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Abstract. In this paper, we address one very important industrial ap-
plication of computer vision – automatic classification of materials. In our
work, we have considered materials that are mixtures of two or more ele-
ments. Such materials are called alloys. It is observed at the microscopic
level that an alloy is composed of small randomly distributed crystals
of varying shapes and sizes called grains. Also, the color and hence the
intensity of the grains vary in alloys. Generally, this shape-size-intensity
distribution of the grains is different for different materials. This means
micrographs obtained from different materials form texture-like images
that differ from one material to another in appearance. Therefore, in prin-
ciple, any texture analysis method may be used for material classification.
In our method, we propose to extract textural features corresponding to
grain geometry and intensity and use them for analysis and classification
of alloys. These features are extracted via gray-scale morphological op-
erations and are measured in terms of Size-Intensity-Diagram (SID) and
Tri-variate Pattern Spectrum (TPS) coefficients. In our experiments, we
achieved 83.43% and 89.43% classification accuracies in cases of SID and
TPS, respectively. This demonstrates the effectiveness of the proposed
method for material classification which in turn confirms that our choice
of features is indeed appropriate for the purpose.

1 Introduction

In recent years, Computer Vision has been extensively used in real world systems
for commercial, industry and military applications. Some of these applications
include industrial automation, biometrics, 3D modelling, video surveillance, clas-
sification and recognition, document analysis, medical analysis, human-computer
interaction, robotics and so on. In the field of industrial automation, its appli-
cations include nondestructive quality and integrity inspection, on-line measure-
ments, etc. thereby aiding the process of manufacturing and inspection. Conse-
quently, computer vision related technologies have started migrating from aca-
demic institutions to industrial laboratories.

The objective of this paper is automatic classification of materials which may
find application in industry and material science research. However, in this paper,
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we do not intend to develop any new algorithm for material classification but to
build up a system that will view a material sample at microscopic level and will
subsequently classify it on the basis of some visual features extracted from the
micrograph making use of some existing image processing and computer vision
techniques.

In our present work, we have considered materials that are mixtures of two
or more elements. Such materials are called alloys. Different elements mixed in
different proportions give different types of alloys. It is observed at the micro-
scopic level that an alloy is composed of small randomly distributed crystals
of varying shapes, sizes and colors called grains. This means a material micro-
graph obtained from an alloy resembles a texture image in which the grains
form the texels (texture elements). It is also observed that the shape-size-color
distribution of the grains generally differs from one material to another. As a
consequence, texture images obtained from the micrographs of different types
of materials generally look different in appearance. Therefore, in principle, any
texture analysis method may be used for material classification. Based on this
principle, some texture-based material classification schemes had been proposed
in [1], [2], [3], [4] and [5]. However, these methods do not take into account the
grain geometry and color which otherwise seem to be the most appropriate char-
acterizing features in the context of material classification. On the other hand,
the structure of the texture primitive elements (texels) is one very useful and
important feature that may be used for the purpose of texture analysis and clas-
sification. Therefore, it makes sense to classify materials by extracting textural
features corresponding to grain shape and size from the texture-like material
micrographs and then apply any available texture classification scheme.

It has been demonstrated through research in material science that the shape
and size of the grains composing a material provide important information nec-
essary for characterizing the material, as mentioned in [6] and [7]. In view of this,
an earlier attempt to classify materials on the basis of grain size was proposed
in [8]. The method involves grain boundary detection and moment calculation.
Another efficient tool for shape-size analysis used frequently in image processing
and computer vision applications is the mathematical morphology [9]. This is
mainly due to its capability in extracting grain geometry and structural informa-
tion efficiently. Accordingly, some morphological approaches for shape-size based
texture analysis were developed in [10], [11], [12] and [13]. Consequently, any of
these texture analysis methods may be used for material classification. One such
method for material grain size determination using morphological texture anal-
ysis is given in [14]. But, all these methods are based on shape-size analysis only
and hence are suitable only in cases where color information does not play any
significant role.

Apart from grain geometry, another important property that distinguishes
one material from another in appearance is the color. An impure material, for
example an alloy, when viewed at the microscopic level will show variation in
grain color depending on the concentration and nature of different types of crys-
tals composing the material. As a result, a brilliantly white pure material may
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become cream, grey, pink, brown, or even red due to impurities contained in the
crystal structure even in trace amounts. Therefore, extraction of grain color in-
formation, in addition to grain shape and size, is equally important for achieving
better accuracy in material classification. However, in order to reduce compu-
tational complexity, in our work we use monochrome images only where grain
color variation manifests as intensity variation in the micrographs. Accordingly,
in our work we use gray-scale morphology which is capable of deriving informa-
tion regarding intensity variation, in addition to shape and size.

