
Image Feature Detection as Robust
Model Fitting

Dengfeng Chai1,2 and Qunsheng Peng1

1 State Key Lab of CAD&CG, Zhejiang University, Hangzhoz 310027, China
{chaidf, peng}@cad.zju.edu.cn

2 Institute of Space and Information Techniques, Zhejiang University,
Hangzhou 310027, China

Abstract. In this paper, we describe image feature as parameterized
model and formulate feature detection as robust model fitting problem. It
can detect global feature easily without parameter transformation, which
is needed by Hough Transform methods. We adopt RANSAC paradigm
to solve the problem. It is immune to outliers and can deal with im-
age contains multiple features and noisy pixels. In the voting stage of
RANSAC, in contrast with previous methods which need distance com-
putation and comparison, we apply Bresenham algorithm to generate
pixels in the inlier region of the feature and use the foreground pixels in
this region to vote the potential feature. It greatly improves the efficiency
and can detect spatially-linked features easily. Experimental results with
both synthetic and real images are reported.

1 Introduction

Image feature detection is an important topic in computer vision. Given a gray
or color image, edge detection can be applied to detect edges and output an
edge image which is a binary image of edge (foreground) pixels and non-edge
(background) pixels. Detecting features in this binary image is a difficult problem
and is the focus of this paper. The methods proposed up to date are categorized
into segment grouping based methods [1, 2] and Hough Transform methods (HT)
[3, 4, 5, 6, 7].

Segment grouping based methods consist of two stages: linking foreground
pixels into segment elements and grouping these elements into global features.
Since the grouping criteria are locally optimal, the performance of detecting
global features is poor.

In contrast with segment grouping based methods, HT methods map fore-
ground pixels into parameter space and detect features in parameter space. They
consist of voting and searching stages, i.e. mapping foreground pixels into ac-
cumulators in parameter space and detecting maximal value in accumulators.
Because pixels belong to one feature are mapped to one accumulator, they can
detect global features successfully at the cost of great storage for accumulators in
parameter space and computation time for voting and searching process. Besides,
the spatial relationship of foreground pixels is lost in the voting stage.
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To save computation time, Probabilistic HT (PHT) [5] selects a pre-selected
proportion of the foreground pixels in original image for voting. The time saved
depends on the ratio of selected pixels with respect to all foreground pixels.
Too small proportion frequently leads to incorrect detection results. To select
a proper proportion, a priori knowledge about the image is needed. Progressive
PHT (PPHT) [7] requests no a priori knowledge, it selects pixels randomly for
voting, removes the foreground pixels from image and un-votes accumulator once
a highest peak and corresponding line segment is detected. To alleviate the extra
storage requirement, Random HT (RHT) [6] adopts many to one mapping and
list structure techniques. The computation time is also saved by these techniques.

Chen and Chung have modified RANSAC and developed Random Line Detec-
tion (RLD) [8] and Random Circle Detection (RCD) [9] algorithms. They select
three or four foreground pixels respectively to define a line or circle and use the
left pixels to vote the defined feature. They can detect features with no need of
parameter transformation. But the algorithms are inefficient because of explicit
distance computation involved in the voting stage. Besides, the spatial rela-
tionship between foreground pixels is not well utilized. Zhang have investigated
different parameter estimation techniques and presented a tutorial focusing on
conic fitting [10].

Motivated by RLD and RCD, we formulate image feature detection as robust
model fitting problem in this paper: treat foreground pixels as data points, use
parameterized model to describe the image features (such as lines and circles),
and treat feature detection as model fitting. Since the global information is
implicated in the parameterized model, it can detect global features easily. We
adopt RANSAC [11] to solve to the fitting problem, RANSAC is a robust method
and is immune to outliers in the original data points, therefore it can detect
feature from image contains multiple features and noise pixels. In the voting
stage of RANSAC, instead of checking all foreground pixels to vote the feature,
we adopt Bresenham algorithm [12] to generate pixels within inlier region of the
feature and use foreground pixels in this region to vote the feature. This avoids
explicit distance computation and improves efficiency greatly. Besides, it detects
features directly in image space without involving parameter transformation,
therefore needs no extra time and storage requirement. The successive pixels
generated by the Bresenham algorithm are spatially neighboring, this property
is easily utilized to detect spatially-linked features.

