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Abstract. This study develops a statistical approach to the automatic detection of 
vehicles. Compared to traditional approaches, which consider the entire 2-
dimensional vehicle region, this study uses three meaningful local features for 
each vehicle to perform vehicle detection. The proposed approach has a 
superior tolerance toward wider viewing angles and partial occlusions. Four 
possible models for vehicle detection are evaluated in the current training and 
testing processes. For the process of the best model, each local subregion 
projects into corresponding eigenspace and residual independent basis space 
with subregion position information. We further simplify the procedure steps of 
computing the independent component analysis (ICA) in residual space without 
constructing residual images in order to reduce the computational time. Then 
the joint probability of projection weight vectors and coefficient vectors of local 
subregions and positions of local subregions, is used to model the vehicle. 
Finally, we introduce vector quantization with a new classification method to 
accelerate the posterior probability calculation. 

1   Introduction 

Automatic license plate identification tools are invaluable for applications such as 
parking lot access control, easy-pass toll collection, stolen vehicle recovery, etc. Ve-
hicle detection is an essential and integral part of vehicle plate identification. In [4], 
stereo is used to detect moving targets. In this approach, the target vehicle is identifi-
able if its grayvalues and the edges of the target region exhibit left-right symmetry. 
However, this method suffers when partial occlusion occurs since this results in un-
symmetrical regions. Posterior probability [5] can be applied to detect moving vehi-
cles based on their edge information. However, using edge information alone renders 
the vehicle detection process liable to noise and illumination effects. Furthermore, the 
success of the posterior probability approach relies strongly on the probability of the 
vehicle appearance falling within a limited range during the training process. For real-
time vehicle detection applications, background subtraction method is used in the 
initial segmentation process of the foreground moving objects and background scenes 
[3]. Subsequently, vehicle templates and edge information are applied to carry out 
vehicle detection. 

Some detection methods capture the global feature information associated with ve-
hicle images, while others simply capture the local feature information. Although 
global feature approaches such as [9] and [10] perform reasonably well, in real life, 
individuals are able to recognize a vehicle from its local features without needing to 
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see the entire vehicle. The studies of [7] and [12] have demonstrated that local feature 
approaches yield better detection results than their global feature counterparts. Local 
feature approaches such as those proposed in [13], [14], [15], and [16] and part-based 
approaches, e.g. [1], [6], and [8], have been successfully implemented for object, face, 
and vehicle detection systems. The latter approaches incorporate an interest-points 
detector to locate a specified region and to describe their corresponding position in the 
vehicle image. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Posterior probability estimation, including both vehicle and non-vehicle informa-
tion, is used in [14] for the robust detection of vehicles, faces and objects of different 
sizes and poses. In this approach, the likelihood evaluation operation is based on the 
estimated joint probability of wavelet coefficients and their corresponding positions 
within a given region. The same authors used a similar approach in detecting vehicles 
and faces of different sizes and poses [15]. Their study adopted principal component 
analysis (PCA) and considered the position information of a 16*16-pixel subregion in 
the joint probability estimation procedure. Unfortunately the detection process in-
volved in this kind of studies were rather time-consuming.  

To overcome the weaknesses of the methods reported in the literature, this study 
utilizes posterior probability with both vehicle and non-vehicle information to con-
duct automatic vehicle detection. The joint probability for the maximum-likelihood 
estimation procedure considers both meaningful local features and their correspond-
ing positions. This study combines the PCA space and the ICA in residual space to 
model the vehicle. The performance of the proposed approach is verified through a 
series of experimental studies. Moreover, in order to reduce the computational time 
required for the detection process, a vector quantization method with a new classifica-
tion approach is applied to classify the training vehicle and non-vehicle images into 
several clusters. However, we accelerate the detection process but it won’t decrease 
the system performance. 

2   Vehicle Detection System 

The vehicle detection system consists of a training process and a testing process, as 
shown in Figure 1. Current study considers the case of a surveillance system such as 

Fig. 2. Geometrical normalization 
and canonical vehicle image creation 
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Fig. 1. Workflow diagram of the proposed vehicle 
detection system 
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that used for access control in schools, which detects only the rear and frontal views 
of passing small vehicles, such as saloon and SUV. Therefore, the case of detecting 
passing vehicles from side perspectives, etc. is specifically excluded from the current 
scope. The vehicle template and canonical vehicle images in the present study are 
Nr(=32) * Nc(=41) (rows*columns) pixels. 

