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Preface

Welcome to the 7th Asian Conference on Computer Vision. It gives us great plea-
sure to bring forth its proceedings. ACCV has been making its rounds through
the Asian landscape and came to India this year. We are proud of the technical
program we have put together and we hope you enjoy it.

Interest in computer vision is increasing and ACCV 2006 attracted about 500
submission. The evaluation team consisted of 27 experts serving as Area Chairs
and about 270 reviewers in all. The whole process was conducted electronically
in a double-blind manner, a first for ACCV. Each paper was assigned to an Area
Chair who found three competent reviewers for it. We were able to contain the
maximum load on the reviewers to nine and the average load to less than six.
The review form had space for qualitative and quantitative evaluation of the
paper on nine aspects. The submitted reviews underwent an elaborate process.
First, they were seen by the Area Chair, who resolved divergences of opinion
among reviewers, if any. The Area Chair then wrote qualitative comments and
a quantitative score along with his/her initial recommendation on the paper.
These were looked at by Program Co-chairs and compiled into a probables list.
The Area Chairs and Program Co-chairs met in Beijing during ICCV to discuss
this list and arrived at the final list of 64 oral papers and 128 posters. Naturally,
many deserving papers could not be accommodated.

Katsushi Ikeuchi has been unflinching in his support of ACCV as a whole
and ACCV 2006 in particular. His help was critical at many stages. We must
thank the Area Chairs and the reviewers for their time and effort towards the
conference. From IIIT Hyderabad, C.V. Jawahar and Anoop M. Namboodiri con-
tributed in many ways with the program. The enthusiastic team of students from
the Centre for Visual Information Technology (CVIT) was behind it fully. Kar-
teek Alahari, Kiran Babu Varanasi, Sumeet Gupta, Sukesh Kumar, and Satya-
narayana made all the logistics of the CFP, paper submission, review process,
and preparation of the proceedings really possible. The International Institute
of Information Technology was fully behind the conference as a team and de-
serves our deep gratitude. Finally – but most importantly – we wish to thank
the authors who showed great enthusiasm for ACCV.

ACCV has been gaining in stature as a platform to showcase the best of
computer vision research over the years. We hope the 2006 edition has brought
it forward at least a little. Computer vision continues to be an exciting area and
conferences like these provide the much needed light to many who will embark
on a journey down its path.

P J Narayanan
Shree Nayar
Harry Shum

(Program Chairs)
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Abstract. In this paper, we propose a new method to estimate an in-
finite homography between two views containing two arbitrary planar
rectangles. The proposed method does not require metric measurements,
such as rectangle lengths or aspect ratios of the rectangles. We introduce
the concept of semi-metric cameras and show that the semi-metric cam-
eras derived from different views that see an identical 3D rectangle, can
be regarded purely translating cameras whose pixel is zero-skewed. New
parameterization for infinite homography is developed based upon the
semi-metric space, and this parameterization is used to propose a new
algorithm to estimate infinite homography. As a direct application, we
apply our algorithm to autocalibration for a scene only with a few feature
points on each rectangles.

1 Introduction

In the real world, there are many objects with two-dimensional planes and rect-
angular shapes, especially in outdoor urban environment. Cameras generally use
planar CCD or CMOS type sensors. Therefore, the imaging process of planar
objects can be described as a 2D to 2D transformation [1]. Furthermore, in the
case of multiple views, the transformation between imaged planes can be also
considered 2D to 2D, and is called plane induced homography. Plane induced
homography offers a useful tool to describe scenes with planar objects from two
or more views, as shown in plane + parallax approaches [1, 2, 3, 4, 5].

Among the plane induced homographies, a particularly important one is an
infinite homography. The infinite homography is the homography induced by
the plane at infinity with some important properties. First, it maps features on
the plane at infinity of one view, such as vanishing points, vanishing lines and
images of absolute conic, to another views. Second, it can be used to find affine
and metric reconstructions from projective ones. This means we can calibrate
a camera from image sequences using the infinite homographies. Additionally,
we can reduce the search region for stereo matching through mapping with the
infinite homography. Detailed explanations about these issues can be found in
[1]. Note that the infinite homography between two views depends only on the
rotation between the cameras capturing the views and the intrinsic parameters
of them.
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Three methods are commonly used to estimate the infinite homography be-
tween two views. The first method uses camera motion constraints. If we use a
purely rotating camera to capture the images, the homography induced by any
plane on the image is the infinite homography. Although this method is easy to
apply, it requires the use of rotating cameras. The second method uses strong
scene constraints. If we have three vanishing points in each view with a funda-
mental matrix, the infinite homography can be estimated. Similarly it can be
calculated from corresponding vanishing lines and vanishing points with the fun-
damental matrix. This requires the identification of three vanishing points and
vanishing lines, however it may be difficult to find the features in infinity. The
third method is a stratified approach. Once we find an affine reconstruction and
projectively transformed plane at infinity, we can find the infinite homography
from the projective projection matrix and the plane at infinity. The most diffi-
cult part of this approach is to build an affine reconstruction from the projective
one. It requires some constraints of the scene and the camera, or the modulus
constraints [6] for a static camera.

In this paper, we propose a new method to linearly estimate the infinite ho-
mography from images containing two arbitrary rectangles. The term “arbitrary”
implies that we do not have information regarding the lengths, the aspect ratios,
and the relative poses of the two rectangles. This method uses information about
the parallelism and orthogonality, however this method does not require finding
the vanishing points or the vanishing lines explicitly, which can be difficult for
some rectangles. Furthermore, estimating epipolar geometry is also not required
to estimate the infinite homography. Only tracking two rectangles between two
views is needed.

In Sect. 2, we introduce the concept of semi-metric cameras and discuss some
of their properties, such as image of absolute conic and special form of camera
matrix. Sect. 3 discusses ways to parameterize the infinite homography using
semi-metric cameras and to estimate the infinite homography using the proposed
parameterization with two imaged rectangles. In Sect. 4, we show an important
application of the infinite homography - the autocalibration of cameras - using
the proposed algorithm. We conclude this paper in Sect. 5.

2 Semi-metric Cameras

We have introduced the concept of semi-metric space, defined as the sub-space of
affine space [7]. In semi-metric space, orthogonal features are preserved, however
the aspect ratio between two orthogonal axes is not preserved.

Assuming that there is a rectangle with an unknown aspect ratio in 3D space
and a view capturing the rectangle in a general position, we can find a homog-
raphy to make the projectively distorted rectangle to align the orthogonal axis
of the rectangle. The warped image is called as semi-metric image. To make
semi-metric images, two methods are used [7].

The first method uses vanishing points whose directions are orthogonal to
each other. Warping the vanishing points to infinite points makes a semi-metric
image with warping matrix defined as
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Hsm =
[
v1 v2 xc

]−1

where v1 and v2 are vanishing points orthogonal to each other and xc is an
arbitrary point, as shown in Fig. 1.

1v

2v

Arbitrary:cx

1v

2v

Arbitrary:cx

Fig. 1. Elements of semi-metric transformation matrix from vanishing points

Warping from the projected rectangle to a standard predefined rectangle with
a known aspect ratio is sufficient to warp to a semi-metric image. Fig. 2 shows the
concept of the warping method using a standard rectangle. Note that an aspect
ratio of the warped rectangle can be set arbitrarily. For example, in Fig. 2, the
aspect ratio is set to one.

(-1,1) (1,1)

(-1,-1) (1,-1)
Hsm

Fig. 2. Semi-metric warping using a standard rectangle

With a semi-metric image, the following theorem can be proven [7].

Theorem 1. In semi-metric space, the ICDCP is given as diag
(
R2

m, R2
sm, 0
)

where Rm is the aspect ratio of the model rectangle, and Rsm is the aspect ratio
of a semi-metric warped rectangle.

Because the ICDCP in semi-metric space is expressed as diag(R2
m, R2

sm, 0), the
imaged circular points (ICP) that is its dual feature, are simply expressed as

Ism =

⎡⎣ Rm

iRsm

0

⎤⎦ ,Jsm =

⎡⎣ Rm

−iRsm

0

⎤⎦ .

Furthermore, we can assume that there is a physical camera to make the semi-
metric image. This camera is referred to as a semi-metric camera. To find some
properties of semi-metric cameras, image of absolute conic (IAC) of semi-metric
cameras is studied.
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Assuming that there are three vanishing points v1, v2 and v3 whose directions
are orthogonal in 3D, then the IAC would be expressed as [8]

ω = α2l1l�1 + β2l2l�2 + γ2l3l�3

where α, β and γ are proper scale factors and l1, l2, and l3 are vanishing lines
given as

l1 = v1 × v2, l2 = v2 × v3, l3 = v3 × v1.

In semi-metric space, the vanishing points v1, v2 and v3 can be set as

v1 =

⎡⎣10
0

⎤⎦ ,v2 =

⎡⎣01
0

⎤⎦ ,v3 =

⎡⎣ab
c

⎤⎦ ,

which gives us the IAC in semi-metric space ωsm as

ωsm =

⎡⎣ β2c2 0 −βac
0 γ2c2 −γbc

−βac −γbc α2 + β2a2 + γ2b2

⎤⎦ . (1)

Because the ICPs are on the IAC,

I�smωsmIsm = 0,J�
smωsmJsm = 0,

and we can find the relation that

Rm
2

Rsm
2 =

γ2

β2 .

This means that the ratio of β and γ is equal to that of Rsm and Rm. By
decomposing (1), the camera matrix in semi-metric space is given as

Ksm =

⎡⎣1/Rsm 0 a
1/Rm b

c

⎤⎦ (2)

up to scale.
As a consequence, the camera matrix Ksm represents a camera whose skew is

zero, and its pixel aspect ratio is equal to a ratio between the aspect ratio of the
reference rectangle Rm and the corresponding semi-metric aspect ratio Rsm. The
principal point of the camera is expressed with the scaled third vanishing point
v3 and the scale plays the role of a focal length. In other words, the semi-metric
camera matrix is determined with scene information and a camera pose.

Naturally, the relation between IAC ω in projective space and IAC ωsm in
semi-metric space is obtained from basic conic transformation as

H−�
sm ωH−1

sm = ωsm (3)

where Hsm is a plane homography from projective space to semi-metric space.
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3 Estimation of Infinite Homography

In this section, we derive a parameterization of an infinite homography in terms
of semi-metric warping matrices. Using the parameterization, it is possible to
estimate an infinite homography linearly from images of two arbitrary rectangles.

3.1 Parameterization of Infinite Homography

Assuming that there are two views containing a projected unknown rectangle,
then each semi-metric camera matrix Ksm1, and Ksm2 would be expressed as

Ksm1 =

⎡⎣1/Rsm 0 s1m1
1/Rm s1m2

s1m3

⎤⎦ , Ksm2 =

⎡⎣1/Rsm 0 s2n1
1/Rm s2n2

s2n3

⎤⎦
using (2). Note that we can set the value of Rsm to 1, as explained in Sect. 2.
Furthermore, since the plane is identical, Rm is the same in both Ksm1 and Ksm2.

A semi-metric image is generated by simple image warping. We can find the
projection matrix of semi-metric camera directly as

Psm = HsmK
[
r1 r2 r3 t

]
=
[
Ksm e3

]
= Ksm

[
I3×3 K−1

sme3
] (4)

where e3 =
[
0 0 1
]�

. Note that all semi-metric cameras derived from an identical
3D rectangle are under pure translating motion. An infinite homography between
two semi-metric cameras, Ksm1 and Ksm2 can be simply given as

T =

⎡⎣1 0 tx
0 1 ty
0 0 tz

⎤⎦ ,

because an infinite homography is generally given as [1]

T = K2R21K−1
1 (5)

and the two semi-metric cameras are under pure-translating, that means R21 = I.
It gives us

ωsm2 = T−�ωsm1T−1

where ωsm1 and ωsm2 are IACs of the two semi-metric cameras.
Applying conic transformation given as (3) makes

ω2 = H�
sm2T

−�H−�
sm1ω1H−1

sm1T
−1Hsm2,

and because the infinite homography H12∞ from view 1 and view 2 transforms ω1
to ω2, the infinite homography is

H12
∞ = H−1

sm2THsm1. (6)
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This means that the infinite homography is expressed with semi-metric warping
matrices Hsm1 and Hsm2 and the infinite homography T between two semi-metric
cameras. Note that there are no camera assumptions such as static camera or
zero-skew.

3.2 Linear Estimation of Infinite Homography

If a captured scene contains two arbitrary rectangles with an unknown aspect
ratio, then the infinite homography is estimated linearly using the parameteri-
zation in (6).

Assuming that there are two views that contain two arbitrary rectangles
named rectangle i and j, then we can find two infinite homographies with respect
to two rectangles as

H12
∞,i = H−1

sm2,iTiHsm1,i

H12
∞,j = H−1

sm2,jTjHsm1,j

where Hsm1,i means a semi-metric warping matrix of view 1 w.r.t. the rectangle i.
However, the infinite homography is dependent only on the intrinsic param-

eters of the cameras and the relative rotation between two views. This means
that the infinite homography is defined identically regardless of selecting which
rectangle is used as a reference. This gives us a constraint equation of:

ρH−1
sm2,iTiHsm1,i = H−1

sm2,jTjHsm1,j (7)

where ρ is a proper scale factor.
The unknowns are the parameters of Ti and Tj and a scale factor ρ. The

number of unknowns is 7 and we have 9 equations, therefore we can easily solve
the equation linearly. Note that we do not use any metric measurements, such
as lengths or aspect ratios of the scene rectangles.

4 Application to Autocalibration

One of the most important applications of infinite homography is autocalibration
of cameras [1]. If the infinite homographies between views captured by a static
camera is known, then calibration can be possible linearly without any assump-
tions on cameras. We applied our proposed algorithm to the autocalibration of
a static camera in order to provide validation.

The algorithm to build auto-calibration is as follows.

1. Track two arbitrary rectangles.
2. Find semi-metric warping matrices in all views w.r.t. the two rectangles.
3. Estimate proper transformation Ti and Tj between semi-metric space

using (7).
4. Calculate the infinite homography H12

∞ with semi-metric transformation ma-
trices and obtained proper transformation using (6).

5. Normalize the matrix so that det H12
∞ = 1

6. Find the IAC using ω = (H12
∞)−�ω(H12

∞)−1.
7. Determine the camera matrix K from the Cholesky decomposition ω =

(KK�)−1.
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Fig. 3. Simulated performance of the proposed algorithm

This algorithm can be compared with previous works that uses information on
scene geometry and proper camera assumptions [9, 8, 10, 11]. The key difference
is that ours does not require any metric measurements from the scene, such as
line lengths or aspect ratios of the rectangles. Furthermore, our algorithm does
not contain camera assumptions, such as zero-skew or known aspect ratio of the
pixels. Because it can be much easier to find some rectangles than to find some
metrics in images, the proposed method is much more flexible than those given
in the previous works.

We first analyzed the performance of the algorithm in various situations.
We generated three views with two arbitrary rectangles in general poses and
added Gaussian noises with a standard deviation of 0.5 to the corner of the
rectangles. Fig. 3 depicts RMS errors of estimated focal length for 500 iterations.
Fig. 3a shows the performance to pose differences between two planes in 3D. As
expected, the algorithm become singular, when the in-between angle approaches
to zero and 180 degrees, since it means the two rectangles are on an identical
plane. In 40 degrees, one of the plane is orthogonal to the image plane, and all
the features lie on a line. This is a singular case, and in other situation, the
calibration is not much degraded for about 90 degrees. Fig. 3b shows the effects
of the planar rotation of the world plane. We conclude that the direction of
the model axis does not affect the performance of the algorithm. Fig. 3c shows
the performance relative to the area of the rectangles used in the images. As
expected, the performance of the algorithm increases with the rectangle size.

Fig. 4. Input images for auto-calibration using proposed method
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The algorithm works well as long as the projected rectangles are larger than
10% of the whole images.

We next applied the algorithm to real images. Fig. 4 shows input images
containing two arbitrary rectangles. The images were captured with a SONY
DSC-F717 camera in 640 × 480 resolution. The exact values of the aspect ratios
of the rectangles are unknown. Since the rectangles are placed arbitrarily, we
cannot use the relative pose between two planes. Note that some imaged rect-
angles are rarely distorted projectively, so we cannot find the vanishing points
or lines explicitly.

The estimated infinite homographies are

H12
∞ =

⎡⎣ 1.0406 −0.0161 −208.2218
−0.0167 0.2692 864.6719
0.0004 −0.0009 0.6885

⎤⎦ ,

H12
∞ =

⎡⎣ 1.0406 −0.0161 −208.2218
−0.0167 0.2692 864.6719
0.0004 −0.0009 0.6885

⎤⎦
and

H13
∞ =

⎡⎣0.9991 0.1037 −621.4391
0.0115 1.0388 −127.6288
0.0006 0.0002 0.5807

⎤⎦ .

From the estimated infinite homographies, the intrinsic parameters of the camera
is estimated as

Kestimated =

⎡⎣899.4727 20.9762 322.9044
0 913.2549 297.9821
0 0 1.0000

⎤⎦ .

For comparison, we calibrated the camera using the well-known Zhang’s plane
based calibration method [12] with six metric planes as

KZhang =

⎡⎣888.5763 14.3200 269.8877
0 887.2853 243.0086
0 0 1.0000

⎤⎦ .

Note that the proposed algorithm is a kind of autocalibration and does not
require any kind of metric measurements, such as metric coordinates or line
lengths. Furthermore, although we did not apply any robust method or refine-
ment techniques such as non-linear minimization, the estimated camera param-
eters are comparable with only three images.

Figure 5 shows another real images captured with the SONY DSC-F717 cam-
era. The yellow lines show the manually selected projected rectangles. The se-
lected rectangles have different aspect ratios and the metric properties of each
are unknown. We used only three images captured from different positions. Note
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Fig. 5. Another input images for auto-calibration using proposed method

that there are little projective distortions on some projected rectangles. The
estimated camera matrix is

Kestimated =

⎡⎣728.5874 28.4393 352.8952
0 718.3721 285.1658
0 0 1.0000

⎤⎦
and a result from Zhang’s calibration method [12] with six metric planes is

KZhang =

⎡⎣721.3052 2.7013 335.3498
0 724.9379 247.3248
0 0 1.0000

⎤⎦ .

This shows that autocalibration by our new proposed method can be applicable
to real cameras by simply tracking two arbitrary rectangles in general poses.

5 Conclusion

In this paper, we have proposed a new method to estimate the infinite homog-
raphy from images containing two arbitrary planar rectangles. The proposed
method does not require any metric measurements, such as line lengths or as-
pect ratios of the rectangles.

To deal with rectangles efficiently, we introduce the concept of the semi-metric
camera. Semi-metric cameras can be expressed with very simple forms of zero-
skew cameras which are related with the aspect ratio of the scene rectangles and
camera poses. Also the semi-metric cameras from general views that see an identi-
cal 3D rectangles can be regarded as pure-translating cameras. Using this formu-
lation, an infinite homography between two views is expressed simply with semi-
metric warping matrices and infinite homography between two semi-metric cam-
eras. Using the fact that the infinite homographies derived from two different rect-
angles have to be identical, the unknown transformations are estimated linearly.

To validate our method, we used the proposed algorithm for autocalibration of
a static camera. The autocalibration results obtained with our novel method were
similar to those obtained with well-known plane-based calibration methods, even
though our method required only four points on each rectangle and no further
refinement.
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Abstract. In this paper we consider some questions related to the orien-
tation of shapes. We introduce as a new shape feature shape orientability,
i.e. the degree to which a shape has distinct (but not necessarily unique)
orientation. A new method is described for measuring shape orientability,
and has several desirable properties. In particular, unlike the standard
moment based measure of elongation, it is able to differentiate between
the varying levels of orientability of n-fold rotationally symmetric shapes.

1 Introduction

This paper deals with some of the problems, and proposes solutions, related
to shape orientability – i.e. the degree to which shape has distinct (but not
necessarily unique) orientation. The computation of a shape’s orientation is a
common task in the area of computer vision and image processing, being used
for example to define a local frame of reference, and helpful for recognition and
registration, robot manipulation, etc.

There are situations (see Fig. 1) when the orientation of the shapes seems to
be easily and naturally determined. On the other hand, a planar disc could be
understood as a shape without orientation.

Most situations are somewhere in between. For very non-regular shapes it
could be difficult to say what the orientation should be. Rotationally symmetric
polygons could also have poorly defined orientation – see Fig 2 (d). Moreover,
even for regular polygons (see Fig. 2 (a) and (b)) is debatable whether they
are orientable or not. For instance, is a square an orientable shape? The same
question arises for any regular n-gon, but also for shapes having several axes
of symmetry, and n-fold (n > 2) rotational symmetric shapes. If the answer is
“yes, those shapes are somehow orientable”, how should the shapes from Fig. 2
be ranked with respect to their orientability? This question is of interest and
applicable in the area of shape analysis and shape classification.

The most standard method for computing shape orientability (derived in
section 2 and specified in eqn (5)) is based on computing the axis of the least sec-
ond moment. It is naturally defined and easy to compute. However, it does not
specify what the shape orientation should be in those examples (see section 2).

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 11–20, 2006.
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(a) (b) (c) (d)

Fig. 1. Reasonable orientations of the shapes coincide with the dashed lines

(a) (b) (c) (d)

Fig. 2. Reasonable orientations of the shapes coincide with the dashed lines

The problem becomes more complex taking into account that in computer vi-
sion and image processing tasks real shapes are replaced with their digitizations.
Some specific problems arise when working with digital shapes. Let us mention
just two of them:

– Due to the digitization process some “non-orientable” objects may have dig-
itizations whose orientation can be easily computed if (5) is applied.

– On the other hand, it is also possible that some orientable objects have
digitalizations which are not orientable.

The impact of digitization effects on changing the computed shape orientation is
illustrated by the example of a digitized disc and a digitized square. Even though
real discs and squares are not “orientable” shapes (if the standard method is
applied – see Lemma 1) it could happen that after digitization, the obtained
discrete point sets have an orientation computable in the standard manner. We
demonstrate that the computed orientation could depend strongly on:

(a) shape position with respect to the digitization grid;
(b) applied picture resolution.

The effect of item (a) is illustrated by Fig. 3. The same disc is translated into 3
different positions and then digitized. The orientation of the digital disc is not
well-defined (in the sense of (5)) for the position displayed in Fig. 3 (a) while the
digital discs displayed at Fig. 3 (b) and (c) have the measured orientation ϕ =
π/2 – if (5) is applied. If the applied picture resolution is higher (or equivalently,
a bigger disc is digitized) then the impact of the disc position to the computed
orientation is higher, as well. As an illustration: we have digitized 16 real discs
having the radius equal to 10, whose center positions have been chosen randomly.
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For each choice of center position the computed orientations of the obtained
digital disc (applying formula (5)) (in the range [−π/2, π/2]) are

0.05 0.03 -0.06 -0.59 0.75 -0.01 -0.23 -0.72
0.13 0.00 0.22 -0.57 -0.06 0.29 -0.61 0.63

and show that the computed orientation strongly depends on the disc position
with respect to the digitization grid.
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(b)(a) (c)

Fig. 3. Three of the 6 non-isometric digitizations of a disc having the radius
√

2 on a
binary picture with resolution 1 (i.e., one pixel per measure unit)

Similar problems to the above ones can be caused by noise effects, as well.
For instance, consider a square aligned with the coordinate axes. As mentioned,
the standard method does not give any answer what the orientation of such a
square should be. Adding a single protruding pixel to the boundary can cause
the computed orientation to lie anywhere in the range [−π/2, π/2] depending on
its location. As an example, for a 10× 10 grid of pixels adding one pixel to the
horizontal or vertical edge gives the following computed orientations

0.88 1.00 1.14 1.30 1.48 -1.48 -1.30 -1.14 -1.00 -0.88
-0.69 -0.57 -0.43 -0.27 -0.09 0.09 0.27 0.43 0.57 0.69.

In order to avoid the previously mentioned problems it is not enough to deter-
mine if the orientation can be computed or not. It would be useful to see how
stable the solution is. For this purpose we will define the shape orientability as a
shape descriptor. The main purpose of it is to suggest an answer to the question:
Is the computed orientation just a consequence of digitization or noise effects or
is it an inherent property of the considered shape? The orientability can also be
used as a shape descriptor in shape classification tasks.

In this paper we will define an orientability measure, which is a number from
[0, 1). The defined orientability measure says that a circle has the lowest mea-
sured orientability equal to 0. Also, there is no a shape with the measured ori-
entability equal to 1, but shapes having the measured orientability arbitrarily
close to 1 can be constructed easily. For example, a rectangle with the edge
lengths 1 and a has orientability tending to 1 if a → ∞. This new measure
will be described in Section 3. Some experimental results are shown in Section 4,
while Section 5 contains concluding remarks.
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2 Standard Method

In this section we give a short overview of the method which is mostly used in
practice and give a lemma that shows that this method can not be understood
as efficient when applied to shapes that have several axes of symmetry.

The standard approach defines the orientation by the so called axis of the
least second moment ([3, 4]). That is the line which minimises the integral of
the squares of distances of the points (belonging to the shape) to the line. The
integral is

I(S, ϕ, ρ) =
∫
S

∫
r2(x, y, ϕ, ρ)dxdy (1)

where r(x, y, ϕ, ρ) is the perpendicular distance from the point (x, y) to the line
given in the form

x · cosϕ− y · sin ϕ = ρ.

It can be shown that the line that minimizes I(S, ρ, ϕ) passes through the cen-
troid (xc(S), yc(S)) of the shape S where (xc(S), yc(S)) =

(
S

xdxdy

S
dxdy

, s
ydxdy

S
dxdy

)
.

In other words, without loss of generality, we can assume that the origin is placed
into the centroid, but also, that the required line minimizing I(S, ρ, ϕ), passes
through the origin – i.e., we can set ρ = 0. In this way, the shape orientation
problem can be reformulated to the problem of determining ϕ for which the
function F (ϕ, S) defined as

F (ϕ, S) = I(S, ϕ, ρ = 0) =
∫
S

∫
(x · sin ϕ− y · cosϕ)2dxdy1

reaches the minimum. Once again, we assume that the origin coincides with the
center of gravity of S.

Further, if the central geometric moments mp,q(S) are defined as usual by:

mp,q(S) =
∫
S

∫
(x− xc(S))p · (y − yc(S))q dx dy,

and since (xc(S), yc(S)) = (0, 0) is assumed, we have

F (ϕ, S) = (sinϕ)2 ·m2,0(S)− sin(2 · ϕ) ·m1,1,(S)
+(cosϕ)2 ·m0,2(S). (2)

The minimum of the function F (ϕ, S) can be computed easily. Setting the first
derivative F ′(x, S) to zero, we have

F ′(ϕ, S) = sin(2ϕ) · (m2,0(S)−m0,2(S))− 2 · cos(2ϕ) ·m1,1(S) = 0.

1 The squared distance of a point (x, y) to the line X ·cos ϕ−Y · sin ϕ = 0 is (x sin ϕ−
y cos ϕ)2.
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That easily gives that the required angle ϕ, but also the angle ϕ + π/2, satisfies
the equation

sin(2ϕ)
cos(2ϕ)

=
2 ·m1,1(S)

m2,0(S)−m0,2(S)
. (3)

Consequently, the maximum and minimum of F (S, ϕ) are as follows

max{F (S, ϕ) | ϕ ∈ [0, 2 · π]} =
1
2
· (m2,0(S) + m0,2(S))

+
1
2
·
√

4 ·m1,1(S) + (m2,0(S)−m0,2(S))2,

and
min{F (S, ϕ) | ϕ ∈ [0, 2 · π]} =

1
2
· (m2,0(S) + m0,2(S))

−1
2
·
√

4 ·m1,1(S) + (m2,0(S)−m0,2(S))2.

The ratio between max
ϕ∈[0,π)

F (S, ϕ) and min
ϕ∈[0,π)

F (S, ϕ)

E(S) =
max{F (S, ϕ) | ϕ ∈ [0, 2 · π]}
min{F (S, ϕ) | ϕ ∈ [0, 2 · π]} (4)

is well known as the elongation of the shape S.
Let us mention that, when working with digital objects which are actually

digitalizations of real shapes, then central geometric moments mp,q(S) are re-
placed with their discrete analogue, i.e., with so called, central discrete moments.
Since the digitization on the integer grid Z2 of a real shape S consists of all pixels
whose centers are inside S it is natural to approximate mp,q(S) by the central
discrete moment μp,q(S) which is defined as

μp,q(S) =
∑

(i,j)∈S∩Z2

(i− xcd(S))p · (j − ycd(S))q
,

where (xcd(S), ycd(S)) =

(
(x,y)∈S∩Z2

x

(x,y)∈S∩Z2
1 ,

(x,y)∈S∩Z2
y

(x,y)∈S∩Z2
1

)
is the centroid of discrete

shape S ∩ Z2.
Some answers about the efficiency of the approximation mp,q(S) ≈ μp,q(S)

can be found in [5].
If the geometric moments in (3) are replaced with the corresponding discrete

moments we have the equation

sin(2ϕ)
cos(2ϕ)

=
2 · μ1,1(S)

μ2,0(S)− μ0,2(S)
(5)

which describes the angle ϕ which is used as an approximate orientation of the
shape S, i.e., the angle which is used to describe the orientation of discrete shape
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S∩Z2. It is worth noting that equation (5) can be derived easily if the orientation
of the discrete set (a finite number point set) S∩Z2 is defined by the line (passing
the origin) which minimizes the total sum

∑
(i,j)∈S∩Z2(i · sin ϕ − j · cosϕ)2) of

squares of distances of points from S ∩ Z2 to this line.
In other words, the equality (5) can be derived as a consequence when trying

to solve the following optimization problem

min

⎧⎨⎩ ∑
(i,j)∈S∩Z2

(i · sinϕ− j · cosϕ)2 | ϕ ∈ [0, π]

⎫⎬⎭ (6)

assuming that the centroid
(
xcd(S ∩ Z2), ycd(S ∩ Z2

)
coincides with the origin.

So, the standard method is very simple (in both “real” and “discrete” ver-
sions) and it comes from a natural definition of the shape orientation. However,
it is not always effective. The next lemma shows that the method does not al-
ways give a clear answer what the shape orientation should be – for more details
see [9].

Lemma 1. If a given shape S has more than two axes of symmetry then F (ϕ, S)
is a constant function.

Proof. From (3) it is obvious that the function F (ϕ, S) could have exactly one
maximum and one minimum on the interval [0, π), or it must be a constant func-
tion. Trivially F (0, S) = F (π, S). So, if S has more than two axes of symmetry
it must be constant since F ′(ϕ, S) does not have more than two zeros on the
interval [0, π). [[[]]]
Remark. A direct consequence of Lemma 1 is that

– F (S, ϕ) = 1
2 · (m2,0(S) + m0,2(S)) for all ϕ ∈ [0, π);

– E(S) = 1

holds for all shapes that have more than two axes of symmetry. In other words,
the standard method does not specify the orientation of shapes from Fig. 2, or
more generally, what the orientation is for shapes having more than two axes of
symmetry. Also, for all such shapes the measured elongation is 1 – i.e., the same
as the measured elongation for a circle, what is not a desirable property.

3 Measuring Shape Orientability

In this section we consider what quantity can be used to describe shape ori-
entability – to be used as an inherent shape property.

Intuitively, it can be assumed that shapes with high measured elongation
are more orientable than shapes with lower measured elongation. Thus, the
elongation E(S) (see (4)) can be used to estimate shape orientability. Since
E(S) ∈ [1,∞), in order to have the measured orientability between 0 and 1,
we can measure the orientability as:

1− 1
E(S)

. (7)



Shape Orientability 17

Several other measures can be derived from the function F (S, ϕ), as well. For
example, a larger ratio between the areas of the regions bounded by:

– the coordinate axes, line y = min
ϕ∈[0,π)

F (S, ϕ), and line x = π, and

– the coordinate axes, line y = F (S, ϕ), and line x = π,

should indicate a lower shape orientability. This leads to the following:

Definition 1. For a given shape S its orientability DF (S) can be measured as

DF (S) = 1− π ·min{F (S, ϕ) | ϕ ∈ [0, π)}∫ π

0 F (S, ϕ) · dϕ

=

√
4 · (m1,1(S))2 + (m2,0(S)−m0,2(S))2

m2,0(S) + m0,2(S)
.

Obviously, DF (S) is easily computable and well-motivated. However, it is clear
that all shape orientability measures based on F (S, ϕ) are limited by the result
of Lemma 1, i.e., DF (S) = 1 − 1/E(S) = 0 for all shapes S having more than
two axes of symmetry. In some situations (applications) a new measure for shape
orientability is required that does not have that disadvantage.

Now, we define such a measure. When dealing with shapes that have sev-
eral axes of symmetry, such shapes do not necessarily have identical measured
orientability, as would result when using 1− 1/E(S) and DF (S), for example.

Definition 2. For a given shape S let R(α) be the minimal rectangle whose
edges make an angle α with the coordinate axes and which includes S (see Fig. 4).
Let the following hold:

Amin(S) = min
α∈[0,π)

{ Area of R(α) } ,

Amax(S) = max
α∈[0,π)

{ Area of R(α) } .

Then, we define the orientability measure D(S) of the shape S as:

D(S) = 1− Amin(S)
Amax(S)

.

The next theorem describes some desirable properties of D(S). Because of sim-
plicity, the proof is omitted.

Theorem 1. The new defined measure for the shape orientability has the fol-
lowing properties:

– D(S) ∈ [0, 1) for any shape S;
– A circle has the measured orientability equal to 0;
– The measured orientability is invariant w.r.t. similarity transformations.
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α

R(   )α

x

y

Fig. 4. The rectangle R(α) is the minimum area rectangle which includes the given
shape (dashed area) and whose edges make an angle α with the coordinate axes

The new orientability measure introduced by Definition 2 is very convenient
for numerical computation with arbitrary precision. The exact computation of
D(S) when the measured shape S is a polygon will be described in detail in a
forthcoming publication by the authors. Note that the problem of computation
of Amin(S) is well studied in literature. It has been shown [2] that for a given
polygon S a rectangle which has the minimal possible area and which includes
the polygon S must have an edge parallel to an edge of the convex hull of S. An
efficient, linear time, algorithm for such a computation (if S is a simple polygon)
has been described in [8], using the technique of orthogonal calipers.

The main objection to D(S) is that shapes having the same convex hull have
the same measured orientability. The following slight modification of Definition 2
ensures that a given non-convex shape does not have the measured orientability
equal to the measured orientability of its convex hull.

Definition 3. For a given shape S let R(α), Amin(S), and Amax(S) be defined
as in Definition 2. Then, for any real number α ∈ [0, 1) we define the orientability
measure Dα(S) of the shape S as:

Dα(S) = 1− Amin(S)− α · Area of S

Amax(S)− α ·Area of S
.

Note that the orientability measure Dα also has the desirable properties listed
in Theorem 1.

4 Some Examples

We now give some examples of orientability calculated using the new measure.
The first example (see Fig. 5) shows synthetic data, mostly exhibiting both ro-
tational and reflectional symmetries. Theory tells us that DF (S) should produce
values of zero; in practice quantization errors have caused non-symmetries, but
the values remain close to zero. The fourth shape in Fig. 5 (a) has only one axis
of symmetry; nevertheless, since the indentation in the square has a relatively
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0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04

(a)

0.02 0.03 0.04 0.04 0.13 0.14 0.28 0.49 0.50

(b)

0.04 0.05 0.10 0.14 0.24 0.40 0.54 0.96 0.99

(c)

Fig. 5. Synthetic data ordered by orientability using a) DF (S), b) D(S), c) Dα=1(S).
The rectangles corresponding to Amin (dashed) and Amax (dotted) are overlaid.

0.24 0.76 0.87 0.89 0.90 0.95 0.95 0.95 0.99
(a)

0.04 0.33 0.39 0.46 0.55 0.63 0.70 0.71 0.85
(b)

0.17 0.52 0.63 0.63 0.77 0.81 0.88 0.95 0.97
(c)

Fig. 6. Diatom data ordered by orientability using a) DF (S), b) D(S), c) D1(S)

small area it does not substantially affect the values of the moments, and there-
fore DF (S) is approximately zero. In contrast to DF (S), D(S) does differentiate
between the shapes. Again, according to theory, the first shape in Fig. 5b that
looks like a circle, but is actually a 24-gon, is assigned a value close to zero.

The second set of examples (see Fig. 6) consists of the outlines of diatoms –
unicellular water borne algae used previously by Žunić and Rosin [10] in the
development of convexity measures. Future work will look at applying the ori-
entability measure to classifying the diatoms, as in [10].
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5 Concluding Remarks

We have defined shape orientability as a new shape descriptor. We also discuss
some approaches for measuring shape orientability and define a new measure.
The purpose of such a measure is to give an answer as to whether the computed
orientation of a shape is an inherent property of the considered shape, or whether
it comes from artifacts caused by the digitization process or by noise, for example.
The measure can be useful if applied to shapes whose measured orientation
changes even under slight deformations [1].

The shape orientability measured by the method presented here is a number
in the form [0, 1). The minimal possible measured orientability (equal to zero)
is for a disc. There is no shape with a measured orientability equal to 1. Even in
cases where there is no doubt what the orientation should be, e.g. an elongated
rectangle, the measured orientability is not 1. That could be desirable property
because the measured orientation for rectangles increases if the ratio between
length a of the longer edge and the length b of the shorter edge increases as
well. In the limit case when a is a positive constant while b → 0, the measured
orientability tends to 1 and we could say that a straight line segment is a perfectly
oriented shape. Another desirable property is that the shapes with several axes
of symmetry could have non-zero measured orientability. As an illustration, a
regular 4n-gon P4n has the measured orientability D(P4n) equal to D(P4n) =

1−
4 cos π

4n

4
= 1− cos

π

4n
. Obviously, D(P4n) tends to 0 as n →∞.
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Abstract. We consider the task of computing the pose of an object
relative to a camera, for the case where the camera has no direct view
of the object. This problem was encountered in work on vision-based
inspection of specular or shiny surfaces, that is often based on analyzing
images of calibration grids or other objects, reflected in such a surface.
A natural setup consists thus of a camera and a calibration grid, put
side-by-side, i.e. without the camera having a direct view of the grid. A
straightforward idea for computing the pose is to place planar mirrors
such that the camera sees the calibration grid’s reflection. In this paper,
we consider this idea, describe geometrical properties of the setup and
propose a practical algorithm for the pose computation.

1 Introduction

Consider a calibration grid or any other known object, planar or not, and a
camera. We would like to determine their relative pose, but for the case where
the camera does not see the object directly. This is an unusual setting,
but it is quite natural for the task of reconstructing specular or shiny surfaces, as
explained in the following. Modeling of specular or shiny surfaces is an important
application in inspection of industrial parts, especially in the car manufacturing
industry (control of wind shields and bodywork) but also in the control of optical
lenses or mirrors, glasses of watches etc. Vision-based reconstruction of specular
surfaces is usually based on acquiring images of known patterns or light sources,
reflected in the surface to be reconstructed [3, 4, 6, 7, 11, 14].

It is thus rather natural to place the camera and pattern such that the camera
does not have a direct view of the latter, or at most sees a small part of it. We
have proposed practical approaches for the reconstruction of specular surfaces
where such an arrangement is indeed used. The question of how to compute the
pose of an object without a direct view is thus important for us and in addition
scientifically appealing.

Our initial solution consisted in attaching the pattern rigidly to the camera
and to move the two to a few locations. During this, the camera acquired images
of a calibration grid, and a secondary camera (static) acquired images of our
pattern. With this input, the pattern’s 3D trajectory was computed as well
as the main camera’s one. By registering the two trajectories into a common
coordinate frame, along the lines of [2] and of the classical hand-eye calibration

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 21–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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problem, we finally computed the pose of the pattern relative to the main camera.
This approach was found to be too cumbersome in practice. A second camera is
required and especially, having to move the camera–pattern pair is not desirable,
as we currently use an LCD monitor to produce the pattern(s).

We are thus aiming at a lighter procedure. A natural idea is to proceed as
follows: place a planar mirror in different positions in front of the camera such
that the pattern’s reflection is seen, and acquire images. The question arises if
this input is sufficient to solve our pose problem, and if yes, how many positions
of the planar mirror are required? We show in this paper that our pose problem
can be solved up to 1 degree of freedom from two positions, and can be fully
solved from three or more positions.

2 Background

2.1 Camera Model

We consider perspective projection as camera model. The projection of 3D points
is modeled by a 3 × 4 projection matrix P = KR

(
I| − t
)
, where K is the usual

3× 3 calibration matrix with the camera’s intrinsic parameters, and the orthog-
onal matrix R and the vector t represent camera orientation and position. For
simplicity, we assume that the camera is calibrated, i.e. that K is known (this
will be relaxed later). We thus directly work with geometric image coordinates,
i.e. consider that 3D points Q are projected to image points q via the canonical
projection matrix q ∼ R

(
I| − t
)
Q. 2D and 3D points are expressed in homoge-

neous coordinates and ∼ means equality of vectors or matrices, up to scale.

2.2 Pose Computation

A classical task of photogrammetry and computer vision is to compute the pose
of a calibrated camera, relative to an object of known structure. In this work, we
use planar reference objects. There exist many algorithms for the planar pose
problem; we use [10].

2.3 Reflections in Planes

Consider a plane Π = (nT, d)T in 3-space, i.e. consisting of points satisfying the
equation n1X +n2Y +n3Z +d = 0. In the following, we will always suppose that
the plane’s normal vector is of unit norm. The reflection in Π can be represented
by the following transformation matrix:

S =
(
I− 2nnT −2dn

0T 1

)
Let us denote the upper left 3×3 matrix of S by S̄. It is an orthogonal matrix,

with determinant −1 (whereas a rotation matrix has determinant +1). Further,
it has +1 as double eigenvalue and −1 as single eigenvalue. The plane normal n
is an eigenvector of S̄ to the eigenvalue −1. Note also that S−1 = S.
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2.4 Planar Motion and Fixed-Axis Rotation

Planar motion usually means a translation in some direction, followed by a
rotation about an axis that is orthogonal to the translation direction. Such a
motion can always be expressed as just a rotation about an axis that is parallel to
the above rotation axis; we thus prefer to call such motions fixed-axis rotations.
It is easy to show that any euclidian transformation that preserves some line
point-by-point, is a fixed-axis rotation, whose axis is that line.

Let the axis be represented by its direction vector D and a footpoint A such
that A + λD represents the points (in non-homogeneous coordinates) on the
axis. Any finite point on the axis can serve as footpoint; we always choose the
one that is “orthogonal” to D: ATD = 0. This is the point on the axis that is
closest to the origin.

Let α be the angle of rotation and R be the rotation matrix representing
rotation by α about D. Then, the 4× 4 matrix representing the complete fixed-
axis rotation, is:

T =
(
I A
0T 1

)(
R 0
0T 1

)(
I −A
0T 1

)
=
(

R A− RA
0T 1

)
.

2.5 Reflection in Two Planes

Consider successive reflections in two planes. It can be shown that this is a fixed-
axis rotation, with the intersection line of the two planes as rotation axis: the
transformation preserves the intersection line of the two planes point-by-point,
and thus is a fixed-axis rotation.

Further, the rotation angle is twice the angle between the two planes. This
is also easy to see: let the transformation be the sequence S2S1 of reflections in
two planes. Let us apply this transformation to the point at infinity (nT

1 , 0)T,
i.e. the normal direction of the first plane. This is a fixed point of S1, hence the
transformation gives the point’s reflection in S2. The angle between the original
point at infinity, and the transformed one, i.e. the fixed-axis rotation angle,
is thus twice the angle between the original point at infinity and the second
reflection plane. Hence, as said above, the sequence of reflections in two planes
is a fixed-axis rotation, whose angle is twice the angle between the planes.

2.6 Horopter

The horopter of a stereo system is the set of 3D points that project to points
with identical coordinates in the two cameras. Let P1 and P2 be the two cam-
eras’ projection matrices. The horopter thus consists of all 3D points Q with
P1Q ∼ P2Q. This is in general a quartic curve. If the two cameras have iden-
tical calibration and are separated by a fixed-axis rotation, then the horopter
“degenerates” into the union of a straight line and a circle: the motion’s rotation
axis and the circle in the motion plane that contains the two optical centers and
that cuts the rotation axis [5].
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3 Outline of the Proposed Approach

We consider a camera and an object in fixed position, put a planar mirror in the
scene in n different positions, and take an image for each of those. We suppose
that the camera sees the object’s reflection in each image. We further suppose
that the object’s structure is known and that correspondences between object
and image points can be obtained.

In the first step of our approach, the views of the reflected object are treated
as if they were direct views. We may thus compute a camera pose, from the
camera’s calibration and the given point correspondences. This will actually
give the pose of a “virtual” camera that is the reflection of the true camera,
in the planar mirror (cf. figure 1). Overall, we thus get the pose of n virtual
cameras, relative to the object.

In the second step, we try to infer the positions of the planar mirrors. The
underlying constraint is that reflecting the virtual cameras in mirrors with the
correct positions, will lead to n identical cameras – the true one. We show how
the mirror positions can be computed using the above notions of horopter and
fixed-axis rotation. We further show that for n = 2, the problem can be solved
up to 1 degree of freedom, and that with n > 2 a unique solution can be found.
These steps are described in the following sections.

4 Computing Pose of Virtual Cameras

In the following, we adopt the object’s coordinate system as our reference system,
in which the pose of true and virtual cameras will be expressed. Let the pose of
the true camera be represented by the projection matrix

R
(
I| − t
)

Consider now a planar mirror, defined by the plane

Π =
(
n
d

)
Object points Q are projected into the true camera as follows:

q ∼ R
(
I| − t
)(I− 2nnT −2dn

0T 1

)
Q

From point correspondences (Q,q), we can run any pose computation algo-
rithm and compute the projection matrix of the virtual camera:

P = R
(
I| − t
)(I− 2nnT −2dn

0T 1

)
= R
(
I− 2nnT) (I 2dn−

(
I− 2nnT

)
t
)

(1)

One issue needs to be considered: pose algorithms for perspective cameras
compute a pose consisting of a rotation and a translation component, whereas the
above projection matrix contains a reflection part. What the pose computation
will compute is thus a rotation matrix R′ and a camera position t′, with:

P ∼ R
(
2nnT − I

)︸ ︷︷ ︸
R′

(
I −t′
)

with − t′ = 2dn−
(
I− 2nnT) t
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Our input for the following steps is thus a set of n projection matrices Pi (we
drop the ’ above the Ri and ti):

Pi = Ri

(
I −ti

)
The basic constraint for solving our pose problem is the following (cf. §3): we

try to compute n planes Πi and associated reflection matrices Si such that

∀i, j : PiSi ∼ PjSj

If there is a unique solution for the set of planes, then any PiSi gives the pose
of the true camera. In the above equation, we may actually replace the equality
up to scale by a component-wise equality, since the determinants of the left 3×3
submatrices of the PiSi are all equal to −1. Hence, our constraint becomes:

∀i, j : PiSi = PjSj .

5 Two Mirror Positions

In this section, we investigate what can be done from just two mirror positions.
Our basic constraint is:

P1S1 = P2S2

Instead of directly trying to compute the reflections S1 and S2, we first con-
centrate on:

P1 = P2S2S−1
1 = P2S2S1

We have seen above that the sequence of two reflections gives a fixed-axis
rotation. Let us thus compute R and t in the following euclidian transformation
between the two virtual cameras:

P1 = P2

(
R t
0T 1

)
We get R = RT

2 R1 and t = t2 − RT
2 R1t1. In the following, we analyze what R

and t reveal about the individual reflections S1 and S2.
Let α be the rotation angle of R. We already know that it equals twice the

angle between the two mirror planes. Further, we want to compute the fixed axis
(the intersection of the two mirror planes). Let us represent it by its direction D
and a footpoint A, cf. §2.4. The direction D is identical with the rotation axis
of R and can for example be computed as its eigenvector to the eigenvalue +1.
Let D1 and D2 be an orthonormal basis of the complement of D, such that:

R
(
D1 D2

)
=
(
D1 D2

)(cosα − sinα
sin α cosα

)
As for the footpoint A, we compute it as follows. Since we want A to be

“orthogonal” to D, we can parameterize it by two scalars a1 and a2:

A =
(
D1 D2

)(a1
a2

)
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True camera

Virtual
camera 1

Virtual
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Mirror 1

Mirror 2

Intersection line
(seen from above)

Reference object

Virtual
camera 1

Virtual
camera 2

Reference object True camera

Virtual
camera 1

Virtual
camera 2

Reference object

Fig. 1. Illustration of the case of two planar mirrors. Left: the virtual cameras are the
reflections of the true one in the planar mirrors. Middle: the horopter curve of the two
virtual cameras is the union of the shown circle and the axis of the fixed-axis rotation,
i.e. the mirror planes’ intersection axis. Further shown is the angle α of the fixed-axis
rotation. Right: the true camera pose can be recovered up to one degree of freedom.
The reconstructed camera position is only constrained to lie on the shown circle.

The translation part of the fixed-axis rotation would thus be (cf. §2.4):

A− RA =
(
D1 D2

)(1− cosα sin α
− sinα 1− cosα

)(
a1
a2

)
In the absence of noise, this would be equal to t. However, with noise, the
computed R and t will in general not exactly represent a fixed-axis rotation. We
thus determine a1 and a2 that minimize the L2 norm of:

t−
(
D1 D2

)(1− cosα sin α
− sin α 1− cosα

)(
a1
a2

)
This is a linear least squares problem, with the following closed-form solution:(

a1
a2

)
=

1
2

(
1 − cot α

2
cot α

2 1

)(
DT

1
DT

2

)
t

So far, we have computed the axis and angle of the fixed-axis rotation being
the sequence of S2 and S1. What does this tell us about the mirror planes Π1 and
Π2? The axis being the planes’ intersection line, we know that both planes must
contain it; this determines each plane up to a rotation about the axis. Further,
we know the angle between the planes (α/2). In addition, not explained here
in more detail, we know the “ordering” of the two planes, i.e. the second plane
has always to be on the same side of the first (in terms of rotation about their
intersection line). Overall, we thus have computed the two mirror planes up to
a single unknown. It can be shown (not done due to lack of space) that this can
not be reduced further with only two planes.

A geometric illustration of the situation is given in figure 1. For simplicity,
we show the scene as seen from the direction of the mirror planes’ intersection
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line. On the right, the ambiguity in the inferred pose of the true camera is
shown: its position can lie anywhere on the circle that is centered in the fixed-
axis rotation axis, is “orthogonal” to the latter and passes through the two
virtual camera positions. Let us call this circle the pose circle. For every possible
camera position on the pose circle though, the camera’s orientation is uniquely
defined.

All possible poses for the true camera can be parameterized by an angle β as
follows. Any plane containing the axis of the fixed-axis rotation, can be written

Π ∼
(

D1 D2
−a1 −a2

)(
cosβ
sin β

)
for some β. We can thus parameterize the possible poses of the true camera by
β, by reflecting any of the virtual ones, say the first, in the family of planes Π .

6 Three or More Mirror Positions

With three or more mirror positions, our pose problem will in general be solvable.
Different approaches are possible. One could for example use the solution of the
previous section for all available pairs of mirror positions. The problem could be
geometrically expressed as one of finding the common point of a set of circles in
3-space (the circles as sketched in the right part of figure 1). A few special cases
need to be discussed:

– Consider the case where the planar mirror is rotated about some axis con-
tained in the mirror plane. In that case, the fixed-axis rotations for pairs
of mirror positions will all have the same axis, and the resulting pose cir-
cles will all be identical. The pose of the true camera will remain am-
biguous. Note that this case also refers to mirror positions that are par-
allel to each other (this can be seen as rotating the mirror about a line at
infinity).

– The case where the mirror moves in such a way that it remains tangent to
some cylinder. This implies that the lines of intersection for pairs of posi-
tions, will be parallel to one another. Hence, all pose circles lie on the same
plane but since we have three or more of them, there will be a single common
point: the position of the true camera.

– If there are intersection lines for pairs of mirror positions that are not par-
allel, then there are pose circles with different supporting planes. It can be
shown that there will be pose circles in at least three supporting planes with
different normals. Consequently, the set of pose circles can only have a sin-
gle common point (the intersection point of all supporting planes), meaning
that again, the pose problem can be solved.

In the following, we present a less geometrical method for combining results
from pairs of mirror positions. Consider mirror position i. Using §5, we can
compute the intersection lines of the mirror in that position, with any other
position. The plane at position i has to contain all these lines, and can thus
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be uniquely computed from two or more lines, unless all of them are identical
(cf. the above discussion). In the presence of noise, there will not be a plane
that exactly contains all these lines, and we perform a fitting procedure, as
follows. First, perform a least-squares fit to the direction vectors of all available
lines. This will be used as the plane’s normal vector. Then, compute the plane
position (the scalar d appearing elsewhere in this paper) that minimizes the
sum of squared distances to the available footpoints. This method fails if all
lines are parallel. An alternative procedure for that case is simple to devise
though.

Once mirror plane positions are computed, we reflect the virtual cameras in
the corresponding planes, to obtain the true camera’s projection matrix. The
complete method is summarized in the next section.

7 Complete Approach

1. For each mirror position, compute the pose of the virtual camera, relative
to the object.

2. For each pair of mirror positions, compute the fixed-axis rotation between
the virtual cameras.

3. For each mirror position, compute the mirror plane by fitting it to the asso-
ciated axes of fixed-axis rotations.

4. Compute the true camera’s projection matrix by reflecting any virtual cam-
era in the associated plane.

5. Do a non-linear bundle adjustment: minimize the sum of squared reprojec-
tion errors, over the pose of the true camera and the positions of the mirror
plane. This is implemented in the usual sparse manner [12].

For conciseness, we did not mention that in practice we also compute intrinsic
camera parameters during this procedure: in the first step, we also calibrate the
camera. In practice, we use a planar reference object; we thus use the method
of [13, 9] to calibrate the camera from the reflected views (the reflection does
not alter the intrinsic parameters), prior to computing pose in step 1. Fur-
ther, the bundle adjustment in the last step also optimizes intrinsic camera
parameters.

8 Experiments

8.1 Setup

We use an LCD monitor as reference object, considering it effectively as a pla-
nar surface. A structured light type approach [8] is used to get correspondences
between the screen and the image plane: for each position of the planar mirror,
we actually take a set of images, with the screen displaying a sequence of dif-
ferent patterns (cf. figure 2). Patterns are designed such that for each pixel in
the image plane, we can directly compute the matching “point” on the screen,
from the sequence of black-and-white (dark-and-light) greylevels received at the
pixel.
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8.2 Surface Reconstruction

We tested our method on real images, cf. figure 2. It was difficult to evaluate
the estimated pose, so we evaluate it indirectly as follows. In [1], we describe
an approach for the reconstruction of general specular surfaces from two images
of the reference object’s reflections. Here, to perform a quantitative evaluation,
we reconstruct a planar specular surface (a hard drive platter), without making
use of the planarity information for the reconstruction. Images are taken with
a fixed pose of the camera and the specular surface (cf. figure 3), but with two
different positions of the LCD monitor. Each of the two positions is estimated
using the approach presented in this paper, by placing planar mirrors in the
scene and making use of the knowledge of planarity.

The specular surface is reconstructed as a dense point cloud [1], to which
we fit a plane (linear least squares fitting without outlier removal). Over 98%
of the roughly 525,000 computed points were less than 0.2 mm away from the
computed plane and 64% less than 0.1 mm. The approximate diameter of the
reconstructed part of the platter was 80 mm, resulting in a 0.3% relative error in
the reconstruction. Refer to figure 4 for the histogram of point-plane distances.

Fig. 2. Two images of our setup. Four planar mirrors (hard disk platters) are placed
simultaneously in the scene. The object in the middle is a curved mirror, which was
not used for the experiments reported here. The LCD monitor is partly visible in the
image, but only its reflections are used to compute camera pose.

Fig. 3. Two of the images used for the reconstruction of the planar hard drive platter
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Fig. 4. Point-plane distance. Histogram of the distance of each point to the linear
least squares fitted plane (in mm).

9 Conclusions

We have addressed the problem of computing the pose of an object relative
to a camera, without any direct view of the object. This problem has to our
knowledge not been studied yet. A theoretical study and a practical algorithm
have been provided, making use of planar mirrors put in unknown positions in
the scene. It was shown that with three mirror positions or more, the problem
can in general be solved.

Although rather specific, this problem is very relevant for our work on specular
surface reconstruction, which like many similar works uses setups where the
camera has not direct view of the reference object.

The method was shown to work with real images, although by an indirect
evaluation via a specular surface reconstruction method. A more in-depth eval-
uation using simulated data should be done, but it seems to be reasonable to
assume that the performances will be similar to those of calibration and pose
estimation of a camera from several images of a planar calibration grid [13, 9]
(the number of parameters and the geometries of the problems are similar).
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Abstract. We describe a method for computing a dense estimate of
motion and disparity, given a stereo video sequence containing moving
non-rigid objects. In contrast to previous approaches, motion and dis-
parity are estimated simultaneously from a single coherent probabilistic
model that correctly accounts for all occlusions, depth discontinuities,
and motion discontinuities. The results demonstrate that simultaneous
estimation of motion and disparity is superior to estimating either in
isolation, and show the promise of the technique for accurate, proba-
bilistically justified, scene analysis.

1 Motivation and Previous Work

The “temporal stereo + motion” problem of estimating the disparity and motion
fields in a video sequence of moving objects captured by a calibrated pair of
stereo cameras has been studied for at least two decades [1]. It is worthwhile to
distinguish between the standard temporal stereo + motion problem, and the
more restricted problem of estimating disparity and motion from two consecutive
frames in a stereo sequence; we refer to the latter as “two-frame stereo + motion”.
This paper first introduces a novel solution for two-frame stereo + motion, then
explains how to extend the solution to stereo sequences.

Our ultimate objective is to form a reliable, dense 2.5D representation of an
image sequence. Acquiring a rectified stereo sequence and running traditional
stereo algorithms fills in much of the necessary information, but dense disparity
estimation from a single stereo pair is challenging. Matches can be highly am-
biguous in non-textured regions; and background regions near foreground object
boundaries are only visible in a single camera, meaning their depth must be
estimated using only prior information about the shapes of objects in the world.

Exploiting temporal coherence in the stereo sequence can in principle alleviate
both of these problems, however as previous work has noted [2], in the absence
of explicit motion estimates it is hard to do better than to average out thermal
imaging noise in stationary regions. We therefore propose to jointly estimate
dense motion and disparity in a single coherent probabilistic framework. We show
that making use of two-frame motion estimation in conjunction with traditional
stereo greatly reduces the regions of the scene which are visible only in a single
image. In addition, by filtering over time we are able to propagate information
about the depth of scene patches during extended occlusions in the non-reference
image.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 32–41, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Work on temporal stereo+motion has generally been based on sparse image
features. This sparsity is not directly compatible with the dense reconstruction
of the disparity and motion fields, which is the goal of this paper. Examples of
the feature-based approach include [3], which uses line correspondences, and [4].

One significant example that uses optical flow rather than features is [5].
However, this approach employs an iterative segmentation of the scene: an ini-
tial estimate is obtained assuming a single rigid motion of the entire scene, then
objects with distinct motions are segmented in later iterations by detecting out-
liers. In contrast, the approach of this paper employs a single probabilistic model
from which the motions of all objects are inferred coherently.

Our work is closer in spirit to the large literature on dense stereo reconstruc-
tion, including those methods that use belief propagation [6], graph cuts [7], or
dynamic programming [8, 9]. However, none of these approaches attempt motion
estimation.

Other notable temporal stereo + motion contributions include [10], which
achieves excellent accuracy using structured light, and [11, 12], both of which
describe interesting algorithms which cannot conveniently be placed in a prob-
abilistic framework.

Our approach to two-frame stereo + motion defines a single Markov random
field (MRF) whose nodes are the pixels of the reference image, and whose la-
bels incorporate all possible disparity, motion, and occlusion values. Inference is
performed by approximating the MAP estimate for this MRF using loopy belief
propagation. As far as we are aware, this is the first work to attempt simul-
taneous disparity and motion estimation using MRFs. In more abstract terms,
however, our approach is distinguished from previous approaches to temporal
stereo + motion in three important respects: (i) our estimates are dense, in con-
trast to feature-based approaches such as [3]; (ii) we employ a single coherent
probabilistic model, in contrast to iterative segmentation approaches such as [5];
and (iii) the likelihoods correctly account for occlusions and discontinuities. We
believe this paper presents the first stereo + motion work satisfying all of (i)-(iii).

Item (iii), the modeling of occlusions and discontinuities, can be viewed as a
generalization of the occlusion modeling in much previous work on stereo (e.g.
[13, 8]). The essential idea is that the likelihood of a particular disparity hypoth-
esis for a particular world point cannot be computed without also specifying
whether that point is visible or occluded in each of the images. This “occlusion
status” varies in a deterministic fashion near object boundaries. Figure 1 gives a
schematic example of this for the stereo + motion problem. One key contribution
of this work is that the data likelihoods in the MRF are computed in the follow-
ing way. The MRF label at a reference image pixel includes an occlusion status
(corresponding to the color rendered in figure 1), and this is used in turn to de-
termine which of the non-reference image patches should contribute to the data
likelihood. In contrast to much previous work on stereo and motion, patches cor-
responding to occluded world points are explicitly excluded when they should be.

Our solution to the multi-frame temporal stereo + motion problem amounts
to a simple extension of the two-frame MRF. By treating the problem in the
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left previous image right previous image

left current image right current (reference)
image

Fig. 1. Motion and disparity determine visibility in non-reference images.
Two foreground objects with positive disparities are shown moving against a zero-
disparity stationary background. Each pixel in the reference image is colored according
to which non-reference images it is visible in. For example, a pixel visible in the left and
right previous images but not the left current image is colored blue + green = cyan,
pixels visible in all three non-reference images are white, and pixels visible nowhere
except the reference image are black.

context of filtering (as opposed to smoothing), the outputs from previous frames
can be incorporated by adding an extra term to the MRF data cost.

Section 2 describes the MRF employed for two-frame stereo + motion, and
Section 3 explains the extension to the multi-frame case. Section 4 discusses the
use of loopy belief propagation to approximate MAP estimates in these MRFs,
and Section 5 describes the results.

2 The MRF for Two-Frame Stereo + Motion

The input to the two-frame stereo + motion algorithm consists of four images:
Left0, Right0, Left1, Right1 (which are, respectively, the left and right stereo
views of the previous and current frames of a stereo video sequence). The stereo
pairs are assumed to be rectified, so that epipolar lines are horizontal, with
corresponding pairs occurring on the same scanline.

The output consists, informally, of a complete reconstruction of the disparity
and motion fields implied by these four images. To formalize this, we define a
graphical model and compute an approximation to the MAP estimate of the
disparity and motion fields. The unknowns in the graphical model form a stan-
dard four-connected rectangular lattice of the same size as the input images. The
nodes are denoted gx,y, x ∈ {0, 1, . . . , X − 1}, y ∈ {0, 1, . . . , Y − 1}, where X, Y
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are the width and height, respectively, of the input images. We select the current
right-hand image Right1 to be the reference image, so the state at node gx,y, de-
noted sx,y, represents the motion and disparity estimated at pixel (x, y) in Right1.

The state sx,y at node gx,y models a particular point (or, more realistically,
a patch) P on a particular object in the world. P is found by back-projecting a
ray from the pixel (x, y) in the reference camera until the ray intersects a scene
object. Note that P is fixed on the object, but the object itself may have moved
between the previous and current frames. Note also that P may or may not be
visible in each of the three non-reference images. The state sx,y is specified by
five components. Omitting the x, y suffices, we write s = (o, d, u, v, w), where:
– o is an “occlusion status”, described below
– d is P ’s disparity in the current frame
– u and v are respectively the horizontal and vertical components of P ’s motion
– w is the difference between P ’s disparity in the previous frame and the

current frame; w can also be thought of as the “depth” component of the
motion.

The occlusion status o comprises three binary flags o = (oL1, oL0, oR0) specify-
ing whether or not P is visible in the non-reference images. A formal definition
of the remaining state variables — d, u, v, w — consists of describing where P
projects to in each non-reference image, assuming that it is visible. The defini-
tions adopted are that P projects to

(x + d, y) in Left1
(x− u + d− w, y − v) in Left0 (1)

(x− u, y − v) in Right0.

The posterior probability of the graphical model with states {sx,y} is (by defi-
nition) the product of some one- and two-node potentials:

L =
∏
(x,y)

Φ(sx,y)
∏

(x,y)∼(x′,y′)

Ψ(sx,y, sx′,y′), (2)

where the second product is over pairs of neighboring nodes.
Maximizing L is the same as minimizing its negative log, so writing φ =

− logΦ, ψ = − log Ψ we can cast the final objective as minimizing the log poste-
rior: L =

∑
(x,y) φ(sx,y) +

∑
(x,y)∼(x′,y′) ψ(sx,y, sx′,y′). The first term here is the

data cost, discussed next in section 2.1. The second term is the continuity cost,
discussed in section 2.2.

2.1 Data Cost

The normalized sum of squares difference (NSSD) [14] between patches centered
at (x, y) in image I and (x′, y′) in image I ′ is defined as

NSSD(I, x, y; I ′, x′, y′) =∑
dx,dy ‖(Ix+dx,y+dy − Ix,y)− (I ′x′+dx,y′+dy − I

′
x′,y′)‖2

2
∑

dx,dy

(
‖Ix+dx,y+dy − Ix,y‖2 + ‖I ′x′+dx,y′+dy − I

′
x′,y′‖2

) (3)
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Here, (dx, dy) ranges over an origin-centered K×K patch of integers in Z
2; ‖ · ‖

is the Euclidean norm in RGB space (i.e. R
3); Ix,y is the RGB value (in R

3) of
the image I at pixel location (x, y); Ix,y is the average RGB value of the image
I over a K ×K patch centered on (x, y).

Experience has shown that the discriminatory power of the NSSD (3) is im-
proved by changing it in two ways. First, the means Ix,y are computed with a
Gaussian weighting centered on the relevant patch, with a relatively small stan-
dard deviation of 0.75 pixels. Second, the NSSD is redefined to be the minimum
of (3) over all 2-D sub-pixel shifts of the patch centered at (x, y). The sub-pixel
shift can be computed analytically from the image and gradient values within
the patch, using the Lucas-Kanade formulas [15].

Obviously, the NSSD is expected to be small for patches derived from dif-
ferent views of the same world point, and arbitrary otherwise. This intuition is
captured here by assuming the NSSD is distributed according to some probabil-
ity law Π(·) when the patches correspond, and a distinct probability law Π̃(·)
otherwise. The negative log probabilities for these distributions will be written
π = − logΠ , π̃ = − log Π̃ . Numerical values for Π, Π̃ can be learned from train-
ing data or derived from physical assumptions, as described in our technical
report [16].

The data cost associated with graph node gx,y in state s = (o, d, u, v, w) can
now be defined. First, let

NSSDL1 = NSSD(Right1, x, y; Left1, x + d, y)
NSSDL0 = NSSD(Right1, x, y; Left0, x + d− u− w, y − v)
NSSDR0 = NSSD(Right1, x, y; Right0, x− u, y − v) (4)

These definitions have a simple intuitive interpretation. The node gx,y models a
world point P . Each of the NSSDs in (4) computes the similarity of two patches
that are projections of P : one in the reference image, centered at (x, y), and one
in a non-reference image, centered at the location implied by d, u, v, w, as defined
by equation (1). However, there is no guarantee that P is actually visible in the
non-reference images. In the cases when P is visible, the NSSD will be distributed
according to Π(·); but when it is occluded, the NSSD is distributed according
to Π̃(·). Recalling the definitions of π, π̃ above, this motivates the definition
CostL1 = π(NSSDL1) if oL1 = Visible or π̃(NSSDL1) otherwise, and similarly for
CostL0 and CostR0. These costs are genuine log probabilities, based on the distri-
bution of NSSDs for matched and unmatched patches. Assuming independence
between the different NSSD outcomes is equivalent to summing these log proba-
bilities, leading to a total data cost given by φx,y(s) = CostL1 +CostL0 +CostR0.
Previous work [17] using a similar data cost has shown empirically that the log
likelihood ratio of NSSDs, π/π̃, is well-approximated by a linear function in the
region of interest. We take advantage of this here by noting that the above data
cost can be expressed in terms of this log likelihood ratio, and adopt a learnt
linear function for π/π̃.
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2.2 Continuity Cost

Consider two neighboring nodes g, g′ in the graphical model. They are in states
s = (o, d, u, v, w) and s′ = (o′, d′, u′, v′, w′) respectively. We would like to derive
the continuity cost ψ(s, s′). We assume the five components of the state are prob-
abilistically independent, given the image data. Neglecting these dependencies
is equivalent to adopting the following functional form for the continuity cost:
ψ(s, s′) = ψm(o, o′) + ψd(d, d′) + ψu(u, u′) + ψv(v, v′) + ψw(w, w′). Reasonable
choices for each of these terms can be determined based on expected scene char-
acteristics and the physics of image formation in a calibrated stereo camera rig.
For ψm, we choose a Potts model with temperature T :

ψm =

{
0 if o = o′,
1/T if o 
= o′

(5)

where an appropriate value for T can be determined by simulating the Potts
model.

For each of the remaining terms in the continuity cost, we assume the absolute
difference is distributed such that the negative log of its distribution function
has a truncated linear form, for example: ψd(d, d′) = min (a, b |d− d′|) . Our
technical report [16] describes how to choose sensible values for a, b based on
physical reasoning.

In fact, a need not be constant over the graphical model. Observe that dispar-
ity and motion fields are often discontinuous at object boundaries, and object
boundaries often occur at locations with high image gradients. This intuition
can be incorporated by setting a = a0 exp(−‖∇I‖/α), where ‖∇I‖ is the gradi-
ent of the reference image at the location corresponding to the nodes g, g′. We
follow [17] in setting α to be the average value of the image gradient over the
whole reference image. However, note that the authors of [17] switch on this so-
called “contrast model” only between nodes whose occlusion status differs: this
is because [17] deals with 1-D horizontal MRFs, in which a change of occlusion
status is guaranteed to correspond to an object boundary. When using 2-D or
3-D MRFs, object boundaries can occur between two neighboring MRF nodes
with the same occlusion status. (The simplest example is two vertical neighbors
straddling a horizontal object boundary—in this case, both relevant world points
are visible in all images.) Hence, our contrast model is switched on for all pairs
of neighboring nodes.

3 Temporal Filtering of Stereo + Motion

The previous section described a model for computing disparity and motion fields
from two consecutive frames of a stereo video sequence. Clearly, this model could
be applied separately to each pair of consecutive frames in a sequence, to obtain
disparity and motion fields for the entire sequence. However, we would like to do
better: it should be possible to obtain improved estimates by exploiting temporal
coherence. This can be achieved with very little extra computational cost, by
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adopting a filtering model in which inferences at time t are influenced by the
past — specifically, the output at time t− 1.

To explain the details of this, some more general notation is needed. Let G(t)

be the MRF for time t, with nodes g
(t)
x,y and labels s

(t)
x,y. The output of the filtering

algorithm at time t is a set of estimated labels ŝ(t) = {ŝ(t)
x,y}.

It can be shown [16] that this filtering model is equivalent to adding an extra
term to the data cost of Section 2.1, consisting of a temporal compatibility
function γ(s(t)

x,y; ŝ(t−1)). A plausible form of this temporal compatibility function
can be derived as follows. As usual, write the label in terms of its occlusion
status, disparity, and motion as s

(t)
x,y = (o, d, u, v, w), with the occlusion status

further broken out into three bits expressing the visibility in the non-reference
images: o = (oL,t, oL,t−1, oR,t−1). Let P be the world point visible at location
(x, y) in the reference image. Then sx,y expresses certain physical facts about P ,
including the following: if oR,t−1 = Visible, then P is visible in image Rightt−1 at
location x′ = x− u, y′ = y − v, with disparity d′ = d − w. Adopting a constant
velocity motion model, we may also assume that P ’s velocity at time t − 1 is
given by u′ = u, v′ = v, w′ = w.

However, note that the image Rightt−1 is the reference image for the stereo
+ motion computation on G(t−1). Thus (still assuming that oR,t−1 = Visible),
the MAP estimate for G(t−1) also has an opinion about P ’s state: specifically, its
opinion is equal to ŝ

(t−1)
x′,y′ , which we write more explicitly as ŝ

(t−1)
x′,y′ = (ô, d̂, û, v̂, ŵ).

The temporal compatibility function γ expresses the fact that P ’s disparity
and motion is expected to vary slowly, so this cost should be small when sx,y

is close to ŝx′,y′ . A standard choice is to interpret γ as the negative log of a
robust distribution function whose components are independent. This is equiv-
alent to taking γ(sx,y; ŝ(t)) = γd(sx,y, ŝx′,y′) + γu(sx,y, ŝx′,y′) + γv(sx,y, ŝx′,y′) +
γw(sx,y, ŝx′,y′), with a robust cost function such as the truncated linear for each
component e.g. γd(sx,y, ŝx′,y′) = min(a, b |d′ − d̂|) for constants a, b.

However, the previous discussion assumed that point P was visible in Rightt−1
(i.e. oR,t−1 = Visible). If P is not visible, the temporal compatibility function
should be uniform. Therefore, the final form adopted for the components of γ is:

γd(sx,y, ŝx′,y′) =

{
min(a, b |d′ − d̂|) if oR,t−1 = Visible,
a otherwise,

and similarly for γu, γv, γw. Our technical report [16] explains how to make
sensible choices for a, b.

4 Inference for Stereo + Motion

We estimate the MAP of the MRF described in the previous section using the
min-sum formulation of loopy belief propagation (BP) [18]. The form of our
model allows the use of distance transform techniques [19] which greatly reduce
the computational cost, however belief propagation on large images with large



Dense Motion and Disparity Estimation Via Loopy Belief Propagation 39

disparities and motions remains expensive. It is clear that a multi-resolution
approach would help to ameliorate the expense. But note that approaches such
as [19], which employ coarser resolutions of the pixel (or graph node) space,
while retaining the full state space resolution, are insufficient: the multiscale al-
gorithm must reduce the number of states considered at each node. We believe
it is possible to do this, but the design of such a multiscale algorithm is not at all
trivial, and must be postponed to a future paper. Hence, the results presented in
the next section employ small, coarsely-subsampled images in order to demon-
strate the effect of our stereo + motion algorithm while keeping computational
requirements within acceptable limits.

5 Results

We tested our algorithm on several stereo sequences obtained from the public
database at http://www.research.microsoft.com/vision/cambridge/i2i/DSWeb.-

htm. The examples shown here are taken from the “Geoff” sequence, focusing on
a 100×80 pixel region in the top corner of the sequence, subsampled by a factor
of 2 to give 50×40 pixels per frame. For the full stereo + motion computation we
use a label space with maximum values of |o| = 8, |d| = 8, |u| = 8, |v| = 3, |w| = 1,
giving 1536 labels per node. The small image size and restricted range of disparity
and motion are chosen for computational convenience, however the power of the
approach is demonstrated even on this limited example.

Figure 2 demonstrates resistance to fast-moving occluders. When a nearby
foreground object moves in from the left the stereo computation alone is unable
to accurately estimate the foreground disparity in the newly-occluded region.
The filtered stereo + motion algorithm correctly uses information from previous
timesteps to recover a reasonable disparity estimate. The 2-frame stereo+motion
algorithm, not shown, has a slightly noisier output but avoids the gross
artifact.

(a) left
previous
image

(b) right
previous
image

(c) left
current
image

(d) right
current
image

(e) disparity
estimated

from stereo
alone

(f) disparity
estimated

from filtered
stereo +
motion

Fig. 2. Stereo+motion estimates disparity through transient occlusions. An
occluder has appeared in the bottom corner of the left current image (c) but not yet
in the right (d). The stereo computation alone (e) does not have enough information
to estimate the disparity in this region, but the filtered stereo+motion algorithm (f)
uses information from previous timesteps to improve the result.
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(a) left
previous
image

(b) right
previous
image

(c) left
current
image

(d) right
current
image

(e) disparity
estimated

from
two-frame
stereo +
motion

(f) disparity
estimated

from filtered
stereo +
motion

Fig. 3. Stereo+motion propagates disparity estimates through multiple
frames. The foreground person has stopped moving, and there is a large left oc-
clusion in the textureless area on the right hand side of the image. The two-frame
stereo computation (e) has no information about the disparities in this occluded region
and the lack of texture causes a large artifact. The filtered stereo+motion estimate (f)
propagates disparity estimates from previous frames to stabilise the difficult region.

Figure 3 shows an additional benefit of temporal filtering. The right hand
edge of the image is textureless and the foreground person is almost stationary,
hence neither the disparity alone nor two-frame stereo + motion can accurately
estimate the disparity where the wall is occluded in the left image. Since the
foreground person was previously further to the left, there was a reliable dis-
parity estimate on the wall at an earlier frame, and the filtering algorithm has
propagated this estimate in the absence of new information.

The full filtering algorithm for the examples shown takes around 5 s per frame
in a C++ implementation running on a 2.2GHz Intel Xeon workstation. For
comparison, the disparity-only computation on this small image patch takes
330ms per frame; comparing with the state of the art suggests there is substantial
room for improvement if performance were critical.

6 Conclusions

An algorithm was presented to solve the temporal stereo + motion problem.
We believe this is the first such algorithm to obtain dense disparity and motion
estimates using a coherent probabilistic framework with physically correct oc-
clusion labels. The approach models a two-frame stereo + motion problem as a
single MRF, and extends to the multi-frame case by using temporal filtering in
the same MRF framework.

The results confirm that dense stereo + motion produces superior results to
stereo alone. The estimates for both stationary and moving objects are stabilized,
exhibiting less flicker. Additionally, there are certain image regions in which
stereo alone has no information, but stereo + motion does have information in
(the majority of) those regions, and can therefore infer correct disparity and
motion fields there.
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The clearest opportunity for future work is in decreasing the computational
expense of the algorithm, and the most obvious avenue for this is a multi-scale
approach. This is presently an object of active research.
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Abstract. In this paper, we discuss the design and implementation of a Field-
Programmable Gate Array (FPGA) based stereo depth measurement system that
is capable of handling a very large disparity range. The system performs rectifi-
cation of the input video stream and a left-right consistency check to improve the
accuracy of the results and generates subpixel disparities at 30 frames/second on
480×640 images. The system is based on the Local Weighted Phase-Correlation
algorithm [9] which estimates disparity using a multi-scale and multi-orientation
approach. Though FPGAs are ideal devices to exploit the inherent parallelism
in many computer vision algorithms, they have a finite resource capacity which
poses a challenge when adapting a system to deal with large image sizes or
disparity ranges. In this work, we take advantage of the temporal information
available in a video sequence to design a novel architecture for the correlation
unit to achieve correlation over a large range while keeping the resource utilisa-
tion very low as compared to a naive approach of designing a correlation unit in
hardware.

1 Introduction

Stereo disparity estimation is a prime application for embedded computer vision sys-
tems. Since stereo can provide depth information, it has potential uses in navigation
systems, robotics, object recognition and surveillance systems, just to name a few. Due
to the computational complexity of many stereo algorithms, a number of attempts have
been made to implement such systems using hardware [2, 10, 14, 19], including recon-
figurable hardware in the form of FPGAs [6, 11, 20, 12, 18, 5]. In related work, [1] im-
plements Lucas & Kanade optic flow using FPGAs. Solutions based on reconfigurable
hardware have the desirable property of allowing the designer to take advantage of the
parallelism inherent in many computer vision problems, not the least of which is stereo
disparity estimation.

While designing with FPGAs is faster than designing Application Specific ICs
(ASICs), it suffers from the problem of fixed resources. In an application based on a
serial CPU or DSP, one can typically add memory or disk space to allow the algorithm
to handle a larger version of the same problem, for example larger image sizes or in-
creased disparity ranges in the case of stereo. System performance may suffer, but the
new system still runs. In the case of FPGA-based systems, there is a finite amount of
logic available, and when this is exhausted the only solution is to add another device

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 42–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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or modify the algorithm. Not only is this costly from the design point of view, but
may also involve the additional design issue of how to partition the logic across several
devices.

In this paper we present the development of a versatile real-time stereo-vision
platform. The system is an improvement of an earlier one [5] and addresses specific
limitations of the previous system; capability to handle very large disparities, improv-
ing the accuracy of the system by pre-processing (input image rectification) and post-
processing (consistency check), and finally the ability to handle larger images. The
highlight of the work is the development of a novel architecture for the Phase Corre-
lation Unit that can handle the correspondence task for scenes with very large dispar-
ities, but without increased resource usage on the FPGA, as compared to [5] which is
capable of handling a disparity of only 20 pixels. The key to achieving large dispar-
ity correspondence matches is the use of a shiftable correlation window that tracks the
disparity estimate for each pixel over time, as well as a roving correlation window that
explores the correlation surface outside the range of the tracking window in order to
detect new matches when the shiftable window is centred on an incorrect match. The
basic assumption is that, in most cases, disparity values do not change radically between
frames, thus allowing some of the computation to be spread over time.

In Section 2, we briefly outline the technology used in this work and the platform
used for the system development. In Section 3, we cover the theoretical basis of the
phase-based stereo algorithm and then describe the architecture and implementation of
the system. Section 4 discusses the results and the use of the correlation unit in alternate
situations.

1.1 Previous Work

A variety of reconfigurable stereo machines have been reported [18, 12, 20, 6, 11]. The
PARTS reconfigurable computer [18] consists of a 4 × 4 array of mesh-connected FP-
GAs with a maximum total number of about 35,000 4-input LUTs. A stereo system
was developed on PARTS hardware using the census transform, which mainly consists
of bit-wise comparisons and additions [20]. Kanade et al.[12] describe a hybrid system
using C40 digital signal processors together with programmable logic devices (PLDs,
similar to FPGAs) mounted on boards in a VME-bus backplane. The system, which the
authors do not claim to be reconfigurable, implements a sum-of-absolute-differences
along predetermined epipolar geometry to generate 5-bit disparity estimates at frame-
rate. In Faugeras et al.[6], a 4× 4 matrix of small FPGAs is used to perform the cross-
correlation of two 256 × 256 images in 140 ms. In Hou et al.[11], a combination of
FPGA and Digital Signal Processors (DSPs) is used to perform edge-based stereo vi-
sion. Their approach uses FPGAs to perform low level tasks like edge detection and
uses DSPs for higher level integration tasks. In [5] a development system based on four
Xilinx XCV2000E devices is used to implement a dense, multi-scale, multi-orientation,
phase-correlation based stereo system that runs at 30 frames/second (fps). It is worth
noting that not all previous hardware approaches have been based on reconfigurable de-
vices. In [13], a DSP-based stereo system performing rectification and area correlation,
called the SRI Small Vision Module, is described. ASIC-based designs are reported in
[16, 2] and in [19] commodity graphics hardware is used.
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2 Reconfigurable Computing Platform

2.1 Field-Programmable Gate Arrays

An FPGA is an array of logic gates whose behaviour can be programmed by the end-
user to perform a wide variety of logical functions, and which can be reconfigured as
requirements change. FPGAs generally consist of four major components: 1) Logic
blocks/elements (LB/LE); 2) I/O blocks; 3) Logic interconnect; and 4) dedicated hard-
ware circuitry. The logic blocks of an FPGA can be configured to implement basic com-
binatorial logic (AND, OR, NOR, etc gates) or more complex sequential logic functions
such as as microprocessor. The logic interconnect in an FPGA consists of wire segments
of varying lengths which can be interconnected via electrically programmable switches.
The density of logic blocks used in an FPGA depends on the length and number of wire
segments used for routing.

Most modern FPGAs also have various dedicated circuitry in addition to the pro-
grammable logic. These come in the form of high-speed and high-bandwidth embedded
memory, dedicated DSP blocks, Phase-Locked Loops (PLLs) for generating multiple
clocks, and even general purpose processors. The FPGA we are using in our system, the
Altera Stratix S80, comes with three different memory block sizes; 512 bits, 4 Kbits,
and 512 Kbits for a maximum of 7 Mbits of embedded memory and 22 DSP blocks
consisting of multipliers, adders, subtractors, accumulators, and pipeline registers. Fig-
ure 1 (a) shows an overview of the Altera Stratix S80 chip [3].

2.2 Transmogrifier-4Reconfigurable Platform

The TransmogrifierFour [7] (b) is a general purpose reconfigurable prototyping sys-
tem containing four Altera Stratix S80 FPGAs. The board has specific features to sup-
port image processing and computational vision algorithms; these include dual-channel
NTSC and FireWire camera interfaces, video encoder/decoder chip, and 2GB of DDR
RAM connected to each FPGA. Each FPGA is also connected to the other three FPGAs
and a PCI interface is provided to communicate with the board over a network. This can
be used to send control signals or for debugging. The board with its major components
is shown in Figure 1 (b).

(a) (b)

Fig. 1. (a)Typical features of a modern FPGA [3]. (b) Transmogrifier-4 reconfigurable computing
board [7].
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3 Large Disparity Stereo-System Development

The system implemented in this work is based on the “Local Weighted Phase Corre-
lation” (LWPC) algorithm [9], which estimates disparity at a set of pre-shifts using a
multi-scale, multi-orientation approach. A version of this algorithm was implemented
in [5] but the system is limited to handling a maximum disparity of 20 pixels due to
resource limitations on the FPGA. In the current implementation, we use two shiftable
windows in the correlation unit to increase the disparity range of the system to 128 pix-
els (theoretically, the system can be implemented to handle a disparity range as large
as the image width) without an increase in resource usage. There is a trade-off between
the maximum disparity the system can handle and the time to initialise the system or
recover from a mismatch, typically in the range of few tens of milliseconds.

3.1 Temporal Local-Weighted Phase Correlation

Based on the assumption that at video-rate (30 fps) the disparity of a given pixel will
not change drastically from one frame the next, we use temporal information by per-
forming localised correlation using a window centred on the disparity a pixel is ex-
pected to have at the current frame. This is discussed further below where we describe
the architecture of the Phase Correlation Unit. Disparity calculations are performed at
three scales(1, 2, 4) and in three orientations (−45o, 0o, +45o), the results of which
are summed across scale and orientation. The expected interval between false peaks is
approximately the wavelength of the filters applied at each scale. Thus the false peaks
at different scales occur at different disparities and summation over the scales yields a
prominent peak only at the true disparity [9]. The details of the LWPC algorithm can
be found in [8]. Step 2 of the algorithm reflecting the incorporation of the temporal
information is shown below:

2. For each scale and orientation, compute local voting functions Cj,s(x, τ) in a win-
dow centred at τc as

Cj,s(x, τ) =
W (x) ⊗ [Ol(x)O∗

r (x + τ)]√
W (x)⊗ |Ol(x)|2

√
W (x) ⊗ |Or(x)|2

, (1)

where W (x) is a smoothing, localized window and τ is the pre-shift of the right
filter output centred at the disparity of the pixel from the previous frame.

In addition, pre-processing (image rectification) and post-processing (left-right / right-
left validation check) stages are also implemented to increase the accuracy of the
system.

3.2 System Architecture

The high level architecture of the complete system is shown in Figure 2. It consists
of six major units: Video Interface unit, Image Rectification unit, Scale-Orientation
Decomposition unit, Phase-Correlation unit, Interpolation and Peak Detection unit, and
Consistency Check unit.
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Fig. 2. High-level architecture of the stereo system

The Video Interface Unit is capable of receiving video signals from either NTSC
or FireWire cameras at 30 fps and an image size of 480× 640. In addition to the pixel
values, the Video Interface Unit output “new line” and “new frame”signals. The data is
sent to the Image Rectification Unit as it arrives without any buffering. This unit runs
on the camera clock.

The Image Rectification Unit (Figure 3) treats the left input as the reference im-
age and rectifies the right input using bilinear interpolation [17]. A stereo-setup with
a worst-case vertical misalignment of 32 scanlines between the left and right image is
assumed, which requires buffering of 64 scanlines of both the left and right image. This
unit, as the rest of the system except the Video I/O Unit, run on the system clock. A
synchroniser circuit is designed to handle glitch-free transfer of data between the two
asynchronous clocks.

The warping operation for image rectification is approximated using the following
bicubic polynomial:

x
′
= a0 + a1x + a2y + a3x

2 + a4xy + a5y
2

+a6x
3 + a7x

2y + a8xy2 + a9y
3

y
′
= b0 + b1x + b2y + b3x

2 + b4xy + b5y
2

+b6x
3 + b7x

2y + b8xy2 + b9y
3 , (2)

where the ai and bi coefficients are computed by offline calibration.
The Scale-Orientation Decomposition Unit first builds a three-level Gaussian

Pyramid by passing the the incoming right and left images through low-pass filters
and sub-sampling. The pyramids are then decomposed into three orientations (-45o,
0o, +45o) using G2/H2 steerable filters. G2/H2 filtering is implemented using a set of
seven basis filters. By choosing a set of proper coefficients for the linear combination
of the basis filters, filters of any arbitrary orientation can be synthesised. Since G2/H2
filters are X-Y separable, they require considerably less hardware resources than non-
separable filters. The filter output is reduced to a 16-bit representation which is then
sent to the Phase-Correlation unit.
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Fig. 3. Architecture of Image Rectification
Unit
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Fig. 4. Modified correlation unit with two shifta-
ble windows

The Phase-Correlation Unit computes the real part of the voting function Cj,s(x, τ)
as mentioned in Eq. 1 for all 1 ≤ s ≤ S, 1 ≤ j ≤ F , 0 ≤ τ ≤ D, where S is the total
number of scales, F is the total number of orientations, and D is the maximum allowed
disparity.

The Phase Correlation Unit is implemented using two shiftable correlation windows
(see Figure 4) instead of a fixed window as is the traditional approach. One window, the
Primary Tracking Window (PTW) uses temporal information to perform correlation in
a localised region for each pixel. The tracking algorithm is currently a very simple one;
the window is centred at the disparity estimate from the previous frame for a given
pixel. More complex algorithms can be used as discussed in Section 4. When propagat-
ing disparity estimates between frames, it is necessary to consider that such algorithms
suffer from the risk of getting stuck in a local minima (wrong matches) [4], especially
during the initial frames. We have employed an initialisation stage to obtain an accurate
disparity map. A second window, the Secondary Roving Window (SRW) (see Figure 5)
does an incremental search up to a user-specifiable maximum disparity value. The in-
crements are set equal to length of the correlation window, L, but these can be modified
by a user at run-time. The SRW also aides in recovery from a mismatch after the ini-
tialisation stage. In situations where a new object enters the scene or a region becomes
dis-occluded, the SRW will pick up this new information and provide a disparity es-
timate with a higher confidence value than the PTW, which can then latch on to this
new estimate. There is a tradeoff between the time to recovery from a mismatch and the
maximum disparity that the system can handle. For a maximum disparity of 128 pixels
with increments of 10 pixels per frame for the SRW, the worst-case time to recovery is
233 milliseconds.

The Interpolation/Peak-Detection Unit interpolates the voting function results,
Cj,2(x, τ) and Cj,4(x, τ), from the two coarser scales, in both x and τ domains such
that they can be combined with the results from the finest scale, Cj,1(x, τ). Quadrature
interpolation is performed in the τ domain and constant interpolation in the x domain.
The interpolated voting functions are then combined across the scales and orientations
to produce overall voting function C(x, τ). The peak in the voting function is then
detected for each pixel as the maximum value of C(x, τ).

The Consistency Check Unit receives the estimated disparity results from both left-
right and right-left correlations and performs a validity check on the results. The dis-
parity value is accepted as valid if the results from the two correlation windows do not
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Fig. 5. PTW is correctly tracking the peak (denoted by an X) in the confidence measure in (a). In
(b), PTW has lost track of the peak, but SRW has picked it up. PTW will latch on to this estimate
at the next frame.

differ by more than one pixel. The checked disparity values are then sent back to the
video interface unit to be displayed on a monitor. The invalid values are assigned special
flag for display purposes.

4 Performance and Suggestions

The stereo system presented in this paper performs multi-scale, multi-orientation depth
extraction for disparities up to 128 pixels using roughly the same amount of hardware
resource as the previous system that is capable of handling disparities of only 20 pixels
[5]. A dense disparity map is produced at the rate of 30 frames / second for an image
size of 480 x 640 pixels. In terms of the Points x Disparity per second metric measure,
the system is theoretically capable of achieving a performance of over 330 million PDS,
which is considerably greater than the any of the others listed [18, 5].

To better understand the workings of the modified correlation unit, we look at results
from two real image sequences. The first, MDR-1, is a scene with a static camera and a
moving person, and has a maximum disparity of around 16 pixels. The second, MDR-
2, is a more complex scene with a moving person and a moving camera, and has a
maximum disparity of approximately 30 pixels.

Frame 2 of the MDR-1 sequence is shown in Figure 6 (a). The disparity map dur-
ing the initialisation stage is shown in (Figure 6 (c)) and the disparity map once the
system has settled into the global minimum is shown in Figure 6 (d). For this particu-
lar sequence the algorithm settles into the global minimum by the second frame. The
disparity map from the fixed correlation window of [5] is shown in Figure 6 (b) for
comparison.

(a) (b) (c) (d)

Fig. 6. In sequence MDR-1, we see that the proposed range-expansion algorithm (d) matches the
original algorithm (b) by frame 2. The first frame from the range-expansion algorithm is shown
in (c).
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Frame 11 Frame 15 Frame 12 Frame 13
(a) (b) (c) (d)

Fig. 7. The recovery time for the system with a maximum secondary shift of 70 pixels is shown
in (a) and (b). This can be reduced by using a smaller maximum shift, e.g. 30 pixels as shown in
(c) and (d). In the latter case, recovery occurs in one frame as opposed to four.

In Figure 7 we show the difference in recovery time for the cases when the secondary
correlation window is shifted up to a disparity of: i) 70 pixels and ii) 30 pixels. Fig-
ure 7 (a) shows frame 11 for case (i); the results start to deteriorate but are completely
recovered by frame 15, Figure 7 (b). For case (ii), the results deteriorate at frame 12,
Figure 7 (c), and are already recovered by frame 13, Figure 7 (d). In the MDR-1 se-
quence, we know that the maximum disparity is around 16 pixels and in such cases
where we have prior knowledge of the scene, the ability to select the maximum dispar-
ity parameter can yield better results. The disparity maps from the MDR-2 sequence
for frame 4 (Figure 8 (a)) are shown in Figure 8 (b) for the implementation in [5] and
Figure 8 (c) for our implementation. In [5], where the maximum disparity is limited
to 20 pixels, the system cannot handle this sequence whereas our system shows good
results.

A number of variations of the design can be implemented to achieve better results
without having to make any changes to the correlation unit. Instead of the simple tracker
that we are currently using for the PTW, a tracker based on a constant-velocity motion
model can be used to achieve better tracking. The velocity estimate can be obtained by
taking the difference between disparities in the previous two frames, vt = dt−2− dt−1,
where vt is the predicted disparity velocity for the current frame. Similarly, the location
of the secondary window can be computed using a probabilistic likelihood estimate in-
stead of the pre-determined roving locations. Other options include the possibility of
concatenating the two correlation windows after the initialisation stage so as to support
greater movement of objects from one frame to the next. The decision of when to con-
catenate the windows and when to use them individually in parallel can be made by

(a) (b) (c) (d)

Fig. 8. In sequence MDR-2, we see that the proposed range-expansion algorithm (c) performs
significantly better than the original algorithm (b). The disparity map using a larger primary
correlation window of 13 pixels (d) is a slight improvement over (c).
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a simple count of the number of invalid disparity estimates after the validation check
phase. This can be done for the whole image, region by region, or even for individual
pixels. The issue of boundary overreach in correlation based algorithms [15] can also
be solved by simply shifting the correlation windows by ±L/2, where L is the length
of the correlation window, so that the window does not cross over an object boundary.
All of these modifications require the implementation of a post-processing stage that
generates the appropriate input parameters for the correlation unit without having to
make internal changes to the correlation unit itself.

The use of the correlation unit is not limited to a stereo-system. It can also be used in
other systems such as object recognition using template matching, for e.g., appearance
models for object recognition. The two correlation windows can be used independently
to search different regions of an image thereby speeding up the search process or they
can be combined to support a larger template.

5 Summary

We have presented an FPGA-based real-time stereo system that is capable of handling
very large disparities using limited hardware resources. We achieve this by designing a
novel architecture for the correlation unit and also suggest possible uses of the correla-
tion unit in variations of the stereo algorithm and even uses in different algorithms.
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Abstract. Constructing anatomical shape from extremely sparse information is a 
challenging task. A priori information is often required to handle this otherwise 
ill-posed problem. In the present paper, we try to solve the problem in an  
accurate and robust way. At the heart of our approach lies the combination of a 
three-stage anatomical shape reconstruction technique and a dense surface point 
distribution model (DS-PDM). The DS-PDM is constructed from an already-
aligned sparse training shape set using Loop subdivision. Its application  
facilitates the setup of point correspondences for all three stages of surface  
reconstruction due to its dense description. The proposed approach is especially 
useful for accurate and stable surface reconstruction from sparse information 
when only a small number of a priori training shapes are available. It adapts 
gradually to use more information derived from the a priori model when larger 
number of training data are available. The proposed approach has been success-
fully validated in a preliminary study on anatomical shape reconstruction of two 
femoral heads using only dozens of sparse points, yielding promising results.   

1   Introduction 

With the recent introduction of navigation techniques in orthopedic surgery, three 
dimensional (3D) models of the patient are routinely used to provide image guidance 
and enhanced visualization to a surgeon to assist in navigation and planning. An ob-
vious way to derive a 3D model is to extract it from tomographic data, i.e. images 
obtained from Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). 
To avoid the high costs and possible health hazards (CT-imaging) associated with 
such scans, an alternative way is to reconstruct surface using partial data consisting of 
landmarks and surface points which are interactively digitized by the surgeon or ob-
tained from intra-operative imaging means such as ultrasound [1] or fluoroscopy [2]. 

Constructing a patient-specific 3D model from extremely sparse data is a challeng-
ing task. Additionally, inherent to the navigation application is the high accuracy 
requirement. When surface reconstruction is used for the purpose of surgical guid-
ance, a target error of less than 1.5 mm on average is normally required [3]. An effec-
tive technique to solve this problem to incorporate the a priori information of the 
desired objects into the reconstruction process [4]. 



 Use of a DS-PDM in a Three-Stage Anatomical Shape Reconstruction 53 

 

One way to incorporate the a priori information is to use the Point Distribution 
Model (PDM) by Cootes et al. [5], which can learn shape variations from a set of 
training data, containing a set of landmarks to define the shape. When applied to sur-
face reconstruction, this approach employs Principal Component Analysis (PCA) to 
reduce the dimensionality of the shape parameter space and then performs shape  
prediction in the reduced, low dimensional space based on the intra-operative meas-
urements. Using such an approach for shape prediction is essentially equivalent to 
assuming that future instances are generated by a Gaussian distribution, and that its 
parameters – mean and covariance – could be exactly estimated from the training data 
[6]. In the generative case, the Law of Large Numbers justifies using this method  
as long as the number of samples are big enough. However, it may well be that  
the measurement can not be fully accounted for by any element generated from this 
distribution due to [7]: (1) our measurements may be deteriorated due to noise or 
other sources of errors; (2) we cannot expect to cover the full range of the object class 
with limited number of training samples. Therefore, in the seminal work of Blanz  
and Veter for the synthesis of 3D faces using a morphable model [8], Mahalanobis 
distance was employed to achieve a tradeoff between fidelity and plausibility. 

