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Abstract. A fast block matching algorithm, namely Fast Walsh Search, is pro-
posed for motion estimation in block-based video coding. In our approach, tar-
get blocks in current frame and their candidates in reference frame are projected 
onto Walsh Hadamard domain, allowing early rejection of mismatch candidates 
to reduce computation requirement. Moreover, we introduce a new method 
called block pyramid matching that re-uses many previous calculations to fur-
ther lessen the computation load of our approach.  Experimental results show 
that the proposed algorithm can achieve more accurate motion estimation than 
the popular three-step-search and diamond search with slight increase in com-
putation requirement only. 

1   Introduction 

Most video coding standards use motion compensation to reduce temporal redun-
dancy. Motion compensation requires block matching which is to find a matching 
block in the reference frame that is close to the target block in the current frame. The 
displacement vector of the matching block is called motion vector, therefore block 
matching is also called motion estimation.  Full search block matching (FSBM) algo-
rithm exhaustively searches through all possible locations in the search window to 
obtain the matching block that has the least matching error with the target block. 
However, the computation requirement of FSBM is too high for real-time applica-
tions.  Fast search algorithms such as three-step search (TSS) [4], four-step search 
(FSS) [5], new three-step search (NTSS) [6], and diamond search (DS) [7] were de-
veloped, which can reduce the computation time significantly at the cost of higher 
matching error.  These algorithms find the minimum error using a gradient-descent 
approach which implicitly assumes that there is no local minimum. 

Recently developed video coding standards such as H.264/AVC [8] use Walsh  
Hadamard Transform (WHT) to compress DC coefficients. Meanwhile, Hel-Or et al. 
[1, 2] proposed a real time pattern matching algorithm which works in the Walsh 
Hadamard (WH) domain. Their matching algorithm first computes a distance using a 
few WHT coefficients to perform early rejection of mismatch patterns and then focus 
on a small number of remaining candidates that are more likely to be a correct match 
of the pattern. Their proposed algorithm reduces computation overheads in WHT by 
an efficient pruning algorithm in which the intermediate data is effectively exploited. 

Motivated by [1, 2, 8], we propose a “Fast Walsh Search” (FWS) that performs 
block matching in the WH domain. Although it is straightforward to perform motion 
estimation in spatial domain [4, 5, 6, 7], our proposed algorithm requires only slightly 
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more computation than that of TSS and DS and achieves a more accurate block 
matching in terms of mean square error (MSE). The high efficiency is because of the 
pattern matching algorithm suggested by Hel-Or et al. [1, 2] as well as a new match-
ing technique called block pyramid matching (BPM).  

This paper is organized as follows. Section 2 introduces the proposed fast motion 
estimation algorithm in WH domain.  Section 3 describes the proposed block pyramid 
matching. Experimental results and conclusions are given in the Sections 4 and 5 
respectively. 

2   Fast Block Matching in Walsh Hadamard Domain 

2.1   Walsh-Hadamard Transform  

WHT BPs contain only ±1 and so the projections of a block of pixels on 2D WH 
domain require additions and subtractions solely. A particular 2D WHT coefficient of 
a k×k block is obtained by projecting the block on the corresponding k×k WHT BPs 
where k=2n, n∈Z+. In the following, we shall represent a k×k BP by a vector h(m,n) in 
ℜk×k where m and n are the number of zero-crossing in horizontal and vertical direc-
tion respectively. The BPs of an 8×8 block are shown in Fig. 1. 

In our approach, we follow the same zigzag path as in [1, 2] where the projections 
on WHT BPs are performed in increasing sequency (the number of zero-crossings 
along rows and columns) order. In general, the energy of WHT coefficients of an 
image decreases along the zigzag order [2, 3]; therefore the projections onto the first 
few WHT BPs capture a large proportion of information of an image. Hel-Or et al. 
has utilized this energy packing property in his fast pattern matching algorithm [1,2] 
which is a pruning algorithm that re-uses many intermediate results to further reduce 
the computation requirements of the WHT.  In this paper, we adopt the same idea to 
develop a block matching algorithm in WH domain. 