To create a canonical rear-viewed vehicle image, four corner points are manually 
selected on the vehicle in the original training image, as shown in Figure 2.a. The 
vehicle image is then normalized and cropped by using the vehicle template shown in 
Figure 2.b and applying a process of affine transformation to the four corner points. 
The resulting canonical vehicle image is shown in Figure 2.c. The same procedure is 
adopted to generate the canonical frontal-viewed vehicle image. 

2.1   Local Subregion Selection 

The present system considers only local features rather than the entire vehicle in the 
detection process since in real life, individuals are easily able to recognize a vehicle 
from its local features, i.e. they do not need to see the vehicle in its entirety. Further-
more, this approach can reduce the alignment error by accommodating geometric 
distortions of the vehicle appearance (texture or grayvalue) to a certain extent [15]. 
The proposed approach also increases the detection tolerance in the event of unbal-
anced targets caused by uneven road surfaces or unstable input sources such as hand-
held video cameras. Finally, considering a local subregion can improve the overall 
system performance by reducing the computation of time. 

Generally, the significant local features in the rear- and frontal-viewed vehicle im-
ages contain high texture components such as roofs, windshields, tail-lights (or head-
lights), license plates, rear-viewed mirrors, and the wheels [12]. These features exhibit 
high variances in the spatial domain. However, these subregions may not always be 
visible in the vehicle image. For example, the rear-viewed mirrors and wheels may 
disappear in some situations. Moreover, the subregions around the license plate and 
the windshield areas are sensitive to different locations and illumination, respectively. 
Therefore, as shown in Figure 3, the current study opts specifically to ignore these 
particular significant features, and chooses instead the subregions around the roof and 
the tail-lights (or head-lights). 

2.2   Vehicle Detection Using Posterior Probability Function 

This study detects both rear- and frontal-viewed vehicles from an input image, I, by 
shifting a window, IT, measuring Nr*Nc pixels, pixel by pixel over the entire image. 
The vehicle is detected if it is found within the window.  

The following posterior probability function is used in the vehicle detection  
procedure: 
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It is assumed that the prior probability is uniformly distributed, i.e. P(vehicle) = 
P(non-vehicle) = 0.5. It is also assumed that the likelihood probabilities P(IT|vehicle) 
and P(IT|non-vehicle) conform to a multivariate Gaussian distribution, i.e. 
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where C is either the vehicle class or non-vehicle class; TCI ,  and Σ are the mean 

vector and the covariance matrix of all canonical training image vectors for class C, 
respectively; and N is the total number of vector dimensions. From equation (2), the 
Mahalanobis distance d(IT) [13] is given by: 
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T
T

kk IUy
~= , and Wk and Uk are the first k principal components of 

the eigenvalue matrix W and its corresponding eigenvector matrix, U, of the covari-
ance matrix Σ, respectively. The input window, IT, is projected into the eigenspace Uk 
to generate a weight vector yk. Therefore, the Mahalanobis distance can be repre-
sented as: 
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Hence, the likelihood probability in equation (2) becomes: 
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2.3   Different Detection Models in the Training and Testing Processes 

A separated detection process is employed for rear- and frontal-viewed vehicles. The 
current training database includes 275 canonical rear-viewed vehicle images and 262 
frontal-viewed vehicle images. In order to develop the capability of detecting vehicles 
moving on uneven roads or shot by handheld video cameras, two additional in-plane 
roll-rotation image views, i.e. (-50) and (+50), are generated synthetically from the 
original canonical vehicle images (00). 

Therefore, as shown in Figure 4, each canonical vehicle in the training database ac-
tually has three associated images. Furthermore, three subregions are defined within 
each image. In other words, the training database contains a total of 2475 canonical 
rear-viewed vehicle images (275 * 3(rotations) * 3(subregions)), and a total of 2358 
canonical frontal-viewed vehicle images (262 * 3(rotations) * 3(subregions). The 
images in the database are preprocessed by affine lighting correction and histogram 
equalization [7]. The intensity over the entire canonical image is then normalized to 
zero mean and unit variance [15]. 