Another way to incorporate the a priori information is shape deformation [9]. 
Starting from a template shape and a sparse set of paired points established between 
the digitized points and their homologous correspondences on the template shape, the 
surface is reconstructed by warping the template shape to fit the digitized points. The 
template shape and the smoothness requirement of the warping could be regarded as 
another way to incorporate the a priori information. Theoretically it is possible to 
reconstruct any homologous surface by this method if enough homologous corre-
sponding point pairs are given. However, the reconstruction quality depends on how 
closely the template shape is similar to the target shape, when only a sparse set of 
homologous corresponding point pairs are given. 

Within the scope of computer assisted orthopedic surgery, surface reconstruction 
from partial data starts with the seminal work of Fleute et al. [10]. In their work, oc-
tree splines are used to align and match the training shapes and then the statistical 
shape model is fitted to the sparse intra-operative data via jointly optimizing morph-
ing and pose. In a recent application of their algorithm to Total Knee Arthroplasty 
(TKA), as many as 500 points are required [11]. Chan et al [12] use a similar algo-
rithm, but optimize morphing and pose separately using an iterative closest point 
(ICP) method. No regularization is used in both methods. Following the seminal work 
of Blanz and Veter [7], our prior work [13-15] focuses on developing robust and sta-
ble approach for anatomical shape reconstruction. Mahalanobis distance was also 
employed to achieve a stable solution [13]. It can be relaxed when more and more 
points are incorporated [14]. Recently, outlier rejecting mechanism has been incorpo-
rated based on robust statistics [15]. However, due to the small number of training 
shapes, the accuracy in our prior work can not satisfy the requirement of surgical 
guidance and the target application is then only for enhanced 3D visualization. 

In this paper, we try to solve the problem in an accurate and robust way. At the 
heart of our approach lies the combination of a three-stage anatomical shape recon-
struction technique and an a priori dense surface point distribution model (DS-PDM). 
The a priori DS-PDM is constructed from an already-aligned sparse training shape set 
using Loop subdivision. The reconstruction is divided into three stages. The first 
stage, registration, is to iteratively estimate the scale and the 6-dimensional (6D) rigid 



54 G. Zheng, K.T. Rajamani, and L.-P. Nolte 

 

registration transformation between the input sparse points and the mean shape of the 
DS-PDM. The second stage, morphing, is to optimally and robustly estimate a pa-
tient-specific template shape from the DS-PDM using Mahalanobis distance based 
regularization. The estimated patient-specific template shape is then fed to the third 
stage, deformation, where a newly formularized thin-plate spline kernel-based regu-
larization is used to further reduce the reconstruction error. 

The remainder of this paper is organized as follows. Section 2 describes the construc-
tion of the DS-PDM from an already-aligned sparse training shape set. Section 3 pre-
sents the proposed three-stage reconstruction method using the DS-PDM. Section 4 
presents our preliminary study using two plastic bones and the results, followed by 
the discussions and conclusions in section 5. 

2   Construction of Dense Surface Point Distribution Model Using 
Subdivision 

The input data set for this step is the training shape database described in our previous 
work [13], which consists of 13 segmented proximal femoral surface data. Each indi-
vidual surface is described by a sparse triangle mesh list containing 4098 vertices. A 
sequence of correspondence establishing methods was employed to optimally align 
these training shapes for computing optimal PCA models. It starts with a SPHARM-
based parametric surface description [16] and then is optimized using Minimum De-
scription Length (MDL) based principle as proposed by Davies [17]. 

The basic idea of subdivision is to provide a smooth limit surface which approxi-
mates the input data. Starting from a low resolution control mesh, the limit surface is 
approached by recursively tessellating the mesh. The positions of vertices created by 
tessellation are computed using a weighted stencil of local vertices. The complexity of 
the subdivision surface can be increased until it satisfies the user’s requirement. 

For our purpose, we use a simple subdivision scheme called Loop scheme, invented 
by Charles Loop [18], which is based on a spline basis function, called the three-
dimensional quartic box spline. The reasons why we choose Loop scheme are that it is 
defined for triangle mesh, as shown in Fig. 1, and that it guarantees that the limit 
surface is smooth. Its subdivision principle is very simple. Three new vertices are 
inserted to divide a triangle in low resolution to four triangles in high resolution. 

 

 
Fig. 1. Subdivision of triangle mesh using Loop scheme. Left: original mesh in low resolution; 
right: subdivided mesh in high resolution. Original vertices are shown as white dots and newly 
inserted vertices are shown as black dots. 
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Fig. 2. Subdivision example for one of the surface in the training database. Left: original mesh 
described with 4098 vertices; right: subdivided mesh described with 16386 vertices. The 
maximum edge length of all triangles on the subdivided surface is less than 1.5 mm. 

As mentioned before, the level of subdivision is depends on the user’s requirement. 
In our case, we require that the maximum edge length of all triangles is less than 1.5 
mm. By saying that, a 1-level subdivision is enough for our purpose, which results in 
totally 16386 vertices per training surface. One of the examples is given by Fig. 2. 

The positions of vertices on the control mesh in low resolution are not changed by 
the Loop subdivision. Furthermore, positions of the inserted vertices in fine resolution 
are interpolated from the neighboring control vertices in coarse resolution. As the 
input sparse training surfaces have already been optimized for establishing correspon-
dence, it is reasonable to conclude that the dense surfaces obtained by single-level 
subdivision are also aligned. 

Following that, the DS-PDM is constructed as follows. Let ),......,,( 110 −= Ni pppx , 

i = 0, 1, …, m-1 be m (here m = 13) members of the aligned training population. Each 
member is described by individual vectors ix  containing N (here N = 16386) aligned 

3D point coordinates. A statistical shape model is constructed using PCA as follows. 
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where x  and D  represents the mean vector and the covariance matrix respectively. 
The sorted eigenvalues iλ  and corresponding eigenvectors ip  of the covariance ma-

trix are the principal directions spanning a shape space with x  representing its origin, 
which itself is a dense surface. 

3   The Proposed Three-Stage Reconstruction Technique 

Given the positions of a reduced number n << N of intra-operatively digitized points 

in Euclidean space, },...,,; 110 −=== ni),z,y(x '
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iv{'v , the reconstruction problem 

is solved in three stages: 
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1. The Registration: this is the only stage solved by iteration. In this stage, the scale 
and the rigid 6D registration transformation between the mean shape and the in-
put digitized points need to be iteratively determined; 

2. Morphing: using the estimated scale and pose information from stage 1, a patient 
template shape for stage 3 needs to be optimally and robustly estimated from 
DS-PDM by morhing; 

3. Deformation: the estimated template shape from stage 2 is further deformed to 
reduce the reconstruction error. 

3.1   Registration 

This is a well-known problem and several efforts have been made to solve it. One of 
the most popular methods is the Iterative Closest Point (ICP) algorithm developed by 
Besl and McKay [19], Chen and Medioni [20], and Zhang [21]. The ICP is based on 
the search of pairs of closest points, and computing a paired-point matching transfor-
mation. Then the obtained transformation is applied to one set of points, and the pro-
cedure is iterated until convergence. Normally, when trying to register a set of points 
to a surface described by a triangle mesh, a computation-intensive point-to-surface 
distance needs to be computed. However, as the mean shape in our case is described 
by a dense surface, a simple point-to-point distance is enough for our purpose. 

It is well-known that ICP algorithm will converge to a local minimum without a 
proper initialization. In our case, three anatomical landmarks, i.e., greater trochanter, 
less trochanter, and femoral notch, are used to initialize the registration procedure, 
which guarantees the convergence of ICP algorithm. 

3.2   Morphing 

After registration, we can find the corresponding homologous points of input digitized 
points on the mean shape. Let’s denote those homologous points as 

},...,,;;) 11010{( −=−≤≤= niNjijx'x , where ij )x(  denotes that the jth point 

jx  on the dense smooth mean shape x  of the DPDM is the closest point to the ith 

input sparse points '
iv  The morphing problem is stated as the minimization of the 

following cost function: 
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where kα  is the m-1 shape parameters that describe the to-be-estimated surface x , 

),,( x'v'xE  is the likelihood energy term and )(xE  is the prior energy term (or the 

stabilization term), used to constrain the estimated shape to a realistic result. ρ  is a 

factor that controls the relative weighting between these two terms. 

Likelihood Energy Term: The likelihood is expressed by a measure of the least-
squares distance between the digitized points to the predicted shape: 
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where )( jkp  is the jth tuple of the kth shape basis vector. 
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Prior Energy Term: Due to the PCA construction, the random variable kα  are inde-

pendent and follow a normal law of a null mean and variance kλ  [5]. To penalize the 

deviation of the predicted shape from the mean shape, Mahalanobis distance is used 
as the energy term of this prior model: 

−
=⋅= 2
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k/E kk )/()()( λαv  (4) 

To determine the shape parameters kα , the cost function is differentiated with re-

spect to the shape parameters and equated to zero resulting in a linear system of m 
unknowns, which is solved with standard linear equations system solvers such as LU 
decompositions. 

3.3   Deformation 

Similar to the second stage, we also need to find the corresponding homologous 

points of the input sparse points 'v  on the template surface x . Let’s denote these 
homologous points as },...,,;) 110 −==== ni),z,y(xil iiiiv x({v . The deformation is 

described as a regression problem of finding a transform ),,( hgf=t  : 3 →  3 that 

minimizes following cost function: 
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where 0≥][ tφ  is a regularization functional, 0≥τ  is a regularization parameter, m 

is the number of samples in the training population, n is the number of digitized 

points, 'v  and v  are the n input digitized points and their corresponding homologous 
points on the morphed shape, respectively. },...,,;)({)( 110 −== niivtvt  is the results 

of applying deformation transform on those homologous points.  
From regularization theory, ][ tφ  can be defined as a norm in a reproducing ker-

nel Hilbert space (RKHS) which can be uniquely induced by a positive definite (or 
conditionally positive definite) kernel function ),( ji vvU  . For our purpose, we pro-

pose to use the thin-plate spline (TPS) kernel ||||),( jiji vvvvU −=  in 3D. Now ][ tφ , 

the bending energy, has the form: 
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The thin-plate kernel is conditionally positive definite and the affine subspace form 
the null space of the resulting transform ),,( hgf=t , which must be of the form [22]: 
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where Taaaa ),,,( 4321=a , Tbbbb ),,,( 4321=b , Tcccc ),,,( 4321=c  represent the affine 

coefficients and T)( n 10 −= γγ ,..., , T)( n 10 −= θθ ,..., , T)( n 10 −= ωω ,...,  are the kernel 

interpolation coefficients, And the measure of the smoothness of the nonlinear map-
ping is given by: 

KKKt TTTL ++=][  (8) 

where 110 −=Φ= njik jiij ,...,,,;),( vv  are the elements of matrix K. 

To determine the affine transformation coefficients a , b , c , and the kernel inter-
polation coefficients , , , the cost function is differentiated with respect to all 

these transform parameters and equated to zero resulting in following linear system: 
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where O  is a 4 x 4 matrix of zeros, o  is a 4 x 1 vectors of zeros. P = (1, x, y, z), 
where T11 )..., ,(1 = . Note that T
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10 −=  represents coordinates of the 

input points and their corresponding points on the template surface, respectively. 

4   Preliminary Study and Results 

To verify the effectiveness of the proposed three-stage method, a preliminary study on 
reconstruction of two plastic femoral heads was performed. We call one of the plastic 
bones as “No.1” and the other as“No. 2”, (see Fig. 3). For both bones, we have de-
signed four different studies using 10, 20, 40, 80 points respectively. To eliminate 
other sources of errors such as digitization error or matching error, those points are 
directly extracted from the surfaces of the bones, which are accurately segmented 
from the corresponding CT volume scans using commercially available software 
AmiraTM (Mercury Computer Systems Inc., Germany). And in each study, results 
obtained in two sequential experiments are recorded: experiment 1, morphing after 
registration; and experiment 2, deformation after morphing. The reconstructed surface 
in each experiment is directly compared to the segmented surfaces from CT volume 
data, which we take them as the ground truth. Symmetric Hausdorff Distance is em-
ployed to measure the distance between discrete 3D surfaces [23]. 

The results of the preliminary study are listed in Table 1. It was found that morph-
ing after registration could already give a reasonable accurate result for the No.1 bone 
even with a small number of points, when the DS-PDM was used. But the dramatic 
increase of the number of points did not result in a similar increase of accuracy in this 
stage. On the contrast, including the third stage into the reconstruction resulted in a 
steady increase of accuracy for both cases. In all experiments, we have chosen τ  = 
0.5. The parameter ρ  was chosen as following principle: when more points were 

received, ρ  was changed to smaller to relax the Mahalanobis distance term. 
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Fig. 3. Surface rendering of testing femoral heads and mean shape of the DS-PDM. Left: No.1 
testing femoral head; Middle: mean shape of the DS-PDM; Right: No.2 testing femoral head. 

Table 1. Results of using different number of points for surface reconstruction (unit: mm) 

 

5   Discussions and Conclusions 

It is very interesting to find that morphing after registration can already give a rea-
sonably accurate result but doesn’t improve too much as more and more points is 
added. This may be explained by the correlation between vector components which is 
implicitly stored in the statistical deformable model. On the contrast, starting from the 
morphed surface, the deformation step improves accuracy greatly as more and more 
points are added. This can be well explained by the RKHS theory, as more points 
mean higher the dimensionality of the RKHS, derived from the conditionally positive 
definite matrix K [4].  

Using DS-PDM facilitates the whole surface reconstruction process. The increase 
of the number of vertices doesn’t necessarily mean a dramatic increase of computa-
tion time, as more efficient data structure such as k-D tree could be employed [23]. 
The smoothly and densely described a priori information causes the whole recon-
struction procedure more robust and more accurate. 

Our formularization of the regression technique as given by equation (5) is opti-
mal. It allows the proposed method to adapt gradually either to use more information 
derived from the statistical shape model when larger training data are available or to 
use more information derived from the digitized points when more points are input. 
On the extreme cases, it equals to an exact TPS interpolation when only one sample 
of training data is available, or equals to an affine registration when infinite training 
samples are available. 
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Abstract. Fisheye lenses are often used to enlarge the field of view (FOV)
of a conventional camera. But the images taken with fisheye lenses have se-
vere distortions. This paper proposes a novel calibration method for fisheye
lenses using images of space lines in a single fisheye image. Since some fish-
eye cameras’ FOV are around 180 degrees, the spherical perspective pro-
jection model is employed. It is well known that under spherical perspec-
tive projection, straight lines in space have to be projected into great circles
in the spherical perspective image. That is called straight-line spherical
perspective projection constraint (SLSPPC). In this paper, we use
SLSPPC to determine the mapping between a fisheye image and its corre-
sponding spherical perspective image. Once the mapping is obtained, the
fisheye lenses is calibrated. The parameters to be calibrated include princi-
pal point, aspect ratio, skew factor, anddistortion parameters. Experimen-
tal results for synthetic data and real images are presented to demonstrate
the performances of our calibration algorithm.

1 Introduction

In many computer vision applications, including robot navigation, 3D recon-
struction, image-based rendering, and single view metrology, a camera with a
quite large field of view (FOV) is preferable. A conventional camera has a very
limited FOV. Therefore, cameras with wide-angle or fisheye lenses are often
employed. Images taken with these imaging devices often have significant dis-
tortions. If we want to use some perspective information from these distorted
images, they have to be transformed into perspective images. A fisheye camera’s
FOV is around 180 degrees, but a wide-angle camera’s FOV is usually around
100 degrees. The existing calibration methods [2, 4, 5, 9] for wide-angle camera
using images of space lines cannot be directly used for fisheye cameras. There-
fore, this paper aims at calibrating fisheye cameras using images of space lines.
An image from a fisheye camera with FOV 183 degrees (Nikon COOLPIX 990
with FC-E8 fisheye lenses) is shown in Fig. 1a.
� This work was partially carried out while the author was at the Chinese Academy

of Sciences.
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(a) (b)

Fig. 1. (a) A fisheye image. (b) The corresponding spherical perspective projection
image. The calibration procedure is to find the mapping between those two.

In literature, there are two standard types of perspective images used in com-
puter vision: planar and spherical surfaces (i.e., a planar or a spherical surface
can be used as the retina of a perspective camera). Due to lens distortions, space
lines are projected into image curves in the actual image. Once the mapping be-
tween a distorted image and its corresponding perspective image is obtained,
the calibration problem is solved. The mapping can be obtained by finding the
relation between the image curves of space lines and its corresponding perspec-
tive images. It is well known that under planar perspective projection, images
of straight lines in space have to be mapped into straight lines in the planar
perspective image. That is called the straight-line planar perspective projection
constraint (SLPPPC). The existing calibration methods [2, 4, 5, 9] for wide-angle
cameras using the distorted images of lines are all based on SLPPPC. However,
for fisheye cameras with FOV around 180 degrees, we use the spherical perspec-
tive projection model because it is a convenient way to represent FOV around
180 degrees. We also know that under spherical perspective projection, images
of straight lines in space have to be projected into great circles in the spheri-
cal perspective image. Therefore, there exists another constraint we called the
straight-line spherical perspective projection constraint (SLSPPC). In this paper
we elaborate on how to determine the mapping between a fisheye image and its
corresponding spherical perspective image using SLSPPC (see Fig. 1).

2 Fisheye Imaging Model

Fisheye imaging model describes a mapping from 3D space points to 2D fisheye
image points (see Fig. 2). We introduce the spherical perspective projection into
the fisheye imaging model and divide the imaging model into four concatenated
steps as follows:

Step 1: Transform the 3D world coordinates of a space point into the 3D camera
coordinates.

Considering a generic 3D point, visible by a fisheye camera, with Carte-
sian coordinates PW = (X, Y, Z)T in the world coordinate system, if PC =
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Fig. 2. Fisheye imaging model

(XC , YC , ZC)T are the coordinates in the camera coordinate system, the trans-
formation between PW and PC is:

PC = RPW + t, (1)

where the matrix R and vector t describe the orientation and position of the
fisheye camera with respect to the world coordinate system. The parameters in
R and t are called the extrinsic parameters.

Step 2: The space point is perspectively projected onto a unit sphere centered
at the projection center. This procedure can be represented by a transformation
from the 3D camera coordinates to the 2D spherical coordinates.

The unit sphere is called the viewing sphere. If p is the spherical projection
of the space point, we have:

p =
PC

‖PC‖
= (sin Φ cosΘ, sin Φ sin Θ, cosΦ)T , (2)

where p = (sin Φ cosΘ, sin Φ sin Θ, cos Φ)T is the unit directional vector, and
(Φ, Θ) is the 2D spherical coordinates of the spherical point (see Fig. 3). Obvi-
ously, (Φ, Θ) can be determined from p, and vice versa.

Step 3: The spherical projection point p is mapped to m on the image plane
due to fisheye lens distortions, which can be represented as:

m = D(p), (3)
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(a) (b)

Fig. 3. (a) An ideal fisheye image. (b) The corresponding spherical perspective image.
The spherical point p is mapped to m in the ideal fisheye image using the fisheye
distortion model D. The great circle g which is the spherical projection of a straight
line in space is mapped to a image curve c in the ideal fisheye image also using the
fisheye distortion model D.

where m = (x, y), and D is the so-called fisheye distortion model. The image
obtained here is called the ideal fisheye image. The parameters in D are called the
distortion parameters. The fisheye distortion model will be discussed in details
in the next section. Note that in Step 3, we obtain a planar image with the
pixel coordinates, where the origin of the image coordinate system is located
at the principal point, and the image coordinate system has equal scales in the
directions of two coordinate axes.

Step 4: The image point m is transformed into m′ using an affine transformation:

m′ = KA(m), (4)

where m′ = (u, v). The image obtained here is called the actual fisheye image.
The meaning of formula (4) is:

m̃′ = KAm̃, (5)

where m̃ = (x, y, 1)T and m̃′ = (u, v, 1)T are the homogeneous coordinates
corresponding to m and m′ respectively, and

KA =

⎡⎣ r s u0
0 1 v0
0 0 1

⎤⎦ . (6)

3 Fisheye Distortion Model

Fisheye distortion model D describes the mapping from a spherical perspective
image to its corresponding ideal fisheye image (see Fig. 2 and Fig. 3). If p
is the spherical perspective projection of a space point and (Φ, Θ) are the 2D
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spherical coordinates of p, due to fisheye lens distortions, p is mapped to m in
the ideal fisheye image. If (x, y) is the Cartesian coordinates and (r, θ) is the
polar coordinates of where the origins of the two coordinate systems are both
located at the principal point, the relation between (x, y) and (r, θ) is:

r =
√

x2 + y2, tan θ =
y

x
. (7)

In our experiments, we use fifth degree polynomials to represent fisheye radial
and tangential distortion models:

r = DR(Φ) =
5∑

i=1

diΦ
i, θ = DT (Θ) =

5∑
i=1

biΘ
i, (8)

where di are radial, and bi are tangential distortion parameters. In fact, any
other proper parametric distortion models for fisheye lenses can be employed,
such as those proposed in [1, 3, 7, 8, 10, 11].

Since the FOV of fisheye lenses is known, we have:

γ = DR(
α

2
), (9)

where γ is the radius of the ideal fisheye image, α is the fisheye lenses’ FOV.
After some manipulation, we have:

d5 =
32γ − 16αd1 − 8α2d2 − 4α3d3 − 2α4d4

α5 . (10)

So there are only four independent parameters for radial distortion. The longi-
tude angle and the polar direction are both periodic. From Θ = 0 and (8), we
have θ = 0. Therefore, if Θ = 2π, then θ = 2π. Thus we have:

b5 =
1− b1 − 2πb2 − 4π2b3 − 8π3b4

16π4 . (11)

So there are only four independent parameters for tangential distortion.

4 Fisheye Camera Calibration

From the discussions above, we know that there are totally 12 parameters for
a fisheye lenses required to be calibrated: 4 affine transformation parameters, 4
radial and 4 tangential distortion parameters. These parameters are called the
extended intrinsic parameters in this paper.

Given a fisheye image containing several image curves of space lines, we select
a small set of points along these image curves. These sample points are mapped to
spherical points on the viewing sphere using the concatenation of K−1

A and D−1 ,
and the great circle fitting method is employed. The objective function is the sum
of the squared distances of these spherical points from their corresponding best-
fit great circles. In this section, we firstly introduce the algorithm for great circle
fitting. Secondly, the objective function with the extended intrinsic parameters
is constructed, and finally, how to find the initial values for these parameters is
discussed.
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4.1 Great Circle Fitting

A great circle is the intersection of a sphere and a plane passing through the
spherical center. It can be determined by two parameters (α, β) which are the
directional angles of the normal vector for the plane containing the great circle
in the 3D Cartesian coordinate system whose origin is located at the spheri-
cal center (see Fig. 3b). For a spherical point p and a great circle g = (α, β)
where the unit normal vector for the plane containing the great circle is n =
(sin α cosβ, sin α sin β, cosα)T , the distance from p to the plane containing the
great circle is d = |pT n|. As noted in [6], the great circle fitting problem may be
replaced by the problem of finding a plane so as to minimize the sum of squares
of distances between the given points and the plane. Given N spherical points
pi, the objective function is constructed as the sum of the squared distances of
pi from the plane containing the best-fit great circle:

F (n) =
N∑

i=1

(pT
i n)2, (12)

where n is the normal vector for the plane. This can be converted into an eigen-
value problem. A vector equation is introduced as:

An = 0, (13)

where A = (p1,p2, . . . ,pN )T . The objective function becomes:

F (n) = (An)T An = nT Bn. (14)

The solution for n is the eigenvector of B corresponding to the smallest eigen-
value. g = (α, β) can be easily computed from the obtained n.

4.2 Objective Function Formulation

We use L to represent the number of the sample image curves of space lines
in the actual fisheye image, and use Nj(j = 1, . . . , L) to represent the number
of the sample points on the jth image curve. m′

i,j(j = 1, . . . , L) represents the
image coordinates of the sample point on the jth image curve. The objective
function can be constructed as:

ξ =
L∑

j=1

F (nj) =
L∑

j=1

⎡⎣ Nj∑
i=1

(pT
i,jnj)2

⎤⎦ , (15)

where nj = (sin αj cosβj , sin αj sin βj , cosαj)T is the normal vector for the plane
containing the best-fit great circle gj = (αj , βj) , and

pi,j = D−1(K−1
A (m′

i,j)), (16)

where pi,j represents the spherical point obtained from the sample image point
m′

i,j after using the concatenation of K−1
A and D−1 . The objective function ξ
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describes the sum of the squared distances of pi,j from its corresponding best-
fit great circle gj . The Levenberg-Marquardt optimization technique is used to
perform this minimization. The parameters for the great circles gj = (αj , βj)(j =
1, . . . , L) are optimized together with the extended intrinsic parameters. As we
know the initial values for the optimized parameters are required in the nonlinear
minimization, therefore, the initial estimations of these parameters are discussed
in the next section.

4.3 Initial Estimations

Affine Transformation Parameters. A significant characteristic of an actual
fisheye image is that its boundary is usually an ellipse (see Fig. 1a). In fact, the
bounding ellipse is the projection of the boundary between the optical compo-
nents (glass lenses) and their metal supporting part. Light rays are occluded by
the supporting part when the light rays are out of the fisheye camera FOV. The
shape of the physical boundary is a circle. The optical axis of the fisheye camera
is perpendicular to the plane containing the circle, and it also goes through the
center of the circle. To identify the bounding ellipse of the fisheye image, we use
a predefined threshold to find the boundary, and fit an ellipse to the resulting
boundary. If the equation of the bounding ellipse is:

a′u2 + 2b′uv + c′v2 + 2d′u + 2e′v + f = 0, (17)

we may obtain the initial values for affine transformation parameters as:

r =
√
− b′2

a′2 + c′
a′ s = − b′

a′

u0 = b′e′−c′d′
a′c′−b′2 v0 = b′d′−a′e′

a′c′−b′2
. (18)

Due to lack of space, the derivation is omitted here.

Distortion Correction Parameters. Since the equidistance model is a very
good approximation to the real radial distortion of a fisheye camera [10], the
initial values of the radial distortion correction parameters are set as: c1 = α

2γ ,
and c2 = c3 = c4 = 0.0 , where γ is the radius of the ideal fisheye image and α
is the fisheye camera FOV. For the tangential distortion, the reasonable initial
values are a1 = 1.0, a2 = a3 = a4 = 0.0 (i.e., Θ = θ).

Parameters of Best-Fit Great Circles. When the initial values for the
extended intrinsic parameters have been obtained, we have:

pi,j = D
−1

(K
−1
A (m′

i,j)), (19)

where K
−1
A and D

−1
are K−1

A and D−1 with the initial parameters respectively.
pi,j represents the spherical point obtained from the sample image point m′

i,j

after using the concatenation of K
−1
A and D

−1
. From these spherical points pi,j ,

the great circle fitting method described in Sect. 4.1 is used to fit great circles
gj = (αj , βj)(j = 1, . . . , L) respectively. Therefore, the initial values for the
parameters of the best-fit great circles are obtained.
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5 Experiments

5.1 Simulations

We have performed a number of experiments with simulated data in order to
assess the performances of our calibration algorithm. The extended intrinsic
parameters {r, s, u0, v0, c1, c2, c3, c4, a1, a2, a3, a4} for the simulated fisheye cam-
era are generated randomly distributed within their corresponding valid ranges.
The simulated fisheye lenses FOV is 180 degrees. The resolution of the image is
1024×1024. The generation procedure is constructed as follows: Firstly, the great
circles are generated which representing the spherical projection of straight lines
in space. Secondly, these great circles are transformed into image curves using
D and KA . Thirdly, on each image curve about 50 points are chosen. Gaussian
noise with zero-mean and σ standard deviation is added to these image points.
The noise level σ is varied from 0.2 to 2.0 pixels. Finally, the ellipse boundary
is also generated in the simulated fisheye image (see Fig. 4a).

In order to compare the recovered parameters with the ground truth, similar
to [9], we use the reprojection error to evaluate the calibration accuracy:

εrep =
1∑L

j=1 Nj

L∑
j=1

⎡⎣ Nj∑
i=1

‖m′
i,j −KAD(D̂−1K̂

−1
A (m′

i,j))‖

⎤⎦ , (20)

where m′
i,j are the coordinates of the sample points in the simulated fisheye im-

age. KA and D are with the ground truth. D̂−1 and K̂
−1
A are with the recovered

values. For each noise level, we perform 1000 independent trials, and the repro-
jection errors are computed over each run. The means and standard deviations
of reprojection errors with respect to different noise levels are shown in Fig. 4b.

5.2 Real Images

The fisheye lenses used here is Nikon FC-E8 with FOV 183 degrees, mounted on
a Nikon COOLPIX 990 digital camera. A fisheye image taken with this fisheye

(a) (b)

Fig. 4. Simulation results for fisheye calibration. (a) A simulated fisheye image contain-
ing image curves of straight lines in space. (b) The means and the standard deviations
of the reprojection errors with respect to different noise levels.
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Table 1. The mean and maximum of the reprojection errors for the three planar
homographies. The errors shown here are divided by the side length of a square grid.

Mean error Max. error

{x ↔ q1} 76.44% 246.92%
{x ↔ q2} 13.21% 40.96%
{x ↔ q3} 1.64% 3.08%

camera for calibration is shown in Fig. 1a. The resolution of the fisheye image is
2048×1536. From this fisheye image, about 10 image curves of the straight lines
in space and total about 500 sample points are chosen. The extended intrinsic
parameters of the fisheye camera are recovered using our calibration method.
Then, we apply these recovered parameters to undistort the fisheye image, and
the spherical perspective image is obtained as shown in Fig. 1b.

Here, we use planar homography constraint to evaluate calibration accuracy.
We select some fisheye images of grid points on a ceiling in Fig. 1a. There are to-
tally three sets of point pairs for evaluating the homography constraint: {x↔ q1},
{x↔ q2} and {x↔ q3}, where q1 represents the 2D homogeneous coordinates of
the fisheye image point, q2 represents the unit directional vector of the spherical
point obtained using the distortion correction procedure with the initial values of
the extended intrinsic parameters, and q3 similar to q2 but with the recovered
values. The reprojection error to evaluate homography constraint is:

εi = ‖x−H−1
i qi‖, i = 1, 2, 3, (21)

where Hi(i = 1, 2, 3) is the obtained planar homography. The mean and maxi-
mum of the reprojection errors are shown in Table 1. From Table 1, we can see
that the improvement of the planar homography constraint is very significant
due to the fisheye lenses distortion correction.

6 Conclusions

In this paper, we propose a novel calibration method for fisheye lenses using the
images of space lines. The SLSPPC is employed for calibrating fisheye lenses
with FOV around 180 degrees, whereas the existing methods based on SLPPPC
cannot be used in this case. The extended intrinsic parameters of fisheye cameras
can be calibrated without needing to seek the extrinsic parameters. Thus, the
number of parameters to be calibrated is drastically reduced, making the cali-
bration procedure simple and practical. Our method can use any other suitable
parametric distortion models for fisheye lenses though we only use the polyno-
mial models here.

Acknowledgements

This work was supported in part by the NSFC Grant (No. 60333010), and
NKBRPC (No. 2004CB318000).



70 X. Ying, Z. Hu, and H. Zha

References

1. A. Basu and S. Licardie: Alternative models for fish-eye lenses, Pattern Recognition
Letters, 16(4), 1995, pp. 433-441

2. D.C. Brown: Close range camera calibration. Photogrammetric Engineering, 37(8):
pp.855-866, 1971

3. D.C. Brown: Decentering distortion of lenses. Photogrammetric Engineering,32(3),
1966, pp. 444-462

4. F. Devernay, O. Faugeras: Straight Lines Have to Be Straight: Automatic Calibra-
tion and Removal of Distortion from Scenes of Structured Environments, Machine
Vision and Applications, 2001, vol.1, pp.14-24

5. S. B. Kang: Radial distortion snakes, IAPR Workshop on MVA, 2000, pp. 603-606
6. C. F. Marcus: A note on fitting great circles by least squares, Communications of

the ACM, 4(11), 1961
7. B. Micusik and T. Pajdla: Estimation of Omnidirectional Camera Model from

Epipolar Geometry, CVPR, 2003
8. S. Shah, J. K. Aggarwal: Intrinsic Parameter Calibration Procedure for a (High

Distortion) Fish-Eye Lens Camera with Distortion Model and Accuracy Estima-
tion. Pattern Recognition, 1996, vol.29, no.11, pp.1775-1788

9. R. Swaminathan, S.K. Nayar: Non-Metric Calibration of Wide-Angle Lenses and
Polycameras. PAMI, 2000, pp. 1172-1178

10. Y. Xiong, K. Turkowski: Creating Image-Based VR Using a Self-Calibrating Fish-
eye Lens. Proceedings of CVPR, 1997, pp. 237-243

11. X. Ying, Z. Hu: Can We Consider Central Catadioptric Cameras and Fisheye
Cameras within a Unified Imaging Model. Proceedings of ECCV, 2004(1), pp.
442-455



Robust Linear Auto-calibration of a Moving Camera
from Image Sequences

Thorsten Thormählen, Hellward Broszio, and Patrick Mikulastik

University of Hannover, Information Technology Laboratory,
Schneiderberg 32, 30167 Hannover, Germany

{thormae, broszio, mikulast}@tnt.uni-hannover.de
http://www.digilab.uni-hannover.de

Abstract. A robust linear method for auto-calibration of a moving camera from
image sequences is presented. Known techniques for auto-calibration have prob-
lems with critical motion sequences or biased estimates. The proposed approach
uses known linear equations that are weighted by variable factors. Experiments
show, that this modification reduces problems with critical motion sequences and
that the estimates are not biased. Therefore, the proposed approach is more robust
and achieves a higher estimation accuracy.

1 Introduction

Estimation of camera motion and structure of rigid objects using camera images from
multiple views is a common task in computer vision and of interest for many applica-
tions. This paper considers the case where the camera performs a translational as well
as rotational motion.

For the estimation of the camera motion the real camera is represented by a para-
metric model, which describes the mapping of the observed three-dimensional rigid
objects in the two-dimensional image plane of the camera. The parameters of the cam-
era model can be divided into internal and external camera parameters. External camera
parameters describe the position and orientation of the camera in space. Internal cam-
era parameters describe aspects of mapping, e.g. the focal length or the position of the
principal point. If the internal camera parameters are known, the camera is calibrated.
If the camera is not calibrated, it can be described by the projective camera model. The
parameters of the projective camera model are combinations of internal and external
camera parameters [1, 2, 3].

In order to estimate the parameters of the projective camera model most approaches
establish corresponding feature points in the images. During the estimation of the cam-
era parameters, 3D object points are estimated simultaneously. The resulting recon-
struction of projective camera views and object points is determined only up to a global
projective transformation. This is sufficient for some applications, for example the syn-
thesis of new views [4]. However, in most applications, the projective reconstruction
must be transferred into a metric reconstruction. Therefore, the unknown global pro-
jective transformation is reduced to an unknown global metric transformation, which
corresponds to a determination of the internal camera parameters and the plane at in-
finity. Their automatic determination from the parameters of the projective camera is
called auto-calibration.
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Early publications assumed that the internal camera parameters are constant over the
image sequence. In 1992 Maybank and Faugeras [5, 6] used the equations of Kruppa
[7]. The method was developed further [8, 9, 10]. In 1997 Triggs [11] presented the
Absolute Dual Quadric (ADQ), which was later used by Pollefeys et al. [12, 13, 14]
for auto-calibration with variable internal camera parameters. An alternative approach
first determines the plane at infinity and afterwards the internal camera parameters. The
search range for the plane at infinity in the projective space can be limited by the fact
that all observed object points must be located in front of the camera [15, 16, 17, 18].

Our approach is a modification of the linear ADQ approach by Pollefeys et al. In [14]
Pollefeys et al. weight the linear equations by the reciprocal of the assumed standard
deviations of the internal camera parameters. This incorporation of a priori knowledge
reduces the problem with critical motion sequences [19, 20, 21]. However, constrain-
ing all internal parameters with fixed weights causes biased estimates, even if it is not
necessary, e.g. in cases of sequences without critical motion.

In this paper we try to overcome this disadvantage by introducing linear estimation
with variable weights instead of fixed weights.

The following Section briefly reviews Pollefeys’ approach with fixed weights. In
Section 3 the proposed approach with variable weights is presented. Chapter 4 compares
results of the different approaches and conclusions are drawn in Section 5.

2 Linear Auto-calibration Using the Absolute Dual Quadric

Starting point of the auto-calibration algorithm is a projective reconstruction with
k = 1 . . .K projective camera views given by the 3 × 4 camera matrices Ak and
j = 1 . . . J object points given by the 4-vectors Pj in homogeneous coordinates.

Auto-calibration determines the projective 4 × 4 matrix T, that transforms the pro-
jective camera Ak into a metric camera AM

k :

AM
k = Ak T ∀ k (1)

and the object points Pj of the projective reconstruction into metric object points PM
j :

PM
j = T Pj ∀ j. (2)

Whereby a metric camera matrix can be factorized as follows:

AM = K R [ I | −C ]. (3)

The 3× 3 rotation matrix R represents the orientation and the 3-vector C represents the
position of the camera. K is the calibration matrix with

K =

⎡⎣f s cx

0 r f cy

0 0 1

⎤⎦ , (4)

where f is the focal length, (cx, cy)� is the principal point offset from the image center,
r is the aspect ratio of pixels and s is the skew parameter. The skew s of a real camera
is known to be zero. Furthermore, we assume, that the aspect ratio r is known.
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In order to determine T, the ADQ Q∗∞ is estimated by solving the following auto-
calibration equation for all camera views k:

Ak Q∗∞ A�k ∼ Kk K�k = ω∗
k ∀ k, (5)

where Q∗∞ is a 4× 4 matrix with rank 3. The 3× 3 matrix ω∗
k represents the dual image

of the absolute conic (see [2] for details).
In the first step of the linear estimation algorithm the camera matrices are normalized

A′k = K−1
N Ak (6)

with

KN = diag
[

Nx + Ny,
1
r
(Nx + Ny), 1

]
, (7)

where Nx is the width and Ny is the height of the camera image. Consequently, the
normalized auto-calibration equation is

A′k Q∗∞ A′�k ∼ K−1
N Kk K�k K

−�
N = ω′∗

k ∀ k. (8)

After the normalization step the focal length of the normalized camera is f ′ ≈ 1 and the
principal point offset (c′x, c′y)� ≈ (0, 0)�. Pollefeys assumes the standard deviations
of the unknown normalized parameters to

f ′ ≈ 1± 3 (9)

c′x ≈ 0± 0.1 (10)

c′y ≈ 0± 0.1. (11)

From Eq. (8) follows:

ω′∗
k =

⎡⎣f ′2 + c′2x c′x c′y c′x
c′x c′y f ′2 + c′2x c′y
c′x c′y 1

⎤⎦ ≈
⎡⎣1± 9.01 ±0.01 ±0.1
±0.01 1± 9.01 ±0.1
±0.1 ±0.1 1

⎤⎦ . (12)

The symmetrical 4× 4 matrix of the ADQ can be parameterized with 10 elements:

Q∗∞ =

⎡⎢⎢⎣
q1 q2 q3 q4
q2 q5 q6 q7
q3 q6 q8 q9
q4 q7 q9 q10

⎤⎥⎥⎦ . (13)

In order to estimate the elements of Q∗, for each camera view 6 linear equations from
the following 6 conditions can be derived. Each linear equation is weighted according
to its assumed standard deviations from Eq. (12):
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ω′∗
12 = 0 ⇒ 1

0.01 (a′
1 Q∗∞ a′�

2 )= 0 (14)

ω′∗
13 = 0 ⇒ 1

0.1 (a′
1 Q∗∞ a′�

3 )= 0 (15)

ω′∗
23 = 0 ⇒ 1

0.1 (a′
2 Q∗∞ a′�

3 )= 0 (16)

ω′∗
11 = ω′∗

22 ⇒ 1
0.2 (a′

1 Q∗∞ a′�
1 − a′

2 Q∗∞ a′�
2 )= 0 (17)

ω′∗
11 = ω′∗

33 ⇒ 1
9.01 (a′

1 Q∗∞ a′�
1 − a′

3 Q∗∞ a′�
3 )= 0 (18)

ω′∗
22 = ω′∗

33 ⇒ 1
9.01 (a′

2 Q∗∞ a′�
2 − a′

3 Q∗∞ a′�
3 )= 0 , (19)

where a′
1,a

′
2,a

′
3 are the rows of the normalized camera matrix A′.

If the number of camera views is at least 3, an over-determined linear set of equa-
tions for the elements of Q∗∞ can be generated, which is solved by singular value de-
composition [22]. The searched transformation T can be determined by a singular value
decomposition of Q∗∞:

Q∗∞ = U diag[w1, w2, w3, w4] V� (20)

T = [U3 diag[
√

w1,
√

w2,
√

w3] | (0, 0, 0, 1)�] ,

where the columns of the 4 × 3 matrix U3 are those three columns of the 4 × 4 matrix
U, which do not correspond to the smallest singular value w4.

3 Linear Auto-calibration with Variable Weights

In order to improve the above algorithm, we propose to use variable weights for
Eqs. (18) and (19) instead of the fixed values:

Eq. (18) ⇒ 1
β (a′

1 Q∗∞ a′�
1 − a′

3 Q
∗
∞ a′�

3 )= 0 (21)

Eq. (19) ⇒ 1
β (a′

2 Q∗∞ a′�
2 − a′

3 Q
∗
∞ a′�

3 )= 0 (22)

with

β = 0.1 e(0.3n). (23)

The modified linear algorithm is executed N = 50 times with n = 0 to (N − 1).
By altering β exponentially, it is possible to cover a wide range of weights. If n =

0 ⇒ β = 0.1, and therefore Eqs. (21) and (22) are considered approximately as much
as Eqs. (15)-(17) in the linear equation set. If n = 49 ⇒ β = 242174.76, and the
influence of Eqs. (21) and (22) is negligible.

Changing the weight of Eqs. (18) and (19) correspond to changing the assumed
standard deviation of the normalized focal length f ′ in Eq. (9). Another possibility
would be to alter the weights of Eqs. (14) to (17), which would correspond to a change
of the assumed standard deviation of the principal point offset in Eqs. (9) and (10).
However, this would yield the same results, because the result of the equation set is
not changed by a global scale and therefore only the ratio of the assumed standard
deviations is important.

Since the modified linear algorithm is executed 50 times with different weights, there
are 50 possible solutions for T . Each solution is evaluated by the non-linear cost func-
tion, which is proposed by Nistér [18]:
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φ =
∑

k

s(AkT)2 + cx(AkT)2 + cy(AkT)2 + (r(AkT)− r)2

f(Ak T)2
(24)

where the functions s(.), cx(.), cy(.), r(.) and f(.) extract respectively the parameters
skew, principal point offset in x- and y-direction, pixel aspect ratio and focal length from
the camera matrix by QR-decomposition [22]. Finally, the solution with the smallest
cost φ is selected.

4 Results

4.1 Synthetic Data Experiments

In this subsection two experiments with synthetically generated input data are pre-
sented. The first experiment simulates a critical camera motion, that is close to a de-
generated case, and the second experiment simulates a non-critical camera motion.

For each experiment 500 synthetic test sequences with random scenes are generated.
The random scenes consist of 6000 3D object points, which have a distance from the
camera between 36 and 72 mm. Each test sequence consists of 10 images. Approxi-
mately 160 to 170 of the object points are visible in each camera image. The errors
in the positions of the generated 2D image feature points obey an isotropic Gaussian
distribution with standard deviation σ. The camera image has 720 × 576 pixel and a
physical size of 7.68×5.76 mm, thus the pixel aspect ratio is 1.06667. The focal length
is 10.74 mm. Principle point offset and skew of the camera are zero. All intrinsic camera
parameters are kept constant over the sequence.

In experiment 1 translation and rotation between two successive views are very small
(see Tab. 1).

Table 1. Camera motion between two successive views for experiment 1 and 2

Translation [mm] Rotation [deg]
X = 0.25 pan = −0.05

Exp. 1 Y = 0.0 tilt = −0.075
Z = 0.05 roll = 0.005
X = 2.0 pan = −2.0

Exp. 2 Y = 0.0 tilt = −0.5
Z = 1.0 roll = 0.05

Fig. 1 shows the results of experiment 1 for five different standard deviations σ of
the position errors of generated 2D feature points. The mean and the standard deviation
of the estimation results for all intrinsic camera parameters are plotted. Three different
approaches for linear auto-calibration using the ADQ are compared: (#1) The approach
with fixed weights described in Sec. 2, (#2) the classical approach that does not weight
its linear equations and builds its equation set only with Eqs. 14-17, and (#3) the pro-
posed approach with variable weights.

From Fig. 1a the disadvantage of the approach (#1) with fixed weights is evident.
The estimation results for the focal length are pulled to the assumed value of
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Nx + Ny = (720 + 576) pixel (25)

= (7.68 + 5.76) mm = 13.44 mm

by Eqs. (18) and (19). Consequentially, the estimation is biased.
On the other hand, if σ is high, approach (#1) gives much better results for all in-

trinsic parameters (Fig. 1a-e) than approach (#2). The higher robustness against critical
camera motions of approach (#1) is due to the additional equations 18 and 19, which are
not used by approach (#2). The proposed approach (#3) with variable weights always
performs best.

In experiment 2 translation and rotation between two successive views is large and
not close to a critical camera motion (see Tab. 1). Thus, the classical approach (#2) gives
good estimation results (Fig. 2). Therefore, the biased estimation results of approach
(#1) are unnecessary in this case. In contrast, the estimation results of the proposed
approach (#3) with variable weights are as good as the results of approach (#2).
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Fig. 1. Results of experiment 1 (critical camera motion): Fig. a)-e) show the ground truth and
estimation results of the different approaches for all 5 intrinsic camera parameters over 5 different
standard deviations of the position errors of generated 2D feature points. The small symbols mark
the mean and the errorbars indicate the standard deviation of the estimation results over 500
random trials.
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Fig. 2. Results of experiment 2 (non-critical camera motion): Fig. a)-e) show the ground truth
and estimation results of the different approaches for all 5 intrinsic camera parameters over 5
different standard deviations of the position errors of generated 2D feature points. The small
symbols mark the mean and the errorbars indicate the standard deviation of the estimation results
over 500 random trials.

4.2 Natural Image Sequences

The proposed linear auto-calibration approach has also demonstrated to work well on
natural image sequences taken by a moving camera. Results of augmented image se-
quences that have been calibrated using the technique described in this paper are illus-
trated in Fig. 3. Videos of these augmented image sequences and executables of our
non-commercial camera tracker can be found on our website1.

5 Conclusion

As shown by the experiments the proposed linear auto-calibration approach has nearly no
estimation bias and reduces the problem with critical motion sequences. Therefore, it is
more robust and achieves an overall higher estimation accuracy than existing approaches.

1 http://www.digilab.uni-hannover.de
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Fig. 3. Examples of augmented image sequences
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A slight disadvantage of the proposed approach is its approximately N = 50 times
higher computational effort. In practice however, this causes no problem, because the
computational effort of the linear auto-calibration is small compared to the effort for
feature tracking, outlier elimination and estimation of a projective reconstruction. Nev-
ertheless, in future work, it can be tried to reduce N , e.g. by a more explicit detection
of critical camera motions.
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Abstract. Recently, the number of researches aiming at showing real world
objects from arbitrary viewpoint have been steadily growing. The processing
method is divided into three stages: 3D shape reconstruction by the visual cone
intersection method, conversion of 3D shape representation from a voxel form
into a triangular patch form, and coloring triangular patches. If the surface area
of the object becomes larger, the frame rate decreases since the processing time of
the conversion and coloring depends on the number of triangular patches. Stabil-
ity of the frame rate is essential for on-line distribution of a free-viewpoint video.
To solve this problem, we propose a new method which accommodates the space
resolution during the 3D shape reconstruction step, thus stabilizing the number of
triangular patches and the frame rate. This is achieved by raising the space reso-
lution step by step and stopping the process on a time criteria. The reconstruction
is done by using an octree-based visual cone intersection method. Experimental
results show that this method makes the frame rate more stable.

1 Introduction

Currently, radio, television, etc. are used as telepresence. However, media using 3D
information are more intuitive than those using 1D or 2D information like them because
the world in which people live is 3D space. So, several researches have been done
for generating the free-viewpoint video which shows objects in the real world from
an arbitrary viewpoint using multiple cameras since Kanade et al. [1] had proposed
the concept of ”Virtualized Reality” [2][3]. However, they cannot generate the free-
viewpoint video in real-time.

We are researching on on-line generation of free-viewpoint video[4], whose process
consists of three stages:

1. reconstructing 3D shapes (voxel form) by the visual cone intersection method[5],
2. converting the voxel form of 3D shapes to the triangular patch form of them, and
3. coloring triangular patches.

As shown in the first stage, we reconstruct 3D shapes of objects explicitly. While, Ma-
tusik et al.[6] have proposed the image-based visual hull technique, which can generate
a free-viewpoint video in real-time. This mathed generates a virtual viewpoint video by
projecting rays from the viewpoint on image planes of cameras. This means that the

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 81–90, 2006.
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methed does not reconstruct 3D shapes explicitly but implicitly and the amount of com-
putation is smaller than explicitly reconstructing methods. However, since the method
directly generates a virtual viewpoint video, the amount of computation is increased
relatively to the number of virtual viewpoints. So, it is impossible for the method to
deliver free-viewpoint videos to multiple viewers, each of whom can control his/her
own virtual viewpoint. On the oter hand, our method can broadcast the triangular patch
form of objects with color information, or a CG model, to all viewers and generate free-
viewpoint videos on thire own terminals. This means that the amount of comuptation
does not depend on the number of viewers.

However, there is a problem. When the surface area of objects becomes larger, the
frame rate becomes lower since processing time of the second stage and the third one
depends on the number of triangular patches. Stability of the frame rate is very im-
portant for on-line distribution of free-viewpoint videos since large jitters of on-line
distribution requires longer queues for data transmission.

In this paper, we propose a new method to stabilize the number of triangular patches
and, or the frame rate, by dynamically changing space resolution of 3D shape recon-
struction. This is realized by using an octree-based visual cone intersection method[7]
and raising its resolution step by step until the time allowed for one frame is over.

2 Free-Viewpoint Video

In this section, we show the configuration of the conventional free-viewpoint video
system.

Generating a free-viewpoint video is quite time consuming. Therefore, we use a
PC-cluster and RPV [8], which is a programming environment for a real-time image
processing on a distributed parallel computer (such as a PC-cluster). Multiple cameras
synchronized by an external trigger generator are placed in a convergent setup around
the center of the scene. Each camera is connected to a PC.

First, object silhouettes are extracted from video frames captured by a camera via
background subtraction and noise reduction. For each object silhouette, a visual cone,
which is defined as the cone whose apex is the viewpoint and whose cross section co-
incides with the silhouette, is obtained. Visual cones are represented in terms of voxel
space. Then, visual cones from multiple viewpoints are gathered and intersected to con-
struct the shape of the object. Thereafter, 3D shape representation is converted from a
voxel form to a triangular patch form by the discrete marching cubes method [9]. Then,
visible vertexes of triangular patches are colored based on one camera image. Then,
color information of all cameras are integrated. Finally, free-view point images are ob-
tained with color information from a virtual viewpoint directed by the user.

3 Visual Cone Intersection Using Octree

Increasing the space resolution step by step by the visual cone intersection method
which we used is difficult. Indeed this method must scan all voxels in the finest space
resolution. Therefore, we use an octree-based visual cone intersection method proposed
by Sato et al.
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3.1 Octree

An octree is a tree to index three dimensions. Each node has either eight children or
no children. This means that one voxel is divided into eight voxels when the space
resolution is increased.

3.2 Pass Algorithm

Each voxel is classified into three types as follows.

White. The eight vertices are projected on the silhouettes
Black. The eight vertices are projected on the background
Gray. The other voxels (borders of silhouettes)

Voxels of a pre-defined size called initial voxels are classified into the above three voxel
types. After that, only gray voxels are subdivided. Such classification and subdivision
procedure is recursively executed until a pre-defined finest space resolution. This sub-
division procedure from an also pre-defined coarse space resolution to the finest one is
named pass and the algorithm is named pass algorithm.

3.3 Multi-pass Subdivision Algorithm

Since the intersection test described above is very simple, it sometimes ends in failure.
Fig. 1 shows an example of that case. In the example, a voxel is projected on a narrow
tip of a silhouette that avoids its vertices. This voxel must be classified as gray. Nev-
ertheless, it is classified as black. This voxel is named failed voxel. Then, a Multi-Pass
Subdivision Algorithm (see Fig. 2) is proposed to solve this problem. In Step1, the pass
algorithm is applied to initial voxels. Afterward, failed voxels are detected in Step2.
Failed voxels are subdivided and the pass algorithm is applied to the voxels obtained
in Step3. Failed voxels are detected once again in Step2. As long as failed voxels are
detected, Step2 and Step3 are repeated. If no failed voxels are detected, the process
ends.

The way to detect failed voxels is as follows. We connect neighboring gray voxels
in the finest space resolution, and thus we get the surface of a reconstructed geometry.
If there is a white voxel neighboring a black voxel, the surface is not closed. Therefore,
we regard the both voxels as failed voxels. This also means that there cannot be failed
voxels in the finest space resolution. As a result, failed voxels can always be divided.

Vertices projected on the silhouettes 

of input images
Unknown vertices

Object

Fig. 1. Failed Voxel (Case Example)
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Step2. Detect failed voxels.

Step1 . Apply a pass algorithm

to initial voxels.

Step3. Subdivide failed voxels.
Apply the pass algorithm 

to obtained voxels.  

End.

when any failed voxels
are not detected

when some failed voxels
are detected

Fig. 2. Multi-pass Subdivision Algorithm

4 Frame Rate Stabilization by Variable Resolution Shape
Reconstruction

4.1 Variable Resolution Shape Reconstruction

We use the octree-based visual cone intersection method to reconstruct the 3D shape
in variable space resolution. Using this method, even if the process of 3D shape recon-
struction does not reach leaf nodes of the octree, we can reconstruct the shape in lower
space resolution using the information of the ancestor nodes. Then, we can stop the
process and stabilize the frame rate.

The process of 3D shape reconstruction is shown in Fig. 3. The procedure from Step2
to Step4 is recursively executed until a certain time is over. When the time passes, the
process stops at the end of either Step2 or Step3. We call the resolution in which the
process is stopped cutoff resolution.

Step1. Apply the multi-pass subdivision algorithm in a certain cutoff resolution
Step2. Send leaf nodes in the current cutoff resolusion
Step3. Subdivide gray voxels and failed voxels in the higher cutoff resolution which

cannot be subdivided in the previous subdivision
Step4. Apply the multi-pass subdivision algorithm

In Step1, when a node is judged to be black, the descendants of the node are considered
as black nodes. Likewise, when a node is judged to be white, the descendants of the node
are also judged to be white. Meanwhile, when a node, which cannot be divided in the
cutoff resolution, is judged to be gray, the descendants of the node are judged to be gray.

In Step2, the information, white or black, of each leaf nodes is output. A gray voxel
is output as a white voxel. However, when a gray voxel in the finest space resolution,
the information of its vertices is output.

In Step1 or Step4, when there are failed voxels which cannot be divided in the current
cutoff resolution but can be divided in the next higher cutoff resolution in Step3, they
are retained and subdivided in the following Step3.

4.2 Detection of Failed Voxels

The first time we detect failed voxels, i.e. in the coarsest cutoff resolution, we scan all
white voxels. For each white voxel, we detect black voxels which are minimum voxels
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Fig. 3. Variable Resolution Shape Reconstruction

in the current cutoff resolution and are neighboring the white voxel. When we detect
such a black voxel, we detect a black node which can be divided by tracing a link from
the voxel to the parent node. If there is a node which can be divided, we regard the node
as a failed voxel and divide it. In addition, if the white voxel can be divided, we also
regard the node as failed voxel and divide it.

On the other hand, for the second time or later, we scan such white voxels and black
voxels that are obtained by dividing gray voxels and failed voxels on the previous pro-
cess, assuming failed voxels appeared at the time.

4.3 System Configuration

We obtained visual cones from each camera and intersected them in the conventional
system. But we obtain visual cones from each three cameras and intersect them. By
doing so, the surface area diminishes and the number of gray voxels decreases. It in-
creases the number of voxels which do not have to be divided, and thus the processing
time decreases.

The system configuration which we propose is as following. Processes are distributed
to PCs shown in Fig. 4 and executed in pipeline parallel.

Node-A: Each node-A extracts object silhouettes from video frames captured by a
camera by background subtraction and noise reduction, and sends the silhouette
image to a node-B and a node-D. Each node-A sends a binary format silhouette im-
age to a node-B to reduce the amount of data since each node-B uses the image to
reconstruct a visual cone. On the other hand, each node-A sends a RGB silhouette
image to a node-D since each node-D uses the image to color a visual hull.

Each node-A’ does not works for model coloring but only for shape model re-
construction. Indeed model coloring needs large processing time, and it becomes
difficult to use many cameras. The node-A’s do not send images to node-Ds.

Node-B: Each node-B constructs a visual hull. When a-node-B refers vertices for voxel
classification, it projects vertices onto the silhouette images from three viewpoints.
Each vertex is regarded as occupied only when all projected point on each image
are occupied. Each node-B sends the node-C a visual hull and information about
the cutoff resolution one time or more.
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Fig. 4. System Configuration

Node-C: Each node-C intersects the visual hull every time it receives one from node-B.
If the cutoff resolutions of all the visual hulls are not same, lower cutoff resolutions
are adjusted to the highest cutoff resolution. Furthermore, the node-C converts the
final shape model represented in terms of voxel space into triangular patches by the
discrete marching cubes method. Then, the node-C sends the voxel space and its
corresponding marching cube patterns to node-D and node-E since the data size of
both voxel space and its marching cube patterns is smaller than that of all triangular
patches.

Node-D and Node-E are the same as conventional system.

Node-D: First each node-D transforms the shape model represented in terms of a voxel
space into triangular patches by using patterns sent from the node-C. Then, each
node-D colors visible vertexes of the shape model based on one camera image.
Finally, each node-D sends color information of all the vertexes of the shape model
to the node-E.

Node-E: First, the node-E receives the position of the virtual viewpoint directed by
the user. Then the shape model transforms into triangular patches in the same way
as a node-D. Finally, the node-E integrates color information of all cameras and
generates an image from the directed viewpoint.

5 Experiments

5.1 Experimental Environments

Using the system we proposed, we generate a free-viewpoint video in real-time to
evaluate the processing time and the quality of generated images. We have used nine
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Fig. 5. Camera arrangement and combination

IEEE-based cameras at 320× 240 pixel resolution, and 20 PCs (six node-As, three
node-A’s, three node-Bs, one node-C, six node-Ds, one node-E), each of which has an
Intel Pentium4 (3GHz), 1GB memory and NVidia GeForce FX. PCs are connected with
each other by Myrinet, a giga-bit network. All the cameras are calibrated in advance by
Tsai’s method [10]. The camera arrangement and combination of visual cone intersec-
tion in node-Bs are shown in Fig. 5. Maximal space resolution is 128×128×128 and
the size of a minimum voxel is 2cm. The depth of the octree is five and the space reso-
lution of initial voxels is 8×8×8. The cutoff resolution is two level, 64×64×64 and
128× 128× 128. That is to say, we apply multi-pass algorithm until the depth of the
octree is four and space resolution is 64×64×64, and we advance to 128×128×128
after sending leaf nodes.

5.2 Generated Free-Viewpoint Video

Fig. 6 shows camera images and generated images from a same viewpoint by the pro-
posed variable resolution system and by conventional fixed resolution system. The
space resolution of the fixed resolution system is 128×128×128. In the variable reso-
lution system, the shape reconstruction process is stopped at 64×64×64 of the cutoff
resolution since the total surface area of the objects, or two persons, is too large. There-
fore, the object shapes look coarse because of the low space resolution. Moreover, the
objects look bigger than those in the fixed resolution system, since we regard the gray

(a) Camera image (b) Generated image (Vari-
able Resolution System)

(c) Generated image (Fixed
Resolution System)

Fig. 6. Camera image and generated image from a same viewpoint
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(a) Generated image 1 (b) Generated image 2

Fig. 7. Generated images from virtual viewpoints

(a) Generated im-
age 1

(b) Generated image 2 (c) Generated image
3

(d) Generated
image 4

Fig. 8. Generated images in case that the number of persons varies

voxels in the reconstructed surface as white voxels. As a result, the surface of object is
not colored correctly.

Fig. 7 shows generated images from virtual viewpoints by the variable resolution
system. Small cubes in the images represent real camera positions. Small cubes repre-
sent camera position. The process is stopped at 64×64×64 of the space resolution.

Fig. 8 shows generated image by the variable resolution system in case that the num-
ber of persons varies. When there are two persons, the process is stopped at 64×64×64
of the space resolution. Otherwise, there is enough time to reach 128×128×128 of the
space resolution. This example shows the space resolution is changed according to the
objects.

5.3 Processing Time

Not only the average of frame rate but also the variance are important for on-line free-
viewpoint video distribution. Indeed, should the variance get higher, the communication
buffer size will have increase as well, thus also increasing the delay time.

Fig. 9 shows frame rate in case the number of persons changes with the fixed resolu-
tion system (conventional technique) and with the variable resolution system (proposed
technique). When the number of people changes from one to two, the frame rate of
conventional system decreases significantly. On the other hand, the frame rate with pro-
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posed technique keeps 20fps independent of objects. Yet the frame rate with proposed
technique has a small fluctuation. Indeed, stopping the process or not is judged after
step2 or step3 (in section4) Stopping the process does not always happen fixed time.

5.4 Quality of Generated Image

When the process is stopped, space resolution is low, and the precision falls. We evalu-
ate how different the error of coloring in space resolution 128×128×128 and 64×64×
64 is. Fig. 10 shows the sum of root mean square error between a camera image and a
generated image with the same viewpoint. The error in lower space resolution increase
a little, but the increasing amount is much smaller than the error in space resolution
128×128×128.

6 Conclusion

In this paper, we propose frame rate stabilization by variable resolution shape recon-
struction for on-line free-viewpoint video generation. And we make some experiments
to show the frame rate stabilization independent of the object. Major future works are
as follows:

– reduction of the fluctuation in the frame rate
– compression of the amount of data transfer by sending not a voxel space but an

octree
– realizing a multi-resolution marching cube method
– compression of color information
– developing an on-line free-viewpoint video distribution system.
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Abstract. Construction of key poses is one of the most tedious and time
consuming steps in synthesizing of 3D virtual actors. Recent alternate
schemes expect the user to specify two inputs. Along with a neutral 3D
reference model, more intuitive 2D inputs such as sketches, photographs
or video frames are provided. Using these, of all the possible configura-
tions, the “best” 3D virtual actor is posed

In this paper, we provide a solution to this ill-posed problem. We first
give a solution to the problem of finding an approximate view consistent
with the 2D sketch. Elements of this rigid-body solution are novel. Next,
we provide a new solution to the process of extending or retracting limbs
to more accurately suit the sketch. This posing algorithm, is based on a
search based scheme inspired by anthropometric evidence. Less physical
work is required by the actor to reach the desired pose from the base
position. We also show that our algorithm converges to an acceptable
solution much faster compared to the previous methods.

1 Introduction

Consider the following:

– A cricket coach uses an animation system in correcting the flaws in the
strokes of one of his current players based on proven, vintage stars of the past.
He generates “on the fly” a new three-dimensional (3D) sequence rapidly
based on the combination of the 3D model of his current player and past
videos at his disposal.

– An occupational therapist takes a scanned picture from her textbook. She
overlays correct posture styles for the computer hacker hunched up over his
laptop.

Animation systems currently used fall well short of providing the necessary
amenities to realize the above. Due to the highly articulate and complex struc-
ture of human 3D characters and their respective motions, posing them in a
3D world and specifying their motion is by no means a trivial task. Alternative
schemes [1] [2] have thus evolved that compute a desired pose from a 2D sketch,
a photograph, or from a video frame. For simplicity, we assume in the rest of
the paper that our inputs are artist drawn sketches, and a reference 3D virtual
actor modeled as an articulated skeleton.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 91–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) Input Sketch (b) Input 3D Ac-
tor

(c) Orientation
Recovered

(d) Pose matches
sketch

Fig. 1. A sketch and a 3D actor (top row) is presented to our system. It first (bottom
left) re-orients the actor rigidly and then “moves” the limbs to match the sketch. In
this example, the positions of all four limbs are computed and the knee adjusted.

1.1 Problem Statement and Contributions

There are two issues in computing a solution as in Fig. 1. First, an approximate
viewing direction must be found that orients the 3D actor to match the given
sketch. At the end of this step, the 3D actor has rigidly oriented himself to be
ready to move to the new configuration in the sketch.

Second, the actor changes relative positions of the “bones” so as to match the
sketch.

Note that there are potentially infinite configurations that match the sketch.
Multiple positions may be used to construct an animation sequence based on
key intermediate poses.

We provide a partially automated solution to this problem. In our scheme, the
end user specifies a few correspondences between points on the 2D sketch and
points in the 3D reference model. Our system automatically constructs the gross
orientation. Next, based on this orientation, the system automatically moves the
limbs in a non-rigid fashion to match the sketch. We list the features of our work.

1. A more robust (albeit domain-specific) rigid body camera recovery algorithm
is presented (see Section 3).

2. For the “most-likely” non-rigid motion, a novel search based scheme inspired
by anthropometric1 evidence is introduced.

3. The notion of a physically based metric to quantify the results is introduced.
Compared to existing methods, our scheme requires less physical work to
reach the specified sketched pose from the previous position. The application
of this to energy efficient robotics is immediate.

4. Compared with prior iterative solutions, our method takes less time and can
be done at interactive rates.

5. Since the reconstruction from 2D sketches to 3D poses is not unique, we pro-
vide the end user the option to select from multiple solutions. The solutions
are returned in an order of “less movement” to “more movement” on the
part of the 3D actor.

1 Anthropometry: measurement and study of the human body and its parts and
capacities.
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6. The sketches provided by the artist are not expected to be the exact projec-
tions of the desired pose. But a loose sense of proportion is expected.

The rest of the paper is organized as follows. After considering related work in
Section 2 we give a brief overview of the camera recovery algorithm in Section 3.
We present the conceptual and implementation details of our posing algorithm
in Section 4. We analyze our results and perform statistical comparisons with
earlier methods in Section 5. Final remarks appear at the end.

2 Previous Work

The problem of extracting 3D poses from 2D poses has been tackled in various
domains like robotics, CAD/CAM, computer vision, animation and graphics be-
fore. A popular approach is to use two or more images from different viewpoints
to resolve ambiguity between multiple valid poses.

A technique for reconstructing human body poses from single images with
the aid of anthropological data is discussed in [3]. In [4], the authors have out-
lined a technique that relies on known point correspondences between predefined
landmarks on the human body. Most of these are learning based schemes. An
alternative strategy, useful for some 3D animation applications, is to use infor-
mation from “previous” frame(s) when available. See for example, [5].

Another school of thought is to re-structure the problem as an optimization
problem [6][7]. The hypothesis behind optimization-based posture prediction is
that human motion concerning different tasks is governed by different perfor-
mance measures. These measures can be aggregated using multi-objective opti-
mization techniques.

Pose recovery techniques close to our stated goals are discussed in [1] and [2].
The method proposed in [2] achieves a good amount of automation but works
only with “stick-figures” as 2D input. Also they require the 2D skeleton to be an
isomorph of the 3D skeleton, which limits the applicability of the method. This
assumption, for example, may not hold true with motion capture tracking data
[2]. Our work is essentially patterned around [1]. We re-work the posing scheme
so as to make it more robust, faster and closer to actual human motion. Further,
our algorithm has the option of returning multiple solutions.

Our posing algorithm is loosely based on Cyclic Coordinate Descent (CCD)
method [8] [9]. An excellent introduction of all of the problems and general
approaches to Inverse Kinematics is provided in [8].

3 Recovery of Gross Orientation

The key to recover the orientation is to find a “camera” such that when it looks at
the 3D shape in the correct orientation, the projection of the 3D shape matches
the input sketch. Mathematically, the camera is a matrix P3×4

x = PW (1)



94 A.S. Vaidya, A. Shaji, and S. Chandran

where W4×1 = [X Y Z 1 ]T is an object point and x3×1 = [uw vw w ]T is the
corresponding image point.

P can be computed given a set of user-clicked point correspondences (xi,Wi),
between the image and the reference actor. Normally, at least six point corre-
spondences (in general position) are required for the simplest camera model.

3.1 Our Method

Instead of finding the camera matrix, and then recovering the 3D points, our
domain-specific method directly computes the required 3D points. The method
requires no more than five points such that the clicked points belong to the same
object and no four of these points are co-planar.

The clicked sketch points, xi, are 2D projections of the corresponding, cur-
rently unknown, 3D points W

′
i = [X

′
i Y

′
i Z

′
i 1]. However, the 3D positions,

and hence distances, are known in the reference position. Because the camera
recovery phase is a rigid body transformation, the distances between joints in
the skeleton is preserved. The unknown points W

′
i are computed using this

invariant. The details of this step (keeping in mind issues such as the scaling,
origin alignment, and the like) are skipped for brevity.

The unknown transformation T given by W
′
4×1 = T4×4W4×1 can now be

obtained. Finally, T is related to the camera matrix by the relation P3×4 =
K3×4T4×4 where K3×4 is the projection matrix. This enables us to find C, the
viewing direction, as the right null space of the camera matrix.

4 Non-rigid Posing

The non-rigid transformation is the next step. The problem is set up as an inverse
kinematics problem. At this point, the user clicks corresponding positions of the
desired limb, termed as the end effector. This is the pair (e ,W) on the sketch and
the reference character. The system then back-projects the 2D sketch position e
to obtain the target ray in 3D space Re = λC+P−1e where λ is a real number.

As a minimum, only the position of the end effector is given, and that too
in an approximate sense. The true 3D position, and the intermediate joints are
not specified by the user. Of course, to construct a more accurate pose, the user
may decide to provide the 2D positions of the intermediate joints as well, and
the system will use this information when available. However we have found that
this is rarely necessary. A properly constructed model along with our strategy
of returning multiple discrete configurations, as discussed in section 4.2, yields
satisfactory poses in most cases.

4.1 Basic Idea

Where on this ray will the actual point lie? This is an important question which
drives the quality of the solution. Two choices are considered

– The method proposed in [1] uses the closest point on this ray to the current
end-effector position as the target position and applies traditional inverse
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Fig. 2. Problems with closest point assumption

kinematics. However the closest point may be unreachable as seen, for ex-
ample, in Fig. 2(a) or may lead to unnatural poses as in Fig. 2(b).

– Alternatively, blind Jacobian based inverse kinematics may be used where
the first satisfying end point is automatically computed. However, the 3-D
reference character has to perform more physical work (Section 5). Besides
this method needs more iterations to converge to a solution.

The intuition behind our scheme comes from the way human limbs operate. The
human limb motion compromises on various factors like the effort required in
planning the motion, the energy expended in executing the motion and stability
of the resultant posture. As a result, limb motion occurs by an overall gradual
rotation towards the goal along with simultaneous extension or retraction to
span the required distance [10].

We mimic the above behavior by using a search based scheme. We use a
recursive bi-directional search for the best configuration to reach the target ray
starting from the smallest sub-chain. At each step of the recursion, let current
root be the joint at the base of the current sub-chain. We call the vector from the
current root to the end-effector a virtual bone. The algorithm orients the current
virtual bone by rotating the current root so that the end-effector is closest to

End−effector

Current virtual bone

Curent root

Target ray

(a) Before orienting
current virtual bone

Target ray

Virtual bone
rotated

Current root

(b) Orienting the cur-
rent virtual bone

Target ray

Final configuration

Intermediate positions

(c) Expanding the sub-chain
to reach the ray

Fig. 3. Phases in our algorithm
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the target ray. The algorithm then extends or retracts the chain to try and
reach the ray. To do this, it recurses with a smaller sub-chain to search for a
suitable configuration that places the end-effector on the ray. If successful, the
algorithm returns. If we are unsuccessful, but this step reduces the posing error,
the resulting configuration is saved before proceeding further. Finally if instead
it increases the posing error, the rotation applied to current root is undone and
the chain is restored to the last saved state2. The process is shown in Fig. 3 and
the algorithm is given in Algorithm 1. Finally longer sub-chains are considered
in Algorithm 2.

Algorithm 1. PoseChain (IN : start, IN : end, IN : ray, IN : thresh, IN/OUT :
error) : Success, Partial

1: if error < thresh then
2: return Success
3: else
4: if start == end then
5: return Partial
6: end if
7: end if
8: virtBone ← (curRoot, end)
9: Compute rotation(s) for virtBone

10: Select best rotation bestRot
11: Save the current value of curRoot
12: Apply bestRot to virtBone
13: Compute current posing error locError
14: if PoseChain(start.child, end, ray, locError) == Success then
15: return Success
16: end if
17: if locErr < error then
18: error = locErr
19: else
20: Restore the saved value of curRoot in step 11
21: end if
22: return Partial

Since PoseChainTop considers increasingly longer chains, the time complexity
of the algorithm, T (n) in terms of chain length n can be computed by the
recurrence

T (n) =
ı=n∑
ı=1

T1(ı) (2)

2 The desired orientation of the current virtual bone PQ, where P is the current root
and Q is the current end-effector, is computed by drawing a sphere centered at the
current root and radius equal to the length of the current virtual bone. The closest
point to the ray be S. The rotation R is the one which aligns PQ, along PS.
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Algorithm 2. PoseChainTop (IN : start, IN : end, IN : ray, IN : thresh) :
Success, Partial
1: error ← ∞
2: for curRoot = end.parent to start do
3: if PoseChain(curRoot, end, ray, thresh, error) == Success then
4: return Success
5: end if
6: end for
7: return Partial

where T1 is the time complexity of the recursive algorithm PoseChain. Consider
the call to algorithm PoseChain with chain size m. To compute T1(m) we note
that it consists of a single recursive call of size m − 1 in step 14. All other
steps can be done in constant time. Therefore the algorithm PoseChainTop is
quadratic.

This is much better than a Jacobian based scheme, where at every step a 6×n,
matrix must be computed and inverted. Further, in our case the “steps” taken
by the IK chain are much larger than the Jacobian scheme. Thus our algorithm
executes much faster than the traditional scheme.

PoseChainTop is loosely based on CCD [9]. In fact, the for loop in the
algorithm PoseChainTop is a conceptual implementation of CCD. CCD is a
linear time algorithm. However the length of an IK chain seldom exceeds 10,
hence the execution time of PoseChainTop is well within interactive rates. Fur-
ther, basic CCD suffers from the problem of excessive folding since the search
proceeds in only one direction, from the end-effector towards the root of the
chain. Once a bone is rotated, the sub-chain rooted at that bone is never con-
sidered again. In contrast, our method reconsiders the sub-chain via the recur-
sive call at the end of algorithm 1, thus correcting for the excessive rotation
that happens with standard CCD. This also takes care of convergence issues in
the presence of joint-constraints3. Another advantage we have over CCD is the
ability to generate multiple discrete configurations as discussed in section 4.2
below.

4.2 Generating Multiple Configurations

Using a search-based approach allows us to generate multiple discrete configu-
rations using the following strategy. In general, at the point in the search tree
where the algorithm returns successfully, the corresponding virtual bone will
have two possible orientations—see step 9 of PoseChain. In the basic scheme,
we select the “best” and discard the other. In the modified version, we cache
the second orientation in algorithm 2, subject to joint constraints, before re-
turning. This represents the node in the search tree from which the search must
be restarted for other solutions. Now when the user requests another solution,
3 In our system, joint constraints are modeled in the form of constraint cones, enclosing

the joint in its parent coordinate frame (see Fig.6).
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Fig. 4. Generating multiple solutions

(a) Input Sketch (b) Pose 1 (c) Pose 2

Fig. 5. Returning multiple solutions

we do an inorder search starting from this node, returning one “next” solution
for every request. The modified scheme is shown in Fig. 4. Example output
showing two poses generated by this method is shown in Fig. 5. Note that the
input sketch given in the figure can correspond to two possible actions. One is
during the back-lift of the bat for a righthanded batsman before the stroke is
made and other the follow-through after the stroke for a left handed batsman.
Observe that Fig. 5(b) is a valid representation of the follow-through pose and
Fig. 5(c) that of the back-lift pose. Details of the algorithm are skipped in this
version.
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A Constraint Cone
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Constraint Cone With
Large Degree of Freedom

Major Angle

Fig. 6. The Constraint Cone
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5 Experiments and Results

A sample posing result for our scheme is shown in Fig. 1. We also implemented
the Jacobian based method mentioned in Section 4. By and large, based on our
discussions with kinesiological experts, our method looks more natural.

For quantitative comparisons, we compared the physical work done against
the force of gravity to bring an IK chain from initial position to final position,
along with the posing error using each method. The posing error was computed
as the perpendicular distance squared of the final end-effector position from
the target ray. The work done on link ı was taken as wı = mghı where h
is the vertical displacement of the center of mass of the link. The total work
done in posing a chain was obtained by summing the contribution from each
link.

About 250 experiments in different configurations were performed. A method
was deemed successful if the error between the goal ray and the end-effector was
less than a threshold (2% of the chain length).
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Fig. 7. (a) Error versus computation time. (b) Gain in work we achieve with respect
to closest point approach.

The maximum number of iterations for which the closest point based iterative
schemes were allowed to run is indicated. An equivalent amount of maximum
compute time was alloted for our recursive method. As seen in Fig. 7(a) we
observe that our method records success with far lesser computation time than
the previous method. Also, in general our method constructs poses that require
less physical work on the part of the character as seen in Fig. 7(b). We define
gain as the ratio of the work done by our method with respect to the work done
by the closest point method. Note that we are getting an improvement of at-
least a factor of 2 in all cases. We compared our method with two methods: a
Jacobian based blind IK method that attempts to minimize the distance with
the target ray, and recent IK method[1] that targets the closest point on the
target ray. Though the posing accuracy of blind IK method is comparable to our
method, we got an average improvement of a factor of 1.67 in terms of the work
done.
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6 Conclusion and Future Work

In this work, we have implemented a scheme for constructing 3D poses from
2D sketches, photographs, and video frames. We have demonstrated that our
method robustly constructs poses that look natural, and can be constructed
at interactive rates. An energy efficiency paradigm has been introduced and
multiple solutions are provided and in these senses too our method performs
well. There are a few areas that we would like to explore further.

1. A more complete actor model that has twist and pole vector rotations. While
this is a matter of detail in the forward graphics problem, it will handle issues
such as head rotation in Fig 1.

2. In many applications, it may be possible to compute a homomorphism be-
tween the 2D and 3D skeletons, thus eliminating the need for the user to
manually click corresponding end-effectors. This has several interesting is-
sues like
– Efficient computation of the homomorphism
– Handling the symmetries in the structure of a character.
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Abstract. This paper describes a novel video mosaicing method based on ex-
trinsic camera parameter estimation. With our method, a mosaic image without 
perspective distortion can be generated, even if none of the input image plane is 
parallel to the target document. Thus, users no longer have to take special care 
in holding the camera so that the image plane in the reference frame is parallel 
to the target. First, extrinsic camera parameters are estimated by tracking image 
features. Next, by utilizing re-appearing features, estimated extrinsic camera pa-
rameters are globally optimized to minimize the estimation error in the whole 
input sequence. Finally, all the images are projected onto the mosaic image 
plane, and a super-resolved mosaic image is generated by applying an iterative 
back projection algorithm. Experiments have successfully demonstrated the fea-
sibility of the proposed method. 

1   Introduction 

Document and photograph digitization from a printed or drafted paper has been very 
important for digital archiving and personal data transmission over the internet. Flat-
bed scanners are one of the most commonly used devices for this purpose. These 
scanners, however, are too large and heavy to be portable. Thus there has been a 
strong demand for a high quality digitization of documents using portable imaging 
devices, such as cameras on cellular phones. The problem here is the resolution of the 
image acquired with these devices. 2M pixel cameras enable full A4 pages to be sam-
pled at about 150 dots per inch (dpi), whereas flat-bed scanners enable sampling at 
few thousand dpi. 

This problem can be solved by capturing partial images of the documents as a 
video, and by stitching multiple frame images seamlessly into one large, high resolu-
tion image. This technique is called video mosaicing, and a number of methods have 
been proposed. Conventional methods estimate pairwise registration between two 
successive images, and construct a mosaic image by warping all the images to a refer-
ence frame (in general, the first frame). Szeliski [1] developed a method using 8-DOF 
projective image transformation parameters called homography. In this method, for 
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every pair of consecutive frames, homography which minimizes the sum of squared 
differences between the two frames are estimated. This method is applicable when a 
target is a plane (planar image mosaicing), or optical centers of images are approxi-
mately fixed throughout the video capturing (panoramic image mosaicing). After his 
work, various extensions to this method have been proposed [2], [3], [4], [5], [6], [7]. 
One of the major extensions is the use of image features instead of all the pixels in 
images for reducing computational cost [2], [3], [4]. Although the computational cost 
is drastically reduced by these methods, a resultant mosaic image usually has a mis-
alignment of images because of the cumulative errors in homography estimation. 
Some methods introduce an optimization process after homography estimation to 
ensure the consistency of the registration among multiple frames, and to reduce the 
cumulative estimation errors [6], [7]. 

All these methods, however, align the input images to the reference frame, thus 
will generate a mosaic image with perspective distortion if the image plane in the 
reference frame is not parallel to the target document. A mosaic image with this per-
spective distortion is shown in Figure 1. This is a mosaic image of an A4 sized docu-
ment. The rectangular region in this figure corresponds to the image captured in the 
reference frame. Since the image plane in the reference frame was not set parallel to 
the target document, perspective distortion has occurred all over the mosaic image. In 
order to generate a mosaic image without perspective distortion, not only the registra-
tion among the images, but also the geometry between the document and the camera, 
or in other words, the extrinsic camera parameters in each frame have to be solved.  

In this paper, a novel video mosaicing method based on extrinsic camera parameter 
estimation is proposed. The originality of this method lies in that extrinsic camera 
parameters, instead of homography, are estimated by applying structure from motion 
method [8], [9] to documents. Using estimated extrinsic camera parameters, a mosaic 
image without perspective distortion can be generated. Another originality of this 
method lies in that re-appearing image features are utilized to minimize estimation 
errors in extrinsic camera parameters. Note that the proposed method is based on the 
assumption that the target document is planar, intrinsic camera parameters are known 
in advance, and are fixed throughout image capturing. 

(a) Initial estimation by tracking features 

(b) Detection of re-appearing features 

(c) Refinement of estimated camera parameters 

(B) Generation of super-resolved mosaic image 

Iterate from first frame to last frame 

(A) Extrinsic camera parameter estimation 

Fig. 1. Mosaic image with perspec-
tive distortion 

Fig. 2. Flow diagram of the proposed method 
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2   Video Mosaicing by Extrinsic Camera Parameter Estimation 

The flow of our method is given in Figure 2. First, extrinsic camera parameters of a 
handheld camera is estimated (A), and a super-resolved mosaic image is then gener-
ated using the estimated parameters (B). In the following sections, first, extrinsic 
camera parameters and an error function are defined. The stages (A) and (B) are then 
described in detail. 

2.1   Extrinsic Camera Parameters and Error Function 

In this paper, as shown in Figure 3, the transformation matrix of the f-th frame is 
defined between the mosaic image plane and the f-th frame image plane as follows: 
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where 
),( pp yx : the position of a feature p in the mosaic image plane, 

)ˆ,ˆ( fpfp vu : the projected position of  ),( pp yx  to the  f-th frame image with the ideal 

camera model, 
),( fpfp vu : the projected position of  ),( pp yx  to the f -th frame image in the real 

camera image, which is given by transferring )ˆ,ˆ( fpfp vu by known intrinsic camera 

parameters including focus, aspect, optical center and distortion parameters, 
),,( 321 fff ttt : camera position of the f -th frame, 

),,( 321 fff rrr : camera posture of the f -th frame, 

a : a parameter. 
This transformation matrix 

fM  is essentially the same as a usual extrinsic camera 

matrix except the omission of z-axis parameters, since the target object is always on 
the z=0 plane. 

Mosaic image plane 

M1 M2

Mf

(xp, yp)

(u1p, v1p) (u2p, v2p) (ufp, vfp)

First frame 2nd frame f-th frame

Fig. 3. Mosaic image plane and camera 
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In general, ),( fpfp vu computed by Eq. (1) and known intrinsic camera parameters 

does not coincide with an actually detected position ),( fpfp vu ′′  in the real image, due 

to errors in feature detection and extrinsic camera parameter estimation. In this paper, 
the squared error 

fpE  is defined as an error function for the feature p in the f-th frame 

as follows: 
22 )()( fpfpfpfpfp vvuuE ′−+′−=

. (4)

The sum of 
fpE  is employed for estimating 

fM  and ),( pp yx  in the following  

section. 

2.2   Extrinsic Camera Parameter Estimation 

As shown in Figure 2, the extrinsic camera parameter estimation method consists of 
three processes. The following briefly describes each process. 

Initial Estimation by Tracking Features. In this process, an initial estimate of ex-
trinsic camera parameter 

fM  is computed by tracking image features. This process is 

basically an extension of the method in [9].  
In the first frame, 

fM  is set as an identity matrix, assuming the image plane in the 

first frame is parallel to the target object. For each image feature p in the first frame, 
its position ),( pp yx  in the mosaic image plane is also computed based on this as-

sumption. Note that even if the target object and the image plane of the first frame are 
not parallel to each other, they are corrected in the refinement process. 

In the succeeding frames (f>1),
fM  is determined by iterating the following steps 

until the last frame. 

Tracking of image features: All the image features are tracked from the previ-
ous frame to the current frame by using a standard template matching with Harris 
corner detector [10]. The RANSAC approach [11] is also employed for eliminat-
ing outliers. 
Extrinsic camera parameter estimation: The tracked position ),( fpfp vu ′′ and its 

position in the mosaic image plane ),( pp yx , which is estimated in the previous it-

eration, are used for estimating the extrinsic camera parameter 
fM . In this step, 

the error function
p fpE is minimized by Levenberg-Marquardt algorithm. 

Estimation of feature position on mosaic plane: The position ),( pp yx of each 

feature p in the mosaic image plane is refined by minimizing the error function 

f fpE .

Addition and deletion of features: In order to obtain accurate estimates of cam-
era parameters, good features should be selected. The set of features is updated 
by evaluating the reliability of features [9]. 
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Fig. 4. Detection of re-appearing features. (a) camera path, posture and feature position on 
mosaic image plane, (b) sampled frames of an input image sequence,  (c) templates of a feature 
in different images, (d) templates projected to a mosaic image plane. 

Detection of Re-appearing Features. When we move the camera so as to capture 
the whole document area without missing any part of it, the camera will make some 
loop-backs, revisiting certain parts of the target more than once, as shown in Figure 
4 (a). Due to this camera motion, some features appear in the image more than 
once, as shown in Figure 4 (b). In the proposed method, these re-appearing features 
are detected and utilized to refine the estimated camera parameters in the following 
step. 

Re-appearing features are detected by first projecting the templates of all the fea-
tures to the mosaic image plane, and then examining the normalized cross correlation 
between every feature pair whose distance is less than a given threshold. This proce-
dure is shown in Figure 4 (c) and (d). 

Refinement of Estimated Camera Parameters. In this process, extrinsic camera 
parameters are refined in the framework of bundle adjustment [12]. 

Since initial estimation of extrinsic camera parameters is an iterative process, it 
permits the accumulation of the estimation error. Bundle adjustment is a process 
which jointly optimizes extrinsic camera parameters for each frame and feature posi-
tion on mosaic plane, so as to minimize the cumulative estimation error.  

The cumulative estimation error E  to be minimized in the bundle adjustment is de-
fined as follows: 

.=
f p

fpEE (5)

This is the sum of squared distances between the re-projection of the estimated fea-
ture position onto the input image plane and its actually detected position in the input 
image. As the cumulative error becomes larger, so does E . E will become even lar-
ger if the image plane in the reference frame is not parallel to the target, since wrong 
extrinsic camera parameters are estimated for the reference frame. Thus, we minimize 
E  with respect to the camera parameters 

fM and the feature positions ),( pp yx  over 

the whole input. With this minimization, the cumulative estimation error is reduced, 
and the correct extrinsic camera parameters are estimated for the reference frame, in 
case the image plane is not parallel to the target in the reference frame. 
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As for re-appearing features, all the position sequences belonging to the same re-
appearing feature are merged, and treated as one single sequence in the computation of 

fpE . This enables the extrinsic camera parameters to be optimized, ensuring the con-

sistency of registration between distant frames, such as frames shown in Figure 4 (b).  

2.3   Generation of Super-Resolved Mosaic Image 

Finally, a mosaic image is generated. Here, we apply an iterative back projection 
algorithm [13] and generate a super-resolved mosaic image. 

First, an initial mosaic image )0(S  is estimated by projecting all the frame images 
onto the mosaic image plane using Eq. (1) with extrinsic camera parameters 

fM ,  and 

then by blending them. Starting with this initial estimate )0(S , the imaging process is 
simulated to obtain a set of low-resolution images }{ )0(

fI , each of which corresponds 

to the observed input image }{ fI . If )0(S  is the correct super-resolved image, the 

simulated images }{ )0(
fI  must be identical to }{ fI . On the other hand, as the estima-

tion error in )0(S  becomes larger, so does the difference between }{ )0(
fI  and }{ fI .

Thus, the difference images }{ )0(
ff II −  are computed, and used to improve the initial 

estimate )0(S  by back-projecting each value in the difference images onto its corre-
sponding area in )0(S . This process is repeated iteratively until the super-resolved 
image converges. 

3   Experiment 

We have developed a prototype video mosaicing system which consists of a desktop 
PC (Pentium-4 3.2GHz, Memory 2GB) and a calibrated IEEE1394 CCD camera 
(Aplux C104T). Experiments were done using this system on two kinds of plane pa-
pers. One was a printed A4 size document. The other was a photograph printed on an 
A4 size paper. In both papers, plus marks (+) were printed on 40mm grid positions for 
quantitative evaluation (described later). 

3.1   Mosaicing for a Document 

As shown in Figure 5, the target document was captured as 480640× images of 150 
frames at 15fps. Image features tracked in the initial extrinsic parameter estimation 
are depicted with ×  marks. Note that none of the input image plane was parallel to the 
target document. Figure 6 (a) illustrates estimated extrinsic camera parameters and 
feature positions on the mosaic image plane. The curved line shows the estimated 
camera path and pyramids show the camera postures in every 10 frames. The super-
resolved mosaic image after 3 iterations is shown in Figure 6 (b). The size of the im-
age is 30022452× . A close shot of an input image and the super-resolved mosaic 
image is shown in Figure 7. As can be seen, texts which are almost unreadable in the 
input image are restored in the super-resolved mosaic image. 



 Super-Resolved Video Mosaicing for Documents 107 

First frame 30-th frame 60-th frame 

90-th frame 120-th frame 150-th frame 

Fig. 5. Sampled frames of input image sequence (document) 

(a) Extrinsic camera parameters (b) Generated super-resolved mosaic image 

Fig. 6. Estimated extrinsic camera parameters and generated super-resolved mosaic images 
(document) 

(a) Input image (b) Super-resolved mosaic image 

Fig. 7. Comparison between input image and super-resolved mosaic image (document) 

3.2   Mosaicing for a Photograph 

As shown in Figure 8, the target photograph was captured as 480640×  images of 
150 frames at 15fps. Image features tracked in the initial extrinsic parameter estima-
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tion are depicted with ×  marks. In this experiment, the camera was held so that the 
input image plane in the first frame was approximately parallel to the target docu-
ment. Figure 9 (a) illustrates extrinsic camera parameters and feature positions on the 
mosaic image plane. The curved line shows the estimated camera path and pyramids 
show the camera postures in every 10 frames. The super-resolved mosaic image after 
3 iterations is shown in Figure 9 (b). The size of the image is 27192169× . A close 
shot of an input image and the super-resolved mosaic image is shown in Figure 10. As 
can be seen, the frame of the glasses and the stripes on the shirt are restored in the 
super-resolved mosaic image. 

First frame 30-th frame 60-th frame 

90-th frame 120-th frame 150-th frame 

Fig. 8. Sampled frames of input image sequence (photograph) 

(a) Extrinsic camera parameters (b) Generated super-resolved mosaic image 

Fig. 9. Estimated extrinsic camera parameters and generated super-resolved mosaic images 
(photograph) 
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(a) Input image (b) Super-resolved mosaic image 

Fig. 10. Comparison between input image and super-resolved mosaic image  (photograph) 

3.3   Quantitative Evaluation of the Distortion 

Finally, we quantitatively evaluated the distortions in the generated mosaic images by 
measuring the distances between adjacent plus marks (+) printed on the target papers. 
First, the positions of the plus marks were acquired manually in the generated mosaic 
images. The distances between adjacent plus marks were then computed in the unit of 
pixel. The average, maximum, minimum and standard deviation of the distances for a 
document and a photograph are shown in the upper and the lower row of Table 1, 
respectively. The percentage of each value from the average distance is also shown in 
parenthesis. Here, the standard deviation can be considered as the average distortion 
in the mosaic image. Although the average distortion of the document was a little 
worse than that of the photograph, both average distortions were sufficiently little for 
the purpose of digital archiving and personal data transmission. 

The performance of our system for both sequences were almost the same as  
follows: 15 fps for image acquisition and initial estimation of the extrinsic camera 
parameters, 1 second for detecting re-appearing features, 20 seconds for camera pa-
rameter refinement, 32 seconds for initial mosaic image generation, and 122 seconds 
for super-resolved mosaic image generation. 

Table 1. Distances of adjacent grid points in the mosaic image [pixels (percentage from 
average)] 

Average Maximum Minimum Standard 
Deviation 

351.0(100.0) 357.9(101.9) 346.4(98.6) 2.53(0.72) 
332.9(100.0) 337.6(101.4) 329.4(98.9) 1.72(0.52) 

4   Conclusion 

A novel video mosaicing method based on extrinsic camera parameters was proposed. 
With this method, a super-resolved mosaic image without perspective distortion can 
be generated from an image sequence where none of the input image plane is parallel 
to the target. Thus, users no longer have to take special care in holding the camera so 
that the image plane is set parallel to the target in the reference frame. Experiments 
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with our prototype system have successfully demonstrated the feasibility of the pro-
posed method. Our future work is to reduce the computational cost in super-resolved 
image generation. 
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Abstract. Extraction of text from image and video is an important
step in building efficient indexing and retrieval systems for multimedia
databases. We adopt a hybrid approach for such text extraction by ex-
ploiting a number of characteristics of text blocks in color images and
video frames. Our system detects both caption text as well as scene text
of different font, size, color and intensity. We have developed an appli-
cation for on-line extraction and recognition of texts from videos. Such
texts are used for retrieval of video clips based on any given keyword.
The application is available on the web for the readers to repeat our
experiments and also to try text extraction and retrieval from their own
videos.

1 Introduction

Text embedded in an image is usually closely related to its semantic content.
Hence, text is often considered to be a strong candidate for use as a feature in
high level semantic indexing and content-based retrieval. An index built using
extracted and recognized text enables keyword-based searches on a multimedia
database. As an example, we can identify video frames on specific topics of
discussion from an educational video if the frames display corresponding text
information. One of the main challenges in this work is to be able to locate text
blocks in an image with complex color combinations.

Text in image and video can be classified into two broad types: (i) Caption
text - also known as Graphic text or Overlay text and (ii) Scene text. Caption
text as shown in Fig. 1(a), is the type of text that is synthetically added to a
video or an image during editing. It serves many different purposes like display
of actor list and credit in a movie, topics covered in an educational video, etc.
Caption text in a video frame typically has low resolution so that it does not
occlude the scene objects.

In contrast to caption text, scene text as shown in Fig. 1(b), usually occurs in
the field of view of a camera during video or still photography. Examples of scene
text include street signs, billboards, topics covered through presentation slides in
educational videos, number plates on cars, etc. Scene text is often more difficult
to detect and extract compared to caption text due to its unlimited range of font,
size, shape and color. It may be noted from Figs. 1(a) and (b) that the images
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(a) (b)

Fig. 1. (a)Caption text and (b) Scene text

containing either scene text or caption text cannot serve as a direct input to an
Optical Character Recognition (OCR) system. Existing segmentation techniques
built in the OCR systems are not capable of handling the complexity of color
images in which such text regions are embedded. Instead, it is essential to build
specialized methods for identifying the text blocks from images and video frames.
Contents of such text blocks can then be submitted to an OCR for identification
of the characters and words.

Our goal is to accurately extract text blocks from color images and video
frames, recognize the texts using an OCR and store them as keywords in a
database for indexing and retrieval.

2 Related Work

In recent years, attempts have been made to develop methods for extracting text
blocks from still images and videos. Li et al [6] use a 16×16 window moved over
various positions in an image. Each window position is classified as a text or a
non-text block using a neural network. Text blocks identified by the classifier
are then tracked across frame boundaries. This method detects text only at the
block level. Jain and Yu [3] propose a method to locate text in color images using
connected components. Their method can detect text only with large size and
high contrast. While it is well suited for processing newspaper advertisements
and web images, it is not so efficient in detecting text in complex and cluttered
background. Accuracy of this approach is high for binary and gray-scale images
but the system is not so accurate in locating text in full-color images.

Lienhart and Wernicke propose a multi-resolution approach to detect po-
tential text lines in images and video frames using edge orientation [7]. This
method also uses small windows to find edge orientations and a complex-valued
neutral network based method to classify text regions with certain pre-defined
sizes. They employ projection profiles as well as geometrical and morphological
constraints for refining the text boxes. Nugroho et al [9] apply color reduction
and decompose a multi-valued color image into a small number of meaningful
color prototypes based on foreground color. After that, connected components
are extracted from each foreground image and text and non-text components
are classified with the help of stroke features. This approach works well in a
limited range of characters, especially in multi-segment characters like Japanese
and Chinese.
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Malababic et al [8] detect artificial text in videos using a feature that captures
foreground to background contrast, density of short edges of varying orientations
and concentration of short vertical edges that are horizontally aligned. Various
geometrical constraints are also applied for improving the result.

Sato et al [10] investigate superimposed caption recognition in news videos.
They use a spatial filter to localize the text regions as well as size and posi-
tion constraints to refine the detected area. This algorithm can be applied only
in a specific domain, namely, news video analysis. Jung and Han [4] sequen-
tially adds advantages of texture based methods and connected component based
methods. A texture classifier detects text regions and filtering is done by the con-
nected component based method using geometric and shape information. They
detect text in images with multiple color, intensity and fonts. However, since
this method processes a raw pixel values for each frame in texture classifier and
performs a number of stages of filtering and refinement, it takes a lot of time
for processing each image. Zhang et al [13] use a multiple hypothesis filtering
approach on several binary images after decomposing a given image by color
space partitioning. To find the candidate text regions they use texture and mo-
tion energy as compressed domain features. This method can be used to detect
caption text from newscasts. However, it works on the assumption that most
of the text is located in some predefined regions with high contrast and simple
background in the video.

