

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 712 – 721, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Fast Block Matching Algorithm in Walsh Hadamard
Domain

Ngai Li, Chun-Man Mak, and Wai-Kuen Cham

Department of Electronic Engineering, The Chinese University of Hong Kong

Abstract. A fast block matching algorithm, namely Fast Walsh Search, is pro-
posed for motion estimation in block-based video coding. In our approach, tar-
get blocks in current frame and their candidates in reference frame are projected
onto Walsh Hadamard domain, allowing early rejection of mismatch candidates
to reduce computation requirement. Moreover, we introduce a new method
called block pyramid matching that re-uses many previous calculations to fur-
ther lessen the computation load of our approach. Experimental results show
that the proposed algorithm can achieve more accurate motion estimation than
the popular three-step-search and diamond search with slight increase in com-
putation requirement only.

1 Introduction

Most video coding standards use motion compensation to reduce temporal redun-
dancy. Motion compensation requires block matching which is to find a matching
block in the reference frame that is close to the target block in the current frame. The
displacement vector of the matching block is called motion vector, therefore block
matching is also called motion estimation. Full search block matching (FSBM) algo-
rithm exhaustively searches through all possible locations in the search window to
obtain the matching block that has the least matching error with the target block.
However, the computation requirement of FSBM is too high for real-time applica-
tions. Fast search algorithms such as three-step search (TSS) [4], four-step search
(FSS) [5], new three-step search (NTSS) [6], and diamond search (DS) [7] were de-
veloped, which can reduce the computation time significantly at the cost of higher
matching error. These algorithms find the minimum error using a gradient-descent
approach which implicitly assumes that there is no local minimum.

Recently developed video coding standards such as H.264/AVC [8] use Walsh
Hadamard Transform (WHT) to compress DC coefficients. Meanwhile, Hel-Or et al.
[1, 2] proposed a real time pattern matching algorithm which works in the Walsh
Hadamard (WH) domain. Their matching algorithm first computes a distance using a
few WHT coefficients to perform early rejection of mismatch patterns and then focus
on a small number of remaining candidates that are more likely to be a correct match
of the pattern. Their proposed algorithm reduces computation overheads in WHT by
an efficient pruning algorithm in which the intermediate data is effectively exploited.

Motivated by [1, 2, 8], we propose a “Fast Walsh Search” (FWS) that performs
block matching in the WH domain. Although it is straightforward to perform motion
estimation in spatial domain [4, 5, 6, 7], our proposed algorithm requires only slightly

 Fast Block Matching Algorithm in Walsh Hadamard Domain 713

more computation than that of TSS and DS and achieves a more accurate block
matching in terms of mean square error (MSE). The high efficiency is because of the
pattern matching algorithm suggested by Hel-Or et al. [1, 2] as well as a new match-
ing technique called block pyramid matching (BPM).

This paper is organized as follows. Section 2 introduces the proposed fast motion
estimation algorithm in WH domain. Section 3 describes the proposed block pyramid
matching. Experimental results and conclusions are given in the Sections 4 and 5
respectively.

2 Fast Block Matching in Walsh Hadamard Domain

2.1 Walsh-Hadamard Transform

WHT BPs contain only ±1 and so the projections of a block of pixels on 2D WH
domain require additions and subtractions solely. A particular 2D WHT coefficient of
a k×k block is obtained by projecting the block on the corresponding k×k WHT BPs
where k=2n, n∈Z+. In the following, we shall represent a k×k BP by a vector h(m,n) in
ℜk×k where m and n are the number of zero-crossing in horizontal and vertical direc-
tion respectively. The BPs of an 8×8 block are shown in Fig. 1.

In our approach, we follow the same zigzag path as in [1, 2] where the projections
on WHT BPs are performed in increasing sequency (the number of zero-crossings
along rows and columns) order. In general, the energy of WHT coefficients of an
image decreases along the zigzag order [2, 3]; therefore the projections onto the first
few WHT BPs capture a large proportion of information of an image. Hel-Or et al.
has utilized this energy packing property in his fast pattern matching algorithm [1,2]
which is a pruning algorithm that re-uses many intermediate results to further reduce
the computation requirements of the WHT. In this paper, we adopt the same idea to
develop a block matching algorithm in WH domain.