Fig. 4. Original (00) and synthetic canonical 
vehicle images (-50 and +50) 
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Fig. 3. There are three local feature subregions 
for each canonical vehicle image 
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Subregion 3: 15*15 pixels. 
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Previous studies [7], [11], [14], and [15] have shown that the use of subregions in 
face detection or recognition applications yields excellent results. Hence, the detection 
system proposed in this study operates on the basis of three independent subregions 
rather than over the entire vehicle region. Hence, the likelihood probability is given by: 
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|)|(
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Unfortunately, this approach is computationally expensive when applying posterior 
probability since it involves a very high-dimensional image vector. Therefore, this 
study evaluates the performance of four different detection models in the current 
training and testing processes. Previous studies have confirmed that the PCA method 
employed in this study has excellent properties. First, the correlation of the neighbor-
hood pixels remains high. Second, a larger eigenvalue implies more significant vari-
ance among the original unbiased image vectors. Third, each original image vector 
can be reconstructed by the linear combination of the major eigenvectors without 
losing significant characteristics. Furthermore, the ICA applied to the residual subre-
gion spaces in this study also has excellent characteristics [2] and [11]. First, the ICA 
can capture high-order statistical information. Second, it is suitable for the modeling 
of non-Gaussian distributed data sets, such as those associated with the residual 
subregion spaces in the present study. Third, the ICA applied in the residual spaces is 
robust to illumination and pose variations. The following sections describe in detail 
the application of the four proposed detection models to rear-viewed vehicle images. 
However, it is noted that these models are equally applicable to the detection of fron-
tal-viewed vehicle images. 

2.3.1   1st Model: All Subregions Are Projected into One Single Eigenspace 
Without Position Information 

In the training process, one eigenspace is generated from the 2475 subregions of the 
total set of canonical rear-viewed vehicle images. The first 32 principal components 
are captured since the accumulated eigenvalue percentage curve has a turning point at 
k=32. All of the canonical vehicle or non-vehicle subregions are then projected into 
this eigenspace, which consists of 32 major eigenvectors and hence reduces its dimen-
sions from 225 to 32. Equation (6) becomes: 
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where projectioni represents a 32-dimensional weight vector for subregion i. Figure 5 
presents the eigenvectors of this eigenspace. It can be seen that the 1st, 4th and 6th 
eigenvectors fall mainly within subregion 1, while the 2nd、3rd and 5th eigenvectors 
fall inside subregions 2 or 3. Finally, the posterior probability equation for the 1st 
model is given by: 
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Fig. 5. The first six eigenvectors of the 1st model
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Fig. 6. Weight-vector distributions corre-
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In the testing process, any input window (Nr*Nc pixels), IT, consists of three subre-
gions. Each subregion is projected into the eigenspace to generate a corresponding 
weight vector. Each of the three input subregions is then compared with the total set of 
canonical training subregions. Based on equations (5) and (8), it is possible to detect the 
existence of a vehicle inside this input window by means of the following criterion: 
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2.3.2   2nd Model: All Subregions Are Projected into One Single Eigenspace with 
Position Information 

In the training process, this model uses the same eigenspace as that described in the 1st 
model, above. However, this model also takes into account the feature position of 
each subregion. The complete set of canonical vehicle subregions are classified in 
accordance with their positions into three separated groups of weight vectors in a 32-
dimensional eigenspace. As can be seen in Figure 6, the distributions of subregions 2 
and 3 are overlapped since they are symmetric in the canonical vehicle images. How-
ever, the distribution of subregion 1 is very different as a result of the apparent texture 
differences between itself and subregions 2 and 3. The same classification process is 
also applied to each of three canonical non-vehicle subregions. Taking the additional 
position information into account, equation (6) becomes: 
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where posi is the position of subregion i of the given vehicle template region. The 
posterior probability equation for the 2nd model becomes: 
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In the testing process, each subregion of the input window, IT, is compared with the 
canonical training subregions located at the corresponding position. The posterior 
probability of the input window can be evaluated from equations (5) and (11). The 
existence of vehicles can then be determined by assigning different threshold values 
in equation (9). 