In contrast to the above-mentioned methods, we propose a hybrid approach
in which multiple cues are used for detecting text blocks in images and videos.
Further, in all of the existing methods, there is no mention of any complete
system being developed using the text extraction techniques. We feel that along
with the development of new algorithms, it is equally important to be able to
demonstrate the results. For this purpose, we have built a video retrieval system
based on embedded text, which is available on the web. Interested readers will
be able to repeat our experiments and also perform their own retrievals using
this application.

The rest of the paper is organized as follows. In the next section, we give a
description of our system. The results are presented in section 4 and we conclude
in the last section of the paper.

3 Hybrid Approach to Text Extraction

In this section, we first give an overview of our system followed by a detailed
description of the building blocks.

3.1 Overview of the Approach

The input to our system can either be a still image or a video decomposed into
frames. We first use a color reduction step in which the input is converted into
a 64-color image. This step is necessary since there can be a large number of
colors present in an image. Individual color level processing makes the system
both inefficient as well as sensitive to noise. We next determine the Regions of
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Interest (ROIs) - Regions in the image where text could potentially be located.
This step, while meant to speed-up subsequent searches, should not filter out
the text regions. Care is, therefore, taken to ensure that only those regions that
are certainly of type non-text are eliminated.

After identification of the regions of interest, geometrical and morphological
features are extracted from each ROI. A multilayer perceptron (MLP) is used
as a feature-based classifier to determine if the ROI contains text or non-text
blocks. It should be noted that at this stage, we identify an entire ROI to either
belong to a text region or to a non-text region and not its individual components.
After classification of an ROI as text or non-text, the potential text regions are
subjected to a connected component analysis for reducing the false positives.
Connected components of the regions of interest so far marked as text, are ex-
amined for the existence of specific text features. If such features are not present
in the connected components, they are eliminated. The remaining components
are marked as text blocks. These text blocks are next given as input to an OCR.
The OCR output in the form of ASCII characters forming words is stored in a
database as keywords with frame reference for future retrieval.

3.2 Detailed Description of the Steps

I Frame Extraction. A text can be detected from static images or videos. For
video sequences, since text must be present for at least half a second for viewers
to read the contents, we use only I-frames for text extraction from videos with the
typical IBBPBBPBBPBB sequence at a rate of 30 frames per second. Any text
which occurs in a video for duration less than the time gap between successive
I-frames, is not useful to the viewers as well and hence need not be considered.
If a video follows any other frame sequence, we extract every twelfth frame for
text extraction. This step is not required for processing still images.

Color Reduction. Color reduction is an important pre-processing step for text
extraction from complex still images and videos. We perform color reduction by
taking the 2 higher order bits from the R, G and B color bands. Now each image
contains only 26 color combinations instead of 224. In Fig. 2(a) and Fig. 2(b) we
show an original image and the corresponding color reduced image, respectively.

After color reduction, each pixel has a color value v εψ where ψ ={0,1,2,
3, . . . (V-1)}, V being the total number of colors. If only two higher order bits

(a) (b)

Fig. 2. (a)Original image and (b) Color reduced Image
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are used, V=64. We use the color-reduced image for the identification of regions
of interest.

Region of Interest Identification. We next identify potential regions in the
image where text may be located. Identification of such regions of interest helps
in speeding up the process of text extraction. In the text regions, there are high
densities of foreground pixels for some meaningful color plane. A projection pro-
file of an image region is a compact representation of the spatial pixel content
distribution. Horizontal projection profile (HPP) for a given color is defined as
a vector of the pixel frequency over each row for that color. Vertical projection
profile (VPP) is defined similarly. A threshold for HPP, TH=8, and a threshold
for VPP, TV =2, is set to refine the region of interest (ROI). A text is expected to
be located in image regions where the count of pixels for a given color in the hor-
izontal direction is greater than TH and the count of pixels for the same color in
the vertical direction is greater than TV . Texts usually do not have fixed sizes in
images and video frames. However, more than 99% of all texts are less than half
the image height and at least greater than 4 pixel in height to make them legible.

Geometrical and Morphological Feature Extraction. For each ROI, a
number of features are extracted for each color. Before feature extraction, the
regions of interest are binarized as follows.

Let vij denote the color value of the pixel (i,j) after color reduction. For a
given color vk, v ε ψ, binarization is done as follows:

for i=1 to ROI Height
for j = 1 to ROI Width

if vi,j = vk

Set vi,j = 1
else

Set vi,j = 0

Thus, when we process any given color, we set all pixels in the ROI of that
color to 1 and the rest to 0.

A total of 7 features are extracted which are briefly mentioned below.

i. Foreground Pixel Density - It is the number of pixels per unit area whose
binarized value is 1.

ii. Ratio of Foreground Pixel Density to Background Pixel Density - Back-
ground pixel density is calculated in a manner similar to foreground pixel
density described above.

iii. Edge Pixel Density - Edge pixels are defined as the ones for which one of its
eight neighbors has a binarized value of 0.

iv. Foreground Pixel to Edge Pixel Ratio - Ratio of foreground pixel density to
edge pixel density

v. Horizontal Edge Pixel Density
vi. Vertical Edge Pixel Density
vii. Diagonal Edge Pixel Density.
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MLP Based Classification. The geometrical and morphological features ex-
tracted from each region of interest are next used for classification by a multilayer
perceptron. In the learning phase, we use features extracted from a set of images
containing both text and non-text regions. Such regions are manually checked
and assigned the corresponding ground truth. 200 text regions and an equal
number of non-text regions are used for training the MLP. The MLP contains 7
inputs, one hidden layer of 10 units and 1 output. The output represents whether
the input block contains text or non-text. The MLP was trained with different
initial conditions and was found to have similar performance in each case.

Connected Component Analysis. In order to reduce the number of false posi-
tives after MLP based classification, we introduce connected component analysis
as a post-processing step. The following heuristics are applied to filter out pos-
sible non-text blocks from the list of connected components.

i. Text lines are usually separated from image boundaries.
ii. Base and ceiling of the text components are in the same line.
iii. At least four text blocks are present in an ROI for meaningful text represen-

tations.

At the end of this post-processing step, most of the non-text blocks are removed
and the rest of the regions of interest are expected to contain only text.

OCR Based Identification. Text blocks in each region of interest are given
as input to an OCR for recognition. The generated outputs from the OCR are
ASCII characters, which are stored in a database as keywords for future indexing
and retrieval. In Fig. 3, we explain the process of text recognition in detail.
Fig. 3(a) shows an ROI identified as a text block. This ROI is separated out from

Sample Image O_n_L

(a) (b) (c)

_C_u__e # 1_

11O Data Transfer

Techni_ues-1

(d) (e) (f)

Fig. 3. (a) Image with ROIs identified (b) Binarized text block (c) OCR output (d) Im-
age with multiple ROIs (e) Multiple binarized text blocks (f) OCR output for multiple
text blocks
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Fig. 4. Various stages of text extraction from an image (a) Original (b) After ROI
detection (c) Output of MLP based classification (d) Final result

the rest of the image and binarized as shown in Fig. 3(b). When this ROI is given
as input to the OCR, the corresponding ASCII output is shown in Fig. 3(c). It is
observed that while the text extraction part of our system detects the text blocks
accurately even in a complex background, the OCR sometimes fails to recognize
the text correctly. As seen in Fig. 3(c), the last word was mis-recognized due
to the presence of noise. Another example image with multiple ROIs containing
caption text is shown in Fig. 3(d). Here also the text regions have been identified
correctly as shown in Fig. 3(e). The corresponding OCR output is shown in
Fig. 3(f). While a specific off-the-shelf OCR is currently being used in our work,
it is expected that the character recognition accuracy and hence the overall
system performance will improve further if a better OCR is used. The effect of
the hybrid approach on the quality of text extraction is explained using Fig. 4.
In Fig. 4(a), we show four original images of varying complexity. The detected
regions of interest are shown in Fig. 4(b). It is observed that at this stage, recall
is very high (greater than 90% ) but there are a number of false positives. The
MLP based classifier can correctly detect most of the text blocks and eliminate
a large number of non-text blocks. The output of the MLP is shown in Fig. 4(c).
At this stage, the precision has improved considerably. In Fig. 4(d) we show the
image after the connected component based post-processing step. It is seen that
the final result has high recall as well as precision.

3.3 Web-Based Video Retrieval System

We have developed a web-based on-line video retrieval system using embedded
text. It should be noted that to facilitate blind review, the web site address has
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not been mentioned in this initial version of the paper. However, it will be made
available in the accepted version. To test the accuracy of any system, users are
often interested in retrieving frames from their own video files. To facilitate this,
we provide a utility to upload an external video file in our system. From the
video, keywords are extracted and stored in a database in a fully automated
manner. The user can then query the database with his choice of keywords.
Sets of consecutive video frames containing the keywords are retrieved from the
database. A short video clip is generated from each set of consecutive frames
and returned to the user for viewing. Thus, user gets back a collection of short
video clips containing his choice of keywords. To the best of our knowledge, this
feature is unique in our work and is not available in any other text extraction
system available in the research domain.

4 Results

In this section, we present quantitative results on the performance of the text
extraction system. The performance can be measured in terms of true positives
(TP) - text regions identified correctly as text regions, false positives (FP) -
non-text regions identified as text regions and false negatives (FN) - text re-
gions missed by the system. Using these basic definitions, recall and precision of
retrieval can be defined as follows:

Recall = TP/(TP+FN) and Precision = TP/(TP+FP)

While the above definitions are generic, different researchers use different
units of text for calculating recall and precision. Wong and Chen [12] consider
the number of characters while some of the other authors count the number of
text boxes or text regions [1,6]. Jain and Yu [3] calculate recall and precision
by considering either characters or blocks depending on the type of image. We
adopt the second definition in which we consider the text regions as units for
counting. The ground-truth is obtained by manually marking the correct text
regions.

We have calculated recall and precision on a large number of text-rich images.
For video processing, we have tested the system on different types of mpeg
videos such as news clips, lecture clips and commercials. The videos contain
both caption texts as well as scene texts of different font, color and intensity.

Table 1 shows the performance of our proposed method on four types of video.
It is seen that our method has an overall average recall of 82% and precision of
87%. Another important consideration is the quality and complexity of pictures
for evaluation. Jain and Yu consider large fonts in web images, advertisements
and video clips [3]. Kim [5] does not detect low contrast text and small fonts.
Li et al [6] use text with different complex motions. Zhang et al [13] as well
as Sato et al [10] detect only caption text in news video clips. We are able to
detect text under a large number of different conditions like text with small
fonts, low intensity, different color and cluttered background, text from noisy
video, News caption with horizontal scrolling and both caption text and scene
text.
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Table 1. Recall and precision of text block extraction

News Sports Lectures Commercials
No. of text blocks 780 144 120 3241

TP 624 120 96 288
FP 52 60 24 36
FN 156 24 24 36

Recall (%) 80 83.3 80 88
Precision (%) 92 66.6 80 88

Table 2. Execution time of text extraction

Proposed [12] [4] [11]
Machine used PIV Sun Ultra

sparc
— PIV

Image size — 320*240 320*240 —
Processing Time(sec) 0.14 1.2 0.47 1.7

The primary advantage of the proposed method is that it is very fast since
most of the computationally intensive algorithms are applied only on the regions
of interests. Table 2 shows processing time for different types of video clips using
a 2.4 GHZ Pentium-IV machine. We show comparative time required by differ-
ent algorithms including those proposed in [4], [11] and [12]. For our algorithm
the average is taken over a number of different image sizes. It is seen that our
algorithm requires the least time for processing each frame. Since we process
every I-frame which occurs at the rate of about 3 per second, we are able to
achieve real time processing speed in our system

5 Conclusions

We have presented a hybrid approach for the detection of text regions and recog-
nition of texts from images and video frames. It can detect both scene text and
caption text. A content-based video retrieval system has been developed in which
keywords are extracted from video frames based on their textual content. The
keywords are stored and indexed in a database for retrieval.

We plan to extend our work in the compressed domain processing to make
it even faster. A more accurate OCR will also improve the quality of retrieval
further.
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Abstract. We present a fast and robust method for moving object
tracking directly in the compressed domain using features available in
MPEG videos. DCT domain background subtraction in Y plane is used to
locate candidate objects in subsequent I-frames after a user has marked
an object of interest in the given frame. DCT domain histogram match-
ing using Cb and Cr planes and motion vectors are used to select the
target object from the set of candidate objects. The target object posi-
tion is finally interpolated in the predicted frames to obtain a smooth
tracking across GOPs.

1 Introduction

Visual content in a video can be modeled as a hierarchy of abstractions. At the
lowest level are the raw pixels with color information leading to lines, curves,
edges, corners and regions. At the highest level are the human level concepts
involving one or more objects and relationships among them. The first step in
high level video processing is to identify the objects present in a scene. The next
step is to see how these detected objects move with respect to each other. The
above two problems combined, can be termed as “Object Tracking”.

An important application of object tracking is video surveillance [1]. Airports,
train stations, departmental stores, religious places, courts and public buildings
are only a few examples of places where video surveillance has an extremely high
priority. In addition to this, military, astronomy, navigation, road/air traffic
regulation, medical imaging, augmented reality and robotics are some of the
other major applications of object tracking [2],[3],[4].

There are primarily two sources of information in video that can be used
to track objects: visual features (such as color, texture and shape) and motion
information. A typical strategy is to segment a frame into regions based on color
and texture information first, and then merge regions based on similar motion
subject to certain constraints such as adjacency [5]. Extraction of these two
types of information can be done either in the pixel domain or in the compressed
domain. Tracking in videos especially from large databases, requires an enormous
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amount of processing since the videos are usually stored in a compressed form
and must be decompress every time any processing is done on the video frames
for object tracking. In order to reduce computational time and save processing
resources, it is imperative that the tracking takes place in compressed domain
itself.

Sukmarg and Rao [6] performed object detection and segmentation using
color clustering, region merging based on spatiotemporal similarities, and back-
ground/foreground classification. The features extracted from the blocks of seg-
mented object in compressed domain are used for fast object tracking.

Mezaris et al [7] exploit the motion vectors available directly from the MPEG
stream for object tracking in the compressed domain. Park and Lee [8] use
tracking using Mean Shift algorithm along with motion vectors. Yoo and Lee
[9] suggested it is not possible to get sequential motion flow directly between
compressed B-frames. Hence some kind of interpolation is normally used. Kartik
et al [10] perform a block matching technique over the frames. This is com-
bined with an adaptive block based approach for estimating motion between
two frames.

In this paper, we propose a novel object tracking technique from MPEG
videos. We employ a background subtraction method in the compressed do-
main using DC values of the Discrete Cosine Transform (DCT) coefficients of
luminance blocks in the I-frames. To distinguish a target object from a set of
candidate foreground objects, we use histogram comparison on color components
in I-frames (Cb and Cr blocks) and distance between centroid of the candidate
object and projected object using motion vectors. The object positions in the
intermediate P and B-frames are obtained by interpolation.

In the next section we describe the motion estimation, background subtraction
and interpolation algorithm in detail. We present the experimental results in
section 3. The conclusions are drawn in the last section of the paper.

2 Object Identification and Interpolation

The proposed scheme for object tracking is mainly concerned with video surveil-
lance applications where the camera is assumed to be fixed with a fairly wide
angle of view. The algorithms presented in this paper consider supervised track-
ing of objects in which a user marks an object in an I-frame. The marked object
is tracked by our algorithm in subsequent frames till the object disappears from
the field of view of the camera. Such applications typically have a model of the
background which is effectively used in our approach for identification and track-
ing of objects. It should be noted that, although the background is considered
to be fixed, our system is robust in the presence of variations in the lighting
conditions and extraneous movements.

Our method for object tracking can be divided into four broad steps, namely,
background subtraction, candidate object identification, target object selection
and motion interpolation. All the four steps are executed directly on MPEG
compressed videos. We consider a typical 12-frame Group-of-Pictures (GOP)
sequence: IBBPBBPBBPBB in our discussions.
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2.1 Motion Estimation

In an MPEG video, the I-frames are intra coded while the P and B frames are
motion compensated and DCT is carried out only for error components after
motion estimation. The macroblocks for which motion estimation cannot be
carried out are also stored as intra coded macroblocks in these predicted frames.

Since we consider supervised tracking, that is, a user marks an object in an
I-frame which is subsequently tracked by the system, let us assume that the user
chosen pixel domain area of the object is covered by Ap[(xmin, ymin), (xmax, ymax)]
and the equivalent compressed domain area of the object covered be given by
Ac[(pmin, qmin), (pmax, qmax)].

We parse the next predicted frame (whichever P or B) as per the frame se-
quence and extract motion vectors of all the macro blocks, which are in Ac. If
there are ’n’ macroblocks in Ac, we get a set of n vectors (right, down) corre-
sponding to the macroblocks. These n motion vectors do not actually provide
the real optical flow since they are often inaccurate and hence, some filtering is
needed. In our work we use a ’Mode filter’ in order to straighten up noisy vectors
and thus eliminate this problem.

We calculate the ’Mode Motion Vector’ through the extracted set of ’n’ for-
ward motion vectors. This is in reference to the previous I/P frame. It gives the
displacement of the window consisting of the tracked object in the current pre-
dicted frame (B/P) frames and the window coordinates are updated accordingly.

The window enclosing the object keeps updating its coordinates as the pre-
dicted frames keep coming and the tracked object moves frame by frame. This
continues till the time a new reference frame within the same GOP is encoun-
tered. When a new reference frame within the same GOP is encountered, the
target window in the new reference frame becomes the updated reference win-
dow. All subsequent predicted frames track the object based on the motion
vectors held by them as dictated by the latest reference frame.

The above process continues till the 1st I frame of the next GOP arrives.
Normally in the bit stream order of a compressed video, the I frame of a GOP
is followed by the B frame of the previous GOP, which are backward predicted,
from this I frame. Also since the I frame does not have any motion vectors, we
use the ’Backward Motion vector’ of the last B frame in the display order to
track the object into the I frame of the following GOP.

We consider the window of object position of the last B frame. The backward
motion vectors of the macroblocks in this area give an approximate position
of the window. Let the macroblock in the previous I frame (ith frame in the
sequence) be denoted by the term P i

j,k , where (j,k) is the position of the mac-
roblock in the frame. So,

Pm
i,j = Pn

x,y −MV ((x − i), (y − j)) (1)

Here mth frame is a B frame in reference to the nth I frame being described by
the motion vector ((x -i), (y -j)). We can get the position of this macroblock by

Pn
x,y = Pm

i,j + MV ((x − i), (y − j)) (2)
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To cross GOP boundary, the image region on the new I frame is obtained
again with the difference that the backward motion vector mode of the last B
frame is used, and the B frame pixel domain rectangle itself is treated as the
reference rectangle.

2.2 Background Subtraction

We use only the successive I-frames for tracking in our algorithm and thereafter
interpolate the object motion in the intermediate P and B frames. We initially
acquire a DCT image of an I-frame representing the background, which is used
as the reference image. Thereafter, all subsequent DCT images are compared
with this reference image to segment the foreground object. The background
image is based on the model of the application and is updated from time to time
whenever there is a permanent change in the background.

Out of the three-color components Y, Cb and Cr, we read the DCT val-
ues of only the Y plane from an MPEG file and consider DC values of all the
macroblocks contained in the background frame. These DC values contain the
average luminescence for the entire frame at the macroblock level. Thus, we ef-
fectively create a DC image of the frames under comparison with only the Y
component taken into consideration.

Let Ik(M,N) be the kth I-frame in a video sequence having a height of M
pixel and width of N pixel and let the DC image of luminance blocks of this
frame be denoted as IDC,Y

k (M/8, N/8) . Width and height of this Y DC image
is reduced by a factor of 8 as compared to the original I frame, since only 1 DC
value is used to represent 8X8 pixel macroblock. The value of the (i, j)th element
of the luminance DC image is given by

IDC,Y
k (i, j) =

CuCv

4

7∑
x=0

7∑
y=0

IY
k (8i + x, 8j + y) (3)

The luminance DC image of the background frame I0 can be similarly deter-
mined. If an object has been marked in the kth I-frame, we identify its position in
the (k+1)th I-frame by subtracting IDC,Y

k+1 from IDC,Y
0 . Thus, we obtain a differ-

ence image in the form of block-wise absolute difference of the Y DC background
frame and the Y DC (k + 1)th frame. The difference image can be represented
as �IDC,Y

k+1 (M/8, N/8) where the value of the (i, j)th element is given as follows

�IDC,Y
k+1 (i, j) =

{
IDC,Y
k+1 (i, j) , ifIDC,Y

k+1 (i, j)− IDC,Y
0 (i, j) ≥ T

0 , otherwise
(4)

Here T is the threshold of difference.
It should be noted here that the difference image�IDC,Y

k+1 is expected to show
high values corresponding to the image regions where the object has moved in
the (k + 1)th I-frame. However, the difference image may also show high values
in the regions where either a different moving object (not marked by the user)
is present or there is a change in the background due to variation in lighting
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condition or presence of spurious movements like that of tree leaves and clouds.
To make our system robust against such noise, we use an adaptive threshold
(T) to compare the two frames, namely, Ik+1 and I0. We used T as 10% of the
average of the sum of the DC component of all the blocks in the frame.

In case the difference between the DC values of two macro blocks having
the same coordinates in frames under comparison have value greater than the
threshold, then the macroblock of the target image is considered to be a part of
the foreground and could be part of the tracked object. If the difference value is
less than the threshold, we conclude that there has been no change in background
for that particular block. After performing the subtraction of the luminance DC
images, we generate an image where only the regions showing possible presence
of foreground objects are retained. For all other regions, we set the values of all
64 DCT values (one DC and sixty three AC values) to zero. Thus, the process of
background subtraction is equivalent to the application of a compressed domain
mask on the entire image where the background subtraction mask (MaskBS) is
given by

MaskBS(p, q) =
{

1 , if |IDC,Y
k+1 (p, q)− IDC,Y

0 (p, q)| ≥ T
0 , otherwise

(5)

On application of the mask, at positions where the mask has a value of 1, the
original DC values are retained. The complete algorithm for compressed domain
background subtraction can now be written as shown in Fig. 1.

For all I Frames
Begin

For j ← 1 to Y DC Image Height
For k ← 1 to Y DC Image Width
Begin

Compute MaskBS(j, k)
IDC,Y

k+1 (j, k) ← IDC,Y
k+1 (j, k) • MaskBS(j, k);

end
end

Fig. 1. Algorithm for background subtraction

2.3 Candidate Objects Identification

We have explained in the last sub-section how background subtraction in the
(k + 1)th I-frame is done in the compressed domain. It is also mentioned that,
since we perform threshold of the DC component of luminance values, we may
get multiple regions in the (k + 1)th I-frame which show high difference values.
In the next step, we locate these candidate objects in the difference image. For
this, the difference image obtained by applying the MaskBS is used to construct
a binary image. We determine the bounding boxes of the candidate objects using
a variant of DFS traversal for finding all the connected components (CC) from
the binary image. Regions with bounding boxes less than a threshold size are
filtered out.
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It should be noted that the CC analysis is done in-memory since the output
of the background subtraction mask is available in the data structures and no
further reading/uncompress is required.

At the end of this step, we have a set of candidate objects from which the
target object is selected using histogram matching as explained in the next sub-
section.

2.4 Target Object Selection

At this stage, our goal is to identify the tracked object from all the candidate
objects in the foreground. We make use of the color and motion vector informa-
tion available in the compressed domain for target object selection. We extract
DCT coefficients of Cb and Cr components of all the macroblocks enclosed in
the bounding boxes of the candidate objects. We also project the intended ob-
ject (marked object) to the (k + 1)th I-Frame by using motion vectors and then
calculate the difference between the centroid of this projected object and the
candidate object.

The objective here is to select that particular foreground object in the (k+1)th

I-frame as the target object which has the maximum color-based similarity and
minimum distance with the object marked by the user in the (k)th I-frame. To
achieve this, we create ’Reference histogram’ of DCT coefficients of Cb and Cr
components of the object marked by the user.

The histogram is generated from the DC value and first eight AC values of the
Cb and Cr components since higher frequency AC values beyond the first eight
do not contain much information and are often found to have very low/near zero
values. From each of the 9 components (1 DC and 8 AC) of the two color planes,
we create 128 bin histograms. Thus, we get 18 sets of reference histograms for
the marked object.

For all the candidate objects identified in the previous step described in sub-
section 2.3, similar histograms are created called the ’Target Histogram’. The
reference histograms are then matched with all the target histograms. The dif-
ference between the Reference Histogram and Target Histogram is stored for a
candidate object “i” as DiffHis(i).

The projection of the object marked by the user in the (k)th I-frame is taken
on the (k + 1)th I-frame. Its centroid is calculated by

xm = (x1 + x2)/2, ym = (y1 + y2)/2 (6)

Here (xm,ym) is centroid of the projected object. In the same way centroid of
a candidate object ’i’ is calculated and its difference with the centroid of the
projected object is stored as DiffCen(i). Total distance is calculated for all the
candidate objects by

Dis(i) = w1 •DiffHis(i) + w2 •DiffCen(i) (7)

Here Dis(i) is the total difference of the candidate object “i”,‘ w1 is the weight
given to the Histogram Difference and w2 is the weight given to Centroid
difference.
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The candidate object with the minimum ’Dis()’ is selected as the one cor-
responding to the target object. The location of this object is considered to be
the location where the object marked in the (k)th I-frame has actually moved in
the (k + 1)th I-frame. The same process is repeated for identifying the locations
of the object in all the subsequent I-frames. The algorithm for target object
selection is shown in Fig. 2. In the algorithm we consider CreateHist() to be a
function that creates eighteen 128-bin histograms for each candidate object from
Cb and Cr values. HistDiff() returns the difference between two histograms and
CenDiff() returns the difference between the centroid of two objects.

Input : CbImg, CrImg, NumCandObj, CandObj[], ProjObj, RefHist[0..17][0..127]
Output : TargObj
Algorithm :
MinDiff ← INFINITY
for i ← 1 to NumCandObj
begin

TargHist[i] ← CreateHist ( CbImg, CrImg, CandObj[i] );
Diff His[i] ← HistDiff ( TargHist[i] , RefHist );
DiffCen[i] ← CenDiff ( CandObj[i], ProjObj );
Dis[i] ← w1 • DiffHis[i] + w2 • DiffCen[i]
If ( Dis[i] ≤ MinDiffSum )
begin

TargObj ← CandObj[i];
MinDiffSum ← Dis[i];

end
end
return TargObj

Fig. 2. Algorithm for target object selection

A weighted sum of differences of the target and reference histograms with
higher weights given to DC values and less to the AC values. The weights are
chosen in such a way that the DC value, which most prominently conveys color
information, is given the maximum weightage. It is followed by lower frequency
AC values, which convey coarse texture and shape information and then higher
frequency AC values [11], in decreasing order of importance.

2.5 Object Interpolation

We exploit the compressed domain features, namely, DCT coefficients of the lu-
minance blocks and chrominance blocks for background subtraction and target
object identification in subsequent I-frames after a user has marked it in a given
I-frame. We interpolate the positions of the tracked object in the intermediate
frames. Consider a GOP sequence IBBPBBPBBPBBI. Let the number of pre-
dicted frames be denoted by N. We divide the displacement vector between two
I -frames by N. Let ∂v̄ be the unit displacement vector per frame is given by
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∂v̄ =
ObjectPos(IDC,Y

k+1 − IDC,Y
k )

N
(8)

The marking window in the intermediate frames, enclosing the object, is up-
dated in accordance with their sequence number and temporal reference between
the two I-frames. The interpolated rectangle coordinates is the predicted object’s
location. For intermediate P and B frames denoted by Fi, the object position is
obtained using Eq. 9

ObjPos(Fi) = ObjPos(Ik) + ∂v̄ • (TR(Fi)− TR(Ik)) (9)

Here TR(Fi) represents the temporal reference of the frame Fi which comes
between Ik and Ik+1.

3 Experimental Results

We have performed large-scale experiments with our object tracking system.
The video sequences for experiments were shot in outdoor as well as indoor
environments to cater to different situations like change in background, object
size, illumination, etc. We converted these video clippings into a standard MPEG
video. Various kinds of moving objects were used for testing, including cars, slow
and fast moving humans as well as multiple objects.

We show results of object tracking in a number of complex situations. In
Fig. 3, there are two objects of same color, but only one is marked by the user,
which was successfully tracked.

In Fig. 4, we show tracking results under indoor lighting conditions.
Quantitative result on accuracy is shown in Table 1. PA denotes the combined

background subtraction and motion estimation based method as proposed in this

(a) (b) (c)

Fig. 3. Tracking of object in outdoor location (a) Background (b) Object marked by
user (c) Tracked object

(a) (b) (c)

Fig. 4. Tracking of object in indoor location (a) Background (b) Object marked by
user (c) Tracked object
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Table 1. Comparison of accuracy

paper and MV denotes a method based on motion vectors only. Performance
evaluation was done “frame wise” in this study. This means, tracking output
and ground truth were compared on a frame-by-frame basis. An object was
considered “missed” in a frame by our system if less than 50% of it was tracked
correctly. Results have been grouped together under various shooting conditions,
like indoor, sunny, cloudy and sunset conditions and compared with a motion
vector based tracking algorithm proposed in [11].

We also compared the time efficiency of our algorithm with the motion vector
based prediction algorithm and derived that object tracking using background
subtraction and motion estimation is much faster. A comparative performance
in terms of speed is presented in Fig. 5 for a 1.8 GHz Pentium IV machine.

Fig. 5. Speed comparison with motion vector based tracking

As seen in the above figure, the combined approach is almost as efficient as
a simple motion vector based approach, while its performance is much better
as presented in Table 1. Another important observation is that, the proposed
method can process frames at a rate of about 100 frames per second. Hence, it
can be used in any real-time video tracking application.

4 Conclusion

We have proposed a novel tracking method that effectively tracks objects in
a compressed video by combining background subtraction and motion estima-
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tion. The system consists of four main components: background subtraction,
candidate object identification, target object selection and object interpolation.
Although we work strictly in the compressed domain, we still get high levels of
accuracy with minimal processing time and computational cost. Several issues
may further be addressed. This includes handling of full occlusions, fast camera
motion, multiple object tracking and unsupervised tracking of objects.
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Abstract. We present a framework and algorithm for tracking artic-
ulated motion for humans. We use multiple calibrated cameras and an
articulated human shape model. Tracking is performed using motion cues
as well as image-based cues (such as silhouettes and “motion residues”
hereafter referred to as spatial cues,) as opposed to constructing a 3D
volume image or visual hulls. Our algorithm consists of a predictor and
corrector: the predictor estimates the pose at the t + 1 using motion
information between images at t and t + 1. The error in the estimated
pose is then corrected using spatial cues from images at t + 1. In our
predictor, we use robust multi-scale parametric optimisation to estimate
the pixel displacement for each body segment. We then use an iterative
procedure to estimate the change in pose from the pixel displacement
of points on the individual body segments. We present a method for
fusing information from different spatial cues such as silhouettes and
“motion residues” into a single energy function. We then express this
energy function in terms of the pose parameters, and find the optimum
pose for which the energy is minimised.

1 Introduction

The complex articulated structure of human beings makes tracking articulated
human motion a difficult task. It is necessary to use multiple cameras to deal with
occlusion and kinematic singularities. We also need shape models to deal with
the large number of body segments and to exploit their articulated structure.
In our work, we use shape models, whose parameters are known, to build a
system that can track articulated human body motion using multiple cameras
in a robust and accurate manner. A tracking system works better if there are
more number of observations to estimate the pose and to that end our system
uses different kinds of cues that can be estimated from the images. We use
both motion information (in the form of pixel displacements), as well as spatial
information (such as silhouettes, and “motion residues”, hereafter referred to
as spatial cues). The motion and spatial cues are complementary in nature.
We present a framework for unifying different spatial cues into a single energy
image. The energy of a pose can be described in terms of this energy image.
We can then obtain the pose that possesses the least energy using optimisation

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 131–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



132 A. Sundaresan and R. Chellappa

techniques. Much of the work in the past has focussed on using either motion
or spatial parameters. In this paper we present an algorithm that fuses together
information from these two kinds of cues. Since we use motion and spatial cues
in our tracking algorithm, we are able to better deal with cases where the body
segments are close to each other, such as when the arms are by the side of the
body. Purely silhouette based methods typically experience difficulties in such
cases. Silhouette or edge-based methods also have the weakness that they will
not be able to deal with rotation about the axis of the body segment.

Estimating the initial pose is a different problem from tracking and is difficult
due to the large number of unknown parameters (joint angles). It is computation-
ally intensive and typically requires several additional algorithms such as head
detectors or hand detectors. Stochastic algorithms such as particle filtering or
optimisation methods are required for the sake of robustness. While the methods
we present in this paper can be used for initialisation as well, we concentrate on
the tracking aspect.

Fig. 1. Overview of the algorithm

(a) 3D Scan (b) Super-quadric

Fig. 2. 3D model comparison

In our work, we use eight cameras that are placed around the subject. We
use parametric shape models connected in an articulated tree to represent the
human body as described in Section 1.2.Our system, the block diagram of which
is presented in Figure 1, consists of two parts: a predictor and corrector. We
assume that the initial pose is known. The tracking algorithm is as follows.

• Compute 2D pixel displacement between frames at times t and t + 1.
• Predict 3D pose at t + 1 based on 2D motion from multiple cameras.
• Compute an energy function that fuses information from different spatial

cues.
• Use the energy function to refine estimate of pose at t + 1.

We represent the pose, ϕt, in a parametric form as a vector of the position of the
base-body (6 degrees of freedom) and the joint angles of the various articulated
body segments (3 degrees of freedom for each joint.) δ represents the incremental
pose vector.

We summarise prior work in articulated tracking in Section 1.1. We then de-
scribe the models in Section 1.2 and the details of our algorithm in Section 2.
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We validate our algorithm using real images captured from eight cameras and
the results are presented in Section 3.

1.1 Prior Work

We address the problem of tracking articulated human motion using multi-
ple cameras. Gavrila and Davis [1], Aggarwal and Cai [2], and Moeslund and
Granum [3], provide surveys of human motion tracking and analysis meth-
ods. a We look at some existing methods that use either motion-based meth-
ods or silhouette or edge based methods to perform tracking. Yamamoto and
Koshikawa [4] analyse human motion based on a robot model and Yamamoto et
al. [5] track human motion using multiple cameras. Gavrila and Davis [6] discuss
a multi-view approach for 3D model-based tracking of humans in action. They
use a generate-and-test algorithm in which they search for poses in a param-
eter space and match them using a variant of Chamfer matching. Bregler and
Malik [7] use an orthographic camera model and use optical flow. Rehg and Mor-
ris [8] and Rehg et al. [9] describe ambiguities and singularities in tracking of ar-
ticulated objects and Cham and Rehg [10] propose a 2D scaled prismatic model.
Sidenbladh et al. [11] provide a framework to track 3D human figures using 2D
image motion and particle filters with a constrained motion model that restricts
the kinds of motions that can be tracked. Kakadiaris and Metaxas [12] use sil-
houettes from multiple cameras to estimate 3D motion. Plaenkers and Fua [13]
use articulated soft objects with an articulated underlying skeleton as a model
and use stereo and silhouette data for shape and motion recovery. Theobalt et
al. [14] project the texture of the model obtained from silhouette-based methods
and refine the pose using the flow field. Delamarre and Faugeras [15] use 3D ar-
ticulated models for tracking with silhouettes. They use silhouette contours and
apply forces to the contours obtained from the projection of the 3D model so
that they move towards the silhouette contours obtained from multiple images.
Cheung et al. [16] use shapes from silhouette to estimate human body kinemat-
ics. Chu et al. [17] use volume data to acquire and track a human body model.
Wachter and Nagel [18] track persons in monocular image sequences. They use
an IEKF with a constant motion model and use edges to region information in
the pose update step in their work. Moeslund and Granum [19] use multiple
cues for model-based human motion capture and use kinematic constraints to
estimate pose of a human arm. The multiple cues are depth (obtained from a
stereo rig) and the extracted silhouette, whereas the kinematic constraints are
applied in order to restrict the parameter space in terms of impossible poses.
Sigal et al. [20, 21] use non-parametric belief propagation to track in a multi
view set up. Lan and Huttenlocher [22] use hidden Markov temporal models.
DeMirdjian et al. [23] constrain pose vectors based on kinematic models using
SVMs. Rohr [24] performs automated initialisation of the pose for single camera
motion. Krahnstoever [25] addresses the issue of model acquisition and initialisa-
tion. Mikic et al. [26] automatically extract the model and pose using voxel data.
Ramanan and Forsyth [27] also suggest an algorithm that performs rough pose
estimation and can be used in an initialisation step. Sminchisescu and Triggs
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present a method for monocular video sequences using robust image matching,
joint limits and non-self-intersection constraints [28]. They also try to remove
kinematic ambiguities in monocular pose estimation efficiently [29].

Our method is different in that we use both motion and spatial cues to track
the pose as opposed to using volume or visual based techniques or only optical
flow. We use spatial and motion cues obtained from multiple views in order to
obtain robust results that overcome occlusions and kinematic singularities. We
also present a novel method to use spatial cues such as silhouettes and motion
residues. It is also possible to incorporate edges in our method. We also do not
constrain the motion or the pose parameters for specific types of motion (such
as walking) and hence our method is general.

1.2 Models

A good human shape model should allow the system to represent the human
body in all of it’s postures and yet be simple enough to minimise the num-
ber of parameters required to represent the body accurately. We use tapered
super-quadrics in order to represent the different body segments. We can use
more complex triangular mesh models if we can acquire the parameters of such
models. We illustrate the 3D model used in our experiments in Figure 2. The
dimensions of the super-quadrics are obtained manually with the help of the
3D scanned model in the figure. The motion of the different body segments are
constrained by the articulated structure of the body. The base body (trunk)
has 6 degree-of-freedom (DoF) motion. All other body segments are attached
to the base body in a kinematic chain and have at most 3 DoF rotational mo-
tion with respect to the parent node. The body model also includes the loca-
tions of the joints of the different body segments besides the shape of the body
segment.

2 Algorithm

We compute the pose at time t + 1 given the pose at time t using the images at
time t and t + 1. The pose at t + 1 is estimated in two steps, the prediction step
and the correction step. The steps required to estimate the pose at time t + 1
are first listed and then described in detail in the sections that follow.

1. Pixel-body registration at time t using known pose at t.
2. Estimate pixel displacement between time t and time t + 1.
3. Predict pose at time t + 1 using pixel displacement.
4. Combine silhouettes and “motion residue” for each body segment into an

“energy image” for each image.
5. Correct the predicted pose at time t + 1 using the “energy image” obtained

in step 4.

2.1 Pixel-Body Registration

Pixel-body registration is the process of registering each pixel in each image to
a body segment as well as obtain approximate 3D coordinates of the point. We
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(a) View 1 (b) View 2

Fig. 3. Pixel registration

(a) Mask (b) Image Diff (c) MR (d) Flow

Fig. 4. Pixel displacement and Motion Residue

thus obtain a 2D mask for each body segment that we can use while estimating
the pixel displacement. We convert each body segment into a triangular mesh
and project it onto each image, and compute the depth at each pixel by inter-
polating the depths of the triangle vertices. We can thus fairly easily extend our
algorithm to use triangular mesh models instead of super-quadrics. Since the
depths of all pixels are known, we can compute occlusions. Figure 3 illustrates
the projection of the body onto images from two cameras. Different colours indi-
cate different body segments. We compute approximate 3D coordinates of pixels
in a similar fashion.

2.2 Estimating Pixel Displacement

As we use pixel displacement between frames to estimate 3D pose change, we
are not dependent on specific optical flow algorithms. Figure 4 illustrates how
we obtain the pixel displacement of a single body segment, the example being
that of the left forearm shown in Figure 3 (d). We use a robust parametric
model for the motion of the rigid objects so that the displacement, Δxi, at
pixel xi is given by Δ(xi,φ), where φ = [u, v, θ, s]. The elements of φ are the
displacements along the x and y axes, rotation and scale respectively. We find
that the above parametric representation is more intuitive and more robust than
an affine model. We obtain that value of φ ∈ [φ0−φB,φ0 +φB] that minimises
the residue given by eTe where

[e]j = It(xij )− It+1(xij + Δ(xij ,φ)),

and {xij : j = 1, 2, · · · } is the set of all points in the mask obtained in Section 2.1
and illustrated in Figure 4 (a). φ denotes zero motion and φB denotes the bounds
on the motion that we impose. Figure 4 (a) is the smoothed intensity image at
time t. Figure 4 (b) is the difference between image at time t and t + 1, i.e.,
with zero motion, and has large values in the mask region signifying that there
is some motion. Figure 4 (b) is the difference between image at time t and the
image at time t + 1 warped according to the estimated motion and is called
the “motion residue” for the optimal φ. The value of the pixels in the region
of the mask is close to zero where the estimated pixel displacement agrees with
the actual pixel displacement. The “motion residue” provides us with a rough
delineation of the location of the body segment, even when the original mask
does not exactly match the body segment.
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2.3 Pose Prediction

The pose parameter we need to estimate is the vector ϕ, which consists of the 6-
DoF parameters for the base-body and the 3-DoF joint angles for each of the re-
mainingbody segments.The statevector in our state-space formulation is ϕt (1-2).

State Update : ϕt+1 = h(ϕt) + δt (1)
Observation : f(Δxt,ϕt,ϕt+1) = 0 (2)

In our case the function h(.) is linear (3) and the pixel position x(.), in (4), is
a non-linear function of the pose, ϕ, and the incremental pose, δ. However, it is
well approximated by a linear function locally.

ϕt+1 = ϕt + δt (3)
f (Δxt,ϕt, δt) = Δxt − (x(ϕt + δt)− x(ϕt)) (4)

Let us consider the observation, the measured (noisy) pixel displacement, Δx′
t =

Δxt + η, where η is the measurement noise, and Δxt is the pixel displacement.
We expand f(Δxt,ϕt, δt) in a Taylor series about f(Δx′

t, ϕ̂t, δ̂t) as

f
(
Δx′

t, ϕ̂t, δ̂t

)
+

∂f

∂Δxt
(Δxt −Δx′

t)+
∂f

∂ϕt

(ϕt − ϕ̂t)+
∂f

∂δt

(
δt − δ̂t

)
+O (· · · ) .

(5)
The left hand side (f(Δxt,ϕt, δt)) is 0. The first term f

(
Δx′

t, ϕ̂t, δ̂t

)
is given

by Δx′
t −
(
x(ϕ̂t + δ̂t)− x(ϕ̂t)

)
.

The second term can be simplified as ∂f
∂Δxt

(Δxt −Δx′
t) = 1.(−η) = −η.

The third term in (5) ∂f(.)
∂ϕt

(ϕt − ϕ̂t) is negligible because the function f(.) is
not very sensitive to the current pose, ϕt and we expect the term ϕt− ϕ̂t to be
also negligible. We assume, without loss of generality that δt is a linear function
of time t, so that δt = δ.t, where δ is a constant. We note that (6) follows from
the fact that the pixel velocity, ∂x(ϕt)

∂t , at a given point is a linear function of
the rate of change of pose, δ [30].

∂f (Δx,ϕ, δt)
∂δt

= −∂x(ϕ + δt)
∂t

/
∂δt

∂t
= −F (ϕ + δt) δ/δ = −F (ϕt + δt) (6)

The fourth term is ∂f
∂δt

|(Δx′
t,ϕ̂t,δ̂t)= −F

(
ϕ̂t + δ̂t

)
We neglect the higher order

terms in (5) and obtain the following linearised observation equation (7).

Δx′
t −
(
x(ϕ̂t + δ̂t)− x(ϕ̂t)

)
+ η = F

(
ϕ̂t + δ̂t

)(
δt − δ̂t

)
(7)

We solve (7) for δt iteratively. We set δ̂
0
t = 0 and perform the following until

we obtain numerical convergence, which we do in a few iterations. We finally set
ϕ̂t+1 = ϕ̂t + δ̂

N

t .
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• Set Δx
(i)
t = Δx′

t −
(
x
(
ϕ̂t + δ̂

(i)
t

)
− x(ϕ̂t)

)
• Update pose: δ̂

(i+1)
t = δ̂

(i)
t +
(
F (i)TF (i)

)−1
F (i)TΔx

(i)
t .

2.4 Computing Spatial Energy Function

We combine different types of spatial cues into an energy image for each body
segment. This allows us to use the framework irrespective of which spatial cues
are available. In our work we use silhouette information as well as the “motion
residue” obtained during motion estimation.

Figure 4 (d) is the “motion residue” for that segment, and provides us with
the region that agrees with the motion of the mask. We combine the “motion
residue” with the silhouette as shown in Figure 5. We can form energy images
even if the quality of the silhouette is not very good. There are a number of
outliers, but though these may affect other silhouette based algorithms, they do
not affect our algorithm much.

(a) Silhouette (b) Silhouette(c) Motion Residue (d) Energy

Old Position
New Position

(e) Object mask

(dx,dy)

φ

Displaced 
and
Rotated

Displaced

Original
position

(f) 2D pose

Fig. 5. Obtaining unified energy image for the forearm

Once we have the pixel-wise energy image for each camera and a given body
segment we compute the energy for different values of 2D parameters such as
displacement and rotation. We have a mask for the body segment for the body
segment for a given image as illustrated in Figure 5 (e). We can move this mask
by a translation (dx, dy) or a rotation ϕ as illustrated in Figure 5 (f). We can
find the “energy” of the mask in each position by summing the energy of all the
pixels that belong to the mask. Thus we can express the energy as a function of
(dx, dy, θ) in the neighbourhood of (dx, dy, θ) = (0, 0, 0). When the body segment
moves in 3D space by a translation and rotation, we can project the new axis on
to the image and find the corresponding 2D configuration parameters in each of
the images. We can then find the energy of the 3D pose by summing the energies
of the mask in the 2D configurations in each image.

We minimise this energy function in the local neighbourhood. We use a
Levenberg-Marquardt optimisation technique which is initialised to the current
3D position. We show the new position of the axis of the body segment after
optimisation in Figure 6. The red line represents the initial position of the axis
of the body segment and the cyan line represents the new position. We thus
correct the pose using spatial cues.

• Set F (i) = F
(
ϕ̂t + δ̂

(i)
t

)
.
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Energy of image 1 Energy of image 2 Energy of image 3 Energy of image 4 Energy of image 6 Energy of image 8

Fig. 6. Minimum energy configuration

3 Experimental Results and Conclusions

In the experiments performed, we use grey-scale images from eight cameras with
a spatial resolution of 648×484. Calibration is performed using Tomas Svoboda’s
algorithm [31] and a simple calibration device to compute the scale. We use
images that have been undistorted based on the radial calibration parameters of
the cameras. We use perspective projection model for the cameras. Experiments
were conducted on different kind of sequences and we present the results of
two such experiments. The subject performs motions that exercise several joint
angles in the body. Our results show that using only motion cues for tracking
causes the pose estimator to lose track eventually, as we are estimating only
the difference in the pose and therefore the error accumulates. This underlines
the need for “correcting” the pose estimated using motion cues. We show the
“correction” step of the algorithm prevents drift in the tracking. In Figure 7,
we present results in which we have superimposed the images with the model
assuming the estimated pose over the images obtained from two cameras. The
length of the first sequence is 10 seconds (300 frames), during which there is
considerable movement and bending of the arms and occlusions at various times
in different cameras. The second sequence is that of the subject walking and the
body parts are successfully tracked in both cases.

Fig. 7. Tracking results using both motion and spatial cues
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We note that the method is fairly accurate and robust despite the fact the
human body model used is not very accurate, given that it was obtained manu-
ally using visual feedback. Specifically, the method is sensitive to joint location
and it is important to accurately estimate the joint location during the model
acquisition stage. We also note that the method scales with respect to accuracy
of the human body model. We also note that while we use super-quadrics to rep-
resent body segments, we could easily use triangular meshes instead, provided
they can be obtained. We need to consider more flexible models that allow the
location of certain joints, such as shoulder joints, to vary with respect to the
trunk, to better model the human body.
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Abstract. This paper describes a new method to track people walking
by matching their gait image sequences in the frequency domain. When
a person walks at a distance from a camera, that person often appears
and disappears due to being occluded by other people and/or objects, or
by going out of the field of view. Therefore, it is important to track the
person by taking correspondence of the image sequences between before
and after the disappearance. In the case of tracking, the computational
time is more crucial factor than that in the case of identification. We cre-
ate a three-dimensional volume by piling up an image sequence of human
walking. After using Fourier analysis to extract the frequency character-
istics of the volume, our method computes the similarity of two volumes.
We propose a method to compute their correlation of the amplitude of
the principal frequencies to improve the cost of comparison. Finally, we
experimentally test our method and validate that the amplitude of prin-
cipal frequencies and spatial information are important to discriminate
gait image sequences.

1 Introduction

When a surveillance system using cameras tracks people who walk at a distance
from the cameras, the subjects are often occluded by other people and/or objects.
Therefore, it is necessary to make correspondences of tracked people between
before and after their occlusion. For example, if a multiple-camera system tracks
people as shown in Figure 1, making correspondences of objects is necessary
between before and after the occluded area. Since the images of people at a
distance from a camera are small, it is difficult to recognize them by their facial
appearance. Though color and shape are considered cues for matching, this paper
focuses on the gaits of people, which are also important features. When walking,
people move their torso, arms, and legs in a unique way. Hence the rhythm of
a gait is different among individuals. Since gait can be observed at a distance,
gait matching has advantages for a tracking system.

The issue of matching gait image sequence for tracking is similar to the iden-
tification problem of gait image sequence. However, the differences from identi-
fication are as follows:

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 141–150, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



142 R. Sagawa et al.
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Matching walking persons

Fig. 1. Making correspondences of pedes-
trians with a multiple-camera system
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Fig. 2. A gait volume is created by piling
up the image sequences of walking

– The features should be extracted only from an image sequence.
– The computational time is very important.

In the case of tracking problem, the features of walking should be extracted only
from an image sequence while multiple image sequences can be used from a gait
database in the case of identification. Moreover, the computational time is more
crucial factor than that in the case of identification.

Several approaches have been proposed for identification of a person from
their gait. They can mostly be classified into two classes, model- or appearance-
based approaches. Model-based approaches extract the motion of the human
body by fitting their models to input images. Yam et al. [1] and Cunado et al. [2]
extracted leg motions and found their gait signature by Fourier analysis. Urtasun
and Fua [3] used a 3D temporal motion model to increase the robustness for a
changing view direction. Bobick and Johnson [4] extracted activity-specific static
body parameters instead of directly analyzing gait motion. Lee and Grimson [5]
analysed the frequency fo 7 parts which are extracted from the silhouette of
human walking motion.

Appearance-based approaches directly extract parameters from images with-
out assuming a model of a human body and its motion. Niyogi and Adelson [6]
used 3D spatio-temporal (XYT) data by piling up images and extracted gait
motion by fitting a ’snake’. Murase and Sakai [7] proposed a template matching
method in the parametric eigenspace that is projected from images. Little and
Boyd [8] recognized individuals by frequencies and phases computed by extract-
ing optical flows. Liu and Picard [9] used a spatio-temporal volume and detected
the periodicity in a motion by 1D Fourier analysis for each pixel of the image.
BenAbdelkader et al. [10] used self-similarity plots, in which each pixel had corre-
lations with the frames of an image sequence. Liu et al. [11] used a frieze pattern
to represent gait motion; a pattern created by summing up the white pixels of
a binarized image of a gait along the rows and columns of an image. Sarker et
al. [12] proposed a baseline algorithm of gait recognition, which computes the
similarity of gait sequences by spatial-temporal correlation. Han and Bhanu [13]
proposed a representation of gait image sequence, called a gait energy image,
which is computed by taking average of a silhouette image sequence.
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The previous model-based approaches to determine the frequency of a gait
only considered the frequency of some parts of the body by extracting them
from image sequence. However, we think that individuality is represented by
a mixture of frequencies of whole body. Therefore, we attempted to extract
the distribution of the various frequencies included in the motion of every part
of a walking body. Our proposed approach creates 3D spatio-temporal volume
from an image sequence, which is similar to Niyogi’s [6] and Liu’s [9] meth-
ods. Spatio-temporal volume data, here called gait volume, contain informa-
tion not only of spatial individuality such as features of the torso and face,
but also the movement of the body with its unique rhythm. By extracting the
frequency characteristics of the volume by computing 1-D Fourier transform
along a time axis, our method computes the similarity of two volumes. Though
we analyze it by 3D Fourier transform in our previous paper [14], the spatial
information is omitted. Thus, a new method utilizes the spatial information
for matching. We propose a method to compute their correlation of the am-
plitude. Since it is not necessary for this method to align frames for matching
two sequences, this method has advantage with respect to the computational
cost.

In the following sections, we describe details of our method. In Section 2, we
explain how a gait volume is created. In Section 3, we describe a method to
extract frequency information by 1-D Fourier transform. Next, in Section 4, our
method of matching frequency information is described. We experimentally test
the proposed method in Section 5 and summarize our contribution in Section 6.

2 Creating a Spatio-temporal Volume

A gait volume is created by piling up image sequences of a person walking as
shown in Figure 2. The process consists of two steps: background subtraction
and image alignment. The human region is extracted by subtracting background
from input images [15]. Moving regions are extracted as the human region by
subtracting the stationary background images from input ones by pixels. After
extracting the human region, the principle axis of the body is calculated as a
horizontal position in the human region in an image if it is assumed that a person
walks in a fronto-parallel plane. A sequence of the extracted human region is then
temporally aligned by shifting the extracted human region. Without specifying
each of the parts of the body, we can create a gait volume that contains the
continuous changes of appearance while walking. These changes exactly reflect
the gait rhythm.

A gait volume includes both spatial and temporal information. Sliced planes
of the volume data express changes of textures in the subject’s walking, and
also represent the rhythm in a person’s gait. Figure 3 shows examples of vertical
and horizontal slices of a gait volume. From the slices, it is possible to acquire
information about how a person moves his/her body while walking. Figure 3(a)
is a vertical slice at the central column. There are vertical waves around the
shoulder, arms and waist. Figure 3(b) is a horizontal slice at the row of the knee
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Fig. 3. (a) Vertical and (b) horizontal slices of a gait volume

level. There are horizontal waves of legs and the difference in the motions of the
right and left legs can be observed.

3 Frequency Analysis of Gait Volume

In this section, we extract the frequency characteristics of a gait volume by
Fourier transform. Our method consists of three steps:

1. Compute Fourier transform G(x, y, k) of a gait volume g(x, y, n) along the
time axis.

2. Extract the principal frequencies of a gait volume.
3. Remove spectra from G(x, y, k) other than the principal frequencies.

First, we compute 1-D discrete Fourier transform for each pixel of images
along the frame axis:

G(x, y, k) =
N−1∑
n=0

g(x, y, n) exp(−2πikn

N
), (1)

where g(x, y, n) is the intensity of a pixel (x, y) at n-th frame and N is the
number of frames. Figure 4 shows an example of the change of the intensity of
a pixel in a gait volume. After Fourier transform, the amplitude of the pixel
becomes as shown in Figure 5. The frequency f corresponding to k is computed
as f = k

NΔt , where Δt is the sampling interval of images.
Second, since the amplitudes of the most of frequencies are small while the

dimension of G(x, y, k) is very high, we extract the principal frequencies of a
gait, which have large amplitudes, to reduce the data size and improve the
computational cost. We compute the sum of the amplitude of G(x, y, k) for each
frequency:

Ĝ(k) =
∑
x,y

|G(x, y, k)|. (2)

Since G(x, y, k) is a complex value, |G(x, y, k)| =
√

a2 + b2, where G(x, y, k) =
a+bi. Then, we find the principal frequency of G(x, y, k) as the frequency k that
satisfies Ĝ(k − 1) < Ĝ(k) and Ĝ(k + 1) < Ĝ(k). Since the higher frequencies is
not important, we choose some lower frequencies from them. The DC component
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Fig. 5. Amplitude of a pixel after Fourier
transform

is ignored for this computation because it does not represent a repetitive motion
of walking. Figure 6 shows an example of Ĝ(k). There are some peaks and we
extract their frequencies as the principal frequencies.

In the third step, we remove spectra included in G(x, y, k) other than the
principal frequencies and obtain a new volume G′(x, y, k). We preserve the sev-
eral lowest principal frequencies and remove all other frequencies. Figure 7 shows
the amplitude of G′(x, y, k) after removing spectra other than the principal fre-
quencies from Figure 5.

Figure 8 shows the reconstructed results of the following inverse Fourier trans-
form:

g′(x, y, n) =
1
N

N−1∑
k=0

G′(x, y, k) exp(
2πikn

N
). (3)

Figure 8(a) is an original image in a gait volume and Figure 8(b) is the recon-
structed image from G′(x, y, k). Figure 8(c) shows the amplitudes of three prin-
cipal frequencies of G′(x, y, k). Figure 8(d) is the horizontal slice of g′(x, y, n),
which corresponds to Figure 3(b).

0.00 1.52 3.03 4.55 6.06 7.58 9.09 10.61 12.12 13.64 15.15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

6

Frequency (Hz)

S
u

m
 o

f 
A

m
p

li
tu

d
e

Fig. 6. Sum of the amplitude of G(x, y, k)
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Fig. 8. (a) Original image, (b) reconstructed image by inverse Fourier transform, (c)
Amplitudes of three principal frequencies, and (d) the horizontal slice of the recon-
structed gait volume which corresponds to Figure 3(b)

4 Matching Gait Volumes

To compare two different gait volumes, we propose a method for computing their
correlation. We use the correlation of the amplitude after Fourier transform. In
this section, we assume that the images of walking people are aligned along the
horizontal and vertical axis of gait volumes.

Now, G1(x, y, k) and G2(x, y, k) are the volumes after Fourier transform. If
G1 is a reference volume, we remove spectra other than the principal frequencies
of G1 from both G1 and G2, and obtain G′

1(x, y, k) and G′
2(x, y, k). Namely, G′

1
and G′

2 only have the principal frequencies of G1. We compare the amplitude of
G′

1 and G′
2 by the following criterion:

C(|G′
1|, |G′

2|) =

∑
x,y,k |G′

1(x, y, k)||G′
2(x, y, k)|√

(
∑

x,y,k |G′
1(x, y, k)|2)(

∑
x,y,k |G′

2(x, y, k))|2
. (4)

This is the normalized correlation without shifting by mean value. Thus, if two
volumes are same, the result is 1, and it goes down to -1 if they have negative
correlation.

Removing spectra other than the principal frequencies is equal to reducing the
dimension of the component in gait volumes. Therefore, the cost of computing
(4) is much smaller than that of computing the correlation of the original volumes
by C(|G1|, |G2|).

5 Experiments

We first tested our method with image sequences in which people walk in a
fronto-parallel plane to the camera. We used 50 sequences of 9 persons, i.e.,
4-7 sequences for each person. Each sequence consists of 200 frames, captured
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Fig. 9. Subject images
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Fig. 10. Comparison of five methods: the
means of comparing the same subjects are
indicated by ◦, while those of comparing
different subjects are indicated by *. Ver-
tical lines show ±σ, which is the standard
deviation.

at 33Hz, and include 10-12 walking steps. The size of the images is 40 × 20.
Figure 9 shows images of the subjects after background subtraction.

We compute the correlation of all pairs of sequences. To evaluate the efficiency
of our method, we compared the following five methods:

– Amplitude: the correlation of |G′(x, y, k)| proposed in Section 4.
– No DC: the correlation of |G(x, y, k)| by (4) simply after removing the DC

component.
– Temp.: normalized correlation in the spatio-temporal domain of g(x, y, n).
– Temp.(Princ.): normalized correlation in the spatio-temporal domain of

g′(x, y, n), which is obtained by inverse Fourier transform of G′(x, y, k).
– SSP: normalized correlation of the self-similarity plots proposed in [10].

In this experiment, we used the three lowest principal frequencies for matching.
Thus, the data size is reduced to 3% of the original gait volume. Since a self-
similarity plot is a matrix of the correlation of two images in a image sequence,
the spatial information is lost in this representation. In the SSP method, we
compute the normalized correlation of the self-similarity plots generated from
gait sequences. Though the method of comparing the self-similarity plots is dif-
ferent from the one proposed in [10], we compare the effectiveness as a cue for
identification by normalized correlation. In the Temp., Temp.(Princ.) and SSP
methods, we search for the best match by an exhaustive brute-force search with
circular shift in the spatio-temporal domain.

We apply the five above methods to all pairs of gait sequences. Figure 10
shows the mean and standard deviations of the correlations of each method
when they are compared to the sequences of the same and different subjects.
The means of comparing the same subjects are indicated by ◦ while those of
comparing different subjects are indicated by *. The vertical lines shows ±σ,
which is the standard deviation.
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If the difference between ◦ and * is large, the method is effective to distin-
guish the gaits of different persons. In the Amplitude method, the difference is
sufficiently large compared to their standard deviations. Therefore, the method
can be seen as effective for comparing gait image sequences. Since the difference
of the SSP method is small while the standard deviation is large, the robustness
for matching is worse than others. Therefore, the spatial information in an image
is important even if the frequency information is used for matching.

Figure 11 shows the rate of positive samples after thresholding by correlation
values for the Amplitude method. The true positive is the result of matching
the same subjects, and the false positive is that of matching different subjects.
When the rate of true positive is 0.95, that of false positive is less than 0.01. Thus,
the Amplitude method can discriminate subjects by thresholding the correlation
values.

We evaluate the rates of positive samples for five methods, and create the
receiver operating characteristic (ROC) curves as shown in Figure 12. It depicts
the relationship of true and false positive rates. The No DC method has no error
in this experiment. Therefore, it is shown that the frequency information is a
powerful feature for matching. Though the data size for the Amplitude method
is quite smaller than the No DC method, it has few errors. Hence, it is effective
to use the principal frequencies for matching gait volumes. As for the Temp.
and Temp.(Princ.) method, the result is worse than the No DC and Amplitude
method. It shows that the template matching in the temporal domain is not
suitable for matching gait volumes.

Table 1 shows the computational time for comparing a pair of gait sequences
by these five methods. We used a PC with Pentium4 3.2GHz processor and coded
the algorithms by MATLAB. The time of the Amplitude method is 16% of the

Table 1. Times for comparing a pair of gait sequences in seconds

Amplitude No DC Temp. Temp.(Princ.) SSP
0.015 0.093 4.0 4.0 2.5
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Fig. 13. Comparison of Amplitude, No DC and Baseline methods for USF database:
(a) the identification rate at rank 5, (b) the verification rate at a false alarm rate
of 10%. The differences between gallery and probe sequence: (A) view, (B) shoe, (C)
shoe, view, (D) surface, (E) surface, shoe, (F) surface, view, (G) surface, shoe, view, (H)
briefcase, (I) shoe, briefcase, (J) view, briefcase, (K) time, shoe, clothing, (L) surface,
time, shoe, clothing.

No DC method. Thus, the computational cost is reduced by removing the minor
component in G(x, y, k). Since the temporal alignment is necessary for the other
methods, their computational cost is higher than that of the Amplitude method.

Second, we tested our method by using a database of gait image sequence
from University of South Florida; for details of the database, refer to [12]. The
database consists of gallery (watch-list) and probe (input data) image sequences,
which are compared in the experiment. We used the silhouettes which are already
extracted by their algorithm in this experiment. The number of gallery sequences
is 121. The size of images we use is normalized to 88× 128 pixels, and the number
of frames for matching is 128. We compared three methods, Amplitude, No DC
and Baseline [12]. Figure 13 shows identification and verification rates for each
probe. The difference between Amplitude and No DC methods is small while the
cost of Amplitude method is much smaller than No DC method. Moreover, the
costs of these methods are much smaller than Baseline method because aligning
frames is necessary for Baseline method. Though the performance of Amplitude
and No DC methods becomes worse than Baseline method for (B)-(G) probes,
which have difference about surface, it is considered to be due to background
subtraction. On the other hand, our method has advantage for (H)-(J) probes,
which have difference about one’s belongings. It is considered that the frequency
information is not affected by carrying briefcase.

6 Summary

We proposed a new method to compare gait image sequences. The characteristics
of the gait are extracted from a gait volume using Fourier transform. We use the
principal frequencies in the frequency domain for matching gait volumes. Thus,
the data size and computational cost become quite smaller than the original
gait volume. It works better than matching in the temporal domain, and the
computational cost is small because the temporal alignment is not necessary.
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This advantage is suitable for tracking problem. Moreover, it is shown that
the spatial information is also important to discriminate gait image sequences.
For future work, we analyze the effect of other factors, for example, a viewing
direction and clothes.
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Abstract. The need for empirical evaluation metrics and algorithms is
well acknowledged in the field of computer vision. The process leads to
precise insights to understanding current technological capabilities and
also helps in measuring progress. Hence designing good and meaningful
performance measures is very critical.

In this paper, we propose two comprehensive measures, one each for
detection and tracking, for video domains where an object bounding ap-
proach to ground truthing can be followed. Thorough analysis explaining
the behavior of the measures for different types of detection and tracking
errors are discussed. Face detection and tracking is chosen as a prototype
task where such an evaluation is relevant. Results on real data compar-
ing existing algorithms are presented and the measures are shown to be
effective in capturing the accuracy of the detection/tracking systems.

1 Introduction

Recent years have seen rapid development in the state-of-the-art technologies
for computer vision problems. A new approach to solving these problems is
frequently proposed with high claims on its performance and robustness. Eval-
uation of algorithms is imperative, in order that a particular technology is not
oversold. From a research point of view, well-established problems need standard
databases with established benchmark performances, evaluation protocols and
scoring methods available.

Object detection and tracking is a key computer vision topic, which focuses
on detecting the position of a moving object in a video sequence. It is the first
step accomplished by a event recognition system that extracts semantic content
from video.

There have been many efforts towards empirical evaluation of object detection
and tracking [1, 2, 3, 4, 5, 6, 7, 8]. These works either present a single measure that
concentrates on a particular aspect of the task or a suite of measures that look
at different aspects. While the former approach cannot capture the performance
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of the system in its entirety, the latter results in a multitude of scores which
cannot be easily comprehended in assessing the performance of the system.

Similarly, while evaluating tracking systems, earlier approaches either con-
centrate on the spatial aspect of the task, i.e., assess correctness in terms of
number of trackers and locations in frames [4, 7], or the temporal aspect which,
emphasizes on maintaining consistent identity over long periods of time [2]. In
the very recent works of [3, 8], a spatio-temporal approach towards evaluation
of tracking systems is adopted. However, these approaches do not provide the
flexibility to adapt the relative importance of each of these individual aspects.
Finally, majority of these undertakings make little effort in actually compar-
ing the performance of existing algorithms on real world applications using the
proposed measures.

In this paper, we propose two comprehensive measures that capture differ-
ent aspects of the detection and the tracking task in a single score. While the
detection measure assumes a spatial course, a spatio-temporal concept is the
backbone of the tracking measure. By adopting a thresholded approach to eval-
uation (See Secs 3.1 and 3.2), the relative significance of the individual aspects
of the task can be modified. In the end, face detection and tracking is picked as
an exemplar task for evaluation and select algorithm performances are compared
on a reasonable corpus.

The remainder of the paper is organized in the following manner. Section 2
briefs the ground truth annotation process which is vital to evaluation.
Section 3 describes the proposed comprehensive measures for detection and
tracking. Section 4 explains the one-to-one mapping which is an integral part
of this evaluation. Section 5.1 details the experimental results describing the
behavior of the measures for different types of detection and tracking errors.
Section 5.2 discusses and compares the results of three face detection and two
face tracking algorithms on a data set containing video clips from boardroom
meetings. We conclude and summarize the findings in Section 6.

2 Ground Truth Annotations

Clearly, the first step towards carrying out a scientific evaluation is to have a valid
ground truth. More importantly, the approach taken towards annotation decides
the evaluation technique. It has been well observed in the research community
that a universal approach to annotation/evaluation cannot be adopted across
domains. The main reason being the fact that features rich in a particular domain
might not be discernible in a different domain.

In this paper, the method used for ground truthing is one in which objects are
bounded by a geometric shape, such as rectangles, polygons or ellipses. Features
of the object will be used as guides for marking the limits of the edges. If the
features are occluded, which is often the case, the markings are approximated.
Unique IDs are assigned to individual objects and are consistently maintained
over subsequent frames. Face, text and person detection/tracking in broadcast
news segments and meeting videos are few examples of the task-domain pairs
where such an approach is often adopted.
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There are many free and commercially available tools which can be used for
ground truthing videos such as Anvil, VideoAnnex, ViPER [9], etc... In our
case, we used ViPER (Video Performance Evaluation Resource), a ground truth
authoring tool developed by the University of Maryland.

Fig 1 shows a sample annotation using ViPER for face in a broadcast news
segment.

Fig. 1. Sample annotation of face in broadcast news using rectangular boxes. Facial
features such as eyes and lower lip are used as guides to marking the edges of the
box. Internal Data Structure maintains a unique Object ID for each of the faces shown
which helps in measuring the tracking performance. Courtesy: CNN News.

A fact that has been well appreciated by the community is the need for
reliable ground truth for genuine evaluations. To assure quality in the ground
truth, 10% of the entire corpus was doubly annotated and checked for quality
using the evaluation measures.

3 Performance Measures

The proposed performance measures are primarily area-based and depends on
the spatial overlap between the ground truth and the system output objects
to generate the score. In order that we get the best score of an algorithm’s
performance, we perform a one-to-one mapping between the ground truth and
the system output objects such that the metric scores are maximized. All the
measure scores are normalized such that the best performance gets a score of 1
and the worst performance gets a score of 0.

Secs 3.1 and 3.2 discuss the frame based detection measure and the sequence
based tracking measure respectively, while Sec 4 briefs the one-to-one matching
strategy.

The following are the notations used in the remainder of the paper,

– Gi denotes the ith ground truth object and G
(t)
i denotes the ith ground truth object

in tth frame.
– Di denotes the ith detected object and D

(t)
i denotes the ith detected object in tth

frame.
– N

(t)
G and N

(t)
D denote the number of ground truth objects and the number of

detected objects in frame t respectively.
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– NG and ND denote the number of unique ground truth objects and the number of
unique detected objects in the given sequence respectively. Uniqueness is defined
by object IDs.

– Nframes is the number of frames in the sequence.
– N i

frames is the number of frames the ground truth object (Gi) or the detected
object (Di), depending on the context, existed in the sequence.

– N
(t)
mapped is the number of mapped ground truth and detected objects in frame t

while Nmapped is the number of mapped ground truth and detected objects in the
whole sequence.

3.1 Detection – Frame Based Evaluation

A good detection measure should capture the performance in terms of both
overall detection (number of objects detected, missed detects and false alarms)
and goodness of detection for the detected objects, i.e., spatial accuracy (how
much of the ground truth is detected) and spatial fragmentation (object splits
and object merges).

The Sequence Frame Detection Accuracy (SFDA) is a frame-level measure
that penalizes for fragmentations in the spatial dimension while accounting for
number of objects detected, missed detects, false alarms and spatial alignment of
system output and ground truth objects. For a given frame, the Frame Detection
Accuracy (FDA) measure calculates the spatial overlap between the ground
truth and system output objects as a ratio of the spatial intersection between
the two objects and the spatial union of them. The sum of all the overlaps is
normalized over the average of the number of ground truth and detected objects.
For a single frame t where there are N

(t)
G ground truth objects and N

(t)
D detected

objects , we define FDA(t) as,

FDA(t) =
Overlap Ratio

N
(t)
G

+N
(t)
D

2

(1)

where, Overlap Ratio =

N
(t)
mapped

i=1

|G(t)
i D

(t)
i |

|G(t)
i D

(t)
i |

(2)

Here, the N
(t)
mapped is the number of mapped objects, where the mapping is done

between objects which have the best spatial overlap in the given frame t.
In order to measure the detection performance for the whole sequence, the

FDA is calculated over all the frames in the sequence and normalized to the
number of frames in the sequence where at least a ground truth or a detected
object exists. This way of normalization accounts for both missed detects and
false alarms. We thus obtain the Sequence Frame Detection Accuracy (SFDA)
which can be expressed as,

SFDA =
t=Nframes

t=1 FDA(t)
t=Nframes

t=1 ∃(N (t)
G OR N

(t)
D )

(3)
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Fig 2 shows the effect of spatial inaccuracies (missed object region) and tem-
poral inaccuracies (missed object frames as against object-ID mismatch which
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Fig. 2. Effect of spatial and temporal inaccura-
cies on the detection measure (SFDA) for a se-
quence containing a single object

does not have any effect on
the detection measure as long
as the detected object spatially
aligns with the ground truth.) on
SFDA for a video sequence (ap-
proximately 2500 frames) con-
taining 1 object (typically the
case with close-up face videos).
Here, spatial overlap ratio is de-
fined as the ratio of the spatial
intersection of the two boxes to
the spatial union of them. Tem-
poral overlap ratio is defined as
the ratio of the number of frames
the object was detected in to
the number of frames the ground
truth object existed. We can ob-
serve that given a single object,
the spatial and temporal inaccuracies (missed detects at the frame level) have a
linear effect on the detection measure.

Relaxing Spatial Alignment. For many systems, it would be sufficient to
just detect the presence of an object in a frame, and not be concerned with the
spatial accuracy of detection. To evaluate such systems, we propose a thresholded
approach to evaluation of detection. Here, the detected object is given full credit
even when it overlaps just a portion of the ground truth. OLP DET is the
spatial overlap threshold.

Overlap Ratio Thresholded =

N
(t)
mapped

i=1

Ovlp Thres(G(t)
i , D

(t)
i )

|G(t)
i ∪ D

(t)
i |

(4)

where,

Ovlp Thres(G(t)
i , D

(t)
i ) =

|G(t)
i ∪ D

(t)
i |, if |G(t)

i
∩D

(t)
i

|
|G(t)

i
|

≥ OLP DET

|G(t)
i ∩ D

(t)
i |, otherwise

The threshold for a given application is derived from spatial disagreements
between the annotators in the 10% double annotated data. The motivation be-
hind this is to eliminate the error in the scores induced due to ground truth
inconsistencies. Also, this way of arriving at the spatial threshold reflects the
difficulties in how humans perceive the task.

3.2 Tracking – Sequence Based Evaluation

In this paper, tracking consists of simply identifying detected objects across con-
tiguous frames. The task is similar to detection, with detected objects linked by
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a common identity (object IDs) across frames. Therefore, objects which leave
the scene and return later in the sequence are not identified as the same object.
But, occluded objects are to be treated as the same object. However, track-
ing is optional during occlusion. Frames in which the object is occluded are
marked with special flags during annotation and these frames are excluded from
evaluation.

Unlike detection, this is a spatio-temporal task and its performance can be
assessed with a measure similar to the Sequence Frame Detection Accuracy
measure described in Sec 3.1. The significant difference between the measures is
that in detection tasks the mapping between the system output and reference
annotation objects is optimized on a frame-by-frame basis, whereas for tracking,
the mapping is optimized at a sequence level. One of the advantages of making
this task highly parallel to the detection task is that the SFDA measure can also
be applied to the tracking output to quantify the performance degradation due
to mis-identification of objects across frames.

A good tracking measure should capture the performance in terms of both
overall tracking (number of objects detected and tracked, missed detects and
false alarms) and goodness of track for the detected objects, i.e., spatial and
temporal accuracy (how much of the ground truth is detected and in how many
frames) and spatial (object splits, object merges) and temporal fragmentation
(discontinuous tracking).

The Sequence Track Detection Accuracy (STDA) is a spatio-temporal mea-
sure which penalizes fragmentations in both the temporal as well as the spatial
dimensions while accounting for number of objects detected and tracked, missed
objects and false alarms. A one-to-one mapping between the ground truth and the
system output objects by computing the measure over all the ground truth and
detected object combinations and using an optimization strategy to maximize the
overall score for the sequence [see Sec 4]. The STDA is then calculated as,

STDA =
Nmapped

i=1

Nframes

t=1
|G(t)

i
∩D

(t)
i

|
|G(t)

i
∪D

(t)
i

|
N(Gi∪Di �=∅)

(5)

Analyzing the numerator of Eq 5, we observe that it is merely the overlap
of the detected object over the ground truth, which is very similar to Eq 2.
The only difference is that, in tracking we measure the overlap in the spatio-
temporal dimension while in detection the overlap is in the spatial dimension
alone. The value of TDA is influenced by the ability of an algorithm to detect
and consistently track an object in the sequence.

The STDA is a measure of tracking over all the objects in the sequence. It
can take a maximum value of NG, which is the number of ground truth objects
in the sequence. We define Average Tracking Accuracy (ATA), which can be
termed as the STDA per object, as

ATA =
STDA
NG+ND

2

(6)
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It can be readily realized that for a given object, the ATA exhibits a direct
linear dependence on spatial and temporal imperfections, as was the case with
the SFDA (See Fig 2).

Relaxing Detection Penalty. At times it is desirable to measure the tracking
aspect of the algorithm and not be concerned with the detection accuracy. In this
case, we can relax the detection penalty by using an area thresholded approach
similar to Sec 3.1. In the equation described here, we introduce a threshold here
namely, OLP TRK.

TDA T (i) =
Nframes

t=1

Ovlp Thres(G(t)
i , D

(t)
i )

|G(t)
i ∪ D

(t)
i |

(7)

where,

Ovlp Thres(G(t)
i , D

(t)
i ) =

|G(t)
i ∪ D

(t)
i |, if |G(t)

i
∩D

(t)
i

|
|G(t)

i
|

≥ OLP TRK

|G(t)
i ∩ D

(t)
i |, otherwise

.

4 Matching Strategies

From Eqs 2 and 5, it is apparent that both the detection and the tracking
measures distinguish between individual objects at the frame and sequence level
respectively. A valid score can be obtained only when there is a unique one-
to-one mapping of ground truth and detected objects using some optimization.
Potential strategies to solve this assignment problem are the weighted bi-partite
graph matching and the Hungarian algorithm [10].

There are many variations of the basic Hungarian strategy most of which
exploit constraints from specific problem domains. The algorithm has a series
of steps which are followed iteratively and it has a polynomial time complexity.
Specifically some implementations have O(N3) complexity. Faster implementa-
tions have been known to exist; the current best bound is O(N2logN+NM) [11].
In our case, the matrix to be matched is usually sparse and this fact could be
taken advantage of by implementing a hash function for mapping sub-inputs
from the whole set of inputs.

5 Results and Analysis

5.1 Experiments

There are many aspects of an algorithm that affect the final scores of the de-
tection and the tracking measure. For an object detection and tracking task the
errors that can affect the metric scores can be due to a single or a combination
of the following errors - spatial inaccuracy, temporal inaccuracy, missed detects
and false alarms. To measure the influence of all of these factors at the same time
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will not reflect the behavior of the measures to individual errors. Hence, in the
following sections, we observe the performance of the measures by systematically
handling one error at a time. We have developed an evaluation tool, which, in
addition to calculating the detection and tracking scores, will also output the
contribution of the above mentioned errors to the final score. This can be used
for diagnostic purposes by algorithm developers to identify strengths and weak-
nesses of an approach and also for achieving optimal parameter settings for the
algorithm.

Since we already looked at the effect of spatial and temporal inaccuracies in
Fig 2, we will just investigate the effect of missed detects and false alarms in
this section.

Effect of Missed Detects. In this experiment, we consider a video sequence
(approximately 4500 frames) which has 75 objects that vary in their frame per-
sistence. As against the meeting room domain where the objects persist in a
longer framespan, in this case the objects stay in the scene for a short duration
of time. This is typical for face, text, person and vehicle detection/tracking in
broadcast news domains.

Fig 3 illustrates the performance of the measures for missed objects in the
video sequence. Here, for all objects other than the missed object, we assume
that they are detected and tracked ideally. Fig 3 also shows the corresponding
frame persistence of the object that is missed from the ground truth. We can
observe a uniform degradation of the ATA score while the SFDA score exhibits
a non-uniform behavior. Clearly, the SFDA score is influenced by temporally
predominant objects (existing in more frames) in the sequence, while the ATA
score is independent of the frame persistence of objects. Given an ideal detec-
tion and tracking for the remaining objects in the sequence, we can analytically
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Fig. 3. Effect of missed detects on the comprehensive measures (SFDA, ATA) for a
sequence containing 75 objects. The figure shows the corresponding object’s frame
persistence which was missed from the ground truth. For all the objects not missed,
we assume ideal detection and tracking.
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characterize the SFDA and the ATA measures for missed detects as shown in
Eqs 8 and 9.

SFDA =
ND
i=1 N i

frames
ND
i=1 Ni

frames
+

NG
j=1 N

j
frames

2

(8)

ATA =
ND

NG+ND
2

. (9)

Effect of False Alarms. Having looked at the effect of missed detects on the
SFDA and the ATA, it is fairly straightforward to imagine the effect of false
alarms on the measure scores. Given an ideal detection and tracking for all the
objects in the sequence, we can analytically characterize the SFDA and the ATA
measures for false alarms as shown in Eqs 10 and 11.

SFDA =
NG
j=1 Nj

frames
ND
i=1 Ni

frames
+

NG
j=1 N

j
frames

2

(10)

ATA =
NG

NG+ND
2

(11)

Just as missing a predominantly occurring object decreases the SFDA score
by a higher extent, introducing an object in a large number of frames affects the
SFDA score more. However, the ATA score is affected by the number of unique
objects (different object IDs) inserted into the sequence.

5.2 Face Detection and Tracking Evaluation

In this section, we describe the test-bed that we use in our evaluation of face
detection and tracking algorithms. We compared three face detection algorithms
and two face tracking algorithms. The algorithm outputs were obtained from the
original authors and thus can be safely assumed that the reported outputs are
for the optimal parameter settings of the algorithm without any implementation
errors. For anonymity purposes, these algorithms will be referred to as Algo 1,
Algo 2 and Algo 3. The source video was in MPEG-2 standard in NTSC format
encoded at 29.97 frames per second at 720x480 resolution.

The algorithms were trained on 50 clips, each averaging about 3 minutes
(approx. 5400 frames) and tested on 20 clips, whose average length was the
same as that of the training data. The ground truth was provided to algorithm
developers for the 50 clips to facilitate training of algorithm parameters.

Fig 4 shows the SFDA scores of the three face detection algorithms on the 20
test clips. It also reports the SFDA scores thresholded at 10% spatial overlap,
missed detects and false alarms associated with each sequence. By adopting
a thresholded approach, we alleviate the effect of errors caused due to spatial
anomalies. Thus, the errors in the thresholded SFDA scores are primarily due to
missed detects and false alarms. One can observe a strong correlation between
the SFDA scores and the missed detects/false alarms. Results show that Algo 1
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Fig. 4. Evaluation results of three face detection systems. Missed Detects (MD) and
False Alarms (FA) are normalized with respect to total number of evaluation frames.

outperforms the other algorithms on all the test clips. It has good localization
accuracy in addition to low missed detection and false alarms rate.

Fig 5 shows the ATA scores for the two face tracking systems on the test
set. Additionally, ATA scores thresholded at 10% spatial overlap, missed detects
and false alarms associated with each sequence are reported. It can be observed
that, though Algo 1 has lesser identification errors and false alarm rates, there
is certainly scope and promise for improvement in the performance. Results
show that inconsistent identification and induction of sporadic false alarms are
detrimental to performance of tracking systems.
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the sequence.
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6 Conclusions

A comprehensive approach to evaluation of object detection and tracking al-
gorithms is proposed for video domains where an object bounding approach to
ground truth annotation is followed. An area based metric, that depends on spa-
tial overlap between ground truth objects and system output objects to generate
the score, is proposed in the case of an object bounding annotation. For the de-
tection task, the SFDA metric captures both the detection capabilities (number
of objects detected) and the goodness of detection (spatial accuracy). Similarly,
for the tracking task, both the tracking capabilities (number of objects detected
and tracked) and the goodness of tracking (spatial and temporal accuracy) are
accounted by the ATA metric. By decomposing the performance in terms of its
components, algorithm developers can analyze the robustness and shortcomings
of a given approach. Evaluation results of face detection and tracking systems
on meeting room video clips show the effectiveness of the metrics in capturing
the performance.
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Abstract. We propose one-directional traffic flow measurement method using 
double slit camera. Two slit cameras are installed in overhead location with lon-
gitudinal alignment. They shoot real traffic scene in downward direction. Slit 
camera outputs pseudo two-dimensional image that consists of space domain and 
time domain. We detect vehicles from statistical pixel value of each line of a slit. 
Standard deviation is effective to detect bright color vehicles. We use the 
changes of a standard deviation and a change of an average as well as the stan-
dard deviation to detect dark color vehicles. We detect traffic flow parameters 
such as occupancy, time headway and time between two cars using slit camera. 
In double slit configuration, we detect spot speed of vehicles by the time differ-
ence of its appearance at each slit. We estimate vehicle length by normalizing the 
vehicle region. We also divide vehicles into type of vehicle by length. 

1   Introduction 

Traffic flow is counted using various vehicle detectors. Vehicle detectors are gener-
ally divided into three groups by the principle of detection. First group detectors sense 
the pressure when vehicle steps on a sensor, second group detectors detect a magnetic 
disturbance on a loop coil when vehicle passing through and third group detectors 
detect the reflection of a beam from vehicle. Vehicle speed is detected using Doppler 
radar or multiple detectors located between two points [1], [2]. Computer vision is 
also applied to traffic flow measurement [3], [4]. Analyzing a image sequence, a lot of 
traffic information such as number of vehicles, speed of vehicles, space headway are 
extracted in addition to multiple lanes. Area sensor is generally used as an imaging 
device to apply traffic flow measurement. The area sensor is suitable to detect two 
dimensional traffic flow such as intersection and junction. 

Traffic flow except intersection is regarded as one-dimensional motion, therefore, 
line sensor is suitable to detect one directional traffic flow [5]. Line sensor camera 
outputs pseudo two-dimensional image that consists of space domain and time do-
main. We introduce three measures to detect vehicles in a real traffic scene. The first 
one is a standard deviation of pixel values for detecting bright color vehicles. The 
second and third are the change of a standard deviation and the change of an average 
respectively, for detecting dark color vehicles. We also detect some traffic flow pa-
rameters from time axis information of a slit image. In double slit configuration, we 
detect spot speed of vehicles, and estimate vehicle length. We classify vehicle into 
type of vehicle by length. 



 Vehicle Detection Using Double Slit Camera  163 

 

2   Slit Camera 

Slit camera is originally developed for sport event to record and decide goal order. 
One directional motion which is perpendicular to a slit will be recorded as a two di-
mensional image, where a slit direction corresponds to a space axis and the direction 
perpendicular to the slit corresponds to time axis. When the object moves faster than a 
film running speed at the slit, the object on the slit image comes out shrinking along 
time domain. When the object moves same as a film running speed, the object on the 
slit image comes out undistorted image. When the object moves slower than a film 
running speed, the object on the slit image comes out extending along time domain. 
The direction of motion does not affect in a slit image, therefore, the result is just the 
same as if both objects move opposite direction each other. 

To be briefly, line sensor camera is a slit camera that the screen material is re-
placed a conventional photo film with CCD array. In industrial applications, it is used 
to record and analyze shapes of parts on a belt conveyer. It is also useful to record a 
very long object such as a train. In ITS world, this is a good tool for one directional 
traffic measurement. In those applications, the slit camera position is fixed. If we 
move a slit camera, we can obtain 360-degree panorama (rotation), wall or road side 
street scene (translation). If an on-board slit camera is looking down to the road sur-
face and the slit is aligned to latitude direction, longitudinal vehicle motion will give 
road surface unfolding image. 

Fig. 1. Principle of vehicle detection using double slit 

3   Vehicles in Slit Image 

We aim to detect vehicles from each of the scan lines. We study relationship between 
vehicle’s slit image and it’s statistical pixel value of scan line, under the different 
finish of vehicle’s body and different daylight. In Fig. 2 ~ Fig. 6, left images show 
various type of vehicle’s image at different daylight, center figures show standard 
deviation of each scan line, and right figures show average of each scan line. 

1) Standard deviation of road surface keeps almost constant, even if daylight 
slightly changes (Fig. 2 ~ 6). 

2) Average of pixel value varies if daylight changes (Fig. 2 ~ 6). 
3) Standard deviation becomes an effective measure for detecting bright color vehicle 

(Fig. 2). 
4) Non-glossy object such as fabric top cover has low standard deviation (Fig. 3). 
5) Standard deviations become lower, when dark color vehicle is took shot in un-

der-exposure or relatively less daylight (Fig. 6). 
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 (a) (b) (c) 

Fig. 2. Std. and Ave. of bright color vehicle-1 

         
 (a) (b) (c) 

Fig. 3. Std. and Ave. of bright color vehicle-2 

           
 (a) (b) (c) 

Fig. 4. Std. and Ave. of dark color vehicle-3 

           
 (a) (b) (c) 

Fig. 5. Std. and Ave. of bright color vehicle-4 at under-exposure 

           
 (a) (b) (c) 

Fig. 6. Std. and Ave. of dark color vehicle-5 at under-exposure 
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4   Outline of Method 

4.1   Measures for Vehicle Detection 

We use statistical pixel value of a scan line to detect vehicle. As mentioned above, 
standard deviation of road surface keeps constant even if daylight slightly changes. 
Standard deviation is efficient to detect bright color vehicles. Average of road surface 
depends on a daylight change, so average itself is not enough for measure. We use a 
change of average as a measure that is less-sensitive about daylight change. We also 
use a change of standard deviation to improve performance for detecting front and 
rear edge of vehicles. 

4.2   Vehicle Detection 

Fig. 7 shows flow of vehicle detection. In order to detect vehicles in each scan line, 
we use three measures for detection; standard deviation, change of standard deviation 
and change of average. We tentatively determine vehicle in a scan line when these 
measures are larger than or smaller than the designated thresholds. We add a flag of 
which 1 as including vehicle or 0 as not including vehicle, to the scan line number. 
These flagged line information are unified by logical OR, then merged by the duration 
between 1s, and replaced 1 to 0 by the isolation. After detection process, this informa-
tion is send to measurement process to count traffic. 

 
Read 1 scan line

Std.
Ave.

Thresholding

Store data

Calculate 

Calculate dStd./dt
dAve./dt

Thresholding. Thresholding

logical OR

 Std. dStd./dt dAve./dt

  Pulse shaping
 merge & remove

to measurement
process

t

t

threshold
1

0
threshold

1

 
Ave(t ) : average of pixel value at line t

            Ave( t) =
1

n
Σ

x= 0

n

I(x ,t)

Std( t) : standard deviation of pixel value at line t

            Std(t) = Std(t )
2

,   Std(t )
2 =

1

n
Σ

x= 0

n

I (x ,t)
2

− Ave(t )
2

       n : resolution of space domain

 I(x ,t) : pixel value  

Fig. 7. Flow of vehicle detection 
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4.3   Traffic Flow Measurement 

In Fig. 8, pulse duration corresponds to occupancy, pulse spacing corresponds to time 
between two cars and interval between a leading edge of a pulse and next leading 
edge of a pulse corresponds to time headway. Time difference of a leading edge of a 
pulse (front edge of vehicles) or a trailing edge of a pulse (rear edge of vehicles) be-
tween the slits corresponds to a time required passing through the slits. We can get 
occupancy; Ot[sec], time between two cars; gi[sec], time headway; hi[sec] and time 
difference of its appearance at each slit; ts[sec]. Spot speed; vt is calculated by 
vt=ds/ts[m/sec], because distance between slits; ds[m] is already known. 

An equivalent film running speed of the camera; vslit is derived from line captur-
ing speed; cslit[line/sec] (or scanning time of a line) and resolution of the camera; 
rt[m/line], and as follows vslit=rt·cslit[m/sec]. Therefore modification coefficient for 
restoring non-extended and non-contracted slit image of vehicles; k becomes 
k=vt/vslit. Vehicle length; l is estimated by l=ot·rt·k[m] using occupancy, resolution 
and modification coefficient. We also obtain traffic volume; Q, rate of flow; q[/h], 
occupancy: Qt[%], time mean speed; v t [m/sec], average time headway; h [sec], 
average time between two cars; g [sec], as macroscopic traffic flow parameters for 
designated period. 

 

Ot: occupancy
gi: time between two cars
hi: time headway
ts: time difference of its appearance at each slit
 (tsf: leading edge, tsr: trailing edge)  

Fig. 8. Parameters derived from wave forms 

5   Experiment 

5.1   Experimental Set-Up 

We install two line sensor cameras on a pedestrian overpass at 6.1 meters height from 
road surface. Both cameras look down to the road surface, and the slits are aligned to 
latitude direction with 2.6 meters distance between slits. The line sensor camera 
equipped 10.24[mm]width by 10[mm]length CCD array and 17[mm] focal length 
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optical lens, so range of vision becomes 3.7[m]width by 3.6[mm]length in each line, 
and resolution of CCD becomes 3.6[mm/pixel]. We fix on a line capturing speed of 
the camera; 500 [line/sec], or one line scanning time; 2 [ms]. 

5.2   Measures for Vehicle Detection 

In order to adapt detection to some different road surface materials, we study the 
value about standard deviation and average of pixel value at measurement position, 
then decide the thresholds. 

1) A scan line includes vehicle when Std. becomes less than 30 or larger than 45. 
2) A scan line includes vehicle when change of Std. becomes less than -3 or larger 

than 3. 
3) A scan line includes vehicle when change of Ave. becomes less than -6 or larger 

than 6. 

5.3   Vehicle Detection 

We tentatively detect whether a scan line includes or not includes vehicle from three 
measures. We add a flag of which 1 as including vehicle or 0 as not including vehicle 
to the scan line. The flagged line are unified by logical OR, then merged by the dura-
tion between 1s and replace 1 to 0 by the isolation. Almost vehicles keep more than 
0.5 second distance against preceding vehicle, therefore candidates of vehicle within 
0.5 second interval are merged as a same vehicle. 

Fig. 9 show one minute slit image during 12 minutes shooting and typical example 
of detection process (whole slit image has 1024 pixel along space axis and 360,000 
line along time axis). Fig. 9 (a) shows original slit image, (b) shows histogram equal-
ized slit image for easy to see, (c) shows Std. of scan line, (d) shows change of Std, 
(e) shows Ave. of scan line, (f) shows change of Ave. (g) shows vehicle detection by 
three measures, logical OR and merged result respectively. 

From human observation, 170 vehicles pass through the upper side camera, and 
166 vehicles pass through the lower side camera during 12 minutes. We detect 165 
vehicles at upper side, and 163 vehicles at lower side. Correct detection rate becomes 
96 % taking into account of redundancy and insufficiency of detection results. 

5.4   Traffic Flow Measurement 

5.4.1   Correspondence of Vehicles Between Slits 
In order to detect vehicle speed, we study correspondence of vehicles between slits. 
We extract and regard as corresponding vehicle that appears within one second from 
upper slit to lower slit (faster than 7.8 km/h between slits). We can adapt slow traffic 
by this interval to longer. In the speed detection stage, we can finally detect 153 vehi-
cles, and detection rate becomes 90 %. 

5.4.2   Traffic Flow Measurement 
Table 1 represents typical example of occupancy, vehicle speed, vehicle length of 
detected vehicles with human observation results. Detected speed of vehicles includes  
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 (a) (b) (c) (d) (e) (f) (g) 

Fig. 9. Typical detection result of vehicles (5~6 minute or 30,000 line data during 12 minutes 
measurement) 
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an error of maximum 30km/h. Table 2 represents some traffic flow parameters de-
rived from the measurement. We estimate vehicle length from occupancy and vehicle 
velocity, then classify vehicles into type of vehicle by length. We regard vehicles less 
than 2.5 [m] length as a motor cycle, less than 3.4 [m] length as a sub-compact car, 
less than 4.7 [m] length as a compact car, and longer than 4.7 [m] as a regular car. We 
classify the objects less than 1 [m] or longer than 12 [m] into irregular. Classified 
results show estimated lengths of many vehicles are longer than the manually detected 
results, due to the effect of shadow. 

Table 1. Example of vehicle detection result 

Vehicle No. Correspond Vehicle
Slit-1       No. at Slit-2

Front edge Rear edge
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
10 10 10
11 11 11
12 12 12
13 13 13
14 14 14
15 15 15
16 16 16
17 17 17
18 18 18
19 19 19
20 20 20
21 21 21
23 23 23
24 24 24
25 25 25
26 26 26
27 27 27
28 28 28
29 29 29
30 30 30

Occupancy [sec] Vehicle speed [km/h]   Mod. Coef_cient     Vehicle length
Detected        Human observatiom Detected            Human observation           Error Detected Observed Detected Observed

slit-1 slit-2 Average Slit-1 slit-2 Average error [%] Front edge Rear edge Average Front edge Rear edge Average [km/h] [%] [m] [m]
0.362 0.368 0.365 0.374 0.362 0.368 -0.8 46.8 45.2 46.0 42.3 45.2 43.7 2.3 5.2 6.2 5.9 4.8 4.6
0.284 0.296 0.290 0.278 0.274 0.276 5.1 60.8 55.5 58.1 55.5 57.2 56.4 1.8 3.2 7.9 7.6 4.8 4.4
0.238 0.248 0.243 0.234 0.226 0.230 5.7 67.0 61.7 64.4 60.8 64.8 62.8 1.6 2.5 8.7 8.5 4.5 4.1
0.210 0.216 0.213 0.198 0.186 0.192 10.9 58.9 56.3 57.6 52.5 57.2 54.9 2.8 5.0 7.8 7.4 3.5 3.0
0.374 0.388 0.381 0.350 0.346 0.348 9.5 47.4 43.7 45.6 43.2 44.2 43.7 1.9 4.3 6.2 5.9 4.9 4.3
0.290 0.282 0.286 0.318 0.318 0.318 -10.1 54.8 58.0 56.4 57.2 57.2 57.2 -0.8 -1.4 7.6 7.7 4.6 5.2
0.210 0.212 0.211 0.214 0.214 0.214 -1.4 54.8 54.0 54.4 55.5 55.5 55.5 -1.2 -2.1 7.4 7.5 3.3 3.4
0.276 0.276 0.276 0.278 0.270 0.274 0.7 56.3 56.3 56.3 55.5 58.9 57.2 -0.9 -1.5 7.6 7.8 4.4 4.5
0.218 0.340 0.279 0.350 0.338 0.344 -18.9 92.6 37.7 65.2 36.7 38.9 37.8 27.4 72.5 8.8 5.1 5.2 3.7
0.392 0.394 0.393 0.398 0.390 0.394 -0.3 39.7 39.3 39.5 38.9 40.5 39.7 -0.2 -0.5 5.3 5.4 4.4 4.4
0.306 0.300 0.303 0.370 0.358 0.364 -16.8 40.5 41.8 41.2 40.5 43.2 41.9 -0.7 -1.7 5.6 5.7 3.5 4.3
0.382 0.386 0.384 0.382 0.382 0.382 0.5 40.5 39.7 40.1 40.5 40.5 40.5 -0.4 -1.0 5.4 5.5 4.4 4.4
0.278 0.278 0.278 0.282 0.274 0.278 0.0 40.9 40.9 40.9 40.5 42.3 41.4 -0.5 -1.1 5.5 5.6 3.2 3.3
0.680 1.070 0.875 0.678 0.670 0.674 29.8 41.8 13.5 27.7 41.4 43.2 42.3 -14.6 -34.6 3.7 5.7 6.9 8.1
0.948 0.930 0.939 0.950 0.926 0.938 0.1 38.9 42.7 40.8 38.9 44.2 41.5 -0.7 -1.8 5.5 5.6 10.9 11.1
0.314 0.314 0.314 0.318 0.314 0.316 -0.6 43.7 43.7 43.7 45.2 46.3 45.7 -2.1 -4.5 5.9 6.2 3.9 4.1
0.454 0.466 0.460 0.458 0.454 0.456 0.9 47.4 44.2 45.8 42.3 43.2 42.7 3.1 7.2 6.2 5.8 6.0 5.5
0.382 0.382 0.382 0.386 0.382 0.384 -0.5 42.7 42.7 42.7 42.3 43.2 42.7 0.0 0.0 5.8 5.8 4.6 4.7
0.370 0.382 0.376 0.342 0.338 0.340 10.6 49.8 46.3 48.1 45.2 46.3 45.7 2.3 5.1 6.5 6.2 5.1 4.4
0.386 0.412 0.399 0.382 0.378 0.380 5.0 49.2 42.3 45.7 42.3 43.2 42.7 3.0 7.0 6.2 5.8 5.2 4.6
0.410 0.436 0.423 0.378 0.378 0.378 11.9 42.3 37.0 39.6 38.1 38.1 38.1 1.5 4.0 5.4 5.2 4.8 4.1
0.434 0.456 0.445 0.398 0.382 0.390 14.1 42.3 37.7 40.0 36.0 38.9 37.4 2.6 6.8 5.4 5.1 5.1 4.2
0.316 0.328 0.322 0.310 0.306 0.308 4.5 54.8 50.5 52.6 51.2 52.5 51.8 0.8 1.5 7.1 7.0 4.8 4.5
0.314 0.322 0.318 0.290 0.286 0.288 10.4 51.8 49.2 50.5 48.6 49.8 49.2 1.3 2.7 6.8 6.7 4.6 4.0
0.378 0.386 0.382 0.358 0.346 0.352 8.5 48.6 46.3 47.4 45.2 48.6 46.9 0.5 1.1 6.4 6.4 5.2 4.7
0.332 0.338 0.335 0.306 0.302 0.304 10.2 50.5 48.6 49.5 49.8 51.2 50.5 -1.0 -1.9 6.7 6.8 4.7 4.4
0.356 0.802 0.579 0.334 0.330 0.332 74.4 50.5 13.0 31.7 47.4 48.6 48.0 -16.3 -33.9 4.3 6.5 5.2 4.5
0.788 0.782 0.785 0.734 0.726 0.730 7.5 42.3 43.7 43.0 42.3 44.2 43.2 -0.2 -0.6 5.8 5.9 9.6 9.0  

Table 2. Traffic flow measurement result and classified type of vehicles by length 

Traffic Rate of traffic Time Aveeage time  [sec] Average time
volume flow  [  /h] occupancy between two cars headway  [sec]

Manual 168 840 0.074 3.90 4.20
Experiment 153 765 0.084 4.33 4.73  

 

                                                         

Average time          Vehicle speed   [km/h]
headway  [sec] Average Max. speed Min. speed

4.20 46.2 108.0 29.7
4.73 47.5 108.2 27.0   

 

                                 

shorter than 1 m      Type of vehicles longer than 12 m

Irregular Bike Sub-compact Compact Standard Irregular
0 4 19 110 20 0
2 4 8 77 56 6  
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6   Conclusion 

We propose a traffic flow measurement method using double slit camera. We detect 
vehicles at each scan line from three measures. We also count vehicles, occupancy, 
time headway and time between two cars. We detect vehicle speed and estimate vehi-
cle length by double slit configuration. We classify vehicles into type of vehicle by 
length. 

