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Abstract. In this paper we consider some questions related to the orien-
tation of shapes. We introduce as a new shape feature shape orientability,
i.e. the degree to which a shape has distinct (but not necessarily unique)
orientation. A new method is described for measuring shape orientability,
and has several desirable properties. In particular, unlike the standard
moment based measure of elongation, it is able to differentiate between
the varying levels of orientability of n-fold rotationally symmetric shapes.

1 Introduction

This paper deals with some of the problems, and proposes solutions, related
to shape orientability – i.e. the degree to which shape has distinct (but not
necessarily unique) orientation. The computation of a shape’s orientation is a
common task in the area of computer vision and image processing, being used
for example to define a local frame of reference, and helpful for recognition and
registration, robot manipulation, etc.

There are situations (see Fig. 1) when the orientation of the shapes seems to
be easily and naturally determined. On the other hand, a planar disc could be
understood as a shape without orientation.

Most situations are somewhere in between. For very non-regular shapes it
could be difficult to say what the orientation should be. Rotationally symmetric
polygons could also have poorly defined orientation – see Fig 2 (d). Moreover,
even for regular polygons (see Fig. 2 (a) and (b)) is debatable whether they
are orientable or not. For instance, is a square an orientable shape? The same
question arises for any regular n-gon, but also for shapes having several axes
of symmetry, and n-fold (n > 2) rotational symmetric shapes. If the answer is
“yes, those shapes are somehow orientable”, how should the shapes from Fig. 2
be ranked with respect to their orientability? This question is of interest and
applicable in the area of shape analysis and shape classification.

The most standard method for computing shape orientability (derived in
section 2 and specified in eqn (5)) is based on computing the axis of the least sec-
ond moment. It is naturally defined and easy to compute. However, it does not
specify what the shape orientation should be in those examples (see section 2).
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(a) (b) (c) (d)

Fig. 1. Reasonable orientations of the shapes coincide with the dashed lines

(a) (b) (c) (d)

Fig. 2. Reasonable orientations of the shapes coincide with the dashed lines

The problem becomes more complex taking into account that in computer vi-
sion and image processing tasks real shapes are replaced with their digitizations.
Some specific problems arise when working with digital shapes. Let us mention
just two of them:

– Due to the digitization process some “non-orientable” objects may have dig-
itizations whose orientation can be easily computed if (5) is applied.

– On the other hand, it is also possible that some orientable objects have
digitalizations which are not orientable.

The impact of digitization effects on changing the computed shape orientation is
illustrated by the example of a digitized disc and a digitized square. Even though
real discs and squares are not “orientable” shapes (if the standard method is
applied – see Lemma 1) it could happen that after digitization, the obtained
discrete point sets have an orientation computable in the standard manner. We
demonstrate that the computed orientation could depend strongly on:

(a) shape position with respect to the digitization grid;
(b) applied picture resolution.

The effect of item (a) is illustrated by Fig. 3. The same disc is translated into 3
different positions and then digitized. The orientation of the digital disc is not
well-defined (in the sense of (5)) for the position displayed in Fig. 3 (a) while the
digital discs displayed at Fig. 3 (b) and (c) have the measured orientation ϕ =
π/2 – if (5) is applied. If the applied picture resolution is higher (or equivalently,
a bigger disc is digitized) then the impact of the disc position to the computed
orientation is higher, as well. As an illustration: we have digitized 16 real discs
having the radius equal to 10, whose center positions have been chosen randomly.
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For each choice of center position the computed orientations of the obtained
digital disc (applying formula (5)) (in the range [−π/2, π/2]) are

0.05 0.03 -0.06 -0.59 0.75 -0.01 -0.23 -0.72
0.13 0.00 0.22 -0.57 -0.06 0.29 -0.61 0.63

and show that the computed orientation strongly depends on the disc position
with respect to the digitization grid.
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Fig. 3. Three of the 6 non-isometric digitizations of a disc having the radius
√

2 on a
binary picture with resolution 1 (i.e., one pixel per measure unit)

