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Abstract. The problem of detecting local image features that are invariant to 
scale, orientation, illumination and viewpoint changes is a critical issue in many 
computer vision applications. The challenges involve localizing the image fea-
tures accurately in the spatial and frequency domains and describing them with 
a stable analytical representation. In this paper we address these two issues by 
proposing a new non-linear scale-space implementation that improves the local-
ization accuracy of the SIFT [3] local features. Furthermore we propose a sim-
ple adjustment to the standard SIFT descriptor and show that the modified ver-
sion is more robust to affine changes. 

1   Introduction 

Interest point detection is a key issue in many computer vision applications including 
motion tracking, object recognition and 3D reconstruction. An interest point is any 
point in the image that is characterized by distinctive neighboring features. This in-
cludes L-corners, T-junctions, Y-junctions and highly textured areas. The detection of 
interest points is a dual stage process, (a) localization and (b) representation. In the 
localization phase we detect the position and the scale of each interest point and in the 
representation phase we use an analytical model to describe the local shape or pattern 
at each interest point. The goodness of a model (i.e. also known as a local descriptor) 
is measured in terms of its degree of invariance over transformations caused by view-
point and illumination changes. A good model (i.e. highly invariant descriptor) would 
identify a local pattern, before and after being transformed, with the same numeric 
measure. 

Schmid and Mohr [1] examined a wide variety of interest point detectors and 
categorized them, based on their localization criteria, into three main groups: Con-
tour-based, Intensity-based and Parametric-model based methods. The Contour-based 
methods define interest points either at the intersections of grouped line segments  
or at the maximum curvature of approximated contours. Intensity-based methods  
define interest points through the illumination distribution of the neighborhood. In 
most cases these algorithms are based on the second moment matrix, which is a 
mathematical measure for the distribution of the local image gradients. Parametric-
based methods on the other hand define interest points at regions that fit a predefined 
analytical intensity model. This paper focuses on a group of Intensity-based detectors 
[3, 4], which define the interest points as the local peaks of grayvalue derivatives  
in scale-space. In most cases these detectors are capable of identifying local patterns 
independent from any scale changes. In this paper we propose a new non-linear  
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scale-space representation, which improves the localization accuracy of the aforemen-
tioned detectors [3, 4]. 

In all our experiments we used the SIFT descriptor [3] to define the local patterns 
at each interest point. Mikolajczyk and Schmid [7] proved that the SIFT descriptor is 
more robust to affine changes than many other descriptors including steerable filters 
[8], differential invariants [2, 9], complex filters [11] and moment invariants [10]. We 
did also use a modified version of the SIFT descriptor which is more distinctive and 
in many cases leads to a much better matching results. 

Overview. Section 2 presents different implementations for the scale-space including 
a new proposal, which in general uses the non-linear spatial filter of Köthe [6]. 
Section 3 reviews the main features of the detectors and descriptors used in our tests. 
Section 4 introduces the evaluation criteria. Section 5 and 6 present the experimental 
results and the conclusion. 

2   Scale-Space Representations 

A linear scale-space is defined by the solution of the following diffusion equation; 
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with the initial condition that L(z,0) (i.e. initial scale s=0) is equal to the original im-
age I(z), ∇2 is the Laplacian kernel and z is the spatial coordinates of the interest 
point. Equivalently a linear scale-space can be defined by convolving I(z) with the 
Gaussian kernel G(z,s). 
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To reduce the amount of smoothing around edges Perona and Malik [5] proposed 
the use of anisotropic diffusion as a generalization of the linear scale-space represen-
tation.  
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where h(z, s) is defined to be dependant on the image gradient. A possible solution for 
h(z, s) is presented by eq.4 where k defines the range of gradients in an image and 
thus controls the amount of smoothing at point z.    
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2.1   Hourglass Representation 

Köthe [6] proposed an oriented non-linear spatial filter that looks like an hourglass. 
The new filter modulates the Gaussian so that it becomes zero at a perpendicular dis-
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tance from the local edge direction φo. The output of the filter at point (x,y) is given 
by the following equation:    
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where z and φ are the polar coordinates of point (x, y),  ρ defines the width of the 
Hourglass filter, the larger the value of ρ the more the filter tends to become uniform, 
and N is a normalization factor that sums the weights of the filter to 1. Köthe recom-
mended that ρ should be set to a value between 0.3 and 0.7.  

