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Abstract. In this paper, we propose a new method to estimate an in-
finite homography between two views containing two arbitrary planar
rectangles. The proposed method does not require metric measurements,
such as rectangle lengths or aspect ratios of the rectangles. We introduce
the concept of semi-metric cameras and show that the semi-metric cam-
eras derived from different views that see an identical 3D rectangle, can
be regarded purely translating cameras whose pixel is zero-skewed. New
parameterization for infinite homography is developed based upon the
semi-metric space, and this parameterization is used to propose a new
algorithm to estimate infinite homography. As a direct application, we
apply our algorithm to autocalibration for a scene only with a few feature
points on each rectangles.

1 Introduction

In the real world, there are many objects with two-dimensional planes and rect-
angular shapes, especially in outdoor urban environment. Cameras generally use
planar CCD or CMOS type sensors. Therefore, the imaging process of planar
objects can be described as a 2D to 2D transformation [1]. Furthermore, in the
case of multiple views, the transformation between imaged planes can be also
considered 2D to 2D, and is called plane induced homography. Plane induced
homography offers a useful tool to describe scenes with planar objects from two
or more views, as shown in plane + parallax approaches [1, 2, 3, 4, 5].

Among the plane induced homographies, a particularly important one is an
infinite homography. The infinite homography is the homography induced by
the plane at infinity with some important properties. First, it maps features on
the plane at infinity of one view, such as vanishing points, vanishing lines and
images of absolute conic, to another views. Second, it can be used to find affine
and metric reconstructions from projective ones. This means we can calibrate
a camera from image sequences using the infinite homographies. Additionally,
we can reduce the search region for stereo matching through mapping with the
infinite homography. Detailed explanations about these issues can be found in
[1]. Note that the infinite homography between two views depends only on the
rotation between the cameras capturing the views and the intrinsic parameters
of them.
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Three methods are commonly used to estimate the infinite homography be-
tween two views. The first method uses camera motion constraints. If we use a
purely rotating camera to capture the images, the homography induced by any
plane on the image is the infinite homography. Although this method is easy to
apply, it requires the use of rotating cameras. The second method uses strong
scene constraints. If we have three vanishing points in each view with a funda-
mental matrix, the infinite homography can be estimated. Similarly it can be
calculated from corresponding vanishing lines and vanishing points with the fun-
damental matrix. This requires the identification of three vanishing points and
vanishing lines, however it may be difficult to find the features in infinity. The
third method is a stratified approach. Once we find an affine reconstruction and
projectively transformed plane at infinity, we can find the infinite homography
from the projective projection matrix and the plane at infinity. The most diffi-
cult part of this approach is to build an affine reconstruction from the projective
one. It requires some constraints of the scene and the camera, or the modulus
constraints [6] for a static camera.

In this paper, we propose a new method to linearly estimate the infinite ho-
mography from images containing two arbitrary rectangles. The term “arbitrary”
implies that we do not have information regarding the lengths, the aspect ratios,
and the relative poses of the two rectangles. This method uses information about
the parallelism and orthogonality, however this method does not require finding
the vanishing points or the vanishing lines explicitly, which can be difficult for
some rectangles. Furthermore, estimating epipolar geometry is also not required
to estimate the infinite homography. Only tracking two rectangles between two
views is needed.

In Sect. 2, we introduce the concept of semi-metric cameras and discuss some
of their properties, such as image of absolute conic and special form of camera
matrix. Sect. 3 discusses ways to parameterize the infinite homography using
semi-metric cameras and to estimate the infinite homography using the proposed
parameterization with two imaged rectangles. In Sect. 4, we show an important
application of the infinite homography - the autocalibration of cameras - using
the proposed algorithm. We conclude this paper in Sect. 5.

2 Semi-metric Cameras

We have introduced the concept of semi-metric space, defined as the sub-space of
affine space [7]. In semi-metric space, orthogonal features are preserved, however
the aspect ratio between two orthogonal axes is not preserved.

Assuming that there is a rectangle with an unknown aspect ratio in 3D space
and a view capturing the rectangle in a general position, we can find a homog-
raphy to make the projectively distorted rectangle to align the orthogonal axis
of the rectangle. The warped image is called as semi-metric image. To make
semi-metric images, two methods are used [7].