In order to improve detection, we have to prepare fine exposure slit image and con-
sider countermeasures against effect of shadow from the vehicles. We also have to 
add a measure for detection using likelihood of vehicle from consistency and continu-
ity of a line profile. 
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Abstract. This study develops a statistical approach to the automatic detection of 
vehicles. Compared to traditional approaches, which consider the entire 2-
dimensional vehicle region, this study uses three meaningful local features for 
each vehicle to perform vehicle detection. The proposed approach has a 
superior tolerance toward wider viewing angles and partial occlusions. Four 
possible models for vehicle detection are evaluated in the current training and 
testing processes. For the process of the best model, each local subregion 
projects into corresponding eigenspace and residual independent basis space 
with subregion position information. We further simplify the procedure steps of 
computing the independent component analysis (ICA) in residual space without 
constructing residual images in order to reduce the computational time. Then 
the joint probability of projection weight vectors and coefficient vectors of local 
subregions and positions of local subregions, is used to model the vehicle. 
Finally, we introduce vector quantization with a new classification method to 
accelerate the posterior probability calculation. 

1   Introduction 

Automatic license plate identification tools are invaluable for applications such as 
parking lot access control, easy-pass toll collection, stolen vehicle recovery, etc. Ve-
hicle detection is an essential and integral part of vehicle plate identification. In [4], 
stereo is used to detect moving targets. In this approach, the target vehicle is identifi-
able if its grayvalues and the edges of the target region exhibit left-right symmetry. 
However, this method suffers when partial occlusion occurs since this results in un-
symmetrical regions. Posterior probability [5] can be applied to detect moving vehi-
cles based on their edge information. However, using edge information alone renders 
the vehicle detection process liable to noise and illumination effects. Furthermore, the 
success of the posterior probability approach relies strongly on the probability of the 
vehicle appearance falling within a limited range during the training process. For real-
time vehicle detection applications, background subtraction method is used in the 
initial segmentation process of the foreground moving objects and background scenes 
[3]. Subsequently, vehicle templates and edge information are applied to carry out 
vehicle detection. 

Some detection methods capture the global feature information associated with ve-
hicle images, while others simply capture the local feature information. Although 
global feature approaches such as [9] and [10] perform reasonably well, in real life, 
individuals are able to recognize a vehicle from its local features without needing to 
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see the entire vehicle. The studies of [7] and [12] have demonstrated that local feature 
approaches yield better detection results than their global feature counterparts. Local 
feature approaches such as those proposed in [13], [14], [15], and [16] and part-based 
approaches, e.g. [1], [6], and [8], have been successfully implemented for object, face, 
and vehicle detection systems. The latter approaches incorporate an interest-points 
detector to locate a specified region and to describe their corresponding position in the 
vehicle image. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Posterior probability estimation, including both vehicle and non-vehicle informa-
tion, is used in [14] for the robust detection of vehicles, faces and objects of different 
sizes and poses. In this approach, the likelihood evaluation operation is based on the 
estimated joint probability of wavelet coefficients and their corresponding positions 
within a given region. The same authors used a similar approach in detecting vehicles 
and faces of different sizes and poses [15]. Their study adopted principal component 
analysis (PCA) and considered the position information of a 16*16-pixel subregion in 
the joint probability estimation procedure. Unfortunately the detection process in-
volved in this kind of studies were rather time-consuming.  

To overcome the weaknesses of the methods reported in the literature, this study 
utilizes posterior probability with both vehicle and non-vehicle information to con-
duct automatic vehicle detection. The joint probability for the maximum-likelihood 
estimation procedure considers both meaningful local features and their correspond-
ing positions. This study combines the PCA space and the ICA in residual space to 
model the vehicle. The performance of the proposed approach is verified through a 
series of experimental studies. Moreover, in order to reduce the computational time 
required for the detection process, a vector quantization method with a new classifica-
tion approach is applied to classify the training vehicle and non-vehicle images into 
several clusters. However, we accelerate the detection process but it won’t decrease 
the system performance. 

2   Vehicle Detection System 

The vehicle detection system consists of a training process and a testing process, as 
shown in Figure 1. Current study considers the case of a surveillance system such as 

Fig. 2. Geometrical normalization 
and canonical vehicle image creation 

(b) Vehicle template 
region: Nr*Nc pixels

(c) Canonical 
vehicle image 

(20,2) (20,38) 

(2,9) (2,31) 

(a) 

Fig. 1. Workflow diagram of the proposed vehicle 
detection system 

Vehicle training database Canonical vehicle images 

Training Process 

Testing Process 

Still images or  
video sequences 

Local Subregion Selection Preprocessing 

Constructing statistical models for vehicle detection

Preprocessing 

Vehicle detection
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that used for access control in schools, which detects only the rear and frontal views 
of passing small vehicles, such as saloon and SUV. Therefore, the case of detecting 
passing vehicles from side perspectives, etc. is specifically excluded from the current 
scope. The vehicle template and canonical vehicle images in the present study are 
Nr(=32) * Nc(=41) (rows*columns) pixels. 

To create a canonical rear-viewed vehicle image, four corner points are manually 
selected on the vehicle in the original training image, as shown in Figure 2.a. The 
vehicle image is then normalized and cropped by using the vehicle template shown in 
Figure 2.b and applying a process of affine transformation to the four corner points. 
The resulting canonical vehicle image is shown in Figure 2.c. The same procedure is 
adopted to generate the canonical frontal-viewed vehicle image. 

2.1   Local Subregion Selection 

The present system considers only local features rather than the entire vehicle in the 
detection process since in real life, individuals are easily able to recognize a vehicle 
from its local features, i.e. they do not need to see the vehicle in its entirety. Further-
more, this approach can reduce the alignment error by accommodating geometric 
distortions of the vehicle appearance (texture or grayvalue) to a certain extent [15]. 
The proposed approach also increases the detection tolerance in the event of unbal-
anced targets caused by uneven road surfaces or unstable input sources such as hand-
held video cameras. Finally, considering a local subregion can improve the overall 
system performance by reducing the computation of time. 

Generally, the significant local features in the rear- and frontal-viewed vehicle im-
ages contain high texture components such as roofs, windshields, tail-lights (or head-
lights), license plates, rear-viewed mirrors, and the wheels [12]. These features exhibit 
high variances in the spatial domain. However, these subregions may not always be 
visible in the vehicle image. For example, the rear-viewed mirrors and wheels may 
disappear in some situations. Moreover, the subregions around the license plate and 
the windshield areas are sensitive to different locations and illumination, respectively. 
Therefore, as shown in Figure 3, the current study opts specifically to ignore these 
particular significant features, and chooses instead the subregions around the roof and 
the tail-lights (or head-lights). 

2.2   Vehicle Detection Using Posterior Probability Function 

This study detects both rear- and frontal-viewed vehicles from an input image, I, by 
shifting a window, IT, measuring Nr*Nc pixels, pixel by pixel over the entire image. 
The vehicle is detected if it is found within the window.  

The following posterior probability function is used in the vehicle detection  
procedure: 

)()|()()|(

)()|()|( vehiclenonPvehiclenonIPvehiclePvehicleIP

vehiclePvehicleIP
T TT

TIvehicleP −−+=
 (1) 

It is assumed that the prior probability is uniformly distributed, i.e. P(vehicle) = 
P(non-vehicle) = 0.5. It is also assumed that the likelihood probabilities P(IT|vehicle) 
and P(IT|non-vehicle) conform to a multivariate Gaussian distribution, i.e. 
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where C is either the vehicle class or non-vehicle class; TCI ,  and  are the mean 

vector and the covariance matrix of all canonical training image vectors for class C, 
respectively; and N is the total number of vector dimensions. From equation (2), the 
Mahalanobis distance d(IT) [13] is given by: 
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~= , and Wk and Uk are the first k principal components of 

the eigenvalue matrix W and its corresponding eigenvector matrix, U, of the covari-
ance matrix , respectively. The input window, IT, is projected into the eigenspace Uk 
to generate a weight vector yk. Therefore, the Mahalanobis distance can be repre-
sented as: 
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Hence, the likelihood probability in equation (2) becomes: 
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2.3   Different Detection Models in the Training and Testing Processes 

A separated detection process is employed for rear- and frontal-viewed vehicles. The 
current training database includes 275 canonical rear-viewed vehicle images and 262 
frontal-viewed vehicle images. In order to develop the capability of detecting vehicles 
moving on uneven roads or shot by handheld video cameras, two additional in-plane 
roll-rotation image views, i.e. (-50) and (+50), are generated synthetically from the 
original canonical vehicle images (00). 

Therefore, as shown in Figure 4, each canonical vehicle in the training database ac-
tually has three associated images. Furthermore, three subregions are defined within 
each image. In other words, the training database contains a total of 2475 canonical 
rear-viewed vehicle images (275 * 3(rotations) * 3(subregions)), and a total of 2358 
canonical frontal-viewed vehicle images (262 * 3(rotations) * 3(subregions). The 
images in the database are preprocessed by affine lighting correction and histogram 
equalization [7]. The intensity over the entire canonical image is then normalized to 
zero mean and unit variance [15]. 

Fig. 4. Original (00) and synthetic canonical 
vehicle images (-50 and +50) 

o5−

o5−

o0

o0

o5+

o5+

Fig. 3. There are three local feature subregions 
for each canonical vehicle image 

Subregion 1: 9*25 pixels. 
Subregion 2: 15*15 pixels. 
Subregion 3: 15*15 pixels. 

1 
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Previous studies [7], [11], [14], and [15] have shown that the use of subregions in 
face detection or recognition applications yields excellent results. Hence, the detection 
system proposed in this study operates on the basis of three independent subregions 
rather than over the entire vehicle region. Hence, the likelihood probability is given by: 

( )∏ =
= 3

1
|)|(

i iT CsubregionPCIP  (6) 

Unfortunately, this approach is computationally expensive when applying posterior 
probability since it involves a very high-dimensional image vector. Therefore, this 
study evaluates the performance of four different detection models in the current 
training and testing processes. Previous studies have confirmed that the PCA method 
employed in this study has excellent properties. First, the correlation of the neighbor-
hood pixels remains high. Second, a larger eigenvalue implies more significant vari-
ance among the original unbiased image vectors. Third, each original image vector 
can be reconstructed by the linear combination of the major eigenvectors without 
losing significant characteristics. Furthermore, the ICA applied to the residual subre-
gion spaces in this study also has excellent characteristics [2] and [11]. First, the ICA 
can capture high-order statistical information. Second, it is suitable for the modeling 
of non-Gaussian distributed data sets, such as those associated with the residual 
subregion spaces in the present study. Third, the ICA applied in the residual spaces is 
robust to illumination and pose variations. The following sections describe in detail 
the application of the four proposed detection models to rear-viewed vehicle images. 
However, it is noted that these models are equally applicable to the detection of fron-
tal-viewed vehicle images. 

2.3.1   1st Model: All Subregions Are Projected into One Single Eigenspace 
Without Position Information 

In the training process, one eigenspace is generated from the 2475 subregions of the 
total set of canonical rear-viewed vehicle images. The first 32 principal components 
are captured since the accumulated eigenvalue percentage curve has a turning point at 
k=32. All of the canonical vehicle or non-vehicle subregions are then projected into 
this eigenspace, which consists of 32 major eigenvectors and hence reduces its dimen-
sions from 225 to 32. Equation (6) becomes: 
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where projectioni represents a 32-dimensional weight vector for subregion i. Figure 5 
presents the eigenvectors of this eigenspace. It can be seen that the 1st, 4th and 6th 
eigenvectors fall mainly within subregion 1, while the 2nd 3rd and 5th eigenvectors 
fall inside subregions 2 or 3. Finally, the posterior probability equation for the 1st 
model is given by: 
 

 
 
 

 
 
 

 

1st 2nd 3rd 4th 5th 6th 

6th 5th 

3rd 2nd 1st 

4th 

Fig. 5. The first six eigenvectors of the 1st model

Sub-region1 

Sub-region3 

Sub-region2 

Fig. 6. Weight-vector distributions corre-
sponding to canonical vehicle subregions in 

the 2nd model 
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In the testing process, any input window (Nr*Nc pixels), IT, consists of three subre-
gions. Each subregion is projected into the eigenspace to generate a corresponding 
weight vector. Each of the three input subregions is then compared with the total set of 
canonical training subregions. Based on equations (5) and (8), it is possible to detect the 
existence of a vehicle inside this input window by means of the following criterion: 
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2.3.2   2nd Model: All Subregions Are Projected into One Single Eigenspace with 
Position Information 

In the training process, this model uses the same eigenspace as that described in the 1st 
model, above. However, this model also takes into account the feature position of 
each subregion. The complete set of canonical vehicle subregions are classified in 
accordance with their positions into three separated groups of weight vectors in a 32-
dimensional eigenspace. As can be seen in Figure 6, the distributions of subregions 2 
and 3 are overlapped since they are symmetric in the canonical vehicle images. How-
ever, the distribution of subregion 1 is very different as a result of the apparent texture 
differences between itself and subregions 2 and 3. The same classification process is 
also applied to each of three canonical non-vehicle subregions. Taking the additional 
position information into account, equation (6) becomes: 
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where posi is the position of subregion i of the given vehicle template region. The 
posterior probability equation for the 2nd model becomes: 
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In the testing process, each subregion of the input window, IT, is compared with the 
canonical training subregions located at the corresponding position. The posterior 
probability of the input window can be evaluated from equations (5) and (11). The 
existence of vehicles can then be determined by assigning different threshold values 
in equation (9). 

2.3.3   3rd Model: Each Subregion Is Projected into Corresponding Eigenspace 
with Position Information 

In addition to taking into account the position of the subregions, this model also gener-
ates an eigenspace for each group of canonical vehicle subregions. Hence, three  
eigenspaces exist for the three subregion groups with different positions. For reasons  
of consistency, each eigenspace has 32 major eigenvectors, i.e. as in the two models 
presented above. Figure 7 shows the first three eigenvectors for each subregion eigen-
space. Finally, each canonical vehicle or non-vehicle subregion is projected into the 
corresponding eigenspace to generate a weight vector. Therefore, equation (6) becomes: 
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where i
iprojection  is the weight vector of the subregion i projected into the corre-

sponding eigenspace i. The posterior probability equation for the 3rd model becomes: 

∏∏
∏

==

=

−+
= 3

1

3

1

3

1

)|,()|,(

)|,(
)|(

i i
i
ii i

i
i

i i
i
i

vehiclenonposprojectionPvehicleposprojectionP

vehicleposprojectionP

T
IvehicleP  

(13) 

In the testing process, each subregion of the input vehicle template window, IT, is 
projected into the corresponding eigenspace to generate a 32-dimensional weight vector. 
Hence, three weight vectors exist for each input window. The posterior probability of 
the input window, IT, is calculated from equations (5) and (13). The existence of vehi-
cles can then be determined by assigning different threshold values in equation (9). 

2.3.4   4th Model: Each Subregion Is Projected into Corresponding Eigenspace 
and Residual Independent Basis Space with Position Information 

This model applies the ICA in the residual spaces to detect the vehicle. The similar 
work in face recognition [11] performs well in its result. The authors construct ICA in 
residual space after computing the residual images by subtracting the reconstructed 
images from the original images. We further derive equations that simplify the proce-
dure steps of computing the ICA in residual space without constructing residual im-
ages, and then apply Bayesian theory to detect vehicles. The equations we developed 
require less complicated calculations. 

The independent components, which form non-orthogonal axes, describe the resid-
ual subregion spaces of the three subregion groups with different positions. The resid-
ual subregion spaces (see Figure 8.c) represent the difference between the original 
subregion images (see Figure 8.a) and the PCA reconstructed subregion images (see 
Figure 8.b). It is found that the PCA reconstructed subregions are similar to low-pass 
filtered versions. The residual subregion images, which contain high frequency com-
ponents, are less sensitive to illumination variations. 

ICA is applied in the residual subregion spaces since these spaces are non-
Gaussian distributions. Therefore, to achieve a detection operation, which is robust to 
illumination and pose variation effects, each residual subregion image is represented 
by a linear combination of independent components. 

Each residual subregion image, subregion, can be obtained by equation 14: 
'subregionsubregionsubregion −=Δ  (14) 

where subregion is the original subregion image, and subregion’ is the PCA recon-
structed subregion image. They are given by: 
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Fig. 7. The first three eigenvectors for each 
subregion eigenspace in the 3rd model 
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where Uk’ (see Figure 9.a) is the first k’ principal components in eigenvector matrix U, 
Uh is the h residual principal components, and N is k’ + h. The first k’ (k’=7) compo-
nents are chosen based on the Gaussian axes assumption and the h residual principal 
components are based on non-Gaussian axes assumption. Therefore, subregion can 
be rewritten by using following equation, i.e. 
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where Uk’’ (see Figure 9.b) is the first k’’ (k’’=29) principal components in Uh. As a 
result, the residual subregion weight vector can be calculated by subregionU T

k *''
. In 

addition, by applying ICA to Uk’’, statistically independent basis images Hk’’ with 
dimensions k’’ can be generated. Hk’’ (see Figure 9.c) is represented by 

T
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T
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where Tk’’ is the weight matrix. Bell and Sejnowski’s algorithm [2] is used to estimate 
Tk’’, which is an invertible matrix. Thus, the residual subregions image can be recon-
structed by: 
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Therefore, subregion consists of Bsubregion)T(U T1
k''k'' =− * , which are linear combina-

tion coefficients of the independent basis images, Hk’’. Here, the ICA transformation 
matrix is denoted as ICA_TranMk’’ and is computed by: 

)(_ 1
''''''
−= kkk TUTranMICA  (19) 

(b) Reconstructed subregions: subregion’ 

(a) Original subregions: subregion 

(c) Residual subregions: subregion 

Fig. 8. The process for the residual subre-
gion images 

(a) Uk’  of PCA in the subregion spaces 

(b) Uk’’  of PCA in the residual spaces 

(c) Hk’’  of ICA in the  residual spaces 

Fig. 9. First row is the first k’ principle compo-
nents in U. Second row is the remaining k’’ 
residual principle components Uk’’. Third row is 

the independent basis Hk’’ in the residual spaces. 
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From equation (3), the Mahalanobis distance d(IT) becomes:  
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where subregionUy T
kk *'' =  is the weight vector based on eigenvectors Uk’. The residual 

subregion weight vector is then transformed to linear combination coefficients of Hk’’ 
by means of equation (18), i.e., subregionTUB T

kk *)( 1
''''
−= . Therefore, equation (20) for 

the Mahalanobis distance can be represented as: 
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So, the likelihood probability in equation (5) becomes: 
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The posterior probability equation for the 4th model becomes: 
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where i
iprojection  is weight vector of the subregion i projected into the corresponding 

eigenspace i, and i
iICACoeff  is the ICA coefficient vector of the subregion i projected 

into the corresponding independent basis i. 
In the testing process, each subregion of the input window, IT, is projected into the 

corresponding eigenspace and the corresponding independent basis space to generate 
a k’-dimensional weight vector and a k’’-dimensional ICA coefficient vector, respec-
tively. Hence, three weight vectors and three ICA coefficient vectors exist for each 
input window. The posterior probability of the input window, IT, is calculated from 
equations (22) and (23). The existence of vehicles can then be determined by assign-
ing different threshold values in equation (9). 

3   Experiment Results 

A testing database of 457 vehicle images was compiled from the internet and from 
images captured using handheld video cameras. In total, the database contained 303 

Table 1. The performances of different models 
evaluated by testing database (a). (PC: P4 3G Hz. 
‘FA’: False Alarm. ‘SF’: Seconds/Frame.) 

 1st M 2nd M 3rd M 4th M 4th M+VQ 
R:DR % 87.0% 87.6% 86.6% 92.8% 91.5% 
F:DR % 89.1% 89.5% 88.4% 94.0% 93.4% 

R:FA 73 53 47 37 46 
F:FA 59 43 41 28 44 

SF 4.856 1.643 2.455 3.455 0.28 

Fig. 10. Vehicle detection without and with 
position information of the subregions, as 
show in (a) and (b), respectively 

(a) (b) 
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rear-viewed vehicle images and 154 frontal-viewed vehicle images. The vehicles in 
the testing images displayed a wide variety of size and orientation. Moreover, the 
images featured various background sceneries, lighting conditions and degree of oc-
clusion. In addition, we also tested the following published vehicle databases: MIT 
CBCL Group 187 rear- and 252 frontal-viewed vehicles images and Caltech Vision 
Group 526 rear-viewed vehicles images. 

Initially, the input image was processed by applying a low-pass filter to remove 
noises. This image was then down-sampled from original resolution of 240*320 pix-
els (level 0) to 32*43 pixels (level 15) by a factor of 7/8. In the searching window 
extraction process, searching window IT of 32*41 pixels, which is exactly the same 
size as the vehicle template region, was employed to conduct vehicle detection by 
shifting this window pixel by pixel at each level. 

The non-vehicle information was extracted from the false acceptance subregions 
by applying the vehicle detection process to the original training vehicle images. The 
actual vehicle subregion inside the false acceptance vehicle region is not qualified as 
non-vehicle information. We collected about 10000 images of rear-viewed non-
vehicle and 9800 images of frontal-viewed non-vehicle. A similar collection method 
has been used in [8], [14] and [15]. 
Figure 10 illustrates the effect of including feature position information in the vehicle 
detection process. Figure 10.a shows the result of vehicle detection when the feature 
position information is not considered (1st model). Ignoring this information causes 
false acceptances between two neighboring vehicles, since subregion 1 encloses the 
top edge profile of the wall, which resembles the roof profile of a vehicle. In Figure 
10.b, the individual vehicles are correctly detected by including feature position in-
formation in the detection process (2nd model). The 3rd and 4th models also solve 
above problem by considering position information. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

The four models described in the previous sections were applied to our testing im-
age database. The corresponding experimental results are listed in Table 1. It can be 
seen that the 4th model yields the best performance, while the 3rd model yields the 
poorest results. Therefore, the 4th model represents the best approach for vehicle de-
tection. It has the lowest false detection rate and the highest detection rate. The 4th 
model was then applied to each of the MIT CBCL group and Caltech vision group 
1999 and 2001 testing databases. The resulting ROC curves, as shown in Figure 11, 
 

Fig. 11. ROC curves (x-axis is 
false detection rate and y-axis is 
detection rate) for vehicle detec-
tion using the 4th model. 

Table 2. Detection rate comparison using the 
Caltech rear-viewed vehicle database 

 
 Our 4th model Fergus, et al. [6] 

Detection Rate 92% 84.8% 
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also show consistent and promising performance. Table 2 demonstrates that the pro-
posed system of using the 4th model provides better results for rear-viewed vehicle 
detection than the method proposed in [6]. In addition, the current vehicle detection 
system is tolerant to pan and roll rotations, scaling, and partial occlusions, as demon-
strated in Figure 12. Some experimental results are shown in Figure 13. 

4   Speedup by Vector Quantization 

In order to find the maximum posterior probability, it is necessary to compare each 
weight vector with all the canonical subregions. It is very time consuming (see [15]) 
because the number of training subregions is huge. To speed up computation, we use 
vector quantization to classify all the training vehicle and non-vehicle weight vectors 
into clusters (explained later). Now the comparison occurs between the input weight 
vector and each of the clustering weight-vector centers. 

The training vehicle and non-vehicle weight vectors create two codebooks inde-
pendently by using the likelihood probability in equation (22) for the measure of the 
nearest neighbor rule. The initial classification process is only for those weight vec-
tors, whose likelihood probabilities pass the threshold (0.8). Next, the same process 
and threshold apply on remaining weight vectors started from the center of remaining 
weight vectors. We repeat the same process until the remaining weight vectors belong 
to the same cluster or the total cluster numbers do not change. The computational time 
and result are show in Table 1. 

5   Discussions and Conclusion 

This study has developed an automatic vehicle detection system based on a statistical 
approach. Meaningful local features are considered in this detection process. Four 
possible models for vehicle detection have been proposed in order to overcome the 
problem of inefficiency associated with traditional methods, and to determine the 
factors affecting successful vehicle detection. The current experiments have shown 
that the false alarm rate is directly influenced by the feature position information of 
the subregions. The 2nd, 3rd and 4th models have lower false alarm rate since they 
consider the position information of the subregions. The 1st model has the highest 
false alarm rate because it does not consider the position information of the subre-
gions. It is also found that the detection rate is directly affected by the correlation of 

Fig. 12. Tolerances of our vehicle detection Fig. 13. Detection example of using the 4th model 

(a) MIT CBCL Group vehicle testing database  

(b) Caltech vehicle testing database 
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the neighborhood pixels, which is a feature of the PCA method. The 1st and 2nd mod-
els exhibit similar detection rates because they share the same eigenspace. Mean-
while, the 3rd model yields an inferior detection rate because it uses three individual 
eigenspaces with wider distribution variances, particularly in subregion 1. This model 
is sensitive to variations in lighting conditions and vehicle orientation.  

The 4th model represents the promising result for vehicle detection. It has the low-
est false detection rate and the highest detection rate because the 4th model models 
parts of each local subregion eigenspace as a Gaussian distribution, while it models 
residual space as a non-Gaussian distribution. That is, it not only models low fre-
quency information by PCA, but also models high frequency information by ICA 
applied in the residual space, which can overcome the drawbacks caused by the sensi-
tivity to lighting conditions and vehicle orientation in the 3rd model. Therefore, the 4th 
model is tolerant of limited pan and roll rotations, and partial occlusion. 
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Abstract. This paper describes the use of computer vision to support
the operation of a handheld projector, and describes four applications.
Projectors in the past have been used as fixed devices, but the latest
generation of ‘pocket projectors’ is small and portable. We demonstrate
the feasibility of using a projector held in the hand, and the types of
applications that can be done with a handheld projector.

We attach a camera to the projector to support its operation in two
ways. Firstly, vision is used to recover the motion of the projector relative
to the display surface. A handheld projector with motion recovery allows
a range of interesting functionality, and we show how web-browsing can
be done with a handheld projector, complete with mouse interaction and
text-entry. Secondly, we use the camera to process information about
the projection surface - for example we demonstrate an application that
allows a user to attach digital information to a physical texture, and later
to recover and view the digital data via recognition of the texture.

1 Introduction

One of the most desirable characteristics for a handheld information device is
small size, but the drive to reduce size is in direct conflict with the need for the
device’s display to be large enough to convey a useful amount of information. An
illustration of the problem is that while cellphones are shrinking, they cannot
effectively support an application like web-browsing because cellphone screen
size is insufficient for web pages that have been created for screens of 15 inches
and up. At the same time, projectors are becoming smaller, and several different
manufacturers have introduced ‘pocket projectors’. Figure 1-left shows a model
by Mitsubishi, which weighs 14 oz and fits in the hand. The small size makes it
easy to transport, and with a battery life of a few hours, the projector is now
becoming a personal portable device just like the laptop.

Now consider a cellphone augmented with a projector. Anticipating that pro-
jectors will continue to decrease in size, the device could potentially be very
small, but it can create a projection that is similar in size to physical desktop
and laptop displays - thus it is possible to have a small device and to handle an
information-heavy application like web-browsing. This idea motivates the work

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 183–192, 2006.
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Fig. 1. At left, a commercial ‘pocket projector’; at right, our current prototype hand-
held projector with camera and grip

here. Of course, a handheld projector must not only display information, but
also allow ways to interact (mouse, text-entry). We address both aspects in this
paper.

A key technology for a handheld projector is a method for recovering the
motion of the projector relative to the display surface. We use computer vision.
The primary reason is that vision is versatile, allowing us to develop a range
of motion-recovery algorithms for specific applications. In addition, a camera
is a cheap component to add to a handheld device. Note that our goal is to
create a self-contained handheld projector. There are other ways to provide the
functionality in this paper if there is fixed infrastructure in the environment (e.g.
see [1] for laser pointer interaction in fixed installations). Fixed infrastructure is
fine for some applications but our aim is to develop a self-contained device.

Figure 1-right shows the prototype handheld projector. Its components are
(a) a Plus V-1080 projector, 1024x768 pixels, 60Hz, (b) a Basler A602F camera,
640x480 pixels, 100Hz, (c) four rigidly attached laser pens, two on either side of
the case, (d) a hand-grip on the base with a click button under the index finger
for input, (e) umbilical to a computer. The device weighs about 2.5lb so it is
heavy for extended use, but it has been suitable for our experiments so far.

Contributions: Previous work on projector-camera interfaces includes [2], and
work on steerable projectors includes [3][4]. This paper builds on existing work
in [5],[6] and extends it by including (a) handheld projection on display surfaces
having an unknown texture, (b) a method for text input and accompanying
applications, (c) a ‘light stylus’ application.

2 Calibration

We do a full euclidean calibration of the projector, camera, and four laser point-
ers. All references to a ‘display surface’ below and in the rest of the paper imply
a planar display surface. The projector-camera calibration is as follows

– Camera intrinsics Kc: we take several distinct views of a planar calibration
pattern and use a standard calibration method.

– Projector intrinsics Kp: we take several distinct views of a planar calibra-
tion pattern while simultaneously using the projector to project a distinct
pattern onto it. The camera simultaneously observes the physical calibration
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pattern and the projected pattern. Thus we can infer euclidean coordinates
for the projected pattern. The problem now reduces to a standard calibration
procedure, because we have projector pixel coordinates plus corresponding
euclidean world coordinates, for several views of a pattern on a plane. An
alternative way to compute projector intrinsics, which avoids the use of a
physical calibration pattern, is described in [7].

– Projector-camera extrinsics R, T : we take several distinct views of a blank
display surface while using the projector to project a pattern onto it. We col-
lect point correspondences between the camera and projector image planes
and compute the fundamental matrix Fcp between the camera and projec-
tor. We compute the essential matrix Ecp = Kt

cFcpKp, and decompose to
R, T using a linear computation, followed by a nonlinear computation that
minimizes an image plane error [8].

The laser calibration is as follows. The laser pens create rays in space. We
wish to compute (a) euclidean 3D line equations Qi of the four laser rays in the
projector-camera coordinate frame, (b) for each ray, the projections lci and lpi
of the ray onto the camera image plane and projector image plane respectively,
(c) for each ray, the line homography Lcp

i that describes the mapping of points
between lci and lpi . (The use of this information will be described in subsequent
sections). The approach is

– Take an image of a blank display surface while the projector is projecting a
pattern, and while the four lasers are projecting four laser spots.

– Detect the pattern, and compute the homography Hcp from the camera to
the projector image plane.

– Detect the laser spots sc
i on the camera image plane. For each laser spot,

compute sp
i = Hcps

c
i , the inferred position of the laser spot on the projector

image plane. Store the correspondence (sc
i , s

p
i ).

– Repeat for three (or more) distinct views.
– Compute the best-fit straight line lci from the stored points sc

i for the three
views. Similarly, compute lpi from the stored points sp

i for the three views.
Compute the line homography Li between lci and lpi using the stored corre-
spondences (sc

i , s
p
i ) for the three views.

– Reconstruct the 3D line equations Qi of each laser ray using the projector-
camera calibration and the lines lci and lpi .

3 Basic Functions

This section describes the basic functions of the handheld projector - stabilizing
a projection so that is fixed on the display surface, our method for doing mouse
input with the projector, and use of the lasers to improve the processing.

Stabilizing the Projection: the first goal is to create a stabilized projection
(the projection image is fixed on the surface, even when the projector is moving),
which is keystone-corrected (the projection image is a rectangle of the desired
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aspect ratio, even if the projector is skew to the surface). Consider the simplest
case. We have four markers M1...M4 on the display surface that form a rectangle
with the same aspect ratio as the desired projection image. Call the four vertices
of the projection image on the display surface V1...V4. The method to stabilize
the projection so that it appears fixed within the marked area is

– Detect vc
1...v

c
4, the projections of V1...V4 on the camera image plane. Knowing

the corresponding projector pixel coordinates for these vertices, compute
Hcp, the homography between the camera and projector induced by the
display surface.

– Detect mc
1...m

c
4, the projections of M1...M4 on the camera image plane.

– Compute mp
i = Hcpm

c
i , i = 1..4, the inferred projections of M1...M4 on the

projector image plane.

Knowing the projection of M1...M4 (the desired projection area) on the projector
image plane, it is straightforward to warp the projector image so that it projects
to the desired physical position. The whole process is repeated at each new
time-step. Figure 2 shows two example time-steps.

projector image plane projector image plane

display surface display surface

Fig. 2. Stabilization - the projector image plane is continually updated so that the
projection on the display surface remains fixed

Doing Mouse Input with a Projector: we make a single modification to the
processing above to do mouse input with the projector - the center pixels of the
projector image plane are set at each time-step to show a cursor graphic. The
effect of this is that the user sees a stabilized projection on the display surface
plus a cursor that tracks across the projection in direct correspondence with the
projector motion. Once the cursor is at the desired location, items are selected
in the usual way by clicking a button on the handheld projector. We can now
replicate all the familiar mouse interactions (selecting drop-down menus, clicking
buttons, scrolling, dragging) within the projector domain. Figure 3 shows two
example time-steps.

We adopt this approach in preference to a touch-pad mouse because (a) a
touch-pad would add bulk to the device, (b) it would require two-handed use,
with context switching between the device itself and the display surface, and (c)
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display surface display surface

projector image plane projector image plane

Fig. 3. Mouse interaction - adding the cursor graphic at a fixed position in the center of
the projector image plane results in a cursor that tracks across the stabilized projection
on the display surface in direct correspondence with the user’s pointing motion

it is hard to do fine control of a cursor on a large projected area using a small
touch-pad.

Using the Lasers to Compute Hcp: Part of the processing in the stabilization
was to compute vc

1...v
c
4 with the ultimate goal of computing Hcp. But automat-

ically detecting vc
i (the camera view of the current projection on the display

surface) might be unreliable for some projected images. This section describes
how we use the (easily detected) laser spots to compute Hcp, avoiding the need
for vc

i .

– Detect xc
i , i = 1..4, the projections of the laser spots on the camera image

plane. (The projected laser spots xc
i are constrained to lie on the lines lci that

were computed in Section 2, so identifying them is especially easy).
– Compute xp

i = Lix
c
i , i = 1..4, the inferred projections of the laser spots on

the projector image plane, where Li are the line homographies computed in
Section 2.

– Compute Hcp using the four correspondences (xc
i , x

p
i ).

4 Handling Display Surfaces with Unknown Texture

The previous section described stabilized projection and interaction on a display
surface that had known euclidean properties. This section addresses stabilization
and interaction on a display surface that has an unknown texture. First assume
four distinct points N1...N4 on the display surface. Four points are sufficient
to define a projective coordinate frame on the surface. We can define a desired
location for the projection in this coordinate frame, and as long as the points are
being tracked, we can project to the same fixed position. Furthermore we can
readily upgrade to a euclidean coordinate frame (to support keystone-correction)
because the handheld projector is calibrated. The approach to initialize the
processing is

– Detect xc
i , i = 1..4, the projections of the laser spots on the camera image

plane.
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– Compute the 3D coordinates of the laser spots, and then compute the 3D
coordinates Z for the plane of the display surface.

– Detect nc
1, n

c
2, the projection on the camera image plane of two arbitrary

points N1, N2 on the display surface. Backproject nc
1 and intersect with Z to

define the origin of the coordinate frame; backproject nc
2 and intersect with

Z to define the unit point on the x axis. Hence obtain a euclidean coordinate
frame.

– Select the desired location, vertices Di, for the projection image, in the
coordinate frame on the display surface.

– Project Di to pixel positions dc
i on the camera image plane.

The approach to propagate the coordinate frame at each time-step, and to dis-
play the projection image, is

– Track features nc
i , i >= 4 between the previous frame j − 1 and the current

frame j, hence obtain feature correspondences between frame 0 and frame
j, and compute the homography Tj between the frames 0 and j induced by
the display surface.

– Propagate the euclidean coordinate frame to the current camera image by
using Tj to transform dc

i .
– Use Hcp to transform dc

i to the projector image plane. Knowing the coordi-
nates of the desired projection location on the projector image plane, it is
straightforward to warp the projector image so that it projects to the desired
physical location.

Texture Tracking: Matching between frames employs a global scheme that
searches for a consistent transformation over the matched features. The process
is initialized with the set of features detected using a Harris corner detector in the
base frame (frame 0). For each subsequent frame i we compute the homography
Ti between the base frame and the ith frame. To compute Ti+1 we first transfer
all the features in the base frame to frame i using Ti. Then, we search in a small
window around each transferred feature for its matching feature in frame i + 1.
The candidate matches are filtered by an acceptance threshold on the normalized
correlation between the matched features in the ith and i + 1th frame, and we
use RANSAC to identify a set of matches consistent with a homography. The
matches are used to compute Ti+1. New features that get detected in later frames
are transformed from their current frame to base frame and added to the set of
base features, to allow the projector to move away from the initial base frame
position without losing the tracking.

5 Applications

We propose the following taxonomy of applications for a handheld projector (a)
applications that use a display surface where the only texture consists of markers
to guide the projection - see Section 5.1, (b) applications that use a display
surface with an unknown texture - see Section 5.2 and 5.3, (c) applications that
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project augmented reality onto a known object - see Section 5.4. There are no
quantitative results below. The calibration procedures are a variation on known
results for pure camera systems, and there are few observations to be made - the
epipolar geometry errors are about 0.5 pixels for the camera-projector and are
similar to what one would obtain with two cameras.

5.1 Web-Browsing

Figure 4a shows a projection of a live application - the Google web page. The
standard web page is augmented with a ‘Text’ button at lower-right which the
user presses to initiate text-entry. Figure 4b: after initiating text-entry, the user
holds down the handheld projector’s click button and forms a letter ‘v’. We use
libstroke for stroke recognition [9]. Figure 4c: after completing the letter, the
user releases the click button and is presented with the recognised letter. The
same letter is sent to the text-field that is currently active on the web page.
After completing text-entry, the user clicks the ‘Text’ button again to return the
mouse to normal cursor mode.

a

cb

Fig. 4. Web-browsing application including text-entry

5.2 Light Stylus

Laser pointers are commonly used to indicate a point of interest on a big-screen
slide presentation. We extend this functionality to allow a user to create arbitrary
doodles on the slides, such as underlines, arrows, or circlings around areas of
interest. We call this a ‘light stylus’. There are ways to achieve this functionality
that make use of fixed infrastructure in the environment, but our approach is a
completely self-contained, portable device, making it more flexible in a variety
of settings. Figure 5a shows an example of a big-screen slide presentation from
a fixed projector. Figure 5b: the user directs the cursor to the start point of
an underline on the text, presses the click button, then directs the cursor to
the end point of the underline and double clicks. The underline is subsequently
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a

cb

Fig. 5. Light stylus application showing underlining and drawing a box on a slide
presentation

shown at the specified position until the next interaction. Figure 5c: the user
employs the same interaction with a series of four clicks to draw a box around
an object on the slide. Beware a possible confusion - the slide presentation
is created by a fixed projector, such as one finds in a conference room, not
by the handheld projector; the handheld projector is used only to create the
augmentations in Figures 5b and 5c. This application runs on any texture, not
just a slide presentation, and it has also been used to do underlining and circling
on posters.

5.3 Electronic Sticky Notes

This application demonstrates how to attach digital information to some physical
texture (a CD case), and later retrieve the information automatically the next
time that the CD case is seen. Figure 6a: the scene consists of some random
objects and a CD case. The user directs the cursor to a start point near the
CD case, clicks to start a selection, then defines the (projected) blue polygon by
clicking at each vertex, and double-clicking at the final vertex. For clarity, we
refer to the part of the camera image within the blue polygon as a texture-key.
The texture-key is stored along with a user-specified text-entry ‘Return Date:
25th Jul’. Figure 6b: the user directs the handheld projector at a new scene
containing the CD case, and requests a retrieve operation. The image is matched
against all stored texture-keys. If a match is obtained, the corresponding text-
entry is projected next to the recognised object - in this case, the text ‘Return
Date: 25th Jul’ is shown next to the CD case. As an aside, note that projection
onto darkish wood is clearly visible. We match the image against stored texture-
keys by feature matching, where the features are pixel patches around corners.
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Fig. 6. Electronic sticky note - (a) object selection for attaching a note, (b) retrieval
of note

This is fine for small databases of texture keys and small change in view direction,
but of course we would need more sophisticated methods for a truly practical
system.

5.4 Projected Augmented Reality

A key application of the work is projected augmented reality as a way to in-
terface to physical devices that can wirelessly communicate their internal state.
The handheld projector retrieves the state, projects it next to the device, allows
the user to interact to specify a desired operation, and then transmits the oper-
ation back to the device. In this way we can provide complicated control panels
for physical devices, without the device needing any sort of physical display
or physical input device. See Figure 7 for an example of projected augmented
reality.

Fig. 7. Projected augmented reality - projecting a phonebook next to a recognised
phone

6 Conclusion

This work is speculative. Based on our experience with a simple game applica-
tion, which was tried by hundreds of casual users over several days, there is not a
problem with its usability. People were able to guide the cursor and to click and
drag objects, and while there were comments about the weight of the prototype,
many people seemed to feel a real sense of interacting with a projection. But
this type of unusual device still raises questions about practicality. Assuming
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handheld projectors do appear, aren’t there easier ways to interact with a pro-
jection? It’s true that one could attach touchpad or thumbwheels for a familiar
type of mouse interaction, but consider how simple and direct the approach in
this paper is - one-handed pointing of the projector to guide the mouse. Secondly
isn’t the current device unwieldy? Our latest generation device has a projector
half the weight of the current one, and the trend to more compact projectors is
continuing. Isn’t the technique wasteful of projector pixels because it uses only
part of the projector image plane for the stabilized image? Just as projectors
are continuing to become lighter, so the number of pixels continues to increase.
And even using a limited part of the projector image plane, we have sufficient
pixels for the applications described. In summary, this a workable idea that pro-
vides novel functionality for the fast-approaching situation when projectors are
incorporated in handheld devices.
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Abstract. A camera-assisted digital writing tablet was invented recently. It  
preserves the familiar experience of filling out a paper form while allowing 
automatic conversion of relevant handwritten field entries into electronic form,  
without explicit form scanning. In this paper, we focus on two key computer  
vision problems associated with the invention of this device, namely, form  
indexing and field projection. These are needed for accurate association of  
tablet writing with corresponding entries in the electronic form.  Form indexing 
is modeled as the problem of shape-based content retrieval using the perspec-
tively-distorted form appearances seen from the tablet camera. Fast form  
indexing is achieved using geometric hashing based on projective invariants.  
The invariants derived from curve and line features reduce the basis search 
space considerably while still providing for robust localization. We derive field 
projection as a sequence of projective transformations between the tablet, the 
camera and the original electronic form coordinates. Results of extensive testing 
on a medical form database are reported. 

1   Introduction 

Paper-based forms are ubiquitous in hospital environments. With high volume of 
forms being scanned, and the difficulty of handwriting recognition from filled form 
entries, most electronic record systems simply store the form images with the field 
label information entered manually. A camera assisted writing tablet called the Form-
Pad was invented recently to enable direct electronic conversion of form entries. 
Unlike other digital notepad-like devices such as the CrossPad, FormPad has the abil-
ity to recognize the form and accurately project the filled entries against their correct 
field label.   Such digital notepads are a low-cost alternative to tablet PCs for routine 
form filling. They also preserve the familiar experience of filling in a paper form 
without disturbing the existing workflow of end users.  

The FormPad device is a conventional clipboard with a pen digitizing tablet [8] 
underneath and a VGA digital camera [9] with fish-eye lens (64 x 86 degrees) at-
tached to the metal clip of the clipboard. A wireless inking pen allows the user to 
enter notes directly on the form, while the digitizer captures pen coordinates and pen 
tip pressure. Thus form filling actions are recorded as online handwriting signals by 
the tablet. In order to use the data from the tablet, however, the identity of the form 
being filled must be known. Further, the handwritten data must be correctly registered 
against the relevant entries in the electronic form.  

Accurate form identification and field projection using cameras is a challenging  
problem. Ease of use considerations require that the camera be placed in un-obstructing 
locations on the notepad leading to significant perspective distortion in the captured 
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(a)   (b) 

   

(c)                                            (d) 

  

(e)    (f) 

Fig. 1. Illustration of field projection of tablet writing. (a) Original form. (b) A filled form. (c) 
The reference model for the form of (a) as seen through camera. (d) The camera appearance of 
the form of (b) before filling. Note the skew in this appearance. (e) Tablet writing correspond-
ing to the filled entries (f) Tablet writing projected into the electronic form of (a) using our 
method of field projection. 
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images. Also, since the camera is very close to the imaged object (i.e. the form), weak 
perspective projection models do not hold, requiring the use of full projective trans-
forms. Existing method for recognition under perspective projection, are either com-
pute or space intensive requiring at least 5 point correspondence raising the complexity 
to O(N5). Even after the correct form image has been identified, pose registration er-
rors, if present, can lead to the tablet data being recorded against the wrong field label 
in the electronic form. Thus careful analysis of the geometric relationships between the 
tablet, the camera and the electronic form coordinates must be performed. 

2   Related Work 

The technology we exploit in FormPad is based on prior work on object indexing and 
form recognition, for which a large body of literature already exists. In particular, 
recognition of scanned forms has been addressed by a number of researchers [6, 7, 10, 
11, 12-16], and the technology has matured into many products including AccuForm, 
CharacTell, iRead, ReadSoft, etc. Several low-level form processing and feature ex-
traction methods [10, 11] exist, including those that analyze layout [7, 17], fields [14], 
and hand-filled entries [11, 12].   

Registration methods based on projective geometry have been used for scanned 
form alignment and recognition [15].  While almost all form recognition work as-
sumes scanned forms, the only significant work on camera-grabbed forms we found 
was the document imaging camera system ScanWorks by Xerox [16]. The focus in 
this system has been on image processing of the document to filter, de-skew and pro-
duce better document appearance rather than form identification and automatic field 
extraction. The predominant techniques for identifying the form type use bar codes or 
OMR technology.  The recognition of printed text on forms is done fairly well using 
commercial OCR engines and most OCR software also offer their engine bundled in 
form recognition software. The recognition of handwritten text, however, is still a 
difficult problem for scanned forms.  

The work on form indexing we report is based on the technique of geometric  
hashing previously introduced for the model indexing problem in computer vision [2]. 
Several variants of this technique have appeared in literature including line hashing [3] 
where the basis space was formed from lines, location hashing [4] and region hashing, 
hashing based on projective invariants [1], etc. While geometric hashing using  
affine-invariant features has found some practical applications, much of the work on 
geometric hashing using projective invariants has remained mostly academic in nature. 
Building practical embedded systems using such techniques has been a challenge due 
to the large number of combinations of basis features that need to be retained per 
model, and their sensitivity to noise and occlusions. Thus building practical form  
recognition systems using geometric hashing requires intelligent choice of basis fea-
tures that reduce the time and space complexity while still giving effective recognition. 

3   Form Recognition  

We now turn to the problem of form identification, which can be stated as follows. 
Given a sample form C’ seen by the FormPad camera, determine the original form O 
corresponding to C’ using the appearance form images in the database C.  In practice, 
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since the number of forms in the database is large, and live form processing is desir-
able (as manual on-the-spot correction of form entries by the FormPad user may be 
required), it should be possible to identify the original form without exhaustively 
searching the form database.  

To recognize the original form O corresponding to the given sample form on the 
tablet, it is sufficient to determine if the associated reference form C in the model 
database and C’ are two views of O. Since forms are planar objects, and since the 
distance between the camera and the form is smaller than the form dimensions, the 
relation between the two views C and C’ is a projective transform P. That is, given a 
point (x,y) in C’ its corresponding point (x’,y’) in C is related by  
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where the coefficients are elements of  the projective transform P given by 
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It is well known that the above 8 parameter projective transform for planar objects 
can be recovered from a set of 4 corresponding points through a linear system of 
equations.  

Once the projective transform is recovered, it can be verified by projecting the rest 
of the sample form features into the model form, and noting the fraction of sample 
form features that fall near the model form features.   

3.1   Form Hashing 

Because of their text and graphical content, form images tend to have a large number 
of features, for example, 3000 corners and 2000 lines. If each model form in the data-
base was exhaustively searched, this would take O(m4 n4 *N) time where m and n are 
the average number of features per model form and sample form respectively, and N 
is the number of forms in the database.  

The relevant forms can be identified without detailed search using the principle of 
geometric hashing for form indexing.  The basic principle is well-known, and in-
volves recognizing an object by verifying that enough number of object features have 
the same pose-invariant coordinates with respect to some chosen basis frame [2]. 
Detailed search is avoided by pre-computing pose-invariant feature information, and 
indexing the recorded data structure using pose-invariant features derived from the 
current form on the tablet. To provide robustness to occlusions and noise, many more 
basis frames may have to be used,  leading to a large number of redundant features. 
Much of the space complexity of indexing by geometric hashing is accounted by these 
additional basis frames and the pose-invariant features so derived.    

Our form indexing is based on the area cross-ratio, a projective invariant given by 
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where A,B,C,D are the basis frame and E is a new point on the  planar object. 
P(A,B,C) is the area of the triangle with vertices A, B and C as shown in Figure  2a.   

 
(a)   (b) 

Fig. 2. Illustration of 5 point cross-ratios. (a) Cross-ratios from arbitrary 5 points. (b) cross-
ratios from carefully chosen basis frames derived from curves and lines.  

If we retain all possible basis frames to provide robustness to noise and occlusions, 
the space complexity of hashing is very large. In fact,  for N=500 corner features on 
the object, the basis frames and projective invariants computed would be O(N5) or   
1000 Terrabytes,  a very large hash table indeed!  Furthermore, by choosing features 
from all over the form image to form the basis frame, the chance of false positives 
increases with many spurious matches. Both these issues can be avoided if we gener-
ate the basis frames carefully to reduce the number of basis frames, and choose at the 
same time, features that can capture shape-specific information better.  For this rea-
son, we choose features from curves to form basis frames. Curves are well-known 
grouping units that capture shape information present in the model object. Further, 
due to the order present in curves, the number of basis features can be reduced.  Using 
this rationale, we generate the basis frame as follows.  

3.2   Basis Frame Generation 

We take corner features from curves to form candidates for point A in the basis frame. 
Feature points B and C are then taken to be the adjacent corners in the ordered  
sequence of features along the curve. A fourth point is derived by the intersection of a 
line anywhere in the image as shown in Figure 2b. Note that at least one intersection 
point D or D’ exists since the line cannot be parallel to both lines emanating from a 
corner. Since there are two possible directions along which a curve can be traversed, 
we consider both intersection points D and D’, if available to form two sets of basis 
frames. (A,B,C,D) and (A,B,C,D’). Any new feature point E can now be expressed  
in terms of the basis frame (A,B,C,D) through its projective invariant as defined in 
Equation 3.  The labeling of features points uses the convention of A for a corner  
in the curve, B and C for the adjacent corners on either side, and D and D’ stand  
for the intersection of  a line with AB and AC respectively. Thus the issue of permuta-
tion of feature points leaving ambiguity in matching,  is reduced using this naming 
convention.  

Use of consecutive features along the curve makes the choice of 3 features of the 
basis frame linear in the number of features along the curve. However, it can be too 
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narrow a basis frame when the features are close together leading to instabilities in 
pose computations. By choosing a fourth basis point from an arbitrary line in the im-
age, the basis frame is widened to allow robust computation of projective invariants.  

Using this method of basis frame generations, the number of basis features is 
O(N2) with the total number of projective invariants using all features in the image to 
be O(N3). Using 500 features as the typical example as before, the size of the hash 
table per form will now be O(109) or 1Gbyte, a reduction by a factor of 106! 

3.3   Form Indexing 

Form hashing involves two stages, namely model creation, and form indexing. In  
the model creation stage, curves are extracted from reference form images using a 
technique described in an earlier work [4]. Points (corners) and lines are extracted 
from the curves through line segment approximation of curves.  Basis frames are 
generated as described above, and projective invariant of Equation (3) is computed for 
all corner features in the form images.  In generating the basis frame, we traverse the 
curves in both directions to account for reversal of ordering during query processing. 
The resulting information is recorded in a hash table as  

......},{)(1 ><= ji FBasisH ρ                                                         (4) 

where Basisi = <A,B,C,D> are the basis frame coordinates and Fj is form index. 
For a given sample form in the tablet, features are extracted through a similar proc-

ess and candidate basis frames are derived. The projective invariants computed for all 
feature point on the sample form are used to index the hash table and a histogram of 
basis indexes is taken. The form index corresponding to the peaks identifies the rele-
vant form. Since hashing indicates likely matches, detailed verification step is still 
needed to confirm the presence of a reference form using the 4 point correspondences 
generated from the matching basis frames. The fraction of sample form features that 
project close to a model feature constitute the verification measure. Such features can 
also be taken as additional corresponding points for robust computation of the actual 
projective transform of Equation 1 for form registration later. Although the same 
cross-ratio can be derived from many combinations of basis frames, using the con-
strained basis generation process ensures that hashing points to related shapes in the 
form database.  

4   Field Projection 

We now turn to the field projection problem which is illustrated in Figure 3. Figure 3e 
shows the handwriting recorded on the tablet in terms of tablet coordinates. The ac-
tual filled form is shown in Figure 3b. The electronic form is shown in Figure 3a. In 
order to capture the handwritten entries against the appropriate field label in the elec-
tronic form of Figure 3a, we need to project the fields as recorded in tablet writing of 
Figure 3e into the electronic form of Figure 3a.  Since the form on the tablet can be 
placed with skew, it is not possible to do the field projection of the tablet coordinates 
without using camera-generated information.   
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Our method of field projection exploits the geometric relationships between the 
tablet coordinates, the form coordinates in the camera and the original electronic form 
coordinates.  Let O be the original electronic form. Let C be the image of the printed 
version of this form as seen through the camera on FormPad when placed within fixed 
alignment reference markers for model generation. Let T be the tablet frame. Let C’ 
be the image of a sample (possibly inserted with a skew) form that is currently being 
filled by a user. The problem of field identification is to convert the tablet coordinates 
corresponding to the image C’ and rendered into the original form coordinates O. As 
shown in Figure 3, the projection of a handwriting coordinates (xt’,yt’) into their 
corresponding field location (x0,y0) on the original form involves a sequence of trans-
forms T’->C’->C->T->O.  

 

Fig. 3. Illustration of the sequence of transformations needed for field projection 

The relationship between tablet coordinates and original form coordinates (T->O) 

can be modeled by an affine transform TOP . For all electronic forms of the same size, 

say, 81/2x 11in, and using a systematic generation of the original form image (by pdf 
to tif conversion software, for example), such a transform need only be computed 
once.  To use this transform directly for any paper form placed on the tablet though, 
we print the electronic form, and place it on the clipboard within fixed reference 
markers. This ensures that all forms will be subject to the same reference model crea-
tion process, and allows the use of  a single  alignment transform from tablet to origi-
nal form. 

In camera coordinates, the form skew (C’ -> C) can simply be estimated by the 

projective transform CCP '  computed during the form indexing process. Because of 

the close positioning of the camera on the tablet, the relationship between the camera 

and the tablet (T->C) is also modeled by a projective transform TCP  from tablet-to-

camera and another projective transform CTP  from camera-to-tablet (C->T). Since the 
camera is fixed, these  are computed only once per tablet during a factory calibration 
stage. 

The overall transformation can thus be modeled as a sequence of projections 

TOCTCCTC PPPP >−>−>− '                             (9) 
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of which, only the transform CCP ' needs to be computed dynamically per form filling. 

Note that it is not required for the handwriting on the tablet to be visible to the camera 
since the camera-to-tablet transform is pre-defined and can be applied as long as the 
reference model creation process was consistent using the alignment markers.  

5   Results  

Form indexing and field projection was tested on a large   medical form database. 
These forms were collected from actual forms used in hospitals, as well as those 
available on the internet. The current collection has 180 electronic forms and 200 
scanned forms and is growing rapidly. Models of the forms were created by  placing 
the forms on the FormPad,  as well as screen grabbing the electronic documents to 
make the original form images. Some original forms were obtained by scanning the 
printed forms available. To test form indexing using form hashing, we recorded 5 -13 
different appearances for each of the forms assembled above to increase our model 
database size to 1800. The form images were processed for edge detection using 
Canny edge detector. Curves were extracted using a procedure previously described 
in [4], and corners and lines were assembled. The basis generation process described 
earlier, was used to record the hash tables entries for form indexing. 

We tested the performance of form indexing by querying 40 sample forms on the 
1800 form model database. The precision recall results are shown in Table 1. As can 
be seen, form indexing retains good identification accuracy while still containing the 
number of false positives. It can also be seen from this table that retaining only well-
separated basis frames has not degraded the recognition performance. Our experi-
ments have revealed an average precision of 75.21% and an average  recall of 92.5%. 

Table 2 shows the time performance of form hashing in comparison to actual 
search for matching triples during object recognition. As can be seen, pre-computing 
the features improves the time performance by several orders of magnitude. The aver-
age number of features on the model was 424.62 for our model database. The column 
on all possible basis triples uses O(N5M5) for its calculation for model and image 
features for a straw-man comparison. The search is listed in terms of number of basis 
triples explored, since the number of pose-invariant features computed is the same in 
both approaches.  

By using well-separated basis frames derived from curves instead of all possible 
basis frames, the storage performance was improved remarkably. With the average 
model features of 424.62 the size of the hash table was roughly 424.62*424.62* 
424.62 or 1G. As a result, the hash table was stored in main memory itself for all the 
1800 forms in the model database. 

5.1   Field Projection Results 

To test field projection, the sample forms were derived from the electronic forms 
whose models were already available. Twenty subjects were recruited for writing on 
the sample forms using the FormPad. The subjects were asked to follow their normal 
writing process as if on a clipboard.  Thus considerable skew could be present in the 
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Table 1. Illustration of Precision-Recall for Form Indexing 

Query 
Form 

Actual 
Occurrences 

Matches 
Retrieved 

False 
Matches 

Correct 
Matches 

1 10 13 5 8 
2 4 7 3 4 
3 8 10 3 7 
4 13 13 3 10 
5 9 14 6 8 
6 11 15 4 11 

Table 2. Time reduction due to indexing results 

Query Query  
Features 

Retained 
Features 

Retained 
Triples 

Search All 
Possible 
Triples 
(x1014) 

Search 
Using Form 

Hashing 

1 2032 445 445 67.3 445 
2 1453 230 230 9.25 230 
3 2240 760 760 335 760 
4 970 340 340 30.1 340 

Table 3. Field identification results. Most incorrectly projected ones are still within a +/- 10 
pixel error. 

Query # of writing 
segments 

Number  
correctly projected 

Number projected 
+/- 10 pixel error 

Number projected 
+/- 20 pixel error 

1 8 6 2 0 
2 10 8 1 1 
3 14 12 2 0 
4 15 10 2 1 
5 4 4 0 0 
6 17 13 2 3 

 
sample forms due to inexact insertion into the clipboard. Using the alignment process 
described in Section 4, the skewed writing on the tablet was projected onto the elec-
tronic form to identify nearby field labels.  

We now illustrate the results of field projection. Figure 3e shows digitizer tablet 
output from writing on the sample form of Figure 3a. Using the sequence of projec-
tive transforms, the writing of Figure 3e was projected onto the original form of Fig-
ure 3a. The resulting image is shown in Figure 3f (please zoom in on the images for 
better viewing). As can be seen, 8 of the 9 text regions are projected close to their 
correct field labels. In addition, there is close resemblance between such automati-
cally projected writing with their actual physical  appearance as shown in Figure 3b. 
Since all pose computations were done using minimal features, there is some error in 
pose computations leading to alignment errors at the edges as seen for the phone 
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number field. With higher number of features for alignment, such pose errors can be 
reduced. It is interesting to note, however, that there is a built-in tolerance to pose 
errors in the field extraction problem due to the finite space left on the form for the 
field entries. As long as the projected text is within the space provided for the content 
against the field label, the correct label can still be recovered. Such tolerance is gener-
ally more for the x than the y coordinate. Even so, a neighborhood search of the field 
labels may still have to be performed. 

To test the performance of field projection, we measured the pixel difference be-
tween the projected tablet writing and the corresponding field label. The text pro-
jected within (+/-5 pixels) was taken as a correct projection. The handwriting data 
was collected by filling out a total of 80 sample forms showing varying amounts of 
skew in the image. Each form had 3-10 regions filled including those near the bottom 
of the form page invisible to the camera. The results of field identification for the 
writing tested are shown in Table 3. As can be seen, a large fraction of the tablet text 
projects within =/- 5 pixels to the original field label. The field identification perform-
ance indicated is sufficient for further post-processing using attribute label extraction 
and online OCR to successfully populate an electronic medical record. 

6   Conclusions 

In this paper we have described methods for form indexing and field projection to 
enable rapid paper form to electronic conversion without explicit need of scanning 
filled forms or manual population of the electronic medical records.  

References 

[1] D. Jacobs, “The space requirements of indexing under perspective projections,” IEEE 
Trans. PAMI, 1996, pp.330-333. 

[2] Y. Lamdan, J. Schwartz, and H.J. Wolfson. Object recognition by     affine-invariant 
matching in Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pages 
335-344, 1988. 

[3] F.D. Tsai. Geometric hashing with line features. Pattern Recognition, 27:377-389, 1994. 
[4] Tanveer Fathima Syeda-Mahmood: Locating Indexing Structures in Engineering Drawing 

Databases Using Location Hashing. CVPR 1999: 1049-1055. 
[5] W.E.L. Grimson, “On the sensitivity of geometric hashing,” ICCV 1997. 
[6] J.Mao, M. Abayan, K. Mohiuddin, “A model-based form processing subsystem”, ICPR’96, 

pp.691-695, 1996. 
[7] T. Watanabe, Q. Luo, N. Sugie, “Layout recognition of multi-kinds of table-form docu-

ment, IEEE Trans PAMI, vo.17, no.4, pp.432-445, 1995. 
[8] Wacom Graphire II Digitier Tablet and Inking Pen, http://www.wacom.com/graphire/ 

4x5.cfm 
[9] Aiptek VGA PenCam, Irvine, CA 92618 www.aiptek.com  

[10] A. Pizano, “Extracting Line Features from Images of Business Forms and Tables”, 
ICPR'92, pp. 399-403, 1992 

[11] D.S. Doermann, A. Rosenfeld, “The Processing of Form Documents”, ICDAR'93, pp. 
497-501, 1993. 



 FormPad: A Camera-Assisted Digital Notepad 203 

 

[12] A.K. Chhabra, “Anatomy of a Hand-Filled Form Reader”, Proc. IEEE Trans. On Applica-
tion of Computer Vision, pp. 195-204, 1994 

[13] F. Cesarini, M. Gori, S. Marinai, “A System for Data Extraction from Forms of Known 
Class”, ICDAR'95, Montreal, Canada, pp. 1136-1140, 1995 

[14] J.X. Yuan, Y.Y. Tang, C. Y. Suen, “Four Directional Adjacency Graphs (FDAG) and 
Their Application in Locating Fields in Forms”, ICDAR'95, Montreal, Canada, pp. 752-
755, 1995. 

[15] R. Safari, N. Narasimhamurthi, M. Shridhar, “Document Registration Using Projective 
Geometry”, ICDAR'95, Montreal,   Canada, pp. 1161-1164, 1995. 

[16] “Xerox mobile camera document imaging,” http://www.ipvalue.com/technology/docs/ 
Xerox_Mobile_Camera_Imaging_Document_Capture.pdf 2004.  

[17] Watanabe, T., Luo, Q., Sugie, N., Structure recognition methods for various types of 
documents, MVA(6), No. 2-3, 1993, pp. 163-176.  



Symmetric Color Ratio in Spiral Architecture

Wenjing Jia, Huaifeng Zhang, Xiangjian He, and Qiang Wu

Faculty of Information Technology, University of Technology, Sydney,
PO Box 123, Broadway, NSW, Sydney, Australia
{wejia, hfzhang, sean, wuq}@it.uts.edu.au

Abstract. Color ratio gradient (CRG) is a robust method used for
color image retrieval and object recognition. It has been proven to be
illumination-independent and geometry-insensitive when tested on
scenery images. However, the color ratio gradient produces unsatisfy-
ing matching results when dealing with an object which appears rotated
by a certain relative angle in the model and target images. In this pa-
per, we adopt the idea of color ratio gradient and develop a new method
called Symmetric Color Ratio (SCR) based on a hexagonal image struc-
ture, the Spiral Architecture (SA). We focus on license plate images and
our aim is to achieve a higher matching rate between the SCR histogram
of the images within same class in order to separate different classes of
images. Our experimental results demonstrate that the proposed SCR is
robust to changes over view angles.

1 Introduction

Using color histograms as a stable object representation over change in view
for object recognition was first explored by Swain and Ballard [1][2] who intro-
duced the color indexing technique to efficiently recognize objects by matching
their color-space histograms. This method, however, did not address the issue
of illumination variation. Funt and Finlayson [3] produced a new measurement
based on the ratio of color RGB triples in neighboring area to locate objects.
Compared with Swain’s way, this method is more robust to illumination varia-
tion. Other improved methods include illumination-independent color reflection
ratios proposed by Nayar and Bolle [4]. Gevers [5][6] further developed the color
ratio gradient (CRG) to make it insensitive to the geometry and position of the
object, shadows, illuminations, and other imaging conditions.

However, such color ratio gradients suffer the following limitation. When deal-
ing with an object which appears rotated by a certain angle in the target image
with respect to the model image, the color ratio gradient produces unsatisfying
matching results.

In this paper, we adopt the idea of color ratio gradient and develop a new
method called Symmetric Color Ratio (SCR), which is based on a hexagonal
image structure, the Spiral Architecture (SA) [7]. By taking use of the higher
symmetry of the hexagon, as well as the consistent definition of distance between
the central pixels and any of its 6 directly-connected neighbors on hexagon-based
image structure [8], a completely symmetric operator has been defined.
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We focus on vehicle license plate images and our aim is to achieve a higher
matching rate between the SCR histograms of the images that belong to the
same class. We say two license plate images belong to the same class when they
have similar foreground and background colors, but they may have quite different
contents (characters), size and even view angles. The SCR histogram of license
plate images has been created and used as a robust feature to separate different
classes of images. Our experimental results demonstrate that the proposed SCR
histogram is robust to changes over view angles.

The remaining parts of this paper are organized as follows. The color ratio
gradient as a feature for object recognition is firstly summarized in Sect. 2.
The Spiral Architecture, on which the proposed SCR is implemented, is briefly
introduced in Sect. 3. In Sect. 4, the proposed Symmetric Color Ratio is defined
in detail, and the similarity measurement is obtained. In Sect. 5, the proposed
algorithm is tested. Conclusions are given in Sect. 6.

2 Color Ratio Gradients

Supposing the sensor response is measured on an infinitesimal surface patch
of an inhomogeneous dielectric object and the spectral power distribution of
illumination is unknown, the body reflection term at location �x in dichromatic
reflection model with narrow-band filtering can be written as [5][6],

Ck(�x) = GB(�x, �n,�s)E(�x, λk)B(�x, λk) (1)

where GB(�x, �n,�s) is the geometric term dependent on the surface orientation
�n and illumination direction �s, E(�x, λk) is the illumination intensity at light
wavelength λk, and B(�x, λk) is the surface albedo at light wavelength λk.

Gevers proposed the following color constant color ratio[5][6],

M(C�x1
1 , C�x2

1 , C�x1
2 , C�x2

2 ) =
C�x1

1 C�x2
2 − C�x2

1 C�x1
2

C�x2
1 C�x1

2 + C�x1
1 C�x2

2

C1 
= C2 (2)

expressing the color ratio between two adjacent image pixels at location �x1 and
�x2 under two different light wavelengths. It can be seen that M ∈ [−1, 1].

Note that in an infinitesimal area it may be assumed that GB(�x1, �n,�s) =
GB(�x2, �n,�s), E(�x1, λC2) = E(�x2, λC2) , and E(�x1, λC1) = E(�x2, λC1) [5]. By
substituting (1) into (2) and factoring out dependencies on object geometry and
illumination direction, we have,

M(C�x1
1 , C�x2

1 , C�x1
2 , C�x2

2 ) =
C�x1

1 C�x2
2 − C�x2

1 C�x1
2

C�x2
1 C�x1

2 + C�x1
1 C�x2

2

=
B(�x1, λC1)B(�x2, λC2)−B(�x2, λC1)B(�x1, λC2)
B(�x2, λC1)B(�x1, λC2) + B(�x1, λC1)B(�x2, λC2)

(3)

It is seen that color ratio is independent of light intensity, color, viewing
condition, and object geometry characteristic. It is determined by the ratio of
surface albedo only [5].
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Fig. 1. Locations of four neighbors that are involved in the computation of the color
ratio gradient at the central pixel �x

Gevers also defined the gradient of the color constant color ratio as [5][6],

∇M(C�x1
1 , C�x2

1 , C�x1
2 , C�x2

2 ) =
(
M
(
C

(x−1,y)
1 , C

(x+1,y)
1 , C

(x−1,y)
2 , C

(x+1,y)
2

)2
+M
(
C

(x,y−1)
1 , C

(x,y+1)
1 , C

(x,y−1)
2 , C

(x,y+1)
2

)2) 1
2

(4)

where (x−1, y), (x+1, y), (x, y−1), and (x, y+1) are locations of four adjacent
neighbors of �x = (x, y), as shown in Fig.1.

On standard RGB color space, the three-channel color ratios can be written as,⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M(R�x1, R�x2 , G�x2 , G�x1) =
R�x1G�x2 −R�x2G�x1

R�x2G�x1 + R�x1G�x2

M(R�x1, R�x2 , B�x2 , B�x1) =
R�x1B�x2 −R�x2B�x1

R�x2B�x1 + R�x1B�x2

M(G�x1 , G�x2 , B�x2 , B�x1) =
G�x1B�x2 −G�x2B�x1

G�x2B�x1 + G�x1B�x2

(5)

Thus, by substituting (5) into (4), three-channel color ratio gradients on RGB
space can be easily obtained. Each∇M(C�x1

1 , C�x2
1 , C�x1

2 , C�x2
2 ) in (4) can be viewed

as being computed in a Quasi-Prewitt operator, as illustrated in Fig.1, where �x
is the central (current) pixel. It can be seen that respectively two neighbors in
two directions, i.e., horizontal and vertical directions, have been involved in the
computation of the color ratio gradient in the central pixel located at �x.

3 Spiral Architecture

Color ratio gradient is defined on the conventional square-based image structure.
Hexagon-based image structure, however, due to its higher symmetry and con-
sistent distance definition between any two adjacent neighbors, can simplify the
algorithm design and has attracted many people to do research on it for more
than 40 years [8]. In this project, we take use of the above advantages of the
hexagon-based image structure and propose the symmetric color ratio (SCR).
Our SCR is implemented based on a relatively new hexagon image structure,
called Spiral Architecture (SA).
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Fig. 2. The Spiral Addressing

The Spiral Architecture (SA) is a unique image representation scheme, pro-
posed by Sheridan [7]. It represents a digital image as a collection of hexagonal
pixels, where each hexagonal pixel is addressed in power of seven with a pattern
of spiral (see Fig. 2). The hexagon-based image representation and the unique
spiral addressing scheme, together with two later proposed mathematic opera-
tions, Spiral Addition and Spiral Multiplication, is called Spiral Architecture (SA)
[7]. For more details, please refer [7].

Since there is currently no mature hardware device to sample and display im-
ages based on hexagonal grids, researchers on hexagonal-based image processing
have to use square pixels to mimic hexagonal pixels. Wu et al. [9] constructed a
novel mimic scheme called virtual Spiral Architecture, on which images on square
grids can be smoothly converted to or from virtual Spiral Architecture in order
to test algorithms based on hexagon grids. However, this mimic scheme unavoid-
ably introduces certain loss of resolution of image information which results in
blur effects. Fig.3 gives a pairs of vehicle images which are represented on nor-
mal square structure and virtual Spiral Architecture respectively. Imaging area
in Spiral Architecture, as shown in Fig.3(b), contains 76 = 117649 hexagonal
grids. In order to avoid the blur effects of approximation on the comparison
between the experimental results obtained on two different image structures,

(a) (b)

Fig. 3. (a) Vehicle image and (b) its representation on Spiral Architecture (SA)
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experiments on square structure are implemented on the virtual SA-processed
images to make the results comparable. Also, the number of pixels in the images
is calculated as the total number of valid pixels.

4 Symmetric Color Ratio

In color ratio gradient (CRG) algorithm, only color ratios between two pixels in
horizontal and vertical directions (see Fig.1) are involved into the computation of
the final color ratio gradient. Once the objects have rotated with a certain angle
relative to the background, however, the color ratio gradient at each pixel will be
changed accordingly, and hence the CRG histogram is sensitive to the rotation.

In our method, a symmetric color ratio will be proposed. The contribution
of doing so is that a symmetric definition takes into account the contribution
of the color changes along three diagonal directions rather than horizontal and
vertical directions only. In a local area with a cluster of seven pixels, for example,
three directions are able to describe the color changes near the central pixel
adequately. Although the similar idea may also possibly be applied in square
grids, the inconsistent definition of the distance between the two neighbor pixels
in diagonal direction and horizontal/vertical directions in square grids always
brings uncertainty about the contribution of each component to the combined
value. Hexagon-based algorithm, thanks to its symmetric structure, does not
meet such kind of trouble. In our algorithm, the color ratio gradient is computed
in a window as shown in Fig.4. The window size should not be chosen too large.
Otherwise, it breaches the assumption in equation (3), i.e., calculation must be
performed on an infinitesimal surface area. We explain the algorithm in detail
as follows.

4.1 Symmetric Color Ratio in Spiral Architecture

Let M�x denote the color ratio between two horizontal neighbors of a pixel and
M�y denote the color ratio between two vertical neighbors of a pixel, where the

Fig. 4. (a) Symmetric color ratios �M1, �M2, and �M3 at the central shadowed hexagonal
pixel �x in 3 directions. (b)The locations of the six directly connected neighbors of the
central hexagonal pixel in Spiral Architecture (SA).
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subscript �x denotes horizontal direction and �x denotes the vertical direction. In
the conventional square grids, the definition of the color ratio gradient in (4) can
be simplified as:

∇M =
√

M2
�x + M2

�y (6)

Following the same naming convention, we use ∇MSCR to denote the sym-
metric color ratio of an image at a given reference hexagon point �x. Without
loss of generality, we define M1, M2, and M3, as shown in Fig.4(a), to denote
three color ratios in three diagonal directions respectively as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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= j (7)

where {�xi}i=1,2,···,6 are the locations of six neighbors of the point �x. The locations
of six neighbors of a current (central) pixel are illustrated in Fig.4(b).

Thus we have the Symmetric Color Ratio (SCR) defined as:

∇MSCR =
√

M1
2 + M2

2 + M3
2 (8)

In Spiral Architecture, since the distance between the central point and any of
its six neighboring points is identical, the resulted symmetric color ratio ∇MSCR

is symmetric in three directions rather than two directions, and thus less sensitive
to the rotation.

4.2 Similarity Measure

A similarity function is needed to return a numerical measure of similarity be-
tween the model and target images. In this paper, we use the histogram of the
proposed symmetric color ratio (SCR) as a feature of the model and target
images in order to numerically measure the similarity between each other. The
advantage of using histogram is the robustness to geometric changes of projected
objects.

A three-dimensional SCR histogram �H is created and chosen as the mea-
surement to compare the similarity between the SCR histograms of two images.
The three axis of SCR histogram �H represent values of SCR between R and G
components, simplified as ∇MRG, between R and B components, simplified as
∇MRB, and between G and B components, simplified as ∇MGB respectively.
The value h(i, j, k) of each unit in the histogram �H denotes the total number
of frequencies of which ∇MRG, ∇MRB, and ∇MGB take values of i, j, and k
respectively.
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In order to make such matching invariant to the dimension of image, the
created histogram is normalized by the total number of pixels in the image. By
such a way, the object matching problem is converted to a simple problem that,
to what extent the SCR histogram created for the model image is like the SCR
histogram created for the target image.

One straightforward method to calculate the matching rate between two his-
tograms is histogram intersection [2].

Assume the SCR histograms of the model image and target image are �HMdl

and �HTgt respectively, the histogram intersection between the pair of histograms
can be defined as:

�HMdl ∩ �HTgt =

∑n
i,j,k=1 min(hMdl(i, j, k), hTgt(i, j, k))∑n

i,j,k=1 hMdl(i, j, k)
(9)

where n denotes the dimension (bin size) of each axis. It can be seen from (7) and
(8) that ∇MSCR ∈ [0,

√
3]. In this paper, we take identical bin sizes n = 100

for three axis, i.e., ∇MSCR are normalized into the range of [0, 100] for the
convenience of computation.

When both �HMdl and �HTgt are normalized properly, i.e.,
∑n

i,j,k=1 h(i, j, k)=1,
(9) can be simplified as:

�HMdl ∩ �HTgt =
n∑

i,j,k=1

min(hMdl(i, j, k), hTgt(i, j, k)) (10)

A higher histogram matching rate indicates that a better matching between
the SCR histograms of model and target images. Higher matching rates are
expected when the model image and the target images are within the same
class, or when they have similar foreground and background colors, but may
have quite different content, size and even view angle.

5 Experimental Results

In this project, we focus on license plate images and our aim is to achieve a
higher matching rate between the SCR histograms of two license plate images
that are taken from the same class.

The experiments are finished in three parts. In Sect. 5.1, the performance of
the proposed SCR histogram is evaluated where SCR is taken as a feature to
separate license plate images that belong to different classes. In Sect. 5.2, the
independence of SCR on model images which contain quite different characters is
proved. In Sect. 5.3, the SCR histogram is shown insensitive to the model images
which appear to have a rotation angle. The details are explained as follows.

5.1 Similarity Measurement

Matching rates between the model image and the target images within same
class are expected to be relatively high, while they should be very low between
different classes of images.
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(a) (b) (c)

Fig. 5. An example of cutting a small part of a license plate image(a) to form model
images(b)(c)

In this experiment, without loss of generality, two classes of vehicle license
plate images are tested, namely, license plates with yellow background and license
plates with white background. We say two license plate images belong to the
same class when they have similar foreground and background colors, but they
may have quite different content (characters), size and viewing conditions. For
each class, we randomly select a license plate image and cut a small part of
image from it (see for example Fig.5.) as the model image of this class. Then,
the SCR histogram of the model image is computed and matched with the SCR
histograms of the various license plate images (target image) within same class
and from another class.

The selection of the model image is quasi-random. Any part of the license
plates that contains at least one complete character can be chosen as a model
image. Obviously, the larger the size of the model image is, the longer processing
time will be needed.

The experiment is done on 64 yellow plates and 27 white plates with differ-
ent characters, sizes, orientations and illumination conditions. According to our
experiments, an average matching rate of 83.5% within the same class can be
obtained, while the average matching rate is 44.4% for two images that are taken
from different classes. This demonstrates that the SCR histogram can be used
as robust feature to separate the different classes of license plate images easily.

5.2 Insensitiveness to the Content of Model Images

License plates in Australia may contain characters including twenty-six capi-
tal letters A ∼ Z and ten Arabic digits 0 ∼ 9. As we mentioned in previous
subsection, the model image should be selected quasi-randomly. This is to say,
no matter which character has been included in the model image, the similar-
ity measurement, i.e., the similarity between the model image and the target
images, should be very high and stable.

In this experiment, the model image is still chosen from cutting at least one
complete character from the license plate images. However, we cut different parts
of a license plate image which contain different characters as model image to test
the matching rate between their SCR histograms. The different characters that
we chose have large appearance difference, such as ”Q” and ”L”, of which the
former contains more curve edge information, while the latter contains more
linear edge information.
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(a) (b) (c) (d)

Fig. 6. Experiments-3: Similarity measurement with rotated model images: an exam-
ple. (a) Target image; (b) model image without rotation relative to (a); (c) model image
with 45o rotation relative to (a); (d) model image with −45o rotation relative to (a).

The experiments give stable matching rates for most character structures.
For example, the matching rates of SCR histogram for the case shown in Fig. 5
using model images that contain ”Q” and ”L” are 81.6% and 81.3% respectively.
This explains that the matching result using SCR histogram is insensitive to the
content inside the images.

5.3 Insensitiveness to Object Rotation

In automatic license plate recognition practice, the vehicle images may be tilted
to some extent due to uneven or curvy road surface. As a result, the license plate
on vehicle may appear to be rotated with a certain angle to the background,
which results that the vertical and horizontal gradient information along edges
of characters in license plates will be changed to some extent. However, when
SCR is used, the histogram matching rate should be stable due to the symmetric
feature of the algorithm.

In this experiment, we keep the characters of model image and the target
images unchanged, but rotate the model image with a certain angle relative to
the model image, as shown in Fig. 6, then compute the SCR histogram matching
rate respectively and compare them.

The matching rates of SCR histogram between the rotated model image and
the target images from the same class remain significantly higher than the match-
ing rates obtained for images from different classes. Moreover, for some character
structures, the SCR histogram gives more stable matching rate than CRG his-
togram. For example, the matching rate between the target image in Fig. 6(a)
and model images in Fig. 6(b), (c), and (d) are 87.5%, 88.4% and 88.3% respec-
tively when using SCR histogram for histogram matching. While using CRG
histogram, these matching rates are 86.5%, 76.2% and 76.4% respectively. This
demonstrates hat the SCR histogram is less sensitive to the rotation of the ob-
jects and further proves the robustness of the proposed SCR histogram.

6 Conclusions

The color ratio gradient algorithm has limitations while applied to objects that
appear relatively rotated with a certain angle with respect to the background.
In this paper, we adopt the idea of color ratio gradient and develop a Symmet-
ric Color Ratio (SCR), which considers three directions around a central pixel
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with identical symmetric feature. The SCR histogram is applied to license plate
images in order to find a higher similarity measurement between images that
belong to same class. Our experimental results show that the SCR histogram
is insensitive to different characters, sizes, colors, orientations and illumination
conditions when being applied to separate license plate images. Besides, the in-
dependence of the algorithm on the model images and the robustness to the
changes over rotation angle has also been proven. This demonstrates that the
proposed algorithm can be used as a robust feature for license plate images.
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Abstract. In this paper, we propose a new geometric contour frame-
work with support of specified vector field. First we define three criteria
for selection of vector field in geometric model. According to the criteria,
EdgeFlow, a powerful segmentation tool, is selected to generate desirable
initial vector field. In order to overcome the drawbacks of conventional
geometric models, multi-source external forces, such as from texture and
multi-spectra, are integrated to provide the ability for segmenting the
texture-rich and complex scene images. Instead of common smoothing
pre-processing to denoise and suppress possible spurious edges, the more
advanced complex diffusion filters are adopted in our algorithm, which
result in the piecewise filtered image to help detect those sharp transition
regions. We test our model on the Berkeley Segmentation Database, and
the experimental results are promising.

1 Introduction

In recent decades, Curve Evolution methods have been extensively exploited in
computer vision society due to their potential applications in object contour
extraction/object segmentation, motion estimation&tracking, et al. According
to the expressions of mathematical models, they are roughly divided into two
classes: Parametric Curve Model and Geometric Curve Model/Non-Parametric
Curve Model. The representative of the parametric curve models is Snakes [1]:
it drives a parameterized curve by image-oriented force to positions of interests.
And the geometric curve model is based on the theory of Level Set [2] which can
deal with topological changes during evolution process without any additional
intervention. Contrast with the constraints of snakes, geometric curve models
have two advantages: 1) They can deal with the case that the number of objects
in scene is unknown; 2) No additional re-parameterization maneuver is needed
during curve evolution.

The original geometric curve models were introduced by Malladi et al [3]
and Caselles et al [4] respectively. The ideas of them utilize the grayscale/single
spectral information as the external force to drive curve to positions of interests.
Though these algorithms achieve successes to some extent, there also exist some
limitations. First, most them use simple grayscale gradient, so that they merely
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tackle “simple” images, i.e. synthesized images or images with clear edge cues.
As for the rich textural context or presence of clutters, they fail to converge to
positions of interests. Second, usually only single source image-oriented informa-
tion is integrated into model, whereas other useful and important information
such as color, texture do not get their places in curve evolution. For those mod-
els using single cue as driven force, it is difficult to get reliable external force
in those region of indistinct single cue. Some researchers [5, 6] have noted these
situations and proposed solutions for textural images. Recently Xie [7] gives an
interesting attempt to integrate information of region-based segmentation into
model.

In this paper, we propose a novel curve evolution framework, which can han-
dle segmentation in some relatively texture-rich and/or complex context images.
We first define three criteria for customized vector field. Based on these crite-
ria, an effective algorithm, i.e., EdgeFlow [8], is selected to generate desirable
initial vector field. In order to deal with the drawbacks of the conventional ge-
ometric models, multi-source external forces, such as forces from texture and
multi-spectra, are integrated to provide the ability to segment the texture-rich
and complex scene images. We adopt a so-called “generalized gradient” method
to extract change information in multi-spectral/vector images (we treat color
images and Gabor filtered multi-channel images as multi-spectral image in a
sense of signal processing). “Generalized gradient” has been proven an effective
and simple method in multi-spectral image analysis [9]. Through proper diffuse
processing of initial vector field, the desirable vector fields are achieved. Instead
of common smoothing pre-processing to denoise and suppress possible spurious
edges, the more advanced complex diffusion filters are adopted in our algorithm,
which result in the piecewise filtered image to help detect those sharp transition
regions in image. We test our model on the Berkeley Segmentation Database
and the experimental results show effectiveness of our method.

The proposed method is different from [6]. The difference is that they try to
divide vector field of EdgeFlow into the irrational and solenoidal vector fields.
By solving a Poisson PDE, they get an edge function V , and then edge flow and
edge function are integrated into geometric contour framework. But this method
directly relies on pre-processing of EdgeFlow. Instead of depending on any sin-
gle existing vector field generation scheme, we propose the general criteria for
customizing vector field in curve evolution. Any vector field that satisfies those
criteria can be taken into the geometric curve model. Moreover, multi-source
cues can be integrated into the model to get reliable result. There also exist
the differences between our method and [7]. In [7], they use pre-segmentation
by Mean Shift to derive region-related driven force to overcome edge leakage
and then GVF to extend capture range. And for pre-segmentation map, direct
GVF diffuse process cannot guarantee a regular vector field under clutter pre-
segmentation result or complex scene. This method still only segment simple
images, and fails in dealing with textural or complex scene images. The pro-
posed framework combines diffusion enhancement and vector field generation
method to overcome these disadvantages.
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2 A Brief Review of Geometric Contour Model

Geometric active contour model is based on the curve evolution theory. Usually
it needs initial curve Co to be specified beforehand, and it uses the external
force derived from image to drive curve to positions of interests. The process of
curve evolution is described by the coupled partial differential equations (PDEs).
Compared with conventional parametric numerical methods, Level Set method
[2] has the advantages of adaption to topological changes, i.e. curves merging
and/or splitting in an automatic manner without any additional intervention,
while parametric contour model cannot easily handle those situations. Some
works based on parametric contour model try to deal with topological changes,
but they bring with a huge computation complexity [10].

The geometric contour model is introduced respectively by Malladi et al [3]
and Caselles et al [4]. In [3], the following PDE is used as

Ct = g(|∇I|)(κ + c) �N, (1)

where C is a 2-D closed contour, g(·) : [0,∞] �→ [1, 0] is a monotonic decreasing
function, κ and c are curvature and constant speed item respectively, and �N is
the unit normal vector of curve with inward direction. It is obvious that g(·)
will decrease quickly to zero when contour is near edge, so the advancing curve
will be stalled for total speed Ct approximating to zero. In (1) constant c is an
artificial balloon-like force [11] to drive curve in those feature-lacking region to
contract/expand to object boundary. However this model has a defect that curve
cannot come back if the curve steps beyond object boundary.

In [4], an improved model is proposed as follows

Ct = g(|∇I|)(κ + c) �N − (∇g(|∇I|)) · �N) �N, (2)

in which an additional item is introduced in right hand side of (2) compared
with (1). This new item offers curve the ability to come back when going be-
yond object boundary. But the capture range for pure gradient-deduced vector
force, (∇g(|I|)) · �N ) �N , is very limited, because it is determined by used gradient
operator, e.g. for the most used derivative of Gaussian operator, capture range
is affected by σ.

Because stopping items in (1) and (2) is too weak to counter geometric force
to get balance, in the case that image-derived gradient is small, both model (1)
and (2) fails to handle weak edges.

3 Our Works

3.1 Criteria for Vector Field

From a viewpoint of dynamics, there are two kinds of strategies to stop the
motion of the curve. One is considering scalar function g(·) as edge indicator
such that g(·) will attenuate to zero quickly, and therefore decrease the total
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speed in (1) and first speed item in (2) to zero, when encountering high change
rate of local feature, e.g. gradient as the most usual choice. The other is to
add vector force ∇g(·) to balance the image-oriented force at positions where
vector flows bump into. The convergence is achieved only when whole system
gets to equilibrium between the geometric constraint and the image-oriented
forces. Both strategies employed in (1) and in (2) cannot handle weak edges for
noise, illumination, and albedo et al. Only relying on g(·) or gradient flow from
gradient operator is not enough to stop curve moving over those weak edges
and/or scarce feature regions.

In this paper, we design a novel framework to deal with problems that conven-
tional models cannot solve, such as edge leakage and applications in texture-rich
and/or complex scene. Instead of designing complicated g(·) or considering to
design new external force, we consider that the drawbacks, i.e. weak edge leak-
age, capture range, and textural image segmentation, et al, can be rescued by a
vector flow field which satisfies some criteria, from a viewpoint of separation of
underlying vector field from the geometric contour model. In the following, we
give the definition of these criteria.

Many studies have contributed to the solution of the problems in curve evolu-
tion. In [11], Cohen et al mentioned only using direction information of gradient
vector as external driven force by which head-to-head vector flows between edge
are constructed, and this scheme can make contour converge to object bound-
ary. The idea of Xu et al [12] and Yuan [13] are similar.They all deduce vector
field from edge map, for those vectors in the regions far from edges, and all
can be traced back to edges. From the viewpoint of field theory, we can regard
those methods as generating the conservative field, in which every point of curve
acts like a free particle effected by the conservative field force and geometric
constraints.

Here, we propose three new criteria for vector field in geometric model. 1)Di-
rection Criterion. Between edges, vector flow should be head-to-head pointing
toward each other; 2) Energy Criterion. Vectors in the vicinity of edges should
possess dominant energy; 3) Attraction Criterion. For any region far from edges,
there should exist vector flow pointing toward edge or the vector tracing back
toward edge. We give some brief explanations on these three criteria as follows.

The purpose of criterion 1) is to stop moving curve and accurately locating
edge positions. Assuming some part of deforming curve is across the edge while
countering constant balloon-like force and geometric constraint, it is possible
that parts of curve moves beyond edges. Thus, we require the head-to-head
vector flow to draw curve back when curve is beyond edge location. Moreover,
if we remove balloon-like force to allow curve under effect of only vector flow
and geometric constraint, we will get an improvement of final convergence to
get accurate positioning to edge. But it brings with a problem that contour
model will become sensitive to noise points and/or meaningless blobs. The energy
criterion we define is of two-fold purposes. First, around edge the attraction
should reach extrema to trap deforming contour. Second, dominant energy can
accelerate convergence process near edges, contrast with the method of only
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(a) (b)

Fig. 1. Vector field formed by EdgeFlow method. (a) The part of original image. (b)
Magnified vector field by EdgeFlow in white square region of (a).

using directional information [11]. Since initial contour may be not prescribed
exactly in vicinity of object. In those regions far from edge, the deforming curve
is wished to be still attracted by edge, while balloon-like force should be set as
small as possible for the consideration of edge leakage. That’s the reason why
we contrive attraction criteria.

One aim of our framework is that any vector field satisfying these three cri-
teria above can be integrated into the geometric model. To demonstrate the
effectiveness of the criteria, we choose EdgeFlow [8] as the candidate vector
field, although edge flow does not fully satisfy the criteria we define above. But
we find that if we diffuse edge flow vectors with GVF method [12], the modified
vector field can satisfy well all the three criteria.

EdgeFlow is a powerful tool for boundary detection and image segmentation.
It cannot only incorporate single grayscale information, but also other informa-
tion such as the color, Gabor phase and et al (for details, cf. [8]). This method
was tested on a large number of natural images, and gave the good performance.
Fig. 1(b) shows the edge flows in the white square of the left subfigure (a).

3.2 Complex Diffusion and Generalized Gradient

In order to suppress spurious edges and reduce effect of noise, smoothing oper-
ation is an usual pre-processing method before any operation extracting useful
information in images. The widely used multi-scale smoothing scheme is Gaus-
sian pyramid. But this scheme will bring with the implementation difficulties
for curve evolution across different scales [14] and lose accurate edge locating
ability. To deal with these problems, a more advanced diffusion process called
complex diffusion process is adopted in this paper. The complex diffusion process
produces filtered images with piecewise properties.

For multi-spectral/multi-value images, simply algebraic combination of each
channel’s response cannot give a fine description on change rate of local features.
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We use “generalized gradient” [15] to describe local feature changes in multi-
spectral images, for it is a robust and effective method ever proven.

Complex Diffusion. In low level vision tasks, filtering is often used to reduce
the influence of noise and meaningless clutter. For the images with rich texture or
complex scene, conventional filtering cannot fulfil this task. Scale-space approach
is a proven useful technique in image processing. And it is known that Perona-
Mallik diffusion is an adaptive diffusion process to the different scale, although
this scheme cannot deal with texture-rich image for its sensibility to variation
of gradient. Shock filters [16] suffer the same shortcoming. We use the complex
diffusion [17] to do smoothing inside homogeneous region while enhancing edge.
We use this more advanced PDE-based diffusion process to smooth inside region
while sharpening edge. The complex shock filter used in this paper is

It = − 2
π

arctan
(
a Im(

I

θ
)
)
|∇I|+ λIηη + λ̃Iξξ, (3)

where λ = reiθ , and λ̃ is a real scalar value (for more details, cf. [17, 16]).
The complex diffused image is composed of real part and imaginary part, i.e.

the value of each point is a complex value. The real part and imaginary part
of complex filters play the different roles in diffusion process. The real part of
complex filters behaves like an adaptive smoothing operator, while the imaginary
part of complex filters is similar to a simple second derivative operator, but offers
more advantages than it.

For multi-spectral images, e.g. color images and Gabor-filtered images, we
apply this complex shock filter to each sub-band image respectively to denoise
and enhance its edges, and then “generalized gradient” will be extracted from
sub-band images to represent the change rate cross all spectra. Fig. 2 gives a
complex diffusion processed image. It is obvious to see that edges are enhanced
and inside region is well smoothed. In fact, this diffusion process can be seen as
a reconstruction process of piecewise image.

Generalized Gradient. For a multi-spectral/multi-value image I with m chan-
nels, we can regard the imaging process as a function f : R

2 �→ R
m. A point in

(a) (b)

Fig. 2. Result by complex shock filter. (a) The original image. (b) The filtered image
with piecewise property.
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the image is a m-vector. Now, we use the approach named “generalized gradient”
to detect changes in local feature of R

m.
Consider two points P and Q in R

m, i.e. two m-vectors respectively. Difference
between them is Δf = f(P ) − f(Q). When the distance between P and Q is
infinitesimal, i.e. d(P,Q) tending to zero, we can get its squared norm in matrix
notation [15]

df2 =
[
dx1
dx2

]T [
g11 g12
g21 g22

] [
dx1
dx2

]
, (4)

where

gij =
m∑

k=1

∂fk

∂xi

∂fk

∂xj
.

Note that df2 indicates the change rate along direction P −Q. In the directions
of two eigenvector of matrix [gij ], the equation (4) gets two extrema, i.e. the
maximum value and the minimum value respectively. Here [gij ] is a 4 × 4 2-D
matrix, and its eigenvalues are given as follows

λ± =
g11 + g22 ±

√
(g11 − g22)2 + 4g2

12

2
. (5)

and the corresponding eigenvectors are

l± = (cos θ±, sin θ±)T , (6)

where

θ+ =
1
2

arctan
2g12

g11 − g22
+ kπ, and

θ− = θ+ ±
π

2
.