The dimension of the Hourglass scale-space is defined by an initial scale σ0, final 
scale σf, and a factor k of scale change between successive levels. At each scale level 
σ a local direction φo is calculated for each sample point using a simple derivative 
function. Next the Hourglass kernel is rotated by φo degrees and applied to the sample 
point. 

3   Experiment Setup 

In the following we will review the implementation details of two interest point detec-
tors and two descriptors used in our experimental tests. The detectors are invariant to 
scale and rotation changes. The descriptors on the other hand are distinctive and rela-
tively robust to common image transformations. 

3.1   Interest Point Detectors 

The detection scheme in the following two algorithms starts with an appropriate im-
plementation of the scale-space. 

SIFT: first, local peaks are selected from a Difference of Gaussian pyramid. A 3D 
quadratic function is fitted at each local peak and an interest point location is calcu-
lated up to a sub-pixel /sub-scale accuracy at the extremum value of this quadratic 
function. Finally interest points with low contrast values and points located along 
edges are considered unstable and rejected. 

Harris-Laplacian [4]: a scale-space is built for the Harris function using the second 
moment matrix C(z,s,s-). At each scale-space level s the local peaks of the Harris 
function are selected as possible interest point candidates. Finally, candidates with the 
local scale-space maximum of the Laplacian function are identified as interest points.     

  
Harris function   =   det(C) - αtrace2(C  
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3.2   Descriptors  

The descriptors used in our tests are: (1) the standard SIFT and (2) a modified version 
of the SIFT. In the remaining part of this section we will review the design aspects of 
these two descriptors.  

SIFT: A descriptor is calculated for each interest point with a spatial location z and 
scale s through to the following steps: 

1. A dominant orientation angle θ is calculated from the local neighborhood of p, 
which is defined by a circular region of radius 1.5s. The method of detecting θ is 
explained in detail in [3].  

2. A local window W of size 16x16 is fitted at location z and scale s.  
3. A gradient orientation and magnitude are calculated for each sample point that lies 

within W.  
4. To achieve rotation invariance, the coordinates and the gradient orientations of W 

are rotated by angle -θ. 
5. The gradient magnitudes of W are smoothed with a uniform Gaussian kernel of 

scale k=1.5 the width of W. This step is meant to reduce the effect of sample points 
that lie away from z as they are considered the most likely affected points with 
misregistered errors. 

6. The local window W is divided into 16 different 4x4 sample regions. 
7. The weighted gradient magnitudes of each sample region are summed in an orien-

tation histogram with eight directions as shown in figure.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. (a) The neighborhood of the interest point is divided into 16 sample regions. (b) The 
gradients of each sample region (i.e. as in region B) are accumulated in an orientation histo-
gram with 8 directions and distributed among the histogram bins of neighboring regions (i.e. 
regions A, C and D) through a tri-linear interpolation.   
 

16 sample regions of size 4x4 pix-
els surrounding the interest point.   
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8. The descriptor is formed from a vector containing the values of all the 8x16=128 
orientation histogram bins. 

9. To reduce the effects of illumination change the vector elements are normalized to a 
unit length, then thresholded to values not greater than 0.2 and finally renormalized.  

Modified-SIFT: Steps ‘1’ and ‘5’ in the above algorithm are modified and applied for 
each interest point z with scale s as follows: 

− Step 1:  In the SIFT algorithm the pixels at spatial distances less than 1.5s from z 
are defined as the local neighbors of z while in the modified-SIFT the pixels with 
both grayvalue and spatial distances less than 1.5s are defined as the local 
neighbors of z.  

−  

− Step 2:  A Gaussian function with scale k is used to weight the gradients of the local 
neighbors of point z in the SIFT algorithm. The weight is set to decrease exponen-
tially as the spatial distance between the local neighbor and point z increases. In the 
modified-SIFT a weight wi(c) is assigned for each local point i using the function 
of equation.7. The weight wi(c) is defined in terms of the gravalue distance c be-
tween i and point z.  
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The reason behind the above modifications is that normally local regions are iden-
tified by their color distribution. The distribution is in most cases continuous and of 
size proportional to the scale of the local region.   