The first method uses vanishing points whose directions are orthogonal to
each other. Warping the vanishing points to infinite points makes a semi-metric
image with warping matrix defined as



Infinite Homography Estimation Using Two Arbitrary Planar Rectangles 3

Hsm =
[
v1 v2 xc

]−1

where v1 and v2 are vanishing points orthogonal to each other and xc is an
arbitrary point, as shown in Fig. 1.
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Fig. 1. Elements of semi-metric transformation matrix from vanishing points

Warping from the projected rectangle to a standard predefined rectangle with
a known aspect ratio is sufficient to warp to a semi-metric image. Fig. 2 shows the
concept of the warping method using a standard rectangle. Note that an aspect
ratio of the warped rectangle can be set arbitrarily. For example, in Fig. 2, the
aspect ratio is set to one.

(-1,1) (1,1)

(-1,-1) (1,-1)
Hsm

Fig. 2. Semi-metric warping using a standard rectangle

With a semi-metric image, the following theorem can be proven [7].

Theorem 1. In semi-metric space, the ICDCP is given as diag
(
R2

m, R2
sm, 0

)
where Rm is the aspect ratio of the model rectangle, and Rsm is the aspect ratio
of a semi-metric warped rectangle.

Because the ICDCP in semi-metric space is expressed as diag(R2
m, R2

sm, 0), the
imaged circular points (ICP) that is its dual feature, are simply expressed as

Ism =

⎡
⎣

Rm

iRsm

0

⎤
⎦ ,Jsm =

⎡
⎣

Rm

−iRsm

0

⎤
⎦ .

Furthermore, we can assume that there is a physical camera to make the semi-
metric image. This camera is referred to as a semi-metric camera. To find some
properties of semi-metric cameras, image of absolute conic (IAC) of semi-metric
cameras is studied.
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Assuming that there are three vanishing points v1, v2 and v3 whose directions
are orthogonal in 3D, then the IAC would be expressed as [8]

ω = α2l1l�1 + β2l2l�2 + γ2l3l�3

where α, β and γ are proper scale factors and l1, l2, and l3 are vanishing lines
given as

l1 = v1 × v2, l2 = v2 × v3, l3 = v3 × v1.

In semi-metric space, the vanishing points v1, v2 and v3 can be set as

v1 =

⎡
⎣
1
0
0

⎤
⎦ ,v2 =

⎡
⎣

0
1
0

⎤
⎦ ,v3 =

⎡
⎣
a
b
c

⎤
⎦ ,

which gives us the IAC in semi-metric space ωsm as

ωsm =

⎡
⎣

β2c2 0 −βac
0 γ2c2 −γbc

−βac −γbc α2 + β2a2 + γ2b2

⎤
⎦ . (1)

Because the ICPs are on the IAC,

I�smωsmIsm = 0,J�
smωsmJsm = 0,

and we can find the relation that

Rm
2

Rsm
2 =

γ2

β2 .

This means that the ratio of β and γ is equal to that of Rsm and Rm. By
decomposing (1), the camera matrix in semi-metric space is given as

Ksm =

⎡
⎣
1/Rsm 0 a

1/Rm b
c

⎤
⎦ (2)

up to scale.
As a consequence, the camera matrix Ksm represents a camera whose skew is

zero, and its pixel aspect ratio is equal to a ratio between the aspect ratio of the
reference rectangle Rm and the corresponding semi-metric aspect ratio Rsm. The
principal point of the camera is expressed with the scaled third vanishing point
v3 and the scale plays the role of a focal length. In other words, the semi-metric
camera matrix is determined with scene information and a camera pose.

Naturally, the relation between IAC ω in projective space and IAC ωsm in
semi-metric space is obtained from basic conic transformation as

H−�
sm ωH−1

sm = ωsm (3)

where Hsm is a plane homography from projective space to semi-metric space.
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3 Estimation of Infinite Homography

In this section, we derive a parameterization of an infinite homography in terms
of semi-metric warping matrices. Using the parameterization, it is possible to
estimate an infinite homography linearly from images of two arbitrary rectangles.

3.1 Parameterization of Infinite Homography

Assuming that there are two views containing a projected unknown rectangle,
then each semi-metric camera matrix Ksm1, and Ksm2 would be expressed as

Ksm1 =

⎡
⎣
1/Rsm 0 s1m1

1/Rm s1m2
s1m3

⎤
⎦ , Ksm2 =

⎡
⎣
1/Rsm 0 s2n1

1/Rm s2n2
s2n3

⎤
⎦

using (2). Note that we can set the value of Rsm to 1, as explained in Sect. 2.
Furthermore, since the plane is identical, Rm is the same in both Ksm1 and Ksm2.