When m, the number of sub-bands, is equal to 1, λ is equivalent to gradient
in the case of 2-D single-value image. Thus, it is called “generalized gradient”.

Replacing ∇I of gradient with λ+, we integrate components of multi-spectral
image information into the geometric model. The change rate in any multi-
spectral image can be described by this method. In our experiments, only Gabor-
filtered images and color RGB images are used.

In order to modify vector field generated by EdgeFlow for the proposed cri-
teria, we use GVF [12] to diffuse vector field of edge flow. The idea of GVF is
to diffuse edge map to get vector field for extending capture range. The GVF’s
diffusion equations are two coupled PDEs:

μ∇2u− (u− Ix)(I2
x + I2

y ) = 0, (7a)

μ∇2v − (v − Iy)(I2
x + I2

y ) = 0. (7b)
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We modify the edge items (I2
x + I2

y ) in (7) as λ+ in sub-band images and set
initial condition of (7) as vector field from EdgeFlow:

μ∇2u− (u− Ex)λ+ = 0, (8a)

μ∇2v − (v − Ey)λ+ = 0, (8b)

where Ex, Ey are x, y component of vector in EdgeFlow.
With integration of EdgeFlow, “generalized gradient”, and complex diffusion,

we give our geometric model with combination of multi-source external forces as

Ct(p) =
(
αg(|∇I|)(κ + c)− β∇g(λ+) · �N + γg(|�F |)

�F

|�F |
· �N

)
�N, (9)

where �F = (u, v)T is the vector field from (8), and α, β, γ are weight coefficients
respectively.

In (9), we integrate the multi-source external forces and the customized vector
field into our model. The second item ∇g(λ+) · �N in right hand side of (9)
incorporates the generalized gradient to utilize multi-spectral information. And
in the last item �F is the vector field force derived from edge flow. The customized
�F offers model the ability to segment the texture-rich and/or complex images.
Furthermore, with a strategy of multi-source external forces and customized
vector field, the proposed model can overcome the drawbacks of conventional
models mentioned in previous section.

4 Experiments

We test our model on the Berkeley Segmentation Database. Any vector field
which satisfies the proposed criteria can be integrated into (9). In test, we choose
EdgeFlow to generate initial vector field (for implementation issues, cf. [8]). Then
by (8), we modify the original edge flow vector field to conform to our criteria, so
the desirable vector field has been constructed. Moreover, to describe the change

(a) (b)

Fig. 3. Segmentation results by EdgeFlow and our method, respectively. (a) The result
of original EdgeFlow. (b) The corresponding result by our method.
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Fig. 4. Some other experimental results by our method

of local feature in multi-spectral image, we use “generalized gradient”. The initial
curves are set manually and a post-process of region merging is adopted in the
test.

See Fig. 3(a), it is the segmentation result by the original EdgeFlow method
[8]. In the middle of the image, we can find the difference between white water
wave and surfing man cannot be well segmented by EdgeFlow. And in the right
upper part of image, the white water wave has the trend to be over-segmented.
Fig. 3(b) shows the corresponding result by our method, and it can be seen that
the proposed method gives a finer segmentation result.

Fig. 4 shows some other examples of segmentation with our method. These
examples have rich texture and complex scene content. Our method still gives
the interesting segmentation results. Although some little defects still exist in
segmentation results, it must be pointed out that segmenting image with texture-
rich content and/or complex scene is a very challenging work.

5 Conclusion

We propose a novel geometric contour model with support of customized vector
field. Multi-source external forces are integrated into model to give high reliable
performance. Contrast with conventional model which can only deal with simple
image, our model can be applied to relatively complex and textural images. We
do tests on Berkeley Segmentation Database and the result is promising.
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Abstract. We focus on spherical shells clustering by a mini-max in-
formation (MMI) clustering algorithm based on mini-max optimization
of mutual information (MI). The minimization optimization leads to a
mass constrained deterministic annealing (DA) approach, which is inde-
pendent of the choice of the initial data configuration and has the ability
to avoid poor local optima. The maximization optimization provides a
robust estimation of probability soft margin to phase out outliers. Fur-
thermore, a novel cluster validity criteria is estimated to determine an
optimal cluster number of spherical shells for a given set of data. The
effectiveness of MMI algorithm for clustering spherical shells is demon-
strated by experimental results.

1 Introduction

Clustering plays an important role in many engineering fields such as pattern
recognition, system modelling, image processing, communication, data mining,
and so on. In most traditional clustering algorithms, the relationship. There is a
whole class of fuzzy clustering algorithms in the literature in which an objective
function based on a distance measure is iteratively minimized to obtain the
final partition. The kinds of partitions they generate or the shapes they detect
depend on either the norm, which is used to define the distances, or the kind of
cluster prototype used. Fuzzy c-shells (FCS) algorithm [3] utilizes spherical shell
as prototype, which has been proved to be successful in detecting the clusters
with hollow interiors, especially for circle shapes. The fuzzy c-spherical shells
algorithm (FCSS) [5] reduces the computational costs of the FCS by introducing
an algebraic (non-Euclidean) distance measure. In this way, the prototypes can
be calculated directly and an algorithm to solve coupled nonlinear equations
need not be used (as in the FCS). Man and Gath developed the fuzzy c-rings
(FCR) [6] for two-dimensional (2D) case, which is computationally much more
efficient than the FCS and suffers not from a highly non-Euclidean distance
measure like the FCSS.

Although there are special algorithms, as e.g., FCS, FCSS and FCR, to detect
and separate spherical shells (ring-shaped data) in the clustering literature, some
special issues like the robustness of the algorithms need further improvement.
As mentioned in [8], the class of objective function clustering algorithms may
suffer from the sensitivity of data initialization. If the cost function used is not

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 224–233, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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convex and has local minima (a typical case), the algorithm may be trapped into
one of them, resulting in a non-optimal partition. Obtaining an optimal parti-
tion with the cost function converging to global minimum, depends on whether
or not a right number of cluster prototypes has been assumed at the beginning
of the algorithm; and it depends also on whether or not these prototypes have
been positioned properly. Some efforts aimed at this non-convex optimization
problem have been made successfully. One of the practical algorithms, the de-
terministic annealing (DA) approach [7] [8], which is independent of the choice
of the initial data configuration and has the ability to avoid poor local optima,
has demonstrated substantial performance improvement for clustering problem
and its extensions over standard supervised and unsupervised learning methods.

In this paper, we focus on the detection and separation of spherical shells by a
mini-max information (MMI) clustering algorithm based on mini-max optimiza-
tion of mutual information (MI), which is basically a two step approach. The
clustering phase, i.e., the minimization of the MI, leads to a mass constrained
deterministic annealing (DA) algorithm [8], in which the annealing process with
its phase transitions leads to a natural hierarchical clustering, resulting in the
independence of the choice of the initial data configuration and the ability to
avoid poor local optima. The robust pruning phase, i.e., the maximization of MI,
provides a robust estimation of probability soft margin to phase out outliers. The
trade-off between the optimal clustered data points and the rejection of outliers is
controlled through a separated parameter. Furthermore, a novel cluster validity
criteria is estimated to determine an optimal cluster number of spherical shells
for a given set of data. The subsequent section contains the derivations of MMI
algorithm. The experimental results of the proposed MMI method are reported
in section 3. Finally, conclusion and discussion are presented in section 4.

2 The Proposed MMI Clustering Algorithm

Assume a given data set X = {x1, x2, . . . , xl} ⊂ Rn consists of c spherical shells
denoted by W = {w1, w2, . . . , wc} with the k(th) prototype wk consisting of two
parameters (vk, rk), where vk ∈ Rn is the center of the sphere and rk ∈ R is the
radius. We borrow the distance measure used in FCSS [5] as the distortion mea-
sure in our MMI method, i.e., the distortion between xj and wk is presented by

d(xj , wk) = pT
k Mjpk + qT

j pk + bj (1)

where bj = (xT
j xj)2, qj = 2(xT

j xj)yj , yj = [xT
j 1]T , Mj = yjy

T
j and pk =

[−2vT
k vT

k vk − r2
k]T . Note that all the variables (vectors or matrix) in (1) are

only related to the input point xj except the parameter pk which is decided by
a pair of parameters, i.e. the center vk and the radius rk.

In view of the information theory (channel capacity and rate-distortion func-
tion [1]), together with the statement in [9] and the deterministic annealing (DA)
approach [7], we propose a mini-max information (MMI) clustering algorithm
for clustering of spherical shells based on the following mini-max optimization
problem:
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FMinMax = min
P (W |X)

max
P (X)

(I(X,W )− sD(X,W )) (2)

where D(X,W ) is the average distortion function defined by

D(X,W ) =
l∑

j=1

c∑
k=1

p(xj)p(wk|xj)d(xj , wk) (3)

and I(X,W ) is the average mutual information which can be written in either
of the two following forms [1]:

I(X,W ) = min
P (W )

l∑
j=1

c∑
k=1

p(xj)p(wk|xj) log
p(wk|xj)
p(wk)

(4)

I(X,W ) = max
P (W |X)

l∑
j=1

c∑
k=1

p(xj)p(wk|xj) log
p(xj |wk)
p(xj)

(5)

where p(xj) ∈ P (X) and p(wk|xj) ∈ P (W |X) denote the source and conditional
forward pmf sets respectively, p(wk) ∈ P (W ) and p(xj |wk) ∈ P (X |W ) denote
the output and conditional backward pmf sets respectively. The parameter s in
(2) is the Lagrange multiplier, which will be substituted by the temperature pa-
rameter T in the minimization optimization and the control parameter λ in the
maximization optimization respectively. We will show below that the minimiza-
tion of (2) against the conditional pmf set P (W |X) leads to the mass constraint
DA clustering algorithm; and the maximization of (2) against the source pmf set
P (X) is critical for the robust estimation to reject the outliers or noise.

2.1 Minimization of Mutual Information

For any fixed unconditional a priori pmf p∗(xj) ∈ P ∗(X) (normally as an equal
distribution in DA approach [8]), the objective function of minimization opti-
mization is given by

FMin = min
P (W |X)

{
l∑

j=1

c∑
k=1

p∗(xj)p(wk|xj)d(xj , wk)

+ T

l∑
j=1

c∑
k=1

p∗(xj)p(wk|xj) log
p(wk|xj)
p(wk)

} (6)

It turns out [8] that the resultant distribution is the titled distribution and is
given by

p(wk|xj) =
p(wk)e−d(xj,wk)/T

c∑
k=1

p(wk)e−d(xj,wk)/T

(7)
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with

p(wk) =
l∑

j=1

p∗(xj)p(wk|xj) (8)

The Lagrange multiplier T is referred as the temperature parameter to control
data clustering procedure as its value is lowered from infinity to zero [8].

Plugging (7) back into (6), the optimal objective function becomes the well-
know energy function as follows

F ∗
Min = −T

l∑
j=1

p∗(xj) log
c∑

k=1

p(wk)e−
d(xj,wk)

T (9)

Minimize the above equation with respect to the prototype wk, we have (detailed
derivation is omitted)

pk =
(

−2vk

vT
k vk − r2

k

)
= −1

2

l∑
j=1

p∗(xj)p(wk|xj)qj

l∑
j=1

p∗(xj)p(wk|xj)Mj

(10)

Note the cluster center vk and radius rk are simultaneously updated by the above
equation.

DA optimization begins by determining the minimum of the free energy F ∗
Min

at high values of T and attempts to track the minimum through lower values of
T , until the global minimum of the free energy at T → 0 coincides with the global
minimum of the original cost function D(X,W ). It is known for DA approach
that during the annealing splits in the cluster representation occur [8]. These
splits are related to qualitative changes in the optimization problem and have
to be taken into account in the annealing process. The critical temperature for
phase transition of kth cluster can be determined by the maximum eigenvalue
of the spherical shell based covariance matrix

T ∗
k = 2λmax(Ck(X,W )) (11)

where Ck(X,W ) is the covariance matrix of kth cluster

Ck(X,W ) =
l∑

j=1

p∗(xj |wk)(xj − vk − rk
xj − vk

‖xj − ck‖
)2 (12)

where p∗(xj |wk) is given by Bayes formula, see (17).

2.2 Maximization of Mutual Information

From the constrained minimization of MI in last subsection, we have obtained
an optimal conditional probability, i.e., likelihood p̄(wk|xj). According to infor-
mation theory, the mutual information can also be maximized against a prior
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p(xi) to gain the maximum capacity in a noisy channel [9] [1], i.e., to maximize
the following objective function

FMax = max
P (X)

{
l∑

j=1

c∑
k=1

p(xj)p̄(wk|xj) log
p(xj |wk)
p(xj)

− λ

l∑
j=1

p(xj)ej} (13)

where λ ∈ [0,+∞) is a separated parameter to control the degree of robustness
against outliers, ej is the expense of using the jth input point, which is given by

ej =
c∑

k=1

p̄(wk|xj)d(xj , wk) (14)

From [1] [2], we know the resultant prior that minimizes FMax is given by

p(xj) =
p(xj)cj

l∑
j=1

p(xj)cj

(15)

where cj is the capacity of the jth input point, which is defined by

cj = exp

(
c∑

k=1

p̄(wk)|xj) log
p̄(wk|xj)
p̄(wk)

− λej

)
(16)

with the posteriori p(xj |wk) obtained through the Bayes formula

p(xj |wk) =
p(xj)p̄(wk|xj)∑l

j=1 p(xj)p̄(wk|xj)
(17)

Note that the mutual information (5) is not negative. However, the individual
item in the sum of the capacity can be negative [1]. If the jth point xj is taken

into account and p(wk|xj) <
l∑

i=1
p(xi)p(wk|xi), then the probability of the kth

prototype is decreased by the observed point and gives a negative information
about xj . Then the particular input point may be considered as an unreliable
point (outlier) and its negative effect must be offset by other input points. There-
fore, the maximization of the mutual information (13) provides a good robust
estimation of the noisy point (outlier) in term that the average information is
over all clusters and input points. The robust estimation and optimization is to
maximize the mutual information against the pmf p(xj) and p(xj |wk), for any
value of j, if p(xj |wk) = 0, then p(xj) should be set equal to zero in order to
obtain the maximum, such that a corresponding point xj can be deleted and
dropped from further consideration in the optimization procedure as an outlier.
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The MMI algorithm determines the degree of robustness and rejects the out-
lier (noisy input points) with maximum capacity by selecting a proper value of
the parameter λ to pruning each input point. As discussed in [9], the robustness
of the proposed algorithm will be increased if a bigger value of λ > 0 is selected,
which implies that more outliers (noisy points) are detected in the robust es-
timation procedure under the constraint of each respective cluster. Note that
the constraint in (13) is against the outliers surrounding the respective cluster
and is not purposely designed for the mutual information maximization: if we
set λ = 0, the MMI algorithm is only interesting in the rejection of inter-cluster
outliers; if we let λ > 0, the algorithm is robust against both inter-cluster and
intra-cluster outliers. The higher value λ is, the more data become outliers.

2.3 Optimal Cluster Number Selection

A natural question of clustering is how many clusters are appropriate for the
description of a given data. Several cluster validity criteria specific for shell-type
clusters, as e.g., shell thickness and shell hyper-volume, have been presented
in the literature [5] [6] [4]. However, as discussed in [4], they may fail in some
instances, especially when there exist noisy points in the data. This makes them
impractical in real applications. We here refer to the statement in [9] to present
a practical cluster validity criteria, based on the structural risk minimization
(SRM) principle [10], to determine an optimal cluster number of spherical shells
for a given data.

According to the information theory [2], a well designed communication chan-
nel should has few unreliable input data points to achieve the capacity. This
implies that a good clustering algorithm with the correct cluster number should
produce few outliers sitting between the underlining nature clusters. However,
few outliers can only guarantee small empirical risk but not real risk (generaliza-
tion) from the view of statistical learning theory. Increasing cluster number (as
the temperature is lowered in MMI clustering) normally reduces the empirical
error but increases the model complexity, a good cluster validity criteria should
make a tradeoff between the empirical risk and model complexity, as the struc-
tural risk minimization (SRM) principle [10] does. We determine the optimal
cluster number by the VC-bound [10] as follows,

Vb ≤ η +
ε

2
(1 + (1 + η

4
ε
))1/2 (18)

with

η = lo/l (19)

ε =
hc(log 2l

hc
+ 1)− log ζ

4

l
(20)

where lo is the number of outliers identified in the maximization optimization
in the last subsection. ζ < 1 is a constant. The VC-dimension of the complexity
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control parameter hc is equal to the number of parameters, i.e., hc = c× (n+1).
The signal to noise ratio η in (19), appeared as the first term of the right hand
side of the VC bound (18), represents the empirical risk and the second term is
the confidence interval of the SRM based estimation. The novel cluster validity
criteria is stated as: by evaluating the estimated VC-bound for each choosing
cluster number by equation (18), we select the one that yields the minimum
value of Vb as the optimal cluster number.

2.4 Pseudo-Code of MMI Algorithm

Based on the implementations of DA approach in [8] and capacity maximization
in [1], we give the detailed pseudo-code of MMI for clustering of spherical shell-
shaped data as follows.

– Step 1) Set the maximum number of clusters cmax, initial temperature
Tini > 2T ∗

1 (see (11)), minimum temperature Tmin = Tini/1000, conver-
gence parameter ε = 0.001, mass probability p(w1) = 1, source distribution
p(xj) = 1

l (j = 1, 2, . . . , l), and c = 1.
– Step 2) Alternatively update (7) (8) and (10) for k = 1,2,. . . ,c (fixed point

iteration) until the maximum change in the prototypes between consecutive
iterations is less than the given threshold value ε.

– Step 3) Set the control parameter 0 ≤ λ < ∞, and initialize distribution
p(xj) = 1

l (j = 1, 2, . . . , l), iteratively update (15) and (16) until

log max
j=1,...,l

cj − log
l∑

j=1

p(xj)cj < ε

is satisfied.
– Step 4) Verify the robust solutions of the MMI algorithm around the optimal

saddle point for a minimum value of the VC-bound (18) within the range
of maximum cluster number cmax. If the minimum is found, then delete
outliers, set T → 0 for the titled distribution to obtain the probability of all
data points for a hard clustering solution. Recalculate the cluster prototypes
without outliers, then stop. Otherwise, go to next step.

– Step 5) If T < Tmin then stop. Otherwise, let T = ηT (0 < η < 1), and check
condition for phase transition for k = 1, 2, . . . , c, if critical T ∗

k is reached for
cluster k (see (11)), add a new cluster prototype by pk+1 = pk + δ with
p(wk+1) = p(wk)/2 and p(wk) = p(wk)/2, where δ is a small disturbance,
let c← c + 1, then go to step 2.

3 Experimental Results

We show the effectiveness of MMI by several simulation results. In all simulation
results, the original data sets are marked by “o” and the partitioned clusters are
displayed by using different marks. The circumferences (determined by centers
and radii) are also plotted by dotted lines “...” for partition result visualization.
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3.1 Effectiveness of Clustering Spherical Shells

We show the effectiveness of MMI for clustering spherical shells by investigating
several complicated cases, which are difficult for existing clustering techniques
like FCS and FCSS algorithm to deal with. Two data sets are considered: the
first one contains six disturbed ring data with identical center but different radii
as shown in Fig.1a; the other one is the combination of compact spherical and
ring-shaped clusters as shown in Fig.1c. The optimal cluster number determined
by VC-bound is 6 for the first data and 3 for the second data, see next example
for detailed discussion of cluster number selection. With the optimal cluster num-
ber, MMI correctly partitions each given data into the original data structure as
shown in Fig.1b and Fig.1d respectively. From the view of classification, there are
0 errors in total 210 data points for the first data and 26 in total 200 data points
for the second data. Note we don’t eliminate the outliers in this example for
visualization convenience. For the second data, the errors can be reduced using
a scaled distance measure for compact spherical data points as discussed in [6].

3.2 Effectiveness of Determining Cluster Number

As discussed above, the optimal cluster number of spherical shells is auto-
determined by VC-bound in MMI algorithm. In most cases, the value of λ is
insensitive to the determination of the optimal cluster number. We set λ as a
constant 0.5 in all experiments if it is not specified.

Concentric Shells. The concentric shell-shaped data consists of three dis-
turbed spherical shells as shown in Fig.3a. We calculate the values of VC-bound
Vb by equation (18) with different cluster number (from 2 to 6) for this data
set as concluded in Fig.2. The partition results of MMI with c = 2, 3, 4 are also
plotted in Fig.3b-d for visualization. As observed from Fig.2 and Fig.3, the VC-
bound finds the optimal cluster number for this data set: Vb reaches minimum
at c = 3, which corresponds to the best partition result.

Intersected Shells. The intersected shell-shaped data contains three disturbed
spherical shells as shown in Fig.4a. We calculate the values of VC-bound Vb by
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Fig. 1. Partition results of MMI with optimal cluster number for two specific data sets
in the first example
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Fig. 2. VC-bound vs cluster number for the data sets in the second example. Vb reaches
the minimum at c = 3 for both data sets.
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Fig. 3. Partition results and VC-bound of MMI with different cluster number c for
concentric shell-shaped clusters in the second example. Vb reaches the minimum at
c = 3 corresponding to the best result.
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Fig. 4. Partition results and VC-bound of MMI with different cluster number c for
intersected shell-shaped clusters in the second example. Vb reaches the minimum at
c = 3 corresponding to the most reasonable result.

equation (18) with different cluster number (from 2 to 6) for this data set as
plotted in Fig.2. The partition results of MMI with c = 2, 3, 4 are also shown in
Fig.4b-d for visualization. Similarly, the VC-bound reveals the optimal cluster
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number for this data set: Vb reaches minimum at c = 3, which corresponds to
the most reasonable result.

4 Conclusion

A novel clustering algorithm for spherical shells detection and separation has
been developed based on mini-max optimization of mutual information (MI).
The new approach offers several improved features over existing clustering al-
gorithms: First, it is independent of the data initialization and has the ability
to avoid poor local optima due to the deterministic annealing (DA) process.
Second, it provides a robust estimation of probability soft margin to phase out
outliers though the maximization optimization of MI against input probability
mass function (pmf). Finally, the optimal cluster number is estimated based on
the structural risk minimization (SRM) principle of statistical learning theory.
The superiority of the proposed clustering method has been tested by experi-
mental results.
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Abstract. In this paper, a novel similarity measure for estimating the degree of 
similarity between two symbolic patterns, the features of which are of interval 
type is proposed. A method for clustering data patterns based on the mutual 
similarity value (MSV) and the concept of k-mutual nearest neighbourhood is 
explored. The concept of mutual nearest neighbourhood exploits the mutual 
closeness possessed by the patterns for clustering thereby providing the 
naturalistic proximity characteristics of the patterns. Experiments on various 
datasets have been conducted in order to study the efficacy of the proposed 
methodology. 

Keywords: Symbolic data analysis, Interval-valued data, k-mutual nearest 
neighbourhood. 

1   Introduction 

Clustering plays a significant role in several exploratory pattern analysis, grouping, 
decision-making, machine learning situations, including data mining, document 
retrieval, image segmentation and pattern classification. Since similarity is the 
fundamental notion in clustering of data, a measure of the similarity between two 
patterns drawn from the same feature space is essential to most of the clustering 
procedures [11]. Among the existing clustering methodologies, the similarity-based 
clustering is a simple but powerful one. The guiding principle of similarity-based 
clustering is “similar patterns are within the same cluster and dissimilar patterns are in 
different clusters”. 

Several clustering algorithms [11] have been proposed for clustering conventional 
data sets of type crisp. However, their application on realistic data may not always 
yield the desired output as, in reality, data sets can appear in the form of continuous 
ratio, discrete absolute, interval, modal, multivalued and also multivalued with 
weights [1], which are very much generic than the conventional data sets. Thus in 
order to make clustering models more realistic to handle complex data, the existing 
conventional distance measures have to be modified or new distance measures that 
can heed such complex data sets have to be proposed. 
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Many similarity and dissimilarity measures were proposed for both conventional as 
well as symbolic data sets. But a few measures for symbolic data of interval type have 
been proposed [2], [4], [5], [7], [8], [9], [12]. The methods proposed in [4], [5] take 
into consideration the span (indicates the relative sizes of feature values without 
referring to common parts between them), position (it indicates the relative positions 
of two feature values on real line) and content (a measure of common parts between 
two feature values). Later some of the drawbacks of [4], [5] were overcome in [7], 
[12]. The dissimilarity measure for interval-valued type data through hyper box model 
representation is proposed in [2]. Multivalued type proximity measure and the 
concept of mutual similarity dissimilarity values for clustering symbolic pattern has 
been explored in [8], [9]. 

It has been observed from the literature survey that most of the conventional 
agglomerative clustering techniques use similarity proximity matrix for clustering 
patterns. The agglomerative clustering merges two patterns, which possess high 
similarity value at each level and continues the merging process until either the 
desired number of clusters is obtained or all the patterns are put into one cluster. 
However, it has been shown that about 62% of the total numbers of individuals in 
random artificial and natural populations are in mutual pairs. This concept of “Mutual 
Nearest Neighbourhood” was introduced [3] and successfully used for agglomerative 
and disaggregate clustering. Thus it is very appropriate to cluster patterns by looking 
at their mutual nearness than just by looking at their proximity matrix. In the proposed 
methodology, the concept of mutual nearest neighbourhood has been extended such 
that two classes of patterns are clustered into one class if all the patterns of both the 
classes are k-mutually nearest neighbours. 

In this paper, we have proposed a novel similarity measure for estimating the 
degree of similarity between two patterns described by interval type data. A method 
of clustering patterns based on the mutual similarity value (MSV) of patterns and the 
concept of k-mutual nearest neighbours is explored. The proposed clustering method 
is based on a two layer clustering strategy. During the first layer, a similarity 
proximity matrix for symbolic patterns based on the proposed similarity measure is 
obtained. A position matrix is created from the similarity proximity matrix based on 
the similarity rank of patterns. The k-mutually-nearest neighbours algorithm is applied 
on the position matrix to obtain clusters of patterns. 

The paper is organised as follows. Section 2 presents a novel method for estimating 
the degree of similarity between two symbolic patterns and a method of clustering 
symbolic patterns based on the proposed similarity measure and the concept of k-
mutually nearest neighbours. Section 3 presents the results of the experiments 
conducted on variety of data sets to reveal the efficiency of the proposed 
methodology. Section 4 presents a comparative study with few well-known methods 
and finally the conclusion is given in section 5. 

2   Proposed Methodology 

In this section we introduce a novel method of computing the degree of similarity 
among symbolic patterns whose features are of interval type. Subsequently, a novel 
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method of clustering symbolic patterns based on the mutual similarity value (MSV) 
and the concept of k-mutually nearest neighbours is presented. 

2.1   A Novel Similarity Measure 

In this subsection, we explain in detail a new symbolic similarity measure which 
estimate the degree of similarity between two patterns described by interval valued 
features.  

Let [ ] [ ] [ ]{ }+−+−+−= ininiiiii ffffffF ,,...,,,, 2111  and [ ] [ ] [ ]{ }+−+−+−= jnjnjjjjj ffffffF ,,...,,,, 2111  

be the two symbolic patterns described by n interval valued features. Here −f  is the 

lower limit and +f is the upper limit of the interval. 

Since we use the concept of mutual similarity between patterns for clustering, we 
first estimate the degree of similarity ( jiS → ) from the pattern iF  to the pattern jF  

and the degree of similarity ( ijS → ) from the pattern jF  to the pattern iF . Then the 

mutual similarity value (MSV) between the patterns iF  and jF  is defined to be the 

average of jiS →  and jiS → .  

The degree of similarity from iF  to jF  with respect to their lth feature component is 

estimated based on degree of overlapping between their lower and upper limits of the 

intervals. If the interval [ ]+−
ilil ff ,  describing the lth feature component of iF  is 

contained in the interval [ ]+−
jljl ff ,  describing the lth feature component of jF  then the 

degree of similarity from iF  to jF  is taken as 1, otherwise it is given by the average 

degree of similarity between their respective lower and upper limits. 
Thus, the degree of similarity from iF  to jF  with respect to their lth  feature is 

given by        
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Similarly, degree of similarity from jF  to iF  with respect to their lth  feature is 

given by       
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where  is the normalising factor, which is set to 0.1 for absolute values of features >1 
and set to 1.0 for absolute values of features  <1. 
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The mutual similarity value (MSV) between iF  and jF  with respect to lth feature is 

given by 

                                      ( ) [ ]
2

,
l

ij
l

ji
jlil

SS
FFMSV

←→ +
=                                       (3) 

It shall be noticed that if the intervals are one and the same then the MSV between 
them is 1 (maximum); otherwise the similarity value depends on the extent to which 
the intervals are separated. More the extent to which they are separated less shall be 
the degree of similarity. 

Once the degree of mutual similarity between two patterns with respect their lth 
feature is computed then the overall degree of similarity between the patterns iF  and 

jF  with respect to all n features is given by 

                                 ( ) ( )
=

=
n

l
jlilji FFMSV

n
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1

,
1

, .                                  (4) 

2.2   Clustering of Symbolic Patterns 

In order to cluster symbolic patterns described by interval-valued features, we first 
compute the degree of mutual similarity among all symbolic patterns using the 
proposed similarity measure as explained in the section 2.1 and a similarity proximity 
matrix is obtained. A position matrix of size (r x r) for all r patterns is created based 
on the descending order of their similarity. The position matrix gives the nearness 
position of patterns in terms of their similarity rank. The concept of k-mutual nearest 
neighbours, based on their position in the position matrix, is employed to cluster 
patterns, which are k-mutually nearest neighbours. In a position matrix, if the pattern 
Pi is the k-nearest neighbour of the pattern Pj , and the pattern Pj is the k-nearest 
neighbour of the pattern Pi , then  Pi and Pj  are said to be k-mutually nearest 
neighbours. This idea of k-mutually-nearest neighbours is successfully applied in our 
clustering procedure. According to this idea, if m patterns are put into one cluster then 
all those m patterns must be k-mutually nearest neighbours. The value of k is set to 2 
initially and incremented by 1 each time until either we get desired number of clusters 
or the all patterns are put into a single cluster. Thus the proposed method of clustering 
symbolic patterns can be algorithmically expressed as follows. 

 
Algorithm: Clustering-Symbolic-Patterns 
Input: Interval-valued symbolic patterns (P1,P2, P3,…, Pr)   
Output: Clusters of symbolic patterns (C1, C2,…,Cm) 
Method:   

1. Obtain similarity proximity matrix for r patterns using the proposed similarity 
measure. 

2. Create a position matrix of size (r x r) for all patterns based on the descending 
order of their similarity. 
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3. Let C={C1, C2, …,Cr}, initially contain r number of clusters each containing 
individual pattern. 

4. Set number of clusters (noc) to r.  
5. Set k to 2.   
6. Merge two clusters Cu and Cv, if all the patterns in Cu and Cv are k-mutual 

nearest neighbours.  
7. Decrement noc, the number of clusters by 1. 
8. Increment k by 1. 
9. Repeat steps 6 to 8 until either the desired number of clusters is obtained or all 

the patterns are put into single cluster i.e., noc=1. 

Algorithm Ends 

3   Experimental Results 

We have conducted several experiments on variety of data sets to validate the 
efficiency of the proposed methodology. In this section we present the clustering 
results on a few well-known data sets. 

3.1   Experiment 1  

The first experiment is conducted on Ichino’s fat oil data, which has been used by 
several researchers as a typical example of a data set involving interval-valued 
features. It is composed of eight patterns described by four interval-valued features 
[10]. The proposed similarity measure is employed on the data set to estimate the 
degree of similarity and the similarity matrix is obtained (see Table 1). Based on the 
similarity matrix, a position matrix, which gives the relative nearness of patterns in 
the descending order of similarity, is created (see Table 2). The concept of k-mutual 
nearest neighbourhood is employed on the position matrix and the dendrogram 
representation of the cluster formed is shown in the Fig. 1. A dendrogram is a special 
type of tree structure that provides a convenient picture of a hierarchical clustering 
[11]. It consists of layers of nodes, each representing a cluster and lines connecting 
nodes to represent clusters which are nested into one another. Cutting dendrogram 
horizontally creates a clustering.  

Table 1. Similarity matrix for Fat Oil data 
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Table 2. Pattern matrix obtained based on the similarity rank 

Similarity Positions Pattern 
Number 1 2 3 4 5 6 7 8 

P1 P1 P2 P5 P4 P6 P3 P7 P8 
P2 P2 P1 P4 P3 P6 P5 P7 P8 
P3 P3 P4 P6 P5 P2 P1 P7 P8 
P4 P4 P3 P6 P2 P5 P1 P8 P7 
P5 P5 P6 P3 P1 P4 P2 P8 P7 
P6 P6 P5 P3 P4 P2 P1 P8 P7 
P7 P7 P8 P3 P6 P5 P2 P4 P1 
P8 P8 P7 P6 P5 P3 P2 P4 P1 

 

Fig. 1. Dendrogram representation of the clusters formation at various levels for Fat Oil data 
shown in the Table 1 by the proposed methodology 

From Fig. 1, we can observe that the patterns {1, 2}, {3, 4}, {5, 6} and {7, 8} are 
2-mutually nearest neighbors (k=2). That means, the pattern 2 is in the second 
position according to similarity rank for the pattern 1. Similarly, the pattern 1 is in 
the second position according to similarity rank for the pattern 2. One can notice 
this fact from the similarity matrix shown in Table 1and the position matrix shown 
in Table 2. Thus the patterns {1, 2} are clustered in the first level itself 
(dendrogram). The above argument is true for the patterns {3, 4}, {5, 6} and {7, 8}.  
The Patterns {3, 4} and {5, 6} are 5-mutually nearest neighbors (See Table 2) and 
hence they are clustered in the second level (for k=5) as shown in the dendrogram 
(Fig. 1). As there are no patterns, which are mutually nearest neighbors for k=3 and 
k=4, no patterns are merged for k=3 and k=4. The patterns {3, 4, 5, 6} and {1, 2} 
are 6-mutually nearest neighbors and are clustered at the level 3. No clusters are 
formed for (k=7) and finally we get a single cluster at the level 4 for k=8. We can 
cut the dendrogram at any level and realize the clusters depending on the desired 
number of clusters.  

3.2   Experiment 2 

We have also conducted an experiment on the data set given in [10] on microcomputers. 
The data set describes a group of microcomputers consisting of 12 patterns. Each 
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pattern has five features. Two of the features are qualitative (Display and 
Microprocessor) and the rest are quantitative (RAM, ROM and Keys). The similarity 
proximity matrix for this data set is given in the Table 3. The dendrogram 
representation of the clusters formed at various levels is shown in Fig. 2. The proposed 
algorithm resulted in two clusters {1, 2, 3, 4, 5, 6, 8, 9, 10, 11,12} and {7}. 

 

Table 3. Similarity matrix for Microcomputer data 

 

 

Fig. 2. Dendrogram representation of the clusters formation at various levels for Microcompu-
ter data shown in the Table 4 by the proposed methodology 

3.3   Experiment 3 

In order to study the effectiveness of the proposed clustering methodology, we have 
conducted an experiment to cluster cities based on the temperature data used in [8], 
[9]. According to human observers [8], [9], two types of clusters are suggested. 
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Type1 

 
Cluster-1:  {2, 3, 4, 5, 6, 8, 11, 12, 15, 17, 19, 22, 23, 29, 31}                            
Cluster-2:  {0, 1, 7, 9, 10, 13, 14, 16, 20, 21, 24, 25, 26, 27, 28, 30, 33, 34, 35, 36} 
Cluster-3:  {18}      Cluster-4:  {32}       

Type2 

Cluster-1:  {2, 3, 4, 5, 6, 8, 12, 15, 17, 18, 19, 22, 23, 29, 31}                            
Cluster-2:  {0, 1, 7, 9, 13 14, 16, 21, 24, 25, 26, 27, 28, 33, 34, 35, 36} 
Cluster-3:  {10}      Cluster-4:  {11}      Cluster-5:  {18}       Cluster-6:  {20}       
Cluster-7:  {30}      Cluster-8:  {32}       

 
The proposed algorithm produced two clusters; cluster1: {2, 3, 4, 5, 6, 8, 11, 12, 

15, 17, 18, 19, 22, 23, 29, 31} and cluster2: {0, 1, 7, 9, 10, 13, 14, 16, 20, 21, 24, 25, 
26, 27, 28, 30, 33, 32, 34, 35, 36}. It can be observed that the method has produced 
clusters of Type1 as mentioned above. But the method could not classify cities 18 and 
32 into separate clusters according to human observers’ criteria. However, these cities 
are merged with cluster1 and cluster2 respectively at later stage. When we observe the 
temperature variation of Mauritius and Manila [8], [9], one can accept the possibility 
of classifying Mauritius (city 18) into a cluster where Manila (city 17) has already 
been classified. Similar argument is applicable to Tehran (city 32) as its temperature 
variation is similar to Frankfurt (city 9). Though our method could not produce finer 
classification as suggested by the human observers, the clusters obtained by the 
proposed methodology agree with the clusters suggested by the panel of human 
observers except cities 18 and 32. Hence, this experiment reveals the realistic nature 
of the proposed methodology. 

4   Comparison and Discussion 

In order to validate the correctness, we have compared the results of the proposed 
method with that of other available methodologies. For this purpose we have 
considered six methodologies which are listed in Table 4. 

Table 4 summarizes the results obtained through the applications of all the seven 
methodologies including the proposed methodology on two different data sets viz., 
Fats and Oils data and Microcomputer data, as the results on these two data sets are 
studied by all the six methodologies. Since the temperature data is not considered by 
all the six methodologies, it is not included in Table 4. However, the experimentation 
has revealed that on temperature data, the proposed method has high consistency with 
human perception. 

It can be noticed in Table 4 that the fats and oils patterns are either grouped into  
2 clusters or into 3 clusters. The methods [5], [7], [8] have grouped the patterns into 2  
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Table 4. Results based comparison 

Fats and oils Microcomputer Methodology 

Description at 2 
Clusters level  

Description at 3 
Clusters level  

Description at 2 
cluster level 

Description at level 
more than or equal to 

3 clusters 

Ichino and 
Yaguchi (1994) 

{1,2,3,4,5,6} 
{7,8} 

{1,2} {3,4,5,6} 
{7,8} 

{1,2,3,4,5,6,8,910,1
1,12}  {7} 

{1,2,3,9,10} 
{4,5,6,8,11,12} {7} 

Gowda and Ravi 
(1995(a)) 

Not available {1,2} {3,4,5,6} 
{7,8} 

Not available {1,2,4,6,8,9,10,11,12} 
{3} {7} {5} 

Gowda and 
Diday (1991) 

Not available {1,2} { 3,4,5,6} 
{7,8} 

Not available { 1,2,4,10,11} {7} 
{3,9} {5,6,12} {8} 

Gowda and 
Diday (1992) 

{1,2,3,4,5,6} 
{7,8} 

Not available Not available {1,2,10,11} {7} {3,9} 
{4,5,6,8,12} 

Gowda and Ravi 
(1995(b)) 

{1,2,3,4,5,6} 
{7,8} 

Not available {1,2,3,4,5,6,8,9,10,1
1,12}  {7} 

Not available 

Guru et al. 
(2004) 

{1,2,3,4,5,6} 
{7,8} 

{1,2} {3,4,5,6} 
{7,8} 

{1,2,3,4,5,6,8,9,10,1
1,12}  {7} 

{1,2,3,4,9,10,11} 
{4,5,7} {6} {11} 

Proposed 
method 

{1,2,3,4,5,6} 
{7,8} 

{1,2} {3,4,5,6} 
{7,8} 

{1,2,3,4,5,6,8,910,1
1,12}  {7} 

{1,2,3,4,8,9,10,11}  
{7} {5,6,12} 

 
clusters ({1,2,3,4,5,6},{7,8}) and the methods [6], [4] have grouped the patterns into 
3 clusters ({1,2}, {3,4,5,6}, {7,8}) based on their own cluster indicator function 
which acts as a stopping criterion. The entries not available in the Table 4 denote that 
the corresponding result has not been shown in the respective research work. We have 
not computed the same during experimentation as those methodologies require a prior 
knowledge of the number of samples in each pattern, which is indeed a real drawback 
of those approaches. Authors [10] have given the clustering of samples grouped into 2 
clusters and as well as the samples grouped into 3 clusters. When our method is 
employed on the fats and oils data and the dendrogram (Fig. 2) is cut at the level of 3 
clusters, the results are same as that of all the methods which yield 3 clusters [10], [6], 
[4], [8] and when agglomeration is allowed to continue upto 2 clusters then the result 
obtained is exactly same as that of the methods which yield 2 clusters [10], [5], [7], 
[8]. This shows consistency in the results of all the considered and our method on the 
fats and oils data. 

It can also be noticed from Table 4 that the results obtained on Microcomputer data 
through all the 6 approaches are entirely different except the results of the methods 
[10], [8] and [7]. In the work [5], it is stated that no consistency can be expected on 
Microcomputer data. However, our method has resulted with 2 clusters, which are 
same as that of the methods [10], [8] and [7] encouraging their results. 
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5   Conclusion 

In this paper, a new similarity measure useful for clustering of symbolic patterns is 
proposed. The concept of k-mutually nearest neighbours used for clustering patterns 
provides a realistic insight into the closeness among patterns in a cluster. One can 
accept the idea that two set of patterns are grouped together to form a single cluster 
only when all the patterns in both the clusters are k-mutually nearest neighbours and 
this fact can be revealed by the results of the proposed methodology on standard data 
sets. The efficacy of the proposed methodology is experimentally established and its 
validity is tested by comparing with the well-known methodologies.  
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Abstract. In this paper, we propose a new method for image classi-
fication, in which matrix based kernel features are designed to capture
the multiple similarities between images in different low-level visual cues.
Based on the property that dot product kernel can be regarded as a sim-
ilarity measure, we apply kernel functions to different low-level visual
features respectively to measure the similarities between two images,
and obtain a kernel feature matrix for each image. In order to deal with
the problems of over fitting and numerical computation, a revised ver-
sion of Two-Dimensional PCA algorithm is developed to learn intrinsic
subspace of matrix features for classification. Extensive experiments on
the Corel database show the advantage of the proposed method.

1 Introduction

With image data growing rapidly, how to efficiently manage and browse im-
ages is an urgent and challenging problem. Image classification is an important
technique for image browsing and retrieval in a large database [1], [2].

As a typical pattern recognition problem, image classification has two key
issues, i.e., feature extraction and classifier selection based on extracted features.
Most previous studies concentrate on designing the classifier, and directly take
low-level visual cues as features, such as color, shape and texture [1], [2], [3].
Different feature vectors are concatenated end to end and form the feature vector
of the image. The similarity between two images is usually measured in the
Euclidean space with these feature vectors. Zheng, et al, propose using local
preserving projection (LPP) [4], [5] to capture the local manifold of the images,
but LPP is a linear approach in nature. Practically, as for some complex image
data, especially nature images, there exist complex nonlinear variations, which
will degrade the performance of the classification methods.

Kernel Principal Component Analysis (KPCA) is a good nonlinear analysis
method, which is actually a nonlinear version of Principal Component Analysis
(PCA). Its idea is to first map the input data into an implicit feature space by a
nonlinear mapping, and then the data are analyzed in the implicit feature space
[6]. KPCA has been widely used in practical data analysis [6], [7], [8]. The new
method proposed in this paper is inspired by KPCA.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 244–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We first give a new perception of KPCA. It can be regarded as having two
independent steps: kernel feature extraction and PCA on the kernel features
[9]. Kernel feature vector of an image can be calculated as follows: construct an
vector with kernel dot products between the image and all the training images
first, and then center the vector by subtracting its mean value. Based on this
perception, a scheme of matrix based kernel features for image classification is
proposed. Since in image classification and retrieval, images are often described
by multiple visual cues, such as color, shape and texture, if kernel dot products
between two images on different visual cues are computed respectively, we can
get a dot product vector between two images, and the kernel feature vector of
an image becomes a kernel feature matrix. From the view that the kernel dot
product being a similarity measure [10], [11], the kernel feature matrix provides
a strategy to measure the multiple similarities between the image and training
images, which should be more precise for image classification. In order to deal
with the problem of the evaluation of eigenvectors, a revised version of Two-
Dimensional PCA (2DPCA) [12] is developed to learn the intrinsic subspace of
image feature matrices. Extensive experiments on the Corel database show that
the proposed method has an encouraging performance.

The rest paper is organized as follows: a new perception of KPCA is given in
Section 2, and we present the proposed image classification scheme in Section 3.
The experiments are reported in Section 4, followedby the conclusions in Section 5.

2 Kernel Principal Component Analysis

The idea of KPCA is first to map the input data {xi}N
i=1 into an implicit feature

space F by a nonlinear mapping φ, and the PCA is performed in F to get
the nonlinear principal components of the input data [6]. It is unnecessary to
know the mapping φ explicitly, and we only need to calculate the dot product
between implicit features vectors {φ(xi)}N

i=1 with a kernel function that satisfies
Mercer’s theorem [6]. Gaussian kernel is used in this paper for its popularity in
image classification and retrieval [13], [14], and its definition is as follows:

k(x1,x2) = (φ(x1) · φ(x2)) = exp
(
−γ ‖x1 − x2‖2

)
. (1)

For the following analysis, we define some symbols first. X = [x1,x2, · · · ,xN ]
is the training set. The matrix Φ(X) = [φ(x1), φ(x2), · · · , φ(xN )] is the mapping
of training set in implicit feature space F . The Gram matrix K=[K1,K2,· · ·,KN ],
where the column vector Ki is composed of dot products between φ(xi) and all
the training set in F , i.e., Ki = (k(xi,x1), k(xi,x2), · · · , k(xi,xN )). It can be
seen that K is symmetrical.

KPCA is equivalent to solving the problem of eigenvectors and eigenvalues of
covariance matrix C of {φ(xi)}N

i=1 [6].

C =
1

N − 1
(Φ(X)−Φ(X)1N )(Φ(X) −Φ(X)1N )T , (2)
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where 1N is an N × Nmatrix with each entry equals 1/N . Let W = [w1,
w2, · · · ,wE ] denotes the unitary eigenvector matrix of C, where w1,w2, · · · ,wE

are unitary eigenvectors corresponding to positive eigenvalues λ1, λ2, · · · , λE , we
get

1
N − 1

WT (Φ(X) −Φ(X)1N )(Φ(X) −Φ(X)1N )T W = Λ , (3)

where Λ = diag(λ1, λ2, · · · , λE).
Since any eigenvector wi with eigenvalue λi must lie in the span of {φ(xi)}N

i=1
[6], we have

W = (Φ(X)−Φ(X)1N )A , (4)

where A = [α1, α2, · · · , αE ] is a N × E matrix called eigenvector expansion
coefficient matrix, and wi = (Φ(X) −Φ(X)1N )αi.

Combining (3) and (4), and because ΦT (X)Φ(X) = K, we get

1
N − 1

AT (K̄− K̄1N )(K̄− K̄1N )T A = Λ , (5)

where K̄ = K−1NK. In fact, each column of K̄ equals the corresponding column
of K̄ subtracting its mean value, so we call K̄ centered Gram matrix. Thus, the
solution of equation (5) is equivalent to solving the eigenvectors and eigenvalues
of the covariance of K̄. Finally we normalize α1, α2, · · · , αE in order to make
(wi · wi) = 1. Note that K̄ − K̄1N is symmetrical and all of its eigenvalues
are nonnegative, it can be proved that any eigenvector αi of (K̄ − K̄1N )(K̄ −
K̄1N )T /(N −1) with eigenvalue λi is eigenvector of (K̄− K̄1N ) with eigenvalue√

(N − 1)λi. So the normalization condition is as follows:

1 = (wi ·wi) = ((Φ(X) −Φ(X)1N )αi · (Φ(X)−Φ(X)1N )αi)

= αT
i (K̄− K̄1N )αi

=
√

(N − 1)λi(αi · αi) =
√

λ′
i(αi · αi)

, (6)

where λ′
i is the eigenvalue of (K̄− K̄1N)(K̄− K̄1N )T .

As for test samples T = [t1, t2, · · · , tL], their projections in KPCA subspace
are

Y = WT (Φ(T) −Φ(X)1′
N ) = WT Φ(T) −WT Φ(X)1′

N , (7)

where 1′
N is the N ×L matrix with each entry equals 1/N . Since all columns of

WT Φ(X)1′
N are identical, it is irrelevant for classification problem when using

Euclidean distance. Combining (4) and (7) we get

Y = WT Φ(T) = AT (Φ(X)−Φ(X)1N )T Φ(T) . (8)

Define matrix Ktest = (k(xi, tj))N×L for test points, and then we get

Y = AT (Ktest − 1NKtest) = AT K̄test , (9)

where K̄test = Ktest − 1NKtest.
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From the description above, we can see that KPCA is equivalent to solving the
eigenvectors and eigenvalues of covariance of centered Gram matrix K̄. So KPCA
can be regarded as having two independent steps: kernel feature extraction and
PCA on the kernel features. Dot product vector of an image is composed of kernel
dot products between the image and all the training images, and then the kernel
feature vector of the image is the dot product vector by subtracting its mean
value. PCA is then performed on the kernel feature vectors to get the eigenvector
expansion coefficient matrix A. The only difference is we need to normalize the
coefficients according to (6). The projections of test data in KPCA subspace are
Y = AT K̄test.

3 Matrix Based Kernel Feature for Image Classification

Based on this new perception of KPCA, we extend the kernel feature vectors of
images to kernel feature matrices to measure multiple similarities between two
images.

3.1 Matrix Based Kernel Feature

In KPCA, kernel dot product is used to capture the similarity between two im-
ages. But this description is not sufficient when the feature vectors of the images
contain several kinds of low-level features, because it only tells the general sim-
ilarity rather than individual ones in each kind of low-level visual cues. Since
in image classification and retrieval, images are often represented by multiple
visual cues, such as color, texture and shape, we perform kernel dot products
on different visual cues respectively, and get a dot product vector between two
images. This vector describes similarities in different visual cues rather than
one general similarity between images. So the kernel feature vector of the image
in KPCA becomes a kernel feature matrix. Assuming that there are p visual
cues to represent images, the kernel feature matrix Mi of image is defined as
follows:

Mi =

⎡⎢⎢⎢⎣
k1(x1

i ,x
1
1) k2(x2

i ,x
2
1) · · · kp(x

p
i ,x

p
1)

k1(x1
i ,x

1
2) k2(x2

i ,x
2
2) · · · kp(x

p
i ,x

p
2)

...
...

. . .
...

k1(x1
i ,x

1
N ) k2(x2

i ,x
2
N ) · · · kp(x

p
i ,x

p
N )

⎤⎥⎥⎥⎦ , (10)

where kp is the dot product kernel function for the p-th visual cue, xj
i is the

j-th visual cue of the i-th image. We call Mi the matrix based kernel fea-
ture.

From the view that the dot product kernel is a similarity measure function, the
matrix based kernel feature provides a multi-similarity representation, i.e., we
can get p levels of similarities between the image xi and all the training images,
which should be more precise than the kernel feature vector in traditional KPCA.

Corresponding to the centering of vector Ki in KPCA, we center each column
of Mi in the same way and get centered kernel feature matrix M̄i.
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3.2 Revised Two-Dimensional PCA

Following the traditional KPCA, we have to reshape M̄i into a vector with N×p
elements first, and then perform PCA. However this reshaping lead to expensive
computation due to dimension increasing by p times. For example, if there are
1000 training samples and 10 similarities between two images, then the number
of dimension becomes 10000. Fortunately, the eigenvectors can be calculated
efficiently using the SVD techniques [15], [16], and the process of generating
the covariance matrix is actually avoided. But it is difficult to evaluate the
covariance matrix accurately due to its large size and relatively small number
of training samples. The eigenvectors cannot be obtained accurately, since they
are determined by the covariance matrix. We revise 2DPCA algorithm proposed
in [12] to deal with this problem.

As opposed to conventional PCA, 2DPCA is based on 2D matrices rather
than 1D vectors. That is, the centered kernel feature matrix does not need to
be previously transformed into a vector, a covariance matrix can be constructed
using kernel feature matrices directly.

Let {Bi}N
i=1 denote the training data, 2DPCA is to project Bi by a transform

matrix X:
Zi = BiX . (11)

Since the total scatter of the projected samples can be characterized by the trace
of covariance matrix G of them, the following criterion is adopted to maximize
the discriminating power of the projection X:

J(X) = trace(
1

M − 1

N∑
i=1

(Zi − μ)T (Zi − μ)) = XT GX , (12)

where μ is the mean matrix of all Zis. The optimal projection Xopt = [X1,X2, · · · ,XE ]
is a matrix with each column as a unitary vector that maximize J(X), i.e., the
eigenvectors of G corresponding to the first several largest eigenvalues [17].

We may take centered kernel feature matrices
{
M̄i

}N
i=1 as training set {Bi}N

i=1

and perform 2DPCA directly, or transpose
{
M̄i

}N
i=1 to get

{
M̄T

i

}N
i=1 first, and

perform 2DPCA. The latter scheme is adopted in this paper for its similarity
to KPCA. Because each column of M̄i corresponds to centered kernel feature
vector K̄i in KPCA, and the projections of the samples in KPCA subspace are
the inner products between

{
K̄i

}N
i=1 and eigenvectors of covariance matrix C.

It seems more reasonable to calculate inner products between column of M̄i and
eigenvectors of G. Finally, the eigenvectors in Xopt are normalized according to:√

λi(Xi ·Xi) = 1 , (13)

where λi is eigenvalue corresponding to eigenvector Xi.
For test points T = [t1, t2, · · · , tL], kernel feature matrix Mtest and its cen-

tered version M̄test can be calculated, the projections of test points are:

Z =
(
M̄test
)T

X . (14)
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4 Experiments

4.1 Experimental Data

We test the proposed method on the Corel image database. Our dataset contains
6000 images with 60 categories randomly selected from the Corel database. Each
category with 100 manually labeled images are used as ground truth.

Four kinds of visual features are used in this paper to represent the im-
ages: color histogram, color moments, wavelet based texture and orientation
histogram. Color histogram is taken in HSV space with quantization of 8×4=32
bins on H and S channels. The first three moments from each of the three color
channels are used for color moment. a 24-dimensional PWT based wavelet tex-
ture features and an 8-dimensional orientation histogram are contained to con-
struct an 73-dimensional feature vector for each image. Each feature component
is normalized, s.t. variance of each equals 1.

4.2 Experimental Results

In our experiments, five subspace learning algorithms including the proposed
method are compared. They are:

PCA: This means performing PCA directly on original 73-dimensional visual
features.

KPCA: The Gaussian kernel is used, and we investigate the kernel parameter
in [0.001, 1] and find γ = 0.08 gives the best performance.

The proposed method: We note it as MSPCA for simplicity. Since each image
is represented by four kinds of visual cues, we perform four kernel functions
to compute the kernel dot products between two images on each visual cue
respectively. For each image, a matrix based kernel feature is obtained. The
revised 2DPCA is applied to these features then. For simplicity, we adopt four
Gaussian kernels with same parameters. By investigation of the kernel parameter
in [0.001, 1], the performance of MSPCA is maximized when γ = 0.5.

LKPCA: As mentioned above in 3.2, after matrix based kernel features are
calculated, we can reshape them into vectors first, and then perform PCA on
them. The kernel functions used here are the same as in MSPCA.

LPP: The code of LPP is downloaded from http://people.cs.uchicago.edu/
∼xiaofei/. The number of nearest neighbors N is set to 10 as in [4].

For the output of the above algorithms, the nearest neighbor classifier is used
for classification.

We test the algorithms on several different subsets of the database. Each
subset is a mixture of k categories, where k varies between 2 and 10. For each
category number k, 200 subsets are randomly selected from the database.

Two groups of experiments are designed. The first one is designed to compare
the performance of the five algorithms. For each subset, all the images are used
as training data, and 75 images of each category are used as gallery, and the rest
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Fig. 1. Classification results comparison among PCA, KPCA, MSPCA, LKPCA and
LPP

25% images are used as probe. Fig. 1 shows the experimental results, where the
classification accuracies are their average on 200 subsets.

From Fig. 1, we can see that the propose algorithm, i.e., MSPCA has the best
performance, followed by LKPCA, which uses the information of multiple simi-
larities too. Since it is difficult to evaluate the covariance matrix accurately with
relatively small training set in LKPCA, the accuracies are always lower than
MSPCA. PCA outperforms KPCA when category number k varies from 2 to 8.
Because the training set becomes more complicated with the increase of k, the
performance of PCA is limited by its nature of linearity. That is why nonlinear
KPCA has better results when k equals to 9 or 10. LPP fails in this experiment.

In order to further evaluate the performance of the proposed method, we con-
duct statistical tests between the proposed method and the other four methods.
Since it is hard for us to know the distributions of the accuracies, non-parametric
Wilcoxon’s signed rank test (one-sided) for two related samples is adopted. We
conducted tests between the results of the algorithms for each category number
k respectively. The null hypothesis H0 is the result of the proposed method has
the same distribution as the result of algorithm A, where A is PCA, KPCA,
LKPCA or LPP. The p-value of each tests are shown in Table 1.

Except for three tests (cells with italics), all p-values are less than 0.05, which
means most of our tests show that there are significant differences between the
accuracies of the proposed algorithm and four other algorithms respectively.
Because the mean accuracies of MSPCA are always higher, MSPCA is considered
better than other four algorithms at most of the time. Exceptions of the tests
between PCA and MSPCA when k equals to 2 or 3 are probably due to the
simplicity of training set, and adoption of kernel method such as MSPCA doesn’t
make much sense. But the average accuracies of MSPCA are still higher than
those of PCA.

The second group of experiments is to test the generalization capability of the
proposed method. 50 images of each category are used as training data and as
gallery, and the rest 50% are used as probe. As in the first group of experiments,
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Table 1. P-values of hypothesis tests between the proposed method and four other
algorithms respectively based on the first type of experiments. “<2.2e-16” means “less
than 2.2e-16”.

k PCA KPCA LKPCA LPP
2 0.1528 1.060e-8 0.09754 6.965e-10
3 0.05294 5.566e-8 0.01381 <2.2e-16
4 0.005604 5.318e-9 0.02485 <2.2e-16
5 4.182e-7 5.039e-7 1.594e-7 <2.2e-16
6 2.737e-7 5.822e-8 0.004422 <2.2e-16
7 2.146e-8 4.92e-11 0.002100 <2.2e-16
8 1.777e-8 3.231e-10 0.0001069 <2.2e-16
9 <2.2e-16 3.272e-10 0.001384 <2.2e-16
10 4.113e-13 2.33e-11 0.001259 <2.2e-16

Fig. 2. Generalization capability comparison among PCA, KPCA, MSPCA, LKPCA
and LPP

five algorithms are performed on 200 subsets and their average classification
accuracies are calculated. The comparison of the result is shown in Fig. 2.

These experimental results are similar to the results of the first group. MSPCA
is the best, followed by LKPCA. This shows the good generalization capability
of MSPCA. When the number of categories is small (no more than 8), linear
PCA outperforms KPCA. For more complicated data set, KPCA is preferred to
PCA. LPP also fails.

We conducted Wilcoxon’s signed rank tests between the results of the algo-
rithms too, for each k respectively. The p-value of each tests are shown in Table 2.

All p-values but one (the cell with italics) are small enough to show that
the performance of MSPCA is better than the other four methods when using
out-of-sample data, which show its good generalization capability again. When
number of categories k equals 2, test between PCA and MSPCA fails to reject
the null hypothesis. It is probably due to the simplicity of the image set. But
the mean accuracy of MSPCA is still higher than PCA.
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Table 2. P-values of hypothesis tests between the proposed method and four other
algorithms respectively based on the second type of experiments

k PCA KPCA LKPCA LPP
2 0.07667 <2.2e-16 0.001222 <2.2e-16
3 3.887e-5 <2.2e-16 3.031e-5 <2.2e-16
4 3.496e-7 <2.2e-16 2.951e-7 <2.2e-16
5 4.169e-12 <2.2e-16 8.771e-10 <2.2e-16
6 <2.2e-16 <2.2e-16 9.518e-8 <2.2e-16
7 <2.2e-16 <2.2e-16 3.009e-9 <2.2e-16
8 <2.2e-16 <2.2e-16 1.415e-12 <2.2e-16
9 <2.2e-16 <2.2e-16 6.566e-9 <2.2e-16
10 <2.2e-16 <2.2e-16 4.781e-10 <2.2e-16

5 Conclusions

In this paper, we conceive a new perception of KPCA, i.e., it can be regarded as
having two separated steps: kernel features extraction and PCA based feature
analysis. Dot product vector of an image is composed of kernel dot products be-
tween the image and all the training images, and then the kernel feature vector
of the image is the dot product vector by subtracting its mean value. Based on
this perception, we propose a new scheme of the matrix based kernel features
for image clustering. With four kinds of visual cues, i.e., color histogram, color
moment, wavelet based texture, and orientation histogram, we perform a dot
product kernel to compute the similarity between two images respectively, and
then obtain the matrix based kernel feature of an image with multi-similarities.
In order to efficiently deal with the problem of the evaluation of eigenvectors,
a matrix based KPCA algorithm is developed to learn the subspace of matrix
features for classification. Extensive experiments on the Corel database are con-
ducted to show the advantage of the proposed method.
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Abstract. Nowadays, the use of machine learning methods for visual
object detection has become widespread. Those methods are robust.
They require an important processing power and a high memory band-
width which becomes a handicap for real-time applications. The recent
evolution of commodity PC computer graphics boards (GPU) has the
potential to accelerate those algorithms.

In this paper, we present a novel use of graphics hardware for ob-
ject detection in advanced computer vision applications. We implement
a system for object-detection based on AdaBoost [1]. This system can
be tuned to run partially or totally on the GPU. This system is evaluated
with two face-detection applications. Those applications are based on the
boosted cascade of classifiers: Multiple Layers Face Detection (MLFD),
and Single Layer Face Detection (SLFD). We show that the SLFD im-
plementation on GPU performs up to nine times faster than its CPU
counterpart. The MLFD, in the other hand, can be accelerated using the
GPU and performs up to three times faster than the CPU.

To the best of our knowledge, this is the first attempt to implement
a sliding window technique for visual object-detection on GPU, with
promessing performance.

1 Introduction

Object detection is the ability to detect and localize objects within an image or
a scene. One of the techniques used for object detection is called sliding-window.
Sliding-window techniques allow a top-down approach. These techniques use a
detection window of a fixed size and place this detection window over the input
image at a given location. Then the algorithm determines whether the content
of the image inside the window represents the object of interest or not. The
search is repeated for all locations and scales of the input image, therefore the
classification has to be very fast.

At the core of most sliding-window algorithms is usually a discriminative
classifier, e.g., AdaBoost [1], Neural Network [2] or Support Vector Machine [3].

AdaBoost algorithm was first used by Viola & Jones in [4] for learning visual
features for object detection. They demonstrated their method on a face de-
tection application. Since, other families of features have been introduced, e.g.,
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illumination independent features [5], motion based features [6], Haar like fea-
tures [7], etc. Those detectors are used to detect a wide range of objects, e.g.,
cars, pedestrians, bikes, etc. They are not always running in real time, depending
on the complexity of the features used. The numerical complexity of the used
features often imposes high demands on memory and computing resources. As
a consequence, hardware acceleration of the detection core is starting to be a
research area of interest [8].

The rapid increase in the performance of graphics hardware, coupled with
recent improvements in its programmability, have made graphics hardware a
compelling platform for computationally demanding tasks in a wide variety of
application domains such as computer vision [9], scientific computation, and
many more. An alternative mode of research is leading towards the implemen-
tation of general object detection core on computer graphics hardware.

The present work is demonstrated on, and in part motivated by, the task of
face detection. The ability to detect faces in a scene is critical for humans in
their everyday activities. Consequently, automating this task would be useful in
many application areas such as intelligent human-computer interfaces, content
based image retrieval, surveillance as well as many other areas.

The paper is organized as follows: design issues of a cascade of classifiers are
presented in Section 2. Section 3 presents the GPU architecture and program-
ming tools. Section 4 presents the implementation details on the GPU. Section 5
presents experimental results and section 6 concludes the paper.

2 Boosted Cascade of Classifiers

A cascade of classifiers (Fig. 1) is formed by combination of different numbers of
simple weak classifiers with increasing complexity. The Cascade allows complex-
ities of input patterns to be adapted. Using a simple classifier, face and non-face
patterns are processed the same way. This leads to intensive consumption time
for simple non-face patterns and makes the detection speed constant for every in-
put, whatever its complexity. The main idea of building a cascade of classifiers is
to overcome this weakness. Only input sub-windows that have passed through all
layers of the cascade are classified as faces. With this structure, non-face patterns
can be simply rejected by simple classifiers as shown in Table 1. Table 1 shows a
comparison between a simple classifier and a cascaded classifier both achieving
comparable detection rates. Note that cascaded algorithms can not perform as
well as non cascaded algorithms, but their speed to success ratio is better [5].

Fig. 1. Schematic of the detection cascade
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Table 1. MLFD profiling: the detector has 12 layers. On a CPU , the total classification
time for a 415x255 image is 175.12 ms. SLFD profiling: the detector has only one layer
with 1600 features. On a CPU, the total classification time for a 415x255 image 18805.04
ms.

MLFD SLFD
Layer Size SubWindows Time(ms) Layer Size SubWindows Time(ms)

0 2 92196 58.02 0 1600 92196 18805.04
1 3 28916 21.89
2 5 16821 32.52
3 10 6344 22.85
4 21 2332 16.33
5 21 804 7.93
6 32 323 4.40
7 48 143 2.54
8 34 72 1.11
9 58 49 0.62
10 60 39 0.90
11 1600 27 6.01

2.1 The Control-Points Features

In this paper we implement boosted cascade of classifiers based on the Control-
Points features proposed by Abramson [5]. They are working on gray images.
Given an image of width W and height H (or a sub-window of a larger image,
having these dimensions), we define a control-point to be an image location in
the form 〈i, j〉, where 0 ≤ i < H and 0 ≤ j < W . Given an image location z, We
denote by val(z) the pixel value in that location.

The Control-Points feature consists of two sets of control points, x1 . . . xn and
y1 . . . ym, where n,m ≤ K. Each feature either works on the original W ×H im-
age, on a half-resolution 1

2W × 1
2H image, or on a quarter resolution 1

4W × 1
4H

Fig. 2. The Control-Points features work on three resolutions (24x24, 12x12, 6x6) -in
the case of face detection- and examine the image in single-pixel “control-points”. The
feature classifyies positively when all the pixel values in the black locations are higher
than all the pixel values in the white locations.
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image. These two additional scales have to be prepared in advance by downscal-
ing the original image.

To classify a given image, a feature examines the pixel values in the control
points x1 . . . xn and y1 . . . ym in the relevant image (original, half or quarter).
The feature answers “yes” if and only if for every control point x ∈ {x1 . . . xn}
and every control point y ∈ {y1 . . . ym}, val(x) > val(y). Some examples are
given in Fig. 2.

3 Programmable Graphics Hardware

3.1 Graphics Pipeline

The GPU implements the different stages of the 3D graphics acceleration pipeline
as shown in Fig. 3(a): command, geometry, rasterization, fragment and display.

Two stages are programmable: the geometry stage and the fragment stage.
The geometry stage implements multiple vertex processors which perform ge-
ometric transformations and lighting operations on geometric primitives. Pro-
grams running on a vertex processor are called vertex shaders. After vertices are
projected to screen space, the rasterizer calculates fragment information by in-
terpolating vertex information. Then, the rasterizer assigns fragment rendering
tasks to fragment processors. The fragment stage implements multiple fragment
Processors. Programs running on the fragment processor are called pixel shaders.
Fragment processor renders one fragment at a time. After a fragment has been
rendered, the fragment processor writes the final color information into the frag-
ment’s designated location in the frame buffer for display.

3.2 Fragment Processor Architecture

The execution environment of a fragment (or vertex) processor is illustrated in
Fig. 3(b). For every vertex or fragment to be processed, the shader program

(a) (b)

Fig. 3. (a)Reduced representation of the graphics pipeline. (b) Programming model
for current programmable graphics hardware. A shader program operates on a single
input element (vertex or fragment) stored in the input registers and writes the execution
result into the output registers.
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receives from the previous stage the graphics primitives in the read-only input
registers. The shader is then executed and the result of rendering is written on
the output registers. During execution, the shader can read a number of constant
values set by the host processor, read from texture memory (latest GPUs started
to add the support for vertex processors to access texture memory), and read
and write a number of temporary registers.

3.3 Programming Language

There are two levels of programming languages that can be used to program
graphics hardware: the assembly level shading language, and high level shading
languages (such as the Cg language [10] from nVIDIA). These languages are not
easy to use for non graphics programmer to implement general purpose compu-
tation. In Section 3.4 we present a platform that makes an abstraction of the
graphics hardware as a slave co-processor, and a suitable model of computation.

3.4 Streaming Model of Computation

A streaming application is composed of two main objects: streams and kernels.
A stream is a collection of records which require similar computation. A kernel
is a program applied to each record of the input stream.

GPU can be considered as a stream co-processor [11][12]. Streams are mapped
into textures and kernels are mapped into fragment shaders as shown in Fig. 4(a).

I. Buck, presents In [13] a programming environment for general purpose
stream computing called Brook . Brook for GPU is the implementation of
Brook for graphics hardware [13]. It consists in two components: a kernel com-
piler, which compiles kernel functions into legal Cg code, and a runtime sys-
tem built on top of OpenGL [14] which implements the Brook API. Without
Brook, stream management is performed by the programmer, requiring data to
be manually packed into textures and transferred to and from the hardware.
Kernel invocation requires the loading and binding of shader programs and the
rendering of the geometry. This way of coding general purpose computation on
GPU poses difficulties for non graphics programmers.

4 Implementation

We analyzed the code of a boosted cascade of classifiers based on Contol-Points
features. Two main functional blocks related to the classification process can be
highlighted:

– Internal preprocessing: the Control-Points features are applied to the three
resolutions of the input fame. This operation is undertaken for each input
frame.

– Binary classifier: this is a pixel wise operation. It consists in a sliding window
operation. At each pixel location of the input frame, the possibility to have an
object at this position defined by its upper-left corner and object dimensions
is tested.
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(a) (b)

Fig. 4. (a) Graphics pipeline used as streaming co-processor. Three services are avail-
able: StreamRead, StreamWrite and RunKernel. (b) Final System, Brook Runtime.

The internal preprocessing could be accelerated using a traditional API for
OpenGLfor rendering a texture to a given Quad of size smaller than the dimen-
sions of the given texture. This can be done using specific GL Options. The main
part moved to the GPU is the binary classifier which consists in applying the
same computation to each pixel in the input frame. Algorithm 1 presents the
implementation of the cascade as a streaming application. The input streams are
R0, R1, R2, A and V . The different layers are called successively and the result
of each layer is transmitted to the next layer using the V stream. This part of
the implementation is running on the CPU (Fig. 4(a)). Algorithm 2 presents
the pseudo-code of the implementation of the layer into several kernels (shaders)
running on the GPU (Fig. 4(a)).

Algorithm 1. Cascade of Classifiers
Require: Intensity Image R0

Ensure: a voting matrix

1: Build R1 and R2

2: Initialize V from Mask
3: StreamRead R0, R1, R2 and V
4: for all i such that 0 ≤ i ≤ 11 do
5: V ⇐ RunLayer i, R0, R1, R2, V
6: end for
7: StreamWrite V

4.1 Hardware Constraints

The graphics hardware has many constraints on the shaders. On the graphics
cards implementing NV30 shaders, shader size is limited to 1024 instructions
and the constant registers are limited to 16. On more advanced graphics cards
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Algorithm 2. Layer: Weighted Sum Classifier
Require: Iterator, R0, R1, R2 and V
Ensure: a voting stream.

1: if V [Iterator] = true then
2: S ⇐ 0
3: for each feature Fj in the layer do
4: A ⇐ RunFeature j, R0, R1, R2, V
5: S ⇐ S + A∗ WeightOf(Fj)
6: end for
7: if S ≤Threshold then
8: return false
9: else

10: return true
11: end if
12: else
13: return false
14: end if

implementing NV40 shaders, shader size is unlimited, but the constant regis-
ters are limited to 32. These constraints affect the design of the application in
terms of streaming application. Thus, the cascade of binary classifiers, has to
be decomposed into several kernels, each corresponding to a layer. To achieve
a homogeneous decomposition of the application, each layer is decomposed into
several kernels, called scans, and the whole cascade is equivalent to a list of suc-
cessive scans as shown in Fig. 5. Fig. 5 shows that the data transmission between
layers is done using the V stream, and the intra-layer data transmission is done
using the A stream to accumulate the intermediate features calculations.

4.2 Brook Implementation

Our code generator is implemented in the Perl script language to generate
BrookGPU programs according to input AdaBoostlearning knowledge. The code
of the application is generated in BrookGPU language, for two reasons:

– The code should be portable to various architectures, even future architec-
tures that are not yet defined. Generating high-level language programs will
allow fundemental changes in hardware and graphics API as long as the
compiler and runtime for high-level language compilers keeps up with those
changes.

– The transparency provided by Brookwhich makes it easier to write a stream-
ing application. Fig. 4(b) shows the final system developped with BrookGPU.

The AdaBoost learning knowledge description serves as an input to the code
generator which generates the Brook kernels as well as the main C++ code for
streams initialization and read/run/write calls handling. The generated code
has the “.br” extension, this file is compiled by brcc to generate the C++ code
as well as the assembly language targeted to the GPU. This C++ file is then
compiled and linked to the other libraries to build the executable.
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Fig. 5. Multiscans technique applied to the MLFD detector. Layer L0 is composed of
two features; it is implemented using only one scan S0. Layer L9 is composed of 58
features; it is implemented using two scans S10 and S11. S10 produces an intermediate
voting result, and S11 produces the vote of L9.

5 Performance Analysis

We tested the GPU implementation on a nVIDIA Geforce 6600GT on PCI-
Express. The host is an athlon 64 3500+, 2.21 Ghz with 1G DDR. On this
platform, the PCI-Express provides a hight data bandwidth. Three ms only are
needed to read back a quarter pal image from the GPU (Fig. 6(d)).

5.1 Single Layer Face Detection

On a x86 processor, the SLFD requires 18.8s to classify 92k subwindows. The
GPU implementation requires 2s to classify 100k subwindows. Thus, the GPU
produces a speedup of 9.4 compared to the pure CPU implementation.

5.2 Multiple Layers Face Detection

The CPU version of the MLFD spends most of its time on the first 6 layers
as shown in Fig. 6(a). This is because of the high number of windows to test
at these layers is still considerable. In the last 6 layers, even if the layers are
too complex, the number of windows to classify is not too high. Conversely, the
GPU implementation spends most of its computation time on the last layers,
and less time on the first 6 layers. This is because of the first layers, the number
of features is not too high, so each layer requires a single pass on the GPU,
which is very fast compared to the CPU. But, the last layers are too complex,
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(a) GPU and CPU profiling (b) GPU to CPU speedup

(c) Hybrid solution (d) Data transfer bandwidth

Fig. 6. Experimental results

and require up to 30 scans per layer (layer 11), so the GPU spends more time
classifying the frame.

Because of the high data parallelism support, the GPU is running faster than
the CPU for the first 6 layers as shown in Fig. 6(b). On the other hand, the next
6 layers are running faster on the CPU, because the small number of windows
to classify and the high number of features within the layers.

Fig. 6(c) presents the profiling of the hybrid solution: the first 6 layers are
running on the GPU and the next 6 layers are running on the CPU. Using this
decomposition, the face detection reachs a real-time classification with 15 fps for
415x255 frames.

6 Conclusion

We have presented a real-time implementation of an efficient object detection
system on the graphics hardware. We have designed our application using the
streaming model of computation.
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To the best of our knowledge, this is the first attempt to implement a sliding-
window technique for visual object-detection on GPU, and the results are very
promessing.
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Abstract. In this paper, we describe an image deblurring algorithm for
images generated by the baggage inspection system. Baggage inspection
images have low-extent blurring, large intensity dependent noise and
need line by line processing in real time, which makes most of the existing
methods unsuitable. With these special characteristics, we propose a new
algorithm by combining the iterative inverse filter and the shock filter.
At each iteration of the inverse filter, the constraint borrowed from the
shock filter is imposed so that the image is deblurred without ringing
artifacts. The algorithm is fairly fast and can process the image line
by line, which can satisfy the real-time requirement. It is also easy to
program and can be implemented in practice. The algorithm is tested on
the synthetic data and real data from the airport. The experiments show
that our algorithm has a great improvement on human’s perception and
is better than the original algorithms.

1 Introduction

The detection of explosives and contraband goods is important to fight against
terrorism and smuggling. Alerted by security failures in the recent past, the prac-
tice and research in advanced scanning equipments and associated technologies
have become a priority. For example, beginning on January 1, 2003, all bag-
gage from U.S. transported by air are screened for explosives/explosive devices.
There are many kinds of methods for detection of explosives and contraband
goods, including X-ray based screening, nuclear based explosives detection, elec-
tromagnetic detection and vapor detection[13]. The baggage inspection system
is an X-ray based scanning system that provides safe and non-intrusive security
solutions.

The baggage inspection system is a translation-scanning system with a line-
detector array. An X-ray generator with collimator forms a slice X-ray source.
The X-ray slice penetrates baggages and a line of image pixels is obtained
through detectors and signal collection subsystem. The baggages are carried
by a driving equipment and scanned line by line, so a digital projection image is
formed. The structure of a typical baggage inspection system is shown in Fig.1.

In a baggage inspection system, the equipment measures how many X-ray
photons are attenuated from the illuminating beam at each location of the bag.
Due to the photoelectric effect and the Compton effect, when a beam of incident
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Fig. 1. Structure of a typical baggage inspection system. A is the X-ray generator;
B is the driving device; C is detectors and signal collection subsystem, including the
detectors(C1), the preamplifier(C2), the main amplifier(C3), A/D converter(C4) and
the control and communication module (C5); D is the running check subsystem, which
is composed of the host computer(D1), the control board(D2) and the monitor(D3); E
is the electrical control subsystem.

X-rays traverses through any material, its intensity is reduced[5]. Suppose the
incident radiation has an intensity of I0, the average output intensity I after
passing some material is,

I = I0e
−σnx (1)

where x is the thickness of the material, n is the number of the atoms per unit
volume and σ is cross-section per atom. When the material is placed in the X-ray
radiation field, the intensity of the emergent X-ray at different location lies on
the property and the thickness of the material that the X-ray penetrates through,
so the emergent X-ray intensity can reflect the distribution of the material.

The image generated by the baggage inspection system has its special char-
acteristics. Firstly, the noise is large and intensity dependent. The number of
the X-ray photon passed through obeys the Poisson distribution[5]. According
to the property of the Poisson distribution when the X-ray intensity is very large
its variance can be ignored comparing to the intensity itself. Unfortunately, con-
sidering the radiation safety, the baggage inspection system can’t adopt large
intensity X-ray, so the noise inherited in the Poisson variance can’t be ignored.
In general, the noise to signal ratio of the baggage inspection image can reach 2%
at medium gray level. The signal collection circuits can also cause some noise,
which is usually very small and can be ignored.

Secondly, the baggage inspection image has low-extent blurring. To be sensi-
tive to the variance of the matter’s thickness, the size of the detector can’t be
small and the image is collected by moving the matter with a not very small
speed, so the image has some blurring. For a typical baggage inspection system,
each pixel in the image corresponds to about 1.35mm along motion direction
and the size of the detector along this direction is 2.7mm, so the image has blur
of about 2 pixels. Though the blurring is not big, it affects the perception to the
observer and automated judgement greatly.
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To give an intuitive impression, Fig.2(a) shows a typical image from a baggage
inspection system and Fig.2(b) shows an enlarged area in the region of Fig.2(a)
as pointed out. From Fig.2(a) we can see that the words in the image such as
’TEST1’ and ’TEST2’ are not distinct and the edge is smeared. The enlarged
image indicates the blurring and noise clearly. The image generated from the
baggage inspection system is the basis for the operator to judge whether the bag
contains some explosive or illicit materials. A blurred image is not appropriate for
this purpose. The blurring can weaken the operator’s acuity greatly and fatigue
the operator’s eyes. For automated judgement, the deblurring is also a necessary
preprocessing step. So in this paper we devote ourselves to the research of the
deblurring algorithm for the baggage inspection image.

To be enlarged 

(a) (b)

Fig. 2. (a)A typical image from baggage inspection system; (b)An enlarged area of
Fig.2(a)

The remainder of this paper is organized as follows. In section 2 we describe
some previous algorithms for image deblurring and point out their advantages
and disadvantages for our baggage inspection image. In section 3 we combine
the iterative inverse filter and the shock filter and propose our new algorithm.
Our new algorithm is described in details and the algorithm schedule is also
presented. In section 4 we demonstrate two experiments, one for synthetic data
and one for real world data from the airport. The last section concludes the
paper and points out some prospective research directions.

2 Previous Work

Deblurring is a classical and hard problem in image processing community. The
original image f(x, y) is blurred by a point spread function (PSF) h(x, y) with
contamination by the noise. If we denote g(x, y) as the observed image (the
blurred image), the procedure can be described as

g(x, y) = h(x, y)⊗ f(x, y) + n(x, y) (2)

where ⊗ represents the space convolution.
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The objective of deblurring is to find the best estimation of the original
image given the observed image and knowledge of the PSF and the noise.
There are many algorithms to tackle the blurring, such as (iterative) inverse
filter[7, 8], Wiener filter and constrained least square filter[2], Lucy-Richardson
method[8]. Other methods, including TV preserving image restoration and the
shock filter[11][1], are also proposed. These algorithms are deduced from dif-
ferent aspects and can deal with different cases. Considering that our baggage
inspection image needs line by line processing, we only review two methods:the
iterative inverse filter and the shock filter.

2.1 Iterative Inverse Filter

The inverse filter is very popular for image deblurring for its elegant represen-
tation. But not all the PSF can be inverted and even when the PSF is really
invertible, it will cause noise amplification in the restored image, because the
image degradation is usually a low-pass process. As a compromise, the inverse
filter is usually implemented by iterative method.

Use f̂(x, y) to denote the estimation of the original image, ignoring the noise,
it should hold for all parameters β,

f̂(x, y) = f̂(x, y) + β(g(x, y)− h(x, y)⊗ f̂(x, y)) (3)

Applying the method of successive substitution to Eq.3 suggests the following
iteration scheme:

f̂0(x, y) = g(x, y)

f̂k+1(x, y) = f̂k(x, y) + β(g(x, y)− h(x, y)⊗ f̂k(x, y)) (4)

If there is an solution for the inverse filter and the parameter β is not too
large, Eq.4 can converge to the solution of the inverse filter. Moreover, the noise
amplification effect can be minimized by terminating the algorithms after a finite
number of iteration[8].

The iterative method in essence, is one kind of regularization method[8], hence
it shares the limitations of many regularization methods, for example the re-
covery quality of the image is decreased, ringing occurs around the prominent
features of the restored image, etc. Many algorithms are proposed to improve the
iterative inverse filter. Typically some priori information about the original im-
age is incorporated in the iterative procedure. These priori information include
the space structure of the original image[12], assuming the original image to be
nonnegative and with finite support [4] and the HVS[9] to name a few. However,
as the constraints in these methods are usually of quadratic form, they can’t re-
move ringing completely. The computational requirement of these methods also
limits their usage in real time applications.

2.2 Shock Filter

As in our baggage inspection image the blurring is just 2 pixels, other methods,
belonging to image enhancement, not conventional image restoration, are also
applicable. Shock filter is such an algorithm.
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The shock filter is based on nonlinear time dependent partial differential
equations[6][14]. Consider a continuous image f : R2 → R, a class of shock
filtered image {u(x, y, t)|t ≥ 0} of f(x, y) may be created by evolving f under
the process:

ut = −sign(�u)|∇u| (5)

with the initial value
u(x, y, 0) = f(x, y) (6)

Here, subscripts denote partial derivatives, and ∇u = (ux, uy)T is the (spatial)
gradient of u.

When implementing the shock filter, the above equations should be dis-
cretized. Osher and Rudin have developed a scheme to preserve the variation
and the size and location of the extrema[10]. In their scheme, ux, uy are approx-
imated by

ux = m(Δx
+, Δx

−) (7)
uy = m(Δy

+, Δy
−) (8)

Δx
±u = ±(u(x± 1, y)− u(x, y)) (9)

Δy
±u = ±(u(x, y ± 1)− u(x, y)) (10)

and m(x, y) is the minmod function defined by

m(x, y) =
{

(signx) min(|x| , |y|) if xy > 0
0 if xy ≤ 0 (11)

The main properties are:

– Shocks develop at inflection point(secondderivative zero-crossings) and within
a region the image is smoothed;

– Local extrema remain unchanged in the procedure. No new local extrema
are created;

– The steady state solution is piecewise constant;
– The process approximates deconvolution.

However, the shock filter doesn’t take the degradation model into account. For
the original image without blurring the shock filter will also generate a shock at
the inflection points. As to the deblur property, shock filter can only deal with
the blurring of the step edge. When there are some impulse profiles besides the
step edge in an image, using shock filter solely can’t recover the impulse profiles.

3 Our Algorithm

Our baggage inspection image is a low-extent blurred image with relatively large
noise and needs to be processed line by line in real time. From the above analysis,
we can see that both the iterative inverse filter and the shock filter are unsuitable.

The iterative inverse filter makes a best fit of the observed image and can be
implemented line by line in real time. However, although the amplification of
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the noise can be suppressed by terminating the algorithm after a finite number
of iterations, ringing around the edges of the image and mosaics in the smooth
region occur.

On the other hand, the shock filter satisfies maximum principle and generates
no new extremum, i.e, no ringing occurs, which is a desirable property. However,
shock filter uses only the information of the image itself. Shocks are developed
at the inflections points of the image. Without other guiding information, fake
shocks will be developed when processing line type feature or impulse type fea-
tures. As we can see in Fig.2, there are many line type features to be processed
in our baggage inspection image, for example, the fuse in the detonator, which
is an important clue to judge whether there are some explosives.

A simple idea to remedy these problems is to combine these two algorithms
to propose a new algorithm for the baggage inspection image, that is, we adopt
the iterative inverse filter as the basic algorithm with some constraints inspired
by the shock filter.

Notice that ringing is the new extremum generating by the iterative inverse
filter. They are around the extremum of the original image. To alleviate ringing,
it is best to consider the image in bounded variation space as the shock filter does.
In the shock filter, to guarantee that no extremum will generate, the amplitude of
the change at any point should be not more than the amplitude of the differences
between the current point and its adjacent points. Moreover, to preserve the total
variance of the image the shock filter makes the value of the point unchanged
when the differences of the point and its adjacent points are with different signs.
To eliminate the oscillatory phenomena in the iterative inverse filter, we can also
put the similar constraints on the update of the image.

Denote the difference between the successive iterations t− 1 and t as It,

It(x, y) = f̂t(x, y) − f̂t−1(x, y) (12)

From Eq.4 we can get Iiif
t for the iterative inverse filter,

Iiif
t (x, y) = β(g(x, y)− h(x, y)⊗ f̂k(x, y)) (13)

Assume the baggage moves along the x direction. To eliminate the oscillatory
phenomena the amplification of It should not be more than the amplification of
Imx
t or Ipx

t ,

Imx
t = f̂t(x, y)− f̂t(x − 1, y) (14)

Ipx
t = f̂t(x + 1, y)− f̂t(x, y) (15)

The minmod function in shock filter guarantees that the local extremum of
the original image remain unchanged, that is, the extremum of the processed
image is just the extremum of the observed image. This property, obviously is
not desired for image deblurring application. So we cancel it in our algorithm.
As a result, we set up It as

It = sign(Iiif
t ) min(|Imx

t |, |Ipx
t |, |I

iff
t |) (16)
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To sum up, we present the algorithm procedure as in Table(1).

Table 1. The schedule of our proposed algorithm

Step 0: Initialization

– Set up the number of iteration iter
– Set up the updated coefficient β
– Set up the initial estimation f̂0(x, y) = g(x, y)
– Let t = 1

Step 1: Calculate the difference It

– Calculate Imx
t and Ipx

t for each point according to Eq.14 and 15
– Calculate Iiff

t for each point according to Eq.13
– Calculate the difference It for each point according to Eq.16

Step 2: Update the image

– Let f̂t(x, y) = f̂t−1(x, y) + It

– Let t ← t + 1
– Compare t and iter. If t > iter, stop the iteration, otherwise, go to Step 1

The proposed algorithm can be examined from two viewpoints. First, from the
iterative inverse filter’s point of view, new constraint borrowed from the shock
filter has been added to the iteration procedure. This constraint can guarantee
that no new extremum will produce so the disturbing ringing effect in conven-
tional methods will not occur. And this TV constraint is added in a way very
different with the way proposed in [3].

Second, we can think the proposed algorithm from the shock filter’s point
of view. In the shock filter, shocks are developed according to the properties of
observed image itself. No other information is added. The proposed algorithm
incorporates the image degradation model into the shock filter. Shocks are de-
veloped under the guidance of the inverse filter. As a result, it can deblur image
that shock filter can’t do, such as impulse signal, staircase signal, etc.

The proposed algorithm is suitable to the baggage inspection image. As stated
previously, the baggage inspection image has only a low-extent blurring. The
constraint borrowed from shock filter is valid. Moreover, the algorithm is fairly
fast and can process the image line by line, which can satisfy the real-time
requirement. It is also easy to program and can be implemented in practice.

4 Experimental Results

4.1 One-Dimensional Toy Data

In this experiment we will show how our proposed algorithm performs on the
blurred step and impulse signal. The performance of the iterative inverse filter
and the shock filter is also presented.
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Fig. 3. Experiment for the impulse signal. (a)Original signal; (b)The blurred signal;
(c) The deblurred signal with the iterative inverse filter; (d)The deblurred signal with
the shock filter; (e) The deblurred signal with our proposed method.
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Fig. 4. Experiment for the step signal. (a)Original signal; (b)The blurred signal; (c)
The deblurred signal with the iterative inverse filter; (d)The deblurred signal with the
shock filter; (e) The deblurred signal with our proposed method.

Fig.3 and Fig.4 show the results of the experiments for the impulse signal and
the step signal respectively. The subfigure (a) in these two figures shows the orig-
inal signals. A linear motion blurring is applied to the original signals, resulting
in the blurred signal as in subfigure (b). We apply the iterative inverse filter to
deblur the signal in Fig.3(b) and Fig.4(b). The deblured signals are shown in
Fig.3(c) and Fig.4(c). The iteration number is set to 10. Just as we anticipated,
both the deblurred impulse and step signal have oscillatory phenomena.

Fig.3(d) and Fig.4(d) are the deblurred signals with the shock filter. Since
the shock filter satisfies a maximum principle and generates no new extremum,
there are no oscillatory phenomena. However, it is not effective for the impulse
signal. In addition, if the original signal is just like the signal in the subfigure
(b) of Fig.4. the shock filter will also process it to a step (shock), which is not
desired.

We use our proposed algorithm to process the signals and get the results as
the Fig.3(e) and Fig.4(e), which indicate that our algorithm has the advantages
of both the iterative inverse filter and the shock filter. Our proposed method has
no oscillatory phenomena and it can deal with the impulse signal.

4.2 Real-World Data

Our proposed algorithm is also tested on the real-world data from an airport
and compared to other four algorithms, the iterative inverse filter, the shock
filter, the Wiener filter and the inverse filter. As stated in section 1, the baggage



272 G. Yu et al.

inspection system used in this experiment carries the baggage at a speed of
0.2m/s and collects the data at a frequency of 150Hz, so a pixel in the image
corresponds to 1.33mm. The detector unit is 2.7mm long in the direction of
motion. So the blurring is about 2 pixels, thus the PSF can be written as

h(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0.25 x = −1, y = 0
0.5 x = 0, y = 0
0.25 x = 1, y = 0
0 else

(17)

where x denote the motion direction.
To compare the results clearly, we use an enlarged figure as shown in Fig.5.

From these four subfigures we can see that our proposed algorithm has the
most impressive result. The result of the iterative inverse filter has serious ring
artifacts. The result of the shock filter is distortional since it can’t consider the
degradation model.

(a) (b) (c) (d)

Fig. 5. The experiment result for the real-world baggage inspection image. (a) A part
of the observed baggage inspection image; (b) the deblurred image with our proposed
algorithm; (c) the deblurred image with the iterative inverse filter, which has serious
ring artifacts; (d) the deblurred image with the shock filter, which is distortional.

5 Conclusion and Discussion

In this paper, we study the problem of baggage inspection image deblurring.
We first introduce the baggage inspection system and explain how it works.
The characteristics of the baggage inspection image are depicted. The image has
a low-extent blurring with relatively large noise. It is necessary to deblur the
image.

There are many deblurring algorithms and we review some of the classical
algorithms. All these algorithms have some disadvantages and are not suitable to
our application. We combine the iterative inverse filter and shock filter to propose
a new algorithm. At each iteration of the inverse filter, constraint borrowed from
the shock filter is added so that the image is deblurring without ringing effect.
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The new proposed algorithm is tested on the synthetic one-dimensional signal
and the real-world data. We also compare it to other algorithms on these data.
The experimental results indicate that our algorithm is effective and can be
applied in practice.

We expect this paper can intrigue some researchers in the signal processing,
image analysis and pattern recognition communities. There are many problems
in the processing of the baggage inspection image. The segmentation of the
image and automatic alarming are still active research directions for the baggage
inspection system. There are some new systems such as the dual energy system.
How to fuse the different energy information is also an interesting topic.
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Abstract. Automated chromosome classification is an essential task in
cytogenetics and has been an important pattern recognition problem.
Numerous attempts were made in the past to characterize chromosome
to perform clinical and cancer cytogenetics research. It is important to
determine optimum features and develop feature extraction schemes for
chromosome classification. In this paper we propose novel approaches for
medial axis determination and profile matching of human chromosome.
The medial axis determination plays a critical role for precise and com-
plete extraction of band patterns of chromosomes. The features of the
band profile obtained along the axis are then used in the classification
process. In particular, the medial axis is obtained by simple cross-section
analysis and the classification is accomplished through iterative pairing
of band profiles. According to the experimental results, the developed au-
tomatic system can efficiently extract band profiles of the chromosomes
along their medial axes, and satisfactory chromosome classification re-
sults can be obtained.

1 Introduction

Chromosome classification is an essential task in cytogenetics and has been an im-
portant pattern recognition problem. Numerous attempts were made in the past
to characterize chromosome for prenatal screening and genetic syndrome diagno-
sis, cancer pathology research and environmentally induced mutagen dosimetry.
However, chromosome classification and analysis, which create karyotypes, are
manually performed in most cytogenetics laboratories nowadays in a repetitive,
time-consuming and therefore expensive procedure [1]. Hence, the development of
computerized methods to automate the procedure has attracted much attention.
It is important to determine optimum features and develop feature description
scheme for chromosome classification. In general, the features used in the classi-
fication include shape description and band pattern representation.
� This work is partly supported by Lumens Digital Optics, Inc. and by Ministry of
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The band patterns produced by modern specimen staining techniques enable
discrimination of all human chromosomes into their corresponding ISCN cate-
gories [2]. Many attempts were made to characterize the band patterns as part
of the chromosome feature description vector. To perform the classification suc-
cessfully, precise and complete band pattern of chromosome plays an important
role. Banding techniques in [3] and [4] are proposed to classify chromosomes.
However, they may not be accurate enough to achieve desired success rate in
the classification. On the other hand, shape-based techniques are also proposed.
In [5], the curvature of each chromosome is studied and feature vector is ex-
tracted from the curvature to recognize the biological class of each chromosome.
In [6] and [7], the authors proposed a new way to obtain the chromosome lon-
gitudinal axis, or medial axis, based on the dominant points of the contour and
cubic splines of the boundary, and used the simple constrained classifier [6] to
classify chromosomes. The uses of wavelet packet transform and Fourier trans-
form shape representation also motivate the developments of the approaches for
chromosome classification [8]. The performance of shape based approaches de-
pends heavily on the quality of the input images, as well as the resolution of the
boundary of the segmented chromosome.

As stated in [1] and [9], the combination of both features from band pattern
and shape representation further reduces the error rate of karyotyping systems.
It is also desirable to choose features as resistant as possible to different transfor-
mations and image noise since the appearance of a chromosome is rarely in good
conditions. Medial axis determination, which provides a reliable basis for efficient
band profile computation, becomes a required and particularly critical step to
obtain most features of chromosomes. However, the calculation of medial axis is
difficult [6]. Many approaches are proposed to perform this task [3, 6, 10]. The
method in [3] relies on a skeletonisation algorithm to compute the medial axis.
Some medial axis calculation methods are based on second order moments of the
chromosome grey level values, but they are not applicable for bent chromosomes.
In [11], a software tool was developed to straighten curvilinear chromosome af-
ter a manual ends-identification process, making the medial axis extraction a
straightforward procedure.

In this paper, we proposed several novel algorithms for medial axis determi-
nation and chromosome classification through iterative paring of band profiles.
The database of 96 DPI chromosome images used in our experiments are pro-
vided by Cheng Gung Memorial Hospital and Cathay General Hospital. The
dimension of the images is less than 40× 132 when oriented vertically. The seg-
mentation process is done by Lumens Digital Optics Inc., Taiwan. Since the
positions of centromeres of chromosome images in the database are generally
difficult to identify using only contour information, the proposed approach does
not introduce centromere features for classification. The medial axis is obtained
by simple cross-section analysis along four scan-line orientations, as described
in Section 2. The proposed band profile extraction scheme along the medial axis
is introduced in Section 3. Section 4 gives a description of the procedure for
band profile matching, which is an extension of a substring matching algorithm.
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Section 5 presents the experimental results and Section 6 gives the conclusion of
the paper.

2 Medial Axis Extraction

A major challenge for the automatic classification of a chromosome, or the com-
position of a karyotype, from a chromosome image, results from the fact that
chromosomes can be very sinuous, especially for the classes of long lengths.
Therefore, detailed analysis becomes a difficult and tedious task. Fig. 1 shows a
segmented binary image of a long, bent chromosome. In general, a practical way
to represent elongated objects is by using their longitudinal axes, or medial axes.
For a symmetric object such as a chromosome, the lengths of cross-sections per-
pendicular to the medial axis are likely very close to the nearly constant width
of the object. Moreover, the midpoints of such cross-sections will mostly lie close
to the medial axis. Given sufficient number of cross-sections, the polygonal curve
computed by connecting the midpoints in proper order provides an approxima-
tion of the medial axis. In this paper, we propose a method for this process
through a simple and efficient cross-section analysis. In order to catch the orien-
tation and the shape of the curvilinear chromosome by cross-sections, we apply
scan-lines in the image along the following four orientations: 0 , 45 , 90 , and
135 . By appropriately selecting the cross-sections according to their lengths,
and by connecting the midpoints of these cross-sections in the correct order, we
can obtain the approximation of the medial axis of the object.

The cross-section analysis mainly performs separation and merging of line
segments which are connections of groups of midpoints of cross-sections. They are
vital steps to successfully compute the final polygonal curve as the approximation
of the medial axis. The separation includes filtering and grouping processes,
with the objectives being to sort out incorrect or improper middle points and to
organize the remaining ones into line segments according to the shape structure
of chromosome, respectively. The objective of merging is to derive the polygonal
curve by properly connecting the obtained line segments.