2.2   Proposed Block Matching System 

Motion vector estimation is an important step in video compression. Motion vectors 
can be estimated by block matching algorithms that minimize a measure of matching 
error. Suppose the matching error between the target block at position (x,y) in the 
current frame Fc, and the reference block at position (x+u, y+v) in the reference frame 
FR is E(u,v). The motion vector )ˆ,ˆ( vu  is defined as: 

),(minarg)ˆ,ˆ(
),(

vuEvu
Svu ∈

=  
(1) 

where S={(u,v)|-R≤u,v≤R} is the candidate set, and R is the maximum search  
distance. In most cases, sum-of-absolute difference (SAD) between the target block 
and the reference block as given in (2) is used as the matching error because of its 
simplicity. 
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where k is the block size. 
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Fig. 1. BPs [1, 2] of 8×8 WHT 

In this paper, we propose to perform block matching in WH domain and a partial 
absolute distance (PAD) Φp(u,v;q) is used as the matching error to reduce the compu-
tation requirement where q is the number of projections onto the WHT BPs. PAD 
may be regarded as an approximation of the SAD but requires significantly less com-
putations. We shall show that block matching using PAD can find matching blocks of 
mean square error very close to that of SAD. 

Suppose a k×k target block at (x,y) in current frame Fc is matched with a reference 
block of the same dimension at (x+u,y+v) in its search area in reference frame FR . 
The target block and the reference block are represented by vectors bT at (x,y) and bR 
at (x+u,y+v) respectively in space ℜk×k. A difference vector d between bT and bR is 
defined as 

           RT bbd −= . (3) 

The SAD d between the reference block and the target block is shown in (4) where 
||.||p is the p-norm of a vector. 

            
11 RT bbd −==d  (4) 

Let Sq be a set of index (m,n), and each of them represents the number of horizon-
tal and vertical zero-crossing of the first q BPs along the zigzag path. Projecting bT 
and bR onto BPs with indices in Sq, we get sets of cT(x,y;m,n;k) and cR(x+u,y+v;m,n;k) 
respectively.  The Φp(u,v;q) between bT and bR is then defined by projecting d onto q 
WHT BPs as shown in (5).   

If an additional WHT BP h is added into Sq, then PAD can be refined iteratively 
using (6) and becomes closer to SAD. Those reference blocks with PAD greater than 
a given threshold TΦ will be rejected, and we search for the best match among the 
remaining candidates only. 

∑

∑∑

∈

∈∈

++−
=

−
==

Φ≥

q

qq

Snm nm

RT

Snm nm

R
T

nmT
T

nm

Snm nm

T
nm

p

knmvyuxcknmyxc

qvud

),( ),(

),( ),(

),(),(

),( ),(

),(

);,;,();,;,(

);,(

h

h

bhbh

h

dh
 

(5) 

h

bhbh R
T

T
T

pp qvuqvu
−

+Φ=+Φ );,()1;,(  (6) 



 Fast Block Matching Algorithm in Walsh Hadamard Domain 715 

 

 

Fig. 2.  Flowchart of the proposed FWS system 

The proposed motion estimation algorithm can perform fast block matching be-
cause of two reasons. Firstly, the low sequency order WHT BPs are highly probable 
to be parallel to the difference vector d so that the first few projections can acquire 
most of the distance between the targets block bT and their candidates block bR. The 
second reason is the fast pruning algorithm of WHT, which computes the projections 
of the candidates in reference frames onto various BPs efficiently. We use a recursive 
structure of Walsh Hadamard tree [1, 2] in which the calculations applied to one can-
didate in reference frame or one BP projection are exploited when the projections of 
candidate or the projections onto another BP are computed.  

The flowchart of the algorithm is shown in Fig. 2. To begin with, our algorithm 
computes PAD of each candidate in reference frame according to the corresponding 
WHT coefficients of the target blocks and reference blocks. If the PAD of a candidate 
is greater than a given threshold TΦ ,  the location will be rejected. The remaining 
candidates in the reference frame are projected onto the higher sequency order WHT 
BPs. The PAD comparison repeats until a predefined number of projections is reached 
because the block matching in the WH domain is efficient only when the number of 
projections is small. We found that efficient block matching completely in WH do-
main is still possible by using a technique called pyramid block matching, which will 
be explained in the next section. In our implementation, only two projections are used 
to find the PAD.  More projections require more computation but do not reduce MSE 
significantly.  

The computation of PAD includes the transformation of frames, and the accumula-
tion of absolute differences of WHT coefficients.  Transforming reference and target 
frames requires about 8 operations, which include additions, subtractions, and abso-
lute, per pixel for 2 projections 8×8 block [2, 3].  Total number of operations per pixel 
required to find PAD of the first and the second projections for one block is 

        ( ) ( )1
2

2, 3212
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PR
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N PADo ++=  (7) 

where P1 is the percentage of candidates remains after first projection.   