2 Proposed Method

Mathematical morphology is an useful tool in many image processing applica-
tions that involve shape analysis. In particular, the Pattern Spectrum proposed
by Maragos [15] gives us the size distribution of objects within a given image.
Extension of the Pattern Spectrum to gray images is the Size Intensity Diagram
(SID) [16] which gives a breakdown of the size and gray-level distribution of
objects in an image. Another variant of the basic Pattern Spectrum is the Bi-
variate Pattern Spectrum (BPS) [17] which yields the shape-size distribution in
true sense, while the Tri-variate Pattern Spectrum (TPS) [18] is the extension of
BPS to gray images. TPS generates the size, gray-level and shape distribution
under a single framework. In this paper, we now propose to build up a material
classification system based on texture analysis using two variants of the basic
Pattern Spectrum, viz., Size-Intensity Diagram and Tri-variate Pattern Spec-
trum, that give information about the shape, size and intensity variation in a
gray image.

2.1 Basic Morphological Operations on Binary Images

The two basic operations in morphology are dilation and erosion. Given a 2-
dimensional image, the object(s) present in it may be represented as a set A
whose elements are the coordinates of the object pixels. Therefore, A is a set in
a 2D Euclidean space �2, i.e., A={(ax, ay)} where (ax, ay) are the coordinates
of the object pixels. Let, B be another set in �2 given as B={(bx, by)}. Then
dilation and erosion of A w.r.t. B are defined as

Dilation: A ⊕ B =
⋃

(bx,by)∈B

{
(ax, ay) + (bx, by)

∣∣∣ (ax, ay) ∈ A
}

, (1)

Erosion: A � B =
⋂

(bx,by)∈B

{
(ax, ay) − (bx, by)

∣∣∣ (ax, ay) ∈ A
}

. (2)

The set B is called the structuring element (SE). Combinations of dilation and
erosion give two other morphological operations as follows:
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Opening: O(A, B) = A ◦ B = (A � B) ⊕ B , (3)

Closing: C(A, B) = A • B = (A ⊕ B) � B . (4)

The opening operation acts as a morphological filter in the sense that it retains
only those object(s) where the SE can fit in and eliminates the remaining ob-
ject(s). Closing operation is essentially the opening of the complemented input.

2.2 Pattern Spectrum

A quantitative measure for the size distribution of the objects in an image is
the Pattern Spectrum. The number of pixels in the set obtained by subtracting
the opened objects from the original one gives the area of those objects that
cannot contain the SE. Thus, iterative application of the morphological opening
and the measurement of the residues, while increasing the size of the SE, gives
the size distribution of the objects contained in the given image. So, if A is the
set representing the objects in a given 2D image, then following [9] and [19] the
pattern spectrum or pecstrum may be defined as

PSnB(A) =
1

Mes(A)

[
Mes(A ◦ nB) − Mes(A ◦ (n + 1)B)

]
, (5)

where Mes(·) denotes the finite set cardinality and nB is the expanded SE of
size n (n is any integer in the range 0 to +∞) obtained by dilating B iteratively
for (n − 1) times, i.e.,

nB = B⊕B ⊕ . . . ⊕ B︸ ︷︷ ︸
n−1 times

. (6)

2.3 Bivariate Pattern Spectrum

The pattern spectrum defined above, does not convey the information about the
shapes of the objects present in the image. This drawback may be overcome by
using Bivariate Pattern Spectrum (BPS). Unlike the usual Pattern Spectrum
described above, the size of the SE is increased in vertical and/or horizontal
direction so as to vary both the size and the shape of the SE. Thus, the residues
so obtained at all stages of opening and subsequent subtraction give the shape
distribution of the objects to some extent, in addition to the size description.
Therefore, BPS is the generalization of the usual Pattern Spectrum and is the
true shape-size descriptor for the objects present in the given binary image.
Accordingly, the BPS is defined as

BPS((nx,ny)B)(A)

= 1
Mes(A)

{Mes(A ◦ (nx, ny)B) + Mes(A ◦ (nx + 1, ny + 1)B)

−Mes(A ◦ (nx + 1, ny)B) − Mes(A ◦ (nx, ny + 1)B)} ,

(7)

where (nx, ny)B is the SE of dimension nx by ny.
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2.4 Basic Morphological Operations on Gray Images