A semi-metric image is generated by simple image warping. We can find the
projection matrix of semi-metric camera directly as

Psm = HsmK
[
r1 r2 r3 t

]

=
[
Ksm e3

]

= Ksm

[
I3×3 K−1

sme3
] (4)

where e3 =
[
0 0 1

]�
. Note that all semi-metric cameras derived from an identical

3D rectangle are under pure translating motion. An infinite homography between
two semi-metric cameras, Ksm1 and Ksm2 can be simply given as

T =

⎡
⎣
1 0 tx
0 1 ty
0 0 tz

⎤
⎦ ,

because an infinite homography is generally given as [1]

T = K2R21K−1
1 (5)

and the two semi-metric cameras are under pure-translating, that means R21 = I.
It gives us

ωsm2 = T−�ωsm1T−1

where ωsm1 and ωsm2 are IACs of the two semi-metric cameras.
Applying conic transformation given as (3) makes

ω2 = H�
sm2T

−�H−�
sm1ω1H−1

sm1T
−1Hsm2,

and because the infinite homography H12∞ from view 1 and view 2 transforms ω1
to ω2, the infinite homography is

H12
∞ = H−1

sm2THsm1. (6)
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This means that the infinite homography is expressed with semi-metric warping
matrices Hsm1 and Hsm2 and the infinite homography T between two semi-metric
cameras. Note that there are no camera assumptions such as static camera or
zero-skew.

3.2 Linear Estimation of Infinite Homography

If a captured scene contains two arbitrary rectangles with an unknown aspect
ratio, then the infinite homography is estimated linearly using the parameteri-
zation in (6).

Assuming that there are two views that contain two arbitrary rectangles
named rectangle i and j, then we can find two infinite homographies with respect
to two rectangles as

H12
∞,i = H−1

sm2,iTiHsm1,i

H12
∞,j = H−1

sm2,jTjHsm1,j

where Hsm1,i means a semi-metric warping matrix of view 1 w.r.t. the rectangle i.
However, the infinite homography is dependent only on the intrinsic param-

eters of the cameras and the relative rotation between two views. This means
that the infinite homography is defined identically regardless of selecting which
rectangle is used as a reference. This gives us a constraint equation of:

ρH−1
sm2,iTiHsm1,i = H−1

sm2,jTjHsm1,j (7)

where ρ is a proper scale factor.
The unknowns are the parameters of Ti and Tj and a scale factor ρ. The

number of unknowns is 7 and we have 9 equations, therefore we can easily solve
the equation linearly. Note that we do not use any metric measurements, such
as lengths or aspect ratios of the scene rectangles.

4 Application to Autocalibration

One of the most important applications of infinite homography is autocalibration
of cameras [1]. If the infinite homographies between views captured by a static
camera is known, then calibration can be possible linearly without any assump-
tions on cameras. We applied our proposed algorithm to the autocalibration of
a static camera in order to provide validation.

The algorithm to build auto-calibration is as follows.

1. Track two arbitrary rectangles.
2. Find semi-metric warping matrices in all views w.r.t. the two rectangles.
3. Estimate proper transformation Ti and Tj between semi-metric space

using (7).
4. Calculate the infinite homography H12

∞ with semi-metric transformation ma-
trices and obtained proper transformation using (6).

5. Normalize the matrix so that det H12
∞ = 1

6. Find the IAC using ω = (H12
∞)−�ω(H12

∞)−1.
7. Determine the camera matrix K from the Cholesky decomposition ω =

(KK�)−1.
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Fig. 3. Simulated performance of the proposed algorithm

This algorithm can be compared with previous works that uses information on
scene geometry and proper camera assumptions [9, 8, 10, 11]. The key difference
is that ours does not require any metric measurements from the scene, such as
line lengths or aspect ratios of the rectangles. Furthermore, our algorithm does
not contain camera assumptions, such as zero-skew or known aspect ratio of the
pixels. Because it can be much easier to find some rectangles than to find some
metrics in images, the proposed method is much more flexible than those given
in the previous works.