We formulate image feature detection as robust model fitting problem in
section 2, propose the solution in section 3, and then present the detection algo-
rithm in section 4. After that, we show experiment results in section 5 and draw
conclusion in section 6.

2 Problem Formulation

2.1 Feature Representation

As shown in Fig 1, there are many foreground pixels in the image, some pixels
form line l1, l2 and l3 , some form ellipse e, some form circle c and some form
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Fig. 1. Image feature detection as robust
model fitting

Fig. 2. RANSAC for line fitting: the dot-
ted lines indicate the threshold distance

circle arc a, and others are just noise pixels. The lines, circle, ellipse etc. are
image features to be detected. All pixels on one feature satisfy Eq.(1):

ax2 + bxy + cy2 + dx + ey + f = 0 (1)

where a, b, c, d, e, f are free coefficients, so, the features can be described as Eq.(1)
with a, b, c, d, e, f being specified.

Eq.(1) is a conic equation describes general curves including circle, ellipse
and etc. And these curves are just specific conic with their coefficients meet
some constraints. For example, if a = c, b = 0, then the conic degrades to be a
circle, if a = b = c = 0, then the conic degrades to be a straight line. In this
paper, we represent image features as equations like that of Eq.(1) and call it as
model representation. We deal only with image features that can be described by
the parameter equation. The model has free coefficients a, b, c, d, e, f and their
specified values defines an image feature.

2.2 Image Feature Detection as Robust Model Fitting

Let us assume at first that there is only one line l1 in the image shown in Fig.(1)
and we want to detect it. As shown in subsection 2.1, l1 can be represented by
Eq.(1) with a = b = c = 0 and d, e, f being specified. What left to do is to
specify the free coefficients d, e, f , it is a well-known model fitting problem: fit a
model to the pixels so that the distance of the pixels deviated from the model
is minimized.

But there are l2,l3, etc. together with many noise pixels in the image, fitting a
model to all the foreground pixels is meaningless and can not detect the features
at all. It is necessary to distinguish pixels which belong to l1 from other pixels
first. Once this is done, the model fitting methods can be applied to fit a model
to the distinguished pixels. From the point of view of model fitting, all pixels on
line l1 are inliers to l1 while other pixels are outliers. The model fitting method
must be robust enough to deal with cases there are outliers in the original pixels.
It is the nature of robust model fitting problem [13].
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Since there are many features in the image, it is necessary to carry out the
model fitting method repeatedly until all the features are successfully detected.

3 Solution to the Feature Detection

In the previous section, we formulate the image feature detection as robust model
fitting problem. There are lots of methods designed to solve this problem [10, 11].
RANSAC can cope with a large proportion of (more than 50%) outliers. As
shown in 2.2, since pixels in l2, l3 etc. are outliers with respect to l1, there are
usually more than 50% outliers in the original data to be fitted. We adopt the
RANSAC algorithm in this paper to solve the model fitting problem.