A gray scale image is defined as a 2D function f(ax, ay) where (ax, ay) is the
coordinate of a pixel in the image and f(ax, ay) gives the corresponding pixel
intensity. The object present in the image, hence, may be defined in the form
of a set of triples A = {(ax, ay, ag)} where (ax, ay) are the object pixels and
ag = f(ax, ay). The gray scale structuring element B may also be defined in a
similar way in the form of a set {(bx, by, bg)}. The morphological operations on
the image A, hence, are defined in [19] and [20] as

Gray scale dilation:

A ⊕ B = EXTSUP
(bx,by,bg)∈B

∣∣∣ {(ax, ay, ag) + (bx, by, bg)
∣∣∣ (ax, ay, ag) ∈ A

}
, (8)

Gray scale erosion:

A � B = INF
(bx,by,bg)∈B

∣∣∣ {(ax, ay, ag) − (bx, by, bg)
∣∣∣ (ax, ay, ag) ∈ A

}
. (9)

The opening and closing operations are defined as their counter parts in binary
operations.

2.5 Size Intensity Distribution

Using the idea of the Pattern Spectrum, and incorporating gray level (intensity)
information, Size-Intensity Diagram (SID) is obtained as

SID((n,g)B)(A) =
1

Mes(A)
{Mes(A ◦ (n, g)B) + Mes(A ◦ (n + 1, g + 1)B)

−Mes(A ◦ (n + 1, g)B) − Mes(A ◦ (n, g + 1)B)} , (10)

where (n, g)B is a flat SE of size n with gray level g.

2.6 Tri-variate Pattern Spectrum

Using the above relations for the gray scale morphological operations, the idea
of BPS is extended to Tri-variate Pattern Spectrum (TPS) so as to obtain the
shape-size description in a gray scale image. In the TPS, the shape of the struc-
turing element B is varied via separate expansion in the x and y dimensions
together with the variation of gray levels of the structuring element. The TPS
defined at each gray level g is defined as

TPS((nx,ny,g)B)(A)

= 1
Mes(A)

{Mes(A ◦ (nx, ny, g)B) + Mes(A ◦ (nx + 1, ny + 1, g)B)

−Mes(A ◦ (nx + 1, ny, g)B) − Mes(A ◦ (nx, ny + 1, g)B)} ,

(11)

where (nx, ny, g)B is a flat structuring element of dimension nx by ny with gray
level g, g = 1, 2, . . . , L − 1, L is the number of gray-levels in the image. Gray
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level g = 0 generally corresponds to the inter-grain gaps and cavities and hence
is not considered in evaluating the TPS coefficients.

2.7 Material Classification Using SID and TPS

Using Scanning Electron Microscope, microscopic images of materials known
as micrographs are obtained. These micrographs are subsequently converted to
gray images. As mentioned before, at the microscopic level, it is observed that
materials are made up of grain patterns that give texture-like appearance to
the micrographs. Also, the shape, size and intensity distribution of grains in
one material is generally different from that of another material. This aspect of
the micrographs is utilized for the purpose of material classification. In other
words, a material may be recognized on the basis of the shape, size and intensity
distribution of the grains that the material is composed of. And for the purpose of
feature extraction from different materials the SID and TPS seem to be suitable
in the present context while classification may be accomplished by employing
any gray texture analysis scheme.

As with binary textures, gray-scale morphological approach seems to be an
efficient tool in gray texture analysis involving grain shape analysis. One such
morphological approach to gray texture analysis is given in [21] in which a model
of the elementary particles that form a texture is obtained by applying pattern
spectrum with gray-scale structuring elements. However, in this method, the
extra step necessary to determine optimal structuring elements increases the
computational overhead. In later times, a TPS-based texture analysis scheme
had been developed in [22] which may be applied on material micrographs so as
to accomplish material classification. However, TPS is generally computationally
expensive. A relatively less complex scheme may be to use SID in place of TPS
but at the cost of classification accuracy. The set of SID or TPS coefficients
forms the set of textural features corresponding to shape, size and intensity of
the material grains and is subsequently used in the classification stage.