2.2 Proposed Block Matching System

Motion vector estimation is an important step in video compression. Motion vectors
can be estimated by block matching algorithms that minimize a measure of matching
error. Suppose the matching error between the target block at position (x,y) in the
current frame Fc, and the reference block at position (x+u, y+v) in the reference frame
FR is E(u,v). The motion vector)ˆ,ˆ(vu is defined as:

),(minarg)ˆ,ˆ(
),(

vuEvu
Svu ∈

=
(1)

where S={(u,v)|-R≤u,v≤R} is the candidate set, and R is the maximum search
distance. In most cases, sum-of-absolute difference (SAD) between the target block
and the reference block as given in (2) is used as the matching error because of its
simplicity.

∑∑
−

=

−

=

++++−++=Φ
1

0

1

0

),(),(),(
k

i

k

j
RC jvyiuxFjyixFvu (2)

where k is the block size.

714 N. Li, C.-M. Mak, and W.-K. Cham

Fig. 1. BPs [1, 2] of 8×8 WHT

In this paper, we propose to perform block matching in WH domain and a partial
absolute distance (PAD) Φp(u,v;q) is used as the matching error to reduce the compu-
tation requirement where q is the number of projections onto the WHT BPs. PAD
may be regarded as an approximation of the SAD but requires significantly less com-
putations. We shall show that block matching using PAD can find matching blocks of
mean square error very close to that of SAD.

Suppose a k×k target block at (x,y) in current frame Fc is matched with a reference
block of the same dimension at (x+u,y+v) in its search area in reference frame FR .
The target block and the reference block are represented by vectors bT at (x,y) and bR
at (x+u,y+v) respectively in space ℜk×k. A difference vector d between bT and bR is
defined as

 RT bbd −= . (3)

The SAD d between the reference block and the target block is shown in (4) where
||.||p is the p-norm of a vector.

11 RT bbd −==d (4)

Let Sq be a set of index (m,n), and each of them represents the number of horizon-
tal and vertical zero-crossing of the first q BPs along the zigzag path. Projecting bT
and bR onto BPs with indices in Sq, we get sets of cT(x,y;m,n;k) and cR(x+u,y+v;m,n;k)
respectively. The Φp(u,v;q) between bT and bR is then defined by projecting d onto q
WHT BPs as shown in (5).

If an additional WHT BP h is added into Sq, then PAD can be refined iteratively
using (6) and becomes closer to SAD. Those reference blocks with PAD greater than
a given threshold TΦ will be rejected, and we search for the best match among the
remaining candidates only.

∑

∑∑

∈

∈∈

++−
=

−
==

Φ≥

q

qq

Snm nm

RT

Snm nm

R
T

nmT
T

nm

Snm nm

T
nm

p

knmvyuxcknmyxc

qvud

),(),(

),(),(

),(),(

),(),(

),(

);,;,();,;,(

);,(

h

h

bhbh

h

dh

(5)

h

bhbh R
T

T
T

pp qvuqvu
−

+Φ=+Φ);,()1;,((6)

 Fast Block Matching Algorithm in Walsh Hadamard Domain 715

Fig. 2. Flowchart of the proposed FWS system

The proposed motion estimation algorithm can perform fast block matching be-
cause of two reasons. Firstly, the low sequency order WHT BPs are highly probable
to be parallel to the difference vector d so that the first few projections can acquire
most of the distance between the targets block bT and their candidates block bR. The
second reason is the fast pruning algorithm of WHT, which computes the projections
of the candidates in reference frames onto various BPs efficiently. We use a recursive
structure of Walsh Hadamard tree [1, 2] in which the calculations applied to one can-
didate in reference frame or one BP projection are exploited when the projections of
candidate or the projections onto another BP are computed.

The flowchart of the algorithm is shown in Fig. 2. To begin with, our algorithm
computes PAD of each candidate in reference frame according to the corresponding
WHT coefficients of the target blocks and reference blocks. If the PAD of a candidate
is greater than a given threshold TΦ , the location will be rejected. The remaining
candidates in the reference frame are projected onto the higher sequency order WHT
BPs. The PAD comparison repeats until a predefined number of projections is reached
because the block matching in the WH domain is efficient only when the number of
projections is small. We found that efficient block matching completely in WH do-
main is still possible by using a technique called pyramid block matching, which will
be explained in the next section. In our implementation, only two projections are used
to find the PAD. More projections require more computation but do not reduce MSE
significantly.

