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Abstract. Fisheye lenses are often used to enlarge the field of view (FOV)
of a conventional camera. But the images taken with fisheye lenses have se-
vere distortions. This paper proposes a novel calibration method for fisheye
lenses using images of space lines in a single fisheye image. Since some fish-
eye cameras’ FOV are around 180 degrees, the spherical perspective pro-
jection model is employed. It is well known that under spherical perspec-
tive projection, straight lines in space have to be projected into great circles
in the spherical perspective image. That is called straight-line spherical
perspective projection constraint (SLSPPC). In this paper, we use
SLSPPC to determine the mapping between a fisheye image and its corre-
sponding spherical perspective image. Once the mapping is obtained, the
fisheye lenses is calibrated. The parameters to be calibrated include princi-
pal point, aspect ratio, skew factor, anddistortion parameters. Experimen-
tal results for synthetic data and real images are presented to demonstrate
the performances of our calibration algorithm.

1 Introduction

In many computer vision applications, including robot navigation, 3D recon-
struction, image-based rendering, and single view metrology, a camera with a
quite large field of view (FOV) is preferable. A conventional camera has a very
limited FOV. Therefore, cameras with wide-angle or fisheye lenses are often
employed. Images taken with these imaging devices often have significant dis-
tortions. If we want to use some perspective information from these distorted
images, they have to be transformed into perspective images. A fisheye camera’s
FOV is around 180 degrees, but a wide-angle camera’s FOV is usually around
100 degrees. The existing calibration methods [2, 4, 5, 9] for wide-angle camera
using images of space lines cannot be directly used for fisheye cameras. There-
fore, this paper aims at calibrating fisheye cameras using images of space lines.
An image from a fisheye camera with FOV 183 degrees (Nikon COOLPIX 990
with FC-E8 fisheye lenses) is shown in Fig. 1a.
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(a) (b)

Fig. 1. (a) A fisheye image. (b) The corresponding spherical perspective projection
image. The calibration procedure is to find the mapping between those two.

In literature, there are two standard types of perspective images used in com-
puter vision: planar and spherical surfaces (i.e., a planar or a spherical surface
can be used as the retina of a perspective camera). Due to lens distortions, space
lines are projected into image curves in the actual image. Once the mapping be-
tween a distorted image and its corresponding perspective image is obtained,
the calibration problem is solved. The mapping can be obtained by finding the
relation between the image curves of space lines and its corresponding perspec-
tive images. It is well known that under planar perspective projection, images
of straight lines in space have to be mapped into straight lines in the planar
perspective image. That is called the straight-line planar perspective projection
constraint (SLPPPC). The existing calibration methods [2, 4, 5, 9] for wide-angle
cameras using the distorted images of lines are all based on SLPPPC. However,
for fisheye cameras with FOV around 180 degrees, we use the spherical perspec-
tive projection model because it is a convenient way to represent FOV around
180 degrees. We also know that under spherical perspective projection, images
of straight lines in space have to be projected into great circles in the spheri-
cal perspective image. Therefore, there exists another constraint we called the
straight-line spherical perspective projection constraint (SLSPPC). In this paper
we elaborate on how to determine the mapping between a fisheye image and its
corresponding spherical perspective image using SLSPPC (see Fig. 1).

2 Fisheye Imaging Model

Fisheye imaging model describes a mapping from 3D space points to 2D fisheye
image points (see Fig. 2). We introduce the spherical perspective projection into
the fisheye imaging model and divide the imaging model into four concatenated
steps as follows:

Step 1: Transform the 3D world coordinates of a space point into the 3D camera
coordinates.

Considering a generic 3D point, visible by a fisheye camera, with Carte-
sian coordinates PW = (X, Y, Z)T in the world coordinate system, if PC =
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Fig. 2. Fisheye imaging model

(XC , YC , ZC)T are the coordinates in the camera coordinate system, the trans-
formation between PW and PC is:

PC = RPW + t, (1)

where the matrix R and vector t describe the orientation and position of the
fisheye camera with respect to the world coordinate system. The parameters in
R and t are called the extrinsic parameters.

Step 2: The space point is perspectively projected onto a unit sphere centered
at the projection center. This procedure can be represented by a transformation
from the 3D camera coordinates to the 2D spherical coordinates.