In the separation step, a filter is defined based on an analysis of lengths of
cross-sections. The representative midpoints for chromosomes are in fact the
subset that the lengths of the corresponding cross-sections are within a specific
range relative to the width of the chromosome. The range can be determined
relatively by statistical analysis on the lengths of cross-sections. We first calculate

Fig. 1. An image of a chromosome
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(a) (b) (c)

Fig. 2. Statistical analysis of lengths of cross-sections of the chromosome in Fig. 1.
(a) All cross-sections. (b) The quantities of different lengths of cross-sections along
different orientations. (c) The result after filtering the cross-sections.

the histograms of cross-section lengths. Fig. 2(a) shows the cross-sections of the
chromosome shown in Fig. 1. Fig. 2(b) shows the length histograms separately
for cross-sections along different orientations. One can find that the four peaks
of the distributions occur at nearly the same length, e.g., the range from 5 to
10 in the figure. In fact, the representative range of length fairly corresponds
to the width of the chromosome of interest. The range is thus used to define
the filter for the cross-sections. The out-of-range ones, e.g., the longest vertical
cross-sections shown in Fig. 2(a), can be discarded this way. Note that because
the filter is a relative measurement to the shape and to the scale of individual
chromosome image, it is adaptive to databases. Fig. 2(c) shows the selected
cross-sections.

The grouping process in the separation step aims to organize midpoints of
filtered cross-sections according to the shape of the chromosome. The medial
axis of a chromosome is a simple curve and can be approximated by a series
of line segments. We use consecutive cross-sections with same orientation to
compute these segments. Specifically, we start by connecting the midpoints of
consecutive cross sections of the same orientations. Fig. 3(a) shows the four
pieces of polygonal curves, each consisting of connected line segments, obtained
from cross-sections of three different orientations represented by three grey lev-
els. Note that the line segments should not cross each other or the boundary
of chromosome. However, such problems do occur at times. For example, two
pieces of line segments do cross each other in Fig. 3(a). A process based on
simple split and gradual shortening algorithm is introduced to simplify the con-
necting process for the segments. For each pair of crossed line segments, the
shorter one is further shortened by deleting the end point nearby the intersec-

(a) (b)

Fig. 3. (a)Line segments obtained after grouping process. (b)The simplified line seg-
ments.
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tion till the two line segments are isolated. A similar process is proceed for line
segments that cross the boundary of the chromosome. The touched and over-
lapped line segments are subsequently adjusted into disconnected ones, as shown
in Fig. 3(b).

The merging algorithm is an iterative process. First, the line segments ob-
tained previously are connected progressively till there is only one single polygo-
nal curve. A pair of line segments having the most closed end points is connected
in each iteration without crossing or touching the boundary of the chromosome.
It is desirable that the final polygonal curve is as long as possible. Hence, a
threshold λ is defined as certain percentage of the length of the longer side
of image as an approximation of chromosome length. If the length of the final
polygonal curve is less than λ, we return to the cross-section selection stage
and increase the range of allowed cross-section length by 10% of the maximum
cross-section length in order to select more cross-sections, which in turn allow
us to extract possibly longer curves by connecting their midpoints. Once we
have obtained a polygonal curve with length of at least λ, it is extended by
finding the tip points on the chromosome boundary and connecting the end
points of curve to them, respectively. To precisely determine the tip points, the
grey image of chromosome is used and a search area is defined on the bound-
ary nearby the end points. We then extend the polygonal curve from its end
points along the direction perpendicular to the bands, which is found by search-
ing the chord having minimum of normalized variance of intensity. Note that,
similarly, if the end point is too far away from the tip point, i.e., longer than two
times of the filter range which is an approximate of the chromosome width, the
range of filter will be relaxed and the system will performs cross-section analy-
sis and medial axis extraction again. Fig. 4 shows the polygonal curves of two
chromosomes after the extension process along with their corresponding band
images. We can see that these curves are good approximations of the medial
axes.

In the final step, we perform a smoothing procedure for the final polygonal
curve to determine precise medial axis. We first perform linear interpolation of
slope along the extended polygonal curve. For each sample point between two
adjacent vertices of the polygonal curve, its slope is defined as a weighted linear
combination of slopes of the line connecting the two vertices and the adjacent line
segments. The polygonal curve is thus transformed into a continuous and smooth

(a) (b) (c) (d)

Fig. 4. (a), (c) Two results after connecting end points of polygonal curves to tip points
of boundaries of chromosomes. (b), (d) The corresponding band images of (a) and (b),
respectively.
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one. Finally, new cross-sections of a chromosome are computed at particular
intervals by intersecting the lines perpendicular to the smoothed curve and the
chromosome boundary. The midpoints of these cross-sections are then connected
sequentially to form the precise medial axis of the chromosome for subsequent
extraction of its band profile.

3 Band Profile Extraction

The medial axis obtained previously is the basis for the extraction of the band
profile of a chromosome. The grey values of band profile are sampled at pix-
els on the cross-sections perpendicular to the medial axis. To avoid the noisy
data at the boundary pixels of chromosome, and to reduce outliers mainly
caused by the bending of chromosomes and during the image acquiring pro-
cess, we compute the profile using weighted combination of grey values sam-
pled at 1/4, 1/2, and 3/4 of width along each cross-section. Fig. 5 shows the
cross-sections used for this purpose for two chromosomes. Fig. 6(a) presents the
three curves, each consisting of grey values obtained at one of the three points
(1/4, 1/2 and 3/4 width) on the cross-sections in Fig. 5(a). Fig. 6(b) shows
the band profile of the chromosome obtained by combining the three curves in
Fig. 6(a) with a weighted sum computation. It is obvious that the outliers of
grey values presented in Fig. 6(a) are significantly reduced through the voting
process.

(a) (b)

Fig. 5. (a) An example of the cross-sections used to extract band profiles. (b) Another
example.

(a) (b)

Fig. 6. (a) The three curves of grey values obtained along the medial axis at the 1/4,
1/2 and 3/4 of width of cross-section of the chromosome in Fig. 5(a). (b) The band
profile extracted by combining the three curves of (a).
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4 The Matching Algorithm Using Band Profile Similarity

To successfully match chromosomes, we developed an iterative pairing approach
which matches band profiles using local and global similarities. Two kinds of
normalization are taken into account for the matching process. The grey values
of profiles are normalized by Z-score computation. Since the alignment process
eventually adjusts the two band profiles to the same length, the normalization
of length of band profiles is basically not necessary.

The matching of two band profiles under consideration is based on the basic
substring matching algorithm using dynamic programming technique and thus
has the advantage that the problem due to the variance of profile length can be
solved through the insertion operation of substring matching algorithm. In con-
trast to basic substring algorithm, the grey value is not quantized in the proposed
approach. The matching algorithm considers both local similarity and global sim-
ilarity while aligning features on band profiles. Particularly, the adopted local
similarity relates to the peakness of the specific feature value along one band
profile, and the closeness of the two feature values from the two band profiles.
Global similarity is related to the neighboring values. That is, if the alignment
of the neighboring values can result higher overall score than the values of inter-
est, then the profiles are likely to be aligned at the neighboring feature values.
Fig. 7(a) gives the result of matching of two band profiles using basic substring
matching algorithm, and Fig. 7(b) gives the result using the proposed similarity-
based approach. One can see from this example that the proposed approach can
successfully obtain more satisfactory alignment of band profiles than basic sub-
string matching algorithm.

Fig. 8 demonstrates another example of band profile alignment. The normal-
ized band profiles to be matched are shown in Fig. 8(a) and Fig. 8(b). Note that
the lengths of the two band profiles are 70 and 39, respectively. Fig. 8(c) shows
the alignment result using basic substring matching algorithm and Fig. 8(d)
shows the result using the proposed similarity based algorithm, respectively.
Both results have the same length after the band profiles are aligned. Note that
in Fig. 8(c) the zeros due to the insertion operation of the substring matching
algorithm will produce zero score in the correlation.

(a) (b)

Fig. 7. (a) The matching of band profile using basic substring matching algorithm.
(b) The matching of band profile using the proposed algorithm considering local and
global similarities.
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(a) (b)

(c) (d)

Fig. 8. (a) A band profile of a chromosome. (b) A band profile of another chromosome.
(c) The alignment result using basic substring matching algorithm. (d) The alignment
result using the proposed method.

The classification of chromosome is accomplished by the developed iterative
pairing procedure using above matching algorithm. In the sense of consistency
check, if the highest scores are given to each other for two specific chromosomes,
the two chromosomes are considered as successfully paired. The above procedure
is repeated iteratively until no chromosomes can be paired successfully. Finally,
the paired chromosomes are matched to previously obtained templates of band
profiles for each class of chromosome to obtain the classification result and the
karyotype of chromosomes can be composed eventually.

5 Experimental Results

The data sets used in the experiments are mainly provided by Cheng Gung
Memorial Hospital and Cathay General Hospital. The segmentation of the im-
ages of chromosomes is carried out by Lumens Digital Optics Incorporation.
Fig. 9 shows images of chromosomes of a sample cell.

In our experiments, the medial axis of chromosome can be extracted con-
sistently. Without the curvature computation used in other approaches, the
extraction process performs efficiently. The pairing process is a relatively time-
consuming stage, mainly because of the heavy correlation computation. However,
this can be improved if the size/shape constraint of chromosome is introduced.
By grouping chromosomes according to their sizes and areas in advance, most
correlation computation can be avoided. Fig. 10(a) shows a matrix of matching
scores of band profiles extracted from chromosomes shown in Fig. 9 where the
format of the axes is class no− ith chromosome. Fig. 10(b) shows the same ma-
trix as that in Fig. 10(a) with the cells of maximum score of each row labelled
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Fig. 9. The images of chromosomes of a sample cell in the data sets used in experiments

(a) (b)

Fig. 10. (a)The matching scores of band profiles extracted from previously classified
chromosomes of a cell. (b)The same table wherein the cells of maximum score of each
row are labelled by 1.

by 1. From this table, one can see that the proposed approach can successfully
produce the correct karyotype for all chromosomes of this human cell. Finally,
the experiments are performed using 864 chromosomes from 36 cells. Without
the size/shape grouping mechanism mentioned above, an overall classification
correctness of 82.7% is achieved.

6 Conclusion

Automated chromosome classification is an essential task in cytogenetics. Nu-
merous attempts were made to characterize chromosome to perform clinical and
cancer cytogenetics research. In this paper we propose novel approaches for me-
dial axis extraction and profile matching of human chromosome. In particular,
the medial axis is obtained by simple cross-section analysis and the classification
is accomplished through iterative pairing process. According to the experimental
results, the developed automatic system can efficiently obtain band profiles of the
chromosome data set along the extracted medial axis, and generate satisfactory
chromosome classification results.
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Abstract. We present an alignment framework for object detection us-
ing a hierarchy of 3D polygonal models. One difficulty with alignment
methods is that the high-dimensional transformation space makes finding
potential candidate states a time-consuming task. This is an important
consideration in our approach, as an exhaustive search is applied on a
densely-sampled state space in order to avoid local minima and to ex-
tract all possible candidates. In our framework, a level-of-detail (LOD)
3D geometric model hierarchy is generated for the target object. Each of
this model acts as a classifier to determine which of the discrete states are
potential candidates. The classification is done through the estimation of
pixel and edge-based mutual information between the 3D model and the
image, where the classification speed significantly depends on the LOD
and resolution of the image. By combining these models of various LOD
into a cascade, we show that search time can be reduced significantly
while accuracy is maintained.

1 Introduction

In this paper we address the problem of alignment-based object detection, in
which a 3D geometric model is transformed to align with the target object in
image. Typically, in finding the set of transformation parameters that best align
the model with its image, features from the 3D model are matched to image
features by measuring their similarity using an evaluation function. The func-
tion values associated with each possible transform form an energy landscape
in the parameter space. Most of the existing alignment methods use some di-
rected search techniques to find the optimal transformation, but these usually
require initialization near the final solution. In contrast, our proposed algorithm
attempts to find a global optimal transformation through exhaustive search, but
carried out in a computationally efficient manner.

We present a search method performed using a 3D model hierarchy. These
models are decimated versions of a polygonal model of the target object and
form a level-of-detail (LOD) hierarchy. The 3D models are loaded on-the-fly at
run-time and their images rendered using graphics library, bypassing the need to
store 2D multiple-view profiles of these models. Figure 1 illustrates an example
LOD hierarchy. We note that models with lower LOD can be evaluated much
faster due to reduced number of data points, although with lower accuracy. A
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Fig. 1. 3D models level-of-detail. The leftmost model has the least number of polygons.
White points on the model are data samples. The models are shaded according to
surface normal profiles on the polygonal surfaces.

densely sampled set of states in parameter space are evaluated with these models;
the bulk of very unlikely states are quickly discarded, while the remainder are
subsequently be evaluated via the higher LOD models. By combining the 3D
models with increasing LOD into a hierarchy, we form a detection cascade that
can be globally optimized with respect to running time and overall detection
performance. Our method does not rely on local search techniques and will not
be trapped in local minima.

The consideration for using 3D models directly is motivated by the fact that
a complete description of an object may not always be available. Existing works
build a large database of 2D shape templates generated from a 3D model, with
each template corresponds to a certain viewpoint of the object. In appearance-
based methods, it is assumed that objects possess known surface properties
that allow associations to some learned feature descriptors. However, object re-
flectance or emission information may not always be available or constant (for
instance, in non-visible spectrum imagery, an object may have different appear-
ance depending on its thermal profiles. Objects may also have very different
appearance under varied lighting conditions). Current generative models [1, 2]
do not handle significant lighting changes, and assume that features can be reli-
ably detected by interest operators. One major limitation of generative models
is that the learned classifiers cater only to single viewpoints (i.e. one set of model
parameters for each different viewpoint of an object, even for mirror images of
the object).

We solve the detection problem in an alignment framework. As in Viola’s
work [3], given vertices and their connections in a model, we derive surface nor-
mals and match distribution of the surface normals to the observed intensity
using mutual information [4]. While Viola highlighted that their technique is
purely intensity-based, we found that for reduced ambiguity, mutual informa-
tion between projection contour of the 3D model and image edge maps can be
included to help increasing detection performance. This is a crucial enhance-
ment when mutual information is to be applied to real world scenes, out from
the medical image registration domain where mutual information has enjoyed a
great deal of success. We note that mutual information is chosen as the match-
ing metric as it can be used for measuring similarity between multi-modal data,
allowing the framework to be applied to multispectral imagery.

Matching polyhedral models of objects to images in order to recover pose pa-
rameters is a problem that has been tackled by many authors. The contributions
of this work include:
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– An alignment framework by maximization of mutual information with en-
hanced detection performance by including contour information.

– Speeding up the search in the 6D pose transformation space by using a
cascade of 3D models of increasing levels-of-detail.

Section 2 reviews related work. We then discuss in section 3 about how non-
uniform sampling is introduced to reduce the number of candidate hypotheses.
In section 4, we present the cascaded detection strategy using an LOD hierarchy.
Some experimental results and future work end the paper.

2 Previous Work

Campbell and Flynn provided a comprehensive survey of 3D object recognition
techniques using 3D geometric models [5]. We discuss some previous alignment
based work. Kollnig and Nagel [6] described a vehicle tracking system that fits
discontinuities between surface facets of a simple polyhedral model to image
gradients. A gradient image obtained from the discontinuities is matched to gray
value gradients of the input image. The difference between the synthetic gradient
image and the gray value gradient of the image is used to update the model pose.
Tan et al. [7] described a vehicle detection system using simple polyhedral car
models. Target objects are assumed to be lying on a known ground plane. This
assumption reduces the problem of localization and recognition from 6 degrees-
of-freedom to 3 degrees-of-freedom. The ground plane constraint allows pose to
be estimated by matching 2D image and 3D model lines using Hough transform.
Before line correspondences are established, the ground plane has to be recovered
from the input image. Suveg and Gosselman [8] aligned simple polyhedral models
to aerial views of buildings using mutual information as matching metric. Mutual
information between gradient magnitude along model contour and image data
is computed. If more images are available, mutual information between texture
information of multiple images is included as additional information.

Our work is based on Viola’s alignment approach [3]. Surface normals of the
object are model instances and matched to intensity values by maximizing their
mutual information with respect to a set of transformation parameters. Leventon
et al. [9] extended the alignment framework to using multiple views of the object
when single image does not provide enough information.

The notion of cascading has been applied to object detection [10]. In this work,
the cascading of 3D LOD models for object detection in 2D images is a new idea,
which aims to detect target objects and discard unlikely hypothesis rapidly.

3 Parameter Space Sampling

In this work, the state space comprises six parameters of 3D rigid-body transfor-
mation (three for translation and three for rotations). Existing work estimates
pose parameters by optimization of an evaluation function. Such optimization-
based methods have common problems of being sensitive to initial pose, and may
experience slow convergence or be trapped in local minima. Viola [3] derived an
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approximation of the derivative of mutual information with respect to the trans-
formation parameters, and used a stochastic gradient descent algorithm to seek
the local maximum. Although stochastic gradient search is relatively fast as com-
pared to techniques that do not require function derivatives (such as Powell’s),
it is still faced with the problem of local extrema.

In order to escape from the aforementioned problems, our framework falls
back on exhaustive search. An exhaustive search in a discretized state space of
the pose parameters will allow the global maximum to be obtained if the state
space is sampled with sufficient resolution. Such exhaustive search does not have
problems of being trapped at local maxima and do not depend on initial states,
but can be enormously expensive for high-dimensional spaces.

3.1 Appearance-Dependent Sampling of State Space

Attempting to uniformly sample the full transformation state-space is inefficient
as various different combinations of parameter values do not necessarily lead
to significantly visible changes in the projected image space. In this section,
we describe how the range and sampling intervals of parameters are manually
determined in order to limit the sampling to pose variations of interest.

The range for each parameter is set depending on the visibility of the pro-
jections. For instance, the X-axis translation of the polyhedral model is placed
in the range {−1.5, 1.5} units with respect to a virtual camera of known focal
length and viewing screen size. The object is either totally clipped or unrec-
ognizable if the x parameter exceeds this range. The Y -axis translation has a
range of between −1 and 1 while the range for Z-axis translation is {−2, 2}. The
Y -axis rotation has the largest range as it involves greater variation in object
appearance, i.e. the number of visible views corresponding to Y -axis rotation is
larger than X- and Z-axis rotations. Both rotations about the X- and Z-axis
have a range of between −10 and 10 degrees.

After determining the range for each parameter, we can further improve ef-
ficiency by setting different sampling scales for each parameter. One way of
defining these step sizes is by looking at how different the models appear in im-
age space when each of the parameter is changed: for instance, when the model is
translated by one unit along the X-axis in the object space, how many pixels the
model appears to have been translated in the X-axis direction in image space?
Through such observation for all the parameters, we can define a step size ΔSp

for each parameter p, where each ΔSp accounts for a cluster of parameter values
with very similar appearance on the viewing screen.

In the next section, we describe detection using a cascade of increasing levels-
of-detail of the object model.

4 Cascaded Detection Using a Level-of-Detail Model
Hierarchy

We construct 3D models of different levels-of-detail (LOD) using a model simpli-
fication software [11], which reduces the number of polygons while maintaining
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high-quality approximation to the original polygonal surfaces. As models with
lower LOD take much shorter time to render, these models are first used to eval-
uate the densely sampled states of parameter space in order to quickly discard
the very unlikely states. However, as the accuracy of these lower LOD models
are poorer, higher LOD models are required to further evaluate the more likely
states. By combining the 3D models with increasing LOD into a hierarchy, we
form a detection cascade.

Recent improvements in methods for the acquisition of 3D models allows
for high-quality 3D models to be obtained more easily. Additionally, we use
3D models that are freely available from the Internet. Figure 1 illustrates an
example LOD hierarchy with white dots on the models as locations where surface
normals are sampled. Surface normals are collected from normal maps (images in
figure 1 are normal maps) rendered using OpenGL, where (x, y, z) components
of a normal correspond to (r, g, b) values of a point on the normal map. For a
set of pose parameters P , the model has normal samples N and corresponding
intensity values I. The mutual information MI between N and I is [4]:

MI(N, I) = H(N) + H(I)−H(N, I) (1)

H(A) is entropy for random variable A:

H(A) = −
∑

a

p(a) log p(a) (2)

while H(A,B) is joint entropy for random variables A and B that is defined as:

H(A,B) = −
∑

a

∑
b

p(a, b) log p(a, b) (3)

As the lower LOD models are coarse shape approximations to the object,
their MIs have lower values than MI for the model with the highest LOD. In
addition, models of lower LOD are weak models as they may correspond to
multiple objects (i.e. including non-target objects) in the image. In the initial
levels, we use these weak models to discard unlikely states using a lower threshold
value. State vectors that meet the threshold will get passed to the next level
with a higher threshold value. As the weak models have lower rendering cost,
detection in a cascade manner results in a speed up. Figure 2 shows the cascade
architecture for a car model.

For a cascade C = {m1,m2, ...,mn}, MIs between model mi at level i and
image are evaluated at the discrete 6D state vectors defined by the stratification.
The point at which MI (computed using (1), in the same manner as Viola’s
algorithm [3]) is maximum is recorded, ti. Given r training images, we run the
same evaluation using model mi for each training image and record its maximum
MI values in Tmi :

Tmi = {tmi1 , tmi2 , ..., tmir}

The average of Tmi becomes the MI threshold value for level i.
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Fig. 2. A cascade of 3D models with increasing LOD, with each model acting as a
classifier

5 Experiments

5.1 Normal Maps Generation

Surface normals are collected from visible surface patches for each hypothetical
pose. While determining front-facing polygons is a simple task, it is non-trivial to
determine visible polygons as occlusion has to be taken into account. We adopt
the normal map generation method in computer graphics. Normals are collected
from normal maps rendered using the methods described in [12]. Leventon et
al. [9] also generated normal maps for MI computations. RGB channels of the
normal maps correspond to (x, y, z) coordinates of surface normals (figure 1).

5.2 Edge Information for Reduced Ambiguity

Our evaluation function is the mutual information between object and image
data as expressed in (1). Using intensity information alone in a single image may
not be sufficient as shown by [9], as the observed data may not provide enough
information due to occlusion, background clutters or variation in illumination
condition. While Viola highlighted that their method is purely intensity-based,
we found that to apply mutual information to real world scenes, we have to
include other information so that the matching metric is more discriminative.

To illustrate the ambiguity issue, a model is rotated around the Y-axis and
mutual information measures are recorded at uniform steps of five degrees from
0 to 180 degrees (figure 3). At one of the angles, the model is correctly aligned
with the image. The graph shows that maximum mutual information does not
occur at the ground truth (the shaded marker) but at a nearby pose (65).

To resolve this ambiguity, edge orientation for the projected contours of the
model (figure 4) are added into the mutual information between model and
image data. For each hypothetical pose, contours of the projected model are
detected using an edge detector. Edge orientations of the model contours, EOm,
are computed. We then detect edges around the model contours on the image.
Image edge pixels within a window (we used 10 pixels) around each edge pixel
of the model contours are included in the calculation of the edge orientations
for the image edges, EOi. Mutual information between model and image edge
orientations, MI(EOm, EOi), is then added to MI(N, I) defined in (1):

MI = MI(EOm, EOi) + MI(N, I) (4)
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Fig. 3. (a) Intensity information alone is insufficient for matching using mutual infor-
mation. (b)After adding in edge information into the objective function (1), maximum
mutual information is achieved at the ground truth (i.e. the shaded marker).

Fig. 4. (a) Edge orientation is included as additional information. (b) Some of the test
images. (c) One of the infra-red images used in experiments.

Figure 3 shows that after adding in the edge information, the maximum mu-
tual information occurs at the ground truth.

5.3 Error Analysis

To ensure that maximum mutual information (MI) appears at state vectors
(which are defined by the stratification) near the ground truth, we examine the
energy surface of the state vectors. Firstly, a plane d that cuts through the point
with the maximum mutual information and the ground truth point is chosen.
We then consider points near to plane d (points G) and project the points onto
plane d. MI values versus 2D coordinates of points G projected on plane d is
then plotted. A visualization of the energy surface is shown in figure 5. We found
that with edge information added, the estimated pose is always at or close to
the ground truth pose.

5.4 Object Detection

We applied our framework to vehicle detection. Software for constructing 3D
models of different LOD are readily available on the Internet, such as the popular
model simplification tool by Garland and Heckbert [11]. We used the MultiRes
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Fig. 5. Visualization of energy surface for pose parameters. Maximum mutual infor-
mation (point with red diamond) appears near to the ground truth point (point with
red circle).

Fig. 6. 3D car models that form the LOD hierarchy in our experiments

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

D
et

ec
tio

n 
ra

te

intensity only
intensity + edge information

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

D
et

ec
tio

n 
ra

te

LOD1
LOD2
LOD3
LOD4
LOD5

Fig. 7. (a) ROC curves for mutual information with and without edge information. (b)
ROC curves for the LOD models, where LOD1 is the highest LOD model.

modifier in 3D Studio Max to generate the LOD models. The cascaded detection
method was tested on both real and infra-red images (figure 4). To evaluate
the performance of the detection algorithm, we first manually align the highest
LOD model to the images and these ground truth poses (which are a few 6D
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state vectors) are then recorded as true positives. We then run through the
cascade and record the number of hits and false positives. Figure 7 shows the
receiver operating curves (ROC) for mutual information with and without edge
information on one of the test images. The ROC curves show that by including
edge information, detection performance improve significantly.

While an exhaustive search in the stratified parameter space using the highest
LOD model (i.e. single layer) takes near to thirty minutes to complete, the
cascaded detection takes about eight minutes using a hierarchy of five models.
The car models have 13, 26, 78, 366, 3317 polygons respectively (figure 6). ROC
curves for the five LOD models are shown in figure 7. We noticed that there
is still room for improvement in speed, as currently the models are handled
independently without considering their individual detection performance. This
is a design issue of the cascade: choosing which model to be included in the
hierarchy, and how to set the threshold value for each model by analyzing their
ROC curves.

6 Conclusion

We have presented an alignment-based detection framework using a hierarchy
of 3D models of increasing levels-of-detail. The designed cascade speeds up the
search for the optimal pose parameters in a densely sampled parameter space.
As the method does not face the issues of local optimum and convergence fail-
ures, it is more reliable and practical than methods that rely on directed search
techniques. We have demonstrated that by adding edge information into the cal-
culation of mutual information, discriminative power of the matching metric is
increased significantly for real scenes.

We are working on an optimization framework for improving the design of
the cascade such that optimal trade-off between performance and running time
can be achieved. Choosing models at the optimal levels-of-detail to be included
is part of the cascade design issue. We would also like to more extensively test
the framework using other data set.
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Abstract. Relevance feedback (RF) and region-based image retrieval  
(RBIR) are two widely used methods to enhance the performance of content-
based image retrieval (CBIR) systems. In this paper, these two methods are 
combined. And a region weighting scheme reflecting the process of human vis-
ual perception is also proposed to enhance the weighting importance assigned to 
the region whose pixels are closer to the attention center. Furthermore, rather 
than using a single positive feedback group, the proposed approach introduces 
RBIR to the relevance feedback with multiple positive and negative groups. To 
guide users in grouping the positive feedbacks, the proposed system provides a 
heuristic pre-clustering result automatically. Using these guiding clusters, the 
users can re-group the positive feedbacks to express his/her particular interests. 
Finally, Group Biased Discriminant Analysis (GBDA) is modified and applied 
to the similarity measure between images constructed on the basis of the region-
based relevance feedbacks. 

1   Introduction 

Content-based image retrieval (CBIR) [1, 2, 3, 5, 6, 7, 9 10, 11, 12, 13, 16, 17, 18] is a 
technique used for extracting similar images from an image database. The most chal-
lenging aspect of CBIR involves the gap between high-level semantic concepts and 
low-level image features. In general, two approaches are commonly employed to 
reduce, or to bridge this gap. 

The first approach involves the extraction of the region-based features to reflect the 
user’s perception. Compared to the case where global image features [9, 12, 15] are 
considered, the region-based image retrieval system [1, 2, 3, 5, 6, 7, 11, 16, 17, 18] 
applies image segmentation to decompose an image into regions, which are closer  
to the perception of the human visual system. Some region-based image retrieval 
systems, like Netra [7], Blobworld [1], and IDQS [17], compare images based on 
individual region-to-region similarity. During retrieval, the user is provided with the 
segmented regions of an image and is required to assign several properties, such as 
the regions to matched, the matching regions, the number of expected regions, and 
even the feature weights of the regions. Such querying system provides the much 
power of control to the user. Nevertheless, automatic and semantically precise image 
segmentation is still an open problem, as discussed in [5]. For example, an image  
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segmentation algorithm may decompose a penguin into one region (the entire pen-
guin), but another penguin into two regions (the head and the body), as shown in 
Figure 1. Because of the difficulty of the accurate segmentation, it’s not obvious for 
the user to choose a query region, especially for images without distinctive objects or 
scenes. To ensure robustness against inaccurate segmentation, the integrated region 
matching (IRM) algorithm [5] proposes an image-to-image similarity measure that 
combines the information from all of regions between images. Here, we adopt this 
approach to reduce the uncertainty of the region segmentation and to improve the 
retrieval performance. 

The second approach taken to reduce the gap involves the use of relevance feed-
back. This approach employs an online learning scheme to improve the extraction 
performance by applying positive and negative examples according to the user’s  
perception [3, 6, 10, 13]. Nakazato and Huang proposed a novel approach, Query- 
by-Groups [10], in which the user was provided with a mechanism to specify his/her 
interests in terms of multiple positive and negative image groups, as shown in Figure 2. 
In order to guide the user, a heuristic pre-clustering method is developed in this paper. 

Although many relevance feedback methods using global features have developed, 
it’s rarely applied to the RBIR system. In the retrieval system proposed in the current 
paper, we try to integrate the aforementioned two approaches, that is, the region-based 
image retrieval and relevance feedback with multiple positive and negative groups. The 
relevance feedback algorithm based on the GBDA approach is designed according to 
the characteristic of the region-based representation. Furthermore, a region weighting 
scheme, which mimics the process of human visual perception, is also proposed. 

2   System Overview 

Figure 3 presents a flow chart of our proposed system. During offline preliminary 
preparations, the features of the segmented regions and the region weights of all im-
ages in the database are extracted automatically. During online process, when a query 

Fig. 1. Segmentation results of two images of a penguin 
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Fig. 2. Two groups: single flowers and bouquets of flowers 
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image is supplied by the user, all of the images are sorted according to their similarity 
to this query. If the user is not satisfied with the extraction results, he or she can spec-
ify the feedbacks to refine the results in the next iteration. The system also provides 
heuristic pre-clusters to help the user group the positive feedbacks. The user can then 
manually revise the clusters based on the guiding cluster results. 
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Fig. 3. Overview of the proposed system 

3   Region-Based Image Retrieval 

In a region-based image retrieval system, image segmentation is applied to decom-
pose an image into several regions first. An image is represented by a set of regions, 
which contains its low-level features and importance weights. Then, both properties 
are used in the evaluation of the similarity between two images. 

3.1   Image Segmentation 

The segmentation algorithm we employed is based on local homogeneity analysis 
presented in [4]. The basic idea of defining the homogeneity of a pattern is to inte-
grate the directional intensity changes of the surrounding pixels, which are located 
within a local window. Applying the criterion to the original image results in the H-
image which is a gray-scale image whose pixel values are the Homogeneity values. 
The high and low values in the H-image point to the possible region boundaries and 
region interiors, respectively. Then, seeded regions with lower H values are chosen to 
do region growing method. Finally, the regions are merged based on their color histo-
gram similarities to avoid over-segmentation and here an agglomerative algorithm is 
used. The segmentation result is shown in Figure. 1. 

After locating the boundaries between segmented regions, we find that those pixels 
in the boundaries cannot be assigned unambiguously to regions. In order to make the 
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description of regions more accurately, the boundary pixels are deleted when doing 
feature extraction. Deleting the ambiguous information of boundaries can lessen the 
uncertainty caused by image segmentation in the region-based image retrieval system. 

3.2   Region Feature Extraction 

In the current implementation, each region of images in the database is characterized 
by color and texture. The first two moments, mean and standard deviation, from each 
channel of HSV color space are extracted as color feature [15]. The texture feature is 
represented by the standard deviation of wavelet coefficients in 4 pyramids de-
correlated subbands [14]. So the dimensionality of the visual feature spaces is 10. 

3.3   Region Importance Decision 

Here, two processes are considered. First, we try to extract the attention center of the 
entire image, which simulates the importance in the view of the human perception. 
Second, the Gaussian weighting model is proposed, which provides higher weights to 
the pixels near the attention center and lower weights to the pixels far from the attention 
center. Then, the region importance is decided by all pixel weights inside the region. 

 
Attention Center Extraction. In [8], Ma et al. concluded that color contrast in an 
image plays the most important factor, which dominantly determines human visual 
perception. Therefore, they proposed an image attention analysis method involving 
the use of a contrast-based saliency map. In their approach, the contrast level in the 
saliency map was regarded as density and the attention center was represented by the 
centroid of saliency map. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  

Fig. 5. Our region weight (left and red) and area percentage weight of an image  

0.50 / 0.40

0.50 / 0.60

Fig. 4. Contrast-based image attention analysis: (a) original MxN-pixel (width*height) image, 
(b) M/2xN/2-pixel wavelet LL-subband, (c) M/2xN/2-pixel saliency map, and (d) extracted 
attention center of original image 

(a) (b) (c) (d) 
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Wavelet transformation is widely applied in image processing since its properties of 
the multi-resolution decomposition can be adapted to describe image features. So to 
reduce the computational cost and to preserve the basic image content, contrast extrac-
tion is applied to the wavelet coefficient in the LL-subband, as shown in Figure 4(b). 
Subsequently, the image contrast is applied in the LUV color space. 

The contrast value Ci,j of pixel p at image location (i, j) is defined as [8]: 

) ,( ,, qpdC
q

jiji
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=            (1) 

where the intensity difference d is computed by Gaussian distance,  is the neighbor-
hood area and q is the neighborhood pixel of pixel (i, j). From pixel-to-pixel contrast 
addition, Ci, j=Ci, j(L) + Ci, j(U) + Ci, j(V). Furthermore, normalizing the contrast val-
ues for all of the pixels to the scale [0, 255] generates a saliency map, as shown in 
Figure 4(c).  

From [8], the attention center (x0, y0) can be computed by equation (2), i.e. 
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size is MxN. Figure 4(d) provides two illustrative examples of extracted attention 
centers. 
 
Gaussian Weighting Model. Our basic assumption is that the pixel closer to the 
attention center has higher importance. We consider the Gaussian model of the dis-
tance between the pixel and the attention center to evaluate the pixel importance PIi 
defined by the following equation. 

)/),(exp( 0 σCidisPI i −=        (3) 

where dis is the Euclidean distance of the location difference between pixel i and 
attention center C0 ,and  is the standard deviation of all distances between each pixel 
in the entire image and attention center. Then by considering the region sizes, the 
region importance wi is defined as the summation of the importance of pixels inside 
the region R, i.e. 

                        
∈

=
iRj

ji PIw      (4) 

Figure 5 shows an example of region weights using our weighting scheme (left and 
red) and using area percentage (AP). In the human visual perception, the weight of the 
tiger in the image should take higher importance. Obviously, the weight of the tiger 
using our weighting scheme is higher than AP by 10%. 

3.4   Image Similarity Measure 

Considering that the image segmentation may not be perfect, as shown in Figure 1. The 
integrated region matching (IRM) [5] allows one region of an image to be matched to 
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several regions of another image. Compared with image retrievals based on individual 
region-to-region similarity, IRM is robust to inaccurate image segmentation. 

Assume that image IP contains m regions and image IQ contains n regions. A 
matching between regions pi and qj is assigned a significance credit si,j, where this 
credit represents the importance of the matching in determining the similarity between 
the two images. Furthermore, let d(pi, qj), the region feature distance between pi and 
qj, be the Euclidean distance. The IRM distance between IP and IQ is given by the 
weighted sum of all the similarities between the region pairs, i.e. 

= =

=
m

i

n

j
jijiQP qpdsIId

1 1
, ),(),(     (5) 

Therefore, the problem of defining the similarity between the two images then be-
comes one of choosing the significance credit of all of the region pairs. More details 
on the IRM can be found in [5]. 

4   Heuristic Pre-clustering Relevance Feedback Based on GDBA 

In interactive region-based or content-based image retrieval processes, the system 
must re-calculate the similarity and the feature weight based on the user’s feedbacks 
[10]. This study modifies the GBDA method proposed in [10] to re-estimate both the 
similarity and the feature weight. In other words, the image similarity ranking process 
can be reduced to an online calculation of the feature space discriminating transfor-
mation matrix. 

4.1   Guiding Pre-clustering 

For a typical user, grouping all of the positive images is not an intuitive process. 
Therefore, the system proposed in this paper provides heuristic pre-clusters to assist 
him or her in manually grouping these positive feedbacks. 

The proposed on-line guiding pre-clustering algorithm commences by computing 
and sorting the IRM distances between any two positive feedbacks. The two images 
with the minimal IRM distance are grouped as the first positive class. Subsequently, 
the image with the shortest distance from one of the positive examples in the first 
class is chosen. If when adding this positive example to the current positive class, the 
sum of all of the distortion between the images in the positive class is less than a pre-
defined threshold, then this image can be inserted into the current positive class; else a 
new class is created for this positive example. These processing steps are repeated 
iteratively until each of the positive feedbacks has been assigned to a corresponding 
class. 

4.2   Region-Based Relevance Feedback Based on Group Biased Discriminant 
Analysis (GDBA) 

Briefly, GBDA attempts to cluster each positive class (or group), while scattering 
negative examples (or samples) away from each positive class. GBDA achieves this 
via the following equation, 
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where Sw is the sum of the within-class scatter matrix of the positive groups and SPN is 
the sum of the between-class scatter matrix of the positive-to-negative groups. 
 
Pseudo Group Mean Representation. Assume that all regions of the examples in the 
positive class can represent this class. We simply combine all of the regions in the 
positive class into one region set, which is regarded as the pseudo mean of the posi-
tive class. In order to fit the constraint of the region importance, the total importance 
of the pseudo mean should be normalized to 1. Suppose there are n positive examples 
in one of the positive classes. Hence, the summation of total region importance of the 
pseudo mean is n. To satisfy the constraint, we simply set the region importance of 
the pseudo mean wm as follows: 

nww i
k

i

km /=      (7) 

where i
kw  is the ith region importance of the kth example in the positive class. 

 
Region Clustering. As the number of the feedback iteration increases, the number of 
regions of the positive examples increases rapidly. Furthermore, the executing time to 
compare similarity between images is proportional to the number of regions in the 
images. Consequently, to avoid the retrieval speed slowing down, the regions with 
similar low-level feature vectors are merged together via clustering. Here, the k-
means algorithm is adopted to group the regions of the examples in the same positive 
class into a few clusters, each of which represents a new region of the pseudo mean. 
We adaptively choose the number of clusters k by gradually increasing its value. k is 
initialized to 2 and increases by 1 at each step. The process stops if the average dis-
tortion between all the positive regions and their nearest cluster centers is below a 
threshold, which can be adjusted according to the experiments. Here, the threshold is 
set to 0.01. After clustering, the average feature of the regions in the same cluster is 
viewed as the feature of the new region. The new region importance is the summation 
of all region importance in the same cluster. 
 
Region-Based GBDA Formulation. Finally, we define the terms in (6) as follows, 
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where i
px  is the ith region of the pth examples of the positive group Ck, i

ny is the ith 

region of the nth examples of the negative class, j
kq is the jth region of pseudo mean of 

the kth positive class Ck, Si,j is the significance between the ith region of an example 
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and the jth region of the pseudo mean, c is the number of positive groups and D is the 
set of negative examples. Here, we consider a negative example as one negative class. 

As in Fisher’s Discriminant Analysis (FDA), W is solved as the generalized eigen-
vector, wi, associated with the largest eigenvalue, i, i.e. 

                iPNiwi wSwS =λ     (12) 

If Sw
-1 exists, a solution for W  can be found by solving 

iPNwii wSSw )( 1−=λ . There-

fore, the discriminating transformation matrix A becomes, 

                      2/1ΦΛ=A         (13) 

where  is the matrix whose columns are the eigenvectors of )( 1
PNw SS −  and  is the 

diagonal matrix of the corresponding eigenvalues. Once the transformation matrix is 
available, the distance of the similarity measurement between two images (or sam-
ples), x with m regions and y with n regions, can be defined as: 
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Using this expression, the distance between images in the database and the pseudo 
mean of each positive group can be compared and sorted. 

Table 1. Image Categories 

1. Sunset 2. Flower 3. Car 4. Ape 5. Mountain 
6. Penguin 7. Tiger 8. Bird 9. Horse 10. Building 

Table 2. Average precision comparison between Gaussian weight (G) model and area percent-
age (AP)  

 Top10 Top20 Top30 Top40 Top50 Top60 Top70 Top80 Top90 Top100 
G 0.583 0.498 0.447 0.411 0.384 0.361 0.341 0.325 0.310 0.297 

AP 0.579 0.491 0.441 0.404 0.377 0.354 0.334 0.318 0.303 0.291 

5   Experimental Results 

To evaluate the retrieval performance of the proposed system, this study considered a 
COREL image database containing 17695 images. In the experiments, a subset con-
sisting of 1000 images from 10 selected categories is considered. Each category con-
tains 100 images, each of which can be the candidate of the query image. A retrieved 
image is considered as relevant if it belongs to the same category of the query image. 
For each individual category, the retrieval accuracy is computed as the average preci-
sion rate of the top N retrieved images by retrieving 100 times. The selected catego-
ries are listed in Table 1. 

5.1   Region-Based Image Retrieval Evaluation 

Here, the region-based image retrieval is compared with the typical global representa-
tion [9, 12, 15]. To be fair, the same features are used for both representations. That  
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Fig. 6. (a) Comparison between global representation and region representation (b) Comparison 
between global representation and region representation by retrieving top 20 images in 
each category 

is, the Euclidean distance for the similarity measure based on color and texture  
features described in section 3.2 is adopted. The result of both evaluations is shown  
in Figure 6(a). Obviously, the average retrieval accuracy of total 1000 queries of  
region-based retrieval is superior to that of global representation. Figure 6(b) shows 
the average accuracy of each category in the case of retrieving top 20 images. For  
the categories of penguin, bird and horse, which contain simpler backgrounds, the 
accuracy of region-based retrieval is higher than that of global representation by  
approximately 15%. But there are still some categories, which are not suitable for 
region-based retrieval, like the category of car. The reason may be that it contains 
complicated scenes (backgrounds) and diverse features under different poses. 

5.2   Gaussian Weighting Model Evaluation 

As we can see from Figure 5, the importance of the tiger region using the proposed 
weighting scheme is higher than that assigned in the area percentage (AP) method. To 
demonstrate the influence of Gaussian weighting model, Table 2 illustrates the per-
formance of the initial retrieval result using the Gaussian weighting model (G) and the 
AP method. The average precision of total 1000 queries in 10 categories shows that 
the proposed weighting scheme is slightly better than that of the AP method.  The 
reason might be because the Gaussian weighting model is dominated by the region 
size in current 1000 images, so its performance improvement is limited. 

5.3   Gaussian Weighting Model Evaluation 

To evaluate the integrated region-based image retrieval and GBDA, the performance 
of GBDA using global representation was compared. The same color and texture 
features described in section 3.2, were adopted. Gaussian weighting scheme was cho-
sen as the weight of regions. To simulate the user’s feedback, all of the retrieved re-
sults in the same category as that of the initial query image were regarded as positive 
examples, while those images in categories different from that of the query were re-
garded as negative examples. The other larger query set consisting of 7000 images 
under 50 categories from the COREL database is also considered and denoted as QS2. 
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Fig. 7. (a) Accuracy comparison of two relevance feedback algorithms: R-GBDA and G-GBD 
A denote the GBDA algorithm using region-based retrieval and global-based retrieval, respec-
tively. (b) Accuracy comparison of two relevance feedback algorithms on QS2: R-GBDA and  
G-GBDA denote the GBDA algorithm using region-based retrieval and global-based retrieval, 
respectively. 

The results for both query sets are shown in Figures 7(a) and Figure 7(b). As shown in 
the figures, the performance of GBDA using region-based retrieval is better than that 
of GBDA using global representation by 12.42% (QS2: 11.71%) after four feedback 
iterations. 

6   Conclusion 

The major contribution in this study is integrating RBIR with the relevance feedback 
algorithm using multiple positive and negative groups. Compared to a single region 
matching scheme, the overall similarity measure can lessen the user’s burden and 
reduce the uncertainty of the automatic region segmentation. A region weighting 
scheme based on human visual perception is introduced by utilizing the property of 
the color contrast saliency map. In addition, color contrast extraction is conducted in 
the wavelet LL-subband, which not only preserves the basic content of the image but 
also lowers the computational cost significantly. 

The proposed system guides the user in clustering the positive feedbacks by pro-
viding heuristic pre-clustering results. The user can then revise the clusters manually 
by referring to the guiding cluster results. In order to obtain the scatter degree of the 
positive groups, all the regions of the positive examples in the group are combined 
into a region set representing the pseudo mean of that group. The k-means algorithm 
is adopted to accelerate the feedback process. Finally, the similarity between the 
query and the other images in the database is obtained by region-based Group Biased 
Discriminant Analysis. 

In the future study, the authors intend to refine the retrieval performance of the de-
veloped system by assigning the importance of regions on the basis of user feedback 
information. Other features of the images, such as the region shape information or the 
spatial (or geometric) relationship between regions, and the use of keywords will also 
be considered. 
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Abstract. In this paper, we present a new, biologically inspired percep-
tual feature to solve the selectivity and invariance issue in object recogni-
tion. Based on the recent findings in neuronal and cognitive mechanisms
in human visual systems, we develop a computationally efficient model.
An effective form of a visual part detector combines a radial symmetry
detector with a corner-like structure detector. A general context descrip-
tor encodes edge orientation, edge density, and hue information using a
localized receptive field histogram. We compare the proposed perceptual
feature (G-RIF: generalized robust invariant feature) with the state-of-
the-art feature, SIFT, for feature-based object recognition. The experi-
mental results validate the robustness of the proposed perceptual feature
in object recognition.

1 Introduction

A successful object recognition system should have proper balance between selec-
tivity and invariance. Selectivity means the system has to discriminate between
different objects or parts. Invariance means that the same objects or parts have
to be invariant to photometric and geometric variations. It is generally accepted
that the local invariant feature-based approach is very successful in this as-
pect. This approach is generally composed of visual part detection, description,
and classification. The first step of the local feature-based approach is visual
part detection. Schmid et al. [1] compared various interest point detectors and
concluded that the scale-reflected Harris corner detector is most robust with re-
spect to image variations. Mikolajczyk and Schmid [2] also compared visual part
extractors and found that a Harris-Laplacian based part detector is suitable
for most applications. Recently, several visual descriptors have been proposed
[3][4][5][6][7] to encode local visual information of spatial orientation or edge
density.

The key idea is the practical adaptation of tune-max property in receptive
field to solve both the selectivity and invariance. We propose a similar computa-
tionally efficient model and finally compare it with the state-of-the-art method
in computer vision technology.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 305–314, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Mechanisms of Receptive Field

2.1 Simple Cells/Complex Cells in V1

Simple cells and complex cells exist in the primary visual cortex (V1), which
detects low level visual features. It is well known that the response of simple
cells in V1 can be modeled by a set of Gabor filters eq. 1 [8]:

G(x, y, θ, ϕ) = e−
(x′2+γy′2)

2σ2 cos(2π
x′

λ
+ ϕ) (1)

where x′ = xcosθ + ysinθ and y′ = −xsinθ + ycosθ. According to recent neuro-
physiological findings [9], the range of an effective spatial phase parameter is
0 ≤ ϕ ≤ π/2 due to symmetry. An important finding is that the distribution
of spatial phase is bimodal, with cells clustering near 0 phase (even symmetry)
and π/2 phase (odd symmetry).

Complex cell response at any point and orientation combines the simple cell
responses. There are two kinds of models: weighted linear summation and MAX
operation [8]. However, the MAX operation model has the most support since
neurons performing a MAX operation have been found in the visual cortex [10].
The role of the simple cell can be regarded as a tuning process, that is, ex-
tracting all responses by changing Gabor parameters. The role of a complex
cell can be regarded as a MAX operation from the tuning responses by select-
ing maximal responses. The former gives selectivity to the object structure and
the latter gives invariance to geometric variations such as location and scale
changes.

2.2 Receptive Field in V4

Through the simple and the complex cells, orientation response maps are gen-
erated and fine orientation adaptation occurs on the receptive field within the
attended convex part in V4 [11]. The computational method of orientation adap-
tation phenomenon is steering filtering [12]. Adapted orientation is calculated
by the maximum response spanned by basis responses (tan−1(Iy/Ix)). There
are also color blobs in a hyper column where the opponent color information is
stored. Hue is invariant to affine illumination changes and highlights. Orientation
information and color information is combined in V4 [13].

How does the human visual system (HVS) encode the receptive field responses
within the attended convex part? Few facts are known on this point, but it is
certain that larger receptive fields are used, representing a broader orientation
band [14].

3 Visual Part Detection

What is a good object representation scheme comprising both selectivity and
invariance? The global description with the perfect segmentation may show very
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Fig. 1. Gabor filters are approximate by derivatives of Gaussian: pi/2 phase Gabor by
1st deriv. of Gaussian (a) and 0 phase Gabor by 2nd deriv. of Gaussian (b). The 1st
and 2nd deriv. of Gaussian are further approximated by discrete difference of Gaussian
(c) and by difference of two Gaussian kernels, respectively for computational efficiency.

good selectivity. However, this representation does poorly with respect to in-
variance since a perfect segmentation is impossible, and further, is sensitive to
visual variation in light, view angle, and occlusion. Objects representation as the
sum of sub-windows or visual parts may be a plausible solution and supported
by the recognition by component (RBC) theory [15]. The main issues of this
approach are how to select the location, shape, and size of a sub-window and
what information to be encoded for both selectivity and invariance.

In this section, we present a visual part detection method by applying the
tune-MAX [8] to the approximated Gabor filter. Serre and Riesenhuber modeled
the Gabor filter using a lot of filter banks while changing scale and orientation.
Furthermore, they fixed the phase to 0 which is another limitation. As described
in Sect. 2.1, the distribution of spatial phase in receptive field is bimodal, 0 (even
symmetry) and π/2 (odd symmetry). So, we can approximate the Gabor function
by two bases generated by the Gaussian derivatives shown in Fig. 1(a) 1(b). The
1st and 2nd derivatives of Gaussian which approximate odd and even symmetry,
respond to edge structures and convex (or bar) structures respectively.

The location and size invariance is acquired by the MAX operation of various
tuning responses from the 1st, 2nd derivatives of Gaussian. Fig. 2 shows the
complex cell responses using the approximated filters. The arrows represent the
tuning process and the dot or circle represents the MAX operation.

(1) Location tuning using the 1st derivative of Gaussian:

– Select maximal response in all orientations within a 3×3 complex cell (pixel).
– Suitable method: Harris corner or KLT corner extraction (both eigenvalues

are large).

Fig. 2. (Left two) Interest points are localized spatially by tune (green)-Max (red)
of 1st and 2nd derivative of Gaussian respectively. (Right two) Region sizes around
interest points are selected by tune-Max of convexity in scale-space.
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(2) Location tuning using the 2nd derivative of Gaussian:

– Select maximal response in all orientations within 3×3 complex cell.
– Suitable method: Laplacian or DoG gravity center (radial symmetry point).

(3) Scale tuning using the convexity:

– Select maximal response in directional scale-space [16].
– For computational efficiency, a convexity measure such as DoG is suitable.

This is related to the properties of V4 receptive field where convex part is
used to represent visual information [17].

For the efficient computation of the tune-Max, we utilize three approximation
schemes: the scale-space based image pyramid [3], discrete approximation of
the 1st derivative of Gaussian by subtracting neighboring pixels in a Gaus-
sian smoothed image, and the approximation of the 2nd derivative of Gaussian
(Laplacian) by difference of Gaussian (DoG). As shown in Fig. 1(c) 1(d), the
kernel approximations for the Gabor bases are almost identical to the true ker-
nel function. Fig. 3 shows the structure of our part detection method which
computes the 1st and 2nd derivatives of Gaussian by subtracting neighboring
pixels in a scale-space image and by subtracting between scale-space images, re-
spectively. We calculate local max during scale selection. Fig. 4 shows a sample
result of the proposed perceptual part detector. Note that the proposed method
extracts complementary visual parts. We can get corner-like parts through the
left path, and radial symmetry parts through the right path in Fig. 3 (See eq. 2).
This is supported by the psychophysical fact that HVS attends to gravity cen-
ters and high curvature points [18] and objects are deconstructed into perceptual
parts that are convex [19][20].

Gaussian Scale-space 
Image Pyramid

Subtract between 
Scale-space images:

DoG

Subtract within 
Scale-space image:

Ix, Iy

Local Maxima:
(x, y, scale)

Efficient Simple Cell Model:
Tuning locations, scales 

Efficient Complex Cell Model:
Location, scale selection by MAX 

Gaussian Scale-space 
Image Pyramid

Subtract between 
Scale-space images:

DoG

Subtract within 
Scale-space image:

Ix, Iy

Local Maxima:
(x, y, scale)

Efficient Simple Cell Model:
Tuning locations, scales 

Efficient Complex Cell Model:
Location, scale selection by MAX 

Fig. 3. Computationally efficient perceptual part detection scheme
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Fig. 4. The proposed part detector can extract radial symmetry parts (left), corner-like
part (middle), and both of them (right)

x = max
x∈W

{DoG(x, σ)orHM(x, σ)}, σ = max
σ
{DoG(x, σ)} (2)

where DoG(x, σ) = |I(x) ∗G(σn−1)− I(x) ∗G(σn)| and HM(x, σ) = det(C)−
αtrace2(C). C is defined as eq. 3.

C(x, σ) = σ2 ·G(x, 3σ)) ·
[

Ix
2(x, σ) IxIy(x, σ)

IxIy(x, σ) Iy
2(x, σ)

]
(3)

where Ix(x, σ) = {S([x + 1, y], σ) − S([x − 1, y], σ)}/2, Iy(x, σ) = {S([x, y +
1], σ)− S([x, y − 1], σ)}/2, S(x, σ) = I(x ∗G(σ).

4 Perceptual Part Descriptor

As we discussed in Sec. 2.2, we can mimic the role of receptive field V4 to rep-
resent visual parts. In V4, edge density map, orientation field, and hue field
coexist in the attended convex part. These independent feature maps are de-
tected from V1 (in particular, edge orientation and edge density is extracted
using the approximated Gabor with π/2 phase).

Now the question becomes: How to encode the independent feature maps? We
utilize the fact that larger receptive fields are used with a broader orientation
band [14] and independent feature maps are combined to make more informa-
tive features [13]. Fig. 5(a) shows several possible patterns of receptive field in
V4. The density of the black circle depicts the level of attention of the HVS in
which 86% of fixation occurs around the center receptive field [18]. Each black
circle stores the visual distributions of edge density, orientation field, and hue
field of pixels around the circle. Fig. 5(b) shows how it works. Each receptive
field stores them in the form of a histogram which shows good balance between
selectivity and invariance by controlling the bin size, and is partially supported
by the computational model of multidimensional receptive field histograms [21].
We can control the resolution of each receptive field such as the number of edge
orientation bins, hue orientation bins except edge density which is scalar. Each
localized sensor gathers information about edge density, edge orientation, hue
color of receptive field. The histogram of an individual sensor is generated by
simply counting the corresponding bins according to feature values weighted by
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R eference
Orientation
R eference
Orientation
R eference
Orientation

(a) (b)

Fig. 5. (a) Plausible receptive field model in V4: (top) attention-based receptive fields
(bottom) computationally easy receptive field pattern (b) Three kinds of localized
histograms are integrated to describe local region

the attention strength and sensitivity of sensor. Scalar edge density is generated
from edge magnitudes. This process is linear to the number of pixels within a
convex part. Each pixel in a receptive field affects to neighboring visual sen-
sors. After all the receptive field histograms are generated, we normalize each
histogram vector. After we multiply these histograms with component weights
(α+β+γ = 1), we integrate three kinds of features as Fig. 5(b) right column. Fi-
nally, we renormalize the feature (dim.: 21*(4+1+4)=189) so that the feature’s
energy equals to 1.

It is very important to align the receptive field patterns to the dominant
orientation of an attended part if there is image rotation. We compared four kinds
of dominant orientation detection methods: Eigenvector, weight steerable filter
[12], maximum of orientation histogram [3], and radon transform. We found that
the weighted steerable filter method showed the best matching rate in rotated
images.

5 Experimental Results

We dubbed the proposed perceptual feature (perceptual part detector with gen-
eralized descriptor of pixel information) as the Generalized Robust Invariant
Feature (G-RIF). In this section, we evaluate G-RIF in terms of object recogni-
tion. We adopt a new feature comparison measure in terms of object labeling.
We use the accuracy of detection rate which is widely used in classification or la-
beling problems. Although there are several suitable open object databases such
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Fig. 6. We use frontal 104 views for DB (right) generation and 20 test set (5 scales, 4
view angles, 4 rotation, 4 intensity change, 3 occlusions) per object (left)

as COIL-100 and Caltech DB, we evaluate the proposed method using our own
database because our research goal is to measure the properties of features in
terms of scale change, view angle change, planar rotation, illumination intensity
change, and occlusion. The total number of objects is 104: related test images
are shown in Fig. 6. These DB and test images are acquired using a SONY F717
digital camera and resized to 320×240.

We compare the performance of the proposed G-RIF with SIFT, the state-of-
the art feature [3]. We evaluate the features using the nearest neighbor classifier
with direct voting (NNC-voting) which is used commonly in local feature-based
object recognition approaches. NNC-based voting is a very similar concept to
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Fig. 8. Evaluation of part descriptors (ori. only, ori+hue, ori+edge, ori+hue+edge):
The full descriptor shows almost best performance
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Fig. 9. Summary of visual features (SIFT, perceptual part + edge orientation, G-RIF):
G-RIF shows the best performance. Both parts+ori and SIFT follow G-RIF.

the winner-take-all (WTA). We use the binary program offered by Lowe [3] for
the accurate comparison.

Fig. 7 shows the performance of the proposed perceptual part detectors. We
use the same descriptor (edge orientation only) with the same Euclidean dis-
tance threshold (0.2) used in NNC-based voting. The proposed perceptual part
detector outperforms single part detectors in most test sets. The maximal recog-
nition rate is higher than the part detector of SIFT (radial symmetry part) by
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15%. Fig. 8 shows the performance of the proposed part descriptor with the
SIFT descriptor. We used the same radial symmetry part detector to show the
power of descriptors only. The full contextual descriptor (edge orientation +
edge density + hue field) shows the best performance except the illumination
intensity change set. In this case, the performance is fair compared to the other
contextual descriptors. Under severe illumination intensity change or different
light sources, it is reasonable to use the contextual descriptor of edge orientation
with edge density. Fig. 9 summarizes the performance of the SIFT, perceptual
part detector with edge orientation descriptor, and the G-RIF (both parts with
general descriptor). The G-RIF always outperforms the SIFT in all test sets.
This good performance is originates from the effective use of image structures
(radial symmetry point with a high curvature point) of the proposed visual part
detector and effective spatial coding of multiple features in a unified way. The
dimension of G-RIF is 189 (21*4+21*4+21) and that of SIFT is 128 (16*8).
The average extraction time of G-RIF is 0.15sec and that of SIFT is 0.11sec in
a 320*240 image under AMD 2400+. This difference is due to the number of
visual parts. The G-RIF extracts twice number of parts than the SIFT does.

6 Conclusions

In this paper, we introduced a Generalized-Robust Invariant Feature which shows
good performance in terms of selectivity (recognition accuracy) and invariance
(to various test images). First, we detect perceptually meaningful visual parts
derived from the properties of the visual receptive field of V1. Applying the Tune-
MAX scheme to two basis Gabor kernels can extract complementary visual parts
(Fig. 4). Second, we also proposed a generalized contextual encoding scheme
based on the properties of receptive field V4 and attention of the HVS. The
information of edge field and hue field is characterized by the localized histogram
weighted according to the attentional strength. It is a generalized form of SIFT
descriptor, shape context, minutia descriptor. The performance of the G-RIF
compared with the state-of-the art feature shows the recognition power using
the NNC-based simple voting. Effective utilization of image structures and pixel
information give good performance in feature-based object recognition.
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Abstract. This paper introduces the kernel constrained mutual sub-
space method (KCMSM) and provides a new framework for 3D object
recognition by applying it to multiple view images. KCMSM is a kernel
method for classifying a set of patterns. An input pattern x is mapped
into the high-dimensional feature space F via a nonlinear function φ, and
the mapped pattern φ(x) is projected onto the kernel generalized differ-
ence subspace, which represents the difference among subspaces in the
feature space F . KCMSM classifies an input set based on the canonical
angles between the input subspace and a reference subspace. This sub-
space is generated from the mapped patterns on the kernel generalized
difference subspace, using principal component analysis. This framework
is similar to conventional kernel methods using canonical angles, however,
the method is different in that it includes a powerful feature extraction
step for the classification of the subspaces in the feature space F by
projecting the data onto the kernel generalized difference subspace. The
validity of our method is demonstrated by experiments in a 3D object
recognition task using multiview images.

1 Introduction

This paper introduces the kernel constrainedmutual subspaceMethod (KCMSM),
which provides a new framework for view-based 3D object recognition.

Many view-based methods have been proposed to achieve high-performance
object recognition. Of these, the mutual subspace method (MSM)[2] with the
ability of handling multiple images, such as sequential images, and multiview
images, is one of the most suitable and efficient methods for object recognition.
Let an n×n pixel pattern be treated as a vector x in n2-dimensional space (called
input space I). In MSM, the set of patterns {x} of each class is represented
by a low-dimensional linear subspace using Karhunen-Loève (KL) expansion,
also known as principal component analysis (PCA). The classification of a set of
patterns is executed based on the canonical angles θi between subspaces as shown
in Fig.1, where smaller angles indicate higher similarity between two subspaces.

MSM works well when the distribution of each class can be represented by a
linear subspace with no overlap of the distributions. However, this representation
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Fig. 1. Measuring the similarity between two distributions of view patterns with canon-
ical angles θ1,2,...

is not suitable for representing highly nonlinear structures, such as those of
multiview patterns of a 3D object.

To overcome this problem, MSM has been extended to nonlinear kernel MSM
(KMSM)[4, 5] using the “kernel trick” [3]. An input pattern x is mapped onto
the very high dimensional (in some cases infinite) feature space F via a nonlin-
ear map φ. Then, MSM is applied to the linear subspaces generated from the
mapped patterns {φ(x)}, where the linear subspace in the feature space F is a
nonlinear subspace as seen from the input space I. The kernel MSM has better
performance compared to MSM, since the distribution of the mapped patterns
{φ(x)} can be represented by a subspace in the feature space F without overlap-
ping of distributions. However, in practice the classification performance KMSM
is still insufficient for many applications as is the case with other methods based
on PCA, because the subspaces are generated independently of each other [1].
Although each subspace represents the distribution of the training patterns well
in terms of a least mean square approximation, there is no reason to assume a
priori that it is the optimal subspace in terms of classification performance.

This issue is addressed by the constrained MSM (CMSM)[6]. CMSM
performs the MSM algorithm on the patterns after projecting them onto the
generalized difference subspace D (called difference subspace), wherein the dif-
ferences among subspaces are contained, as shown in Fig.2. CMSM has signif-
icantly higher classification performance compared to MSM since it selectively
uses the canonical angles θd calculated from discriminative features extracted by
the projection[6, 7].

The idea in this paper is to incorporate the mechanism of this powerful fea-
ture extraction of the constrained MSM into the kernel MSM: We construct the
generalized difference subspace in the feature space F , and project the mapped
pattern φ(x) onto this subspace for kernel MSM. This projection τ can be re-
garded as an effective nonlinear feature extraction step for classification of the
subspaces, as seen from the input space I. We name the difference subspace in
the feature space the nonlinear kernel generalized difference subspace Dφ and
the KMSM with the projection the kernel CMSM (KCMSM). One question that
arises is how to calculate the projection onto the difference subspace. We show
that it is in fact possible to calculate the projection using the kernel trick, be-
cause it consists of the inner products. Consequently, KCMSM carries out the
MSM algorithm on the extracted feature patterns {τ(φ(x))} by the projection.
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Fig. 2. Concept of CMSM

Principal component
 subspace M

Generalized difference subspace D

P1

P2
P3

Pk-1

Pk

MD

Fig. 3. Generalized difference subspace

In addition to the high classification performance, our method has also an
ability of handling multiple classes in a simple framework. This is indispensable
for many applications of object recognition, such as face recognition. On the
other hand, many other types of kernel methods do not have this ability. For
instance, the well-known support vector machine classifier is basically a two-
class classifier[10]. Thus, the classification process becomes more involved and
time-consuming in a multiple class problem.

This paper is organized as follows. In section 2, we review the CMSM algo-
rithm. In section 3, we introduce the kernel generalized difference subspace in
the feature space, and construct KCMSM. Our method is demonstrated by the
evaluation experiments in section 4. In Section 5, conclusions are presented.

2 Recognition Based on CMSM

In this section, we first review the concepts of the canonical angle and the gen-
eralized difference subspace. Then, we explain the CMSM algorithm.

2.1 Calculation of Canonical Angles

A natural way for comparing two subspaces is by computing the canonical angles
between them [8]. We can obtain N canonical angles θi (for convenience N ≤M)
between an M -dimensional input subspace P and an N -dimensional reference
subspace Q in the f -dimensional input space I. Let Φi and Ψi denote the i-th
f -dimensional orthonormal basis vectors of the subspaces P and Q, respectively.
The value cos2θi of the i-th smallest canonical angle θi (i = 1, . . . , N) is obtained
as the i-th largest eigenvalue λi of the following N×N matrix X[6, 8]:

Xc = λc, (1)

X = (xij), xij =
∑M

k=1(Ψi ·Φk)(Φk ·Ψj).

2.2 Generation of the Generalized Difference Subspace

The generalized difference subspace represents the difference among multiple
k(≥2) subspaces as an extension of the difference subspace defined as the differ-
ence between two subspaces.
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Given k(≥2) N -dimensional subspaces, the generalized difference subspace D
is defined as the subspace which results by removing the principal component
subspace M of all subspaces from the sum subspace S of these subspaces as
shown in Fig.3. According to this definition, D is spanned by Nd eigenvectors
di(i = N×k − Nd, . . . , N×k) corresponding to the Nd smallest eigenvalues, of
the matrix G =

∑k
i=1 Pi of projection matrices Pi. where the projection matrix

Pi =
∑N

j=1 Φi
jΦ

i
j
�, Φi

j is the j-th orthonormal basis vector of the i-th class
subspace. The eigenvectors, di correspond to the i-th eigenvalue λi in descending
order.

The projection onto the generalized difference subspace D corresponds to re-
moving the principal (common ) component subspaceM from the sum subspace
S. This projection has the effect of expanding the canonical angles between sub-
spaces and forms a relation between subspaces which is close to the orthogonal
relation, thus improving the performance of classification based on canonical
angles [6].

2.3 The CMSM Algorithm

The steps of the CMSM algorithm are as follows:

1. The reference subspace PD
k of each class k is generated from the training

patterns projected onto the generalized difference subspace D using PCA.
2. The input subspace PD

in is generated from the input test patterns projected
onto D using PCA.

3. The canonical angles θ between the PD
in and the PD

k of each class are calcu-
lated using Eq.(1).

4. The similarity S[t] is calculated as the mean value 1
t

∑t
i=1 cos2θi. The ref-

erence subspace with the highest similarity is determined to be that of the
identified class, given the similarity is above a threshold.

Instead of steps 0 and 1, we can also obtain the canonical angles by the procedure
described in [6]. In this method, the input subspace and the reference subspaces
are first generated from the set of patterns, and then these generated subspaces
are projected onto D.

3 The Kernel Constrained Mutual Subspace Method

In this section, we first review kernel Principal Component Analysis (KPCA).
Next, we define the kernel generalized difference subspace using the technique
of the kernel PCA, and we describe the new KCMSM algorithm.

3.1 Kernel PCA

The nonlinear function φ maps the patterns x = (x1, . . . , xf )� of an f -dimensional
input space I onto an fφ-dimensional feature space F : φ : Rf → Rfφ , x→ φ(x).
To perform PCA on the mapped patterns, we need to calculate the inner product
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(φ(x) · φ(y)) between the function values. However, this calculation is difficult,
because the dimension of the feature space F can be very high, possibly infinite.
However, if the nonlinear map φ is defined through a kernel function k(x,y)
which satisfies Mercer’s conditions, the inner products (φ(x) · φ(y)) can be cal-
culated from the inner products (x · y). This technique is known as the “kernel
trick”. A common choice is to use the Gaussian kernel function[3]:

k(x,y) = exp
(
−||x− y||2

σ2

)
. (2)

The function φ maps an input pattern onto an infinite feature space F . The
PCA of the mapped patterns is called kernel PCA[3], and the linear subspace
generated by the kernel PCA are nonlinear subspaces in the input space I.

Given the N -dimensional nonlinear subspace Vk of class k generated from
m training patterns xi, (i = 1, . . . ,m), the N orthonormal basis vectors ek

i ,(i =
1, . . ., N), which span the nonlinear subspace Vk, can be represented by the linear
combination of the m φ(xk

i ),(i = 1, . . . ,m) as follows

ek
i =

m∑
j=1

ak
ij φ(xk

j ), (3)

where the coefficient aij is the j-th component of the eigenvector ai correspond-
ing to the i-th largest eigenvalue λi of the m×m matrix K defined by the fol-
lowing equation:

Ka = λa (4)
kij = (φ(xi) · φ(xj))

= k(xi,xj),

where ai is normalized to satisfy λi(ai · ai)=1. We can compute the projection
of the mapped φ(x) onto the i-th orthonormal basis vector ek

i of the nonlinear
subspace of class k by the following equation:

(φ(x), ek
i ) =

m∑
j=1

ak
ij k(x,xj). (5)

3.2 Generation of the Kernel Difference Subspace

It is possible to compute the projection of a mapped pattern φ(x) onto the ker-
nel generalized difference subspace Dφ using the kernel trick, since it consists of
the inner products in the feature space F . Let the Nφ

d -dimensional Dφ be gener-
ated from the r N -dimensional nonlinear subspace Vk, (k = 1, . . . , r). Firstly we
calculate the orthonormal bases of kernel generalized difference subspace from
all the orthonormal basis vectors of r nonlinear subspaces, namely, r×N basis
vectors. This calculation corresponds to the PCA of all basis vectors. Define E
to be a matrix, which contains all basis vectors as columns:

E = [e1
1, . . . , e

1
N , . . . , er

1, . . . , e
r
N ]. (6)
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Secondly we solve the eigenvalue problem of the matrix D defined by the follow-
ing equation:

Db = βb (7)
Dij = (E[i] ·E[j]), (i, j = 1, . . ., r×N) , (8)

where E[i] represents the i-th column of the matrix E.
The inner product between the i-th orthonormal basis vector ek

i of the class k
subspace and the j-th orthonormal basis vector ek∗

j of the class k∗ subspace can
be obtained as the linear combination of kernel functions k(xk,xk∗

) as follows:

(ek
i · ek∗

j ) = (
m∑

s=1

ak
isφ(xs) ·

m∑
t=1

ak∗
jt φ(x∗

t )) (9)

=
m∑

s=1

m∑
t=1

ak
isa

k∗
jt (φ(xs) · φ(x∗

t )) (10)

=
m∑

s=1

m∑
t=1

ak
isa

k∗
jt k(xs,x∗

t ) (11)

The i-th orthonormal basis vector dφ
i of the kernel generalized difference sub-

space Dφ can be represented by a linear combination of the vectors E[j] (j =
1, . . . , r×N), dφ

i =
∑r×N

j=1 bijE[j], where the weighting coefficient bij is the j-th
component of the eigenvector bi corresponding to the i-th smallest eigenvalue
βi of matrix D under the condition that the vector bi is normalized to satisfy
that βi(bi · bi)=1.

Let E[j] denote the η(j)-th basic vector of class ζ(j). The above orthonormal
basis vector dφ

i is converted to the following equation:

r×N∑
j=1

bijE[j] =
r×N∑
j=1

bij

m∑
s=1

aζ(j)
η(j)sφ(xζ(j)

s ) (12)

=
r×N∑
j=1

m∑
s=1

bija
ζ(j)
η(j)sφ(xζ(j)

s ) . (13)

3.3 Projection onto the Kernel Difference Subspace

Although it is impossible to calculate the orthonormal basis vector dφ
i of the

kernel generalized difference subspace Dφ, the projection of the mapped pattern
φ(x) onto this vector dφ

i can be calculated from an input pattern x and all m×r
training patterns xk

s(s = 1, . . .,m, k = 1, . . ., r).

(φ(x) · dφ
i )=

r×N∑
j=1

m∑
s=1

bija
ζ(j)
η(j)s(φ(xζ(j)

s ) · φ(x)) (14)

=
r×N∑
j=1

m∑
s=1

bija
ζ(j)
η(j)sk(xζ(j)

s ,x) (15)
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Fig. 4. Flow of object recognition using KCMSM

Note that we can compute k(xζ(j)
s ,x) through Eq.(2) easily. Finally, each com-

ponent of the projection τ(φ(x)) of the mapped φ(x) onto the Nφ
d (< r×N)-

dimensional kernel generalized difference subspace is represented as the follow-
ing: τ(φ(x)) = (z1, z2, . . . , zNφ

d
)�, zi = (φ(x) · dφ

i ).

3.4 The KCMSM Algorithm

We construct KCMSM by applying linear MSM to the projection τ(φ(x)). Fig.4
shows a schematic of the KCMSM algorithm.

In the training stage, the mapped patterns φ(xki) of the patterns xk
i , (i =

1, . . . ,m) belonging to class k, are projected onto the kernel difference subspace
Dφ. Then, the Nφ-dimensional linear reference subspace PDφ

k of each class k is
generated from the mapped patterns τ(φ(xk

i )) using PCA.
In the recognition stage, we generate the linear input subspace PDφ

in on the
Dφ from the input patterns xi,(i = 1, . . . ,m). Then we compute the similarity S,
defined in Sec.2.3, between the input subspace PDφ

in and each reference subspace
PDφ

k . Finally the object class is determined as the reference subspace with the
highest similarity S, given that S is above a threshold value.

4 Evaluation Experiments

We compared KCMSM with MSM, CMSM, and KMSM using the public database
of the multi-view image set (ETH-80: Cropped-close128)[9].

Experimental conditions: We selected 30 similar models (10 of each; cows,
dogs, and horses) from the database as shown in Fig.5(a) and used them for the
evaluation. The images of each model were captured from 41 views as shown in
Fig.5(b). The view directions are the same for all models. All images are cropped,
so that they contain only the object without any border area.
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(a) (b)

Fig. 5. Data set: (a) Subset of the input images, Top: cows, Middle: dogs, Bottom:
horses. (b) All 41 view-patterns of a dog model: the columns indicated by the arrows
are used as the training data.

The odd numbered images (21 frames) and the even numbered images (20
frames) were used for training and evaluation, respectively. We prepared 10
datasets for each model by making the start frame number i change from 1 to 10
where 10 frames from i-th frame to i + 9-th is one set. The total number of the
evaluation trials is 9000(=10×30×30). The evaluation was performed using mea-
sures for recognition rate and separability: a normalized index of classification
ability. Given two classes of similarities within a model category and similari-
ties across different model category, separability was calculated as a ratio of the
between-class scatter to the total scatter.

We converted the 180×180 pixels color images to 15×15 pixels monochrome
images and use them as the evaluation data. Thus, the dimension f of a pattern is
225(=15×15). The dimensions of the input subspace and the reference subspaces
were set to 7 in all methods.
PD

in and PD
k were generated from the patterns projected on the generalized

difference subspace. The difference subspace D was generated from thirty 20-
dimensional subspaces of all classes according to the procedure described in
Sec. 2.2. We varied the dimension Nd of D between 190 and 215 to compare
the performance. The kernel difference subspace Dφ was generated from thirty
20-dimensional subspaces of all classes according to the procedure described in
Sec.2.3. We varied the dimension Nφ

d of Dφ between 100 and 550. We used a
Gaussian kernel with σ2 = 0.05 defined by Eq.(2).

Experimental results: Table 1 shows the recognition rate and the separability.
In the tables, the notation method type – dimension of the difference subspace
is used and t denotes the number of the canonical angles used for the similarity
S[t] defined in step 3 of Section 2.3.

From these results, it can be observed that the performance of the nonlinear
methods (KMSM and KCMSM) is superior to the one of the linear methods
(MSM and CMSM), indicating that the recognition of multiple view images is
typically a nonlinear problem.
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Table 1. Performance of each method

(a) Recognition rate (%)
t=1 t=2 t=3 t=4

MSM 72.7 73.7 76.3 74.3
CMSM-215 75.7 81.3 76.3 73.7
CMSM-200 73.3 81.0 79.3 77.7
CMSM-190 71.0 73.0 73.0 75.0
KMSM 84.7 87.0 82.0 81.7
KCMSM-550 83.0 85.3 85.7 86.3
KCMSM-500 79.3 85.0 87.0 87.0
KCMSM-450 82.0 88.0 89.3 89.7
KCMSM-400 83.3 87.7 88.3 89.7
KCMSM-300 81.0 87.7 88.7 89.0
KCMSM-200 81.7 81.7 83.3 83.3
KCMSM-100 57.7 62.7 68.0 65.3

(b) Separability
t=1 t=2 t=3 t=4

MSM 0.055 0.074 0.082 0.080
CMSM-215 0.203 0.236 0.242 0.236
CMSM-200 0.215 0.257 0.254 0.245
CMSM-190 0.229 0.255 0.249 0.244
KMSM 0.375 0.420 0.420 0.429
KCMSM-550 0.538 0.581 0.584 0.538
KCMSM-500 0.556 0.607 0.616 0.612
KCMSM-450 0.549 0.618 0.621 0.621
KCMSM-400 0.529 0.601 0.607 0.609
KCMSM-300 0.483 0.536 0.545 0.545
KCMSM-200 0.340 0.385 0.403 0.408
KCMSM-100 0.141 0.194 0.212 0.213

The performance of MSM was improved by the nonlinear extension of MSM
to KMSM where the recognition rate increased from 76.3% to 87.0% and the
separability increased from 0.082 to 0.429.

The new KCMSM improved the recognition rate further to 89.7% and in-
creased the separability by a value of almost 0.2 in comparison to KMSM. This
confirms the effectiveness of projection the onto the kernel difference subspace,
which serves as a feature extraction step in the feature space F . In particular,
the high separability of KCMSM is remarkable. This indicates that KCMSM can
maintain high performance even if the number of classes becomes larger.

The classification ability of KCMSM was improved while increasing t of the
similarity S[t]. These results show that the similarity S[1] is not sufficient for
classification of the models with similar 3D shapes. This is because S[1] utilizes
only the information of a single view. On the other hand, S[t](t≥2) reflects the
information of 3D shape including multiple views. Note that the recognition
rate of KMSM decreased, although it is also a nonlinear method. From this, one
can deduce that the projection onto the kernel difference subspace ensures the
validity of the similarity S[t], (t≥2).

In comparison between KCMSM-450 and KCMSM-300, the extreme degra-
dation of performance does not appear even when the dimension of the kernel
difference subspace decreased to 300. This implies that we can decrease the di-
mension Nφ

d within the permissible range to reduce the computing cost.

5 Summary and Conclusions

This paper has introduced the kernel constrained mutual subspace method
(KCMSM) and demonstrated its application to 3D object recognition. We showed
a significant performance improvement over kernel MSM, which is a state-of-the-
art method for classifying multiple view patterns with nonlinear structure. The
projection onto the kernel generalized difference subspace can be viewed as a
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nonlinear feature extraction step based on the concept of constrained MSM.
The extracted features by this projection could improve the classification ability
of kernel MSM. The validity of KCMSM was shown through the experimental
results with the set of the multiple view patterns of 3D objects.

In future work, we will evaluate the performance of KCMSM using other
databases, such as a face image database. In this case, the comparisons with
other kernel methods[10] are required. Another problem that remains to be ad-
dressed is the computation of the eigen–problems of the matrices K and D,
which becomes difficult when the size of these matrices become large in pro-
portion to the numbers of the classes and the training patterns. To solve this
problem, the reduction of the number of the training patterns is most effective.
Thus, the framework of ensemble learning[11] is useful, since it can obtain high
performance using only a few training patterns.

References

1. Oja, E.: Subspace methods of pattern recognition. Research Studies Press, England,
(1983)

2. Yamaguchi, O., Fukui, K., and Maeda, K.: Face recognition using temporal image
sequence. Proc. Third International Conference on Automatic Face and Gesture
Recognition, (1998) 318–323

3. Schölkopf, B., Smola, A. and Müller, K.-R.: Nonlinear principal component analysis
as a kernel eigenvalue problem. Neural Computation, vol. 10, (1998) 1299–1319

4. Sakano, H., and Mukawa, N.: Kernel mutual subspace method for robust facial im-
age recognition. Fourth International Conference on Knowledge-Based Intelligent
Engineering Systems & Allied Technologies (KES2000) (2000) 245–248

5. Wolf, L. and Shashua, A.: Kernel principal angles for classification machines with
applications to image sequence interpretation. Proc. CVPR, (2003) 635–642

6. Fukui, K. and Yamaguchi, O.: Face recognition using multi-viewpoint patterns
for robot vision. 11th International Symposium of Robotics Research (ISRR’03),
Springer, (2003) 192–201
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Abstract. In this paper we present simple iterative method for obtain-
ing high resolution images with enhanced edges but reduced noise. In
the method the trade off between the output noise and the edge preser-
vation is being taken care of by employing an energy-based framework.
In each iteration, two processes are involved: 1) the edge enhancement
and reducing noise which occurs during the edge enhancement process,
and 2) consideration of the fidelity to the low resolution images and
the smoothness constraint of the restored high resolution image. In the
implementation, the first process is designed to be embedded into the
second process. And a termination condition is established by taking
into account high frequency energy of the image being restored and er-
ror energy for each low resolution image. Experimental results show that
the proposed method produces high resolution images in which edges
are preserved with reduced noise, comparing to the ones produced by
conventional methods. Moreover, it turns out that the approach is less
sensitive to initialization factor in terms of PSNR and subjective visual
quality.

1 Introduction

Advent of new types of device for image display and storage has created interests
on the high resolution image reconstruction from multiple low resolution images,
including video standard conversion, multimedia imaging, and image analysis
[1, 2].

In order to deal with this typical ill-posed problem, various optimization
schemes, such as Bayesian maximum a posteriori (MAP) estimation, projection
onto convex sets (POCS) algorithm, iterative back projection (IBP) approach,
and constrained least square (CLS) algorithm have been widely applied [3]. In
the MAP estimation and the CLS algorithm, the optimal high resolution image
can be obtained by iteratively minimizing the objective function defined. Dur-
ing the process, edges of the restored image are gradually sharpened along with
noise components, as high frequency components are restored [4]. Nevertheless,
smoothing effect occurring in edges is unavoidable as we consider the smoothness
constraint. Also, it is quite common to observe typical artifacts, such as staircase
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effect, while the reconstruction is performed. In terms of edge preserving, a prior
assumption using Huber-Markov random field (HMRF) model and the spatial
adaptive algorithm using local properties such as local mean and local variance
have been employed [5, 6].

In this paper, to alleviate the problems, we propose a simple iterative method
for obtaining high resolution images with enhanced edges but reduced noise. In
the proposed method, the iteration includes two processes: one is for enhancing
edges and reducing noise which is being amplified while the edges are enhanced,
and the other is for maintaining the fidelity and the smoothness constraints.
Note that the result of the edge enhancement process is effectively controlled
by the application of a smoothness constraint. As the iteration includes the
contradictory processes in terms of preserving edges, each process needs to be
well balanced as the iteration continues.

In the former process, a sharpening filter is employed for edge enhancement
in the restored image. The weight of the filter is determined depending on the
noise components in the image being restored. Possible enhancement of noise
is managed by employing a median filter conditionally. In the later process, the
objective function which satisfies the constraints is obtained in each iteration and
the restored high resolution image is created based on the objective function.
The termination condition of the iteration is set by considering a sum of high
frequency energy of the image being restored and error energy for each low
resolution image.

The rest of the paper is organized as follows: In section 2, a general obser-
vation model is briefly introduced. In section 3, the proposed iterative method
for high resolution image reconstruction is presented. Experimental results are
shown in section 4, and finally conclusion is given in section 5.

2 Observation Model

We assume that a high resolution image is degraded by motion between neigh-
boring frames, blurring and downsampling caused by sensor, and noise occurred
during the acquisition. In the model defined in (1), let us assume that a high
resolution image is restored using p distorted images.

yk = Akx + nk for k = l − p−1
2 , . . . , l, . . . , l + p−1

2 (1)

where yk and nk are kth observed image and the additive zero mean Gaussian
noise for kth observed image, respectively, and x is the desired high resolution
image. Ak represents the contribution of pixels in x to the pixels in yk due to
motion, blurring, and downsampling of the high resolution image. In this paper,
a nonparametric motion model and a parametric motion model are assumed [7].

3 Proposed Method

Details on the two processes designed for the image reconstruction are described
in this section, along with the termination condition of the iteration. Fig. 1
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Fig. 1. Flowchart of the proposed iterative algorithm

illustrates the entire iterative process and the rest of the section explains details
on functional blocks in the figure.

3.1 Enhancing Edges and Reducing Noise

Edges in the high resolution image are enhanced by introducing a sharpening
filter and the process is described as (2).

x̂n = x̂n−1 + wnHx̂n−1 (2)

where H and n(n ≥ 0) represent the high pass filter (the second-order derivative
in our method) and the iteration order, respectively, and wn represents the
weight parameter of sharpening filter. The degree of edge sharpening increases
as the weight parameter , wn, increases. However, the noise in the image being
restored is also amplified in proportion to the degree of edge sharpening.

The noise in the image being restored includes error from the motion estima-
tion and additive zero mean Gaussian noise. On the other hand, it should be
noted that the noise in the image is decreased as n increases as well because the
error energy for each low resolution image is decreased in the process explained
below. In our implementation, we control the weight parameter as shown in (3)



328 C. Jung and G. Kim

by taking into account the error energy of the image being restored. That is, the
degree of edge sharpening gradually increases as the iteration number increases.

wn = nW (3)

where W represents the basis weight parameter which controls increasing rate
of the weight parameter. The basis weight parameter should be small enough to
adopt high pass filter stably. The weight control strategy prevents from drastic
increase of noise as the iteration continues. Then the edge enhancement process
defined in (2) satisfies the inequality shown in (4). That is, the high frequency
energy of image being restored is increased by edge enhancement process.

‖Hx̂n−1‖2 < ‖H(x̂n−1 + wnHx̂n−1)‖2 (4)

Even our effort to minimize the undesirable impact, which may occur due to
noise during the edge enhancement, has been considered as in (3), noise compo-
nents in non-edge areas could be amplified during the edge enhancement process.
To alleviate this problem we employ a median filter which removes noise effec-
tively while preserving discontinuities. The filter is conditionally activated only
when the inequality shown in (5) is satisfied for the high resolution image under
restoration.

‖HMx̂n‖2 > ‖Hx̂n‖2 (5)

where M represents the median filter. That is, the filtering is applied with con-
servative manner so that edges in the high resolution image under reconstruction
prevent from being smoothen.

3.2 Fidelity and Smoothness Constraints

Utilization of a priori knowledge on x in (1) plays an important role in image
restoration. In contrast to the conventional CLS algorithms where the high fre-
quency energy of the image increases as the iteration number increases, the high
frequency energy of the image being restored does not necessarily increases in
the constraints satisfaction process because the process of edge enhancement
and noise reduction is embedded into the constraints satisfaction process. In
short, the result of the edge enhancement process is effectively managed by the
application of the smoothness constraint.

As shown in (3), the degree of edge enhancement is proportional to n. There-
fore, when n is small the high frequency energy of the restored image increases
in the constraints satisfaction process since the increment of the high frequency
energy of the image is small in the process of edge enhancement. On the other
hand, as n gradually increases, the high frequency energy of the restored im-
age decreases and the edges are smoothed in the constraints satisfaction process
since the increment of the high frequency energy of high resolution image is
getting larger along with edge enhancement. In each iteration, the constraints
satisfaction process is executed based on the following objective function shown
in (6).

Fn(zn) =
∑

k

λk‖yk −Akzn‖2 + ‖Czn‖2 (6)
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where λk represents the regularization parameter which controls the tradeoff
between the fidelity and the smoothness constraint, and C is the 2-D Laplacian
operator [8].

In the conventional CLS algorithm, the objective function is defined once
and the result of the previous iterative procedure is used iteratively while mini-
mization of the objective function is being performed. In the proposed method,
however, we find a restored image zn, which satisfies the rule shown in (7), in
nth iteration.

Fn(zn) < Fn(zn
initial) (7)

where zn
initial represents the initial estimate of zn and it is obtained from the

process of the edge enhancement and the noise reduction. zn, which satisfies (7),
becomes x̂n in our previous convention, and the image being restored is updated
using (8).

x̂n = x̂n − βn∇znFn(x̂n) (8)

where βn and ∇znFn(x̂n) are the stepsize and the gradient of the objective
function, respectively.

3.3 Termination of Iteration

We use (9) for determining the point where the iteration ends. To reflect our
efforts for preserving edges and minimizing noise in the restored image, the
equation includes the error energy for each low resolution image and the high
frequency energy of the restored image.

S(x̂n) =
∑

k

‖yk −Akx̂n‖2/p + ‖Cx̂n‖2 (9)

In (9), S(x̂n) is decreased when n is small, and then is increased as n in-
creases since the increment in the high frequency energy of the restored image is
proportional to n in the process of edge enhancement. That is, when n is large,
the high frequency energy of the restored image increased by (2) is larger than
that decreased by (8). At the same time, ‖yk −Akx̂n‖2 is decreased when n is
small and is increased as n increases. Hence, the iteration is terminated when
the condition in (10) is satisfied.

S(x̂n) > S(x̂n−1) and
S(x̂n)

min S(x̂)
≥ T (10)

where min S(x̂) represents the minimum value of S(x̂) and T is a predefined
value.

4 Experimental Results

In the experiment, we use artichoke and hotel video sequences and chose
p = 5 and 1 < T < 1.1. The high resolution frame is of size 512 × 480. A
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(a) (b)

Fig. 2. Low resolution frames: (a) artichoke video sequence and (b) hotel video
sequence

(a) (b)

Fig. 3. Details of reconstruction results for artichoke video sequence: (a) bilinear
interpolation and (b) the proposed algorithm

4 × 4 uniform support blurring function is used to obtain a sequence of low
resolution frames and a nonparametric motion model is assumed. The result of
the proposed method is compared with ones from the bilinear interpolation and
the adaptive CLS algorithm [4]. Fig. 2 shows the result low resolution frames
for the artichoke and hotel video sequences. In the performance analysis, we
conduct subjective visual evaluation as well as quantitative comparison.

The details of reconstruction results from the bilinear interpolation and the
proposed algorithm for the artichoke video sequence are shown in Fig. 3 for the
comparison purpose. As we observe in the figure, the proposed method produces
sharper edges in the restored high resolution images.

The comparison of reconstruction results from an adaptive CLS algorithm [4]
and the proposed algorithm is shown in Fig. 4 and Fig. 5. It should be noted
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(a) (b)

Fig. 4. Details of reconstruction results for artichoke video sequence: (a) adaptive
CLS algorithm and (b) the proposed algorithm

(a) (b)

Fig. 5. Details of reconstruction results for hotel video sequence: (a) adaptive CLS
algorithm and (b) the proposed algorithm

Table 1. The comparison of average PSNR

Bilinear Adaptive Proposed
interpolation CLS algorithm algorithm

artichoke 27.43dB 34.43dB 35.67dB
hotel 30.18dB 36.58dB 37.37dB

that the proposed algorithm produces high resolution images with sharper edges
without noise amplification comparing to the adaptive CLS algorithm. Espe-
cially, the staircase effect appears in Fig. 4(a) and Fig. 5(a) is not observed in
Fig. 4(b) and Fig. 5(b).

The average PSNRs measured for quantitative evaluation are shown in
Table 1. As we can see in the table, the proposed method performs better in
terms of PSNR.

To study the sensitivity of the algorithm to the initialization factor, PSNR
and the number of iterations versus the basis weight parameter, W , are shown in



332 C. Jung and G. Kim

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

35

35.5

36

36.5

37

37.5

The basis weight parameter

P
S

N
R

(d
B

)

artichoke video sequence
hotel video sequence

Fig. 6. PSNR versus the basis weight parameter

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−3

0

50

100

150

200

250

The basis weight parameter

T
h

e 
n

u
m

b
er

 o
f 

it
er

at
io

n
s

artichoke video sequence
hotel video sequence

Fig. 7. The number of iterations versus the basis weight parameter

0 5 10 15 20 25 30 35 40 45 50

28

29

30

31

32

33

34

35

36

37

Iteration order

P
S

N
R

(d
B

)

Proposed algorithm for artichoke video sequence
Adaptive CLS algorithm for artichoke video sequence
Proposed algorithm for hotel video sequence
Adaptive CLS algorithm for hotel video sequence

Fig. 8. PSNR versus iteration order



An Iterative Method for Preserving Edges and Reducing Noise 333

(a) (b)

Fig. 9. Details of reconstruction results for lena video sequence: (a) adaptive CLS
algorithm and (b) the proposed algorithm

(a) (b)

Fig. 10. Details of reconstruction results for lena video sequence with Gaussian noise
(σ = 3): (a) adaptive CLS algorithm and (b) the proposed algorithm

Fig. 6 and Fig. 7, respectively. As we can see in Fig. 6, the proposed method is not
much sensitive to the basis weight parameter in terms of PSNR for both of the
image sequences. On the other hand, as Fig. 7 indicates, the number of iterations
is directly influenced by the basis weight parameter since the termination point
is depending on the initialization factor.

Fig. 8 shows how PSNR varies as the iteration order increases. First of all,
from the figure it should be noted that the proposed method results in almost
the same PSNR to the CLS algorithm with quite comparable iteration number
until the point where the CLS algorithm converges. However, the figure indicates
that the proposed method is able to produce high resolution images with better
PSNR by considering a few number of additional iteration.
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Fig. 9 and Fig. 10 show reconstruction results for lena and noisy lena video
sequence, respectively. The high resolution frame is of size 512× 512. To obtain
a noisy sequence of low resolution frames, a 4 × 4 uniform support blurring
function is employed and Gaussian noise with standard deviation 3 is added. A
parametric motion model is assumed. As we can see in Fig. 9(b) and Fig. 10(b),
the edges are almost completely preserved with presence of noise.

5 Conclusion

In this paper, we propose a new iterative approach for high resolution image
reconstruction which is preserving edges but reducing noise. The efforts for pre-
serving edges and reducing noise have been effectively embedded into a frame-
work which is considering the fidelity and the smoothness constraints satisfaction
process. Experimental results presented in section 4 prove that the proposed iter-
ative algorithm performs better than the conventional ones including a bilinear
interpolation and an adaptive CLS reconstruction algorithm, in terms of not
only PSNR but also perceived visual quality. In addition, it turns out that the
proposed algorithm is less sensitive to the initialization factor as well.
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Fast Binary Dilation/Erosion Algorithm 
Using Kernel Subdivision 

Introduction 

Morphology  has a  strong mathematical basis in  Set theory [1]. The dilation of a 
set of points X by a structuring element B is defined [2] as follows. 

X B = +x b x X b B (1) 

Erosion  is the dual of dilation. A direct implementation of the definition above 

leads to a computational cost of complexity o n
2 

A for an image of size n x n and

a kernel of size d x d with area A. Elementary decomposition of structuring elements 
is used to reduce the complexity of dilation in [2]. Further speed up is achieved in 
literature [3][4][5] by reducing computational complexity at the cost of sacrificing cor-
respondence to the classical implementation output. Considering only the edge pixels 
of the set X the exact correspondence to the output of the classical algorithm can be 
maintained [2]. 

X B = X X B (2) 

where  X  is the edge of  X [2]. If, 

X = l (3) 

Ajay Narayanan

Imaging Technologies Lab, GE Global Research, Bangalore, India
ajay.narayanan@ge.com

Abstract. Numerous algorithms have been proposed in the literature to
speed up dilation/erosion operations. The motivation has been to reduce
computational complexity by exploiting the structuring element and the
image object properties. This paper presents a new algorithm for binary
morphological dilation and erosion called the Kernel Sub-Division algo-
rithm and discusses its implementation in the two dimensional case. It
decomposes the n-dimensional structuring element, into several subsets
and operates on the object contours in the image. The image character-
istics are exploited by subdividing the object contours into bins while
performing contour processing. The elegance of the algorithm lies in
its retaining the correspondence to the output of the classical imple-
mentation with massive speed gain. The results of the algorithm on a
statistically significant test set of images, showed that it performed five
times better than the classical implementation for a 3x3 kernel. It also
demonstrated a marginal rise in execution time with increasing size of
the kernel.
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2 

o l d
2 (4) 

The motivation of this work has been to develop a fast algorithm while matching 
the output of the classical definition of the dilation/erosion operations. The elegance 
of the Kernel sub-division (KSD) algorithm is that it achieves reduction in computa-
tional complexity while maintaining the exact output as that of the classical defini-
tion implementation for both dilation and erosion. It also sets up a framework to han-
dle anisotropic dilation and extension into 3-dimensional volume dilation. This paves 
the way for the discussion of the Kernel sub-division (KSD) algorithm. This will be 
followed by a brief discussion on the 2D implementation of KSD, results and future 
extensions. 

Methods 

A brief  overview  of  the  contour processing  method with a full kernel implemen-
tation is presented below. A circular kernel of size d x d is chosen for illustrative pur-
poses as in Figure 1. 

Figure 2  shows the way in  which a  full-kernel  contour  processing modifies  the
jects when dilating them.  

In the full  kernel contour  processing method, the kernel modifies the pixels that 
are interior to the object. The Kernel subdivision method exploits this computational 
redundancy by devising a framework in which only the pixels exterior to the object 
are modified in case of dilation. This would then give a gain factor of two in the 
processing time. This concept is illustrated in Figure 3. 

Fig. 1. (a) A circular kernel, (b) An object in an image

Fig. 2. The process of dilation using full kernel contour processing

Fig. 3. The process of dilation using kernel subdivision contour processing
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the computational complexity then reduces to 

 ob



The Kernel subdivision method approaches the problem from both the kernel and 
2

the image perspective by optimizing both the l and the d  term in (4). 

2
The  KSD algorithm  fractionates both the l and the d terms. A representative 

object in an image is shown in Figure 4. 