2.3.3   3rd Model: Each Subregion Is Projected into Corresponding Eigenspace 
with Position Information 

In addition to taking into account the position of the subregions, this model also gener-
ates an eigenspace for each group of canonical vehicle subregions. Hence, three  
eigenspaces exist for the three subregion groups with different positions. For reasons  
of consistency, each eigenspace has 32 major eigenvectors, i.e. as in the two models 
presented above. Figure 7 shows the first three eigenvectors for each subregion eigen-
space. Finally, each canonical vehicle or non-vehicle subregion is projected into the 
corresponding eigenspace to generate a weight vector. Therefore, equation (6) becomes: 
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where i
iprojection  is the weight vector of the subregion i projected into the corre-

sponding eigenspace i. The posterior probability equation for the 3rd model becomes: 

∏∏
∏

==

=

−+
= 3

1

3

1

3

1

)|,()|,(

)|,(
)|(

i i
i
ii i

i
i

i i
i
i

vehiclenonposprojectionPvehicleposprojectionP

vehicleposprojectionP

T
IvehicleP  

(13) 

In the testing process, each subregion of the input vehicle template window, IT, is 
projected into the corresponding eigenspace to generate a 32-dimensional weight vector. 
Hence, three weight vectors exist for each input window. The posterior probability of 
the input window, IT, is calculated from equations (5) and (13). The existence of vehi-
cles can then be determined by assigning different threshold values in equation (9). 

2.3.4   4th Model: Each Subregion Is Projected into Corresponding Eigenspace 
and Residual Independent Basis Space with Position Information 

This model applies the ICA in the residual spaces to detect the vehicle. The similar 
work in face recognition [11] performs well in its result. The authors construct ICA in 
residual space after computing the residual images by subtracting the reconstructed 
images from the original images. We further derive equations that simplify the proce-
dure steps of computing the ICA in residual space without constructing residual im-
ages, and then apply Bayesian theory to detect vehicles. The equations we developed 
require less complicated calculations. 

The independent components, which form non-orthogonal axes, describe the resid-
ual subregion spaces of the three subregion groups with different positions. The resid-
ual subregion spaces (see Figure 8.c) represent the difference between the original 
subregion images (see Figure 8.a) and the PCA reconstructed subregion images (see 
Figure 8.b). It is found that the PCA reconstructed subregions are similar to low-pass 
filtered versions. The residual subregion images, which contain high frequency com-
ponents, are less sensitive to illumination variations. 

ICA is applied in the residual subregion spaces since these spaces are non-
Gaussian distributions. Therefore, to achieve a detection operation, which is robust to 
illumination and pose variation effects, each residual subregion image is represented 
by a linear combination of independent components. 

Each residual subregion image, △subregion, can be obtained by equation 14: 
'subregionsubregionsubregion −=∆  (14) 

where subregion is the original subregion image, and subregion’ is the PCA recon-
structed subregion image. They are given by: 
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where Uk’ (see Figure 9.a) is the first k’ principal components in eigenvector matrix U, 
Uh is the h residual principal components, and N is k’ + h. The first k’ (k’=7) compo-
nents are chosen based on the Gaussian axes assumption and the h residual principal 
components are based on non-Gaussian axes assumption. Therefore, △subregion can 
be rewritten by using following equation, i.e. 
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where Uk’’ (see Figure 9.b) is the first k’’ (k’’=29) principal components in Uh. As a 
result, the residual subregion weight vector can be calculated by subregionU T

k *''
. In 

addition, by applying ICA to Uk’’, statistically independent basis images Hk’’ with 
dimensions k’’ can be generated. Hk’’ (see Figure 9.c) is represented by 

T
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T
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where Tk’’ is the weight matrix. Bell and Sejnowski’s algorithm [2] is used to estimate 
Tk’’, which is an invertible matrix. Thus, the residual subregions image can be recon-
structed by: 
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Therefore, △subregion consists of Bsubregion)T(U T1
k''k'' =− * , which are linear combina-

tion coefficients of the independent basis images, Hk’’. Here, the ICA transformation 
matrix is denoted as ICA_TranMk’’ and is computed by: 