Similar problems to the above ones can be caused by noise effects, as well.
For instance, consider a square aligned with the coordinate axes. As mentioned,
the standard method does not give any answer what the orientation of such a
square should be. Adding a single protruding pixel to the boundary can cause
the computed orientation to lie anywhere in the range [−π/2, π/2] depending on
its location. As an example, for a 10 × 10 grid of pixels adding one pixel to the
horizontal or vertical edge gives the following computed orientations

0.88 1.00 1.14 1.30 1.48 -1.48 -1.30 -1.14 -1.00 -0.88
-0.69 -0.57 -0.43 -0.27 -0.09 0.09 0.27 0.43 0.57 0.69.

In order to avoid the previously mentioned problems it is not enough to deter-
mine if the orientation can be computed or not. It would be useful to see how
stable the solution is. For this purpose we will define the shape orientability as a
shape descriptor. The main purpose of it is to suggest an answer to the question:
Is the computed orientation just a consequence of digitization or noise effects or
is it an inherent property of the considered shape? The orientability can also be
used as a shape descriptor in shape classification tasks.

In this paper we will define an orientability measure, which is a number from
[0, 1). The defined orientability measure says that a circle has the lowest mea-
sured orientability equal to 0. Also, there is no a shape with the measured ori-
entability equal to 1, but shapes having the measured orientability arbitrarily
close to 1 can be constructed easily. For example, a rectangle with the edge
lengths 1 and a has orientability tending to 1 if a → ∞. This new measure
will be described in Section 3. Some experimental results are shown in Section 4,
while Section 5 contains concluding remarks.
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2 Standard Method

In this section we give a short overview of the method which is mostly used in
practice and give a lemma that shows that this method can not be understood
as efficient when applied to shapes that have several axes of symmetry.

The standard approach defines the orientation by the so called axis of the
least second moment ([3, 4]). That is the line which minimises the integral of
the squares of distances of the points (belonging to the shape) to the line. The
integral is

I(S, ϕ, ρ) =
∫

S

∫
r2(x, y, ϕ, ρ)dxdy (1)

where r(x, y, ϕ, ρ) is the perpendicular distance from the point (x, y) to the line
given in the form

x · cosϕ − y · sin ϕ = ρ.

It can be shown that the line that minimizes I(S, ρ, ϕ) passes through the cen-
troid (xc(S), yc(S)) of the shape S where (xc(S), yc(S)) =

( ��
S

xdxdy��
S

dxdy
,
��

s
ydxdy��

S
dxdy

)
.

In other words, without loss of generality, we can assume that the origin is placed
into the centroid, but also, that the required line minimizing I(S, ρ, ϕ), passes
through the origin – i.e., we can set ρ = 0. In this way, the shape orientation
problem can be reformulated to the problem of determining ϕ for which the
function F (ϕ, S) defined as

F (ϕ, S) = I(S, ϕ, ρ = 0) =
∫

S

∫
(x · sin ϕ − y · cosϕ)2dxdy1

reaches the minimum. Once again, we assume that the origin coincides with the
center of gravity of S.

Further, if the central geometric moments mp,q(S) are defined as usual by:

mp,q(S) =
∫

S

∫
(x − xc(S))p · (y − yc(S))q dx dy,

and since (xc(S), yc(S)) = (0, 0) is assumed, we have

F (ϕ, S) = (sin ϕ)2 · m2,0(S) − sin(2 · ϕ) · m1,1,(S)
+(cosϕ)2 · m0,2(S). (2)

The minimum of the function F (ϕ, S) can be computed easily. Setting the first
derivative F ′(x, S) to zero, we have

F ′(ϕ, S) = sin(2ϕ) · (m2,0(S) − m0,2(S)) − 2 · cos(2ϕ) · m1,1(S) = 0.