We first analyzed the performance of the algorithm in various situations.
We generated three views with two arbitrary rectangles in general poses and
added Gaussian noises with a standard deviation of 0.5 to the corner of the
rectangles. Fig. 3 depicts RMS errors of estimated focal length for 500 iterations.
Fig. 3a shows the performance to pose differences between two planes in 3D. As
expected, the algorithm become singular, when the in-between angle approaches
to zero and 180 degrees, since it means the two rectangles are on an identical
plane. In 40 degrees, one of the plane is orthogonal to the image plane, and all
the features lie on a line. This is a singular case, and in other situation, the
calibration is not much degraded for about 90 degrees. Fig. 3b shows the effects
of the planar rotation of the world plane. We conclude that the direction of
the model axis does not affect the performance of the algorithm. Fig. 3c shows
the performance relative to the area of the rectangles used in the images. As
expected, the performance of the algorithm increases with the rectangle size.

Fig. 4. Input images for auto-calibration using proposed method
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The algorithm works well as long as the projected rectangles are larger than
10% of the whole images.

We next applied the algorithm to real images. Fig. 4 shows input images
containing two arbitrary rectangles. The images were captured with a SONY
DSC-F717 camera in 640 × 480 resolution. The exact values of the aspect ratios
of the rectangles are unknown. Since the rectangles are placed arbitrarily, we
cannot use the relative pose between two planes. Note that some imaged rect-
angles are rarely distorted projectively, so we cannot find the vanishing points
or lines explicitly.

The estimated infinite homographies are

H12
∞ =

⎡
⎣

1.0406 −0.0161 −208.2218
−0.0167 0.2692 864.6719
0.0004 −0.0009 0.6885

⎤
⎦ ,

H12
∞ =

⎡
⎣

1.0406 −0.0161 −208.2218
−0.0167 0.2692 864.6719
0.0004 −0.0009 0.6885

⎤
⎦

and

H13
∞ =

⎡
⎣
0.9991 0.1037 −621.4391
0.0115 1.0388 −127.6288
0.0006 0.0002 0.5807

⎤
⎦ .

From the estimated infinite homographies, the intrinsic parameters of the camera
is estimated as

Kestimated =

⎡
⎣

899.4727 20.9762 322.9044
0 913.2549 297.9821
0 0 1.0000

⎤
⎦ .

For comparison, we calibrated the camera using the well-known Zhang’s plane
based calibration method [12] with six metric planes as

KZhang =

⎡
⎣

888.5763 14.3200 269.8877
0 887.2853 243.0086
0 0 1.0000

⎤
⎦ .

Note that the proposed algorithm is a kind of autocalibration and does not
require any kind of metric measurements, such as metric coordinates or line
lengths. Furthermore, although we did not apply any robust method or refine-
ment techniques such as non-linear minimization, the estimated camera param-
eters are comparable with only three images.

Figure 5 shows another real images captured with the SONY DSC-F717 cam-
era. The yellow lines show the manually selected projected rectangles. The se-
lected rectangles have different aspect ratios and the metric properties of each
are unknown. We used only three images captured from different positions. Note
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Fig. 5. Another input images for auto-calibration using proposed method

that there are little projective distortions on some projected rectangles. The
estimated camera matrix is

Kestimated =

⎡
⎣
728.5874 28.4393 352.8952

0 718.3721 285.1658
0 0 1.0000

⎤
⎦

and a result from Zhang’s calibration method [12] with six metric planes is

KZhang =

⎡
⎣

721.3052 2.7013 335.3498
0 724.9379 247.3248
0 0 1.0000

⎤
⎦ .

This shows that autocalibration by our new proposed method can be applicable
to real cameras by simply tracking two arbitrary rectangles in general poses.

5 Conclusion

In this paper, we have proposed a new method to estimate the infinite homog-
raphy from images containing two arbitrary planar rectangles. The proposed
method does not require any metric measurements, such as line lengths or as-
pect ratios of the rectangles.

To deal with rectangles efficiently, we introduce the concept of the semi-metric
camera. Semi-metric cameras can be expressed with very simple forms of zero-
skew cameras which are related with the aspect ratio of the scene rectangles and
camera poses. Also the semi-metric cameras from general views that see an identi-
cal 3D rectangles can be regarded as pure-translating cameras. Using this formu-
lation, an infinite homography between two views is expressed simply with semi-
metric warping matrices and infinite homography between two semi-metric cam-
eras. Using the fact that the infinite homographies derived from two different rect-
angles have to be identical, the unknown transformations are estimated linearly.

To validate our method, we used the proposed algorithm for autocalibration of
a static camera. The autocalibration results obtained with our novel method were
similar to those obtained with well-known plane-based calibration methods, even
though our method required only four points on each rectangle and no further
refinement.
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