)(_ 1
''''''
−= kkk TUTranMICA  (19) 

(b) Reconstructed subregions: subregion’ 

(a) Original subregions: subregion 

(c) Residual subregions: △subregion 

Fig. 8. The process for the residual subre-
gion images 

(a) Uk’  of PCA in the subregion spaces 

(b) Uk’’  of PCA in the residual spaces 

(c) Hk’’  of ICA in the  residual spaces 

Fig. 9. First row is the first k’ principle compo-
nents in U. Second row is the remaining k’’ 
residual principle components Uk’’. Third row is 

the independent basis Hk’’ in the residual spaces. 
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From equation (3), the Mahalanobis distance d(IT) becomes:  
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where subregionUy T
kk *'' =  is the weight vector based on eigenvectors Uk’. The residual 

subregion weight vector is then transformed to linear combination coefficients of Hk’’ 
by means of equation (18), i.e., subregionTUB T

kk *)( 1
''''
−= . Therefore, equation (20) for 

the Mahalanobis distance can be represented as: 
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So, the likelihood probability in equation (5) becomes: 
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The posterior probability equation for the 4th model becomes: 
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where i
iprojection  is weight vector of the subregion i projected into the corresponding 

eigenspace i, and i
iICACoeff  is the ICA coefficient vector of the subregion i projected 

into the corresponding independent basis i. 
In the testing process, each subregion of the input window, IT, is projected into the 

corresponding eigenspace and the corresponding independent basis space to generate 
a k’-dimensional weight vector and a k’’-dimensional ICA coefficient vector, respec-
tively. Hence, three weight vectors and three ICA coefficient vectors exist for each 
input window. The posterior probability of the input window, IT, is calculated from 
equations (22) and (23). The existence of vehicles can then be determined by assign-
ing different threshold values in equation (9). 

3   Experiment Results 

A testing database of 457 vehicle images was compiled from the internet and from 
images captured using handheld video cameras. In total, the database contained 303 

Table 1. The performances of different models 
evaluated by testing database (a). (PC: P4 3G Hz. 
‘FA’: False Alarm. ‘SF’: Seconds/Frame.) 

 1st M 2nd M 3rd M 4th M 4th M+VQ 
R:DR % 87.0% 87.6% 86.6% 92.8% 91.5% 
F:DR % 89.1% 89.5% 88.4% 94.0% 93.4% 

R:FA 73 53 47 37 46 
F:FA 59 43 41 28 44 

SF 4.856 1.643 2.455 3.455 0.28 

Fig. 10. Vehicle detection without and with 
position information of the subregions, as 
show in (a) and (b), respectively 

(a) (b) 
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rear-viewed vehicle images and 154 frontal-viewed vehicle images. The vehicles in 
the testing images displayed a wide variety of size and orientation. Moreover, the 
images featured various background sceneries, lighting conditions and degree of oc-
clusion. In addition, we also tested the following published vehicle databases: MIT 
CBCL Group 187 rear- and 252 frontal-viewed vehicles images and Caltech Vision 
Group 526 rear-viewed vehicles images. 

Initially, the input image was processed by applying a low-pass filter to remove 
noises. This image was then down-sampled from original resolution of 240*320 pix-
els (level 0) to 32*43 pixels (level 15) by a factor of 7/8. In the searching window 
extraction process, searching window IT of 32*41 pixels, which is exactly the same 
size as the vehicle template region, was employed to conduct vehicle detection by 
shifting this window pixel by pixel at each level. 

