (Time to Live) value for
search messages to spread over the network. As a result, the number of rejected
duplicated search messages over P2P networks increases. They waste network
bandwidth and causes network congestions. Therefore, we propose an algorithm
to choose appropriate cooperative peers. We should note here that a cooperative
mechanism should leave peers selfish. Cooperation should emerge from selfish
behavior of peers who want to enhance and improve their own QoS. We give
some considerations on incentives that a peer begins cooperation.

36 J. Konishi, N. Wakamiya, and M. Murata

The rest of this paper is organized as follows. In Section 2, we propose a mech-
anism for cooperation among pure P2P networks of file-sharing applications. In
Section 3, we evaluate our mechanism through several simulation experiments
from the viewpoint of the reachability of search messages, the number of found
files, and the load on peers. Finally, we conclude the paper and describe future
works in Section 4.

2 Cooperative Mechanism for Pure P2P File-Sharing
Networks

In this section, we propose a mechanism for pure P2P networks of file-sharing
applications to cooperate with each other in an efficient and effective way. In
the cooperation of pure P2P networks of file-sharing applications, a logical link
is first established between designated peers, called cooperative peers, which
are selected among candidate peers in each P2P network. Candidate peers are
those which are willing to play the role for cooperation to enhance and improve
their own QoS. And then search and reply messages are transmitted through the
logical link between cooperative peers (Fig.2).

The mechanism consists of the following steps. First, a peer in a P2P network
is promoted to a candidate peer by running a cooperative program. Second,
candidate peers construct a candidate network to exchange information for the
selection of cooperative peers. Third, a tentative cooperative peer is selected in
candidate peers, and then it confirms whether it is appropriate as a coopera-
tive peer or not. Finally, after the confirmation, a tentative cooperative peer is
promoted to a cooperative peer. We describe in the following the selection of
cooperative peers, the discovery of other P2P networks, the decision of starting

Q
u
ery

Query

Response

R
es
po
ns
e

Request

Direct Transmit

Indirect Transmit

P2P Network 1 P2P Network 2

Cooperative Peer

Logical Link

Candidate Network 1 Candidate Network 2

Q
u
ery

Query

Response

R
es
po
ns
e

Request

Direct Transmit

Indirect Transmit

P2P Network 1 P2P Network 2

Cooperative Peer

Logical Link

Candidate Network 1 Candidate Network 2

Fig. 2. Cooperation of pure P2P file-sharing networks

Proposal and Evaluation of a Cooperative Mechanism 37

a cooperation, the relay of messages and the transfer of files, and the decision of
finishing a cooperation in detail.

2.1 Establishing a Candidate Network

When a peer is not satisfied with an application-level QoS received from a
P2P network of file-sharing application, it considers to enhance and improve
its application-level QoS by its own decision. For example, when a peer can-
not find a desired file at all, when a peer cannot find enough number of files
against its query, or when a peer cannot tolerate the delay in retrieving a file
from a provider peer, a peer, i.e., a user should have some frustrations. A peer
will consider that it can receive the higher QoS by connecting to another P2P
network which provides it with the higher probability of successful search, the
larger number of provider peers, and the smaller delay in file retrieval. In such
a case, intending to enhance and improve its application-level QoS, a peer runs
the cooperation program independently of others, that is, a peer does not care
whether the other peers in the same P2P network will benefit from the coopera-
tion or not. Then, it becomes a candidate peer, i.e., a candidate for cooperative
peers. As illustrated in Fig.2, candidate peers in a P2P network construct a
candidate network to communicate with each other to select cooperative peers.

A new candidate peer first finds another candidate peer in the same P2P
network by flooding a special message over the P2P network or using the i3
network. In the latter case, a new candidate peer registers itself to an i3 service
repository by sending a trigger message containing a service identifier and its
address to the i3 network. On the other hand, candidate peers in a candidate
network send packet messages containing a service identifier and its address to
the i3 network periodically. A new candidate peer receives one of their packet
messages and establishes a logical link to the candidate peer. After that, the new
candidate peer deletes its trigger message from the i3 service repository.

For this purpose, candidate peers must have a similar service identifier in the
same P2P network but different from those of other P2P networks. In our pro-
posal, a service identifier consists of l + m + n = 256 bits. The first l bits are
for the cooperation service and common among all cooperation programs. The
following m bits correspond to the P2P network. To have the same m bits among
candidate peers in the P2P network, we use the IP address of a bootstrapping
node. To join a P2P network, a new peer first contacts a bootstrapping node,
which should always be available online, to obtain one or more IP addresses of
other peers. Since peers in a P2P network know the same bootstrapping node,
by applying a hash function to the IP address of the boot strapping node, all
candidate peers can have the same network identifier of m bits. We should note
here that there is a small possibility that two or more P2P networks have the
same m bits identifier. However, we consider that we can avoid the problem
without introducing any mediation mechanism. Peers in a P2P network tend
to exist close to each other due to a service discovery mechanism of pure P2P
applications. Since the i3 network forwards a packet message to a node which
registers a matching trigger message and is close to the sender of the packet

38 J. Konishi, N. Wakamiya, and M. Murata

message, we can expect that a packet message is forwarded to another candi-
date peer of the same P2P network. The last n bits are generated at random.
In the i3 network, inexact matching is used where the packet message has a
service identifier matching the longest pattern of bits with the trigger message.
Therefore, a new candidate peer finds a randomly chosen candidate peer in the
same P2P network.

2.2 Selecting Cooperative Peers

Cooperative peers are selected among the candidate peers on receiving a co-
operation request. A new cooperation request is generated by a newly joined
candidate peer, generated by a candidate peer on its own decision, or sent from
other P2P network.

Cooperative peers must be carefully selected to effectively disseminate search
messages in P2P networks and distribute the load among peers and networks.
It is shown in recent studies [10] that the Internet and many overlay networks
have a power-law topology whose degree distribution follows p(k) ∝ k−α. In
[11], it is shown that peers can find files effectively through high-degree peers. It
means that by choosing peers with a large number of neighbor peers as cooper-
ative peers, we can expect effective query dissemination. However, high-degree
peers are closely connected with each other and thus such selection leads to the
concentration of load and causes congestions.

For the efficient and effective message dissemination, we propose a selection
method of cooperative peers as follows. First, every candidate peer advertises
its degree, i.e., the number of neighbor peers, by flooding a message over a can-
didate network. Second, each peer ranks candidate peers in descending order of
degree. A candidate peer which ranks itself highest advertises a candidacy mes-
sage to all other candidate peers over a candidate network to become a tentative
cooperative peer. On receiving a candidacy message, a candidate peer checks the
rank of the tentative cooperative peer in its ranking list. If it is not on the first
in the list, a candidate peer sends a conflict message to the tentative cooperative
peer. A tentative cooperative peer gives up its candidacy and removes itself from
the list on receiving more conflict messages than a predetermined threshold T .
The threshold T is introduced to consider the case that a candidate peer, who
accidentally missed an advertisement of a tentative cooperative peer, will send a
conflict message. Otherwise, a tentative cooperative peer floods a confirmation
message with a TTL n in a P2P network. If any cooperative peer already exists
within the range, it sends a reject message to the tentative cooperative peer. On
receiving a reject message, a tentative cooperative peer gives up its candidacy
and advertises its cancellation to the other candidate peers. The tentative coop-
erative peer is removed from the list and another selection is conducted again.
By this mechanism, cooperative peers are kept apart from each other by more
than n + 1 hops. When a tentative cooperative peer does not receive any reject
message in a given time, it finally becomes a cooperative peer. To select two
or more cooperative peers, each candidate peer removes a new cooperative peer
from the list and repeats the same procedures.

Proposal and Evaluation of a Cooperative Mechanism 39

2.3 Finding Other P2P Networks

A newly chosen cooperative peer first finds a candidate peer in other P2P net-
works by using the i3 network. A cooperative peer sends a trigger message con-
taining a service identifier and its address to the i3 network. The last m+n bits
of the service identifier are generated at random, where m bits must be different
from its own network identifier.

When a cooperative peer receives a packet message which matches the trigger
message by inexact matching, it sends a cooperation request to the candidate
peer, i.e., the sender of the packet message, in another P2P network. Next, the
selection of a cooperative peer is initiated by the candidate peer in a newly found
P2P network. Then, the cooperation request is forwarded from the candidate
peer to a new cooperative peer. Finally, a logical link is established between
those cooperative peers.

2.4 Decision of Starting Cooperation

Through a logical link established in the preceding step, cooperative peers ex-
change information to decide whether they cooperate with each other or not. In
a biological system, there are varieties of cooperation, coexistence, or, symbio-
sis, i.e., mutualism, where both species benefit from each other, commensalism,
where one species benefits from the other, but the other is unaffected, and par-
asitism, where one species benefits from the other, but the other suffers. In
the case of P2P file-sharing applications, we consider mutualism. However, the
decision is still selfish. A peer begins cooperation to enhance and improve its
own QoS. A peer maintains an inter-network logical link as far as it considers
it is beneficial to itself. When both sides of a logical link consider it is worth
connecting, the link is kept. Cooperation is a consequent of selfish behavior of
cooperative peers. The decision to start cooperation is made taking into account
some criteria, such as the compatibility between P2P file-sharing protocols, the
size of P2P networks such as the number of peers and files, and the type of files
shared in P2P networks.

When application protocols are different, cooperative peers must convert one
protocol into the other. Therefore, it is desirable that protocols are the same
or compatible to reduce the load on cooperative peers. When P2P networks
are different in their size, peers in a larger P2P network cannot expect the
benefit from the cooperation very much. However, the newly introduced load
from a smaller cooperative P2P network is considered not much. On the other
hand, peers in a smaller P2P network can share and find more files by the
cooperation, but they receive a considerable amount of search messages from
a larger P2P network. Therefore, cooperative peers must consider the trade-off
between the benefit in the application-level QoS and the cost in the increased
load by the cooperation. When the type and category of files shared in P2P
networks are different, the effect of cooperation is rather small from the viewpoint
of the application-level QoS. Therefore, it is desirable that P2P networks sharing
similar files such as movies, music, and documents cooperate with each other. A
cooperative peer obtains that information and defines priorities to each of them.

40 J. Konishi, N. Wakamiya, and M. Murata

When the weighted sum is beyond a threshold for both cooperative peers, the
cooperation is started. We should note that weight values and the threshold are
determined by an application and details of its strategy and policy are left as
one of future research topics.

2.5 Relaying Messages and Getting Files

A search message sent from a peer is disseminated in a P2P network by a flood-
ing scheme. When a search message reaches a cooperative peer, it is forwarded to
a cooperative peer in another P2P network after protocol conversion is applied
if needed. A TTL value of a search message is reduced by one in transmission
between cooperative peers. We hereafter call a P2P network from which a search
message originated as a guest network and the other as a host network. A coop-
erative peer in a host network disseminates the search message in the host P2P
network by flooding. When there are two or more pairs of cooperative peers, the
same search message would be relayed to a host network. To eliminate the du-
plication, search messages have the same identifier independently of cooperative
peers they traverse. Peers in a host network silently discard duplicated search
messages with the same identifier.

If a file is found in a host P2P network, a reply message is generated by
a provider peer and it reaches a cooperative peer in a host network along a
reverse path of the corresponding search message. A cooperative peer in a host
network transmits the reply message to a cooperative peer in a guest network
after protocol conversion if needed. In the case that a different protocol is used
for file retrieval, a cooperative peer in a guest network cashes a reply message
and replaces the address of a provider peer with its own address in the reply
message. A reply message reaches the source peer of the search message along
a reverse path of the search message in a guest P2P network. The searching
peer establishes a connection to a provider peer to obtain a file. In the case that
a protocol for file retrieval is different, the peer regards a cooperative peer as
a provider peer. Then, the cooperative peer retrieves the file from the original
provider peer on behalf of the searching peer. Finally, the file is sent to the
searching peer. Therefore, peers do not need to recognize such cooperation to
receive the benefit of the cooperation.

2.6 Decision of Finishing Cooperation

Cooperation of P2P networks is terminated by disconnection of all logical links
established between all pairs of cooperative peers. A logical link is maintained
by the soft-state principle. When no message is transmitted through a logical
link for a predetermined duration of time S, it is disconnected. In addition,
a peer intentionally disconnects a logical link when it considers that it pays
too much for the cooperation. As a consequent of the cooperation, which was
initiated by a peer itself, the peer helps peers in a cooperating network in finding
files by relaying query and response messages. Taking into account the trade-off
between the benefit and the cost of the cooperation, a peer decides whether it
maintains the link or not. For example, a cooperative peer monitors the number

Proposal and Evaluation of a Cooperative Mechanism 41

of outgoing messages and that of incoming messages, then compare their ratio
to the threshold R, which is determined by an application or a user. We should
note here that details of criteria are left as one of future research topics.

3 Simulation Evaluation

In this section, we conduct several preliminary simulation experiments to eval-
uate our proposed mechanism. To see what happens when two P2P networks
cooperate with each other, we consider two cooperative and static P2P networks.
Metrics of our evaluation are the reachability of search messages, the number
of found files, and the load on peers. The reachability of search messages is the
average fraction of the number of peers which a search message reaches among
all peers. As the number of reachable peer becomes higher by cooperation, the
possibility of successful search also increases. In addition, a searching peer can
choose the most preferable, i.e., the fastest or the most reliable, provider peer
among the increased number of file-holders. Therefore, with a higher reachability
we can expect a higher application-level QoS in P2P file-sharing applications.
The number of found files is the average number of files found in P2P networks
per search message. The number of found files is equivalent to the number of
found file-holders in our experiments. The load on peers is the average sum of
search and reply messages which a peer sends, relays, and receives. The load
corresponds to the cost which is introduced by cooperation.

3.1 Simulation Environments

We generate two power-law networks of 10,000 peers based on BA model [12]
by a topology generator, BRITE [13]. We assume that logical links among peers
have infinite capacity and zero latency. We consider static and stable networks
where there is no change in their topologies due to joins and leaves of peers.
There are F kinds of files in both P2P networks. Their popularity is determined
by Zipf distribution of α=1.0. The number of files also follows Zipf distribution
of α=1.0, where the number of the least popular file is 1. For example, in a P2P
network of 10,000 peers, there are 5,000 kinds of 45,473 files and the number of
the most popular file is 5,000. Files are placed on randomly chosen peers.

A search message is generated at a randomly chosen peer for a file determined
in accordance with the popularity. It is disseminated by flooding within the range
limited by TTL, which ranges from 1 to 10 in our simulation experiments. To
keep the distribution of files to follow Zipf, a peer does not retrieve a file in our
evaluation.

We change the number of cooperative peers from 1 to 100. Cooperative peers
are chosen among all peers, that is, all peers are candidate peers in our simulation
experiments. In all cases, 20,000 search messages are generated in P2P networks.

3.2 Evaluation of Reachability of Search Messages

Figures 3 and 4 illustrate the reachability of search messages. In these figures,
“Descending Order of Degree” shows the result of the case that cooperative peers

42 J. Konishi, N. Wakamiya, and M. Murata

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

R
ea

ch
ab

ili
ty

TTL

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random
Uncooperative

Fig. 3. Relationship between the reachability of search messages and TTL value

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

R
ea

ch
ab

ili
ty

Number of Cooperative Peers

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random

Fig. 4. Relationship between the reachability of search messages and the number of
cooperative peers

are selected in descending order of degree of a peer. “Proposal (TTL = n)” shows
the result of the case that cooperative peers are selected by our proposed algo-
rithm. In our proposal, a TTL value of a confirmation message is set at n so that
the number of hops among cooperative peers are kept more than n + 1. “Ran-
dom” shows the result of the case that cooperative peers are selected at random.
“Uncooperative” shows the result of the case that there is no cooperation among
P2P networks.

Figure 3 illustrates the relationship between the reachability of search mes-
sages and an initial TTL value of a search message where the number of coopera-
tive peers is 10. It is shown that, by the cooperation of P2P networks, search mes-
sages reach more peers, and consequently peers can find desired files with a higher
probability. In addition, by selecting high-degree peers as cooperative peers
preferentially, search messages reach more peers even if a TTL value is small. For
example, the reachability of “Uncooperative” and “Random” with TTL of 7 is
lower than that of “Descending Order of Degree” and “Proposal” with TTL of 6.

Proposal and Evaluation of a Cooperative Mechanism 43

Figure 4 illustrates the relationship between the reachability of search mes-
sages and the number of cooperative peers where a TTL value is set at 7. The
reachability becomes lower as the number of hops between cooperative peers
increases in our proposal. In a power-law network, high-degree peers tend to
be located closer, that is, they are connected with each other. Therefore, as n
increases, low-degree peers begin to be chosen. Since a low-degree peer cannot
disseminate search messages effectively, the number of reachable peers decreases.
Furthermore, Fig. 4 shows that in all degree-dependent selection algorithms, the
amount of increase in the reachability becomes smaller as the number of coop-
erative peers increases. Therefore, peers benefit from cooperation with only a
few cooperative peers. For example, in the cooperation of two P2P networks of
10,000 peers, about 10 cooperative peers are enough.

3.3 Evaluation of Number of Found Files

Figure 5 illustrates the relationship between the number of found files and the
popularity. The number of cooperative peers is 10 and a TTL value is set at 7. It is
shown that degree-dependent selection algorithms provide twice the performance
of the random selection algorithm and the uncooperative networks. The number
of found files of “Random” is almost the same as that of “Uncooperative”, that
is, the cooperation of P2P networks by randomly chosen cooperative peers does
not improve the application-level QoS at all. Since the majority are low-degree
peers in a power-law network, a random selection algorithm often chooses low-
degree peers as cooperative peers. As a result, the random selection algorithm
cannot effectively disseminate search messages in a host network. The reason
of step-shaped lines in Fig. 5 is that the number of files, which follows Zipf
distribution, takes integer values based on the popularity.

Figure 6 illustrates the cumulative distribution function of the number of
found files against the number of hops between a searching peer and file-holders.
It is shown that the number of found files within four-hops neighbors is almost

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 F

ou
nd

 F
ile

s
(lo

g 1
0)

Popularity

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random
Uncooperative

Fig. 5. Relationship between the number of found files and the popularity

44 J. Konishi, N. Wakamiya, and M. Murata

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7

N
um

be
r

of
 F

ou
nd

 F
ile

s

Hops

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random
Uncooperative

Fig. 6. CDF of the number of found files against the number of hops between a search-
ing peer and file-holders

the same among algorithms. However, degree-dependent selection algorithms can
find more file-holders distant from a searching peer. This comes from the fact
that degree-dependent selection algorithms disseminate search messages more
effectively in a host network as shown in Fig. 3. However, it takes long time for
response messages generated at distant file-holders in a host network to reach a
searching peer, since they traverse a reversed path of the corresponding query
peer in a logical P2P network. Therefore, to have more file-holders for a higher
application-level QoS, it is necessary that a searching peer wait for a longer
duration of time.

3.4 Evaluation of Load on Peers

Figures 7 and 8 illustrate the load on peers. Figures 3 and 7, and Figs. 4 and
8 show similar tendency respectively, because the number of search and reply
messages increases in proportional with the number of peers that search mes-
sages reach, i.e., the reachability. However, the load increases slower than the
reachability against a TTL value, because the number of duplicated search mes-
sages becomes small in low-degree peers. For example, the load of “Proposal
(TTL = 3)” with TTL of 6 is almost the same as the load of “Uncooperative”
with TTL of 7 (Fig. 7), whereas the reachability of the former is higher than
that of the latter (Fig. 3).

Figure 9 illustrates the distribution of the number of duplicated search mes-
sages that a peer receives. The number of cooperative peers is 10 and a TTL
value is set at 7. The duplicated search messages are redundant and lead to
the waste of physical network resources and the processing power of peers. In
comparison with “Descending Order of Degree”, our proposal can reduce the
number of duplicated messages especially at peers with a degree smaller than
100. In “Descending Order of Degree”, since high-degree peers are selected as
cooperative peers, search messages via cooperative peers can reach to distant
peers. It often happens that search messages are redundant at any peer. On the

Proposal and Evaluation of a Cooperative Mechanism 45

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 M

es
sa

ge
s

TTL

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random
Uncooperative

Fig. 7. Relationship between the load on peers and TTL value

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 M

es
sa

ge
s

Number of Cooperative Peers

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random

Fig. 8. Relationship between the load on peers and the number of cooperative peers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300 350

N
um

be
r

of
 D

up
lic

at
ed

 S
ea

rc
h

M
es

sa
ge

s
(x

10
3)

Degree

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random
Uncooperative

Fig. 9. Distribution of the number of duplicated search messages

46 J. Konishi, N. Wakamiya, and M. Murata

other hand, in our proposal, cooperative peers are far from each other and con-
sist of both high-degree peers and low-degree peers. Only search messages with
a larger TTL value are redundant, as the number of hops between cooperative
peers increases.

On the other hand, as Fig. 10 illustrates, the number of search and reply
messages including duplicated messages at the highest-degree peers is consider-
ably high in our proposed methods. In addition, as the number of hops between
cooperative peers increases, the load on the highest-degree peers increases. A
peer with degree 317 and one with degree 221 have the highest degree in each
of P2P networks and they are always chosen as cooperative peers. As the num-
ber of hops increases, low-degree peers, who disseminate search messages less
effectively, are chosen as cooperative peers. Then, the number of peers that
search messages originated from a high-degree peer reach increases. As a re-
sult, the number of reply messages becomes higher at a high-degree peer
with larger n.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300 350

N
um

be
r

of
 M

es
sa

ge
s

(x
10

6)

Degree

Descending Order of Degree
Proposal (TTL = 1)
Proposal (TTL = 2)
Proposal (TTL = 3)

Random
Uncooperative

Fig. 10. Distribution of the number of search and reply messages

4 Conclusions

In this paper, in a context of the overlay network symbiosis, we proposed a
mechanism for pure P2P networks of file-sharing applications to cooperate with
each other. Through simulation experiments, it was shown that application-
level QoS was improved by selecting high-degree peers as cooperative peers in
the cooperation of power-law P2P networks. Furthermore, it was shown that by
keeping cooperative peers apart from each other, the load on the P2P network
was reduced, but a few cooperative peers were burden with heavy load.

As future research works, first we consider a mechanism to distribute the
load among cooperative peers while keeping the high reachability. We also in-
vestigate behaviors of cooperation among dynamic P2P networks, which change
their topology as consequences of cooperation. Furthermore, we should evaluate
influences of cooperation to a physical network.

Proposal and Evaluation of a Cooperative Mechanism 47

Acknowledgements

This research was supported in part by “New Information Technologies for Build-
ing a Networked Symbiosis Environment” in The 21st Century Center of Ex-
cellence Program of the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

References

1. L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker, “On Selfish Routing in Internet-Like
Environments,” in Proceedings of ACM SIGCOMM Conference 2003, pp. 151–162,
Aug. 2003.

2. M. Seshadri and R. H. Katz, “Dynamics of Simultaneous Overlay Network Rout-
ing,” in Technical Report of Electrical Engineering and Computer Sciences (EECS),
University of California Berkeley (UCB), UCB/CSD-03-1291, Nov. 2003.

3. M. Kwon and S. Fahmy, “Toward Cooperative Inter-overlay Networking,” in Poster
in the 11th IEEE International Conference on Network Protocols (ICNP), Nov.
2003.

4. I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet Indirection
Infrastructure,” in Proceedings of ACM SIGCOMM Conference 2002, pp. 73–88,
Aug. 2002.

5. A. Nakao, L. Peterson, and A. Bavier, “A Routing Underlay for Overlay Networks,”
in Proceedings of ACM SIGCOMM Conference 2003, pp. 11–18, Aug. 2003.

6. D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient Overlay
Networks,” in Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), Oct. 2001.

7. T. Yomo, W.-Z. Xu, and I. Urabe, “Mathematical Model Allowing the Coexistence
of Closely Related Competitors at the Initial Stage of Evolution,” in Researches
on Population Ecology, vol.38, no.2, pp. 239–247, 1996.

8. N. Wakamiya and M. Murata, “Toward Overlay Network Symbiosis,” in Pro-
ceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing
(P2P2005), Aug. 2005.

9. R. Schollmeier and G. Schollmeier, “Why Peer-to-Peer (P2P) Does Scale: An Anal-
ysis of P2P Traffic Patterns,” in Proceedings of the Second IEEE International
Conference on Peer-to-Peer Computing (P2P2002), Sept. 2002.

10. M. E. J. Newman, “The Structure and Function of Complex Networks,” in SIAM
Review, vol.45, no.2, pp. 167–256, 2003.

11. L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in
Power-law Networks,” in Physical Review E, vol.64, 046135, Sept. 2001.

12. A. L. Barabasi and R. Albert, “Emergence of Scaling in Random Networks,” in
Science, vol.286, pp. 509–512, Oct. 1999.

13. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Uni-
versal Topology Generation,” in Proceedings of the International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication System
(MASCOTS’01). available at http://www.cs.bu.edu/brite/, 2001.

Resilient Multi-path Routing Based
on a Biological Attractor Selection Scheme

Kenji Leibnitz, Naoki Wakamiya, and Masayuki Murata

Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita,

Osaka 565-0871, Japan
{leibnitz, wakamiya, murata}@ist.osaka-u.ac.jp

Abstract. In this paper we propose a resilient scheme for multi-path
routing using a biologically-inspired attractor selection method. The
main advantage of this approach is that it is highly noise-tolerant and
capable of operating in a very robust manner under changing environ-
ment conditions. We will apply an enhanced attractor selection model to
multi-path routing in overlay networks and discuss some general proper-
ties of this approach based on numerical simulations. Furthermore, our
proposal considers randomization in the path selection which reduces the
selfishness and improves the overall network-wide performance.

1 Introduction

It is a well known fact that mechanisms found in biological systems are very
robust and can handle changes in the environment very well. Therefore, many
methods have been implemented in information science which mimic certain
behavior found in nature. Some well known techniques like artificial neural net-
works, simulated annealing, or genetic algorithms are capable of performing well
for certain problem types, especially in the presence of incomplete or fuzzy in-
put data. In artificial neural networks, the concept of attractors is often used,
which are equilibrium points or curves in the solution space to which the sys-
tem converges depending on its initial condition. Attractors are a key issue in
chaos theory and are often applied in mathematical models found in physics and
bioinformatics.

Living organisms in nature continuously face a fluctuating environment and
adaptation to these changing conditions is essential for the survival of the species.
However, due to the high dimensionality of the habitat, each of the upcoming
environmental changes rarely repeats itself during the lifetime of an individual
organism. Therefore, the development of adaptation rules is not always feasible
since learning and evolutionary processes require multiple occurrences of events
to which the organisms adapt. Applying pattern-based learning techniques like
in artificial neural networks is only possible, if input patterns and a desired target
value exist. When no such input patterns exist, the adaptation to new situations
is performed in a more self-organized manner. For example, cells can switch from

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 48–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Resilient Multi-path Routing 49

one state to another depending on the availability of a nutrient [1]. These self-
adaptive mechanisms are not necessarily optimal from the viewpoint of overall
performance, but their main advantages lie in robustness and sustainability. This
is a highly important feature for surviving in an unpredictable and fluctuating
environment.

In this paper we extend the model of adaptive response by attractor selection
(ARAS) which was introduced in [1] and apply it to the problem of multi-path
routing. ARAS is originally a model for its host E. coli cells to adapt to changes
in the availability of a nutrient for which no molecular machinery is available
for signal transduction from the environment to the DNA. We will use this
mechanism for switching between paths in a multi-path routing environment in
communication networks. We consider an underlying IP layer with an overlay
network in which an application specific routing is performed. This facilitates the
implementation, as no modification to the existing IP layer is necessary. Each
source may have several paths to the destination and splits its traffic depending
on the current condition of the network over each path. However, one of the paths
is chosen as primary path over which the majority of traffic will be routed, while
the secondary paths are simply kept alive with a small proportion of the traffic.
Attractor selection will be applied here to determine the primary path for a given
traffic condition. When the environment, hence link qualities, changes such that
the primary path is no longer appropriate, a new primary path is automatically
selected. The advantage of our proposal is that there is no explicit routing rule
for doing so, but everything is implicitly included in the differential equations
describing the dynamics of the system. Furthermore, we use an inherent noise
term to drive the system from one attractor to another, making the whole system
also very stable to influences from noise.

The reason why we choose a dynamic system for self-adaptive routing instead
of simple rule-based mechanisms is because our focus is on adaptiveness and
stability of the system. Unlike most other routing papers like [2] which define a
target function and perform an offline optimization of the OSPF weights using
linear programming, we prefer a highly distributed sub-optimal solution, which
is robust in the presence of fluctuations of environment conditions.

The remainder of this paper is organized as follows. In Section 2 we will briefly
discuss the problem of multi-path routing in overlay networks and relevant work
that is related to this topic. Then, in Section 3 we introduce the biological
attractor selection model and extend the original model from M = 2 to a higher
dimension. In Section 4 we illustrate how to use this proposed model for multi-
path routing in overlay networks and we perform some simple simulations and
discuss the results in Section 5. Finally, in Section 6 this paper is concluded with
a short outlook on future work.

2 Related Work on Overlay Routing

Overlay networks have the appealing feature that their routing can be configured
in an application-specific manner without modifying the underlying IP routing

50 K. Leibnitz, N. Wakamiya, and M. Murata

scheme. Before we discuss some related work, we would like to clarify the term
of multi-path routing as we will use it in the following. The term multi-path
routing has been used with different connotations. In all of them multiple paths
are used from the source to destination over which traffic is transported. One
interpretation of multi-path routing is to increase the resilience of the network,
by simultaneously transmitting duplicates of the same packet over each path.
This technique is often used in wireless ad-hoc networks [3] and it is sometimes
referred to as redundant multi-path routing. Another way of using multiple paths
is by distributing the traffic volume over these paths. Although by introducing
this path diversity the routing is made more robust to failures of individual
links, its main purpose is rather on performing load balancing [4]. We will use
the latter notion of multi-path routing in our paper. An important issue in this
type of multi-path routing which we will not address here is the topic of packet
reordering, as some packets may overtake each other on different paths. The
destination node must buffer the received packets and place them in the right
order before delivering them to higher layers.

The issue of routing in overlay networks has been discussed, e.g. for resilient
overlay networks (RON) [5], as an overlay network architecture which is able
to improve the loss rate and throughput over conventional BGP routing due to
its faster reaction to path outages. However, end-to-end route selection schemes
as employed in overlay routing are of a highly selfish nature, as they greedily
choose paths that offer the highest performance, regardless of the implications
on the performance and stability of the whole network.

Several publications have investigated selfish routing using a game theoreti-
cal approach, e.g. [6, 7]. However, routing optimization is often performed with
a global view of the network and its solution is computed by linear program-
ming techniques. In our paper we wish to only consider the limited scope of
information that a node can obtain from measurements of its links. In such a
case, Seshadri and Katz [8] make suggestions to improve the overall stability of
the system by imposing some restraints on the degree of selfishness of each flow.
Randomization in path selection is one of such possibilities which we will also
adopt in our approach. Another way to improve the overall system stability is
to use a hysteresis threshold when updating the path decision.

User-optimal or selfish routing achieves a Wardrop equilibrium [9], which
states that users do not have the incentives to unilaterally change their routes.
Xie et al. [10] present a routing scheme which takes into account the user-optimal
routing and network-optimal routing, where the former converges to the Wardrop
equilibria and the latter to the minimum latency. In [11] an analytical model is
constructed for multi-path routing which leads to an optimal number of links
over which dynamic multi-path routing should be conducted. Su and de Veciana
[11] propose a policy of routing the traffic to the set of least loaded links and
show that this is especially suitable for high speed networks carrying bursty
traffic flows.

An adaptive multi-path routing algorithm is proposed by Gojmerac et al. [12]
that operates with simple data structures and is independent of the underlying

Resilient Multi-path Routing 51

network layer routing protocol. This is achieved by local signaling and load bal-
ancing resulting in the reduction of signaling overhead. Another measurement
based multi-path routing scheme is given by Güven et al. [13]. This method
is similar to the work by Elwalid et al. [14], but does not require the explicit
knowledge of the cost derivatives and due to stochastic approximation theory
they use noisy estimates from measurements for estimating the cost derivatives.
Other papers have dealt with improving the performance by sharing any unused
other paths between different users. Approaches to MPLS [15] and WDM net-
works [16] have been proposed where the backoff capacity is shared, resulting
in a better performance especially when supporting quality of service sensitive
applications.

3 Biological Attractor-Selection Scheme

In this section we will give an outline of the principle of attractor-selection
which is the key component in our method. The original model for adaptive
response by attractor-selection is given by Kashiwagi et al. [1] and a first ap-
plication to multi-path routing is performed in [17]. We will briefly summarize
the basic method in an abstract problem formulation in this section, before in-
troducing our extensions and discussing the proposed application to multi-path
routing.

Basically, we can outline the attractor selection method as follows. Using
a set of differential equations, we describe the dynamics of an M -dimensional
system. Each differential equation has a stochastic influence from an inherent
Gaussian noise term. Additionally, we introduce an activity α which changes the
influences from the noise terms. For example, if α → 1 the system behaves rather
deterministic and converges to attractor states defined by the structure of the
differential equations, see Fig. 1. However, for α → 0 the noise term dominates
the behavior of the system and essentially a random walk is performed. When the
input values (nutrients) require the system to react to the modified environment
conditions, activity α changes accordingly causing the system to search for a
more suitable state (dotted line in Fig. 1). This can also involve that α causes
the previously stable attractor to become unstable.

phase space

attractors

system state is
drawn to attractor

activity change

Fig. 1. General concept of attractor selection

52 K. Leibnitz, N. Wakamiya, and M. Murata

The random walk phase can be viewed as a random search for a new solution
state and when it is found, α decreases and the system settles in this solution.
This behavior is similar to the well known simulated annealing [18] optimization
method, with the main difference that the temperature is not only cooled down,
but also increased again when the environment changes.

3.1 Basic Biological Model

The biological model describes two mutually inhibitory operons where m1 and
m2 are the concentrations of the mRNA that react to certain changes of nutrient
in a cell. The basic functional behavior is described by a system of differential
equations, see Eqns. (1).

dm1

dt
=

syn(α)
1 + m2

2
− deg(α)m1 + η1

dm2

dt
=

syn(α)
1 + m2

1
− deg(α)m2 + η2

(1)

The functions syn(α) and deg(α) are the rate coefficients of mRNA synthesis
and degradation, respectively. They are both functions of α, which represents
cell activity or vigor. The terms ηi are independent white noise inherent in gene
expression.

The dynamic behavior of the activity α is given as:

dα

dt
=

prod
M∏
i=1

[(
nutr threadi

mi+nutrienti

)ni

+ 1
] − cons α, (2)

where prod and cons are the rate coefficients of the production and consumption
of α. The term nutrienti represents the external supplementation of nutrient i
and nutr threadi and ni are the threshold of the nutrient to the production of
α and the sensitivity of nutrient i, respectively.

A crucial issue is the definition of the proper syn(α) and deg(α) functions. In
our case, the ratio between syn(α) and deg(α) must be greater than 2 to have
two different solutions of Eqn. (1) when there is a lack of one of the nutrients.
When syn(α)

deg(α) = 2, there is only a single solution at m1 = m2 = 1. The functions
syn(α) and deg(α) as given in [1] are shown in Eqn. (3).

syn(α) =
6 α

2 + α
deg(α) = α (3)

The system reacts to changes in the environment in such a way that when it
lacks a certain nutrient i, it compensates for this loss by increasing the corre-
sponding mi value. This is done by modifying the influence of the random term
ηi through α, see Fig. 2. When α is near 1, the equation system operates in a
deterministic fashion. However, when α approaches 0, the system is dominated
by the random terms ηi and it performs a random walk.

Resilient Multi-path Routing 53

0

0.5

1

1.5

2

2.5

3

0 5000 10000 15000 20000

va
lu

es

time [units]

m1

m2

α

Fig. 2. Biological attractor selection model

In Fig. 2 an example is given over 20000 time steps. We can recognize the
following behavior. When both mi values are equal, the activity is highest and
α = 1. As soon as there is a lack of the first nutrient (2000 ≤ t < 8000), m1
compensates this by increasing its level. When both nutrient terms are fully
available again (8000 < t ≤ 10000), the activity α becomes 1 again. An interest-
ing feature of this method can be observed between 10000 < t < 13000. Here,
the random walk causes the system to search for a new solution, however, it first
follows a wrong “direction” causing α to become nearly 0 and the noise influence
is highest. As soon as the system approaches the direction toward the correct
solution again, α recovers and the system gets stable again. Such phases may
always occur in the random search phase.

3.2 Multi-dimensional Attractor Selection Model

In its original form, the attractor selection model only takes a dimension of
M = 2 into account. Let us now consider a system of M > 2 equations as shown
in Eqn. (4). The difference to Eqn. (1) is that we now have in the denominator the
difference of the mi value from its maximum m̂ = maxj mj. This does not fully
have the direct mutual inhibitory effect anymore like in the original biological
model, but makes it easier to extend.

dmi

dt
=

syn(α)
1 + m̂2 − m2

i

− deg(α)mi + ηi i = 1, . . . , M (4)

Furthermore, for the sake of simplicity we define in the following:

ϕ(α) =
syn(α)
deg(α)

. (5)

Equilibrium Points. The equilibrium points have the condition

dmi

dt
= 0 ∀i = 1, . . . , M

54 K. Leibnitz, N. Wakamiya, and M. Murata

and can be easily computed from (4) when we assume without restriction of
generality that mi is maximal for an index i = k. Inserting this into Eqn. (4) we
obtain M resulting vectors of the type

x(k) =
[
x

(k)
1 , . . . , x

(k)
M

]T

k = 1, . . . , M

with components

x
(k)
i =

{
ϕ(α) i = k
1
2

[√
4 + ϕ(α)2 − ϕ(α)

]
i �= k

(6)

These results are all of the type

x(k) = [L, . . . , L, H, L, . . . , L]

with a single high value H at the k-th entry and all others are a low value L.
Note that at

ϕ∗ =
1√
2

(7)

we have a special point, as the solutions x(k) are only defined when ϕ(α) ≥ ϕ∗.
For ϕ(α) = ϕ∗ we obtain a single solution x with the same entries.

x = [x1, . . . , xM] with xi = ϕ(α) ∀i = 1, . . . , M.

This structure of solution vectors is extremely useful to indicate that from all
possible M paths, the k-th path is chosen as primary path or there is no specific
primary path and the traffic is equally split among all paths.

Determination of the Activity Dynamics. To fully specify the model, we
need to define the basic dynamic behavior of the activity α and the functions
syn(α) and deg(α). The eigenvalues of the Jacobian matrix at the solutions x(k)

always reveal negative values, leading to stable attractors [19].
Recalling the original biological model, we could identify three distinct stages

during the convergence process: there was case (i) when all mi were nearly equal
due to a balanced condition at α = 1. Then, there was case (ii) with one mi

taking a high value and the other mj with j �= i a low value. In this case we had
different attractor locations and the activity α was fixed at some level between
0 and 1. Finally, in case (iii) with activity α = 0, we only had random influence.

In the following, we will slightly modify this general behavior. Our goal is to
almost always perform a selection of a primary path out of the M possible paths.
We will therefore definitely need case (ii) stated above. However, we merge cases
(i) and (iii) to consider the scenario when all paths are nearly equal and we don’t
have a preference; we still choose one of them rather randomly as a primary path.
Therefore, this modified method will always yield a primary path except for the
time when a new solution is searched. Additionally, we shift the domain for α to

Resilient Multi-path Routing 55

the interval [1, 2], since at α = 1, we have the lowest absolute value of α and the
highest influence from noise. On the other hand, all mi are at the same value
ϕ(α) which helps to recover from this state of equality among the paths and
quickly drives one path to become the primary path.

Based on the above mentioned constraints, the quotient ϕ(α) should be a
increasing function in [1, 2] with ϕ(1) = ϕ∗. We use the following function given
in (8).

syn(α) = α
[
(α − 1)2 + ϕ∗

]
deg(α) = α (8)

Let us now discuss the desired behavior of α. In order to specify its behavior,
we must define what activity should indicate. In this paper, we consider the
transmission delay on path i as performance metric li, so a “better” path is
characterized by a smaller value of li. The output values mi should reflect them
by considering the minimum values of li. Hence, when an ľ = lk is the minimum
of all input values, we wish that the system obtains mk maximally. The dynamics
of the activity behavior is shown in Eqn. (9). We introduce with Δ a hysteresis
threshold in order to limit unnecessary oscillations between paths. The use of
such a hysteresis was reported in [8] to reduce the selfishness and help improve
the overall system performance.

dα

dt
= δ

⎛
⎝

[
M∏
i=1

((
mi

m̂

ľ

li + Δ

)n

+ 1

)]β

− α

⎞
⎠ (9)

Like in the original model, the rate δ corresponds to the growth (prod) and
decay (cons) rate of α, which we choose to be equal at δ = 0.01. The parameter
n given here, is an exponent which must be selected very large, e.g. n = 100 in
order to “filter out” any unwanted intermediate values. Furthermore, we scale
the output levels for H and L with the exponent β. A value of β = 1.75 has
proven to be most effective. Within the product in (9) we could also add further
input parameters for evaluating the current system condition in greater detail.

4 Application to Multi-path Routing

The main problem that we focus on here is that for a certain source-destination
pair, exactly one path is chosen as primary path based on the current environ-
ment condition. When the situation changes and the current primary path is
no longer the best choice, the scheme adapts to selecting a different primary
path which is better suited. The desired behavior is shown in Fig. 3. There
are M paths from source s to destination d and one of these is the primary
path over which the main traffic volume is transported. If a link or node fails
on this path, the primary path is automatically switched to the best secondary
path. The switching of paths should not only occur in such drastic conditions as
link failures, but also of course when due to changed load conditions one of the
secondary paths seems more appropriate as primary path.

56 K. Leibnitz, N. Wakamiya, and M. Murata

s
d

secondary paths

primary path

m1

m2

mM

...

link or node failure

(a) Failure of primary path

s
d

new primary path

...

primary path is switched

(b) Switching to secondary path

Fig. 3. Desired behavior of routing method

The basic sequence of the routing algorithm consists of two steps: (i) route
setup phase and (ii) the route maintenance phase. In the following sections we
will discuss the operation of both of these phases.

4.1 Route Setup Phase

In the route setup phase we use a decentralized method similarly like in AODV
routing. When a request for a new route to a destination arrives at the source
node, it broadcasts route request (RREQ) packets to the overlay network. When
a neighboring node receives an RREQ message and it has no route to the des-
tination, it continues broadcasting the packet to its neighbors. However, if it
receives an RREQ message that it has already processed, the request is dis-
carded. In case the RREQ packet arrives at the destination node or another
node which already has a route to the destination stored in its table, it replies
with a route reply (RREP) packet to the source node requesting the route. As
soon as the first RREP message arrives at the source it will have knowledge of a
route to the destination node and will start using this route in its transmission.
In such a way up to M routes are collected gradually and the route maintenance
phase with the attractor selection algorithm will proceed with these M paths.

The route setup phase is initiated when the transmission request to an un-
known node arrives at the source. After that the route maintenance phase is
entered, in which the scheme will operate most of the time. However, in the case
that paths are lost in the course of that phase and a minimum threshold of Mmin

is reached, route setup for additional paths is again invoked to add new paths.

4.2 Route Maintenance Phase

Once the first path from source to destination has been established, the route
maintenance phase is performed. In this phase, the attractor selection model in-
troduced in Section 3 is used to select the primary path for transmitting packets.
This selection is done according to the metric values of each path. We assume
that the transmission delay obtained from measurements of the round trip time
(RTT) of each packet can be captured by inline measurements to reduce any
overhead from active delay measurements.

The main problem in overlay network routing is that the best path is of-
ten chosen in an entirely selfish manner and the overall system performance is

Resilient Multi-path Routing 57

� ���� ���� ���� ���� �����
��

��

���

���

���

���

���

���

���

�	
�

���
���

���
	

�		�
���

��
��

oscillations of best paths

path A

path B

(a) Path delay as input metric

� ���� ���� ���� ���� �����
�

���

���

��	

���

��

���

���

���

���

���
���

���
	

�		�
���

���
�

�����
�	

path B

path A

(b) Transmission probabilities

Fig. 4. Input metric and transmission probabilities with P-ARAS

neglected. This may lead to undesired instability and oscillation in the network
load. Seshadri and Katz [8] have studied this issue and suggest three restraints
on this greedy behavior to improve the overall system-wide performance: (i) ran-
domization in the route selections, (ii) route changes performed with a hysteresis
threshold, and (iii) increase of the time interval between route changes. They
present three extensions of simple greedy routing where the route selection for
each packet is performed with randomization: ARAND, GRAND, and SRAND.
The basic operation of these three methods is sketched below. Further details
can be found in [8].

ARAND: The path is randomly selected from the set of potential path with
probabilities proportional to their metric.

GRAND: The path is randomly selected from the best K potential paths.
SRAND: A subset of K paths is chosen from the potential paths among which

the path with the highest metric is selected.

We can integrate randomization of path selections easily in our model, by
using path transmission probabilities pi which are obtained as normalized values
of mi.

pi =
mi

M∑
j=1

mj

i = 1, . . . , M (10)

For this reason we will consider two variants of ARAS distinguishing between
a probabilistic version and a deterministic version.

P-ARAS: The path is chosen with probabilities pi.
D-ARAS: The path with the highest mi level is selected.

An example of the input metric generated by a Wiener process is shown
in Fig. 4(a) for each path and the resulting transmission probabilities for the

58 K. Leibnitz, N. Wakamiya, and M. Murata

P-ARAS method are given in Fig. 4(b). It can be seen that the transmission
probabilities map well to the input metrics by choosing the path with minimum
delay. At about time step 2000 the primary path is switched from path B to
A. It can also be seen that although the path with best input metric oscillates
between paths A and B around time step 6000, our method maintains path A
as its primary path.

Using only a single metric value like in this case, makes the problem easy to
tackle if we simply use a greedy approach, since there is an obvious mapping
between input and output values. It should be emphasized, however, that our
objective is not only to attempt to optimize the transmission delay of each
individual user (as is done in the greedy case). By using randomization in the
path selection we accept a slightly worse subjective performance in favor of an
improved overall performance.

5 Numerical Results

In this section we will some discuss numerical results of our proposed method.
The main performance metric we consider is the average rate of path changes.
The average transmission delay would account only for the subjective perfor-
mance, but we are more interested in observing the overall objective behavior.
However, we will later also consider this metric.

Packets are generated in each slot with a certain probability parr which cor-
responds to a geometric time between arrival instants. For each packet arrival
occurring at time t, the path over which it is transmitted is chosen by ARAS.
If a path is selected that differs from the path used for the previous packet, we
consider this a path change. Its total number is divided by the duration of each
simulation run to obtain the path selection rate. A high value is, however, not
necessarily an indicator for bad performance, since we assume that the paths
have already been set up and there is no additional overhead for switching a
path. It can be rather regarded as an indicator for the degree of path diversity.
Clearly, a too high diversity results in a bad subjective performance since many
“bad” paths are used and packet reordering may become necessary. On the other
hand, a too small value indicates that the system operates rather deterministi-
cally. The whole problem narrows down to finding a good tradeoff between the
user’s subjective quality and the objective overall network performance.

Each simulation run has a duration of 10000 time steps and is repeated 1000
times. Since the confidence intervals are very small, we omit plotting them. We
will focus our study on some of the parameter settings for the randomized version
P-ARAS. The simulation scenario which we consider consists of a single source
destination pair having M = 6 paths with metrics varying over time, see Fig. 5.
The background traffic is modeled by initially uniformy distributed random path
latencies and the evolution is performed by a Wiener process characterized by
its standard deviation σ. Note that we will sometimes refer to this value simply
as variation of background traffic. We restrict the possible values of the path
latency to be between a lower limit of 10 and an upper limit of 500.

Resilient Multi-path Routing 59

s d

...

1

2

...

i

M

Fig. 5. Simple multi-path layout used in simulations

� � �� �� �� �� �� �� �� �� ��
����

����

����

����

����

���	

���

����

��������� �����

���
���

���
	�
�
�

�

��
�
�

σ = 0

σ = 5

σ = 10

(a) Hysteresis level Δ

� �� �� �� �� ��
�

���

���

���

���

���

��	

��

������������������������σ

���
���

��	
��

��

��
�
�

parr = 0.1

parr = 0.5

parr = 0.9

(b) Packet arrival probability parr

Fig. 6. Influence of parameters on rate of path changes

5.1 Influence of Parameter Settings

Let us consider at first the hysteresis threshold for switching paths. This para-
meter influences the reaction to sudden changes of the best path. However, when
Δ is too large, the system becomes too slow in response to the metric changes
and the performance degrades. The ratio of path changes is shown in Fig. 6(a)
as a function of Δ.

The purpose of introducing the hysteresis threshold is to reduce the greedi-
ness by keeping the current primary path in spite of another one being slightly
better. Using hysteresis shows a great advantage, especially when high oscilla-
tions among paths are observed . This is illustrated in Fig. 6(a) where the rate
of path changes per packet is shown as a decreasing function over Δ. The slope
of decrease becomes larger when σ is large.

In general, the hysteresis threshold should be selected depending on the vari-
ation of traffic, but the influence of an improper setting is not very crucial in the
operation of our method. An algorithm for automatically selecting the hysteresis
is proposed by the authors of [8] which could also be applied to our approach.

60 K. Leibnitz, N. Wakamiya, and M. Murata

Next, we examine how the packet arrival rate influences the rate of path
changes. Since we consider a discrete time system, we use a packet arrival prob-
ability parr in the simulation with geometrically distributed interarrival times.
This corresponds to a Poisson arrival process with exponential interarrival time
in the continuous time domain. We assume that the time steps are larger than
the transmission time of the packets, leaving no direct interaction between the
packets in this simulation scenario. Therefore, there is no influence of parr on
the simulated average delay. The influence of parr on the rate of path changes is
shown in Fig. 6(b).

The highest packet arrival probability causes also the highest path switching
rate, as the arrival instants are more frequent and the sensitivity to traffic varia-
tions becomes larger. However, the curves flatten for large values of σ. This means
that after the traffic variation reaches a certain level, it hardly influences the fre-
quency of path switches. Although, the packet arrival probability does not influ-
ence the delay in our scenario, it does have an effect on the rate of path changes.

In this study we only consider a single flow from a source node to a destination
node. When we extend our evaluation to a whole network with interacting flows
in the future, we expect that the packet arrival rate will show some greater effect
on the performance of our method.

5.2 Comparison of ARAS with Randomized Routing Methods

In the following we will compare the performance of D-ARAS and P-ARAS to
the other methods introduced in Section 4. In general, there are two types of path
selection methods, those with randomization and those without. While Greedy
and D-ARAS are deterministic methods, all others use randomization for path
selection. The subjective performance of the deterministic methods is naturally
expected to be best, but they operate selfishly and thus are not efficient when
considering the overall network performance.

Fig. 7(a) shows the average packet delay for each considered method in the
presence of variation of the background traffic process. We use a packet arrival
probability of parr = 0.5 and a hysteresis value of Δ = 5. Greedy shows the ex-
pected best subjective performance with lowest delays. D-ARAS is only slightly
higher, since it has a more delayed reaction than Greedy when choosing the
paths. Of the randomized methods, P-ARAS is very efficient as it yields only
slightly higher average delays than the deterministic algorithms. However, ran-
domization clearly worsens the subjective performance experienced by the user’s
average end-to-end packet delay.

In Fig. 7(b) the rate of path changes is depicted. Obviously, the purpose of
randomization is to balance the traffic among each path, so these methods yield
a higher ratio. The Greedy method and D-ARAS have a very small ratio which
is caused by paths often staying best paths despite the presence of high variation
of the others. Of the randomized methods again P-ARAS has the smallest path
switching rate, whereas ARAND, GRAND, and SRAND stay nearly unaffected
of the traffic variation. Clearly the highest path diversity is achieved by ARAND
due to the proportional splitting of the traffic flow.

Resilient Multi-path Routing 61

��

���

���

���

���

���

���

���

���

��
���

��
���

	�

� � �� �� �� �� �� �� �� �� ��

�	
�����������	�������

Greedy

D-ARAS

P-ARAS

ARAND
GRAND

SRAND

(a) Average total delay

� � �� �� �� �� �� �� �� �� ��
�

����

���

����

���

����

���

����

���

	
�������	��	�	
�������

��
��

���
	
�

�	�
���

�
��
��
�

GreedyD-ARAS

P-ARAS

ARANDGRAND

SRAND

(b) Rate of path changes

Fig. 7. Comparison of ARAS with other methods

In general, we can show that P-ARAS is a good candidate for selecting paths,
especially when we compare the results to the other randomized approaches. Its
subjective performance reaches nearly that of the deterministic approaches while
showing a high degree of path diversity.

6 Conclusion and Outlook

In this paper we presented an application of adaptive response by attractor selec-
tion (ARAS) to multi-path routing in overlay networks. ARAS is a
biologically-inspired method and is robust to changes in the environment. The
method converges to attractor solutions in the phase space and the selection of
the appropriate attractor is driven by an activity term α. We have seen that by
adequately defining the dynamic behavior of the activity α, we are able to map
the input values to the selection of a primary path in an overlay network in a
self-adaptive way.

Although the results suggested that the greedy approach appeared to show
a good performance, the main drawback of using greedy path selection lies in
the instability it introduces to the network. Whenever a new path appears more
suitable, traffic flows are shifted and result in route flapping. For this reason, we
implemented randomization of the path selections to reduce the greediness of
each individual source-destination flow, while still achieving a good performance
in terms of average packet delay. Furthermore, we investigated the influence of
the key parameters of our model, such as the hysteresis threshold for switching
paths under different levels of variation of the background traffic. Comparisons
to other randomized methods showed the effectiveness of our approach. The
main advantage of our proposal is that it operates without explicit rules and is
simply implemented by numerical evaluation of the differential equations.

In the future, we wish to focus more on a network-wide view with large scale
evaluations of the whole network. When evaluating the network in whole, we
expect that our approach will be superior to the greedy method in performance.

62 K. Leibnitz, N. Wakamiya, and M. Murata

So far we considered only a single source-destination pair and the path selection
was influenced only by the background traffic without any interaction from other
flows operating with our method. As a main goal of further studies, we need to
investigate and quantify the benefits of our proposed mechanism in the presence
of interacting traffic. In such a way, the activity could be extended by some
overall network performance metric resulting in a symbiotic selection of paths
for each flow which is best for the whole network.

Acknowledgement

This research was supported by “The 21st Century COE Program: New Infor-
mation Technologies for Building a Networked Symbiosis Environment” and a
Grant-in-Aid for Scientific Research (A)(2) 16200003 of the Ministry of Educa-
tion, Culture, Sports, Science and Technology in Japan.

References

1. Kashiwagi, A., Urabe, I., Kaneko, K., Yomo, T.: Adaptive response of a gene
network to environmental changes by attractor selection. submitted for publication
(2004)

2. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights.
In: IEEE INFOCOM, Tel-Aviv, Israel (2000) 519–528

3. Mueller, S., Tsang, R.P., Ghosal, D.: Multipath routing in mobile ad hoc networks:
Issues and challenges. Lecture Notes in Computer Science 2965 (2004) 209–234

4. Andersen, D., Snoeren, A., Balakrishnan, H.: Best-path vs. multi-path overlay
routing. In: Internet Measurement Conference (IMC), Miami Beach, FL (2003)

5. Andersen, D., Balakrishnan, H., Kaashoek, M., Morris, R.: Resilient overlay net-
works. In: 18th ACM Symposium on Operating Systems Principles (SOSP), Banff,
Canada (2001)

6. Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49
(2002) 236–259

7. Qiu, L., Yang, Y., Zhang, Y., Shenker, S.: On selfish routing in internet-like envi-
ronments. In: ACM SIGCOMM, Karlsruhe, Germany (2003)

8. Seshadri, M., Katz, R.: Dynamics of simultaneous overlay network routing. Tech-
nical Report UCB//CSD-03-1291, University of California, Berkeley, CA (2003)

9. Wardrop, J.: Some theoretical aspects of road traffic research, part II. In: Institu-
tion of Civil Engineers. Volume 1. (1952) 325–378

10. Xie, H., Qiu, L., Yang, Y.R., Zhang, Y.: On self adaptive routing in dynamic
environments – an evaluation and design using a simple, probabilistic scheme. In:
International Conference on Network Protocols (ICNP), Berlin, Germany (2004)

11. Su, X., de Veciana, G.: Dynamic multipath routing: asymptotic approximation
and simulations. In: ACM SIGMETRICS, Cambridge, MA (2001) 25–36

12. Gojmerac, I., Ziegler, T., Ricciato, F., Reichl, P.: Adaptive multipath routing for
dynamic traffic engineering. In: IEEE GLOBECOM, San Francisco, CA (2003)

13. Güven, T., Kommareddy, C., La, R.J., Shayman, M.A., Bhattacharjee, B.: Mea-
surement based optimal multi-path routing. In: IEEE INFOCOM, Hong Kong
(2004)

Resilient Multi-path Routing 63

14. Elwalid, A., Jin, C., Low, S.H., Widjaja, I.: MATE: MPLS adaptive traffic engi-
neering. In: IEEE INFOCOM, Anchorage, Alaska (2001) 1300–1309

15. Menth, M., Reifert, A., Milbrandt, J.: Self-Protecting Multipaths - A Simple and
Resource-Efficient Protection Switching Mechanism for MPLS Networks. In: 3rd
IFIP-TC6 Networking Conference (Networking), Athens, Greece (2004)

16. Gowda, S., Sivalingam, K.M.: Protection mechanisms for optical WDM networks
based on wavelength converter multiplexing and backup path relocation techniques.
In: IEEE INFOCOM, San Francisco, CA (2003)

17. Leibnitz, K., Wakamiya, N., Murata, M.: Biologically inspired adaptive multi-
path routing in overlay networks. In: IFIP/IEEE International Workshop on Self-
Managed Systems & Services (SELFMAN 2005), Nice, France (2005)

18. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley, New
York (1989)

19. Murray, J.: Mathematical Biology, I: An introduction. 3 edn. Springer (2002)

Packet Classification with Evolvable Hardware
Hash Functions – An Intrinsic Approach

Harald Widiger, Ralf Salomon, and Dirk Timmermann

University of Rostock,
Institute of Applied Microelectronics and Computer Engineering,
Richard-Wagner Str. 31, 18119 Rostock-Warnemuende, Germany

{harald.widiger, ralf.salomon, dirk.timmermann}@uni-rostock.de

Abstract. Bandwidth demands of communication networks are rising
permanently. Thus, the requirements to modern routers regarding packet
classification are rising accordingly. Conventional algorithms for packet
classification use either a huge amount of memory or have high compu-
tational demands to perform the task. Using a hash function in order to
classify packets is promising regarding both memory and computation
time. However, such a hash function needs to be of high performance
and cheap in hardware costs. These two design goals are contradictory.
To limit the costs of a hardware implementation, known good hash func-
tions, as used for software implementations of encryption algorithms,
are applicable to only a limited extend. To achieve the goals mentioned
above, an adaptive hash function is needed. In this paper, an approach for
a hardware packet classifier using an evolvable hash function is presented.
It consists of an evolutionary algorithm which is entirely implemented in
hardware.

1 Introduction

In state of the art communication technology, an increasing amount of data has
to be transferred. The bandwidth demands of communication networks are rising
permanently. Not only the bandwidth demands but also the service demands on
state of the art network equipment rise as well. Voice over IP (VoIP) traffic,
for example, requires very low latencies. The diversification of data streams in
routers driven by the raising quality-of-service (QoS) demands of customers and
internet service providers accelerates the packet classification problem in routers
rapidly.

1.1 Packet Classification Problem

Network routers must offer a huge variety of services on different flows. These
services comprise routing, rate limiting, access control to networks, virtual band-
width allocation, traffic shaping and policing, and service differentiation. In or-
der to distinguish between different flows, nearly all network components both
at the edge and in the core of a network need a packet classifier. Many of the

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 64–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Packet Classification with Evolvable Hardware Hash Functions 65

aforementioned services are time sensitive. That is why network routers need
to classify the packets at wire speed in order to add as less latency as possible
before making service decisions.

The classification of packets is based on rules. All rules are stored in a
database. The packet classification problem is to determine the rule, that matches
for an incoming packet. The database has to be searched in order to find the
matching rule. The search must be performed as fast as possible. With higher
bandwidths and a large number of rules, a huge database has to be searched
in a shorter time. Thus, packet classification is a severe problem in state of
the art communication technology for which only limited hardware resources
are available. IP lookups in routers for example should be as fast as possible.
Conventional algorithms [1] must make a tradeoff between classification speed
and memory demands. The algorithms are either implemented in software or in
hardware. The software implementations usually lead to comparative low mem-
ory requirements but very high search latencies. Many of them use tree structures
to classify packets. The HiCuts algorithm [2], for example, partitions the search
space guided by heuristics. Each search leads to a leaf, which consists of a small
number of rules. The leaves can then be searched linearly to find the best match.
The hardware based algorithms on the other hand can perform in wire speed.
But therefore either a huge memory amount or specialized and thus expensive
hardware or memories like ternary content addressable memories (TCAMs) are
required. A TCAM memory array stores all rules (N) in decreasing priority. An
input key is compared to all rules in the array in parallel. The N-bit vector in-
dicating all matching rules is read by an N-Bit priority encoder, which indicates
the address of the highest priority match. The address is used to index a random
access memory (RAM) to find the action associated with the prefix. Besides the
potential high costs, another drawback of hardware implementations is the very
limited number of rules that can be stored [1].

A solution of the packet classification problem can be the use of hash func-
tions. By the use of a hash function, the two main demands to a packet classifier
can be met. Hash functions have a search complexity of ideally O(1). Thus, they
are independent of the number of elements searched. With O(N), memory re-
quirements scale only linearly with the number of classification rules. This paper
presents a hardware packet classifier that is based on a hash function. Section 2
gives a short overview over the basics of evolutionary algorithms. In section 3,
hash functions in general and the evolvable hash functions used for the packet
classifier in particular are characterized. Section 4 summarizes the simulation
results of the implemented hash functions. Section 5 details the implemented
hardware architecture of the packet classifier. Section 6 concludes this paper
and presents an outlook to future work.

2 Evolutionary Algorithms

Evolutionary or genetic algorithms are search algorithms based on the mechan-
ics of natural selection and natural genetics [3]. They combine survival of the

66 H. Widiger, R. Salomon, and D. Timmermann

fittest among string structures with a structured yet randomized information
exchange to form a search algorithm with some of the innovative flair of human
search. In every generation, a new set of artificial creatures based on the bits
and pieces of the old generation is created. Being randomized, genetic algorithms
are not simply random walks trough the search space. They efficiently use his-
torical information to speculate on new search points with expected improved
performance.

Genetic algorithms work with a coding of a parameter set, instead of the pa-
rameter set itself. The search is not done from a single point but a population
of points. For determining the quality, a fitness function is used. This fitness
function measures the quality of an artificial creature regarding its purpose. In
contrary to traditional methods, genetic algorithms use probabilistic transition
rules rather than deterministic ones. The mechanism of a simple genetic algo-
rithm involves nothing more than copying strings and swapping partial strings,
bit vectors respectively. These transitions are called operators. A simple genetic
algorithm is composed of three operators: reproduction, crossover, and mutation.

Reproduction is a process in which individuals are copied depending on the
fitness function. A limited number of individuals (the fittest ones) is copied to
form the base of the next generation.

Crossover is a process that simulates sexual reproduction (Figure 1). Parts
of the bit vectors of two individuals A1 and A2 (the parents) are exchanged
producing two offspring (A’1 and A’2) having features of both parents. The
individuals created by the reproduction form a mating pool. Members of the
pool are mated at random. An integer value k between 1 and the length of the
bit vector minus one (l-1) is drawn uniformly. Two new bit vectors are created
by swapping all bits between k+1 and l.

Mutation is a process in which bits of the bit vector of the individuals are
inverted at random positions. The mutation probability is relatively low. A mean
mutation frequency of one mutation per number of bits in the bit vector obtains
good results [3]. However, the best mutation rate may be different for each
application. If the rate is too high, a random search is performed rather than a
genetic algorithm. If it is too low, the speed of the quality improvement of the
genetic algorithm is limited needlessly.

If the genetic algorithm is implemented in a hardware structure, it is called
an evolvable hardware (EHW). According to [4], EHW can be classified into
two categories, extrinsic and intrinsic evolvable hardware. In extrinsic EHW the
genetic algorithm is performed externally in software. As a result, only the best
configuration obtained is downloaded into hardware. This is done once in each

0 1 1 1 0 0 1

1 0 0 1 1 0 1

0 1 1 1 1 0 1

1 0 0 1 0 0 1

A1

A2

A’1

A’2

Fig. 1. Crossover Operator

Packet Classification with Evolvable Hardware Hash Functions 67

generation. In the intrinsic approach, the hardware itself simulates the genetic
algorithm. This has two main advantages. On the one hand, the genetic algorithm
is performed much faster in a specialized hardware than it could be in software on
a general purpose processor. On the other hand, such an evolvable hardware can
operate autonomously in an Field Programmable Gate Array (FPGA) without
an interface to a processor with a software system.

3 Hash Functions

As stated in the introduction, packet classifiers have two main demands, high
classification speed with low latency and low hardware (memory) costs. By the
use of a hash function the two main demands to a packet classifier can be met.
Hash functions have a search complexity of ideally O(1). Thus, they are indepen-
dent of the number of elements searched in. With O(N) the memory need scales
only linearly with the number of classification rules. However, it is problematic
to find a sufficient hash function. It has to be both high performance and of
low hardware costs. It might be easy to find a good hash function for a specific
amount of elements out of a huge search space. But because of changing key
sets in packet classifiers, a hash function, that used to be sufficient, might be
insufficient for a modified key set. A solution for this problem is a permanently
adapting and improving hash function. This goal can be obtained by evolution-
ary computing completely done in hardware. Such an evolvable hardware hash
function is proposed here.

Hash Functions map a value X to its hash value h(X). Usually hash functions
do a conversion from a large domain to a much smaller domain. In case of a
packet classification, i.e., a 32-bit key (destination IP address) is hashed to a 10-
bit wide memory address to store rules for 1024 different keys. Thus, the goal is to
map 2m elements from a search space of 2n to a much smaller search space of 2m.
The quality of the hash function can be determined by measuring the number of
collisions, that occur when hashing all keys into memory. Ideally, every element
hashes to a different value. In that case, a hash function is perfect. That would
mean for the packet classification that the search for a rule corresponding to a
key would be done with just one memory access. Finding such a perfect hash
function is very difficult. Depending on the algorithm or the hardware structure
of that function, there might be no perfect hash function. Normally a hash
function is not perfect. Thus, collisions occur when hashing a number of keys. A
collision occurs if two different values are hashed to the same value (equation 1).

X �= Y ; h(X) = h(Y) (1)

Those collisions must be resolved. This can be done in two different ways [5].
One way is to rehash h(Y) with another hash function that hashes an m-bit
value to another m-bit value until no collision occurs and a free entry in the
hash memory is found. Another way is to perform a linear collision resolution.
For a linear collision resolution a constant value is added to the hash value. This
is done until a free memory entry was found. The constant must be a prime

68 H. Widiger, R. Salomon, and D. Timmermann

number or at least a number which is relatively prime to the number of memory
entries. This is required to assure that all existing memory entries are searched
before reaching the original entry. In the simplest case the constant is 1. As
mentioned above, the quality of a hash function can be measured by counting
the number off collisions that occur when all keys are hashed into memory. A
perfect hash function would not create any collision. The worst hash function
on the other hand would be one that hashes all values to the same hash value.
In that case, the maximum number of collisions that would occour is n2−n

2 . To
limit the number of collisions and to therefore increase the lookup performance,
the memory load is usually limited to 1

2 . This means 2m elements are hashed to
(m+1)-bit wide hash values and stored in a memory with 2m+1 entries.

Memories accessed by hash functions have the great advantage of fast updates.
Both insertions and deletions can be achieved very fast. They have the same
complexity as searching. To insert a new entry in a hash memory, the key has to
be hashed. Then the memory has to be searched on the bases of h(key) until an
empty entry was found. The new entry can be inserted at this position. Deletion
is a little more complicated, as the corresponding memory entry cannot simply
be freed but must be marked as deleted. Freeing is only possible when rehashing
the complete memory. Thus, insertions are not only done when a free memory
position is found but also at memory positions that are marked as deleted.

3.1 Evolvable Hardware Hash Functions

To be able to perform many key lookups in a packet classifier with the utilization
of a hash function, the hash function should be implemented in hardware. The
database of a packet classifier is not static: Permanently rules are added or
removed. Thus, a hash function, that used to be sufficient and of good quality
for a specific database, gets insufficient with the changes of the database.

A hash function is needed that can be implemented easily and efficiently in
hardware. To adapt at any time to an actual set of keys, the hash function
shall evolve autonomously. Thus, a complete hardware evolution comes to pass.
This is realized by constantly traversing an evolution pipeline comparable with
the one in [6]. The system is implemented both as a SystemC software model
and a fully synthesizable VHDL description for implementation into an FPGA. A
linear collision resolution for the hash functions is used. In the following sections,
different hardware architectures of hash functions are explored to determine their
potential.

3.2 Hash Architecture 1 and 2

A promising architecture which is high performing and relatively cheap in hard-
ware costs is shown in Figure 2. In the following it is referred to as hash1. It
consists of a number of multiplexer elements. The multiplexers are controlled
by registers. Those registers form the genome of the hash function. For every
output signal, two multiplexer outputs are connected via an xor function. To
hash an N-bit value to an M-bit value, 2 · M N-to-1 multiplexers are needed. As

Packet Classification with Evolvable Hardware Hash Functions 69

Mux
N 1

Mux
N 1

Key

Gene

Gene

Out0

Element
M-1

Key (N Bit wide)

Genome

Hash (M Bit wide)

Element
0

Element
1

Element
2

Fig. 2. Architecture of an Evolvable Hash Function (hash1)

every multiplexer can multiplex any of the input bits to its output, controlling
a multiplexer demands log2(N) bits. These bits controlling the function of the
multiplexers form the genome of the hash function. Thus, to hash N bits to M
bits, a genome size as stated in expression 2 is needed. To hash 1024 32-bit keys
a hash function with a genome size of 100 bit is required.

2 · M · log2(N) (2)

A variant of the above introduced architecture was developed as well
(Figure 3). In the following, it is referred to as hash2. Here the genome is en-
larged to increase the possibilities for evolutionary development. It is a two-stage
architecture. We use the elements consisting of two multiplexers connected by
an xor in the first stage. In the second stage, first stage results are mixed up by
multiplexers. To hash N bit to M bit a genome size as stated in expression 3 is
needed. To hash 1024 32-bit keys a hash function with a genome size of 370 bit
is needed.

(2 · N + M) · log2(N) (3)

3.3 Hash Architecture 3

In [7], a hardware architecture of a hash function is presented. In the following
it is referred to as hash3. The presented architecture was adapted slightly to
improve its performance and to limit the hardware costs. The hash function

Mux
N 1

Mux
N 1

Key

Gene

Gene

Out0

Element
N-1

Key (N Bit wide)

Genome

Mux M-1
N 1

Hash (M Bit wide)

Element
0

Element
1

Element
2

Mux 0
N 1

Mux 1
N 1

Fig. 3. Architecture of an Evolvable Hash Function (hash2)

70 H. Widiger, R. Salomon, and D. Timmermann

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

Register
Controled

Switch
Matrix

16 32

Stage 1

Register

96
 B

it

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

Register
Controled

Switch
Matrix

16 32

Stage 2

Register

96
 B

it

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

4-Inp
LUT

Register
Controled

Switch
Matrix
8 n

Stage N

Register

3*
n

B
it

Fig. 4. Architecture of an Evolvable Hash Function (hash3)

matches the structure of FPGAs very well. It mainly consists of four-input-look
up tables (LUTs). In those LUTs any logical 4-input function can be performed.
To code the function 16 bit are needed. The logical functions are mapped to the
FPGAs LUTs. Every slice of i.e. a Virtex2 FPGA comprises of two LUTs. As all
LUTs have four inputs, to map an N bit wide key, N

4 parallel LUTs are needed
for one complete stage. Every stage is followed by a register controlled switch
matrix. All but the last switch N

4 inputs to N outputs. The last matrix switches
N
4 inputs to M outputs.

[(
N · log2

(
N

4

))
+

N

4
· 16

]
· (S − 1) + M · log2

(
N

4

)
+

N

4
· 16 (4)

For the whole function with an N-bit key and M-output bits and a depth of S
stages a genome as given in expression 4 is needed. To hash 1024 32-bit keys a
four staged hash function with a genome size of 830 bit is needed.

4 Simulation Results

The evolvable system comprises the complete evolutionary algorithm. It works
autonomously and without any control of a software system. Thus, it is an in-
trinsic EHW. It was implemented as a SystemC model. The model is functional
identical to the VHDL implementation, which is described in chapter 5. All three
hash functions were implemented and evaluated with different key sets of up to
hundred thousand 32-bit keys. The keys were generated randomly. The memory
load of the hash memory was set to different levels ranging from 37% to 87%.
All hash functions evolved over thousand generations.

Packet Classification with Evolvable Hardware Hash Functions 71

0

2

4

6

8

10

12

14

16

18

100 1000 10000 100000 1000000
number of elements

av
er

ag
e

m
em

. a
cc

.

log2(n)

Hash 3 (50%)

Hash 1 (75 %)
Hash 2 (75 %)

Hash 1 (50 %)
Hash 2 (50 %)

Fig. 5. Lookup Performance of Different Hash Architectures. Average memory accesses
needed for finding an entry in the hash memory.

In Figure 5, the graphs reveal, that the architectures of the hash functions per-
formed differently. The hash functions build of multiplexers (hash1 and hash2)
showed great performance. The average of required memory accesses over all
keys scales only very slightly. For a memory load of 50%, both architectures
hash1 and hash2 show a comparable performance. The average number of mem-
ory accesses over all keys stored in the memory remains below four even with 217

keys. Finding an entry in a sorted list of 217 keys, sixteen accesses are needed
on average. Four accesses outperform the sixteen memory accesses of a sorted
list remarkably. The architecture consisting of LUT rows (hash3) showed poorer
performance. It scales almost linearly with the size of the key sets. Even with
just 8192 keys, an average of 17 memory accesses is needed. Even at this rela-
tively small number of keys, the sorted list outperforms the hash function with
just twelve memory accesses. Thus, the architecture is not applicable for imple-
mentation in a packet classifier.

When using a memory with a load of 75%, hash1 and hash2 perform well, too.
Searching for one of 217 keys requiress six memory accesses on average. Never-
theless the performance has decreased by about 50%. Here we make a tradeoff
between search time and memory demands. However, it has to be mentioned
that the theoretical upper bound for searching in the memory with the help of a
hash function is still O(N). Even if the average memory accesses needed are very
low, the worst keys require far more than log2(N) memory accesses. This is the
case at least for the memories with a load of 75%, as emanating from Figure 6.

It shows that the number of needed memory accesses for particular keys are
extremely high. Especially when the memory load is at 75%, the maximum
needed memory accesses are at 80 for hash1 and at 166 for hash2 respectively.
When the memory load was as high as 87%, the worst case memory accesses

72 H. Widiger, R. Salomon, and D. Timmermann

0

20

40

60

80

100

120

140

160

180

100 1000 10000 100000 1000000
number of elements

m
ax

im
um

 m
em

. a
cc

.

Hash 3 (50%)

Hash 1 (75%)

Hash 2 (50%)

Hash 2 (75%)

Hash 1 (50%)

log2(n)

Fig. 6. Lookup Performance of Different Hash Architectures. Maximum memory ac-
cesses needed for finding an entry in the hash memory.

needed where at 262 (hash1) and 283 (hash2). Whereas the hash functions with
a memory load of 50% show a better performance. Here the maximum needed
memory accesses are at 42 (hash1) and 47 (hash2). That is why a memory
load of 50% should not be exceeded in a system implementation, as the penalty
for the worst case is rising quickly. The memory demand of such architecture
has a complexity of O(N). As the hash function evolves constantly, repetitive
rehashing of the keys in the memory is required. To do so, there have to be
two memory blocks of which one is used in the data path while the other one
is rehashed. That means if the memory load is limited to 50%, exactly 4 · N
memory locations are required to store keys and classification rules.

5 Hardware Architecture of the Packet Classifier

The System was implemented in VHDL. Functionally it equals the SystemC
model used for the simulations exactly. The packet classifier consists of two main
elements. The data path and the evolution pipeline. The classifier is completely
described in VHDL and was implemented into a Xilinx Virtex2 FPGA. The
packet classification is done at wire speed. So no external memory is designated to
buffer the data packets. Only a FIFO build of internal block RAMs of the FPGA
stores the packets until the classification rule is extracted from the memory.

5.1 Data Path

In the data path, incoming packets are parsed and the key is extracted. The
packet is stored in a buffer until the corresponding classification rule has been
extracted from the memory. Based on the key the packet is classified. The key

Packet Classification with Evolvable Hardware Hash Functions 73

2 4

--- ---

13 3

8 2

--- ---

10 1

--- ---

--- ---

Key Rule

Key: 10 h(Key) : 4 Collision Resolve : 3

000

100

101

110

111

001

010

011

2 4

--- ---

13 3

8 2

--- ---

10 1

--- ---

--- ---

Key Rule

000

100

101

110

111

001

010

011

2 4

--- ---

13 3

8 2

--- ---

10 1

--- ---

--- ---

Key Rule

000

100

101

110

111

001

010

011

Fig. 7. The hash value for the key 10 is 4. Searching for key 10 leads to memory address
4 in the first run. As the stored key is not equal to 10, the next address is h(key)+3
= 7. As the stored key is not equal to 10 either, the next address is h(key)+3+3=2.
At memory entry 2 the right correct is found and the corresponding rule is returned.
Three memory accesses were needed.

is hashed by the evolvable hash function. Using the hash value h(key) as start
address, the memory is searched. If the stored key does not comply with the
search key, a collision occurred. Using linear collision resolution, the next read
address in the memory is set to: h(key) + prime. The prime number is con-
figurable. Adding the prime number to the read address is repeated until the
correct entry or an empty memory entry is found. In Figure 7, an example of
such memory access is given. When the correct entry is validated by comparing
the search key with the one stored in the memory, the classification rule together
with the packet is sent to the output of the classifier. To solve the problem of
numerous memory accesses, a small cache can be implemented to the memory
module. The eight worst keys, which produce many memory accesses can be held
in that cache and therefore be read out in just one memory access. This would
improve the overall quality of the packet classifier. However, this feature has
yet to be implemented to the packet classifier. The classifiers key parser module
extracts the search keys from the incoming packets. The module can extract any
combination of bits from a data packet. The bits, the key consists of, can be
configured at any time. The bit mask for the key is stored in a memory block
which is accessed through a configuration port. The generic architecture of the
key parser allows the configuration of the width of the search key at implemen-
tation time while the actual bits of the key can be changed while the classifier
is in use. In that way, the code guarantees high flexibility.

As the hash function changes during operation of the packet classifier perma-
nently, it needs a repeating reconfiguration. In addition a permanent rehashing
of the memory is required. This would interrupt the packet classification process
very often for a quite substantial time. This is the reason why the data path
consists of two independent hash functions and hash memories. While one path
is used for the normal operation of the packet classifier, the other one can adapt
to a new evolved and better performing hash function. The reconfiguration of
the unused hash function is done without affecting the one used in the data
path. Furthermore, the time intensive rehashing of the memory can be done as

74 H. Widiger, R. Salomon, and D. Timmermann

Hardware
Evolution

Frame In
Frame Out

Hash
Update

Key
Parser

Buffer

Switch
Key

Hash
Func0 Switch

Keys

Mem0

Hash
Func1 Mem1

Classification Rule

Fig. 8. Architecture of the Data Path

well without interference. The time for the rehashing process depends on the
one hand on the number of memory elements to be rehashed and on the other
hand on the traffic the classifier is exposed to. To be able to rehash the unused
memory, the one utilized in the data path is needed to provide the information
that is to be rehashed. In order to not interfere with the functionality, data reads
for rehashing can only be gathered when the utilized memory is in an idle state.
Memory accesses from the key parser always have the highest priority. Therefore
the duration of the rehash process is not determined. When the inactive memory
is rehashed and the hash function is reconfigured, the data path is switched to
the new configured path. If the maximum memory load is limited to 50% as it
is mentioned above, the memory demand of the classifier is 4 times the number
of keys. The memory can be implemented either with the internal block RAMs
of the FPGA or by using an external memory. A V4FX40 FPGA, i.e., has a
total of over 2.5 million bits of block RAM. Assuming a key size of 32 bit and
a rule size of 16 bit for classification, 13500 different rules can be stored inter-
nally. Therefore, classifiers with small and medium rule sets can be implemented
without using external memories.

5.2 Evolution Module

The evolution module performs the whole evolutionary process completely in
hardware. It consists of six functional elements. The evolution is performed per-
manently, stopping only if a perfect hash function was found. Perfect means that
all key are hashed to a different value. The evolutionary algorithm used in the
hardware is the following: On reset of the system, four individuals, representing
four different genomes of the hash function, are generated (pseudo)randomly
by a linear feedback shift register (LFSR). The number of bits k, the genome
consists of, arises from expressions three, four, or five depending on the chosen
hash function. From these four parents an offspring of twelve is generated by
random as well. The best of the parents does not have a bias to be chosen with
a higher probability. The offspring is then mutated. Due to a simple and effi-
cient hardware implementation the mutation probability p is always as stated
in equation 5.

Packet Classification with Evolvable Hardware Hash Functions 75

p =
1
2k

; 2k ≤ l < 2k+1 (5)

On average, between one and two bits of a genome are mutated. After muta-
tion, the fitness of the offspring f(x) is evaluated. The fitness of an individual is
measured by counting all collisions that occur. It is the difference between the
theoretically maximal number of collisions and the actual number of collisions c
that occur when hashing n keys (equation 6).

f(x) =
n2 − n

2
− c (6)

The four fittest individuals out of the offspring and the fittest parent form the
new parent generation. To prevent the fitness form decreasing from one gener-
ation to another, the fittest parent is always included in the survivor selection.
The new four parents are the starting point for the new run through the evo-
lution module. The used evolutionary operators in the evolutionary algorithm
are reproduction and mutation. The crossover operator was set aside. As men-
tioned above, the evolution module consists of six functional blocks (Figure 9).
An evolution cycle starts at the genome update module. This module holds the
four individuals of the parent generation in a block RAM. It has an interface to
the data path, to update the genome of the hash functions in the data path. A
LFSR in the child select module selects twelve times one of the parents for the
new offspring. This is done by random and without taking into account the dif-
ferences in fitness of the parents. The selected genome is read out of the genome
update module and transferred in double word portions to the mutate module.
The mutate module consists in principle of 32 LFSRs. Every LFSR is respon-
sible for mutating one bit of the genome part at the input of the module. The
probability of the mutation of one bit is according to equation 6 between 1

l and
2
l . After being mutated, the genome is used for configuring the hash function
used for fitness evaluation. The fitness evaluation module computes the fitness
of the actual genome. This is done by holding a memory that has a bit position
for every entry of the hash memory. All existent keys are read out of the one
memory in the data path that is not in use. Incoming keys are hashed and the

Child
Select

Mutate

Survivor
Selection

Fitness
Evaluation

Hash
Reconfiguration

Genom
Update

Data PathFrame In
Frame Out

Classification Rule

Keys
Hash

Update

Fig. 9. Structure of the Evolution Module

76 H. Widiger, R. Salomon, and D. Timmermann

memory is checked at the position of the hash value. If the memory indicates a
free position, it is marked as used. Otherwise a collision counter is incremented
and a new memory position is computed by the linear collision resolution. By
counting all the collisions that occur when inserting all key to the memory the
fitness is measured. After being evaluated the genomes of the offspring are trans-
ferred to the survivor selection module, where the four fittest ones are selected
and transferred to the genome update module as the new parent generation.

5.3 Performance

The evolutionary algorithm especially the computation of the fitness of a hash
function is extremely demanding regarding the computation time. During simu-
lation four individuals, which produced an offspring of twelve, were evolved. To
evolve 1000 generations with 100.000 keys with the SystemC model, a compu-
tation time of more than a day was needed on a 3.2 GHz machine. A software
implementation of the evolutionary algorithm would probably have a computa-
tion time consumption comparable to the model. That is why the whole system
was implemented in hardware, consisting of the data path and the evolution
module. The most time consuming and thus performance critical module is the
functional element evaluating the fitness. The fitness evaluation has a complexity
of O(N2). If the initial hash function hashes all keys to the same value, N2−N

2
collisions can occur when storing N keys to the memory. This is the worst case.
But as the initial genome of the hash function is always chosen randomly, its
quality is always better. The simulations showed that the initial hash functions
produce at worst 20 million collisions for 217 keys. The fitness evaluation mod-
ule can compute one collision per clock cycle. Thus, for the above example of
217 keys and an offspring of twelve, approximately 240 million clock cycles are
needed. On a 125 MHz FPGA, the first generation would evolve in less than
two seconds. The evolution rate increases rapidly with the hash function getting
fitter. This is without any optimizations in the fitness evaluation. In Figure 10,
the results of a simulation run with the ModelSim simulator are drawn. Here an
evolution of 2048 32-bit wide keys has been performed. The keys were produced
by a random generator. Running with 125 MHz, it took the system 1.84 seconds
to evolve 1000 generations. As the fitness of the evolving system reached a very
high value very fast, the graph is limited to twenty generations. The number
of collisions occurring with the fittest individual was 187311 in the first gen-
eration (92.46 memory accesses per key) and after twenty generations limited
to 923 (1,45 accesses per key). After the whole 1000 generations the number of
collisions reached 845 (1,41 accesses per key).

5.4 Increasing the Computation Speed

There are different ways to increase the speed of the evolutionary process. As
the time for fitness evaluation dominates the system computation time, the main
attention regarding optimizations must refer to that hardware module. There are
different ways for speeding up the fitness evaluation.

Packet Classification with Evolvable Hardware Hash Functions 77

0,9

0,92

0,94

0,96

0,98

1

1,02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

generation

fit
n

es
s

Fig. 10. Fitness of the ModelSim simulation of the packet classifier. The fitness is
scaled to 1. Meaning a perfect hashing results in a fitness value of one.

One is the parallel implementation of one fitness evaluation element per off-
spring. This would increase the evaluation performance by a factor of twelve, as
the fitness of all offspring would be computed at the same time. The computation
time is bound to the offspring with the worst fitness. When looking for collisions
while evaluating the fitness, a memory interleaving can be used. A linear collision
resolve strategy is used. Thus, when the hash value of a key is known, all possible
memory positions are known as well. The n-th possible position is at memory
address h(key) + n · prime. With that knowledge, many potential memory posi-
tions can be checked in parallel which speeds up the fitness evaluation process.
A third way of speeding up the fitness evaluation is to stop evaluating when the
number of collisions an offspring produces exceeds the number of collisions of
the four best elements of the offspring. As only the four best elements of the
offspring are selected for survival, the computation of an offspring element can
be stopped, when it is clear, that the element is not among this group. This way
the mean computation time for the fitness evaluation can be reduced.

In order to optimize the evolutionary algorithm, it might be useful to adapt
the mutation rate according to the variance of the finesses of all the offspring.
This method has been proposed in [7]. When the variance is high, the mutation
rate should be decreased. When it is low, the mutation rate can be increased.

5.5 Implementation

The packet classifier was implemented into a Xilinx Virtex2 FPGA (XC2V4000-
6-BF957). 2800 slices and 34 block RAMs are needed for the implementation of
a packet classifier which can store 2048 classification rules with 32-bit keys and
16-bit rules. The implemented hash function is hash1.

78 H. Widiger, R. Salomon, and D. Timmermann

6 Conclusion and Outlook

Both the simulations of the model and the implemented hardware showed that
a packet classifier consisting of an evolvable hash function can be very efficient.
The time complexity is roughly O(1) and the memory demand is O(N), even
for very large rule sets. The actual used hash function is always designed for the
momentary rule set by the hardware evolution. Evolving constantly, the hash
function improves over time and adapts to changes in the rule set. These are
excellent characteristics.

However, a drawback of the actual implementation is the limited range of ap-
plication. At the moment the size of the key on which a rule search bases is con-
figurable but still after implementation constant. That means, that for standard
router applications, where longest prefix searches basing on keys with different
lengths are the main application, the packet classifier is not very well suited. The
mapping could only be done by setting the prefixes to the standard length. That
would lead of course to huge redundancy. To map, i.e., a 28-bit prefix to a 32-bit
key, 16 different keys with the same rule would have to be stored in memory. This
problem can be solved by the use of multiple hash functions as presented in [8].
Here hash functions of different widths are used to do the prefix search. However,
prefixes not matching any of the widths would still produce redundant entries.

The speed of evolutionary process has still to be increased in order to make
faster adaptation to changing key sets possible. The four different possibilities
that have been presented in this paper must be implemented in hardware. It
has to be determined how the improvement of the fitness evaluation module
can speed up the evolutionary process. Furthermore, the behavior of the packet
classifier with real databases must be researched. At this moment only fabricated
data basing on random functions has been used to demonstrate the behavior.
Thirdly, the influence of the use of a small cache in the data path to solve the
problem of numerous memory accesses for some keys must be tested.

A final evolving system could be implemented in a dynamically reconfigurable
environment as mentioned in [9]. In such a system the hash functions would
not need to consist of register controlled multiplexers. Instead there are just
wires from input to output and some combinatorial logic. The wires are simply
rerouted to evolve to a new generation. This is achieved by the FPGAs par-
tial reconfigurability. The whole area of the FPGA, where the hash function is
implemented, is reconfigured.

References

1. Gupta, P., McKweon, N.: Algorithms for packet classification. In: IEEE Network.
(2001) 24–32

2. Gupta, P., McKweon, N.: Packet classification using hierarchical intelligent cuttings.
In: IEEE Micro. (2000) 34–41

3. Goldberg, D.E.: Genetic algorthms in search, optimization, and machine learning.
In: Addison-Weseley, 20th printing. (1999)

Packet Classification with Evolvable Hardware Hash Functions 79

4. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. In: IEEE
Transactions on Systems, Man, and Cybernetics - Part C. (1999)

5. Knuth, D.E.: The art of computer programming, vol. 3 sorting and searching. In:
Addison-Weseley, 3rd edition. (1998)

6. Tufte, G., Haddow, P.C.: Prototyping a ga pipeline for complete hardware evolution.
In: Evolvable Hardware. (1999) 143–150

7. Damiani, E., Tettamanzi, A.G.B.: On-line evolution of fpga-based circuits: A case
study on hash functions. In: Evolvable Hardware. (1999) 33–36

8. Broder, A., Mitzenmacher, M.: Using multiple hash functions to improve ip lookups.
In: IEEE Infocom. (2001) 1454–1463

9. Kubisch, S., Hecht, R., Timmermann, D.: Design flow on a chip - an evolvable
hw/sw platform. In: 2nd IEEE ICAC. (2005) 393–394

Emergence of Two Power-Laws in Evolution of
Biochemical Network; Embedding Abundance

Distribution into Topology

Chikara Furusawa1,3 and Kunihiko Kaneko2,3

1 Department of Bioinformatics Engineering,
Graduate School of Information Science and Technology,

Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
furusawa@ist.osaka-u.ac.jp

2 Department of Pure and Applied Sciences,
Univ. of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan

kaneko@complex.c.u-tokyo.ac.jp
3 ERATO Complex Systems Biology Project, JST,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

Abstract. The evolutionary origin of universal statistics in biochemical
reaction networks is studied, to explain the power-law distribution of
reaction links and the power-law distributions of chemical abundances.
Using cell models with catalytic reaction networks, we confirmed that
the power-law distribution in abundances of chemicals emerges by the
selection of cells with higher growth speeds, as suggested in our previous
study. Through the further evolution, this inhomogeneity in chemical
abundances is shown to be embedded in the distribution of links, leading
to the power-law distribution. These findings provide novel insights into
the nature of network evolution in living cells.