1 The squared distance of a point (x, y) to the line X ·cos ϕ−Y · sin ϕ = 0 is (x sin ϕ−
y cos ϕ)2.
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That easily gives that the required angle ϕ, but also the angle ϕ + π/2, satisfies
the equation

sin(2ϕ)
cos(2ϕ)

=
2 · m1,1(S)

m2,0(S) − m0,2(S)
. (3)

Consequently, the maximum and minimum of F (S, ϕ) are as follows

max{F (S, ϕ) | ϕ ∈ [0, 2 · π]} =
1
2

· (m2,0(S) + m0,2(S))

+
1
2

·
√

4 · m1,1(S) + (m2,0(S) − m0,2(S))2,

and
min{F (S, ϕ) | ϕ ∈ [0, 2 · π]} =

1
2

· (m2,0(S) + m0,2(S))

−1
2

·
√

4 · m1,1(S) + (m2,0(S) − m0,2(S))2.

The ratio between max
ϕ∈[0,π)

F (S, ϕ) and min
ϕ∈[0,π)

F (S, ϕ)

E(S) =
max{F (S, ϕ) | ϕ ∈ [0, 2 · π]}
min{F (S, ϕ) | ϕ ∈ [0, 2 · π]} (4)

is well known as the elongation of the shape S.
Let us mention that, when working with digital objects which are actually

digitalizations of real shapes, then central geometric moments mp,q(S) are re-
placed with their discrete analogue, i.e., with so called, central discrete moments.
Since the digitization on the integer grid Z2 of a real shape S consists of all pixels
whose centers are inside S it is natural to approximate mp,q(S) by the central
discrete moment µp,q(S) which is defined as

µp,q(S) =
∑

(i,j)∈S∩Z2

(i − xcd(S))p · (j − ycd(S))q
,

where (xcd(S), ycd(S)) =

( �

(x,y)∈S∩Z2
x

�

(x,y)∈S∩Z2
1 ,

�

(x,y)∈S∩Z2
y

�

(x,y)∈S∩Z2
1

)
is the centroid of discrete

shape S ∩ Z2.
Some answers about the efficiency of the approximation mp,q(S) ≈ µp,q(S)

can be found in [5].
If the geometric moments in (3) are replaced with the corresponding discrete

moments we have the equation

sin(2ϕ)
cos(2ϕ)

=
2 · µ1,1(S)

µ2,0(S) − µ0,2(S)
(5)

which describes the angle ϕ which is used as an approximate orientation of the
shape S, i.e., the angle which is used to describe the orientation of discrete shape
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S∩Z2. It is worth noting that equation (5) can be derived easily if the orientation
of the discrete set (a finite number point set) S∩Z2 is defined by the line (passing
the origin) which minimizes the total sum

∑
(i,j)∈S∩Z2(i · sin ϕ − j · cosϕ)2) of

squares of distances of points from S ∩ Z2 to this line.
In other words, the equality (5) can be derived as a consequence when trying

to solve the following optimization problem

min

⎧⎨
⎩

∑
(i,j)∈S∩Z2

(i · sinϕ − j · cosϕ)2 | ϕ ∈ [0, π]

⎫⎬
⎭ (6)

assuming that the centroid
(
xcd(S ∩ Z2), ycd(S ∩ Z2

)
coincides with the origin.

So, the standard method is very simple (in both “real” and “discrete” ver-
sions) and it comes from a natural definition of the shape orientation. However,
it is not always effective. The next lemma shows that the method does not al-
ways give a clear answer what the shape orientation should be – for more details
see [9].

Lemma 1. If a given shape S has more than two axes of symmetry then F (ϕ, S)
is a constant function.

Proof. From (3) it is obvious that the function F (ϕ, S) could have exactly one
maximum and one minimum on the interval [0, π), or it must be a constant func-
tion. Trivially F (0, S) = F (π, S). So, if S has more than two axes of symmetry
it must be constant since F ′(ϕ, S) does not have more than two zeros on the
interval [0, π). [[[]]]
Remark. A direct consequence of Lemma 1 is that

– F (S, ϕ) = 1
2 · (m2,0(S) + m0,2(S)) for all ϕ ∈ [0, π);

– E(S) = 1

holds for all shapes that have more than two axes of symmetry. In other words,
the standard method does not specify the orientation of shapes from Fig. 2, or
more generally, what the orientation is for shapes having more than two axes of
symmetry. Also, for all such shapes the measured elongation is 1 – i.e., the same
as the measured elongation for a circle, what is not a desirable property.