3.1 RANdom SAmple Consensus

RANSAC does trial repeatedly to find the model. Each trial consists of sampling
and voting stages. In the sampling stage, it randomly selects a minimal subset of
the original data points and instantiates a model from the subset. In the voting
stage, it determines the consensus set of the determined model by distinguishing
the set of data points within a distance threshold of the determined model from
other points. The termination condition is either a model is found successfully
or the number of trials reaches a preset threshold. The algorithm is presented as
follow:

1. Set Csample = 0, while Tt > Csample do 2-5:
2. Sampling stage: Randomly select a sample of s points from original data

points and instantiate a model from the selected points,
3. Voting stage: Determine the consensus set (set of inlier points) which con-

tains points within a distance threshold Td of the model,
4. If the size of the consensus set is greater than a preset threshold Tc, report

the model and terminate,
5. Let Csample = Csample + 1,
6. The largest consensus set is selected as inliers and corresponding model is

selected as the final model.

where Csample is the counter for trial number, s is the minimal number of points
needed to determine a model. Td depends on the required fitting precision, Tc is
a function of number of inliers and Tt is specified by:

Tt = lg(1 − p)/ lg(1 − εs) (2)

where p is the probability that at least one random sample is free of outliers, it
is always chosen as 0.99, ε is the proportion of inliers.

Fig. 2 illustrates how RANSAC fit a line to the data points. It randomly
selects 2 points to define a line, points between the two dashed lines parallel
with the defined line are within a distance threshold to the line and form the
consensus set. As shown, the size of consensus set of line (a, b) is 10 while that
of line (c, d) is 2, so, RANSAC selects line (a, b) as the fitting result at last.
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3.2 Sample Minimal Set

It might be thought that it would be preferred to use more than minimal subset
to instantiate a model as RLD [8] and RCD [9] do, because a better estimate of
the model would be obtained from them, and the measured support would reflect
the true support more accurately. However, this possible advantage in measuring
support is generally outweighed by the severe increase in computational cost
incurred by the increase in the number of trial.

Because there are often lots of pixels in the image, it is computationally infea-
sible to try every possible sample in the sampling stage. In fact, it is unnecessary
to enumerate all the possible samples exhaustively. Instead the necessary num-
ber of samples Tt is chosen sufficiently high to ensure that at least one of the
random sample of s points is free from outliers with a probability of p. Eq.(2)
shows the relationship between Tt and p, ε, s. Given an image, the ε is constant
with respect to the feature to be detected, the p is also constant in the detection
process (it is always chosen as 0.99), so, Tt increases exponentially with s. Tab.
1 shows an example of Tt for given s and e. As shown, the necessary number of
trials increases dramatically with s increasing, therefore the computation cost is
increased severely.

Based on these observation, we follow the minimal set principle, i.e. select
minimal number of points needed to determine the model to be found.

3.3 Instantiate Model from Minimal Set of Points

The minimal number of points needed to instantiate a model is equal to the num-
ber of free coefficients in the model representation of the feature to be detected.
For example, it is 2 for straight line, 3 for circle and 4 for ellipse.

Given a minimal set of points, the model is instantiated by solving the un-
known coefficients in the equations for the model. Suppose that(x1,y1),...,(x5, y5)
is selected as minimal set, then (xi, yi) is on the conic and we have:

AiX = 0 (3)

with
Ai =

[
x2

i xiyi y2
i xi yi 1

]
(4)

X =
[
a b c d e f

]T (5)

Stacking equations from each point (xi, yi), i = 1, ..., 5 in to one set of equations,
we get:

AX = 0 (6)

A =
[
AT

1 · · · AT
5

]T (7)

the unknown X = (a, b, c, d, e, f)T is a homogeneous vector and has only 5
degrees of freedom, so, it can be solved from the 5 equations in Eq.(6). Since
Eq.(6) is a set of homogeneous equations and the obvious solution X = 0 is
meaningless, it can be solved by putting an additional conditional on the norm of
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the unknown vector, e.g. ‖X‖ = 1. Instead, we turn Eq.(6) into a inhomogeneous
set of equations by imposing a condition Xi = 1 for one unknown and some
other conditions on the other unknowns. For example, in the case of a circle, a
in Eq.(1) is sure to be nonzero, therefore the additional condition X1 = a = 1
can be imposed. Further, b = 0 and c = a can also be imposed for a circle.
The number of free unknowns is left to be only 3. Based on these conditions,
Eq.(8) can be derived from Eq.(6), it have 3 linear equations and 3 unknowns,
the unknowns can be solved easily.