1 Introduction

Recent advances in molecular biology have provided detailed knowledge about
individual cellular components and their functions. Despite its enormous success,
it is increasingly clear that the nature of intra-cellular dynamics maintaining the
living state is difficult to be understood only by building up such detailed knowl-
edge of molecules, since a complex network of reactions among these molecules,
such as proteins, DNA, RNA and small molecules, are essential for it. Here, one
possible strategy to extract the nature of intra-cellular dynamics is to search for
universal laws with regard to the networks of intra-cellular reactions common to
all living systems, and then to unravel the dynamics of evolution leading to such
universal features.

Indeed, recent large-scale studies revealed two universal features in cellular
dynamics. First, the power-law distribution of links in reaction networks was dis-
covered in metabolic and other biochemical reaction networks, as is termed as
a scale-free network, where the connectivity distribution P (k) obeys the law

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 80–92, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Emergence of Two Power-Laws in Evolution of Biochemical Network 81

k−γ with γ ≈ (2 ∼ 3)[2, 3, 4, 5, 6]. Second, the abundances of chemicals in
intra-cellular reaction were found to also exhibit the power-law distributions, as
confirmed at the levels of gene expression [1, 7, 8] and metabolic flux [9]. Here,
the chemical abundances plotted in the order of their magnitude are inversely
proportional to their rank.

However, despite the potential importance of these universal statistical laws,
it is still unclear how they developed through evolution, how they are mutually
related, and what their biological meaning is. As the efficiency of biochemical
reaction process to achieve cellular growth can depend on the statistical distri-
bution of chemical abundances and the network structure, it is then natural to
pursue the possibility that both the two statistical laws appear as a result of
evolution of cellular reaction dynamics. In the present paper, we demonstrate
that this possibility is indeed true, through extensive simulations of evolution of
cells with catalytic reaction networks to achieve higher cellular growth, and by
proposing a theory for the evolutionary link from the abundance distribution to
the network structure.

Employing a simple cell model with catalytic reaction dynamics consisting
of a huge number of chemicals, we first found that a power-law distribution in
abundances of chemical species emerges by selecting cells with higher growth
speeds. Then, this inhomogeneity in the chemical abundances is embedded into
the distribution of links in the reaction networks by further evolutionary process.
This embedding of abundances into the network is shown to be due to the fact
that the probability with which a new reaction path is connected to the chem-
icals is not uniform after selection, but it is higher for a path to be linked to a
chemical that has a larger abundance. This abundance-connectivity correlation
leads to a power-law distribution in reaction networks, as is consistent with the
previous reports in the metabolic networks. On one hand, these findings pro-
vide a novel insight into the evolution of intra-cellular reaction dynamics and
networks. On the other hand, generality of a proposed theoretical mechanism
for the evolutionary embedding of abundance distribution into network connec-
tivity distribution suggests its possible relevance to understand the structure of
biological networks in general.

2 Model

Consider a cell consisting of a variety of chemicals. The internal state of the cell
can be represented by a set of concentrations (x1, x2, · · · , xK), where xi is the
intra-cellular concentration of the chemical species i with i ranging from i = 1 to
K. Depending on whether there is an enzymatic reaction from i to j catalysed
by some other chemical �, the reaction path is connected as (i + � → j + �). The
rate of increase of xj (and decrease of xi) through this reaction is given by xix�,
where for simplicity all of the reaction coefficients were chosen to be equivalent
(= 1) [10].

Next, some nutrients were supplied from the environment by transporta-
tion through the cell membrane with the aid of some other chemicals, i.e.,

82 C. Furusawa and K. Kaneko

“transporters”. Here, we assumed that the transport activity of a chemical is
proportional to its concentration, and the rate of increase of xi by the transporta-
tion is given by Dxm(i)(Xi −xi), where m(i)-th chemical acts as the transporter
for the nutrient i and xm(i) is concentration of mi-th chemical. The parameter
D is a transport constant, and the constant Xi is the concentration of the i-th
chemical in the environment. In addition, we took into account the changes in
cell volume, which varies as a result of transportation of chemicals into the cell
from the environment. For simplicity, we assumed that the volume is propor-
tional to the sum of chemicals in the cell, which can increase by the intake of
nutrients. The concentrations of chemicals are diluted due to increases in volume
of the cell, Based on the above assumption, this dilution effect is equivalent to
imposing the which imposes the restriction

∑
i xi = 1. When the volume of a cell

is doubled due to nutrient intake, the cell is assumed to divide into two identical
daughter cells.

To summarize these processes, the dynamics of chemical concentrations in
each cell are represented as

dxi/dt = Ri − xi

∑
j

Rj (1)

with

Ri =
∑
j,�

Con(j, i, �) xj x� −
∑
j′,�′

Con(i, j′, �′) xi x �′

(+Dxm(i)(Xi − xi)), (2)

where Con(i, j, �) is 1 if there is a reaction i+� → j+�, and 0 otherwise, while the
last term in Ri is added only for the nutrients, and represents its transportation
into a cell from the environment. The last term in dxi/dt with the sum of Rj

gives the constraint of
∑

i xi = 1, due to the growth of the volume.
Of course, how these reactions progress depends on the intra-cellular reaction

network. Here, we study the evolution of the network in a GA-like rule, by gen-
erating slightly modified networks and selecting those that grow faster. First, n
mother cells are generated, where the connection paths of catalytic network were
chosen randomly such that the number of incoming, outgoing, and catalyzing
paths of each chemical is set to the initial path number kinit. From each of n
mother cells, m mutant cells were generated by random addition of one reaction
path to the reaction network of the parent cell. Then, reaction dynamics were
simulated for each of the n × m cells to determine the growth speed of each cell,
i.e., the inverse of the time required for division. Within the cell population,
n cells with faster growth speeds were selected as the mother cells of the next
generation, from which m mutant cells were again generated in the same manner.

3 Result: Power Laws in Abundances and Network
Structure Achieved Through Evolution

A number of network evolution simulations were performed using several differ-
ent initial networks, different parameters and various settings. We found that all

Emergence of Two Power-Laws in Evolution of Biochemical Network 83

10-5

10-4

10-3

10-2

10-1

100 101 102 103

co
nc

en
tr

at
io

n

concentration ranking

generation 1
generation 5

generation 10
generation 100

generation 1000

Fig. 1. Rank-ordered concentration distributions of chemical species. Distributions
with several different generations are superimposed using different colors. The solid
line indicates the power-law x ∝ n−1 for the reference. This power-law of chemical
abundance is established around the 10th generation, and is sustained for further evo-
lutions in the network. In the simulation, the growth speeds of 10×2000 networks were
measured, and the top 10 networks with regards to the growth speed were chosen for
the next generation. The parameters were set as K = 1000, D = 4.0, and kinit = 4.
Chemicals xm for m < 5 are considered as nutrient chemicals, and the concentration
of them in the environment are set as Xm = 0.2. For each nutrient chemical, one
transporter chemical is randomly chosen from all other chemicals.

of the simulations indicated common statistical properties with regard to both
reaction dynamics and topology of networks. Here, we present an example of
simulation results to show the common properties of our simulations.

The rank-ordered concentration distributions of chemical species in several
generations are plotted in Fig.1, in which the ordinate indicates the concentra-
tion of chemical species xi and the abscissa shows the rank determined by xi.
The slope of the rank-ordered concentration distribution increased with gener-
ation, and within a few generations converged to a power-law distribution with
an exponent -1, which was maintained over further generations. Or equivalently,
the distribution p(x) of the species with abundance x is proportional to x−2 [13].

Indeed, the emergence of such power-law by selecting cells with higher growth
speeds is a natural consequence of our previous study [1]. In our previous study,
we found that there is a critical amount of nutrient uptakes beyond which the cell
cannot grow continuously. When the nutrient uptake is larger than the critical
amount, the flow of nutrients from the environment is so fast that the internal
reactions transforming them into chemicals sustaining ‘metabolism’ and trans-
porters cannot keep up. At this critical amount of nutrient uptake, the growth
speed of a cell becomes maximal, and the power-law distribution of chemical
abundance appears in the intra-cellular dynamics. This power-law distribution

84 C. Furusawa and K. Kaneko

at the critical state is maintained by a hierarchical organization of catalytic
reactions, and based on this catalytic hierarchy, the observed exponent -1 can
be explained using a mean field approximation. Experimentally, the power-law
distributions of chemical abundances were confirmed in large-scale gene expres-
sion data of various organisms and tissues, including yeast, nematodes, human
normal and cancer tissues, and embryonic stem cells, which suggests that the
intra-cellular reaction dynamics in real cell systems universally lie close to the
critical state (see [1] for the details).

In the evolutionary dynamics of the present simulations, to increase the
growth speed of cells, change in the network which enhances the uptake of nu-
trients from the environment is favored. This nutrient uptake is facilitated by
increasing the concentrations of transporters, while if the uptake of nutrient is
too large, the cell can no longer grow continuously due to the excess of the criti-
cal amount of them, as mentioned above. Now, with the evolutionary process as

(a)

(b)

10-3

10-2

10-1

100

10 30

di
st

rib
ut

io
n

P(
k)

number of paths k

kin
kout
kcat

krand

10-3

10-2

10-6 10-5 10-4 10-3 10-2

pr
ob

ab
ilit

y
q(

x)

concentration of chemical x

incoming
outgoing

catalyzing

Fig. 2. Evolution of the network topology. (a), Connectivity distribution P (k) of
chemical species obtained from the network of the 1000th generation. The solid line in-
dicates the power-law P (k) ∝ k−3. For comparison, the distribution of krand, obtained
by a randomly generated reaction network with the same number of paths with the
network of 1000th generation, is shown. (b), Probability q(x) that a path to a chemi-
cal with abundance x is selected in evolution. The probabilities for incoming (qin(x)),
outgoing (qout(x)), and catalyzing paths (qcat(x)) are plotted. The data were obtained
by 1.5 × 105 trials of randomly adding a reaction path to the network of the 200th
generation, and the paths giving the top 0.05% growth speeds were selected.

Emergence of Two Power-Laws in Evolution of Biochemical Network 85

shown in Fig.1, the nutrient uptakes increase to accelerate the growth speed of
cells, until further mutations of the network may result to exceed the above crit-
ical value of the nutrient uptake. Here, successive increase in the growth speed
by the ‘mutation’ to the reaction network is possible only when the enhance-
ment of nutrient uptakes by it is in step with the increase in the other catalytic
activities. As a natural consequence, selected are such networks that the nutri-
ent uptake is kept near this critical point, where successive catalytic reaction
process maximizes the use of nutrients, and form a power-law distribution of
abundances.

Next, we investigated the topological properties of the reaction networks. The
connectivity distributions P (k) of chemical species obtained from the network of
the 1000th generation are plotted in Fig.2a, where kin, kout and kcat indicate the
numbers of incoming, outgoing and catalyzing paths of chemicals, respectively.
These distributions were fitted by power-laws with an exponent close to -3. Thus,
a scale-free network was approached through evolution, while this power-law
behavior was maintained for further evolutionary processes.

As shown in Fig.3, in this simple model, the evolved reaction network formed
a cascade structure in which each chemical species was mainly synthesized from
more abundant species. That is, almost no chemical species disrupted the flow

0

100

200

300

400

500

600

700

800

900

1000
0 100 200 300 400 500 600 700 800 900 1000

ra
nk

 o
f p

ro
du

ct
 c

on
ce

nt
ra

tio
n

rank of substrate concentration

(a) 0

100

200

300

400

500

600

700

800

900

1000
0 100 200 300 400 500 600 700 800 900 1000

ra
nk

 o
f p

ro
du

ct
 c

on
ce

nt
ra

tio
n

rank of substrate concentration

rank0-100
rank100-200
rank200-300
rank300-400
rank400-500
rank500-700

rank700-1000

(b)

Fig. 3. Changes in the network structure. The abscissa shows the rank determined by
the abundance of substrate i, and the ordinate shows the rank for the product j: the
top left is the most abundant and the bottom right is the least abundant. A point is
plotted when there is a reaction path i → j, while the abundance of catalyst for the
reactions is given by different colors determined by rank. As each product is dominantly
synthesized from one of the possible paths, we plotted only the path with the highest
flow, since the use of reaction paths from a chemical is quite uneven, and such a path
with the highest flow can characterize the flow through the chemicals. (a), The network
at the 10th generation, where the network structure is rather random, even though the
power-law in abundance has already been established. (b), The network at the 1000th
generation. Only a small number of paths are located in the upper-right triangular
portion of the figure, indicating that almost all chemical species were synthesized from
more abundant species.

86 C. Furusawa and K. Kaneko

of chemical reaction from the nutrients, as the network approached that with
optimal cell growth. It should also be noted that the reaction dynamics for each
chemical were also inhomogeneous in that synthesis of each chemical species
had a dominant reaction path. Such uneven use of local reaction paths was also
reported previously in real metabolic networks [9].

4 Mechanism: Embedding the Power Law in Abundances
into Network Structure

The reason why the scale-free-type connectivity distribution emerges in this evo-
lution is explained by selection of preferential attachment of paths to the chem-
icals with larger abundances. Note that the power-law distribution of chemical
abundance has already been established through evolution. Here, we found that
when a new reaction path is attached to an abundant chemical species, it gives a
larger influence on the whole cellular state, as is expected from reaction kinetics.
As a natural consequence, change in the growth speed after the mutation of the
network is also larger when a path is attached to an abundant chemical species, as
shown in Fig.4. Thus, when a certain number of cells with higher growth speeds
are selected from the mutant pool, the probability that those selected cells have
new links to such abundant chemicals is statistically higher than those expected
from random change without selection. Therefore, there is a positive correlation
between the abundance of chemical species and the probability that new links
are added to such species in evolutionary dynamics, that is, the preferential at-
tachment to such abundant chemicals appears. To represent this probability, we
use variable q(x) which indicates the probability that a new reaction path is at-
tached to a chemical with abundance x after selection. For example, assume that
change of the growth speed by the addition of a path outgoing from a chemical
increases linearly with its abundance x. This assumption is rather natural since
the degree of influence on the cellular state is generally proportional to the flux
of the reaction path added to the network, i.e., the product of substrate and
catalyst abundances. In this simple case, qout(x), which represents the probabil-
ity of attachment for outgoing path will increase linearly with x, even though
the network change is random. Here, the connectivity distribution P (kout) is
obtained by the transformation of variable as follows. Suppose that the proba-
bility of selection of a path attached to a chemical with abundance x is given
by q(x), then the path number k ∝ q(x). By the transformation k = q(x), the
distribution

P (k) =
dx

dk
p(x) =

p(q−1(k))
q′(q−1(k))

(3)

is obtained. By applying the abundance power-law p(x) ∝ x−2, we obtain P (k) =
k−(α+1)/α when q(x) = xα. Consequently, a scale-free network with exponent -2
should be evolved if qout(x) ∝ x.

Numerically, we found that the probabilities qout(x) and qcat(x) were fit-
ted by q(x) ∝ xα with α ≈ 1/2, as shown in Fig.2b. Then, using the above
transformation the connectivity distribution was obtained as P (k) = k−3. Here,

Emergence of Two Power-Laws in Evolution of Biochemical Network 87

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 12.38 12.4 12.42 12.44 12.46 12.48 12.5

fr
eq

ue
nc

y

growth rate

rank100
rank500
rank900

Fig. 4. Changes in growth speed with addition of a reaction path. Reaction paths
were added to the network of the 200th generation from the 100th, 500th and 900th
most abundant chemical species to investigate the changes in growth speed, while
product and catalyst of the path were chosen randomly. Here, the concentrations of
100th, 500th and 900th most abundant chemicals were 1.80 × 10−3, 2.03 × 10−4 and
2.98×10−5, respectively. The histograms show growth speeds obtained by 20000 trials.
In some trials, the growth speeds decreased markedly with the addition of a path, as
the amount of nutrient uptake exceeded the limit of cellular dynamics. For the paths
from the 100th, 500th and 900th most abundant chemical species, 39%, 23% and 4%
of such trials showed growth speeds of less than the given threshold (we choose 12.38),
respectively. Such data are not plotted in the figure. As shown in the figure, adding
a reaction path from a more abundant chemical was more effective in changing the
growth speed of the cell.

it is interesting to note that the connectivity distribution observed from real
metabolic and other biochemical networks follows the power-law P (k) ∝ k−γ

with γ between 2 and 3, as often seen in experimental data [2, 3].
The probability q(x) is determined through the evolutionary process. To clar-

ify the reason for q(x) ∼ xα with α < 1 in outgoing and catalyzing paths, we
investigated the relationship between substrate abundance x and catalyst abun-
dance y of a path to be selected. For this, we simulated changes in growth speeds
by random addition of a reaction path to the network of 200th generation. For
1.5 × 105 trials, paths giving 0.05% of the highest growth speeds were regarded
as being selected, and are plotted in Fig.5 as blue points on the x-y plane, while
others are plotted as red points. As shown in the figure, a path with small flux
is not selected since adding such path cannot change the cellular state enough,
while a path with large flux is not selected also, since such large change destroys
hierarchical structure of catalytic reactions, which results the decrease of nutri-
ent intakes or exceeding the critical point so that the “cell” can no longer grow.
Then, the fluxes of the selected paths satisfy Δ < xy < Δ + δ, with Δ and δ
being constants. We also found that the density of paths to be selected is almost
constant in the above region. Consequently, for each chemical x, the probability

88 C. Furusawa and K. Kaneko

Fig. 5. Relationship between substrate abundance x and catalyst abundance y for the
selected paths. A randomly chosen reaction path was added to the network of the 200th
generation, and the growth speed of a cell after adding the path was simulated. For
1.5×105 trials, paths giving 0.05% of the highest growth speedss were regarded as being
selected, and are plotted as blue points on the x-y plane, while others are plotted as
red points. As shown, the selected paths satisfy Δ < xy < Δ + δ, with Δ = 3.8 × 10−8

and δ = 4.0 × 10−6, respectively.

that such a path exists is given by the probability that there is such a partner
chemical with abundance y, which satisfies Δ/x < y < (Δ + δ)/x.

That is,

q(x) =
∫ (Δ+δ)/x

Δ/x

p(z)dz ≈ p(Δ/x)(δ/x) (4)

By using the equation (1), we obtain

P (k) =
−p(Δ/y)

(p(y) + ydp(y)/dy))y2 , (5)

with yp(y) = k. Indeed, if p(x) = x−2, the above expressions lead to q(x) ∝ x,
as well as P (k) = k−2. This expression holds when the evolved network is just
at the critical point. The evolved network is near this critical point but there is
a slight deviation, as can be seen in the deviation from the power-law in Fig.1,
for small abundance of chemicals. Note that the asymptotic behavior for large
k is given for small y. Then, the asymptotic behavior for large k is given by
P (k) ≈ 1/((p(y) + ydp(y)/dy)) depends on p(y) for small y. If the asymptotic
behavior of p(y) for small y is given by y−β with β < 2, then P (k) ≈ kβ/(1−β).
As β < 2, the exponent of the power is smaller than -2. For example, for β = 3/2
(which corresponds to the relationship between x and rank n as x ∼ n−2 for large
n, as seen in Fig.1), P (k) ≈ k−3 is obtained. In general, even if the behavior of

Emergence of Two Power-Laws in Evolution of Biochemical Network 89

p(y) for small y is not fitted by a power-law, its increase with y → 0 is slower
than y−2. Then the decrease of P (k) with k is faster than k−2, as often seen in
experimental data [2, 3].

On the other hand, the probabilities qin(x) to have incoming path after selec-
tion show no dependence on the chemical abundance x, and therefore the above
explanation is not directly applicable for the incoming paths. As for incoming
paths, we have found ‘hot’ chemical species which facilitate the synthesis of the
transporters for the nutrient uptakes, while others promote the formation of cas-
cade structure of reaction dynamics as shown in Fig.3. These hot species have
higher probability to acquire incoming path after selection. Such inhomogeneity
of the probability among chemicals results in the inhomogeneity of the number
of incoming paths as shown in Fig.2a. Still, further studies are necessary if such
inhomogeneity results in the same power law as qout(x) and qcat(x).

5 Universality

Through several simulations, we have found that the emergence of two statistical
features here is quite general and we expect that does not rely on the details
of our model. To be specific, we have first checked the results by changing the
initial conditions of the simulation, i.e., the initial concentrations of chemicals
and the reaction network in the first cell, and confirmed that the results are in-
dependent of the initial conditions. Next, we have studied a model by changing
parameters. Still, by restricting parameter values at which a cell reproduces ef-
ficiently, Zipf’s law for abundances is generally observed. Furthermore, we have
found the Zipf’s law for the following class of models, for a cell that reproduces
efficiently:

1. universality against network structure: we have studied the models with ho-
mogeneous as well as highly inhomogeneous path distribution. The distribu-
tion includes Gaussian and the power laws (i.e., the scale-free network).

2. universality against parameter distribution: instead of homogeneous param-
eter values for for reaction and diffusion coefficients, studied is the case with
distributed parameters depending on each chemical species. The distribution
includes Gaussian and log-normal.

3. universality against reaction kinetics: studied is the case with higher order
catalytic reaction (for example to include the reaction kinetics xjx

2
� instead

of xjx� in eq.(2) for all chemicals)
4. universality against the form of transport of nutrient chemicals: studied is

the cases with active transport mediated by some chemical, as well as passive
diffusion term for the transport of nutrient.

5. universality against the condition for the cell division: Instead of setting a
threshold for cell division by the sum of all chemicals, the condition is set for
the amount of a specific chemical accumulated.

For all the cases, the power law distribution is obtained when the cell volume
increase is optimal. Hence we believe that the result is general when a reaction
network system that synthesizes chemicals in a cell shows recursive growth.

90 C. Furusawa and K. Kaneko

Now it is expected that the Zipf’s law generally emerges through evolution,
for a ”cell” system consisting of the following processes:

(i) intra-cellular reaction dynamics within cells
(ii) intake of nutrients (that may depend on the internal chemical concentra-

tion)
(iii) synthesis of chemicals through the above process lead to the cell growth so

that the cell is divided when a certain condition is satisfied
(iv) evolutionary process together with this cell division, i.e., random mutations

to reaction networks and selection of cells with higher growth speed,

since the higher growth in cell is selected through (iv) and the Zipf’s law in
abundances is generally reached for a cell with optimal growth. Furthermore, as
the embedding mechanism is also general, the evolution to power law in network
paths is also expected to be rather universal.

Indeed, we have performed simulations with several different evolutionary
criteria, and the results are essentially same, as long as the degree of mutation
is not large. For example, when we assume that the probability to be selected as
parent cells of the next generation is proportional to cellular growth speed, the
evolutionary dynamics is qualitatively same as those presented here. As another
example, we have performed simulations in which a fixed (large) number of cells
is put in a given environment and when a cell divides into two cells, a randomly
chosen cell is removed to keep a total cell number constant, instead of introducing
discrete generations as in Genetic algorithm rule adopted in the present paper.
In such rules of simulation also, cells having higher growth speeds are selected,
and the power-law distribution of chemical abundances emerges as a result of
evolutionary dynamics[14].

6 Summary and Discussion

In the present paper, we have shown that the power law in abundances of chemi-
cals and network paths naturally emerges through evolution, by taking a class of
cell models consisting of catalytic reaction networks. It is shown that the power
law in abundances is later embedded into that of network path distribution,
while the relation between the two powers is analyzed.

With regard to evolution of reaction networks, preferential attachment to a
more connected node has often been discussed [2, 15]. In the previous models,
preference of path attachment is simply defined as a function of number of ex-
isting paths, and the origin of such preference in evolutionary dynamics remains
obscure. On the other hand, our study is different from them in two important
respects. First, the dynamics of chemical abundance in the networks were in-
troduced explicitly (described as node ‘strength’ in [16]), while previous models
generally considered only the topological structure of the network. Second, se-
lection only by cellular growth speed results in such a preference, even though
attachment itself is random. Here, we found that more abundant chemical species
acquired more reaction links as attachments of new links to such chemicals have

Emergence of Two Power-Laws in Evolution of Biochemical Network 91

both a greater influence on the cellular state and a higher probability of being
selected. With these mechanisms, the power-law in abundance is naturally em-
bedded in the intracellular reaction network structure through evolution, which
is simply a process of selecting cells with faster growth speeds.

As discussed, the emergence of the power-law distribution of chemical abun-
dance is expected to be a universal feature of growing cells, since this feature
seems to necessarily appear in any systems having both intra-cellular reaction
dynamics and intake of nutrients from an environment, when the cellular growth
speed is maximized. Similarly, our simulations support that the evolutionary
dynamics toward the power-law distribution of reaction path numbers emerges
when cells having higher growth speeds are selected and mutations are randomly
added to reaction networks. An important point here is that the emergence of
universal features is independent of details of the system, as long as the condi-
tions required for such features are satisfied. The power-laws of both abundance
and connectivity, which are often observed in intracellular reactions, can be sim-
ply consequences of our mechanism by Darwinian selection.

Acknowledgements. We would like to thank T. Yomo and K. Sato for stimu-
lating discussions. The work is partially supported by Grant-in-Aids for Scientific
Research from the Ministry of Education, Science and Culture of Japan.

References

1. Furusawa, C., and Kaneko, K. Zipf’s Law in Gene Expression. (2003) Phys. Rev.
Lett. 90 (2003) 088102

2. Jeong, H. et al. , Tombor, B., Albert, R., Oltvai, Z. N., and Barabási, A.-L., The
large-scale organization of metabolic networks. (2000) Nature 407 (2000), 651

3. Jeong, H., et al. Mason, S. P., and Barabási, A.-L., Lethality and centrality in
protein networks. (2001) Nature 411 (2001), 41

4. Li, S. et al. A map of the interactome network of the metazoan C. elegans. (2004)
Science 303 (2004), 540

5. Featherstone, D. E. et al. , Broadie, K. Wrestling with pleiotropy: genomic and
topological analysis of the yeast gene expression network. (2002) Bioessays 24
(2002) 267

6. Guelzim, N. et al. , Bottani, S., Bourgine, P. and Kepes, F. Topological and causal
structure of the yeast transcriptional regulatory network. (2002) Nature Genet. 31
(2002), 60

7. Ueda, H. R. et al. Universality and flexibility in gene expression from bacteria to
human. (2004) Proc. Natl Acad. Sci. USA 101 (2003), 3765

8. Kuznetsov, V. A. et al. Genetics 161 (2002) 1321
9. Almaas, E. et al. Nature 427 (2004) 839

10. We confirmed that our results are qualitatively same when we use distributed
reaction coefficients for the simulations.

11. Kaneko, K., and Yomo, T. Jour. Theor. Biol. 199 (1999) 243
12. Furusawa, C., and Kaneko, K. Phys. Rev. Lett. 84 (2000), 6130

92 C. Furusawa and K. Kaneko

13. The rank distribution, i.e., the abundances x plotted by rank n can be transformed
to the density distribution p(x), the probability that the abundance is between x
and x + dx. Since dx = dx/dn × dn, there are |dx/dn|−1 chemical species between
x and x + dx. Thus, if the abundance-rank relation is given by a power-law with
exponent -1, p(x) = |dx/dn|−1 ∝ n2 ∝ x−2.

14. As for the number distribution of reaction links, the simulation has not yet reached
the stage to show the scale-free statistics in a network clearly, (since the simulation
requires much longer time than the present method), but still we found that the
number distribution of such network show heterogeneity in number of reaction
links, with significant deviation from those of random networks.

15. Barabási, A.-L., and Albert, R. Science 286 (1999) 509
16. Barrat, A., Barthélemy, M., and Vespignani, A. Phys. Rev. Lett. 92 (2004), 228701

Microbial Interaction in a Symbiotic Bioprocess
of Lactic Acid Bacterium and Diary Yeast

Hiroshi Shimizu1, Sunao Egawa2, Agustin K. Wardani2,
Keisuke Nagahisa1, and Suteaki Shioya2

1 Dept. of Bioinformatic Engineering,
Graduate School of Information Science and Technology,

Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
{shimizu, nagahisa}@ist.osaka-u.ac.jp

http://www-shimizu.ist.osaka-u.ac.jp/mej.html
2 Dept. of Biotechnology, Graduate School of Engineering,

Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
{agustin, shioya}@bio.eng.osaka-u.ac.jp

Abstract. In symbiotic processes, different organisms coexist stably
and interact by sharing with same metabolites and environmental condi-
tions. A symbiotic process of a lactic acid bacterium, Lactococcus lactis
sub species lactis (ATCC11454) and diary yeast Kluyveromyces marx-
ianus is studied in this paper. A mathematical model of the symbiotic
process composed of two microorganisms is developed by integrating two
pure cultivation models. A cascade pH controller coupled with the dis-
solved oxygen (DO) control is newly developed and lactate consumption
activity of K. marxianus is controlled by changing the DO concentra-
tion. The pH and lactate are kept stably at constant levels and both
microorganisms grow well. Stability of this symbiotic process with dis-
turbance of inoculums sizes of both microorganisms is investigated. The
dynamic behavior of fusion process of independent two bionetworks is
also discussed.

1 Symbiotic Process and Microbial Interaction

Microbial ecosystem, which consists of abundant genus of microbial populations,
takes an important role for maintaining a microcosm as well as carbon and nitro-
gen circulation in global environment. From ancient age, people utilize complex
microbial functions to produce many substances, such as foods, brewing drinks,
pharmaceuticals and so on. Most fermented foods are produced by mixed cul-
tures acting on various substrates. Cheese, yogurt, pickles, whiskey and Japanese
rice wine sake are some examples of fermented foods. Numerous interactions,
such as competition, predation, commensalism, mutualism, happen between mi-
crobial communities. Especially, combination of lactic acid bacteria (LAB) and
diary yeasts (DY) is the most popular for making diary and brewing products
in the world. And their interaction, which is usually mutualism, affects taste

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 93–106, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

94 H. Shimizu et al.

and flavors of the product, stability and productivity in their processes. One of
typical examples of microbial interaction of LAB and DY is studied in this paper.

Living organisms are complex systems with multidimensional hierarchical net-
works, composed of gene, protein, and metabolic networks, respectively. Living
cells have ability to flexibly change the topology of complex bionetworks in or-
der to survive under many unexpected environmental conditions. In symbiotic
systems, bionetworks composed of two different microorganisms fuse together
by sharing with same nutrients in the environments. In the case that nutrients
are competitively taken by two organisms, competition phenomenon happens
among two microorganisms. When metabolic wastes from one microorganism
become nutrients for the other microorganism, commensalism phenomenon hap-
pens. When the metabolic wastes show inhibitory effect for the producing mi-
croorganisms, the cleaning up of the wastes by the different microorganism makes
favorable condition and mutualism phenomenon happens [1]. In this paper, we
study behavior of a symbiotic process with a lactic acid bacterium, Lactococcus
lactis, and diary yeast, Kluyveromyces marxianus.

Certain strains of L. lactis produces a food preservative nisin[2]. In the LAB
fermentation process, the growth inhibition happens due to the accumulation of
lactate and the decrease in pH [3]. In this study, a new pH control strategy with
microbial interaction was developed. The concept of this strategy is shown in
Fig.1. The L. lactis assimilates maltose as a carbon source and produces lactate.
K. marxianus, which was isolated from kefir grains, does not have ability to
assimilate maltose, while it has ability to assimilate lactate. Since the consump-
tion rate of lactate is affected by dissolved oxygen (DO) concentration, lactate
concentration and pH are controlled by manipulation of DO concentration. One
measure of symbiotic process is how good growth of both microorganisms is.
Since nisin is produced as growth associated, nisin production is a good indica-
tor of how good symbiotic process is working.

The activity of the microorganisms can be represented as specific reaction
rates, that is, reaction rates per unit cell concentration. Specific reaction rates
of both microorganisms, including specific growth rate and the specific produc-
tion rate of lactate by L. lactis, and the specific consumption rate of lactate
by K. marxianus are examined in pure cultures. Based on the information of

L. lactis

K. marxianus

Maltose

Lactate

Pyr

Acetoin
CO2

Formate

EtOH

Acetate

AceCo

A

TCA

CO2

O2

Nisin

Growth Inhibition

Fig. 1. Microbial interaction and removal of lactate

Microbial Interaction in a Symbiotic Bioprocess of LAB and DY 95

specific reaction rates of both microorganisms, a symbiotic process with micro-
bial interaction of both microorganisms is developed. Nisin production is used
as an indicator of the bioprocess and it is compared with that of pure cultivation
process of L. lactis.

2 Materials and Methods

2.1 Microrganisms and Methods

L. lactis subsp. lactis ATCC 11454 was used as a nisin producing lactic acid
bacterium. K. marxianus MS1 was isolated from kefir grains by ourselves. Con-
centrations of maltose, yeast extract, and peptone in main culture were 40, 10,
and 10 g/L respectively, and for fermentation with high cell concentration they
are set 60, 40, and 40 g/L, respectively.

2.2 Analysis

Cell concentrations of the pure cultivation processes were measured as dry cell
mass and optical density (OD). The viable cell concentrations of L. lactis
and K. marxianus in the symbiotic process were determined as colony form-
ing units (CFU) on selection media. Concentrations of L-lactate, acetate, and
formate in the medium were analyzed enzymatically. Ethanol concentration was
measured by gas chromatography. Glucose concentration was measured using a
glucose analyzer (Model 2700, YSI Inc., OH). Maltose concentration was mea-
sured after hydrolysis to glucose. Nisin concentration was measured by a bioassay
method based on the method of Matsuzaki et al. [4].

2.3 Cultivation Method

Before main cultivation was performed, culture size was scaled up by two steps
in order to increase the amount of cells with high growth activity. Main cultures
were performed in a 5 L jar fermentor (EPC Control Box, Eyla, Japan) equipped
with temperature, pH, dissolved oxygen (DO) concentration and gas flow control
systems, respectively. The working volume was 2 L. Air or nitrogen was supplied
to the fermentor for aerobic or anaerobic cultivation conditions, respectively. In
this study, the cascade control strategy was applied in order to control pH level
via DO control by manipulating the agitation speed. Other detailed methods
were described previously [5].

3 Pure Cultivation Porcess of L. lactis

The time course of pure cultivation process of L. lactis under anaerobic con-
ditions without pH control is as shown in Fig. 2. The pH decreased below 5.0
within 3 h due to increase in the produced lactate. The cell growth was com-
pletely terminated after 6 h and the concentration of nisin was 7.4 mg/L. The
specific growth rate (μL) of L. lactis and specific production rate of nisin (ρN)
without pH control were 0.30 h−1 and 4.0 mg-nisin/g-cell/h, respectively.

96 H. Shimizu et al.

0 2 4 6 8

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Dry cell

Maltose

M
a
l
t
o

s
e

(
g

/
L

)

D
r
y

c
e
l
l

(
g

/
L

)

TIME (h)

0 2 4 6 8

0

1

2

L-lactate

Acetate

Formate

Ethanol

L
-
l
a
c
t
a
t
e

(
g

/
L

)

A
c
e
t
a
t
e

(
g

/
L

)

F
o

r
m

a
t
e

(
g

/
L

)

E
t
h

a
n

o
l

(
g

/
L

)0 2 4 6 8

0

10

20

Nisin

N
i
s
i
n

(
m

g
/
L

) 0 2 4 6 8

0

2

4

6

pH

DO

p
H

,

D

O
(
p

p
m

)

Fig. 2. Nisin production without pH control

0 2 4 6 8
0

0.2

0.4

0.6

0.8

DO (ppm)

�
L

(
g

-
l
a
c
t
a
t
e
/
g

-
c
e
l
l
/
h

)

Fig. 3. Effect of DO concentration on the specific rate of consumption of lactate by
K. marxianus

4 Pure Cultivation Process of K. marxianus

The specific lactate consumption rate of K. marxianus was determined under
aerobic conditions. The effect of dissolved oxygen (DO) concentration on lactate
consumption rate by K. marxianus is shown in Fig. 3. The maximum specific

Microbial Interaction in a Symbiotic Bioprocess of LAB and DY 97

rate of lactate consumption of K. marxianus (νL), was about 0.7 g/g-cell/h,
which was greater than the maximum specific rate of lactate production of L.
lactis under aerobic conditions. Thus, it was expected that lactate produced by
L. lactis would be completely consumed by K. marxianus. The νL decreased lin-
early as DO concentration decreased in the range below 2 mg/L as shown in Fig.
3. When the lactate concentration was expected to be decreased, the DO concen-
tration level should be increased and the specific rate of lactate consumption of
K. marxianus is enhanced. On the other hand, lactate concentration was ex-
pected to be increased; the DO level should be decreased and the specific rate
of lactate consumption of K. marxianus is attenuated.

5 Development of Symbiotic Bioprocess of L. lactis
and K. marxianus

As shown in Fig.1, a symbiotic bioprocess of L. lactis and K. marxianus was
developed. In order to keep lactate and pH at constant, a novel cascade con-
trol system was designed, taking into account of microbial interaction. Figure 4
shows a flow diagram of the automatic cascade controller of coupling of pH with
DO control in the symbiotic process. The PI and PID control strategies were
employed for the automatic control of DO and pH controllers.

pH

controller

DO

controller

Dynamic

system

of DO

Dynamic

system

of pH

DO sensor

pH sensor

�

�

�

�

RpH RDO AGT DO pH

(PI control)
(PID

control)

pH

controller

DO

controller

Dynamic

system

of DO

Dynamic

system

of pH

DO sensor

pH sensor

�

�

�

�

RpH RDO AGT DO pH

(PI control)
(PID

control)

Fig. 4. A cascade pH controller incorporated with DO control

6 Development of Mathematical Model of Symbiotic
Process of L. lactis and K. marxianus

A mathematical model of a symbiotic process was developed to optimize a pH
cascade controller in the symbiotic process consisting L. lactis and K. marxianus.
The symbiotic process model was developed by integrating individual models of
L. lactis and K. marxianus in pure cultivation processes.

98 H. Shimizu et al.

6.1 Mathematical Model of L. lactis

The Lactic acid bacterium L. lactis produce many metabolites hetero-fermenta
tively such as lactate, acetate, acetoin, formate, nisin and so on. The concen-
trations of cell of L.lactis (XL), maltose (SM), lactate (L), acetate (A), acetoin
(AT), formate (F), and nisin (N) are represented, respectively, as follows

Cell growth
dXL

dt
= μXL (1)

Maltose consumption

dSM

dt
= νMXL (2)

Lactate production

dL

dt
= ρLXL (3)

Acetate production

dA

dt
= ρAXL (4)

Acetoin production

dAT

dt
= ρAT XL (5)

Formate production
dF

dt
= ρF XL (6)

Nisin production

dN

dt
= ρNXL (7)

where μL, νM , ρL, ρA, ρAT , ρF , ρN are specific rates of growth, consumption
of maltose, production of lactate, production of acetate, production of acetoin,
production of formate, production of nisin, respectively. Effects of environmental
conditions on specific rates are involved into the model mathematically [6].

Computer simulation was performed for the pure cultivation process of
L. lactis, using the mathematical model. A satisfactory approximation to the
experimental data was given by the mathematical model as shown in Fig. 5.
Additionally, oxygen consumption was observed under aerobic condition. Oxy-
gen consumption rate (qO2XL) of L. lactis is calculated based on NADH/NAD+

balance from the stoichiometric equations in the metabolic pathway as:

qO2XL =
4νM

MWM
+ ρA

MWA
+ ρF

MWF

2
(8)

where MWM , MWA, MWF are molecular weights of maltose, acetate and for-
mate, respectively.

Microbial Interaction in a Symbiotic Bioprocess of LAB and DY 99

0 5 10 15

0

20

40

60

0

2

4

6

Dry cell

Maltose

TIME (h)

M
a
l
t
o

s
e
(
g

/
L

)

D
r
y

c
e
l
l
(
g

/
L

)

0

10

20

30

L-lactate

Acetate

Acetoin

L
-
l
a
c
t
e
t
e

(
g

/
L

)

A
c
e
t
a
t
e

(
g

/
L

)

A
c
e
t
o

i
n

(
g

/
L

)

0

50

100

150

Nisin

N
i
s
i
n

(
m

g
/
L

)

Fig. 5. Simulation and experimental result of pure cultivation process of L. lactis

6.2 Mathematical Model of K. marxianus

The cell growth and lactate consumption of K. marxianus are represented in
Eqs. (9) and (10), respectively. Concentrations of cell of K. marxianus(XK) and
lactate (L) are represented as follows:

Cell growth

dXK

dt
= μKXK (9)

Lactate

dL

dt
= −νLXK (10)

where μK and νL are specific rate of cell growth and lactate consumption of
K.marxinaus, respectively. Effects of DO concentration on specific consumption
rate of lactate is shown as in Fig. 3. Computer simulation for the pure cultivation
process of K. marxianus was performed. It was found that the model gave a
satisfactory approximation to the experimental data as shown in Fig. 6.

6.3 Mathematical Model of Symbiotic Process of L.lactis and
K. marxianus

In the symbiotic process, both models of pure cultivation processes of L. lactis
and K. marxianus were integrated into one model. Mass balance of lactate is
represented as

100 H. Shimizu et al.

0 2 4 6 8

0

10

20

0

5

10

L
-
1

a
c
t
a
t
e
l

(
g

/
L

)

D
r
y

c
e
l
l

(
g

/
L

)

TIME (h)

Fig. 6. Simulation and experimental result of pure cultivation process of K. marxianus

dL

dt
= ρLXL − νLXK (11)

Since the dissolved oxygen (DO) concentration affected the specific consumption
rate of K. marxianus as shown in Fig.3, balance of the DO concentration in the
symbiotic process was involved in the model as:

dC

dt
= kLa(C∗ − C) − MO2(qO2XL + qO2XK) (12)

where kLa, C, C∗, are the mass transfer coefficient of oxygen, dissolved oxygen
concentration and its saturated value, respectively. MO2, qO2XL, qO2XK are the
molecular weight of oxygen (defined as 32000 mg-O2/mol), oxygen consumption
of L. lactis and oxygen consumption of K. marxianus, respectively. The DO
concentration was monitored by a DO sensor with delay shown as:

dCMES

dt
= klate(C − CMES) (13)

where CMES is the measured value of oxygen and klate is a time constant,
determined experimentally as 1/8 (1/sec). The dynamics of the pH change in
the medium with time is described as shown in Eq. (14) as :

dpH

dt
=

−(ρLXL−νLXL

MWL(1+10−pH+pKL) + ρAXL

MWL(1+10−pH+pKA) + ρF XL

MWF (1+10−pH+pKF))

K + ln10(10−pH + 10pH−14 + termL + termA + termF)
(14)

where termL, termA, and termF are represented, respectively as

termL =
L

MWL

10−pH+pKL

(1 + 10−pH+pKL)2
(15)

termA =
A

MWA

10−pH+pKA

(1 + 10−pH+pKA)2
(16)

Microbial Interaction in a Symbiotic Bioprocess of LAB and DY 101

termF =
F

MWF

10−pH+pKF

(1 + 10−pH+pKF)2
(17)

MWL, pKL, pKA, pKF , and K are the molecular weight of lactate, dissocia-
tion constants for lactic acid, acetate and formate, and a consatnt parameter,
respectively.

7 Optimization of Symbiotic Control Process of L. lactis
and K. marxianus by Simulation Study

To keep the lactate in low level by microbial interaction of L. lactis and
K. marxianus, the cascade pH control system as shown in Fig. 4 was devel-
oped. Because the pH in the medium was controlled by the lactate consumption
of K. marxianus and the specific lactate consumption rate was controlled by
manipulating the DO concentration, a cascade controller coupled with the DO
control was developed. The consumption rate of lactate by K. marxianus was
decreased linearly as the DO concentration decreased in the range below 2 ppm

0 10 20

0

1

2

3

4

0

100

200

300

400

500

TIME (h)

D
O

(
p
p
m
)

A
G

T

(
r
p
m
)

DO

AGT

4

5

6

7

0

0.2

0.4

0.6

0.8

p
H

�
L

(
1

/
h
)

pH

�
L

K
P
=0.1ppm �

I
=1min �

D
=150min

0 10 20

0

1

2

3

4

0

100

200

300

400

500

TIME (h)

D
O

(
p
p
m
)

A
G

T

(
r
p
m
)

DO

AGT

4

5

6

7

0

0.2

0.4

0.6

0.8

p
H

�
L

(
1

/
h
)

pH

�
L

K
P
=1ppm �

I
=5min �

D
=15min

0 10 20

0

1

2

3

4

0

100

200

300

400

500

TIME (h)

D
O

(
p
p
m
)

A
G

T

(
r
p
m
)

DO

AGT

4

5

6

7

0

0.2

0.4

0.6

0.8

p
H

�
L

(
1

/
h
)

pH

�
L

K
P
=1ppm �

I
=10min �

D
=15min(a) (c)

(b)

Fig. 7. Simulation results of the pH cascade control. (a) Kp=0.1 ppm, Ti=1
min,Td=150 min; (b) Kp=1 ppm, Ti=5 min, Td=15 min; (c) Kp=1 ppm, Ti=10
min, Td=15 min.

102 H. Shimizu et al.

0 10 20

10
8

10
9

10
10

10
11

10
7

10
8

10
9

10
10

L.lactis

K.marxianus

TIME (h)

C
F

U

o

f

L
.
l
a
c
t
i
s

(
c
e
l
l
/
m

l
)

C
F

U

o

f

K
.
m

a
r
x
i
a
n

u
s

(
c
e
l
l
/
m

l
)

0

20

40

60

0

2

4

6

L
-
l
a
c
t
a
t
e

(
g

/
L

)

A
c
e
t
a
t
e

(
g

/
L

)

A
c
e
t
o

i
n

(
g

/
L

)

L-lactate

Acetate

Acetoin

Maltose

M
a
l
t
o

s
e

(
g

/
L

)

0

100

200

Nisin

N
i
s
i
n

(
m

g
/
L

)

0

2

4

6

pH

DO

p
H

,

D

O

(
p

p
m

)

Fig. 8. Experimental result of pH control with microbial interaction

as shown in Fig.3. When the lactate concentration was expected to be decreased,
the DO level should be increased, and the specific consumption rate of lactate
by K. marxianus is enhanced.

Simulation was performed for tuning the control parameters. Parameters of
the PID controller to give the set point of DO are tuned optimally, because
the control performance of the PID controller was significant for entire control
performance. The application of the mathematical model to optimize the perfor-
mance of this control system, are shown in Figs. 7 (a), (b), and (c), respectively.
A pH set point was set 6.0 in this case. The best performance of this control
system to stabilize the pH was found when the parameters of the controller was
set at Kp = 1 ppm, Ti = 10 min and Td = 15 min. In this condition, the PID
control system was tuned so that the fluctuation was less than 0.5 units in the
simulation. It was confirmed that The pH value was controlled at 6.0 during
the fermentation as shown in Fig. 8. The nisin concentration finally reached at
200 mg/L, indicating the symbiotic process well worked.

8 Robustness and Stability of the Symbiotic Control
Process

8.1 Experimental Evidence of the Stability of the Control Process

When inoculum size of L. lactis is greater than the expected value, or inocu-
lum size of K. marxianus is less than the expected value, lactate is not com-
pletely assimilated by K. marxianus and pH decreases. In such a case, growth of

Microbial Interaction in a Symbiotic Bioprocess of LAB and DY 103

0 10 20

10
8

10
9

10
10

10
11

10
7

10
8

10
9

10
10

TIME (h)

C
F

U

o

f

L
.
l
a
c
t
i
s

(
c
e
l
l
/
m

l
)

C
F

U

o

f

K
.
m

a
r
x
i
a
n

u
s

(
c
e
l
l
/
m

l
)

L.lactis

K.marxianus

0

20

40

60

0

2

4

6
L-lactate

Acetate

Acetoin

Maltose

M
a
l
t
o

s
e

(
g

/
L

)

L
-
l
a
c
t
a
t
e

(
g

/
L

)

A
c
e
t
a
t
e

(
g

/
L

)

A
c
e
t
o

i
n

(
g

/
L

)

0

100

200

N
i
s
i
n

(
m

g
/
L

)

Nisin

0

2

4

6

p
H

,

D

O
(
p

p
m

)

pH

DO

Fig. 9. Stability test for uncertainty of inoculum size

L. lactis is expected to be inhibited. Figure 9 shows the result of the stability test
for uncertainty of inoculum sizes of both microorganisms. In this case, imbalance
of cell of K. marxianus was inoculated, which is 1/10 less than that of optimal
inoculum size. Due to imbalance of the cell concentrations of both microorgan-
isms, lactate was accumulated and pH was decreased to 4.9. As a result, growth
of L. lactis was stopped at 4.5 h. However, lactate was assimilated gradually by
K. marxianus and both microorganisms well grew after 8h. Nisin concentration
reached to 190 mg/L in this case. It was experimentally proved that this control
system was robust for such uncertainty of inoculum size of microorganisms.

8.2 Symbiotic Network Analysis

It is found that a symbiotic process of a lactic acid bacterium L.lactis and di-
ary yeast, K. marxianus shows stable behavior. The environmental conditions
such as pH and DO concentration are kept constant levels. Even though the
initial cell concentrations of the both cells are imbalanced, the process goes to
the stable states. Interaction of both microorganisms in the symbiotic process by
sharing the common metabolites and environmental condition are illustrated in
Fig.10 (a). Arrows indicate enhancement of microorganisms’ activities or in-
crease in the metabolites concentrations in the environment, while stop bars
indicate inhibition of microorganisms’ activities or decrease in metabolites con-
centrations in the environmental condition. Solid and dotted lines indicate active
and inactive interactions and nodes, respectively.

104 H. Shimizu et al.

Maltose

LAB

Lactate

-pH DY

DO

RDO

Agitation

Maltose

LAB

Lactate

-pH DY

DO

RDO

Agitation

Maltose

LAB

Lactate

-pH DY

DO

RDO

Agitation

(a)

(c)

(b)

Fig. 10. Illustration of symbiotic network: behavior of symbiotic network in the cases
that both microorganisms grow well (a), the K. marxianus concentration is much lower
than that of L. lactis (b), and L. lactis concentration is much lower than that of K.
marxianus (c), respectively. The both cases of (b) and (c) autonomously recovers to
the orignial status of (a). Arrows indicate enhancement of microorganisms’ activities or
increase in the metabolites concentrations in the environment, while stop bars indicate
inhibition of microorganisms’ activities or decrease in metabolites concentrations in
environmental condition. Solid and dotted lines indicate active and inactive interactions
(and nodes), respectively. LAB: L.lactis, DY: K. marxianus.

When K. marxianus concentration is much lower than that of L. lactis, the
action from K. marxianus is negligible compared with activity of L. lactis. The
active network in this situation is illustrated in Fig.10 (b). In this case, lac-
tate is accumulated and pH is decreased, which causes the stop of cell growth of
L. lactis and dynamic behavior of entire network are slow down for a while. After
K. marxianus grows as much as L. lactis and lactate concentration is decreased
gradually, the original activity of network as shown in Fig. 10 (a) recovers au-
tonomously. In the pure cultivation process of L. lactis, this autonomous recover
is not possible as shown in Fig.2.

Microbial Interaction in a Symbiotic Bioprocess of LAB and DY 105

On the other hand, when L. lactis concentration is much lower than that
of K. marxianus, lactate concentration goes down for sufficient growth of it
K. marxianus. In this case, K. marxianus growth is also inactivated due to de-
pletion of lactate, and dynamic behavior of entire network is slow down for a
while as shown in shown Fig.10 (c). After L. lactis grows as much as K. marx-
ianus, and lactate concentration is gradually increased, the original activity of
network as shown in Fig. 10 (a) recovers autonomously in this case as well.

In the symbiotic processes, more than one microorganism highly interact each
other as shown in the case of this study. In the case that the activity of one mi-
croorganism slows down, this issue affects on the activity of other microorganisms
and activity of the entire bionetwork slows down. As a result, the entire system
waits for the recovery of the activity of the microorganisms, and avoid the stu-
ation that the only one microorganism becomes a winner. When the activity of
the microorganism recovers, the entire bionetwork also recovers autonomously.
This concept would be useful for creation of a autonomous recovery system in
information technology.

9 Conclusions

The symbiotic process of L. lactis and K. marxianus stably worked well. The pH
was well controlled by the cascade controller with the microbial interaction. This
controller was robust for uncertainty of inoculum sizes of microorganisms. The
indicator of the symbiotic process, nisin concentration reached 200mg/L and this
value was 20 times greater than that in pure cultivation process without control
of pH. The dynamic behavior and autonomous recovering process are discussed
when the cell amounts of the both microorganism are imbalanced.

Acknowledgements

This research was supported in part by The 21st Century Center of Excellence
(COE) Program of the Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

References

1. Shioya, S.: Mixed culture: In Encyclopedia of Bioprocess Technology (Eds. Flickinger
M. and Drew S.) John Wiley and Sons, Inc. (1999) 1798-1810.

2. Broughton, J.B.: Nisin and its uses as a food preservative. Food Technol. 44, (1990)
100-117.

3. Taniguchi, M., K. Hoshino, H. Urasaki, and M. Fujii.: (1994) Continuous production
of an antibiotic polypeptide (nisin) by Lactococcus lactis using a bioreactor coupled
to a microfilteration module. J. Ferment. Bioeng. 77, (1994) 704-708.

4. Matsusaki, H., N. Endo, K. Sonomoto, and A. Ishizaki: Lantibiotic nisin Z fermen-
tative production by Lactococcus lactis IO-1: relationship between production of
the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol. 45, (1996)
36-45.

106 H. Shimizu et al.

5. Shimizu, H., Mizuguchi, T., Tanaka, E., and S. Shioya: Nisin production by a mixed
culture system consisting of Lactococcus lactis and Kluyveromyces marxianus. Appl.
Environ. Microbiol. 65, (1999) 3134-3141.

6. Wardani, A.K., Egawa, S., Nagahisa, K., Shimizu, H., and Shioya, S.: Inhibitory
effect of by-products on cell growth and nisin production in Lactococcus lactis, Bio-
chemical Engineering Journal, submitted (2005).

Responses of Fluctuating Biological Systems

Tetsuya Yomo1,2,3,5, Katsuhiko Sato4,5, Yoichiro Ito1,5,
and Kunihiko Kaneko3,4,5

1 Department of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

yomo@ist.osaka-u.ac.jp
http://www-symbio.ist.osaka-u.ac.jp/sbj.html

2 Department of Biotechnology, Graduate School of Engineering, Osaka University,
2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

3 Graduate School of Frontier Bioscience, Osaka University, 2-1, Yamadaoka, Suita,
Osaka 565-0871, Japan

4 Department of Pure and Applied Sciences, University of Tokyo, Komaba,
Meguro-ku, Tokyo 153-8902, Japan

5 ERATO, JST, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract. A linear relationship between responses of biological sys-
tems and their fluctuations is presented. The fluctuation is given by the
variance of a given quantity, whereas the response is given as the aver-
age change in the quantity for a given parameter change. By studying
experimental evolution where fluorescence per E.coli cell increased, we
confirmed our relationship with a positive correlation between the evolu-
tionary rate of fluorescence and its fluctuation observed over genetically
identical cells. The generality of the relationship and its possible appli-
cation to other fluctuating systems are discussed.

1 Introduction

Many biological systems fluctuate to some extent because their elements work at
a finite temperature and because their surroundings also fluctuate. For example,
in the case of genetic networks in living organisms, because the bio-molecules
are synthesized and decomposed by chemical processes occurring at finite tem-
peratures, the molecules are inevitably affected by thermal fluctuations, as a
consequence of the laws of physics and chemistry. Recently, fluctuations in gene
expression have been investigated extensively [1,2,3]. Even with such inevitable
fluctuations or noise in their elements, living organisms have responded adap-
tively to unpredictably fluctuating environments by mutation of some parame-
ters of their genetic networks to change their states or phenotypes in response
to environmental changes.

This raises the question of whether there is a general relationship between the
adaptive response and fluctuation. In general optimization processes of systems
to accomplish high responsiveness, fluctuation or noise has been treated as sup-
pressed. On the other hand, it is clear that network with a greater degree of fluc-
tuation respond more flexibly to environmental changes as they are “soft”. Here,

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 107–112, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

108 T. Yomo et al.

we propose a linear relationship between fluctuation and response that should
hold true in a broad class of systems, and discuss an experimental demonstration
of the relationship in a process of optimization of protein fluorescence in a cell.
We compared our proposed theoretical relationship with the experimental re-
sults and found good agreement. We also discuss the relevance of fluctuations to
system optimization in the framework of our fluctuation-response relationship.

2 Linear Fluctuation-Response Relationship

Our linear fluctuation-response relationship is as follows: When we change the
value of a parameter, a, slightly to, a + Δa, the change in the average value of a
variable, x, will be proportional to its variance at the initial parameter, a, i.e.:

〈x〉a+Δa − 〈x〉a = bΔa〈(x − 〈x〉a)2〉a

where the coefficient, b, is a constant independent of the parameter, a, and
〈x〉a and 〈(x − 〈x〉a)2〉a are the average and variance at the initial parameter
value, a, respectively. They are defined explicitly as 〈x〉a =

∫
xP (x, a)dx and

〈(x − 〈x〉a)2〉a =
∫
(x − 〈x〉a)2P (x, a)dx, where P (x, a) is the normalized distri-

bution function of x at the parameter, a. In this paper, the symbol 〈 〉a denotes
the average of a given function of x in the brackets with respect to the distrib-
ution function P (x, a). We assume that the parameter, a, and the variable, x,
are both scalar. This equation indicates that the response is proportional not
only to the parameter change, Δa, but also to the fluctuation or the variance.
The relationship is essentially the same as the fluctuation-dissipation theory in
statistical physics.

To derive the above linear relationship, we assume a “Gaussian-like” distrib-
ution. The distribution with a + Δa is written as follows:

P (x, a + Δa) = P (x, a)eLog(P (x,a+Δa))−Log(P (x,a)) = P (x, a)eε(x,a,Δa)

Here, “Gaussian-like” means that ε(x, a, Δa) can be written with the expansion
around 〈x〉a by not more than the second-order as follows:

ε(x, a, Δa) = ε0(a, Δa) + ε1(a, Δa)(x − 〈x〉a) +
ε2(a, Δa)

2
(x − 〈x〉a)2

With the constant, N, for normalization, the distribution is rewritten as:

P (x, a + Δa) = P (x, a)Neε1(a,Δa)(x−〈x〉a)+ ε2(a,Δa)
2 (x−〈x〉a)2

The change in the average can be calculated using the above equation valid
to the first-order of Δa:

〈x〉a+Δa − 〈x〉a =
∫

(x − 〈x〉a)P (x, a + Δa)dx = b(a)Δa〈(x − 〈x〉a)2〉a

where b(a) is the first-order derivative of ε1(a, Δa) with respect to Δa. This
equation shows that larger variance leads to a larger response to the parameter

Responses of Fluctuating Biological Systems 109

change, Δa. If the dependency of b(a) on a is negligible for a certain range of
a, we obtain our linear relationship. The a-independence should be examined
experimentally as follows. A more formal derivation of our proposition has been
presented elsewhere [4].

3 Experimental Demonstration

To determine whether the optimization process of biological systems follows the
above relationship, we conducted experimental evolution in a cellular system.
Fig. 1 outlines the experimental procedure (details in [5]).

The initial material for the evolution was a mutant green fluorescent protein
(GFP), which was composed of GFP with a random polypeptide (RP3-34) at-
tached to its N terminus of GFP. RP3-34 is composed of 149 amino acid residues,
and has no homology with any known natural proteins in the SwissProt data-
base as analyzed by BLAST 2.2.2. The fused protein was subjected to random
mutagenesis to prepare a mutant pool of about 2000 E. coli clones, each of which
possessed a different mutant GFP gene with a few substitutions in its RP3-34
fragment only. Among the clones, we selected several by eye that showed high
fluorescence and inoculated them into liquid media to choose the clone with the
highest level of fluorescence by spectrofluorometry. Then, we subjected a DNA
fragment encoding the RP3-34 portion of the selected clone to random mutagen-
esis and reattached the mutated fragments to the N terminus of GFP to prepare
a mutant pool for the next generation. The fluorescence of the selected clones at
each generation was measured using a fluorescence-activated cell sorter (FACS).

Fig. 1. Schematic drawing of the selection process

110 T. Yomo et al.

Fig. 2. Distribution in fluorescence per cell modified from Fig. 1 in Ref. [4]

Fig. 2 shows the distribution in fluorescence per cell of the selected clones at
each generation. Note that there was always some diversity or fluctuation in flu-
orescence among the cells of the selected clones grown in the same environment,
even though they possessed identical genetic information. It is clear that the peak
fluorescence of each progressive generation, indicated by numbers, increased as
a result of selection. Here, we define the evolution rate as the rightward-shift in
the peak position of fluorescence from the parental clone to the selected clone at
each generation. The evolution rate declined as each generation passed. Inter-
estingly, the distribution width, which indicates the fluctuation in fluorescence
among the cells of the selected clone, also decreased as each generation passed.
Briefly, there seems to be a positive correlation between the evolutionary rate of
fluorescence and its fluctuation.

The correlation observed experimentally was shown to follow the fluctuation-
response linear relationship, in which the response or change in average of a vari-
able, 〈x〉a+Δa −〈x〉a, is proportional to the parameter change, Δa, multiplied by
the variance of the variable, 〈(x − 〈x〉a)2〉a. In the experimental evolution, x is
logarithm of fluorescence per cell [6]. The parameter, a, is the gene sequence of
the fused GFP, and Δa corresponds to the number of mutations per generation,
which we call the mutation rate. The response or evolutionary rate is defined
as the change in peak position per generation in Fig. 2, while the fluctuation is
defined as the variance of the fluorescence on a logarithmic scale over genetically
identical clones, calculated from the width of the distribution in Fig. 2. The ex-
pected linearity from the fluctuation-response linear relationship was observed
(Fig. 3) in the plot of the response or the evolutionary rate on the x-axis with

Responses of Fluctuating Biological Systems 111

Fig. 3. Linear relationship expected from response-fluctuation theory

the mutation rate, Δa, multiplied by the variance at each generation, 〈(x −
〈x〉a)2〉a(R2 = 0.79), but not with only Δa(R2 = 0.21).

The linear relationship indicates that the response was larger when the same
parameter change was applied to the network with larger fluctuation. This corre-
sponds to a larger rightward-shift in peak position at an earlier generation when
the cellular distribution was wider.

4 Discussion

The fluctuation-response linear relationship that was proposed and confirmed
experimentally can be interpreted in connection with optimization as follows.
In the course of evolution or optimization processes, the primordial biological
networks may have had a large number of elements acting independently or with
a high degree of freedom. The self-organization or optimization of systems oc-
curred with fixation of relationships among their elements or in “soft-wiring”
their elements. With a decrease in the number of freely acting elements or the
degree of freedom, there must have been a decline in the evolutionary rate or op-
timization rate due to the decrease in number of parameters that could otherwise
be used to optimize the systems even further. At the same time, the decrease
in number of freely acting elements may have caused a decrease in the network
fluctuation, as networks with a lower degree of freedom have a tendency to show
less fluctuation. Briefly, the optimization, which leads to a decrease in the freely
acting parts of systems, results in a simultaneous decrease in both the evolu-
tionary rate and the fluctuation. That is, the correlation obtained in the present

112 T. Yomo et al.

study may be a general consequence of functional optimization of systems with
large degrees of freedom. It would be interesting to apply the linear relationship
to optimization processes of other fluctuating networks, such as the WWW or
human societies, etc.

References

1. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic Gene Expression
in a Single Cell. Science 297 (2002) 1183-1186

2. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and Extrinsic Contributions to
Stochasticity in Gene Expression. Proc. Natl. Acad. Sci. USA 99 (2002) 12795-12800

3. Hasty, J., Pradines, J., Dolnik, M., Collins, J.J.: Noise-Based Switches and Ampli-
fiers for Gene Expression. Proc. Natl. Acad. Sci. USA 97 (2000) 2075-2080

4. Sato, K., Ito, Y., Yomo, T., Kaneko, K.: On the Relation Between Fluctuation and
Response in Biological Systems. Proc. Natl. Acad. Sci. USA 100 (2003) 14086-14090

5. Ito, Y., Kawama, T., Urabe, I., Yomo, T.: Evolution of an Arbitrary Sequence in
Solubility. J. Mol. Evol. 58 (2004) 196-202

6. Furusawa, C., Suzuki, T., Kashiwagi, A., Yomo, T., Kaneko, K.: Ubiquity of Log-
Normal Distributions in Intra-Cellular Reaction Dynamics. Biophysics 1 (2005)
25-31

Analysis of Fluctuation in Gene Expression
Based on Continuous Culture System

Tadashi Yamada, Makoto Sadamitsu, Keisuke Nagahisa,
Akiko Kashiwagi, Chikara Furusawa, Tetsuya Yomo,

and Hiroshi Shimizu

Department of Bioinformatic Engineering,
Graduate School of Information Science and Technology,

Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
{nukumori, sadamitsu, nagahisa, akikok, furusawa, yomo,

shimizu}@ist.osaka-u.ac.jp

Abstract. The emergence of heterogeneous cellular state in uniform en-
vironment was studied. Using a continuous culture system which provides
homogeneous culture environment, we investigated the fluctuation in ex-
pression level of glnA gene in a cell population. As results, we found that
the expression level of glnA gene in the cells exhibit a large fluctuation
(with two orders of magnitude of protein number), even though expres-
sion of the gene is essential for cellular growth and the environment is
homogeneous. Furthermore, among several steady states, the transient
processes of such heterogeneous cell population were investigated, by
changing environmental conditions. The results showed that cells can re-
spond to environmental changes even when their intra-cellular state is
accompanied by fluctuations. These results may provide a clue to un-
derstand why biological systems can maintain and reproduce themselves
robustly.

1 Introduction

In studies of biological systems, it is generally assumed that intra-cellular state
of isogenic cells in a fixed environment are homogeneous, and analysis of the
systems are based on this assumption. For example, cell concentration is usually
measured at the macroscopic level, such as measurement of turbidity of culture
medium, which relies on the homogeneity of cells. However, recent developments
of experimental technique enable us to measure the intra-cellular state at the
single-cell level, and such measurements suggest that heterogeneity of cellular
state is ubiquitous in cellular system [1][2]. Thus, to clarify the nature of such
cellular heterogeneity is important for further development of biological studies.
For this purpose, in this study we investigate the heterogeneity of cellular state
in a uniform environment, and adaptation process of such heterogeneous cellular
state to environmental changes, using bacteria cells in continuous culture system.

In this study, to characterize intra-cellular state of cells, we adopt expression
level of glnA gene, since the expression of this gene is essential for nitrogen as-
similation in our culture medium, and then it can represent cell viability under

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 113–127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

114 T. Yamada et al.

nitrogen-limited growth condition. In our system, a glutamine synthetase gene
glnA deficient mutant of Escherichia coli YMC21 [3] was used as a host bac-
terium. The plasmid pKGN-EGFP, carrying the egfp-glnA [4] fusion gene was
introduced into the glnA-deficient mutant. This cells were cultured in a minimal
medium, containing glucose and glutamate as sole carbon and nitrogen sources,
respectively. Glutamine synthetase only catalyze the conversion reaction from
glutamate to glutamine. This pathway is essential for cell growth under the
medium condition using in this study, so that cells must express the glnA gene
to grow in the system. Using this recombinant strain, we can monitor the ex-
pression level of glnA gene at a single cell level, by measuring fluorescence of
EGFP-GlnA fusion protein. This egfp-glnA gene is not regulated by wild-type
promoter of glnA gene[5][6], instead the expression of this gene is controlled by
tac promoter[7], which is artificially constructed and is not regulated directly by
other factors in the E. coli YMC21 cells. And this strain and plasmid used in this
system do not have repressor gene (lacI) of tac promoter. Use of this promoter
allows us to the nature of heterogeneity in gene expression levels regardless of
regulations in the wild-type strain.

To maintain the environmental conditions constant, we used a continuous
culture system. In this culture system, growth rate, cell concentration, and sub-
strate concentration are kept constant at a steady state by a continuous input
flow of medium and output flow of culture (medium and cells), where the growth
rate of cells is identical to the dilution rate of the medium. At such steady state
of continuous culture, intra-cellular state is also expected to be constant, and
the heterogeneity of cellular state was studied at such steady state conditions.

Furthermore, after reaching such steady state of cell population, we changed
the environmental conditions to study the transitions of intra-cellular state be-
tween these steady states. Here, we added two types of environmental changes.
In one experiment, we changed glutamate concentration in the feeding medium,
to change the importance of glnA gene under the condition. For example, when
the concentration of glutamate in the medium decrease, it is expected that more
expression of glnA is required for cell growth. On the other hand, when the con-
centration of glutamate in the medium becomes enough high, the importance
of glnA expression decreases. In another experiment, we used the glutamate
medium as basis and switched to the mixed nitrogen medium containing glu-
tamate and glutamine. Here, by this environmental change, the importance of
glnA is expected to decrease, since glutamine is the product of the enzymatic
reaction which is catalyzed by glnA protein.

Using this system, we investigated the heterogeneity of cellular state at a
steady state of the continuous culture, and the transient process of cellular state
between such steady states. As a result, first we found that even at the steady
state of continuous culture, the expression level of glnA gene in the cells showed
a broad distribution (with two orders of magnitude of protein number), even
though the reaction catalyzed by glnA protein is essential for cell viability under
our medium condition. Second, it was shown that such heterogeneous cellular
state responded to environmental changes. Since the heterogeneity of cellular

Analysis of Fluctuation in Gene Expression 115

state was maintained in uniform environments, these observations indicate that
the fluctuations in cellular states inevitably emerges, and biological systems can
be sustained even under such fluctuations in intra-cellular dynamics. To clarify
the mechanism that biological systems can work under such fluctuations will
allow us to construct the robust artificial systems, such as IT networking.

2 Materials and Methods

2.1 Strain and Plasmid

A glutamine synthetase gene (glnA) deficient mutant of Escherichia coli YMC21
[3] (genotype is shown in Table 1) was used as a host. The plasmid pKGN-
EGFP (shown in Figure 1), carrying the egfp-glnA fusion gene downstream of
tac promoter was introduced into the determined glnA-deficient mutant. The
plasmid has β-lactamase gene.

2.2 Cultivation Methods

-80◦C stock of experimental strain is streaked on M9 like glutamate medium
agar (KH2PO4 4.5g/L, K2HPO4 10.5g/L, Glutamate 1mM, Glucose 0.4%,

Table 1. The strains used in this study

strain genotype
Escherichia coli YMC21 Δ(glnA-glnG), ΔlacU169, endA1, hsdR17, thi-1, supE44

Fig. 1. Vector map of pKGN-EGFP

116 T. Yamada et al.

Thiamine·HCl 5mg/L, MgSO4·7H2O 50mg/L, Ampicilin 50mg/L, agar 1.5%)
plate and stored at 37◦C for 2 days. Prewormed fresh M9 like glutamate medium
(KH2PO4 4.5g/L, K2HPO4 10.5g/L, Glutamate 1mM, Glucose 0.4%,
Thiamine·HCl 5mg/L, MgSO4·7H2O 50mg/L, Ampicilin 50mg/L) is added to
the plate. The colonies are suspended by glass stick. In preculture, the sus-
pended cells are inoculated into 100mL M9 like glutamate medium in Sakaguchi
flask and cultured at 37◦C, 120rpm for a day(MM-10, Titec Japan). The precul-
tured cells are collected into two 50ml tubes and centrifuged at 6000rpm for
10min twice. The pellet is resuspended by the fresh 10mL fresh M9 like glu-
tamate medium. The 10mL suspended cells are added into the 125mL M9 like
glutamate medium in the 200mL fermenter (Titec Japan) which aeration and
temperature are controlled by fermentation controller (BMJ-01, ABLE Japan).
In main culture system, cultivation is performed at the scale of 125mL. Cultiva-
tion conditions of aeration, temperature and dilution rate are 1vvm, 37◦C and
0.075(1/h), respectively. The fermenter is prewormed at 37◦C before inoculation
and stored for 30 minutes after inoculation. After storing for 30 minutes, feeding
pumps of input and output flows of medium start to operate and this time is set
as a start time (0h) of the culture. The sample from output medium is taken for
analysis the cell concentration, glucose concentration, glutamate concentration
and population dynamics by flow cytometer (EPICS ELITE, Beckman Coulter),
periodically. Cell concentration is analyzed by the particle characterization ana-
lyzer (SD-2000, Sysmex) and spectrophotometer (UV mini 1240, Shimazu). The
glucose concentration is measured by glucose analyzer (MODEL2700, Y.S.I Co.
Ltd.). The glutamate concentration is measured by the Glutamate F Kit (Roche
Diagnostics Swiss).

3 Continuous Culture System

In this study, we adopt the continuous culture system to maintain a uniform
environment in space and time. Figure 2 illustrates a reactor tank. The config-
urations of this cultivation method are also called chemostat. The principle of
continuous culture is described below in detail[8][9].

At a steady state, concentrations of components in the reactor are kept con-
stant, so we can apply the following material balance equations to any compo-
nents of the system:

dXV

dt
= μXV − FoutX = 0 (1)

dSV

dt
= FinSf − FoutS − νXV = 0 (2)

where X = cell concentration in the reactor and in the effluent stream
Fin = volumetric flow rate of feed liquid stream
Fout = volumetric flow rate of effluent liquid stream
V = total volume of culture
μ = specific growth rate of the cells
Sf = substrate concentration in the feed stream

Analysis of Fluctuation in Gene Expression 117

Fig. 2. Schematic diagram of reactor tank

S = substrate concentration in the reactor and in the effluent stream
ν = specific substrate consumption rate.

In the continuous culture system, culture volume V is a constant.

dV

dt
= 0 (3)

Fin = Fout (4)

By applying Eq. 3 and Eq. 4 to Eq. 1 and Eq. 2, we obtain the following equa-
tions:

dX

dt
= μX − DX = 0 (5)

dS

dt
= D(Sf − S) − νX = 0. (6)

Here, as noted in Eq. 5 and Eq. 6, the parameter D, called the dilution rate and
defined by

D =
Fin

V
=

Fout

V
(7)

characterizes the holding time or processing rate of the continuous culture sys-
tem. In Eq. 5, We have equality if

X = 0 (8)

or
μ = D (9)

is approved. In the case of Eq. 8, no cell exists in the reactor. This case is called
“wash-out”, where all cells are flowed out because their maximum specific growth
rate is lower than the dilution rate. In this case, the substrate concentration S
becomes Sf . In the case of Eq. 9, the cells can survive in the reactor. The specific

118 T. Yamada et al.

growth rate of the cells becomes identical to the dilution rate. This means that
the number of the increased cells by growth is equivalent to the number of cells
flowed-out. At the steady-state, by applying the Eq. 8 to Eq. 9 the equation of
substrate concentration is written as

Sf − S

X
=

ν

μ
. (10)

In Eq. 10, the righthand side is constant value. In this case, the cell concentration
is proportional to the substrate concentration of feeding medium if the cells
consume the substrate completely (S is almost zero). Then, we can control the
cell concentration at the steady-state by changing the substrate concentration.
In this study, we use M9 like glutamate medium including glutamate as sole
nitrogen source. We kept the glutamate concentration in the feeding medium
lower than 1mM, since in this range the culture environment is maintained as the
glutamate limited condition. We can cultivate cells under uniform environment
and change the environment in the reactor by changing the feeding medium.

4 Results

We performed two kinds of experiments with environmental changes. First, we
performed the continuous culture with change in glutamate concentration. Af-
ter the environmental conditions reached at the steady state, the condition was
kept constant until 20 or more generations of cells passed, to obtain the steady
state of intra-cellular reaction dynamics. Then, the concentration of glutamate
in the feeding medium was changed, in the order of 1mM → 0.1mM → 1mM.
Figure 3 shows time courses of cell concentration, glutamate concentration and
glucose concentration in the reactor, respectively. Cell concentration was esti-
mated by optical density at 600nm (OD600) and particle number measured by the
particle characterization analyzer. At each steady state, we confirmed that glu-
tamate concentration was almost zero and cell concentration was proportional
to the glutamate concentration in the feeding medium. Soon after switching
high glutamate concentration to lower one (at 270h in Fig. 3), cell concentration
started to decrease, and after about 48 hours it reached to the new steady state.
In a similar way, soon after switching low concentration to higher one (at 510h
in Fig. 3), cell concentration increased and after about 48 hours it reached to
the original steady state.

Figures 4 and 5 show the distributions of cellular states at each sampling
time, measured by flow cytometer. The axis from front to right back indicates
Forward Scattering intensity (FS) of each cell, and the axis from front to left
back indicates GFP fluorescent intensity of each cell. The vertical axis indicates
the fruquency (%) of each FS-GFP region. Upper layer of each figure shows the
3D histogram of FS-GFP and lower layer shows the density plot. Here, GFP flu-
orescence intensity indicates the expression level of glnA gene, and FS represents
the cell size, respectively. In Fig. 4, distributions at the same steady state are
compared with each other. The shapes of distributions at the same steady state

Analysis of Fluctuation in Gene Expression 119

 0.01

 0.1

 1

 1e+06

 1e+07

 1e+08

 1e+09

O
D

6
0

0

p
a
rt

ic
le

 n
u
m

b
e
r

(a) OD600
particle number

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700
 0

 1

 2

 3

 4

 5

G
lu

ta
m

a
te

 c
o
n
ce

n
tr

a
tio

n
 (

m
M

)

G
lu

co
se

 c
o
n
ce

n
tr

a
tio

n
 (

g
/L

)

Time (h)

(b) glutamate
glucose

Fig. 3. Time courses of glutamate concentration change experiment. (a) the time
courses of cell concentration, and (b) the time courses of substrate concentration. In
the graph (a), (+) mark indicates the cell concentration measured by turbidity method
(corresponding left vertical axis) and (×) mark indicates cell concentration measured
by particle characterization analyzer (corresponding right vertical axis), respectively.
In the graph (b), (+) mark indicates the glutamate concentration (corresponding left
vertical axis) and (×) mark indicates the glucose concentration (corresponding right
vertical axis), respectively. Two vertical lines at 270h and 510h indicate the time of
changing the glutamate concentration in the feeding medium.

are similar. An important point here is that the distribution of glnA expression
level exhibits a large standard deviation (with two orders of magnitude of pro-
tein number), even though the environment is homogeneous and the reaction
catalyzed by glnA protein is essential for cell viability under the medium condi-

120 T. Yamada et al.

tion in this study. We confirmed that these diversities of gene expression levels
are not due to experimental errors of flow cytometory, by measuring standard
beads (BD Living ColorsTMEGFP Calibration Beads, BD Biosciences) which
have known sizes and fluorescences, and comparing these standard data to the
data of the cells.

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(a) 076h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(b) 172h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(c) 268h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Fig. 4. The distribution of GFP fluorescence and FS signal at the initial steady-state
of glutamate concentration 1mM. The figures show the distribution at (a) 76h, (b)
172h, and (c) 268h, respectively. The shapes of distribution at the same steady state
are similar each other.

When the glutamate concentration in the feeding medium was changed, dy-
namic changes of cellular states were observed. When the glutamate concen-
tration in the feeding medium decreased, the cell population with a high GFP
fluorescence intensity (glnA expression level) became the major group in the
system, and the number of cells with a low GFP fluorescence intensity (glnA
expression level) decreased (Figure 5 (a-b)). On the other hand, when the gluta-
mate concentration in the feeding medium increased, the cell population which
had a low GFP fluorescence intensity (glnA expression level) became the major
group in the system, and the number of cells which had a high GFP fluorescence
intensity (glnA expression level) decreased (Figure 5 (c-d)). Interestingly, the

Analysis of Fluctuation in Gene Expression 121

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(a) 268h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(b) 300h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(c) 412h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(d) 540h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Fig. 5. The distributions of GFP and FS signal at the transient state of glutamate
concentration change. Figures (a) and (b) show the distributions at the transient when
the glutamate concentration in feeding medium was changed from 1mM to 0.1mM.
Figure (a) shows the distribution at the initial steady state (268h) at 1mM glutamate,
and figure (b) shows the distributions at 30h after change of the glutamate concentra-
tion (300h) during this transient process, subpopulation with low GFP intensity (low
expression level of glnA) disappeared. This change was not maintained and the dis-
tribution was recovered to the original one around 48h after change of the glutamate
concentration. Figures (c) and (d) show the distributions at the transient when the
glutamate concentration in feeding medium was changed from 0.1mM to 1mM. Figure
(c) shows the distribution at the initial steady state (508h) at 0.1mM, and figure (d)
shows the distributions at 30h after change of the glutamate concentration (540h). In
this case, subpopulation with high GFP intensity (high expression level of glnA) dis-
appeared. Also, this change was not maintained and the distribution was recovered to
the original one around 48h after change of the glutamate concentration.

cell population with the high or low glnA expression level was not maintained,
and the original distribution with a large standard deviation reappeared, after
reaching the steady state.

Next, we performed the continuous culture in which the feeding medium was
changed from the medium containing glutamate as a sole nitrogen source to one
containing both glutamate and glutamine. In a similar way to the previous ex-

122 T. Yamada et al.

 0.01

 0.1

 1

 1e+06

 1e+07

 1e+08

 1e+09

O
D

6
0

0

p
a
rt

ic
le

 n
u
m

b
e
r

(a)

OD600
particle number

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 100 200 300 400 500 600 700
 0

 1

 2

 3

 4

 5

G
lu

ta
m

a
te

 c
o
n
ce

n
tr

a
tio

n
 (

m
M

)

G
lu

co
se

 c
o
n
ce

n
tr

a
tio

n
 (

g
/L

)

Time (h)

(b) glutamate
glucose

Fig. 6. Time courses of glutamate concentration change experiment. Figure (a) shows
the time course of cell concentration, and figure (b) shows the time courses of substrate
concentration, respectively. In the figure (a), (+) mark indicates the cell concentration
measured by turbidity method (corresponding left vertical axis) and (×) mark indi-
cates cell concentration measured by particle characterization analyzer (corresponding
right vertical axis), respectively. In the figure (b), (+) mark indicates the glutamate
concentration (corresponding left vertical axis) and (×) mark indicates the glucose con-
centration (corresponding right vertical axis), respectively. Two vertical lines at 240h
and 576h indicate the time of changing the glutamine concentration in the feeding
medium.

periment, to obtain the steady intra-cellular state, we kept the system for 20
or more generations passed after the environmental condition settled down. Af-
ter that, the feeding medium was changed in the order of (1mM glutamate) →
(1mM glutamate and 0.1mM glutamine) → (1mM glutamate). Figure 6 shows

Analysis of Fluctuation in Gene Expression 123

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(a) 192h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(b) 252h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(c) 576h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(d) 606h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Fig. 7. The distributions of GFP and FS signal at the transient when glutamine is
added to or removed from the feeding medium. Figures (a) and (b) show the distrib-
utions at the transient when glutamine concentration in feeding medium was changed
from 0mM to 0.1mM. Figure (a) shows the distribution at the initial steady state
(192h) at 1mM glutamate only medium, and figure (b) shows the distributions at 30h
after change to the glutamine added medium (252h). After addition of glutamine, sub-
population with high GFP intensity (high expression level of glnA) disappears. Figures
(c) and (d) show the distributions at the transient when glutamine concentration in
feeding medium was changed from 0.1mM to 0mM. Figure (c) shows the distribution
at the initial steady state (576h) at 0.1mM glutamine, and figure (d) shows the distri-
butions at 30h after removal of glutamine (606h). In this case, Also, this change was
not maintained and the distribution was recovered to the original one around 48h after
change of the glutamate concentration. In this case, subpopulation with low GFP in-
tensity (low expression level of glnA) disappears. These distributions were maintained
as long as the culture conditions were kept constant.

the time courses of the glutamine addition culture. At all the steady states, that
cell concentration and glucose concentration were constant, and glutamate con-
centration was almost zero. The addition of glutamine to the feeding medium
made the cell concentration increasing about 20%. In the microscopic view-
point, when the feeding medium was switched from glutamate only medium to
glutamine added glutamate medium, dynamic change of intra-cellular states was

124 T. Yamada et al.

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(a) 282h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(b) 405h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

106

105

104

103
0

384

768

GFP LOG
FS LOG

Frequency (%)

(c) 576h

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Fig. 8. The distributions at the steady state of glutamine added medium. The figures
show the distribution at (a) 252h, (b) 405h, and (c) 576h, respectively. The shapes of
distribution with low GFP intensity are maintained at the same steady state.

observed as shown in Figure 7 (a-b). In the steady state of glutamate medium,
the distributions of glnA expression exhibited a large standard deviation as the
previous experiments. On the other hand, when feeding medium was changed
to the glutamine added medium, the number of the cells which had a high ex-
pression level of glnA decreased. This population change continued to the next
steady state and this distribution was maintained during the steady state in
this condition(Figure 8). When the addition of glutamine was cut, the original
distribution was recovered as shown in Fig. 7 (c-d).

5 Discussions

Continuous cultures of the isogenic cells in an uniform environment were car-
ried out, to investigate the nature of heterogeneity in intra-cellular state which
is characterized by the analysis using the flow cytometer. As results, first we
found that even in uniform environments in space and time, the cells generally
show heterogeneity of intra-cellular states. Even though the expression level of
glnA gene is essential for cell viability under the medium condition in this study,

Analysis of Fluctuation in Gene Expression 125

the distribution of the expression level exhibited a broad distribution (with two
orders of magnitude of protein number) in the uniform environment. This result
clearly showed that such heterogeneity is inevitable in cell population, presum-
ably due to the stochastic nature of intra-cellular dynamics[10].

Second, we found that the distribution of glnA gene expression dynamically
changed when the substrate concentrations in the feeding medium were changed.
When the glutamate concentration in the feeding medium decreased, cells with
low glnA expression disappeared, and only cells having high glnA expression
levels remained. Conversely, when glutamate concentration increased, cells with
high glnA expression disappeared, and only cells with low glnA expression re-
mained. Furthermore, we found that at the steady state of cells in the medium
containing both glutamate and glutamine, the subpopulation with a high glnA
expression level decreased. This change of distribution was maintained as long
as glutamine was added to the feeding medium.

One may cast a question whether this dynamical change of cell population is
given by flow out of subpopulation with lower growth speed, or it is due to the
change of intra-cellular state in response to the environmental change. To answer
it, we analyzed the change in the distribution of glnA expression in detail. In
the continuous culture with the addition of glutamine to the feeding medium
(Figure 7 (a-b)), the histograms of glnA expression level at the steady state
in glutamate only medium and at the transient state (12h after switching to
glutamine added medium) were plotted in Fig. 9. As shown in the figure, the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

103 104 105 106

F
re

qu
en

cy
 (

%
)

Expression level of glnA gene

steady state without glutamine addition
transient state with glutamine addition

Fig. 9. The histogram of GFP intensities (expression level of glnA gene) at the steady
state (dotted line) and transient state (solid line) of glutamine addition. The distribu-
tion of GFP intensity (expression level of glnA gene) moved to lower side for 12h.

126 T. Yamada et al.

expression level decrease in the transient state, and the question here is whether
this change of the distribution can be explained by the difference in the growth
speeds of cell populations or not. Since the flow out of the medium and cells is
kept constant in the continuous culture system, we can determine the maximal
change of cell population in a certain period, when the intra-cellular state of
cells do not change and there are only differences in the growth speed of cells.
Assume that there is a subpopulation of cells which cannot grow in the new
environmental condition, their specific growth rate is zero (μ = 0). The change
in the population of such cells is represented as follows.

dXsub

dt
= −DX (11)

Here, a survival ratio of subpopulation is defined as

Xsub(t)
Xsub(0)

= exp(−D · t). (12)

Since the dilution rate D was set at 0.075(1/h) in our experiments, when a
subpopulation of cells stop to grow due to the environmental change, we can
estimate that about 40% of these cells remains in the reactor 12h after the
environmental change. This indicates the maximal change of cell population in
the reactor without changing their intra-cellular state. In the transient process
shown in Fig. 9, the fraction of cells which have more than 105 GFP intensity
(a.u.) remains only 15% at 12h after the environmental change. This means that,
the decrease of such subpopulation cannot explained by the difference of growth
speed among cells, instead, the glnA expression level of cells changes in response
to the environmental change.

It should be noted that in our experiments, the change of glnA expression
level seems to be regulated in accordance with its requirement. For example,
when the concentration of glutamate in the feeding medium is decreased, more
glnA expression may be required to cell growth, and then the expression of glnA
actually increases. On the other hand, when glutamine, which is product of reac-
tion catalyzed by GlnA protein, is added to the feeding medium, the importance
of glnA expression may be decrease, and in fact the expression of the gene de-
creases. The fact that such regulation is possible even though the promoter of
this gene is not directly controlled by other factors suggests that the existence
of another mechanism for the adaptation of cellular state. Such mechanism may
provide a clue to understand why biological systems can maintain and repro-
duce themselves robustly, even though their intra-cellular reaction network are
inevitably accompanied by large fluctuations. Also, we believe that to under-
stand such nature of this mechanism will be available to make a robust artificial
systems, such as IT networking.

Acknowledgements

This work was partially supported by the grant of the 21st century center of ex-
cellent (COE) program from the Japan Society for Promotion of Science (JSPS).