3   Block Pyramid Matching 

Hel-Or et al. suggest that the best matching position is the one with the minimum 
sum-of-squared distances (SSD) among the remaining candidates. However, the com-
putation requirement of SSD is heavy, and we propose to use a block pyramid match-
ing scheme to find a distance approximating the SAD such that computation can be 
reduced while not affecting the MSE performance much.  In the first stage of BPM, 
each k×k block in reference frame and current frame is decomposed into four non-
overlapping k/2×k/2 sub-blocks, and the projection of each k×k block onto h(0,0) 
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(a) (b) 

Fig. 3. Illustrate the locality relationship between  (a)  the WHT coefficient of the k×k block 
and (b) that of its corresponding  k/2×k/2 sub-blocks 

 
(shaded box in Fig. 3a) is expressed as the sum of projections of the corresponding 
sub-blocks onto h(0,0) (shaded boxes in Fig. 3b). Therefore, Φp(u,v;1) can be formu-
lated as (8) when k=8. 
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The relationship of the coefficient of blocks and their sub-blocks is illustrated in 
Fig. 3. We define the first level BPM estimation based on the projection onto h(0,0) as 
E1(0,0), and it is shown in (9). 
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Because of Triangular Inequality in (10),  
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where aj∈R and M∈Z+, E1(0,0) is closer to the SAD than Φp(u,v;1), but is still smaller 
than or equal to the SAD. In other words, E1(0,0) is a more accurate estimation of the 
SAD than Φp(u,v;1), i.e.  

)1;,()0,0(1 vuEd pΦ≥≥  (11) 

It should be noted that the projection of k/2×k/2 sub-blocks onto h(0,0) are the inter-
mediate data in the calculation of the WHT coefficient of k×k blocks using the recur-
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sive WH tree [1,2] . As a result, evaluating E1(0,0) requires much fewer computations 
than that of SAD, and contribute to the success of our fast block matching algorithm. 

In the second stage of BPM, each k/2×k/2 sub-block is further decomposed into 
four k/4×k/4 sub-blocks. The projection of each k/2×k/2 sub-block onto h(0,0) (shaded 
box in Fig. 4a) can be expressed as the sum of four projections of the corresponding 
sub-blocks onto h(0,0) (shaded boxes in Fig. 4b), which are available when we calcu-
late the WHT coefficient of k×k blocks.  In this stage, the k×k block is divided into 
sixteen k/4 × k/4 sub-blocks.  The first level BPM estimation E1(0,0) can then be ex-
pressed as (12). 
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Similar to the first level BPM estimation, we define the second level BPM esti-
mation E2(0,0) based on the projection of h(0,0) as 
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Because of Triangular Inequality, E2(0,0) is more accurate to approximate d than 
E1(0,0) as shown in (14).  Theoretically blocks can be decomposed further until the 
block size becomes one.  In that case the BPM estimation becomes the SAD itself.    

)1;,()0,0()0,0( 12 vuEEd pΦ≥≥≥  (14) 

In our previous discussion, we concern with the BPM based on the projection  
onto h(0,0) only. It can be shown that E1(0,0) is also the first level BPM based on the 
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Fig. 4. Illustrate the locality relationship between  (a)  the WHT coefficients of the k/2 × k/2 
block and (b) that of its corresponding  k/4 × k/4 sub-blocks 
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projection onto h(a,b) where 0≤a,b≤1. Similarly, E2(0,0) is the second level BPM based 
on the projection onto h(c,d)  where 0≤c,d≤3, i.e. 

        E1(a,b) = E1(0,0) (15) 
        E2(c,d) = E2(0,0) (16) 

where 0≤a,b≤1 and 0≤c,d≤3.  

Therefore, when we compare E1(0,0) or E2(0,0) of the target block and the refer-
ence blocks, we have already compared their E1(a,b) or E2(c,d) where 0≤a,b≤1 and  
0≤c,d≤3 respectively. In other words, we have used the information from the projec-
tions onto higher sequency order WHT BPs to get more precise similarity evaluation 
when we compare the corresponding E1(0,0) and E2(0,0) of the target block and the 
reference blocks. 