The unit sphere is called the viewing sphere. If p is the spherical projection
of the space point, we have:

p =
PC

‖PC‖ = (sin Φ cosΘ, sin Φ sin Θ, cosΦ)T , (2)

where p = (sin Φ cosΘ, sin Φ sin Θ, cos Φ)T is the unit directional vector, and
(Φ, Θ) is the 2D spherical coordinates of the spherical point (see Fig. 3). Obvi-
ously, (Φ, Θ) can be determined from p, and vice versa.

Step 3: The spherical projection point p is mapped to m on the image plane
due to fisheye lens distortions, which can be represented as:

m = D(p), (3)



64 X. Ying, Z. Hu, and H. Zha

(a) (b)

Fig. 3. (a) An ideal fisheye image. (b) The corresponding spherical perspective image.
The spherical point p is mapped to m in the ideal fisheye image using the fisheye
distortion model D. The great circle g which is the spherical projection of a straight
line in space is mapped to a image curve c in the ideal fisheye image also using the
fisheye distortion model D.

where m = (x, y), and D is the so-called fisheye distortion model. The image
obtained here is called the ideal fisheye image. The parameters in D are called the
distortion parameters. The fisheye distortion model will be discussed in details
in the next section. Note that in Step 3, we obtain a planar image with the
pixel coordinates, where the origin of the image coordinate system is located
at the principal point, and the image coordinate system has equal scales in the
directions of two coordinate axes.

Step 4: The image point m is transformed into m′ using an affine transformation:

m′ = KA(m), (4)

where m′ = (u, v). The image obtained here is called the actual fisheye image.
The meaning of formula (4) is:

m̃′ = KAm̃, (5)

where m̃ = (x, y, 1)T and m̃′ = (u, v, 1)T are the homogeneous coordinates
corresponding to m and m′ respectively, and

KA =

⎡
⎣

r s u0
0 1 v0
0 0 1

⎤
⎦ . (6)

3 Fisheye Distortion Model

Fisheye distortion model D describes the mapping from a spherical perspective
image to its corresponding ideal fisheye image (see Fig. 2 and Fig. 3). If p
is the spherical perspective projection of a space point and (Φ, Θ) are the 2D
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spherical coordinates of p, due to fisheye lens distortions, p is mapped to m in
the ideal fisheye image. If (x, y) is the Cartesian coordinates and (r, θ) is the
polar coordinates of where the origins of the two coordinate systems are both
located at the principal point, the relation between (x, y) and (r, θ) is:

r =
√

x2 + y2, tan θ =
y

x
. (7)

In our experiments, we use fifth degree polynomials to represent fisheye radial
and tangential distortion models:

r = DR(Φ) =
5∑

i=1

diΦ
i, θ = DT (Θ) =

5∑
i=1

biΘ
i, (8)

where di are radial, and bi are tangential distortion parameters. In fact, any
other proper parametric distortion models for fisheye lenses can be employed,
such as those proposed in [1, 3, 7, 8, 10, 11].

Since the FOV of fisheye lenses is known, we have:

γ = DR(
α

2
), (9)

where γ is the radius of the ideal fisheye image, α is the fisheye lenses’ FOV.
After some manipulation, we have:

d5 =
32γ − 16αd1 − 8α2d2 − 4α3d3 − 2α4d4

α5 . (10)

So there are only four independent parameters for radial distortion. The longi-
tude angle and the polar direction are both periodic. From Θ = 0 and (8), we
have θ = 0. Therefore, if Θ = 2π, then θ = 2π. Thus we have:

b5 =
1 − b1 − 2πb2 − 4π2b3 − 8π3b4

16π4 . (11)

So there are only four independent parameters for tangential distortion.

4 Fisheye Camera Calibration

From the discussions above, we know that there are totally 12 parameters for
a fisheye lenses required to be calibrated: 4 affine transformation parameters, 4
radial and 4 tangential distortion parameters. These parameters are called the
extended intrinsic parameters in this paper.