Analysis of Fluctuation in Gene Expression 127

References

1. Natarajan A and Srienc F: Glucose uptake rates of single E. coli cells grown in
glucose-limited chemostat cultures. J Microbiol Methods, 42(1). Sep, 2000, 87-96

2. Natarajan A and Srienc F: Dynamics of glucose uptake by single Escherichia coli
cells. Metab Eng, 1(4). Oct, 1999, 320-333

3. Xu,W-Z and A.Kashiwagi and T. Yomo and I. Urabe: Fate of a mutant emerging
at the initial stage of evolution. Researches on Population Ecology, Vol.38. (1996)
231-237

4. Zhang G and Gurtu V and Kain SR: An enhanced green fluorescent protein al-
lows sensitive detection of gene transfer in mammalian cells. Biochem Biophys Res
Commun, 227(3). Oct, 1996 707-711

5. Mariette R. Atkinson and Timothy A. Blauwkamp and Vladamir Bondarenko and
Vasily Studitsky and Alexander J. Ninfa: Activation of glnA, glnK, and nac Pro-
moters as Escherihia coli Nitrogen Starvation. Journal of Bacteriology, 184(19).
Oct, 2002, 5358-5363

6. Shizue Ueno-Nishio and Keith C. Backman and Boris Magasanik: Regulation at
the glnL-Operator-Promoter of the Complex glnALG Operon of Escherichi coli.
Journal of Bacterioloty, Mar, 1983 1247-1251

7. Herman A. De Boar and Lisa L. Comstock and Mark Vaser: The tac promoter:
A functional hybrid derived from the trp and lac promoters. PNAS, Vol.80. Jan,
1983 (1)21-25

8. Butler, G.J. and G.S.K. Wolkowicz: A mathematical model of the chemostat with
a general class of functions describing nutrient uptake. SIAM Journal of Applied
Mathematics, Vol.45. (1985) 138-151

9. James Edwin Bailey and David F. Ollis: Biochemical Engineering Fundamentals.
McGrow-Hill, 1986

10. Nitzan Rosenfeld and Jonathan W. Young and Uri Alon and Reter S. Swain and
Michael B. Elowitz: Gene Regulation at the Single-Cell Level. SCIENCE, Vol. 307.
Mar, 2005 1962-1965

Bio-inspired Computing Machines with
Self-repair Mechanisms

André Stauffer, Daniel Mange, and Gianluca Tempesti

Ecole polytechnique fédérale de Lausanne (EPFL),
Logic Systems Laboratory, CH-1015 Lausanne, Switzerland

andre.stauffer@epfl.ch

Abstract. Developmental biology requires three principles of organiza-
tion characteristic of living organisms: multicellular architecture, cellular
division, and cellular differentiation. Implemented in silicon according
to these principles, new computing machines become able to grow, to
self-replicate, and to self-repair. The introduction of a new algorithm
for cellular division, the so-called Tom Thumb algorithm, necessitates
new self-repair mechanisms of structural configuration, functional con-
figuration, microscopic cicatrization, and macroscopic regeneration. The
details of these mechanisms constitutes the core of this paper.

1 Introduction

The Embryonics project (for embryonic electronics) [2] aims at creating radically
new computing machines inspired by Nature and able to grow, to self-repair, and
to self-replicate [4] [8] [1]. The embryonic development of living creatures fasci-
nates engineers who dream of designing computing machines mimicking living
organisms in a completely different environment, the two-dimensional world of
silicon. Our Embryonics project aims at creating such machines which, starting
from a one-dimensional blueprint, an “artificial genome”, will be able to grow and
give birth to computers endowed, as their living models, with original properties
such as self-repair and self-replication. These properties are highly desirable for
“extreme” applications of computer engineering (space exploration, radioactive
environments, avionics, etc.) and, more importantly, are indispensable for the
design of the future nanoscale electronic components whose characteristics will
be very close to those of living organisms [3]. In conclusion, the challenge to be
met is to make perfect systems out of imperfect components.

Borrowing three principles of organization (multicellular architecture, cellular
division, and cellular differentiation) from living organisms, we have already
shown [5] how it is possible to grow an artificial organism in silicon thanks
to two algorithms: an algorithm for cellular differentiation, based on coordinate
calculation, and an algorithm for cellular division, the Tom Thumb algorithm [6].

The goal of this paper is to perform the Tom Thumb algorithm many times
so that self-repair could be introduced and make it possible the cicatrization
(microscopic self-repair) and the regeneration (macroscopic self-repair) of the

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 128–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Bio-inspired Computing Machines with Self-repair Mechanisms 129

original organism. Starting with a very simple artificial organism with only three
cells, the “SOS” acronym (for Save Our Souls), Section 2 will recall the definitions
of cicatrization and regeneration. We will then introduce the growth processes,
based on the Tom Thumb algorithm, leading to the structural configuration
(Section 3) and functional configuration (Section 4), as well as to the cicatrization
mechanism (Section 5) and regeneration mechanism (Section 6) of the artificial
cell. A brief conclusion (Section 7) summarizes the whole procedure.

2 Cloning, Cicatrization and Regeneration

Even if our final goal is the development of complex machines, in order to il-
lustrate the basic mechanisms of self-repair we shall use an extremely simplified
example, the display of the acronym “SOS”. The machine that displays the
acronym can be considered as a one-dimensional artificial organism, Acronymus
elegans, composed of four cells (Fig. 1a). Each cell is identified by a X coordinate,
ranging from 1 to 4. For coordinate values X = 1 and X = 3, the cell should im-
plement the S character, for X = 2, it should implement the O character, while
for X = 4 it should implement a spare or totipotent cell. A totipotent cell (in this
example, a cell capable of displaying either the S or the O character) comprises
4×6 = 24 molecules (Fig. 1b), 21 of which are invariant, one displays the S char-
acter, and two display the O character. An incrementer—an adder of one modulo
4—is embedded in the final organism; this incrementer implements the X coor-
dinate calculation according to the following cycle: X = 1 → 2 → 3 → 4 → 1.

The self-replication (or cloning) of a multicellular artificial organism (the
“SOS” acronym, for example), i.e. the production of one or several copies of
the original, rests on two assumptions: (1) There exists a sufficient number of
spare totipotent cells in the array (at least four in our “SOS” example) to con-
tain one copy of the additional organism. (2) The calculation of the coordinates
produces a cycle X = 1 → 2 → 3 → 4 → 1 implying X+ = (X + 1) mod 4.
As the same pattern of coordinates produces the same pattern of genes (in our
example, the same alphabetical pattern “SOS”), self-replication of an organism
can be easily accomplished if the incrementer, embedded in each totipotent cell,
counts modulo n, thus producing several occurrences of the basic pattern of co-
ordinates. Given a sufficiently large space, the self-replication of the organism
can be repeated for any number of specimens in the X and/or Y axes.

In order to implement the self-repair of the organism, we decided to use one or
several spare cells to the right of the original organism (Fig. 1a). The existence
of a fault is detected by a KILL signal (Fig. 1c) which is calculated in each cell
by a built-in self-test mechanism realized at the molecular level (see below). The
state KILL=1 identifies the faulty cell, and the entire column of all cells to which
the faulty cell belongs is considered faulty and is deactivated (column X = 2 in
Fig. 1a; in this simple example, the column of cells is reduced to a single cell).
All the functions (X coordinate and gene) of the cells to the right of the column
X = 1 are shifted by one column to the right. Obviously, this process requires as
many spare columns to the right of the array as there are faulty cells or columns

130 A. Stauffer, D. Mange, and G. Tempesti

S
O

O

SPARE CELL

X=1 2 3 4
(a) (b)

KILL=1

SCAR

X=1 2 3
(c)

S
P
A
R
E
M
O
L
E
C
U
L
E
S SM KILL=1

X=2 X=2 X=2
(d) (e) (f)

Fig. 1. Self-repair of Acronymus elegans, the acronym “SOS” (for Save Our Souls). (a)
One-dimensional organism composed of four cells; a spare totipotent cell takes place at
the right of the organism, with coordinate X = 4. (b) Totipotent cell. (c) The faulty
cell (X = 2) and all the cells to the right of the faulty cell (X = 3) are shifted by
one column to the right; the price to pay is an empty space, or a “scar”. (d) Initial
configuration of the healthy cell displaying O (X = 2). (e) Self-repaired cell (X = 2)
with 2 faulty molecules; the price to pay is a deformation of the original O character;
SM=spare molecule. (f) Faulty cell (X = 2) with 2 faulty molecules in the same row
(KILL=1).

to repair (one spare column tolerating one faulty cell, in the example of Fig. 1a).
It also implies that the cell needs to be able to bypass the faulty column and
to divert to the right all the required signals (such as the artificial genome and
the X coordinates). Given a sufficient number of cells, it is obviously possible to
combine self-repair in the X direction and self-replication in both the X and Y
directions.

The introduction in each cell of one or several columns of spare molecules
(Fig. 1d), defined by a specific structural configuration, and the automatic de-
tection of faulty molecules (by a built-in self-test mechanism which constantly
compares two copies of the same molecule) allows cellular self-repair: each faulty
molecule is deactivated, isolated from the network, and replaced by the nearest
right molecule, which will itself be replaced by the nearest right molecule, and
so on until a spare molecule (SM) is reached (Fig. 1e). The number of faulty
molecules handled by the cellular self-repair mechanism is necessarily limited:

Bio-inspired Computing Machines with Self-repair Mechanisms 131

in the example of Fig. 1d, we tolerate at most one faulty molecule per row. If
more than one molecule is faulty in one or more rows (Fig. 1f), cellular self-
repair is impossible, in which case a global KILL=1 is generated to activate the
organismic self-repair described above (Fig. 1c).

Salamanders, starfish, polyps and zebra fish can regenerate new heads, limbs,
internal organs or other body parts if the originals are lost or damaged. The
prolific properties of planarian worms make them an ideal starting point for
investigating regeneration. A flatworm contains dormant stem cells distributed
throughout its body. When damage occurs, stem cells near the injury rely on
signals from neighboring damaged tissues to work out their location, and hence
what repairs are needed [7]. According to Wolpert [10], regeneration is closely
related to embryonic development; many aspects of regeneration seem related to
embryonic regulation and can be considered in terms of replacing the positional
values of cells that have been lost. Coming back to the Embryonics project, one
may consider that the first step of repair, i.e. cellular self-repair where faulty
molecules are replaced by spare molecules, can be regarded as a kind of artificial
cicatrization, while the second step of repair, i.e. organismic self-repair where
faulty cells are replaced by spare totipotent cells, is the equivalent of artificial
regeneration.

3 Structural Configuration

For a better understanding of the structural growth process, performing the struc-
tural configuration by applying the Tom Thumb algorithm, we will give up the
“SOS” acronym example, yet too complex, and we will start with a minimal
self-repair cell. This cell is made up of six molecules organized as an array of
two rows by three columns, one column (two molecules) being dedicated to self-
repair (SM=spare molecule) (Fig. 2a). Each molecule is now able to store in
its five memory positions five characters of the artificial genome, and the whole
cell embeds 30 such characters. The structural genome G1 for the minimal self-
repair cell is organized as a string of twelve characters, i.e. two characters for
each molecule in the cell, moving anticlockwise by one character at each time
step (t = 0, 1, 2, ...). The characters composing the alphabet of our structural
genome are detailed in Fig. 3a. They are either empty data, flag data (from
“north connect flag” to “north connect and branch activate flag”) or structural
data; structural data combine two pieces of information: a position information
or type (from “top type” to “top-left type”) and a state information or mode
(from “living mode” to “dead mode”). Flag data will be used for constructing
the various paths between the molecules, while structural data are indispensable,
in a first step, for locating the living (normal) and spare molecules. Furthermore,
each character is given a status and will eventually be mobile data, indefinitely
moving around the cell, or fixed data, definitely trapped in a memory position
of a molecule (Fig. 3b).

At each time step, a character of the structural genome is shifted from right
to left and simultaneously stored in the lower leftmost molecule (Fig. 2a). The

132 A. Stauffer, D. Mange, and G. Tempesti

SM

SM

G 1
t= 0

(a)

t= 4t= 1 t= 2 t= 3
(b)

t= 8

t= 4

t= 12

t= 16

t= 20

t= 24
(c)

Fig. 2. The minimal self-repair cell made up of six molecules. (a) At time t = 0, the
cell is empty; the structural genome G1 is ready to enter the first molecule. (b) Four
steps of the Tom Thumb algorithm; t = 1...3: shift of the genome by one position to
the right; t = 4: the genome is shifted by one position to the right, while the two right-
most characters are trapped in the molecule (fixed data in gray) and a connection is
established to the north. (c) State of the connections between the molecules after every
four steps of the structural growth process; at time t = 24, when the path is closed,
the lowermost molecule of the first column delivers a close signal to the nearest left
neighbor cell.

Bio-inspired Computing Machines with Self-repair Mechanisms 133

:eastconnectflag

:south connectflag

:westconnectflag

:eastconnectand north branch flag

:westconnectand eastbranch flag

:north connectand branch activate flag

:em ptydata

:north connectflag

:top-lefttype

:top type

:top-righttype

:bottom -righttype

:bottom type

:bottom -lefttype

:living m ode

:spare m ode

:faultym ode

:repairm ode

:dead m ode

:righttype :lefttype

(a)

:m obile data :fixed data

(b)

Fig. 3. The characters forming the alphabet of an artificial genome. (a) Graphical rep-
resentations of the characters which are divided in 3 major classes: empty data, flag
data describing the paths between the molecules of the cell, and structural data de-
scribing both the position (type) and the state (mode) of each molecule. (b) Graphical
representation of the status of each character defining mobile or fixed data.

construction of the cell, i.e. storing the fixed data and defining the paths for
mobile data, depends on two major patterns (Fig. 2b): (1) If the five, four or
three rightmost memory positions of a molecule are empty (blank squares), the
characters are shifted by one position to the right (t = 0, 1, 2). (2) If the two
rightmost memory positions are empty (t = 3), the characters are shifted by
one position to the right; in this situation, the two rightmost characters are
trapped in the molecule (fixed data), and a new connection is established from
the second leftmost position toward the northern, eastern, southern or western
molecule, depending on the fixed flag information (for t = 3: “north connect
and branch activate flag”, and the connection is toward the northern molecule).
At time t = 24, the connection path between the molecules is closed and 24
characters, i.e. twice the contents of the structural genome, have been stored
in 24 memory positions of the cell (Fig. 2c). The lowermost molecule of the
first column delivers a close signal to the nearest left neighbor cell, while twelve
characters are fixed data, defining the structure of the final cell, and the twelve
remaining ones are mobile data, composing a copy of the structural genome.
Mobile data are ready for starting the growth of other cells, in both northern
and eastern directions.

134 A. Stauffer, D. Mange, and G. Tempesti

In order to grow an artificial organism in both horizontal and vertical direc-
tions, the mother cell should be able to trigger the construction of two daughter
cells, northward and eastward. At time t = 15 (Fig. 4a), we observe a pattern of
characters which is able to start the construction of the northward daughter cell;
the upper leftmost molecule is characterized by two specific flags, i.e. a fixed flag
indicating a north branch and the branch activation flag. The new path to the
northward daughter cell will start from the second leftmost memory position, at
time t = 16. At time t = 21, another particular pattern of characters will start
the construction of the eastward daughter cell; the lower rightmost molecule is
characterized by two specific flags, i.e. a fixed flag indicating an east branch, and
the branch activation flag (Fig. 4b). The new path to the eastward daughter cell
will start from the second leftmost memory position at time t = 22.

t= 15 t= 16 t= 17
(a)

t= 21

t= 22

t= 23
(b)

Fig. 4. Artificial cell division. (a) North directed branch starting the growth of a north-
ward neighboring cell. (b) East directed branch starting the growth of an eastward
neighboring cell.

The final cell shown in Fig. 2c will now start a load process, triggered by
the close signal delivered by its nearest right neighbor cell (t = i), when this
has finished its own structural growth process. A load signal will then propagate
east-west and bottom-up according to Fig. 5 (t = i+1 to i+3). At each step, this
signal will transform the corresponding molecule in two ways: (1) The structural
data in the third position are shifted in the fifth, i.e. rightmost position, of the
molecule memory. (2) The four leftmost memory positions are cleared (i.e. empty
data). At the end of this process (t = i + 4), we finally obtain an homogeneous
tissue of molecules, with four memory positions empty, and the fifth filled with
the structural data, defining both the boundaries of the cell and the position
of its living and spare molecules. This tissue is ready for being configured by a
second artificial genome, the functional genome.

Bio-inspired Computing Machines with Self-repair Mechanisms 135

t= i

t= i+1

t= i+2

t= i+3

t= i+4

Fig. 5. Triggered by the the close signal of the nearest right neighbor cell (t = i), the
load process stores the molecular types and modes of the artificial cell in the rightmost
memory position of the molecules while the four leftmost ones are cleared (t = i + 1 to
i + 4)

4 Functional Configuration

The goal of functional configuration is to store in the homogeneous tissue which
already contains structural data (Fig. 5, t = i+4) the functional data needed by
the specifications of the current application. This configuration is a functional
growth process, performed by applying the Tom Thumb algorithm with the fol-
lowing conditions: only the molecules in the “living mode” participate to the
growth process, while the molecules in the “spare mode” are simply bypassed.
The final cell is made up of four “living mode” molecules organized as an array of
two rows by two columns (Fig. 6b, t = 16), while one row of two “spare mode”
molecules are bypassed. Each molecule is now able to store in its four empty
memory positions four characters of the functional genome G2 (Fig. 6a), which
is implemented as a string of eight characters. These characters are either empty
data, flag data (Fig. 3a) or functional data; functional data are indispensable for
defining the final specifications of the cell under construction.

The Tom Thumb algorithm is executed according to the rules of structural
configuration (Section 3) if we consider that the fifth position of each molecule
is empty. At time t = 16 (Fig. 6b), 16 characters, i.e. twice the contents of the

136 A. Stauffer, D. Mange, and G. Tempesti

Fig. 6. Functional configuration of the “living mode” molecules. (a) Artificial genome
G2. (b) State of the functional growth process after every four steps.

functional genome G2, have been stored in the 16 memory positions of the “liv-
ing mode” molecules of the cell. Eight characters are fixed data, forming the
phenotype of the final cell, and the eight remaining ones are mobile data, com-
posing a copy of the original genome G2, i.e. the genotype. Both translation (i.e.
construction of the cell) and transcription (i.e. copy of the genetic information)
have been therefore achieved.

5 Cicatrization Mechanism

Fig. 6b, at time t = 16, shows the normal behavior of a healthy minimal cell,
i.e. a cell without any faulty molecule.

A molecule is considered as faulty, or in the “faulty mode” (Fig. 3a), if some
built-in self-test, not described in this paper, detects a lethal malfunction. Start-
ing with the normal behavior of Fig. 6b (t = 16), we suppose that two molecules
are suddenly in the “faulty mode” (Fig. 7, t = i): (1) The lowermost molecule in
the first column, which was in previously in the “living mode”. (2) The upper-
most molecule in the third column, which was before in the “spare mode”. While
there is no change for the uppermost molecule, which is just no more able to play
the role of a “living mode” molecule, the lowermost one triggers the following
cicatrization mechanism, made up of a repair process followed by a reset process
(Fig. 7).

1 2 3 4

G2

(a)

2 1

2 1

1 2 34

t = 4

4 1

3 2

t = 8

t = 12

2

1 1

2 3

4 4

3

t = 16
(b)

Bio-inspired Computing Machines with Self-repair Mechanisms 137

Fig. 7. Cicatrization mechanism performed as a repair process (t = i + 1 and i + 2)
followed by a reset process (t = i + 3 to i + 5); at the start (t = i), two molecules are
supposed in the “faulty mode” (F); two molecules are given the “repair mode” (R) at
time t = i + 1 and i + 2

– In a first step, a repair signal sent by the lowermost cell transforms the first
nearest right “living mode” neighbor in the “repair mode” (t = i + 1).

– In a second step, this signal continues to propagate eastward and transforms
the next nearest right “spare mode” neighbor in the “repair mode” (t = i+2).

– The repair signal having converted a “spare mode” molecule into a “repair
mode” one, a reset signal comes back in the opposite direction in order to
clear the four first memory positions of each “living mode” molecule (t = i+3
and i + 4).

– In the last step (t = i+5), the reset signal erases the contents of the memory
positions of the last molecule, the uppermost molecule in the first column.

In this mechanism, the contents of the four memory positions of any “faulty
mode” molecule is not erased, as these molecules are obviously not able to per-
form any function.

2

1 1

2 3

4 4

3

F

F

t = i

2

1

3

4

3 2

1 4

R

2

1

3

4

3 2

1 4

t = i+1

t = i+2

2

1

3

4

3 2

3 2

4 1

t = i+3

4 1

t = i+4

t = i+5

R

138 A. Stauffer, D. Mange, and G. Tempesti

Fig. 8. Functional reconfiguration, based on the artificial genome G2, following the
cicatrization mechanism; state of the functional growth process after every four steps

We finally obtain a new topological array containing four healthy molecules
(“living mode” and “repair mode”), which is able to be reconfigured in order
to emulate the original minimal cell, in its rectangular implementation (Fig. 6b,
t = 16). A functional reconfiguration, exactly similar to that of Section 4, is
launched. The preceding functional genome G2 (Fig. 6a) is introduced into the
trapezoidal array of Fig. 7 (t = i+5) and produces a new version of the original
minimal cell (Fig. 8, t = 16).

6 Regeneration Mechanism

In the general discussion about cicatrization (Section 2), we have already pointed
out that only one faulty molecule was tolerated between two spare molecules. A
second faulty molecule in the same row will trigger the death of the whole cell,
and the start of a regeneration mechanism with recalculation of the X coordinate.
Fig. 9 (t = i) illustrates such a case: the cicatrized cell of Fig. 8 (t = 16) is given
a new faulty molecule (“faulty mode”) in its uppermost molecule of the second
column. The regeneration mechanism, made up of a repair process and a kill
process, takes place as follows (Fig. 9):

– In a first step, the new faulty cell sends a repair signal eastward, in order to
look for a “spare mode” molecule, able to replace it (t = i).

– In a second step, the supposed “spare mode” molecule, which is in fact a
“faulty mode” one, enters the lethal “dead mode” and triggers kill signals
westward and southward (t = i + 1).

24 1 1

1

4 1 1

2 34

2

t = 4

4 1 14

23

t = 8

t = 12

4 1 1 4

23 3

4

2

1

t = 16

Bio-inspired Computing Machines with Self-repair Mechanisms 139

t= i

4 1 1 4

23 3

4

2

1

F

4 1 1 4

23 3

4

2

1

D

4 1 1 4

23 3

4

2

1

D

D

4 1 1 4

23 3

4

2

1

D

D

4 1 1 4

23 3

4

2

1

D

t= i+1

t= i+2

t= i+3

t= i+4

Fig. 9. Regeneration mechanism performed as a repair process (t = i + 1) followed by
a kill process (t = i + 2 to i + 4); at the start (t = i), a new molecule is supposed in
the “faulty mode” (F); all the molecules are then successively given the “dead mode”
(D) from time t = i + 1 to i + 4

– In the three next steps, the other molecules of the array are given the “dead
mode” (t = i + 5); the original minimal cell is dead, and a general KILL=1
signal is emitted so that the recalculation of the coordinates might take place.

7 Conclusion

While the Tom Thumb algorithm is a rather straightforward tool for designing
self-repairing patterns of any complexity, its implementation in systems which
are able to self-repair, involves a succession of four possible mechanisms:

– First, a structural configuration, defined by an artificial genome G1, is in-
jected in a homogeneous array of Tom Thumb cellular automata in order to
fix the boundaries of the cell (“top type”, “bottom type”, etc.) and the state
of each molecule (“living mode” or “spare mode”).

– Second, a functional configuration, described by an artificial genome G2, is
injected in the sole “living mode” molecules of the previously defined array;
the artificial organism under construction is then obtained.

140 A. Stauffer, D. Mange, and G. Tempesti

– Third, a minor fault, one molecule in the “faulty mode”, is detected between
two “spare mode” molecules; the cicatrization mechanism modifies the origi-
nal array in order to replace the “faulty mode” molecule by a “repair mode”
one; a reconfiguration process with the functional genome G2 concludes this
mechanism.

– Fourth, a major fault may happen, with two molecules in the “faulty mode”
between two “spare mode” molecules; the cell is no more able to self-repair,
and the regeneration mechanism kills all the molecules in the cell, before
generating a global KILL=1 signal triggering the recalculation of the X
coordinate.

The detailed architecture for the data and signals cellular automaton (DSCA)
which constitutes the basic molecule of the Tom Thumb algorithm has been
described in [6], while the modifications of this DSCA for performing the self-
repair mechanisms are presented in [9].

References

1. R. Canham and A. M. Tyrrell. An embryonic array with improved efficiency and
fault tolerance. In J. Lohn et al., editor, Proceedings of the NASA/DoD Confer-
ence on Evolvable Hardware (EH’03), pages 265–272. IEEE Computer Society, Los
Alamitos, CA, 2003.

2. H. de Garis. Evolvable hardware: Genetic programming of a Darwin machine. In
R. F. Albrecht, C. R. Reeves, and N. C. Steele, editors, Artificial Neural Nets and
Genetic Algorithms, pages 441–449. Springer-Verlag, Heidelberg, 1993.

3. J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams. A defect-tolerant
computer architecture: opportunities for nanotechnology. Science, 280(5370):1716–
1721, June 1998.

4. D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated
circuits: The Embryonics approach. Proceedings of the IEEE, 88(4):516–541, April
2000.

5. D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. Embryonics machines that
divide and differentiate. In A.J. Ijspert, D. Mange, M. Murata, and S. Nishio, ed-
itors, Biologically Inspired Approaches to Advanced Information Technology. Pro-
ceedings of The First International Workshop Bio-ADIT 2004, Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, 2004.

6. D. Mange, A. Stauffer, E. Petraglio, and G. Tempesti. Self-replicating loop with
universal construction. Physica D, 191(1-2):178–192, April 2004.

7. H. Pearson. The regeneration gap. Nature, 414(6):388–390, 2001.
8. L. Prodan, M. Udrescu, and M. Vladutin. Survivability of embryonic memories:

Analysis and design principles. In R. S. Zebulum et al, editor, Proceedings of the
NASA/DoD Conference on Evolvable Hardware (EH’04), pages 130–137. IEEE
Computer Society, Los Alamitos, CA, 2004.

9. A. Stauffer, D. Mange, and G. Tempesti. Embryonic machines that grow, self- repli-
cate and self-repair. In J. Lohn et al, editor, Proceedings of the 2005 NASA/DoD
Conference on Evolvable Hardware (EH’05), pages 290–293. IEEE Computer So-
ciety, Los Alamitos, CA, 2005.

10. L. Wolpert. The Triumph of the Embryo. Oxford University Press, Oxford, 1993.

Perspectives of Self-adapted Self-organizing Clustering
in Organic Computing

Thomas Villmann1,�, Barbara Hammer2, and Udo Seiffert3

1 University of Leipzig, Clinic for Psychotherapy
thomas.villmann@medizin.uni-leipzig.de

2 University of Technology, Institute of Computer Science
3 IPK Gatersleben, Pattern Recognition Group, Division Cytogenetics

Abstract. Clustering tasks occur for various different application domains in-
cluding very large data streams e.g. for robotics and life science, different data
formats such as graphs and profiles, and a multitude of different objectives rang-
ing from statistical motivations to data driven quantization errors. Thus, there
is a need for efficient any-time self-adaptive models and implementations. The
focus of this contribution is on clustering algorithms inspired by biological par-
adigms which allow to transfer ideas of organic computing to the important task
of efficient clustering. We discuss existing methods of adaptivity and point out a
taxonomy according to which adaptivity can take place. Afterwards, we develop
general perspectives for an efficient self-adaptivity of self-organizing clustering.

1 Introduction

Efficiency . . . the capacity to produce desired results with a minimum expenditure of
energy, time, or resource (Merriam-Webster Online Thesaurus)

Organic Computing (OC) offers efficient biologically inspired self-adaptive ap-
proachess to achieve desired results. Thereby, the desired results are usually not speci-
fied in an exact mathematical or formal way. Rather, the task is to keep a system which
is interacting with the environment or a human user in a state comfortable for the en-
vironment or the human user. Since the system, the environment, and the demands of
the users are changing, solutions need to be adaptive – machine learning solutions are
a popular technique to achieve this goal. The lack of exact mathematical objectives
has the consequence that unsupervised machine learning methods are most suitable for
these tasks. Clustering constitutes a key issue of unsupervised learning and it is related
to a broad variety of problems concerning data mining, information extraction, informa-
tion presentation, visualization, etc. It plays an essential role in OC-tasks, e.g. to cluster
the states or sensor data of a system, to allow a human understandable inspection of the
state of the system, or to allow a state dependent adaptation of the system. Clustering
can be considered as a prerequisite for self-regulation and self-adaptation mechanisms,
and it can efficiently be achieved by OC-methods imitating clustering behavior as ob-
served in biological matter.

� Correponding author.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 141–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

142 T. Villmann, B. Hammer, and U. Seiffert

We will focus on efficient biologically inspired self-organizing clustering algorithms.
The term efficiency implies three different requirements and three partially overlapping
forms of adaptivity of the models. Efficiency with respect to energy, time, or resource
of the hardware system aims at using the given hardware in an optimum way. The im-
plementation of the basic algorithms should be optimally adapted to the given amount
of memory, computation power, communication channels, its respective ratio and its
current reliability. Efficiency with respect to energy, time, or resource of the user refers
to an optimum adaptivity to the expectation of the user with respect to the presentation
of the result, the type of the extracted information, its level of detail and focus. Based
on possibly weak and possibly interactive signals of the user or the environment, the
implicit goal and explicit representation of the clustering model need to adapt itself to
the possibly changing desired results. Finally, efficiency with respect to energy, time,
or resource of the data and data presentation covers the adaptivity of the clustering
model with respect to the given information involved in the data. The method should
use the given, usually heterogeneous information in an optimum way and extract all rel-
evant information in a form which suits the given data. In particular, it should use this
information to guide learning systems in an optimum way anticipating the hardware set-
ting and user demands. Thereby, these three axes are closely interrelated and optimum
self-adaptive algorithmic design can only be achieved if all three aspects are taken into
account. We discuss existing approaches and perspectives for efficient adaptive self-
organizing clustering methods which adapt itself continuously to the given hardware
configuration, user demands, and prerequisites of the given data.

2 Self-organizing Clustering

The need for clustering occurs frequently in biological as well as technical systems:
animals need to separate other living beings into predators, preys, and other (neutral)
animals. A human web user has to classify documents into web sites about interesting
topics and those which are not relevant. An authentication server must cluster potential
users into legal ones and illegal hackers. Thereby, the desired taxonomies and categories
and their exact form are not a-priori known and the circumstances of the setting change
frequently. However, efficient, fast, and reliable clustering is of vital importance. Thus,
efficient anytime and anywhere clustering constitutes an important part of OC systems.

There exists a broad variety of clustering methods including graph clustering
[9, 19], statistical solutions [118, 128], joining and splitting methods [70], and many
other [50]. Here the focus will lie on intuitive prototype-based clustering methods
[12, 65, 75, 83, 84]. These models integrate organic behavior such as neighborhood
competition and cooperation, local and distributed operations, local simplicity and scal-
ability, the possibility of incremental learning and control of the stability and plasticity
of the models. Due to their flexibility and statistical integration of signals and events
they show very robust behavior which can be adapted to the specific requirements. The
atomic prototypes and similarity based operations provide a human-understandable and
controllable base of the models and offer a natural way for adaptivity driven by the en-
vironment or system invariants. In addition, the local and scalable design of the models
allows an efficient parallel implementation and any-time adaptivity of the model and

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 143

its specific mode. Thereby, only few models have so far been implemented as hard-
ware realizations such as [63, 79, 92, 94] and only first, although promising, attempts
for anytime adaptivity with respect to different continuous axes such as hardware load,
data type and user demands have been considered, e.g. [22, 100].

A variety of different, often biologically inspired prototype-based clustering algo-
rithms exist. The algorithms differ with respect to their objective – modeling of biolog-
ical phenomena such as direction selectivity in the visual cortex [13, 23, 120], statistical
modeling of given data [6, 54, 104], learning prototypical representations [31, 32], ex-
traction of relevant (possibly nonlinear) dimensions [58, 78], minimizing the distortion
error or variants [5, 75], developing topologically faithful representations [75, 109], or
visualization [63, 71, 72], to name just a few.

The basic ingredients of prototype based clustering algorithms are: (1) A number of
prototypes which represent the classes; thereby, the number might be fixed a priori or
it might be adapted during learning in an optimum way [18, 24, 86]. Depending on the
application and current hardware, flat or hierarchical topologies might be appropriate
[52, 125]. (2) An assignment method of data points to the classes; the assignment might
be fuzzy or crisp, and possibilistic versions, outlier detection, or vigilance can be intro-
duced to measure the novelty of data points [31, 51, 56]. (3) A similarity measure to de-
termine the similarity of data points and prototypes, or the similarity of two prototypes
or two data points, depending on the model. The similarity measure is often provided
by the Euclidean distance; however, fast alternatives, versions better adapted to paral-
lel hardware solutions, or general measures for non-Euclidean data are also relevant
[22, 29, 30, 34, 64, 79, 93, 100]. The similarity measure constitutes a basic local compu-
tation which widely influences the efficiency of the algorithms. Metric operations are
independent for each basic constituent and can be performed in parallel. (4) A commu-
nication strategy or neighborhood structure of the basic constituents which allows to in-
tegrate the local computations in an appropriate way [75, 83, 104]. The communication
load constitutes another important factor which influences the efficiency. Within parallel
implementations, efficient implementation of the communication method is widely in-
fluenced by the current hardware system. (5) Postprocessing methods to interpret the
results. This might include visualization and highlighting of important information,
component planes, supervised postprocessing, extraction of clusters and information
about the metric, or description by symbolic rules [8, 62, 102, 105, 121]. Unlike many
other neural methods such as feed-forward neural networks, prototype-based clustering
allows direct insight into its behavior and does not constitute a black-box mechanism,
thus directly initiating a couple of different interesting postprocessing possibilities.

Applications of prototype-based clustering algorithms range from data mining for
large text or multimedia databases [55, 69], robotics and control [2, 28, 84], finance
[62], computational biology [49, 61, 74, 125], medicine [89, 110, 126], up to large
scale satellite image processing [100, 113]. For simple applications, standard algo-
rithmic solutions are readily available. However, large scale applications require ef-
ficient and self-adaptive parallel implementations optimized for the specific require-
ments to offer an attractive anytime and anywhere information processing tool [63].
Thereby, different requirements have to be taken into account, depending on the num-
ber of prototypes, dimensionality of the data, the used metric, the user expectation,

144 T. Villmann, B. Hammer, and U. Seiffert

time scale of learning, and, most important, current hardware system. So far, only
static solutions mostly for the standard self-organizing map as proposed by Koho-
nen and k-means as proposed by Bezdek have been realized on parallel hardware
[5, 22, 33, 36, 37, 63, 66, 77, 79, 85, 92, 127]. Several approaches explicitly consider the
interaction of key ingredients of the algorithm and the hardware implementation and
provide promising results [22, 85, 92]. However, an anytime adaptive integration of the
algorithmic design, data requirements, hardware configuration, and user expectation has
not yet been investigated.

3 Dimensions of Adaptivity

3.1 Adaptivity with Respect to Statically Diverse or Dynamically Changing
Computer Hardware

Since a certain algorithm has always to be considered against the background of the
underlying computer hardware it is run on, these hardware issues are of essential in-
terest. Particularly when attempting to deal with efficient adaptive implementations the
utilized or generally available computer hardware moves into the focus of interest.

In general there are two structural levels where an adaptation of an algorithm on
particular computer hardware can be achieved: 1.) verbal algorithmic formulation and
2.) compilation.

While the latter is mandatory to get the algorithm run at all and is usually done
more or less automatically and without many options for the user, the first one offers
much more potential to achieve improved performance. On account of this it is rather
astonishing that even this opportunity is utilized that scarcely.

Early attempts date back to the 1980ies/1990ies [60, 67]. The probably best known
example of an adapted verbal algorithmic formulation is the FFT (Fast Fourier Transfor-
mation) software library within the ATLAS (Automatically Tuned Linear Algebra Soft-
ware) [124] framework. However, many of these approaches often assume a rather fixed
hardware. Dynamically adaptive components dealing with computer hardware chang-
ing at run-time are reported in more recent work [20].

In addition to the structural domain there exist three kinds of temporal layers where
hardware adaptability can be implemented (Fig. 1): 1.) install-time, 2.) before-execute-
time, and 3.) during run-time.

Both the inherent complexity and challenge on the one side and the possible benefit
on the other increase from top to bottom of this list. Thus the most promising but also
most challenging level is undoubtedly at run-time. Finally this is the only one where the
above mentioned dynamic adaptation is efficiently feasible.

Parallel implementations of neural methods, in particular prototype-based models,
which are dedicated to efficient implementations on different computer hardwar can
be found e.g. in [15, 88, 92, 116]. The architectures range from dedicated neural hard-
ware, such as the CNAPS parallel processor architecture by Adaptive Solutions either
as PCI acceleration board (64 processors) or development system with up to 512 paral-
lel processors (in [92]) up to very powerful general purpose parallel clusters (32 Dual
Pentium III/IV with Myrinet interconnect) and shared memory systems (e.g. 64 parallel

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 145

Hardware

Time Domain

Structure Domain

Verbal Algorithmic Formulation

Compilation

Run-time

Before-execute-time

Install-time

Fig. 1. Two different domains to implement a computer hardware adaptive algorithm. While the
structural domain is divided into compilation and verbal algorithmic formulation the time domain
consists of install-time, before-execute-time, and run-time.

HP N-class processors, 32 Alpha EV7 processors) [15, 88]. An exemplary demonstra-
tion of the differences of several computer hardware for of a showcase Self-Organizing
Map has been pesented in [87]. Thereby, the impact of limited communication band-
width and latency is demonstrated which gives a shared memory machine (fastest inter-
processor communication) a significant lead over the inherently faster processors of
the Beowulfs. These implementations still assume fixed resources availability during
run-time, although trends and starting points for the hardware adaptivity at run-time,
as developed beforehand, have already been identified. Within this line, OC technolo-
gies have already been successfully realized to guide a biologically inspired automatic
parallelization process [57, 117].

3.2 Adaptivity with Respect to User Specific Models

For an efficient implementation of prototype-based clustering at run-time according to
the current hardware configuration and requirements, one has to identify basic algo-
rithmic design concepts which can be adapted according to the current situation. The
adaptivity of self-organized clustering algorithms can be seen in the light of its relations
to the underlying model, user specific requirements, or post-processing tasks.

A first focus in this direction is the general time characteristics of the adaptation
scheme. One can distinguish several modes: 1.) instantaneous learning, 2.) rapid learn-
ing, and 3.) life-long learning.

146 T. Villmann, B. Hammer, and U. Seiffert

In instantaneous learning the provided information is immediately available within
the model. Instantaneous learning is important in critical situations where entirely new
or only few data are provided, or in hardware critical situations where prototype update
and communication is costly. ART-networks constitute one example [31]: an incom-
ing pattern is either assigned to an existing cluster or it is taken as the generator for
a new one. The decision crucially depends on the respective control parameter (vig-
ilance) which is usually heuristically determined. Rapid learning is characterized by
methods which allow short learning with only few available data and medium update
and communication load, although, unlike instantaneous learning, faults and outliers
can be corrected due to (limited) integration. Rapid models generate a rough descrip-
tion which can serve as a base for fine tuning work or hypothesis testing later on. Batch
versions of the self organizing map (SOM) constitute a basic example [63]. More ad-
vanced schemes are the parameterized SOM (PSOM), which uses a very sparse neuron
lattice with subsequent interpolation [82], or attention based learning [7, 16], which
controls the force of adaptivity by an attention level. Life-long learning frequently oc-
curs in autonomous adaptive systems. The system must be able to adapt in a changing
environment, however, all-time remaining stable, reliable, and consistent. This yields
robust adapted behavior, but also computational burdens and the well-known stability-
plasticity dilemma [38].

A second parameter is given by the complexity of the model. Different possibilities
include: 1.) fixed or adapted, flat or hierarchical topology, 2.) fixed or growing / shrink-
ing number of prototypes.

Sparse models allow fast learning with only weak communication load, however,
the data domain might only insufficiently be covered. Thus, adaptive and hierarchical
variants constitute interesting alternatives since they allow a control of the complexity
and easy parallelization. Models with adaptive topology and model complexity cover
ART networks [31] and variants of neural gas (NG), SOM, or the generative topographic
map (GTM) [4, 25, 101]. These models include an incremental and, hence, hierarchical
growing, but no subsequent model reduction techniques. Several approaches have been
proposed in the context of growing and shrinking dynamics [26, 27, 38]; however, a
satisfying approach is still open.

A third important parameter of the models is the evaluation measure and user per-
ception. This topic is related to the fundamental issue that the usually only imprecise
and varying question ‘what is adequate’ must be expressed in a formal way to imple-
ment the algorithm on computer hardware. One can distinguish several different eval-
uation criteria which can drive the algorithmic design: 1.) topology preservation, 2.)
representation of the underlying statistical distribution, 3.) geometric aspects, and 4.)
subsequent supervised tasks.

Various different measures for topology preservation in SOMs have been proposed
[3, 109], some of which are complex to compute. Further approaches try to capture
topology preservation by internal forces such as in multi-dimensional scaling [68]. Al-
ternative evaluation measures include different types of partition entropy, intra-inter
cluster correlations, or information based evaluation criteria [5, 21, 81]. Most of these
proposals have not yet been integrated within a hardware implementation, however,
they would offer a starting point to continuously guide design choices of models and

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 147

map the topology to the current hardware topology. A particularly promising step to-
wards any-time adaptivity of the topology is offered by growing models: A special
multidimensional topology including an adapted neighborhood relationship to process
image sequences was developed in [90]. This basic algorithm has been equipped with a
growing feature [86] and was successfully implemented also on parallel hardware [92].
Further proposals for very successful automatically growing technologies have been de-
veloped e.g. in [4, 107]. Among other applications, these models have been successfully
applied to remote sensing images and biomedical data [112, 113, 114].

Vector quantization can be optimized with respect to information transfer depend-
ing on user or system specific requirements. One possibility is offered by a control of
the so-called magnification [84] which can be adapted e.g. by attention based learning
[108]. There exist further possibilities to estimate and control the magnification factor
as discussed in [11, 106, 108, 108, 111]. A further evaluation measure is offered by user
controlled posterior labeling of clusters, such as supervised-SOM, counterpropagation,
or learning vector quantization [31, 63]. This feature also allows the inclusion of fuzzy
assignments [73]. In addition, it offers a natural interface to human interaction. Yet,
the anytime adaptivity of models according to these objectives adapted to the given
situation and hardware is not explicitly integrated in current algorithms.

3.3 Adaptivity with Respect to Specific Data Structures

Self-organizing clustering can be adapted with respect to the user model in different
ways to meet optimum algorithm-hardware interaction, including three (continuous)
axes as specified above: an optimum time scale of learning, an optimum model com-
plexity, and an adaptive learning objective. Further adaptation schemes are offered if
the data level is taken into account.

The efficiency of prototype-based models is essentially determined by the choice
of the metric and the local topological cooperation of neurons. These two ingredients
interact and the complexity of the computation can be varied among these two ingre-
dients. Strong neighborhood cooperativity causes a smoothness of the map such that
approximate values for the single similarities are sufficient for a valid evaluation of the
algorithm. If no topological cooperation is present, the winner determination has to be
precise. Naturally, the hardware configuration suggests an optimum choice of the ratio
of precision of local similarity versus cooperativity since the former can be done in
parallel whereas the latter requires communication processes. A key factor within this
process is the data format and the respective similarity measure. Important factors are:
1.) the dimensionality of the data, 2.) the availability of similarity information in case
of missing or proximity data, and 3.) the complexity of similarity computation in case
of real-life structured data.

Naturally, the complexity of the similarity computations directly scales with data
dimensionality, and it is worth integrating efficient parallel versions, dynamic or hier-
archical computation, and neighborhood integration for high dimensionality. Thereby,
static metrics are often not appropriate since they require (usually not available) prior
knowledge on the data. Recent alternatives are offered by learning metrics which
adapt the similarity measure according to the given situation, such as proposed in
[10, 47, 48, 62, 76, 115]. Thereby, the metric changes within the system and, conse-

148 T. Villmann, B. Hammer, and U. Seiffert

quently, an optimum implementation has to be adapted according to the current basic
algorithmic setting. Interestingly, the beneficial effects can also be accompanied by a
theoretical counterpart [46]. Naturally, criteria to adapt the metric appropriately have
to be identified. Criteria which are solely based on general paradigms of unsupervised
processing have been proposed in [8, 47], for example.

Often, in particular for proximity data where no explicit metric calculation is avail-
able, data are sparse and entries might be lacking. There exists a variety of dif-
ferent proposals to tackle this scenario from an algorithmic point of view, such as
[14, 30, 64, 80, 93]. However, efficient parallel realizations have not yet been consid-
ered. The situation is even more difficult if real-life structured data such as text
sequences, biomedical data, graphs, etc. are considered. Recent proposals deal with
general data structures and general metrics [34, 35, 44, 119]. Since metric calculation
might even include NP-hard problems if complex structures such as graphs are consid-
ered, an efficient and parallel implementation is here mandatory. Particularly promising
approaches where the recursive data dynamics guides the model design have recently
been integrated into a general framework, which allows an adaptation of the model and
context representation according to the specific needs inherent in the data [44, 95, 96].
In general, real life data containing additional structure inject a fundamentally new
quality towards algorithm design including problems with respect to the efficiency of
the models, but also opening new possibilities for efficient high-level human-system
interaction based on structure induced high-level information as demonstrated e.g. in
[39, 40, 41, 42, 43, 45, 96].

Emphasizing the data layer offers another striking possibility for OC-solutions: one
key paradigm of OC is self -adaptivity, i.e. the system should optimize itself with respect
to the current environment taking the current state of the hardware system into account
and anticipating the user expectation as much as possible. Since (signal) data, system
and user demands change frequently, adaptivity and self-control need to happen online
and in real time. Information to automatically control self-adaptivity must be directly
extracted from the data and its interaction with the system. Thus, adaptivity with respect
to the given data constitutes an essential part of OC systems which allows an automatic
supervision of the algorithmic and hardware interaction.

Naturally, a couple of techniques exists to control parameters of adaptive compo-
nents of self-organizing clustering: several approaches in this direction are based on
information theoretic data evaluation such as optimal information transfer (maximum
mutual information) in clustering and vector quantization in conscience learning [104].
The algorithm developed by DeSieno [17] and the frequency sensitive competitive
learning (FSCL) [1] are further realizations of these ideas. A generalization of this
framework is offered by perceptual learning [53]. These techniques help to automati-
cally tune hyperparameters of the models. Thereby, data invariances are of particular
interest to guide the system in a systematic and objective way. Self-organizing cluster-
ing offers a couple of techniques to automatically extract appropriate data invariances
within the given system, such as: 1.) extraction of relevant possibly nonlinear directions
with principal or independent component analysis and variants [58, 104], 2.) grouping
and clustering at different hierarchical levels such as exemplarily demonstrated within
the semantic map or competitive layer models (CLM) [63, 123], and 3.) explicit feature

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 149

learning and extraction such as in the adaptive subspace SOM (ASSOM) or learning
CLM [122].

These methods provide efficient self-organizing models to automatically extract low-
dimensional representations of the given information. However, this information has
only partially been integrated into a control of the algorithm design so far, and it has
not yet been integrated into efficient hardware implementations.

Data adaptivity goes far beyond simple parameter optimization. Efficient models
must be adapted to the specific data structures and information contained in the data
and its interaction with the hardware. Depending on the situation, fundamental quali-
tative changes of data presentation, data handling, or the learning paradigm might be
necessary. Apart from automatic adaptations, user feedback is desirable or necessary
at some points to confirm the optimum settings as extracted from data. Information
contained in the data offers a natural way to initiate a user-feedback cycle by means
of human-understandable information in critical situations. Due to their intuitive ba-
sic principles, prototype-based algorithms offer insight into their behavior. However, in
human-computer interaction, explicit representative symbolic descriptions can speed up
and focus the information transfer. Various different approaches include 1.) description
by decision trees [45, 103], and 2.) first models for spatio-temporal data [95, 96].

These techniques have mainly been implemented for one-shot information extrac-
tion from given data. In principle, they offer an interesting data-driven possibility for
continuous high-level human-computer interaction.

4 Perspectives

Based on this taxonomy and existing integrative work towards efficient any-time self-
adaptive self-organizing clustering, several particularly promising perspectives can be
identified.

4.1 Adaptivity with Respect to Hardware

In the light of a dynamic adaptation of algorithms to changing computer hardware as
well as the temporal levels mentioned in Sect. 3.1, a number of special properties and
requirements of parallel computing arise. While at a sequential run of a particular algo-
rithm, for example on a single PC, a changing hardware at run-time is not very likely,
at distributed processing, especially on computer clusters (e.g. Beowulfs) and compute
farms, a dynamically changing environment is quite common. Along with increasing
spread, popularity, and utilization of computer clusters the demand on the one side but
also the reward on the other side are increasingly high.

This concerns to a lesser extend a complete failure or breakdown of an entire com-
putation node, which is often handled by load balancing systems on operating system
level, but rather an incremental shift of available resources (e.g. processor time, trans-
mission bandwidth, memory access) caused by concurrent processes which are asyn-
chronously started or stopped. Looking from this angle, this concerns all platforms of
potential hardware – from the above mentioned clusters and general purpose shared
memory systems up to dedicated neural hardware.

150 T. Villmann, B. Hammer, and U. Seiffert

As described above, real hardware adaptivity and self-organization has to take place
at run-time level and can not be achieved by conventional load balancing systems,
no matter how sophisticated they might be. In fact, a combination of the verbal al-
gorithmic formulation level (from the structure domain) with the run-time level (from
the time domain) is desired. That means the formulation, and not just the numerical
implementation, of a considered algorithm has to be modified in time, in fact at run-
time.

So far this is the definition of a quite general and formal aim. Now the question is, are
there algorithms allowing a preferably continuous but at least stepwise adjustment of
their demand for different resources. Obviously there are basic algorithms, in the sense
of basic software modules, possessing this feature. Undoubtedly the Fast Fourier Trans-
formation is a prominent example, because it can at least incrementally be formulated,
for example, more processor time demanding for the sake of less memory consumption
and vice versa.

In terms of computer hardware adaptability the research focus has to go far beyond
the above described techniques. This perfectly accompanies the data-driven adaptation
of the algorithms as described above. Besides the need to parallel implement these
mainly novel algorithms to make them applicable to large-scale data sets and to make
them available to the scientific community as well as their general suitability to be
run in parallel (due to their inherent parallelism), they particularly offer structural set
screws to adjust their demands for several resources. Especially in the cases of variable
neighborhood integration, high-dimensional metrics, hierarchical parallelization, grow-
ing / shrinking techniques, and variable time-scale of learning this seems to be most
promising.

This consequently leads to an analysis of the above described neural methodologies
to figure out, whether at all, to what extend and how they can be formulated and imple-
mented to reflect changing hardware resources availability at run-time. This marks up a
focal point of research in this direction. As reported in section 2, a variety of different
prototype-based models exist. These different design choices have to be integrated and
implemented in such a way that a full pairwise combination is possible including pos-
sible switching or adaptation of the choices, whereby the algorithmic formulation has
to be optimally adapted to the current hardware system.

4.2 Adaptivity with Respect to User Specific Models

As pointed out in section 3.2, three continuous axes can be identified which allow an
adaptation with respect to model choices: the time scale of learning, the model com-
plexity, and the model objective. Different concrete realizations have been proposed in
the literature, however, a full combination of all possibilities within one framework is
not available so far. This would be mandatory to allow a continuous adaptation of the
parameters and, in particular, state dependent switching between different possibilities.
As for the previous context, a unified formulation of the parameter choices has to be
investigated with particular focus on its respective optimum implementation on a given
hardware configuration.

Depending on the given hardware, in particular the communication channels and ca-
pacity and memory of local units, different algorithmic settings can be implemented

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 151

efficiently. If communication is costly, neighborhood cooperation should be sparse and
mostly realized on single processors. This fact indicates that hierarchical or dynamic
settings are better suited in this scenario than other topologies. In addition, neighbor-
hood cooperativity and, consequently, the learning objective might change. Thereby,
not only the overall communication flow but also the exact local connectivity of hard-
ware components on the one side and local algorithmic units on the other side are of
fundamental importance. Methods to adapt the current neighborhood cooperativity in
an optimum way with respect to the current hardware topology have to be investigated
within this context.

The efficiency of different time scales of learning widely depends on the capacity
of the basic units used to compute the weight updates and its storage capacity. If up-
dates are costly or not possible at all, instantaneous learning has to be implemented. If
changes are fast, life-long learning might be better suited in order to achieve optimum
robustness and adaptivity of the system.

The learning objective constitutes a third parameter which is closely connected to
the question of the topology. An explicit focus on the current learning objective can
be of particular interest to guarantee stable behavior if the algorithmic implementation
changes. An explicit learning objective can describe the current function of the clus-
tering in an objective, algorithm independent way. Thus, it can be used to guarantee
robustness if the algorithmic design is changed because of a varying hardware load.

Since the design choices interact – a large neighborhood cooperation can be used
together with only small update steps, as an example – their pairwise connection and
combination has also to be investigated. Thus, unified possibilities to adapt these design
choices of the model according to the given hardware and pairwise compatibility in real-
time have to be developed and examined both, from a general algorithmic perspective
as well as within large-scale parallel hardware implementations.

4.3 Adaptivity with Respect to Specific Data Structures

Focusing on the data offers a fourth adaptation axes: the metric of the model. Of partic-
ular interest are thereby adaptive and non-Euclidean metrics which allow an application
of the systems to virtually every type of real-life data containing missing values, rela-
tional information, etc. A particularly promising direction consists in the integration of
the rapidly developing area of adapted non-standard metrics into a unified efficient im-
plementation of the models. Subsequently, an efficient online hardware implementation
as well as its compatibility to other design choices can be investigated. Depending on
the metric type and its algorithmic integration into the model, parallel implementations
also of the basic metric might be interesting. Similarity of very high dimensional data
or graphs, as an example, is a computationally demanding problem. On the other side,
these distances can benefit from locally similar graphs for which parts of the computa-
tion might be shared. Thus, a parallelization on the level of the metric is also promising.

A second, fundamentally different aspect provided by the data is the possibility to au-
tomatically guide self-adaptivity of the system on the one side and to provide high level
information for human-computer interaction on the other side. This possibility goes be-
yond an optimum matching of the given hardware and it can also anticipate semantic
issues. Both possibilities, self-adaptation and high level human-computer interaction,

152 T. Villmann, B. Hammer, and U. Seiffert

have to be studied in depth and investigated with respect to its effect on optimum hard-
ware implementations.

For an adaptive control of the algorithmic design by means of data information,
it is very important to automatically extract relevant information and invariances of
the data. Invariances such as the overall density, distinct directions, relevant features,
correlations, information content, etc. can be used to determine appropriate parameter
choices which optimum fit the data if no further prior information is available. As a
simple example, the degree of novelty of a new data point depends on the principled
data characteristic. The vigilance parameter which controls the setup of a new cluster
in ART should thus depend on this data characteristic. Much more involved control
schemes are possible if abstract data characteristics can be extracted: one can think of
information-based adaptation of metric parameters, a dependency of the time scale of
learning and the time characteristic of data, a data adapted hierarchy level which mirrors
invariant features, etc. These possibilities have a direct effect on the efficiency of the
models. Since they change the overall algorithmic design, they need to be integrated
into hardware adapted elements of the models.

Human-computer interaction has no direct influence on the current hardware config-
uration and algorithmic setting. Rather, it provides an explicit way to control the system
and its objectives by human feedback and it thus has an indirect effect on the design.
Nevertheless, this point is of particular interest with respect to the overall control and re-
liability of the models. For critical situations an explicit user feedback is desirable. High
level human understandable information thereby provides the most efficient and most
reliable way to initiate a human-system interaction and explicit control steps. Thereby,
critical situations can be automatically detected from the data and the model referring
to system invariances which are hurt at these time points.

Thus, data information can offer both, additional algorithmic design possibilities
which interact with model properties, and implicit any-time as well as explicit control
information to adaptively guide the system in an optimum way.

5 Conclusions

Clustering constitutes an ubiquitous problem which occurs in one form or the other for
nearly every type of automatic information transfer. Efficient parallel implementations
are required if large amounts of data or high dimensional and complicated structures
are to be processed. This is a standard setting in different application areas includ-
ing symbolic domains such as text or web mining and technical applications such as
processing sensor data in robotics or spectral data in life-science. Thus, the develop-
ment of an efficient parallel realization of a fundamental class of OC algorithms, adap-
tive prototype-based clustering, which have wide application areas also for very large
data sets (e.g. image processing, bioinformatics) and in distributed environments (e.g.
robotics, internet) is higly desirable. Efficient self-adaptive hardware realizations are of
fundamental relevance. Since the load of the hardware system, the user requirements,
and data prerequisites change frequently, adaptivity is of vital importance to achieve
efficient and reliable behavior. Prototype-based clustering algorithms are based on OC
principles such as local distributed basic processing and neighborhood interaction, such

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 153

that they offer interesting and efficient possibilities of parallelization, and they show ro-
bust behavior. Thus, adaptivity of these essential OC-models can be based on robust and
effective OC-principles itself to allow an optimum control with respect to the hardware
context, user context and model context as discussed in this article.

References

1. S. C. Ahalt, A. K. Krishnamurty, P. Chen, and D. E. Melton. Competitive learning algo-
rithms for vector quantization. Neural Networks, 3(3):277–290, 1990.

2. F. Azam and H. F. V. Landingham. Adaptive self organizing feature map neuro-fuzzy tech-
nique for dynamic system identification. In Proceedings of the 1998 IEEE International
Symposium on Intelligent Control (ISIC) held jointly with IEEE International Symposium
on Computational Intelligence in Robotics and Automation (CIRA) Intelligent Systems and
Semiotics (ISAS), pages 337–41. IEEE, New York, NY, USA, 1998.

3. H.-U. Bauer and K. R. Pawelzik. Quantifying the neighborhood preservation of Self-
Organizing Feature Maps. IEEE Trans. on Neural Networks, 3(4):570–579, 1992.

4. H. U. Bauer and T. Villmann. Growing a hypercubical output space in a self-organizing
feature map. IEEE Transactions on Neural Networks, 8(2):218–26, 1997.

5. J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New
York, 1981.

6. C. Bishop, M. Svensen, and C. Williams. Developments of the generative topographic
mapping. Neurocomputing, 21(1):203–224, 1998.

7. C. M. Bishop, M. Svensen, and C. K. I. Williams. Magnification factors for the SOM and
GTM algorithms. In Proceedings of WSOM’97, Workshop on Self-Organizing Maps, Espoo,
Finland, June 4–6, pages 333–338. Helsinki University of Technology, Neural Networks
Research Centre, Espoo, Finland, 1997.

8. T. Bojer, B. Hammer, M. Strickert, and T. Villmann. Determining relevant input dimensions
for the self-organizing map. In L. Rutkowski and J. Kacprzyk, editors, Neural Networks
and Soft Computing (Proc. ICNNSC 2002), Advances in Soft Computing, pages 388–393.
Physica-Verlag, 2003.

9. U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algorithms. In
ESA 2003, pages 568–579, 2003.

10. V. Cherkassky, D. Gehring, and F. Mulier. Comparison of adaptive methods for function
estimation from samples. IEEE Transactions on Neural Networks, 7:969–984, 1996.

11. J. Claussen and T. Villmann. Magnification control in winner relaxing neural gas. Neuro-
computing, 63(1):125–137, 2005.

12. M. Cottrell, J. Fort, and G. Pages. Theoretical aspects of the SOM algorithm. Neurocom-
puting, 21(1):119–138, 1998.

13. M. Cottrell and J. C. Fort. A stochastic model of retinotopy: a self-organizing process.
Biological Cybernetics, 53:405–411, 1986.

14. M. Cottrell, P. Letremy, and E. Roy. Analysing a contingency table with kohonen maps: A
factorial correspondence analysis. In IWANN 1993, pages 305–311, 1993.

15. T. Czauderna and U. Seiffert. Implementation of MLP networks running Backpropagation
on various parallel computer hardware using MPI. In Proceedings of the 5th International
Conference on Recent Advances in Soft Computing, Dec 2004. submitted.

16. R. Der and M. Herrmann. Attention based partitioning. In M. V. der Meer, editor, Bericht
Des Status–Seminar Des BMFT Neuroinformatik, pages 441–446. DLR (Berlin), 1992.

17. D. DeSieno. Adding a conscience to competitive learning. In Proc. ICNN’88, Internat.
Conf. on Neural Networks, pages 117–124, Piscataway, NJ, 1988. IEEE Service Center.

154 T. Villmann, B. Hammer, and U. Seiffert

18. M. Dittenbach, A. Rauber, and D. Merkl. Recent advances with the growing hierarchical
self-organizing map. In Proc. 3rd Workshop on Self-Organizing Maps, pages 140–145,
Lincoln, England, 2001.

19. H. A. D. do Nascimento and P. Eades. A system for graph clustering based on user hints.
In P. Eades and J. Jin, editors, Selected papers from Pan-Sydney Workshop on Visual Infor-
mation Processing, Sydney, Australia, 2001. ACS.

20. J. Dongarra and V. Eijkhout. Self-adapting numerical software for next generation applica-
tions. Int. J. of High Performance Computing and Applications, 17(2):125–131, 2003.

21. R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.
22. M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski. Algorithmic transforms in the im-

plementation of k-means clustering on reconfigurable hardware. In FPGA 2001, Ninth
International Symposium on Field Programmable Gate Arrays (Association for Computing
Machinery), pages 103–110, 2001.

23. I. Farkas and R.Miikkulainen. Modeling the self-organization of directional selectivity in
the primary visual cortex. In Proceedings International Conference on Artificial Neural
Networks, pages 251–256, 1999.

24. B. Fritzke. Growing cell structures – a self-organizing network for unsupervised and super-
vised learning. Neural Networks, 7(9):1441–1460, 1994.

25. B. Fritzke. A growing neural gas network learns topologies. In G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors, Advances in Neuralm Information Processing Systems 7, pages
625–632, Cambridge MA, 1995. MIT Press.

26. B. Fritzke. The LBG-U method for vector quantization - an improvement over LBG inspired
from neural networks. Neural Processing Letters, 5(1):35–45, 1997.

27. B. Fritzke. A self-organizing network that can follow non-stationary distributions. In
W. Gerstener, A. Germond, M. Hasler, and J.-D. Nicoud, editors, Artificial Neural Networks
– Proceedings of International Conference on Artificial Neural Networks (ICANN’97) Lau-
sanne, pages 613–618. LNCS 1327, Springer Verlag Berlin Heidelberg, 1997.

28. U. Gerecke and N. Sharkey. Quick and dirty localization for a lost robot. In Proceed-
ings 1999 IEEE International Symposium on Computational Intelligence in Robotics and
Automation. CIRA’99., pages 262–7, Piscataway, NJ, 1999. IEEE Service Center.

29. S. Gold, A. Rangarajan, and E. Mjolness. Learning with preknowledge: clustering with
point and graph matching distance measures. In NIPS, 1995.

30. T. Graepel and K. Obermayer. A stochastic self organizing map for proximity data. Neu-
ralComputation, 11:139–155, 1999.

31. S. Grossberg. Adaptive pattern classification and universal recoding: I. parallel development
and coding of neural feature detectors. Biological Cybernetics, 23:121–134, 1976.

32. S. Grossberg and J. R. Williamson. A self organizing neural system for learning to recognize
textured scenes. Vision Research, 39:1385–1406, 1999.

33. H. Guan, C. Li, T. Cheung, and S. Yu. Parallel design and implementation of SOM neural
computing models in PVM environment of a distributed system. In Advances in Parallel
and Distributed Computing, pages 26–31. 1997.

34. S. Günter and H. Bunke. Self-organizing map for clustering in the graph domain. Pattern
Recognition Letters, 23:401–417, 2002.

35. M. Hagenbuchner, A. Sperduti, and A. Tsoi. A self-organizing map for adaptive processing
of structured data. IEEE Transactions on Neural Networks, 14:191–505, 2003.

36. T. Hämäläinen. Parallel implementations of self-organizing maps. In U. S. et al., editor,
Self-organizing neural networks. Recent advances and applications, pages 245–278. 2001.

37. T. Hämäläinen, H. Klapuri, J. Saarinen, and K. Kaski. Mapping of SOM and LVQ algo-
rithms on a tree shape parallel computer system. Parallel Computing, 23:271–289, 1997.

38. F. Hamker. Life-long learning cell structures - continously learning without catastrophic
inference. Neural Networks, 14:551–573, 2001.

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 155

39. B. Hammer. Learning with Recurrent Neural Networks. Lecture Notes in Control Theory
and Information Sciences. Springer, 2000.

40. B. Hammer. Compositionality in neural systems. In M. Arbib, editor, Handbook of Brain
Theory and Neural Networks, pages 244–248. MIT Press, 2nd edition, 2002.

41. B. Hammer. Recurrent neural networks for structured data – a unifying approach and its
properties. Cognitive Systems Research, 3(2):145–165, 2002.

42. B. Hammer. Perspectives on learning symbolic data with connectionistic systems. In
R. Kühn, R. Menzel, W. Menzel, U. Ratsch, M. Richter, and I. Stamatescu, editors, Adap-
tivity and Learning, pages 141–160. Springer, 2003.

43. B. Hammer and B. Jain. Neural methods for non-standard data. In M. Verleysen, editor,
ESANN’2004, pages 281–292. D-side publications, 2004.

44. B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. A general framework for unsuper-
vised processing of structured data. Neurocomputing, 57:3–35, 2004.

45. B. Hammer, A. Rechtien, M. Strickert, and T. Villmann. Rule extraction from self-
organizing maps. In J.R.Dorronsoro, editor, Artificial Neural Networks – ICANN 2002,
pages 877–882. Springer, 2002.

46. B. Hammer, M. Strickert, and T. Villmann. On the generalization ability of GRLVQ net-
works. Neural Processing Letters, 21:109–120, 2005.

47. B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity
measure. Neural Processing Letters, 21:21–44, 2005.

48. B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural
Networks, 15(8-9):1059–1068, 2002.

49. J. Hanke, G. Beckmann, P. Borck, and J. Reich. Self-organizing hierarchic networks for
pattern recognition in protein sequence. Protein Sciences, 5(1):72–82, 1996.

50. J. A. Hartigan. Clustering Algorithms. John Wiley, 1975.
51. C. He and M. Girolami. Novelty detection employing an l2 optimal nonparametric density

estimator. Pattern Recognition Letters, 25(12):1389–1397, 2004.
52. J. Herrero, A. Valencia, and J. Dopazo. A hierarchical unsupervised growing neural network

for clustering gene expression patterns. Bioinformatics, 17(2):126–136, 2001.
53. M. Herrmann, H.-U. Bauer, and R. Der. The ’perceptual magnet’ effect: A model based

on self-organizing feature maps. In L. S. Smith and P. J. B. Hancock, editors, Neural
Computation and Psychology, pages 107–116, Stirling, 1994. Springer-Verlag.

54. T. Heskes. Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans-
actions on Neural Networks, 12:1299–1305, 2001.

55. T. Honkela, S. Kaski, K. Lagus, and T. Kohonen. WEBSOM– self-organizing maps of
document collections. In Proceedings of WSOM’97, Workshop on Self-Organizing Maps,
Espoo, Finland, June 4–6, pages 310–315. Helsinki University of Technology, Neural Net-
works Research Centre, Espoo, Finland, 1997.

56. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. Wiley, 1999.
57. J. Huhse, T. Villmann, P. Merz, and A. Zell. Evolution strategy with neighborhood attraction

using a neural gas approach. In J. Merelo, A. Panagiotis, and H.-G. Beyer, editors, Parallel
Problem Solving from Nature VII, LNCS 2439, p. 391–400. Springer, 2002.

58. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, 2001.
59. T. Imamura and K. Naono. An evaluation towards an automatic tuning eigensolver with

performance stability. In Proceedings of Symposium on Advanced Computing Systems and
Infrastructures (SACSIS), pages 145–152, 2003.

60. H. Karner and C. W. Ueberhuber. Portable high performance fft algorithms. Tech. Report
AURORA TR1997-14, Vienna University of Technology, 1997.

61. S. Kaski, J. Nikkilä, M. Oja, J. Venna, P. Törönen, and E. Castren. Trustworthiness and
metrics in visualizing similarity of gene expression. BMC Bioinformatics, 4:48, 2003.

156 T. Villmann, B. Hammer, and U. Seiffert

62. S. Kaski, J. Sinkkonen, and J. Peltonen. Bankruptcy analysis with self-organizing maps in
learning metrics. IEEE Transactions on Neural Networks, 12:936–947, 2001.

63. T. Kohonen. Self-Organizing Maps. Springer, 1995.
64. T. Kohonen and P. Somervuo. How to make large self-organizing maps for nonvectorial

data. Neural Networks, 15(8-9):945–952, 2002.
65. P. Koikkalainen. Tree structured self-organizing maps. In Kohonen Maps, pages 121–130.

Elsevier, 1999.
66. P. Kotilainen, J. Saarinen, and K. Kaski. Mapping of som neural network algortihms to a

general purpose parallel neurocomputer. In ICANN’1993, pages 1082–1087. 1993.
67. A. R. Krommer and C. W. Ueberhuber. Architecture adaptive algorithms. Parallel Com-

puting, 19(4):409–435, 1993.
68. J. B. Kruskal and W. M. Multidimensional Scaling. Sage Publications, 1977.
69. J. Laaksonen, J. Koskela, S. Laakso, and E. Oja. PicSOM - content-based image retrieval

with self-organizing maps. Pattern Recognition Letters, 21(13-14):1199–1207, 2000.
70. G. N. Lanc and W. T. Williams. A general theory of classificatory sorting strategies. Com-

puter Journal, 9:373–380, 1967.
71. J. Lee, A. Lendasse, and M. Verleysen. Nonlinear projection with curvilinear distances:

Isomap versus curvilinear distance analysis. Neurocomputing, 57:49–76, 2004.
72. J. Lee and M. Verleysen. Nonlinear projection with the isotop method. In J. R. Dorronsoro,

editor, ICANN 2002, pages 933–938. Springer-Verlag, 2002.
73. S. Livens, P. Scheunders, G. van de Wouver, and D. V. Dyck. Wavelets for texture analysis,

an overview. In Proceedings of 6th International Conference on Image Processing and its
Applications, pages 581–585, 1997.

74. F. Luo, L. Khan, F. Bastani, I.-L. Yen, and J. Zhou. A dynamically growing self-organizing
tree for hierarchical clustering gene expression profiles. Bioinformatics, to appear, 2004.

75. T. Martinetz, S. Berkovich, and K. Schulten. ‘Neural gas’ network for vector quantiza-
tion and its application to time series prediction. IEEE Transactions on Neural Networks,
4(4):558–569, 1993.

76. F. Mulier. Statistical Analysis of Self-Organization. PhD thesis, Univ. of Minnesota, 1994.
77. G. Myklebust and J. G. Solheim. Parallel self-organizing maps for actual applications. In

Proceedings ICNN’95, volume 2, pages 1054–1059, 1995.
78. E. Oja and J. Lampinen. Unsupervised learning for feature extraction. In Computational

Intelligence Imitating Life, pages 13–22, 1994.
79. M. Porrmann, M. Franzmeier, H. Kalte, U. Witkowski, and U. R”uckert. A reconfigurable

SOM hardware architecture. In M. Verleysen, editor, ESANN’2002 proceedings, pages
337–342. D-side publications, 2002.

80. J. Puzicha, T. Hofmann, and J. Buhmann. A theory of proximity based clustering: Structure
detection by optimization. Pattern Recognition, 33(4):617–634, 1999.

81. A. Renyi. On measures of entropy and information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability. Univ. of California Press, 1961.

82. H. Ritter. Parametrized Self-Organizing Maps for vision learning tasks. In M. Marinaro
and P. G. Morasso, editors, Proc. ICANN’94, International Conference on Artificial Neural
Networks, volume II, pages 803–810, London, UK, 1994. Springer.

83. H. Ritter. Self-organizing maps in non-euclidean spaces. In E. Oja and S. Kaski, editors,
Kohonen Maps, pages 97–108. 1999.

84. H. Ritter, T. Martinetz, and K. Schulten. Neural Computation and Self-Organizing Maps:
An Introduction. Addison-Wesley, Reading, MA, 1992.

85. S. Rueping, M. Porrmann, and U. Rueckert. SOM accelerator system. Neurocomputing,
21:31–50, 1998.

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 157

86. U. Seiffert. Growing multi-dimensional Self-Organizing Maps for motion detection. In
U. Seiffert and L. C. Jain, editors, Self-Organizing Neural Networks: Recent Advances
and Applications, volume 78 of Studies in Fuzziness and Soft Computing, pages 95–120.
Springer-Verlag, Heidelberg, Germany, 2001.

87. U. Seiffert. Artificial neural networks on massively parallel computer hardware. In M. Ver-
leysen, editor, Proc. of the 10. European Symposium on Artificial Neural Networks ESANN
2002, pages 319–330, Evere, Belgium, 2002. D-Side Publications.

88. U. Seiffert. Artificial neural networks on massively parallel computer hardware. Neuro-
computing, 57:135–150, March 2004.

89. U. Seiffert. Biologically inspired image compression in biomedical High-Throughput
Screening. In A. J. Ijspeert, D. Mange, M. Murata, and S. Nishio, editors, Bio-ADIT 2004
On-Conference Proc., pages 185–196, Lausanne, Switzerland, Jan 2004. Swiss Federal In-
stitute of Technology (EPFL), EPFL.

90. U. Seiffert and B. Michaelis. Estimating motion parameters with three-dimensional Self-
Organizing Maps. Information Sciences, 101:187–201, 1997.

91. U. Seiffert and B. Michaelis. Quasi-Four-Dimensional-Neuroncube and its application to
motion estimation. In A. B. Bulsari, J. F. de Canete, and S. Kallio, eds., Engineering Ben-
efits from Neural Networks: Proc. of the Int. Conf. on Engineering Applications of Neural
Networks EANN ’98, pages 78–81, Turku, Finland, 1998. Åbo Akademis Tryckeri.

92. U. Seiffert and B. Michaelis. Multi-dimensional Self-Organizing Maps on massively par-
allel hardware. In N. Allinson, H. Yin, L. Allinson, and J. Slack, editors, Advances in
Self-Organizing Maps: Proc. of the 3. Workshop on Self-Organizing Maps WSOM 2001,
pages 160–166, London, U.K., 2001. Springer-Verlag.

93. S. Seo and K. Obermayer. Self-organizing maps and clustering methods for matrix data.
Neural Networks, to appear, 2004.

94. H. P. Siemon and A. Ultsch. Kohonen networks on transputers: implementation and anima-
tion. In Proc. INNC-90 Int. Neural Network Conf., pages 643–646, Dordrecht, Netherlands,
1990. Kluwer.

95. M. Strickert and B. Hammer. Neural gas for sequences. In WSOM’03, pages 53–57, 2003.
96. M. Strickert and B. Hammer. Self-organizing context learning. In M. Verleysen, editor,

ESANN’04, pages 39–44. D-side publications, 2004.
97. M. Strickert and B. Hammer. Merge SOM for temporal data. Neurocomputing, submitted.
98. M. Strickert, B. Hammer, and S. Blohm. Unsupervised recursive sequence processing.

Neurocomputing, to appear.
99. K. Takahiro, K. Kise, H. Honda, and T. Yuba. Fiber: A general framework for auto-tuning

software. In A. Veidenbaum, K. Joe, H. Amano, and H. Aiso, editors, Proceedings of The
Fifth International Symposium on High Performance Computing, volume 2858, pages 146–
159, Heidelberg, 2003. Springer Verlag.

100. J. Theiler, J. Frigo, M. Gokhale, and J. J. Szymanski. Co-design of software and hardware
to implement remote sensing algorithms. In Proc. SPIE, vol. 4480, pages 86–99, 2001.

101. P. Tino and I. Nabney. Hierarchical GTM: constructing localized non-linear projection
manifolds in a principled way. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 24(5):639–656, 2002.

102. A. Ultsch. The neuro-data-mine. In H. Bothe and R. Rojas, editors, Proceeding of the
ICSC Symposia on Neural Computation (NC’2000) May 23-26, 2000 in Berlin, Germany.
Philipps-University of Marburg, Dep. of Computer Science, ICSC Academic Press, 2000.

103. A. Ultsch and H. Siemon. Kohonen’s self organizing feature maps for exploratory data
analysis. In Proc. INNC’90, pages 305–308. Kluwer, 1990.

104. M. M. van Hulle. Faithful Representations and Topographic Maps From Distortion- to
Information-based Self-organization. J. Wiley & Sons, Inc., 2000.

158 T. Villmann, B. Hammer, and U. Seiffert

105. J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE Transactions on
Neural Networks, 11(3):586–600, May 2000.

106. T. Villmann. Controlling strategies for the magnification factor in the neural gas network.
Neural Network World, 10(4):739–750, 2000.

107. T. Villmann and H.-U. Bauer. Applications of the growing self-organizing map. Neurocom-
puting, 21(1-3):91–100, 1998.

108. T. Villmann and J. Claussen. Magnification control in self-organizing maps and neural gas.
Neural Computation, 18(2): in press, 2006.

109. T. Villmann, R. Der, M. Herrmann, and T. M. Martinetz. Topology preservation in
self-organizing feature maps: exact definition and measurement. IEEE Transactions on
Neural Networks, 8(2):256–266, 1997.

110. T. Villmann, W. Hermann, and M. Geyer. Variants of self-organizing maps for data mining
and data visualization in medicine. Neural Network World, 10(4):751–762, 2000.

111. T. Villmann and M. Herrmann. Magnification control in neural maps. In Proc. of European
Symposium on Artificial Neural Networks (ESANN’98), pages 191–196, Brussels, Belgium,
1998. D facto publications.

112. T. Villmann and A. Hessel. Analyzing psychotherapy process time series using neural
maps. In ICANN99. Ninth International Conference on Artificial Neural Networks (IEE
Conf. Publ. No.470), volume 2, pages 767–72, London, UK, 1999. IEE.

113. T. Villmann and E. Merényi. Extensions and modifications of the Kohonen-SOM and ap-
plications in remote sensing image analysis. In U. Seiffert and L. Jain, eds., Self-Organizing
Maps. Recent Advances and Applications, p. 121–145. Springer-Verlag, Heidelberg, 2001.

114. T. Villmann, E. Merényi, and B. Hammer. Neural maps in remote sensing image analysis.
Neural Networks, 16(3-4):389–403, 2003.

115. T. Villmann, F. M. Schleif, and B. Hammer. Supervised neural gas and relevance learning
in learning vector quantization. In Proc. International Workshop on Self-Organizing Maps
(WSOM’2003), pages 47–52, Kitakyushu, 2003.

116. T. Villmann, U. Seiffert, and A. Wismüller. Theory and applications of neural maps. In
M. Verleysen, editor, Proceedings of the 12. European Symposium on Artificial Neural Net-
works ESANN 2004, pages 25–38, Evere, Belgium, 2004. D-Side Publications.

117. T. Villmann, B. Villmann, and V. Slowik. Evolutionary algorithms with neighborhood co-
operativness according neural maps. Neurocomputing, 57:151–169, 2004.

118. A. Vinokourov and M. Girolami. A probabilistic framework for the hierarchic organisation
and classification of document collections. Information Processing and Management, 2002.

119. T. Voegtlin. Recursive self-organizing maps. Neural Networks, 15(8-9):979–992, 2002.
120. C. von der Malsburg. Self-organization of orientation sensitive cells in the striate cortex.

Kybernetik, 14:85–100, 1973.
121. J. Walter, H. Ritter, and K. Schulten. Non-linear prediction with self-organizing maps. In

Proc. IJCNN-90, International Joint Conference on Neural Networks, San Diego, volume 1,
pages 589–594. IEEE Service Center, Piscataway, NJ, 1990.

122. S. Weng and J. Steil. Learning compatibitlity functions for feature binding and perceptual
grouping. In Proc. of ICANN/ICONIP 2003, pages 60–67. Springer Verlag, 2003.

123. H. Wersing, J. J. Steil, and H. Ritter. A competitive-layer model for feature binding and
sensory segmentation. Neural Computation, 13:357–387, 2001.

124. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of software and
the atlas project. Parallel Computing, 27(3):3–35, 2001.

125. H. Whang, J. Dopazo, and J. Carazo. Self-organizing tree growing network for classifying
amino acids. Bioinformatics, 14:376–277, 1998.

Perspectives of Self-adapted Self-organizing Clustering in Organic Computing 159

126. A. Wismuller, F. Vietze, D. R. Dersch, K. Hahn, and H. Ritter. The deformable feature
map—adaptive plasticity for function approximation. In L. Niklasson, M. Bodén, and
T. Ziemke, editors, Proceedings of ICANN98, the 8th International Conference on Artifi-
cial Neural Networks, volume 1, pages 123–128. Springer, London, 1998.

127. M. Yasunaga, K. Tominaga, and J. H. Kim. Parallel self-organization map using multiple
stimuli. In Proceedings IJCNN’99, volume 2, pages 1127–1130, 1999.

128. A. Ypma and T. Heskes. Categorization of web pages and user clustering with mixtures of
hidden markov models. In Proceedings WEBKDD’02, pages 31–43, 2002.

MOVE Processors That Self-replicate
and Differentiate

Joël Rossier, Yann Thoma, Pierre-André Mudry, and Gianluca Tempesti

Ecole Polytechnique Fédérale de Lausanne (EPFL),
Cellular Architectures Research Group (CARG),

CH-1015 Lausanne, Switzerland
j.rossier@epfl.ch

Abstract. This article describes an implementation of a basic multi-
processor system that exhibits replication and differentiation abilities on
the POEtic tissue, a programmable hardware designed for bio-inspired
applications [1, 2] . As for a living organism, whose existence starts with
only one cell that first divides, our system begins with only one totipo-
tent processor, able to implement any of the cells required by the final
organism, which can also fully replicate itself, using the functionalities
of the POEtic substrate. Then, analogously to the cells in a developing
organism, our just replicated totipotent processors differentiate in order
to execute their specific part of the complete organism functionality. In
particular, we will present a working realization using MOVE processors
whose instructions define the flow of data rather than the operations
to be executed [3]. It starts with one basic MOVE processor that first
replicates itself three times; the four resulting processors then differen-
tiate and connect together to implement a multi-processor modulus-60
counter.

1 Introduction

Multi-cellular organization is one of the key concepts for a lot of living crea-
tures. In fact, almost every organism, except viruses and bacteria, is based on
this structure that enables an individual to develop an astounding complexity,
starting from only one relatively simple cell. Moreover, being a multi-cellular
organism offers more possibilities like being able to tolerate some faults, to self-
repair or to exhibit self-healing capabilities.

For several reasons, such abilities could obviously be of great interest for
multi-processor systems. One of the first reasons is the programmability of a
group of processors having to execute collectively a specific task. Today, we
can still program individually each processor of the set and give it a specific
code. But the size of the electronic components is continuously shrinking and
we will soon enter in the era of nano-electronics. In such a case, the processor
arrays will have to be realized on an homogeneous substrate consisting in a lot
of massively parallel basic nano-components. As a result, it will be very difficult,
perhaps even impossible, to initialize one by one each processor of such an array.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 160–175, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

MOVE Processors That Self-replicate and Differentiate 161

Consequently, the multi-processor systems of tomorrow could take advantage of
a self-replication/differentiation mechanism to be more easily configured.

Then, as the scale of electronics will decrease, faults will happen in the circuits
with a greater probability than today. Consequently, it could be useful to have
a system that could tolerate some faults or, at least, avoid some parts of the
circuit where the faults are detected.

In this paper, we propose an implementation of a system showing such capabil-
ities consisting in one totipotent processor, i.e. a processor capable of executing
all the sub-tasks required by an application, that first replicates itself. Then,
the cloned processors bind themselves and differentiate in order to achieve a full
multi-processor system. To illustrate this process, we will use a simple system
that implements a watch counter using four processors. The system has been re-
alized in a slightly modified version of the POEtic tissue [1, 2], a reconfigurable
logic circuit structure especially designed for bio-inspired applications that will
be presented in section 2.2.

In the following sections, we will first describe the background used to realize
our system: we will succinctly present the Embryonics project in section 2.1.
Then in section 2.2 we will recall the main characteristics of the POEtic tissue.
In section 2.3, we will then expose briefly the MOVE paradigm, also known as
Transport Triggered Architecture (TTA), on which our processors are based.
These bases in mind, we will present the general architecture of our processor in
section 3. Then, the self-replication and the differentiation/connection processes
will be explained in sections 4 and 5 respectively. The following section will
deal with the hardware realization of the system and its implementation on the
BioWall [4]. Finally, we will conclude this article with a section discussing the
future developments that our system will undergo.

2 Background

Before describing concretely our system, we will now expose the background from
which we started the development of our self-replicating processors that differ-
entiate and bind together. We will briefly present the Embryonics project and
its major realization, the BioWatch. Then we will describe more thoroughly the
POEtic substrate. To close this section, we will present the Transport Triggered
Architecture, also known as the MOVE processor paradigm.

2.1 The Embryonics Project

The application of biological ontogenesis to the design of digital hardware has
been studied for several years within the Embryonics project [5]. One of its
major contribution to the field is the self-contained representation of a possible
mapping between the world of multi-cellular organisms in biology and the world
of digital hardware systems, based on 4 levels of complexity, ranging from the
population of organisms to the molecule (Fig. 1).

Within this mapping, the Embryonics project defines an artificial organism
as a parallel array of cells, where each cell is a simple processor that contains the

162 J. Rossier et al.

MUX

COMP

MUX

d

ORG ORG

ORG ORG

c

b

a d

e

f

A C E

B D F
ORG

CELL

MOLECULE

POPULATION LEVEL
(Σ organisms)

ORGANISMIC LEVEL
(Σ cells)

CELLULAR LEVEL
(Σ molecules)

MOLECULAR LEVEL
(BASIC FPGA ELEMENT)

Fig. 1. The four hierarchical levels of complexity of the Embryonics project

description of the operation of every other cell in the organism in the form of a
program (the genome). This program, replicated in each cell of the organism as
in a living being, is read in parallel in each cell but different parts of it are exe-
cuted depending on the spatial coordinates of the cell within the organism. The
redundancy inherent in this approach is compensated by the added capabilities
of the system, such as growth [6] and self-repair [7]. The molecules are defined as
the basic elements of the programmable logic circuits; in the Embryonics project,
they correspond to simple programmable multiplexers.

A configuration bitstream (the genome of the artificial organisms) is injected
into the circuit, causing the molecules to self-assemble into cells. The cells them-
selves, after a replication phase analogous to cellular division and growth, self-
organize to form the final organism.

Using this approach, the Embryonics project demonstrated two basic prop-
erties of its substrate with the implementation of the BioWatch [8], an elec-
tronic modulus-60 counter made of four cells exhibiting differentiation and fault-
tolerance abilities. We have decided to use this same application to demonstrate
the capabilities of our system.

2.2 The POEtic Tissue

Bio-inspiration in the design of digital hardware finds its source in essentially
three biological models [9, 10]: Phylogenesis (P), the history of the evolution of
the species through time, Ontogenesis (O), the development of an individual
as directed by his genetic code, from its first cell to the full organism, and
Epigenesis (E), the development of an individual through learning processes.
All of these models, to a greater or lesser extent have been used as a source of
inspiration for the development of computing machines (such as the ontogenesis
in the Embryonics project or epigenesis for artificial neural networks) but before
the POEtic project [1, 2], no hardware substrate had been developed that could
combine the three axes of bio-inspiration into one single circuit.

MOVE Processors That Self-replicate and Differentiate 163

Indeed, the POEtic tissue draws inspiration from these three axes and from
the multi-cellular structure of complex biological organisms. This reconfigurable
circuit has been designed to develop and adapt its functionality through the
processes of evolution, growth and learning. The organizational architecture of
a POEtic system is the same as the one of an Embryonics design: it also follows
the four levels of complexity defined in figure 1, once again from the population
of organisms to the molecular level.

Physically, the tissue is composed of two layers shown in the left of figure 2:
a grid of molecules and a cellular routing layer. As in Embryonics, the smallest
units of the POEtic programmable hardware are also called molecules and are
also arranged as a two-dimensional array. The cellular routing layer is also a two-
dimensional array but contains special routing units that are responsible for the
inter-cellular communication. This routing layer implements a distributed rout-
ing algorithm based on identifiers allowing the creation of data paths between
cells at runtime. Each molecule, as well as each routing unit, are connected to
their respective four neighbours in a regular structure, also shown in the left of
figure 2. Moreover, the molecules have the capability of accessing the routing
units to set up connections among cells.

As shown in the right of figure 2, a molecule mainly contains a 16-bit look-up
table (LUT) and a D flip-flop (DFF); its inputs are selected by multiplexers
and its outputs are routed to any direction through a switchbox. Moreover,
a molecule possesses different configurable operational modes that let it act
of different manners. The content of the LUT and of the DFF, as well as the
selection of the multiplexers for the inputs and the outputs of a molecule and the
mode in which the molecule has to work, are defined by 76 bits of configuration.

In the first four operational modes, that are quite standard in the reconfig-
urable hardware area, a molecule can be configured as a simple 16-bit LUT,
as two 8-bit LUT, as a 8-bit LUT plus a 8-bit shift register, or as a 16-bit

R outing Unit

Molecule

L ook up table

DFF

Output1

Output2

Switchbox

Input multiplexers

Input(0..3)

Fig. 2. Left: POEtic two-layer physical structure with the molecules and their routing
units. Right: Basic structure of a POEtic molecule.

164 J. Rossier et al.

shift-register. Then there are four additional operational modes that are specific
to the POEtic tissue: the first two are the Output and Input modes in which
the molecule is connected to its routing unit and contains the 16-bit long rout-
ing identifier of the molecule itself, respectively of the molecule from where the
information has to arrive. The third special mode is the Trigger mode, in which
the task of the molecule is to supply a trigger signal needed by the routing al-
gorithm for synchronization purposes. The last mode is the Configure mode, in
which a molecule has the capability of partially reconfiguring its neighbours, i.e.
the molecule can modify a fixed subset of the configuration bits of its neighbours
(68 bits out of 76).

Inter-molecular communication, i.e. short-range communication between the
programmable logic elements in the POEtic circuit, is implemented by a switch
box (identical in all molecules) that prevents the possibility of short circuits in
the network by using multiplexers and directional lines. There are two of these
lines from and to each cardinal direction.

Inter-cellular routing, i.e. long-range communication between the processors
implemented using the programmable logic, is implemented using a distributed
routing algorithm inspired by Moreno [11], that automatically connects the cells
inputs and outputs. A non-connected input (target) or output (source) can ini-
tiate the creation of a path by broadcasting its identifier, in case of an output,
or the identifier of its source, in case of an input. The path linking them is then
created using a parallel implementation of the breadth-first search algorithm,
similar to Lee’s algorithm [12] that configures multiplexers in the routing units.
When all the paths have been created, the organism can start operation, and
executes its task, until a new routing is launched.

Note that in the standard POEtic design, in the IO modes, the molecules
only have one control signal that forces or not a connection to be established.
In addition to this, to implement self-replication we had to slightly modify the
standard POEtic design in order to improve the IO molecules with another
control signal that makes the molecule to accept or not a connection. As a result,
our version of the POEtic IO molecules has two control signals: one to force a
molecule to establish a connection, i.e. ForceConnect, the other to accept the
connections, i.e. AcceptConnect.

The routing approach used in POEtic has many advantages compared to a
static routing process. First of all, it requires a very small number of clock cycles
to finalize a path. Secondly, when a new cell is created it can start a routing
process without the need of recalculating all paths already created. Thirdly, a
cell has the possibility of restarting the routing process of the entire organism if
needed. Finally, this approach is totally distributed, without any global control
over the routing process, a clear advantage where scalability is concerned.