4 

2a 1 2a 
1 0 1  
1 0 1  
1 0 1  

2n 
1 0 1  
1 0 1  
1 0 1  

3 1 1 1 3  

0 Object Interior 

1 Missing Neighbor 
2 Missing Neighbors 

3 Missing Neighbors 

4 Missing Neighbors 

The term l is modified by binning the contour pixels into 5 bins such that, 

l = l1 + l2adj + l2n adj + l3 + l4 (5)– 

where: 

l1   = Set of pixels having only one 4-connected neighbor missing. (shown as 1 in 

the contour map in Figure 4)

l2adj   = Set of pixels having only two 4-connected neighbors missing which are 

in turn perpendicular to each other. (Shown as 2a in the contour map in Figure 4)

l2n adj  = Set of pixels having only two 4-connected neighbors missing which in – 

turn are not in set l2adj  (shown as 2n in the contour map in Figure 4)

l3   = Set of pixels having only three 4-connected neighbors missing (shown as 3 

in the contour map in Figure 4)

l4   = Set of pixels having only four 4-connected neighbor missing  (shown as 4 

in the contour map in Figure 4) 

2
The  term d  is modified by sub-dividing the kernel  into a set of oriented 2D 

subkernels. These subkernels are so chosen that each one applies to a particular bin 

of l . These are precomputed and stored in a lookup table. A circular kernel is chosen 

for illustration of kernel subdivisions in Figure 5. 

The  kernel  subdivision used depends on the contour bin into which the image 
contour pixel falls. This stems from the observation that the actual region to be di-

2.1 Contour Binning

2.2 Kernel Subdivision

Fig. 4. A representative object to illustrate contour binning
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1 5  

9 1 3 
8 0 2 
8 0 2 

1 2  0  6  
1 0  

9 0 3 
8 0 2 
8 0 2 

1 2  4  4  4  7  

The following is the mapping relationship of subdivided kernels (right side)  and 
the contour bins they link up to (left side)  

l1 1 2 4 8  

l2adj = 3 6 9 1  2

l2n adj = 5 10–

l3 = 7 11 13 14

l4 15=

Fig. 5. The 16 linear combinatorial sub-divided kernels of a 2D Circular kernel for
d=11 [read 0-15 left to right, top to bottom]

Fig. 6. The numbers in the pixels indicate the subkernel to use from the lookup in
Figure 5 for a contour bin

lated depends upon the neighborhood conditions of a contour pixel as illustrated in 
Figure 6. 
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d – 1 
For bin 1: complexity = o l1 ----------------

2 

1---For bin 2adj: complexity = o l2 adj 4 A

For bin 2n-adj: complexity = o l2 n adj d– 

1 
For bin 3: complexity = o l3 2

--- A

For bin 4: complexity = o l4 A

2 
Where A = area of the kernel foreground = -----d

4

Total  complexity is the linear sum of the individual bin complexities. It can thus 
be seen that the total order of complexity is a direct function of the statistical distri-
bution of the contour pixels in the contour bins.

 Thus the algorithm tunes it’s execution speed to the incoming data by  exploiting 
data redundancy. 

3 Implementation 

To prevent revisits to pixels in the image which are under  a sub-kernel’s back-
ground, the kernel foreground is run-length encoded. This means only the pixels un-
der the foreground of a sub-kernel are visited when a kernel is applied over a point. 
The encoding is pre-computed over the image coordinate extents (horizontal and ver-
tical) and stored in memory. 

To assign  a  particular sub-divided kernel to a contour bin is a tricky  task as it is 
not a direct one-to-one mapping. For each pixel classified as belonging to bin 1 there 
are 4 possible choices of sub-kernels depending upon the 2D spatial arrangement of 
neighbors. This is handled by encoding the neighborhood positions for a contour pixel 
into a 4-bit positional code that maps it to the corresponding sub-kernel in the mem-
ory lookup. This is illustrated in Figure7, where ‘c’ is the centre pixel and 4-connec-
tiviy is used. 

3.3 Experiments 

The average time to execute this algorithm on the target hardware platforms (1.4 
GHz, 2GB, 1 Pentium IV Processor) is compared against the performance of the con-

3.1 Run Length Encoding of Kernel Foreground

3.2 Positional Code

2.3 Computational Complexity 

The computational complexity can now be calculated. We have: 
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4 

tion using kernel subdivision algorithm was also implemented in VTK framework. 
This ensured a fair imaging pipeline of execution to maintain constancy in compari-
son due to same underlying framework of data and execution. 

Layer(s) 
Time of execution (seconds) Gain 

factor 
Kernel 

subdivision 
Conventional 

1 1.203 5.765  4.8 
5 1.297 47.562 36.7 

10 1.422 157.138 110.5 
15 1.578 337.025 213.6 
20 1.883 572.426 304.0 

Results  

The Kernel Sub-division algorithm has been applied to a medical CT Angiogra-
phy dataset. Table1 and Figure 8 show that the KSD algorithm performed better 
than the standard implementation and from complexity analysis it has been shown 

Table 1. Execution time of kernel subdivision algorithm against conventional algo-
rithm

Fig. 8. Execution time comparison against conventional algorithm

ventional algorithm in Table1. Input is a set of 275 images with size 512*512 pixels. 
Time shown in Table1 is the time taken to process the full set of images. The per-
formance was compared against a VTK filter vtkImageDilateErode3D. The fast dila-

Bit representation of Positional Code 

Top Right Bottom Left 

0/1   0/1   0/1       0/1 

20  21  22  23 

0/1 = absence/presence 

2n   = position weights 

× 1 ×

8 c 2 

× 4 ×

Fig. 7. Position Code
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(a) (b) (c) 

Fig. 9. (a) Image before, (b) After five layers dilation

Fig. 10. Pixel revisits/complexity (a) conventional algorithm, (b) full kernel contour
algorithm, (c) kernel subdivision
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5 Conclusions 

The  kernel subdivision algorithm performs twice as fast than the full kernel con-
tour-processing method at all layers. The algorithm is five times faster than the clas-
sical algorithm at one layer and upto one hundred times faster at 10 layers. It utilizes 
image information to speed up its performance. Though the actual computational 

sub-division technique. Figure 9 shows an image that has been dilated by five layers. 
Figure 10 visually shows the computational complexity for an object in the image 
(zoomed). The algorithm can be extended to three-dimensional dilation or erosion 
with minimal modification in the framework. The combinations though reach up to 
64 sub-kernels; the rotational invariance of these sub-division kernels can be exploited 
to have two or more of the positional code pointing to the same sub-division kernel 
in the lookup. 

from the predicted gain factor of two is attributed to the small computational over-
head of neighborhood positional code encoding, needed to be performed in the Kernel 

that it can outperform full kernel contour processing techniques. The algorithm was 
also analyzed for performance against a ‘vtk’ implementation of full kernel contour 
based dilation algorithm and was found to have a gain factor of 1.9x.   This difference 
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Abstract. This paper presents a fast algorithm for global motion esti-
mation based on Iterative Least- Square Estimation (ILSE) technique.
Compared with the traditional framework, three improvements were
made to accelerate the computation progress. First, a new 3-parameter
linear model, together with its solution using modified ILSE method,
is proposed to describe and estimate global motion, which is simple
and reasonable. Second, a pre-analysis method, Gradient Thresholding
(GT) method, is introduced to pre-analyze the image macro-blocks be-
fore global motion estimation using their gradient information, which re-
duce the computational cost by reducing the amount of involved blocks.
Lastly, Successive Elimination Algorithm (SEA), which is used to cal-
culate motion field, is improved by a new presented matching criterion
considering both the gradient information and the intensity information.
The presented method has been tested on a variety of image sequences,
and experimental results illustrate its promising performance.

1 Introduction

Motion estimation is one of the research topics having attracted many research
activities in the video compression and coding community [1]. In video sequence,
motion always comes from the movement of camera, movement of objects in the
scene, or movement of both. The former is often referred as global motion and
the latter as local motion. Separating these two classes of motion, which is the
main job for Global Motion Estimation (GME), is significant for video coding,
video indexing, video object segmentation, and many other applications.

Iterative Least Square Estimation (ILSE) technique is a commonly used
method for global motion estimation. Recently, Rath and Makur [2] proposed a
four- parameter model to calculate global motion parameters using ILSE. Their
method consists of two steps: First, an initial motion field is calculated using
Block Matching Algorithm (BMA) [3] considering all of the blocks in a frame.
Because some calculated motion vectors will be inaccurate for the blocks, in the
second step, ILSE technique is used to gradually eliminate the influence of these
blocks and finally extract accurate global motion parameters.

A problem of Rath and Makur’s framework is high computational cost, which
mainly comes from the motion field estimation using BMA. Recently, Sorwar
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etc.[4] proposed a Distance Dependent Thresholding (DTS) method for fast block
matching. Besides, in their work, only the blocks near the edge of image are
concerned in the global motion estimation, which reduce the computational cost
to a great extent. Yet, its accuracy highly depends on the amount of concerned
blocks.

In this paper, we propose a fast algorithm for global motion estimation based
on a 3-parameter linear model and ILSE technique. The new model is deducted
by simplifying Rath and Makur’s 4-parameter linear model. And the three pa-
rameters are estimated using a modified ILSE method. On the other hand, a
pre-analysis method, Gradient Thresholding (GT) method, is used to reduce
the computation cost, in which all of the blocks are pre-analyzed by their gradi-
ent information. The aim is to find those treacherous blocks that are more likely
to produce inaccurate motion estimations, and exclude them from the following
process. Furthermore, Successive Elimination Algorithm (SEA), which is used
to calculate motion field, is improved by a new presented matching criterion
considering both the gradient information and the luminance information.

2 Global Motion Estimation

2.1 Three-Parameter Global Motion Model

In this section, 3-parameter model is proposed by simplifying Rath and Makur’s
4-parameter model. In [2], Rath and Makur have used two parameters to describe
the camera zoom, corresponding to the x-axis and y-axis separately. Yet actually,
the zoom factor along x-axis and y-axis should be identical. So, in our work, only
one parameter is remained to denote camera zoom factor. The motion model can
be expressed as [

vx

vy

]
= a1

[
x
y

]
+
[
a2
a3

]
(1)

where
a1 = zxy, a2 = f1(px, zxy), a3 = f2(py, zxy) (2)

zxy is the zoom factors and (px, py) is the pan vector.
The motion parameters are calculated using ILSE technique, which involves

two steps. First, the frame image is segmented into several m × n blocks, and
block-matching algorithm (BMA) is performed to estimate the motion vector for
each block. Second, ILSE technique is used to compute global motion parameters
from the estimated motion field constructed by the blocks and their motion
vectors.

Let there be N blocks in a video frame, and assume that the motion vector
of a block is the motion vector of the central pixel of that block. Let (vk

x , v
k
y ) be

the estimated motion vector by BMA, of the block k(k = 0, 1, · · · , N −1), whose
central pixel’s coordinates are (sk

x, s
k
y) with respect to the center of the frame.

Then, the global motion model can be written as:[
vk

x

vk
y

]
= a1

[
sk

x

sk
y

]
+
[
a2
a3

]
(3)
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According to the ILSE algorithm, the optimal values for camera parameters
(a1, a2, a3) are estimated using the following criteria:

(a1, a2, a3) = arg min
N−1∑
k=0

[(vk
x − a1s

k
x − a2)2 + (vk

y − a1s
k
y − a3)2] (4)

Differentiating (4) with respect to the parameters and setting the derivatives to
zero, we get⎡⎣∑(sk

x)2 +
∑

(sk
y)2
∑

sk
x

∑
sk

y∑
sk

x N 0∑
sk

y 0 N

⎤⎦⎡⎣a1
a2
a3

⎤⎦ =

⎡⎣∑ vk
xsk

x +
∑

vk
ysk

y∑
vk

x∑
vk

y

⎤⎦ (5)

Then, the following solution can be achieved as:

a1 =
NΨ1 − Ψ2

NΨ3 − Ψ4
(6)

a2 = Ψ3

∑
vk

x − Ψ1

∑
sk

x +
Ψ5

N

∑
sk

y (7)

a3 = Ψ3

∑
vk

y − Ψ1

∑
sk

y −
Ψ5

N

∑
sk

x (8)

where

Ψ1 =
∑

vk
xsk

x +
∑

vk
ysk

y, Ψ2 =
∑

vk
x

∑
sk

x +
∑

vk
y

∑
sk

y , (9)

Ψ3 =
∑

(sk
x)2 +

∑
(sk

y)2, Ψ4 = (
∑

sk
x)2 + (

∑
sk

y)2, (10)

Ψ5 =
∑

vk
y

∑
sk

x +
∑

vk
x

∑
sk

y . (11)

To avoid the influence of the blocks with inaccurately estimated motion, the
above procedure is evaluated iteratively, and each iteration eliminates blocks
whose motion vectors (estimated by BMA) do not match with the current global
motion fields. Matching means that a motion vector lies within a threshold dis-
tance from the corresponding global motion field. So, using ILSE method, the
influence of those blocks with inaccurate motion estimations will be gradually
removed, and after several iterations, the estimated parameters will converge to
the final results.

2.2 Modified ILSE Method

Although ILSE method can avoid estimation bias caused by inaccurate motion
vectors, it is weak to dispose of another problem which may also cause bias
in global parameter estimation: the existing of local motions. The reason is:
inaccurate motion vectors are always disordered and can be discarded easily,
while the local motions are not. Such problem becomes even worse when the
objects are large in the scene.
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Based on the prior knowledge that moving objects generally exist towards
the centre of frame, the weights of blocks for estimation are adjusted according
to their distances with respect to the centre of frame. Then equation (4) is
modified as

f(a1, a2, a3) =
N−1∑
k=0

[(vk
x − a1s

k
x − a2)sk

x]2 + [(vk
y − a1s

k
y − a3)sk

y ]2 (12)

based on what, (a1, a2, a3) can be computed by

a1 =
(
∑

vxs3
x +
∑

vys3
y)
∑

s2
x

∑
s2

y −
∑

vxs2
x

∑
s3

x −
∑

vys2
y

∑
s3

y

(
∑

s2
x +
∑

s2
y)
∑

s2
x

∑
s4

x − (
∑

s3
x)2 − (

∑
s3

y)2
(13)

a2 =
∑

vxs2
x − a1

∑
s3

x∑
s2

x

(14)

a3 =

∑
vys2

y − a1
∑

s3
y∑

s2
y

(15)

In the above formulas, the subscript k is omitted for simplification purpose.
Based on the above criterion (12) and related formulas, blocks near the outer

part of the image will produce a more significant effect on the estimation of
global motion parameters. And those near the center of the image, which are
more likely to be part of a moving object, will have less significance.

3 Gradient Thresholding

In [2], Rath and Makur considered all the rows and columns of macroblocks in a
frame to estimate the global motion parameters. Since many blocks will finally
be excluded for their inaccurately estimated motion vectors, it’s not necessary to
involve all the blocks into the task. In this section, Gradient Thresholding (GT)
method is proposed to preprocess the blocks considering gradient information
before the motion estimation. The aim is to identify those treacherous blocks
that are more likely to produce inaccurate motion estimations.

For that purpose, the image should first be processed to make the Gradient
Map. Many methods can be used for this task, such as the Sobel Operator,
Roberts Operator [5], etc. Using gradient map, the gradient information of each
block will be checked as follows.

For a block B with m × n pixels, let pi,j be the pixel with coordinates (i, j)
in the block and gradient G(pi,j). The gradient value of block B is defined as

GB =
m∑

i=1

n∑
j=1

[G(pi,j)/n2] (16)

which is the mean gradient of all the pixels in B.
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For all the blocks in the frame, we define a threshold θ to classify them as:
A block B will be treated as a treacherous block, when its gradient value

GB < θ.
As soon as a block is decided to treacherous, it will not be considered in the

following process by BMA and ILSE. An example of gradient thresholding is
shown in Fig. 1.

Fig. 1. Gradient thresholding: (a) the test image is taken from Flower Garden sequence;
(b) shows the computed gradient map; in (c), the treacherous blocks recognized by GT
method are marked by ×. The threshold is θ = 70.

As shown in Fig. 1.(c), there are totally 330 blocks whose size are 16×16. After
gradient thresholding, 145 blocks (about 44% to 330) is marked as treacherous
and will not be considered in the following operation.

To automatically select threshold, considering both the computational cost
and estimation accuracy, the relationship between amount of treacherous blocks
and motion estimation accuracy has been studied (as shown in Fig. 2). We found
that, in many cases, if there were less than 30% blocks remaining (viz. more than
70% blocks are treacherous), the estimated parameters would lose their accuracy.
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Fig. 2. Threshold analysis: The left graph illustrates that the amount of treacherous
blocks increases along with the selected threshold θ. When θ goes higher, more treach-
erous blocks will be discarded and the computational cost will reduce. But on the other
hand, θ can’t go higher without limit. From the right graph, it can be seen that when
θ is higher than 100, the estimated parameters lost their accuracy.
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Fig. 3. Gradient histogram is used to automatically choose the threshold θ, which
allows 50% of the blocks to pass through the GT process

Considering the diversity of different image sequences, in our work, we choose
such threshold that about 50% of the blocks can pass through the GT process.
Gradient histogram can used for the threshold selection task, as shown in Fig. 3.

4 Motion Field Calculation

In this section, motion field is calculated using the Successive Elimination Al-
gorithm (SEA) [6][7][8][9]. SEA is a fast method for block matching, which
introduces SAD (Sum of Absolute Difference) or MSE (Mean Squared Error)
as matching criterion. Before calculating the criterion, SEA first uses its lower
bound to check the search positions. If a position can’t pass the bound, it will be
excluded directly and won’t be considered in the criterion calculation. Because
the calculation of criterion’s lower bound is easier than that of itself, much time
is saved by SEA using the lower bound.

The commonly used criteria for SEA are SAD and MSE, which only consid-
ering intensity information. In this section, we introduce an extra criterion for
SEA, named SAG (Sum of Absolute Gradient difference), and SAG is combined
with SAD to improve the performance of SEA.

Let It and It+1 be the consecutive frames for motion estimation. In frame It,
a pixel with coordinates x = (x, y)T has gradient g(x, t) : 0 ≤ g(x, t) ≤ 28 − 1.
On the other hand, It+1 is segmented into J blocks Gj , each including N pixels.
Then the gradients of the pixels can be described by an N -dimension vector

gj
t+1 = [g1, g2, · · · , gN ]T (17)

During block matching using SAG, each block in It+1 will be compared with
K positions in It, using their N -dimension gradient vector gj

t+1 and gj
t,k, to find

the best match.
Let ‖a‖p = p

√
|a1|p + |a2|p + · · ·+ |aN |p be the p-norm of N -dimension vector

a. The matching criterion based on SAG is defined as
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φSAG(k) := ‖gt+1 − gt,k‖1 (18)

The search for the SAG-optimal position kSAG in It can be expressed as

kSAG = arg min
k

φSAG(k) (19)

SEA uses lower bounds to pre-analyze positions. Let uN = [1, 1, · · · , 1]� de-
note the length-N column vector with all elements equal to 1. Based on triangular
inequality, there is

|(uN )�g| ≤ ‖g‖1 (20)

a is chosen as gt+1 − gt,k. Then equation (20) can be written as

|‖gt+1‖1 − ‖gt,k‖1| ≤ ‖gt+1 − gt,k‖1 (21)

Together with (18), there is

|‖gt+1‖1 − ‖gt,k‖1| ≤ φSAG(k) (22)

Let
ΦSAG(k) := |‖gt+1‖1 − ‖gt,k‖1| (23)

ΦSAG(k) is the required lower bound for SAG at search position k.
Using SAG, SEA matches the blocks as follows:

Step 1. There are K positions in It to be compared with Gj of It+1. Let k =
1, 2, · · · ,K;

Step 2. When k = 1, φ̂1 = φSAG(1) = ‖gt+1− gt,1‖1 is calculated for Gj as the
initial φSAG;

Step 3. For k = 2, 3, · · · ,K, a smaller φSAG can only be found in the search
position k if ΦSAG(k) < φ̂k−1 is satisfied. In other words, a position k with
ΦSAG(k) ≥ φ̂k−1 will be excluded directly without calculating φSAG(k). φ̂k is
refreshed as follows

φ̂k =
{

φ̂k−1 if ΦSAG(k) ≥ φ̂k−1

min(φSAG(k), φ̂k−1) if ΦSAG(k) < φ̂k−1
(24)

Step 4. If all K search positions have been examined, φ̂k corresponds to the
smallest φSAG for Gj , and the SAG-optimal position k is found.

Using SAG, SEA needs to calculate the 1-norm ‖g‖1 of every block first. Since
gradient information is already available during the gradient thresholding stage,
‖g‖1 can be calculated by the same fast method as used for SAD [7][10].

Combining SAG and SAD, tighter bounds can be deduced for SEA. Because
more information is considered to pre-analyze blocks before calculating matching
criterion, more search positions are excluded, which lead to a faster matching of
blocks.
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5 Experimental Results

The proposed method was tested on a variety of image sequences, some of which
are shown in this section. Note that in our experiments, Peak Signal-to-Noise
Ratio (PSNR) is used to measure the estimation accuracy of different method.

Table 1 shows the statistical simulation results achieved from several testing
sequences. It can be observed that SEA using SAD&SAG has a similar perfor-

Table 1. Statistical performance comparison of SEA

Sequences Comparison SEA SEA SEA SEA
(Format) (SAD) (MSE) (SAG) (SAD&SAG)

Mobile-calendar PSNR(dB) 23.98 23.92 23.27 23.85
CIF 352 × 288 Calc. time(ms/frame) 210 261 237 136

Foreman PSNR(dB) 30.92 30.97 29.39 30.07
CIF 352 × 288 Calc. time(ms/frame) 206 226 202 93

Table-tennis PSNR(dB) 28.31 28.37 26.95 28.02
SIF 352 × 240 Calc. time(ms/frame) 224 276 263 113

Hallman PSNR(dB) 28.12 27.99 27.70 28.06
SIF 352 × 240 Calc. time(ms/frame) 196 221 216 91

Hall-monitor PSNR(dB) 34.21 34.38 33.66 33.87
QCIF 176 × 144 Calc. time(ms/frame) 30 34 25 16

Coastguard PSNR(dB) 31.90 31.78 29.84 31.68
QCIF 176 × 144 Calc. time(ms/frame) 42 52 49 24

Table 2. Statistical performance comparison of GME

Sequences Comparison S&M Proposed method
(Format) (4 parameters) (3 parameters)

Mobile-calendar PSNR(dB) 19.86 19.89
CIF 352 × 288 Calc. time(ms/frame) 328 99

Foreman PSNR(dB) 25.55 25.62
CIF 352 × 288 Calc. time(ms/frame) 390 71

Table-tennis PSNR(dB) 22.08 23.61
SIF 352 × 240 Calc. time(ms/frame) 295 99

Hallman PSNR(dB) 26.03 26.52
SIF 352 × 240 Calc. time(ms/frame) 207 55

Hall-monitor PSNR(dB) 33.45 33.55
QCIF 176 × 144 Calc. time(ms/frame) 138 18

Coastguard PSNR(dB) 25.13 25.15
QCIF 176 × 144 Calc. time(ms/frame) 173 17
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Table 3. Runtime of proposed method

Frame number Gradient thre. 1-norm calc. SEA&ILSE Total

Mobile-calendar(299) 1170ms(3.9%) 6891ms(23.3%) 21584ms(72.8%) 29645ms

Foreman(299) 1219ms(5.8%) 7094ms(33.5%) 12843ms(60.7%) 21156ms

Table-tennis(149) 393ms(2.7%) 2766ms(18.7%) 11608ms(78.6%) 14767ms

Hallman(88) 234ms(4.8%) 1669ms(34.3%) 2965ms(60.9%) 4868ms

Hall-monitor(329) 375ms(6.2%) 1785ms(29.5%) 3892ms(64.3%) 6052ms

Coastguard(299) 361ms(7.0%) 1608ms(31.4%) 3154ms(61.6%) 5123ms

Average 4.6% 26.7% 68.7% 100%

mance compared to that using SAD or MSE. Besides, its calculation time is
reduced to about 50% than the other. In Table 2, the proposed GME method
using 3-Parameter Model/GT/SEA is compared with that of [4]. The data illus-
trate that our method is more accurate and faster than method in [4]. Table 3
gives the runtime of each step of the proposed method. Since some procedures
are so fast that can hardly be measured singly, they are combined to record the
total time. (As shown in column 2, the processing of Gradient calculation and
Gradient thresholding are both very fast, and in column 4, ILSE calculation is
also very fast.) From Table 3, we can see that most time is consumed during
motion field calculation using SEA (average 68.7%). So the speed of SEA decides
the speed of GME, and our contribution on reducing the computational cost of
SEA come into effect.

6 Conclusion

In this paper, a fast method is proposed to estimate global motions based on a 3-
parameter linear model. While the new model uses less parameter to describe and
estimate global motion, its estimation results are still accurate adequately. Using
the proposed motion model, a modified ILSE method is presented to estimate
the parameters more reasonably by reducing the influence of local motions and
false estimations. Besides, another two approaches are proposed to accelerate
the procedure of motion field calculation: First, an approach for block judgment
is presented. Before motion field calculation, gradient information is analyzed
to judge the blocks, by which the number of blocks for subsequent calculation
is reduced. Second, a fast algorithm is proposed to compute optical flow, based
on both gradient information and intensity information. Extensive experiments
show the effectiveness of this technique.
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Abstract. Visual tracking has been a challenging problem in computer
vision over the decades. The applications of Visual Tracking are
far-reaching, ranging from surveillance and monitoring to smart rooms.
Occlusion is one of the major challenges that needs to be handled
in tracking. In this work, we propose a new method to track objects
undergoing occlusion using both sum-of-squared differences (SSD) and
color-based mean-shift (MS) trackers which complement each other by
overcoming their respective disadvantages. The rapid model change in
SSD tracker is overcome by the MS tracker module, while the inabil-
ity of MS tracker to handle large displacements is circumvented by the
SSD module. Mean-shift tracker, which gained more attention recently,
is known for tracking objects in a cluttered environment. Since the MS
tracker relies on the global object parameters such as color, the perfor-
mance of the tracker degrades when the object undergoes partial occlu-
sion. To avoid the adverse effect of this global model, we use the MS
tracker so as to track the local object properties instead of a global one.
Further a likelihood ratio weighting is used for SSD tracker to avoid drift
during partial occlusion and to update the MS tracking modules. The
proposed tracker outperforms the traditional MS tracker, as illustrated
in the instances applied.

1 Introduction

Visual tracking in a cluttered environment remains one of the challenging prob-
lems in computer vision for the past few decades. Various applications like
surveillance and monitoring, video indexing and retrieval require the ability
to faithfully track objects in a complex scene involving appearance and scale
change. Though there exist many techniques for tracking objects, color-based
tracking with kernel density estimation, introduced in [1, 2], has recently gained
more attention among research community due to its low computational com-
plexity and its robustness to appearance change. The former is due to the use of
a deterministic gradient ascent (the “mean shift” iteration) starting at location
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in previous frame. The latter relies on the use of a global appearance model,
usually in terms of colors, as opposed to very precise appearance models such as
pixel-wise intensity templates.

Though mean-shift tracker performs well on sequences with relatively small
object displacement, its performance is not guaranteed for objects in highly
cluttered environment especially when it undergoes partial occlusion. In this
paper, we try to improve the performance of mean-shift tracker when the object
undergoes partial/full occlusion and large displacements. The problem with large
displacement is tackled by cascading an SSD tracker with the mean-shift tracker.
In order to improve the performance of MS tracker, in the event of the object
undergoing partial occlusion, many elementary MS modules(tracking points) are
embedded within the object, rather than relying on a single global MS tracker
representing the whole object. We also try to improve the performance of MS
tracker against large scale changes due to camera operation.

For each of these problems, solutions have been considered so far within pure
MS trackers: incorporation of a dynamic model (e.g., using Kalman filter in
[1, 3] or particle filter in [4, 5]) to cope with large displacements, occlusions and,
to some extent, with scale changes; simple linear histogram updates with fixed
forgetting factor [5] for on-line adaptation of reference model; rather complex
procedures [6, 7] for addressing the generic problem of scale changes (immaterial
of their origin).

The novelty of the proposed approach is to address the problems within a
one-step simple approach which exploits the fact that the reference color model
and instantaneous motion estimation based on pixel-wise intensity conservation,
complement one another. The latter is provided by greedy minimization of the
intensity sum-of-squared differences (SSD), which is classic in point tracking and
motion field estimation by block matching. Scale changes of the object that are
due to the camera zoom effect or ego-motion, are estimated by approximating
the dominant apparent image motion by an affine model.

2 Proposed Algorithm

In this work tracking is done in Kalman filter framework. The object to be
tracked is specified by location of its center and scale (for a fixed aspect ra-
tio) in the image plane. The objective of the tracking algorithm is to find the
correct location of the object in the future frames. An SSD tracker based on
frame-to-frame appearance matching, is useful in finding the location of the ob-
jects in the future frames. However, the problem with the SSD tracker is its
short-term memory which can cause drifting problems or even complete losses
in worse cases. On the other hand, MS trackers which rely on persistent global
object properties such as color, can be much more robust to detailed appearance
changes due to shape and pose changes. This MS tracker has problems with large
displacements and its tracking ability is questionable when the object undergoes
partial occlusion. It would be efficient if we could combine the advantages of
the aforementioned two trackers. In this work, we cascade the two trackers to
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get a better tracking performance. The measurement obtained by this combined
tracker module is used for estimating the states of the Kalman filter.

The state-space representation of the tracker used in Kalman filter framework
is given below: ⎡⎢⎢⎢⎢⎣

xt+1
yt+1
xt

yt

st+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
2 0 −1 0 0
0 2 0 −1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ .

⎡⎢⎢⎢⎢⎣
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xt−1
yt−1
st

⎤⎥⎥⎥⎥⎦+ wt (1)

where xt = (xt, yt) indicates the location of the object center at time t, st

represents the scale at time t and wt is white Gaussian noise with diagonal
variance Q. The measurement equation relates the states and measurements at
time t as follows:

⎡⎣ut

vt

ξt

⎤⎦ =

⎡⎣1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 1

⎤⎦ .

⎡⎢⎢⎢⎢⎣
xt

yt

xt−1
yt−1
st

⎤⎥⎥⎥⎥⎦+ zt (2)

where ut = (ut, vt) is the measured velocity (displacement) of the object, ξt is
the measured scale at time t, and zt is a white Gaussian noise with diagonal
variance R. The displacement measurement ut is obtained through the SSD-MS
tracker module, whereas scale measurement is provided by global parametric
motion estimation. The overview of the proposed system is illustrated in Fig. 1.
The following subsections explain each of the modules in detail.

Define Object

at Frame 1
(Target Model)

SSD + MS

Kalman Filter

Linear

Estimate 
Object location

Target Model
Update 

Displacement/Scale
Measure Object

and Scale

F

F

t+1

t

log−likelihood map
FG/BG

Obtain 

Tracker

Fig. 1. Overview of the proposed tracking system

2.1 Object-Background Separation and Initialization of Tracking
Points

Tracking an object undergoing partial occlusion will be efficient if we could sep-
arate precisely the object region from the background at each time instant. This



356 R.V. Babu, P. Pérez, and P. Bouthemy

(a) (b)

(c) (d)

Fig. 2. Track point initialization using T0: (a) Initial frame with object boundary (b)
likelihood map T0 (c) Mask obtained after morphological operations (d) tracking points
with the support region. Here, number of tracking points is 20 with support region of
102 pixels.

object-background separation is useful in weighting the pixels for SSD tracker
and it helps to locate the reliable MS modules for updating. To achieve this, the
R-G-B based joint pdf of the object region and of a band of region surrounding
the object region is obtained. This process is illustrated in Fig. 2. The region
within the red rectangle is used to obtain the object pdf and the region between
the green and red rectangle is used for obtaining the background pdf. Then the
resulting log-likelihood ratio of foreground/background region is used to deter-
mine object pixels. The log-likelihood of a pixel considered, at time t, within the
outer bounding rectangle (green rectangle in Fig. 2) is obtained as

Lt(i) = log
max{ho(i), ε}
max{hb(i), ε}

(3)

where ho(i) and hb(i) are the probability of ith pixel belonging to the object
and background; and ε is a small value to avoid division by zero. The non-linear
log-likelihood maps the multimodal object/background distribution as positive
values for colors associated with foreground and negative values for background.
Only reliable object pixels are used as weighting factor for SSD tracker. The
weighting factor Tt is obtained as:

Tt(i) =
{

Lt(i) if Lt(i) > tho

0 otherwise (4)
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where, tho is the threshold to decide on the most reliable object pixels. Once the
object is localized, with the help of user interaction or by detection in the first
frame, the tracking points are placed on the object in the first frame. Then the
likelihood map of the object/background is obtained using (9). A binary mask
corresponding to Tt is obtained by mapping all positive values of Tt to 1 . This
object mask is further subjected to morphological closing operation and used for
embedding the tracking points (see Fig. 2). The tracking points are randomly
spread, taking care to see that their center lies on the pixels of the object mask.
In our experiments the support region of all the tracking point is a square region
having side length of c ·min(object length, object width). The typical range of c
used in our experiments is 0.3 to 0.5.

2.2 SSD-MS Motion Measurement

The SSD tracker localizes the object in the given search window of the next
frame based on minimum distance between the target and candidate object
images. SSD tracker works well even for large displacements as long as the object
appearance changes only slightly between the two consecutive frames. In reality,
the appearance of the object often changes considerably with time. In a typical
SSD tracker, the winning candidate becomes the new target for the next time
instant. This process makes the SSD forget the original model rapidly with
time though for a given target it performs well between any two consecutive
frames.

Given the state estimate (x̂t−1, ŝt−1) at previous instant, the SSD-based dis-
placement estimate

ussd
t = arg min

u∈W

∑
d∈D

Tt.[Ft(u + x̂t−1 + ŝt|t−1d)

− Ft−1(x̂t−1 + ŝt−1d)]2
(5)

where Tt is the weighting function obtained from the foregroung/background
likelihood maps. Ft−1 and Ft are the two consecutive intensity images, ŝt|t−1 =
ŝt−1 is the scale prediction, W is the search window, and D is the normalized sub-
image support (rectangle same as object-size, with its origin being the object-
center).

In our work instead of using a single MS tracker for the entire object, we use
multiple small regions of the object for tracking. The locations of these tracking
points are randomly placed on the object area with the help of the previously
obtained object/background likelihood map.

This first displacement estimate given by (5) is used for initializing these
mean-shift trackers. Let N be the total number of tracking points. The target
color models qn = (qn

i )i=1···m, with
∑m

i=1 qn
i = 1, are composed of m bins in

some appropriate color space (e.g., RGB or Hue-Saturation, in our experiments
RGB color space with 10 bins along each dimension is used), where superscript
n ∈ N indicates the nth model corresponding to the nth tracking point. It is
gathered at the initialization of the overall tracking. The candidate histogram
pn, at location xn and scale s in the current frame is given by:
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pn
i (xn) =

∑
d∈s·D k(s−2|d|2)δ[b(xn + d)− i]∑

d∈s·D k(s−2|d|2) (6)

where k(x) is a convex and monotonic decreasing kernel profile, almost every-
where differentiable and with support D, which assigns smaller weights to pixels
far away from the center (in our experiments Epanechnikov kernel profile is used),
δ is the Kronecker delta function, and function b(x) ∈ {1...m} is the color bin
number at pixel x in the current frame. One seeks the location whose associated
candidate histogram is as similar as possible to that of the target one. When
similarity is measured by Bhattacharya coefficient ρ(pn,qn) =

∑
i

√
pn

i q
n
i , con-

vergence towards the nearest local maximum is obtained by the iterative mean-
shift procedure [8]. In our case, this gradient ascent at time t is initialized at
yn

0 = x̂n
t−1 + ussd

t and proceeds as follows:

1. Given current location yn
0 compute histogram pn(yn

0 ) and Bhattacharya
coefficient ρ(pn(yn

0 ),qn).
2. Compute candidate position

yn
1 =
∑

d∈s·D wn(yn
0 + d)k′(s−2|d|2)(yn

0 + d)∑
d∈s·D wn(yn

0 + d)k′(s−2|d|2)

with weights at location x

wn(x) =
m∑

i=1

√
qn
i

pn
i (yn

0 , s)
δ[b(x)− i].

3. while ρ(pn(yn
1 , s),qn) < ρ(pn(yn

0 , s),qn)
do yn

1 ← 1
2 (yn

1 + yn
0 )

4. if ‖yn
1 − yn

0 ‖ < ε stop
otherwise set yn

0 ← yn
1 and repeat Step 2.

5. Use only the reliable displacements out of N measurements for the final
estimate. Let R ⊂ {y1 . . .yN} be the set of all reliable MS trackers. The
final motion estimate is obtained as: y = mean(yi), i ∈ R.

The final estimate provides the displacement estimate ut = y − x̂t−1. In our
experiment the MS trackers whose Bhattacharya coefficients lie in the top 10
percent are considered as reliable MS trackers. Finally, the two entries associated
to this measurement in the covariance matrix Rt of the observation model (2)
are chosen as

σ2
u = σ2

v = eα(1−mean{ρi}), i ∈ R (7)

where ρi are the Bhattacharya coefficients of the reliable MS trackers. The pa-
rameter α set to 25 in the experiments.

2.3 Scaling Measurement

Scaling is another important parameter in visual tracking. Often the scale change
of the objects are due to the camera zoom operation or camera ego-motion. The
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scale change in our work is measured (to be plugged in Kalman Filter) through
the affine motion parameters of the global (dominant) image motion between the
current and next frame. Such parameters can be estimated in a fast and robust
way [9]. If 2× 2 matrix At stands for the linear part of the affine motion model
thus estimated at time t, the scale measurement is

ξt = ξt−1

{
1 +

trace(At)
2

}
. (8)

2.4 Algorithm Summary

The complete algorithm is summarized below. Given previous reference color
models qn

t−1 and previous state estimate (x̂t−1, ŝt−1) with error covariance Pt−1:

1. Obtain the likelihood map Tt of the object/background according to (9)
2. Obtain SSD-based displacement measurement ussd

t according to (5) with the
weighting factor (Tt).

3. Correct this measurement with reliable MS trackers, initialized at ussd
t and

with reference color models qn
t−1, to obtain final measurement ut.

4. Estimate global affine motion over the image and derive new scale measure-
ment ξt according to (8).

5. Using displacement and scale measurement ut and ξt, update state estimate
with Kalman filter, providing (x̂t, ŝt) and associated error covariance Pt.

Initial state (x̂1, ŝ1 = 1) in frame 1 is obtained either by manual interaction or
by detection, depending on the scenario of interest.

3 Results and Discussion

The proposed algorithm has been tested on several videos and it has been ob-
served to have performed well, not only under partial, but also brief full occlu-
sion. The tracking result for ’walk’ sequence is shown in Fig. 4 for both proposed
tracker and the SSD+ global MS tracker. In this sequence the object undergoes

(a) (b)

Fig. 3. (a) One frame showing object under partial occlusion and the (b) corresponding
log-likelihood map
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Fig. 4. Tracking result of proposed system against the SSD+global MS on ’walk’ se-
quence for frames 2,20,40,100,140 and 200 are shown. The ’+’ marks indicate the MS
tracking points, the red rectangle corresponds to the proposed tracking and the green
rectangle corresponds to the SSD+global MS tracker result.

Fig. 5. Tracking result of proposed system on a movie sequence ’run-lola-run’ is shown.
The ’+’ marks indicate the MS tracking points, the red rectangle corresponds to the
proposed tracking result.

a partial occlusion. The proposed system was able to track the object correctly
without any shift when the object is partly occluded. The global MS based
tracker undergoes a large shift during partial occlusion. The tracking result of
the proposed algorithm for a dynamic video shot from the movie ’run-lola-run’
is shown in Fig. 5. The number of MS tracking points used in ’walk’ sequences
were 20 and 15 MS tracking points were used for ’lola’ sequence. The presented
walk video sequences were shot with a hand-held cam-coder, which automati-
cally adjusts the brightness based on the background environment. The change
of object color in these videos are due to this automatic adjustment of camera
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Fig. 6. Tracking result of proposed system against the SSD+global MS on another
’walk’ sequence is shown. The yellow rectangle corresponds to to the proposed tracking
with model update, the red rectangle corresponds to the proposed tracking without
model update and the green rectangle corresponds to the SSD+global MS tracker
result.

parameters. In such videos, keeping a fixed color model will drastically reduce
the accuracy of tracking. The person in ’walk’ sequence shown in Fig. 6 not
only goes through partial occlusion, but the object luminance undergoes drastic
change from the starting frame to the final frame. In such case, it is necessary to
adapt the tracking model to brightness/color change. In our system, the tracking
points whose support lie mostly on the object region are updated with the latest
color model. The area of the intersection between the object and the support of
each tracking point is estimated using the recently obtained log-likelihood map.
Fig. 3 shows the log-likelihood map when the object undergoes partial occlu-
sion. The model corresponding to a particular tracking point is updated if the
object area occupies a certain minimal area (in our system its set as 50%) of
its support region. Only the support regions of the tracking points that inter-
sect with the object region are used for updating the target color model of the
corresponding tracking points. Let Mt be the binary mask obtained from the
log-likelihood map:

Mt(i) =
{

1 if Lt(i) > thu

0 otherwise (9)

In our experiments, thu is set as 2 for considering only the most reliable object
pixels. Let qn be one of the MS models located at x with support region s ·D+x.
If 1

|D|
∑

d∈D Mt(s · D + x) > Dth, then replace the model qn with the recent
model obtained as:

qn
i (x) =

∑
d∈D Mt(s ·D + x)k(s−2|d|2)δ[b(x + d)− i]∑

d∈D Mt(s ·D + x)k(s−2|d|2) (10)
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In our experiments, Dth is set as 0.5 (corresponding to 50% of the support
area).

The results obtained with such update model is shown in Fig. 6. In this
example the SSD + global MS tracker fails to track the object till the end of
the sequence. The proposed method without model update tracks the object till
the end of sequence but there has been some drift from the object due to the
luminance/color change of the object. The proposed tracker with model update
is able to track the object with out any drift.

4 Conclusion

In this paper, we have proposed an efficient visual tracker by coupling SSD
and mean-shift algorithm, which have complementary properties. By tracking
local color properties of the object using multiple MS tracking points on the
object, instead of a single global MS tracker, improves the performance when
the object undergoes partial occlusion. The better performance of the proposed
tracker over combined SSD, global mean-shift tracker is shown using various
video sequences. Since both trackers have real-time computational complexity,
the proposed compound tracker is suitable for real time tracking of objects.
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Abstract. In this paper, we propose a statistical model-based contour tracking 
algorithm based on the Condensation framework. The models include a novel 
object shape prediction model and two statistical object models. The object 
models consist of the grayscale histogram and contour shape PCA models com-
puted from the previous tracking results. With the incremental singular value 
decomposition (SVD) technique, these three models are learned and updated 
very efficiently during tracking. We show that the proposed shape prediction 
model outperforms the affine predictor through experiments. Experimental re-
sults show that the proposed contour tracking algorithm is very stable in track-
ing human heads on real videos with object scaling, rotation, partial occlusion, 
and illumination changes. 

1   Introduction 

Visual tracking has been a main focus of research in video analysis and processing. 
With the rapid growth of digital video in consumer electronics and video surveillance, 
reliable visual tracking techniques have been strongly demanded recently. Previous 
methods on visual tracking can be divided into the model based [1-3] and non-model 
based [4-6] approaches. For objects with well-defined models, the corresponding 
object tracking problem is easier. However, the requirement of constructing object 
models beforehand limits the practical feasibility of this approach, especially the 
object may undergo a wide variety of different motions, including 3D rigid and non-
rigid motions. Non-model based tracking approaches treat object tracking as an opti-
mization problem. They normally track objects from image sequences by using the 
latest tracking result as reference for the object. This approach is sensitive to error 
drift, i.e. error accumulation. Once the object is lost during tracking, it may not be 
found again. 

There are many different modifications for the particle filter. Rui and Chen [8] 
modified the way for computing the posterior probability by considering the current 
image in the prediction phase. Recently, Maggio and Cavallaro [9] combined the 
particle filter and mean shift techniques for refined object tracking. Okuma et al. [10] 
proposed an algorithm that integrates the particle filter and adaboost techniques for 
tracking multiple targets. Like mean shift, Nummiaro et al. [11] employed the Bhat-
tacharyya coefficient in the color distribution for object tracking in a particle filter 
framework. 
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Besides, Jepson et al. [2] models the appearance of the object under tracking via 
three models. The wandering model reliably estimates the parameters for rapid tem-
poral variations and shorter temporal histories, the stable model captures the behavior 
of temporally stable image observations, and the last model accounts for data outliers. 
With online EM algorithm, they update the models adaptively to achieve robust object 
tracking. 

In this paper, we propose a visual tracking algorithm based on the framework of 
the Condensation algorithm [1] for tracking object contour via on-line object model 
generation and dynamic prediction model update. The Condensation, or particle filter, 
framework consists of the prediction and measurement phases. The sample contours 
at the current frame are predicted during the prediction phase. In the measurement 
phase, the probability of each sample is computed from the image information at the 
current frame. The pre-trained model and prediction matrix (or motion model) used in 
the Condensation technique are learned from the best results achieved by using the 
Kalman filter tracking. This two-pass method (one for learning and the other for 
tracking) is inconvenient for tracking general objects in practice. 

Recently, Lim et al. [3] proposed a method on self constructing and updating model 
for appearance-based object tracking. However, contour tracking provides a more 
detailed object tracking result, not only the position, rotation, and scale but also the 
object shape deformation. In most appearance-based tracking algorithms, the object is 
represented by a rectangle or an ellipse which can be aligned by a simple transforma-
tion. The entire information inside the rectangle or the ellipse can be exploited to de-
termine the tracking result. Nonetheless, it is difficult to use the entire image region 
information for deformable contour tracking since it requires establish point-to-point 
correspondences between two deformable regions, especially for the particle filter 
which uses many random samples to approximate the probability distribution. 

In this paper, we propose an object contour tracking algorithm based on the particle 
filter framework. It only needs an initial contour at the first frame and then the object 
models and the prediction matrix are constructed online from the previous contour 
tracking results automatically. In the proposed algorithm, we build two online models 
for the target object – one is the shape model and the other is the grayscale histogram 
model. The grayscale histogram simply records the grayscale information inside the 
object contour region. Each of these two models is represented by a mean vector and 
several principle components, which are adaptively computed with the incremental 
singular value decomposition technique [3,7]. 

1.1   Condensation Framework 

Here we briefly describe the condensation framework for visual tracking. In the con-
densation tracking, the prediction phase can be represented as a probability term 

1 1( | ) ( | )t t t tp X p− −=x x x ,                                   (1) 

where xt is the predicted state, xt-1 is the state at the previous time t-1 and Xt-1 denotes 
the whole previous states. The left function means that we use all the previous states 
to predict the current state. For simplicity, we only take the state at the previous time 
instant to predict the current state, which is represented as conditional probability on 
the right hand side of the above equation. On the other hand, the measurement phase 
can be represented by the following function 
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( | )t tp z x ,                                               (2) 

where zt is the current observed information. This means that we take the predicted 
state to see if it matches the current observation. The object tracking problem can be 
thought of using all the image and object model information that we currently have to 
find the object, which is given by the following conditional probability 

( | )t tp Zx ,                                               (3) 

where Zt denotes all the information that we currently have. To compute the probabil-
ity function (3), we employ the Bayes rule as follows 

1( | ) ( | ) ( | )t t t t t t tp Z k p p Z −=x z x x ,                              (4) 

where 

1

1 1 1 1( | ) ( | ) ( | )
t

t t t t t tp Z p p Z
−

− − − −=
x

x x x x  

and kt is a normalization constant. From the above two equations, we will see how the 
prediction and measurement phases work in the Condensation tracking algorithm. 

Now we define several symbols for explaining the Condensation algorithm. The 
points of each sample contour is arranged into a vector s=[x1 y1…xi yi…xn yn]

T, where n 
is the total number of the points along the contour and (xi,yi) is the coordinate of the  
i-th point. The symbol si,t means the i-th sample contour at the t-th frame. The symbol

i,t means the probability of si,t. Similarly, ,
sampled
i ts  denotes the i-th random sample at 

the t-th frame according to the probabilities of all sample contours at the (t-1)-th 
frame. We denote the predicted contour of ,

sampled
i ts  as ,

pred
i ts . The Condensation tracking 

algorithm [1] is given as following: 
Given N contour samples and their corresponding probabilities {si,t-1, i,t-1, i=1,…, 

N} at the (t-1)-th frame, we want to find N contour samples and their corresponding 
probabilities {si,t, i,t, i=1,…, N} at the t-th frame based on the following procedure: 

1. We sample N contours , , 1, ,sampled
i t i N=s  from the previous sample contours  

si,t-1,i=1,…, N according to their associated probabilities i,t-1. 

2. The prediction function 1 ,( | )sampled
t t i tp − =x x s  is applied to predict ,

pred
i ts  from ,

sampled
i ts . 

3. We find the contour si,t around the predicted contour ,
pred
i ts  at the t-th frame. 

4. Compute i,t = p(zt | xt = si,t). 

5. The expected contour st at the t-th frame is computed as follows 

, ,t i t i t
i
π=s s .                                               (5) 

At step 3 and 4, we may find some points like edge boundary as a contour found from 
the frame around the predicted one. For simplicity, we call it image contour. With a 
shape model, a fitting algorithm can be applied to fit the image contour to see if it is 
suitable to be the target object’s boundary. 
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In Condensation [1], the image contour is a reference result while the fitted contour 
is si,t. When si,t is close to the image contour, it is highly possible to be the object’s 
boundary. Taking the fitted contour as si,t can reduce the noise from the image and 
make si,t to be a reasonable contour at least. However, when the model is unreliable or 
lack of information, the fitted contour may not be a good choice. Besides, the model 
needs the object information. Thus, we take the image contour as si,t and the fitted 
contour as the reference result. This decision is with lots of risk and choosing the 
contour points from the image becomes very important. 

2   Visual Tracking Based on Condensation Algorithm 

The Condensation algorithm requires three basic components in the tracking algo-
rithm. The first is the prediction function (step 2), the second is the method to find si,t 

around ,
pred
i ts  according to the information of the current frame (step 3), and the last is 

the way to compute the probability  i,t = p(zt | xt = si,t) (step 4). 
Assume that we already have the prediction matrix, the object models and a way to 

find the image contour. We show how the prediction function works and how to 
measure the probability here. The determination of the prediction matrix, the object 
models and the image contour will be described in the later sections. 

Our prediction function is given as following 

,

,

1

sampled
i tpred

i t P=
s

s ,                                        (6) 

where P is the prediction matrix and the 1 below ,
sampled
i ts  is used to model the global 

translation of the contour. In our experiment, the performance of the prediction matrix 
is degraded when the contour has a larger change in the shape or the position than the 
previous ones. Thus, we combine ,

sampled
i ts  and ,

pred
i ts  to get a more stable prediction 

result. 

( ), , ,1pred pred sampled
i t pred i t pred i tC C← + −s s s ,                              (7) 

where Cpred is the weight of the prediction result. Then we add Gaussian noises into 
the rotation, scale and translation parameters, i.e.  

( )
( )

( )
( )

, ,

, ,

2 2

2 1 2 1

pred pred
i t i t

pred pred
i t i t

j j
RS

j j

× ×
← +

× + × +

s s
t

s s
,                       (8) 

where , ,( (2 ), (2 1))pred pred
i t i tj j× × +s s  is the coordinate of the j-th point of the contour, R 

and S are the random rotation and scaling matrices and t is the random translation 
vector. 

To compute the observation probability, we build the grayscale histogram and 
shape models for the target object and update the object models online. The grayscale 
histogram is normalized with the total number of pixels inside the contour region, 
thus representing the occurrence frequency of each bin. For each contour si,t, we com-
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pute the grayscale histogram hi,t inside it and align it to the mean shape and the 
aligned result is ,

aligned
i ts . 

We project the contour ,
aligned
i ts  and the corresponding grayscale histogram hi,t onto 

the object model, which consists of the grayscale histogram and shape PCA models, 
to compute the reconstructed contour ,

recon
i ts  and grayscale histogram ,

recon
i th , respec-

tively. Note that the PCA models for the grayscale histogram and the object shape can 
be adaptively updated from the previous object tracking results by using the incre-
mental singular value decomposition [3, 7]. This PCA reconstruction is used to meas-
ure how well the observation fits to the object model. The discrepancies of the model 
fitting are given as follow: 

( ) ( ), , , , ,
recon recon

i t i t i t i t i t
j

dh j j= − = −h h h h ,                     (9) 

and 

( ) ( )( )2

, ,

, , ,

,

aligned recon
i t i t

jaligned recon
i t i t i t

i t

j j
ds

−
= − =

s s
s s

s
.                 (10) 

Thus, the observation probability function is defined by 

( ), , , ,( | ) expi t t t i t s i t h i tp C ds C dhπ = = ∝ − −z x s ,                  (11) 

where Cs and Ch are two constants to represent the weights of the two factors. Thus, 
we compute the conditional probability i,t = p(zt | xt = si,t) as follows: 

( )
( )

, ,

, ,

, ,

exp
( | )

exp

s i t h i t

i t t t i t

s j t h j t
j

C ds C dh
p

C ds C dh
π

− −
= = =

− −
z x s .                   (12) 

3   Shape Prediction Matrix 

Consider two object contours st-1 and st at two connective frames t-1 and t. We em-
ploy a prediction matrix P to describe their relationship as follows: 

1

1

t

tP
−s

s                                            (13) 

When considering N consecutive frames, the problem of estimating the prediction 
matrix P turns to minimizing the following energy function 

2

1

2 1

N
i

i

i

P
−

=

−
s

s .                                      (14) 

Let 1
, 1 1 1

i i j
i j

+= s s s  and [ ], 1i j i i jS += s s s . Then we can compute the 

matrix P by using the least square estimation, thus leading to 

( ) 1

2, 1, 1 1, 1 1, 1N N N NP S
−

− − −= T T .                                 (15) 
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Note that the prediction matrix P needs to be updated dynamically during object 
tracking to better describe the shape deformation. However, we do not need to store 
all the previous contours to compute the prediction matrix. Instead, we can simply 

store and update the two matrixes 2, 1, 1N NS −
T  and 1, 1 1, 1N N− −

T  for updating the predic-

tion matrix. When new contours at M frames are available for prediction matrix up-
date, these two matrixes become 

2, 1, 1 2, 1, 1 1, , 1N M N M N N N N M N N MS S S+ + − − + + + −= +T T T                       (16) 

and 

1, 1 1, 1 1, 1 1, 1 , 1 , 1N M N M N N N N M N N M+ − + − − − + − + −= +T T T .                     (17) 

If each contour is composed of n points, we need to store the two matrices of sizes 
2n×(2n+1) and (2n+1)×(2n+1), respectively. However, computing the inverse of the 

matrix 1, 1 1, 1N N− −
T  is computationally expensive for large n. The problem is even 

worse when frequent prediction matrix update is required in practice. Here we pro-
pose an efficient way to update the prediction matrix P by using the incremental SVD 
technique as described below. 

Considering N frames for estimating the prediction matrix P, we arrange all N con-
tours column by column as follows: 

1, 1 2 ,N NP S− =                                          (18) 

Using singular value decomposition (SVD) to decompose the matrix 1, 1N −  yields 

1, 1 1, 1 1, 1 1, 1N N N N
SVD

U V− − − −= Σ T                                    (19) 

Then the prediction matrix P can be computed by 

1
2, 1, 1 1, 1 1, 1N N N NP S V U−

− − −= Σ T .                                  (20) 

The size of the matrix V1,N-1 will increase with the data or frame number. By  
combining S2,N and V1,N-1 into a matrix S2,NV1,N-1, we only need to maintain the three 
matrices U1,N-1, 1,N-1 and S2,NV1,N-1. If n points compose a contour and the k largest 
eigenvalues with the corresponding eigenvectors of the SVD are needed, then the 
three matrix sizes are (2n+1)×k, k×k and 2n×k, respectively. 

The incremental SVD technique can be used to easily generate and update the ma-
trices U1,N-1 and 1,N-1. For the computation of the matrix S2,NV1,N-1, its computational 
complexity only depends on the total number of the kept eigenvalues in the SVD. The 
incremental SVD produces a matrix V after a step of SVD. This matrix V is used to 
update V1,N-1. Assume that new M data arrives and we keep k1,N-1 and k1,N+M-1 eigen-
values before and after the model update. Note that the size of V is (k1,N-1+M)×k1,N+M-1. 

We can divide V into two parts, i.e. [ ]up bottomV V V= TT T , where the sizes of Vup and 

Vbottom are k1,N-1×k1,N+M-1 and M×k1,N+M-1, respectively. The matrix V1,N+M-1 becomes 

[ ]1, 1 1, 1( )N M N up bottomV V V V+ − −= TT T . Thus, we update S2,NV1,N-1 as follow 

[ ]2, 1, 1 2, 1, 1 1,N M N M N N up N N M bottomS V S V V S V+ + − − + += + .                      (21) 
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4   Contour Refinement 

The image contour is composed of several nodal points. The main idea to find the 

nodal points is to search a large gradient in the normal direction of each point in ,
pred
i ts  

since there is usually a large gradient in the object boundary. In addition, there are 
several criteria to be considered for the nodal points. Firstly, the directions of the 
gradient and the normal line should be as consistent or adverse as possible. Secondly, 
we compute an average distance according to the large gradient criterion. Then, the 
distance between the nodal point and the corresponding one in the predicted contour 

,
pred
i ts  is assumed to be close to the average distance. Thirdly, if more than one point 

meets the above two criteria, we set all of them to be candidates for the nodal point. 
Thus, the nodal points are selected based on the score function given as follows: 

( )

( ),

exp , if 

0, otherwise

feature pred feature

featurefeature
angle

feature
var

random minScale maxScale

avgDis
CScore

C

×

− −
− >=

p p n g
n gp

g
, (22) 

where ppred is one of the points of ,
pred
i ts , n is a unit vector for the corresponding nor-

mal direction, pfeature is one of the points located on the normal line of ppred, and gfeature 
is the image gradient at the location pfeature. Thus, featuren g  is the amount of the gra-

dient projected on the normal direction. The condition feature feature
angleC>n g g  

means the first criterion and Cangle is the threshold of the minimum cosine value of the 
angle between n and gfeature. The function random(minScale, maxScale) returns a 
random number between minScale and maxScale. Both minScale and maxScale are 
positive values. This random number generation is used to implement the third crite-

rion. The function ( )exp feature pred
varavgDis C− − −p p  is used to implement the 

second criterion, where the parameter Cvar controls the distance closeness. 

The n-th point of ,
pred
i ts  is denoted by pred

np , ,
feature
m np  is the m-th candidate point for 

pred
np , and feature

np  is the n-th nodal point of the contour si,t. Thus, feature
np  is determined 

based on maximizing the score function as follows 

( )( )
,

,arg max
feature
m n

feature feature
n m nScore=

p

p p .                              (23) 

5   Experimental Results 

In this section, we show some experimental results on video tracking by using the 
modified Condensation tracking algorithm with online model adaptation. We also 
give the experimental results by using the affine motion prediction for comparison 
with the proposed algorithm that uses the novel shape prediction matrix update 
scheme. The affine motion model can be represented by the following equation 
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, , 1

, , 1

( ) ( )

( ) ( )

x t x t

y t y t

a b j e j

c d j f j

+

+

+ =
s s

s s
,                         (24) 

where (sx,t(j), sy,t(j)) is the coordinate of the j-th point of the contour at the t-th frame. 
By assuming the affine motion to be constant in a short period, we can estimate the 
affine motion parameters by using the least square solution as follows 

previous several frames previous several frames
points of a contour points of a contour

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

t t

j j

A C D a G
C B E b H

A C D c I
C B E d J

D E F e K
D E F f L

∈ ∈
∈ ∈

= ,            (25) 

, , , , , , ,

, , , 1 , , 1 , , 1

, , 1 , 1 , 1

where ( ) ( ), ( ) ( ), ( ) ( ), ( ),
( ), 1, ( ) ( ), ( ) ( ), ( ) ( ),
( ) ( ), ( ), and ( ).

x t x t y t y t x t y t x t

y t x t x t y t x t x t y t
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A j j B j j C j j D j
E j F G j j H j j I j j
J j j K j L j

+ + +

+ + +

= = = =
= = = = =
= = =

s s s s s s s
s s s s s s s
s s s s

 

In our implementation, the total number of samples in the particle filter is 90. The 
shape prediction matrix used in our tracking algorithm is initialized to be an identity 
matrix and it is updated for every 3 frames. For ease of computation, we employ the 
forgetting factor scheme in the incremental SVD technique [3]. The forgetting factor 
is set to be (n - 3)/n, where n is the total number of frames used for estimating the 
shape prediction matrix. The total number of frames used in the experiments is set to 
40 empirically. For the affine motion estimation, we use a small number of frames for 
the least square estimation because there are only 6 affine motion parameters. From 
our experimental result, the affine predictor is less stable when a certain degree of 
errors are involved in the tracking result. In contrast, our prediction matrix accounts 
for more temporal shape variations across more frames, thus making the shape predic-
tion more stable. This is evident from Figure 1 and 2. 

In addition, we show the performance of our contour tracking algorithm on two se-
quences. The total number of samples in the particle filter is set to 90 and we use 40 
previous frames for estimating the shape prediction matrix. The data amounts for 
updating the shape and the grayscale histogram models are both 100. 

The first testing video sequence is the Dudek sequence [2], which is about 38 sec-
onds with 15 fps frame rate. In this sequence, we track the contour of the head, which 
contains different scales, poses, translations and partial occlusions in the video. Some 
of the tracking results are depicted in Figure 3. The background of the video is clut-
tered and contains many different objects. The tracking results show that our algo-
rithm generally can provide quite reliable tracking performance. 

The second testing video sequence is about 51 seconds with 15 fps frame rate. This 
sequence contains a person moving in a room and the contour of his head is our target 
object. The main difficulty is the large illumination changes from dark to bright con-
ditions, which can test our grayscale histogram model. The result shows that the pro-
posed algorithm can track the head contour pretty well for the entire sequence as 
some frames depicted in Figure 4. 
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(a) 

(b) 

(c) 

Fig. 1. Predictor comparison I: (a) The tracking results by using the affine predictor for frames 
148-152. The previous 2 frames are used to predict the affine matrix. (b) The tracking results by 
using the affine predictor for frames 148-152. The previous 4 frames are used to predict the 
affine matrix. (c) The tracking results by using the proposed shape prediction matrix for frames 
148-152. The total number of frames used for estimating the shape prediction matrix is 40. 

(a) 

(b) 

Fig. 2. Predictor comparison II: The tracking results by using (a) the affine predictor (2 previ-
ous frames) (b) the proposed shape prediction matrix (40 previous frames) for frames 148-152 

  

Fig. 3. The tracking results of the Dudek face sequence [2] with different scales, poses, transla-
tions and partial occlusions 

 

Fig. 4. The tracking results by using the proposed algorithm on the second testing video se-
quence with different scales, poses, translations, and the significant illumination changes from 
dark to bright conditions 

6   Conclusion 

In this paper, we purpose an adaptive contour tracking algorithm based on the Con-
densation algorithm with online updating the shape prediction matrix and object mod-
els. The novel shape prediction model is very flexible and accounts for temporal 
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shape deformation. The object model consists of the grayscale histogram and contour 
PCA models adaptively computed from previous tracking results by using the  
incremental SVD technique. The proposed Condensation tracking algorithm with 
online model update is computationally efficient due to the use of incremental SVD 
for updating both the object and shape prediction models. Due the online model  
update capability and the flexible shape prediction model, the proposed tracking  
algorithm is very stable since most recent tracking results are taken for the model 
update. Experimental results show the proposed tracking algorithm can track human 
heads very reliably in cluttered environment under large lighting variations on several 
real videos. 
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Abstract. Segmenting an image into semantically meaningful parts is a
fundamental and challenging task in computer vision. Automatic meth-
ods are able to segment an image into coherent regions, but such regions
generally do not correspond to complete meaningful parts. In this pa-
per, we show that even a single training example can greatly facilitate
the induction of a semantically meaningful segmentation on novel images
within the same domain: images depicting the same, or similar, objects
in a similar setting.

Our approach constructs a non-parametric representation of the ex-
ample segmentation by selecting patch-based representatives. This allows
us to represent complex semantic regions containing a large variety of col-
ors and textures. Given an input image, we first partition it into small
homogeneous fragments, and the possible labelings of each fragment are
assessed using a robust voting procedure. Graph-cuts optimization is
then used to label each fragment in a globally optimal manner.

1 Introduction

Image segmentation, the process of identifying homogeneous regions in an image,
is a fundamental task in a large number of applications in image and video pro-
cessing. A particularly challenging instance of image segmentation is the problem
of automatically identifying semantically meaningful regions in an image. This
problem is often referred to as image labeling, since its goal is to associate each
pixel in the image with a label denoting a semantically meaningful part.

While the objective of grouping pixels according to color, texture, and other
cues has been dealt with in many ways, the challenge of aggregating pixels into
segments representing meaningful parts is much harder. This is due to the fact
that such parts are often too complex to be characterized using low-level image
features, such as color or texture. Furthermore, the semantic interpretation of
an image is highly subjective, depending on both the application, and the user.
For example, while some applications are concerned with separating a person
from the background, others might require the partitioning of a person’s body
into its various parts, as demonstrated in Figure 1.

In this paper, we present a novel labeling method, which computes a seman-
tically meaningful partitioning of an input image, as induced from one (or more)
correctly segmented training image. Both the input and the training image(s)

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 373–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a b c d
Training Image Desired Labeling

a b c d
Test Image Induced Labeling

Fig. 1. Inducing different semantically meaningful segmentations. This figure
illustrates how four different labelings are induced. A single training labeling is provided
each time, all with respect to the train image in left upper corner. Labeling (a) is a
binary partitioning between foreground and background. Labeling (b) also distinguishes
between skin and clothes. Labeling (c) decomposes the figure into hair and clothes,
while labeling (d) breaks up the background into several parts. Note that in general,
the various parts cannot be characterized by common image space attributes, and they
cannot be inferred without an explicit description or an example.

are assumed to be from the same domain: having similar illumination, resolution
and scale characteristics, and depicting similar scenes. The meaningful parts in
the training image are recognized in the input image, and the correct assignment
of pixels into labels is induced. Such a mechanism is required in various appli-
cations, like removal, replacement, or recoloring of a certain object in a series of
images. For example, one might want to change the color of a garment worn by
a model in all the photographs taken during a particular session.

Our method constructs a non-parametric model of the provided training pair
by selecting a set of patch-based representatives inside each labeled region in
the training image. These representatives are used to quantify the degree of
resemblance between small regions in the input image and the labeled regions
in the training set. This simple, yet informative representation, which is derived
directly from the image, has proved its worth in other applications, such as
texture synthesis [1], image analogies [2], recoloring [3], and image and video
completion [4, 5]. Here we extend this approach to image labeling.

Image analogies and texture transfer [2, 6] are a general framework by which
various types of filters are learned from a single unfiltered and filtered image
pair, and induced on novel images. As mentioned above, these methods gain their
strength from a simple patch-based sampling scheme. The method we present
has a similar flavor and shares their simplicity. However, the former methods
cannot induce labeling since the decisions they make are inherently local. In
contrast, our method makes use of a global optimization step for finding an
optimal pixel labeling.
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Training
Set

Test
Image Fragments

Patch Sets

Classification Scores

Result

Classification

Fragmentation

Graph-Cuts
Optimization

Fig. 2. An overview of our method: The labeled training image is sampled, creating sets
of square patches, one set for each label. Given an input image it is first over-segmented
into a collection of small homogeneous fragments. Assignment costs are then computed
for each fragment-label pair. Finally, a graph-cuts multi-label optimization is used to
find the globally optimal labeling of the fragments.

In this work, we assume that small homogeneous regions always belong to
the same semantic part of the image. Hence, we over-segment the input image
into fragments, small arbitrarily-shaped and simply-connected pixel clusters, and
compute the labeling at the fragment level. The fragmentation has a profound
effect on the final result, as it enforces a locally coherent labeling and facilitates
a voting scheme as a means for a robust per fragment label assignment. Further-
more, working at the fragment level reduces the computational complexity and
improves performance.

Figure 2 outlines our method. Patch sampling is performed over the labeled
training image, defining a set of patches, each representing a labeled region
of the image. During labeling induction, the input image is first partitioned
into small fragments. Then, assignment cost is computed for every fragment-
label pair. Next, these costs together with additional contiguity constraints are
incorporated into a graph-cuts multi-label optimization, to yield a global labeling
of the fragments. The combination of patch-based sampling, fragmentation, and
the graph-cuts optimization results in a segmentation scheme that incorporates
both local and global information, allowing effective induction of semantically
meaningful labelings from one image to another.

2 Background and Related Work

Segmentation is a well-studied problem. A common approach for segmentation
aggregates local cues such as color, texture, edges or various filter responses, by
which pixels are clustered into contiguous, homogeneous regions (e.g, [7, 8]. For
a survey of segmentation methods, see [9].



376 Y. Schnitman et al.

While these methods are successful in clustering image pixels into homoge-
neous regions, they cannot automatically group the resulting clusters into se-
mantically meaningful parts. However, they do provide natural image building
blocks, or image fragments, which can facilitate various region based decisions,
such as label assignments. We argue that determining whether an entity belongs
to a particular semantic part is more easily done at the fragment level, than on
a pixel-by-pixel basis.

The limitations of a pixel level decision are also addressed by global meth-
ods. By global methods we refer to methods that formulate the problem as a
minimization problem over the space of labelings/segmentations. The feasibility
of the global approaches is bounded by the exponential complexity of the space
of all possible solutions. Therefore, different algorithms restrict the space in or-
der to make the minimization tractable. The restrictions are usually formulated
with priors, such as continuity or smoothness. They yield a minimization of an
error function comprised of two error terms: the data constraint, and a pair-
wise constraint. Examples of global methods include normalized cuts [10], belief
propagation [11], and graph-cuts [12], which is used in this paper.

Another limitation of previous segmentation methods is the descriptive power
of the parametric model that they use to represent a segment, e.g., distribution
of colors, textures or some other features. A powerful alternative is to use ex-
amples as an implicit representation. Example-based non-parametric modeling
avoids the complications of parametric modeling. This approach has been applied
successfully in applications ranging from texture synthesis to image completion
[1, 2, 6, 13, 3, 4].

An example based representation is also used for detection and segmentation
of objects from a specific class [14]. There, the task is to segment an object in an
image, based on a large set of pre-segmented images, all from the same family
(e.g., horses). In contrast, we are interested in labelings induced by as few as a
single example. The image building blocks used in their method are also termed
fragments. However, their fragments are rectangular tiles of variable size, while
in our work, fragments may have an arbitrary shape determined by the context
of the image.

Segmentation is also closely related to the problem of extracting objects from
images. Because the task is so challenging, interactive solutions were developed,
where the user assists the segmentation process. In particular, graph-cuts opti-
mization has proved to be an effective tool for interactive image segmentation
[15, 16]. The optimization is used to find segmentations, which are consistent with
color, edges, and the user defined constraints. Graph-cuts have been extended to
handle multiple (more than two) segment problems, using the alpha-expansion
algorithm [17]. Recent works on video tooning [18] and rotoscoping [19] are
related to our work. They also face the problem of producing a consistent seg-
mentation for a sequence of similar images. Their approach takes advantage of
frame coherence, computing 3D clusters of pixels in the space-time video volume.
The user then outlines the semantic regions using a rotoscoping interface. We are
also interested in segmenting similar images, but make no assumptions regarding
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coherence among the images, and identify semantic regions automatically based
on a small training set.

3 Algorithm

In this section we describe our algorithm for inducing the labeling of the training
image onto the test image. Let Itrain denote the training image and Ltrain the
labeling of its pixels by k different labels. Given an input (test) image Itest our
goal is to compute its corresponding labeling Ltest. We begin by describing how
patches in Itrain are used to compute labeling costs for pixels in Itest (Sec. 3.1).
Rather than attempting to label each individual pixel in Itest we partition it into
small homogeneous fragments (Sec. 3.2) and compute more robust labeling costs
for each fragment (Sec. 3.3). Finally, we use graph-cuts optimization to assign a
label to each fragment in a globally optimal manner (Sec. 3.4).

3.1 Pixel Labeling Costs

Given Itrain and Ltrain we create a patch-based classifier by representing each
label by a set of square patches, sampled from the corresponding region in Itrain.
We get k such sets {Sl}k

l=1, one for each label. Each set contains a variable
number of patches, depending on the number of pixels with that label in Itrain.
All patches are of uniform size m × m, which is chosen beforehand so it is
proportional to the scale of details in the image, such as m = 7 or m = 20.
Figure 3 depicts the representation of each segment class by a set of sampled
patches. Next, we define ϕ(p, l) to be the cost of assigning label l to a pixel
p ∈ Itest. Informally, a low cost ϕ(p, l) indicates that there is a high likelihood
that p should be labeled with l, and vice versa. We compute ϕ(p, l) by matching
P , the m ×m square patch centered at p, with the patches in the set Sl. The
cost is proportional to the distance to the nearest neighbor of P within Sl:

ϕ(p, l) = min
P ′∈Sl

ssd(P, P ′)
M

,

where ssd(P, P ′) is the sum of squared distances between the patches P and P ′,
both treated as M -length vectors, where M = m ×m × 3 in the case of three
RGB color channels.

Fig. 3. Patch-based classifier. Each semantic part is represented by a set of square
patches, sampled from within the corresponding region in the training image.
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Fig. 4. Visualization of fragment labeling costs. Costs range in the interval [0,1] and
are colorized according to each label’s representative color, as defined in the Figure 3.

3.2 Fragmentation

The search for the nearest-neighboring patches within each set Sl is computation-
ally intensive. In order to reduce the number of such searches, we partition Itest

into small, color-homogeneous regions, which we refer to as fragments. These
fragments are arbitrarily-shaped and may contain from a few pixels to thou-
sands of pixels. We exploit the resulting structure to accelerate the algorithm
by evaluating the labeling costs only for a small fraction of the pixels within
each fragment, and then use voting to arrive at a set of labeling costs for each
fragment.

The fragmentation is performed such that fragments are smaller in more de-
tailed areas of Itest, and larger in more homogeneous regions. In addition, it is im-
portant that fragment boundaries align with edges in the image, since such edges
may correspond to the boundary between different semantic regions. Fragments
which comply to these criteria may be computed using mean-shift segmentation
[8] with sufficiently small kernel bandwidths. Figure 5 demonstrates the result of
fragmentation. Notice how small fragments form in highly detailed areas (such
as the hair and shirt regions), while large fragments form in homogeneous areas
(such as the walls in the background).

In addition to reducing the computational cost, fragmentation actually helps
produce better results, for two reasons. First, fragmentation constrains pixels
within the same fragment to be assigned to the same label, thereby enforcing
a locally coherent labeling. Second, the voting procedure performed on pixels
within each fragment produces more robust labeling costs.

random colorization mean value colorization detailed close-up representative patches

Fig. 5. Fragmentation. The input image is fragmented into arbitrarily-shaped homoge-
neous regions, which we call fragments. Fragment sizes vary according to the amount
of detail in various image areas, and their boundaries are aligned with edges in the
image. The label assignment of each fragment is computed by choosing representative
patches.
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3.3 Fragment Labeling Costs

We apply a voting scheme in order to compute the labeling costs of each frag-
ment. For each fragment f ∈ Itest we pick a few representative pixels:

Rep(f) = {pi ∈ f}Rf

i=1,

where Rf is proportional to the number of pixels in f , for example: Rf = �
√
|f |�.

Figure 5 visualizes fragments along with their representative pixels (and the
corresponding patches). The cost of assigning label l to fragment f ∈ Itest is
defined as:

ϕ(f, l) = median {ϕ(p, l)|p ∈ Rep(f)} .
Choosing the median value is a robust voting scheme, which is insensitive to
outliers. By the end of this process, each fragment is associated with k different
costs, one for each label. Figure 4 shows a visualization of the labeling costs that
were computed for the example in Figure 1.

As patches and fragment dimensions are frequently similar, it is often the
case that the patches centered at the representative pixels contain pixels outside
the fragment, affecting the fragment’s labeling costs. A simple solution would be
to introduce weights into the computation of the distance between patches, but
this interferes with the efficient nearest neighbor search that our implementation
currently employs. It should be noted however that the effect of these outliers is
significantly reduced by the voting scheme.

3.4 Graph-Cuts Optimization

After all pixels in the test image Itest have their labeling costs, we need to find
Ltest, the globally optimal labeling. A label assignment that minimizes the total
labeling cost and also is devoid of small, disconnected segments. Thus, we also re-
quire the labeling to be consistent with the presence (or absence) of edges in Itest.

In order to satisfy these requirements, we add an additional pairwise con-
straint ψ (p, q, L(p), L(q)) between each pair of neighboring pixels 〈p, q〉. This
constraint enforces label assignments to change only across evident edges in
Itest. The constraint ψ(p, q, L(p), L(q)) is 0 when the labels assigned to p and q
are the same (L(p) = L(q)) and otherwise, proportional to the evidence of 〈p, q〉
not being an edge in Itest. Specifically,

ψ (p, q, L(p), L(q)) =
{

0 L(p) = L(q)
1−∇(p, q) otherwise (1)

where ∇(p, q) is the difference (in RGB distance) between pixels p and q, atten-
uated and scaled to the range [0, 1]. Furthermore, we enforce the restriction that
pixels within each fragment should be labeled the same, in order to reduce the
combinatorial search-space and achieve a satisfactory approximation at reduced
computational costs. This is implemented the by specifing our energy term E(L)
in terms of fragments instead of pixels:

E(L) =
∑

f

|f | · ϕ (f, L(f)) + α
∑

〈f1,f2〉
ψ (f1, f2, L(f1), L(f2)) .
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Training Image Training Segmentation Input Image

(a) Pixel Labeling (b) Fragment Labeling
(c) Labeling after

Graph-Cuts Optimization

Fig. 6. The contribution of fragmentation and global optimization. The training set
consists of four semantically meaningful segments: three plants and the background.
Notice that the plants’ segments have very similar local characteristics, except in their
upper part, which has a unique color. (a) shows that a direct labeling of pixels fails
to induce a locally coherent segmentation, due to the close similarity. (b) shows that
labeling of fragments produces coherent labeling, but the labeling is over-segmented.
(c) shows that a global combinatorial optimization captures semantically meaningful
parts, and assigns the correct label.

Here 〈f1, f2〉 are neighboring fragments in Itest. ϕ (f, L(f)) is the cost defined in
Sec. 3.3, weighted by the size of each fragment. The pairwise constraint ψ() is
extended to neighboring fragments by summing the constraint over their shared
boundary:

ψ (f1, f2, L(f1), L(f2)) =
∑

〈p,q〉,p∈f1,q∈f2

ψ (p, q, L(f1), L(f2)) .

Finally, Ltest is determined by solving: Ltest = minL E(L). We apply the graph-
cuts multi-label optimization technique for the fragment-based energy term
E(L), using the alpha-expansion method [12].

4 Implementation and Results

Image fragmentation is implemented with the mean-shift algorithm from [20].
Graph-cuts optimization is implemented with the Maxflow algorithm from [21],
which computes the optimal cut for each alpha-expansion move. In this imple-
mentation the trade-off between regions and boundaries, is controlled by a single
parameter α. Figure 7 demonstrates the profound effect of this parameter on the
results. In all our experiments we used a fixed α value for all the images within
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the same series, typically setting α to one or a nearby value. For searching square
patches we uses a kd-tree [22]. In most of our results, we use patches of size 7×7.
To reduce computation time, we sample only 5% of possible patches within each
label in the training pair. Labeling of images of size 256× 256 pixels, with three
to six labels takes a few seconds on a 1.8 GHz Pentium 4 machine.

We test our method in the following scenario: Within a set of similar images,
one image is chosen to be the training image. We manually segmented the image
into multiple semantically meaningful parts, and colored each part with a unique
color. Ambiguous pixels were marked in black. Trained by this image pair, our al-
gorithm is used to induce the correct labeling on the remaining images. By image
similarity we require that all images should depict the same subject (e.g., birds
on the grass), have similar illumination conditions and are of similar resolution
and scale. In some of the examples, we apply manual histogram equalizations
and scaling in order to enforce these requirements.

Depending on the application, there are many ways to segment a particular
image into semantically meaningful parts. Figure 1 depicts our experiments of
creating different conceivable labelings and their induction on another image
within the same domain. Note that certain semantically meaningful labelings,
like the one that merges clothes and hair under the same label, cannot be char-
acterized in terms of simple image features, and thus cannot be inferred without
an explicit description or an example.

As described above, we use fragmentation to enforce locally-coherent labeling
of pixels, and graph-cuts optimization to induce the globally optimal assignment
of labels to fragments. Particularly, propagation of information across fragments
is crucial in scenarios where different semantic parts share similar sub-parts. We

Training Image Training Segmentation Input Image

α = 0.1 α = 5 α = 1

Fig. 7. The tradeoff between fragment labeling costs and the pairwise smoothness
constraints is controlled by a single parameter α. A low α value favors boundaries and
produces a over-segmentation, while a high α value penalizes boundaries, producing
under-segmentation.



382 Y. Schnitman et al.

Training Set (a) (b) (c)

Fig. 8. Arbitrary segment shapes. The segmentation between bear and water is induced
on three different images. Notice that the induced segmentation may contain holes (a),
and be non-contiguous (b), but our method cannot separate multiple objects belonging
to the same label (c).

Training Set (a) (b) (c) (d)

Fig. 9. Object detection and identification. Images of two types of birds are given as a
training set, each bird marked by a distinct label. Labeling results (a-c) demonstrate
our algorithm’s ability to detect the presence of each bird. The gray scale image (d)
demonstrates the labeling assignment costs of image (c), disclosing a greater confidence
over the labeling of the left bird than the right bird, as the latter differ from the training
image. Results without graph cut optimization (d) illustrate its contribution.

demonstrate the effect of the fragmentation and global optimization in Figure 6,
by showing the consequences of omitting each of them.

Our method is invariant to the number of instances of each semantic part
within the image, and insensitive to the shape of each part. Figure 8 shows the
labeling of parts with different topology, in particular, holes (b) and discon-
tinuities (c). On the other hand, our method cannot separate segments which
correspond to multiple instances of the same semantic label, as in the bear family
image (c).
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The ability to segment an image and detect the semantic meaning of each part
is demonstrated in Figure 9. Images of two types of birds are given as a train-
ing set, where each bird is marked by a distinct label. The results demonstrate
the ability to correctly detect and distinguish between the birds (a). The bot-
tom image in (b) also demonstrates that since fragments respect image edges,
the labeled regions have correct boundaries, which agree with the underlying
image.

Note that the lower right bird in (c) top constitutes a difficult case, since it is
a bit darker than its counterpart in the example image, making it more similar
to the second type of bird. This is evident in the gray-scale figure (d) top, which
visualizes the optimal cost of the globally optimal labeling, demonstrating the
problem of making clear cut decision. This image can be treated as a confidence
map, and it discloses a greater confidence over the labeling of the left bird than
the right bird.

5 Discussion and Future Work

“The whole is greater than the sum of its parts” [23] is one of the Gestalt prin-
ciples. In this paper, we identify the parts (fragments) of the whole (meaningful
object) by assigning them a common label. In general, labeling meaningful parts
is known to be a difficult task. We have shown that inducing a labeling from
an example can effectively perform this task for a set of images from the same
domain. We can attribute this to the following reasons: (i) The example defines
the granularity of the desired output. That is, whether we expect to label a
complete human body, or its sub-parts: hands, torso, head, etc. (ii) The example
allows the use of a non-parametric model to alleviate the huge space of parts.
These have more discriminative properties than parametric models. Figure 6
demonstrates that applying the labeling to fragments rather than pixels pro-
vides better results. Note that the shapes of our fragments are data dependent
rather than being predefined (e.g., rectangles or ellipses). We believe that the
labeling problem should address meaningful building blocks, and that pixels are
too small to be informative.

In the future we would like to investigate the applicability of our method
to a series of images with some spatial coherence. Such coherence can assist
the labeling of fragments across the images by considering their relative spatial
position in the image. This can then lead to various tracking methods applicable
to video with scenarios which include occlusions and frequent scene cuts.

References

1. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In:
International Conference on Computer Vision, Corfu, Greece (1999) 1033–1038

2. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analo-
gies. Computer Graphics and Interactive Techniques (2001) 327–340

3. Welsh, T., Ashikmin, M., Mueller, K.: Transferring color to greyscale images.
Computer Graphics and Interactive Techniques (2002) 277–280



384 Y. Schnitman et al.

4. Drori, I., Cohen-Or, D., Yehurun, H.: Fragment-based image completion. ACM
Transactions on Graphics, (SIGGRAPH) (2003) 303–312

5. Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: IEEE
Conference on Computer Vision and Pattern Recognition. (2004) 120–127

6. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer.
ACM Transactions on Graphics, (SIGGRAPH) (2001) 341–346

7. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based
on immersion simulations. Trans. on Pattern Analysis and Machine Intelligence
13 (1991) 583–598

8. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. Trans. on Pattern Analysis and Machine Intelligence (2002) 603–619

9. Lucchese, L., Mitra, S.K.: Color image segmentation: A state-of-the-art survey.
Proc. Indian National Science Academy (INSA-A) 67 (2001) 207–221

10. Shi, J., Malik, J.: Normalized cuts and image segmentation. Trans. on Pattern
Analysis and Machine Intelligence 22 (2000) 888–905

11. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and
its generalizations. Exploring artificial intelligence in the new millennium (2003)
239–269

12. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In: International Conference on Computer
Vision, Vancouver , BC. (2001) 105–112

13. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Com-
put. Graph. Appl. 22 (2002) 56–65

14. Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: European
Conference on Computer Vision. Volume 2., Copenhagen, Denmark (2002) 109–124

15. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM Transactions on
Graphics, (SIGGRAPH) 23 (2004) 303–308

16. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extrac-
tion using iterated graph cuts. ACM Transactions on Graphics 23 (2004) 309–314

17. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23 (2001) 1222–1239

18. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Transactions
on Graphics, (SIGGRAPH) 23 (2004) 574–583

19. Agarwala, A., Hertzmann, A., Salesin, D., Seitz, S.: Keyframe-based tracking for
rotoscoping and animation. ACM Transactions on Graphics, (SIGGRAPH) 23
(2004) 584–591

20. Christoudias, C.M., Georgescu, B.: Edge detection and image segmentation (edi-
son) system. (http://www.caip.rutgers.edu/riul/research/robust.html)

21. Boykov, Y., Kolmogorov, V.: Maxflow software. (http://www.cs.cornell.edu/
People/vnk/software.html)

22. Mount, D., Arya, S.: Ann: Library for approximate nearest neighbor searching.
(http://www.cs.umd.edu/ mount/ANN/)

23. Wertheimer, M.: Productive Thinking. Collins, NY (1945)



Super Resolution Using Graph-Cut

Uma Mudenagudi, Ram Singla, Prem Kalra, and Subhashis Banerjee

Department of Computer Science and Engineering,
Indian Institute of Technology Delhi,
Hauz Khas, New Delhi 110016, India

{uma, pkalra, suban}@cse.iitd.ernet.in
ram.singla@gmail.com

Abstract. This paper addresses the problem of super resolution - ob-
taining a single high-resolution image given a set of low resolution images
which are related by small displacements. We employ a reconstruction
based approach using MRF-MAP formalism, and use approximate opti-
mization using graph cuts to carry out the reconstruction. We also use
the same formalism to investigate high resolution expansions from sin-
gle images by deconvolution assuming that the point spread function
is known. We present a method for the estimation of the point spread
function for a given camera. Our results demonstrate that it is possible
to obtain super-resolution preserving high frequency details well beyond
the predicted limits of magnification.

1 Introduction

In this paper we investigate the problem of obtaining a single high-resolution im-
age given a set of low resolution images which are related by small displacements.
We pose super-resolution as a reconstruction problem using the MRF-MAP for-
malism [1], and use approximate optimization using graph cuts [2] to carry out
the reconstruction. We also use the same formalism to investigate high resolution
expansions from single images by deconvolution assuming that the point spread
function is known. We present a method for the estimation of the point spread
function (PSF) for a given camera.

There have been several different approaches to super-resolution, with estima-
tion of high-resolution (HR) images from multiple low resolution (LR) observa-
tions related by small motions being by far the most common one. Most of these
methods are based on accurate registration and solve the super resolution recon-
struction using variants of gradient descent with or without a smoothness prior
[3, 4, 5]. Super-resolution has also been tried from multiple defocused images [6],
varying zoom [7] and photometric cues [8]. Reconstruction based approaches to
super-resolution model the low resolution image formation process to establish
a relation between the unknown high resolution image and the low resolution
observations, and use the relationship to derive algorithms to estimate the high
resolution image essentially by an inversion process [6, 7, 8, 9, 10]. The inversion
process is typically ill-conditioned and it often necessitates the use of smooth-
ness or other priors [9, 11, 12] to obtain reasonable solutions. In [13], Baker and
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Kanade examine the limits of such processes and derive that for most point
spread functions and blur kernels the estimation process is non-invertible or ill-
conditioned. Further, the number of possible solutions grow at least quadratically
with the desired magnification factor. They also show that this large growth in
the number of solutions makes super-resolution difficult even with smoothness
priors and the resulting solutions often fail to recover the high frequency details.
In [14] the authors attempt to derive exact bounds on magnification factors based
on a perturbation analysis. Their results indicate that under practical situations
the magnification bound is only 1.6 for effective super-resolution. These results
are obtained under the assumption of box PSF and local translations.

A large number of super-resolution algorithms have been based on the MAP-
MRF formulation [6, 7, 8, 15] which indeed is a powerful framework for modeling
the super-resolution problem. However, traditional algorithms for obtaining the
MAP estimate, which in most cases result in non-convex optimization problems,
have been based on simulated annealing or Iterated Conditional Mode (ICM)
which provide no guarantee on the quality of the solution. Recently, Boykov et
al. [2] have proposed a new algorithm based on graph-cut optimization which,
under mild conditions on the nature of the objective function, can provide such
guarantees. In this paper, we investigate whether with use of suitable priors,
obtaining a good solution near the global optimum using an MRF-MAP for-
mulation can indeed provide acceptable quality of reconstruction even beyond
the derived limits. Unlike some methods in the literature [10, 11, 12] we do not
learn the prior from examples of high resolution images, because such priors can
then only be used to reconstruct similar high-resolution images. Instead, we use
generic smoothness priors which are suitable for most situations.

The main contributions of this paper are as follows:

1. We give a formulation of super-resolution reconstruction from multiple dis-
placed images using the MRF-MAP framework and solve using a graph-cut
optimization. Typical graph-cut applications [16, 17] assume that the data
term is a function of a single pixel. However, in the case of super-resolution,
the intensity observed at a pixel is affected by neighboring pixels through
a convolution representing blurring with the PSF. We formulate how such
convolution based data terms can be approximated in the graph-cut for-
malism so that the resulting model of neighborhood interaction is regular
which is necessary for graph-cut optimization [2]. We also present a method
of estimation of the point spread function (PSF) of a camera as an off-line
calibration process. We model the combined effects of the lens and the sensor
and assume that all images are obtained using a camera whose PSF model
is available.

2. We use the same formulation to deal with high-resolution expansion of single
images using deconvolution.

3. Our results demonstrate that it is possible to obtain super-resolution preserv-
ing high frequency details well beyond the predicted limits of magnification
of 1.6 in [14]. Note, that the limits in [14] are derived assuming box PSF and
local translations and our conditions are more generic. Our results demon-
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strate that even in presence of noise the super-resolved reconstruction is close
to ground truth. In fact, in case of black and white images containing printed
characters, we obtain high quality super-resolved images even without using
a smoothness prior.

Section 2 describes the image formation process, modeling of the high resolu-
tion image as MRF. This section also gives MRF-MAP solution using graph-cut
optimization for both single image expansion and SR reconstruction using mul-
tiple images. In Section 3 we present results to demonstrate the effectiveness of
our method. The conclusions are given in Section 4.

2 Super-Resolution with MRF-MAP

2.1 Image Observation Model

The image observation model is given by Equation 1, as in [3, 18]

gk = DHkTkf + ηk 1 ≤ k ≤ n (1)

where f is the HR image, gk is the kth observed LR image, D is the sub-sampling
matrix, Tk is the affine transformation that maps the HR image to kth LR image,
Hk is the space invariant PSF of the camera for the kth LR image and ηk is the
observation noise.

Figure 1 summarizes the observation model.

High Resolution Image Low Resolution Image

Geometric Transformation Camera blur Spatial Sampling

f g
+noiseT H

D

Fig. 1. Low Resolution Image Observation Model

Given the LR image and a magnification factor, the decimation matrix D is
fixed. Tk can be estimated using any image registration technique, we use Hier-
archical Model based Motion Estimation by Bergen et al.[19]. The estimation of
PSF (H) is discussed in Section 2.2. We model the HR image as an MRF and
use a maximum a posteriori (MAP) estimate as the final solution. The problem
of SR reconstruction can be posed as a labeling problem where each pixel is
assigned a label.
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In the case of SR reconstruction, the posterior energy is given by

E(f |g) =
∑

k

‖DHkTkf − gk‖2 +
∑

p,q∈N
Vp,q(fp, fq) (2)

where, Vp,q(fp, fq) are clique potentials which act as a smoothness prior and N
is a neighborhood system. We minimize the posterior energy using the graph-cut
technique proposed by Boykov et al. [2].

2.2 PSF Estimation

Assuming no motion blur, the edge spread function (ESF) captures the blur-
ring effect of an ideal step edge by the image formation process. This includes
both blurring due to the lens and the camera sensor. Under the Gaussian PSF
assumption, the ESF s(x) for a normalized edge is given by

s(x) =
1
2
(1 + erf(

x

σ
√

2
)) (3)

Given a calibration pattern with a set of ideal step edges, we estimate parameters
of ESF by fitting the Equation 3 to a normalized edge in the least square sense.
Note that in our MRF formalism we do not require shift invariant PSF, however,
our estimates with a modern digital camera (Olympus, C-4000 zoom) indicate
that the PSF is approximately space invariant. Typically the estimates of σ are
around 0.4, hence we approximate the Gaussian PSF with a 3× 3 mask.

2.3 Energy Minimization Using Graph-Cuts

The typical energy functions using MRF formulation are of the following form:

E (f) =
∑
p∈S

Datap (fp) +
∑

p,q∈N
Vp,q (fp, fq) (4)

Datap (fp) is a function derived from the observed data that measures the cost
of assigning the label fp to the pixel p. Vp,q (fp, fq) measures the cost of assigning
labels fp, fq to adjacent pixels p, q and is used to impose spatial smoothness. In
order to minimize E using graph cuts a specialized graph is created. The form
of the graph depends on the exact form of V and on the number of sites. The
minimum cut on the graph minimizes the energy E either locally or globally [2].

Graph cuts can minimize only graph-representable energy functions. An en-
ergy function is graph-representable iff each term Vp,q satisfies the regularity
constraint [20].

For our problem the MRF sites are pixels of the HR image and labels are
possible intensity values. The energy function presented in Equation 2 is in the
coordinates of the LR images. In what follows, we re-write energy function in
the coordinate system of the HR image.

The label at any site p is influenced by its neighbor due to the blur convolution.
For a particular image site p, in the HR image, mapping to site p′ in some LR
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(a) (b)

Fig. 2. (a) Mapping of the Pixel from HR grid to LR grid (b) Circle of Influence of
the pixel in LR grid

image potentially influences four pixels (i, j), (i, j + 1)(i + 1, j)(i + 1, j + 1) as
shown in Fig 2(a).

We divide the space bounded by the four pixels into five zones − one each
for the four LR pixels and one No Pixels’ Zone as shown in Fig. 2(b). The
zone of each pixel is called Zone of Influence of that pixel. If the site p maps
into one of the Zone of Influence of a pixel in the LR image then the expected
label at the site p must be the label of that pixel. A site p mapping to a No
Pixels’ Zone of an LR image indicates that the LR image does not have any
useful information about the expected label at the site p. A site p mapping to
No Pixels’ Zone for all LR images indicates that the sub-pixel displacement for
this site p is not available in any of the LR images. For such a site p, we estimate
the expected value of the label by interpolating the result from all the four
pixels in the reference LR image. From the above observation, we see that the
data term for site p may be given as:

Datap(fp) =
n∑

k=1

βk||hp ∗ fp − gk
DTkp||2 (5)

where hp is the blur kernel at site p and gk
DTkp is the expected label at the site p

with precision βk for the kth LR image. βk = 0 for a site p that is mapped into
No Pixel Zone. If βk = 0 for all LR images then β1 = 1 and g1

DT1p is set to the
interpolated value from the reference LR image. Further,

∑n
k=0 βk = 1.

The energy function is still not in the standard form for energy minimization
using graph-cuts. The data term of site p also depends on the neighbors of p
due to blurring operator. We now approximate the data term as a sum of two
terms − (i) a term that depends only on the observed data at site p (ii) a term
that depends on the neighbors of p. In following equations we assume hp is a blur
kernel with values wpp at the center and wpq at the neighbor q of p. Expanding
we obtain the following:
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Datap(fp)= D∗
p(fp) +

n∑
k=1

βk[
∑

q∈Np

(2(wppfp − gk
DTkp)wpqfq

+(wpqfq)2)] + 2
∑

q,r∈Np

wpqwprfqfp

where, D∗
p(fp) =

n∑
k=1

βk[(wppfp − gk
DTkp)

2] (6)

Hence, the energy is

E(f) ≈
∑
p∈C

D∗
p(fp) +

∑
p,q∈N

φp,q(fp, fq) +

∑
p,q,r∈N

ψp,q,r (fp, fq, fr) (7)

where φpq is the interaction associated with two neighboring pixels and ψpqr is
with three neighboring pixels, which is ignored due to first-order neighborhood
approximation. For energy E to be graph representable the function φpq must
be regular. But due to the term fpfq in φpq the regularity condition breaks. We
eliminate this dependency by further approximating (wppfp − gk

DTkp) = Δk
p and

(wqqfq − gk
DTkq) = Δk

q , where Δk
p and Δk

q are fixed for a particular α-expansion
move during the minimization using graph-cuts.

The equations for φpq after approximation is:

φpq(fp, fq) =
n∑

k=1

βk[2Δpwpqfq + (wpqfq)2] +

n∑
k=1

βk[2Δqwqpfp + (wqpfp)2] + Vpq(fp, fq) (8)

The single image expansion is the special case with n = 1 and T1 as the identity
transformation. We have used the graph-cut library provided by Kolmogrov [21]
for our implementation.

3 Results

In this section we present SR reconstruction results on both synthetic and real
images. In all cases the attempted magnification is 4 × pixel − zoom (four in
each dimension). We compare our results of single image expansion and mul-
tiple image SR reconstruction using graph-cut with bilinear interpolation and
iterative back projection (IBP) method proposed by Peleg and Irani [3] (Since
it is a popular method and we have its implementation). All our real images are
obtained with an Olympus digital camera (C-4000 zoom).