Given a fisheye image containing several image curves of space lines, we select
a small set of points along these image curves. These sample points are mapped to
spherical points on the viewing sphere using the concatenation of K−1

A and D−1 ,
and the great circle fitting method is employed. The objective function is the sum
of the squared distances of these spherical points from their corresponding best-
fit great circles. In this section, we firstly introduce the algorithm for great circle
fitting. Secondly, the objective function with the extended intrinsic parameters
is constructed, and finally, how to find the initial values for these parameters is
discussed.
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4.1 Great Circle Fitting

A great circle is the intersection of a sphere and a plane passing through the
spherical center. It can be determined by two parameters (α, β) which are the
directional angles of the normal vector for the plane containing the great circle
in the 3D Cartesian coordinate system whose origin is located at the spheri-
cal center (see Fig. 3b). For a spherical point p and a great circle g = (α, β)
where the unit normal vector for the plane containing the great circle is n =
(sin α cosβ, sin α sin β, cosα)T , the distance from p to the plane containing the
great circle is d = |pT n|. As noted in [6], the great circle fitting problem may be
replaced by the problem of finding a plane so as to minimize the sum of squares
of distances between the given points and the plane. Given N spherical points
pi, the objective function is constructed as the sum of the squared distances of
pi from the plane containing the best-fit great circle:

F (n) =
N∑

i=1

(pT
i n)2, (12)

where n is the normal vector for the plane. This can be converted into an eigen-
value problem. A vector equation is introduced as:

An = 0, (13)

where A = (p1,p2, . . . ,pN )T . The objective function becomes:

F (n) = (An)T An = nT Bn. (14)

The solution for n is the eigenvector of B corresponding to the smallest eigen-
value. g = (α, β) can be easily computed from the obtained n.

4.2 Objective Function Formulation

We use L to represent the number of the sample image curves of space lines
in the actual fisheye image, and use Nj(j = 1, . . . , L) to represent the number
of the sample points on the jth image curve. m′

i,j(j = 1, . . . , L) represents the
image coordinates of the sample point on the jth image curve. The objective
function can be constructed as:

ξ =
L∑

j=1

F (nj) =
L∑

j=1

⎡
⎣

Nj∑
i=1

(pT
i,jnj)2

⎤
⎦ , (15)

where nj = (sin αj cosβj , sin αj sin βj , cosαj)T is the normal vector for the plane
containing the best-fit great circle gj = (αj , βj) , and

pi,j = D−1(K−1
A (m′

i,j)), (16)

where pi,j represents the spherical point obtained from the sample image point
m′

i,j after using the concatenation of K−1
A and D−1 . The objective function ξ
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describes the sum of the squared distances of pi,j from its corresponding best-
fit great circle gj . The Levenberg-Marquardt optimization technique is used to
perform this minimization. The parameters for the great circles gj = (αj , βj)(j =
1, . . . , L) are optimized together with the extended intrinsic parameters. As we
know the initial values for the optimized parameters are required in the nonlinear
minimization, therefore, the initial estimations of these parameters are discussed
in the next section.

4.3 Initial Estimations

Affine Transformation Parameters. A significant characteristic of an actual
fisheye image is that its boundary is usually an ellipse (see Fig. 1a). In fact, the
bounding ellipse is the projection of the boundary between the optical compo-
nents (glass lenses) and their metal supporting part. Light rays are occluded by
the supporting part when the light rays are out of the fisheye camera FOV. The
shape of the physical boundary is a circle. The optical axis of the fisheye camera
is perpendicular to the plane containing the circle, and it also goes through the
center of the circle. To identify the bounding ellipse of the fisheye image, we use
a predefined threshold to find the boundary, and fit an ellipse to the resulting
boundary. If the equation of the bounding ellipse is:

a′u2 + 2b′uv + c′v2 + 2d′u + 2e′v + f = 0, (17)

we may obtain the initial values for affine transformation parameters as:

r =
√

− b′2

a′2 + c′

a′ s = − b′

a′

u0 = b′e′−c′d′

a′c′−b′2 v0 = b′d′−a′e′

a′c′−b′2

. (18)

Due to lack of space, the derivation is omitted here.

Distortion Correction Parameters. Since the equidistance model is a very
good approximation to the real radial distortion of a fisheye camera [10], the
initial values of the radial distortion correction parameters are set as: c1 = α

2γ ,
and c2 = c3 = c4 = 0.0 , where γ is the radius of the ideal fisheye image and α
is the fisheye camera FOV. For the tangential distortion, the reasonable initial
values are a1 = 1.0, a2 = a3 = a4 = 0.0 (i.e., Θ = θ).