3 Measuring Shape Orientability

In this section we consider what quantity can be used to describe shape ori-
entability – to be used as an inherent shape property.

Intuitively, it can be assumed that shapes with high measured elongation
are more orientable than shapes with lower measured elongation. Thus, the
elongation E(S) (see (4)) can be used to estimate shape orientability. Since
E(S) ∈ [1, ∞), in order to have the measured orientability between 0 and 1,
we can measure the orientability as:

1 − 1
E(S)

. (7)
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Several other measures can be derived from the function F (S, ϕ), as well. For
example, a larger ratio between the areas of the regions bounded by:

– the coordinate axes, line y = min
ϕ∈[0,π)

F (S, ϕ), and line x = π, and

– the coordinate axes, line y = F (S, ϕ), and line x = π,

should indicate a lower shape orientability. This leads to the following:

Definition 1. For a given shape S its orientability DF (S) can be measured as

DF (S) = 1 − π · min{F (S, ϕ) | ϕ ∈ [0, π)}∫ π

0 F (S, ϕ) · dϕ

=

√
4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

m2,0(S) + m0,2(S)
.

Obviously, DF (S) is easily computable and well-motivated. However, it is clear
that all shape orientability measures based on F (S, ϕ) are limited by the result
of Lemma 1, i.e., DF (S) = 1 − 1/E(S) = 0 for all shapes S having more than
two axes of symmetry. In some situations (applications) a new measure for shape
orientability is required that does not have that disadvantage.

Now, we define such a measure. When dealing with shapes that have sev-
eral axes of symmetry, such shapes do not necessarily have identical measured
orientability, as would result when using 1 − 1/E(S) and DF (S), for example.

Definition 2. For a given shape S let R(α) be the minimal rectangle whose
edges make an angle α with the coordinate axes and which includes S (see Fig. 4).
Let the following hold:

Amin(S) = min
α∈[0,π)

{ Area of R(α) } ,

Amax(S) = max
α∈[0,π)

{ Area of R(α) } .

Then, we define the orientability measure D(S) of the shape S as:

D(S) = 1 − Amin(S)
Amax(S)

.

The next theorem describes some desirable properties of D(S). Because of sim-
plicity, the proof is omitted.

Theorem 1. The new defined measure for the shape orientability has the fol-
lowing properties:

– D(S) ∈ [0, 1) for any shape S;
– A circle has the measured orientability equal to 0;
– The measured orientability is invariant w.r.t. similarity transformations.
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α

R(   )α

x

y

Fig. 4. The rectangle R(α) is the minimum area rectangle which includes the given
shape (dashed area) and whose edges make an angle α with the coordinate axes

The new orientability measure introduced by Definition 2 is very convenient
for numerical computation with arbitrary precision. The exact computation of
D(S) when the measured shape S is a polygon will be described in detail in a
forthcoming publication by the authors. Note that the problem of computation
of Amin(S) is well studied in literature. It has been shown [2] that for a given
polygon S a rectangle which has the minimal possible area and which includes
the polygon S must have an edge parallel to an edge of the convex hull of S. An
efficient, linear time, algorithm for such a computation (if S is a simple polygon)
has been described in [8], using the technique of orthogonal calipers.

The main objection to D(S) is that shapes having the same convex hull have
the same measured orientability. The following slight modification of Definition 2
ensures that a given non-convex shape does not have the measured orientability
equal to the measured orientability of its convex hull.

Definition 3. For a given shape S let R(α), Amin(S), and Amax(S) be defined
as in Definition 2. Then, for any real number α ∈ [0, 1) we define the orientability
measure Dα(S) of the shape S as:

Dα(S) = 1 − Amin(S) − α · Area of S

Amax(S) − α · Area of S
.