The computation of PAD includes the transformation of frames, and the accumula-
tion of absolute differences of WHT coefficients. Transforming reference and target
frames requires about 8 operations, which include additions, subtractions, and abso-
lute, per pixel for 2 projections 8×8 block [2, 3]. Total number of operations per pixel
required to find PAD of the first and the second projections for one block is

 () ()1
2

2, 3212
1

PR
k

N PADo ++= (7)

where P1 is the percentage of candidates remains after first projection.

3 Block Pyramid Matching

Hel-Or et al. suggest that the best matching position is the one with the minimum
sum-of-squared distances (SSD) among the remaining candidates. However, the com-
putation requirement of SSD is heavy, and we propose to use a block pyramid match-
ing scheme to find a distance approximating the SAD such that computation can be
reduced while not affecting the MSE performance much. In the first stage of BPM,
each k×k block in reference frame and current frame is decomposed into four non-
overlapping k/2×k/2 sub-blocks, and the projection of each k×k block onto h(0,0)

716 N. Li, C.-M. Mak, and W.-K. Cham

(a) (b)

Fig. 3. Illustrate the locality relationship between (a) the WHT coefficient of the k×k block
and (b) that of its corresponding k/2×k/2 sub-blocks

(shaded box in Fig. 3a) is expressed as the sum of projections of the corresponding
sub-blocks onto h(0,0) (shaded boxes in Fig. 3b). Therefore, Φp(u,v;1) can be formu-
lated as (8) when k=8.

)0,0(

11)1;,(
h

RT
p

SS
 vu

−
=Φ

(8)

where

jyy

ixx

k
v;u,y'(x'cS

)
k

(x',y';cS

,i ,j
RR

,i ,j
TT

+=
+=

++=

=

∑ ∑

∑ ∑

= =

= =

'

'

)
2

2

40 40
1

40 40
1

The relationship of the coefficient of blocks and their sub-blocks is illustrated in
Fig. 3. We define the first level BPM estimation based on the projection onto h(0,0) as
E1(0,0), and it is shown in (9).

)
2

 ;','()
2

 ;','(

)0,0(
)0,0(

4,0 4,0

1
h

∑ ∑
= =

++−
= i j

RT

k
vyuxc

k
yxc

E (9)

Because of Triangular Inequality in (10),

 ∑∑
==

≤
M

j
j

M

j
j aa

11

 (10)

where aj∈R and M∈Z+, E1(0,0) is closer to the SAD than Φp(u,v;1), but is still smaller
than or equal to the SAD. In other words, E1(0,0) is a more accurate estimation of the
SAD than Φp(u,v;1), i.e.

)1;,()0,0(1 vuEd pΦ≥≥ (11)

It should be noted that the projection of k/2×k/2 sub-blocks onto h(0,0) are the inter-
mediate data in the calculation of the WHT coefficient of k×k blocks using the recur-

 Fast Block Matching Algorithm in Walsh Hadamard Domain 717

sive WH tree [1,2] . As a result, evaluating E1(0,0) requires much fewer computations
than that of SAD, and contribute to the success of our fast block matching algorithm.

In the second stage of BPM, each k/2×k/2 sub-block is further decomposed into
four k/4×k/4 sub-blocks. The projection of each k/2×k/2 sub-block onto h(0,0) (shaded
box in Fig. 4a) can be expressed as the sum of four projections of the corresponding
sub-blocks onto h(0,0) (shaded boxes in Fig. 4b), which are available when we calcu-
late the WHT coefficient of k×k blocks. In this stage, the k×k block is divided into
sixteen k/4 × k/4 sub-blocks. The first level BPM estimation E1(0,0) can then be ex-
pressed as (12).

∑ ∑
= =

−=
40 40

221)0,0(
,i ,j

RT SSE
(12)

where

∑ ∑
= =

=
2,0 2,0

2 4
""

m n
TT)

k
;,y(xcS

∑ ∑
= =

++=
2,0 2,0

2 4
""

m n
RR)

k
v;u,y(xcS

njyymixx ++=++= " and ," .