In the proposed algorithm, after rejecting candidates in reference frame using 
PAD, the best K1 % of the remaining candidates, i.e. those with the least PAD, will go 
through the first level BPM in which the E1(0,0) difference between the target block 
and the remaining candidates are computed. Then, the best K2% candidates after first 
level BPM will be further examined by evaluating their E2(0,0) difference. The candi-
date with smallest E2(0,0) difference between the target block is elected as the best 
match of the target block, and will be regarded as the location pointed by the corre-
sponding motion vector. Assuming the maximum allowed candidates are used for first 
and second stage of BPM, the number of operations required to find the best match 
per pixel is 
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4   Experimental Results 

We applied the FWS to 80 frames of three standard sequences:  Football, Foreman, 
and Stefan with k=8 and R=16.  For each candidate in reference frame, the maximum 
number of projections allowed is two and the remaining candidates will go through 
BPM.  The threshold TΦ is 10.  For BPM, K1=10% and K2=5%. 

4.1   Computation Requirement 

Finding the SAD of a k×k block requires k2 subtractions, k2 absolute operations, and 
k2-1 additions; therefore, the total number of operations is 3k2-1.  In FSBM, the num-
ber of candidate for each block is (2R+1)2, and each frame with A number of pixels 
has number of blocks A/k2.  Then the total number of operations No,FS required per 
pixel is 

( )13)12(
1 22

2, −+= kR
k

N FSo
. (18) 

With k=8 and R=16,  No,FS = 3245. On the other hand, TSS has only 8log2R+1 candi-
dates for each block, therefore, the total number of operations per pixel, No,TSS, becomes 
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In our experiment, No,TSS = 98.  Since DS has no fixed number of search points, its 
computation varies for different videos.  According to [7], DS has a computation of 
about 80% of TSS. Similar to DS, the computation of FWS also varies for different 
videos since the numbers of remaining candidates after each projection are different.  
Experimental results show that around 40% of candidates remain after first projection, 
and 25% remains after second projection. Table 1 shows the total number of addition, 
subtraction and absolute operations required per pixel for FS, TSS, and FWS.  
The computation of the proposed FWS includes WHT of frames, PAD, and BPM 
computations.  FWS usually requires about 20% more computation than TSS.   
Because the intermediate data in the recursive WH tree are reused, more memory is 
needed compared to FS and TSS.   

4.2   MSE Performance 

Experimental results show that two projections are enough and additional projections do 
not reduce MSE significantly, but will increase the computation time.  About 75% of 
candidates will be eliminated after two projections. Table 2 shows the average MSE 
over 80 frames of the three sequences using different algorithms and Fig. 5 shows the 
MSE of the each frame.  The performance of FWS in terms of MSE is very close to FS, 
but the computation required is only a little bit more than TSS.  TSS and DS, while 
much faster than FS, produce MSE which are significantly larger than FS and FWS.   

Replacing SAD by BPM after two projections can significantly reduce computa-
tions. The resultants MSE, however, are not affected much. Table 3 shows the  
increase in MSE when SAD is replaced by BPM.  On average, the MSE is increased 
by merely 5%.  

Table 1.  Operations per pixel needed for different search methods 

Sequence FS TSS FWS 
Foreman 3245 98 118 
Football 3245 98 126 
Stefan 3245 98 123 

Table 2.  Average mean-squared-error of 80 frames 

Sequence FS TSS DS FWS 
Foreman 31.5 41.1 36.4 34.5 
Football 94.4 167.0 220.0 155.4 
Stefan 142.5 341.1 308.0 181.3 

Table 3.  MSE comparison of SAD and BPM 

MSE 
Sequence 

SAD BPM MSE 
Foreman 32.8 34.5 +5.4% 
Football 148.8 155.4 +4.4% 
Stefan 169.2 181.3 +7.1% 
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(a) (b) 

 
(c) 

Fig. 5.  MSE plots for sequence (a) Foreman  (b) Football  (c) Stefan 

5   Conclusions 

A fast block matching method, FWS, which is based on a pattern matching algorithm 
in Walsh Hadamard domain, is proposed in this paper. The computation requirement 
is similar to the three-step-search, but the accuracy is comparable with the full-search 
method.  Efficient projection scheme is utilized for fast WHT. Furthermore, we ex-
ploit the intermediate results in WHT calculation to reject candidate blocks that are 
unlikely to be a good match. Both measures significantly reduce computations in the 
block matching process.  Experimental results show that the performance of FWS in 
terms of MSE is very close to that produced by full search algorithm. 
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