3 Experimental Results

In our experiments, we have evaluated the accuracy in classifying different mate-
rials by applying texture analysis on material micrographs in which the textural
features are measured in terms of SID and TPS coefficients, as proposed in this
paper. Seven different types of materials with 250 training and 50 test micro-
graphs per material type are taken. The colored micrographs are converted to
gray images with 256 gray levels. The basic structuring element taken is a 3 × 3
square and a k-NN classifier is used for classification. The different types of ma-
terials taken are (A) Copper-Zinc alloy, (B) Steel with 0.1% Carbon, (C) Steel
with 0.5% Carbon, (D) Silicon-Carbide (E) Steel with 0.4% Carbon, (F) Steel
with 1.25% Carbon, and (G) Ferrite XIV. Figure 1 shows the micrographs for
each of these materials, one sample per material type. The classification results
obtained in our experiments are given in Table 1 and Table 2.
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We see that the proposed material classification scheme using SID and TPS
coefficients works well yielding accuracy rate as high as 100% for some materi-
als while the overall recognition rates are 83.43% and 89.43% in cases of SID
and TPS, respectively. From Fig. 1, we see that the microscopic views of some
materials are so similar (e.g., CuZn and Steel with 0.1% Carbon) that man-
ual discrimination is almost impossible. Even then, our classifier is capable of
discriminating them to some extent. We also observe that TPS yields better
recognition rate compared to SID, but at the cost of increased computational
load. This is because TPS has better shape analyzing capacity than SID.

Table 1. Recognition result in material classification using SID coefficients. Seven
different types of materials are taken and our proposed classification method is tested
on 50 samples per material type.

Class labels Number of test samples classified to Recognition
of input to each of the seven material classes Rate

test samples
A B C D E F G

in percentage

A 31 15 0 2 1 1 0 62.0
B 1 45 2 1 0 1 0 90.0
C 1 1 36 6 0 6 0 72.0
D 0 0 0 50 0 0 0 100.0
E 0 0 0 0 50 0 0 100.0
F 0 0 0 4 16 30 0 60.0
G 0 0 0 0 0 0 50 100.0

Average Recognition Rate 83.43

Table 2. Recognition result in material classification using TPS coefficients. Seven
different types of materials are taken and our proposed classification method is tested
on 50 samples per material type.

Class labels Number of test samples classified to Recognition
of input to each of the seven material classes Rate

test samples
A B C D E F G

in percentage

A 35 8 1 2 0 4 0 70.0
B 0 40 1 1 1 7 0 80.0
C 0 0 44 0 0 6 0 88.0
D 0 0 0 50 0 0 0 100.0
E 0 0 0 0 50 0 0 100.0
F 0 0 0 5 0 45 0 90.0
G 0 0 0 0 0 1 49 98.0

Average Recognition Rate 89.43
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Fig. 1. Micrographs of the seven different types of materials used in our experiment.
For computational simplicity the actual color micrographs have been converted to gray
images as shown here. The texture like appearance of the micrographs can be observed
in the figures.

4 Conclusion

In this paper, we have explored the potentiality of using morphological pattern
spectrum for material classification. Two variants of the morphological Pattern
Spectrum, namely the Size-Intensity-Diagram (SID) and the Tri-variate Pattern
Spectrum (TPS), are used for extracting textural features from the texture-
like microscopic images of the materials and are then used for classification
in a manner similar to any texture analysis and classification method. Based
on our experimental results, it is found that the SID and TPS coefficients, in
particular the TPS coefficients, are indeed good measure for the textural features
corresponding to the shape-size-intensity distribution of the material grains in
the micrographs. Hence our proposed method may be reliably used for material
analysis, process control, etc.

The scheme described in this paper may be extended to some applications as
follow.

1. Material inspection: The proposed method may be used for locating any
defect, fault, presence of impurities, etc. in a material sample. The shape-size-
intensity distribution of the material grains may be extracted by scanning
the input sample thoroughly. Deviation from this distribution measure at
any point in the sample will indicate defect or presence of impurity at that
location.
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2. Material characterization: The structure, size and color of the grains deter-
mine important physical properties of a material. For example, high aspect-
ratio in grain size indicates good mechanical reinforcing effect. Materials
composed of coarse sized grains generally detract from mechanical reinforce-
ment, segregate and settle quickly, affect the processing and quality of end-
use products, lead to higher abrasion, and affect surface finish. On the other
hand, excessive amounts of fine grains can lead to ineffective mechanical re-
inforcement, high resin consumption as a filler, and problems with materials
handling. Also, the density of a material may be assessed by evaluating the
number of grain pixels in a micrograph. Similarly, distribution of grain inten-
sity (or color) may be used to assess the concentration of different elements
in an alloy.
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