Similar to the first level BPM estimation, we define the second level BPM esti-
mation E2(0,0) based on the projection of h(0,0) as

)0,0(

4,0 4,0 2,0 2,0
2

)
4

 ;","()
4

 ;","(

)0,0(
h

∑ ∑ ∑ ∑
= = = =

++−
= i j m n

RT

k
vyuxc

k
yxc

E . (13)

Because of Triangular Inequality, E2(0,0) is more accurate to approximate d than
E1(0,0) as shown in (14). Theoretically blocks can be decomposed further until the
block size becomes one. In that case the BPM estimation becomes the SAD itself.

)1;,()0,0()0,0(12 vuEEd pΦ≥≥≥ (14)

In our previous discussion, we concern with the BPM based on the projection
onto h(0,0) only. It can be shown that E1(0,0) is also the first level BPM based on the

(a) (b)

Fig. 4. Illustrate the locality relationship between (a) the WHT coefficients of the k/2 × k/2
block and (b) that of its corresponding k/4 × k/4 sub-blocks

718 N. Li, C.-M. Mak, and W.-K. Cham

projection onto h(a,b) where 0≤a,b≤1. Similarly, E2(0,0) is the second level BPM based
on the projection onto h(c,d) where 0≤c,d≤3, i.e.

 E1(a,b) = E1(0,0) (15)
 E2(c,d) = E2(0,0) (16)

where 0≤a,b≤1 and 0≤c,d≤3.

Therefore, when we compare E1(0,0) or E2(0,0) of the target block and the refer-
ence blocks, we have already compared their E1(a,b) or E2(c,d) where 0≤a,b≤1 and
0≤c,d≤3 respectively. In other words, we have used the information from the projec-
tions onto higher sequency order WHT BPs to get more precise similarity evaluation
when we compare the corresponding E1(0,0) and E2(0,0) of the target block and the
reference blocks.

In the proposed algorithm, after rejecting candidates in reference frame using
PAD, the best K1 % of the remaining candidates, i.e. those with the least PAD, will go
through the first level BPM in which the E1(0,0) difference between the target block
and the remaining candidates are computed. Then, the best K2% candidates after first
level BPM will be further examined by evaluating their E2(0,0) difference. The candi-
date with smallest E2(0,0) difference between the target block is elected as the best
match of the target block, and will be regarded as the location pointed by the corre-
sponding motion vector. Assuming the maximum allowed candidates are used for first
and second stage of BPM, the number of operations required to find the best match
per pixel is

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+= 1

2
31

4
312

1
2

2

2

1
2

2,

k
K

k
KR

k
N BPMo

. (17)

4 Experimental Results

We applied the FWS to 80 frames of three standard sequences: Football, Foreman,
and Stefan with k=8 and R=16. For each candidate in reference frame, the maximum
number of projections allowed is two and the remaining candidates will go through
BPM. The threshold TΦ is 10. For BPM, K1=10% and K2=5%.

4.1 Computation Requirement

Finding the SAD of a k×k block requires k2 subtractions, k2 absolute operations, and
k2-1 additions; therefore, the total number of operations is 3k2-1. In FSBM, the num-
ber of candidate for each block is (2R+1)2, and each frame with A number of pixels
has number of blocks A/k2. Then the total number of operations No,FS required per
pixel is

()13)12(
1 22

2, −+= kR
k

N FSo
. (18)

With k=8 and R=16, No,FS = 3245. On the other hand, TSS has only 8log2R+1 candi-
dates for each block, therefore, the total number of operations per pixel, No,TSS, becomes

()()131log8
1 2

22, −+= kR
k

N TSSo
. (19)

 Fast Block Matching Algorithm in Walsh Hadamard Domain 719

In our experiment, No,TSS = 98. Since DS has no fixed number of search points, its
computation varies for different videos. According to [7], DS has a computation of
about 80% of TSS. Similar to DS, the computation of FWS also varies for different
videos since the numbers of remaining candidates after each projection are different.
Experimental results show that around 40% of candidates remain after first projection,
and 25% remains after second projection. Table 1 shows the total number of addition,
subtraction and absolute operations required per pixel for FS, TSS, and FWS.
The computation of the proposed FWS includes WHT of frames, PAD, and BPM
computations. FWS usually requires about 20% more computation than TSS.
Because the intermediate data in the recursive WH tree are reused, more memory is
needed compared to FS and TSS.