The non-vehicle information was extracted from the false acceptance subregions 
by applying the vehicle detection process to the original training vehicle images. The 
actual vehicle subregion inside the false acceptance vehicle region is not qualified as 
non-vehicle information. We collected about 10000 images of rear-viewed non-
vehicle and 9800 images of frontal-viewed non-vehicle. A similar collection method 
has been used in [8], [14] and [15]. 
Figure 10 illustrates the effect of including feature position information in the vehicle 
detection process. Figure 10.a shows the result of vehicle detection when the feature 
position information is not considered (1st model). Ignoring this information causes 
false acceptances between two neighboring vehicles, since subregion 1 encloses the 
top edge profile of the wall, which resembles the roof profile of a vehicle. In Figure 
10.b, the individual vehicles are correctly detected by including feature position in-
formation in the detection process (2nd model). The 3rd and 4th models also solve 
above problem by considering position information. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

The four models described in the previous sections were applied to our testing im-
age database. The corresponding experimental results are listed in Table 1. It can be 
seen that the 4th model yields the best performance, while the 3rd model yields the 
poorest results. Therefore, the 4th model represents the best approach for vehicle de-
tection. It has the lowest false detection rate and the highest detection rate. The 4th 
model was then applied to each of the MIT CBCL group and Caltech vision group 
1999 and 2001 testing databases. The resulting ROC curves, as shown in Figure 11, 
 

Fig. 11. ROC curves (x-axis is 
false detection rate and y-axis is 
detection rate) for vehicle detec-
tion using the 4th model. 

Table 2. Detection rate comparison using the 
Caltech rear-viewed vehicle database 

 
 Our 4th model Fergus, et al. [6] 

Detection Rate 92% 84.8% 
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also show consistent and promising performance. Table 2 demonstrates that the pro-
posed system of using the 4th model provides better results for rear-viewed vehicle 
detection than the method proposed in [6]. In addition, the current vehicle detection 
system is tolerant to pan and roll rotations, scaling, and partial occlusions, as demon-
strated in Figure 12. Some experimental results are shown in Figure 13. 

4   Speedup by Vector Quantization 

In order to find the maximum posterior probability, it is necessary to compare each 
weight vector with all the canonical subregions. It is very time consuming (see [15]) 
because the number of training subregions is huge. To speed up computation, we use 
vector quantization to classify all the training vehicle and non-vehicle weight vectors 
into clusters (explained later). Now the comparison occurs between the input weight 
vector and each of the clustering weight-vector centers. 

The training vehicle and non-vehicle weight vectors create two codebooks inde-
pendently by using the likelihood probability in equation (22) for the measure of the 
nearest neighbor rule. The initial classification process is only for those weight vec-
tors, whose likelihood probabilities pass the threshold (0.8). Next, the same process 
and threshold apply on remaining weight vectors started from the center of remaining 
weight vectors. We repeat the same process until the remaining weight vectors belong 
to the same cluster or the total cluster numbers do not change. The computational time 
and result are show in Table 1. 

5   Discussions and Conclusion 

This study has developed an automatic vehicle detection system based on a statistical 
approach. Meaningful local features are considered in this detection process. Four 
possible models for vehicle detection have been proposed in order to overcome the 
problem of inefficiency associated with traditional methods, and to determine the 
factors affecting successful vehicle detection. The current experiments have shown 
that the false alarm rate is directly influenced by the feature position information of 
the subregions. The 2nd, 3rd and 4th models have lower false alarm rate since they 
consider the position information of the subregions. The 1st model has the highest 
false alarm rate because it does not consider the position information of the subre-
gions. It is also found that the detection rate is directly affected by the correlation of 

Fig. 12. Tolerances of our vehicle detection Fig. 13. Detection example of using the 4th model 

(a) MIT CBCL Group vehicle testing database  

(b) Caltech vehicle testing database 
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the neighborhood pixels, which is a feature of the PCA method. The 1st and 2nd mod-
els exhibit similar detection rates because they share the same eigenspace. Mean-
while, the 3rd model yields an inferior detection rate because it uses three individual 
eigenspaces with wider distribution variances, particularly in subregion 1. This model 
is sensitive to variations in lighting conditions and vehicle orientation.  

The 4th model represents the promising result for vehicle detection. It has the low-
est false detection rate and the highest detection rate because the 4th model models 
parts of each local subregion eigenspace as a Gaussian distribution, while it models 
residual space as a non-Gaussian distribution. That is, it not only models low fre-
quency information by PCA, but also models high frequency information by ICA 
applied in the residual space, which can overcome the drawbacks caused by the sensi-
tivity to lighting conditions and vehicle orientation in the 3rd model. Therefore, the 4th 
model is tolerant of limited pan and roll rotations, and partial occlusion. 
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