Note that the orientability measure Dα also has the desirable properties listed
in Theorem 1.

4 Some Examples

We now give some examples of orientability calculated using the new measure.
The first example (see Fig. 5) shows synthetic data, mostly exhibiting both ro-
tational and reflectional symmetries. Theory tells us that DF (S) should produce
values of zero; in practice quantization errors have caused non-symmetries, but
the values remain close to zero. The fourth shape in Fig. 5 (a) has only one axis
of symmetry; nevertheless, since the indentation in the square has a relatively
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0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04

(a)

0.02 0.03 0.04 0.04 0.13 0.14 0.28 0.49 0.50

(b)

0.04 0.05 0.10 0.14 0.24 0.40 0.54 0.96 0.99

(c)

Fig. 5. Synthetic data ordered by orientability using a) DF (S), b) D(S), c) Dα=1(S).
The rectangles corresponding to Amin (dashed) and Amax (dotted) are overlaid.

0.24 0.76 0.87 0.89 0.90 0.95 0.95 0.95 0.99
(a)

0.04 0.33 0.39 0.46 0.55 0.63 0.70 0.71 0.85
(b)

0.17 0.52 0.63 0.63 0.77 0.81 0.88 0.95 0.97
(c)

Fig. 6. Diatom data ordered by orientability using a) DF (S), b) D(S), c) D1(S)

small area it does not substantially affect the values of the moments, and there-
fore DF (S) is approximately zero. In contrast to DF (S), D(S) does differentiate
between the shapes. Again, according to theory, the first shape in Fig. 5b that
looks like a circle, but is actually a 24-gon, is assigned a value close to zero.

The second set of examples (see Fig. 6) consists of the outlines of diatoms –
unicellular water borne algae used previously by Žunić and Rosin [10] in the
development of convexity measures. Future work will look at applying the ori-
entability measure to classifying the diatoms, as in [10].
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5 Concluding Remarks

We have defined shape orientability as a new shape descriptor. We also discuss
some approaches for measuring shape orientability and define a new measure.
The purpose of such a measure is to give an answer as to whether the computed
orientation of a shape is an inherent property of the considered shape, or whether
it comes from artifacts caused by the digitization process or by noise, for example.
The measure can be useful if applied to shapes whose measured orientation
changes even under slight deformations [1].

The shape orientability measured by the method presented here is a number
in the form [0, 1). The minimal possible measured orientability (equal to zero)
is for a disc. There is no shape with a measured orientability equal to 1. Even in
cases where there is no doubt what the orientation should be, e.g. an elongated
rectangle, the measured orientability is not 1. That could be desirable property
because the measured orientation for rectangles increases if the ratio between
length a of the longer edge and the length b of the shorter edge increases as
well. In the limit case when a is a positive constant while b → 0, the measured
orientability tends to 1 and we could say that a straight line segment is a perfectly
oriented shape. Another desirable property is that the shapes with several axes
of symmetry could have non-zero measured orientability. As an illustration, a
regular 4n-gon P4n has the measured orientability D(P4n) equal to D(P4n) =

1 −
4 cos π

4n

4
= 1 − cos

π

4n
. Obviously, D(P4n) tends to 0 as n → ∞.
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5. R. Klette, J. Žunić, “Digital approximation of moments of convex regions,” Graph-

ical Models and Image Processing, Vol. 61, pp. 274-298, 1999.
6. S.E. Palmer, Vision Science: Photons to Phenomenology, MIT Press, 1999.
7. F.P. Preparata and M.I. Shamos, Computational Geometry, Springer-Verlag, 1985.
8. G.T. Toussaint, “Solving geometric problems with the rotating calipers,” Proc.

IEEE MELECON ’83, pages A10.02/1–4, 1983.
9. W.H. Tsai, S.L. Chou, “Detection of Generalized Principal Axes in Rotationally

Symmetric Shapes,” Patt. Rec., Vol. 24, pp. 95-104, 1991.
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