4.2 MSE Performance

Experimental results show that two projections are enough and additional projections do
not reduce MSE significantly, but will increase the computation time. About 75% of
candidates will be eliminated after two projections. Table 2 shows the average MSE
over 80 frames of the three sequences using different algorithms and Fig. 5 shows the
MSE of the each frame. The performance of FWS in terms of MSE is very close to FS,
but the computation required is only a little bit more than TSS. TSS and DS, while
much faster than FS, produce MSE which are significantly larger than FS and FWS.

Replacing SAD by BPM after two projections can significantly reduce computa-
tions. The resultants MSE, however, are not affected much. Table 3 shows the
increase in MSE when SAD is replaced by BPM. On average, the MSE is increased
by merely 5%.

Table 1. Operations per pixel needed for different search methods

Sequence FS TSS FWS
Foreman 3245 98 118
Football 3245 98 126
Stefan 3245 98 123

Table 2. Average mean-squared-error of 80 frames

Sequence FS TSS DS FWS
Foreman 31.5 41.1 36.4 34.5
Football 94.4 167.0 220.0 155.4
Stefan 142.5 341.1 308.0 181.3

Table 3. MSE comparison of SAD and BPM

MSE
Sequence

SAD BPM MSE
Foreman 32.8 34.5 +5.4%
Football 148.8 155.4 +4.4%
Stefan 169.2 181.3 +7.1%

720 N. Li, C.-M. Mak, and W.-K. Cham

(a) (b)

(c)

Fig. 5. MSE plots for sequence (a) Foreman (b) Football (c) Stefan

5 Conclusions

A fast block matching method, FWS, which is based on a pattern matching algorithm
in Walsh Hadamard domain, is proposed in this paper. The computation requirement
is similar to the three-step-search, but the accuracy is comparable with the full-search
method. Efficient projection scheme is utilized for fast WHT. Furthermore, we ex-
ploit the intermediate results in WHT calculation to reject candidate blocks that are
unlikely to be a good match. Both measures significantly reduce computations in the
block matching process. Experimental results show that the performance of FWS in
terms of MSE is very close to that produced by full search algorithm.

References

[1] Y. Hel-Or; H. Hel-Or; “Real time pattern matching using projection kernels”, Proc. of
Ninth IEEE International Conference on Computer Vision, Vol. 1, pp. 1486 – 1493, Oct.
2003.

[2] Y. Hel-Or; H. Hel-Or; “Real time pattern matching using projection kernels”, IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 27, No. 9, Sept 2005.

 Fast Block Matching Algorithm in Walsh Hadamard Domain 721

[3] W. K. Cham; R. J. Clarke; “Application of the principle of dyadic symmetry to the genera-
tion of orthogonal transforms”, IEE Proc. F, Commun., Radar & Signal Process., Vol. 133,
no.3, pp.264-270, June 1986.

[4] T. Koga; K. Iinuma; A. Hirano; Y. Iijima; T. Ishiguro; “Motion compensated interframe
coding for video conferencing,” in Proc. Nat. Telecommun. Conf., New Orleans, LA, Nov.
29-Dec. 3 1981, pp. G5.3.1-5.3.5.

[5] Lai-Man Po; Wing-Chung Ma; “A novel four-step search algorithm for fast block motion
estimation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6,
No. 3, June 1996, pp. 313 - 317.

[6] Reoxiang Li; Bing Zeng; Liou, M.L.; “A new three-step search algorithm for block motion
estimation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 4,
No. 4, Aug. 1994, pp.438 - 442.

[7] Shan Zhu; Kai-Kuang Ma; “A new diamond search algorithm for fast block-matching mo-
tion estimation,” IEEE Transactions on Image Processing, Vol. 9, No. 2, Feb. 2000, pp.
287 - 290.

[8] T. Wiegand; G. J. Sullivan; G. Bjontegaard; A. Luthra, “Overview of the H.264/AVC
video coding standard,” IEEE Trans. Circuits Syst. Video Technol, Vol. 13, pp. 560-576,
July 2003.

	Introduction
	Fast Block Matching in Walsh Hadamard Domain
	Walsh-Hadamard Transform
	Proposed Block Matching System

	Block Pyramid Matching
	Experimental Results
	Computation Requirement
	MSE Performance

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