2.3 MOVE Processors

We will now present the basic processor structure that has been used for the
realisation of our system: the MOVE architecture, also known as the Transport-
Triggered Architecture (TTA) [3, 13, 14]. This paradigm was originally developed

MOVE Processors That Self-replicate and Differentiate 165

Fetch
unit

Destination [7... 0]
Source [7... 0]

Data [31...0]

Register
file

Data
memory

Arith Unit
+

Arith Unit
-

Destination [7... 0]
Source [7... 0]

Data [31...0]

Transport bus 1

Transport bus 2

Code
Memory

Base = 0 Base = 1 Base = 2 Base = 3 Base = 4

Fig. 3. Internal structure of a TTA processor

for the design of application-specific dataflow processors (processors where the
instructions define the flow of data, rather than the operations to be executed).

In many respects, the overall structure of a TTA-based system is fairly con-
ventional: data and instructions can be fetched to the processor from the main
memory using standard mechanisms (caches, memory management units, etc.)
and are decoded as in conventional processors. The basic differences lay in the
architecture of the processor itself, and hence in the instruction set.

Rather than being structured, as is usual, around a more or less serial pipeline,
a MOVE processor (Fig. 3) relies on a set of Functional Units (FUs) connected
together by one or more transport busses. All the computation is carried out by
the functional units (examples of such units can be adders, multipliers, register
files, etc.) and the role of the instructions is simply to move data from and to
the FUs in the order required to implement the desired operations. Since all
the functional units are uniformly accessed through input and output registers,
instruction decoding is reduced to its simplest expression, as only one instruction
is needed: move.

TTA move instructions trigger operations which, in the simplest case, corre-
spond to normal RISC instructions. For example, in order to add two numbers
a RISC add instruction has to specify two operands and, most of the time, a
destination register to store the result. The MOVE paradigm requires a slightly
different approach to obtain the same result: instead of using a specific add
instruction, the program moves the two operands to the input registers of a
functional unit that implements the add operation. The result can then be re-
trieved in the output register of this functional unit and moved wherever it is
needed.

3 Processor Architecture

After the presentation of the background used for our realization, we will now
describe it more precisely. As mentioned, our test system is composed of four
processors, the cells, that form a 4-digit modulus-60 counter, the organism,
counting seconds and minutes. Each of the processors must then handle one
digit. Consequently, two of them count from 0 to 9 while the two others count
from 0 to 5. In their final configuration, they are logically organized so as to

166 J. Rossier et al.

Proc1
cpt mod 10

0-9

Proc2
cpt mod 6

0-5

Proc3
cpt mod 10

0-9

Proc4
cpt mod 6

0-5

Seed
Unit

Organismic Level

Cellular Level

Molecular Level

Fig. 4. The three hierarchical levels of our system: organism/counter final configura-
tion, cell/processor mapping on POEtic, molecule/POEtic element

form a chain that is represented in the organismic level of figure 4 (note also the
presence of the Seed Unit, whose function will be explained in section 5).

The normal operation of the system is the following: the processor that han-
dles the rightmost digit, i.e. the units of seconds in the clock parallel, perma-
nently counts from 0 to 9. When this processor arrives at 9, it generates a signal
(EnableCount) telling the next processor, which handles the tens of seconds,
to increment its own digit. When the tens of seconds processor arrives at 5, it
generates in its turn a signal enabling the next processor on the chain, i.e. the
units of minutes, to count. And so on until the tens of minutes.

As exposed in the precedent section, we realized our processors using the
MOVE paradigm. Its actual implementation in POEtic molecules is shown in
the cellular level of figure 4, while its logical architecture can be seen in figure 5.
It resulted in a TTA processor possessing the following Functional Units (FU):

– FU Cmp used to compare two values. The result is directly given to the
Execution Stack (see below for a short explanation).

– FU Inc used to increment one value.
– FU Position used to get the position of the processor inside the chain.
– FU EnableIn used to get the value of the EnableCount signal coming from

the precedent processor on the chain.
– FU EnableOut used to set the value of the signal enabling the counting of

the next processor on the chain.

MOVE Processors That Self-replicate and Differentiate 167

FU - IO
ToPrec

FU - IO
ToNext

FU - IO
Active/Self

FU
Cmp

FU
Position

MEM

DC MEM

Execution
Stack

0

Mem to Bus

FU
Inc

IN
Activate

IN
Enable
Count

IN
Position

OUT
SBack

OUT
Self

OUT
Enable
Count

OUT
Position

IN
SBack

+1

OUT
Activate

FU
EnableIn

FU
EnableOut

Fig. 5. Detailled architecture of the processor

– FU IO Active/Self used to connect one not yet differentiated processor, or
used by the processor to connect itself in order to enable the whole system
when the differentiation/connection process is finished (see section 5 for more
details).

– FU IO ToPrec used to set up and configure the connections to the prece-
dent processor on the chain. It is used to receive the processor position inside
the chain and the EnableCount signal. It is also used to transmit the Sback
signal whose purpose is explained in section 5.

– FU IO ToNext used to set up and configure the connections to the next
processor on the chain.

The three FU IOs permit the processor to control the behaviour of the Inputs
and Outputs: the processor can access and set up the ForceConnect (to force a
molecule to establish a connection) and the AcceptConnect (to allow a molecule
to accept the connections) control signals by setting the appropriate values in
the FU IO registers.

Our MOVE processor, as is usual, contains a data bus spanning all the FUs
and two memory busses: one for the source addresses and the other for the
destination addresses of each move instruction. The processor has two memories:
one memory (MEM) for the normal operation of the processor (i.e. the counting
and the generation of signals) and another memory (DC MEM) that contains
the code for the differentiation and connection mechanisms.

Then, as the processor has been realized on the POEtic substrate, which pro-
vides a specific molecule mode to implement shift memories (see section 2.2), we
decided that, instead of an addressable memory that could support jumps in the
code, we would use cyclic memories, where each instruction is read successively,
and executed or not, depending on a special unit called Execution Stack.

168 J. Rossier et al.

To summarize the behaviour of the Execution Stack, we can say that, when
facing an ”if condition then (x1; x2; ...) else (y1; y2; ...) end” instruction, if
the condition is valid, the stack will permit the execution of the X instructions
and then block the Y instructions. Otherwise, it will permit the Y execution
and block the X one. A more detailed explanation of this unit can be found
in [15, 16].

Finally, for demonstration purposes, we added a special unit that is used to
display the digit handled by each processor.

4 Self-replication

As explained in the introduction and in analogy to the majority of living beings,
our implementation starts with only one cell/processor containing the informa-
tion for the entire system to be realized. As a metaphor of the living cell division
and multiplication, this first processor replicates in order to generate copies of
itself that will then differentiate.

The self-replication process that we have implemented is based on the self-
inspection concept [17], where, in order to replicate itself, a system has to gener-
ate its description by examining its own structure. This description is then used
to create an identical copy of the original system [18].

More precisely, such a self-replication process in our reconfigurable circuit
should proceed as follows: first, the cell that wants to replicate itself has to
emit the configuration bits of every one of its molecules. Then, in some way,
these bits are routed to their destination, i.e. the place where the copy will be
constructed. These configuration bits are then injected into molecules that are
not yet configured. These molecules receive their new configuration and become
copies of the initial molecules. When all the configuration bits of each molecule
of the initial system have been emitted, routed and injected in their new place,
the cell has replicated itself.

We have to mention one of the requirements for a system to possess the self-
replication ability: the order in which the system emits the configuration bits of
its molecules, as well as the spatial position of each molecule with respect to the
others, have to be the same as the order and position the empty molecules load
their new configuration. One of the easiest way to obtain such a behaviour is to
have a ”path” that goes through each molecule of the system to be replicated.
Then the configuration bits are expressed sequentially by shifting them along
this path. In parallel, the injection of the configuration into the empty molecules
has to construct and follow the same ”path”. With such an idea, self-replication
becomes possible because every molecule is replicated in correct order and in the
right place.

For that purpose, we had to separate our self-replicating processor in two
parts: a functional part (FP) that contains the object we want to replicate,
i.e. the MOVE processor itself, together with its corresponding replication path,
and a self-replication part (SRP) that is of course in charge of the self-replication
(Fig. 6).

MOVE Processors That Self-replicate and Differentiate 169

I/O

Config

Counter

Functional Part
(FP)

Replication Path

Self-
Replication

Part
(SRP)

Fig. 6. Mandatory parts for a POEtic self-replication

The SRP contains a counter that knows the total number of configuration
bits that have to be emitted by the molecules that want to replicate. It also
contains an Input or an Output molecule that is used to connect an emitting
SRP to a receiving SRP. Finally, we find in the SRP a molecule in the Configure
mode that is used to force the molecules of the FP to shift their configuration
bits along the replication path.

We will now detail the self-replication process that uses the self-configuration
ability of the POEtic molecules as well as their distributed routing. At the be-
ginning, as shown in figure 6, the system contains the following elements:

– Functional Part FP the processor that has to be replicated (Fig. 5).
– Emitting SRP that contains an Output molecule and is used to connect

to one or more receiving molecules.
– One or more Receiving SRP that contain an Input molecule and are

used to receive the connection from the Emitting SRP.
– Replication Paths that are already configured. The first path span all the

molecules of the FP. The others draw the same trajectory as the first path
and are placed next to the Receiving SRP.

The presence of these paths at system startup is a shortcoming due to
the impossibility, in the current implementation of the POEtic circuit, to
completely configure all the bits of a molecule using the Configure mode.
Removing these configuration paths is the next logical step in the develop-
ment of our system.

The process starts with the Emitting SRP trying to connect to one Receiving
SRP. This is done using the distributed routing algorithm of POEtic to link
the Output molecule of the Emitting SRP to the Input molecule of the Receiv-
ing SRP. As a result, the SRPs can be placed anywhere on the substrate and
the routing process will eventually connect the Emitting SRP to the nearest
Receiving SRP.

When the two SRPs are connected, their respective Configure molecules start
to shift the configuration of their replication paths. The Emitting SRP shifts
the configuration of the FP and gets one configuration bit per clock cycle. This
bit is duplicated and one copy is transmitted through the connection to the
Receiving SRP while the second one is injected again in the FP replication path.
Indeed, in order to obtain a replication, it is necessary that after this process, the
starting FP finds itself in its initial state. Consequently, during all the process

170 J. Rossier et al.

Receiving
SRP

In

Emitting
SRP

Out

Emitting
SRP

Out

Receiving
SRP

In

Receiving
SRP

In

Emitting
SRP

Out

Move
Processor

Move
Processor

Move
Processor

Move
Processor

Configuring

Empty

T
im

e

Fig. 7. Three steps of the self-replication process

of transmission of the configuration bits, the Emitting SRP and its replication
path emulate a shift register buckling on itself, so that the FP finds again its
initial state.

On the other side, the Receiving SRP gets the configuration bit from its In-
put molecule and injects it in its own replication path. This process repeats
itself during a number of clock cycles determined by the SRPs and that is equal
to the total number of configuration bits that have to be expressed, i.e. 68
bits that are configurable per molecule times the number of molecules to be
replicated.

When the configuration is finished, the system contains two (or more)
replicated FP that can start their normal functionality.

Note that this process is not limited to only one processor copy: as the
Emitting SRP can connect to more than one Receiving SRP at a time, then
the configuration bits can be injected in more than one replication path and
consequently the number of copies of the initial processor is not limited. In our
case, the processor makes three copies of itself: at the end of the self-replication
process, the system contains four processors that are in a quiescent state, simply
waiting for an activation signal.

5 Differentiation and Connections

In living organisms, when the first cell has divided, resulting in many totipo-
tent identical cells, these latter have to specialize to handle a specific task that
depends on their neighbouring cells and on the place they have inside the entire
organism. As a result, the cells differentiate and connect themselves together to
form the working organism.

MOVE Processors That Self-replicate and Differentiate 171

FU - IO
ToPrec

FU - IO
ToNext

FU - IO
Active/Self

IN
Activate

IN
Enable
Count

IN
Position

OUT
SBack

OUT
Self

OUT
Enable
Count

OUT
Position

IN
SBack

+1

OUT
Activate

Seed Unit

OUT
Enable
Count

OUT
Position

IN
SBack

OUT
Activate

PROCESSOR
1

b

d

e c

f
g

FU - IO
ToPrec

FU - IO
ToNext

FU - IO
Active/Self

IN
Activate

IN
Enable
Count

IN
Position

OUT
SBack

OUT
Enable
Count

OUT
Position

IN
SBack

+1

OUT
Activate

PROCESSOR
4

i

OUT
Self

h
a

Seed Unit

OUT

OUT

IN

OUT

FU - IOFU - IO

FU - IO

IN

IN

IN

OUT

OUT

OUT

OUT

IN

+1

OUT

PROC X

FU - IOFU - IO

FU - IO

IN

IN

IN

OUT

OUT

OUT

OUT

IN

+1

OUT

PROC X

Fig. 8. Processor differentiation and connections. Top: quiescent state of the processors
just after the self-replication. Bottom: connection process and differentiated processors.

Similarly, after the self-replication phase, the POEtic substrate contains four
identical quiescent totipotent processors that still need to differentiate and
connect in order to achieve the whole system functionality. This situation is
shown at the top of figure 8 (note that only the IO elements of the processors
are represented and that on the top of the figure the labels are not detailled).

In fact, the processor are waiting for an activation signal that will launch
the differentiation/connections process. In order to generate this first activation
signal, we implemented a special unit: the Seed Unit (SU). It possesses a counter
that makes it wait for the end of the processor self-replication. At that time,
the SU activates the ForceConnect control signal that forces the connection of
its Output OUT Activate, (a) in figure 8. This Output will then initiate a
distributed routing process to connect the nearest IN Activate molecule that
is configured in order to accept the connections (b). Note that all the quiescent
processors have their IN Activate molecule waiting for a connection, i.e. with
their AcceptConnect control activated.

As a result, the nearest replicated processor accepts the connection, becomes
linked to the SU and receives an activation signal through the newly established
connection. This activation signal makes the processor to activate its differenti-
ation and connection memory (DC MEM in figure 5) and start the shifting and
the execution of its instructions.

The first instruction makes the ForceConnect control of the FU IO ToPrec
be activated (c): the IO molecules of this FU will immediately try to initiate
new connections. The only available corresponding molecules that have their
AcceptConnect control activated are the ones of the SU, consequently these
molecules become linked (d). As a result, the processor gets from these new

172 J. Rossier et al.

inputs its position inside the chain (zero in this case) as well as its EnableCount
signal.

Then the DC MEM makes the processor activate the AcceptConnect controls
of its FU IO ToNext (e); this is done in order for the next processor on the
chain to be able to connect back.

Finally, as the processor now knows it is not the last one of the chain, hav-
ing already received its position from the FU IO ToPrec, it will activate the
ForceConnect control of its OUT Activate molecule (f). This molecule will
then establish a connection to the next available In Activate molecule (g), and
launch the differentiation-connection process of the second processor.

The second processor will then execute this process again, connect its FU
IO ToPrec to the first processor (whose FU IO ToNext now accept the con-
nections). The same process happens for the third processor on the chain.

For the last processor, the points (f) and (g) are not executed: as the processor
knows it is the last one of the chain, it does not need to connect to another proces-
sor but must inform the whole chain that the differentiation-connection process
is finished and that the system now has to begin its normal multi-processor activ-
ity. Consequently, instead of its OUT Activate molecule, the fourth processor
will activate the ForceConnect control of its OUT Self molecule (h). This latter
will then connect to the IN SBack molecule of its FU IO ToNext (i).

This last connection provides an activation signal that is transmitted through
the whole processor chain using the In SBack and the OUT SBack IOs. This
signal activates the processors MEM memories (figure 5), whose instructions
contain the code required to execute each of the functionalities needed by the ap-
plication. The spatial position of the processor inside the chain, defined through
the differentiation process, is used to select the appropriate functionality.

6 Hardware Implementation

To have access to a sufficient number of molecules and to be able to integrate
our modifications to the design, we decided to emulate the POEtic substrate
on the BioWall [4], a two-dimensional electronic wall designed for bio-inspired
applications and composed of an array of reconfigurable circuits.

We made two major modifications to the standard POEtic specifications:
the first one is the improvement in the control signals of the IO molecules ex-
plained in section 2.2. The second one is the following: unlike the standard
POEtic connection schema shown in the left of figure 2 where each routing unit
is simultaneously connected to four molecules, we realized our POEtic imple-
mentation with one routing unit per molecule, permitting a denser connection
pattern.

The realization of one of our processor, with its self-replicating part, needs
30x12 POEtic molecules to be implemented. Using the BioWall for the imple-
mentation, we have 25x80 POEtic molecules available, which is sufficient to
demonstrate the self-replication, the differentiation/connection process and fi-
nally the normal operation of our multi-processor system.

MOVE Processors That Self-replicate and Differentiate 173

Fig. 9. a) Initialization state. b) Self-replication phase. c) The four totipotent proces-
sors before the differentiation/connection phase. d) Operational system.

Moreover, the display capabilities of the BioWall allows us to visually check
and demonstrate the correct behaviour of the entire system: some pictures of
it are shown in figure 9 and a video of the whole process can be found at
http://carg2.epfl.ch/Staff/JR/Videos/PoeMoveSR.avi.

7 Conclusion and Future Developments

We have realized a multi-processor system that exhibits self-replication, differ-
entiation and distributed connection abilities. Moreover, we have implemented
the whole system in hardware on the BioWall, demonstrating the feasibility of
the concepts. Nevertheless, a number of things can certainly be improved.

With its distributed connection ability, our system can bind together proces-
sors that have no fixed predetermined place on the substrate. If the system had
a cellular fault-detector, it could detect and disable faulty processors. As a re-
sult the differentiation/connections process would automatically avoid the faulty
processor and connect to the next correctly working one.

From another point of view, our system can not tolerate individual errors. As
a result, one of the improvements that could be added to the POEtic molecules,
as in the Embryonics project [7], is a molecular fault-tolerance capability.

Moreover, as already mentioned in section 4, the POEtic substrate has only
partial self-configuration abilities (the configuration bits that define the repli-
cation path can not be changed by the system). As a result, the replication
paths must be pre-configured in order to cross all the molecules that have to
be replicated. One major planned improvement consists of changing the POEtic
specification by allowing the system to set or reset each configuration bit and
consequently enabling a complete self-replication.

174 J. Rossier et al.

Another improvement could be to differentiate the memory: in our system,
each processor possesses the same memory and executes the instructions or not,
depending on its position in the processor chain. To limit this redundancy we
could modify the memories and the differentiation process in order to copy only
the instructions needed by a specific processor in its specific memory.

Then, our system replicates and differentiates only once at the beginning.
We are currently working on a way to make these processes occur permanently
during the life of the organism, allowing in that manner growth, adaptation and
re-configuration in case of failures.

Despite all the things that we plan to integrate to future designs, we can
already say that in its current state, our realization is a real improvement com-
pared to the existing ones for several reasons. Firstly, contrary to the Embryonics
project, where the genome had to be injected in parallel in each cell, in our design
we only need to provide the genome one time to the circuit.

In the Embryonics project again, the circuit had been designed expressly for
the realization of a watch counter. With the use of the MOVE paradigm, our
design is much more versatile and can be modified very quickly to adapt to any
logical task, just by adding some Functional Units.

Moreover, as mentioned in the precedent section, compared to the standard
POEtic design, we made some improvements on the IO molecules and on the
routing layer in our hardware implementation.

Finally we can say that, even if some consequent work remains to be done, our
design is one good step ahead in the realization of a really efficient self-replicating
electronic system.

References

1. Tyrrell A., Sanchez E., Floreano D., Tempesti G., Mange D., Moreno J.-M., Rosen-
berg J., Villa A., POEtic Tissue: An Integrated Architecture for Bio-Inspired Hard-
ware, Proceedings of the 5th International Conference on Evolvable Systems: From
Biology to Hardware (ICES’2003), pp. 129-140, 2003

2. Thoma Y., Tempesti G., Sanchez E., Moreno J.-M., POEtic: an electronic tissue
for bio-inspired cellular applications, BioSystems 76, pp. 191-200, 2004

3. Tabak D., Lipovski G.J., MOVE architecture in digital controllers, IEEE Transac-
tions on Computers C-29, pp. 180-190, 1980

4. Tempesti G., Mange D., Stauffer A., Teuscher C., The BioWall: An Electronic
Tissue for Prototyping Bio-Inspired Systems. Proceedings of the 2002 NASA/DOD
Conference on Evolvable Hardware, pp. 221-230, 2002

5. Mange D., Sipper M., Stauffer A., Tempesti G., Towards Robust Integrated Cir-
cuits: The Embryonics Approach, Proceedings of the IEEE 88(4): pp. 516-541,
2000

6. Mange D., Stauffer A., Petraglio E., Tempesti G., Embryonic Machines that Divide
and Differentiate, Proc. 1st Int. Workshop on Biologically Inspired Approaches to
Advanced Information Technology (BioADIT04), pp. 328-343, 2004

7. Tempesti G., Mange D., Stauffer A., A robust multiplexer-based FPGA inspired
by biological systems, Journal of Systems Architecture 43(10): pp. 719-733, 1997

MOVE Processors That Self-replicate and Differentiate 175

8. Stauffer A., Mange D., Tempesti G., Teuscher C., A Self-Repairing and Self-Healing
Electronic Watch: The BioWatch, Proceedings of the 4th International Conference
on Evolvable Systems: From Biology to Hardware (ICES’2001), pp. 112-127, 2001

9. Sanchez E., Mange D., Sipper M., Tomassini M., Perez-Uribe A., Stauffer A.,
Phylogeny, Ontogeny, and Epigenesis: Three Sources of Biological Inspiration for
Softening Hardware, Proceedings of the 1st International Conference on Evolvable
Systems: From Biology to Hardware (ICES96), pp. 34-54, 1997

10. Sipper M., Sanchez E., Mange D., Tomassini M., Perez-Uribe A., A phylogenetic,
ontogenetic, and epigenetic view of bio-inspired hardware systems, IEEE Transac-
tion on Evolutionary Computation 1(1): pp. 83-97, 1997

11. Moreno J.-M., Sanchez E.,Cabestany J., An in-system routing strategy for evolv-
able hardware programmable platforms, Proceedings of the 3rd NASA/DoD Work-
shop on Evolvable Hardware, IEEE Computer Society, 2001

12. Lee C.Y., An Algorithm for Path Connections and Its Applications, IRE Transac-
tions on Electronic Computers EC-10(3): pp. 346-365, 1961

13. Corporaal H., Microprocessor Architectures from VLIW to TTA, John Wiley &
Sons, 1998

14. Corporaal H., Mulder H., MOVE: A framework for high-performance processor
design, Proceedings of the International Conference on Supercomputing, pp. 692-
701, 1991

15. Restrepo H.F., Tempesti G., Mange D., Implementation of a Self-replicating Uni-
versal Turing Machine, In Alan Turing: Life and Legacy of a Great Thinker, pp. 241-
269, 2004

16. Restrepo H.F., Implementation of a Self-repairing Universal Turing Machine, Swiss
Federal Institute of Technology (EPFL), PhD thesis 2457, 2001

17. Ibàñez J., Anabitarte D., Azpeitia I., Barrera O., Barrutieta A., Blanco H., Echarte
F., Self-inspection based reproduction in cellular automata, Proceedings of the 3rd
European Conference on Artificial Life (ECAL95), pp. 564-576, 1995

18. Laing R., Automaton models of reproduction by self-inspection, Journal of Theo-
retical Biology 66, pp. 437-456, 1977

The Evolutionary Emergence of Intrinsic
Regeneration in Artificial Developing Organisms

Diego Federici

Complex Adaptive Organically-inspired Systems group (CAOS),
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
federici@idi.ntnu.no

Abstract. Inspired upon the development of living systems, many mod-
els of artificial embryogeny are being proposed. These are usually aimed
at the solution of some know limitations of evolutionary computation;
among these scalability, flexibility and, more recently, fault-tolerance.

This paper focuses on the latter, proposing an explanation of the
intrinsic regenerative capabilities displayed by some models of multi-
cellular development.

Supported by the evidence collected from simulations, regeneration is
shown to emerge as evolution converges to more regular regions of the
genotype space.

The conclusion is that intrinsic fault-tolerance emerges as evolution
increases the evolvability of the development process.

Keywords: Genetic algorithms, development, fault tolerance.

1 Introduction

Robustness to ‘hardware’ failures is a fundamental feature for living systems.
Having to endure various sources of damage, such as injuries, aging, preda-
tors and parasites, organisms that display an endogenous resistance to external
tampering and degradation have clearly an advantage when facing natural
selection.

It is therefore not surprising that, in order to support life, biological organisms
naturally display a strong fault-tolerance.

A possible path towards a good fault resistance is to design devices with
some sort of functional redundancy, so that the negative effects of the loss of
some components is mitigated by those which are still active.

Multi-cellular living systems display an additional source of robustness derived
by their regenerative capabilities. An example is provided by Hydras (Hydra
Oligactis). Hidras can regenerate any damaged or dead cell, and severed body
parts can even reconstruct the complete organism [1].

Cell regeneration is common also among more complex living organisms. For
example the tail of the lizard and the limbs of the salamander regrow after

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 176–191, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Evolutionary Emergence of Intrinsic Regeneration 177

being severed. In these cases, regeneration involves the production of highly
differentiated tissues.

Notably, it has been shown that transplanted cells can assume specific roles
based on the place where they are injected. For example, this technique allows
mice to recover from spine injuries with the injection of staminal cells [2].

In these cases, fault-tolerance is based on the same ontogenetic processes
which are the conrerstone of the organism’s development.

For engineering purposes, devices that could automatically recover from faults
are very appealing. Using a re-configurable substrate, we can envision systems
that can heal themselves, effectively increasing their life-time without requiring
any external support.

Previous work conducted on artificial models of multi-cellular development
has highlighted how this class of systems tends to display intrinsic regenerat-
ing properties. The term intrinsic refers to the fact that, albeit robustness can
be boosted including it in the fitness function [3, 4, 5], recovery of phenotypic
faults is also emergent, appearing as well when not selected for during evolution
[3, 6, 7].

The fact that these systems are intrinsically fault-tolerant is very important:
Even if is it possible to select individuals both on performance and robustness,
testing all possible sources of faults can be computationally expensive (if not
impossible). Since evolution tends to be very exploitative, faults that are not
explicitly tested will most probably not be tolerated by the evolved designs.

On the other hand, if a system presents some degree of intrinsic fault-
tolerance, we may expect that a necessarily partial robustness test will better
generalize to unforeseen situations.

Still, the fundamental reason that makes this class of embryogeny systems
intrinsically fault-tolerant remains unclear.

One may argue that, since the growth program and the variables it acts
upon (i.e. cell types, chemicals, etc.) are distributed, development must neces-
sarily provide a low sensitivity to phenotypic perturbations. Still, being based on
rewrite rules, phenotype perturbations would be expected to induce a marked
morphological divergence as faults get built upon.

An explanation is offered by the canalization concept [8, 9, 10], i.e. that a
canalized phenotype evolves to resist perturbations to its developmental process
or its genotype: Robustness emerges because of the effects of a stabilizing selec-
tion.

Simulations have shown that canalization emerges when developmental
noise is present [11, 12]. These results are homologous to those presented in
[3, 4, 5] where artificial developing organisms were selected for their phenotypic
robustness.

Canalization has also been shown to emerge with the evolution of geno-
types with point-stable regulatory networks (independent of their function,
[13]). This result is interesting because, as in [3, 6, 7], robustness is achieved in
the absence of developmental noise, therefore without an explicit evolutionary
advantage.

178 D. Federici

In this paper we show that canalization and robustness can also emerge simply
as a population of developing individuals evolves towards specific targets without
developmental noise or the need of point-stable regulatory networks.

Evidence collected from simulations suggests how robustness is connected
to a general evolutionary tendency to converge on stable genotype spaces (i.e.
presenting a high degree of neutrality1).

Altering the mutation rate, we prove how a more aggressive search produces
individuals both with more robust phenotypes and converging towards wider
neutral spaces.

These results point out a subtle relationship between phylogeny and ontogeny,
which does not appear to be explicitly dependant upon the user-defined selection
criterion: The intrinsic fault-tolerance emerging in multi-cellular systems appears
as a side-effect of the evolutionary preference for more regular regions of the
genotype space.

2 Related Work

Typically proposed to increase the scalability and flexibility of evolutionary com-
putation, several indirected encoding schemes have been proposed. These ‘Artifi-
cial Embryogeny’ (AE, [14]) methods recursively construct the mature phenotype
following the growth program defined in the genotype.

Since selection operates at the level of the phenotype, the relationship between
the evolving genotype and its inclusive fitness is mediated by the development
process. This indirect path may trigger complex gene-to-gene interactions, which
are captured by the concept of the Gene Regulatory Network (GRN).

Since phenotypic maturation in AE is de facto a rewriting process, early
models were based on grammar-based approaches in which the genotype defines
the substitution rules which are repeatedly applied to the phenotype. Examples
include the Matrix Rewriting scheme [15] and the Cellular Encoding [16].

Some models introduced additional contextual information in each rule def-
inition [17, 18], so that phenotypic trait variations could be generated. Also, it
is possible to implicitly define the grammar by means of an artificial GRN [19]
and use the accumulated concentrations of simulated chemicals to modulate the
characteristics of morphological constituents.

In this direction, and inspired by Cellular Automata, a second approach is
to evolve the rules by which cells alter their metabolism and duplicate. Cells
are usually capable of sensing the presence of neighboring cells [20], releasing
chemicals which diffuse in simulated 2D or 3D environments [21, 22], and moving
and growing selective connections to neighboring cells [23].

Closely related to the one presented in this paper, the model proposed in
[24] is based upon a fixed cartesian 2D lattice, a checkerboard, in which each cell
occupies a given square. Artificial organisms are generated starting from a single

1 Whose changes to the genotype produce none or little change to the pheno-
type/fitness.

The Evolutionary Emergence of Intrinsic Regeneration 179

cell. Every cell can replicate in the four cardinal directions taking the organism
to maturation in a fixed number of development steps.

All cells share the same genotype encoding the cell growth program (its regu-
latory network). In [24] the growth program is structured as a sequence of rules.
Rules are activated by matching the local neighborhood of a given cell and trig-
ger specific cell responses: duplication, death and cell-state change. Individuals
were evolved to produce tesselleting patterns.

In [22], the growth program is represented by a boolean network. Cells belong
to 1 of 4 different types and can release chemicals which undergo a simulated
diffusion process. Specific evolutionary targets (2D patterns) were evolved and
emergent self-healing dynamics were reported for the first time [6].

In [3] the previous model is extended with internal chemicals, which do not
diffuse in the environment but are private to each cell. The growth program is
encoded by a recursive neural network, and the organism’s genotype can contain
several chromosomes, each one specifying a complete growth program. Individ-
uals are initialized with a single chromosome which controls the entire develop-
ment process. During evolution, additional chromosomes can be introduced by
duplication (i.e. gene duplication [25]), each one being associated to a specific
stage of development. By allowing several independent Embryonal Stages, this
method proved capable of increasing overall evolvability in the evolution of spe-
cific 2D patterns, also showing a higher scalability then direct encoding. Also in
this case, emergent fault-tolerance was reported.

In [24, 22, 3], fitness was concerned only by the topological properties of
mature individuals. In [5] the AE model in [22] was used to produce a 2-bit
multiplier capable of recovering transient phenotype faults. In [4] the AE model
in [3] was used to evolve a regenerating spiking neuro-controller for simulated
Kephera robots.

These last results prove the great potential that the evolution of complex
fault-tolerant ontogenies can provide to the engineering community.

3 Methods: The Development Model

The AE model used in this paper is introduced in [3]. For clarity the model is
explained in detail in this section.

Phenotypes develop starting from a single cell placed in the center of a fixed
size 2D checkerboard. Multi-cellular organisms reach maturation in a precise
number of developmental steps (Nds). Cells replicate and can release simulated
chemicals in intra-cellular space (cell metabolism).

Cell behaviour is governed by a growth program based on local variables, and
represented by a simple recursive neural network (Morpher).

3.1 Cell State

Each position in the checkerboard can contain a cell, which is characterized
by a state. The following table summarizes the information contained in each
checkerboard position:

180 D. Federici

if a cell is present:
the cell state: {active, passive}
the cell type: an integer in [0, Nt − 1]
the cell metabolism: a vector ∈ [−1, 1]Nm

if no cell is present:
observable cell type 0

In the simulations presented in this paper there is one metabolic chemical
(Nm = 1) and the number of cell type (Nt) is either 3 or 4.

3.2 The Regulatory System: The Morpher

Cell behavior is governed by an artificial neural network (Morpher) defined by
the genotype. The Morpher’s inputs define the state of the regulatory system
and its outputs encode the cell morphogenic actions.

The Morpher input vector encodes the state of a particular cell (type and
metabolism) and of the types of the 4 neighboring cells in the North, West,
South and East directions (NWSE).

At each developmental step, under the control of the Morpher outputs, exist-
ing active cells can change their own type, alter their metabolism and produce
new cells. An active cell can also die or become passive. Each step, up to four new
cells can be produced in any of the NWSE directions. In case, the mother cell
specifies the daughter cells internal variables (type and metabolism) and whether
they are active or passive. If necessary, existing cells are pushed sideways to cre-
ate space for the new cells. When a cell is pushed outside the boundaries of the
grid, it is permanently lost.

The discrete cell type is encoded in a vector ∈ [−1, 1]Nd, in which each vector
element is quantized to V values in the [-1,1] range. Therefore the number of cell
types Nt equals V Nd . The input and output vectors are exemplified below:

input neuron cell cell metabo- neighbors total
vector bias age type lism cell types
size 1 1 Nd Nm 4 × Nd 2 + Nm + 5Nd

output change new cell new me- produce cell metabo- total
vector state? type tabolism cells? types lisms
size 1 Nd Nm 4 4Nd 4Nm 5(Nd + Nm + 1)

Where: the cell age is set to 1 at cell birth and decays exponentially;
‘change state’ can take 4 values {no change, go passive, die, change type and
metabolism}; ‘produce cells’ can take three values for each NWES direction
{produce an active cell, produce a passive cell, do nothing}.

Passive cells cannot replicate or change their own state.
In the simulations presented herein, Nd = 1 and Nm = 1. The Morpher has

8 inputs, 15 outputs and contains no hidden layers. The genotype contains a
floating point gene for each of the 120 Morpher weights.

The Evolutionary Emergence of Intrinsic Regeneration 181

3.3 Embryonal Stages

The regulatory system controls gene expression over two orthogonal dimensions:
time and space. Development with Embryonal Stages (DES) implements a direct
mechanism of Neutral Complexification for the temporal dimension.

As development spans over several consecutive steps, the idea is to start evo-
lution with a single growth program (chromosome/Morpher) which controls all
the development steps. As evolution proceeds, a new chromosome can be added
by gene duplication.

The developmental steps are therefore partitioned into two groups/stages.
The first, controlling the initial steps of embryogenesis, is associated with the
old chromosome. The latter, completing growth, is associated with the new,
identical, duplicated chromosome. Likewise, new chromosomes can be added
one by one, each one controlling a partition of the last development steps.

Being exact copies, new chromosomes do not alter development, and are
therefore neutral. But eventual mutations can independently affect each
duplicated gene.

By unlocking the gene expression of different development phases, each chro-
mosome can assume more specialized roles, de facto increasing the genotypic
resolution around the area represented by the current mature phenotype. In fact,
each new chromosome must take care of the maturation of an already partially
developed phenotype. This new starting phenotype, as opposed to the zygote,
is the result of the evolution of the previous chromosomes and hypothetically
provides a flying start for the additional stage. Overall, the effect is an increase
in genotype-phenotype correlation leading to higher evolvability [3].

In the simulations presented herein, only the chromosome associated to the
latest stage is subjected to the evolutionary operators, while all other chromo-
somes remain fixed2.

3.4 Evolutionary Details

Every population is composed of 400 individuals. The best 50 individuals are
copied to the next generation and reproduce (elitism). Evolution comprises 1000
generations.

The genotype contains a floating point number for each Morpher’s weight.
Mutation takes each weight of the Morpher and adds to it Gaussian noise with
0 mean and Vmut variance (see Section 4 for actual values).

With a .05 probability an offspring undergoes an additional symmetric muta-
tion. The Morpher’s subnet responsible for the production of new cells in a chosen
direction overwrites one or more of the other directions subnets. This operator
should favor the evolution of phenotypes with various degrees of symmetry, but,
since cells are not activated in parallel but follow a top-down left-to-right acti-
vation order, perfect symmetrical phenotypes usually require additional changes
to the genotype.

2 In [3] it was shown that this restriction does not seem to affect the overall evolu-
tionary dynamics while it speeds up the simulations.

182 D. Federici

10% of the offspring are produced by crossover. Crossover exchanges all the
weights connected to inherited outputs units.

Organisms grow in a 32x32 checkerboard starting from a single active cell in
position (16,16), with type 1 and metabolism 0. Development encompasses 12
development steps.

At the end of a evolutionary run, genotypes comprise 12 embryonal stages
(one chromosome for each development step). New stages are introduced every
1000/12 = 83.3̄ generations.

Fitness Function. Each cell in the mature phenotype is interpreted as a pixel,
its color provided by the cell type.

Fitness is proportional to the resemblance of an individual to a target pattern
and is computed as shown in equation 1. For fitness computation, dead cells are
assigned the default type 0 (black color)

Fitness(P, T) =
(∑

x,y Equals (P, T, x, y)
)

/ ||T ||

Equals (P, T, x, y) =
{

0 if P (x, y) �= T (x, y)
1 if P (x, y) = T (x, y)

(1)

where P is the phenotype, T the target pattern. In case of ties, younger individ-
uals are selected.

Notice that in [3, 4], mechanisms devised to contrast premature convergence
were present. In this case, we are less interested in evolvability and investigate
the relation between phylogeny and ontogeny in the emergence of phenotypic
regeneration. For this reason and clarity these mechanisms are not activated in
the following simulations.

Target Patterns. The evolutionary targets are plotted in Figure 1.

Fig. 1. Evolutionary targets. On the left the 3-color 32x32 pattern (V = 3), on the
right the 4-color 32x32 pattern (V = 4).

The Evolutionary Emergence of Intrinsic Regeneration 183

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
fit

ne
ss

 a
nd

 r
ec

ov
er

ed
 fi

tn
es

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ro
bu

st
ne

ss

3 colors; mortality 0.1

V
mut

 2.7183

V
mut

 1.0000

V
mut

 0.3679

V
mut

 0.1353

V
mut

 0.0458

V
mut

 0.0183

V
mut

 0.0067

V
mut

 0.0025

V
mut

 0.0001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fit
ne

ss
 a

nd
 r

ec
ov

er
ed

 fi
tn

es
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ro
bu

st
ne

ss

4 colors, mortality rate 0.1

V
mut

 2.7183

V
mut

 1.0000

V
mut

 0.3679

V
mut

 0.1353

V
mut

 0.0458

V
mut

 0.0183

V
mut

 0.0067

V
mut

 0.0025

V
mut

 0.0001

Fig. 2. Emergent fault-tolerance with a 10% mortality rate: fitness and robustness av-
erages over 100 tests. Tested are the fittest individuals of each population and mutation
rate. Above individuals with 3 colors, below with 4 colors. Thin boxes display fitness
without faults. Individuals were not selected for fault-tolerance.

4 Results

We analyse the results obtained from 36 independent runs with each parameter
setting.

184 D. Federici

We evolve populations whose individuals are selected in base of their resem-
blance to the targets plotted in Figure 1. After 1000 generations, the intrinsic
fault-tolerance of the best individual of each run is tested. While during evo-
lution, development is fault-free, during fault-tolerance tests, each cell at each
development step is killed with a given probability (mortality rate). In case of
death, cells are simply removed from the checkerboard.

For each tested individual we compute:

fitness recovery: the individual fitness score when subjected to faults.
robustness: the phenotype stability to faults, i.e. a count of the phenotypic

differences between the faulty and non-faulty individual averaged over the
total number of cells.

The latter is more indicative of the individuals’ intrinsic regenerative proper-
ties since computing only the recovered fitness score hides phenotypic changes
that are neutral towards fitness. For simple combinatorial reasons, these are in
fact more probable in less fit individuals.

The averages of both indicators are plotted in Figure 2 for a 0.1 mortality
rate. Populations with various levels of mutation variance have been evolved:
Vmut = ei with i = {1, 0, −1, −2, −3, −4, −5, −6, −7}.

It is interesting to notice that, while performance appears maximized for
intermediate values of Vmut, higher robustness emerges under stronger muta-
tion rates. This intrinsic property of ontogeny appears mediated by the amount

12 45 109 471 757 853 980
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fit
ne

ss
 a

nd
 r

ec
ov

er
ed

 fi
tn

es
s

12 45 109 471 757 853 980
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ro
bu

st
ne

s
s

mortality rate 0.05

best individual at generation

Fig. 3. Intrinsic robustness levels during evolution. Averages over 100 tests for the best
individuals of the highest scoring population with Vmut = e−2 and 4 colors. Robustness
emerges during evolution but does not appear to be proportional to fitness. Thin boxes
display fitness without faults.

The Evolutionary Emergence of Intrinsic Regeneration 185

of phylogenetic variation. Since robustness is a feature which is not selected
for, this result highlights a relationship between the domains of ontogeny and
phylogeny.

4.1 Is Intrinsic Robustness Evolved?

We would like to know whether robustness is an emergent property of de-
velopment in general, or more specifically it arises during evolution. In [3] it
was reported that random individuals appeared less robust than fit ones. In
Figure 3 we plot robustness over generations for all the best individuals from
the best population evolved with Vmut = e−2 and 4 colors.

It is observed that, similar to the results obtained in selection experiments
[26, 27], robustness emerges after only a few generations. This shows how the
most evolvable individuals also present an intrinsic fault-tolerance.

Still robustness does not appear to be strictly proportional to fitness, as it
also shown to decrease during evolution. This reflects the fact that robustness is
neutral towards selection and its appearance is a byproduct of the evolutionary
dynamics.

For example, figure 4 shows how those individuals which are selected for
reproduction are not those displaying the highest robustness. Still, the fact that

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.4

0.5

0.6

0.7

0.8

0.9

1

fitness

ro
bu

st
ne

ss

not selected selected

A

B

Fig. 4. Scatter plot: intrinsic robustness over fitness. Averages over 100 tests for all the
individuals of the last generation of the highest scoring population with Vmut = e−2

and 4 colors. Individuals laying on the right of the separation line will be selected
for reproduction. The fittest individuals are clustered in a group (A), while the most
robust ones are centered in another (B).

186 D. Federici

the cluster of lower-fitness high-robustness individuals (labeled B, in Figure 4)
is very dense may explain the reason behind the frequent emergence of fault-
tolerant individuals.

4.2 Relation Between Robustness and Neutral Space

The presented results suggest a proportional relation between high mutation
rates and phenotypic homeostasis. In this section, we argue that the emergent
robustness of ontogeny is connected to the evolutionary preference for genotypes
of high mutational robustness.

According to the quasi-species model [28], apart from individuals of high fit-
ness, selection would also prefer genotypes which are robust towards mutation.
This is because with full replacement, those individuals which have more prob-
ability to produce viable fit offspring have a higher probability to survive as a
quasi-species. As a result, populations tend to converge to genotype regions of
higher neutrality (i.e. regions of Mutational Robustness, where fewer genotype
mutations produce an observable phenotype/fitness change). Being more stable,
these regions are in fact attractors of the dynamic evolutionary system, see for
example the analysis in [29].

In our case, we use a deterministic method without full replacement (elitism)
to select the reproducing/surviving individuals, therefore the quasi-species model
should not hold. In fact, individuals of highest fitness will always reproduce and
survive no matter how rough is the fitness landscape around their genotype.

Still, the quasi-species analysis is carried at equilibrium (as in [29]). Before
reaching equilibrium, we argue, the lack of stochastic fluctuations in the surviving
population is replaced by the effects of the randomic exploration of the search
space.

For example, let there be two distant genotype regions, R1 and R2, so that
individuals cannot migrate from one region to the other. R1 contains few indi-
viduals of optimal fitness FO and many of low fitness FL (i.e. a promising region
but with a rough fitness landscape); while R2 contains few individuals of low
fitness FL and many of high but sub-optimal fitness FSO, with FSO < FO (i.e.
a less promising region but with regular fitness landscape).

Individuals laying on R1 have a low probability to generate fit individuals,
while those laying on R2 have a statistically higher yield. The more frequent
FSO solutions could take R1 individuals to extinction if FO solutions are not
discovered in time.

Therefore, even with elitism, the conclusions of the quasi-species model would
hold, and evolution would push towards regions with more regular fitness land-
scapes, i.e. regions of higher mutational robustness. With a more aggressive mu-
tation operator (higher Vmut) we also expect populations to converge to regions
of more marked neutrality.

We can test the neutrality of the genotype regions occupied by the best indi-
viduals of the 5 top scoring populations evolved with each parameter settings.
For each tested individual, we alter the genotype and compute the corresponding
phenotypic variation. Figure 5 shows the average phenotypic change per unit of

The Evolutionary Emergence of Intrinsic Regeneration 187

genotype change. In the following tables, we report the maximum amplitude of
the genotype alteration (G-distance3) which causes an average phenotype varia-
tion below the given threshold (averages over 48000 random genotype alterations
of various amplitudes for each tested individual).

3 colors G-distance for phenotype distance less then: average
Vmut < 10−4 < 10−3 < 10−2 < 10−1 robustness (0.05)
e1 0.20 4.50 14.00 ≥ 30.00 0.91 ± 0.00
e0 0.00 0.04 2.50 ≥ 30.00 0.89 ± 0.00
e−1 0.00 0.05 1.50 ≥ 30.00 0.90 ± 0.01
e−2 0.00 0.01 0.10 18.00 0.86 ± 0.01
e−3 0.00 0.00 0.04 3.00 0.78 ± 0.01
e−4 0.00 0.00 0.04 2.50 0.62 ± 0.03
e−5 0.00 0.00 0.00 0.04 0.48 ± 0.00
e−6 0.00 0.00 0.00 0.01 0.35 ± 0.00
e−7 0.00 0.00 0.00 0.01 0.35 ± 0.00

4 colors G-distance for phenotype distance less then: average
Vmut < 10−4 < 10−3 < 10−2 < 10−1 robustness (0.05)
e1 0.07 0.40 9.00 ≥ 30.00 0.83 ± 0.01
e0 0.09 1.00 4.50 ≥ 30.00 0.87 ± 0.01
e−1 0.03 0.10 1.00 20.00 0.83 ± 0.01
e−2 0.01 0.06 0.40 6.00 0.76 ± 0.02
e−3 0.00 0.00 0.02 1.50 0.70 ± 0.01
e−4 0.00 0.00 0.01 1.50 0.70 ± 0.00
e−5 0.00 0.00 0.00 0.70 0.49 ± 0.01
e−6 0.00 0.00 0.01 1.00 0.38 ± 0.01
e−7 0.00 0.00 0.00 0.03 0.30 ± 0.01

As expected there is a strong correlation between the mutation rate (Vmut)
and the average neutrality of the genotype changes. Notably, these results suggest
that emergent fault-tolerance is connected to mutational robustness, pointing to
a relation between the ontogenetic and phylogenetic domains.

To confirm this hypothesis excluding the effects of fitness scores, we test indi-
viduals of equal fitness from the population of Figure 4. We take the most robust
individual of the population and compare its neutral space size with the one of
the least robust individual with the same fitness score. The most fault-tolerant
individual is shown to lay on a larger neutral space:

4 colors G-distance for phenotype distance less then: average
fitness < 10−4 < 10−3 < 10−2 < 10−1 robustness (0.05)
0.5088 0.04 0.10 0.40 ≥ 30.00 .9829 ± .0004
0.5088 0.01 0.07 0.30 ≥ 30.00 .7073 ± .0081

3 Measured as the euclidean distance in the 120-dimensional genotype space.

188 D. Federici

10
-2

10
 -1

10
0

10
1

 0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

δ
 p

he
no

ty
pe

10
-2

10
 1

10
0

10
1

 0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

genotype distance (log10)

V
mut

 e

V
mut

 e0

V
mut

 e -1

V
mut

 e -2

V
mut

 e -3

V
mut

 e -4

V
mut

 e -5

V
mut

 e -6

V
mut

 e -7

4 colors3 colors

Fig. 5. Individual’s neutrality to genotype changes: phenotype variation per unit of
genotype change. Averages over 48000 random genotype changes of the 5 best individ-
uals of the 5 top-scoring populations with each parameter settings. Individuals evolved
under stronger mutation rates (Vmut) usually converge to wider neutral spaces.

5 Conclusions

Related work [22, 6, 3, 7] has show that some Artificial Embriogeny (AE) systems
display emergent regenerative properties. With the aim to eventually produce as
robust designs as those seen in nature, this tendency can be exploited to produce
functional devices with remarkable fault-tolerance [4, 5].

Currently though, there is not a clear understanding of the reasons behind the
emergence of the intrinsic robustness displayed by these development systems. It
is often assumed that the distributed nature of ontogeny must play a fundamental
role in the organism ability to recover from phenotypic faults. Still, logic also
suggests that faults should propagate catastrophically as they are built upon
during ontogeny.

In this paper we address this issue linking the robustness to phenotypic faults
occurring during development to the evolutionary tendency to converge on geno-
type spaces with a high degree of neutrality.

Simulations conducted on the presented multi-cellular AE model have demon-
strated that:
R1: when the mutation rate is increased, evolution converges to more regular
genotype regions, i.e. with a high degree of robustness to mutations.
R2: a high robustness to mutations is related to a high degree of tolerance to
phenotypic faults during development.

These results are in good agreement with the canalization theory [8, 9], where
the emergence of stabilizing selection originates by the evolutionary preference
for regular genotype space regions.

The Evolutionary Emergence of Intrinsic Regeneration 189

Additionally, if R1 fits well with the predictions derived by the quasi-species
model [28], we will now argue that R2 is the logic extension of R1 in the case of
ontogeny.

In fact, the reason behind the evolutionary emergence of mutational robust-
ness is that individuals converging to more regular fitness landscapes have a
higher probability to flood a population with a single strain of related genotypes
(i.e. a quasi-species).

This implies that members of such successful quasi-species display a good
neutrality to mutations: that when mutated phenotype/fitness changes are
negligible.

Without development, this can be achieved by reducing the negative effects
of epistasis, see for example [30]. This is because, when mutations alter the
genotype, a high level epistasis means that gene to gene interactions will amplify
the phenotypic consequences of the change.

With development, the rewriting process allows another path towards the
achievement of a good neutrality to mutations: the possibility that a mutation
causes a change to the growing phenotype which is cancelled (corrected) later
on in development.

Therefore a stable growth program is one that can also neutralize phenotypic
variations. When evaluating the intrinsic fault-tolerance of an artificial embryo-
geny, we are in fact testing a facet of the genotype’s mutational robustness, its
ability to suppress phenotypic variations caused by mutations.

The conclusion is that fault-tolerance emerges during evolution because, as
organisms compete to reach higher levels of evolvability, they converge to more
regular (robust) genotype regions.

Future Work. The fact that regeneration of multi-cellular systems emerges as
a side effect of the optimization of the development process, allows us to draw
two hypotheses: the first, that fault-tolerant developing organisms should be
relatively easy to evolve; the second, that it should be possible to use fault-
tolerance to measure the evolvability of a development system.

The former is already being validated by recent empirical results [4, 5]. The
latter is being investigated, with the hope of producing a theory that would help
the design of more evolvable artificial embryogenies.

Acknowledgements. I wish to thank Per Kristian Lehre for the many valu-
able discussions, and the anonymous reviewers for the quality of their feed-
back.

References

1. Bode, P., Bode, H.: Formation of pattern in regenerating tissue pieces of hydra
attenuata. i. head-body proportion regulation. Dev Biol 78 (1990) 484–496

2. Ramon-Cueto, A., Cordero, M., Santos-Benito, F., Avila, J.: Functional recovery
of paraplegic rats and motor axon regeneration in their spinal cords by olfactory
ensheathing glia. Neuron 25 (2000) 425–435

190 D. Federici

3. Federici, D., K.Downing: Evolution and development of a multi-cellular organism:
Scalability, resilience and neutral complexification. Artificial Life Journal (in press)
12:3 (2006)

4. Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6)
(2005) 746–754

5. Liu, H., Miller, J., Tyrrel, A.: Intrinsic evolvable hardware implementation of a
robust biological development model for digital systems. In: Proc. of the 6th NASA
Conference on Evolvable Hardware. (2005) 87–92

6. Miller, J.: Evolving a self-repairing, self-regulating, french flag organism. In Deb,
K., al., eds.: Proc. of Genetic and Evolutionary Compuation, GECCO 2004. (2004)
129–139

7. Roggen, D., Federici, D.: Multi-cellular development: is there scalability and ro-
bustness to gain? In Yao, X., al., eds.: Proc. of Parallel Problem Solving from
Nature 8, PPSN 2004. (2004) 391–400

8. Waddington, C.: Canalization of development and the inheritance of acquired
characters. Nature 150 (1942) 563–565

9. Schmalhausen, I.: Factors of Evolution: The Theory of Stabilizing Selection. Univ.
of Chicago Press; reprinted in 1986 (1949)

10. Stearns, S.: Progress on canalization. Proc Natl Acad Sci USA (2002) 10229–30
11. Gavrilets, S., Hastings, A.: A quantitative-genetic model for selection on develop-

mental noise. Evolution 48(5) (1994) 1478–1486
12. Rice, S.H.: The evolution of canalization and the breaking of von baer’s laws:

Modeling the evolution of development with epistasis. Evolution 52(3) (1998)
647–656

13. Siegal, M., Bergman, A.: Waddington’s canalization revisited: developmental sta-
bility and evolution. Proc Natl Acad Sci USA 99(16) (2002) 10528–32

14. Stanley, K., Miikulainen, R.: A taxonomy for artificial embryogeny. Artificial Life
9(2) (2003) 93–130

15. Kitano, H.: Designing neural networks using genetic algorithms with graph gener-
ation system. Complex Systems 4:4 (1990) 461–476

16. Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Genetic
Algorithm. PhD thesis, Ecole Normale Superieure de Lyon (1994)

17. Hornby, G., Pollack, J.: Body-brain co-evolution using L-systems as a generative
encoding. In Spector, L., al., eds.: Proc. of the Genetic and Evolutionary Compu-
tation Conference, GECCO-2001, Morgan Kaufmann (2001) 868–875

18. Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for
physical design. In: Proc. of the 2001 Congress on Evolutionary Computation,
CEC 2001, IEEE Press (2001) 600–607

19. Bongard, J.: Evolving modular genetic regulatory networks. In: Proc. of the 2002
Congress on Evolutionary Computation (CEC2002), IEEE Press, Piscataway, NJ,
2002 (2002) 1872–1877

20. Dellaert, F., Beer, R.: Toward an evolvable model of development for autonomous
agent synthesis. In R.Brooks, Maes, P., eds.: Proc. of Artificial Life IV, MIT Press
Cambridge (1994) 246–257

21. Eggenbergen-Hotz, P.: Evolving morphologies of simulated 3d organisms based on
differential gene expression. In Husbands, P., Harvey, I., eds.: Proc. of the 4th
European Conference on Artificial Life (ECAL97). (1997) 205–213

22. Miller, J.: Evolving developmental programs for adaptation, morphogenesys, and
self-repair. In Banzhaf, W., Ziegler, J., Christaller, T., eds.: Proc. of the European
Congress of Artificial Life, ECAL 2003. (2003) 256–265

The Evolutionary Emergence of Intrinsic Regeneration 191

23. Cangelosi, A., Nolfi, S., Parisi, D.: Cell division and migration in a ’genotype’ for
neural networks. Network: Computation in Neural Systems 5 (1994) 497–515

24. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies
for an evolutionary design problem. In Banzhaf, W., al., eds.: Proc. of GECCO
‘99. (1999) 35–43

25. Ohno, S.: Evolution by Gene Duplication. Springer (1970)
26. Kindred, B.: Selection for an invariant character, vibrissa number in the house

mouse. v. selection on non-tabby segregants from tabby selection lines. Genetics
55(2) (1966) 365–373

27. Maynard-Smith, J., Sondhi, K.: The genetics of a pattern. Genetics 45(8) (1960)
1039–1050

28. Nowak, M.: What is a quasi-species? Trends Ecol. Evol. 7 (1992) 118–121
29. van Nimwegen, E., Crutchfield, J.P., Huynen, M.: Neutral evolution of mutational

robustness. Proc. Natl. Acad. Sci. USA 96 (1999) 97169720
30. Edlund, J.A., Adami, C.: Evolution of robustness in digital organisms. Artificial

Life 10 (2004) 167–179

Evaluation of Fundamental Characteristics of
Information Systems Based on Photonic DNA

Computing

Yusuke Ogura1,2, Rui Shogenji2, Seiji Saito1, and Jun Tanida1,2

1 Graduate School of Information Science and Technology, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

2 Japan Science and Technology Corporation (JST-CREST)
{ogura, rui, saito, tanida}@ist.osaka-u.ac.jp

Abstract. In this paper, the characteristics of information systems
based on photonic DNA computing are evaluated by simply modeling.
Fundamental features of photonic DNA computing clarified with calcu-
lations of its performance suggest that selecting applications suitable for
photonic DNA computing systems is important. We also considered a
simple algorithm for solving the maximum clique problem and found
that photonic DNA computing is effective to reduce the amount of DNA
strands used and processing time compared to the conventional DNA
computing.

1 Introduction

Nature makes a lot of suggestions that are helpful for developing new sophisti-
cated methods relating to information technology. For example, DNA computing
is a computational paradigm based on effective utilization of the fundamental
structure of processing of DNA in living cells. DNA is the carrier of genetic in-
formation, and promotes the evolution of living beings. These facts attest that
DNA has potential usability as an information carrier, and much research effort
on DNA computing is being made[1, 2].

In DNA computing, to use the characteristics of DNA including massive par-
allelism of reactions, small size, and capability to react autonomously, infor-
mation is encoded into the base sequences or the structures of DNA molecules
and processed with various bio-chemical reactions. DNA is a powerful tool par-
ticularly for parallel information processing at nano-scale. However, information
processing based on only the nature of DNA requires hard and complicated tasks:
for example, the sequence design and accurate reaction control of the DNA.

In contrast, optical computing is a computational technique for parallel infor-
mation processing that uses inherent properties of light such as fast propagation,
spatial parallelism, and a large bandwidth. The applications include optical in-
terconnection, image processing, and photonic network[3]. The embodiment of a
valuable optical computing system requires varieties of optical devices, and some
remarkable devices have been developed. These devices are useful for controlling

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 192–205, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Evaluation of Fundamental Characteristics of Information Systems 193

optical fields. However, the resolution of the light is restricted in micro-scale due
to the diffraction limit; The diffraction limit often determines the density and
capacity of information that is dealt with in optical systems. Although near-field
optics is a possible idea to overcome the diffraction limit, it is difficult to utilize
spatial parallelism of light, which is a large advantage for information process-
ing. Further progress of optical computing systems require a new strategy for
manipulating information at nano-scale effectively.

We proposed photonic DNA computing, which uses light and DNA
cooperatively[4, 5]. From a viewpoint of applications of optical techniques to
DNA computing, an efficient processing or a new operation structure can be
introduced. This leads relaxation of constraints in design of DNA sequences, im-
provement of flexibility in computation, and so on. An electronic technology can
be combined to DNA computing because an optical technology bridges the both
technologies. In addition, from a standpoint of optical computing, the capacity
and density of information increase because the information can be manipulated
in molecular scale which is considerably smaller than the diffraction limit. Ca-
pability of DNA to react autonomously provides a large tolerance in controlling
light and reduces requirements for system packaging.

To realize the concept of photonic DNA computing, we have been developing
some optical techniques[6, 7]. An important example is the parallel optical ma-
nipulation technique using vertical-cavity surface-emitting laser (VCSEL) array
sources. This is applicable to translating ensembles of DNA molecules in parallel.
We also demonstrated a method for controlling reactions of DNA in local space
by irradiating with a laser beam. These techniques are useful in constructing
computing systems.

On the other hand, the characteristics of systems based on the photonic DNA
computing have not been clarified. To develop high-performance systems, the-
oretical consideration is important as well as experiment. The purpose of this
study is evaluation of the fundamental characteristics of systems based on pho-
tonic DNA computing. The achievement of this study is expected to show a
valuable guidance for future research on the field. In analyses, we use a simple
model because it is considered to be useful to find the essential features.

In section 2 the concept of photonic DNA computing is described. In section
3 the characteristics of photonic DNA computing are evaluated with a general
and simple model. In section 4 we introduce an algorithm for solving maxi-
mum clique problems. The performances of conventional DNA computing and
photonic DNA computing are compared with respect to the number of DNA
molecules of solution candidates and processing time. In section 5 we discuss a
few fundamental characteristics of photonic DNA computing.

2 Concept of Photonic DNA Computing

The concept of the information system based on photonic DNA computing is
shown in Fig. 1. Information is encoded to the sequences or the structures of
DNA molecules as well as conventional DNA computing. A major difference of

194 Y. Ogura et al.

Micro-scale
(Light)

DNA solution
Substrate

Light beams

DNA

Nano-scale
(DNA)

Unit

Fig. 1. The concept of photonic DNA computing

photonic DNA computing from the conventional DNA computing is that the
volume of a DNA solution is divided to many small units. The units are defined
by light spots and the size of the units is comparable to that of the light spot.
In the individual units, a lot of DNA molecules react simultaneously, and the
reactions in the units are controlled independently. DNA and light are informa-
tion carrier for computation at nano-scale and micro-scale, respectively. DNA is
utilized for autonomous processing, acquiring information in nano-world, con-
trolling nano materials, storing information with high density, and other nano-
scale computations. The roles of the light or optical techniques include spatial
parallel processing, introducing information from outside, controlling ensembles
of information or DNA, communication between units. Information carried with
DNA and that with light are interchanged during computation: as a typical ex-
ample, DNA molecules are manipulated with light and they report their states
as fluorescence signals.

3 Evaluation of General Characteristics

A substrate is used in a photonic DNA computing system as shown in Fig. 1.
The substrate provides space for DNA reactions, communications between light
and DNA, and other operations. We suppose that the volume of a DNA solution
on the substrate is divided into N ×N units whose bases are squares with a side
length of L.

3.1 Information Density

Let us consider the double helix structure of a double-stranded DNA. The width
and the length of one turn, which consists of 10 bases, of the helix are approx-
imately 2 nm and 3.4 nm, respectively. Taking into account that a single base
can encode 2-bit data, the information density is estimated to be 2 bit/nm3.
However, with the information density, it is difficult to access and operate data
for computing, and the value 2 bit/nm3 should be considered as local density at
the scale smaller than submicrometer.

Evaluation of Fundamental Characteristics of Information Systems 195

Another consideration is required for estimating the density of information at
micrometer scale or larger. A typical concentration of a DNA solution stored for
biological experiments is 100 μM. With this concentration, the density of DNA
molecules is 6 × 10−5 nm−3. Figure 2 shows the amount of data in a unit with
the volume of L × L × 10 μm3 under this condition.

L (μm)

A
m

ou
nt

 o
f d

at
a

(b
it)

40 bit / molecule
1 bit / molecule

1.0E+04

1.0E+06

1.0E+08

1.0E+10

0 10 20 30 40

Fig. 2. Dependence of amount of data in each unit on L when the concentration of the
DNA solution is 100 μM

The black and gray curves show the amount of data under the assumption
that the individual DNA molecules have 40-bit or 1-bit data, respectively. If the
data are encoded into the sequences of 20-bases DNA strands, the strands have
40-bit data. In contrast, if the structure of DNA molecules express the data,
each of the DNA molecules can be considered to have 1-bit data.

As seen from the figure, more than 1 gigabit data can be dealt with in each unit
when L = 10 μm and DNA molecules each has 40-bit data. This is equivalent
to 1 bit per the volume of a cubic with a side length of 10 nm. In contrast,
the spatial resolution of a diffraction-limited optical system using visible light is
approximately 1 μm, and the information density of the system is measured as
1 bit/μm3. This consideration shows that the information density of photonic
DNA computing systems can be 106 times greater than that of pure-optical
systems.

3.2 Processing Time

A basic procedure used in photonic DNA computing is a sequence of distributed
processing, data transferring, and global processing, as shown in Fig. 3. The
dependence of processing time on the number of units is evaluated by using a
simple model of this procedure.

Let us assume that W tasks are necessary for a computation, and the tasks
are divided to Wd tasks that are executed by distributed processing and Wg

tasks by global processing (W = Wd + Wg). In distributed processing, the same
number of tasks, namely Wd/N

2 tasks, are executed in the individual units.

196 Y. Ogura et al.

Distributed processing Global processingData transferring

Fig. 3. A basic procedure of photonic DNA computing

Distributed processing is implemented by controlling reactions of DNA in
the units independently and in parallel. In contrast, global processing is accom-
plished with the reaction of the entire solution. We suppose that all reactions
take the same amount of time: Treact.

Data transfer is required for collecting DNA into a unit for global processing.
The procedure for data transfer consists of a pre-process, translation, and a
post-process. The amount of time of pre- and post-processes can be expressed
as kTreact; when DNA reactions are used in these processes, k is integer, and
in other cases, k can be decimal number. If the DNA located in a corner’s unit
is translated to the center unit, the amount of time taken for translation is
represented by NTtrans, where Ttrans is amount of time required for translating
to an adjacent unit.

The amount of time, T , required for the procedure in Fig. 3 is obtained as

T =
WdTreact

N2 + WgTreact + (NTtrans + kTreact) . (1)

Introducing parameters α (0 < α < 1) and β (β > 0) by defining Wd : Wg = α :
(1 − α) and Treact : Ttrans = 1 : β, Eq. (1) is rewritten as

T = WTreact

{
1 − α

(
1 − 1

N2

)
+

βN + k

W

}
. (2)

Here we estimate k, Ttrans, Treact, and β. We have developed an optical manipu-
lation method with VCSEL array sources to transfer data DNA. Arbitrary spot
array patterns are generated by modulating the individual VCSELs on the array,
and flexible manipulation of multiple objects is achieved. Direct manipulation
of DNA with the optical manipulation technique is difficult because of the scale
gap of light and DNA, so that we fabricate DNA clusters. A DNA cluster is
an ensemble of DNA molecules attached to a bead by chemical bond. With the
DNA clusters, we can deal with a lot of DNA molecules simultaneously.

Our method for data transfer consists of three steps: (i) fabricating DNA
clusters, (ii) translating DNA clusters, and (iii) detaching DNA from DNA clus-
ters. DNA reactions are used for fabricating DNA clusters and detaching DNA,
and we can obtain k = 2. The maximum translation velocity currently obtained
by using VCSEL array optical manipulation is approximately 1 μm/sec. With
this velocity, Ttrans = 10 seconds when L = 10 μm. On the other hand, DNA
reactions often takes hundreds seconds, thousands seconds, or more time, and
in this paper we estimate Treact as 100 or 1000 seconds; then β = 0.1 or 0.01.

Evaluation of Fundamental Characteristics of Information Systems 197

α = 0.5, β = 0.1 α = 0.95, β = 0.1
α = 0.95, β = 0.01α = 0.5, β = 0.01

0
20
40
60
80

100
120

0 2 4 6 8 10
N

T
 (

x
T

re
ac

t)
T

 (
x

T
re

ac
t)

0
200
400
600
800

1000
1200

0 5 10 15 20 25 30
N

W=100

W=1000

Fig. 4. Relationship between the number of unit N and processing time T . (a) W
= 100, (b) W = 1000.

Figure 4 shows plots of T on N when (a) W = 100 or (b) W = 1000. At
N = (2αW/β)1/3, T takes the minimum value. It can be seen that T strongly
depends on N when using small N . In particular, by using distributed processing,
processing time can be reduced comparing to the conventional DNA computing
(N = 1). However, we must emphasize that increase of the number of units
causes increase of processing time when data transfer takes much time.

3.3 Data Transfer Rate

In photonic DNA computing, ensembles of DNA molecules are processed and
stored in the individual units. This denotes that accessing particular DNA mole-
cules requires to know the position of DNA or the unit in which the target DNA
exists. From this point of view, the DNA molecules are considered to have po-
sitional addresses to identify them. The positional addresses can be changed by
transferring data DNA between units.

The rate, Rtrans, of data transfer described in section 3.2 is expressed as
follows:

Rtrans =
Ntrans

NTtrans + kTreact
=

Ntrans

(βN + k)Treact
, (3)

where Ntrans is the amount of data to be transferred simultaneously. As a
reference, Fig. 5 illustrates dependence of Rtrans on N under the assumption

198 Y. Ogura et al.

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0 10 20 30
N

R
tr

an
s

(b
it/

se
c)

β=0.01, k=0.1 β=0.1, k=0.1

β=0.01, k=2 β=0.1, k=2

Fig. 5. Dependence of Rtrans on N . Treact = 100 sec and Ntrans = 107

Treact = 100 sec and Ntrans = 107. As mentioned in section 3.2, β is estimated
to be 0.1 or 0.01.

To meet the demand that the amount of time for translating DNA clusters
are much smaller than that for fabricating DNA clusters and detaching DNA,
the following requirement must be satisfied:

Ttrans � k

N
Treact. (4)

For example, we take k = 2, N = 10, and Treact = 100 sec, then Ttrans < 20 sec.
Assuming Ttrans = 2 sec to achieve this requirement, the velocity faster than
5 μm/sec is necessary when L = 10 μm. As mentioned in section 3.2 the present
translation velocity of VCSEL array optical manipulation is 1 μm/sec, which
fails to meet the above requirement. However, high-power VCSEL arrays are now
available, and translation velocity of 5 μm/sec will be achievable by designing
special optical systems with high light efficiency.

4 Performance for Solving the Maximum Clique Problem

In this section, we estimate the number of DNA molecules of solution candidates
and processing time for solving the maximum clique problem using an algorithm
to which photonic DNA computing is applicable. The maximum clique problem
is a problem to calculate the largest number of vertices of cliques (complete
graphs) among the subgraphs of a given graph G(V, E).

4.1 Algorithm

Ouyang et al. proposed a method for solving the maximum clique problem based
on DNA computing[8]. Their procedure is as follows:

Evaluation of Fundamental Characteristics of Information Systems 199

1. DNA strands that encode each of the vertices are synthesized.
2. DNA strands encoding all subsets of the set of the vertices of the given graph

are generated by a method called parallel overlap assembly.
3. DNA strands containing two vertices between which no edge exists are cut by

enzyme reactions.
4. The DNA solution is analyzed by electrophoresis. The DNA strand which has

the maximum number of vertices is the solution of the given problem.

We modify the algorithm to solve the problem with the procedure shown
in Fig. 3. The scheme of the algorithm is illustrated in Fig. 6. This algorithm
consists of two steps: obtaining all cliques of each of D subgraphs (distributed
processing) and obtaining cliques of the given graph by using the result of the
previous step (global processing).

Step. 1
The set, V (G), of vertices of the given graph G(V, E) is divided into D
subsets V (Gi)(i = 1, 2, . . .D) (Fig. 6(a)). The set of edges which link two
vertices contained by V (Gi) is referred to as E(Gi), and it is considered as
the set of edges of the subgraph Gi (Fig. 6(b)). DNA strands are generated
for all subgraphs of V (Gi) as solution candidates. The solution candidates
that contain two vertices between which no edge exists are removed. As a
result, the solution contains only the DNA strands that encode the sets of
vertices {Vj(Gi)|j = 1, 2, . . . , Nclq i} of the cliques (Fig. 6(c)). Here Nclq i is
the number of cliques contained in Gi.

Step. 2
One element is selected from Vj(Gi) or φ (empty set) for individual i
(Fig. 6(d)), and the sets of the selected elements are considered as solu-
tion candidates in this step (Fig. 6(e)). As same as Step. 1, the solution
candidates that contain two vertices between which no edge exists are re-
moved, then the sets of vertices making cliques remain. The largest set of
vertices in the remained solution is the maximum clique (Fig. 6(f)).

4.2 Number of Solution Candidates

In Step. 1, the given graph is divided to D subgraphs that contain n/D vertices,
where n is the number of the vertices of the given graph, then the necessary
number of DNA strands of solution candidates, N

(1)
cand, is obtained by

N
(1)
cand =

(
2

n
D − 1

) × D. (5)

This number does not depend on the given graph. In Step. 2, the necessary
number of solution candidates, N

(2)
cand, is expressed by

N
(2)
cand =

D∏
i=1

(Nclq i + 1) − 1. (6)

200 Y. Ogura et al.

This number depends on the given graph. The necessary number of solution
candidates for the algorithm is larger number between N

(1)
cand and N

(2)
cand.

2 3

4 5
6

7
8

9

1 1 2

4

3

5
6

7
8

9

φ

7

7

7

8

8

9

9

3

3

φ

5

5
5

6

6

1

1

1

2

2

2

4

4

4

φ

1 3

4 5

1 2

5
6

2 3

4
5

Step 1

Step 2

V(G1)=
{1,2,4}

V(G2)=
{3,5,6}

V(G3)=
{7,8,9}

7 8

7
89

7
9

(a) (b)

(d) (e) (f)

(c)

G1 G2

G3

Vj(G1) Vj(G2) Vj(G3)

3
5

3

5
6

5 6

V1(G3)={7}
V2(G3)={8}
V3(G3)={9}
V4(G3)={7,8}
V5(G3)={7,9}

V1(G2)={3}
V2(G2)={5}
V3(G2)={6}
V4(G2)={3,5}
V5(G2)={5,6}

V1(G1)={1}
V2(G1)={2}
V3(G1)={4}
V4(G1)={1,2}
V5(G1)={1,4}
V6(G1)={2,4}

2

4
1

2

4

2
1

1

4

...
...

...
...

Fig. 6. The algorithm for solving the maximum clique problem. This figure shows an
example of a graph consisting of 9 vertices and 14 edges. (a) The given graph is divided,
(b) subgraphs Gi, (c) cliques of the individual subgraphs, (d) generation of solution
candidates, (e) solution candidates in Step. 2, (f) final solution.

Evaluation of Fundamental Characteristics of Information Systems 201

We assume that the edges are distributed uniformly in the given graph
G(V, E), then the number, NE(Gi), of the edges of subgraph Gi is estimated as

NE(Gi) =
C(n

D , 2)
C(n, 2)

NE(G), (7)

where C(u, v) is the combination of v elements from a group of u.
Let N

(γ)
clq i be the expected number of cliques consisting of γ vertices. When

γ = 1, 2, we obtain N
(1)
clq i = NV (Gi) and N

(2)
clq i = NE(Gi), where NV (Gi) is

the number of vertices of Gi. For γ is equal to or more than 3, the following
expression can be obtained:

N
(γ)
clq i = C(NV (Gi), γ) × C(C(NE(Gi), 2) − C(γ, 2), NE(Gi) − C(γ, 2))

C(C(NV (Gi), 2), NE(Gi))
, (8)

=
NV (Gi)NE(Gi)

(
n(n−1)

2 − γ(γ−1)
2

)
γ(NV (Gi) − γ)

(
NV (Gi)(NV (Gi)−1)

2

)(
NE(Gi) − γ(γ−1)

2

) . (9)

Because NV (Gi) and NE(Gi) are constant over all i, N
(γ)
clq i is also constant and

expressed as N
(γ)
clq , then Eq. (6) is rewritten as

N
(2)
cand =

⎛
⎜⎝ ∑

{γ|C(γ,2)≤NE(Gi)}
N

(γ)
clq + 1

⎞
⎟⎠

D

− 1. (10)

When D = 1, the number of solution candidates is 2n − 1: this does not depend

on the given graph.

N
um

be
r

of
 c

an
di

da
te

s

N
um

be
r

of
 c

an
di

da
te

s

(a) n=128 (b) n=256

D=1 D=2 D=4 D=8

Number of edgesNumber of edges

1E+00

1E+10

1E+20

1E+30

1E+40

0 2000 4000 6000 8000
1E+00
1E+10
1E+20
1E+30
1E+40
1E+50
1E+60
1E+70

0 10000 20000 30000

Fig. 7. Dependence of the number of DNA strands of solution candidates on the num-
ber of edges. Upper: n=128; lower: n=256.

202 Y. Ogura et al.

Dependence of the number of solution candidates on the number of edges is
shown in Fig. 7. The number of vertices is 128 or 256.

We can find that the required number of solution candidates drastically de-
creases by using distributed processing compared to the conventional DNA com-
puting (D = 1). This result shows that distributed processing based on photonic
DNA computing is useful to decrease the amount of DNA used. In particular,
a significant effect is obtained when the number of edges of the given graph is
small because the number of cliques contained in the graph decreases. Compar-
ison of the number on D indicates that increasing D is effective especially for
small number of edges. The reason is that the number of solution candidates
generated in Step. 1 decreases exponentially with D.

In this calculation, we assume that the edges of the given graph are distributed
uniformly. Although the number of solution candidates generated in Step. 2
depends on the distribution of the edges, the result can provide a criterion for
determining division number D.

4.3 Processing Time

Generation of DNA strands of solution candidates and removal of DNA of in-
appropriate candidates (DNA strands that do not encode a clique) are required
in each of Steps 1 and 2. DNA strands of solution candidates are generated by
repeating reactions of annealing, extension, and denaturing. The amount of the
time necessary for generating DNA strands are obtained as 3nTreact/2D in Step.
1 and (3 log2 D)Treact in Step. 2.

For removing inappropriate candidates, Ouyang et al. use restriction enzyme
reactions. However, we consider that this is difficult to apply for scaled-up sys-
tems because of limitation of available restriction enzymes and DNA sequences.
Here we suppose that the inadequate candidates are removed by using beads.
For example, let us consider to remove candidates containing both vertices V1
and V2 from unit U1; namely no edge to link V1 and V2 exists. The DNA strands
containing V1 in U1 are attached to a bead, then this bead is translated to an-
other unit U2 and the DNA strands on the bead are detached. Next, the DNA
strands not containing V2 in U2 are attached to another bead, then this bead
is translated back to U1 and the DNA strands on the bead are detached. As a
result, the DNA strands containing both V1 and V2 are removed from U1.

Let Trm be the amount of the time necessary for the above removal procedure.
The removal procedure should be repeated for the individual edges that are not
contained in the given graph.

The total amount of time, T , is expressed by

T =
3n

2D
Treact + (3 log2 D)Treact

+
[
C(n

D , 2) − min{NE(Gi)|i = 1, 2, . . .D}]Trm

+

[
C(D, 2)

(n

D

)2
−

(
NE(G) −

∑
i

NE(Gi)

)]
Trm. (11)

Evaluation of Fundamental Characteristics of Information Systems 203

D=1 D=2 D=4 D=8

Number of edges

C
rm

0E+00

2E+03

4E+03

6E+03

8E+03

1E+04

0 2000 4000 6000 8000
Number of edges

C
rm

0E+00

1E+04

2E+04

3E+04

0 10000 20000 30000

(a) n=128 (b) n=256

Fig. 8. Dependence of Crm on the number of edges. Upper: n=128; lower: n=256.

From Eq. (7), the above expression is rewritten as

T = 3
{ n

2D
+ log2 D

}
Treact

+
[
C(n

D , 2)
{

1 − NE(G)

C(n, 2)

}
+ C(D, 2)

(n

D

)2
− NE(G)

n − n
D

n − 1

]
Trm. (12)

When D = 1, T is represented as follows:

T =
3n

2
Treact + (C(n, 2) − NE(G))Trm. (13)

In Eqs. (12) and (13), the term of Treact is much smaller than the term of
Trm, and therefore coefficient of Trm was evaluated. The coefficient is expressed
as Crm. Dependence of Crm on the number of the edges is shown in Fig. 8. The
number of vertices is 128 or 256.

As seen from the figure, Crm, namely processing time, decreases with increas-
ing the number of edges. This is because the number of operations to remove
inappropriate candidates decreases. Furthermore, the result shows the effective-
ness of distributed processing based on photonic DNA computing. Using this
algorithm, processing time is the shortest when D = 2. This can be explained as
follows: when using larger D, more operations are necessary for Step. 2 although
processing time in Step. 1 is reduced. We can find that the ratio of processing
time of Steps 1 and 2 is important for efficient computation.

Giving an estimation of Trm for a real system is difficult because the removal
procedure includes a complicated combination of DNA reactions and optical
operations. However, we expect that Trm is probably between 103 −104 seconds.
In this case, from the result of Fig. 8, we can estimate the processing time to be
106 − 107 seconds for solving the problem.

Although the algorithm considered here consists of two steps, it is possible
to increase the number of steps. By increasing the number of steps, processing

204 Y. Ogura et al.

time is surely reduced because distributed processing is effectively utilized by
increasing the size of subgraphs gradually in the algorithm. For applying pho-
tonic DNA computing to real problems, the optimal division number should be
assessed by considering processing time, the number of solution candidates, and
other conditions.

5 Discussion

In photonic DNA computing, multiple units work cooperatively and execute
processing of a large amount of data. Referring to Fig. 2, one can estimate the
approximate amount of data that can be dealt with in each unit. The individual
units contain data of more than 1 megabit when the size of units is defined by
a light spot, namely L > 1 μm. In addition, the data are encoded into DNA
molecules, which interact with each other in a unit. From this consideration,
the unit is regarded as a micro-scale processing element capable of manipulating
data of more than 1 megabit in parallel.

As seen from Fig. 4, it is possible to reduce processing time drastically by
suitable assignment of tasks to the units. A notable point is that the processing
time has the minimum value for N owing to the necessity of the operation of data
transfer. This result shows that the value of N should be selected adequately
for real systems. In addition, the distribution of tasks to the units should be
determined with care because necessary time for data transfer between any two
units depends on the distance between them.

In section 4 the performance was evaluated using a specific algorithm. The
results demonstrate that, comparing to conventional DNA computing, photonic
DNA computing has capability of conserving resources and increasing the ef-
ficiency of processing. This feature can also be obtained when photonic DNA
computing is used in many other applications. On the other hand, the estimated
processing time, which was mentioned in the second last paragraph of section 4,
suggests that photonic DNA computing is not very suitable for solving sim-
ple mathematical problems as most of researchers on DNA computing consider.
Note that the algorithm for the maximum clique problem is used for a bench-
mark analysis in this paper. The systems based on photonic DNA computing
can interact with macro-world using light and with nano-world using DNA. The
applications of photonic DNA computing should be selected by considering such
features that mentioned above.

6 Conclusions

The characteristics of photonic DNA computing are evaluated by simply mod-
eling to clarify the essential features of it. Relationships between performance
and the number of units are shown; the results suggest that selecting applica-
tions is important to get better performance of the photonic DNA computing.
We considered a simple algorithm for solving the maximum clique problem, and
demonstrated the effectiveness of distributed processing based on photonic DNA

Evaluation of Fundamental Characteristics of Information Systems 205

computing in reduction of DNA strands used and processing time. This study is
expected to be the basis for applying the photonic DNA computing to various
applications.

Acknowledgments

This work was supported by JST CREST and the Ministry of Education, Science,
Sports, and Culture, Grant-in-Aid for Scientific Research (A), 15200023, 2003-
2005.

References

1. C. Ferretti, G. Mauri, and C. Zandron (eds.), Lecture Notes in Computer Science
3384, Springer-Verlag Berlin Heidelberg (2005).

2. A. Carbone, M. Daley, L. Kari, I. McQuillan, N. Pierce (eds.), Pre-Proceedings of
the 11th international meeting on DNA computing, London, Ontario (2005).

3. J. Tanida and Y. Ichioka, “Optical computing,” The Optics Encyclopedia 3, Wiley-
VCH, Berlin, pp. 1883–1902 (2003).

4. Y. Ogura, T. Kawakami, F. Sumiyama, A. Suyama, and J. Tanida, “Parallel trans-
lation of DNA clusters by VCSEL array trapping and temperature control with laser
illumination,” Lecture Notes in Computer Science 2943, pp. 10–18 (2004).

5. Y. Ogura, F. Sumiyama, T. Kawakami, and J. Tanida, “Manipulation of DNA mole-
cules using optical techniques for optically assisted DNA computing,” Proc. SPIE
5515, pp. 100–108 (2004).

6. Y. Ogura, T. Kawakami, F. Sumiyama, S. Irie, A. Suyama, and J. Tanida, “Methods
for manipulating DNA molecules in a micrometer scale using optical techniques,”
Lecture Notes in Computer Science 3384, pp. 258–267 (2005).

7. Y. Ogura, T. Beppu, M. Takinoue, A. Suyama, and J. Tanida, “Control of DNA
molecules on a microscopic bead using optical techniques for photonic DNA mem-
ory,” Pre-Proceedings of the 11th international meeting on DNA computing, pp.
78–88 (2005).

8. Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “DNA solution of the maximal
clique problem,” Science 278, pp. 446–449 (1997).

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 206 – 221, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Hybrid Concentration-Controlled Direct-Proportional
Length-Based DNA Computing for Numerical

Optimization of the Shortest Path Problem

Zuwairie Ibrahim1,2, Yusei Tsuboi2, Osamu Ono2, and Marzuki Khalid3

1 Department of Mechatronics and Robotics, Faculty of Electrical Engineering,
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

zuwairie@fke.utm.my
2 Institute of Applied DNA Computing (IADC), Meiji University,

1-1-1 Higashi-mita, Tama-ku, Kawasaki-shi, Kanagawa-ken 214-8571, Japan
{zuwairie, tsuboi, ono}@isc.meiji.ac.jp

http://www.isc.meiji.ac.jp/~i3erabc/IADC.html
3 Center for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia,

City Campus, Jalan Semarak, Kuala Lumpur, Malaysia
marzuki@utmkl.utm.my

Abstract. DNA computing often makes use of hybridization, whether for vastly
generating the initial candidate answers or amplification by using polymerase
chain reaction (PCR). The main idea behind DNA computing approaches for
solving weighted graph problems is that if the degree of hybridization can be
controlled, then it is able to generate more double stranded DNAs (dsDNAs),
which represent the answer of the problem during in vitro computation. Previ-
ously, length, concentration, and melting temperature, have been exploited for
encoding of weights of a weighted graph problem. In this paper, we present a
hybrid approach, which is called concentration-controlled direct-proportional
length-based DNA computing (CCDPLB-DNAC), that combines two character-
istics: length and concentration, for encoding and at the same time, effectively
control the degree of hybridization of DNA. The encoding by length is realized
whereby the cost of each path is encoded by the length of the oligonucleotides
(oligos) in a proportional way. On the other hand, the hybridization control by
concentration is done by varying the amount of oligos, as the input of computa-
tion, before the computation begins. The advantage is such that, after an initial
pool generation and amplification, polyacrylamide gel electrophoresis (PAGE)
can be performed to separate the survived dsDNAs according to their length,
which directly decodes the results. The proposed approach shows significant
improvement in term of materials used and scalability. The experimental results
show the effectiveness of the proposed CCDPLB-DNAC for solving weighted
graph problems, such as the shortest path problem.

1 Introduction

A new computing paradigm based on DNA molecules has appeared in 1994 when
Leonard M. Adleman [1] launched a novel in vitro approach to solve the so-called

 Hybrid CCDPLB-DNAC for Numerical Optimization 207

Hamiltonian Path Problem (HPP) with seven vertices by DNA molecules. Based on
Adleman’s evolutionary approach, input is encoded by random DNA sequences.
Computation is a series of bio-molecular reactions, which involves hybridization,
denaturation, ligation, magnetic bead separation, and polymerase chain reaction
(PCR). The output of the computation, also in the form of DNA molecules can be
read out and visualized by electrophoretical fluorescence operation.

Four years later, in 1998, a length-based DNA computing which is called constant-
proportional length-based DNA computing (CPLB-DNAC) for Traveling Salesman
Problem (TSP) is proposed by Narayanan and Zorbalas [2]. A constant increase of
length of DNA strands is used to encode the actual length of the distances. A draw-
back of this method is that, there is a possibility of an occurrence of concatenated
DNA strands of two distances which could be longer than the DNA strand of the
longest distance that has been encoded. This may lead to errors in computing the
shortest path [3]. This scheme, however, has not been realized by any laboratory
experiment.

In order to solve the shortcoming of CPLB-DNAC, an alternative approach called
direct-proportional length-based DNA computing (DPLB-DNAC) is proposed by
Ibrahim et al. [4] for solving the shortest path problem. In this approach, the cost of
an edge is encoded as a direct-proportional length DNA. After an initial pool genera-
tion, numerous solution candidates can be generated. By using PCR, it is possible to
amplify the optimal combination which represents the solution to the shortest path
problem. The output of the computation can be visualized by applying PAGE, where
the DNA duplex representing the solution appears as the shortest band of PAGE.

On the other hand, Yamamoto et al. [5] presented concentration-controlled DNA
computing (CC-DNAC) for accomplishing a local search for the shortest path
problem. Although DNA computing with concentration control method enables local
search among all the candidate solutions, it cannot guarantee that the most intensive
band is the DNA representing the shortest path in the given graph. In addition, it is
technically difficult to extract a single optimal solution from the most intensive
band [3]. This difficulty, however, has been solved using denaturating gradient gel
electrophoresis (DGGE) and constant denaturant gel electrophoresis (CDGE) [5].

Lee et al. [6] proposed a DNA computing approach called temperature
gradientbased DNA computing (TG-DNAC) for solving TSP. Denaturation
temperature gradient polymerase chain reaction (DTG-PCR) has been introduced
where DNA duplex of correct solutions will be denatured and amplified by the PCR
operation. As the denaturation temperature increases, other DNA strands will be also
subsequently amplified. However, the amount of correct solutions will also be
exponentially increased, which does affect the final solution.

In this paper, we propose a combination of both schemes of CC-DNAC and
DPLB-DNAC to born a hybrid approach, which is called as concentration-controlled
direct-proportional length-based DNA computing (CCDPLB-DNAC). The protocol of
CCDPLB-DNAC, in fact, is similar as DPLB-DNAC. But the difference is that the
amount of poured DNA representing the edges varies closely to the weight of edges.
As a result, the concentration of input during initial pool generation will be different
as well, and does influence the degree of hybridization. It is found that the proposed

208 Z. Ibrahim et al.

approach offers significant improvements in term of material usage and scalability
than that of DPLB-DNAC without concentration-controlled.

In designing and developing the proposed CCDPLB-DNAC, the scopes of the
research have been defined. Firstly, the shortest path problem is chosen as a
benchmark for this research because the shortest path problem is a kind of problem
that involves numerical optimization, even though this problem is not an NP-complete
problem. Secondly, a small directed weighted graph, G = (V, E,ω), which consists of
a set of vertices V = { v1, v2, v3, v4, v5}, a set of edges E = { [v1,v2], [v1,v3], [v3,v4],
[v4,v5], [v2,v5], [v2,v3], [v2,v4] }, and weight, ω, which is assigned to each edges, will
be constructed and used an the input of computation as shown in Figure 1. It is clear
that the number vertices |V| and the number of edges |E| are 5 and 7, respectively.
Even though this graph is small enough for computation but it is big enough if the
computation is to be realized by unconventional DNA computing approach, and thus,
is a good example in order to show the feasibility of the proposed direct-proportional
length-based DNA computing.