4   Evaluation 

We have conducted two matching tests to measure the performance of the interest 
point detectors of section 3.1 before and after applying the Hourglass scale-space rep-
resentation and the SIFT descriptor before and after applying the modifications of 
section 3.2.  

In the first test a number of synthetically transformed images were used for match-
ing. These transformations included, scale changes, rotation, brightness changes and 
noise addition. In this test the Receiver Operating Characteristics (ROC) curves were 
used for evaluation as indicated by Carneiro and Jepson [12], where for each type of 
transformation and each feasible combination of the three different elements under 
test (i.e. scale-space representation, interest point detector and local descriptor) a de-
tection rate versus a false positive rate is plotted.  

Given a test image I and its transformed version I’, where I’= M I+b, a detection 
rate is defined as the ratio between the number of correct matches (correct-positives) 
and the total number of interest points of I. A correct match is scored between two in-
terest points x and y, where x ∈ I and y ∈ I’, if y is very close to the mapped point 
x’=M x+b (i.e. ||y-x’||< ε) and has nearly the same local descriptor as x (i.e. ||D(y)-
D(x)||< τ).  

On the other hand given a database of images that doesn’t include I nor I’, a false 
positive rate is defined as the ratio between the number of false matches (false posi-
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tives) and the total number of interest points of I.  A false match is scored if there ex-
ists an interest point z in the database that is similar to x (i.e. ||D(z)-D(x)||< τ). In our 
tests ε was set to 3 pixels and τ was changed in regular steps of 0.03 to form the ROC 
curves. 

The second test involved matching real images taken from different viewpoints. In 
this test the evaluation of the matching results of each image pair (I, I’) was based on 
the following criteria: for each interest point x that belongs to I the two points (x1 and 
x2) with the most similar descriptors to x are identified in I’, where ||D(x1)-D(x)||< 
||D(x2)-D(x)||. Next x1 is considered a valid match to x if ||D(x1)-D(x)|| is less than 
90% of ||D(x2)-D(x)||. For further validation the matching results of this test were 
visually inspected and reported in table.3. 

5   Results 

The 8 test images of figure.4.a and a database of 60 different images representing a 
collection of natural scenes were used to create the ROC curves of figure 2, 3 and 5. 
These curves were designed to evaluate the performance of the five different tech-
niques of table.1. In this test a total of 1.04 million interest points were detected ac-
cording to the distributions of table.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. ROC curves for simple image transformations that include (a) an increase in the  
illumination by a factor of 0.3 and (b) a decrease in the illumination by a factor of 0.3, and an 
addition of Gaussian noise with variances of (c) 0.04 and (d) 0.06. The curves were plotted for 
interest points detected by the SIFT and the Harris_Laplacian(HL) detectors and matched 
through the SIFT and modified_SIFT descriptors.  
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Fig. 3. ROC curves for image rotations of 15, 30 and 45 degrees 

 

 

 

 

 

 

Fig. 4. Test images including the (a) original series and (b) an affine-transformed version 

Table 1. The five techniques under test 

Method Title  Detector Descriptor Scale-Space 

HL_standard_SIFT Harris Laplacian SIFT Linear 

modified_SIFT SIFT modified_SIFT Linear 

modified_SIFT_HG(0.7) SIFT modified_SIFT Hourglass ρ=0.7 

standard_SIFT SIFT SIFT Linear 

HL_modified_SIFT Harris Laplacian modified_SIFT Linear 

In case of the Hourglass scale-space, experimental results showed that the number 
of detected interest points is directly proportional to the size of the smoothing kernel 
and inversely proportional to the value of the ρ-parameter (see equation.5), where in 
general an increase of 0.2 in the value of ρ results in the reduction of the number of 
points by a factor of 0.81. Making use of this fact and in order to speed up the process 
of building the Hourglass scale-space the SIFT algorithm was slightly modified, 
where instead of expanding the input image by a factor of 2 the first level of the 
Gaussian pyramid was sampled at the same rate of the input image and the smoothing 
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kernel was increased from size 7 to 13. This automatically implies that in case of the 
Hourglass scale-space no interest points can be detected with a scale less than 0.5.  