Parameters of Best-Fit Great Circles. When the initial values for the
extended intrinsic parameters have been obtained, we have:

pi,j = D
−1

(K
−1
A (m′

i,j)), (19)

where K
−1
A and D

−1
are K−1

A and D−1 with the initial parameters respectively.
pi,j represents the spherical point obtained from the sample image point m′

i,j

after using the concatenation of K
−1
A and D

−1
. From these spherical points pi,j ,

the great circle fitting method described in Sect. 4.1 is used to fit great circles
gj = (αj , βj)(j = 1, . . . , L) respectively. Therefore, the initial values for the
parameters of the best-fit great circles are obtained.
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5 Experiments

5.1 Simulations

We have performed a number of experiments with simulated data in order to
assess the performances of our calibration algorithm. The extended intrinsic
parameters {r, s, u0, v0, c1, c2, c3, c4, a1, a2, a3, a4} for the simulated fisheye cam-
era are generated randomly distributed within their corresponding valid ranges.
The simulated fisheye lenses FOV is 180 degrees. The resolution of the image is
1024×1024. The generation procedure is constructed as follows: Firstly, the great
circles are generated which representing the spherical projection of straight lines
in space. Secondly, these great circles are transformed into image curves using
D and KA . Thirdly, on each image curve about 50 points are chosen. Gaussian
noise with zero-mean and σ standard deviation is added to these image points.
The noise level σ is varied from 0.2 to 2.0 pixels. Finally, the ellipse boundary
is also generated in the simulated fisheye image (see Fig. 4a).

In order to compare the recovered parameters with the ground truth, similar
to [9], we use the reprojection error to evaluate the calibration accuracy:

εrep =
1∑L

j=1 Nj

L∑
j=1

⎡
⎣

Nj∑
i=1

‖m′
i,j − KAD(D̂−1K̂

−1
A (m′

i,j))‖

⎤
⎦ , (20)

where m′
i,j are the coordinates of the sample points in the simulated fisheye im-

age. KA and D are with the ground truth. D̂−1 and K̂
−1
A are with the recovered

values. For each noise level, we perform 1000 independent trials, and the repro-
jection errors are computed over each run. The means and standard deviations
of reprojection errors with respect to different noise levels are shown in Fig. 4b.

5.2 Real Images

The fisheye lenses used here is Nikon FC-E8 with FOV 183 degrees, mounted on
a Nikon COOLPIX 990 digital camera. A fisheye image taken with this fisheye

(a) (b)

Fig. 4. Simulation results for fisheye calibration. (a) A simulated fisheye image contain-
ing image curves of straight lines in space. (b) The means and the standard deviations
of the reprojection errors with respect to different noise levels.
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Table 1. The mean and maximum of the reprojection errors for the three planar
homographies. The errors shown here are divided by the side length of a square grid.

Mean error Max. error

{x ↔ q1} 76.44% 246.92%
{x ↔ q2} 13.21% 40.96%
{x ↔ q3} 1.64% 3.08%

camera for calibration is shown in Fig. 1a. The resolution of the fisheye image is
2048×1536. From this fisheye image, about 10 image curves of the straight lines
in space and total about 500 sample points are chosen. The extended intrinsic
parameters of the fisheye camera are recovered using our calibration method.
Then, we apply these recovered parameters to undistort the fisheye image, and
the spherical perspective image is obtained as shown in Fig. 1b.

Here, we use planar homography constraint to evaluate calibration accuracy.
We select some fisheye images of grid points on a ceiling in Fig. 1a. There are to-
tally three sets of point pairs for evaluating the homography constraint: {x ↔ q1},
{x ↔ q2} and {x ↔ q3}, where q1 represents the 2D homogeneous coordinates of
the fisheye image point, q2 represents the unit directional vector of the spherical
point obtained using the distortion correction procedure with the initial values of
the extended intrinsic parameters, and q3 similar to q2 but with the recovered
values. The reprojection error to evaluate homography constraint is:

εi = ‖x − H−1
i qi‖, i = 1, 2, 3, (21)

where Hi(i = 1, 2, 3) is the obtained planar homography. The mean and maxi-
mum of the reprojection errors are shown in Table 1. From Table 1, we can see
that the improvement of the planar homography constraint is very significant
due to the fisheye lenses distortion correction.

6 Conclusions

In this paper, we propose a novel calibration method for fisheye lenses using the
images of space lines. The SLSPPC is employed for calibrating fisheye lenses
with FOV around 180 degrees, whereas the existing methods based on SLPPPC
cannot be used in this case. The extended intrinsic parameters of fisheye cameras
can be calibrated without needing to seek the extrinsic parameters. Thus, the
number of parameters to be calibrated is drastically reduced, making the cali-
bration procedure simple and practical. Our method can use any other suitable
parametric distortion models for fisheye lenses though we only use the polyno-
mial models here.
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