2 A Note on Concentration-Controlled Method

Yamamoto et al. carried out CC-DNAC for accomplishing a local search for the
shortest path problem [7] by avoiding the generation of hopeless solutions. In this
research, the vertices and edges are encoded into DNA sequences. During the encod-
ing process, the vertex sequence is synthesized with the same concentration. The
relatively different concentration, Dij of the oligonucleotides encoding an edge i j
at cost Cij is calculated by using the following formula:

α

=
ij

ij C

Min
D (1)

where Min represent the minimum value among the costs of all edges in the graph,
and is set to 2. After all oligonucleotides for nodes with the same concentration,
oligonucleotides for edges with different concentration, and complement oligonucleo-
tides are synthesized, an initial pool generation is done in a test tube. During the ini-
tial pool generation, the rate of biochemical reactions depends heavily on the reaction
rate constants and reactant concentrations. Thus, as the concentration of DNA strands
increase, the paths including them can be generated more frequently and the hopeful
DNA paths can be generated with high concentration.

Even though the shortest path problem is belonging to the class P, i.e., it is not hard
to solve this problem, it is worth to be solved by DNA computing because numerical
evaluations are required during the computation [5]. The input to the shortest path
problem is a weighted directed graph G = (V, E,ω), a start node u and an end node v.
The output of the shortest path problem is a (u,v) path with the smallest cost. In the
case given in Figure 1, if u is V1 and v is V5, the cost for the shortest path will be 100
and the optimal path is clearly shown as V1 – V3 – V4 – V5. If the input graph is shown
Figure 1 (a), by using equation (1), all the numerical weights are transformed into
relative concentrations as shown in Figure 1 (b).

 Hybrid CCDPLB-DNAC for Numerical Optimization 209

 (a) (b)

Fig. 1. (a) Example showing a weighted directed graph G = (V, E) with the shortest path shown
as V1 - V3 - V4 - V5 (b) Relative concentration as calculated using equation 1

3 DNA Sequence Design and Synthesis

Let n be the total number of nodes in the graph. The DNA sequences correspond to all
nodes and its complements are designed. Let Vi (i= 1, 2, … , n) and

iV (i= 1, 2, … , n)

be the 20-mer DNA sequences correspond to the ith node in the graph and its com-
plement respectively. By using the available software for DNA sequence design,
DNASequenceGenerator [8], the DNA sequences Vi is designed and listed in Table 1.
Melting temperature, Tm is calculated based on Sugimoto nearest neighbor thermody-
namic parameter [9]. The GC contents (GC%) and melting temperature (Tm) of each
sequence are also shown. Table 2, on the other hand, shows the complement of the
node sequences.

We introduce three rules to encode each edge in the graph as follows:

(i) If there is a connection between V1 to Vj, where j n, design the oligonucleo-
tide (oligo) for that edge as

V1 (20) + W1j (- 30) + Vj (20)
(ii) If there is a connection between Vi to Vj, where i 1, j n, design the oligo

for that edge as
Vi (20) + Wij (- 20) + Vj (20)

(iii) If there is a connection between Vi to Vn, where i 1, design the oligo for that
edge as

Vi (20) + Win (- 30) + Vn (20)

where V, W, and ‘+’ denote the DNA sequences for nodes, DNA sequences for
weight, and ‘join’ respectively. The designed oligos consist of three segments; two
node segments and an edge segment. ‘ ’ denotes the weight value for corresponding
DNA sequences for weight Wij, where Wij denotes the DNA sequences representing a
cost between node Vi and Vj. The value in parenthesis indicates the number of DNA
bases or nucleotides for each segment. Table 3 lists all the oligos based on the pro-
posed rules, where the node segments and edge segments are distinguished by capital
and small letters respectively. Again, DNASequenceGenerator [8] is employed. At the
end of this stage, the oligos of the complement of nodes and edges are synthesized.

210 Z. Ibrahim et al.

Table 1. DNA sequences for nodes

Node,
Vi

20-mer Sequences (5’-3’) GC% Melting Temperature, Tm (ºC)

V1 AAAGCTCGTCGTTTAGGAGC 50 60.9
V2 GCACTAGGGATTTGGAGGTT 50 60.3
V3 GCTATGCCGTAGTAGAGCGA 55 60.5
V4 CGATACCGAACTGATAAGCG 50 60.6
V5 CGTGGGTGGCTCTGTAATAG 55 60.5

Table 2. Complement of node

Complement Node, iV 20-mer Complement Sequences (3’-5’)

1V
TTTCGAGCAGCAAATCCTCG

2V
CGTGATCCCTAAACCTCCAA

3V

CGATACGGCATCATCTCGCT

4V
GCTATGGCTTGACTATTCGC

5V

GCACCCACCGAGACATTATC

Table 3. DNA sequences for edges

Edge DNA Sequences

V4–W45–V5
5’-CGATACCGAACTGATAAGCG
ccaagCGTGGGTGGCTCTGTAATAG-3’

V3–W34–V4
5’-GCTATGCCGTAGTAGAGCGA
ccgtcCGATACCGAACTGATAAGCG-3’

V1–W13–V3
5’-AAAGCTCGTCGTTTAGGAGCacgtcggttc
GCTATGCCGTAGTAGAGCGA-3’

V2–W23–V3
5’-GCACTAGGGATTTGGAGGTT
ccgtcttttacccaagtaatGCTATGCCGTAGTAGAGCGA-3’

V2–W24–V4
5’-GCACTAGGGATTTGGAGGTT
acgtgttttaaggaagtacggtaagctgcg
CGATACCGAACTGATAAGCG-3’

V2–W25–V5
5’-GCACTAGGGATTTGGAGGTT
gcgtcgcgtaaggcagtaccggactctgcc
CGTGGGTGGCTCTGTAATAG-3’

V1–W12–V2
5’-AAAGCTCGTCGTTTAGGAGC
cggtggtttaacgaagtcctgtactatgggttatttgcag
GCACTAGGGATTTGGAGGTT-3’

 Hybrid CCDPLB-DNAC for Numerical Optimization 211

4 Concentration-Controlled Direct-Proportional Length-Based
DNA Computing for the Shortest Path Problem

Currently, there are two kinds of initial pool generation methods for solving weighted
graph problem: hybridization/ligation and parallel overlap assembly (POA). The
hybridization/ligation method has been firstly introduced by Adleman [1] to solve
HPP. For hybridization/ligation method, during the operation, the link oligos
hybridize through the hydrogen bonds by enzymatic reaction. The hybridization/
ligation reaction is well shown in Figure 2 [10].

Fig. 2. Hybridization/ligation method for initial pool generation. The arrowhead indicates the
3’ end.

POA has been used [11] and broadly applied in gene construction [12-14], gene
reconstruction [15], and DNA shuffling [16]. POA involves thermal cycle and during
the thermal cycle, the position strings in one oligo anneals to the complementary
strings of the next oligo. The 3’ end side of the oligo is extended in the presence of
polymerase enzyme to form a longer dsDNA. One cycle of parallel overlap assembly
is depicted in Figure 3 [10]. After a number of thermal cycles, a data pool with all
combinations could be built.

Lee et al. [10] did a comparison between hybridization/ligation method and
POA for initial pool generation of DNA computing. They came out with a
conclusion that for the initial pool generation of weighted graph problems, POA
method is more efficient than that of hybridization/ligation method. According to
[10], the advantages of POA over hybridization/ligation method for initial pool
generation are as follows:

212 Z. Ibrahim et al.

Fig. 3. Parallel overlap assembly for initial pool generation. The thick arrows represent the
synthesized oligos which are the input to the computation. The thin arrows represent the elon-
gated part during polymerization. The arrowhead indicates the 3’ end.

(i) The initial pool size generated from the same amount of initial oligos is about
twice larger than that of hybridization/ligation method. Though, if a larger prob-
lem is considered, the initial pool size is too small to contain the complete pool.
POA, however, with more cycle and large experimental scale could include the
practical pools.

(ii) Initially, two single-stranded DNA molecules partially hybridize in the annealing
step and then they are extended by polymerase. The elongated DNA molecules
are denatured to two single-stranded DNA in the next denaturation step, and they
are subjected to the annealing reaction at the next cycle. Therefore, POA does
maintain the population size and the population size can be decided by varying
the initial number of oligos.

(iii) In hybridization/ligation method, the population size decreases as reaction pro-
gress. The population size decreased by a factor of the number of components
composing it in hybridization/ligation method. As the problem size increases, the
required initial pool size increases dramatically. Moreover, initial pool generation
by POA requires fewer strands than hybridization/ligation method to obtain simi-
lar amount of initial pool DNA molecules because complementary strands are
automatically extended by polymerase.

(iv) POA does not require phosphorylation of oligos which is prerequisite for the
ligation of oligos.

(v) POA demands less time than hybridization/ligation method. Hybridization re-
quires one and half hour while ligation required more than 12 hours. Hence, POA
for 34 cycles requires only two hours. Therefore, POA is much more efficient
and economic method for initial pool generation.

 Hybrid CCDPLB-DNAC for Numerical Optimization 213

As stated in [3], “In addition, the fact that larger weights are encoded as longer
sequences is contrary to the biological fact that; the longer the sequences are, the
more likely they hybridize with other DNA strands, though we have to find the short-
est DNA strands”. From the biological point of view, this argument is definitely true.
In order to overcome the limitation of general length-based DNA computing, the
authors discovered that by utilizing POA for initial pool generation, a phase where
numerous combinations of random routes of the graph are generated in the solution, a
shortcoming, which is the biological influence contributed by the length of the oligos
could be eliminated.

In order to generate the initial pool of the direct-proportional length-based DNA
computing for the example problem by using POA method, the input to the computa-
tion are all the synthesized oligos as listed in Table 3 and the complement sequences
for each nodes, which are listed in Table 2. These inputs are poured into a test tube
and the cycles begin. In fact, the operation of POA is similar as polymerase chain
reaction (PCR) but the difference is that POA operates without the use of primers. As
PCR, one cycle consists of three steps: denaturation, hybridization, and extension.

At this stage, an initial pool of solution has been produced and it is time to filter
out the optimal combinations among the vast alternative combinations of the problem.
Unlike conventional filtering, this process is not merely throwing away the unwanted
DNA duplex but rather copying the target dsDNA exponentially by using the
incredibly sensitive PCR process. This can be done by amplifying the DNA duplex
that contain the start node V1 and end node V5 using primers. After the PCR operation
is accomplished, there should be numerous number of DNA strands representing the
start node V1 and end node V5 traveling through a possible number of nodes. The
output solution of the PCR then undergoes gel electrophoresis operation. During this
operation, the dsDNA V1 – V3 – V4 – V5, which representing the shortest path starting
from V1 and ending at V5 can be visualized by the shortest band of gel electrophoresis
with higher intensity than the other dsDNA, if any.

At this moment, based on the shortest length DNA duplex, one only knows that
the shortest path begins from V1 and ends at V5. However, the information does not
contain the nodes that passed through the shortest path. The information regarding all
the nodes in the shortest path as well as their sequence can be obtained by applying
graduated PCR operation. For the sake of explanation, the DNA molecules represent-
ing the answer of the shortest path V1 – V3 – V4 – V5 is taken again for instance. After
the shortest band DNA is extracted from the gel, graduated PCR is performed by
running four different PCR operations to the solution containing DNA duplex V1 – V3

– V4 – V5 separately. The pair of primers used for every PCR reaction are
21 /VV ,

31 /VV ,
41 /VV , and

51 /VV . It is expected that for the final solution containing the

strand V1 – V3 – V4 – V5, 100 base-pairs (bp), graduated PCR will produce bands of x,
50, 75, and 100 in successive lanes of a gel as depicted in Figure 4. The symbol x
denotes the absence of a band corresponding to the omission of nodes V2 along the
DNA duplex. This means that there are intermediate nodes, V3 and V4 in between the
start node V1 and the end node V5. Therefore, the shortest path of the graph can be
readout as V1 → V3 → V4 → V5.

214 Z. Ibrahim et al.

Fig. 4. Examples showing the results of the graduated PCR

6 Experimental Protocols, Results, and Discussions

Firstly, the relative concentration of edges oligos are translated into actually amount
of DNA as listed in Table 4. Based on Table 4, the initial pool generation by POA is
performed in a 25 μl solution containing 7.842 μl oligos (Proligo Primers & Probes,
USA), 2.5 μl dNTP (TOYOBO, Japan), 2.5 μl 10x KOD dash buffer (TOYOBO,
Japan), 0.125 μl KOD dash (TOYOBO, Japan), and 12.033 μl double distilled water
(ddH20) (Maxim Biotech). The reaction consists of 25 cycles and for each cycles, the
appropriate temperatures and time are as follows:

 Hybrid CCDPLB-DNAC for Numerical Optimization 215

- 94ºC for 30s
- 55ºC for 30s
- 74ºC for 10s

The product of parallel overlap assembly is shown in Figure 5. In order to select
the paths that begin at V1 and end at V5, DNA amplification is done by PCR. PCR is
performed in a 25 μl solution consists of 2.5 μl for each primers, 1 μl template, 2.5 μl
dNTP (TOYOBO, Japan), 2.5 μl 10x KOD dash buffer (TOYOBO, Japan), 0.125 μl
KOD dash (TOYOBO, Japan), and 13.875 μl ddH20 (Maxim Biotech). The reaction
consists of 25 cycles as follows:

- 94ºC for 30s
- 55ºC for 30s
- 74ºC for 10s

which is the same as POA. The sequences used as primers are
AAAGCTCGTCGTTTAGGAGC (V1) and GCACCCACCGAGACATTATC (

5V).

In order to visualize the result of the computation, the product of PCR is subjected
to PAGE for 90 minutes at 200V. After that, the gel is stained by SYBR Gold (Mo-
lecular Probes) and the gel image is captured. Figure 5 shows the output of the com-
putation of DPLB-DNAC without concentration-controlled. Figure 6 on the other
hand, shows the output of CCDPLB-DNAC.

Table 4. Actual amount of each edges oligos

Edge
Without
Concentration-Controlled

With
Concentration-Controlled

V4–V5 1 μl 0.51 μl
V3–V4 1 μl 1 μl
V1–V3 1 μl 0.39 μl
V2–V3 1 μl 0.39 μl
V2–V4 1 μl 0.25 μl
V2–V5 1 μl 0.174 μl
V1–V2 1 μl 0.128 μl
Total 7 μl 2.842 μl

According to the gel image of Figure 5, it is clear that without the concentration-
controlled, DPLB-DNAC is able to produce several shortest paths during the compu-
tation. In this case, based on the output in lane 2, up to four shortest paths is generated
in vitro and visualized by gel electrophoresis. In contrast, if concentration-controlled
is applied, lane 2 of Figure 6 consists of only one band containing DNA duplex of the
shortest path V1 – V3 – V4 – V5 (100bp), which survived after POA and PCR. As ex-
pected, it is likely that the concentration of dsDNAs other than dsDNAs representing
the answer of the shortest path problem tends to be small. Even though only one band
is shown, it is more than enough since the band exactly represent the answer of the
shortest path problem.

216 Z. Ibrahim et al.

Fig. 5. Experimental results of gel electrophoresis on 10% PAGE in the case of DPLB-DNAC.
Lane M denotes 20-bp ladder, lane 1 is the product of POA, and lane 2 is the product of PCR.

For graduated PCR, 4 identical DNA mixtures, which are the product of PCR of
CCDPLB-DNAC are subjected to PAGE for 40 minutes at 200V. After that, the gel is
stained by SYBR Gold (Molecular Probes, USA). Quantum PrepTM Freeze ‘N
Squeeze DNA Gel Extraction Spin Columns (Bio-Rad, Japan) is used during the
DNA extraction from the polyacrylamide gel. By using a clean razor blade, the band
of interest, which is the shortest band, is carefully excised from the gel. The gel slice
is chopped and placed into the filter cup of the Quantum Prep Freeze ‘N Squeeze
DNA Extraction Spin Column. Then, the filter cup is placed into a dolphin tube. The
Quantum Prep Freeze ‘N Squeeze DNA Extraction Spin Column is placed in a -20ºC
freezer for 5 minutes and the sample is spun at 13,000 x g for 3 minutes at room tem-
perature. The purified DNA is collected from the collection tube and ready for PCR.

After the DNA extraction from the polyacrylamide gel, four different PCR,
namely PCR1, PCR2, PCR3, and PCR4, is run to the purified solutions. The pair of
primers used for every PCR is listed in Table 5.

Each PCR is performed in a 25 μl solution consists of 2.5 μl for each primers, 1 μl
template, 2.5 μl dNTP (TOYOBO, Japan), 2.5 μl 10x KOD dash buffer (TOYOBO,
Japan), 0.125 μl KOD dash (TOYOBO, Japan), and 13.875 μl double-distilled water
(ddH20) (Maxim Biotech, Inc, Japan). The reaction consists of 25 cycles and for each
cycles, the appropriate temperature are as follow:

- 94ºC for 30s
- 55ºC for 30s
- 74ºC for 10s

Again, the product of graduated PCR is subjected to PAGE for 40 minutes at 200V
and the gel is stained by SYBR Gold (Molecular Probes, USA). Finally, the gel image
is captured. Figure 7 shows the gel image of the product of graduated PCR. Four

The Shortest Path V1 – V3 – V4 – V5 (100bp)

 Hybrid CCDPLB-DNAC for Numerical Optimization 217

Fig. 6. Experimental results of gel electrophoresis on 10% PAGE in the case of CCDPLB-
DNAC. Lane M denotes 20-bp ladder, lane 1 is the product of POA, and lane 2 is the product of
PCR.

Table 5. Four set of primers used for the graduated PCR

Name Forward Primers Reverse Primers

PCR1 AAAGCTCGTCGTTTAGGAGC CGTGATCCCTAAACCTCCAA
PCR2 AAAGCTCGTCGTTTAGGAGC CGATACGGCATCATCTCGCT
PCR3 AAAGCTCGTCGTTTAGGAGC GCTATGGCTTGACTATTCGC
PCR4 AAAGCTCGTCGTTTAGGAGC GCACCCACCGAGACATTATC

bands of x, 50, 75, and 100 base pairs (bp) in successive lanes of the gel are success-
fully produced and therefore, as expected, the shortest path of the graph can be read-
out as V1 → V3 → V4 → V5.

Two significant benefits of graduated PCR for DPLB-DNAC have been identified.
The first is due to its capability to show and visualize the detail output of the shortest
path computation based on DPLB-DNAC. The other benefit is that at the same time,
the correctness of DPLB-DNAC for the computation of the shortest path problem can
be proved. Hence, the authors found that graduated PCR should be essentially incor-
porated in the DPLB-DNAC in order to improve the overall performance of DPLB-
DNAC.

The Shortest Path V1 – V3 – V4 – V5 (100bp)

218 Z. Ibrahim et al.

Fig. 7. Experimental results of gel electrophoresis on 10% polyacrylamide gel. Lane M denotes
20-bp ladder.

Scaling is certainly the main problem of DNA computing, especially for generate-
and-test DNA computing, as the proposed approach. In order to extend the proposed
approach to a larger problem, two issues should be considered: molecular’s weight
and the capability to select the final solution. As an example, if Adleman’s work for
solving HPP is further examined, a 70-node problem requires 1025 kg of nucleotides,
and this is quite a lot for a small test tube [17]. Hence, an advanced high reaction
facility, such as microreactor [18], is highly important. In this research, we showed
how the scalability of our approach can be improved linearly, in two steps. The first
step is during initial pool generation, where POA is employed instead of
hybridization/ligation. As previously discussed, POA is able to generate two times
bigger initial pool, in term of size, than that of hybridization/ligation. The second step
is during the computation, in term of the amount of DNA used for the computation. In
our case, we used 2.842 μl edge oligos in the case of concentration-controlled. It is
about half of the amount of edge oligos if the computation is done without
concentration-controlled, where 7 μl should be used.

In DNA computing for weighted graph problems, after the in vitro computation, a
subsequent reactions or bio-molecular operations should be employed in order to
detect the final solution. As an example, for the CC-DNAC method, separation as
DGGE and CDGE should be used, whereas in TG-DNAC method, DTG-PCR

 Hybrid CCDPLB-DNAC for Numerical Optimization 219

separation should be utilized. This operations are relatively complicated than normal
gel electrophoresis. In our approach, the adopted protocol for detecting the final
solution is simple, where PAGE is more already enough to visualize the result of the
computation.

However, one limitation of the proposed approach is that, the minimum weight of
edges that can be encoded is limited and the weight falls in a very narrow range. This
is mainly because the length of the solution is not only proportional to the length of
the path it encodes but also the number of vertices in the path. Hence, the lower
bound, in term of minimum weight that can be encoded by the proposed approach is
achieved when:

0

2

3 =− βω

 (2)

Hence, the minimum weight, which can be encoded by oligos, min is attained as:

βω

2

3
min =

 (3)

where is the number of DNA bases used to represent the node sequences [19].

7 Conclusions

Based on massive parallelism inherent in DNA computing, many researchers have
tried to solve various NP-complete problems. These are mathematical problems which
have exponential complexity and no efficient solution has been found yet. Even
though the shortest path problem is not belonging to the class of NP problems, it is
important to solve them since this kind of problems occur frequently in many real
world problems. Thus, in this paper, we have presented an improve hybrid approach
called ‘concentration-controlled direct-proportional length-based DNA computing’ to
solve weighted graph problems using molecular computing. Based on this approach,
both length and concentration are used as input and output data is recognized by
length only. For the sake of initial pool generation, two kinds of methods are
reviewed: hybridization/ligation and POA. Since POA offers several advantages in
term of materials usage and reaction time, for a successful demonstration of
CCDPLB-DNAC, we found that POA for initial pool generation is critically
important. Further, by varying the amount of input DNA, less DNA is used for
computation, which further offers the advantage in term of material usage. Since less
amount of DNA can be used to generate the combination representing the answer of
the problem, indirectly, this will advances the performance of the proposed approach
from scalability point of view. Also, in this paper, we have presented graduated PCR,
as an extended operation of CCDPLB-DNAC. Based on the proposed approach, the
product of PCR of CCDPLB-DNAC is subjected to DNA extraction from
polyacrylamide gel, PCR, and PAGE. As supported by the experimental results,
graduated PCR is able to visualize detail additional information of the shortest path,

220 Z. Ibrahim et al.

such as the intermediate vertices and the order of these vertices in the shortest path.
Finally, it is expected that the proposed approach, would extend the applicability of
DNA computing for solving intractable weighted graph problems.

Acknowledgements

This research was supported partly by the IEEE Computational Intelligence Society
(CIS) Walter J Karplus Student Summer Research Grant 2004 for a research visit in
September 2004 at the DNA Computing Laboratory, Graduate School of Information
Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan. The first
author would like to thank Masahito Yamamoto for discussions that led to
improvements in this work and also the permission to practice various kinds of
biochemical experiments in the laboratory. Also, the first author is sincerely grateful
to Atsushi Kameda, Satoshi Kashiwamura, and members of DNA Computing
Laboratory of Hokkaido University for fruitful explanations and kind assistance
during the practice of biochemical experiments. Lastly, the first author is very
thankful to Universiti Teknologi Malaysia (UTM) for granting a study leave in Meiji
University under SLAB-JPA scholarship.

References

1. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems,” Science,
Vol. 266 (1994) 1021-1024

2. Narayanan, A., Zorbalas, S.: DNA Algorithms for Computing Shortest Paths,” in Proceed-
ings of Genetic Programming (1998) pp. 718-723

3. Lee, J.Y., Shin, S.Y., Augh, S.J., Park, T.H., Zhang, B.T.: Temperature Gradient-Based
DNA Computing for Graph Problems with Weighted Edges, Lecture Notes in Computer
Science, Vol. 2568 (2003) 73-84

4. Ibrahim, Z., Tsuboi, Y., Ono, O., Khalid, M.: Direct-Proportional Length-Based DNA
Computing for Shortest Path Problem”, International Journal of Computer Science and
Applications (IJCSA), Technomathematics Research Foundation, Vol. 1 (2004) 46-60

5. Yamamoto, M., Kameda, A., Matsuura, N., Shiba, T., Kawazoe, Y., Ahochi, A.: A Separa-
tion Method for DNA Computing Based on Concentration Control, New Generation Com-
puting, Vol. 20 (2002) 251-262

6. Lee, J.Y., Shin, S.Y., Augh, S.J., Park, T.H., Zhang, B.T.: Temperature Gradient-Based
DNA Computing for Graph Problems with Weighted Edges,” in Preliminary Proceedings
of the Eighth International Meeting on DNA Based Computers (2002) 41-50

7. Yamamoto, M., Matsuura, N., Shiba, T., Ohuchi, A.: DNA Solution of the Shortest Path
Problem by Concentration Control. Genome Informatics (2000) 466-467

8. Udo, F., Sam, S., Wolfgang, B., Hilmar, R.: DNA Sequence Generator: A Program for the
Construction of DNA Sequences,” In Proceedings of the Seventh International Workshop
on DNA Based Computers (2001) 23-32

9. Sugimoto, N., Nakano, S., Yoneyama, M., Honda, K.: Improved Thermodynamic Parame-
ters and Helix Initiation Factor to Predict Stability of DNA Duplexes, Nucleic Acid Re-
search, Vol. 24 (1996) 4501-4505

 Hybrid CCDPLB-DNAC for Numerical Optimization 221

10. Lee, J.Y., Lim, H.W., Yoo, S.I., Zhang, B.T., Park, T.H.: Efficient Initial Pool Generation
for Weighted Graph Problems using Parallel Overlap Assembly, in Preliminary Proceed-
ings of the Tenth International Meeting on DNA Based Computers (2004) 357-364

11. Kaplan, P.D., Ouyang, Q., Thaler, D.S., Libchaber, A.: Parallel Overlap Assembly for the
Construction of Computational DNA Libraries, Journal of Theoretical Biology, Vol. 188,
Issue 3 (1997) 333-341

12. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K., Pease, L.R.: Site-Directed Mutagenesis
by Overlap Extension using the Polymerase Chain Reaction, Gene, Vol. 77 (1989) 51-59

13. Jayaraman, K., Fingar, S.A., Fyles, J.: Polymerase Chain Reaction-Mediated Gene Synthe-
sis: Synthesis of a Gene Coding for Isozymec of Horseradish Peroxidase, Proc. Natl. Acad.
Sci. U.S.A., Vol. 88 (1991) 4084-4088

14. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M., Heyneker, H.L.: Single-Step As-
sembly of a Gene and Entire Plasmid from Large Numbers of Oligodeoxyribonucleotides,
Gene, Vol. 164 (1995) 49-53

15. DeSalle, R., Barcia, M., Wray, C.: PCR Jumping in Clones of 30-million-year-old DNA
Fragments from Amber Preserved Termites, Experientia, Vol. 49 (1993) 906-909

16. Stemmer, W.P.: DNA Shuffling by Random Fragmentation and Reassembly: In Vitro Re-
combination for Molecular Evolution,” Proc. Natl. Acad. Sci. U.S.A., Vol. 91 (1994)
10747

17. Zucca, M.: DNA Based Computational Models: Ph.D. Thesis, Politecnico di Torino, Italy
(2000)

18. Noort, D., Gast, F.U., McCaskill, J.S.: DNA Computing in Microreactors, Lecture Notes
in Computer Science, Vol. 2340 (2001) 33-45

19. Ibrahim, Z., Tsuboi, T., Ono, O., and Khalid, M.: A Study on Lower Bound of Direct-
Proportional Length-Based DNA Computing for Shortest Path Problem, Lecture Notes in
Computer Science, Vol. 3314 (2004) 71-76

Modeling of Trees with Interactive
L-System and 3D Gestures

Katsuhiko Onishi, Norishige Murakami, Yoshifumi Kitamura,
and Fumio Kishino

Graduate School of Information Science and Technology,
Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
{onishi, norishige, kitamura, kishino}@ist.osaka-u.ac.jp

http://www-human.ist.osaka-u.ac.jp/

Abstract. We propose a modeling system that enables users to create
tree models with 3D gesture input and Interactive L-system. It generates
tree models by using growth simulation based on the trunk or silhouette
shapes of trees given by user gestures. The Interactive L-system is one
of the growth simulation algorithm, having spatial information of tree
models, and allows users to generate, manipulate, and edit the shape
of tree models by user’s direct input interactively. The system carefully
addresses the fragile balance and tradeoff between the freedom of user
interaction and the autonomy of tree growth. Users intuitively and easily
create tree models that have the exact features of branching structures or
the silhouette shape of trees according to user intentions and imagination.

1 Introduction

Plants or trees is attracting a great deal of attention because of the earth’s
environmental problems. Even in a virtual space, people try to cultivate plants
or trees to simulate environmental assessments or education. Here, we have to
take care how the system carefully addresses the fragile balance and tradeoff
between the freedom of user interaction and the autonomy of tree growth, which
are inherent in natural botanical environment in real space.

Much literature has been devoted to generating realistic tree models based on
unique ideas [1, 2, 3, 4, 5]. Almost all of these ideas use procedural algorithms or-
ganized by procedural rules and/or numerical parameters; however, for ordinary
users, they are not so intuitive. In addition, their branching structures depend on
given parameters as initial conditions and production rules defined heuristically
beforehand. Therefore, it is difficult for ordinary users to generate the shape of
branches that completely correspond to imagination. Moreover, existing meth-
ods tend to rely on conventional 2D GUIs; however, this hampers the generation
or interaction with trees in a 3D environment.

In this paper, we propose a modeling system that enables users to create the
shape of tree models with 3D gesture input and Interactive L-system, as shown
in Figure 1. Here we carefully address the fragile balance and tradeoff between
the freedom of user interaction and the autonomy of tree growth by using an

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 222–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling of Trees with Interactive L-System and 3D Gestures 223

Fig. 1. Interactive modeling system for tree models

Interactive L-system as a tree’s growth engine. Interactive L-system has an ef-
ficient data structure of tree models and enable to use three-dimensional(3D)
spatial information as an attribute of the growth simulation, enabling users to
interactively control tree shape [6]. Therefore, users intuitively and easily create
tree models that have the exact branching structures or silhouette shape features
of trees according to their intentions and imagination.

2 Related Work

Much literature has been devoted to generating realistic tree models based on
many unique simulation algorithms.

The L-system [2], a very famous algorithm for growth simulation, is a string
rewriting system that operates on a set of rules. This approach is extended to
allow tree models to adapt to environmental effects. L-studio[3] and Xfrog[4]
are mentioned as tree generation modelers using L-system’s algorithm. In these
systems, by using numerical parameters and graphically-defined functions, users
can control the angle and length of branch growth, the shape of leaves, etc. Xfrog
generates tree models based on tree model components assembled hierarchically
in a graphical user interface. This component consists of tree elements (leaves
and a trunk) and an arrangement type. This allows users to change the geomet-
ric shape of tree models by changing the numerical values. AMAP[1] simulation
software is another such system designed to generate realistic tree models by
generating tree models using numerical parameters defined by measuring many

224 K. Onishi et al.

tree shapes in the real world. Users input these parameters and run the sim-
ulation to produce the desired geometry of the tree model. Tree models from
these systems are very realistic. But the silhouette of the entire tree and the
imagined branching structure are not always generated, because the shape of
the tree model depends on production rules defined beforehand and parameters
as initial conditions. Also, because the production rules are heuristically defined,
it is difficult to change them according to intentions for tree shape.

Another system, ilsa[7], can directly edit the shapes of plant models that are
already created. It manipulates the bending of branches by using inverse kine-
matics technology. A method that generates new tree shapes by editing parts
of existing tree shape might be a solution for intuitive tree shape modeling.
However, users have to create models beforehand, and they can only manipu-
late branches. Therefore, it is difficult for users to reflect their intention in the
branching structure.

Techniques that model 3D objects in virtual environments by using 3D gesture
inputs have been proposed [8, 9]. Such modeling systems are intuitive and allow
easy comprehension of the relation between input information and the created
shape of objects. Therefore, they allow users to generate and modify the shape of
objects according to their intention. However, it is difficult to create the complex
shape of objects such as a tree model that has many component parts, because
users must create the local shape of all leaves and branches. A system that
models 3D tree models from 2D sketches is also proposed [10], but it is not easy
to generate tree models that have characteristic branch structure in 3D.

We propose an Interactive L-system that enables users to directly control
growth simulation results. The Interactive L-system enables users to control the
generated tree models by introducing 3D spatial information to the L-system.
In this paper, we control the Interactive L-system by using 3D gesture input to
generate the complex shape of tree models according to user intentions.

3 Interactive L-System

This section describes the Interactive L-system that allows users to interactively
generate, manipulate, and edit tree shape models based on a growth simula-
tion. The Interactive L-system is established by expanding the idea of the well-
known L-system for enabling users to control the result of growth simulation
interactively [6].

3.1 L-System

The L-system makes a string data of symbols, an L-string, by adapting produc-
tion rules to the initial symbol, the axiom, for generating shapes of tree models.
The system runs the modeling process by using this L-string as an instruction
group. Examples of symbols are shown in Table 1. Moreover, the L-string is
described using turtle geometry[11].

A production rule has a format roughly as shown in equation (1).

pred : cond → succ (1)

Modeling of Trees with Interactive L-System and 3D Gestures 225

Table 1. Examples of Symbols

Symbol Order
F Draw tube & move forward
+ Turn left
− Turn right
& Pitch down
ˆ Pitch up
\ Roll right
/ Roll left
[Save state, start new branch
] Restore state, end branch

pred is the strict predecessor symbols, succ is the successor symbols, and cond is
the condition. The Lsystem process replaces the agreed symbols of pred within
the L-string to the symbols of succ.

The numerical parameters of symbols included in the L-string are used to
generate such complex shapes of tree models as weeping or branch thickness. In
addition, the system controls these shapes by changing the number of times the
production rules are adapted.

3.2 Interactive L-System

To control the result of the L-system by using the user’s direct input interac-
tively, the Interactive L-system adapts an extended data structure by adding
the 3D spatial information as an attribute of the L-string. Here the L-strings
are generated by the production rules which are affected by the 3D positional
information. Details are described below.

Constructing the Structure of L-String. The Interactive L-system is that
constructing the structure of L-string to hierarchical structure to aim at the
increase in efficiency of a process of generating tree models. Figure 2 shows the
construction process of the L-string structure. The structure of A in Figure 2 is
a former structure of L-string. The structure of B in Figure 2 is the hierarchical
structure that classified the data of each branch by using symbols “[” and “]”.
To classify the data of each branch and use the hierarchical data structure, it
is enabled to run a process of generating and drawing the tree models at each
branch independently. In Figure 2, a suffix of symbol “F” is used in order to
explain hierarchy of branches and a trunk.

Table 2. Grouping of symbols

Group Symbols
Shape F, f

Transformation +, −, &, ^, /, \
Structure [,]

226 K. Onishi et al.

F00 F01 [F10 F11] F02 F03 F04F00F00 F01F01 [[F10F10 F11F11]] F02F02 F03F03 F04F04

Process flowProcess flow

F00F00 F01F01 F02F02 F03F03 F04F04

F10F10 F11F11

F00 F01 F02 F03 F04F00F00 F01F01 F02F02 F03F03 F04F04

F10 F11F10F10 F11F11 Turn a direction-, +

Connection[,]

Organize branchesF1x

Organize a trunkF0x

Turn a direction-, +

Connection[,]

Organize branchesF1x

Organize a trunkF0x

A

B

C

Fig. 2. Reconstruct of L-string

Moreover, the structure of C in Figure 2 is the structure of L-string that is
classified symbols by these definition. Table 2 shows major symbols which are
classified three groups. Symbols classified “Shape” group are defined modeling
some geometric shape. Symbols classified “Transformation” group are defined
rotating these geometric shape. Symbols classified “Structure” group are defined
the structure of trees.

The Attributes for Indicating Global and Spatial Information. The
attributes which indicate the global and spatial information of tree models is
used to generate, manipulate and edit tree models interactively. These attributes
added as “state” of the symbols which are defined shape of trees. In our method,
two of them are used. One of these attributes is positional information of each
symbol, V (x, y, z), which defined 3D position of each symbol. And another is
the angle of relative rotation (H, L, U) which is an angle of coordination of
each symbol based on the global coordination. Moreover, when an angle of a
branch is changed by user’s manipulation, it is necessary to modify an angle
similarly about the branches and leaves which accompany this branch. Therefore,
an attribute parameter which defines a variation of an angle “M” that is settled
at each branch. The system used these new attributes is enabled users to generate
tree models by manipulating based on the global shape of tree models.

Table 3. Configuration of a partial region

Symbol Order
In Apply this rule, if “pred” is in a region.
Out Apply this rule, if “pred” is out of a region.

Modeling of Trees with Interactive L-System and 3D Gestures 227

Table 4. Configuration of a relative rotation

Symbol Order
< Turn left along an user’s eye.
> Turn right along an user’s eye.

Configuration of New Parameters. The Interactive L-system needs some
configuration of production rules to generate tree models by shown in Table 3 and
Table 4. At the format of the production rule, cond means the condition. That
is, the system used production rules which included “In” and “Out” shown in
Figure 3 is enabled to change the shape of trees in the inside/outside of a certain
area. And the system used production rule included these symbols at succ allows
users to rotate branches based on his/her coordination.

4 Modeling of Trees with Interactive L-System and 3D
Gestures

To generate the shape of tree models according to user images, we use hand
gesture to determine the shape of tree models. Here, the tree model is generated
based on two different concepts, as shown in Figure 3. One is “trunk-based
modeling” that generates a tree model by defining the trunk shape with hand
gestures. The other is “silhouette-based modeling” that generates a tree model
with a silhouette defined by hand gestures. These two concepts are sometimes
used individually, however, they can be used in combination according to the
situation of modeling.

4.1 Trunk-Based Modeling

The trunk and main branches are components that define the branching struc-
ture and the entire shape of the tree model. The shape of such tree model com-
ponents as trunk and branches is given by gestures. Then, the complex shape
of tree models is created by using the Interactive L-system based on the given
parts. To achieve this, we propose a method that translates the path of hand
gestures to the simulation data (L-string) of the L-system. In the method, hand
gesture paths are captured as point sets, and then the symbols that define trunk
shape according to the paths are generated from the point sets. Trunk shapes
are also corrected to avoid trunk collisions. Details are described below.

Acquisition of Point Sets. The trunk grows in the same direction as the
stroke of a user’s hand. Therefore, a user has a 3D tracker on his/her hand and
move it as if drawing a line. The path of the hand gesture is captured as a set
of 3D position information V (x, y, z) at even intervals of time/space, as shown
in Figure 4(a).

Analysis of Point Sets. In the Interactive L-system, the L-string symbols have
some attributes. As shown in Figure 4(b), the symbol and attribute values of

228 K. Onishi et al.

(a) (b)Trunk-Based Modeling Silhouette-Based Modeling

Fig. 3. Concepts of modeling a tree by hand gestures

the L-string are determined based on the captured 3D position information. In
the Interactive L-system, trunk L-strings consist of two groups of symbols, i.e.,
Transformation and Shape. The symbols of the “Shape” group denote the form
of any tree part. The symbols of the “Transformation” group denote the angle
of rotation between the growth directions. Symbol “F” is defined as the form
of part of the trunk. This symbol has some attributes, including 3D position
information V (x, y, z), angle of relative rotation (H, L, U), and a variation of
angle M. The values of these attributes are given from the captured 3D position
information. Symbol “F” is defined as a part of a trunk/branch. The length
of the form given from symbol “Fn” is the distance for two continuous points
(V n+1, V n). The 3D position information of symbol “Fn” is V n. And Hn is the
direction in which the trunk is growing, defined as the vector from V n to V n+1,
as shown in equation (2):

Hn = V n+1 − V n (2)

L and U are defined as arbitrary vectors that exist on the plane whose normal
vector is H . But L is determined by rotating U 90 degree counterclockwise on
the plane. M is derived from the “Transformation” symbols group determined
by the method described below. Finally, these calculations are made with both
continuous points of the captured 3D position information.

Generation of L-String. Here, we explain the determination of the “Trans-
formation“ group symbol, which is another L-string component.

The determination of the“Transformation” group symbol is based on the cal-
culated attribute values about the angle of the relative rotation of a trunk. And
the L-string of a trunk is generated from the created “Transformation” group
symbols and “Shape” group symbols, as shown in Figure 4(c). The “Transforma-
tion” group symbols exist among the “Shape” group symbols. The
“Transformation” symbol is determined from attribute values of the neighbor-
ing symbols of the “Shape” group. The symbol of the “Shape” group calculates
the attribute values of the next “Shape” symbol by arbitrary rotation on the
axes of its local coordinate system (H , L, U). Also it may rotate two or more
times on the same axis. Therefore, the degree of the angle and the order of axes
rotation are underspecified by calculating only with vectors that define the an-
gle of the relative rotation of trunk parts. However, generating the L-string in

Modeling of Trees with Interactive L-System and 3D Gestures 229

F00 F01 + F03 F04F00 F01 + F03 F04F00F00 F01F01 ++ F03F03 F04F04

(a) (b) (c)

1V
r

…

2V
r 3V
r

4V
r 5V
r 6V
r

2H
r

2L
r 2U
v

Fig. 4. Translation process from positional information to L-string. (a) Positional in-
formation. (b) Angles of relative rotation (H, L, U). (c) L-string.

real-time is required to interactively create tree models. To simplify the deriva-
tion of “Shape” symbols, it is assumed that the attribute values about the angle
of the relative rotation of the next symbol of the “Shape” group is calculated by
rotating the axes in the order of U , L, H in the local coordinate system of the
present symbol. Consequently, the relationship between the continuous “Shape”
group symbols is defined as three symbols of the “Transformation” group.

Our method translates trunk shape given by gestures to the L-string. When
the trunk is generated by gesture inputs, the 3D positional information input
later is translated to an L-string as branches of an already generated trunk.
Therefore, the method enables users to edit the tree models by the Interactive
L-system without considering whether the trunk is given by gestures.

Generation of Growth Points. A trunk that defines branching structure is
created by using gesture inputs. Branches and leaves and so on are generated
by growth simulation based on the trunk. To achieve this, the growth points
of branches are created on the trunk’s generated L-string. Symbol “A” as a
growth point is generated by L-system simulation with production rules of the
growth points, as shown in Figure 5. The attributes (position, angle of shape, and
diameter) of symbol “A1” have the same values as the attributes of symbol “F01”
that draw part of a trunk as a root of a generating branch based on symbol “A1”.
Branches are generated by the Interactive L-system with the attribute values of
the growth points as initial conditions.

Process flowProcess flow

F00 F01 F02 F03 F04F00F00 F01F01 F02F02 F03F03 F04F04

A1A1

A3A3

Ax

Organize a trunkF0x

Living growth pointAx

Organize a trunkF0x

Fig. 5. Placement of growth points

230 K. Onishi et al.

4.2 Silhouette-Based Modeling

Next, a method to generate a tree model based on silhouette shape is described.
First, silhouette shape is determined in two different ways. One simply de-

termines the silhouette shape as a sphere, and the other determines the shape
as a supertoroid, which is a special form of superquadrics. Users freely generate
the region’s shape as superquadrics by 3D gesture inputs. Therefore, the silhou-
ette of the tree model is generated according to user imagination. Superquadrics
formulas have some parameters. By adjusting them, a large variety of 3D shape
can be generated easily. Two bounding contours of the silhouette are generated
by hand gestures captured in the same way as generating trunks and input as
the left and right sides of the region’s silhouette. The feature points of the con-
tour paths are given from sets of the 3D positions by Vector Tracer. The axes
of the generating supertoroids are derived from those continuous feature points.
Supertoroids as silhouette shape are generated based on those axes and feature
points with a set of equations (3).

⎧⎨
⎩

x(u, v) = ax(αx + cosn u) cose v + bx

y(u, v) = ay sinn u + αy

z(u, v) = az(αz + cosn u) sine v + bz

(3)

−π ≤ u ≤ π, −π

2
≤ v ≤ π

2
.

Two parameters (bx, bz) are introduced into the supertoroid formulas to reflect
the slopes of those axes in the supertoroids.

Finally, tree models in this region are generated by using the Interactive L-
system [6]. The growth rules of the Interactive L-system are applied only to the
part of the symbols at the L-string, which is in the region. If no symbols exist
in that region, the axiom at an arbitrary point in the region is applied to the
growth rules of the Interactive L-system. Therefore, with the L-system using the
generated region of interest, users can directly generate and edit the shape of
tree models, whose silhouette reflects user images.

5 The System

5.1 System Summary

Figure 1 shows the interface and a screenshot of our system. The path of the hand
gesture is captured as a set of 3D positions obtained in regular time intervals
from a stylus in the user’s hand. A 3D tracker is attached to the stylus and
the Region Of Interest (ROI) is given by the motion of the stylus. There are
two ways to define ROI. One simply defines its shape as a sphere, and the
position and the radius of the sphere are given by the stylus. The other defines
its shape as a supertoroid, as described in 4.2, whose shape is determined from
the trajectory of the stylus. After the shape of the ROI is defined, its position

Modeling of Trees with Interactive L-System and 3D Gestures 231

and size can be manipulated by the stylus. After the position and size of the
ROI are determined, the system adapts the production rule to the parts of
the model in the ROI with the Interactive L-system. Users can interactively
observe the generated tree models by using stereoscopic LCD shatter glasses.
The system is implemented on a personal computer (Xeon 2GHz, Mem 2GB,
3Dlabs WildcatII5110(TM),Windows 2000).

5.2 Interaction with Tree Models Through the L-Strings

Our system allows users to interact with the tree models by using the L-strings
that is constructed by Interactive L-system. One of these methods is that it
allows users to see the actual L-strings of any part of the tree model and the
structure of the actual L-strings. Figure 6 shows an example in which L-strings
of branches are superposed on the tree models. Here, the symbols of the parts of
the tree model in a ROI are displayed. Black strings show symbols of the “Shape”
group defined as geometric shapes of the model, and red strings show symbols of
the “Transformation” group that rotate the geometric shapes, as explained in 4.1.

Another is that it allows users to edit the shape of tree models by changing
the structure of the L-string. Figure 7 shows an example in which the structure
of L-string are displayed at the tree view dialog. As shown in Figure 7(a), the
system enables users to select the symbols in the L-string. And the users can
change the structure of L-string by using the tree view dialog. The shape of tree

Region of interest

Fig. 6. L-string superposed on tree model

232 K. Onishi et al.

Fig. 7. Tree models editted by changing the structure of L-strings

model described by this L-string is modified according to the changing result of
it, as shown in Figure 7(b).

5.3 Example of Interactions

In this section, we describe the creation process of tree models. In our system,
the hand gesture path is captured as a data set of 3D positions obtained from
the stylus in the users’ hand. As shown in Figure 8(a), L-string is generated
based on the data set and our proposed method, and the system shows the
trunk shape drawn based on L-string. As visual feedback, this interaction starts
when user gesture input begins to enable users to recognize their gesture inputs.
Also, collision detection of trunks to correct the data of the path is carried out
immediately when the 3D position is obtained from the stylus.

When the shape of a trunk is generated from gesture inputs, the system
requires users to designate the point on the created trunk where trunks are
jointed, which is difficult to do correctly because our system uses 3D direct
manipulation, and the displaced place of tree models and the gesture input
place are separated. Therefore, our system calculates and shows a joint point
on the created trunk closest to the pointer controlled by users. Trunk diameter
increases in inverse proportion to the velocity of the stroke that generates the
trunk.

Branches are generated by the Interactive L-system. Users determine size by
controlling the region of interest that they themselves created freely. Branches are
generated from the growth points on trunks in the region by adapting production
rules for branches, as shown in Figure 8(b). Therefore, our system enables users
to easily generate the shape of a tree model that has the silhouette and trunk
shapes that reflect their demands.

Users can also directly edit the shape of the generated tree model with the In-
teractive L-system. The system edits part of the tree model in the region selected
by the users, who can obtain various results by selecting the production rules
defined beforehand for editing, as shown in Figure 8(c). The system takes about
1.3sec to edit this tree models. Therefore, the user can edit tree models interac-
tively. In the production rules, our system defines generating/erasing blossoms
and leaves, bending and pruning branches, and the trunk. As shown in Figure 9,

Modeling of Trees with Interactive L-System and 3D Gestures 233

(a)

Region Of Interest (ROI)

(b)

(c)

Fig. 8. Example of process to generate
a tree model

Fig. 9. Tree model generated by three
trunk inputs and added blossoms and
leaves

Fig. 10. Tree model with a spiral trunk

Region Of Interest (ROI)

Fig. 11. Tree model generated by a sil-
houette input with a supertoroid ROI

tree models are generated by three trunk inputs and added blossoms and leaves.
In Figure 10 the trunk is spiral, a shape easily generated by a beginner with this
system. As shown in Figure 11, a branching structure is generated from only
inputting the region of interest as a silhouette of the entire tree.

234 K. Onishi et al.

In these examples, our system allows users to edit trunks and manipulate ROI
by using one stylus. By using two-handed interaction, the users can generate and
manipulate tree models more intuitively.

6 Conclusions

In this paper, we proposed an interactive system that makes tree models with
3D gesture input and the Interactive L-system. This system enables users to
make intuitively complex shapes of imagined tree models. To create the shapes
efficiently and interactively, we proposed the Interactive L-system that has a
hierarchal structure of the L-string, and the attributes that control the 3D spatial
information of the L-string. In our method, trunk shapes and tree silhouettes
are given by the path of hand gestures, and shapes are translated to the data of
Interactive L-system. Also, our method corrects “unnatural” trunk shapes made
by users to avoid trunk collisions. Using translated data as initial conditions,
our method generates tree models by the Interactive L-system, enabling users
to interactively control the shape of trees. Using a hierarchal structure of the
L-string, our proposed system allows users to edit the shape of tree models by
interacting with these L-strings easily. Our proposed system carefully addresses
the fragile balance and tradeoff between the freedom of user interaction and the
autonomy of tree growth.

As future work, we are planning a method that defines production rules for
L-system from shapes given by gesture and diversifies the interaction of gener-
ating tree models.

Acknowledgments

This research was supported in part by “The 21st Century Center of Excellence
Program” of the Ministry of Education, Culture, Sports, Science and Technology,
Japan.

References

1. Gordin, C., Guedon, Y., Costes, E., Gordin, C., Caraglio, Y.: Measuring and
analyzing plants with the amapmod software. In: Plants to ecosystems-Advances
in computational life sciences. CISRO (1997) 54–84

2. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer-
Verlag New York (1990)

3. Prusinkiewicz, P., Mundermann, L., Karwowski, R., Lane, B.: The use of positional
information in the modeling of plants. In: Proc. of SIGGRAPH ’01. (2001) 289–300

4. Lintermann, B., Deussenm, O.: Interactive modeling of plants. IEEE Computer
Graphics & Application 19(1) (1999) 2–11

5. Boudon, F., Prusinkiewicz, P., Federl, P., Godin, C., Karwowski, R.: Interactive
design of bonsai tree models. cgforum 22(3) (2003) 591–599

Modeling of Trees with Interactive L-System and 3D Gestures 235

6. Onishi, K., Hasuike, S., Kitamura, Y., Kishino, F.: Interactive modeling of trees
by using growth simulation. In: Proc. of ACM VRST. (2003) 66–72

7. Power, J.L., Brush, A.J.B., Prusinkiewicz, P., Salesin, D.H.: Interactive arrange-
ment of botanical l-system models. In: Proc. of SI3D. (1999) 175–182

8. Schkolne, S., Pruett, M., Schroder, P.: Surface drawing: Creating organic 3d shapes
with the hand and tangible tools. In: Proc. of CHI ’01. (2001) 261–268

9. Llamas, I., Kim, B., Gargus, J., Rossignac, J., Shaw, C.D.: Twister: A space-warp
operator for the two-handed editing of 3d shapes. In: Proc. of SIGGRAPH ’03.
(2003) 663–668

10. Okabe, M., Igarashi, T.: 3D modeling of trees from freehand sketches. In: SIG-
GRAPH ’03 on Sketches & applications. (2003) 1

11. Abelson, H., diSessa, A.: Turtle geometry. MIT Press, Cambridge (1982)

New Vision Tools from the Comparative Study
of an “Old” Psychophysical and a “Modern”

Computational Model

Kuntal Ghosh, Sandip Sarkar, and Kamales Bhaumik

Microelectronics Division, Saha Institute of Nuclear Physics,
1/AF Bidhannagar, Kolkata-64, India

kuntal.ghosh@saha.ac.in

Abstract. A comparative study has been made between a one and half
century old psychophysical model of vision and a modern computational
model. The Mach band illusion has been studied from a new angle, that
led to concluding that a Bi-Laplacian of Gaussian operation is a likely
possibility in the visual system along with the traditional Laplacian oper-
ation. As a follow-up to this, exploring the human visual system through
a two-pronged approach, based on the two models mentioned above, has
helped in the construction of a new image sharpening kernel, on one
hand and possibilities of new algorithms for robust visual capturing and
image halftoning and compression on the other.

1 Introduction

Anyone acquainted with the fundamental aspects of image processing and vision,
is probably also familiar with the “theory of edge detection” propounded by the
late David Marr and his colleagues [1]. Although more efficient edge-detection
algorithms have till then been designed, like for example Canny [2], the beauty of
Marr’s work, was that his algorithm for edge detection was derived as a part of a
general investigation on the mechanism of visual perception in nature. Marr and
Hildreth [3], claimed that the response function for the Receptive Fields (RF)
of the Ganglion cells in the retina or the cells in Lateral Geniculate Nucleus
(LGN) behaves as a Laplacian of Gaussian (LOG) filter that convolves the two-
dimensional intensity array on the retina and this information is then sent to
the visual cortex in the brain, where a “raw primal sketch” of the external world
is detected in the form of an edge-map. While Marr and Hildreth [3] speculated
a role of the small cells in monkey striate cortex in edge detection, based on
the findings of Hubel and Wiesel [4], two later works by Richter and Ullman
[5] and Hochstein and Spitzer [6] found further concrete evidences in favour of
the existence of such edge detecting Simple cells in primary visual cortex of
cats. Moreover, it was shown by Marr-Hildreth [3] that the LOG operator in
fact approximates the lateral inhibition based Difference of Gaussian (DOG)
model of Ganglion cell RF, as proposed by neurophysiologists [7]. Such RF-s,
they claimed, are therefore capable of computing the LOG of any intensity array
falling on the retina.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 236–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

New Vision Tools from the Comparative Study of an “Old” Psychophysical 237

It may be very interesting to note at this point that, both of these interre-
lated retinal phenomena, namely lateral inhibition in physiology and Laplacian
operation in computation, were predicted almost a century prior to these devel-
opments in neurophysiology and artificial intelligence by the eminent physicist
Ernst Mach [8]. Mach relied upon psychophysical experiments to arrive at his
model. The most important of these observations was what is now popularly
known as the Mach band illusion, which inspired Mach to predict a role of lateral
inhibition in visual perception. This phenomenon was then explained mathemat-
ically by a linear combination of the original intensity distribution on the retina
and its second differential coefficient, a model which Mach now proposed as the
computational mechanism for visual signal processing [8]. This mid-nineteenth
century computational approach to vision based on psychophysics and with-
out any raw physiological data in his time, naturally deviated more towards
a holistic (Gestalt) approach to vision rather than a step by step information
processing approach from a two-dimensional retinal array to the reconstruction
of three-dimensional world view in area 17-19 in the brain, as was David Marr’s
conjecture another century further on. Yet it was probably the first attempt to
mathematically model visual signal processing.

Equipped with the contemporary developments simultaneously in the domain
of neurophysiology and computational science in the later part of the twentieth
century, David Marr put forward a strong three-level scheme for studying the
visual system through an information processing approach [1]. In his approach,
convolution of an intensity array by LOG, followed by zero-crossing detection,
is a very primary but crucial step. In this paper, we are first of all going to show
that an integration of Mach’s observation (the Mach bands) and Marr’s scheme
demands a new operator, namely the Bi-Laplacian of Gaussian (Bi-LOG), prior
to zero-crossing detection. Then we are going to adopt two different approaches
in modeling this phenomenon. The first of these would resemble the holistic
approach of Mach and yield a new image enhancement kernel, that is comparable
in simplicity to the Laplacian kernel often used for unsharp masking, but one
that performs better. The second approach would resemble Marr’s methodology
and discuss on how a Bi-LOG operation and subsequent zero-crossing detection
is realizable in the visual system, through a simple modification of the existent
RF model. Such a modification, it would be shown, leads to an explanation
of some of the brightness-contrast illusions hitherto unexplained by LOG or
equivalently DOG models. The modified model may therefore, as pointed out
in a related work by Yu et al. [9], find application in designing robust visual
capturing or display systems and in areas where accurate perception of intensity
level is crucial. Another consequence of this later approach, it would be shown,
is a new and unconventional process of image compression, that utilizes the
inherently present noise in a natural image. Evidences of such utilization of
noise (like for example pupil noise in human) in visual perception has already
been found in the peripheral nervous system of crayfish [10], and also in some
other animals.

238 K. Ghosh, S. Sarkar, and K. Bhaumik

2 The Existent Models

2.1 The Approach of Ernst Mach

In order to understand Mach’s approach, let us take a look at a commonly
used image for understanding the Mach band illusion shown in Fig. 1a. By
scanning this image in a direction in which the luminance increases or decreases
our visual system perceives an actually non-existent darker bar at the location
where the figure just starts getting lighter. Similarly, a brighter bar is perceived
at the point where brightness just stops increasing. This observation led Ernst
Mach to foresee a mechanism of lateral inhibition in the retina and propose
a mathematical model for visual processing based on a linear combination of
the intensity function and its second differential coefficient. If we make a finite
difference approximation of this second order derivative, i.e. for ∂2

∂x2 + ∂2

∂y2 , then
we can easily arrive at an orientation-independent filter mask L [11].

By convolving the image, shown in Fig. 1a with this mask, we get a new
image, the horizontal line profile of which has been shown in Fig. 1b. Adding
the convolved image to the original, is the same as convolving the original with
the filter mask L′ [11]:

Fig. 1. (a) The Mach band illusion of dark and bright borders around bright and dark
regions respectively (b) horizontal profile of this image, convolved with L

L =

⎡
⎣−1 −1 −1

−1 8 −1
−1 −1 −1

⎤
⎦ L′ =

⎡
⎣−1 −1 −1

−1 9 −1
−1 −1 −1

⎤
⎦

If we convolve Fig.1a with L′ and view a horizontal line profile of the resultant
image in Fig. 2a., we clearly see a replica of our illusion which is unlike the
reality as we can see by comparing with a similar line scan of the original image
(Fig. 2b).

The undershoots and overshoots at each step transition bears resemblence to
our illusive perception. If we apply this mask to any image it will enhance the
image by sharpening the edges. This has been shown in Fig. 3.

Such an operation is sometimes referred to as unsharp masking. The reason
behind such enhancement is that the light Mach bands around dark regions

New Vision Tools from the Comparative Study of an “Old” Psychophysical 239

Fig. 2. (a) The horizontal profile of the Mach band image, convolved with L′. A mimetic
of the illusory perception is reproduced (b) horizontal profile of the original image
shown in Fig. 1a.

Fig. 3. (a) The bench-mark image of egg on a plate. (b) The image has been enhanced
with L′.

and dark ones around lighter, apart from being illusions, also serve a purpose.
They actually represent a mechanism of lateral inhibition or in other words the
contrast-sensitivity in the eye, that enables one to clearly isolate an object from
its background, thus helping in image enhancement. The sharpening operator
L′, being the discrete version of the rotationally symmetric Laplacian operator,
will therefore form such Mach bands in all orientations so that, thus enhancing
an object of any arbitrary shape. This is actually the essence of Ernst Mach’s
model for visual perception, based on the phenomenon of contrast sensitivity
alone.

2.2 The Approach of David Marr

David Marr looked upon the Laplacian operator from another angle. He iden-
tified three levels at which any machine carrying out information processing
task must be understood, namely the computational, algorithmic and imple-
mentational levels [1]. Marr’s computational view of image processing, consisted
of the formation of a “raw primal sketch”, which signifies a transition from the

240 K. Ghosh, S. Sarkar, and K. Bhaumik

Fig. 4. (a)The famous bench-mark image of Lena. Zero-crossings detected with LOG
at (b) a fine scale, the Gaussian σ = 1 (c) a coarse scale, the Gaussian σ = 4.

analog, gray scale image to a more-or-less symbolic representation of image based
features in terms of spatial primitives like edges, lines, blobs etc. The luminance
edges according to Marr, were computed with the help of an LOG filter that
resembles the RF structure of retinal Ganglion cells and the LGN cells, at vari-
ous fine and course scales, i.e. at different variances of the Gaussian. Marr and
Hildreth [3] further explained how such an algorithm might be implemented in
neural hardware that detects these zero-crossings through an AND gate arrange-
ment of some of the cortical simple cells. Zero-crossings from an image at such
fine and a coarse scale has been shown in Fig. 4. Marr then went on to deal with
the problem of scale integration, the construction of the “full primal sketch” and
so on.

3 Integrating the Two Approaches

If we take a careful look at the Mach band illusion (Fig. 1a) once again, and
judge the same from Marr’s viewpoint by looking upon this event in terms of
the “raw primal sketch”, then it amounts to the detection of three edges at
each gray level transition. One of these three edges, the central and major one
is to represent the real transition in gray level, while the two minor edges are
to represent the illusory transitions in gray level on either side of the real one.
This is only possible if the operator that convolves this figure, is ∇4G and not
Marr’s ∇2G operator. This has been shown for a one-dimensional step edge in
Fig. 5. The ∂2G

∂x2 operator produces only one zero-crossing (i.e. one edge) at the
step transition, but the ∂4G

∂x4 operator produces one major zero-crossing and two
minor ones on either side of it, or in other words three edges, one strong and
two weak.

Now if these zero-crossings from Bi-LOG operation are detected through a
straightforward thresholding approach as in the case of LOG, then it will not
be possible to distinguish between the minor and the major zero-crossings, i.e.
the strong and the weak edges, though we understand that it might be crucial
to include the Bi-LOG operator in the model for visual processing. Accordingly,
we adopt two different routes, in order that we might make such incorporation.

New Vision Tools from the Comparative Study of an “Old” Psychophysical 241

Fig. 5. (a) A one dimensional step image. Convolution with (b) second order derivative
of Gaussian produces a single zero-crossing (c) the same with fourth order derivative
produces two additional smaller crest and trough on either side of the central zero-
crosing, resulting in two additional zero-crossings.

The first of these two, is based upon the holistic approach of Mach. It simply
proposes a linear combination of the Laplacian and the Bi-Laplacian opeartor,
with varying weights, added to the original intensity distribution, keeping simi-
larity with Mach’s model. We shall show how such a combiantion can be made
using finite difference approximation. What is interesting is that, we come up
with a new and better-performing digital filter for image sharpening. Then we
shall take a second route to incorporate the computation of the Bi-Laplacian
of Gaussian, into the algorithmic and implementational schemes of Marr and
Hildreth and discuss on the advantages thereof.

3.1 The Modified Mach Model

First of all, we discuss on the construction of a computationally handy kernel for
the ∇4 operator following the methodology of construction of the convolution
matrix for the ∇2 operator, using finite difference approximation of second order
partial derivative. We may recall [12] that at the outset we represent ∂2

∂x2 by the
vector

[−1 2 −1
]
. Then ∂2

∂y2 is represented by the transpose of the above vector.
When these two are combined together, we obtain the kernel L1 for the isotropic
∇2 operator. Using the property of isotropicity, the diagonal directions are now
incorporated by taking the co-ordinates along these applying a 450 rotation so
that we arrive at a new kernel L2 :

L1 =

⎡
⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎦ L2 =

⎡
⎣−1 0 −1

0 4 0
−1 0 −1

⎤
⎦

By combining L1 and L2, we get the omnidirectional edge-detector L or the
sharpening kernel L′ shown in section 2.1.

We now construct the convolution matrix corresponding to the ∇4 operator
following the above example. Clearly,

∇4 =
∂4

∂x4 +
∂4

∂y4 + 2
∂2

∂x2

∂2

∂y2

242 K. Ghosh, S. Sarkar, and K. Bhaumik

From the finite difference approximation of the fourth order partial deriva-
tive, the kernel for ∂4

∂x4 in discrete domain can be represented by the vector[
1 −4 6 −4 1

]
. By transposing this kernel we may construct the correspond-

ing vector for ∂4

∂y4 , add these, so that we get the corresponding matrix for a
linear combination of these two terms. The matrix corresponding to the cross-
term ∂2

∂x2
∂2

∂y2 can be, by using the expressions for ∂2

∂x2 and ∂2

∂y2 shown above,
easily computed also, so that:

∂4

∂x4 +
∂4

∂y4 =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 −4 0 0
1 −4 12 −4 1
0 0 −4 0 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ ∂2

∂x2
∂2

∂y2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 −2 1 0
0 −2 4 −2 1
0 1 −2 1 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

From the above expression for ∇4 we arrive at the kernel BL1 for the Bi-
Laplacian operator. As in the case of deriving the Laplacian kernel the diagonal
directions are now incorporated by taking the co-ordinates along the diagonals
through a 450 rotation and adding the same to the above kernel so that we get
Bi-Laplacian mask BL2:

BL1 =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦ BL2 =

⎡
⎢⎢⎢⎢⎣

1 0 1 0 1
0 −6 −6 −6 0
1 −6 40 −6 1
0 −6 −6 −6 0
1 0 1 0 1

⎤
⎥⎥⎥⎥⎦

We again apply a 22 1
2
0 rotation so that we may also incorporate the intermediate

directions and once again adding the same to the above kernel the final form
that the Bi-Laplacian mask assumes is:

BL =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 − 12 −12 −12 1
1 − 12 80 −12 1
1 − 12 −12 −12 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

The modified Mach model, proposed in this paper is a weighted sum of L and BL,
combined with the original image. These weights may be arbitrarily assigned.
But from our discussion on major and minor edges, we understand that the
Laplacian deserves a larger weight compared to the Bi-Laplacian. If we give a
90% weight to the Laplacian we arrive at a new 5 × 5 digital filter comparable
in simplicity to the 3 × 3 L mask. We call this new filter M in memory of Ernst
Mach. The corresponding mask for image enhancement as before is represented
by M ′.

New Vision Tools from the Comparative Study of an “Old” Psychophysical 243

M =

⎡
⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 3 3 3 −1
−1 3 −8 3 −1
−1 3 3 3 −1
−1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎦ M ′ =

⎡
⎢⎢⎢⎢⎣

−1 −1 −1 −1 −1
−1 3 3 3 −1
−1 3 −7 3 −1
−1 3 3 3 −1
−1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎦

M being derived out of a linear combination of two isotropic operators L and BL
is naturally isotropic as well. We have made a comparative study of L′ and M ′

in image enhancement in the result section. In fact by modeling the non-linear
non-classical receptive fields in human visual system, this same kernel has been
derived from another approach and it has already been shown in the same work
how it outperforms the standard Laplacian kernel in image enhancement [12].

3.2 The Modified Marr Model

From the perspective of modeling the Extended Classical Receptive Field
(ECRF) of retinal Ganglion cells and its implications at the cortical level, some
works on the modification of Marr’s model have already been initiated in a re-
cently published work [13]. According to this work, the contribution from the
amacrine cells in the retina may be incorporated into the physiological DOG
model of RF, by effectively adding a wider disinhibitory Gaussian to the DOG.
We call it a modified DOG or MDOG model. It has been shown [13], that it
is possible to approximate a Bi-LOG operation by such a linear combination
of three Gaussians, representing an excitatory, an inhibitory and a disinhibitory
neural layer respectively. Taking into consideration the assumption of Marr, that
the visual system operates at both fine and coarse scale, this model, it has been
shown, reduces to a replacement of Marr’s LOG operator with a linear combina-
tion of LOG and the Dirac-delta (δ(x, y)) function. We are now going to study
the implications of such a modification of Marr’s model in some application areas
of image processing and vision.

Although, many low-level brightness-contrast illusions can be explained by the
LOG or equivalently DOG model, there are happens to be many other brightness-
contrast illusions which cannot also be explained by this model. Since, the crux
matter of this paper has developed from an attempt to explain the minor edges
in Mach band illusion, it is tempting to make an attempt to explain the Mach
bands as well such unexplained brightness-contrast illusions mentioned above
with the MDOG model. As has already been mentioned, in one dimension this
model may be written as:

MDOG(σ1, σ2, σ3) = A1
1√

2πσ1
exp(− x2

2σ1
2) − A2

1√
2πσ2

exp(− x2

2σ2
2)

+A3
1√

2πσ3
exp(− x2

2σ3
2)

where MDOG represents the response function for the modified RF of retinal
Ganglion cells, σ1, σ2 and σ3 represent the scales of the center, the antagonistic
surround and the extended disinhibitory surround respectively and A1, A2 and

244 K. Ghosh, S. Sarkar, and K. Bhaumik

A3 and represent the corresponding amplitudes. Interestingly, the inverse DoG
(IDoG) model of Yu et al. [9] based on a similar disinhibitory property of retinal
cells of the arthropod Limulus has also been able to explain the unexplained sub-
tle features of Hermann grid illusion through such simple feedforward networks.
We shall see in the result section how the MDOG model not only explains these
features, but also explains the hitherto unexplained through low-level modelling
the well-known White effect and Todorovic effect phenomena [14].

Next we study the implications of operating the linear combination of LOG
and Delta function, as has been mentioned above, in the domain of biological
and digital image processing. In the traditional view of image processing, noise
in an image is always unwanted. It is the common practice to remove noise by
smoothing images with Gaussian filters, before applying image processing algo-
rithms. We will now show that noise can help in retaining the original intensity
information in the zero-crossing (ZC) map, when such an operator is employed
in image processing. It is quite obvious that any derivative computation (LOG
in this case) removes the constant intensity information of the original image
and retains only the rate of intensity change. On the other hand, zero-crossings
of the LOG-convolved image represents only the peaks and troughs of this rate
of intensity change. So any information contained in the monotonic rate of in-
tensity change is not retained in the zero-crossing map. However, we are going
to show that with an operator like h = k1∇2G(x, y) + k2δ(x, y) , as mentioned
above, the computed ZC map is found to retain intensity information of the orig-
inal image in the sense of a half toning, where the intensity variation is mapped
to the density variation of the ZC points. The ZC map therefore is virtually a
compressed form of the original image. It is interesting to note here, that though
we are dealing with a modified Marr model, the operator h is again virtually
same as the Mach model. So the dialectical relationship between these two mod-
els, one following inductive logic and the other one deductive, remains prevalent
throughout this study. In the present situation we are using it for identifying the
ZC map, while previously we have done the same for image enhancement.

4 Results and Discussion

In Fig. 6, we compare the performance of M ′ with L′, in image enhancement
or unsharp masking. M ′ is shown to perform as a more effective sharpening
operator.

It may easily be verified for other images as well. The proposed kernel may
therefore replace the Laplacian in the opeartion unsharp masking, commonly
used in image processing softwares.

Next, we come to the illusions. The Mach band illusion (Fig.7a) has been
successfully explained using MDOG model in 7c. For all the illusory figures
we have used horizontal line scans to reproduce the results, as is normally the
practice [9, 15]. The results are comparable to the solution by DOG model shown
in Fig. 7b.

New Vision Tools from the Comparative Study of an “Old” Psychophysical 245

Fig. 6. (a)The bench-mark image of egg on a plate shown in Fig. 3a has been enhanced
with L′ (b) the image in Fig. 3a has been enhanced with M ′. M ′ clearly performs better
as a sharpening operator as per visual inspection. It may be noted that the Mach bands
have been further enhanced by M ′ compared to L′.

The same can easily be verified for other brightness-contrast illusions solvable
by DOG, like Simultaneous Brightness Contrast illusion or Grating Induction
effect etc. In Hermann Grid illusion, the human vision perceives the crossings
in the grid, to be darkest while the streets appear brighter than the peripheral
region (Fig. 8a). Convolution with DOG (Fig. 8b), though provide a gross expla-
nation to this effect, cannot reproduce these subtle features, but like the IDOG
model [9], the proposed MDOG model is able to reproduce these (Fig. 8c). Most
interestingly, the White effect illusion (in a square grating of black and white
bars, if identical gray segments are used to replace part of the black bars and
also part of the white bars, then former gray segments look brighter than the
later), where the Marr model (DOG) fail completely and gives a result exactly
opposite to our perceptual experience , has also been faithfully explained with
the MDOG model (Fig. 9). Another unexplained illusion called the Todorovic
effect (occluding a test patch on a black background by four white squares and

Fig. 7. (a) The Mach band illusion. (b) explanation of the illusion by DOG model (c)
explanation by MDOG model.

246 K. Ghosh, S. Sarkar, and K. Bhaumik

Fig. 8. (a) The Hermann Grid illusion. (b) Partial explanation of the Hermann Grid
illusion by convolving the image with conventional DOG filter along a horizontal line
profile through one of the streets in the convolved image. (c) Explanation of the Her-
mann Grid illusion with the MDOG filter.

vice-versa), which like the White effect cannot be explained by DOG, was
thought of to be the result of high level perceptual grouping, rather than low-level
contrast sensitivity. This illusion has also been sucessfully explained by MDOG
as shown in Fig. 10. Potential application of this algorithm may therefore be
in the direction of designing novel robust visual capturing or display systems
and automatic detection and correction of perceived incoherence in luminance
of video display panels, where accurate perception of intensity level is critical.

Finally we come to the application of the operator h mentioned in section
3.2 in image processing. Two kinds of images were considered for these studies.
They are synthetic images that are perfectly noise free and natural images that
generally contains intrinsic noise. In Fig. 11 - Fig. 13 synthetic images were used
to demonstrate the role of noise by adding noise externally and in Fig. 14, we
demonstrate the effect of inherent noise in the natural image of a flower in such
processing. Fig. 11(a) is the original image I of constant normalized grayscale
of 0.5, Fig. 11(b) is the horizontal profile of the image I ⊗ h , i.e. the image
convolved with the operator h and Fig. 11(c) is the zero-crossing map computed
from the image of Fig. 11(b). Next, Fig. 11(d) is the original image I of constant
normalized grayscale of 0.5 contaminated with Gaussian noise, Fig. 11(e) is the
horizontal profile of the image I ⊗ h and Fig. 11(f) is the zero-crossing image

Fig. 9. (a) The White effect illusion. (b) Attempted explanation of the White effect
illusion with conventional isotropic DOG filter along a horizontal line profile through
the gray segments in convolved image produces results contrary to our perceptual
experience. (c) Explanation of the White effect illusion by convolving the image with
the MDOG filter.

New Vision Tools from the Comparative Study of an “Old” Psychophysical 247

Fig. 10. (a) The Todorovic effect (b) Explanation of the illusion by convolving the
image with MDOG filter along a horizontal line profile through the two test patches
in the convolved image

computed from the image of Fig. 11(e). As discussed in section 3.2 Fig. 11(c)
does not contain intensity information of the original image but Fig. 11(f) is
similar to the half toned map of Fig. 11(d). This is due to the presence of noise
that produced zero-crossings as shown in Fig. 11(e). The role of noise depicted
in Fig. 11 is also demonstrated in Fig. 12 for the case of ramp image (IR) where
the intensity changes linearly from 0 (black) to 1 (white).Original ramp image
and the noise contaminated ramp image is shown in Fig. 12(a) and Fig. 12(d),
Fig. 12(b) and Fig. 12(e) are the horizontal profile plots of the convolved (IR ⊗h)
ramp image and the convolved noise contaminated ramp image respectively. It
is also clear from Fig. 12(f) that intensity information of Fig. 12(a) is mapped
to a density variation of zero-crossing points.

Fig. 11. Influence of noise on ZC image for the case of constant intensity image (a)
original constant intensity (gray value=0.5) image (I), (b) I ⊗ h image profile, (c)
zero-crossing image of I ⊗ h , (d) image (In) contaminated with Gaussian noise, (e)
In ⊗himage horizontal profile and (f) the resulting zero-crossing image computed from
In ⊗ h. No new information is found.

248 K. Ghosh, S. Sarkar, and K. Bhaumik

Fig. 12. Influence of noise on ZC image for the case of constant ramp image (a) original
(gray value=0-1) image (IR), (b) IR⊗h image profile, (c) zero-crossing image of IR⊗h ,
(d) image (IRn) contaminated with Gaussian noise, (e) IRn ⊗himage horizontal profile
and (f) the resulting zero-crossing image computed from IRn ⊗h. Intensity information
can be found.

The picture in Fig. 13(a) is constructed using the function 0.5 sin(a/x) + 0.5.
Fig. 13(b) is the zero-crossing map for the noise added to this image.

The effect of noise in a natural image is depicted in Fig. 14. Picture in
Fig. 14(a) is the original image, picture in Fig. 14(b) is the zero-crossing im-
age of the LOG convolved image of Fig. 14(a). As discussed this ZC image does
not retain much of the intensity information of the original image but the image
in Fig. 14(c) retains much of the intensity information of the original image.
This due to the fact that lily image have some inherent noise that helps in
retaining intensity information. Fig. 14(d) is the zero-crossing image of the noise

Fig. 13. Influence of noise on ZC image for the case of (a) original image 0.5 sin(a/x)+
0.5, (b) zero-crossing image after adding noise added to it. Again we find intensity
information in ZC map.

New Vision Tools from the Comparative Study of an “Old” Psychophysical 249

Fig. 14. Influence of noise on ZC image for the case of natural image (a) original lily
flower image (IL), (b) zero-crossing image of IL ⊗ LOG at low threshold, (c) zero-
crossing image of IL ⊗ h, (d) zero-crossing image computed from Gaussian noise con-
taminated lily image. Added noise makes halftoning effect more prominent.

contaminated original image in Fig. 14(a). In this case also we observe some im-
provement in the intensity information, through visual inspection, with respect
to the given intensity information. This may be due to the fact that though
natural image contains noise the amount of noise become optimum after the ad-
dition of some external noise to the original image. So noise (like pupil noise for
example) can be made to play a constructive role in preserving intensity infor-
mation in the zero-crossing images by computing the ZC map from the operator

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6
−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b)

Fig. 15. Graphical representation of the Bi-Laplacian of Gaussian mask in (a) one
dimension, (b) two dimension

250 K. Ghosh, S. Sarkar, and K. Bhaumik

proposed in this paper. The intensity information may further be improved by
adding some appropriate amount of external noise to the original image. Ev-
idences of similar operation has been found in the peripheral nervous system
of crayfish [10], and also in some other animals. Such a ZC map which may
be detected in the cortical simple cells in fact provides a compressed version
of the original image. The compression, we have tested for various images, is
about three-fold. We therefore arrive at a new methodology of unconventional
image compression. The two different routes that we have chosen to incorporate
a Bi-Laplacian operation in the visual system have therefore endowed us with
possible new tools for image enhancement, visual capturing and video display as
well as in image halftoning and compression.

Finally, we have reproduced a graphical representation of the Bi-Laplacian of
Gaussian opeartor in both one and two dimension in Fig. 15. It looks very much
like the profile of a Gabor filter. The main difference is that Gabor filters are
directional, while the Bi-Laplacian of Gaussian operator is isotropic. The relation
between Gabor filters and the Mach band illusion has also been studied [16]
and the wavelet transform has been found to contain signatures of the illusory
features. The present work serves to further substantiate and develop this idea.

Acknowledgement

The authors are specially thankful to Mr. Subhajit Karmakar for lending a great
help in preparing the camera-ready manuscript. The authors also express their
thanks to Mr. Ratan kumar Saha and Mr. Manas kumar Roy for similar helps.

References

1. Marr, D.: Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. W. H. Freeman and Company. New York
(1982).

2. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8 (1986) 679-698.

3. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings of Royal Society of
London B 207 (1980) 187-217.

4. Hubel, D. H. and Wiesel, T. N.: Receptive fields and functional architecture of
monkey striate cortex. Journal of Physiology 195 (1968) 215-243.

5. Richter, J. and Ullman, S.: Non-linearities in cortical simple cells and the possible
detection of zero-crossings. Biological Cybernetics 53 (1986), pp. 195-202.

6. Hochstein, S. and Spitzer, H.: Zero-crossing detectors in primary visual cortex.
Biological Cybernetics 51 (1984) 195-199.

7. Rodieck, R.W. and Stone, J.: Analysis of receptive fields of cat retinal ganglion
cells. Journal of Neurophysiology 28 (1965) 833-849.

8. Ratliff, F.: Mach Bands: Quantitative Studies On Neural Network In The Retina.
San Francisco CA, Holden-Day (1965) 253-332.

9. Yu, Y., Yamauchi, T., Choe, Y.: Explaining low-level brightness-contrast illusions
using disinhibition. Biologically Inspired approaches to Advanced Information tech-
nology, Springer, LNCS 3141 (2004) 166-175.

New Vision Tools from the Comparative Study of an “Old” Psychophysical 251

10. Douglass, J. K., Wilkens, L., Pantazelou, E., Moss, F.: Noise enhancement of in-
formation transfer in crayfish mechanoreceptors by stochastic resonance. Nature
(London) 365 (1993) 337-340.

11. Gose, E., Johnsonbaugh R., Jost, S.: Chapter 7: Processing of Waveforms and
Images, in: Pattern Recognition and Image Analysis, PHI second Indian reprint,
New Delhi (2000) 263-327.

12. Ghosh, K., Sarkar, S., Bhaumik K.: Image Enhancement By High-order Gaussian
Derivative Filters Simulating Non-classical Receptive Fields in the Human Visual
System. Proceedings of First International Conference on Pattern Recognition and
Machine Intelligence, Springer LNCS 3776 (2005) 453-458.

13. Ghosh, K., Sarkar S., Bhaumik, K.: A possible mechanism of zero-crossing detection
using the concept of extended classical receptive field of retinal ganglion cells.
Biological Cybernetics. 93 (2005) 1-5.

14. Palmer, S.E. Vision Science: Photons to Phenomenology, MIT Press, Cambridge,
Massachusetts (1999) 115-118.

15. Blakeslee, B. and McCourt, M. E.: A multiscale spatial filtering account of the
White effect, simultaneous brightness contrast and grating induction. Vision Re-
search 39 (1999) 4361-4377.

16. Sierra-Vazquez, V.,Garcia-Perez, M.A.: Psychophysical 1-D Wavelet Analysis and
the Appearance of Visual Contrast Illusions. IEEE Transactions on Systems, Man,
and Cybernetics 25 (1995) 1424-1433.

Photonic Information Techniques Based on
Compound-Eye Imaging

Satoru Irie, Rui Shogenji, Yusuke Ogura, and Jun Tanida

Graduate School of Information Science and Technology,
Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan

{irie, rui, ogura, tanida}@ist.osaka-u.ac.jp
http://www-lip.ist.osaka-u.ac.jp

Abstract. Insects and arthropods have compound eyes consisting of
multiple small eyes as their visual system. Various interesting features
can be utilized in the applications of the compound eye to informa-
tion systems. A compact image capturing system named Thin Obser-
vation Module by Bound Optics (TOMBO) is an effective instance of
the photonic information systems based on compound-eye imaging. The
TOMBO retrieves a high-resolution image from multiple low-resolution
images captured by the compound eye. In this paper, wide distance-
range imaging, 3-D information acquisition, and 3-D object interface are
presented as effective applications of the TOMBO system.

1 Introduction

As is well known, many kinds of insects and arthropods have a different visual
system from ours. That is a compound eye consisting of multiple small eyes,
which survives as an alternative form of the visual system of creatures for long
time. Various interesting features can be obtained by applying the compound eye
to information systems. Therefore, many imaging systems based on compound-
eye imaging were presented[1][2][3]. Especially, an imitated compound imaging
system using a microlens array is a typical form of the implementation due
to convenience and compactness of the hardware. However, such an imitated
compound imaging system can not capture high-resolution images because each
small lens comprising the compound eye is used to detect the signal of a single
pixel of the target image. To overcome the problem, the authors presented a
compact image capturing system named Thin Observation Module by Bound
Optics (TOMBO)[4][5]. In the TOMBO system, each lens is used to form an
image of the target, and a set of the images are processed to retrieve a high-
resolution image of the target.

In this paper, effective applications of the photonic information systems based
on compound eye imaging are presented. As instances of the photonic informa-
tion techniques, wide distance range imaging, 3-D information acquisition, and
3-D object interface are considered and their implementations are demonstrated.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 252–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Photonic Information Techniques Based on Compound-Eye Imaging 253

2 Compound Eye

A compound eye is an organ composed of a multiple number of small imaging
systems consisting of a corneal lens and an optic nerve as shown Fig. 1. The
compound eye has interesting features such as wide angle of view, thin hardware
structure, and lightweight implementation of the system. Arrangement of the
elemental optical systems on a curved basement provides wide angle of view.
Short working distance of the elemental lenses contributes to thin and lightweight
form of the system.

Figure 2 shows a conceptual diagram of the image capturing process by a
compound eye. By the effect of the elemental lens, an inverted image of the
object is imaged onto the retina. Although a complete copy of the object is
imaged on the retinal plane, a pixel signal at the position of the optic nerve is
only sampled in the original form of the compound eye. The positions of the

Corneal lens

Retinula cell

Fig. 1. Compound eyes of a dragonfly and the structure

aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa

(a) Object (c) Compound image(b) Caputured image and
Position of Retina cell (circle)

Fig. 2. Image capturing process by a compound eye

254 S. Irie et al.

optic nerves are indicated by small circles in Fig. 2(b). As shown in the figure,
each optic nerve captures a different part of the object due to the geometrical
arrangement of the elemental lenses. Therefore, the set of the acquired signals
comprise the image of the object as shown in Fig. 2(c). Note that the number
of the spatially resolved points of the captured image is equal to the number of
the elemental eyes.

3 TOMBO: Thin Observation Module by Bound Optics

3.1 TOMBO System

The TOMBO system is an image capturing system based on compound-eye
imaging. The TOMBO system consists of an array of microlenses, a signal sep-
arator, and an array of photo detectors as shown in Fig. 3. A set of a microlens
and a divided area of the photo detectors comprise an individual imaging system
to capture an image of the object. This elemental imaging system is called a unit
optics. The signal separator is inserted to prevent crosstalk between the adjacent
unit optics. In general, the minimum working distance of an imaging lens, i.e.,
the required distance for image formation by a lens, is approximately the same
as the aperture of the lens. So that, the hardware thickness can be reduced by
substitution of a large aperture lens with a set of small aperture lenses. This

Unit

Microlens array

Signal separator

Photodetector array

Fig. 3. Hardware composition of the TOMBO system

Fig. 4. Sensor module of the TOMBO system

Photonic Information Techniques Based on Compound-Eye Imaging 255

Table 1. Specifications of TOMBO system

Units per system 8×8
Pixels pr unit 120×120

Pixel size 6.25μm×6.25μm
Device technology 0.35μm CMOS
Microlens property f=750μm D=750μm

is one of the significant benefits of the compound-eye imaging system. Figure 4
shows a picture of the sensor module of the TOMBO system. The specifications
of the TOMBO system are summarized in Table 1.

As a problem of image formation by a compound-eye, the image captured by
a unit optics, called a unit image, is a low-resolution one. The TOMBO system
employes postprocessing to combine information of the multiple unit images and
to retrieve a high-resolution image of the object. As the image retrieval, the pixel
rearrange method and other methods have been presented [4][6].

3.2 Image Retrieval

As an example of image retrieval, the procedure of the pixel rearrange method is
described[4]. The principle is that the pixel data on the unit images are remapped
onto a virtual image plane as shown in Fig. 5. The registration parameter de-
scribing the correspondence between the individual unit images and the virtual
image plane is determined by the geometrical arrangement of the unit optics,
the imaging property of the unit lenses, the distance of the target, etc. Figure 6
shows the optical setup of the TOMBO system. The TOMBO system consists of

Unit images Resistration

parameters

Rearranged

image

Fig. 5. Schematic diagram of pixel rearrange method

256 S. Irie et al.

Microlens array

Virtual image plane
Sensor plane

Position of rearraged pixel (x, y)

Sensor Pixel
unit (m,n) pixel (p, q)

a b

Fig. 6. Schematic diagram of the TOMBO optical setup

an image sensor and a microlens array. The distance between the image sensor
and the microlens array is a. We refer to the plane where the image sensor is
imaged as a virtual image plane. The distance between the microlens array and
the virtual image plane is b. The coordinate system used is shown in Fig. 7. The
position of a unit is expressed by (m, n). The position of a pixel of the unit is
represented by the local coordinate (p, q). The images obtained by the individual
units are mapped on the virtual image plane using the information of the sys-
tem setup. Let us assume that the lens has no aberration. The pixel coordinate
(x, y) on the virtual image plane can be obtained by the following expressions:

x = −νsm − bsp

a
,

y = −νsn − bsq

a
.

Here, ν is the number of the pixel of the unit image and s is the size of
the pixels. Since the compound imaging system captures a multiple number of
unit images with different conditions simultaneously, the registration parameter
can be estimated from the captured unit images. As a result, we can retrieve
information of the target from the captured compound image.

In the remapping process, there is a key point of the pixel rearrange method.
Ideally, the unit image is a demagnified copy of the target object. However, in the
pixel rearrange method, the area of a pixel is not magnified during the remap-
ping from a unit image to the virtual image plane. This operation is considered
as a reverse projection of the pixel signal captured as a unit image under the
assumption of neglecting image degradation caused by diffraction and aberration
of the imaging system.

Photonic Information Techniques Based on Compound-Eye Imaging 257

p

q

m

n

unit image

compound image

Fig. 7. Schematic diagram of the coordinate system of a compound image and unit
image

After the remapping process, there exist pixels unmapped on the virtual image
plane due to inhomogeneous sampling coverage of the unit images. Thus pixel
interpolation is employed to retrieve a complete image. This procedure is rather
simple, but we confirmed that good results can be obtained conveniently.

3.3 Experimental Result

Figure 8 shows an experimental result of image capture by the experimental
TOMBO system[7]. As the target object, an enlarged portrait of 10 cm × 10 cm
was set 26 cm distant from the lens array. Figure 8(a) is the captured compound
image consisting of 6 × 6 units of 40 × 40 pixels. Shading effect was compen-
sated beforehand. Figure 8(b) shows an enlarged unit image and Fig. 8(c) is the
reconstructed image by the pixel rearrange method. Comparing these images,
we can verify the effect of the image reconstruction processing.

(a)Compound image (b)Unit image (c)Reconstructed image

Fig. 8. Experimental result of image retrieval: (a) captured compound image, (b) en-
larged unit image, (c) reconstructedimage by the pixel rearrange method

258 S. Irie et al.

4 Wide Distance-Range Imaging

4.1 Principle

One of the interesting features of compound-eye imaging is that it has a wide
range of the in-focus zone for the object distance. From close to far positions,
we can capture them without any mechanical adjustment. More exactly, each
unit optics forms an in-focused image over a wide distance range, whereas the
registration parameter varies according to the object distance. As a result, the
object image can be retrieved with appropriate processing.

Light-guide plane

Light source

Microlens array

Signal separator

Photodetector array

Fig. 9. Optical setup for fingerprint capturing

As an extreme case, a close-up picture is taken as follows. In this case, each
unit image holds information of the different part of the object. Therefore, the
retrieval procedure is to trim the overlapped signals on the margins, to rotate
the unit images by 180 degree, and to join the whole unit images.

4.2 Fingerpring Capturing

An application of close-up imaging, a fingerprint pattern is captured by the
TOMBO system [9]. Fingerprint patterns can be used for biometrics authentifi-
cation. Figure 9 shows an optical setup for fingerprint capturing. One problem
in this implementation is the illumination method. Thus, a light guiding plate
is set at the top of the system for the purpose.