The ROC curves of figures 2a and 2b show that under illumination changes the 
highest two detection rates were scored for the standard_SIFT and the modified_SIFT 
consequently. The   HL_modified_SIFT was ranked third up to a false positive rate of 
0.27. At false positive rates greater than 0.27 the modified_SIFT_HG was ranked third 
and both the HL_modified_SIFT and the HL_standard_SIFT were ranked fourth.  

The curves of figures 2c and 2d show that the HL_modified_SIFT is the most resis-
tant to noise at lower false positive rates while the modified_SIFT_HG performs 
much better at higher false positive rates. 

To evaluate the performance for orientation changes the test images were rotated at 
15, 30 and 45 degrees and the ROC curves were plotted for each angle change. The 
results of figure 3 show that the modified_SIFT and the modified_SIFT_HG worked 
much better than the other three techniques for all the three angle changes with an ex-
ceptional performance at angle 15.  

 

 
Fig. 5. ROC evaluation curves for scale changes between 0.7 and 1.8  

The matching results of figure 5 involve a wide range of scale changes starting 
from a factor f of 0.7 and increasing in steps of 0.2 up to a factor of 1.8. The ROC 
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standard_SIFT dominated the range between 0.9 and 1.5 and the modified_SIFT had 
the highest detection rates at f=1.8. Moreover in the range between 0.9 and 1.1 the 
HL_modified_SIFT worked much better than the HL_standard_SIFT.  

The reason behind the results of figure 5.a is that in the linearly smoothed version 
of a downscaled image the nearby edges merge causing small structures to disappear 
and consequently affects the localization accuracy of the interest points. On the  
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contrary the modified_SIFT_HG preserves these structures through non-linear 
smoothing, which in turn lead to a more accurate localization and much better match-
ing results. Moreover the inadequate performance of the modified_SIFT_HG at f >1 
(i.e. see figures 5c - 5.f) was due to the fact that the modified_SIFT_HG usually ig-
nores the local structures of very high spatial frequencies (i.e. scales less than 0.5) and 
in turn reduces the number of valid matches between the input image and its scaled 
version.   

The results of figure 5.f show that the modified-SIFT descriptor is more robust to 
large scale changes than the standard-SIFT because it gives more emphasis to local 
neighbors with similar gray values to the interest point and consequently is affected 
by less misregistration errors. The matching results of table.3 further prove that the 
modified_SIFT_HG algorithm is more resistant to affine changes than the stan-
dard_SIFT algorithm.  

Table 2. Distribution of the detected interest points 

Image Group  % Method % 

Image Database  41 HL_standard_SIFT 13 

Test Images 4 modified_SIFT 25 

modified_SIFT_HG(0.7) 26 

standard_SIFT 20 

Transformed 
Test Images 

 

55 

 

 

 

 

 

 

 HL_modified_SIFT 16 

Table 3. Visually inspected matching results for the test images of figures 4.a and 4.b 

Percentage of valid matches Image  Title 

standard_SIFT modified_SIFT modified_SIFT_HG (0.5) 

Bottle 2.72 7.09 19.9 

Child 5.36 13 38.1 

Croc 5.88 16.8 18 

Desk 8.14 17 36.6 

Lamp 0.623 2.2 12.3 

Pei 2.71 7.25 13.6 

Toy 9.7 13.7 24.6 

Car 12.8 24.9 44.8 
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6   Conclusion  

In this paper we have presented an experimental evaluation for a new non-linear 
scale-space representation and a modified version of the SIFT descriptor. The evalua-
tion was based on matching images with both synthetic and real geometric transfor-
mations. Two different techniques were used for evaluation including the Receiver 
Operating Characteristic (ROC) curves and an ordinary visual inspection method. The 
standard SIFT descriptor proved to have better matching results under illumination 
changes. The results of the proposed non-linear scale-space and the modified_SIFT 
descriptor were superior under orientation and large-scale changes.  

The assumption of eliminating the local structures of very high spatial frequencies 
from the proposed non-linear scale-space proved to be a time saving step. On the 
other hand it underestimated the matching results of the modified_SIFT descriptor. 
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