⎡

⎣
x1 y1 1
x2 y2 1
x3 y3 1

⎤

⎦

⎡

⎣
d
e
f

⎤

⎦ =

⎡

⎣
−(x2

1 + y2
1)

−(x2
2 + y2

2)
−(x2

3 + y2
3)

⎤

⎦ . (8)

3.4 Determine the Number of Samples Adaptively

The proportion of inliers ε is often unknown because we do not have statistics of
foreground pixels and features in advance. Further more, ε is different with re-
spective to different features and is varying while the detection process proceeds.
Therefore, Tt can not be determined in advance.

We apply an adaptive strategy to solve this problem, i.e. determine ε and Tt

adaptively while detection proceeds. It records the maximal value of ε
and use it to determine the necessary number of trials. The adaptive algorithm
is as follows:

1. Let Tt = ∞, ε = 0, εmax = 0 and set Csample = 0.
2. While Tt > Csample do 3-7:
3. Sampling stage,
4. Voting stage,
5. Let ε = Ninlier/Ntotal, εmax = max(εmax, ε),
6. Compute Tt from εmax using Eq.(2),
7. Let Csample = Csample + 1.

where εmax records the maximal value of ε, Ninlier is the number of inlier points
found in each trial while as Ntotal is number of all points.

3.5 Voting Without Explicit Distance Computation

As shown in subsection 3.1, in the voting stage of RANSAC, it needs to determine
the consensus set and this needs distinguishing points within a distance threshold
Td of the model from other points. Obviously, it needs distance computation
and comparison which consume much time, and this is what previous method
really do. In this section, we will show how the distance computation can be
avoided and present a new voting method without involving explicit distance
computation.

In fact, the voting stage needs only counting points within a region we called
inlier region which centers at the model and dilates from it with diameter Td.
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Fig. 3. Inlier region of a model: the center
line indicates a model, the region between
the up and below line indicates the inlier
region and it contains only limited pixels

Fig. 4. Left image is an edge image of a
house, and right image shows the detected
line segments by our method

To do this, previous methods check all points by computing their distance from
the model and count the ones whose distance smaller than Td. But as shown
in Fig.3, images contain only discrete pixels, and there are limited pixels in
the inlier region. All the pixels in the inlier region are either foreground or
background pixel, and only foreground pixels in the inlier region vote the model.
Therefore, the alternative is checking all the pixels in the inlier region, if the
pixel is foreground, it votes the model.

Now, let’s assume that the model to be fitted is straight line. As shown in
Fig.3, the inlier region of the line model is the region between two lines deviate
from the model with a distance Td. This region is equivalent to a line with width
2Td centered at the model. This is also true for other models, therefore we have:

The inlier region of a model M is equivalent to a model Me with width 2Td

centered at M .
Generating a line or curve with a width is a standard rasteration problem

in computer graphics. Bresenham algorithm [12] is a widely used algorithm for
rasteration, it can be implemented with only integer calculations and is fast.
There are Bresenham algorithms [14] designed to generate straight line, circle
and ellipse etc.

In this way, the distance computation and comparison is avoided, and this
saves much computation time as will be shown in section 5. Furthermore, there
is another advantage for applying rasteration method as an alterative to distance
computation as shown in next subsection.

3.6 Explore Spatial Information in the Voting Stage

In fact, series of pixels are generated pixel by pixel in the rasteration methods.
As shown in Fig.3, for example, Bresenham algorithm generate pixels from left
to right, the successive pixels are spatially connected. Apparently, it is easy to
record the consecutive foreground pixels and consecutive background pixels. In
this way, we can detect spatially linked segments of straight line or curve. To
account for noisy pixels in the original data and errors in edge detection, it
should allow small gaps between segments. We set a threshold Tg for the gap
between segments, segments with gap smaller than Tg are merged to be one
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segment. Therefore, it does not need post-processing which is needed by RLD,
RCD and most Hough Transform method.