Figure 10 is an experimental result of fingerprint capturing. In this experiment,
a fingerprint picture printed on a transparent sheet was used as the target object.
Figure 10(a) is the captured compound image and Fig. 10(b) is the reconstructed
image. In addition to fingerprint imaging, the same configuration of the TOMBO
system can capture an image of the object at a distant position. Using this fea-
ture of the system, we can embody a compact multi-modal authentification device
capable of capturing images of fingerprint and face conveniently.

Photonic Information Techniques Based on Compound-Eye Imaging 259

(a) Compound image of finger print (b) Reconstructed fingerprint image

Fig. 10. Experimental result of fingerprint capturing

5 3-D Information Acquisition

5.1 Principle

The unit images on a compound image inherently contain parallax information
of the target object. Thus 3-D information of the object can be retrieved from
the compound image. Namely,the position of the object is determined by the
triangulation technique using an arbitrary pair of unit images. Comparing to
a binocular 3-D camera, the TOMBO system is inferior on the measurement
resolution because of the short baseline for the triangulation. Instead this method
is useful for 3-D measurement in a narrow space.

To retrieve 3-D information from a compound image, several methods are
available. A convenient method is to presume a specific value for the distance of
the target and to reconstruct the image at the plane. Then the same process is
repeated with changing the distance value to obtain a set of the reconstructed
images at different planes. Finally, 3-D mapping of the object points can be
obtained as a set of sliced images.

5.2 Post-Focus Reconstruction

Figure 8 shows an experimental result of 3-D information acquisition. As shown
in the figure, two craft balloons are set at different distance from the TOMBO
system. Then the compound image was captured and processed to retrieve 3-D
information. Figures 11(a) and (b) are the retrieved images using the distance
values 62cm and 42cm, respectively. In both pictures, the central part of the
posterior balloon is magnified to clarify the difference between the in-focus and
the out-of-focus states. Note that these images are generated from the same com-
pound image captured at a time. This procedure is considered as post-focussing
on the object, which is expected to be useful for observation of high speed phe-
nomena.

260 S. Irie et al.

(a) (b)

42cm

62cm

20cm

12cm

TOMBO

Fig. 11. Reconstracted images of objects in 3-D space: (a) focused at 620cm distance
and (b) focused at 42cm distance

6 3-D Object Interface

6.1 Integral Photography

The compound imaging system can be applied to 3-D object reconstruction with
slight modification. This technique is known as integral photography for 3-D ob-
ject capturing and reconstruction[9][10]. Integral photography was invented by
M. G. Lipmann in 1908 and various implementations have been presented[11][12].
Figure 12 shows the principle of integral photography. The object capturing pro-
cess is the same as the TOMBO system where the obtained signal is nothing
but a compound image. In the object reconstruction process, the captured com-
pound image is displayed on the display device. Light rays emitted from the
pixels of the display device are concentrated by the microlens array. Because of
the reverse nature of light rays, the rays emitted from a point of the object are
again focused on an identical point in the space by the reconstruction process.
As a result, a 3-D object is reconstructed above the microlens array.

6.2 Concept and Implementation

As mentioned previously, the compound imaging system can be used for both
3-D object capturing and reconstruction. Utilizing compactness of the TOMBO
system, the authors consider an application of the compound imaging system

Photonic Information Techniques Based on Compound-Eye Imaging 261

a

a

a

a

a

a

Object

Lens Array
Unit Image

Image Pickup Device

Pickup Image Display Image

Obse ver

aaaaaaaa

a

a

a

a

a

Reprduced Image

Unit Image

Lens Array

Display Device

Fig. 12. 3-D object capturing and reconstruction by integral photography

to effective man/machine interface via 3-D objects. Figure 13 shows the con-
cept of 3-D object interface. The device displays 3-D objects to the user and
the user manipulates the 3-D objects. Then the device observes the motion
of the user and makes an appropriate reaction on the object. Repeating the
process, the user can interact to the machine via 3-D objects displayed by
the device.

An important feature of 3-D object interface based on a compound imag-
ing system is hardware compactness. Although a complex optical system may
reconstruct realistic 3-D objects, usability of such a system is restricted. On
the other hand, modification of the TOMBO system is expected to provide a
quite compact interface device. Figure 14 shows a possible device implementa-
tion of 3-D object interface. Required functional extension of the imaging de-
vice is expected to be available according to progress in opto-electronic device
technologies.

3D Object

User

1 : Position Detection

1 : Genelating 3D object
3 : Reaction to 3D object

Fig. 13. Concept of 3-D object interface

r

262 S. Irie et al.

Pickup Image Area

Lens Array

Display Image Area

Fig. 14. Possible device implementation of 3-D object interface

6.3 Experiment Result

Button objects are generated and reconstructed in front of the lens array as
a preliminary experiment. In the optical system, a liquid crystal display (pixel
size 0.126 mm × 0.126 mm) was used as the display device. For the lens array,
lenses (focal length 3.3 mm, aperture 1 mm) arranged in hexagonal were used.

(b)Observation on right posirion(a)Observation on left positon

Fig. 15. Button objects reconstructed by integral photography at different distance
above the display

Photonic Information Techniques Based on Compound-Eye Imaging 263

The objects displayed by the experimental system were three button objects and
the Lena’s photograph. The button objects were monochromatic planer circles.
Figures 15 (a) and (b) are captured images of the reconstructed 3-D image from
different positions. The distance of two observation positions is 10 cm parallel
to the lens array; The heights of the observation positions are the same. We
confirmed by the experiment that three button objects were reconstructed in
front of the lens array where the distance from the lens is 19.8 mm and the
Lena’s photograph was displayed on the lens array. Figure 15 shows that the
button has parallax and the position is in the space above the lens array, while
the Lena’s photograph has no parallax. It is confirmed that the button objects
are properly reconstructed in the space and expected to be used as an agency
for man/machine interaction.

7 Final Comments

A compound imaging system provides not only compactness and lightweight of
the hardware but also functional features unable to be obtained by the conven-
tional imaging system. Close-up imaging is a difficult task for the conventional
imaging system whereas easy for the compound imaging system. This is a good
example of the functional advantage of compound-eye imaging. 3-D informa-
tion manipulation is also a promising application of the compound-eye imaging.
From the anatomical point of view, insects and arthropods seem not to utilize
the functional advantages of the compound-eye imaging conducting multiple unit
images. However, combining the current information technologies, we can extend
the application fields of this interesting hardware form. Design and optimization
of postprocessing on the compound image are important issues of the photonic
information systems based on compound-eye imaging.

8 Conclusion

In this paper, photonic information techniques based on compound-eye imag-
ing have been presented. As a platform of the compound imaging system, the
TOMBO system is useful, so that various applications can be implemented on
the TOMBO system. Wide distance-range imaging, 3-D information acquisi-
tion, and 3-D object interface were introduced as promising applications of the
compound imaging system. Hopefully, potential capabilities of the compound-
eye imaging are explored, which contributes to progress of photonic information
techniques.

Acknowledgments

This research was supported by ‘Development of Basic Tera Optical Information
Technologies,’ Osaka Prefecture Collaboration of Regional Entities for the Ad-
vancement of Technological Excellence, Japan Science and Technology Agency,

264 S. Irie et al.

and ‘Ultra-Thin Image Capturing Module,’ at Innovation Plaza Osaka, Science
and Technology Incubation Program in Advanced Region, Japan Science and
Technology Agency. 3-D object interface is a part of a research in 21 Century
COE Program, the Japan Ministry of Education, Culture, Sports, Science and
Technology ‘New Information Technologies for Building a Networked Symbiosis
Environment’ at Osaka University.

References

1. S. Ogata, J. Ishida, and T. Sasano: “Optical sensor array in an artificial compound
eye,” Opt. Eng. Vol. 33, pp. 3649–3655 (1994).

2. J. S. Sanders and C. E. Halford: “Design and annalysis of apposition compound
eye optical sensors,” Opt. Eng. Vol. 34, pp. 222–235 (1995).

3. K. Hamanaka and H. Koshi: “An artificial compound eye using a microlens array
and its application to scale invariant processing,” Opt. Rev. Vol. 3, pp. 264–268
(1996).

4. J. Tanida, et al.: “Thin Observation module by bound optics (TOMBO): concept
and experimental verification,” Appl. Opt., Vol. 40, pp. 1806–1813 (2001).

5. J. Tanida, Y. Kitamura, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto,
Y. Masaki, N. Kondou, D.Miyazaki, and Y. Ichioka: “Compact image capturing
system based on compound imaging and digital reconstruction,” in Micro- and
Nano-optics for Optical Interconnection and Information Processing, Proc. SPIE,
Vol. 4455, pp. 34–41 (2001).

6. K. Nitta, R. Shogenji, S. Miyatake, and J. Tanida: “Image reconstruction for thin
observation module by bound optics using interative back projection method,”
Appl. Opt. (submitted).

7. J. Tanida, K. Nitta, and S. Miyatake: “compact image capturing system based on
compound-eye optics and post digital processing,” in Technical Digest of ICO04,
pp. 59 - 60 (2004).

8. R. Shogenji, et al.: “Bimodal fingerprint capturing system based on compound-eye
imaging module,” Appl. Opt. Vol.43, No.6, pp. 1355–1359 (2004).

9. G. Lippmann: “La photographie integrale” Comptes-Rendus, Acad. Sci. Vol. 146,
pp. 446–451 (1908).

10. C. B. Burckhardt: “Optimum parameters and resolution limitation of integral pho-
tography,” J. Opt. Soc. Am. Vol. 58, pp. 71–76 (1968).

11. F. Okano, H. Hoshino, J. Arai, and I. Yuyama: “Real-time pickup method for
a three-dimensional image based on integral photography,” Appl. Opt. Vol. 36,
1598–1603 (1997).

12. M. Okui, J. Arai,M. Kobayashi,F. Okano: “Improvement of an integral three-
dimensional television system through correction of geometrical position errors,”
Proceedings of SPIE, Vol. 5291, SPIE, San Jose, 5291-36, 321–328 (2004).

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 265 – 280, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Attractor Memory with Self-organizing Input

Christopher Johansson and Anders Lansner

Department of Numerical Analysis and Computer Science,
Royal Institute of Technology, 100 44 Stockholm, Sweden

Fax: +46-8-7900930
{cjo, ala}@nada.kth.se

Abstract. We propose a neural network based autoassociative memory system
for unsupervised learning. This system is intended to be an example of how a
general information processing architecture, similar to that of neocortex, could
be organized. The neural network has its units arranged into two separate
groups called populations, one input and one hidden population. The units in
the input population form receptive fields that sparsely projects onto the units of
the hidden population. Competitive learning is used to train these forward
projections. The hidden population implements an attractor memory. A back
projection from the hidden to the input population is trained with a Hebbian
learning rule. This system is capable of processing correlated and densely coded
patterns, which regular attractor neural networks are very poor at. The system
shows good performance on a number of typical attractor neural network tasks
such as pattern completion, noise reduction, and prototype extraction.

1 Introduction

Autoassociative memory implemented with attractor neural networks works best with
sparse activity, i.e. when each stored pattern only activates a small fraction of the
network’s units [1]. Further, this type of memory achieve a higher storage capacity
with uncorrelated or weakly correlated, e.g. random, patterns than with highly
correlated patterns. Real world data, e.g. sensor data, often consists of a large number
of correlated measurements, resulting in densely coded and correlated input patterns.
It has been suggested that for successful use of such raw data, the redundancies
embedded in the data must be reduced and that this is done by the early sensory
processing circuits, e.g. the primary visual cortex V1, in the mammalian brain [2]. At
the same time as the redundancies in the sensory data are reduced, it is important to
preserve the information in this data [3-6]. Linsker called this the Infomax principle.
One way of assuring that the information present in the sensory data is maintained is
to measure the reconstruction error of this data.

Barlow argues, based on arguments of computational efficiency, that preprocessing
of sensory data should generate a factorial code, i.e. a code that can represent the
input data by a limited number of components. Further, this factorial code should be
sparse. A sparse activity is also supported by arguments of neural energy efficiency
[7, 8]. Algorithms that generates such sparse codes from real world image data have
been explored by several authors [7-13]. A cause commonly mentioned by these

266 C. Johansson and A. Lansner

investigators for recoding the sensory information with a sparse code is that it is better
suited for use in an associative memory, which is demonstrated in several papers
[14-17].

By extracting features from the input data a sparse and information preserving
recoding is achieved. A powerful and commonly used approach to feature extraction
is to use multiple layers of hierarchically arranged feed-forward networks that
implements competitive learning [3-6, 18-25]. This type of structures can achieve
accurate and invariant pattern recognition, e.g. with slow learning [21].

In this paper we investigate an attractor neural network that is paired with a self-
organizing and competitive learning input network. The resulting system can by
unsupervised learning store densely coded and correlated patterns, e.g. the images in
Fig. 1. The purpose of the input network is to reduce redundancies and sparsify the
input data, which is achieved by means of competitive learning [26].

An important aspect of the proposed system is that it is implemented with
biologically plausible learning rules. These are learning rules that are local in at least
space, i.e. weight updates that only depend on variables present in the pre- and
postsynaptic junction. To this class of learning rules we count Hebbian and
competitive learning. This type of local algorithms has the advantage that they
parallelize well on cluster computers and in general are very fast.

Currently, few that work with biological models of the visual pathways have
constructed larger systems that are capable of doing more than one step in the
processing. Often, only a single specific component of the visual processing pathway
is studied and modeled. A reason for this is that it is hard to get different models and
neural network architectures to work properly together. One of the more interesting
works that combines attractor neural networks with competitive learning is that by
Bartlett and Sejnowski [16] who have built a neural system for viewpoint invariant
face recognition. Here, we are not interested of building a system that can solve a
particular task, although we use a selected problem for demonstration, but rather to
build a general information processing system much like the brain like systems

Fig. 1. The data set has 36 patterns representing both letters and digits that were derived from
the font Arial. Each pattern is shown as a black and white 16×16-pixel image.

 Attractor Memory with Self-organizing Input 267

discussed by Hawkins [27]. We believe that attractor dynamics and distributed
processing are important features of such system. The system that we propose in this
paper can be used as a module in a larger hierarchal system, which is discussed in the
end of this paper.

The experiments in this paper use the data set shown in Fig. 1. It consists of 36
black and white images of letters and digits, each represented by 16×16 pixels. These
images were derived from the Arial font, and on average they have as many black as
white pixels. Although the proposed system is evaluated on tasks involving image
data, it should not be compared to state of the art image processing algorithms [28,
29] because it is not intended for image processing in particular.

The paper is organized as follows: In section 1.1 and 1.2 the learning rules,
implemented in the system, are presented. In section 1.3, results on using the data set
together with standard attractor neural networks is presented. In section 2, our system
is described. In section 3 the results on applying the system to the image data are
given. Section 4 contains a discussion of the results and future developments of the
system. The conclusions are presented in section 5.

1.1 BCPNN

In the following we present the Bayesian Confidence Propagating Neural Network
(BCPNN) with hypercolumns [30, 32]. This type of neural network can be used to
implement both feed-forward classifiers and attractor memory. It has a Hebbian type
of learning-rule, which means that it is local in both space and time (only the pre- and
postsynaptic units activations’ at one particular moment are needed to update the
weights) and therefore it can be efficiently parallelized. Further, the network can be
used with both unary-coded activity (spiking activity), o∈{0,1}, and real-valued
activity, o∈(0,1). The network has N units grouped into H hypercolumns with Uh
units in each. Here, h is the index of a particular hypercolumn and Qh is the set of all
units belonging to hypercolumn h. When an attractor network is implemented, a
symmetric weight matrix, wij∈ , connects the units and there are no connections
within a hypercolumn;

 { 0 : } for each 1, 2,...,ij h hw i Q j Q h H= ∈ ∧ ∈ = (1)

The network is operated by initializing the activity and then run a process called
relaxation in which the activity is updated. The relaxation process stops when a fixed-
point is reached i.e. the activity is constant. When using the network as an
autoassociative memory the activity is initialized to a noisy or a partial version of one
of the stored patterns. The relaxation process has two steps; first the potential, m, is
updated (eq. (3)) with the current support, s (eq. (2)). Secondly, the new activity is
computed from the potential by a softmax function as in eq. (4).

 ()
1

log log
h

H

j j kj k
h k Q

s w oβ
= ∈

= + (2)

 j
m j j

dm
s m

dt
τ = − (3)

268 C. Johansson and A. Lansner

 : for each {1,..., }
j

k

h

Gm

j hGm

k Q

e
o j Q h H

e
∈

← ∈ = (4)

The following values of the parameters were used throughout the paper; m=10
and G=10.

The biases, j, and weights, wij, are computed from probability estimates, p, of the
activation and co-activation of units. Here, the presynaptic units are indexed with i
and the postsynaptic units are indexed with j and we have used the relative frequency
to compute the p estimates:

1

1

1

1

P

i i

P

ij i j

p
P

p
P

μ

μ

μ μ

μ

ξ

ξ ξ

=

=

=

=
 (5)

Here, is a unary-coded pattern, P is the number of patterns, and μ is the index of a
pattern. The estimates of p can be zero, and those cases must be treated separately
when biases and weights are computed. The biases and weights are computed as:

2

0 0 0

1
 0

1
 0

i j

ij ij

ij

i j

i
i

i

if p p

w else if p
P
p

otherwise
p p

if p
P
p otherwise

β

= ∨ =

= =

=
=

 (6)

1.2 Competitive Learning

Competitive selective learning (CL) [33] is here implemented by the units in the
hidden population. The weights onto each of these units represent a code vector in the
CL algorithm. The input to each of these units comes from the units in a few selected
hypercolumns in the input population. These groups of hypercolumns in the input
population are called the receptive fields. For each iteration of the training set, the code
vectors (connections) of the winning units in the hidden population are updated. Dead
units are avoided by constantly reinitializing the code vectors of these with values
similar to units that are not dead. For a winning unit, j, the weights are updated as;

 ()/ /ij ij ij Cw w i U w τ= + − (7)

where i is the index of the input unit within its hypercolumn and U is the total number
of units in this hypercolumn. Throughout the paper we use C=10.

 Attractor Memory with Self-organizing Input 269

1.3 Single Layer Networks

To establish the capabilities of single layered attractor neural networks we stored the
patterns in Fig.1 in a BCPNN [30, 32] with N=512 units partitioned pair wise into
H=256 hypercolumns. Here, each hypercolumn represented a pixel, and in each
hypercolumn the two units represented the colors white and black. We also stored the
patterns in a Hopfield network [1, 34] with 256 units. In the Hopfield network, the
activity (-1 or 1) of each unit represented the color of a pixel. In these networks there
are no hidden units and all units act as input units that are fully connected with each
other. The stability of the trained patterns was tested by using each of these as a
retrieval cue for itself and the resulting attractors are shown in Fig. 2. As seen in
Fig. 2, both networks tend to cluster all patterns into a few particular attractors.

Fig. 2. The stable attractors in a 512 units BCPNN (left) and in a 256 units Hopfield network
(right) after training with the data set in Fig. 1. On recall, a copy without noise of the stored
pattern was used as retrieval cue.

2 Attractor Network with Self-organizing Input

In the previous section we demonstrated the poor performance of attractor memories
on data consisting of densely coded and correlated patterns. To solve this problem we
here propose a system where the input is fed through a preprocessing stage that serves
to sparsify the data before it is stored in the attractor memory. This system has two
populations of units, one input and one hidden population. The image data is
presented to the input population and the hidden population implements an autoasso-
ciative memory (Fig. 3, right). In the experiments we also use a system without
autoassociative memory as a reference (Fig. 3, left). The hidden population has 32
hypercolumns with 16 units in each and the input population consists of 256
hypercolumns with 2 units in each. Thus the average activity in the hidden population
is 1/16 compared with 1/2 for the input population.

The recurrent projection of the hidden population, and the back projection from the
hidden population to the input population, are trained with the BCPNN algorithm
(section 2.1). These projections are full, meaning that all units in the sending population
are connected to all units in the receiving population. The recurrent projection
implements the autoassociative memory and the back projection enables accurate recons
tructtion of the stored data.

270 C. Johansson and A. Lansner

Hidden Population
32 X 16 = 512 units

Input Population
256 X 2 = 512 units

Full
Connectivity

Sparse
Connectivity

Hidden Population
32 X 16 = 512 units

Input Population
256 X 2 = 512 units

Full Connectivity

Full
Connectivity

Sparse
Connectivity

Fig. 3. A schematic diagram of the memory system without autoassociative memory, left, and
with, right. The input patterns are presented to the input population, which has H=256
hypercolumns and U=2 units. Each hypercolumn represents a pixel and the two units in a
hypercolumn represents the colors white and black. The hidden population has H=32 and
U=16. The activity is propagated from the input to the hidden population through a set of sparse
connections that are trained with competitive learning. The activity in the hidden population is
back projected onto the input population through a set of connections that are trained with the
associative BCPNN learning-rule.

The connections from the input to the hidden population are trained with a CL
algorithm (section 2.2). These connections are sparse because every hidden unit
receives afferent connections only from a small fraction of the input units. How these
connections are setup has a great impact on the memory performance and noise
tolerance of the system and hence this is thoroughly investigated by experiments in
section 3. Here, we refer to this setup process as partitioning of the input-space and
formation of receptive fields. In section 2.3 we present four different methods for
setting up these connections.

The unsupervised training of this system consists of four phases: First, the input-
space is partitioned, i.e. the feed-forward connections from the input to the hidden
population are setup. This can be done either by domain knowledge such that the
correlation decreases symmetrically around a pixel in an image with distance or it can
be done in a data dependent way based on the statistics of the training data. In the
experiments, 3 data independent and 1 data dependent methods for partitioning the
input-space are explored. Secondly, the weights of the forward projection from the
input to the hidden population are trained with CL. This is the most computationally
intensive part for a system of the size in Fig. 3. Thirdly, the recurrent projection of the
hidden population is trained. Fourthly, back projection from the hidden to the input
population is trained. The last three steps could in principle be done all at the
same time.

The retrieval or restoration of an image (pattern) is done in three steps: First, the
retrieval cue, which can be a noisy version of a stored image, is applied to the input
population and the activity is propagated to the units in the hidden population.
Secondly, the attractor neural network is activated and the input from the input
population is turned off. The activity in the attractor network is allowed to settle into a
fix-point. Thirdly, the activity is propagated from the hidden population back to the
input population in order to reconstruct or recall the image.

 Attractor Memory with Self-organizing Input 271

In the current implementation, unary coded activity is propagated between the
populations, i.e. both populations have spiking units.

2.1 Receptive Fields

As is seen in the experiments, an important issue for the function and performance of
the system is how the receptive fields are formed. Here we discuss four different ways
of partitioning the input-space into regions (called receptive fields), three data
independent and one data dependant methods. The data dependant method performs
the partitioning based on the data’s statistics. When the receptive fields have been
formed, features from each field are extracted by CL. Each of these features are then
represented by a specific unit in the hidden population.

The first data independent method partitions the input-space into lines (Fig. 4
upper left). This method assures that all input units have an equal number of outgoing
connections and also that each hidden unit receives an equal number of incoming
connections. We call this partitioning scheme heuristic.

The two other data independent methods partitions the input-space such that either
all input units have an equal number of outgoing connections (called random fan-out)
or such that all hidden unit receives an equal number of incoming connections (called
random fan-in) (Fig. 4, lower row). In both of the methods, the difference in usage
between any two units is not allowed to be greater than one. Apart from the above
constraints the connections from the input to the hidden population are randomly
setup.

The fourth and data dependant method, called informed, partitions the input-space
such that hypercolumns with large mutual information are clustered together. Further,
the receptive fields are constructed so that they all have an equal entropy. This means
that a receptive field, consisting of hypercolumns with small entropies, will contain a
large number of hypercolumns and vice versa. Additional to these two objective
functions, it is assured that the number of outgoing connections from units in the input
population does not differ by more than 1. In Fig. 4 we see that this method tend to
construct receptive fields of spatially neighboring pixels. By organizing the input into

Fig. 4. Three different receptive fields, each coded in a shade of gray, plotted for each of the
four partitioning schemes; heuristic (upper left), informed (upper right), random fan-out (lower
left), random fan-in (lower right)

272 C. Johansson and A. Lansner

receptive fields with high mutual information the CL should be able to extract good
features that accurately describes the input-space. In information theoretic terms, this
type of partitioning schemes assures that the Infomax principle [6] is followed.

The mutual information between two hypercolumns x and y can easily be
computed if the BCPNN weight matrix, with pij and wij, has been computed:

 2(;) log
x y

ij ij
i Q j Q

I x y p w
∈ ∈

= (8)

3 Results

Three different tasks were used to evaluate the performance of the memory system
described in section 2. The first task tests pattern completion; the second task tests
noise reduction; and the third task tests prototype extraction. These are three typical
tasks that are used to evaluate the performance of an attractor neural network.

All experiments were done for the two different systems (with and without
autoassociative memory) and for each of the four different partitioning methods used
to form the receptive fields. The y-axis in the plots measures the total number of
differing pixels between all of the 36 reconstructed images and the original images in
Fig. 1. The total number of pixel errors in the retrieval cues used for testing pattern
completion is 883 (Fig. 5, left) and in the retrieval cues used for testing noise
reduction the average number of pixel errors is 849 (Fig. 5, right).

In all experiments, the CL procedure was run 20 times. In each run the code
vectors were updated for 30 iterations and then relocated if necessary. Unused code
vectors were relocated as well as the code vector with the smallest variance. The
attractor neural network was run until a stable fix-point was reached or more than 500
iterations had passed.

The results were averaged over 30 runs, each in which the system was set up from
scratch and the connections trained. In each such run, the performance of the system
was evaluated on 20 different sets of noisy retrieval cues.

Fig. 5. The images used as retrieval cues in the experiments. Left, 20% of the pixels in the
center of each image have been removed (set to white). These images have a total of 883 pixels
flipped compared with the original ones. Right, 20% salt and pepper noise, which on the
average resulted in a total of 849 flipped pixels in all of the images.

 Attractor Memory with Self-organizing Input 273

All of the following figures are arranged in the same manner, the left plot shows
the results for the system without autoassociative memory and the right plot shows the
results for the system with autoassociative memory. Further, each plot contains the
results for each of the four receptive-field partitioning schemes.

3.1 Pattern Completion

The pattern completion experiment tested the memory system’s capability to fill in a
missing part of a stored pattern (Fig. 5). The images used as retrieval cues in this test
had 20% of their pixels in the center set to white. A reconstruction error of less than
883 pixel errors meant that the system had partly succeeded in the image completion
of the retrieval cues.

As seen in Fig. 6, large receptive fields gave the best result. It should be noted that
there was a large variance in the performance between different runs and in some runs
the reconstruction error was close to zero, in particular for the system with informed
partitioning of the receptive fields. On this task, the best way of setting up the
receptive fields was by a random method. By comparing the left and right plots in
Fig. 6, it can be concluded that the auto associative memory function improves the
reconstruction performance. It should be noted that this task, occlusion, is considered
to be a hard problem in machine learning, because the system is tested with data that
has a different distribution than the training data.

10 15 20 25 30 35 40 45
0

500

1000

1500

Pixels in Receptive Fields

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

10 15 20 25 30 35 40 45

0

500

1000

1500

Pixels in Receptive Fields

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

Fig. 6. The reconstruction error plotted as a function of the size of the receptive fields for each
of the for input-space partitioning schemes; a constant number of connections from each unit in
the input population (random fan-out), a constant number of incoming connections to each unit
in the hidden population (random fan-in), the receptive fields are formed from line elements of
pixels (heuristic), and receptive fields that are formed by a data driven process based on the
mutual information between pixels (informed). Here, the retrieval cues were copies of the
stored patterns that had 20% of their area occluded. The left plot shows the performance of the
system with only feed-forward and feed-back connections and the right plot shows the
performance of the system that also has a recurrent projection.

3.2 Noise Reduction

In the noise reduction experiment the memory system’s capability to remove salt and
pepper noise was tested. Retrieval cues with 20% salt and pepper noise were used

274 C. Johansson and A. Lansner

(Fig. 5, right). A reconstruction error of less than 849 meant that noise had been
removed from the retrieval cues. In Fig. 7 the system’s performance is plotted as a
function of receptive field size. In Fig. 8, the ability to remove salt and pepper noise is
plotted as a function of the noise level in the retrieval cues.

Again, it can be seen in Fig. 7, by comparing the left and right plots that the
autoassociative memory contributes to an improved noise reduction capability. In
Fig. 8, right, the effect of the autoassociative memory is seen as the S-shaped form of
the curve showing the reconstruction errors. At first, all patterns are perfectly
restored. Then, when more noise is added, the autoassociative memory begins to
recall erroneous patterns and as a result the number of reconstruction errors increases
drastically.

10 15 20 25 30 35 40 45
0

50

100

150

200

250

Pixels in Receptive Fields

R
ec

on
st

ru
ct

io
n

E
rr

or
s

random fan-out
random fan-in
heuristic
informed

10 15 20 25 30 35 40 45

0

50

100

150

200

250

Pixels in Receptive Fields

R
ec

on
st

ru
ct

io
n

E
rr

or
s

random fan-out
random fan-in
heuristic
informed

Fig. 7. Here, retrieval cues with 20% salt and pepper noise were used

0 0.1 0.2 0.3 0.4 0.5
10

0

10
1

10
2

10
3

Noise (fraction of flipped pixels)

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

0 0.1 0.2 0.3 0.4 0.5

10
0

10
1

10
2

10
3

Noise (fraction of flipped pixels)

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

Fig. 8. The reconstruction error plotted as a function of the noise in the retrieval cues

3.3 Noise Reduction and Principal Components

Here, we experimented with a closed form learning algorithm to contrast the
incremental CL. The forward weights, from the input to the hidden units, were set up
according to the eigen vectors of the 16 largest eigen values. These eigen vectors,
sometimes called principal components, were computed over all training patterns in

 Attractor Memory with Self-organizing Input 275

each receptive field. The results in Fig. 9 show that this way of setting up the forward
connections was not better than using CL. This result is not surprising since only the
eigen vector that best describes the data is set active in the hidden population, and
usually this is the one with the largest eigen value. Therefore, a few units in the
hidden population are used all of the time, which affects the performance of both the
attractor memory and the associative back projection in a negative way.

10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

800

900

1000

Pixels in Receptive Fields

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

10 15 20 25 30 35 40 45

0

100

200

300

400

500

600

700

800

900

1000

Pixels in Receptive Fields

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs random fan-out
random fan-in
heuristic
informed

Fig. 9. Here, the forward weights were set up according to the principal components, of the
training patterns, computed in each of the receptive fields. Retrieval cues with 20% salt and
pepper noise were used.

3.4 Prototype Extraction

The prototype extraction experiment tested the system’s ability to extract a prototype
from noisy training data, i.e. remove noise from the training data (Fig. 10, Fig. 11).
The training data was composed of twenty copies, with 20% salt and pepper noise, of
the original images in Fig. 1. The retrieval cues used to test the system were the same
as in section 3.2, also with 20% salt and pepper noise. The reconstruction error was
measured against the patterns in Fig. 1 and not against the actual prototype means of

10 15 20 25 30 35 40 45
0

100

200

300

400

500

600

700

Pixels in Receptive Fields

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

10 15 20 25 30 35 40 45

0

100

200

300

400

500

600

700

Pixels in Receptive Fields

R
ec

on
st

ru
ct

io
n

E
rr

or
s

random fan-out
random fan-in
heuristic
informed

Fig. 10. Here, retrieval cues with 20% salt and pepper noise were used. The system was trained
with twenty sets of images, each having 20% salt and pepper noise.

276 C. Johansson and A. Lansner

0 0.1 0.2 0.3 0.4 0.5
10

0

10
1

10
2

10
3

Noise (fraction of flipped pixels)

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

0 0.1 0.2 0.3 0.4 0.5

10
0

10
1

10
2

10
3

Noise (fraction of flipped pixels)

R
e

co
n

st
ru

ct
io

n
 E

rr
o

rs

random fan-out
random fan-in
heuristic
informed

Fig. 11. The reconstruction error plotted as a function of the noise in the retrieval cues

the training set. The results of this experiment would improve slightly if a larger
training set with more copies of each image is used, because the prototype mean of
the training set would then better coincide with that of the original patterns.

It should be noted that although the system has never seen the noise free images,
but only noisy versions of them with on average 849 pixel errors, it can reduce the
noise in all of the retrieval cues to a value less than 849 pixel errors. Here, the
advantage of the autoassociative memory is less apparent.

4 Discussion

The work presented in this paper is a first step towards a general framework for
processing of sensory data. The proposed system integrated several neural network
technologies; such as competitive learning, feed-forward classifiers, and attractor
memory. Further, new algorithms for forming receptive fields were explored. These
techniques are discussed in section 4.1. The way in which these different technologies
are best combined still needs to be studied and the results presented in this paper
could probably be improved.

In section 4.2 the mapping to biology of the proposed system is discussed together
with future directions of development.

4.1 Receptive Fields

Partitioning the input-space in a data dependent (informed) way or by domain
knowledge (heuristic) improved the system’s performance significantly over a
random partitioning in most of the cases. As expected, the informed partitioning
created circular receptive fields because of the local relationship between nearby
pixels. The heuristic partitioning can only be used when the correlation structure of
the input data is known beforehand, as in images, which usually not is the case. The
informed partitioning can be used to from receptive fields from arbitrary input data.
Further, the informed partitioning together with CL, is the partitioning scheme that
best comply with Linsker’s Infomax principle.

 Attractor Memory with Self-organizing Input 277

The preprocessing stage does not decorrelate the patterns completely, but preserves
the metric of the input data. This is necessary in order for the system to generalize
well and perform clustering of the stored memories. Of course, preserving
correlations between input patterns reduces the storage capacity slightly.

The self-organized formation of the receptive fields is implemented by a neural
mechanism in the proposed system. But in a biological system the formation of the
receptive fields may very well be governed by evolutionary factors and coded
genetically.

In a future study it would be interesting to investigate e.g. the system’s
generalization abilities by using input patterns from a different font as retrieval cues.

4.2 An Abstract Model of Neocortex

The proposed system was designed with the goal of creating an abstract generic
model of neocortex. Here, we discuss one possible mapping of this model onto the
mammalian neocortex. In the hierarchal model proposed, the population is the module
that is repeatedly duplicated to form an hierarchy. The exact mapping of the model
onto the neurons of neocortex is dependent on the species and maybe also the
particular area of neocortex, e.g. visual, somatosensory, or prefrontal.

The starting point for the model is the columnar structure of neocortex. In the
neocortex, about 100 neurons are grouped into minicolumns and approximately 100
minicolumns form hypercolumns [35]. Because the pyramidal cells in layer 2/3 and
5/6 are tightly connected by excitatory synapses [36] the minicolumn can be seen as
the functional unit in cortex. Further, the hypercolumns implements a normalization
of the activity in the minicolumns [37].

In the model, each unit in the network corresponds to a cortical minicolumn.
Further, the layer 4 stellate cells project to the pyramidal cells in layer 3, but there are
no projections within a minicolumn from either layer 2/3 and 5/6 back onto these
neurons. This means that information can only be transmitted from layer 4 neurons to
the rest of the excitatory neurons within a minicolumn. This circuitry makes it
possible to separate bottom-up data from top-down predictions. Discrepancies
between these two data streams can be used to trigger learning mechanisms.

On a larger scale minicolumns are grouped into hypercolumns. The purpose of the
hypercolumn is to normalize the activity of the layer 2/3 and 5/6 pyramidal cells in
the minicolumns and to facilitate the competitive learning among the afferents to
layer 4 neurons. This normalization is implemented by an inhibitory basket cell that
receives projections from all minicolumns within a hypercolumn and project with
inhibitory synapses back onto these minicolumns.

Within a restricted area (e.g. cortical area) of cortex the minicolumns form an
autoassociative memory. This autoassociative network is implemented by synaptic
connections between the neurons in layer 2/3 and 5/6. These connections can both be
excitatory and inhibitory. The inhibitory connections are formed by pyramidal cells
that project onto inhibitory double bouquet and bipolar cells in the postsynaptic
minicolumn.

The pyramidal neurons in a minicolumn also project onto layer 4 neurons in other
cortical areas. These connections are defined as forward projections and take part in

278 C. Johansson and A. Lansner

the competitive learning performed by layer 4 neurons. Further, these projections are
convergent meaning that they only project on a small fraction of the hypercolumns in
the receiving cortical area.

The pyramidal neurons in a minicolumn also project backwards to pyramidal
neurons in other cortical areas. These backward projections are used to infer holistic
top-down knowledge. These connections have a divergent nature, meaning that they
project onto a large number of hypercolumns in the preceding cortical area.

As is seen in Fig. 12, groups of hypercolumns (populations) can be arranged in a
hierarchal fashion. In each forward projection, invariant features of the inputs are
extracted, e.g. by competitive and slow learning. The sensory bottom-up data is then
matched with predictions generated by the recurrent and top-down projections. In this
paper we have shown that a limited version of this type of hierarchical system is
useful when dealing with correlated input data. In the future it will be interesting to
investigate the capabilities of a hierarchical system with more than two levels.

Layer 4

Layer 4

Layer 2/3 & 5/6

Layer 2/3 & 5/6

Layer 2/3 & 5/6

Layer 4

Sensory Input

Auto-
associative

memory

Competetive
Learning

Back
Projections

Forward
Projections

Recurrent
Projections

Input population}

Minicolumn
Hypercolumn}

Hidden population}

Fig. 12. The abstract generic and hierarchical model of neocortex

 Attractor Memory with Self-organizing Input 279

5 Conclusions

In this paper we have presented an integrated memory system that combines an
attractor neural network with a decorrelating and sparsifying preprocessing stage.
This memory system can work with correlated input as opposed to simpler
autoassociative memories based on single layer networks. We demonstrated the
system’s capability on a number of tasks, involving a data set of images, which could
not be handled by the single layered attractor networks.

References

1. Hertz, J., A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural Computation.
1991: Addison-Wesely.

2. Barlow, H.B., Unsupervised Learning. Neural Computation, 1989. 1(3): p. 295-311.
3. Linsker, R., From basic network principles to neural architecture: Emergence of

orientation columns. Proc. Natl. Acad. Sci., 1986. 83: p. 8779-8783.
4. Linsker, R., From basic network principles to neural architecture: Emergence of

orientation-selective cells. Proc. Natl. Acad. Sci., 1986. 83: p. 8390-8394.
5. Linsker, R., From basic network principles to neural architecture: Emergence of spatial-

opponent cells. Proc. Natl. Acad. Sci., 1986. 83: p. 7508-7512.
6. Linsker, R., Self-organization in a perceptual network. IEEE Computer, 1988. 21: p. 105-

117.
7. Olshausen, B.A. and D.J. Field, Sparse Coding with an Overcomplete Basis Set: A

Strategy Employed by V1. Vision Research, 1997. 37(23): p. 3311-3325.
8. Olshausen, B.A. and D.J. Field, Sparse coding of sensory inputs. Current Opinion in

Neurobiology, 2004. 14: p. 481-487.
9. Bell, A.J. and T.J. Sejnowski, The Independent Components of Natural Scenes are Edge

Filters. Vision Research, 1997. 37(23): p. 3327-3338.
10. Földiak, P., Forming sparse representations by local anti-Hebbian learning. Biol.

Cybern., 1990. 64: p. 165-170.
11. Olshausen, B.A. and D.J. Field, Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature, 1996. 381(6583): p. 607-609.
12. Schraudolph, N.N. and T.J. Sejnowski, Competitive Anti-Hebbian Learning of Invariants.

Advances of Information Processing Systems, 1992. 4: p. 1017-1024.
13. Yuille, Smirnakis, and Xu, Bayesian Self-Organization Driven by Prior Probability

Distributions. Neural Computation, 1995. 7: p. 580-593.
14. Peper, F. and M.N. Shirazi, A Categorizing Associative Memory Using an Adaptive

Classifier and Sparse Coding. IEEE Trans. on Neural Networks, 1996. 7(3): p. 669-675.
15. Michaels, R., Associative Memory with Uncorrelated Inputs. Neural Computation, 1996.

8: p. 256-259.
16. Bartlett, M.S. and T.J. Sejnowski, Learning viewpoint-invariant face representations from

visual experience in an attractor network. Network: Comp. in Neur. Sys., 1998. 9(3): p.
399-417.

17. Amit, Y. and M. Mascaro, Attractor Networks for Shape Recognition. Neural
Computation, 2001. 13(6): p. 1415-1442.

18. Fukushima, K., A Neural Network for Visual Pattern Recognition. Computer, 1988. 21(3):
p. 65-75.

280 C. Johansson and A. Lansner

19. Fukushima, K., Analysis of the Process of Visual Pattern Recognition by the
Neocognitron. Neural Networks, 1989. 2(6): p. 413-420.

20. Fukushima, K. and N. Wake, Handwritten Alphanumeric Character Recognition by the
Neocognitron. IEEE Trans. on Neural Networks, 1991. 2(3): p. 355-365.

21. Földiák, P., Learning Invariance from Transformation Sequences. Neural Computation,
1991. 3: p. 194-200.

22. Grossberg, S., Competetive Learning: From Interactive Activation to Adaptive Resonance.
Cognitive Science, 1987. 11: p. 23-63.

23. Rolls, E.T. and A. Treves, Neural Networks and Brain Function. 1998, New York: Oxford
University Press.

24. Togawa, F., et al. Receptive field neural network with shift tolerant capability for Kanji
character recognition. in IEEE International Joint Conference on Neural Networks. 1991.
Singapore.

25. Wallis, G. and E.T. Rolls, Invariant Face and Object Recognition in the Visual System.
Progress in Neurobiology, 1997. 51: p. 167-194.

26. Rumelhart, D.E. and D. Zipser, Feature Discovery by Competetive Learning. Cognitive
Science, 1985. 9: p. 75-112.

27. Hawkins, J., ed. On Intelligence. 2004, Times Books.
28. Edelman, S. and T. Poggio, Models of object recognition. Current Opinion in

Neurobiology, 1991. 1: p. 270-273.
29. Moses, Y. and S. Ullman, Generalization to Novel Views: Universal, Class-based, and

Model-based Processing. Int. J. Computer Vision, 1998. 29: p. 233-253.
30. Sandberg, A., et al., A Bayesian attractor network with incremental learning. Network:

Comp. in Neur. Sys., 2002. 13(2): p. 179-194.
31. Lansner, A. and Ö. Ekeberg, A one-layer feedback artificial neural network with a

Bayesian learning rule. Int. J. Neural Systems, 1989. 1(1): p. 77-87.
32. Lansner, A. and A. Holst, A higher order Bayesian neural network with spiking units. Int.

J. Neural Systems, 1996. 7(2): p. 115-128.
33. Ueda, N. and R. Nakano, A New Competitive Learning Approach Based on an

Equidistortion Principle for Designing Optimal Vector Quantizers. Neural Network, 1994.
7(8): p. 1211-1227.

34. Hopfield, J.J., Neural networks and physical systems with emergent collective
computational abilities. PNAS, 1982. 79: p. 2554-2558.

35. Buxhoeveden, D.P. and M.F. Casanova, The minicolumn hypothesis in neuroscience.
Brain, 2002. 125(5): p. 935-951.

36. Thomson, A.M. and A.P. Bannister, Interlaminar Connections in the Neocortex. Cerebral
Cortex, 2003. 13(1): p. 5-14.

37. Hubel, D.H. and T.N. Wiesel, Functional architecture of macaque monkey visual cortex.
Proc. R. Soc. Lond. B., 1977. 198: p. 1-59.

Bio-inspired Replica Density Control in
Dynamic Networks

Tomoko Suzuki, Taisuke Izumi, Fukuhito Ooshita,
Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University,
1-3 Machikaneyama, Toyonaka, 560-8531, Japan

Fax: +8-6-6850-6582
{t-suzuki, t-izumi, f-oosita, kakugawa, masuzawa}@ist.osaka-u.ac.jp

Abstract. Resource replication is a crucial technique for improving sys-
tem performance of distributed applications with shared resources. A
larger number of replicas require shorter time to reach a replica of the
requested resource, but consume more storage of hosts. Therefore, it
is indispensable to adjust the number of replicas appropriately for its
application.

This paper considers the problem for controlling the density of replicas
adaptively in dynamic networks. The goal of the problem is to adjust
the number of replicas to a constant fraction of the current network size.
This paper proposes algorithm inspired by the single species population
model, which is a well-known population ecology model. The simulation
results show that the proposed algorithm realize self-adaptation of the
replica density in dynamic networks.

1 Introduction

One of the most important advantages distributed applications inherently have is
resource sharing. A well-known example is file sharing on peer-to-peer networks
[7, 6]. In such applications, each resource is accessed frequently by a significant
number of users distributed over the whole network.

For such applications with shared resources, resource replication is a cru-
cial technique for improving system performance and availability: replicas of an
original resource are distributed over the network so that each user can get the
requested resource by accessing a nearby replica. Resource replication can re-
duce communication latency and consumption of network bandwidth, and can
also improve availability of the resources even when some of the replicas are
unavailable.

In systems using resource replication, generally, a larger number of replicas
require shorter time to reach a replica of the requested resource, but consume
more storage of hosts. Therefore, it is indispensable to adjust the number of
replicas appropriately for its application. For example, resource searching proto-
col PWQS has tradeoff between the reach time and the number of replicas, and

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 281–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

282 T. Suzuki et al.

requires replicas of each resource in numbers proportional to the network size
(i.e., the number of hosts) to attain good performance [9].

However, in dynamic networks such as peer-to-peer networks, the appropriate
number of replicas for its application changes with time, since network size varies
with time. In addition, it is unrealistic to assume that each node knows the
network size and the number of replicas on the network. Therefore, adjustment
of the number of replicas for dynamical change of network size is not an easy
task and requires investigation.

Biological systems inherently have self-∗ properties , such as self-adaptation,
self-configuration, self-optimization and self-healing, to realize environmental
adaptation. Thus, several biologically-inspired approaches have succeeded in
realizing highly adaptive distributed systems. Successful projects include Bio-
Networking project [2] and Anthill project [1]. These projects adopt biologically-
inspired approaches to provide highly adaptive platform for mobile-agent-based
computing [4, 12]. In our precedence work, we also focus on the biological sys-
tem to control mobile agent population in dynamic networks [13]. Our algorithms
are inspired by the well-known the single species population model and can ade-
quately adjust the agent population in dynamic networks.

Contribution of this Paper. In this paper, we first formulate the replica
density control problem in dynamic networks, and present a biologically-inspired
solution for the problem. The replica density control problem requires to adapt
the number of replicas to a given constant fraction of the current network size.

We propose a distributed solution for the problem using mobile agents.
Mobile-agent-based distributed computing is one of the most promising para-
digms to support autonomic computing in a large scale of distributed system
with dynamics and diversity [10, 11]. Mobile agents are autonomous programs
that can migrate from one node to another on the network, and traverse the
distributed system to carry out a sophisticated task at each node.

To realize self-adaptation of the replica density, we borrow an idea from the
single species population model, which is a well-known population ecology model.
This model considers population of a single species in an environment such
that individuals of the species can survive by consuming food supplied by the
environment. The model is formulated by the logistic equation and shows that the
population automatically converges to and stabilizes at some number depending
on the amount of supplied food.

In the proposed algorithm, replicas of a resource are regarded as individuals
of a single species, and agents created by nodes supply food for replicas. The
algorithm try to adjust the number of replicas to a constant fraction of the net-
work size by controlling the amount of food supplied by agents. The simulation
results of the algorithm show that the proposed strategy can adequately adjust
the replica density.

The rest of this paper is organized as follows. In Section 2, we present the
model of distributed systems, and define the replica density control problem. In
Sections 3 and 4, we propose the distributed solution for the problem and show
its simulation results. Section 5 concludes the paper.

Bio-inspired Replica Density Control in Dynamic Networks 283

2 Preliminaries

2.1 System Models

Dynamic Networks. In this paper, we consider dynamic networks such that
its node set and its link set vary with time. To define dynamic networks, we
introduce discrete time and assume that each time is denoted by a non-negative
integer in a natural way: time 0 denotes the initial time, time 1 denotes the time
immediately following time 0 and so on.

Formally, a dynamic network at time t is denoted by N(t) = (V (t), E(t))
where V (t) and E(t) are respectively the node set and the link set at time t. A
link in E(t) connects two distinct nodes in V (t) and a link between nodes u and
v is denoted by euv or evu. We also use the following notations to represent the
numbers of nodes and edges at time t: n(t) = |V (t)| and e(t) = |E(t)|.
Mobile Agent Systems. A mobile agent is an autonomous program that can
migrate from one node to another on the network. In dynamic networks, agents
on node u ∈ V (t) at time t can start migrating to node v ∈ V (t) only when link
euv is contained in E(t). The agent reaches v at time t + Δ only when the link
euv remains existing during the period from t to t + Δ, where Δ is an integer
representing migration delay between the nodes. The agent migrating from u to
v is removed from the network when the link euv disappears during the period
from t to t + Δ.

Each of nodes and agents has a local clock that runs at the same rate as the
global time. However, we make no assumption on the local clock values: the
difference between the local clock values in the system is unbounded.

An agent and a node can interact with each other by executing operations:
agent p on node u can change its state and the state of u depending on the
current states of p and u, and node u can change its state and the states of
the agents residing on u depending on the current states of u and the agents.
Besides the above operations, each agent can execute operations to create new
agents and to kill itself and each node can also execute operations to create new
agents.

When agents reside on a node, the agents and the node have operations they
can execute. For execution semantics, we assume that the agents and the node
execute their operations sequentially in an arbitrary order. We also assume that
the time required to execute the operations can be ignored, that is, we consider
all the operations are executed sequentially but at an instant time.

2.2 Replica Density Control

For an application with shared resource, resource replication is crucial technique
for improving system performance. Resources are items shared by the nodes
on the network; files, documents, and so on. Replicas are copy of an original
resource. In such systems, generally, a larger number of replicas lead to better
performance, but consume more storage of hosts. Thus, it is required to control
the number of replicas appropriately for its application.

284 T. Suzuki et al.

In this paper, we consider the replica density control problem. Each node has
zero or more replicas. We consider a original resource as its replica. Each node
v can make same replicas from a replica on node v and delete replicas on node
v. The goal of the problem is to control the number of replicas of a resource so
that the ratio between the number of replicas and the number of nodes (called
network size hereinafter) is kept to be a given constant. Let r(t) be the number
of replicas on the network N(t) at time t: r(t) is sum of the number of original
resources and the number of its replicas. The problem is defined as follows.

Definition 2.1
The goal of the replica density control problem is to adjust the number
of replica r(t) at time t to satisfy the following equality for a given constant
δ (0 < δ ≤ 1).

r(t) = δ · n(t)

In this paper, we propose distributed solution for the replica density control
problem. In the distributed solution, we assume that the constant δ is initially
given to every node.

We consider distributed systems such that replicas are distributed over the
networks and nodes can leave or join the networks. In such environment, it is
obviously impossible to keep satisfying the above equation all the time. Thus,
our goal is to propose distributed solution that realize quick convergence to and
stability at the target number.

3 Replica Density Control Algorithm

In this section, we present a distributed solution for the replica density control
problem. This algorithm is inspired by the single species population model (the
logistic model), which is well-known in the field of the population ecology.

3.1 Single Species Population Model

In this subsection, we introduce the single species population model in the popula-
tion ecology as the basis of our algorithm. This model considers an environment
with a single species such that individuals of the species can survive by con-
suming food supplied by the environment. The model formulates the population
growth of the species in the environment, and shows that the population (i.e.,
the number of individuals) in the environment automatically converges to and
stabilizes at some number depending on the amount of food supplied by the
environment.

We present more details of the single species population model. Each individ-
ual of the species periodically needs to take a specific amount of food to survive.
That is, if an individual can take the specific amount of food then it can survive.
Conversely, if an individual cannot take the specific amount of food then it dies.
Moreover, in the case that an individual can take a sufficient amount of extra

Bio-inspired Replica Density Control in Dynamic Networks 285

food, then it generates progeny. Consequently, the followings hold: The shortage
of supplied food results in decrease in the population. Conversely, the excessive
amount of food results in increase in the population.

The single species population model formulates the above phenomena as fol-
lows: Let p(t) be the population at time t. The single species population model
indicates that the population growth rate at time t is represented by the following
nonlinear first-order differential equation known as the logistic equation [8]:

Δp(t)
Δt

= p(t) · g(t) = p(t)(k · fa(t) − k · f · p(t)),

where fa(t) is the amount of food supplied by the environment at time t, f is the
amount of food consumed by one individual to survive and k is greater than 0.

The per capita growth rate g(t) at time t is represented by

g(t) = k(fa(t) − f · p(t)).

The expression fa(t) − f · p(t) represents the difference between the amounts
of supplied food and consumed food. When the supplied food exceeds the con-
sumed food, g(t) takes a positive value proportional to the difference, that is, the
positive per capita growth rate g(t) is proportional to the amount of the surplus
food. A scarcity of the supplied food causes a negative value of g(t) proportional
to the difference, that is, the negative per capita growth rate g(t) is proportional
to the shortage of the supplied food.

The logistic equation has two equilibrium points of the population size p(t):
p(t) = 0 and p(t) = fa(t)/f . That is, the population remains unchanged, when
the population size is at the equilibrium points. The equilibrium point p(t) =
fa(t)/f represents the maximum population that the environment can keep, and
is called the carrying capacity of the environment.

If the population is larger (resp. smaller) than the carrying capacity then the
population decreases (resp. increases). Once the population reaches the carrying
capacity, then it remains unchanged (see Fig.1). Consequently, the single species
population model implies that the population eventually converges to and stabi-
lizes at the carrying capacity. Notice that the carrying capacity depends on the
amount of food supplied by the environment.

3.2 Algorithm for Replica Density Control

In this subsection, we present an algorithm for the replica density control prob-
lem. The algorithm is inspired by the single species population model: replicas
regarded as individuals of a single species, and a network is regarded as an en-
vironment. That is, replicas need to consume food to survive and the food is
supplied by nodes of the network. These food are delivered to replicas by mobile
agents.

In the algorithm, we introduce time interval of some constant length denoted
by CYCLE. Behavior of each node and each replica can be divided into series of
the time interval: each node supplies food every the time interval and each replica

286 T. Suzuki et al.

Fig. 1. Convergence to the equilibrium point in logistic equation

is decided its next state individually every the time interval. It should be noticed
that the start time of the intervals at different nodes need not be synchronized
and that next states of different replicas can be decided at different times.

Figure 2 shows the detailed behavior of nodes and agents in the replica density
control algorithm.

The behavior of nodes and agents is simple: each node creates a new agent
every CYCLE time units (i.e., at the beginning of each time interval). Each agent
has a specific amount of food on the initial state and traverses the network with
the food. Each agent makes a random walk independently: an agent migrates
from one node to one of its neighboring nodes with equal probability. When an
agent visits node v, node v feeds replicas on node v with food the agent has. The
replica can exist during the next time interval if it can be fed a specific amount
of food, denoted by RF, during the current time interval. The replica is deleted
if it cannot be fed food of amount RF during the time interval.

In addition, each node makes a new replica of replica i if the replica i is fed
surplus food of amount RF. This idea derives from the fact that the positive per
capita growth g(t) in the single species population model is proportional to the
amount of surplus food. This scheme is realized in the following way: each agent
stores the surplus food into variable surplus food and continues a random walk
after CYCLE time units from its creation time. When an agent that has surplus
food visits node v, node v feeds replicas on node v with the surplus food the
agent has. If the total amount of surplus food the replica on node v is fed is RF,
node v makes one new replica of the replica by consuming the surplus food. If
the agent has no food and no surplus food, it kills itself (i.e., removes itself from
the network).

Now, we consider the amount of food F that each agent should supply. Since
each node creates one agent every CYCLE time units, the amount F · n(t) of

Bio-inspired Replica Density Control in Dynamic Networks 287

Behavior of node v
timev : local clock time

/∗ its value automatically increases at the same rate as the global time ∗/
eat foodvi : the amount of food that replica i has consumed from food of agents
eat surplus foodvi : the amount of food that replica i has consumed from surplus food of agents
create timevi : creation time of replica i

/∗ the time at which i is made ∗/
RF : the amount of food consumed by a resource to survive

– at the beginning of each time interval (i.e., then timev mod CYCLE =0 holds)
create one agent

– for each replica i on node v
• on agent p’s arrival at node v

if (eat foodvi < RF) then
y := min{RF − eat foodvi , foodp}
eat foodvi := eat foodvi + y
foodp := foodp − y

if (surplus foodp > 0) then
y′ := min{RF − eat surplus foodvi , surplus foodp}
eat surplus foodvi := eat surplus foodvi + y′

surplus foodp := surplus foodp − y′

if (eat surplus foodvi = RF) then
make a new replica of i (create time of the replica is timev)
eat surplus foodvi := 0

• at the end of each time interval (i.e., when timev + create timevi mod CYCLE =0
holds)

if (eat foodvi < RF) then delete i
else eat foodvi := 0 /∗i survives into the next time interval ∗/

Behavior of agent p
foodp : the amount of food that p supplies to replicas
surplus foodp : the amount of surplus food
timep : local clock time

/∗ its value automatically increases at the same rate as the global time ∗/
RF : the amount of food consumed by a resource to survive

/∗p makes a random walk on the network ∗/
– when p is created

foodp := δ · RF
surplus foodp := 0.0
timep := 0

– at the end of time interval (i.e., when timep = CYCLE holds)
surplus foodp := foodp
foodp := 0.0

– when all food are consumed (i.e., when (foodp = 0.0 ∧ surplus foodp = 0.0) holds)
kill itself

Fig. 2. Behavior of node v and agent p

food are supplied on the whole network. The goal of the replica density control
problem is to adjust the number r(t) of replicas to δ ·n(t). Remind that the single
species population model shows that the number of individuals converges and
stabilizes at the carrying capacity fa(t)/f . Thus, the algorithm tries to adjust
r(t) to δ · n(t) by adjusting the carrying capacity to δ · n(t). Since fa(t) corre-
sponds to the total amount of supplied food on the whole network n(t) ·F and f
corresponds to the amount of food RF, the following equation should be satisfied:

fa(t)
f

=
n(t) · F

RF
= δ · n(t).

From this equation, each agent should supply food of amount F = δ · RF .

288 T. Suzuki et al.

4 Simulation Results

In this section, we present simulation results to show that the proposed algorithm
can adjust the replica density.

In the simulation, we assume that each agent repeatedly executes the following
actions: each agent stays at a node for one time unit, and then migrates to one
of its neighboring nodes by a random walk. We also assume that the migration
delay between any pair of neighboring nodes is two time units. The following
values are initialized randomly:

– the initial locations of agents
– the initial values of the local clocks(i.e., timev , timep)
– the creation time of replicas on each node v (i.e., create timei(< timev))
– the initial amounts of food that agents have (i.e., foodp)
– the initial amounts of food that replicas have fed on in the current time

interval (i.e., eat foodi).

The initial amounts of surplus food that agents have (i.e., surplus foodp) and the
initial amounts of surplus food that replicas have fed (i.e., eat surplus foodi)are
set to 0.

In the simulation, a new replica created by a node is allocated to th1e node
selected randomly with probability proportional to their degrees. In real systems,
replica allocation is very important to get good performance. In this paper, how-
ever, we focus on control of replica density rather than how to allocate replicas
effectively on the network. The above allocation can be realized as follows: an
agent picks up a new replica on a node, and drops the replica on the visited node
after it traverses the network by a random walk during random time units.

We present the simulation results for random networks and scale-free net-
works. Scale-free networks are a specific kind of networks such that some nodes
have a tremendous number of connections to other nodes, whereas most nodes
have just a handful. The degree distribution follows a power law of k: the number
of nodes with degree k is proportional to k−r, where r is a positive constant.
A scale-free network is said to be a realistic model of actual network structures
[3, 5].

Simulation Results for Static Networks. Figure 3 shows experimental re-
sults for “static” random networks and “static” scale-free networks where nodes
and links of the networks remain unchanged. In the simulation, the number n(t)
of nodes is fixed at 500 during the simulation. Random graphs with n nodes
are generated as follows: each pair of nodes is connected with probability of
5.0/(n − 1). Scale-free networks are generated using the incremental method
proposed by Balabasi and Albert [3]. More precisely, starting with 3 nodes, we
add new nodes one by one. When a new node is added, three links are also
added to connect the node to three other nodes, which are randomly selected
with probability proportional to their degrees.

Figure 3 shows transition of the number r(t) of replicas with time t. It shows
the simulation results for four combinations of two values of δ (0.2 and 0.1),

Bio-inspired Replica Density Control in Dynamic Networks 289

a. random networks (n(t) = 500) b. scale-free networks (n(t) = 500)

Fig. 3. Simulation results on static networks

and two initial number r(0) of replicas (200 and the half of the target number).
The length CYCLE of the time interval is set to 200 time units, and the initial
number of agents is set to 100. These simulation results show that the number of
replicas quickly converges to the equilibrium point, and has small perturbation
after the convergence.

Simulation Results for Dynamic Networks. Figure 4 and Figure 5 show the
experimental results for “dynamic” random networks and “dynamic” scale-free
networks where nodes and links of networks vary with time. When a new node
joins in the network, the new node is connected to other nodes with probability
5.0/n(t) for each other node on random networks, and the new node is connected
to three other nodes randomly selected with probability proportional to their
degrees on scale-free networks. When a node v leaves from the network, the
links connecting to v are also removed from the network, and replicas the node
v has and agents on node v or these links are also removed from the network.
To show the adaptiveness of the proposed algorithm, Figure 4 and Figure 5
also show the difference ratio of the number of replicas: the ratio is defined by
|δ ·n(t)−r(t)|/(δ ·n(t)) and represents the ratio of difference between the adjusted
and the target numbers of replicas to the target number. (In static networks,
the average of the difference ratio is about 0.02.)

Figure 4 shows simulation results for dynamic networks with continuous and
gradual changes: some nodes join in the network and some nodes leave from
the network constantly. In this simulation, the initial network size n(0) is 500,
and the following dynamical changes occur every 200 time units. In the first
half (from time 0 to time 10,000) of the simulation, a single new node joins in
the network with probability 0.05 and each node leaves from the network with
probability 0.005. In the second half (from time 10,000 to time 20,000), one new
node joins in the network with probability 1.0 and each node leaves from the
network with probability 0.001.

In the simulation results of Figure 4, the length CYCLE is set to 200 time
units, the value of δ is set to 0.2, the initial number of agents is set to 100 and
the initial number r(0) of replicas is set to 100. Since the difference ratio is kept
to be less than 0.08 and does not widely diverge from 0, the simulation results

290 T. Suzuki et al.

a. random networks
(n(0) = 500, r(0) = 100, δ = 0.2)

b. scale-free networks
(n(0) = 500, r(0) = 100, δ = 0.2)

Fig. 4. Simulation results on dynamic networks with gradual changes

show that the number of replica is adaptively adjusted in response to changes
in the network size.

Figure 5 shows the simulation results for dynamic networks with drastic
changes: in a short term, a large number of nodes leave from the network or
join in the network. In this simulation, the initial network size n(0) is 500, and
200 nodes leave from the network at time 6,000 of the simulation, and 400 nodes
join in the network at time 13,000 of the simulation. The leaving nodes are
chosen randomly.

In the simulation results of Figure 5, the length CYCLE is set to 200 time
units, the value of δ is set to 0.2, the initial number of agents is set to 100 and
the initial number r(0) of replicas is set to 100. While the difference ratio widely
diverges from 0 immediately after drastic changes of the network, it quickly
converges to the target number. The difference ratio is kept to be less than 0.07
after the convergence.

Simulation Results on Lifetime of Replicas. The goal of the replica density
control problem is to adjust the number of replicas to a given ratio of the network
size. However, from the point of application view, locations of each replica should

a. random networks
(n(0) = 500, r(0) = 100, δ = 0.2)

b. scale-free networks
(n(0) = 500, r(0) = 100, δ = 0.2)

Fig. 5. Simulation results on dynamic networks with drastic changes

Bio-inspired Replica Density Control in Dynamic Networks 291

Table 1. Average existence time of replicas

CYCLE
100 200 400

200 2772 16977 63528
n 500 2858 21797 104218

1000 2915 23347 132340
a. random networks

CYCLE
100 200 400

200 3757 18230 62470
n 500 4505 27456 97399

1000 4359 32442 123737
b. scale-free networks

not be change frequently. In real applications, if there is almost no change of
locations of each replica, the searching performance of applications can improve.
In our algorithm, each replica stays on the same node while the replica exists on
the network. Thus, we can say the stability of locations is high by showing that
lifetime of replicas is sufficiently long.

Lifetime lti of replica i is defined to be the time length from its creation to
its elimination, i.e., lti = tdi − tci, where tdi is the time when i is deleted and
tcp is the time when i is created. Table 1 shows the average lifetime of replicas
of ten trials. To focus on the lifetime of replicas after convergence of the number
of replicas to the target number, the initial number r(0) of replicas is set to the
equilibrium point. In the simulation results of Table 1, the value of δ is set to
0.2 and the initial number of agents is set to the same number as the initial
number of replicas. The simulation results show that lifetime quickly becomes
longer when the length of the time interval CYCLE becomes longer. Therefore,
by setting an appropriate value to CYCLE, it is strongly expected that lifetime
of each replica becomes sufficiently long.

Simulation Results Using Smaller Number of Agents. In the algorithm
presented in Section 3.2, n(t) agents are created and traverse the network every
CYCLE time units. Although the size of the agent is so small since the agent has
only information of food, the number n(t) of agents may be large for the system.
To reduce network traffic, we try to reduce the number of agents by increasing
the amount of food one agent has; that is, 1/c · n(t) nodes create new agents
with food of amount c · δ ·RF every CYCLE time units (c > 1). Each node picks
a number from 0 to c-1 randomly on its initial state and decrements the value
every CYCLE time units. When the value becomes 0, the node create a new
agent that has the amount c · δ · RF of food and the value is set to c − 1. In this
regard, however, the length of the time interval CYCLE needs to become longer
depending on the value of c. The reason is that agents with larger amount of
food must visit more nodes to supply food to more replicas. This method reduces
by 1/c network traffic of agents.

Figure 6 shows the simulation results with small number of agents for “dy-
namic” random networks and “dynamic” scale-free networks. The value of c is
set to 5; about 1/5 · n(t) agents are created every CYCLE time units. Networks
change in the same way as the above simulation of Figure 4. In the simulation,
the length CYCLE is set to 400 time units, the value of δ is set to 0.2, the initial
number of agents is set to 20 and the initial number r(0) of replicas is set to 100.

292 T. Suzuki et al.

a. random networks
(n(0) = 500, r(0) = 100, δ = 0.2)

b. scale-free networks
(n(0) = 500, r(0) = 100, δ = 0.2)

Fig. 6. Simulation results on dynamic networks using small number of agents

The simulation results in Figure 6 show that the number of replica can be
sufficiently adjusted in response to changes in the network size using only small
number of agents. Without sacrificing accuracy, the network traffic of agents are
reduced to 1/c · n(t).

The algorithm we proposed can adjust the replica density even in the case
that the value of δ is very small. However, the length of the time interval CYCLE
needs to become longer when the value of δ is smaller. The reason is that the
small value of δ indicates the low density replica and thus, agents must visit
more nodes to supply food. We did simulations in small δ and obtained similar
results to results in this paper.

Besides the simulations on random networks and scale-free networks presented
in this section, we did simulations on several other networks such as complete
networks, lollipop networks and star networks, and obtained similar results on
these networks.

5 Conclusions

In this paper, we have proposed a distributed algorithm for the replica density
control problem that requires to adapt the number of original resource and its
replicas to a given constant fraction of the current number of nodes in a dynamic
network. The algorithm is inspired by the single species population model, which
is well-known in the field of the population ecology. The simulation results show
that the proposed algorithm can adequately adjust the number of replicas in
dynamic networks. In addition, from the simulation results, the lifetime of each
replica becomes sufficiently long by setting an appropriate value to algorithm
parameter CYCLE.

In this paper, we focus on only the number of replicas. In real systems that
provide resource replication, allocation of replicas is also very important. Our
future work is to develop the replica allocation algorithm for improving system
performance: agents determine allocations of new replicas from network condi-
tions that agents can learn by traversing over the network.

Bio-inspired Replica Density Control in Dynamic Networks 293

Acknowledgment

This work is supported in part by a Grant-in-Aid for Scientific Research
((B)(2)15300017) of JSPS, Grant-in-Aid for Scientific Research on Priority Ar-
eas(16092215), Grant-in-Aid for JSPS Fellows(2005, 50673), and “The 21st Cen-
tury Center of Excellence Program” of the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

1. The anthill project. http://www.cs.unibo.it/projects/anthill/.
2. The bio-networking architecture. http://netresearch.ics.uci.edu/bionet/.
3. R. Albert and A. L. Barabasi. Statistical mechanics of complex networks. Reviews

of Modern Physics, 74(1):47–97, January 2002.
4. O. Babaoglu, H. Meling, and A. Montresor. Anthill: A framework for the develop-

ment of agent-based peer-to-peer systems. In Proceedings of the 22th International
Conference on Distributed Computing Systems, pages 15–22, 2002.

5. A. L. Barabasi and E. Bonabeau. Scale-free networks. Scientific American, 288:50–
59, May 2003.

6. I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anony-
mous information storage and retrieval system. In Proceedings of the Workshop on
Design Issues in Anonymity and Unobservability, pages 46–66, July 2000.

7. Gnutella.com. http://www.gnutella.com.
8. R. Haberman. Mathematical Model : Population Dynamics. PRENTICE HALL,

1977.
9. K. Miura, T. Tagawa, and H. Kakugawa. A quorum-based protocol for searching

objects in peer-to-peer networks. IEEE Transactions on Parallel and Distributed
Systems. to appear.

10. V. A. Pham and A. Karmouch. Mobile software agents : An overview. IEEE
Communications, 36(7):26–36, July 1998.

11. A. R. Silva, A. Romao, D. Deugo, and M. Mira. Towards a reference model for
surveying mobile agent systems. Autonomous Agents and Multi-Agent System,
4(3):187–231, 2001.

12. J. Suzuki and T. Suda. Design and implementation of a scalable infrastructure
for autonomous adaptive agents. In Proceedings of the 15th IASTED International
Conference on Parallel and Distributed Computing and Systems, pages 594–603,
November 2003.

13. T. Suzuki, T. Izumi, F. Ooshita, and T. Masuzawa. Biologically inspired self-
adaptation of mobile agent population. In Proceedings of 3rd International Work-
shop on Self-Adaptive and Autonomic Computing Systems, August 2005. to appear.

Improving the Robustness of Epidemic
Communication in Scale-Free Networks

Takuya Okuyama, Tatsuhiro Tsuchiya, and Tohru Kikuno

Graduate School of Information Science
and Technology, Osaka University, Osaka 567-0851, Japan

{t-okuyama, t-tutiya, kikuno}@ist.osaka-u.ac.jp

Abstract. As the name suggests, epidemic protocols mimic spread of
virus to implement broadcasting with high reliability and low commu-
nication cost in peer-to-peer (P2P) overlay networks. In this paper, we
study the reliability of epidemic protocols in scale-free networks, an im-
portant class of P2P overlay network topologies. In order to improve the
robustness of epidemic protocols, we optimize the basic epidemic proto-
col in the following two ways. One optimization is to introduce an adap-
tive mechanism that allows each node to retransmit a broadcast message
adaptively to the environment. The other optimization is to modify the
protocol such that nodes will forward broadcast messages preferentially
to neighbor nodes of small degree. The usefulness of these optimizations
is demonstrated through simulation results.

1 Introduction

Epidemic protocols has recently gained popularity as a potentially effective so-
lution for disseminating information in peer-to-peer (P2P) overlay networks
[1, 2, 3, 4, 5]. As the name suggests, epidemic protocols mimic the spread of a
contagious disease. Just as infected individuals pass on a virus to those with
whom they come into contact, each node in a distributed system relays the
broadcast message it has received to randomly chosen neighbors. Information is
disseminated throughout the network by multiple rounds of such communication.

This proactive use of redundant messages provides a means to ensure reliabil-
ity in the face of failures. Also, it is shown that the load on each node increases
only logarithmically with the size of the network; so epidemic protocols are
scalable.

In this paper we study optimization of epidemic protocols, aimed at further
improving robustness to failures in scale-free networks [6]. Over the last few
years, it has been suggested that many technological, social, and biological net-
works can be characterized as scale-free [6, 7], and so can P2P overlay networks
[8, 9]. The majority of nodes in scale-free networks have only a few connections
to other nodes, whereas some nodes are connected to many other nodes in the
network.

In order to achieve improved resiliency of epidemic protocols in such networks,
we first propose an adaptive message retransmission mechanism. The idea of

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 294–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improving the Robustness of Epidemic Communication 295

this mechanism is to have each node retransmit a broadcast message when the
node determines that the message has not been sufficiently disseminated. Each
node autonomously makes the decision of retransmission by counting how many
neighbors it sent/received the same message to/from. A conceptually similar
approach can be found in broadcasting protocols for ad hoc networks [10, 11]. In
ad hoc networks, a node can receive every message sent by its neighbors due to
the nature of wireless communications; thus the node can easily sense the status
of message dissemination. Clearly this is not the case with wired networks. To our
knowledge, no attempt to apply this idea to wired networks has been published,
except for our preliminary report [12].

We then combine this mechanism to another optimization technique, which
was proposed by Portmann and Seneviratne [13]. A typical characteristic of
scale-free networks is a power-law distribution of the node degrees. In [13] Port-
mann and Seneviratne presented a variant of an epidemic protocol, deterministic
rumor mongering, which makes use of this information to make a more intelli-
gent decision as to what set of neighbors to forward messages to. Specifically,
in their protocol, the neighbors of lowest degree are preferentially chosen as
receiver nodes. We present an epidemic protocol that integrates deterministic
rumor mongering and our adaptive message retransmission mechanism.

Though simulation studies, we compare these variants of epidemic proto-
cols and show that the one that incorporates these two optimization techniques
achieves the highest robustness.

2 Preliminaries

2.1 Overlay Networks and Epidemic-Style Broadcast

An P2P overlay network is a logical network constructed on top of an underlying
physical network for each P2P application. We can view a P2P overlay network
as an undirected graph, where the vertices correspond to nodes in the network,
and the edges correspond to open connections maintained between the nodes. A
node i is said to be a neighbor of another node j iff they maintain a connection
between themselves. The node degree of a node i is the number of i’s neighbors.
Messages may be transferred along the edges.

Epidemic-style broadcast is a reliable and effective method of broadcasting in
P2P overlay networks. The most basic form of an epidemic broadcast protocol is
depicted in Fig. 1 [14]. In this basic protocol when a node initiates broadcast, the
node sends the message to f randomly selected neighbors. Message dissemination
is carried out as follows: upon receiving a broadcast message for the first time,
the node i randomly selects f neighbors as receiver nodes and forwards copies of
the message to all these selected nodes. In turn, these receiver nodes forward the
message in the same way. The broadcast message is thus eventually disseminated
throughout the network.

The value f is usually referred to as a fanout. It should be noted that if i
knows that a neighbor has already received m, then that neighbor will never be
selected. In this paper we assume that when receiving m, the node can tell the

296 T. Okuyama, T. Tsuchiya, and T. Kikuno

initiate broadcast of m:
send m to f randomly chosen neighbors;

when a node i receives a message m:
if (i has received m for the first time)

i sends m to f uniformly randomly chosen neighbors
that i knows who have not yet seen m;

Fig. 1. The basic epidemic protocol

sender node’s address; thus the sender node is never chosen by i as a receiver
node.

2.2 Scale-Free Networks

A scale-free network is a network with the property that the number of neighbors
of a given node exhibits a power law distribution; that is, P (k) ∝ k−γ where
P (k) is the probability of having k neighbors. Hence most nodes have only a few
links to other nodes and a tiny number of hubs have a large number of links.
Due to this property, scale-free networks are highly robust when facing random
node failures, but vulnerable to well-planned attacks.

Scale-free networks occur in many areas of science and engineering. Examples
include metabolic networks, the topology of web pages, and the power grid of
the western United States [6, 7].

One of the particular attractions of such scale-free networks is that they can
be generated by the following simple and plausible model: Networks that grow
by new nodes preferentially forming connections with nodes that are already
highly connected give rise to scale-free networks.

Barabási and Albert formalized this model as follows [6]: The evolution of a
system starts with a small number (m0) of nodes with no edges. At every time
step a new node is added to the system with m(≤ m0) edges that link the new
node to m different nodes already present in the system. The probability that a
given existing node i will have a link with the new node is proportional to the
degree of i. After t steps, the model leads to a network with t+m0 nodes and mt
edges, and the network asymptotically evolves towards a state where the node
degree distribution follows a power law with an exponent γ ≈ 2.9.

Recent approaches to building efficient overlay networks often employ the
abstraction of a distributed hash table (DHT) [15, 16, 17]. These DHT schemes
use a global naming scheme based on hashing to assign keys to data items and
organize the nodes into an overlay network that maps each key to a responsible
node. The network is hierarchically structured to enable efficient routing with
the DHT.

However there are still many good reasons to consider scale-free networks to
be an important class of topologies for P2P overlay networks. First of all, it was

Improving the Robustness of Epidemic Communication 297

observed that Gnutella, one of the best known P2P systems, formed overlay
networks of this type [8]. It seems that the Barabási-Albert model, based on pref-
erential attachment and incremental growth, can well explain this observation,
since apparently Gnutella has both these features.

Recently Chun et al. proposed a completely different explanation for the power
law degree distribution observed in P2P overlay networks [9]. In [9] they mod-
eled the evolution of selfishly constructed overlay networks as a non-cooperative
game. They showed that in a wide range of parameter values, a network evolves
towards a stable network which coincides with a Nash equilibrium of the game.
Although the game can produce widely different networks, power law degree
distributions are often observed in realistic settings.

An important property of scale-free networks is that they are low diameter
networks. In [18], a P2P system called Phenix is proposed which takes advantage
of this property to achieve efficient performance. Phenix constructs an overlay
network of a scale-free type but at the same time provides means to hide the
identity of highly connected nodes. Phenix can thus exploit the low-diameter
property and the robustness of scale-free networks, without exposing itself to
the vulnerability to attacks.

It should be noted that the problem of searching in scale-free networks has
been well-studied in the context of random walk [19, 20, 21]. Much of the research
suggests that query messages should be directed towards nodes of high degree
to reduce the hitting time and the cover time. Interestingly, this strategy is
completely opposite to the one used in deterministic rumor mongering (and
thus in ours), in spite of apparent similarities between epidemic and random
walk.

3 Adaptive Message Retransmission

In this section, we propose a mechanism that adaptively retransmits broadcast
messages depending on the status of message dissemination. The challenge in
devising this mechanism is how to perceive the status of the system without
explicit failure detection or aggregation.1

To this end, we introduce the following idea: Each node keeps track of both
the nodes to which it forwarded each broadcast message and those from which
it received the same message. Nodes thus can perceive the status of the system
indirectly; if the same message has been received many times, it is likely that
many other nodes also have successfully received the message. On the other
hand, if a broadcast message has arrived only a few times, it can be inferred
with a high probability that there are other nodes that have failed to receive the
message. Thus in the latter case, retransmission of the message would probably
promote the message dissemination process.

Fig. 2 shows the epidemic protocol that incorporates this mechanism. The
protocol consists of three parts: initiation, forwarding, and retransmission.
1 Aggregation refers to a set of functions that provide global information about a

distributed system [22, 23].

298 T. Okuyama, T. Tsuchiya, and T. Kikuno

N := the set of neighbors;
buff := ∅;

initiate broadcast of m:
receivers := a set of min{f, |N |} nodes uniformly randomly chosen

from N ;
send m to the nodes in receivers;
buff := buff ∪ {m};
knownm := receivers;

upon receiving broadcast message m from j:
if (m �∈ buff)

buff := buff ∪ {m};
receivers := a set of min{f, |N\{j}|} nodes uniformly randomly

chosen from N\{j};
send m to the nodes in receivers;
knownm := receivers ∪ {j};

else
knownm := knownm ∪ {j};

at time T after m ∈ buff was received for the first time:
if (|knownm|/|N | < θ)

send m to min{f, |N\knownm |} nodes uniformly randomly chosen
from N\knownm;

buff := buff\{m};

Fig. 2. An epidemic protocol with adaptive message retransmission

To control the retransmission process, the protocol has two additional para-
meters: T and θ. T is the time in which a node waits to start retransmission, while
θ is used to determine whether or not to perform retransmission. At time T after
the first arrival of a message to a node i, i performs retransmission if the ratio of
its neighbors who sent/received the message to/from i is below the threshold θ.

In Fig. 2 N and buff are used to maintain the neighbors and the messages
currently being handled, respectively. Variable knownm is used to record both
the nodes from which m was received and those to which m was forwarded. The
nodes in knownm will never be selected as the receiver nodes when retransmission
is performed because they already received m.

4 Preferential Receiver Selection

4.1 Deterministic Rumor Mongering

An epidemic protocol that is optimized for scale-free networks was already pro-
posed by Portmann and Seneviratne [13]. The protocol, which they call deter-
ministic rumor mongering, makes use of the power-law characteristic of node

Improving the Robustness of Epidemic Communication 299

N := the set of neighbors;
N1 := the set of neighbors of degree one;

initiate broadcast of m:
send m to the nodes in N1;
receivers := min{f, |N\N1|} nodes in N\N1 of lowest degrees;
send m to the nodes in receivers;

upon receiving a message m from j:
if (m has been received for the first time)

send m to the nodes in N1\{j};
receivers := min{f, |N\(N1 ∪ {j})|} nodes in N\(N1 ∪ {j})

of lowest degrees;
send m to the nodes in receivers;

Fig. 3. Deterministic rumor mongering

degrees by allowing message-forwarding nodes to preferentially select receiver
nodes.

In the epidemic protocols we have discussed so far, the subset of neighbors
to which messages are forwarded are chosen uniformly at random. Under the
assumption that the nodes have no knowledge about the global topology of
the overlay network, this uniformly random selection seems the best possible
strategy.

Deterministic rumor mongering, on the other hand, uses a preferential re-
ceiver selection strategy, assuming that the overlay network topology is scale-
free. Specifically, the selection of receiver neighbors is not performed randomly
but is based on their node degree; i.e., the nodes of lowest degree are chosen
first.

Fig. 3 shows this protocol. In this protocol, pendant nodes, i.e., nodes of
degree one are treated not only as the first priority but also differently from
the other neighbors. Every broadcast message is forwarded to all the pendant
neighbors, since these nodes have no other chance of receiving the message. In
Fig. 3, N1 is used to maintain the pendant neighbors.

Obviously in this protocol, each node has to know the node degrees of its
neighbors. To meet this requirement, the nodes need to exchange their node
degree information. In [13], it is claimed that this can easily be implemented
with a slight modification of P2P applications with only a slight increase of the
minimum message size.

4.2 Combining the Two Optimization Techniques

Here we present another variant of an epidemic protocol which combines the de-
terministic rumor mongering and the adaptive retransmission mechanism

300 T. Okuyama, T. Tsuchiya, and T. Kikuno

N := the set of neighbors;
N1 := the set of neighbors of degree one;
buff := ∅;

initiate broadcast of m:
send m to the nodes in N1;
knownm := N1;
receivers := min{f, |N\knownm |} nodes in N\knownm of lowest degrees;
send m to the nodes in receivers;
buff := buff ∪ {m};
knownm := knownm ∪ receivers;

upon receiving broadcast message m from j:
if (m �∈ buff)

buff := buff ∪ {m};
knownm := {j};
send m to the nodes in N1\knownm;
knownm := knownm ∪ N1;
receivers := min{f, |N\knownm |} nodes in N\knownm of lowest degrees;
send m to the nodes in receivers;
knownm := knownm ∪ receivers;

else
knownm := knownm ∪ {j};

at time T after m ∈ buff was received for the first time:
if (|knownm|/|N | < θ)

send m to min{f, |N\knownm |} nodes uniformly randomly chosen
from N\knownm;

buff := buff\{m};

Fig. 4. An epidemic protocol with the two optimization techniques

described in the previous section. Fig. 4 shows the detailed description of this
protocol.

Note that in Fig. 4 there are no particular steps that perform message retrans-
mission to pendant neighbors. This is because when a node received a broadcast
message for the first time, the node always forwarded the message to these pen-
dant nodes.

5 Simulation

In this section we present the results of a performed simulation analysis. The
simulation compares the following four epidemic protocols.

Protocol 0 The basic epidemic protocol
Protocol 1 The optimized version with adaptive message retransmission

Improving the Robustness of Epidemic Communication 301

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

nodes

degree
(a)

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

nodes

degree
(a)

0

50

100

150

200

250

0 50 100 150 200 250

nodes

degree
(b)

0

50

100

150

200

250

0 50 100 150 200 250
0

50

100

150

200

250

0 50 100 150 200 250

nodes

degree
(b)

Fig. 5. Node degree distributions. (a) N = 200, (b) N = 500.

Protocol 2 Deterministic rumor mongering
Protocol 3 The optimized version integrating deterministic rumor mongering

and adaptive message retransmission

5.1 Settings

We created two scale-free networks based on the Barabási-Albert model which
is described in 2.2. In doing so, we set both m0 and m to 8. The sizes (the
numbers of nodes) N of the two networks are 200 and 500. Figure 5(a) and
Figure 5(b) show the degree distributions of these networks. These distributions
clearly exhibit the characteristics of the power law.

We assume that a message delay between two nodes follows an Erlang dis-
tribution with mean one time unit. The timeout value T and the retransmit
threshold θ are set to 4.0 and 0.6, respectively.

We consider seven different percentages of failed nodes ranging from 0% to
60%. For each of the non-zero values, 10 failure patterns are randomly generated.
The broadcast is initiated 10 times by every node for each failure pattern.

5.2 Results

Resiliency. The experimental results depicted in Figure 6 show the resilience of
the epidemic protocols to node failures. Figures 6(a) and 6(b) display the results
for the networks of size N = 200 and 500, respectively. In the simulation we set
fanout f = 8.

In these graphs, the x-axes represent the percentage of failed nodes, while the
y-axes denote the mean percentage of correct nodes reached by each broadcast.
Different curves represent the results obtained for different protocols.

As clearly seen in these graphs, the resiliency to node failures is consider-
ably improved by incorporating the optimization techniques. For example, in
the case N = 500, the basic epidemic protocol (Protocol 0) achieves only around
65 percent of reached nodes when half the nodes have failed. However this value
reaches near 80 percent when either of the optimization techniques is employed

302 T. Okuyama, T. Tsuchiya, and T. Kikuno

50

60

70

80

90

100

0 10 20 30 40 50 60

(a)

nodes reached by broadcast (%)

failed nodes (%)

Protocol 0

Protocol 2
Protocol 1

Protocol 3

50

60

70

80

90

100

0 10 20 30 40 50 60
50

60

70

80

90

100

0 10 20 30 40 50 60

(a)

nodes reached by broadcast (%)

failed nodes (%)

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0Protocol 0

Protocol 2Protocol 2
Protocol 1Protocol 1

Protocol 3Protocol 3

50

60

70

80

90

100

0 10 20 30 40 50 60

(b)

nodes reached by broadcast (%)

failed nodes (%)

Protocol 0

Protocol 2
Protocol 1

Protocol 3

50

60

70

80

90

100

0 10 20 30 40 50 60

(b)

nodes reached by broadcast (%)

failed nodes (%)

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0Protocol 0

Protocol 2Protocol 2
Protocol 1Protocol 1

Protocol 3Protocol 3

Fig. 6. Resilience to node failures (a) N = 200, (b) N = 500

(Protocol 1, Protocol 2) and near 90 percent when both are employed
(Protocol 3).

One can also see that especially when failed nodes are not many, Protocol 2
and Protocol 3 achieve very high node coverage, thanks to the preferential
receiver selection scheme which exploits the power-law degree distribution. In
contrast, Protocol 0 and Protocol 1, in which nodes forward a message to uni-
formly randomly selected neighbors, achieve no more than 95% coverage even in
the case of no node failure.

It can also be observed that Protocol 1 and Protocol 3 are much more robust
to the increase of failed nodes than the other two protocols, from their slowly
decreasing curves. Clearly this property is due to the use of the adaptive message
retransmission mechanism. As a result, Protocol 3 which incorporates these two
optimization techniques achieves the highest resiliency in the whole range of
failed node percentage.
Message Overhead vs. Resiliency. The graphs in Fig. 7 show the relation-
ship between communication cost and resiliency. The x-axes represent the total
number of messages sent, while the y-axes represent the ratio of correct nodes
reached by the broadcast. Thus the dots in these graphs indicates the message
overhead required for achieving a given resiliency level.

We examined two node failure percentages: 0% and 30%. Fig. 7(a) and Fig.
7(b) display the results for the network of size N = 200 with the two different
failure percentages, while Fig. 7(c) and Fig. 7(d) show those for the network of
size N = 500.

Different types of dots in the graphs correspond to different protocols and dif-
ferent dots of each type represent the results obtained by using the corresponding
protocol with different fanout values f = 4, 6, 8, 10, 12, 14.

From these graphs one can see that the dots for each protocol lie on a smooth
curve and such imaginary curves are located from the bottom in the following
order: Protocol 0, Protocol 1, Protocol 2, Protocol 3. This order coincides with
the order of increasing cost-effectiveness. In Protocol 2 and Protocol 3, nodes
attempt to avoid to forward messages to neighbors of high degree. This feature

Improving the Robustness of Epidemic Communication 303

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500

50

55

60

65

70

75

80

85

90

95

100

200 400 600 800 1000 1200 1400

60

65

70

75

80

85

90

95

100

1000 1500 2000 2500 3000 3500 4000 4500 5000

60

65

70

75

80

85

90

95

100

400 600 800 1000 1200 1400 1600 1800 2000

(a) (b)

(c) (d)

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

40

50

60

70

80

90

100

500 1000 1500 2000 2500 3000 3500

50

55

60

65

70

75

80

85

90

95

100

200 400 600 800 1000 1200 1400

60

65

70

75

80

85

90

95

100

1000 1500 2000 2500 3000 3500 4000 4500 5000

60

65

70

75

80

85

90

95

100

400 600 800 1000 1200 1400 1600 1800 2000

(a) (b)

(c) (d)

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

Protocol 0

Protocol 2
Protocol 1

Protocol 3

nodes reached by broadcast (%) nodes reached by broadcast (%)

nodes reached by broadcast (%) nodes reached by broadcast (%)

messages # messages

messages # messages

Fig. 7. Message overhead vs. resiliency (a) N = 200, failed nodes 0%, (b) N = 200,
failed nodes 30%, (c) N = 500, failed nodes 0%, (d) N = 500, failed nodes 30%

reduces redundant messages, thus resulting in a good messaging cost-resiliency
relationship of these protocols.

6 Conclusions

In this paper we studied two optimization techniques with the aim of improv-
ing the robustness of epidemic-style broadcast in scale-free networks. We first
proposed an adaptive message retransmission mechanism. The basic idea of the
proposed technique is to have each node retransmit a broadcast message when
the node determines that the message has not been sufficiently disseminated.
This decision is made in a fully autonomous fashion, simply by counting how
many neighbors it sent/received the same message to/from.

Then we proposed to integrate this mechanism and deterministic rumor mon-
gering, a variant of an epidemic protocol which makes use of the characteristics
of scale-free networks to forward messages in an efficient manner.

We conducted a simulation analysis to examine the effects of these opti-
mization techniques. The results obtained suggest that the epidemic protocol
that incorporates both optimizations can significantly improve the robustness of

304 T. Okuyama, T. Tsuchiya, and T. Kikuno

broadcasting to failures. The results also show that by incorporating these op-
timizations, the message overhead required for achieving a given resiliency level
can also be improved.

There remain many directions for future research. For example, the reliability
of the proposed protocol should be evaluated under different failure assumptions,
such as the presence of direct attacks targeting hub nodes. Comparison and
integration with the proposed protocol and existing epidemic protocols are also
an important future direction.

Acknowledgments

We thank the anonymous referees for their thoughtful reading and helpful com-
ments. This research was supported in part by “Priority Assistance for the For-
mation of Worldwide Renowned Centers of Research — The 21st Century Center
of Excellence Program” of the Japanese Ministry of Education, Culture, Sports,
Science and Technology.

References

1. Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Transactions on Computer Systems 17 (1999) 41–88

2. Sun, Q., Sturman, D.: A gossip-based reliable multicast for large-scale high-
throughput applications. In: Proceedings of the International Conference on De-
pendable Systems and Networks (DSN 2000), New York, NY (2000) 347–358

3. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec,
A.M.: Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21 (2003)
341–374

4. Eugster, P.T., Guerraoui, R., Kermarrec, A.M., Massoulié, L.: Epidemic informa-
tion dissemination in distributed systems. IEEE Computer 37 (2004) 60–67

5. Pereira, J., Rodrigues, L., Monteiro, M., Oliveira, R., Kermarrec, A.: Neem:
Network-friendly epidemic multicast. In: Proceedings of the 22nd IEEE Sympo-
sium on Reliable Distributed Systems (SRDS ’03). (2003) 15–24

6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286
(1999) 509–512

7. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale
organization of metabolic networks. Nature 407 (2000) 651–654

8. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network: Properties of
large-scale peer-to-peer systems and implications for system design. IEEE Internet
Computing Journal 6 (2002)

9. Chun, B.G., Fonseca, R., Stoica, I., Kubiatowicz, J.: Characterizing selfishly con-
structed overlay networks. In: Proceedings of Infocom 2004, Hong Kong (2004)

10. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. In: Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, ACM Press (1999) 151–162

11. Haas, Z.J., Halpern, J.Y., Li, L.: Gossip-Based Ad Hoc Routing. In: Proceedings
of IEEE Infocom 2002, New York, NY (2002) 1707–1716

Improving the Robustness of Epidemic Communication 305

12. Tsuchiya, T., Kikuno, T.: On improving the reliability of probabilistic broadcast
with an adaptive technique. IEICE Technical Report DC-346 (2004)

13. Portmann, M., Seneviratne, A.: Cost-effective broadcast for fully decentralized
peer-to-peer networks. Computer Communications 26 (2003) 1159–1167

14. Lin, M.J., Marzullo, K., Masini, S.: Gossip versus deterministically constrained
flooding on small networks. In: Proceedings of 14th International Conference on
Distributed Computing, (DISC 2000). Volume 1914 of Lecture Notes in Computer
Science., Toledo, Spain (2000) 253–267

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM ’01: Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, New York, NY, USA (2001) 161–172

16. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference. (2001) 149–160

17. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001),
Heidelberg, Germany (2001)

18. Wouhaybi, R.H., Campbell, A.T.: Phenix: Supporting resilient low-diameter peer-
to-peer topologies. In: Proceedings of IEEE Infocom. (2004)

19. Adamic, L.A., Lukose, R., Puniyani, A., Huberman, B.: Search in power-law net-
works. Physical Review E 64 (2001) 046135–1–046135–8

20. Kim, B.J., Yoon, C.N., Han, S.K., Jeong, H.: Path finding strategies in scale free
networks. Physical Review E 65 (2002) 027103–1–027103–4

21. Cooper, C., Frieze, A.: The cover time of two classes of random graphs. In:
Proceedings of 16th ACM-SIAM Symposium on Discrete Algorithms (SODA 2005).
(2005) 961–970

22. Gupta, I., van Renesse, R., Birman, K.P.: Scalable fault-tolerant aggregation in
large process groups. In: Proceedings of the 2001 International Conference on
Dependable Systems and Networks, IEEE Computer Society (2001) 433–442

23. Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-
scale overlay networks. In: Proceedings of the 2004 International Conference on
Dependable Systems and Networks, IEEE Computer Society (2004) 19–28

On Updated Data Dissemination Exploiting an
Epidemic Model in Ad Hoc Networks

Hideki Hayashi, Takahiro Hara, and Shojiro Nishio

Dept. of Multimedia Eng., Grad. Sch. of Information Science and Tech.,
Osaka Univ., 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{hideki, hara, nishio}@ist.osaka-u.ac.jp
http://www-nishio.ist.osaka-u.ac.jp/

Abstract. In ad hoc networks, it is effective that each mobile host cre-
ates replicas of data items held by other mobile hosts for improving data
accessibility. In our previous work, we assumed an environment where
data items are updated and proposed two updated data dissemination
methods which efficiently update old replicas. In these methods, the com-
munication traffic is large since every mobile host necessarily requests
updated data items when it knows that its own replicas are old. In this
paper, we propose an updated data dissemination method exploiting an
epidemic model, which is a popular bio-inspired approach, for reducing
the communication traffic. In our proposed method, mobile hosts dissem-
inate invalidation reports and discard old replicas when a mobile host
updates a data item or when two mobile hosts are connected with each
other. Each mobile host which discards an old replica requests the up-
dated data item with a certain probability. We also present simulation
results to evaluate the performance of our proposed method.

1 Introduction

Recently, there has been increasing interest in ad hoc networks constructed by
only mobile hosts that play the role of a router [8, 11]. In ad hoc networks,
disconnections frequently occur due to the free movement of mobile hosts and
cause frequent network partitions. If a network partition occurs, mobile hosts
in one of the two partitioned networks cannot access data items held by mobile
hosts in the other network. In Fig. 1, if the central radio link is disconnected, the
mobile hosts on the left-hand side and those on the right-hand side cannot access
data items D2 and D1, respectively. To solve this problem, it is effective that
each mobile host creates replicas of data items held by other mobile hosts. In
ad hoc networks, there are many applications in which mobile hosts access data
items held by other mobile hosts; a good example is rescue affairs at disaster
sites and sensor networks. Therefore, the replica allocation for improving data
accessibility is an important research issue. In [4], we assumed an environment
where data items are not updated and proposed three replica allocation methods
in ad hoc networks. These methods periodically relocate replicas to mobile hosts
based on the access frequency to each data item and the network topology. This

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 306–321, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Updated Data Dissemination Exploiting an Epidemic Model 307

Disconnection

D1D1

D2D2

Fig. 1. Network partition in ad hoc networks

time period is called by relocation period. In [5], we assume an environment
where correlation exists among data items and extended the methods proposed
in [4].

In a real environment, it is more likely that data items are updated. In such
a case, mobile hosts may access old replicas that have been updated. Accesses
to old replicas are invalid and cause useless data accesses and rollbacks. This is
a serious problem for mobile hosts that usually have poor resources. In [6], we
proposed two cache invalidation methods for reducing the number of accesses to
old replicas that have been updated. In these methods, mobile hosts broadcast
invalidation reports and invalidate old replicas. Additionally, in [7], we proposed
two updated data dissemination methods for improving the data accessibility.
In these methods, the communication traffic for updated data dissemination is
large since every mobile host necessarily requests updated data items when it
knows that its own replicas are old.

In this paper, we propose an updated data dissemination method exploiting
an epidemic model[3], which is a popular bio-inspired approach, for reducing
the communication traffic. In an epidemic model, an infected person transmits
the disease to a noninfected person with a certain probability when the infected
person contacts the noninfected person. By repeating these processes, the infec-
tious disease are widely spread. Therefore, it is effective to exploit an epidemic
model for updated data dissemination in ad hoc networks because mobile hosts
are frequently connected with each other. In our proposed method, mobile hosts
disseminate invalidation reports when a mobile host updates a data item or when
two mobile hosts are newly connected with each other. Each mobile host that
receives the invalidation reports discards its own old replicas. Then, the mobile
host requests the updated data item for the discarded replica with a certain
probability. We also present simulation results to evaluate the performance of
our proposed method.

The remainder of this paper is organized as follows. In Sect. 2, we describe
our assumed environment. In Sect. 3, we describe updated data dissemination
methods which we proposed in [7], then in Sect. 4 we propose an updated data
dissemination method exploiting an epidemic model. In Sect. 5, we show simula-
tion results to evaluate the performance of our proposed method. In Sect. 6, we
show some works related to our research, and finally in Sect. 7, we summarize
this paper.

308 H. Hayashi, T. Hara, and S. Nishio

2 Assumptions

In this paper, we assume an environment where each mobile host creates replicas
of data items held by other mobile hosts in ad hoc networks where data items
are updated. We do not place any restrictions on replica allocation methods be-
cause our proposed method behaves independently of the used replica allocation
method.

A request for a data item succeeds only when the request-issuing host ac-
cesses the original data item or its replica with the same time stamp (version)
as the original. When it accesses its replicas with a different time stamp from
the original, the request fails. Therefore, the request immediately succeeds if the
request-issuing host holds the original. Otherwise, if a connected mobile host
holds the original, the request also immediately succeeds. In this paper, mobile
hosts connected to each other by one-hop/multihop links are simply called con-
nected mobile hosts. In doing so, the request-issuing host floods its connected
mobile hosts with the query packet. If the request-issuing host or at least one
connected mobile host holds the replica, the request-issuing host tentatively ac-
cesses the replica. After that, when the request-issuing host finds a connection
to the mobile host holding the original, it asks the host holding the original
whether the tentative access has either succeeded or failed. If the tentative ac-
cess has failed, the rollback occurs as needed so that the request-issuing host
recovers the state before it accessed the replica. If the request-issuing host and
its connected mobile hosts do not hold the original/replicas, the request imme-
diately fails.

In addition, we make the following assumptions:

– Each mobile host (M1, M2, · · · , Mm) moves freely. Mj (1 ≤ j ≤ m) denotes
a host identifier and m is the total number of mobile hosts.

– The original of each data item (D1, D2, · · · , Dn) is held by a particular mobile
host. Dj (1 ≤ j ≤ n) denotes a data identifier and n is the total number of
data items.

– Each data item is updated by the mobile host holding the original. After a
data item is updated, the replicas become invalid.

3 Conventional Updated Data Dissemination

In this section, we explain two updated data dissemination methods which we
proposed in [7]. In these methods, each mobile host holds a time stamp table in
which the latest update time (time stamp) of each data item is recorded. This
table includes the data identifier and the time stamp as the attributes.

3.1 DU (Dissemination on Update) Method

In the DU method, when a mobile host updates an data item, it floods its
connected mobile hosts with the invalidation report. This report includes the
data identifier and the time stamp. When a mobile host receives the report, it

On Updated Data Dissemination Exploiting an Epidemic Model 309

M1M1

M2M2

M3
M4

M5M5

M6M6

D3

D1

D3

D1

D1: Update

D4

D2

D4

D2

D1

D3

D1

D3

D3

D4

D3

D4

D2

D5

D2

D5

D1

D6

D1

D6
{D1}

Fig. 2. Updated data dissemination in DU method

compares the time stamp in the report with that in its own time stamp table.
If the former is larger, the host updates the time stamp in its own time stamp
table to that in the report. Additionally, if the mobile host holds the replica,
it discards the replica from its memory space and requests the updated data
item to the mobile host which updates the data item. Then, the mobile host
broadcasts the received report to its neighbors. Mobile hosts which receive the
report behave in the same way.

Fig. 2 shows that M1 transmits the updated data item D1 to M3 when M1
updates D1. In this figure, a rectangle denotes a data item and a gray rectangle
denotes an invalidated replica.

In the DU method, the traffic is small because mobile hosts broadcast the
invalidation report and disseminate the updated data item only when a mobile
host updates the data item. When mobile hosts do not connect to the mobile
host holding the original on the data update, they cannot receive the invalida-
tion report nor the updated data item. Therefore, in an environment where the
network topology frequently changes, connected mobile hosts may hold different
time stamp tables and replicas with different versions of the same data item.

3.2 DC (Dissemination on Connection) Method

In the DC method, in addition to the updated data dissemination in the DU
method, two newly connected mobile hosts disseminate updated data items.

Two newly connected mobile hosts compare each entry in their time stamp
tables and update old time stamps with each other. Each of them floods its orig-
inally connected mobile hosts with invalidation reports of data items whose time
stamps were old in its own time stamp table. When a mobile host receives the
reports, it updates the time stamps in its own time stamp table. After that, each
of the newly connected mobile host disseminates the updated data items. Here,
the traffic for updated data dissemination may affect the system performance be-
cause the size of the updated data item is very large. Therefore we proposed the
DC/OO (One-to-One) and DC/GG (Group-to-Group) methods. In the DC/OO
method, two newly connected mobile hosts disseminate updated data items
with each other. In the DC/GG method, two groups of mobile hosts that were
originally connected to the two newly connected mobile hosts disseminate
updated data items with each other.

310 H. Hayashi, T. Hara, and S. Nishio

M1M1

M2M2

M3
M4

M5M5

M6M6

D3

D1

D3

D1

D4

D2

D4

D2

D1

D3

D1

D3

D3

D4

D3

D4

D2

D5

D2

D5

D1

D6

D1

D6

Connection

{D3}

Fig. 3. Updated data dissemination in DC/OO method

M1M1

M2M2

M3
M4

M5M5

M6M6

D3

D1

D3

D1

D4

D2

D4

D2

D1

D3

D1

D3

D3

D4

D3

D4

D2

D5

D2

D5

D1

D6

D1

D6

Connection

{D1,D2,D3}

{D2}

{D1}

{D2}

{D1}

Fig. 4. Updated data dissemination in DC/GG method

Fig. 3 shows that, in the DC/OO method, M3 transmits the updated data
item D3 to M4 when M3 and M4 are newly connected. Fig. 4 shows that, in the
DC/GG method, mobile hosts on the left-hand side {M1, M2, M3} transmits the
updated data items {D1, D2, D3} to those on the right-hand side {M4, M5, M6}.

In the DC method, connected mobile hosts hold the same time stamp table
because invalidation reports are flooded every time two mobile hosts are newly
connected. The data accessibility in the DC/OO method is larger than that in
the DU method because two newly connected mobile hosts disseminates updated
data items with each other. Furthermore, the data accessibility in the DC/GG
method becomes larger than that in the DC/OO method because mobile hosts
connected to the two newly connected mobile hosts can refresh old replicas.
However, the traffic for updated data dissemination in the DC/GG method is
much larger than that in the DC/OO method.

4 Updated Data Dissemination Exploiting an Epidemic
Model

In this section, we propose an updated data dissemination method exploiting an
epidemic model. First, we describe the epidemic model. Then, we describe the
proposed method.

4.1 Epidemic Model

The propagation process of infectious diseases in the epidemic model is as follows.

On Updated Data Dissemination Exploiting an Epidemic Model 311

A virus of an infectious disease breaks into a human body and infects the
person with a certain probability. The infected person transmits the disease
to a noninfected person with a certain probability when the infected person
contacts the noninfected person. The noninfected person may be infected by
absorbing the air including the cough and the sneeze of the infected person even
if he/she does not directly contact the infected person. After the certain period
(infection period), the infected person recovers and does not transmit the disease
to noninfected persons. The recovered person has the immunity to the disease
and are not infected with the disease.

4.2 Updated Data Dissemination

In our proposed method, mobile hosts disseminate updated data items with a
certain probability when a mobile host updates a data item or when two mobile
hosts are newly connected with each other. Tables 1 and 2 show the information
managed by mobile hosts and the control packets, respectively. In these tables,
“ID,” “TS,” “IR,” and “UD” denote identifier, time stamp, invalidation report,
and updated data, respectively. The path information in the invalidation report
contains a list of pairs of the host identifier and the flag which represents whether
the mobile host holds the data item (1) or not (0), where the order of the
pairs corresponds to the order of the hosts to which the invalidation report was
propagated.

When a mobile host updates a data item, it floods its connected mobile hosts
with the invalidation report and they discard the old replicas. As mentioned
in Sect. 1, if the mobile hosts that received the invalidation report necessarily
request the updated data item, the traffic for the updated data dissemination
becomes very large. Therefore, in this paper, we exploit an epidemic model.
Specifically, each mobile host (noninfected person) that discards an old replica
according to the invalidation report (virus) requests the updated data item to its
nearby mobile host (infected person) with the request probability Preq. In Subsec.
4.3, we describe the definition of the request probability.

In order to widely spread the updated data items, we also exploit the epidemic
model when two mobile hosts are newly connected with each other. Specifically,

Table 1. Information managed by mobile hosts

Table name attributes
Time stamp table data ID, TS, IR reception time,

expiration time of IR/UD dissemination
Access status table data ID, access frequency, number of access requests

Table 2. Control packets

Packet name elements
Invalidation report data ID, TS,

path information (list of pairs of host ID and flag)
Updated data request host ID, destination ID, data ID

312 H. Hayashi, T. Hara, and S. Nishio

when a mobile host that received an invalidation report (virus) newly connects
to a mobile host, it disseminates the invalidation report and the updated data
item (if holding the valid replica) to the newly connected mobile host just like
an infected person. Additionally, it disseminates the invalidation report and the
updated data item to mobile hosts which originally connect to the newly con-
nected mobile host. Here, if mobile hosts permanently continue to disseminate
the invalidation report and the updated data item, it produces a large amount
of unnecessary traffic. The epidemic model can solve this problem since an in-
fected person recovers and does not infect anyone after the infection period.
That is, after the predetermined period (dissemination period) from the time
when the mobile host received the invalidation report, it stops to disseminate
the invalidation report and the updated data item.

In the followings, we describe the detailed behaviors when a mobile host, Mi,
updates a data item, Dk, and when two mobile hosts, Mi and Mj , are newly
connected.

[Behavior on data update]

The following is the behavior of our method when Mi updates Dk:

1. Mi updates Dk’s information in its own time stamp table. Both TS and IR
reception time are set as the updated time. The expiration time of IR/UD
dissemination is set as the sum of the IR reception time and the dissemination
period Tsnd which is the predetermined constant.

2. Mi broadcasts the invalidation report to its neighbors, where the pair of the
host identifier, Mi, and the flag, 1, is inserted into the path information.

3. When a mobile host, Mk, receives the invalidation report, it updates Dk’s
information just like Mi. If it holds the old replica, it discards the replica
and requests the updated data item based on the request probability Preq.
The request is sent to the nearest mobile host holding Dk, which can be
determined from the path information in the received invalidation report.
After that, Mk broadcasts the invalidation report to its neighbors, where
the pair of the host identifier, Mk, and the flag, 1 if the host requested Dk

or 0 otherwise, is added into the path information. Goes back to step 3.

Fig. 5 shows that M4 and M6 requests the updated data item of D1 when M1
updates D1.

This method reduces the traffic for updated data dissemination because an
appropriate number of mobile hosts refresh their old replicas by receiving the
updated data items from their nearby mobile hosts.

[Behavior on connection]

The following is the behavior of our method when Mi and Mj are newly
connected with each other:

1. Mi(Mj) transmits an invalidation report for each data item whose expiration
time is larger than the current time to Mj(Mi).

On Updated Data Dissemination Exploiting an Epidemic Model 313

M1M1

M2M2

M4M4

M5M5

M6M6

D7

D1

D7

D1

D1: Update
D7

D2

D7

D2

D1

D4

D1

D4

D1

D5

D1

D5

D1

D6

D1

D6

{D1}

M3M3

Request

Request
{D1}

D7

D3

D7

D3

Fig. 5. Updated data dissemination on data update

2. Mj(Mi) compares the time stamp for the data item in its own time stamp
table with that in the received report. If the former is smaller, Mj(Mi)
updates the information in its own time stamp table. TS, IR reception time,
and the expiration time of IR/UD are set as TS in the received report, the
current time, and the sum of the IR reception time and Tsnd, respectively.
Additionally, if Mj(Mi) holds the old replica, it discards the replica and
requests the updated data item based on the request probability Preq. The
request is sent to the nearest mobile host holding the data item, which can
be determined from the path information in the received invalidation report.
After that, Mj(Mi) broadcasts the invalidation report to its neighbors, where
the pair of the host identifier, Mj(Mi), and the flag, 1 if the host requested
the data item or 0 otherwise, is added into the path information.

3. Each mobile host that receives the invalidation report behaves in the same
way as Mj(Mi).

Fig. 6 shows that M1 and M2 request the updated data item of D7 when
M6 and M7 are newly connected and all mobile hosts except for M7 receive the
invalidation report for D7.

M1M1

M2M2

M4M4

M5M5

M6M6

D7

D1

D7

D1

D7

D2

D7

D2

D1

D4

D1

D4

D1

D5

D1

D5

D1

D6

D1

D6

M3M3

D7

D3

D7

D3

M7M7Connection D5

D7

D5

D7

{D7}

Request

{D7}

Request

Fig. 6. Updated data dissemination on connection

The above processes can reduce the number of accesses to old replicas and
improve the data accessibility because invalidation reports and updated data

314 H. Hayashi, T. Hara, and S. Nishio

items are widely propagated. Moreover, our method can reduce the traffic for
updated data dissemination compared with the original DC method.

4.3 Request Probability of Updated Data Items

In our proposed method, a mobile host requests an updated data item based on
the request probability Preq when it receives the invalidation report and discards
the old replica. As Preq gets larger, mobile hosts are more likely to request
the updated data item. Thus, 1/Preq corresponds to the immunity against the
infectious disease.

If a mobile host does not receive an invalidation report for a data item for
a long time, it is likely that the host existed in a partitioned network in which
the data item was inaccessible. Thus, it is effective to preferentially disseminate
the updated data item to such mobile hosts. Additionally, it is also effective
to preferentially disseminate updated data items that are frequently accessed.
Based on these facts, we define the request probability, Preq , when the mobile
host receives Dk’s invalidation report by the following equation:

Preq = α · ETk

MAX ET
+ (1 − α) · Ak

MAX A
. (1)

Here, α(0 ≤ α ≤ 1), MAX ET (> 0), and MAX A(> 0) are predefined con-
stants. ETk denotes the elapsed time since the mobile host lastly received Dk’s in-
validation report and Ak denotes Dk’s access frequency. ETk is set as MAX ET
if ETk > MAX ET and Ak is set as MAX A if Ak > MAX A. ETk is calcu-
lated from the IR reception time in the time stamp table. Ak is calculated at
every predetermined time, Δt, by the following equation:

Ak = β · A′
k + (1 − β) · Ak(Δt). (2)

Here, β(0 ≤ β ≤ 1) is a predefined constant. A′
k denotes Dk’s previous access

frequency calculated at the time Δt before the current time. Ak(Δt) denotes the
actual Dk’s access frequency during the past Δt, which is calculated by dividing
the number of access requests for Dk issued from the mobile host and other hosts
by Δt. It is assumed that each mobile host records the number of the received
access requests as the “number of access requests” in its own access status table
shown in Table 1. The number of access requests is reset to 0 at every Ak’s
calculation time.

It should be noted that the request probability can be represented in various
ways except for equation (1). While the request probability much affects the
system performance, we use equation (1) as an example.

5 Simulation Experiments

In this section, we present simulation results to evaluate the performance of our
proposed method.

On Updated Data Dissemination Exploiting an Epidemic Model 315

5.1 Simulation Model

The number of mobile hosts is 40 in the entire network. Each mobile host
(M1, . . . , M40) exists in a 500 [m] × 500 [m] flatland and moves according to the
random waypoint model[1]. Specifically, each host randomly determines a desti-
nation in the flatland and moves toward the destination at a velocity randomly
determined from 0.01 to 1 [m/sec]. When the host arrives at the destination, it
pauses for the duration randomly determined from 0 to 1,000 [sec]. After the
duration, it determines a next destination and moves toward the destination.
The radio communication range of each mobile host is 70 [m].

The number of kinds of data items is 40 in the entire network and the size
of each data item (D1, . . . , D40) is 1 [MB]. Mi holds Di (i = 1, · · · , 40) as the
original. The access frequency of Mi to Dj is pij = 0.0005×(1+0.001×j)[1/sec].
Each mobile host updates its own original with intervals based on the exponential
distribution with mean U (average update period) [sec].

Each mobile host creates up to 10 replicas in its memory space with the
DCG (Dynamic Connectivity based Grouping) method that we proposed in [4].
The DCG method periodically (relocation period: T [sec]) creates stable groups
(biconnected components) of mobile hosts and allocate many kinds of replicas
in the groups.

Table 3. Parameter configuration

Parameter value
U 500 (100∼3,000) [sec]
T 1,000 [sec]

Tsnd 1,000 [sec]
α 0.5

MAX ET 1,000 (100∼2,000) [sec]
MAX A 0.005 [1/sec]

β 0.5
Δt 1,000 [sec]

Table 3 shows parameters and their values in this experiments. The param-
eters are basically fixed to constant values, but some parameters are changed,
indicated by values in parentheses shown in Table 3. We compare our proposed
method in this paper with the DU and DC methods proposed in [7].

In the above simulation environments, we randomly determine the initial po-
sition of each mobile host and evaluate the following three criteria during 500,000
[sec].

– Data accessibility:
The ratio of the number of successful access requests to the number of all
access requests issued during the simulation period.

– Rate of accesses to old replicas:
The rate of the number of tentative accesses that resulted in failure to the
number of all access requests issued during the simulation period.

316 H. Hayashi, T. Hara, and S. Nishio

– Traffic for updated data dissemination:
The product of the total hop count for transmitting updated data items and
their sizes, which are performed during the simulation period.

5.2 Effects of Average Update Period U

First, we examine the effects of the average update period U on our proposed
method. Figs. 7, 8, and 9 show the simulation results. In these graphs, the hori-
zontal axis indicates the average update period U . The vertical axes indicate the
data accessibility, the rate of accesses to old replicas, and the traffic for updated
data dissemination, respectively. The performance of the method which we pro-
posed in this paper is shown as “Epidemic” in these graphs. For comparison, we
also show the performance when the dissemination of invalidation reports and
updated data items are not performed as “NO.”

Fig. 7 shows that as the average update period gets larger, the data accessi-
bility in each method gets higher because the replicas held by each mobile host
are valid for a longer time. When the average update period is very small, the
data accessibility in our proposed method is lower than that in the DU method.
However, when the average update period is high, the data accessibility in our
proposed method is higher than that in the DU method and is approximately
as high as that in the DC/OO method. In our proposed method, the reception
intervals of invalidation reports get smaller as the average update period gets
smaller, and thus, the request probability gets smaller because MAX ET is a
constant. In our method, lower request probability gives lower data accessibility.
This can also be confirmed by the result in Subsec. 5.3, where the data accessi-
bility in our method gets higher as MAX ET gets smaller. The DC/GG method
always gives the highest data accessibility because updated data items can be
spread to the widest ranges.

Fig. 8 shows that as the average update period gets larger, the rate of accesses
to old replicas in each method gets lower because the replicas held by each mobile

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 500 1000 1500 2000 2500 3000

D
at

a
A

cc
es

si
bi

lit
y

Average Update Period

NO
DU

DC/OO
DC/GG

Epidemic

Fig. 7. Average update period and data accessibility

On Updated Data Dissemination Exploiting an Epidemic Model 317

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000 2500 3000

R
at

e
of

 A
cc

es
se

s
to

 O
ld

 R
ep

lic
as

Average Update Period

NO
DU

DC/OO
DC/GG

Epidemic

Fig. 8. Average update period and rate of accesses to old replicas

 0

 1e+11

 2e+11

 3e+11

 4e+11

 5e+11

 6e+11

 7e+11

 8e+11

 0 500 1000 1500 2000 2500 3000

T
ra

ffi
c

fo
r

U
pd

at
ed

 D
at

a
D

is
se

m
in

at
io

n

Average Update Period

NO
DU

DC/OO
DC/GG

Epidemic

Fig. 9. Average update period and traffic for updated data dissemination

host are valid for a longer time. When the average update period is small, our
proposed method gives the lowest rate of accesses to old replicas. This result
shows that mobile hosts effectively disseminate invalidation reports and discard
old replicas.

Fig. 9 shows that as the average update period gets larger, the traffic for
updated data dissemination in each method gets smaller. This is because the
frequency of updated data dissemination gets lower as the update frequency of
each data item gets lower. Our method gives the lowest traffic for updated data
dissemination. This is because each mobile host requests updated data items to
its nearby mobile hosts with a certain probability.

5.3 Effects of MAX ET

We examine the effects of MAX ET on our proposed method. Figs. 10, 11, and
12 show the simulation results. In these graphs, the horizontal axis indicates

318 H. Hayashi, T. Hara, and S. Nishio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000

D
at

a
A

cc
es

si
bi

lit
y

MAX_ET

NO
DU

DC/OO
DC/GG

Epidemic

Fig. 10. MAX ET and data accessibility

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000

R
at

e
of

 A
cc

es
se

s
to

 O
ld

 R
ep

lic
as

MAX_ET

NO
DU

DC/OO
DC/GG

Epidemic

Fig. 11. MAX ET and rate of accesses to old replicas

MAX ET . The vertical axes indicate the data accessibility, the rate of accesses
to old replicas, and the traffic for updated data dissemination, respectively. Al-
though the change in MAX ET does not affect the performances of the three
methods in [7] and “NO,” we show their results for comparison purpose.

Fig. 10 shows that as MAX ET gets larger, the data accessibility in our
proposed method gets lower. This is because the request probability gets lower
and the frequency of updated data dissemination gets lower. When MAX ET
is small, the data accessibility in our proposed method is larger than that in the
DC/OO method.

Fig. 11 shows that as MAX ET gets larger, i.e., the request probability gets
lower, the rate of accesses to old replicas in our proposed method gets lower.
In our method, as the request probability gets lower, mobile hosts disseminate
fewer updated data items. These disseminated items include old replicas whose
versions are different with that of the originals, i.e., invalid replicas. This is the
reason why fewer data dissemination gives lower rate of accesses to old replicas.

On Updated Data Dissemination Exploiting an Epidemic Model 319

 0

 5e+10

 1e+11

 1.5e+11

 2e+11

 2.5e+11

 0 500 1000 1500 2000

T
ra

ffi
c

fo
r

U
pd

at
ed

 D
at

a
D

is
se

m
in

at
io

n

MAX_ET

NO
DU

DC/OO
DC/GG

Epidemic

Fig. 12. MAX ET and traffic for updated data dissemination

Fig. 12 shows that as MAX ET gets larger, the traffic for updated data
dissemination in our proposed method gets lower. This is due to the similar
reason as that in Fig. 10. Our method always gives the lowest traffic for updated
data dissemination.

From the above results, it is shown that our method is affected by MAX ET .
Therefore, when we apply our proposed method in a real environment, we should
choose an appropriate value of MAX ET according to the update frequencies of
data items and the system characteristic, e.g., computational and buttery capac-
ities of each mobile host. We should also choose appropriate values of MAX A
and β in the same way.

6 Related Works

In the research field of ad hoc networks, some studies on information dissemina-
tion exploiting epidemic model have been made.

In [2], the authors proposed an autonomous gossiping method which utilizes
the opportunity of connecting with new mobile nodes for efficient data dissemi-
nation. In this method, each mobile host moves or replicates its own data items
to another mobile host based on the host profile and the data item profile. This
method aims to disseminate data items to users who are interested in these
items, and thus, is different from our method that aims to efficiently refresh old
replicas.

In [9], the authors proposed an epidemic model for a simple information dif-
fusion algorithm and analytically investigated the spreading ratio of the infor-
mation. However, they did not propose a concrete algorithm for information
dissemination.

In [10], the authors introduced a distributed lookup service denoted as Pas-
sive Distributed Indexing (PDI) and proposed cache invalidation methods for
reducing inconsistency among PDI index caches. This approach is similar to
our method because a mobile host disseminates an invalidation report when the

320 H. Hayashi, T. Hara, and S. Nishio

mobile host connects to another mobile host. However, this approach is differ-
ent from ours because mobile hosts do not disseminate updated data items, and
thus, data accessibility cannot be improved.

7 Conclusions

In this paper, we proposed an updated data dissemination method exploiting
an epidemic model, which is a popular bio-inspired approach, for reducing the
communication traffic for updated data dissemination. In our proposed method,
mobile hosts disseminate invalidation reports and discard old replicas when a
mobile host updates a data item or when two mobile hosts are newly connected
with each other. A mobile host which discards an old replica requests the updated
data item with a certain probability.

The simulation results showed that, compared with three methods in [7], our
proposed method gives the lowest traffic for updated data dissemination while
the data accessibility is approximately same as that in the DU and DC/OO
methods.

In our proposed method, users need to determine the values of several system
parameters such as Tsnd, α, MAX ET , MAX A, β, and Δt. As part of our
future work, we plan to consider a method for adaptively choosing appropriate
values of these system parameters based on the system environment.

Acknowledgments. This research was partially supported by The 21st Cen-
tury Center of Excellence Program “New Information Technologies for Building
a Networked Symbiotic Environment” and Grant-in-Aid for Young Scientists
(A)(16680005) and for Scientific Research (A)(17200006) of the Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Japan.

References

1. J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva, “A Performance
Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proc. of
MobiCom’98, pp. 85–97, 1998.

2. A. Datta, S. Quarteroni, and K. Aberer, “Autonomous Gossiping: A Self-
Organizing Epidemic Algorithm for Selective Information Dissemination in Wire-
less Mobile Ad-Hoc Networks,” Proc. of Int’l Conf. on Semantics of a Networked
World (ICSNW’04), pp. 126–143, 2004.

3. O. Diekmann, and J.A.P. Heesterbeek, “Mathematical Epidemiology of Infectious
Diseases: Model Building, Analysis and Interpretation,” Wiley Series in Mathe-
matical and Computational Biology, 2000.

4. T. Hara, “Effective Replica Allocation in Ad Hoc Networks for Improving Data
Accessibility,” Proc. of IEEE Infocom’01, pp. 1568–1576, 2001.

5. T. Hara, N. Murakami, and S. Nishio, “Replica Allocation for Correlated Data
Items in Ad-Hoc Sensor Networks,” ACM SIGMOD Record, Vol. 33, No. 1, pp. 38–
43, 2004.

On Updated Data Dissemination Exploiting an Epidemic Model 321

6. H. Hayashi, T. Hara, and S. Nishio, “Cache Invalidation for Updated Data in
Ad Hoc Networks,” Proc. of Int’l Conf. on Cooperative Information Systems
(CoopIS’03), pp. 516-535, 2003.

7. H. Hayashi, T. Hara, and S. Nishio, “Updated Data Dissemination in Ad Hoc
Networks,” Proc. of Int’l Workshop on Ubiquitous Mobile Information and Collab-
oration Systems (UMICS’04), pp. 29–43, 2004.

8. D.B. Johnson, “Routing in Ad Hoc Networks of Mobile Hosts,” Proc. of Int’l
Workshop on Mobile Computing Systems and Applications (WMCSA’94), pp. 158–
163, 1994.

9. A. Khelil, C. Becker, J. Tian, and K. Rothermel, “An Epidemic Model for Infor-
mation Diffusion in MANETs,” Proc. of Int’l Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM’02), pp. 54–60, 2002.

10. C. Lindemann, and O.P. Waldhorst, “Consistency Mechanisms for A Distributed
Lookup Service Supporting Mobile Applications,” Proc. of ACM Int’l Workshop on
Data Engineering for Wireless and Mobile Access (MobiDE’03), pp. 61–68, 2003.

11. C.E. Perkins, and E.M. Royer, “Ad Hoc on Demand Distance Vector Routing,”
Proc. of IEEE Int’l Workshop on Mobile Computing Systems and Applications
(WMCSA’99), pp. 90–100, 1999.

Modeling of Epidemic Diffusion in Peer-to-Peer
File-Sharing Networks

Kenji Leibnitz1, Tobias Hoßfeld2, Naoki Wakamiya1, and Masayuki Murata1

1 Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{leibnitz, wakamiya, murata}@ist.osaka-u.ac.jp
2 Deptartment of Distributed Systems, University of Würzburg,

Am Hubland, 97074 Würzburg, Germany
hossfeld@informatik.uni-wuerzburg.de

Abstract. In this paper we propose an analytical model for file dif-
fusion in a peer-to-peer (P2P) file-sharing network based on biological
epidemics. During the downloading process, the peer shares the down-
loaded parts of the file and, thus, contributes to distributing it in the
network. This behavior is similar to the spreading of epidemic diseases
which is a well researched subject in mathematical biology. Unlike other
P2P models based on epidemics, we show that steady state assumptions
are not sufficient and that the granularity of the diffusion model may be
appropriately selected.

1 Introduction

The volume of traffic transmitted over the Internet has enormously increased re-
cently due to the upcoming of peer-to-peer (P2P) file sharing applications. The
most popular applications, such as Gnutella [1], eDonkey [2], or BitTorrent [3],
are often abused for illegally sharing copyrighted content over the Internet. In
P2P technology, each participant (peer) serves simultaneously as client and
server which makes the system more scalable and robust and distinguishes it
from conventional client-server architectures. However, this also comes at a slight
drawback when considering content distribution. Since now, no longer a single
trusted server distributes the file, malicious peers (pollution/poisoning) [4] can
offer fake or corrupted files and disrupt the file dissemination process. On the
other hand, this can be also used as a method for the rightful owners of the files
to protect their copyrighted property from being illegally distributed.

P2P networks can be briefly classified into pure and hybrid types [5]. Unlike
pure P2P networks, e.g. Gnutella, hybrid networks have additional entities which
have special functions. In the eDonkey network, each peer connects to an index
server which indexes all shared files and over which the search for a certain file is
performed. In a similar manner, BitTorrent uses trackers accessed over WWW
pages to provide the information about other peers sharing the file. Seeders are
peers that offer the complete file for other peers to download. After a file has

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 322–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modeling of Epidemic Diffusion in Peer-to-Peer File-Sharing Networks 323

been downloaded, the peer may itself become a seeder or a leecher who does not
participate in the file sharing after downloading it.

The file diffusion process itself is comparable to the spreading of a disease
in a limited population. There exist many models for population dynamics in
mathematical biology [6] dealing with predicting if a disease will become an epi-
demic outbreak or what vaccination strategy [7] is most appropriate. Epidemic
models are also well suited to model the diffusion behavior of specific informa-
tion in a network, see [8]. In this paper we will use modeling techniques from
biological epidemics to predict the diffusion characteristics of single files shared
in a P2P network. While in most papers, e.g. [9, 10], the steady-state network
performance is investigated, we emphasize on the time-dynamics of the system
which requires us to consider a non-stationary process, e.g. caused by flash crowd
arrivals of file requests. Additionally, our model takes the distinction between
leechers and seeders into account and we show the influence of selfish peers on
the file dissemination process.

2 The eDonkey P2P File-Sharing Application

In the following we will consider a file sharing application similar to eDonkey
which belongs to the class of hybrid P2P architectures and comprises two sepa-
rate applications: the eDonkey client (or peer) and the eDonkey server, see [11].
The eDonkey client shares and downloads files. The eDonkey server operates as
an index server for file locations and distributes addresses of other servers.

A main feature of P2P file sharing applications like BitTorrent, Kazaa, and
eDonkey is the ability to perform multiple source downloads, i.e., peers can issue
two or more download requests for the same file to multiple providing peers in
parallel and the providing peers can serve the requesting peer simultaneously.
Before an eDonkey client can download a file, it first gathers a list of all poten-
tial file providers. To accomplish this, the client connects to one of the eDonkey
servers. Each server keeps a list of all files shared by the clients connected to it.
When a client searches for a file, it sends the query to its main server which may
return a list of matching files and their locations. In [12], we showed from mea-
surements that about 50% of the total number of eDonkey users are connected
to the seven largest index servers with population sizes N of up to 500,000 peers.
This large number allows us to assume a Poisson process for the arrival of file
requests. More details on the file sharing process itself can be found in [12].

The general structure of an arbitrary file f that is shared in the eDonkey
network is depicted in Fig. 1. The file with a size of fs kB comprises a number of
cmax = � fs

cs
� chunks, each with a constant size of cs = 9500 kB with exception of

the final chunk cmax which may be smaller in size. A full chunk is not exchanged
between the peers in whole, but is transmitted in blocks of size bs = 180 kB.

A block is requested from a peer who shares the whole chunk containing this
block. After all blocks of a chunk have been downloaded by a requesting peer, an
error detection mechanism is performed. In eDonkey, this is done via comparing
the hash value of the received chunk with the sender’s hash value of the chunk.

324 K. Leibnitz et al.

bs = 180 kB

cs = 9500 kB

chunk 1 chunk 2 … chunk cmax

block 1 … block bmax

Fig. 1. Structure of a file on eDonkey application layer

In case of an error, i.e., at least one block is corrupted, the complete chunk is
discarded and has to be requested and downloaded again.

After a peer has successfully downloaded all blocks of chunk i, he immediately
acts as a sharing peer for this chunk and the number of sharing peers is incre-
mented by one. Thus, all users in an eDonkey network may act simultaneously as
sharing peers and downloading peers. Although, the user cannot influence that
each chunk is shared during downloading, he can show a different behavior after
the file has been entirely downloaded. We take this into account in our model by
introducing p as the probability that a user shares the file for an exponentially
distributed period B. All users in the system use the identical values of p and
B. Hence, p = 0 indicates a system consisting entirely of leechers, i.e., users who
only share the file during the download and immediately stop sharing it once
the download has been completed.

3 Epidemic Model of File Diffusion

In the following, let us consider a basic epidemic model for P2P file sharing.
In general, epidemic models categorize the population into groups depending
on their state. A commonly used approach is the SIR model [6]. SIR is an ab-
breviation for the states that are taken during the course of the spread of the
disease. At first, there are susceptibles, which are users that can be possibly
infected with a certain rate. When they are contacted with the disease, they
move to the state of infectives and can pass the disease on to other members
of the susceptible population. Finally, there is the removed population, consist-
ing of users who have either fatally suffered from the disease or have recov-
ered and become immune to it. In either case, they can not get infected by
the disease again. An important issue is that the total population N remains
constant.

3.1 Analogy of P2P to Biological SIR Model

In this section we will describe the basic underlying biological model and show
the commonalities with P2P file sharing. Although there are various analogies
between both models, we will see that simply applying an SIR model is in-
sufficient due to the complexity of the P2P applications. However, the principle
time-dynamic modeling technique from biology will be maintained and unlike [9]
we are able to consider cases that are not in steady state.

Modeling of Epidemic Diffusion in Peer-to-Peer File-Sharing Networks 325

I

D S

λ η

μ~

I

D S

λ η

μ~

Fig. 2. Simple IDS state space

We denote the number of susceptibles as idle peers I at a certain time t.
From this set, the file requests are generated with a rate of λ, which can be a
time dependent function or a constant reflecting the popularity of the file over
time, see [12]. Once the peer starts to download the file, he is attributed to the
set of downloading peers D. The download rate μ̃ depends on the number of
peers sharing the file and the other downloading peers, which all compete for
the download bandwidth. Once downloading of the complete file with size fs is
finished, the peer joins the sharing peers S, that offer the file to the other users.
The peer shares the file only for a limited time after which he returns with rate
η to the idle peers, see Fig. 2. This is a rather simplified view for a generic file
sharing application, as the detailed mechanism in eDonkey involves downloading
and sharing chunks of the file. Note that all of the above quantities are functions
of time, but we will drop the time index in the notation for simplification.

Thus, the dynamic system of the sharing process can be expressed by the
equation system given in (1). In analogy to the SIR model, we will refer to it as
the IDS model.

dI

dt
= ηS − λI

dD

dt
= λI − μ̃D

dS

dt
= μ̃D − ηS (1)

The initial values at time t = 0 are I0, S0, and D0 = N − I0 − S0, respectively.
In Eqn. (1) we can at first assume a constant request arrival rate λ which

is adapted to match a Poisson arrival process and the main problem lies in the
determination of the download rate μ̃. Let us define the upload and download
rates as ru and rd, respectively. We assume homogeneous users with ADSL
connections, resulting in rates of ru = 128 kbps and rd = 768 kbps. Since
eDonkey employs a fair share mechanism for the upload rates, there are on
average S/D peers sharing to a single downloading peer and we multiply this
value with ru which gives us the bandwidth on the uplink. However, since the
download bandwidth could be the limiting factors, the effective transition rate
μ consists of the minimum of both terms divided by the file size fs, see Eqn. (2).

μ̃ =
1
fs

min
{

ru S

D
, rd

}
(2)

The dynamics of the populations of D and S are shown in Fig. 3 and compared
to the mean population sizes, i.e., mean number of peers, obtained from the
average over 5000 simulation runs. We selected S0 = 5000, I0 = 100 and a
constant λ of 1300 requests per hour. For the sake of simplicity we consider at
this point η = 0, i.e., all peers remain sharing peers after a completed download

326 K. Leibnitz et al.

� ��� ���� ���� ���� ����

�

���

���

���

���

���

���

	��

��

���

����

��������	
���

���
���

���	

���

sharing S(t)

down-
loading
D(t)

simulation
analysis

Fig. 3. Comparison of simulation results with basic IDS model

and do not leave the system. The shape of the I curves is not very interesting to
us in this scenario, since it just linearly decreases due to the Poisson assumption.

When comparing the simulation with the analytical model, we can see that
the same general shape matches for t > 2000, whereas a problem arises w.r.t.
the accuracy of the model for smaller values of time t. This can be explained as
follows. The transition from D to S is performed only after the complete file with
fixed size fs has been downloaded. The current model using the states I, D, and
S, however, is memoryless and does not take into account the number of bits
that have already been downloaded. The transitions between these states are
given here as rates indicating the “average” number of transitions per time unit.
In reality, the average download rate changes during the downloading process of
an individual peer and it is insufficient to consider it a priori as constant for the
complete file. While this assumption is generally applied in epidemic modeling
of diseases, we wish to provide an enhanced mathematical model by considering
a finer granularity. In the following we will, therefore, minimize the error by
splitting the macro state D into M smaller states corresponding to the number
of bits downloaded. We expect that when M approaches infinity, the error will
be reduced to zero.

3.2 Detailed File Sharing Model

We consider in the following the last downloaded chunk of a file which is the
most interesting case, as its completion results in the completion of the entire
file. The user can then decide whether the whole file is shared or not, i.e., whether
the peer becomes a leecher or a seeder. In the following the terms file and last
downloaded chunk will be used interchangeably.

Let us split the file with size fs into M logical units which we will consider
individually. Our model thus increases by the states D0, . . . , DM . We can in-
terpret the states Di as the state where i logical units have been successfully
downloaded, i.e., D0 means that the download is initiated and DM indicates a
complete download. After reception of each block, the queue mechanism of eDon-
key determines the sharing peers from which the next block will be downloaded.
This involves an update of the download rate μ after each logical unit. If we

Modeling of Epidemic Diffusion in Peer-to-Peer File-Sharing Networks 327

I

D0 DM-1 SD1

λ η

μp

()μ− p1

μ μ μ

Fig. 4. Detailed IDS state space

choose the logical unit as blocks, our model is exact and the obtained numerical
error is acceptably small, cf. Fig. 5(a). The transitions from the states Di use a
rate μ similar to the one described in Eqn. (2).

μ =
M

fs
min

{
ru S∑M−1
i=0 Di

, rd

}
(3)

A further enhancement of the simple model is the introduction of p as the
probability of sharing a file. The updated state space with transitions is illus-
trated in Fig. 4. After the M -th logical unit has been downloaded, the peer enters
the sharing peers with probability p and returns to the idle state with 1 − p.
This corresponds to the user leaving the system after downloading (leecher) or
downloading it another time again at a later time.

The new equation system is summarized below. The original model given in
Section 3.1 corresponds to a value of M = 1. Obviously, the larger M is, the
more accurate is the model, but the computational requirements for solving the
equation system increase as well. Finding a good value of M involves a tradeoff
between accuracy and computation speed.

dI

dt
= (1 − p)μDM−1 − λI + ηS

dS

dt
= p μ DM−1 − ηS (4)

dD0

dt
= λI − μ D0

dDi

dt
= μ (Di−1 − Di) ∀1≤i<M (5)

Again, we must include the condition to keep the total population at the index
server constant at N = I +

∑M
i=1 Di + S.

However, since the equation system is a closed system, it is sufficient to ensure
that the initial values obey this constraint. Hence, we assume that N = I0 +
S0 and Di = 0 for all i. The considered values for M are 1, 2, 18, and 53,
corresponding to the download units of a chunk. Thus, the largest number of
equations is when M = 53 and the units are blocks as described in Section 2.

The extended model is compared to simulation results in Fig. 5(a). We can
recognize that using a large value of M greatly improves the accuracy of the
model. Note that the task of comparing results averaged from simulation runs
to the mathematical model is not fully appropriate. The differential equations
describe the general behavior of a single evolution over time, depending on the
initial values and boundary values. We can easily match the initial values, but the
boundary conditions in the simulation depend for example also on the realization
of each random variable. Each individual simulation run matches exactly the

328 K. Leibnitz et al.

� ��� ���� ���� ���� ����
�

���

���

���

���

���

���

	��

��

���

����

��������	
���

���
���

���	

���

simulation
M = 2
M = 18
M = 53

sharing S(t)

down-
loading
D(t)

(a) Influence of different values of M

� ��� ���� ���� ���� ����
�

��

���

���

���

���

���

���

���

���

���

��������	
���

���
���

���	

���

individual
simulation
runs

analytic
model

average over
simulation runs

(b) Error in average over simulation runs

Fig. 5. Extended IDS model

idle

sharing

downloading

� ��� � ��� � ��� �
�	���

�

���

�

���

�

���

�

���

��

�
�	���

���	���������

���
���

���	

���

(a) p = 0.35

idle

sharing

downloading

� ��� � ��� � ��� �
�	���

�

���

�

���

�

���

�

���

��

�
�	���

���	���������

���
���

���	

���

(b) p = 1.0

Fig. 6. Influence of sharing probability p

shape of the analytical model, however, depending on the random variables can
be different in scale, see Fig. 5(b). When we average over the series of simulation
runs, this leads to the different decreasing slope at about 1700 s in Fig. 5(a).

With our model, we can evaluate the influence of the parameters on the system
behavior. In this paper, we focus on the sharing probability p. Two values of p
are shown in Fig. 6. In Fig. 6(a), p = 0.35 and this percentage of peers becomes
seeders right after downloading. The others return to the idle state and download
the file again at a later time, only then there are more seeders available which
makes the download time very short. The idle users decrease exponentially, since
η = 0 and the sharing users increase accordingly. Finally, all peers will become
seeders in spite of p being less than 1. The higher p is, the faster the file is
distributed among all peers, see Fig. 6(b).

4 Conclusion and Outlook

We presented an analytical model for file diffusion in an eDonkey-like P2P file
sharing network. It is based on an epidemic model like the well-known SIR model,

Modeling of Epidemic Diffusion in Peer-to-Peer File-Sharing Networks 329

but in our case corresponds to the populations of idle peers, peers currently
downloading the file (or chunk), and those sharing it. We could see that using a
simple SIR-like model is not very accurate, nor is the steady state assumption
found in many publications. We, therefore, considered separate populations for
peers having downloaded certain parts of the file and could improve the accuracy
of the model when we compared the results to simulations.

The model provides the foundation to investigate many aspects of file diffusion
properties. We are especially interested in the effects of pollution in P2P file
sharing. Our main objective in the future will be to investigate the influence of
peers sharing polluted data on the dissemination process.

Acknowledgement. This research was supported by “The 21st Century COE
Program: New Information Technologies for Building a Networked Symbiosis
Environment” and a Grant-in-Aid for Scientific Research (A)(2) 16200003 of
the Ministry of Education, Culture, Sports, Science and Technology in Japan.

References

1. Gnutella Protocol Development Website. (http://rfc-gnutella.sourceforge.net/)
2. eDonkey2000 Home Page. (http://www.eDonkey2000.com/)
3. The Official BitTorrent Home Page. (http://www.bittorrent.com/)
4. Liang, J., Kumar, R., Xi, Y., Ross, K.: Pollution in P2P file sharing systems. In:

IEEE INFOCOM, Miami, FL (2005)
5. Schollmeier, R.: A definition of peer-to-peer networking for the classification of

peer-to-peer architectures and applications. In: IEEE 2001 International Confer-
ence on Peer-to-Peer Computing (P2P2001), Linköping, Sweden (2001)

6. Murray, J.: Mathematical Biology, I: An introduction. 3 edn. Springer (2002)
7. Verriest, E., Delmotte, F., Egerstedt, M.: Control of epidemics by vaccination. In:

American Control Conference, Portland, OR (2005)
8. Khelil, A., Becker, C., Tian, J., Rothermel, K.: An epidemic model for information

diffusion in MANETs. In: 5th ACM MSWiM, Atlanta, GA (2002) 54–60
9. Qiu, D., Srikant, R.: Modeling and performance analysis of BitTorrent-like peer-

to-peer networks. In: ACM SIGCOMM’04, Portland, OR (2004)
10. Lo Piccolo, F., Neglia, G., Bianchi, G.: The effect of heterogeneous link capacities

in BitTorrent-like file sharing systems. In: Intern. Workshop on Hot Topics in
Peer-to-Peer Systems (HOT-P2P’04), Volendam, The Nederlands (2004) 40–47

11. Tutschku, K.: A measurement-based traffic profile of the eDonkey filesharing ser-
vice. In: 5th Passive and Active Measurement Workshop (PAM2004), Antibes
Juan-les-Pins, France (2004)

12. Hoßfeld, T., Leibnitz, K., Pries, R., Tutschku, K., Tran-Gia, P., Pawlikowski, K.:
Information diffusion in eDonkey-like P2P networks. In: Australian Telecommun.
Networks and Applications Conference (ATNAC), Bondi Beach, Australia (2004)

A High-Throughput Method to Quantify the
Structural Properties of Individual Cell-Sized

Liposomes by Flow Cytometry

Kanetomo Sato1, Kei Obinata1, Tadashi Sugawara2,
Itaru Urabe3, and Tetsuya Yomo1,3,4,5

1 Department of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

yomo@ist.osaka-u.ac.jp
http://www-symbio.ist.osaka-u.ac.jp/sbj.html

2 Department of Pure and Applied Sciences, University of Tokyo, Komaba,
Meguro-ku, Tokyo 153-8902, Japan

3 Department of Biotechnology, Graduate School of Engineering, Osaka University,
2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

4 Graduate School of Frontier Bioscience, Osaka University, 2-1, Yamadaoka, Suita,
Osaka 565-0871, Japan

5 ERATO, JST, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract. We describe a new high-throughput method to quantify the
structural properties of individual cell-sized liposomes. We labeled an
internal aqueous solution of liposomes with a green fluorescent protein
(GFP) and the membrane with a fatty acid conjugated with a red fluo-
rescent probe. The internal aqueous volume and lipid membrane volume
of each liposome was measured, and double-labeled liposomes were an-
alyzed by flow cytometry, a useful tool that enables us to estimate the
internal aqueous and lipid membrane volumes of individual cell-sized
liposomes independently of shape and structure. This method shows
promise in opening the way to understanding the characteristics of bio-
chemical reactions occurring within a liposome, to optimizing the prepa-
ration method of liposomes, and to overcoming many of the difficulties
in realizing an artificial cell.

1 Introduction

The challenges of constructing an artificial cell may provide clues for understand-
ing the essence of complex biosystems and their origin, [1-4] and the approaches
should be simple yet complex enough to include the essence of living biosystems.
Liposomes have already been used as compartments for artificial cells, and vari-
ous types of biochemical reactions have been carried out within those liposomes.
[1-13] The essence of biochemical reactions within living organisms is RNA syn-
thesis [6-7] and protein synthesis, [6,8-10,13] which have been achieved within
liposomes. It may be possible that constructing a functional cell-free genetic
network[14] in liposomes will lead to achievement of a higher degree of genetic

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 330–337, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A High-Throughput Method to Quantify the Structural Properties 331

complexity. We previously constructed a two-stage cascade genetic network in a
liposome, and Ishikawa et al. demonstrated that the T7 RNA polymerase gene
for an RNA polymerase was expressed at first, then the translated T7 RNA poly-
merase transcripted the mRNA for GFP translation by a T7 promoter.[13] To
advance the prospects for realizing such a system, as a first step it is necessary to
understand the relationship between the structural properties and the character-
istics of the biochemical reactions occurring within the liposomes. This is because
the structural properties of liposomes, including particle size, internal aqueous
volume, composition of lipid mixture, and number of lamellae, promise to be-
come important parameters affecting the properties of biochemical reactions.
Considering that cell-sized liposomes used in constructing an artficial cell are of-
ten a highly heterogeneous mixture in size, shape, and membrane structure[15],
it is desirable to measure quantitatively both the number of lamellae and the in-
ternal volume of individual liposomes simultaneously. Although various methods
have been proposed for determining particle size and distribution [16,17] and the
average internal volume [18,19] of liposomes, these methods are not applicable
to the above aim. Furthermore, although microscopic methods have been used
extensively in the characterization of individual particles, quantitation of images
is difficult and tedious, especially for a large number of particles.

In this paper, we present a high-throughput method to measure simulta-
neously the internal aqueous volume and lipid membrane volume of individual
cell-sized liposomes by flow cytometry. Flow cytometry is an extremely useful
method that employs the principle of light scattering to analyze particles with a
fluorescent marker suspended in a fluid stream. [20] Each individual particle is
measured in a continuous flow system; in a way, a flow cytometer can be consid-
ered as a high-throughput fluorescence microscope able to detect and read mul-
tiple signals of a specific intensity range. The powerful analysis functions of flow
cytometry make this technology ideal for reliable and accurate quantitative eval-
uation of structual properties of liposomes. In this research, the internal solution
and membrane lipid were labeled with green and red fluorescent markers, [9,21]
respectively. Fluorescence intensity data collected with a fluorescence-activated
cell sorter (FACS) were corrected for the background, compensated for the over-
lapping fluorescence, converted to the number of marker molecules, and then to
the volume of the internal solution or lipid membrane. This study promises to
open a new avenue toward the realization of an artificial cell.

2 Material and Method

2.1 Materials

1-Palmitoyl-2-oleoyl-sn-phosphatidylcholine (POPC), 1-palmitoyl-2-linoleoyl-
sn-phosphatidylcholine (PLPC), 1-stearoyl-2-oleoyl-sn-phosphatidylcholine
(SOPC), and 1-stearoyl-2-linoleoyl-sn-phosphatidylcholine (SLPC) were pur-
chased from Avanti Polar Lipids, Inc. Cholesterol was from Nacarai Tesque,
Inc., and distearoyl phosphatidyl ethanolamine-poly(ethylene glycol) 5000
(DSPE-PEG5000) was kindly supplied by NOF Corporation. R-phycoerythrin

332 K. Sato et al.

(PE) was purchased from Molecular Probes, Inc., and 11-{3”,5”-bis(4”’-methoxy
phenyl)-4”, 4”-difluoro-4”-bora-3a,4a-diaza-s-indacenyl}-3’,5’-dimethylphenoxy
undecanoic acid (BODIP Y-RED-UA) was synthesized according to the
literature. [21] Enhanced green fluorescent protein (EGFP) was purchased
from BD Biosciences Clontech. The molar absorption coefficient of the EGFP
was described as 55,000 M−1cm−1 at 488nm accoding to the BD Living
ColorsTMUser Manual. A purified mutant green fluorescent protein with a
His-tag (GFPmut2-His6) was prepared as described previously. [9] (We found
the mistake in the sequence of mutant GFP previously described [9,13]: the
sequence should not be GFPmut1 but GFPmut2.) The molar absorption
coefficient of the protein at 280 nm was determined to be 31,800 M−1cm−1

from the value of absorbance at 280 nm and the amino acid composition of the
purified protein solution, as described previously. [22]

2.2 Liposome Preparation

Liposomes were prepared based on the freeze-dried empty liposomes method,
[23] and the procedures were the same as those reported previously, [13] except
that the experiments were carried out at room temperature unless otherwise
stated. The lipid mixture (1.2 μmol; molar ratio of POPC:PLPC:SOPC:
SLPC:cholesterol: DSPE-PEG5000:BODIPY-RED-UA = 129:67:48:24:180:14:1)
dissolved in dichlor omethane/diethyl ether (1:1, v/v) was rotary-evaporated
in a pear-shaped flask under vacuum to yield a thin lipid film. The lipid
composition was almost the same as that reported previously, [9,13] except
that BODIPY-RED-UA was added and egg yolk phosphatidyl choline (eggPC)
was replaced with a mixture of POPC, PLPC, SOPC, and SLPC, of which
the molar ratio was adjusted to that of eggPC (the analytical data were kindly
provided by NOF Corporation).

2.3 Flow Cytometry

The liposomes were analyzed with an EPICS R©ALTRATMHyPerSort FACS
(Beckman Coulter, Inc.) equipped with a 488-nm water-cooled argon ion laser
(Coherent Japan, Inc.) at 20 mW. Before the analysis, the liposome dispersion
prepared above was diluted about 200 times with the isotonic buffer of 125 mM
Tris-HCl (pH 7.8) to allow a rate of analysis below 2,000 events/s. The Flow-
checkTMFluorospheres 10-μm beads (Beckman Coulter, Inc.) were introduced
prior to measuring the samples for alignment of the laser source, in order to
set the half-peak coefficient of variation (CV) to less than 2 %. To calibrate
the daily variance, fluorescence-labeled latex beads of 0.5, 0.75, 1, 3, and 6-μm
diameter (Polyscience, Inc.) and non-fluorescent 1.5-μm latex beads were used.
A discriminator of 10 channels out of 1,024 was set on forward-scatter (FS) to
eliminate the influence of machine noise. Side-scatter (SS) signals were measured
using in succession a 488-nm dichroic lens and a bandpass filter at 488 nm. GFP
fluorescence signals were measured employing in succession a 488-nm band-block
filter, a 550-nm dichroic lens, and a band-pass filter at 525±20nm. BODIPY flu-
orescence signals were measured successively by a 488-nm band-block filter, a

A High-Throughput Method to Quantify the Structural Properties 333

550-nm dichroic lens, a 600-nm dichroic lens, and a band-pass filter at 610±10nm.
FS, SS, and fluorescence data were collected with a logarithmic amplifier. The
liposome count number was set to be 2.0 x 105.

2.4 Estimation of Internal Aqueous Volume and Lipid Membrane
Volume

The data on fluorescence intensity collected with FACS were changed from
the log channel number to the relative intensity number according to the
EPICSTMHy PerSort system manual. For background correction, we used the
data obtained for blank liposomes prepared by the same procedures as described
above, except for omitting GFPmut2-His6 and BODIPY-RED-UA. The blank
liposomes were scattered across the log(FS) and log(SS) plane according to their
FS and SS values, the plane was divided into small blocks (32x32 channels),
and then fluorescence intensity values of the blank liposomes in each small block
were averaged. The average value was used as the blank value included in the
fluorescence intensity values of individual GFP- and BODIPY-double-labeled li-
posomes contained in the same block on the plane. It was confirmed that the
omission of GFPmut2-His6 and BODIPY-RED-UA does not change the scat-
tering pattern of liposomes on the log(FS) and log(SS) plane. Since two types
of fluorescence signal, green and red, were used to simultaneously quantify the
internal and membrane volumes of individual liposomes, the fluorescence signals
obtained by FACS need to be compensated for overlapping fluorescence. [24] Be-
for compensation, it was confirmed that two types of the fluorescent spectrums,
EGFP and GFPmut2-His6, overlapping to the band-pass filter at 610±10nm
were almost the same. FACS analysis of EGFP calibration beads (BD Living
ColorsTMEGFP Calibration Beads, BD Clontech), where EGFP is covalently
bound, showed that the intensity of EGFP fluorescence overlapping the BOD-
IPY fluorescence value is 0.057 % of the EGFP fluorescence intensity. On the
other hand, FACS analysis of BODIPY-labeled liposomes, which were prepared

3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

A

6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

B
2.5

2

1.5

1

0.5

3.5 5.554.543
0

lo
g(

flu
or

es
ce

nt
 in

te
ns

ity
)

log(the number of GFPmut2-His6 molecules)

lo
g(

flu
or

es
ce

nt
 in

te
ns

ity
) 2

-1

1.5

1

0.5

0

6 87.576.55.5

-0.5

log(the number of BODIPY-RED-UA molecules)

3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

A

6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

B
2.5

2

1.5

1

0.5

3.5 5.554.543
0

lo
g(

flu
or

es
ce

nt
 in

te
ns

ity
)

log(the number of GFPmut2-His6 molecules)

lo
g(

flu
or

es
ce

nt
 in

te
ns

ity
) 2

-1

1.5

1

0.5

0

6 87.576.55.5

-0.5

log(the number of BODIPY-RED-UA molecules)

3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

A

3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

A

6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

B

6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

6 6.5 7 7.5 8

-0.5

0

0.5

1

1.5

2

B
2.5

2

1.5

1

0.5

3.5 5.554.543
0

lo
g(

flu
or

es
ce

nt
 in

te
ns

ity
)

log(the number of GFPmut2-His6 molecules)

lo
g(

flu
or

es
ce

nt
 in

te
ns

ity
) 2

-1

1.5

1

0.5

0

6 87.576.55.5

-0.5

log(the number of BODIPY-RED-UA molecules)

Fig. 1. The standard curves for GFPmut2-His6 (A) and BODIPY-RED-UA (B).The
equation in A is [log(GFPmut2-His6 fluorescent intensity) = 1.0·log(the number of
GFPmut2 molecules) —3.4] , and that in B is [log(BODIPY-RED-UA fluorescent
intensity) = 0.94·log(the number of BODIPY-RED-UA molecules) — 6.0]. The values
of the R2 for these lines exceed 0.99.

334 K. Sato et al.

by the same procedures as above except for omitting GFPmut2-His6, showed
that the intensity of BODIPY fluorescence overlapping the GFP fluorescence
value is 3.6 % of the BODIPY intensity. Using these data, the effects of over-
lapping fluorescence were eliminated by calculation [24] from the background-
corrected GFP and BODIPY fluorescence intensities obtained by FACS. We
have confirmed that the concentrations of fluorescent probes, GFPmut2-His6 (3
μM) and the BODIPY-RED-UA (0.22 mol%), used in this work lie in a lin-
ear range between the concentration of fluorescent molecules and fluorescence
intensities.

The corrected values of the GFP and BODIPY fluorescence intensities were
converted to the numbers of GFPmut2-His6 and BODIPY-RED-UA molecules,
respectively, contained in each liposome by using standard curves (Fig. 1), which
were constructed from the FACS analysis of the EGFP calibration beads (see
above) and the QuantiBRITETMPE Quantitation kit (BD Bioscience), respec-
tively. Before the conversion, since the former kit uses EGFP as a green flu-
orescence marker, the EGFP fluorescence intensity was changed to the corre-
sponding intensity of GFPmut2-His6 fluorescence using a coefficient for which
the EGFP fluorescence is 1.4 times as intense as that of the GFPmut2-His6 flu-
orescence. The coefficient was determined using 83, 167, and 250 nM EGFP and
100, 150, and 250 nM GFPmut2-His6 in 10mM Tris-HCl(pH 7.8). Their fluores-
cence signals exited at 488 nm and, through a band-pass filter at 525±20nm,
were recorded by a Hitachi F-2000 spectrofluorometer. Each fluorescence signal
was integrated, and the values were plotted for each GFP against GFP concen-
tration. The value of the coefficient was calculated from the slopes of the two
regression lines. On the other hand, since the latter kit uses R-phycoerythrin
(PE) as a red fluorescence marker, the PE fluorescence intensity was changed to
the corresponding intensity of BODIPY fluorescence using a coefficient for which
the PE fluorescence is 731 times as intense as that of the BODIPY fluorescence.
The coefficient was determined using 4.7, 9.4, and 18.7 μM BODIPY-RED-UA
in dichloromethane and 83, 125, and 167 nM PE in phosphate-buffered saline
(pH 7.4). Their fluorescence signals exited at 488 nm and, through a band-pass
filter at 610±10nm, were recorded by a Hitachi F-2000 spectrofluorometer. Each
fluorescence signal was integrated, and the values were plotted for each dye
against dye concentration. The value of the coefficient was calculated from the
slopes of the two regression lines. The internal aqueous volume of a liposome
was determined from the number of GFPmut2-His6 molecules in the liposome
using a GFPmut2-His6 concentration of 3 μM. The lipid membrane volume of a
liposome was determined from the number of BODIPY-RED-UA molecules in
the liposome and the volume of lipid bilayer per BODIPY-RED-UA molecule
estimated as follows. From the lipid composition of liposomes prepared in this
work, the volume of lipid bilayer per BODIPY-RED-UA molecule was estimated
to be 5.87 x 10−7 μm3 using the value for the thickness of a 4.51 nm [25] lipid
bilayer and the values of the surface areas of phosphatidyl cholines, cholesterol,
and DSPE-PEG5000 of 0.694 nm2, [25] 0.38 nm2, [26,27] and 0.413 nm2, [28]
respectively.

A High-Throughput Method to Quantify the Structural Properties 335

3 Distribution of the Internal Aqueous Volume and Lipid
Membrane Volume of Each Individual Liposome

Based on FACS data, Fig. 2 shows the double-labeled liposomes scattered as
dots on the plane of the internal aqueous vomule (VI) and the lipid membrane
volume (VM) calculated from the GFP and BODIPY fluorescence, respectively,
as described above. Assuming that liposomes are simple spherical, multilamellar
vesicles, the number of lamellae, L, in each liposome is related to VI and VM

by the following equation:

VM = (4π/3){(3VI/4π)1/3 + d·L}3 - VI , (1)

where d is the thickness of a lipid bilayer. The black lines in Fig. 2 are drawn
using Eq. (1) with the indicated L values and a d value [25] of 4.51 nm. The
results reveal that 80 % of the liposomes detected by FACS have 10 to 100
membranes, 19 % have more than 100 membranes, and only 0.6 % have fewer
than 10 membranes. The contours of particle density are drawn in white lines in
Fig. 2. A high-density region forms an elliptic shape with the long axis parallel to
the lines with constant L values (10 < L < 100), and a short ridge from that region
is seen to jut out in the same direction. On the other hand, a long main ridge
extends toward the upper-right direction. This distribution pattern suggests that
the liposome preparation consists of at least two components: Liposomes in one
group have thinner membranes with a narrow range of the number of lamellae
and a wide variety in their internal volume, whereas the number of lamellae of
liposomes in another group grows with an increase in the liposomes’ internal
volume.

Fig. 2. Dot plot and contour-density plot of GFP- and BODIPY-double-labeled lipo-
somes on the internal aqueous volume and lipid membrane volume plane

336 K. Sato et al.

4 Discussion

Cell-sized liposomes are useful for constructing an artificial cell, which may pro-
vide clues for understanding the essence of life and its origin. [1-4] Because the
preparation for the cell-sized liposome is a highly heterogeneous mixture, [15] it
is crucial to measure the properties of individual liposomes in the as-prepared
condition, and to correlate the structural parameters to the biochemical proper-
ties of each liposome.

Through conducting this research, we have established a new, high-
throughput method to quantify the structural properties of individual cell-sized
liposomes by using flow cytometry. This method of determining both the in-
ternal aqueous volume and the lipid membrane volume of individual liposomes
requires no special assumptions about the shape and structure of liposomes. The
fact that the structural and biochemical properties of individual liposomes can
be analyzed opens the way to understanding the characteristics of biochemical
reactions occurring within a liposome, to optimizing the preparation method of
liposomes, and to overcoming many of the difficulties in realizing an artificial cell.

The system of biochemical network reactions in the living cell is robust,
adaptable, and able to evolve against environmental perturbations. In construct-
ing an experimental approach that uses a model system of artificial cells, it is
important to comprehend the difference of the properties of the network system
between living cells and artificial ones. Such an understanding will provide clues
for elucidating the essence of life and for controlling the man-made network sys-
tem robustly just as living cells do. The knowledge acquired from these efforts
will lead to further ideas for developing applications to control bio-inspired in-
formation technology and architecture. Our results in this work are a most basic
but important step toward achieving above aim, and we are now analyzing and
attempting to understand the difference of the biochemical reactions between
the artificial cell and the living one.

References

1. Szostak, J.W., Bartel, D.P., Luisi, P.L.: Synthesizing life. Nature 409 (2001) 387-
390

2. Luisi, P.L.: Toward the engineering of minimal living cells. Anat. Rec. 268 (2002)
208-214

3. Luisi, P.L.: Autopoiesis: a review and a reappraisal. Naturwissenschaften 90 (2003)
49-59

4. Deamer, D.: A giant step towards artificial life? Trends Biotechnol. 23 (2005) 336-
338

5. Pohorille, A., Deamer, D.: Artificial cells: prospects for biotechnology. Trends
Biotechnol. 20 (2002) 123-128

6. Monnard, P.-A.: Liposome-entrapped polymerases as models for mi-
croscale/nanoscale bioreactors. J. Membrane Biol. 191 (2003) 87-97

7. Oberholzer, T., Wick, R., Luisi, P.L., Biebricher, C.K.: Enzymatic RNA replication
in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res.
Commun. 207 (1995) 250-257

A High-Throughput Method to Quantify the Structural Properties 337

8. Oberholzer, T., Nierhaus, K.H., Luisi, P.L.: Protein expression in liposomes.
Biochem. Biophys. Res. Commun. 261 (1999) 238-241

9. Yu, W., Sato, K., Wakabayashi, M., Nakaishi, T., Ko-Mitamura, E.P., Shima, Y.,
Urabe, I., Yomo, T.: Synthesis of functional protein in liposome. J.Biosci. Bioeng.
92 (2001) 590-593

10. Nomura, S.M., Tsumoto, K., Hamada, T., Akiyoshi, K., Nakatani, Y., Yoshikawa,
K.: Gene expression within cell-sized lipid vesicles. ChemBioChem 4 (2003) 1172-
1175

11. Hanczyc, M.M., Fujikawa, S.M., Szostak, J.W.: Experimental models of primitive
cellular compartments: encapsulation, growth, and division. Science 302 (2003)
618-622

12. Chen, I.A., Roberts, R.W., Szostak, J.W.: The Emergence of Competition Between
Model Protocells. Science 305 (2004) 1474-1476

13. Ishikawa, K., Sato, K., Shima, Y., Urabe, I., Yomo, T.: Expression of a cascading
genetic network within liposomes. FEBS Lett. 576 (2004) 387-390

14. Noireaux, V., Bar-Ziv, R., Libchaber, A.: Principles of cell-free genetic circuit as-
sembly. Proc. Natl. Acad. Sci. USA 100 (2003) 12672-12677

15. Svetina, S., Žekš, B.: Shape behavior of lipid vesicles as the basis of some cellular
processes. Anat. Rec. 268 (2002) 215-225

16. Woodle, M.C., Papahadjopoulos, D.: Liposome preparation and size characteriza-
tion. Methods Enzymol. 171 (1989) 193-217

17. Lesieur, S., Grabielle-Madelmont, C., Paternostre, M.-T., Ollivon, M.: Size analysis
and stability study of lipid vesicles by high-performance gel exclusion chromatog-
raphy, turbidity, and dynamic light scattering. Anal. Biochem. 192 (1991) 334-343

18. Oku, N., Kendall, D.A., MacDonald, R.C.: A simple procedure for the determi-
nation of the trapped volume of liposomes. Biochim. Biophys. Acta 691 (1982)
332-340

19. Perkins, W.R., Minchey, S.R., Ahl, P.L., Janoff, A.S.: The determination of lipo-
some captured volume. Chem. Phys. Lipids 64 (1993) 197-217

20. Shapiro, H.M.: Practical Flow Cytometry, 3rd ed.; John Wiley & Sons; New York,
(1995)

21. Yamada, K., Toyota, T., Takakura, K., Ishimaru, M., Sugawara, T.: Preparation
of BODIPY probes for multicolor fluorescence imaging studies of membrane dy-
namics. New J. Chem. 25 (2001) 667-669

22. Suga, Y., Yomo, T., Urabe, I.: Heme content of catalase I from Bacillus stearother-
mophilus J. Ferment. Bioeng. 81 (1996) 259-261

23. Kikuchi, H., Suzuki, N., Ebihara, K., Morita, H., Ishii, Y., Kikuchi, A., Sugaya,
S., Serikawa, T., Tanaka, K.: Gene delivery using liposome technology. J. Control.
Release 62 (1999) 269-277

24. Bagwell, C.B., Adams, E.G.: Fluorescence spectral overlap compensation for any
number of flow cytometry parameters. Ann. NY Acad. Sci.677 (1993) 167-184

25. Nagle, J.F., Tristram-Nagle, S.: Structure of lipid bilayers. Biochim. Biophys. Acta
1469 (2000) 159-195

26. Hofsäβ, C., Lindahl, E., Edholm, O.:Molecular dynamics simulations of phospho-
lipid bilayers with cholesterol. Biophys. J.84 (2003) 2192-2206

27. Craven, B. M.: Pseudosymmetry in cholesterol monohydrate. Acta Cryst. B35
(1979) 1123-1128

28. Israelachvili, J.N., Mitchell, D.J.: A model for the packing of lipids in bilayer mem-
branes. Biochim. Biophys. Acta 389 (1975) 13-19

A User Authentication System Using Schema
of Visual Memory

Atsushi Harada, Takeo Isarida, Tadanori Mizuno, and Masakatsu Nishigaki

Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8011, Japan
isarida@ia.inf.shizuoka.ac.jp

{cs7072, mizuno, nisigaki}@cs.inf.shizuoka.ac.jp

Abstract. On many image-based user authentication systems, they
have to present a user’s pass-image on their display at each authenti-
cation trial, so they can be vulnerable against an observing attack. This
paper proposes a user authentication system using “unclear images” as
pass-images, in which only the legitimate users are allowed to see the
original images corresponding to the unclear pass-images in the enroll-
ment phase. The legitimate users can easily remember their unclear pass-
images by using the original images as clues, while illegal users without
the clues have difficulties to find out and remember the other user’s un-
clear pass-images.

1 Introduction

Although password-based systems are now widely used in all kinds of authenti-
cation, they have some shortcomings in its neglecting of a human limitation. On
the password-based systems, if a user chooses a short or a meaningful password,
it can easily be guessed by a password crack program. To avoid this, users must
choose secure passwords (long and random strings). However, most of users pre-
fer to use simple passwords or hesitate to change them frequently since it is not
easy for humans to remember a long and random string. In fact, it is known that
many users tend to use their names or birthdays as their passwords, to write
down their passwords in pocket notebooks, or to reuse the same password in
different cases of authentication. These humans’ behaviors degrade the security
of the authentication system. Further information about the shortcomings of
password-based systems is described in [1].

To cope with these shortcomings, image-based user authentication systems
using “pass-images” instead of passwords have been studied for reducing the
burden of memorizing passwords. The authentication based on recognition of
pass-images [1, 3, 4, 5] is especially effective since humans are significantly more
efficient about recognition of previously seen images than precise recall of pass-
words. However, on such systems, there is another problem that it is needed to
present a user’s pass-image on their display at each authentication trial, so they
can be vulnerable against an observing attack (shoulder surfing). An observing
attack can be a serious problem for image-based authentication systems since the

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 338–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A User Authentication System Using Schema of Visual Memory 339

use of the images makes it easier not only for the legitimate users to remember
their pass-images, but also for an attacker to peep and remember them.

Moreover, attention needs to be paid to illegal acts by the legitimate users; a
legitimate user could intentionally leak his/her own authentication information
to the others, e.g. for illegal sharing of a content. Pass-images are still easy to
be shared since users could tell the meanings of their pass-images to the others
even if we use “random-art” images (abstract images consisted of some geometric
patterns produced by random computation [2]) as pass-images [1].

To solve this problems mentioned above, this paper proposes a user authenti-
cation system using “unclear images” as pass-images. An unclear image is created
from an original meaningful image by image processing such as grayscaling, mo-
saicing, and noise adding to the spatial frequency domain. An unclear image still
has some meanings of the original image, but it looks like a meaningless image
for the users who have never seen the original image. Even for humans it is hard
to remember a meaningless image.

Only the legitimate users are allowed to see the original images corresponding
to their unclear pass-images in the enrollment phase. By seeing the original
images, the legitimate users can recognize the meaning in the unclear pass-images
and can easily remember them by using the original images as clues. In other
words, our scheme gives only the legitimate users a kind of knowledge of their
unclear pass-images by showing the corresponding original images. This kind of
knowledge is called as “schema” in cognitive psychology [6]. Schema means a
structure of knowledge that is unconsciously organized in humans’ mind when
humans memorize any incoming information. If once a legitimate user forms the
schema of his/her unclear pass-images which is associated with the corresponding
original image, he/she can easily recognize the meaning of the unclear pass-
image. Therefore, the legitimate users can remember their unclear image as if it
is a meaningful image, so the burden of memorizing their pass-images is small.

Usually, users cannot learn the appropriate schema without seeing the corre-
sponding original image. Therefore, it is expected to be difficult for illegal users
to remember the legitimate user’s unclear pass-image, even if the illegal users are
allowed to freely observe the legitimate users’ authentication trial. In addition,
it is also expected to be difficult for a legitimate user to leak his/her unclear
pass-image precisely to anyone with words via e-mail or telephone.

2 Authentication System Using Unclear Images

2.1 Unclear Images

Unclear images O(x, y) are produced from the meaningful color images I(x, y)
(original images) such as photographs.

1. The original image is a 256-color 300 × 300 pixel image I(x, y).
2. The system creates I ′(x, y) by converting I(x, y) to grayscale image and

applying histogram equalization.

340 A. Harada et al.

0.4

0.4

0.6

0.6

L

H

Fig. 1. Noise range for creation of
an unclear image

Fig. 2. An example of the original image
and the corresponding unclear image

3. The system creates I ′′(x, y) by mosaicing I ′(x, y), where the size of mosaic
block is 6 × 6 pixel each. That is, each mosaic block of I ′′(x, y) is painted
in the averaged color of the 6 × 6 pixels.

4. The system can contract I ′′(x, y) by viewing each mosaic block (6 × 6
pixels) of I ′′(x, y) as a pixel. By doing so, the system obtains M(k, l) with
50 × 50 pixels.

5. The system applies 2-D DCT (discrete cosign transform) to M(k, l), where
in this system DCT block size is 50 × 50 for simplicity.

6. The system adds some noise to the DCT coefficients obtained at step 5.
In this system, the DCT coefficients at the gray area depicted in Fig. 1 are
changed to values from −100 to 100 randomly, and the DC (direct current)
coefficient is set to 0. Then the system gets M ′(k, l) by applying IDCT
(inverse DCT) to M(k, l) with the modified DCT coefficients.

7. The system extends each pixel of M ′(k, l) to 6 × 6 mosaic blocks and
applies histogram equalization again, then gets I ′′′(x, y) with 300 × 300
pixels.

8. The system finally outputs O(x, y) by overlaying I ′′(x, y) on I ′′′(x, y) with
the following calculation, where w = 0.3 in this system.

O(x, y) = wI ′′(x, y) + (1 − w)I ′′′(x, y), ∀(x, y) . (1)

The left image in Fig. 2 shows an example of the original image. Using the
above procedure, the right image in Fig. 2 is created. Although the unclear im-
age loses its color and resolution considerably, it still holds a certain degree of
information of the original image.

2.2 Authentication Procedure

Enrollment Phase

1. The system shows a certain numbers of the original images to the user.
2. The user chooses one original image which he/she would like to use as a

source of his/her pass-image.
3. The system creates the unclear image from the original image chosen by

the user.

A User Authentication System Using Schema of Visual Memory 341

4. The user remembers the unclear image as his/her pass-image. Note that
since the user has seen the original image at step 1, the user can easily
remember the unclear image.

Authentication Phase

1. The system presents the user’s unclear pass-image along with some ran-
domly chosen decoy unclear images. (The decoy images could be defferent
in every authentication trial.)

2. The user should find out his/her unclear pass-image among the images.
3. If the user can answer the correct pass-image, the user is authenticated.

According to the required security level, the number of pass-images, the num-
ber of decoy images and the number of repetition (rounds) of authentication
phases are decided. Note that this authentication procedure is hardly different
from the procedure employed in the conventional image-based authentication
systems [1, 3, 4, 5] except using unclear images.

3 Comparative Experiments

This section carries out experiments for confirming that our scheme has ro-
bustness against an observing attack and leakage of pass-images with words,
compared to the conventional schemes.

3.1 Observing Attacks

System for the Experiment

a) Photograph authentication system. This system uses 90 photographs of
well-known animals as pass-images.

b) Color random-art authentication system. This system uses 90 color random-
art images [2] as the pass-images.

c) Grayscale random-art authentication system. This system uses 90 grayscale
random-art images as the pass-images, where the images are generated by
grayscaling the color random-art images of system b).

d) Unclear image authentication system (our scheme). This system uses 90
unclear images as the pass-images, where the images are created from the
photographs of system a) by the procedure in Sect. 2.1.

The authentication of system d) is done by the procedure described in
Sect. 2.2. Systems a), b) and c) employ the same authentication procedure as
system d) except using their own types of pass-images respectively. System
a) is an equivalent system of the conventional schemes based on photographic
images [3, 4, 5], and systems b) and c) are the system based on random-art
images [1].

In all the systems, the number of pass-images that a user should remem-
ber is one, and the number of the decoy images that are presented along with

342 A. Harada et al.

(a) Photograph (b) Color random-art

(c) Grayscale random-art (d) Unclear image

Fig. 3. The systems for the comparative experiment

the pass-image in each authentication phase is one. That is, the authentication
in this experiments is a kind of “multiple choice question with 2-alternatives”,
where user authentication is completed by choosing one image from two (left
or right). In this paper, let us refer to the system as “2-alternative-typed au-
thentication”. Figs. 3(a)–3(d) show the views of authentication windows of the
systems a)–d).

Method. The examinees in the experiment are 10 male volunteers of college
students. At first, each examinee is allowed to observe a legitimate user’s authen-
tication once; the examiner (a legitimate user) chooses the correct pass-image
with a mouse click just in front of the examinee (an attacker). Then, the ex-
aminee is immediately required to impersonate the legitimate user. Here, the
examiner always waits for 5 seconds then chooses the pass-image, i.e. the obser-
vation time for examinees is 5 seconds. The case of 1 second waiting is examined,
too. The experiment is repeated five times with different pass-images for each
examinee. The attack success rate and the time for each authentication are
recorded.

Results. The upper part of Table 1 shows the results of the experiment. On
systems a), b) and c), even if the observation time was only 1 second, the attack-
ers (examinees) could perfectly remember the legitimate user’s pass-image. On
the other hand, our scheme d) could decrease the attack success rate by about
10 percent. We know that this experiment is considerably advantageous to at-
tackers since the number of decoy images is only one (the 2-alternative-typed
authentication). Therefore, “decreasing of the attack success rate by 10 percent”
is a big improvement.

A User Authentication System Using Schema of Visual Memory 343

3.2 Leakage of Pass-Images with Words

Systems for the Experiment. The same systems as those used in Sect. 3.1 are
used again. However, system a) is excluded in this experiment, since it is obvious
that users can easily leak their photographic pass-images to anyone with words.

Method. The examinees in the experiment are 10 male volunteers of college
students. At first, each examinee is allowed to get information of a legitimate
user’s pass-image; the examiner (a legitimate user) tells the characteristics of
the pass-image to the examinee (an attacker) with words. Then, the examinee
is immediately required to impersonate the legitimate user; the examinee tries
the authentication for the examiner. The experiment is repeated five times with
different pass-images for each examinee. The attack success rate and the time
for each authentication are recorded.

The information that the examiner gave to the examinees is as follows re-
spectively; for systems b) and c): “main geometric patterns in the pass-image
(line, circle, etc.)”, “its color and layout”, and “simple or complex”, for system
d): “the category of the animal (dog, cat, etc.)”, “which direction the animal is
facing to”, “whole body or a part”, and “standing or sitting”.

Results. The middle part of Table 1 shows the results of the experiment. On
systems b) and c), the examinees could perfectly succeed in impersonating the

Table 1. Results of the experiments

Observing attack

System Observation time Attack success rate Average time per round

a) 5 sec. 50/50 (100%) 1.332 sec.
1 sec. 50/50 (100%) 1.364 sec.

b) 5 sec. 50/50 (100%) 1.599 sec.
1 sec. 50/50 (100%) 1.397 sec.

c) 5 sec. 50/50 (100%) 1.671 sec.
1 sec. 50/50 (100%) 1.469 sec.

d) 5 sec. 46/50 (92%) 2.655 sec.
1 sec. 45/50 (90%) 3.133 sec.

e) 15 sec. 13/50 (26%) 18.382 sec.

Leakage of pass-images with words

System - Attack success rate Average time per round

b) - 50/50 (100%) 3.705 sec.
c) - 50/50 (100%) 2.881 sec.
d) - 37/50 (74%) 10.910 sec.
e) - 0/50 (0%) 29.049 sec.

Authentication by the legitimate users

System Authentication day Success rate Average time per round

e) 1 day later 50/50 (100%) 8.194 sec.
8 days later 49/50 (98%) 7.104 sec.

344 A. Harada et al.

legitimate user with the information that the legitimate user told them. On the
other hand, our scheme d) could decrease the attack success rate to 74 percent.
We know that this experiment is considerably advantageous to attackers since
the number of decoy images is only one. Therefore, “decreasing of the attack
success rate to 74 percent” is a big improvement.

3.3 Consideration

From the results of experiments in Sects. 3.1 and 3.2, it is confirmed that our
scheme has a higher robustness against an observing attack and leakage of the
pass-images compared to the systems based on photographic and random-art
pass-images. It should be noted that our scheme could reduce the attack suc-
cess rate even in an advantageous experiment for attackers (2-alternative-typed
authentication). It is expected that our scheme can further reduce the attack
success rate in N-alternative-typed authentication. However, the number of al-
ternatives might also affect the recognition capability of the legitimate user, since
the legitimate user would be more confused as the decoy images increase. Con-
sequently, we will conduct more practical experiments in the following section.

4 Experiments on 9-Alternative-Typed System

4.1 Authentication by the Legitimate Users

In this section, the experiments with a 9-alternative-typed authentication system
are carried out.

System for the Experiments. At first, the system d) in Sect. 3 is modified
to 9-alternative-typed authentication system, in which the user has to choose
his/her pass-images from 9 unclear images. Then, we set the number of rounds
in an authentication of the system as four. That is, users are required to remem-
ber 4 of unclear pass-images and to repeat 4 rounds of the 9-alternative-typed
authentication. In each round, the system chooses one pass-image randomly
and presents it along with 8 decoy unclear images to the user. The system never
chooses any pass-image that has been already chosen during the previous rounds.
Only when the user can answer all the pass-images correctly in each of four
rounds, the user is authenticated. Thus the probability that a brute-force at-
tack will be successful is 1/94, which is nearly comparable to 4-digit PIN system
(1/104). Let us refer to this system as system e).