4 Robust Model Fitting Based Feature Detection
Algorithm

In this section, we present the proposed feature detection algorithm as follows:

1. Collect all foreground pixels in image I into set S and let Ntotal be the size
of S,

2. Let Tt = ∞, ε = 0, εmax = 0, Csample = 0,
3. While Tt > Csample do 4-10:
4. Randomly select s points from S,
5. Determine a model M from the selected s points using method described in

subsection3.3,
6. Apply Bresenham algorithm to generate pixels inside the inlier region of

model M ,
7. Count the number of spatially-linked foreground pixels of the generated pix-

els as Ninlier ,
8. Let ε = Ninlier/Ntotal, εmax = max(εmax, ε),
9. Compute Tt from εmax using Eq.(2),

10. Let Csample = Csample + 1,
11. If Ninlier > Tinlier do 12-15:
12. Report the detected feature,
13. Remove the pixels on the detected feature from image I and corresponding

data points from set S,
14. Let Ntotal = Ntotal − Ninlier ,
15. go back to 2
16. Terminate.

where, Tinlier is a preset threshold for the minimal number of pixels one feature
should have.

5 Experiments and Comparison

Based on section 4, we develop a Robust Model Fitting Based Line Detection
method (RMFBLD) and apply it to both synthetic and real images to test its
correctness and efficiency. Size of synthetic images is 256 × 256. The number of
line segments in one image is used to control complexity of image. It ranges from
10 to 50 using 10 as step. Noise level is characterized by number of noise pixels.
It ranges from 0 to 500 by a step of 50. For every level, 32 images are synthesized
using different random seed. PPHT, RLD and RMFBLD are applied to detect
line segments in these images. The total number of detected line segments and
time used are shown in Tab. 2. As shown, RMFBLD is the most efficient method.
Fig.5 shows one example of the results, it has 30 line segments and 300 noisy
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Table 1. The necessary number of sam-
ples Tt for a given s and e

s e
90% 80% 70% 60% 50%

2 3 5 7 11 17
3 4 7 11 19 35
4 5 9 17 34 72
5 6 12 26 57 146
6 7 16 37 97 293

Table 2. Comparison of RMFBLD with
RLD and PPHT Method

Method Detected Time Lines
line (second) per

segments second
RLD 3494 52,793 66.2

PPHT 18127 503,222 36.0
RMFBLD 18769 127,357 147.4

pixels, the original and detected line segments using RMFBLD, PPHT and RLD
are shown from left to right, as shown, RMFBLD can detect features from image
contains multiple features. As can be seen in both Tab. 2 and Fig.5, TRMFBLD
and PPHT detect approximately the same number of lines, but RLD detects less
lines.

Fig. 5. Result example

Fig.4 shows another example, left figure is an edge image of an image of a
house, and right one shows detected line segments by RMFBLD. It can be seen
that global line features are successfully detected.

6 Conclusion

We formulate feature detection as robust model fitting problem. First, we use
parameterized model to describe image features, and treat feature detection as
model fitting problem. The global information is implicated in the parameter-
ized model, global features can be easily detected without involving parameter
transformation. Second, we adopt RANSAC as a solution to the model fitting
problem. Because RANSAC is immune to outliers, the proposed method can
deal with images contains multiple features and noisy pixels. Third, we develop
a novel voting method for RANSAC, it avoids explicit distance computation by
generating inlier pixels and checking if they are foreground. Besides the efficiency
improvement, it provide a good chance to detect spatially connected feature.

Apart from presenting the framework of robust model fitting based image
feature detection, we also develop Robust Model Fitting Based Line Detection



682 D. Chai and Q. Peng

method for line detection at present. We plan to develop another method for
detecting other features, such as circle and ellipse in the near future.
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