Method. The examinees in the experiment are 10 male volunteers of college
students. Firstly, each examinee registers 4 distinct unclear pass-images. Then,
on the following day and 8 days later, every examinee is required to try the
authentication (4 rounds of 9-alternative-typed authentication). The experiment
is repeated five times with the same set of pass-images. The authentication
success rate and the time taken to find out the pass-images among 9 alternatives
for each round of authentications are recorded.

A User Authentication System Using Schema of Visual Memory 345

Results. The lower part of Table 1 shows the results of the experiment. All
examinees have succeeded in the authentication of 8 days later as well as on the
following day. The examinee who has failed once in authentication of 8 days later
told us that he had not forgotten any of his pass-images, but just incautiously
chosen a wrong image that resembles to one of his pass-images.

4.2 Observing Attack and Leakage of Pass-Image

As in the case of Sect. 3, the experiments for observing attack and leakage of
pass-images on 9-alternative-typed system have also been conducted. These ex-
periments use the same system as that of Sect. 4.1 (system e)). The results of
these experiments are shown in the last rows of the upper and middle part of
Table 1. The success rate of an observing attack has decreased to 26 percent,
and the attack success rate of the leakage of the pass-images with words has
achieved 0 percent.

5 Conclusions and Future Work

In this paper, we proposed a user authentication system using unclear images as
pass-images. From the experiments in Sects. 3 and 4, the effect of using unclear
images as pass-images has been basically confirmed. In the future, we would
like to examine the relationship between security and usability of our scheme
with more experiments in different settings. The security and usability could be
affected by the unclearness of the pass-images. So we are to pursue an appropriate
way of creating unclear images, too. Moreover, since the observing attacks in this
paper were done just by peeping the display of the authentication system, we
have to devise a countermeasure against observation with cameras.

References

1. R.Dhamija, A.Perring: Deja Vu: A User Study Using Images for Authentication,
9th USENIX Security Symposium, pp. 45–58, 2002.

2. A.Bauer: Gallery of random art, http://www.cs.cmu.edu/˜andrej/art/, (Jul 2005)
3. T. Pering, M. Sundar, J. Light, R.Want: Photographic Authentication through Un-

trusted Terminals, IEEE Pervasive Computing, Vol. 2, No. 1, pp. 30–36, (Jan 2003).
4. T. Takada, H.Koike: Awase-E: Image-Based Authentication for Mobile Phones Us-

ing User’s Favorite Images, LNCS 2795, Human-Computer Interaction with Mobile
Devices and Services, pp. 347–351, Springer, 2003.

5. Real User Corporation: PassFaces,
http://www.realuser.com/cgi-bin/ru.exe/ /homepages/index.htm (Jul 2005).

6. W.F.Brewer: Schemata., In R.A.Wilson and F. C.Keil (Eds.), MIT Encyclopedia
of the Cognitive Sciences, pp. 729–730, 1999.

A Consideration of Application of Attractor
Selection to a Real-Time Production Scheduling

Hiroaki Chujo, Hironori Oka, Yoshitomo Ikkai, and Norihisa Komoda

Graduate School of Information Science and Technology Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

{chujo.hiroaki, oka, ikkai, komoda}@ist.osaka-u.ac.jp

Abstract. In this research, “attractor selection,” which adopts the concept of “at-
tractor” chiefly defined in biological and physical fields, is applied to a schedul-
ing problem. An attractor is an attraction area that an orbit in space converges on
asymptotically, and this area denotes a stable state. The attractor to which an orbit
from a certain state of an initial condition is attracted is statistically determined.
Attractor selection is an algorithm that searches for a stable state flexibly under
changing environments.

To apply attractor selection to a scheduling field, a scheduling framework
based on scheduling strategy using a dispatching rule is introduced. A scheduling
problem solution is scheduled by repeated applications of a prepared dispatch-
ing rule with plural strategies. The rule has a parameter that controls scheduling
strategies based on the current “environment,” which means kinds, amounts, and
remaining to due of jobs, machine conditions, etc. Attracter selection controls the
parameters under changing environments.

The proposed framework was applied to a real-time production scheduling
problem, and the optimality of the parameters of the strategy and followup ability
were considerd when environmental changes occur.

1 Introduction

In this research, “attractor selections[1],” which adopts the concept of “attractor[2]”
chiefly defined in biological and physical fields, is applied to a scheduling problem. An
attractor is an attraction area that an orbit in space converges on asymptotically, and
this area denotes a stable state. The attractor to which an orbit from a certain state of an
initial condition is attracted is statistically determined. When an environment change
occurs, an orbit is attracted to a new attractor following the environmental change. At-
tractor selection is an algorithm that searches for a stable state flexibly under changing
environments.

In this research, we concentrate on the autonomous adjustment ability of attractor
selection to environmental changes. Attractor selection is applied to a real-time produc-
tion scheduling problem of environments such as tendencies of jobs and situations of
production sites that change constantly. First, a scheduling framework in which to apply
attractor selection is proposed. In this framework, scheduling is created by using vari-
ous strategies responding the current environment. To adjust to environmental changes,

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 346–354, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Consideration of Application of Attractor Selection 347

the strategy is applied by parameters controlled by attractor selection. Thus, it is pos-
sible to create scheduling based on the environment. The optimality of the parameters
and followup to environmental changes are considered.

2 Outline of Attractor Selection

Attractor selection[1] is an algorithm that flexibly adjusts to environments by using the
attractor concept while selecting the attractors, that is, the stable state. Here “parameter
x,” which controls the system and determines the “system activation degree” in a cer-
tain state is assumed to explain the concept the attractor selection. When the relation
between parameter x and system activation degree is shown as Fig. 1, the shadowed
areas where system activation degree is high are attractors.

parameter(x)

attractor

R
ev

ita
liz

at
io

n
D

eg
re

e
of

 s
ys

te
m

Fig. 1. Attractor selection

In attractor selection, an attractor with high system activation degree is selected au-
tonomous to an environmental change by transitting parameter x using a general tran-
sition formula, shown as formula (1)[1],

d

dt
x = f(x) × activity + η (1)

where activity is a given function that calculates the system activation degree, for
example, the evaluation function of the system. Activity achieves a mechanism that
enhances the transition speed of parameter x when system activation degree is high.
Function f(x) is a rule to transit parameter x in the direction increasing system acti-
vation degree. η is noise. In the area where system activation degree is low, x transits
randomly by η. This is the mechanism to escape from the area where system activation
degree is low. When parameter x is transitted repeatedly by using this general transit-
ing formula (1), parameter x reaches a stable state at which system activation degree
is high, an attractor. In this algorithm, the transition amount of parameter x by the
general transitting formula depends on the system activation degree of the present pa-
rameter x, so this algorithm can only be applied by observation of the current system
activation degree without investigating all values of system activation degree against
parameter x.

Now this algorithm is used in the network symbiotic environment field[1][3]. In this
field, attractor selection is applied to path metrics, available bandwidth, and automati-
cally selects appropriate bandwidths for each path.

348 H. Chujo et al.

3 Application of Attractor Selection to a Real-Time Production
Scheduling

In a production field, efficient production schedules are important. The loads of equip-
ment and production time greatly differ depending on the processing order of jobs, etc.
The real-time production scheduling problem treated in this research includes such en-
vironmental problems, as the tendencies of jobs and constant production site situations
changes. Metaheuristic[4] is a remarkable scheduling method paradigm where Genetic
Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), etc. are chiefly applied.
However, these methods have weak points, it is difficult to create schedules rapidly to
match environmental changes because too much calculation time is required.

In this research, attractor selection with its autonomous adjustment feature to envi-
ronmental changes is applied to a real-time production scheduling problem. A schedule
is created according to various strategies according to “environments”: the amount and
kinds of jobs, the days remaining to the delivery date, the situation and demand of the
site, etc. Strategies are desided by the assignment parameter. By controlling this assign-
ment parameter by attractor selection, a schedule that flexibly adjusts to environment
changes in real-time can be created.

3.1 Framework of Application of Attractor Selection to Scheduling

In this research, attractor selection is a method that searches autonomously for the area
where the assignment parameter is effective under a certain environment.

Generally, a schedule is created by switching several strategies by the “environment”
of the amount and kind of job, the days remaining until delivery date, the situation and
demand of the site, etc. For example:

– Many jobs with an early delivery date
Jobs are assigned to the empty processing machine by priority.

– Demands at the site to reduce processing costs
Jobs are processed with the low-cost processing machine by priority.

input

output

bmachine A
machine B
machine C
machine D

a e
c d

bb a
d

a
c

a

• result of scheduling
• evaluation value E min.

• job

• machine
- operation cost

- delivery date
- Processing time

real-time
scheduling

search by attractor
selection every time
the job arrives

strategy is switched
by parameter

scheduling strategy

situation of site

assignment parameter W

environment

time

Fig. 2. Framework of application of attractor selection to scheduling

A Consideration of Application of Attractor Selection 349

Therefore a scheduling framework is proposed that introduces assignment parameter
W to control these strategies, and attractor selection adjusts W based on the current
environment when new jobs arrive. The generated schedule is evaluated by evaluation
value E, which is decided by W and differs based on the targeting problem. It also
indicates the effectiveness of the assignment parameter, that is, the system activation
degree. The purpose of this problem is the minimization of E because evaluation value
E is defined by the weighted sum of processing costs and the sum of delays, etc. Fig. 2
shows the framework.

3.2 Transition Formula of the Assignment Parameter in a Scheduling
Framework

The transition of attractor selection in this research is defined as follows:

d

dt
W = ε(E− − E+)W × 1

E−
+ η (2)

where E− and E+ indicate evaluation values of the schedules at previous and cur-
rent transitions. “ε(E− − E+)W ” corresponds to f(x) of formula(1). It is a rule that
judges whether evaluation value E improved it by the previous transition. This means
the mechanism that transits assignment parameter W to reduce the evaluation value.
“ 1

E− ” corresponds to activity of formula(1). This means the mechanism by which tran-
sition speed is enhanced to the parameter area where evaluation value becomes small.

Assignment parameter (W) is transitted by formula (2) to the parameter area where a
schedule with small evaluation value is obtained only by observing the evaluation value
at the previous and current transitions without calculating the evaluation values of the
schedules to all W s.

3.3 Issues to be Considered

Issues when attractor selection is applied to a real-time scheduling problem are shown
below:

1. Analysis of optimality and stability of assignment parameter W
(a) Sensitivity analysis of parameter (ε,η) of transition formula (2)

– Frequency distribution of assignment parameter W
– Transition times to a stable state

(b) Analysis of followup ability to environmental changes
(c) Analysis of optimality transition ability to optimal area by avoiding local

minimum
2. Expansion to two or more assignment parameters

Plural assignment parameters (W1, W2, ...) are concurrently transitted.
3. Multi-point search for attractor selection
4. Evaluation comparisons with other metaheuristics

Comparison of calculation time, environmental changes, and number of tuning pa-
rameters to Genetic Algorithm (GA) and Simulated Annealing (SA)

In this research, 1(a) and 1(b) are analyzed in the following sections.

350 H. Chujo et al.

4 Problem for Application

4.1 A Real-Time Production Scheduling Problem

In this section, the details of a target real-time production scheduling problem are ex-
plained. The sequential jobs (a×7, b×7, c×3, d×3, and e×3) are assigned to five pro-
cessing machines in real times.

Since the processing time of each job type is different, each processing machine has
different processing costs against the same job type, as shown in Table 1.

Table 1. Processing time, cost

cost
job processing time M1 M2 M3 M4 M5

a 1 10 15 20 25 30
b 0.5 6 9 12 15 18
c 2 10 15 20 25 30
d 2 2 3 4 5 6
e 1.5 10 15 20 25 30

The due date of each job is given depending on its arrival time.

4.2 Evaluation

Scheduling results are evaluated by the following two evaluation factors:

– Processing costs (C)
This is the sum of the required costs when all jobs are processed.

– Sum of delays (D)
Delays show how the processing completion time of each job is delayed from the
deadline.

Evaluation function (E) is defined as the following weighted sum of those 2 factors:

E = R × C + 1 × D (3)

where R indicates weight. The purpose of this problem is the minimization.

4.3 Job Allocation by Assignment Parameter

In this research, the following two strategies are applied to job allocation.

1. Preferential allocation to a low-cost processing machine (reduction of processing
costs)

2. Preferential allocation to the processing machine with less processing time of jobs
to be processed (reduction of the sum of delays)

To achieve allocation, assignment parameter W and allocation score (Aki) are in-
troduced. W indicates which strategy receives priority. The allocation score of each
processing machine is calculated for the first job k of the current sequence of jobs,
and job k is assigned to the machine that has the minimum allocation score. When the

A Consideration of Application of Attractor Selection 351

processing cost of job k in machine i is assumed to be pki, and processing waiting time
is assumed to be qki, allocation score (Aki), which achieves two kinds of strategies, is
defined as formula (4).

Aki = W × pki + 1 × qki (4)

5 Result of Considerations

Transition formula (2) of attractor selection was applied to a real-time production
scheduling problem and developed on a computer: OS: WindowsXP, CPU: Pentium
IV Processor 900 MHz, memory: 512 MB.

The weight of evaluation function (R), an initial value of the assignment parameter
of allocation score (Wini), ε and η (uniform distribution) is shown in Table 2.

Table 2. The value of the parameters

The kind of parameter value

R 0.5
Wini 2

ε 12
η -0.25∼0.25(uniform distribution)

In this condition, an example of assignment parameter (W) transition and evaluation
value (E) with no environmental change is shown in Fig. 3.

After 98 transitions, the transition in the vicinity of the optimal value (E = 116.5)
is repeated, so it can be regarded as a stable state. The calculation time required for 500
transitions is about one second.

In subsection 5.1, frequency distribution of the solution from the optimal value of
the evaluation value and transition times to a stable state are analyzed, that is, a consid-
eration of 1(a) in subsection 3.3. In subsection 5.2, the transitions of W and E when
an environment change occur by changing the weight of evaluation function (R) is an-
alyzed, that is, a consideration of 1(b) in subsection 3.3.

0

50

100

150

200

0 100 200 300 400
0

1

2

3

4

5

evaluation value(E)

assignment parameter(W)

500

ev
al

ua
ti

on
va

lu
e(

E
)

as
si

gn
m

en
t p

ar
am

et
er

(W
)

116.5

…

transition times

transition times
to a stable state

optimal value
optimal ratio=3%

Fig. 3. Transition of W and E (no environmental changes)

352 H. Chujo et al.

5.1 Sensitivity Analysis of Parameter (ε,η) of the Transition Formula

Sensitivity analysis of the width of transition (ε) and the width of random numbers
(η) was investigated. Here, “optimal ratio,” which shows the percentage away from the
optimal value of E, is defined as follows.

Optimal ratio =
E − optimal value

optimal value
(%) (5)

The left graph of Fig. 4 shows that the frequency distribution of solutions, whose
optimal ratio approaches within 3% in a stable state. ε was changed with 8, 10, and 12,
and η was assumed to be a uniform random number of −0.125 ∼ 0.125, −0.25 ∼ 0.25,
and −0.5 ∼ 0.5. The center and right graphs of Fig. 4 shows that the frequency of
solutions are within 5% and 10%, respectively.

Next, the average transition time to stable state is analyzed against changes of pa-
rameters ε and η. The result is shown in Fig. 5.

If the width of η is small, the frequency distribution of solutions becomes high.
Moreover, if η is small, the transition times until stabilization increases, as shown in
Fig. 5. There is a trade-off between obtaining solutions with high accuracy and short-
ening transition times until stabilization. Considering these balances, with parameters

within 5% within 10%

fr
eq

ue
nc

y
of

 s
ol

ut
io

n

within 3%

Fig. 4. Frequency distribution against optimal ratios in a stable state

av
er

ag
e

of
 tr

an
si

ti
on

ti
m

es
 to

 a
 s

ta
bl

e
st

at
e

Fig. 5. Average of transition times to a stable state

A Consideration of Application of Attractor Selection 353

of ε = 10 and η = −0.25 ∼ 0.25 or ε = 12 and η = −0.25 ∼ 0.25, assignment
parameters with high accuracy are quickly obtained.

5.2 Analysis of Followup Ability to Environmental Changes

With ε = 12 and η = −0.25 ∼ 0.25, transitions of E and W are verified when
environmental changes occur.

When a transition is begun, the weight of evaluation function R = 0.5 and assign-
ment parameter W = 2. The weight of evaluation function (R) was increased linearly
(0.01 increases of R per transition) after a frequency of 200 transitions (environmental
changes). In this condition, the transition results of W and E are shown in Fig. 6. The
time required for 500 transitions is also about one second.

0

100

200

300

400

500

600

700

800

1 100 200 300 400
0
1

2
3
4
5

6
7
8

9
10

500

ev
al

ua
tio

n
va

lu
e(

E
)

as
si

gn
m

en
t p

ar
am

et
er

(W
)

transition times start to change R

evaluation value(E)

assignment parameter(W)

Fig. 6. Transition of E and W (environmental changes)

Fig. 6 suggests that attractor selection can adjust W smoothly following environ-
mental changes. Therefore, it will be possible to search for assignment parameter cor-
responding to the environment in a short time. However, the assignment parameter is
not completely stabilized. Assignment parameters that exist in the stable states vary. As
described in subsection 3.3, when using this method for real problems, it is necessary
to search for the multi-point based on the accuracy needs of the assignment parameter.

6 Summary

In this research, a framework was proposed that applied attractor selection, which is an
algorithm using the attractor concept chiefly defined in biological and physical fields,
to a real-time scheduling problem. The mechanism of a real-time production sched-
ule problem and a scheduling framework by attractor selection was developed, and
accuracy, transition speed, and followup to environmental changes were considered.

In addition, in the future, it will be necessary to consider the issues described in
subsection 3.3 in the future.

354 H. Chujo et al.

References

1. S. Nishio:“New Information Technologies for Building a Networked Symbiotic Environment,”
IPSJ MAGAZINE, Vol.46(4), pp.385-390(2005-4)(in Japanese).

2. H. Haken:“SYNERGETICS,” Springer-Verlag Berlin Heidelberg(1978).
3. K. Leibnitz, N Wakamiya, and M Murata:“Biologically Inspired Adaptive Multi-Path Routing

in Overlay Networks” IFIP/IEE,E INTERNATIONAL WORKSHOP ON SELF-MANAGED
SYSTEM AND SERVICES(SELFMAN 2005).

4. S. M. Sait, H. Youssef:“Iterative Computer Algorithms with Applications in Engineering,”
THE IEEE COMPUTER SOCIETY(1999).

Bio-inspired Organization for Multi-agents on
Distributed Systems

Ichiro Satoh

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

ichiro@nii.ac.jp

Abstract. This paper presents a middleware system for multi-agents on a dis-
tributed system as a general test-bed for bio-inspired approaches. The middle-
ware is unique to other approaches, including distributed object systems, because
it can maintain and migrate a dynamic federation of multiple agents on different
computers. It enables each agent to explicitly define its own deployment pol-
icy as a relocation between the agent and another agent. This paper describes a
prototype implementation of the middleware built on a Java-based mobile agent
system and its practical applications that illustrates the utility and effectiveness
of the approach in real distributed systems.

1 Introduction

Distributed computing systems are composed of a number of computers. The scale and
complexity of distributed modern systems are beyond centralized and hierarchical man-
agement techniques. Distributed systems are dynamic in the sense that, computers may
be added to or removed from it and channels between computers may be disconnected
or changed. Software components, which an application consists of, are required to
be adapted and deployed at computers in a distributed system according to changes
in the requirements of applications and the structure and computational resources of
the system.

This paper addresses the deployment of partitioned applications over a distributed
system, because it is one of the most important issues regarding where and what soft-
ware will be deployed at computers. It presents a framework to adapt a federation
of software components. The framework is based on two key ideas. The first is to
enable each component to specify its own deployment policy instead of any global
policies. The second is to facilitate the dynamic federation of multiple components
as more than one virtual distributed system over a real distributed system, instead of
any simulation-based environments. The framework enables such a federation to be
transformed and made mobile through bio-inspired self-organization, such as that
undertaken by cells in their transforming and crawling locomotion. Furthermore, the
framework can be used as a general test-bed for providing various bio-inspired ap-
proaches in distributed systems, as well as a middleware system for adaptive distributed
systems.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 355–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

356 I. Satoh

Several researchers have attempted to introduce biological metaphors into distributed
systems. Most of this work has been based on simulation-based approaches. For exam-
ple, Swarm [6] and MASS [3] are general simulators for multi-agent models. However,
real systems are complex and varied. Unfortunately, most existing simulation-based
results seem to have been based on arbitrary hypotheses in the sense that various pa-
rameters in their simulations have lacked any technical grounds. Unfortunately, such
unrealistic simulations have often only provided non-sensical or impractical results. We
still lack a great deal of data that are essential to simulating the approaches accurately.
Therefore, real experiments in distributed systems must have priority over simulation-
based experiments for us to accumulate actual experience.

2 Approach

A distributed application consists of partitioned applications that may run on different
computers. This paper assumes that each partitioned application, called an agent, can
be autonomous and mobile. To adapt an application to changes in a distributed sys-
tem, partitioned applications, i.e., agents, partitioned applications must not be bound to
particular computers. They should be dynamically deployed at appropriate computers
without any centralized management system.

This can be supported by an metaphors drawn from biological process. When a com-
puter is removed from the system or it shuts down, agents running on it should escape.
Lamellipodia are flattened and protrusive projections that periodically expand from the
surface of a cell. Effective movement requires a motile cell to be polarized, so that its
protoplasm membrane is relatively quiescent everywhere else except its leading edge
where lamellipodia periodically project outward in all directions. As they pull on one
another they create intervening regions in which the cortex is stretched. This tug-of-war
continues until one lamellipodium aligns in a dominant direction and becomes unipo-
lar, then migrates in that direction. Lamellipodia can be viewed in terms of speculative
migration or expansion.

Each agent should be able to explicitly specify its own constraints to migrate agents.
For example, if an agent has a migration constraint dependent on another agent, when
the other agent moves to another location, the former agent decides its destination ac-
cording to its own migration constraints, i.e., the source or destination of the other
agent. Such constraints are defined as policies within agents and allow us to specify
physical structures and mechanisms in motile cells, such as membrane and cytoplasmic
streaming. We provide several policies for agents to support bio-inspired deployments
of agents.

3 Design and Implementation

The framework presented in this paper is a middleware for deploying and executing
general-purpose software components. It can be used as a general test-bed for providing
various bio-inspired approaches, in particular bio-inspired deployment of software, in
distributed systems. It was implemented in Java (J2SE version 1.4 or later versions) and
agents are implemented as a set of Java objects.

Bio-inspired Organization for Multi-agents on Distributed Systems 357

3.1 Runtime System

Figure 1 outlines the basic structure of a runtime system. Each establishes at most
one TCP connection to each of its neighboring hosts and exchanges control messages,
agents, and inter-agent communications with the other runtime systems through the con-
nection. Since it is constructed on the Java virtual machine, it can conceal differences
between the platform architecture of the source and destination computers. All runtime
systems can exchange agents with others through the use of mobile agent technology.

Component

A

Core Runtime System

OS/Hardware

component host 1 component host 2

Transport Protocol

TCP session

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

B
Component

C

Component

C

Core Runtime System

OS/Hardware

Transport Protocol

Component Runtime Service

Discovery

Management

Service

Migration-
transparent

Coordination
Service

Component

Migration

Service

Java Virtual Machine

Component

D
Component

E

Inter-component communication

component migrationD

Fig. 1. Architecture of agent runtime system

Each agent can itinerate between multiple computers under their own control
[7, 8, 9]. After arriving at its destination or being duplicated, each agent can continue
working without losing accumulated work, such as the content of instance variables in
the agent’s program, at the source computers. It is also equipped with its own identifier
and that of the federation that it should belong to. It can explicitly specify the compu-
tational capability that its destination hosts must offer in CC/PP [12] form as we will
discuss later. If an agent is on a computer that cannot satisfy its requirements, its intent
is to leave computer. While each agent is running, it can declare at most one deployment
policy and one or more message policies by invoking a built-in method of the class that
every agent must inherit. Although policies are open for developers to define their own
policies, the current implementation provides the following deployment policies.

– If an agent declares a follow policy for another agent, when the latter migrates to
another computer, the former migrates to the latter’s destination computer.

– If an agent declares a dispatch policy for another agent, when the latter migrates
to another computer, a copy of the former is created and deployed at the latter’s
destination computer.

– If an agent declares a shift policy for another agent, when the latter migrates to
another computer, the former migrates to the latter’s source computer.

– If an agent declares a fill policy for another agent, when the latter migrates to an-
other computer, a copy of the former is created and deployed at the latter’s source
computer.

Figure 2 outlines four deployment policies. These policies are related to phenomena
in biological processes. For example, a follow policy enables an agent to come near

358 I. Satoh

B

C

A

AB

C

B

C

A

Clone B

Clone C

B

C

A

A
B

C

B

C

A

A

C

B

C

B

Clone B

Clone C

A

Policy.FOLLOW

Policy.FOLLOW

Policy.DISPATCH

Policy.DISPATCH

Policy.SHIFT

Policy.SHIFT

Policy.FILL

Policy.FILL

Step 1 (Policy.FOLLOW)

Step 2 (Policy.FOLLOW)

Step 1 (Policy.DISPATCH)

Step 2 (Policy.DISPATCH)

Step 1 (Policy.SHIFT)

Step 2 (Policy.SHIFT)

Step 1 (Policy.FILL)

Step 2 (Policy.FILL)

Follow Policy Dispatch Policy

Shift Policy Fill Policy

Fig. 2. Basic migration policies

another agent. For example, when multiple agents declare a policy for a leader agent,
they can swarm around it. A shift policy enables an agent to follow the movement of
another agent. The former agent can track the latter as it moves. The policy thus cor-
responds to the phenomenon of cytoplasmic streaming. A dispatch) policy enables
an agent to stay in the current location and then deploy its clone at the destination of
another moving agent. It can model the footprint of a motile cell. We have assumed that
an agent can declare the policy for another agent and specify the TTLs of its clones
as their life-spans. As the latter agent moves, cloned former agents are deployed at its
footmark and these clones are automatically volatilized after their life-spans are over.
Therefore, the clone agents can be viewed as a pheromone that is left behind after the
latter agent has moved on. A fill policy corresponds to the phenomenon of cell division.

When an agent is created, the dispatch and fill policies can explicitly control whether
the newly created agent can inherit the state of its original agent. The following message
policies forward messages to agents when messages are specified in the policies.

– If an agent declares a forward policy for another agent, when specified messages
are sent to other agents, the messages are forwarded to the latter as well as the
former.

– If an agent declares a delegate policy for another agent, when specified messages
are send to the former, the messages are forwarded to the latter but not to the former.

A forward policy is useful when two agents share the same information and delegate
policy provides a master-slave relation between agents.

3.2 Current Status

A prototype system of this framework was implemented with J2SE version 1.4.2 and
although it was not built for performance, we measured the cost of agent migration.

Bio-inspired Organization for Multi-agents on Distributed Systems 359

0

100

200

300

400

500

600

2 3 4 5 6 7 8

number of computers

follow policy

dispatch policy

shift policy

fill policy

0

200

400

600

800

1000

1200

1 2 3 4

number of agents

follow policy

disatpch policy

shift policy

fill policy

Fig. 3. Cost of multiple-hops for two agents between two to eight computers (left) and Costs of
multiple-hops of multiple agents between eight computers (right)

The left of Figure 3 illustrates the cost of multiple-hops for two agents between
two to eight computers (Pentium-M 1.4-MHz with Windows XP Professional and J2SE
1.4.2) through a fast ethernet, where the first agent declares a follow, dispatch, shift, or
fill policy for the second and the second migrates between these computers sequentially
without synchronizing the migration of the first.1 Each cost in the left of Figure 3 is
the latency of the first agent arriving after the second has begun to migrate to another
computer. The cost of agent migration according to dispatch (or fill) policy is larger
than the the follow (or shift) policy, because the former policy needs to create a copy of
the first agent that has the policy. The cost of agent migration according to follow (or
dispatch) is larger than that for dispatch (or shift), because the former and latter agents
are deployed at different computers.

The right of Figure 3 shows the costs of multiple-hops of multiple agents between
eight computers, when agents (from one to four) have follow, dispatch, shift, or fill
policies for a moving agent. Unfortunately, with many hops is large, the follow and dis-
patch policies vary due to congestion at several computers. That is, two or more agents
may attempt to have their own active threads in a single processor and to simultane-
ously transmit themselves to the destinations of their target agent in a TCP network
connection. Once agents experience congestion at a computer, they tend to migrate as a
chunk of agents rather than as individual agents to further destinations and the chunk of-
ten engulfs other newly arrival agents. The congestion does not always reappear, since
computers are not synchronized and congestion often causes larger congestion in the
routes of agents. We expect that fluctuations in the cost of agent migration will be large
in a large-scale, heterogenous, distributed system.

1 The latency between two computers is measured as the half-time of round-trip time between
the source and destination computers. To measure latency between more than three computers
exactly, these computers are connected through a ring topology. That is, the start and and goal
of the second agent are assigned to the same computer and we measure difference between the
timings of the first agent’s starting and the second’s arriving at the computer.

360 I. Satoh

step 1

step 2

step 3

fill
hook

agent migration

computercomputer

A

computer

B A

fill
hook

agent migration

computercomputer

A

computer

B A

fill
hook

agent migration

computercomputer

A

computer

B A

Fig. 4. Implementation of ant-based routing mechanism

4 Initial Experience

This section presents several examples that illustrate how the framework works.

4.1 Ants-Based Routing Mechanisms

Ants are able to locate a path to a food source using trails of chemical substances called
pheromones that are deposited by other ants. Several researchers have attempted to use
the notion of ant pheromones for network-routing mechanisms [2, 11]. Our framework
allows moving agents to leave themselves on their trails and to become automatically
volatilized after their life-spans are over. A mobile agent corresponding to an ant, A,
corresponding to a pheromone is attached to another mobile agent corresponding to an
ant according to the fill policy. When the latter agent randomly selects its destination
and migrates to the selected destination, the former agent creates a clone and migrates
to the source host of the latter. Since each of the cloned agents defines its life-span, they
are active for a specified duration after being created. If there are other agents corre-
sponding to pheromones in the host, the visiting agent adds their time spans to its own
time span. When another agent corresponding to another ant migrates over the network,
it can select a host that has the agents corresponding to pheromones whose time-spans
are the longest from the neighboring hosts. We experimented on ant-based routing for
mobile agents using this prototype implementation with more than eight computers.
However, we knew that it would be difficult to quickly converge a short-path to the des-
tination in real distributed systems, because routing mechanisms tend to be diverging.

4.2 Agent Diffusion in Sensor Networks

The second example is the speculative deployment of agents as is done with cell-
lamellipodia. This provides a mechanism that dynamically and speculatively deploys

Bio-inspired Organization for Multi-agents on Distributed Systems 361

agents at sensor nodes when there are environmental changes. This mechanism was
inspired by lamellipodia in cells. It assumes that the sensor field is a two-dimensional
surface composed of sensor nodes and it monitors environmental changes, such as mo-
tion in objects and variations in temperature. It is a well known fact that after a sensor
node detects environmental changes in its area of coverage, some of its geographically
neighboring nodes tend to detect similar changes after a short time. Diffusion occurs as
follows. When an agent on a sensor node finds changes in its environment, the agent
duplicates itself and deploys the copy at neighboring nodes as long as the nodes have
the same kinds of agents. Each agent is associated with a resource limit that functions
as a generalized Time-To-Live (TTL) field. Although a node can monitor changes in
interesting environments, it sets the TTLs of its agents as their own initial value. It oth-
erwise decrements TTLs as the passage of time. When the TTL of an agent becomes
zero, the agent automatically removes itself.

5 Related Work

The section discusses several bio-inspired approaches to distributed and multi-agents
systems. A few attempts have provided infrastructures for real distributed systems, like
ours. The Anthill project [1] by the University of Bologna developed a bio-inspired mid-
dleware for peer-to-peer systems, which is composed of a collection of interconnected
nests. Autonomous agents, called ants can travel across the network trying to satisfy
user requests, like ours. The main difference between Anthill, including its applications,
and our framework is that it introduces agents as independent entities and ours per-
mits components to be organized in a self-organized manner. The Co-Field project [5]
by the University di Modena e Reggio Emilia proposed the notion of a computational
force-field model for coordinating the movements of a group of agents, including mo-
bile devices, mobile robots, and sensors. However, the model only seems to be available
within the limits of simulation and not within a real distributed system. Our deployment
policies may be similar to the dynamic layout of distributed applications in the FarGo
system [4]. However, FarGo’s policies aim at allowing an agent to control other agents,
whereas our policies aim at allowing an agent to describe its own migration, because
our framework always treats agents as autonomous entities that travel from computer
to computer under their own control. FarGo’s policies may conflict when two agents
can declare different relocation policies for a single agent. However, our framework
is free of any conflict because each agent can only declare a policy to relocate itself
instead of other agents. The author presented a bio-inspired deployment of software
components [10]. The previous approach is an early implementation of the framework
presented in this paper. It supported some of the deployment policies but not any mes-
sage policies.

6 Conclusion

This paper presented a middleware system for dynamically deploying agents at different
computers, instead of any simulation-based systems. We designed and implemented
a prototype system of them middleware and demonstrated its effectiveness in several

362 I. Satoh

applications. Since the middleware enabled each agent to specify its own policy as a
relocation between the agent and another agent, it cannot only move individual agents
but also a federation of agents over a distributed system in a self-organized manner.

We would like to point out further issues that need to be resolved. We need various
evaluations on real distributed systems. Although the current implementation focuses
on the deployment of agents, we plan to extend it so that it can be used to modify the
behavior of each agent, while they are running.

References

1. O. Babaoglu and H. Meling and A. Montresor, Anthill: A Framework for the Development
of Agent-Based Peer-to-Peer Systems, Proceeding of 22th IEEE International Conference on
Distributed Computing Systems, July 2002.

2. G. Di Caro and M. Dorigo, AntNet: Distributed Stigmergetic Control for Communications
Networks, Journal of Artificial Intelligence Research, vol.9, pp. 317-365, 1998.

3. B. Horling, and V. Lesser, and R. Vincent, Multi-Agent System Simulation Framework Pro-
ceeding of IMACS World Congress 2000 on Scientific Computation, Applied Mathematics
and Simulation, August 2000.

4. O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic Layout of Distributed
Applications, Proceedings of International Conference on Distributed Computing Systems
(ICDCS’99), pp 403-411, IEEE Computer Society, 1999.

5. M. Mamei, L. Leonardi, F. Zambonelli, Co-Fields: A Unifying Approach to Swarm Intelli-
gence, International Workshop on Engineering Societies in the Agents World (ESAW 2002),
Lecture Notes in Computer Science, vol. 2577, Springer Verlag 2003.

6. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The Swarm Simulation System, A
Toolkit for Building Multi-Agent Simulations, Technical report, Swarm Development Group,
June 1996.

7. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol.33, no. 3, part-C, pp.350-357, August 2003.

8. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet Cluster Com-
puting (The Journal of Networks, Software Tools and Applications), vol. 7, no.1, pp.73-83,
Kluwer, January 2004.

9. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

10. I. Satoh, Bio-inspired Deployment of Distributed Applications, Proceedings of International
Workshop on Multi-Agents (PRIMA2004), Lecture Notes in Computer Science (LNCS),
vol.3371,pp.243-258, Springer, August 2004.

11. R. Schoonderwoerd, O. Holland, and J. Bruten, Ant-like agents for load balancing in
telecommunications networks, Proceedings of Conference on Autonomous Agents, pages
209-216. ACM Press, 1997.

12. World Wide Web Consortium (W3C), Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP, 1999.

m-ActiveCube; Multimedia Extension of Spatial
Tangible User Interface

Kyoko Ueda, Atsushi Kosaka, Ryoichi Watanabe, Yoshinori Takeuchi,
Takao Onoye, Yuichi Itoh, Yoshifumi Kitamura, and Fumio Kishino

Graduate School of Information Science and Technology, Osaka University,
Yamada-Oka, Suita, Osaka 565-0871, Japan
coe-ac@hi-mail.ise.eng.osaka-u.ac.jp

Abstract. A new Tangible User Interface (TUI) device, m-ActiveCube, is pro-
posed as a multimedia extension of ActiveCube, which is a TUI device that
enables more efficient human computer interaction than conventional devices.
First, fundamental specifications of m-ActiveCube are determined to remove the
processing performance and functionality limitation of the original ActiveCube.
By utilizing improved performance, m-ActiveCube offers such novel functional-
ities as speech recognition with which more impressive applications can be con-
structed at any level of human living system.

1 Introduction

Recently, Tangible User Interfaces (TUIs) are being explored aggressively as a new
breed of human computer interface. Among them, a spatial TUI is believed to be practi-
cal for resolving meaningful real-life problems owing to direct and interactive manipu-
lation of 3D objects [1]. A key facet of human computer interface research is directed at
the exploitation of our innate tactile and spatial abilities. The notion of a TUI emerged
in [2], suggesting more elaborated uses of physical objects as computer interfaces.
Ullmer and Ishii defined TUIs as devices that give physical form to digital information,
employing physical artifacts as representations and controls of computational data [2].
TUIs make sense by engaging our natural talents for handling everyday objects in the
physical world. One most important feature of TUIs lies in their spatiality, and thus spa-
tial TUIs can be used to mediate interaction with shape, space, and structure in virtual
domains. These spatial TUIs have three common characteristics: spatial mapping, I/O
unifications, and support of “trial-and-error” actions [1].

As a flexible multimodal 3D spatial TUI, ActiveCube was developed [3], with a num-
ber of distinctive features dedicated to intuitive interaction with virtual 3D environments
using physical cubes as bidirectional user interfaces. ActiveCube offers various kinds of
I/O functionalities including motor, buzzer, vibrator, LED matrix, and ultrasonic, tac-
tile, and gyroscopic sensors. However, due to the limited processing performance of the
Neuron Chip [4] used in ActiveCube, there still remains room to enhance each device’s
functionality, especially in the processing capability of the multimedia aspects. Moti-
vated by this tendency, the present paper constructs m-ActiveCube architecture that can
offer novel media-processing functionalities.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS3853, pp.363–370,2006.
c©Springer-VerlagBerlinHeidelberg 2006

364 K. Ueda et al.

First, we analyze the performance of the original version of ActiveCube and ex-
tend its fundamental specifications to achieve a more sophisticated human computer
interface. Specifically, m-ActiveCube includes a high performance processor for real-
izing multimedia capability and utilizes module expandability of the characteristics of
blocks. In addition, a high speed wireless link is supported for realtime speech and
visual communication. Furthermore, m-ActiveCube expands flexibility of block con-
nection of conventional ActiveCube and realizes novel system applications.

2 m-ActiveCube Architecture

2.1 ActiveCube

ActiveCube is comprised of plastic 5 cm cubes that can be connected to one another.
Each cube is comprised of a Neuron Chip[4] microprocessor to be controlled in real
time. Each cube and cube face have a unique ID. When cubes are connected or dis-
connected, their IDs are sent to a host PC so that it can recognize the physical shape
of all of the cubes. Power is supplied through two hooks while shape recognition data
is transferred through the others (Fig. 1(a)). The host PC is connected to a base cube
(Fig. 1(b)) and communicates by broadcasting through networks #1 and #2 in Fig. 1(a).
The base cube consists of a H8S/2633 processor as well as the Neuron Chip. Intercube
communication is accomplished via RS-485 network while the base cube and the host
PC communicate through the RS-232C network. Various input devices (i.e. gyroscope
sensor) and output devices (i.e. motor actuators) are attached to the cubes.

Fig. 1. Physical structure and network of ActiveCube

2.2 Demands for m-ActiveCube

To realize more a sophisticated TUI, the following novel functionalities are examined.

Inter-cube communication - In ActiveCube, cubes must communicate with the host
PC through the base cube. To avoid this inconvenience, wireless data link is
preferable.

Flexible connection - Cubes are connected with male-female connectors, thus con-
nectable direction is limited. A more flexible connection is needed.

m-ActiveCube; Multimedia Extension of Spatial Tangible User Interface 365

Power supply - In ActiveCube, power is supplied from the host via the base cube. Freed
from the base cube, the power supply problem should be resolved.

Higher performance - In ActiveCube, a host PC executes almost all data operations
due to the limited performance and memory capacity of the cube’s CPU. Therefore,
a more powerful CPU is needed for m-ActiveCube, which can execute data operation
locally.

2.3 Organization of m-ActiveCube

Associated with the above demands, m-ActiveCube is constructed. In m-ActiveCube,
each cube face has eight magnets (Fig. 2(a)). Four face notrh and the remaining four face
south so that any pair of cubes can be connected in any direction. Moreover, magnets
are coated by metal, and thus shape recognition data are transferred between cubes. A
rechargeable battery is embedded in each cube. Therefore, a base cube that supplies
power to all cubes is no longer required.

Magnet (North pole)

Magnet (South pole)

(a) Physical structure (b) Network

Host PC Cubes

Bluetooth

Fig. 2. Physical structure and network of m-ActiveCube

M32R CPU core

Internal flash memory

Internal RAM

Internal bus interface

External bus interface

A-D converter

External SRAM

 Single-chip M32R microcomputer

Wireless network module

Serial I/O

Shape recognition data
transfer ports (magnets)

Fig. 3. Block diagram of m-ActiveCube

Fig. 3 shows the block diagram of m-ActiveCube. A single-chip M32R micropro-
cessor (M32176F4TFP [7]) is comprised of an M32R core CPU, internal flash memory,
and RAM, which offers higher performance and facilitates various functionalities. Since
the chip also includes an A/D converter and a serial I/O, media input/output devices and
sensing devices can be connected through them. To enable more complex data operation
such as voice recognition, an external SRAM is connected to the M32R chip. A wire-
less network module enables data transfer among cubes and the host PC (Fig. 2.(b))
without any physical contact. Abundant data such as images or audio are transferred
through the wireless link. Cubes communicate through shape recognition data transfer
ports and create the shape information, which is transferred to a host PC.

Table 1 summarizes the comparisons between ActiveCube and m-ActiveCube.

366 K. Ueda et al.

Table 1. Comparisons between original ActiveCube and m-ActiveCube

ActiveCube m-ActiveCube
CPU frequency [MHz] NC:20, H8S:25 40

Memory size [KB]
NC: 2(RAM), 16(ROM), 2(EEPROM) 512(Flash)
H8S: 256(Flash), 16(RAM) 24(RAM)

External memory Not available Available
Data transfer Wired communication Bluetooth
Power supply Supplied through cubes Rechargeable battery

Connectable direction Limited by male-female connectors All direction

3 Example of Basic Functionalities

Data transfer between cubes is accomplished via wireless networks, and m-ActiveCube
has a higher performance embedded processor than the original ActiveCube. Thus, us-
ing distributed processing techniques, the m-ActiveCube system enables users to imple-
ment more valuable applications requesting high computational load, for which original
ActiveCube can hardly be used. In this section, as an example of basic functionalities
newly introduced by m-ActiveCube, methods for performing realtime speech recogni-
tion process using multiple m-ActiveCubes are described in detail.

3.1 Speech Recognition Overview

In our system, Julian[5] is employed as a speech recognition engine. The speech recog-
nition process consists of feature extraction and search processes, as illustrated in Fig. 4.

Feature Extraction Process: As shown in Fig. 5, Mel Frequency Cepstrum Coefficient
(MFCC) and energy of log-compressed signal are calculated in the feature extraction
process.

Search Process: Julian performs frame synchronous beam search using Viterbi search.
In this Viterbi search, score of each Viterbi path is calculated and evaluated to determine
promising paths. Such promising path information is fed to search process in next frame
and that of others is suppressed in order to reduce both of requested memory amount
and computational complexity during search process. The maximum number of retained
paths is called beam width.

Fig. 4. Overview of Speech Recognition Fig. 5. Feature Extraction Process

m-ActiveCube; Multimedia Extension of Spatial Tangible User Interface 367

3.2 Computational Cost Analysis

To accomplish distributed computing by multiple m-ActiveCubes, total computational
cost required for realtime speech recognition is estimated by using PD32RSIM, which
is a simulator debugger for M32R processor. In this analysis 3217x processor is used as
target processor. In order to estimate computational cost for performing a speech recog-
nition task, 10 words for role-playing game (RPG) command (Table 2) are used, assum-
ing that speech recognition function of m-ActiveCube system is applied in playing RPG
application. Each word is uttered by one male and recorded five times respectively so
as to make a test set consists of 50 speech data.

Table 2. 10 words for RPG Commands

“mae (forward)”, “ushiro (backward)”,
“migi (right)”, “hidari (left)”,

“hashire (run)”,“tomare (stop)”,
“dougu (tool)”,

“hanashikakeru (speak to someone)”,
“tatakau (fight)”, and “mahou (spell)”

Table 3. Specification of Acoustic Model

Sampling 16kHz & 16bit
Framing 25ms long & 10ms shift
#Phones 43

#States per phone 5
#Gaussian/state 16

Features MFCC(12), ΔMFCC(12),
ΔLog Energy

The feature extraction process is implemented in fixed-point arithmetic to reduce
computation load. The operation accuracy of fixed-point implementation in the feature
extraction process is determined by performing evaluation using an RPG command test
set. As a result, operation accuracy is resolved such that 32-bit for FFT and 64-bit for
the other functions shown in Fig. 5. Execution cycles of original and fixed-point im-
plementation, estimated through PD32RSIM, are 7,685,393 and 672,895, respectively.
Consequently, to reduce execution cycles, a fixed-point arithmetic version is employed
in our speech recognition system.

On the other hand, the search process consists of memory accesses and output proba-
bility computation by using an acousitc model, whose specification is shown in
Table 3. Execution cycles for performing output probability computation, which is com-
posed of Gaussian computation and addlog computation[6], are evaluated throught the
use of PD32RSIM and gprof profiling tool. Execution cycles of Gaussian computa-
tion process and addlog computation process are estimated by using PD32RSIM, and
then the number of calls per frame of each process is counted by using gprof pro-
filing tool. As a result, estimated execution cycles per frame of Gaussian and addlog
computations are 544,238 and 485,952, respectively. Consequently, total required op-
eration frequency for realtime speech recognition is given by (672, 895 + 544, 238 +
485, 952)[cycles]/0.01[ms] = 171[MHz]. Each m-ActiveCube has only one M32R pro-
cessor, which can be run up to 32 [MHz], and thus reduction of CPU load by distributed
computing is needed to achieve speech recognition application by the m-ActiveCube
system.

3.3 Load Balancing of the m-ActiveCube

To perform speech recognition task in realtime, feature extraction and search processes
are executed by multiple m-ActiveCubes.

368 K. Ueda et al.

By using multiple m-ActiveCubes, a number of feature vector sets can be parallel cal-
culated. If the number of assigned m-ActiveCubes for performing the feature extraction
process is M1, each CPU has to perform the feature extraction process in M1× 10[ms],
and thus the required operation frequency to perform the feature extraction process in
realtime is given by M1 [cycles]/(10 [ms] × N1) [MHz], where N1 represents the total
number of execution cycles.

As mentioned in section 3.1, beam search is adopted to prune search space in Viterbi
search. The beam width has a constant value, and thus CPU load reduction can be
achieved by using multiple m-ActiveCubes. Let N2 be the number of execution cycles
per frame needed for performing the search process, M2 the number of allocated m-
ActiveCubes to execute the search process, and the required operation frequency to
fulfill realtime processing is given by M2 [cycles]/(10 [ms] × N2) [MHz].

Both feature extraction and search processes are performed frame by frame. Conse-
quently, a two stage frame-level pipeline can be employed, where the pipeline boundary
lays between the feature extraction and the search processes. As a result, the operation
frequency required to perform speech recognition in realtime is given by
max(M1 [cycles]/10 [ms] × N1,M2 [cycles]/10 [ms] × N2) [MHz]. Based on this
equation, if seven m-ActiveCubes are available, required operation frequency is given
by max(672, 896/10 × 3, (544, 238 + 485, 952)/10 × 4) = max(23, 26) = 26 [MHz].
As a result, CPU load is reduced by 85% and thus realtime speech recognition can be
performed by using M32R processors.

3.4 Specification of Speech Recognition by m-ActiveCube

As a result, seven m-ActiveCubes running at 26MHz of clock rate enable the proposed
speech recognition. Application size is 2,841 KBytes, which is mainly caused by about
2 MBytes table data for addlog computation. For facilitating practical applications, fur-
ther development for efficient design of addlog computation is required.

4 System Applications

Multimedia extension of the ActiveCube system and its functionalities offer more im-
pressive and interesting future applications in various fields, as shown Fig.6. In this
section, the details of the proposed applications are described by referring to the bene-
fits of speech recognition functionality.

Intuitive 3D Model Retrieval. We previously developed a 3D model retrieval system
[8] by using the ActiveCube system without extension. In this system, users can retrieve
a 3D shape model by simply combining physical cubes. As future works, we are plan-
ning to use additional voice keywords to decide the categories of retrieved results or
to input additional features of objects such as animal calls or the sounds of musical
instruments. Moreover, we can realize an application for a digital encyclopedia by
expanding this system. m-ActiveCube system will facilitate these future works.

Educational Toys for Children. We have also developed educational toys for chil-
dren called “TSU.MI.KI” [9]. First, children construct a shape by combining physical
cubes. Second, the system transforms it into a virtual object that resembles the physical

m-ActiveCube; Multimedia Extension of Spatial Tangible User Interface 369

m-ActiveCubeTarget Shape

Medical Assessment

Training/Rehabilitation Tool
Intuitive Interface for CAD

Wearable Computing
Administrator

ParticipantActiveCube

Radio

Web camera Fan

Intuitive 3D Model Retrieval

Digital Encyclopedia

Educational Toys

Cooperative Work

Horse
a large strong
animal that
people ride on
and use for
pulling heavy
things

Fig. 6. Applications using m-ActiveCube

structure. After that, they interact with the virtual object by manipulating its physical
structure. By using the m-ActiveCube system, we can utilize multiple sets of Active-
Cube systems in the same cyberspace, allowing children to collaborate with each other
in cyberspace. In addition, we can realize more intuitive interactions with cyberspace.
For instance, a user can manipulate a virtual object by voice commands such as “migi
(turn right)” or “tomare (stop).” If a user encounters a dangerous situation, output cubes
flash warning messages. Thus, the m-ActiveCube system will allow TSU.MI.KI to pro-
vide more intuitive and collaborative edutainment experiences for children.

Assessment Training and Rehabilitation Tools for Medical Purposes. For medical
purposes, we developed a system for the automated assessment of 3D spatial and con-
structional ability [10]. The system measures 3D spatial and constructional ability ac-
cording to user attempts to construct physical cubes. The m-ActiveCube system can
supply advice to users to construct a 3D structure by using I/O functionalities. For ex-
ample, if a user needs help, she/he can request support by using the speech recognition
function. When the system recognizes the request, it shows hints on the display and out-
put cubes. We assume that this system would be useful for training and the rehabilitation
of 3D spatial and constructional ability.

Wearable Computing. Because a battery is incorporated into each cube, it is pos-
sible to use the m-ActiveCube system outdoors. Therefore, users can utilize the m-
ActiveCube as a wearable I/O device and create a variety of tools by combining several
cubes. The constructed structures become various tools according to shape and I/O
functionalities. The function of each cube can be flexibly and dynamically changed
with connected positions/orientations or the assembled object shape. Moreover, users
can easily add functions by simply connecting I/O cubes.

Consequently, with the m-ActiveCube system, various useful applications are avail-
able because spatial, temporal, and functional consistency is always maintained
between the physical object and its corresponding virtual representation.

5 Conclusion

The present paper described a new TUI device as a multimedia extension of Active-
Cube. According to the analysis of the original version of ActiveCube, the fundamental

370 K. Ueda et al.

specifications of ActiveCube with high performance and high functionalities are exam-
ined, which enhance the benefits of human computer interfaces. m-ActiveCube achieves
more impressive system applications such as intuitive 3D model retrieval, a digital en-
cyclopedia, and so on. Further developments are continuing on the System-on-a-chip
(SoC) implementation of m-ActiveCube chip and the realization of the proposed sys-
tem applications.

Acknowledgments

The authors are grateful to Hideo Kikuchi of System Watt Co., Ltd. for his helpful
comments and suggestions. This research was supported in part by “The 21st Century
Center of Excellence Program” of the Ministry of Education, Culture, Sports, Science
and Technology, Japan.

References

1. E. Sharlin, B. Watson, Y. Kitamura, F. Kishino, and Y. Itoh, “On tangible user interfaces,
human and spatiality,” Personal and Ubiquitous Computing, Springer-Verlag, vol. 8, no. 5,
pp. 338–346, Sept. 2004.

2. B. Ullmer and H. Ishii, “Emerging Frameworks for Tangible User Interfaces,” in Human
Computer Interaction in the New Millennium, J. M. Carroll Ed., Addison-Wesley, 2001,
pp. 579-601.

3. R. Watanabe, Y. Itoh, Y. Kitamura, F. Kishino, and H. Kikuchi, “Distributed Autonomous In-
terface using ActiveCube for Interactive Multimedia Contents,” Proc. of 15th Int’l Conf. Ar-
tificial Reality and Telexistence (ICAT ’05), 2005. (to appear)

4. Toshiba Crop., http://www.semicon.toshiba.co.jp/prd/ics/neuron/neuron top.html
5. Julian, http://julius.sourceforge.jp/
6. S. Yoshizawa, Y. Miyanaga, and N. Yoshida, “On a High-Speech HMM VLSI Module with

Block Parallel Processing,” IEICE Trans. on Fundamentals, vol. E88-A, no. 12, pp. 1440–
1450, Dec. 2002.

7. RENESAS Technology, 32176 group data sheet, Jan. 2003.
8. H. Ichida, Y. Itoh, Y. Kitamura, and F. Kishino, “Interactive retrieval of 3D shape models

using physical objects,” Proc. of the 12th ACM Int’l Conf. on Multimedia 2004, pp. 692–
699, 2004.

9. Y. Itoh, S. Akinobu, H. Ichida, R. Watanabe, Y. Kitamura, and F. Kishino, “TSU.MI.KI:
stimulating children’s creativity and imagination with interactive blocks,” Proc. of the 2nd
Int’l Conf on Creating, Connecting and Collaborating through Computing, IEEE Computer
Society, pp. 62–70, 2004.

10. E. Sharlin, Y. Itoh, B. Watson, Y. Kitamura, S. Sutphen, and L. Liu, “Cognitive cubes: a
tangible user interface for cognitive assessment,” Proc. of Conference on Human Factors in
Computing Systems (CHI ’02), pp. 347–354, 2002.

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 371 – 378, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Biologically Inspired Adaptive Routing by Mimicking
Enzymic Feedback Control

Mechanism in the Cell

Takashi Kawauchi, Tadasuke Nozoe, and Masahiro Okamoto

Dept. of Bioinformatics, Graduate School of Systems Life Sciences,
Kyushu University, Fukuoka 812-8581, Japan

{kawauchi, nozoe, okahon}@brs.kyushu-u.ac.jp
http://www.brs.kyushu-u.ac.jp/bioinfo/indexe.htm

Abstract. The routing algorithm of SPF (Shortest Path First) [1] is widely
distributed in large scale network such as internet. Since this routing algorithm
is designed in order to improve throughput of each packet which is sequentially
generated at the nodes, it is not suitable for averaging load balance in the
network. The enzymic feedback in the cell is the typical and basic control
mechanism which can realize homeostasis of the value of every reactant in the
metabolic pathway. The purpose of this study is to design an adaptive routing in
which the packets generated at the nodes can be sent to the final destinations
with avoiding the partial and time-variant congestions in the network, and the
load balance in the network can be averaged. We have proposed here a new
biologically inspired adaptive routing algorithm by introducing an enzymic
feedback control mechanism in the cell.

1 Introduction

The metabolic pathway in the cell is so-called “a stream of water” and is composed of
a lot of enzymic reaction steps in which reactant (substrate) is converted to the
product by unique “enzyme” (catalyzed protein) and the produced product is
converted to the product by enzyme at the subsequent reaction step and so on.
Enzymes are proteins which catalyze the turnover of substrates without being
consumed themselves and without changing the equilibrium point of the biochemical
reaction. In metabolic pathways, the product of a late (or the last) step frequently acts
as an inhibitor of the first committed step in this pathway (negative feedback control).
This way, the end product of a pathway controls its own synthesis and prevents
useless accumulation of intermediates and of end product. Enzymic feedback control
can be considered to be a bandwidth control; rate velocity of consumption of substrate
can be represented by the function of substrate (A) and feedback inhibitor (B). Under
the steady-state assumption in the cell, many kinds of kinetic models of negative
feedback control are well known such as competitive inhibition, uncompetitive
inhibition, non-competitve inhibition and so on. For example, when the B is assumed

372 T. Kawauchi, T. Nozoe, and M. Okamoto

to control the rate velocity of A with a manner of competitive inhibition [2] (one of
the negative feedback functions), the rate velocity of A (d[A]/dt, t represents time)
can be mathematically written as follows:

d[A] / dt =
][)/][1(

]max[

AKiBKm

AV

++
− (1)

where Vmax represents maximum velocity (reaction rate) of enzyme activity, Km is
the value of substrate giving 0.5Vmax, Ki is the feedback coefficient. Anyway,
d[A]/dt is the function of the substrate A and the feedback inhibitor B. In the case of
accumulation of B, the absolute value of the term in the right-side of eq.(1) become to
be small. Since the B is the end product of the pathway, we can easily considered that
the accumulation of B corresponds to be “congestion” of the pathway; the absolute
value of the term in the right-side of eq.(1) represents new metric of “congestion”
from the view point of network routing.

2 Proposed Routing Protocol

We define the following metric of routing by mimicking enzymic feedback control in
the cell:

max/Vpk = (2)

][)/][1(

][

aKibKm

aV
p

++
= (3)

where V represents the sending rate (Mbps) to the next-hop node ,[a] is the total of
reserved sending packet size (Byte) to the next-hop node, [b] is the total accumulated
packet size (Byte) at next-hop node, Vmax is maximum sending rate (Mbps) to all
next-hop nodes , and Km and Ki are the arbitrary coefficients. The value of k in eq.(2)
decreases with the increase in “congestion” of [b]. Furthermore, we define the follow-
ing weighted multi-objective f:

)/1()1(hkf αα +−= 0 < α < 1 (4)

where h is the number of hops to the final destination, represents arbitrary coeffi-
cient; if =1, the network routing will be performed according to the SPF (Shortest Path
First) algorithm. The h value was calculated with using routing table created based on
the Dikjstra method [1]. At the branching of node-pathways, the value of f at each
branching pathway is calculated and it determines the node to be sent with having the
larger value of f. In order to validate only the effect of feedback control [b] at the
branching point, the value of [a] was defined by the total of the reserved sending packet
size at the branching point; there is no difference in [a] between branching points, the
value of p (eq.(3)) changes with only [b]. This is the outline of the proposed dynamic
adaptive routing algorithm where most of the packets will be sent to the final destination
with escaping from the congested nodes; the QoS (Quality of Service) of the proposed
algorithm is expected to be “averaging the load within the network”.

Biologically Inspired Adaptive Routing 373

3 Case Study and Validation

The following node-network was used in order to evaluate our algorithm, where the
numeral (0 to 5) represents the node-number, and the bold line is the connection
pathway between nodes:

Suppose the three kinds of sequential packets to be sent randomly in the network
(total number of packets is 300); one is the packets generated at the starting node 0
and sent to the destination node 3, second is those generated at the starting node 0 and
sent to the destination node 2, and the last one is those generated at the starting node 0
and sent to the destination node 5. Each packet has 3072B size and is generated at
every 150 μsec. The maximum sending rate between connection nodes is fixed at
100Mbps. The control packet (64B) is sending to the next-hop node at every 100
μsec. This control packet involves the information of the value of [b] (total accumu-
lated packet size) in eq.(3). The time between the generating and arriving at the final
destination (passage) of every packet and transient sending route of every packet were
examined. The default route was supposed to be 0 1 2 3 for the packets send-
ing to the node 3 and to be 0 1 2 for the packets sending to the node 2 and to be 0

 4 5 for the packets sending to the node 5; the route 0 1 2 is overlapped
which will lead to the congestion of the packets at this route.

For comparison, the latency profile with packets to be sent was examined in
the case of SPF algorithm; every packet is sent to the final destination according to
the default route. The results can be summarized as follows: As shown in Fig. 2, the

Fig. 1. 6 nodes-network

μ

Fig. 2. Latency profile with data packet by using SPF algorithm. The abscissa and the ordinate
represent data packet ID and latency (μsec), respectively. A, packet sending to the nodes 2 and
3; B, packet sending to the node 5.

A

B

374 T. Kawauchi, T. Nozoe, and M. Okamoto

μ

Fig. 3. Overwritten latency profile with data packet ID by using the proposed routing algo-
rithm. The abscissa and the ordinate represent data packet ID and latency (μsec), respectively.
The control packet is sending to the next-hop node at every 100μsec.

overwritten latency profile A(data packets sending from the node 0 to the nodes 2 and
3) increases with the data packet ID that means the congestion is occurred at the route
between the nodes 0, 1 and 2. Since the maximum sending rate between all connec-
tion nodes is fixed at 100Mbps and the each data packet size is 3072B, the minimum
required time sending to the next-hop node is 245.7 μsec (minimum required time
sending from the node to the node 3 is 245.7 x 3 = 737.1 μsec).

Fixed the value of in eq.(4) at 0.5, the latency profile with packets to be sent was
examined by introducing our proposed routing algorithm. The overwritten latency
profile with data packet ID is shown in Fig. 3. The average, minimum and maximum
of latency in Figs. 2 and 3 are summarized in Tables 1 and 2, respectively.

Table 1. Summary of latency profile shown in Fig. 2

Total number of data packets 300
Average of latency (μsec) 1153.58

Standard deviation of latency 1498.64

Minimum latency (μsec) 0
Maximum latency (μsec) 5485.76

Table 2. Summary of latency profile shown in Fig. 3

Total number of data packets 300
Average of latency (μsec) 196.16

Standard deviation of latency 173.65

Minimum latency (μsec) 0

Maximum latency (μsec) 979.6

As shown in Fig. 3 and Table 2, most of the latency of data packets were averaged,
which means that our proposed algorithm is effective for dynamic adaptive routing.
According to Figs. 2 and 3, part of the transient latency profiles of packets and route
sending to the final destination by using SPF algorithm and by using the proposed
algorithm are summarized in Tables 3 and 4, respectively.

Biologically Inspired Adaptive Routing 375

Table 3. Transient latency profiles of packets by using SPF algorithm

In Table 4, the circle marked columns represent the packets which were sent by
using the non-default routes (default routes are 0 1 2 3 for the packets sending to
the node 3, 0 1 2 for those sending to the node 2, and 0 4 5 for those sending
to the node 5). In Table 4, most of the packets sending to the node 2 were sent by
using the default route, except for packet IDs 256 and 280; alternative routes is
0 4 1 2. The routes for the packets sending to the node 3 are most flexible; the
route 0 4 5 3 is another short-cut route and the route 0 1 0 1 2 3 (packet
ID=260) took a timing for a while because the default route 0 1 2 3 was
occupied by packet IDs 258 and 259. Furthermore by assigning the route 0 1 0

1 2 3 for packet ID 260, the packet ID 262 can select “non-traffic” 0 4 5 3;
latency is 0. This result shows the proposed algorithm can find alternative non-traffic
routes with considering the smaller number of hops to the destination.

These results showed in the case where the control packet is sending to the next-
hop node at every 100μsec. Next we examined the effect of sending time interval of
control packets on the average of latency. The other conditions except for sending

376 T. Kawauchi, T. Nozoe, and M. Okamoto

Table 4. Transient latency profiles of packets and the route sent to the final destination by
using the proposed algorithm

μ [μ

μ

Fig. 4. Effects of generation time interval of control packet on the average of. latency A shows
in the case where time interval varies between 0 and 15000 μsec, and B is the magnifying
profile between 0 and 100μsec.

A B

Biologically Inspired Adaptive Routing 377

[μ generat ing t ime int erval of cont rol packet [μsec]

Fig. 5. Profile of the total number of sending control packets with sending time interval. B
shows the magnifying profile when the time interval varies between 0 and 100.

time interval of control packets were the same as before. The results were summa-
rized in Fig. 4. The average of latency took the minimum around time interval
= 100μsec, and rapidly increased when the time interval is less than 30μsec. Fig. 5
represents profile of total number of generated control packets with changing the time
interval of control packets. In Fig. 5(B), the total number of sending control packets
rapidly increased when the time interval is less than 100μsec.

As shown in Figs. 4(B) and 5(B), the smaller time interval becomes, the less the
time-delay of feedback information is, however, which leads to the generation of
large amount of control packets causing the additional “congestion” in the network..
Thus in our proposed algorithm we should set up the optimal time interval for sending
control packets to the next-hop nodes; 100μsec in this case.

4 Discussion

The OSPF (Open Shortest Pass First) [3] is the routing protocol by using various cost
parameters as metrics; the followings are considered to be cost parameter: reliability,

Region layer

Node layer

Control packet

Control packet

Control packet

Region layer

Node layer

Control packet

Control packet

Control packet

Fig. 6. Concept of hierarchical adaptive routing

A B

378 T. Kawauchi, T. Nozoe, and M. Okamoto

delay, bandwidth, load, maximum transfer unit, communication cost. In this study,
we proposed here eqs. (2), (3) and (4) by mimicking the mechanism of enzymic feed-
back function in the cell. As shown in eq. (3), the p is the integrated parameter con-
sidering both the current congestion status between the self-node and the next-hop
node([a] in eq. (3) numerically reflects this information) and the most recent conges-
tion status between the next-hop node and the next-next-hop nodes (the [b] in eq. (3)
numerically reflects this information). The Km represents the [a] value giving the half
speed of maximum sending rate (Vmax); the smaller Km value gives the steeper de-
crease of p-value. The Ki determines steepness of the p-value vs. [a]-value; the
smaller Ki value represents the stronger negative feedback control. In metabolic path-
ways in the cell we can observe various kinds of feedback function mechanisms eq.
(1) in addition to [2, 4]. These functions including eq. (3) have high possibility to be
acceptable as new metrics in OSPF.

For adaptive routing in large size of network, based on the results in this study we
are now developing hierarchical adaptive routing or overlay routing shown in Fig. 6.

In Fig. 6, regarded the compact small network in Node layer as one node in Region
layer, select the non-traffic route with the smaller number of hops in Region layer by
using the biologically inspired routing algorithm (eqs. (2)-(4)) and this selection re-
flects the route searching in Node layer. This procedure is repeated time by time ac-
cording to the traffic condition in the network.

References

[1] Dikjstra, E.W.: A note on two problem in connection with graphs, Numerische Mathe-
matik, 1, pp269-271(1959)

[2] Okamoto, M., Takeda, Y., Aso, Y., Hayashi, K.: Steady-state approximation of enzyme
activation and inhibition, Biotechnol. and Bioengineer., 25, pp1453-1463 (1983)

[3] Thomas M. Thomas II: OSPF Network Design Solutions 2nd. ed., Cisco Press (2003)
[4] Segel I.H: Enzyme Kinetics, Wiley-Interscience, New York (1975)

An Interest-Based Peer Clustering Algorithm
Using Ant Paradigm

Taisuke Izumi and Toshimitsu Masuzawa

Graduate School of Information Science and Technology,
Osaka University 1-3 Machikaneyama, Toyonaka, 560-8531, Japan

{t-izumi, masuzawa}@ist.osaka-u.ac.jp

Abstract. The interest-based clustering is one of promising approaches
to achieve low-cost search in peer-to-peer file sharing. It organizes the
logical overlay network where peers having similar interests are closely
located. In this paper, we propose an interest-based peer clustering al-
gorithm using ant paradigm. Our algorithm is inspired by the ant-based
clustering algorithm, which is one of heuristic methods to categorize
many data items. We also evaluate this algorithm by simulations.

1 Introduction

Recently, peer-to-peer (P2P) systems have been occupying an important position
of distributed computing. In contrast to the traditional server-client architecture,
all participants in peer-to-peer networks (called peer) are connected with each
other through a logical network overlaying on existing infrastructures such as
the Internet, and cooperatively provides a certain type of services. A typical one
of such services is file sharing, where each peer shares a large amount of files by
providing a part of its storage area. Boosted by the recent growth of network
bandwidth, several peer-to-peer file sharing systems, such as Napster[1], achieve
success, and the file sharing becomes most popular application of peer-to-peer
computing.

One of most important issues in peer-to-peer file sharing is lookup, that is,
finding the peer that stores searching files. In general, since peer-to-peer systems
consists of huge number of peers, it is almost impossible that each peer acquires
the whole information about the location of files. Hence, lookup algorithms must
be realized in some decentralized manner. This fact causes the implementation
of lookup to be a challenging task and to attract many researchers’ interests.
Actually, many approaches for efficient lookup have been studied before now [7].
In such approaches, flooding is one of most popular schemes. In this scheme,
the searcher sends its query to all neighbors, and if a process receives a query
that is not forwarded yet, it forwards the query to all neighbors. The peer that
has the file matching the query, it replies its location to the searcher. This
approach is relatively simple and easy to implement. However, if the searching
file is located at one far from the searcher, the flooding-based search consumes
too many messages (the number of messages rapidly grows as the function of the

A.J. Ijspeert et al. (Eds.): BioADIT 2006, LNCS 3853, pp. 379–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

380 T. Izumi and T. Masuzawa

distance between the searcher and the file holder). An alternative of the flooding-
based search is the k-random walker search, where searchers inject k queries that
randomly walk on the network [7]. This scheme requires less number of messages
than the flooding-based search. However, in contrast, it consume too many times
to find faraway files. Thus, as the number of peers increases, both approach faces
the scalability problem.

The interest-based clustering is one of promising approaches to avoid this
problem. The underlying principle of this approach is that users usually have
some specific interest, and that the behavior of each peer is based on the interest
of its user. For example, in sharing music files, some like rock music, some like
classical music, some like jazz, and so on. Then, it is natural that the peer whose
user likes rock music sends the query to find the rock music. Thus, if we can
gather the peers which have same interest in the network, it is expected that
the overall search performance is improved. In the interest-based clustering, it
is assumed that each peer has some information representing user’s interest,
and that for two different kinds of interests, their similarity is defined by some
metrics. Then, the objective of interest-based clustering is to organize the logical
overlay network where peers having similar interests are closely located.

In this paper, we propose an interest-based peer clustering algorithm. For con-
struction of the algorithm, we adopt an bio-inspired approach, called ant-based
clustering[3, 4, 5, 6]. An ant-based clustering is one of techniques to categorize
several kinds of items distributed in some field. This approach uses a number of
agents whose behavior is inspired by ants in real world. In general, the ant-based
clustering algorithm works as follows: each ant-like agent walks around the field.
If an agent encounters an item, it probabilistically picks up the item. Then, the
pickup probability depends on the density of similar items around the pickup
target. That is, if there are many similar items around the target, its pickup
probability becomes low, and vise versa. By the same way, each agent with an
item probabilistically put the item. Its probability also depends on the density
of similar items. With high probability, the item is put at the place around
which many similar items are located. Repeating pickup and drop of items, the
locations of items are eventually clustered according to their similarity, that is,
similar items are closely located. Based on this idea, we construct an interest-
based peer clustering algorithm. In our algorithm, each peer provides token which
is labeled by the provider’s interest. Each agent walks around the network, picks
up tokens, and drops tokens. When a token is put on a peer, the token holder
is logically linked with the token provider. If, same as the ant-based clustering
algorithm, the token is gathered in some place, peers with similar interests are
connected with each other via the place where their tokens are gathered.

To our knowledge, this algorithm is the first one to apply the ant-based algo-
rithm to the clustering of peer-to-peer networks. We also evaluate our algorithm
by simulations, and show that our algorithm is slightly better than another
straightforward algorithm.

This paper is organized as follows. First, we define peer-to-peer systems and
introduce the ant-based clustering in Section 2, and briefly explain the notion

An Interest-Based Peer Clustering Algorithm Using Ant Paradigm 381

of the ant-based clustering technique in Section 3. Our clustering algorithm is
presented in Section 4. The evaluation of this scheme is given by simulations in
Section 4.1. Finally, we conclude this paper and state the future research issues
in Section 5.

2 Preliminaries

2.1 Peer-to-Peer Systems

We consider a peer-to-peer system consisting n processes {p0, p1, p2, . . . , pn−1}1.
Two peers can directly communicate with each other by exchanging messages if
they are connected by a link. The network we consider in this paper is overlay
networks consisting of logical links. The logical link between two peers does not
imply that they are physically connected. It rather implies that two peers know
their physical address (e.g. IP address) with each other. When a peer sends a
message to one of its (logical) neighbors, it actually sends the message with the
physical address of the destination. This message is transferred through some
physical path. The translation from logical links to physical paths is handled by
the underlying protocol (e.g. TCP/IP). In this sense, the link set connecting to
a peer p can be regarded as the connection list, which is the list of peers whose
physical addresses are known to p. We allow the network topology to be arbitrary
as long as any two peers are connected with each other. However, by the nature
of overlay networks, we also allow each peer to change the network topology by
removing or creating links connected to itself. Actually, this is done by adding a
physical address to the connection list or removing the physical address from the
connection list. We assume that the system is synchronous. More precisely, an
execution of the system follow discrete time, which is represented by nonnegative
integer 0, 1, 2, In one time unit, each peer can communicate with its neighbors
and execute local operation. Notice that this synchrony assumption is introduced
only to simplify the argument. Actually, our algorithm correctly works even if
no such synchronization mechanism exists.

We also assume that each peer has an interest, which is some kind of infor-
mation (such as keywords) representing its user’s interest. In addition, for any
two kind of interests, their similarity is defined. The similarity is represented by
a single real value with range [0, 1].

2.2 Mobile Agents

The system can use a number of mobile agents (in what follows, we simply call
“agent”). A mobile agent is a autonomous program that can migrate from node
to node in the network. A agent can interact to the peer on which it visits by
executing operations. In one time unit, each agent can execute local operation,
and can migrate to a neighbor of the peer at which it currently stays.
1 Usually, in peer-to-peer systems, the set of peers varies with time by join or leave

of peers. However, the main objective of this paper is to present the possibility of
interest-based cluster organization using ant paradigm. Thus, for simplicity, we does
not consider join or leave of peers.

382 T. Izumi and T. Masuzawa

3 Ant-Based Clustering Algorithm

In this section, we briefly explain the ant-based clustering algorithm (ABC),
which is the basis of our algorithm. The ABC algorithm is an nature-inspired
heuristic approach for cluster analysis of data items. In this approach, each item
is distributed in a field (typically 2D-grid). The objective of ABC is to design
the map of those items. More precisely, the map is an arrangement of items in
the field that represents their relationship. That is, in the map, closely related
items are closely placed in the field. The ABC algorithm is inspired by a real
ant behavior of cemetery organization (i.e. the clustering of dead corpses). The
study of ABC is originated by Deneubourg et al. [4]. In their paper, the model
for such cemetery organization behavior is proposed. Subsequently, Lumer and
Faieta [6] applied this model to the data analysis. This result is the basis of our
algorithm. Thus, in the followings, we introduce the ABC algorithm of Lumer
and Faieta (in what follows we simply call this algorithm “the ABC algorithm”).

In the ABC, we consider a two dimensional grid. In a unit area of the field,
one item can be placed. The ABC algorithm begins with randomly distributing
the items we want to analyze into the field. Then, for any two data items,
their similarity is defined with the range [0, 1]. The field also has a number
of agents. An execution of the ABC algorithm proceeds in steps. In one step,
each agent random walks to one of neighbor areas. After the walk, if the agent
already has an item, it probabilistically decides whether it drops the item or
not. In the same way, if the agent encounter the item at the area to which it
moves, it probabilistically decides whether it picks up the item or not. Then, the
probability with which the item i is picked up or dropped is determined by the
neighborhood function defined by:

f(i) = max
(

0.0,
1

|L|
∑
j∈L

(
1 − (1 − δ(j, i))

α

))
,

where δ(j, i) is the similarity between the item i and j, L is the set of areas
which adjacent to the area where the item i is placed (j ∈ L means “for any
item existing in L”) , and α is a data-dependent scaling parameter.

Using this neighborhood function, the pickup probability is given by:

ppick(i) =
(k+

k+ + f(i)

)2
,

and, the drop probability is given by:

pdrop(i) =
(f(i)

k+ + f(i)

)2
,

where the k+ and k− is threshold constants.
The ABC algorithm repeats this step until some termination condition holds

(typically, the number of repeat times reaches to some predefined value). The
resultant map is the field when the termination condition holds.

An Interest-Based Peer Clustering Algorithm Using Ant Paradigm 383

4 Interest-Based Peer Clustering Inspired by ABC

This section presents our interest-based peer clustering algorithm based on the
ABC algorithm. In our algorithm, the whole network and each peer respectively
corresponds to the field and an unit area. Each peer provides token, which is
corresponds to data items in the ABC. Each token is labeled by the interest of
its provider. Same as ABC, an agent randomly walks on the networks, and prob-
abilistically picks up or drops tokens. Then, if a token provided by a peer p1 is
placed at some other peer p2, p1 and p2 is logically connected. Since we can expect
that tokens provided by peers with similar interests is clustered in the networks,
peers with similar interest is connected with each other via the place where their
tokens are gathered. In other words, the place where tokens with similar interests
are clustered works as a hub. Thorough this hub, each peer is clustered based
on its interest. In what follows, we explains the details of our algorithm.

Node Behavior. In our algorithm, each peer has two types of logical links,
static links and dynamic links. The role of static links is to keep connectivity of
the network. They are created at initialization process of each peer, and never
removed or added. Dynamic links are ones that connects token holders and
token providers. They are created when a token is placed, and removed when
a token is taken. In our algorithm, each peer creates several static links at the
initialization phase. We assume that static links are created such that any two
peers are connected with each other. Each peer has some number of token place,
which is a container to put the token. A token place can hold one token. At the
initialization, each peer creates tokens, and put them to its token places. The
aim of token places is to limit the degree of each peer. Except for static links,
the degree of each peer can be bounded by the sum of the number of injected
tokens and that of its token places. Our algorithm allows each peer to determine
by itself how many number of token places is prepared. This implies that each
peer can control the imposed load by itself because the load of each peer strongly
depends on its degree.

Each peer changes the networks topology when a token changes its position.
To explain the detail of the topology change, let us consider an situation that an
agent agt is going to take a token tok at peer p1. The provider of tok is denoted
by p2. In our algorithm, a token contains the physical address of its provider
and the peer where it was placed last. In this situation, the token tok contains
the information about the physical address of p1 and p2. Then, we explains
the behavior when tok is actually taken: if tok is taken by agt, the logical link
between p1 and p2 is not immediately removed. While tok is carried by agt, it is
temporarily held by both agt and p. Thus, another token cannot be put on the
place of p1 where there had been tok until tok is put to another place. If tok is
put on some node p3, p3 first add the address of p1 and p2 to its connection list
(recall that the address of p1 and p2 is contained in the token tok). It sends the
message with p3’s physical address to p1 and p2 to inform the new place of tok.
When p1 receives this message, it removes tok from the token place. The peer
p2 receiving the message from p3 adds the address of p3 to its connection list.

384 T. Izumi and T. Masuzawa

Agent Behavior. In one time unit, an agent agt first migrates a randomly
chosen neighbor p. If agt have an item and the peer p have an empty token
place, it decides whether it puts the carrying item to p or not. It also decides
whether an item on p is taken or not if p have an item and agt have a room to
take an item. Same as the ABC algorithm, these decision is done in probabilistic
way. However, the probability function is quite different from the ABC. The
neighborhood function in our algorithm is defined by:

f(i, p) =
1

αNTP (p) +
∑

q∈N(p) NTP (q)

(
α ·

∑
t∈T (p)

δ(t, i) +
∑

q∈N(p)

∑
t∈T (q)

δ(t, i)
)

,

where p is the peer that have the token i, the T (p) is the set of token on peer p,
N(p) is the set of neighbors of peer p, NTP (p) is the number of token places at
peer p, and α is a design parameter. In addition, our algorithm use the different
drop probability function from the ABC.

pdrop(i) =
(1

f(i)

)β

,

where β is a design parameter. This probability is inspired by an advanced result
for ABC [5]. For the pickup probability function, the algorithm uses the same
one as the ABC algorithm. In addition to this probabilistic decision, each agent
has one exceptional pickup scheme: if an agent encounters the token tok at the
peer which provides tok, it necessarily picks up the token tok.

Let an agent agt pick up a token tok on p. Then, the behavior of agt until
dropping tok consists of there phases: In the first phase , the agent agt only walks
around the network, and never drops the token tok. The aim of this phase is to
carry the token far apart from p. The first stage begins when agt picks up the
token tok, and continues until the migration times of agt reaches to some prede-
fined value l1st. In the second phase, the agent agt is allowed to drop the token
tok. The second phase continues until the token tok is dropped or the migration
times reaches to some value l2nd. Then, only in the latter case, the agent pro-
ceeds to the next phase. The third phase is the release phase. In this phase, the
agent agt drops the token tok on the peer where the value of the neighborhood
function is relatively high. More precisely, when tok is picked up from p, agt
stores the value of the neighborhood function v(= f(tok)). The agent agt drops
the token tok on the peer where the value of neighborhood function for tok is not
smaller than f(tok). The third phase continues until the token tok is dropped.

Our algorithm allows an agent to have one or more tokens. There is a capacity
cap for the number of tokens one agent can have. For each token that one agent
has, the thread of the above phases independently executed.

4.1 Simulation Results

In this subsection, we evaluate the efficiency of our algorithm by the simulation.
Whereas evaluation needs benchmarks and measure for efficiency, the interest-
based clustering have neither of them. Thus, in this section, we first introduce
our criterion to measure the efficiency of an algorithm and one of benchmarks.

An Interest-Based Peer Clustering Algorithm Using Ant Paradigm 385

Our criteria is called k-coverage. To define it, we first give the k-coverage
Ck(p) for a peer p by:

Ck(p) =
∑

p′∈Nk(p)

δ(p′, p),

where Nk(p) means the set of peers whose distances from p are within k. The
k-coverage of the whole network is defined by the average of ck(p) for all p in
the system. Since our objective for organizing the interest-based clusters is the
better peer-to-peer search, this criterion is straightforward and reasonable.

As a benchmark, we use an algorithm based on greedy strategy. This algorithm
works as follows: for each peer p, the algorithm chooses one non-neighbor peer p′

whose interest is the most similar with that of p, and adds the edge connecting
p to p′. This process is repeatedly done until the number of additional edges
are equal to that of dynamic links in our algorithm. More precisely, if one peer
creates two tokens in our algorithm, the greedy algorithm adds two edges for
one peer.

Figure 1 shows the transition of 3-coverage in the simulation of our algorithm.
The vertical axis is the value of 3-coverage and the horizontal axis is time. The
instance of the network used in the simulation consists of 5000 peers. As the
topology of static links, we consider d-random regular graphs, that is, the graph
where degrees of all peers are d. The graph topology is constructed by the method
of Bollobás [2], that is, repeatedly choosing a pair of peers whose degrees are
lower than d at random until all peers have degree d. In the simulation, we create
a 4-random regular graph, and use it as the topology of static link. The interest
of each peer is represented by an real value in the interval [0..1], and its similarity
is simply defined by their difference. The parameter setting of our algorithm is
as follows: k+ = 0.05, k− = 0.1, α = 5.0, β = 4.0, l1st = 200, l2nd = 400, and
cap = 10. The number of agents is 500. Each peer prepares 6 token places, and
creates two tokens. In figure 1, the value of 3-coverage is plotted every 200 time

Fig. 1. The number of searches

386 T. Izumi and T. Masuzawa

units. The simulation result shows that our algorithm rapidly converges to the
slightly better value than the greedy algorithm.

5 Conclusion

In this paper, we proposed an interest-based peer clustering algorithm. Our
algorithm is inspired by the ant-based clustering (ABC) algorithm, which is one
to categorize data items for data analysis. The key idea of our algorithm is to
introduce tokens, and to indirectly organize peer cluster by clustering tokens.
We also evaluated this algorithm by simulations, and showed our algorithm is
slightly better than an simple greedy algorithm.

Acknowledgment. This work is supported in part by a JSPS, Grant-in-Aid for
Scientific Research ((B)(2)15300017), and “The 21st Century Center of Excel-
lence Program” of the Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

References

1. Napster website. http://www.napster.com/.
2. B. Bollobás. Random Graphs. Academic Press, 1985.
3. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence. From Natural to

Artificial Systems. Oxford University Press, 1999.
4. J.-L. Deneubourg, S.Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chre-

tien. The dynamics of collective sorting: Robot-like ant and ant-like robot. In Proc.
of 1st Conference on Simulation of Adaptive Behavior: From Animals to Animats,
pages 356–365, 1991.

5. J. Handl, J.Knowles, and M. Dorigo. Artificial Life, 2005. To appear.
6. E. Lumer and B. Faieta. Diversity and adaptation in populations of clustering ants.

In Proc. of 3rd International Conference on Simulation of Adaptive Behavior: From
Animalsto Animats 3, pages 499–508, 1994.

7. Q. Lv, P. Cao, E. Cohen, and S. Shenker. Search and replication in unstruc-
tured peer-to-peer networks. In Proc. of International Conference on Supercom-
puting(ICS), pages 84–95, 2002.

Author Index

Angulo, Cecilio 5

Bhaumik, Kamales 236

Chujo, Hiroaki 346

Egawa, Sunao 93

Federici, Diego 176
Furusawa, Chikara 80, 113

Ghosh, Kuntal 236
Gunji, Yukio-Pegio 20

Hammer, Barbara 141
Hara, Takahiro 306
Harada, Atsushi 338
Hayashi, Hideki 306
Hoßfeld, Tobias 322

Ibrahim, Zuwairie 206
Ikkai, Yoshitomo 346
Irie, Satoru 252
Isarida, Takeo 338
Ito, Yoichiro 107
Itoh, Yuichi 363
Izumi, Taisuke 281, 379

Johansson, Christopher 265

Kakugawa, Hirotsugu 281
Kaneko, Kunihiko 80, 107
Kashiwagi, Akiko 113
Kawauchi, Takashi 371
Khalid, Marzuki 206
Kikuno, Tohru 294
Kishino, Fumio 222, 363
Kitamura, Yoshifumi 222, 363
Komoda, Norihisa 346
Konishi, Junjiro 33
Kosaka, Atsushi 363

Lansner, Anders 265
Leibnitz, Kenji 48, 322
Liao, James C. 1

Mange, Daniel 128
Masuzawa, Toshimitsu 281, 379
Mizuno, Tadanori 338
Mudry, Pierre-André 160
Murakami, Norishige 222
Murata, Masayuki 33, 48, 322

Nagahisa, Keisuke 93, 113
Nishigaki, Masakatsu 338
Nishio, Shojiro 306
Nozoe, Tadasuke 371

Obinata, Kei 330
Ogura, Yusuke 192, 252
Oka, Hironori 346
Okamoto, Masahiro 371
Okuyama, Takuya 294
Onishi, Katsuhiko 222
Ono, Osamu 206
Onoye, Takao 363
Ooshita, Fukuhito 281

Pardo, Diego E. 5
Pfeifer, Rolf 2

Rossier, Joël 160

Sadamitsu, Makoto 113
Saito, Seiji 192
Salomon, Ralf 64
Sarkar, Sandip 236
Sato, Kanetomo 330
Sato, Katsuhiko 107
Satoh, Ichiro 355
Seiffert, Udo 141
Shimizu, Hiroshi 93, 113
Shioya, Suteaki 93
Shogenji, Rui 192, 252
Stauffer, André 128
Sugawara, Tadashi 330
Suzuki, Tomoko 281

Takeuchi, Yoshinori 363
Tanida, Jun 192, 252
Téllez, Ricardo A. 5

388 Author Index

Tempesti, Gianluca 128, 160
Thoma, Yann 160
Timmermann, Dirk 64
Tsuboi, Yusei 206
Tsuchiya, Tatsuhiro 294
Tsuda, Soichiro 20

Ueda, Kyoko 363
Urabe, Itaru 330

Villmann, Thomas 141

Wakamiya, Naoki 33, 48, 322
Wardani, Agustin K. 93
Watanabe, Ryoichi 363
Widiger, Harald 64

Yamada, Tadashi 113
Yanagida, Toshio 4
Yomo, Tetsuya 107, 113, 330

Zauner, Klaus-Peter 20

	Frontmatter
	Invited Talks
	Design of Synthetic Gene-Metabolic Circuits
	Morphological Computation: Connecting Brain, Body, and Environment
	Single Molecule Nano-Bioscience

	Robotics
	Evolving the Walking Behaviour of a 12 DOF Quadruped Using a Distributed Neural Architecture
	Robot Control: From Silicon Circuitry to Cells

	Networking I
	Proposal and Evaluation of a Cooperative Mechanism for Pure P2P File Sharing Networks
	Resilient Multi-path Routing Based on a Biological Attractor Selection Scheme
	Packet Classification with Evolvable Hardware Hash Functions -- An Intrinsic Approach

	Biological Systems
	Emergence of Two Power-Laws in Evolution of Biochemical Network; Embedding Abundance Distribution into Topology
	Microbial Interaction in a Symbiotic Bioprocess of Lactic Acid Bacterium and Diary Yeast
	Responses of Fluctuating Biological Systems
	Analysis of Fluctuation in Gene Expression Based on Continuous Culture System

	Self-organization
	Bio-inspired Computing Machines with Self-repair Mechanisms
	Perspectives of Self-adapted Self-organizing Clustering in Organic Computing
	MOVE Processors That Self-replicate and Differentiate

	Evolutionary Computation
	The Evolutionary Emergence of Intrinsic Regeneration in Artificial Developing Organisms
	Evaluation of Fundamental Characteristics of Information Systems Based on Photonic DNA Computing
	Hybrid Concentration-Controlled Direct-Proportional Length-Based DNA Computing for Numerical Optimization of the Shortest Path Problem

	Modeling and Imaging
	Modeling of Trees with Interactive L-System and 3D Gestures
	New Vision Tools from the Comparative Study of an ``Old'' Psychophysical and a ``Modern'' Computational Model
	Photonic Information Techniques Based on Compound-Eye Imaging
	Attractor Memory with Self-organizing Input

	Networking II
	Bio-inspired Replica Density Control in Dynamic Networks
	Improving the Robustness of Epidemic Communication in Scale-Free Networks
	On Updated Data Dissemination Exploiting an Epidemic Model in Ad Hoc Networks

	Posters
	Modeling of Epidemic Diffusion in Peer-to-Peer File-Sharing Networks
	A High-Throughput Method to Quantify the Structural Properties of Individual Cell-Sized Liposomes by Flow Cytometry
	A User Authentication System Using Schema of Visual Memory
	A Consideration of Application of Attractor Selection to a Real-Time Production Scheduling
	Bio-inspired Organization for Multi-agents on Distributed Systems
	{\itshape m}-ActiveCube; Multimedia Extension of Spatial Tangible User Interface
	Biologically Inspired Adaptive Routing by Mimicking Enzymic Feedback Control Mechanism in the Cell
	An Interest-Based Peer Clustering Algorithm Using Ant Paradigm

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