In Figure 3, we show a synthetic example of SR reconstruction for noisy ob-
servations with a calibration image. For both SR reconstruction using multiple
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(a) Ground truth (b) Noisy Bilinear Interpolated

(c) Single Image Expansion (d) SR method: Multiple Images

Fig. 3. Effect of Noise on HR Image

(a) Bilinear Interpolated (b) Single Image Expansion

(c) IBP Method (d) SR Method: Multiple Images

Fig. 4. HR Image of leaves with λ = 0.06
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(a) Bilinear Interpolated (b) Single Image Expansion

(c) IBP Method (d) SR Method: Multiple Images

Fig. 5. HR Image of Text

(a) Bilinear Interpolation (b) Single Image Expansion

(c) IBP Method (d) SR Method: Multiple Images

Fig. 6. HR Image of Pattern

images and single image expansion we have used the linear truncated smooth-
ness prior, given by Vp,q = λ(min(8, |fp − fq|)). We generate input images with
affine transformation with additive uniform noise of SNR=2 for multiple SR re-
construction. We register 24 LR images using Hierarchical Model based Motion
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Estimation by Bergen et al.[19] and carry out SR reconstruction as described
in 2.3. Note that with multiple observation images the restoration method can
effectively remove the noise and yet preserve the high frequency details. The
results are more smooth because of registration errors in the presence of noise.
Even the single image expansion can handle noise to a certain extent and even
the resolution is better in the boxes in the lower left corner.

In Figures 4, 5 and 6 we show SR reconstruction using multiple images and
single image expansion results for some real images. In each case for the single
image expansion we use the same smoothness prior as above. For SR reconstruc-
tion using multiple images we use the same smoothness prior for results in Figure
4(d). For results in Figures 5(d) and 6(d) we do not use any smoothness prior.
In each of these cases we use the same estimate of σ =0.473, since f − number
was fixed at 2.8.

It is evident from the results that the super resolution reconstruction using
MAP-MRF using graph-cuts, both for multiple images and single image expan-
sion, preserves the high frequency details.

The results can be downloaded from our site at http://www.cse.iitd.ac.in/
˜uma/publication.html.

4 Conclusions

We have formulated the SR reconstruction problem in the framework of MRF-
MAP and have proposed a solution using graph-cuts. We also carry out single
image expansion using the same framework. The results demonstrate that the
proposed framework for SR reconstruction using multiple images preserves the
high frequency details.

The results may improve if we estimate registration parameters in the same
graph-cut formulation.

Our method is not real time. We are currently exploring ways to make it fast.
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Abstract. Level set based segmentation has been used with and without shape
priors, to approach difficult segmentation problems in several application areas.
This paper addresses two limitations of the classical level set based segmenta-
tion approaches: They usually deliver just two regions - one foreground and one
background region, and if some prior information is available, they are able to
take into account just one prior but not more. In these cases, one object of in-
terest is reconstructed but other possible objects of interest and unfamiliar image
structures are suppressed.

The approach we propose in this paper can simultaneously handle an arbi-
trary number of regions and competing shape priors. Adding to that, it allows
the integration of numerous pose invariant shape priors, while segmenting both
known and unknown objects. Unfamiliar image structures are considered as sep-
arate regions. We use a region splitting to obtain the number of regions and the
initialization of the required level set functions. In a second step, the energy of
these level set functions is robustly minimized and similar regions are merged
in a last step. All these steps are considering given shape priors. Experimental
results demonstrate the method for arbitrary numbers of regions and competing
shape priors.

1 Introduction

Segmenting an image into its semantically significant components is one of the fun-
damental problems in computer vision. Standard segmentation approaches are driven
by low-level cues such as intensity, color or texture. But very often this segmentation
of given objects is an ill-posed problem, therefore these methods have to fail. To over-
come this limitation, prior knowledge can be used to constrain the segmentation pro-
cess. Modelling this interaction between the data-driven and the model-based process
has become an important topic in the research on image segmentation in the field of
computer vision.

The integration of prior knowledge (in our case shape priors) into PDE based
segmentation methods has delivered promising results (see [1–7]). Normally, the
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knowledge of one single shape prior is introduced into the contour evolution in a way
that corrupted versions of a familiar object are reconstructed and all unfamiliar image
structures are suppressed and often the localization of the shape must be known. Lev-
enton et al. [3] use a Gaussian model to describe their shape priors. They assume a
uniform distribution over pose parameters, that include translation and rotation. Rous-
son and Paragios [4] propose a similarity transformation (scale, rotation and translation)
for the shape prior that allows to segment familiar objects with an unknown position in
the image scene. But like the approach of Leventon et al. they can handle only one
shape prior and unfamiliar image structures are ignored. Cremers et al. ([8], [6]) pre-
sented an approach with dynamic labeling, that allows to use more than one shape
prior and does not suppress unfamiliar image structures. The problems of this approach
are on one side the segmentation in only two regions and on the other side the incor-
rect segmentation of foreground objects, when one or more objects are very similar to
the background. Lately, Raviv et al. [7] present a novel approach that allows a projec-
tive transformation of the shape prior, but their approach is also limited to one region.
In all these approaches, it is nearly impossible to obtain the number or shapes of the
unfamiliar objects in the scene. One possible way to solve that problem is to expand
the level set based segmentation to an approach that allows to segment more than two
regions.

For more than two regions, the level set idea loses part of its attractiveness. There-
fore, there is only little related work on this problem. Paragios and Deriche [9] avoid
this assumption by calculating the means of a Gaussian mixture estimation of the im-
age histogram. The number of mixture coefficients determines the number of regions
for the segmentation. Chan et al. [10] use a multiphase level set approach to segment
many objects (N level-sets are used to intrinsically segment up to 2N regions). This is
a complementary approach to the one advocated in [11] to segment many objects with
one level-set assigned to each object with a constraint to prevent the development of
overlapping regions and/or vacuums. Brox and Weickert [12] propose a three step split
and merge approach. In a first step, they use normal level set based segmentation to split
the regions of an image in a recursive way. These regions are used as initialization for a
level set based minimization scheme for the variational segmentation model of Zhu and
Yuille [13]. In the last step, similar regions are merged to minimize the energy. All these
approaches can segment different numbers of significant objects in an image, but do not
use prior knowledge. In this paper, we combine the idea of level set based segmentation
for multiple regions [12] with the prior knowledge of shapes to a framework which can
handle these problems.

The outline of the paper is as follows: Section 2 shows a level set formulation that
can easily be extended with a single shape prior. In section 3, we enhance this prior by
explicit pose parameters and demonstrate the effect of a simultaneous pose optimiza-
tion. In section 4, we introduce a multi region segmentation method similar to [12], that
is extended with shape prior knowledge. It can handle an arbitrary number of known and
unknown objects, which is also the central contribution of this work. We demonstrate
that our approach is capable of reconstructing corrupted versions of multiple known
objects in a scene containing other unknown objects.
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2 Two Region Segmentation with a Shape Prior

There are different level set formulations, which could be possible choices [14–17]. In
this work, we use the level set formulation proposed by Paragios and Deriche [17, 18]
to minimize the energy for an object region:

ED(Φ, p1, p2) = −
∫

Ω

(H(Φ) log p1 +(1−H(Φ)) logp2)dx + ν

∫
Ω

|∇H(Φ)|dx, (1)

with the level set function Φ : Ω → R with Φ(x) > 0 if x ∈ Ω1 and Φ(x) < 0 if x ∈ Ω2
and the Heaviside function H(Φ) with limΦ→−∞ H(Φ) = 0, limΦ→∞ H(Φ) = 1 and
H(0) = 0.5. p1 and p2 are the probability densities pi = p(x|Ωi) of the regions Ω1 and
Ω2 which cover the whole image domain Ω with no overlap. For color images, we use
the following multivariate Gaussian density:

p(x|Ωi) =
1

(2π)d/2|Σi|
e−

1
2 (x−μi)T Σ−1

i (x−μi), (2)

with the mean μi and the covariance matrix Σi of the multivariate color distribution of
the region Ωi. The last term of equation 1 takes into account the length of the contour
weighted by the parameter ν. To add an isotropic Gaussian shape prior to the energy
equation 1, we define a straight forward extension

E(Φ,Φ0, p1, p2) = ED(Φ, p1, p2) + λES(Φ,Φ0), (3)

with

ES(Φ,Φ0) =
∫

Ω

(Φ− Φ0)2dx, (4)

where Φ0 is the level set of the given training shape or the mean of a set of training
shapes. λ ≥ 0 indicates the weight of the prior. Typically, λ is set to a value between
0.5 and 2.0.

The minimization of the energy term can now be estimated according to the gradient
descent equation

∂Φ

∂t
= δ(Φ)

[
νdiv
( ∇Φ

|∇Φ|
)
− log

p1

p2

]
− 2λ(Φ− Φ0), (5)

where δ(Φ) is the derivative of H(Φ) with respect to its argument. The probability
densities p1 and p2 are estimated with equation 2.

Figure 1 shows the different results of the level set segmentation with and without
a shape prior. If a shape prior is used, the pose and position of the object of interest is
assumed to be known. We show the original image containing different objects and the
background 1(a), and the result of the standard level set segmentation without a shape
prior 1(b). Subsequently, we present four results with different shape priors. With a
high weight on the shape prior, the region of the specified object is correctly segmented,
even if the object is partly occluded (see 1(c), 1(e)). All other objects, which are not in
accordance with the given shape are suppressed. This problem is solved in section 4,
but first we introduce a pose invariant formulation for the shape prior.
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(a) initialization (b) no shape prior (c) shape prior: bowl

(d) shape prior: cup (e) shape prior: sugar sprinkler (f) shape prior: spoon

Fig. 1. (a) Original image with the level set initialization. (b) Level set segmentation result without
prior knowledge. (c) With a shape prior of a bowl, (d) a cup, (e) a sugar sprinkler and (f) with
a shape prior of a measuring spoon. With the prior knowledge of the shape, the region of its
corresponding object is segmented correctly. However, it is not possible to segment the regions
of two or more objects in one image, with one single level set function.

3 A Pose-Invariant Formulation

In the results shown in Figure 1, the pose and position of the object of interest is as-
sumed to be known, but that will not be the case in realistic segmentation problems. If
the object of interest is no longer presented at the same location, with the same scale
and orientation as the shape prior Φ0, a segmentation with the formalism of section 2
has to fail. Possible solutions are presented in [4], [5] and [7], where a set of pose pa-
rameters is associated with the given prior Φ0. In our approach, we use the work of
[4]. Compared to [7] the work of [4] is limited to similarity transformation, but tests
have shown that on more complex scenes with more regions it is much more robust and
therefore better for our use.

Rousson and Paragios [4] assume a global deformation A between Φ and Φ0 that
involves the parameters [A = (s; θ; T)] with a scale factor s, a rotation angle θ and a
translation vector T. The corresponding shape energy

ES(Φ,Φ0(A)) =
∫

Ω

δ(Φ)(sΦ − Φ0(A))2dx (6)

is simultaneously optimized with respect to the segmentation level set function Φ and
the pose parameters s, θ and T. The function is expanded with δ(Φ), so that the shape
prior is only estimated within the vicinity of the zero-crossing of the level set represen-
tation, which has a better performance than considering the whole image domain.

Minimizing equation 6 leads to the following gradient descent for the level set func-
tion Φ:
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∂Φ

∂t
= δ(Φ)

[
νdiv
( ∇Φ

|∇Φ|
)
− log

p1

p2
− 2λ(sΦ− Φ0(A))

]
. (7)

The transformation A is also dynamically updated to map Φ and Φ0 in the best
possible way. The calculus of variations for the parameters of A leads to the system:

∂s

∂t
= 2
∫

Ω

p ∗ (−Φ +∇Φ0(A) ∗ ∂

∂s
A)dx

∂θ

∂t
= 2
∫

Ω

p ∗ (∇Φ0(A) ∗ ∂

∂θ
A)dx

∂T
∂t

= 2
∫

Ω

p ∗ (∇Φ0(A) ∗ ∂

∂T
A)dx, (8)

with

p = δ(Φ)(sΦ − Φ0(A)). (9)

Figure 2 shows the resulting segmentation of the sugar bowl with and without the
pose invariant formulation. In both cases the location of the shape prior is not identi-
cal with the location of the object. Without the pose invariant formulation (top row),
the familiar shape is forced to appear in a wrong position 2(c). With the pose invariant
formulation (bottom row), the shape of the familiar object and the shape prior corre-
spond 2(e).

(a) initialization (b) 10 Iterations (c) Result

(d) 10 Iterations (e) Result

Fig. 2. Evolution of the shape contour (white) considering a shape prior (black). In the first row,
the familiar object is forced to appear at a wrong location, without simultaneous pose optimization
(figure 2(c)). In the second row, the same initialization is used but the parameters for the pose
transformation are optimized. The shape of the familiar object and the shape prior correspond.



400 M. Fussenegger, R. Deriche, and A. Pinz

4 Multi Region Level Set Segmentation with Shape Priors

Brox and Weickert [12] introduce a split and merge level set based method to segment
multiple regions. We expand their three step approach for multi region segmentation
with shape priors.

The subsequent enumeration describes the three steps in detail:

1. Step 1: Splitting
(a) For each given shape prior a split of Ω according to equation 5 is done, where

the foreground region is assigned with the used shape prior and the background
region is the new Ω (see figure 4(a)).

(b) After all shape priors have been used for one split, the last Ω is split recursively
using equation 5 without a prior. The final result delivers the expected number
of regions in the image and is also the initialization for step 2 (see figure 4(b)).

2. Step 2: Refinement
(a) The energy of all regions can now be minimized in a global scope with equa-

tion 10, considering also the regions assigned to the given shape priors. In the
minimizing process, it can happen, that some regions become very small or
even vanish. To get rid of these regions, we use the last step (see figure 4(c)).

3. Step 3: Merging
(a) For all region pairs, where none of the two regions is assigned to a shape

prior, the merged and the split energies are calculated using equation 1. If the
merged energy (EMerge = ED(Ωi)) is smaller than the split energy (ESplit =
ED(Ωi1) + ED(Ωi2)) two regions are merged (see figure 4(d)).

Figure 4 shows the results after each of the above steps with two shape priors (bowl
and measuring spoon). In 4(d) (final result) all objets are segmented correctly! The
splittings steps and the merging step are also shown in figure 3, where every circular
node of the tree symbolizes a tried split.

For the refinement we expand the gradient descent of Brox and Weickert [12] as
follows:

Fig. 3. Tree diagram to show the tried splittings (step 1a and 1b) and the merging (step 3)
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(a) result after 1(a) (b) result after 1(b)

(c) result after 2 (d) result after 3

Fig. 4. Multi region level set segmentation with two shape priors. (a) Result of region splitting
with shape priors (2 Regions), (b) after whole region splitting (10 Regions), (c) after refinement
(10 Regions) and (d) final segmentation result after region merging (7 Regions). See also figure 3.

(a) λ1 = λ2 (b) λ1 > λ2

Fig. 5. Two segmentation results with varied λ for two shape priors (λ1 sugar sprinkler, λ2 mea-
suring spoon)

∂Φi

∂t
= δ(Φi)

[
logpi − max

j =i,H(Φj )>0
logpj +

ν

2
div
( ∇Φi

|∇Φi|
)

−2λi(sΦi − Φ0i(Ai)) + 2λj(sΦj − Φ0j(Aj))
]
, (10)

where the maximum criterion ensures that a pixel is only assigned to the region with
the highest probability. λi > 0 when Φi is assigned to a shape prior and λj > 0
when Φj is assigned to a shape prior, they are zero when no shape prior is assigned to
the corresponding level set function. When more than one shape prior is used, it can
happen that one familiar object is partially occluded by an other familiar object. If all λ
have the same value the front object is segmented completely. For increasing value of
λ the occluded object is fully reconstructed. That means with a variation of the different
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(a) (b) (c)

Fig. 6. Multi region level set segmentation without shape prios to get a shape prior of the parking
ticket machine. (a) and (b) show the segmented image. (c) shows the resulting level set function
Φ0 of the shape, that is subsequently used as shape prior for the segmentation in fig. 7.

(a) (b)

(c)

Fig. 7. Three example segmentations (white) with the initialized shape prior (black) from figure 6.
The results also demonstrate the robustness of the approach. In (a) the transformation parameters
A are s = 0.93, θ = 0.3◦ and T = [27, −2], in (b) s = 0.61, θ = −1.6◦ and T = [−25, −56]
and in (c) s = 0.82, 6, θ = −1.5◦ and T = [−42, −31].

λ, we can give each known object different importance. Figure 5(a) demonstrates the
results for an equal λ for all shape priors. In figure 5(b) the shape prior of the sugar
sprinkler has a higher λ than the shape prior of the measuring spoon.
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Figures 6 and 7 show an other example on real images. First in figure 6, we use the
multi region level set segmentation without shape priors (figure 6(a), 6(b)) and use the
segmented region of the parking ticket machine as a shape prior for the segmentations in
figure 7. In all three segmentation results of figure 7(a), 7(b) and 7(c) the partly occluded
parking ticket machine is segmented correctly. In all images we use small circles as the
initialization for the level set function Φ and a centered level set function Φ0 (given in
black) for the shape prior. The results also illustrate the robustness of the approach.

5 Conclusion

We have introduced the framework of level set based segmentation of multiple regions,
that allows to integrate an arbitrary number of competing shape priors. Each shape
prior is given by a fixed template (a given training shape or the mean of a set of training
shapes) and respective pose parameters. An extension to statistical shape priors, with
additional deformation modes is straight forward.

First, we have shown the benefit and limitation of using a shape prior with a stan-
dard level set based segmentation. The prior knowledge permits the reconstruction of
corrupted versions of a familiar object, but suppresses independent unknown objects.
Furthermore, we added a pose invariant formulation.

To the end our extension to more level set functions allows us to simply use mul-
tiple competing shape priors. And additional, independent unknown objects are not
suppressed. Furthermore, the different regions can be much easier distinguished and
assigned to the different objects in a scene, compared to the classical approach with
only one level set function. The results we have presented in this work demonstrate the
power and capacity of our approach.

With its possibility to combine data-driven and recognition-driven information in the
segmentation process, it can for example be used to improve an object recognition or
detection framework.
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Abstract. This paper presents a unified variational framework for
seamlessly integrating prior segmentation information into non-rigid reg-
istration procedures. Under this framework, in addition to the forces arise
from the similarity measure in seeking for detailed correspondence, an-
other set of forces generated by the prior segmentation contours can
provide an extra guidance in assisting the alignment process towards a
more meaningful, stable and noise-tolerant procedure. Local correlation
(LC) is being used as the underlying similarity measures to handle in-
tensity variations. We present several 2D/3D examples on synthetic and
real data.

1 Introduction and Related Work

Registration and segmentation are two most fundamental problems in the field
of medical image analysis. Traditionally, they were treated as separate prob-
lems, each with numerous solutions proposed in literature. In recent years, the
notion of integrating segmentation and registration into a unified procedure has
gained great popularity, partially due to that more and more practical prob-
lems, e.g., atlas-based segmentation, subsume both segmentation and registra-
tion components.

Yezzi et al. [25] pointed out the interdependence existing in many segmenta-
tion and registration solutions, and a novel geometric, variational framework was
then proposed that minimizes an overall energy functional involving both pre
and post image regions and registration parameters. Geometrical parameters and
contour positions were simultaneously updated in each iteration, and segmen-
tations were obtained from the final contour and its transformed counterpart.
While this model and its variants [18, 19] are enlightening and pave a promising
way towards unifying registration and segmentation, their applicability range
is either limited to relatively simple deformation type [25] (rigid/affine), or to
relatively simple input images [18, 19].

Vemuri et al. [27] propose a segmentation + registration model to solve
the atlas-based image segmentation problem where target image is segmented
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through the registration of the atlas to the target. A novel variational formula-
tion was presented which put segmentation and registration processes under a
unified variational framework. Optimization is achieved by solving a coupled set
of nonlinear PDEs.

Another segmentation + registration model proposed by Noble et al. [13]
seeks for the best possible segmentation and registration from the maximum
a posteriori point of view. Improvements in accuracy and robustness for both
registration and segmentation have been shown, and potential applications were
identified. This model is primarily designed for combining segmentation and rigid
registration. While non-rigid algorithm was also implemented, the motion field
estimation is based on block-matching of size (7× 7), which is not dense enough
for most non-rigid registration applications.

Inspired by the above-mentioned approaches, the work presented in this paper
is aimed to establish a segmentation assisted framework to boost the robustness
of non-rigid image registration. Another component of our method, aiming to
achieve the same goal, is the choosing of the sum of Local Correlation (LC) as
the underlying similarity measure. LC measure is invariant to intensity scaling
and contrast and this property is very crucial for registration applications where
input data have substantial intensity variations. The following is a brief review
on some of the related similarity measures that can handle intensity variations.

Intensity-Variation-Tolerant Measures. A group of similarity measures that
don’t assume brightness constancy are based on the concept of maximizing mu-
tual information reported in Viola and Wells [21], Collignon et al., [3] and
Studholme et al., [17]. One noticeable drawback of MI-based registration [9]
is its proneness of being trapped in local maxima, as no spatial information
has been taken into consideration in the original formulation [21, 17]. Although
some studies, such as combining MI with gradient information [14] and using
regional MI [5], showed impressive improvements for boosting the robustness for
MI-based elastic registration, no systematic solution has been proposed up to
this date.

Recently, the sum of Local Correlation (LC) [23, 12], derived from image
statistics (mean and variance), started to show great successfulness in regis-
tering mono-modal and multi-modal images with impressive accuracy and effi-
ciency. Due to the fact that it can capture both the statistical correspondence
and the spatial coherence existing in the input images, LC is fairly responsive to
local spatial changes, therefore has a great potential to reveal very detailed non-
rigid motions. In addition, LC can be formulated [23] to be relatively invariant
to intensity scaling and reversal, which makes it an ideal similarity metric for
handling the registration problems where “subtle spatial changes” and “presence
of intensity variations” are two major characteristics.

Proposed Registration Method. In this paper, we propose to develop a
robust segmentation-guided registration framework, with LC as the underlying
matching metric. Under this framework, prior shape information can be fully
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integrated into the registration procedure, as an extra guiding force to lead a
more meaningful, stable and noise-tolerant image alignment process.

Our segmentation-guided model is inspired by the works mentioned in the
previous section, and it differs from other models in that 1) our method is a
fully non-rigid dense deformation estimation model; 2) it uses a unified segmen-
tation + registration energy minimization formulation, and 3) the optimization
is carried out under a natural, parameterization-free and numerically stable level
set framework. A salient feature of our model is its robustness against
input image noise.

With different similarity measure embedded into our framework, our model
can handle both single-modality and multi-modality image registrations. In this
paper, we propose a modified LC as the underlying similarity metric. Comparing
with the existing LC formulations, our LC formula has the advantage (over [12])
of being able to handle both global and local motion, and advantage (over [23])
of being able to handle both intensity scaling and reversal.

The outline of the paper is as follows. In the next section, we introduce our
segmentation guided registration model as an energy minimization and formu-
late it under level set framework. Associated Euler-Lagrange equations will be
provided and discussed. In section 3, we give experiment results to demonstrate
the performance of our algorithm on several 2D images. We conclude this paper
in section 4.

2 Segmentation Guided Registration Model

Commonly, the basic input data to a registration process are two images: one is
defined as fixed (or target) image I1(X) and the other as the moving (or source)
image I2(X). A typical solution to the non-rigid registration problem is to look
for a deformation function V assigned to each point X . The function is searched
by minimizing an energy function E of the form

E(V ) = S(V ) + R(V ) (1)

The term S(V ) is designed to measure the dis-similarity between the input
image I1 and I2. The term R(V ) is designed to penalize fast variations of the
deformation function V .

In addition to these two image, our model requires a segmentation of the
fixed image, indicting a studying area of I1(X), as another input component.
Let C be the boundary curve of the segmentation. We denote by Cin and Cout

representing the inside and outside areas of the curve C. Let C1 and C2 be the
average values for Cin and Cout respectively.

The contour C can be either input by user or derived from a training set. We
assume that the region captured by C contains a single object of the fixed image,
therefore the intensity profiles of both inside and outside of the region should be
able to be characterized by certain property. Examples of the property include
“being relatively homogenous”, or “conforming to certain distribution”. Suppose
the fixed and moving images are well corresponded, then, at the time a perfect
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alignment is achieved, the intensities in the warped moving image should also
have a similar property within both Cin and Cout. This observation provides the
justification for our model, which is designed based on following considerations:

In addition to the set of forces generated by intensity similarity measure
(e.g., SSD, LC or MI) to warp the moving image toward the target, another
set of forces, derived from the region property constraint, should be utilized
to pull the moving image toward the correct alignment. This set of forces can
provide an extra guidance for the registration process to avoid local energy
optima, which is especially helpful when input images are noisy.

Our solution to the segmentation guided registration can be formulated as
the minimization of a new energy, which integrates the available segmentation
information,

E(V ) = S(V ) + H(V ) + R(V ) (2)

where H(V ) is designed to penalize the deformations that would result in in-
homegeneous intensity profiles within Cin and Cout.

For different applications, we can assign different forms for the terms S(V ),
H(V ) and R(V ). S(V ) term can take Sum of Squared Difference (SSD) for
single-modality applications and Mutual Information (MI) and Correlation Ratio
(CR) for multimodal registration. For H(V ), piecewise constant function [2] and
piecewise linear function [16] are among the most popular choices. Gaussian
diffusion model, elastic model and viscous fluid model have been widely used as
the regularization options for term R(V ).

2.1 Frameworks Based on Intensity Homegeneity

To handle the intensity variations existing in the input images, our solution to
the robust segmentation-guided registration is formulated as the minimization
an energy, which relies on LC to measure the image similarity, with the available
segmentation information being used as a homogeneity constraint,

E(V ) =
∫

Ω

LC(I1(X), I2(X + V (X)))dX + λ1

∫
Cin

[
I2(X + V (X))− C1

]2
dX

+λ2

∫
Cout

[
I2(X + V (X))− C2

]2
dX + λ3

∫
Ω

| � V (X)|2dX (3)

where LC(I1, I2) is the LC similarity between I1 and transformed I2. Ω is the
image domain and V (X) denotes the deformation field. λ1, λ2 and λ3 are three
constant parameters that weight the importance of each term in the optimization
energy.

Several variations of LC measures have been investigated in Cashier et al. [1]
and Netsch et al. [12]. In our implementation, we use a different customized form
of local correlation and it has the advantage (over [12]) of being able to handle
both global and local motion, and advantage (over [23]) of being able to handle
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both intensity scaling and reversal. We formulate the local correlation measure
as follows,

LC(I1, I2) =
∑

b

∑
a∈n(b)

(i1a − i1b
)2(i2a − i2b

)2[ ∑
a∈n(b)

(i1a − i1b
)2
∑

a∈n(b)

(i2a − i2b
)2
]

where i1 = I1(X) and i2 = I2(X + V (X)) with a representing the pixels in the
neighborhood n(b) around pixel b in the image. In the energy function E(V ),
the first term LC(I1, I2) in the energy function provides the main force for
matching two images, while

∫
Cin

[
I2(X + V (X)) − C1

]2
dX and

∫
Cout

[
I2(X +

V (X)) − C2
]2

dX terms allow the a priori segmentation to exert its influence,
aiming to enforce the homogeneity constraints.

∫
Ω | � V (X)|2dX is a diffusion

term to smooth the deformation field.

2.2 Level Set Formulation of the LC-Based Model

The energy function E(V ) can be minimized under the level set framework.
Introduce a continuous function φ : Ω → R, so C = {(X) ∈ Ω : φ(X) = 0}, and
we choose φ to be positive in Cin and negative in Cout. We adopt the model
presented in Chan et al. [2] and we have the following functional:

E(V ) =
Ω

LC(I1(X), I2(X + V (X)))dX + λ1
Ω

I2(X + V (X)) − C1
2
H(φ(X))dX

+λ2
Ω

I2(X + V (X)) − C2
2(1 − H(φ(X)))dX + λ3

Ω

| � V (X)|2dX (4)

where H is the Heaviside function. The Euler-Lagrange differential equation of
this functional is given by:

dE
dV =

d(LC)
dV

+ 2λ1(I2(X + V )− C1)� I2(X + V ) ·H(φ(X))

+2λ2(I2(X + V )− C2)� I2(X + V ) · (1−H(φ(X))) + λ3 �2 V

where

d(LC)
dV =

∑
b

2∑
a∈n(b)

(i1a − i1b
)2

[ ∑
a∈n(b)

(i1a − i1b
)2(i2a − i2b

)

∑
a∈n(b)

(i2a − i2b
)2

−

∑
a∈n(b)

(i1a − i1b
)2(i2a − i2b

)2
∑

a∈n(b)

(i2a − i2b
)

∑
a∈n(b)

(i2a − i2b
)2

]
� i2
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and

C1 =

∫
Ω I2(X + V )H(φ(X + V ))dX∫

Ω
H(φ(X + V ))dxdy

C2 =

∫
Ω

I2(X + V )(1−H(φ(X + V )))dX∫
Ω(1−H(φ(X + V )))dxdy

To estimate the deformation field between I1 and I2, we initialize the defor-
mation field as X(V ) = 0 at each pixel, and use the Euler equation as a gradient
descent process that eventually leads to the convergence of the alignment pro-
cess. The level set function being used in this paper is φ(X, 0) = D(X), where
D(X) is the signed distance from each grid point to the zero level set C. This
procedure is standard, and we refer the reader to [26] for details.

2.3 A SSD-Based Segmentation + Registration Model

For comparison purpose, we also provide the sum of squared (SSD) based
segmentation-guided model, which is to minimize the following energy,

E(V ) =
∫

Ω

[
I1(X)− I2(X + V (X))

]2
dX +

H(V ) + R(V )

where the homogeneity and regularization parts are identical to those in Eqn. (4).

3 Experimental Results

In this section, we present two sets of experiments to demonstrate the improve-
ment made by the two components of our proposed registration method: the
segmentation-guided framework and local correlation.

3.1 Registration Based on the Segmentation + Registration
Component

Three examples are used to test the segmentation + registration component. In
all cases, we will compare the results using our model with that of using the
famous Demons algorithm [6]. Here, Demons algorithm is counted as a repre-
sentative of those “registration-only” approaches. In consideration that Demons
algorithm is a SSD-based method, in order to make the comparison more mean-
ingful, our model being used for these three examples is a segmentation + regis-
tration + SSD version, as formulated in section 2.3. The goal of these examples
is to demonstrate the helpfulness of integrating segmentation information into
the registration procedure, especially in handling image noise.

The first example contains a pair of synthetically generated images, where the
fixed image was generated from the moving by a known non-rigid field. Zero-
mean Gaussian noise was then added to each image. The standard deviation is
20. Fig. 1.a and 1.b show the two images. In the following examples, we chose
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Fig. 1. Registration results for a pair of synthetic images. (a) is the fixed image and
(b) the moving image. (c) is the registration result of using the Demons algorithm, and
(d) using our segmentation guided registration model. The edge map from the fixed
image is superimposed.

fixed image

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a)

moving image

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b) (c) (d)

Fig. 2. Registration results for a pair of 2D MR images. For details, see text.

the constants λ1 = 0.1, λ2 = 0.1 and λ3 = 1, respectively. The segmentation of
the fixed image was manually obtained, as superimposed on the moving image
in Fig. 1.c. Two registration approaches: the Demons algorithm as well as our
segmentation-guided registration model are then applied. We should note that
the Demons algorithm relies on intensity alone for registration.

The results are also shown in Figure 1. Fig. 1.c is the transformed moving
image from the Demons algorithm. Fig. 1.d shows the result of our model. As
evident, the Demons algorithm had trouble in warping the moving image to a
perfect matching, which is partially due to the numerous local energy minima
resulted from the huge amount of noise existing in the images. However, the reg-
istration result generated from our model is quite accurate, which indicates that
the integrated segmentation information is very helpful in pulling the moving
image towards a correct matching.

We designed and carried out a similar experiment on a pair of MRI brain slices.
The two slices have substantial disparity in shape of the ventricles, which is the
region of interest. Figure 2 shows the images and results. Fig. 2.a and 2.b are the
fixed and moving images respectively. Fig. 2.c and 2.d depict the results from the
Demons algorithm (2.c) and our segmentation guided registration model (2.d).
As evident, the former model fails to transform the ventricle area into a desired
position, while the latter accurately achieves the registration goal.

3.2 Registrations of Our Segmentation + Registration LC Model

In this section, we demonstrate the performance of our Segmentation + Regis-
tration with LC as the similarity measure. In order to test the functionality of
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our “registration + segmentation LC”, we made a “registration-only LC” model
as the comparison, which is obtained by turning off the the segmentation in-
put (setting the weighting factor of the segmentation component to zero) in our
model.

The experiment is conducted on a pair of T1/T2 brain slices. In order to
demonstrate LC’s ability of handling multi-modality images, we set the region
of interest as the area around the ventricle, where two slices have substantial
disparity. Figure 3 shows the images and results. Fig. 3.a and 3.b are the fixed
and moving images respectively. Fig. 3.c and 3.d depict the results from the
“registration only LC” model (3.c) and the “registration + segmentation LC”
model (3.d). As evident, both models can obtain fairly accurate matching for this
clean image pair. To demonstrate the ability of the “segmentation + registration”
component in handling noisy image data, we applied a zero-mean Gaussian noise
with standard deviation of 10 onto both input images. Fig 3.(e) and 3.(f) are
the results from “registration-only” and “segmentation + registration” models,
respectively. It’s clearly shown that, the former fails to transform the ventricle
area into a desired position, while the latter accurately achieves the registration
goal.
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Fig. 3. Registration results for a pair of T1/T2 images. First row: (a) fixed image,
(b) moving image; (c) deformed moving image using the “registration only LC” model,
(d) deformed moving image using our “registration + segmentation LC” model. Second
row: same experiment with noisy image inputs; results from the “registration only”
(e) and “registration + segmentation LC” model (f).

In summary, our “segmentation + registration LC” model has the desired
property of being insensitive to intensity reversal, scaling as well as image noise,
therefore it has the great potential to be used to accurately and robustly register
medical images, especially when certain segmentation information is available.

4 Conclusions

In this paper, we present a segmentation-guided non-rigid registration algorithm,
which integrates the available prior shape information as an extra forces to lead
to a noise-tolerant registration procedure. Our model differs from other methods
in that we use a unified segmentation + registration energy minimization for-
mulation, and the optimization is carried out under level-set framework. Local
Correlation has been used as the similarity measure to handle intensity vari-
ations. We showed the improvement made with our model by comparing the



A Unified Framework for Segmentation-Assisted Image Registration 413

results with that of the Demons algorithm. To explore other similarity metrics
under the same framework to handle more complicated inputs will be the focus
of our future work.
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Abstract. Real-time estimation of a camera’s pose relative to an object
is still an open problem. The difficulty stems from the need for fast and
robust detection of known objects in the scene given their 3D models, or
a set of 2D images or both. This paper proposes a method that conducts
a statistical analysis of the appearance of model patches from all pos-
sible viewpoints in the scene and incorporates the 3D geometry during
both matching and the pose estimation processes. Thereby the appear-
ance information from the 3D model and real images are combined with
synthesized images in order to learn the variations in the multiple view
feature descriptors using PCA. Furthermore, by analyzing the computed
visibility distribution of each patch from different viewpoints, a reliabil-
ity measure for each patch is estimated. This reliability measure is used
to further constrain the classification problem. This results in a more
scalable representation reducing the effect of the complexity of the 3D
model on the run-time matching performance. Moreover, as required in
many real-time applications this approach can yield a reliability mea-
sure for the estimated pose. Experimental results show how the pose of
complex objects can be estimated efficiently from a single test image.

1 Introduction

Estimating the pose of a camera relative to an object is one of the most studied
problems in computer vision and photogrammetry. While reliable solutions have
been proposed for pose estimation given correspondences [1–4]and feature-based
3D tracking [5–7], fully automated estimation of the initial camera’s pose for
tracking is still an open problem. The difficulty stems from the need for fast and
robust detection of known objects in the scene given their 3D models, or a set
of 2D images or both. Fast and robust pose estimation has a wide variety of
applications, such as robot navigation, surveillance, and augmented reality.

Computer vision literature includes many object detection approaches [8, 9, 5,
10, 11] based on representing objects of interests by a set of local features which
are characterized by invariant descriptors for matching [12–16]. Combination
of such descriptors provide robustness against partial occlusion and cluttered

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 415–426, 2006.
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backgrounds. The descriptors are ideally invariant to viewpoint and illumina-
tion variations. Most of these methods make use of techniques for wide-baseline
stereo matching solely based on 2D images without considering any run-time
requirements. However, in many applications where real-time object detection
is required both 3D models and several training images may be available or can
be created easily during an off-line process.

This paper presents an alternative approach for fast object detection and pose
estimation by fusing both 3D and appearance models. It shows that real-time
performance can be achieved by using the underlying 3D information to limit
the number of hypothesis for the robust matching process. Especially for large
environments this renders our method very powerful. Our method differs in two
aspects from the state of the art. First, we propose a statistical analysis and
evaluation of the appearance and shape of features from all possible viewpoints
in the scene combining real and synthetic viewpoints. Second, we make use of
the known 3D geometry in both matching and pose estimation processes. We
show that by fusing both appearance and geometric information rather than
using them in separate procedures we can improve both time and functional
performance, and make our approach more scalable for large environments.

Our approach has two phases. In the training phase, a compact appearance
and geometric representation of the target object is built. This is as an off-line
process. The second phase is an on-line process where a test image is processed for
detecting the target object using the representation built in the training phase.
During training, the variations in the descriptors of each feature are learned using
principal component analysis (PCA). Furthermore, for each feature a reliability
measure is estimated by analyzing the computed visibility distribution from
different viewpoints. The problem of finding matches between sets of features
in the test image and on the object model is then formulated as a classification
problem which is constrained by using the reliability measure of each feature.

As an application, our method is intended to be used to provide robust initial-
ization for a frame rate feature-based pose estimator [6] where robustness and
time efficiency are very critical. In this case the initial pose recovery is sufficient
to be performed under one second.

2 Previous Work

A number of approaches have been proposed addressing the problem of 3D
object detection for pose estimation. Some methods use statistical classifica-
tion techniques, e.g PCA to compare the test image with a set of calibrated
training images [17]. Others are based on matching of local image features
[12, 13, 18, 19, 5, 20, 21, 22, 23, 24]. While some approaches use simple 2D features
such as corners or edges, more sophisticated approaches rely on local feature de-
scriptors which are insensitive to viewpoint and illumination changes. Usually
geometric constraints are used as verification criteria of the estimated pose. Roth-
ganger et al. [20] introduced a 3D object modeling and recognition algorithm for
affine viewing conditions. Photometrically and geometrically consistent matches
are selected in a RANSAC-based pose estimation procedure. Even though this
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Fig. 1. Overview of the proposed object detection process for real-time pose estimation

method achieves good results for 3D object detection, it is too slow for real-time
applications. Lepetit et al. [19] treat wide baseline matching of key points as
a classification problem, where each class corresponds to the set of all possible
views of each point. Once potential matches have been established they apply
a plain RANSAC method to recover the 3D pose. Recently they introduced an
approach for object pose estimation in real-time [25], where randomized trees
are used as the classification technique. Keypoint recognition relies solely on 2D
image intensity values within small windows around these keypoints.

3 Proposed Approach

Our goal is to automatically detect objects and recover their pose for arbi-
trary images (test image). The proposed object detection approach is based on
two stages: A learning stage which is done off-line and the matching stage at
run-time. The entire learning and matching processes are fully automated and
unsupervised. Sections 3.1 and 3.2 describe the learning step in more detail. In
Sections 3.3 and 3.4 we introduce the matching and pose estimation algorithms
that enforce both photometric and geometric consistency constraints.

3.1 Creating View Sets Based on Similarity Maps

In the first step of the learning stage a set of stable feature regions are selected
from the object by analyzing their detection repeatability and accuracy as well
as their visibility from different viewpoints.
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Fig. 2. (a) A subset of the environment maps surrounding the object of interest. (b)
A 2D illustration of the 3D clusters of the view sets surrounding the target object.

Images represent a subset of the sampling of the so called plenoptic function
[26]. The plenoptic function is aparameterized function for describing everything
that can be seen from all possible viewpoints in the scene. In computer graphics
terminology the plenoptic function describes the set of all possible environment
maps for a given scene. In our case, we define a complete sample of the plenoptic
function as a full spherical environment map (see Fig. 2(a)). Having a set of
calibrated images and the virtual model of the target object, the viewing space
is coarsely sampled at discrete viewpoints and a set of environment maps is
created. Since not all samplings can be covered by the limited number of train-
ing images, synthesized views are created from other viewpoints using computer
graphics rendering techniques.1 Next, affine covariant features [27] are extracted
from the environment maps. In our experiments we use a variant of Hessian- and
Harris-affine detector introduced in [15]. We also tested the scale and rotation
invariant SIFT detector [10] (see section 4). We then select ”good” feature re-
gions which are characterized by their detection repeatability and accuracy. The
basic measure of accuracy and repeatability is based on the relative amount of
overlap between the detected regions in the environment maps and the respec-
tive reference regions projected onto that environment map using the ground
truth transformation. The reference regions can be determined e.g. from the
parallel views to the corresponding feature region on the object model (model
region). This overlap error is defined as the error in the image area covered by
the respective regions [15].

For each model region a view set is the set of its appearances in the environ-
ment maps from all possible viewpoints (see Fig. 2(b)). Depending on the 3D
structure of the target object a model region may be clearly visible only from
certain viewpoints in the scene. We create for each model feature a similarity
map by comparing it with the corresponding extracted features. As a similarity
measure we use the Mahalanobis distance between the respective SIFT descrip-

1 Due to complexity of the target object and the sampling rate this can be a time
consuming procedure. However, this does not affect the computational cost of the
system at run-time since this can be done off-line.
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(a)

(b)

(c)

(h) (j)

(d) (e) (f)

(g) (i)

Fig. 3. Experiments with simulated data. (a) The virtual model of the object. (b) The
extracted features on the model. (c)-(f) Top-down view of a subset of the similarity
maps. (g)-(j) The clustered view sets using mean-shift algorithm.

tors. For each model region the respective similarity map represents its visibility
distribution. This analysis can also be used to remove the repetitive features vis-
ible from the same viewpoints in order to keep the more distinctive features for
matching. Based on the similarity maps of each model region we cluster groups
of viewpoints together using the mean-shift algorithm [28]. The clustered view-
points for a model region mj are W (mj) = {vj,k ∈ �3|0 < k ≤ Nj}, where vj,k

is a viewpoint of that region. Figure 3 shows some results of a simulated scene
including a box and two cylinders. The faces of the box are rendered with the
texture obtained from a real tea box. Figure 3(c)-(f) show top down views of
a subset of the similarity maps of four patches selected from each side of the
box. Note how the presence of an occluding object (cylinders) is reflected in the
similarity maps. The respective view sets determined by mean shift clustering
are shown in Fig. 3(g)-(j).

3.2 Learning the Statistical Representation

This section describes a method to incorporate multiple view descriptors of each
view set into our statistical model. We use the PCA-SIFT descriptor [29] for
a more compact representation (e.g. first 32 components). To minimize the
impact of variations of illumination, especially between the real and synthe-
sized images, the descriptor vectors are normalized to unit magnitude. The
image gradient vectors gi,j are projected into the feature space to a feature
vector ei,j .

We suppose that the distribution of the gradient vectors is Gaussian for the
carefully selected features as described in the previous section. For each region
we take k samples from the respective environment maps so that the distribution
of their feature vectors ei,j for 0 < j ≤ K in the feature space is Gaussian. To
ensure the Gaussian distribution of the gradient vectors for each view set we
apply the χ2 test for a maximal number of samples. If the χ2 test fails after a
certain number of samplings for a region, the region will be considered as not
reliable enough and will be excluded. For each input view set Vi we then learn
the covariance matrix Σi and the mean μi of the distribution.
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3.3 Matching as a Classification Problem

Matching is the task to find groups of corresponding pairs between the regions
extracted from the model and test image, that are consistent with both appear-
ance and geometric constraints. The matching problem can be formulated as
a classification problem [19]. Our goal is to construct a classifier so that the
misclassification rate is low. From the test image, the features are extracted
in the same manner as in the learning stage and their gradient image vectors
are computed. The descriptors are then projected into feature space using PCA
(bold dots in Fig. 1). We use the Bayesian classifier to decide whether a test
descriptor belongs to a view set class or not. Let C = {C1, ..., CN} be the set
of all classes representing the view sets and let F denote the set of 2D-features
F = {f1, ..., fK} extracted from the test image. Using the Bayesian rule the a
posteriori probability P (Ci|fj) for a test feature fj that it belongs to the class
Ci is calculated as

P (Ci|fj) =
p(fj |Ci)P (Ci)∑N

k=1 p(fj |Ck)P (Ck)
. (1)

We compute for each test descriptor the a posteriori probability of all classes
and select candidate matches using thresholding. Let m(fj) be the respective set
of most probable potential matches m(fj) = {Ci|P (Ci|fj) ≥ T }. The purpose
of this threshold is only to accelerate the run-time matching and not to consider
matching candidates with low probability. However this threshold is not crucial
for the results of pose estimation.

3.4 Pose Estimation Using Geometric Inference

This section describes a method using geometric consistency to constrain the
search space for finding candidate matches. For the pose estimation a set of
N ≥ 3 matches are required. In an iterative manner we choose the first match
f ′
1 ↔ C′

1 as the pair of correspondences with the highest confidence:

argmax fk ∈ F
Cl ∈ C

P (Cl|fk).

We define VCl
as the set of all classes of regions which should also be visible

from the viewpoints where Cl is visible

VCl
= {Ck ∈ C||Wk ∩Wl| 
= 0},

where Wj is the set of 3D-coordinates of the clustered viewpoints {vj,k|0 < k ≤
Nj} for which the respective model region is visible (see building environment
maps, Section 3.1).

Assuming the first candidate match is correct, the second match f ′
2 ↔ C′

2
is chosen only from the respective set of visible regions. Therefore after each
match selection the search area is constrained to visibility of those regions based



Fusion of 3D and Appearance Models 421

on previous patches. In general the kth candidate match f ′
k ↔ C′

k, 1 < k ≤ N is
selected in a deterministic manner

(f ′
k, C

′
k) = argmax fk ∈ F\{f1, ..., fk−1}

Ck ∈ k−1
l=1 VC′

l

P (Ck|fk).

The termination criteria is defined based on the back-projected overlap error
(see Section 3.1) in the test image. This algorithm can be implemented in dif-
ferent ways. One way is a recursive implementation with an interpretation tree
where the nodes are visited in the depth-first manner. The depth is the number
of required matches N for the pose estimation method. This algorithm has a
lower complexity as the results will show, than the plain version of RANSAC or
the ”exhaustive” version where all pairs of candidate matches are examined.

4 Experimental Results

The proposed method has been tested in a series of experiments using virtual and
real objects. Due to the space limitations we only present a subset of the results
using real objects. The off-line learning process uses ImageModeler from RealViz
[30] to obtain a 3D model.2 Our experimental setup consists of a target object
and a commonly available FireWire camera (Fire-I). The camera is internally
calibrated and lens distortions are corrected using the Tsai’s algorithm [31].

We conducted a set of experiments to analyze the functional and the timing
performance of our approach. The results were compared against a conventional
approach based solely on 2D key frames. Our approach requires an input consist-
ing of a set of images (or key frames) of the target object. One target object is
shown in Fig. 4(a). The key frames were calibrated. We used a calibration object
(a known set of markers) for automatically calibrating the views. These markers
were used to compute the ground truth for evaluating the matching results on
test frames as well.

In the first experiment, we analyzed the functional performance against view
point variations for the same scene but under uncontrolled lighting. The images
were taken by a moving camera around the object. For the sake of clarity of
presentation, we show a subset of 19 test images from this sequence with addi-
tional two images as key frames (see Fig. 4(a)-(b),(d)). All those images were
calibrated as explained above. Fig. 4(d) shows some metrics we used to compare
these results. One measure of performance is the final size of the representation
(number of features in the database) used for both methods indicated by the two
straight lines. With increasing number of key frames the size of the database in
the conventional case would increase linearly with the number of key frames. In
contrast, our method keeps fewer features in the 2D-3D database after careful
implicit analysis of their planarity, visibility and detection repeatability. The
database size in our method is proportional to the scene complexity not the
2 The accuracy requirements depend on the underlying pose estimation algorithms,

the object size and the imaging device.
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Fig. 4. Experiments with real data. (a)-(b) The calibrated key frames. (c) The set of
most visible patches extracted on the model based on the statistical analysis using the
similarity maps. (d) Metrics used to compare the results (see text).
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Fig. 5. Experiments with real data. (a)-(b) Performance evaluation (see text). (c) Vi-
sualization of the pose estimation results.

(a) (b) (c) (d)

Fig. 6. Experiment 1: Control Box. Pose estimation results on test images.

number of available key frames. This is an important property for the scalabil-
ity of the system for more complex objects. Fig. 4(d) also shows the number of
extracted features and the number of correct matches found by both methods
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Fig. 7. Experiment 2: Blair Tower. Pose estimation results on test images.

for each of the 19 test images. It should be noted that, near the two key frames
our method obtains less correct matches compared to the conventional method.
This is due to the fact that our representation generalizes the extracted features
whereas the conventional methods keeps them as they are. The generalization
has the cost of missing some of the features in the images closer to the key
frames. On the other hand, the generalization helps to correctly match more
features in disparate test views.

Complexity and performance of robust pose estimation methods like
RANSAC are dependent not on the number of correct matches but the ratio
between correct and false matches. Fig. 5(a) shows the percentage of correct
matches vs the viewing angle for the proposed method and the conventional
approach. Although near the key frames our method obtains fewer matches, it
has a higher percentage of correct positives. As a result of this and the visibil-
ity constraints used our method needs only a few RANSAC iterations for pose
estimation. This brings us to the timing performance of the matching methods.
We use a more complex matching method than the conventional one. Therefore,
each individual match costs more. However, with increasing complexity of the
target object with respect to self-occlusions our representation becomes more
efficient. Fig. 5(b) shows the respective maximal number of iterations needed
(logarithmic scale) for RANSAC based pose estimation with a confidence prob-
ability of 95%. Fig. 5(c) shows a visualization of the pose estimation results. We
obtain up to five folds speed-up compared to the exhaustive RANSAC method.
Our non-optimized implementation needs about 0.3 to 0.6 second compared to
2.5 seconds for the conventional approach. In Fig. 6 (a)-(d) more results are
shown for experiments using test images with occlusions, cluttered background

(c) (e)(d)(a) (b)

Fig. 8. Experiment 3: Char Minar. (a) 3D model. (b)-(d) Pose estimation results on
test images, and with virtual objects (e).
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Fig. 9. Performance evaluation: ROC plot

and illumination changes. The detection results are quite robust and the esti-
mated pose is accurate enough to initialize our real-time 3D tracker [6]. Fig. 8
and 7 show the results of two other experiments in outdoor environments. We
used each time two images to build a coarse 3D model and applied our method
to several test images.

The performance of the matching part of our system was evaluated by pro-
cessing all pairs of object model and test images, and counting the number of
established matches. Fig. 9 shows the ROC curve that depicts the detection
rate vs false-positive rate, while varying the detection threshold T . Compared
to the keyframe-based approach the proposed approach performs very well and
achieves 97% detection with 5% false-positives.

5 Conclusions

This paper addressed the problem of real-time object detection for pose estima-
tion. The major contribution of this paper is the integration of the known 3D
geometry of the target model during both matching and pose estimation steps.
This is achieved by a statistical analysis of the appearances distribution of model
patches in the viewing space. Instead of the local planarity assumption used in
previous approaches, our proposed method is able to learn the visibility distribu-
tion of the variations in the local descriptors considering their known geometry.

Acknowledgments. We would like to thank D. Lowe for providing his implemen-
tation of the SIFT Keypoint Detector. We also would like to thank G. Klinker, Y.
Tsin and V. Ramesh for helpful discussions during the course of this work.
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Abstract. In this paper, we present an efficient algorithm for reconstructing 3D 
head model from a single 2D image based on using a 3D eigenhead model.  
This system is composed of two components, offline training of the eigenhead 
model and online reconstruction of a 3D head model. For the first part, we  
propose a new 3D head alignment algorithm based on an iterative coarse-to-fine 
scheme to establish dense point correspondences between 3D head model in  
the cylindrical coordinate to align the 3D head models in the training data  
set. In addition, we apply the radial basis function technique to establish dense 
correspondences between each 3D face model and a reference face model,  
followed by the principal component analysis technique to compute the statisti-
cal eigenhead model. For the 3D face reconstruction from a single image,  
the proposed algorithm finds the best linear combination of the eigenhead  
bases that minimizes an energy function composed of distances between the 
corresponding facial feature points and a one-way partial Haussdorf distance 
between the facial contours in the image domain. This energy minimization is 
accomplished by the iterative Levenberg-Marquardt algorithm with the initial 
guess determined by solving a linear system derived from the image projection 
constraints for the corresponding facial feature points. Experimental results 
show that the proposed 3D face reconstruction algorithm provides satisfactory 
results and takes less than 10 seconds on a regular PC. 

1   Introduction 

Model-based statistical techniques have been widely used in various fields in com-
puter vision. For example, Turk and Pentland [1] proposed the eigen-face technique to 
recognize faces from images by projecting face images onto a PCA subspace. This 
PCA technique extracts features that are critical for face recognition. Later, Cootes 
and Taylor [2] presented a statistical shape modeling technique to describe 2D shape 
of an object by an Active Shape Model (ASM). In addition, Blanz and Vetter [3] 
developed a morphable model for modeling textured 3D faces, which is accomplished 
by transforming the shape and texture into a vector space representation. They used 
this morphable model to reconstruct 3D face model from a single image. More  
recently, this 3D morphable model was also applied to achieve high-accuracy face 
recognition with pose variations and a wide range of illumination changes. 
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In most statistical techniques, one of the most crucial aspects is to represent object 
shapes by a set of landmark points. The statistical principal component analysis of a 
training dataset of landmark points leads to a Point Distribution Model (PDM) [4]. To 
correctly construct the PDM, the landmark points need to be properly aligned and the 
correspondences of landmark points need to be established properly. Many ap-
proaches have been proposed to register the landmark points. Some methods [3, 5, 6] 
resolved the 3D point correspondence problem by applying 2D registration techniques 
on a 2D projected space. Since the human head shape is close to a 3D ellipsoid, the 
3D face data sets can be easily mapped to a cylindrical coordinate. Therefore, the 
correspondences between 3D point data sets can be established by minimizing the 
distances between point data sets or by optical flow computation on texture intensity. 
In this paper, we proposed a more accurate method to find correspondences between 
3D head models by transforming the data sets onto a cylindrical coordinate. The pro-
posed method is primarily based on modifying the method proposed in [5] to achieve 
higher accuracy in finding correspondences of 3D face data points. 

Most of previous 3D face reconstruction techniques require more than one image 
to achieve satisfactory 3D human face modeling. Although there are several different 
approaches for 3D reconstruction from a single image, such as shape from focus and 
shape from texture, these approaches are not well suited for 3D face reconstruction 
due to very limited texture information in the human face images. Another approach 
for 3D face reconstruction from a single image is to simplify the problem by using a 
prior statistical head model. For example, Atick et al. [11] combined the shape from 
shading constraint with the prior eigenhead model to reconstruct a 3D face model by 
minimizing the corresponding energy function. Recently, Blanz and Vetter [3] pro-
posed an algorithm for 3D face model reconstruction by minimizing an energy func-
tion of discrepancies between the face image and the corresponding image rendered 
from a morphable 3D head model under a suitable illumination condition. However, 
these two methods are quite computationally expensive since not only the 3D head 
model but also the illumination conditions are involved in the minimization. In addi-
tion, they require a good initial guess to converge to a satisfactory solution. 

In this paper, we propose a novel 3D head model reconstruction algorithm based 
on a prior 3D eigenhead model learned from a set of 3D face models. In contrast to 
the aforementioned previous methods based on a prior statistical 3D head model, the 
proposed algorithm employs the geometric constraints derived from the distance be-
tween the corresponding facial feature points in the image projection space as well as 
the Hausdorff distance between the facial silhouettes computed from the face image 
and the projection of the estimated 3D head model. Our algorithm based on geometric 
constraints is much more computationally efficient since the energy function to be 
minimized is independent of the illumination condition. 

2   PDM Construction 

The PDM provides the prior knowledge of 3D human face models. The training 3D 
face models are collected from two sources.  The first part contains 69 face models 
acquired from a 3D laser scanner. There are 65 males and 4 females with ages be-
tween 22 and 25. In the second part of the 3D data set, we used 55 face models, which 
contain 43 male and 12 female of ages between 18 and 40, provided by GAVAB [11]. 
The flow chart is shown in Figure 1. 
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Fig. 1. Flow diagram of the PDM construction. (CCT: Cylindrical Coordinate Transformation). 

2.1   Iterative Alignment  

In order to estimate correspondences between 3D face models, we need to first align 
the faces to a reference face model. The iterative closest point (ICP) method has been 
used to determine the pose parameters for aligning 3D models. However, this ap-
proach normally requires a good initial solution to converge to the global optimal 
solution. The other approach [5] aligns 3D head models from a small set of corre-
sponding 3D facial feature points which are selected manually. For this approach, the 
manual selection errors will be propagated into the estimation of alignment parame-
ters, and it does not account for the alignment of the whole 3D face data points. 

To obtain dense 3D face data correspondences, we use a complete head model to 
be the reference model as shown in Figure 2(a). Then, we manually select 16 land-
mark points on each 3D face model as depicted in Figure 2(b). From the correspon-
dences of these 16 landmark points, we can determine an initial estimate of the scale, 
rotation and translation parameters by minimizing the following energy function, 
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where xi means i-th feature point in a face data set, xi
r denotes the feature points in the 

reference 3D face model, and n is the number of feature points. Thus, the initial 3D 
alignment is obtained by minimizes the above energy function [8]. 

After the initial alignment of 3D face models, we find more point correspondences 
automatically to refine the 3D alignment. Instead of choosing the closest points be-
tween 3D head models for point correspondence, we do it by transforming the 3D 
head models into a cylindrical coordinate by equation (2) as depicted in Figure 3. 

  
(a) (b) 

Fig. 2. The generic 3D head model and the corresponding feature points. (a) Generic head 
model in two views and (b) the 16 facial landmark points used in the system. 
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Fig. 3. Cylindrical coordinate transformation (CCT): the 3D face model is transformed to a 2D 
cylindrical coordinate space 
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Then the corresponding pairs can be determined easily. We first discretize the cylin-
drical coordinate space ( , h) with a regular grid. Then we find the correspondence 
for each point of the reference face model from interpolation of the sample head 
model at the same ( , h) coordinate in the cylindrical space. Thus, dense correspon-
dence between the 3D face models can be established to refine the 3D model align-
ment. The proposed alignment algorithm iteratively refines the 3D alignment. 

2.2   Refined Correspondence Via RBF Transformation  

After the above iterative 3D alignment, each face model is aligned to a reference face 
model but we do not simply use the correspondence pairs as the statistical training 
data sets, because 3D rigid transformation used in the above 3D face model alignment 
cannot provide satisfactory matching of facial feature points. Therefore, we apply the 
Radial Basis Function approximation [7] to determine an elastic transformation that 
interpolates the pairs of correspondence landmark points. We warp each 3D face 
model to the reference face model by RBF based on the landmark points. Therefore, 
the feature points between models will be matched exactly and the transformed loca-
tions of all the vertices are computed in the Euclidean space, then they are mapped to 
the cylindrical space to find the corresponding points in the other face model. Then 
we can apply the PCA to find the major eigen-modes of variations in the 125 training 
data set. Some examples are depicted in Figure 4. 
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Fig. 4. Examples of the linear combinations of 3D head eigen-modes 
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3   3D Face Reconstructions 

In this section, we present an algorithm for reconstructing the 3D head model from a 
single face image by using the eigenhead model, which is learned from a set of 
scanned 3D head data. The proposed algorithm consists of two stages; namely, initial 
3D face estimation from 2D facial feature correspondences and refined face model 
reconstruction combining facial feature and contour matching, both using the 3D 
eigenhead model. The flow chart is shown in Figure 5.  

 

Fig. 5. Flow diagram of 3D face reconstruction. We apply LM algorithm to optimize the final 
results by considering both feature points and contour information simultaneously. 

3.1   Initialize 3D Face from 2D Feature Information  

In this work, we focused on the 3D reconstruction from a near-frontal human face 
image. We assume that the 16 facial feature points have been extracted. These feature 
points include four corners of eyebrows, four corners of eyes, tip and two sides of 
nose, corners of mouth, top of upper lip, bottom of lower lip shown as Figure 2(b). 

To initialize a 3D face model, we first estimate the pose of human head by 16 feature 
points, and the pose information can be obtained by minimizing the energy function: 
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where ui is the i-th feature point on a 2D image, and xi denotes the i-th feature point on 
the mean face. The scale s, rotation matrix R and translation vector t can be estimated 
by minimizing the total re-projection errors with LM algorithm. We restrict the rotation 
angle within 5 degrees since we are mainly interested in the frontal face image. 

Let a 3D face model M be represented by a mean head model and a linear combi-
nation of eigenhead basis vectors (v1, v2, v3, …, vn) as follows: 
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where …  are the weights associated with the eigenhead basis vectors. 
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To obtain an initial face model from the 2D-3D correspondences of the 16 facial 
feature points, we can formulate this model estimation problem as the linear  
system: 
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where R is the concatenation of the estimated rotation matrix, s is the scale, vi,j de-
notes the i-th element of j-th eigenhead basis vector, n is the total number of eigen-
modes used in the face reconstruction, and ui is the i-th 2D feature point coordinate. 
We can simply solve the above linear system to obtain the weights of the eigen-head 
basis vectors, thus an initial 3D head model is determined. 

3.2   Detail Refinement of 3D Face Model  

In this refinement step, we apply the initial 3D face model and combine the feature 
points and contour information to reconstruct a 3D human face model by using LM 
optimization. One of the most reliable information for 3D face reconstruction from a 
single image is the 2D face contour. Based on the 16 feature points, we simply apply 
a spline-based contour extraction method to detect the face contour in a face image by 
fitting a contour with local maximal image gradients. In addition, we also proposed a 
3D face contour extraction algorithm given as follows: 

 

After the extraction of the projected contour of 3D face model, the problem of how to 
define the distance between the re-projected contour and the extracted 2D image con-
tour is critical. Here we apply a modified Hausdorff distance to measure the distance 
between two face contours, which is called partially one-way Hausdorff distance: 

baKBAH
BbAa

th −=
∈∈

min),(  (6) 

where the K-th largest value of the minimum distance from the location of point set A 
to point set B is used as the distance between the two point sets. We use a fractional 

value f to determine an appropriate value K to be AKf
Aa

th

∈
= . Note that f = 0.9 to 

prevent some outlier effect. The idea of is depicted in Figure 6. 

1. Estimate the normal direction of each vertex by computing the smoothed normal direc-
tion in the 3D face surface. 

2. The vertices with normal direction orthogonal to the viewing direction are selected as 
the contour candidates. 

3. Split the space of all contour candidates into several bins, and choose one from each bin 
with the maximum z value as the 3D contour control point. 

4. Compute a spline from these control points as the final 3D contour and project the dense 
points on the spline curve to 2D image. 
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Fig. 6. Partially One-Way Hausdorff Distance: Sparse point set A contains sparse points on a 
2D contour, and Dense point set B contains 2D re-projected contour points from a 3D model 

Because the detected 3D face contour is a set of dense points, we only compute the 
Hausdorff Distance in the way from 2D image contour to the re-projected contour as 
depicted in Figure 6. This distance becomes an additional error term: 

),()(
16

1
pjI

i

ii CCHtxsRuE ++−=
=

 (7) 

To be more specific, the 3D face model reconstruction problem is resolved by mini-
mizing the following energy function: 
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1 1
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n
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j
ijjii +++−=

= =

α  (8) 

where CI is the contour point set extracted from a 2D face image, and Cpj means the 
re-projected contour point sets computed from the reconstructed 3D face model M. 
We take both the matching of facial feature points and facial contours into account 
simultaneously, and minimize the total error by using the LM algorithm [9]. 

4   Experimental Results 

We implemented the proposed system in C++ language and all experiments are con-
ducted on a PC with Intel Pentium  2.8GHz CPU with 504MB RAM. To evaluate 
the accuracy of the 3D face reconstruction, we define the following error measures.  

 
D

vE3  : Average Euclidean distance of all vertices between original 3D face model and 
reconstructed 3D face model. The 3D model is fit into a cube with edge 360 in 3D. 

D
fE 2

 
: The average error between image and re-projected 2D feature points in frontal view. 

D
cE 2  : Partially one-way Hausdorff Distance of 2D contour error with f = 0.9. 

4.1   Simulation Experiments  

We took 4 different 3D face models which are not included in the training set to test 
the accuracy of reconstructed face models. The test 3D sample models are labeled 
with 16 feature points in 3D space. We re-project them to 2D images at the frontal 
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view as the input testing images, and reconstruct the 3D face models from the simu-
lated 2D input images of size 300-by-300 pixels, and 3D models are fit into a cube 
with edge 360 in 3D. The reconstructed 3D faces are shown in Figure 7. Table 1 gives 
the average errors in 2D and 3D space, and the error are actually relatively small 
enough. 

 
(a) Real 3D face models 

 
(b) Reconstructed 3D face models 

Fig. 7. The real testing 3D faces and the reconstructed faces displayed at a near-profile view 

 
 

Table 1. Reconstruction results on the simulation images 

 
 

4.2   Real Images Experiments  

We tested the proposed 3D face reconstruction algorithm on the face images in the 
CMU-PIE database [10]. All the individuals in the experiments are not included in the 
set of training 3D face models for constructing the statistical 3D face model.We se-
lected some frontal face images in the CMU-PIE database to be the testing images 
 

 

Fig. 8. The reconstruction process: the upper is real and the lower is the reconstructed profile 
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and the corresponding profile face images are used to perceptually compare the dif-
ference between the real face images and the face images rendered from the recon-
structed 3D face models as shown in Figure 8 and 9. The re-projection image errors 
on the reconstructed 3D head models from real images are reported in Table 2. The 
error ratio to the size of image is relatively small enough and shows the accuracy of 
our system. The reconstruction time also demonstrate the efficiency of our algorithm. 
 

 
 Image #1 Image #2 Image #3 Image #4 

Real image 
(frontal) 

    

Real image 
(profile) 

    

Reconstructed Model 
(profile) 

    

Fig. 9. The comparison of 4 3D face reconstructions 

Table 2. Reconstruction results on real images 

 
Reconstruction time

(sec) 

D
fE 2 (pixels) 

Max / Min / Avg 

D
cE 2  

(pixels) 
Image #1 8.938 4.5735 0.0339 1.6358 7.6112 
Image #2 4.000 4.7782 0.2159 1.8875 11.9887 
Image #3 5.905 3.2558 0.2208 1.3528 11.2673 
Image #4 6.656 3.7601 0.2654 1.6751 6.3515 

Ratio 
(error/Image size)  

0.0108
| 

0.0159

0.0001
| 

0.0008

0.0042 
| 

0.0062 

0.0211 
| 

0.0399 

5   Conclusions 

In this paper, we developed a novel efficient 3D eigenhead-based system to recon-
struct a detailed 3D face model from a single 2D face image. An improved 3D face 
data alignment process was proposed to achieve accurate 3D eigenhead learning. An 
efficient eigenhead-based 3D reconstruction algorithm was proposed to estimate the 
3D face model by combining the statistical and geometrical face information and 
experimental results on simulated and real images not only show the accuracy of the 
reconstruction process but also demonstrate its computational efficiency. 
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Abstract. In this paper, we analyze multiple view geometry under pro-
jections from 4D space to 3D space and show that it can represent multi-
ple view geometry under the projection of space with time. In particular,
we show that multifocal tensors defined under space-time projections can
be computed from non-rigid object motions viewed from multiple cam-
eras with arbitrary translational motions. We also show that they are
very useful for generating images of non-rigid object motions viewed
from cameras which have arbitrary translational motions. The method
is implemented and tested in real and synthetic images.

1 Introduction

The multiple view geometry is very important for describing the relationship be-
tween images taken from multiple cameras and for recovering 3D geometry from
images[1, 7]. In the traditional multiple view geometry, the projection from the
3D space to 2D images has been assumed [4]. As a result, the traditional mul-
tiple view geometry is limited for describing the case, where enough number of
corresponding points are visible from a static configuration of multiple cameras.
Recently, some efforts for extending the multiple view geometry for more gen-
eral point-camera configurations have been made[8, 12]. Wolf et al. [10] studied
the multiple view geometry on the projections from N dimensional space to 2D
images and showed that it can be used for describing the relationship of multiple
views obtained from moving cameras and moving points with constant speed.
Unfortunately, the work is limited for the 3D points which move on straight lines
with constant speed. Thus the motions of objects are limited.

In this paper we analyze the multiple view geometry under the projection
from 4D space to 3D space and show that it can represent multiple view ge-
ometry in the case where non-rigid arbitrary motions are viewed from multiple
translational cameras. We first analyze affine projections from 4D space to 3D
space, and show that we have multilinear relationships for up to 5 views un-
like the traditional multilinear relationships. The three view geometry is studied
extensively and new trilinear relationship under the projection from 4D space
to 3D space is presented. We next show that the newly defined multiple view
geometry can be used for describing the relationship between images taken from
non-rigid motions viewed from multiple translational cameras. We also show that

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 437–446, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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it is very useful for generating images of non-rigid object motions viewed from
arbitrary translational cameras.

2 Affine Projections from 4D Space to 3D Space

We first consider affine projections from 4D space to 3D space. This projection
is very important for describing the relationship between the real space-time
and the image space-time, and for analyzing the multiple view geometry under
space-time projections.

Suppose we have a point in the 4D space, whose homogeneous coordinates
are represented by W = [W 1, W 2, W 3, W 4, W 5]�. Let W be projected to a
point in the 3D space, whose homogeneous coordinates are represented by w =
[w1, w2, w3, w4]�. Then, the extended affine projection from W to w can be
described as follows:

w ∼ PW (1)

where (∼) denotes equality up to a scale, and P denotes the following 4 × 5
matrix:

P =

⎡⎢⎢⎣
m11 m12 m13 m14 m15
m21 m22 m23 m24 m25
m31 m32 m33 m34 m35
0 0 0 0 1

⎤⎥⎥⎦ (2)

From (1), we find that the extended affine camera, P, has 15 DOF. In the next
section, we consider the multiple view geometry of the extended affine cameras.

3 Affine Multiple View Geometry Under Projections
from 4D Space to 3D Space

If we have N extended affine cameras, the geometric DOF of these N cameras is
15N − 20, since each extended affine camera has 15 DOF and these N cameras
are in a single 4D affine space whose DOF is 20. This means two view geometry
has 10 DOF, three view geometry has 25 DOF, four view geometry has 40
DOF, and five view geometry has 55 DOF under the extended affine cameras.
Unlike the standard multiple view geometry in the 3D space, we have multilinear
relationships up to five views for the 4D space, as we will see later.

From (1), we have the following equation for N cameras:⎡⎢⎢⎢⎣
P w 0 0 · · · 0
P′ 0 w′ 0 · · · 0
P′′ 0 0 w′′ · · · 0
...

...

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
W
λ
λ′

λ′′
...

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0
0
0
...

⎤⎥⎥⎥⎦ (3)

The left most matrix, M, in (3) is (4N) × (5 + N), and the determinants of a
(5+N)×(5+N) sub square matrices, Q, of M constitute multilinear relationships
under the extended affine projection as follows:
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detQ = 0 (4)

We can choose any 5 + N rows from M to constitute Q, but we have to take
at least 2 rows from each camera for deriving meaningful N view relationships
(note, each camera has 4 rows in M). Thus, the following condition must hold
for defining multilinear relationships for N view geometry in the 4D space:

5 + N ≥ 2N (5)

Thus, we find that, unlike the traditional multiple view geometry, the multilinear
relationship for 5 views is the maximal linear relationship in the 4D space.

We next consider the minimum number of points required for computing
the multifocal tensors. Let us consider M points in the 4D space, and let these
points be projected to N affine cameras defined in (1). Then, we have 3MN
measurements from images, while we have to compute 15N−20+4M components
for fixing all the geometry in the 4D space. Thus, the following condition must
hold for computing the multifocal tensors from images:

3MN ≥ 15N − 20 + 4M (6)

From (6), we find that 5 points are enough for computing multifocal tensors in
two, three, four and five views.

3.1 Three View Geometry

We next consider the multiple view geometry of three extended affine cameras.
For three views, the sub square matrix Q is 8× 8. From detQ = 0, we have the
following trilinear relationship under extended camera projections:

wiw′jw′′kεjlmnεkrstT lr
i = 0mnst (7)

where, each index takes 1, 2, 3 and 4, unlike the standard trilinear relationship.
εijkl denotes a tensor, which takes 1 if the permutation from {i,j,k,l} to {1,2,3,4}
is even permutation, and takes −1 if it is odd permutation. T lr

i is the trifocal
tensor for the extended cameras and has the following form:

T lr
i = εiabc det

⎡⎢⎢⎢⎢⎣
aa

ab

ac

bl

cr

⎤⎥⎥⎥⎥⎦ (8)

where, ai denotes the ith row of P, bi denotes the ith row of P′ and ci denotes
the ith row of P′′ respectively. The trifocal tensor T lr

i is 4 × 4 × 4 and has 64
components. If the extended cameras are affine as shown in (1), then 22 of them
are equal to 0, and thus we have only 41 free parameters in T lr

i except a scale
ambiguity. On the other hand, (7) provides us 4×4×4×4 = 256 linear equations
on T lr

i , but only 9 of them are linearly independent. Thus, 5 corresponding points
are enough for computing T lr

i from images linearly. This agrees with the result
of the analysis in section 3.
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3.2 Two View, Four View and Five View Geometry

Similarly, the two view, four view and the five view geometry can also be derived
for the extended affine cameras. However, they are practically not so significant,
and thus we do not study them in this paper.

4 Multiple View Geometry for Multiple Moving Cameras

Let us consider a single point moving in the 3D space. If the multiple cameras are
stationary, we can compute the traditional multifocal tensors[4] from the image
motion of this point, and they can be used for constraining image points in
arbitrary views and for reconstructing 3D points from images. However, if these
cameras are moving independently, the traditional multifocal tensors cannot
be computed from the image motion of a single point. Nonetheless, we in this
section show that if the camera motions are translational as shown in Fig. 1,
the multiple view geometry under extended affine projections can be computed
from the image motion of a single point, and they can be used for, for example,
generating image motions viewed from arbitrary translational cameras.

We first show that the extended affine cameras shown in (1) can be used for
describing non-rigid object motions viewed from stationary multiple cameras.
We next show that this camera model can also be used for describing non-
rigid object motions viewed from multiple cameras with translational motions
of constant speed.

The motions of a point, X̃ = [X, Y, Z]�, in the real space can be considered
as a set of points, W̃ = [X, Y, Z, T ]�, in a 4D space-time where T denotes time
and (˜) denotes inhomogeneous coordinates. The motions in the real space are
projected to images, and can be observed as a set of points, w̃ = [x, y, t]�, in a
3D space-time on image motions. Since in general sampling period is different

C1 C3

C2

of point motion
trajectory

camera

camera
motion

camera
motion

motion

X(T)

X(T+2)

X(T+1)

Fig. 1. A moving 3D point and its projections in three translational affine cameras. The
multifocal tensor defined under space-time projections can describe the relationship
between these image projections.
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in each camera, the time t in the image sequence is considered as the affine
transformation of original time T . That is t = aT + b, where a and b are scalars.
Thus, if we assume affine projections in the space axes, the space-time projections
can be described by the extended affine cameras shown in (1). For the space-time
projections, m31, m32 and m33 in (1) are always 0, since t is irrelevant to X , Y
and Z. If the camera is stationary, m14 and m24 are also 0. Thus, the projections
of non-rigid motions to multiple stationary affine cameras can be described by
(1), and thus the multiple view geometry described in section 3 can be applied
to this case.

We next show that the multiple view geometry described in section 3can also be
applied for multiple moving cameras. Let us consider a usual affine camera which
projects points in 3D space to 2D images. If the translational motions of the affine
camera are constant, non-rigid motions are projected to images as follows:

[
x(t)
y(t)

]
=
[
a11 a12 a13 a14
a21 a22 a23 a24

]⎡⎢⎢⎣
X(T )− TΔX
Y (T )− TΔY
Z(T )− TΔZ

1

⎤⎥⎥⎦ (9)

=
[
a11 a12 a13 −a11ΔX − a12ΔY − a13ΔZ a14
a21 a22 a23 −a21ΔX − a22ΔY − a23ΔZ a24

]⎡⎢⎢⎢⎢⎣
X(T )
Y (T )
Z(T )

T
1

⎤⎥⎥⎥⎥⎦ (10)

where, x(t) and y(t) denote image coordinates at time t, X(T ), Y (T ) and Z(T )
denote coordinates of a 3D point at time T , and ΔX , ΔY and ΔZ denote camera
motions in X , Y and Z axes.

Since the translational motion is constant in each camera, ΔX , ΔY and
ΔZ are fixed in each camera. Then, we find, from (10), that the projections of
non-rigid motions to multiple cameras with translational motions can also be
described by the extended affine cameras shown in (1). Thus the multiple view
geometry described in section 3 can also be applied to multiple affine cameras
with constant translational motions.

Note, if we have enough number of moving points in the scene, we can com-
pute the traditional multiple view geometry on the multiple moving cameras at
each instant. However, if we do not have enough number of moving points in the
scene, e.g. if we have just 1 moving point in the scene, we cannot compute the
traditional multiple view geometry for multiple moving cameras.

5 Experiments

We next show the results of some experiments. We first show that the trifocal
tensor for extended affine cameras can be computed from image motions viewed
from arbitrary translational cameras, and can be used for generating the third
view from the first and the second views of moving cameras. We next evaluate
the stability of extracted trifocal tensors for extended affine cameras. We finally
show the results from real images taken from moving cameras.
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5.1 Synthetic Image Experiment

In this section, we show by using synthetic images that the trifocal tensors for
extended affine cameras can be computed from multiple moving cameras and
can be used for recovering the image motions viewed from arbitrary translational
cameras.

Fig. 2 shows a 3D configuration of 3 moving cameras and a moving point.
The red points show the viewpoints of three cameras, C1, C2 and C3, before
translational motions, and the blue points show their viewpoints after the trans-
lational motions. The translational motions of these three cameras are different
and are unknown. The black curve shows a locus of a moving point, X. Fig. 3 (a),
(b) and (c) show image motions of X viewed from C1, C2 and C3 respectively.
Note, the original locus of X is closed in the 3D space as shown in Fig.2, but its
loci in images are not closed as shown in Fig.3. This is because the cameras are
translating while the 3D point is moving. We added Gaussian image noises with
the standard deviation of 1 pixel to all the points on the loci in images.

The green points in Fig.3 (a), (b) and (c) are used for computing an extended
trifocal tensor on these three moving cameras. The extended trifocal tensor is
used for recovering an image motion in C3 from image motions in C1 and C2.
Fig. 3 (d) shows the image motion recovered from Fig. 3 (a) and (b) by using
the extracted trifocal tensor. From Fig. 3 (d) and Fig. 3 (c), we find that the
recovered image motion is very accurate and stable.

Fig. 2. Three translating cameras and a moving point in the 3D space. The red points
show the viewpoints of three cameras before translational motions, and the blue points
show those after the translational motions.

5.2 Stability Evaluation

We next show the stability of extracted trifocal tensors under space-time pro-
jections. For evaluating the extracted trifocal tensors, we computed reprojection
errors derived from the trifocal tensors. In normal cameras, the reprojection er-
rors are computed in 2D images. However, since our cameras are extended to
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Fig. 3. Image motions in three translating cameras, C1, C2 and C3, and a recovered
image motion. The five green points in (a), (b) and (c) are used for computing ex-
tended trifocal tensors under space-time projections. (d) shows an image motion in C3

recovered from the image motions in C1 and C2 by using the estimated trifocal tensor.
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Fig. 4. The stability of recovered loci in the 3D space-time and the reprojection errors.
The ellipsoids in (a) show uncertainty bounds of recovered points on the space-time
loci. (b) shows the relationship between the number of corresponding points used for
computing trifocal tensors and the reprojection errors. The corresponding points are
taken randomly from image motions shown in Fig. 3.

the space-time, we compute reprojection errors in the 3D space-time. That is,
the reprojection errors are computed from a 3D distance between a true point
and a point recovered from the trifocal tensor in the 3D space-time.
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We computed trifocal tensors and recovered loci in the 3D space-time in C3
from image motions in C1 and C2 100 times. Then, the uncertainty bound of
each point on the space-time loci is computed. The ellipsoids in Fig. 4 (a) show
uncertainty bounds of all the points on the space-time loci in C3.

We next changed the number of corresponding points for computing tri-
focal tensors in three views, and evaluated the reprojection errors in the 3D
space-time. The reprojection error of a certain number of corresponding points
is computed 100 times changing the corresponding points randomly. Fig. 4 (b)
shows the relationship between the number of corresponding points and the re-
projection errors in the 3D space-time. As we can see, the stability is drastically
improved by using a few more points than required. Note, this is the result from
the random choice of corresponding points, and thus if we take the correspond-
ing points carefully, the result is much better even from the minimum number
of corresponding points.

5.3 Real Image Experiment

We next show the result from a real image experiment. In this experiment, we
used two static cameras and one translational camera with a constant speed, and
computed trifocal tensors between these three cameras by using a single moving
point in the 3D space.

Fig. 5 shows the experimental scene used in this experiment. The camera 1
and camera 3 are stationary, and camera 2 is a moving camera with a constant
translation from the left to the right. Since multiple cameras are non-rigid, we
can not compute the traditional trifocal tensor of these cameras from a single
moving point. Nonetheless we can compute the extended trifocal tensor and can
generate image motions in one of three views from the other two views. In this
experiment we generated image motions in camera 3 by using image motions in
camera 1 and camera 2. Fig. 6 (a) and (b) show image motions of a single point
in camera 1 and camera 2 respectively. The trifocal tensor is computed from 5
points on the image motions in three views. These are shown by blue points in

Fig. 5. Real image experiments. The camera 1 and camera 3 are stationary, while the
camera 2 translates from the left to the right during the point motions.
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Fig. 6. Real image experiments. (a) and (b) show image motions of a single point
viewed from camera 1 and camera 2. The 5 blue points in each image show corre-
sponding points used for computing the trifocal tensor. Note, the camera 2 is translat-
ing horizontally with a constant speed.

Fig. 7. Image motions in camera 3 recovered from the extended trifocal tensor and
the traditional trifocal tensor. The red points in (a) show the image motions recovered
from the extended trifocal tensor under space-time projections, and the green points
show real image motions observed in camera 3. (b) shows those recovered from the
traditional trifocal tensor. The 5 blue points in (a) and 4 blue points in (b) show
points used for computing the trifocal tensors.

(a) and (b). The extracted trifocal tensor is used for generating image motions
in camera 3 from image motions in camera 1 and 2. The red points in Fig. 7 (a)
show image motions in camera 3 generated from the extended trifocal tensor,
and the green points show the real image motions viewed from camera 3. As
shown in Fig.7 (a), the generated image motions are very accurate even if the
camera 2 has unknown translational motions.

To show the advantage of the extended trifocal tensor, we finally show image
motions generated from the traditional trifocal tensor, i.e. trifocal tensor defined
for projections from 3D space to 2D space. The 4 blue points shown in Fig. 7 (b)
are used as corresponding points in three views for computing the traditional
affine trifocal tensor. Note, these are the subset of the 5 points used in the
previous experiment. The image motion in camera 3 generated from the image
motions in camera 1 and 2 by using the extracted traditional trifocal tensor is
shown by red points in Fig. 7 (b). As shown in Fig. 7 (b), the generated image
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motion is very different from the real image motion shown by green points as we
expected, and thus we find that the traditional multiple view geometry cannot
describe such general situations, while the proposed multiple view geometry can
do as shown in Fig. 7 (a).

6 Conclusion

In this paper, we analyzed multiple view geometry under affine projections from
4D space to 3D space, and showed that it can represent multiple view geometry
under space-time projections. In particular, we showed that multifocal tensors
defined under space-time projections can be computed from non-rigid object
motions viewed from multiple cameras with arbitrary translational motions. We
also showed that they are very useful for generating images of non-rigid motions
viewed from cameras with arbitrary translational motions. The method was im-
plemented and tested by using real image sequences. The stability of extracted
trifocal tensors was also evaluated.
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Abstract. When space points and camera optical center lie on a twisted
cubic, no matter how many corresponding pairs there are from space
points to their image points, camera projection matrix cannot be uniquely
determined, in other words, the configuration of camera and space points
in this case is critical for camera parameter estimation. In practice, it
is important to detect this critical configuration before the estimated
camera parameters are used. In this work, a new method is introduced
to detect this critical configuration, which is based on an effective cri-
terion function constructed from an invariant relationship between six
space points and their corresponding image points. The advantage of this
method is that no explicit computation on camera projection matrix or
optical center is needed. Simulations show it is quite robust and stable
against noise. Experiments on real data show the criterion function can
be faithfully trusted for camera parameter estimation.

1 Introduction

Projective geometric invariant plays an important role in computer vision. Since
1994, there have been many studies on the invariant relationship between six
space points and their image points [2, 3, 4, 7, 9, 10, 11, 12, 13]. The invariant re-
lationship can be applied to 3D reconstruction, object recognition, robot vision
and so on as shown in the literature.

On the other hand, estimation of camera parameters is a key problem in 3D
reconstruction. One of the popular methods for this problem is to recover the
camera parameters from at least six pairs of image points and their corresponding
spatial points with known coordinates [1]. By using this method, many degener-
ate configurations may occur. There are systematic analyses for these degenerate
configurations in Chapter 21 of [6], which consist of two cases: incidence case
and non-incidence case. The incidence case is that some of the space points are
collinear or coplanar, or some of the space points and the camera optical center
are collinear or coplanar. The non-incidence case is that the space points and
the camera optical center lie on a proper twisted cubic, of which no three space
points are collinear and no four space points are coplanar, also no two space
points are collinear and no three space points are coplanar with the camera op-
tical center. How to detect these degenerate configurations? This is the problem
considered here. For the incidence case, it is easy to detect by determining the

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 447–456, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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linearly dependent relations among the space points or the image points. How-
ever, for the non-incidence case, namely the case that the space points and the
camera optical center lie on a proper twisted cubic, it is difficult to detect. The
method of [16] can detect this degenerate configuration. But, estimation of the
camera optical center is needed at first, and also it is sensitive to noise.

Detecting degenerate configurations is important because if a spatial configura-
tion is degenerate mathematically but the noise from the measured image makes it
non-degenerate, any estimation under such configuration is useless [15]. For cam-
era parameter estimation, the data from those degenerate configurations just men-
tioned are critical and can result in dangerous recovered camera parameters.

Our method in this paper can effectively detect the degenerate configuration
in the non-incidence case. This degenerate configuration in the non-incidence
case (camera and space points lie on a proper twisted cubic) is called twisted
cubic degenerate configuration, or twisted cubic configuration in the following.

By using brackets like in [2, 3, 4, 5], we establish the invariant relationship
between six space points and their images under a perspective view for the
twisted cubic configuration. This configuration is different from the previous
general one [2, 3, 4, 7, 9, 10, 11, 12, 13]. The established invariant relationship is
free of the camera optical center and camera projective matrix. From it, then
an algorithm based on a weighed criterion function is proposed to detect the
twisted cubic degenerate configuration. Simulations and experiments on real
data are performed, which show the proposed algorithm is quite stable against
noise and the criterion function is reasonably useful in practice.

The organization of the paper is as follows. Some preliminaries are listed in
Section 2. Section 3 reports the invariant relationship between six space points
and their images under a perspective view for the twisted cubic configuration,
and then elaborates the algorithm to detect the twisted cubic degenerate config-
uration for camera parameter estimation. Experiments are shown in Section 4,
and Section 5 are some conclusions.

2 Preliminaries

In this paper, a bold capital letter denotes either a homogeneous 4-vector or
a matrix, a bold small letter denotes a homogeneous 3-vector, a bracket “[ ]”
denotes the determinant of vectors in it. And in addition, we assume that no three
image points are collinear, no four space points are coplanar (so the brackets on
the image and space points are always nonzero).

Under the pinhole camera, a space point Mi is projected to a point mi in the
image plane by:

simi = K(R, t)Mi, i = 1..6, (1)

where K is the 3 × 3 matrix of camera intrinsic parameters, and R, t are a
3× 3 rotation matrix and a 3× 1 translation vector, si is a nonzero scalar. If si

were zero, then Mi could not be projected to the image plane. We assume that
camera optical center O and six space points Mi are not at infinity throughout
this paper.
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Then under (1), the established relation in [4] between bracket on image points
and bracket on space points is:

sisjsk[mi,mj ,mk] = det(K)[Mi,Mj,Mk,O]. (2)

We will use (2) later.
In the following, for the notational convenience, if no ambiguity can be

aroused, Mi, i = 1..6 will be simply denoted as 1,2,3,4,5,6, and the com-
mas in the brackets will be omitted.

There is a unique proper twisted cubic passing through six space points
1,2,3,4,5,6 with no three collinear and no four coplanar. Any point X is on
this twisted cubic if and only if [16]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1246][1356]
[1236][1456]

=
[124X][135X]
[123X][145X]

,

[1246][2356]
[1236][2456]

=
[124X][235X]
[123X][245X]

,

X is not on the line through 1, 2.

(3)

The above representation is not unique as a result that the one after a permu-
tation of 1,2,3,4,5,6 is also a representation of the same twisted cubic.

We can see that each bracket in the first equation of (3) has the point 1.
The geometric meaning of this equation is that 1,2,3,4,5,6,X lie on a quadric
cone with 1 as the vertex [16]. Similarly, the second equation of (3) means that
1,2,3,4,5,6,X lie on a quadric cone with 2 as the vertex. This is consistent with
the theorem in [14] that a twisted cubic can be the intersection of two quadrics.

3 Recognizing Critical Configuration of Six Points

3.1 Invariant Relationship for the Twisted Cubic Configuration

Proposition 1. The camera optical center O lies on the proper twisted cubic
passing through 1,2,2,4,5,6 if and only if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[m1m2m3][m1m4m5][1246][1356]
−[m1m2m4][m1m3m5][1236][1456] = 0,

[m1m2m3][m2m4m5][1246][2356]
−[m1m2m4][m2m3m5][1236][2456] = 0.

(4)

After a permutation of 1,2,3,4,5,6 and the corresponding image points, this
equation system is still the invariant relationship of 1,2,3,4,5,6,O lying on the
same twisted cubic, but is not independent of the above one.

Proof. Proposition 1 can be obtained by (3) and (2) as follows. If O lies on the
twisted cubic through 1,2,3,4,5,6, then O satisfies (3), further by (2), we have:
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[1246][1356]
[1236][1456]

=
[124O][135O]
[123O][145O]

=
[m1m2m4][m1m3m5]
[m1m2m3][m1m4m5]

,

[1246][2356]
[1236][2456]

=
[124O][235O]
[123O][245O]

=
[m1m2m4][m2m3m5]
[m1m2m3][m2m4m5]

.

(5)

Notice that in (3), there is another condition such as: X is not on the line
through 1 and 2. Here for the optical center O, this additional condition is
unnecessary because if O is on the line through 1 and 2, then m1 and m2
become one point, which is contrary to our assumption that no three image
points are collinear.

Because the representation (3) is independent of the order of 1,2,3,4,5,6,
the invariant relationship (4) is also independent of the order of them and their
corresponding image points. Proposition 1 is proved.

Each ratio in (5) is a cross ratio [5]. Therefore, (4) is an invariant relationship
between space points and image points equivalent to (5).

By the last paragraph of Section 2 or [14], we know the image points mi, i =
1..6, from the twisted cubic configuration are con-conic. But, this is not a suffi-
cient condition for this configuration [14].

We have established the above invariant relationship between six space points
and their images under a perspective view when the optical center and the space
points lie on a twisted cubic. The number of the equations describing the rela-
tionship is two, which is different from the number one for the previous general
configuration [2, 3, 4, 7, 9, 10, 11, 12, 13]. The reason is just from the degeneracy
of the twisted cubic configuration [17].

This invariant relationship can be easily extended to invariant relationship
between two perspective views that the two camera optical centers and six space
points lie on a twisted cubic. Then the result can be used to detect critical data
for computing fundamental matrix or epipoles [6, 8].

3.2 Establishing an Algorithm to Detect Twisted Cubic Degenerate
Configuration of Six Points

Detecting the twisted cubic degenerate configuration is important because the
data for camera parameter estimation from the degenerate configuration is crit-
ical and can result in useless recovered camera parameters.

We apply the established invariant relationship to detect the twisted cubic de-
generate configuration of six points. The method is based on a criterion function
that can be faithfully trusted for camera parameter estimation from six points
in practice.

Notice that in the invariant relationship (4) of the twisted cubic case, m6
does not occur. And, by the last paragraph of Section 2, we know that the
first equation of (4) is the cone with 1 as the vertex, the second equation of
(4) is the cone with 2 as the vertex. Thus, the two equations are denoted as
g1,(24,35) = 0, g2,(14,35) = 0, which can be criterion functions to recognize the
twisted cubic degenerate configuration. But, stability to noise is much affected by
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the order of space points and image points. So, we are to consider more equations
after changing the orders of space points and their corresponding images. We
do a permutation on 1,2,3,4,5,6 and their corresponding images in g1,(24,35)
or g2,(14,35) and denote the corresponding result as gi,(jk,pq). For each of such
permuted functions, we also assign a weigh to it, and then the criterion function
on 1,2,3,4,5,6 and their image points is constructed as:

f =
1
90

6∑
i=1

∑
σ∈S

1
W 2

i,σ

g2
i,σ,

where S = {(jk, pq), (jp, kq), (jq, kp), (jk, pl), (jp, kl), (jl, kp), (jk, ql), (jq, kl),
(jl, kq), (jp, ql), (jq, pl), (jl, pq), (kp, ql), (kq, pl), (kl, pq)} has 15 elements and
{i, j, k, p, q, l} = {1, 2, 3, 4, 5, 6}. According to our experience from extensive ex-
periments, the weigh Wi,σ is taken as the mean of the absolute values of the two
terms in gi,σ in this work.

Now, we can propose a two-step algorithm to determine whether six space
points and the camera optical center lie on a proper twisted cubic or not, where
no four of the space points are coplanar, and no three of the image points are
collinear.

Step 1. Compute the value of the criterion function f on the six space points
1,2,3,4, 5,6 and their corresponding image points.

Step 2. Let ε be a preset threshold, and determine whether f < ε. If yes, then
1,2,3,4,5,6 and the camera optical center lie on a proper twisted cubic.
Otherwise, they are not on a twisted cubic.

It is clear that the criterion function f is only on the image and space points,
and in it there is no any computation on the camera optical center or projective
matrix. f can let us efficiently know whether space points and camera lie on the
same twisted cubic or not, also it can be faithfully trusted for camera parameter
estimation from six points in practice as shown in real experiments. According
to our experience from extensive experiments, the threshold ε is taken as 1.1 in
this work.

4 Experiments

4.1 Simulations

We perform experiments on simulated data to test the stability of the proposed
algorithm in the following. The world coordinate system is taken as the camera
coordinate system. The simulated camera intrinsic parameters are:

K =

⎛⎝1000 0 512
0 900 384
0 0 1

⎞⎠ ,

then we generate the images of seven space points 1,2,3,4, 5,6,7 such that
1,2,3,4,5,6,O do not lie on a twisted cubic, and 1,2,3,4,5,7,O do lie on a
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twisted cubic. The Gaussian noise with mean 0 and standard deviation rang-
ing from 0 to 6 pixels is directly added to each image points, and then I1:
the value of the criterion function of f on 1,2,3,4,5,6 and their image points
and I2: the value of the criterion function of f on 1,2,3,4,5,7 and their im-
age points are computed. For each noise level, we perform 100 runs, and the
averaged results are calculated, still denoted by I1, I2. Since 1,2,3,4,5,7,O
lie on a twisted cubic and 1, 2, 3, 4, 5, 6, O do not lie on a twisted cubic,
I2 should be close to zero, while I1 should not. And therefore there should be
I1 > I2.

We do the repeated simulations, the image sizes are not greater than 1000×
1000 pixels. We find that I1 and I2 are all very stable, and there are always
I1 > 1.1 > I2. Some image data Di, i = 1..8 are shown in Fig. 1, where the
images of mi, i = 1..5 in Di, i = 1..6 distribute rather evenly, and the ones in
D7, D8 do not ( m2,m5 are very close). The corresponding results of I1, I2 of
them are shown in Table 1.

Though there is noise, the variations of I1, I2 are very small, and there are
always I1 > I2. These show that the proposed algorithm can distinguish robustly
between the twisted cubic degenerate configuration and the nondegenerate con-
figuration, and the criterion function f is quite stable against noise.
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Fig. 1. Some image data, denoted as Di, i = 1..8, where m2 and m5 are very close in
D7 and D8



Detecting Critical Configuration of Six Points 453

Table 1. The values I1, I2 under different noise levels

Noise level (pixel) 0 0.5 1 1.5 2

D1 I1 2.41 2.41 2.41 2.41 2.41
I2 0.00 0.00 0.00 0.00 0.00

D2 I1 2.94 2.94 2.94 2.93 2.94
I2 0.00 0.00 0.01 0.03 0.05

D3 I1 2.67 2.67 2.67 2.67 2.67
I2 0.00 0.00 0.00 0.00 0.00

D4 I1 2.19 2.18 2.18 2.17 2.17
I2 0.00 0.01 0.00 0.01 0.01

D5 I1 2.86 2.86 2.86 2.86 2.86
I2 0.00 0.00 0.00 0.00 0.00

D6 I1 2.25 2.25 2.25 2.25 2.25
I2 0.00 0.00 0.00 0.01 0.01

D7 I1 2.75 2.77 2.76 2.77 2.75
I2 0.00 0.11 0.25 0.48 0.52

D8 I1 2.55 2.55 2.52 2.48 2.46
I2 0.00 0.14 0.30 0.54 0.64

4.2 Experiments from Real Data

This section will show the usefulness of the proposed criterion function f that
can be faithfully trusted for camera parameter estimation from six points in
practice.

We are to calibrate a camera from a single view of a grid. We choose two
groups of six pairs of space and image points with larger value and smaller value
of the criterion function f , then from them, estimate camera parameters and
compare the results.

Fig. 2. A real image of a calibration grid, where mi, i = 1..6 are the image points from
Gmin and Gmin is the group of six pairs of space and image points with the minimal
value of the criterion function f
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The used image taken by a CCD camera is shown in Fig. 2. The size of the
image is of 1024× 768 pixels. We extract the pixels of the edges by Canny edge
detector, then fit them as lines, and calculate the intersection points of these
lines. The world coordinate system is set up in the grid. Then we have 108 pairs
of space points and the corresponding image points. By using DLT method [1]
from these 108 pairs of space and image points, we obtain the camera intrinsic
parameter matrix K and the camera pose parameters: rotation R and translation
t as follows:

K =

⎛⎝2049.8128 −2.7983 523.9202
0 2050.5605 394.1385
0 0 1

⎞⎠ ,R =

⎛⎝ 0.7784 −0.6272 0.0270
−0.2648 −0.3671 −0.8917
0.5692 0.6870 −0.4518

⎞⎠ ,

t =
(
−0.7503, 4.8624, 30.7296

)T
.

From these 108 pairs of space and image points, we randomly combine 125
groups of six pairs with no three image points collinear, no three space points
collinear, and no four space points coplanar. We choose the group with the
maximal value of the criterion function f , the group with the minimal value of
the criterion function f , and denote them as Gmax, Gmin respectively. The value
of f from Gmax is 3.0997, and the value of f from Gmin is 0.0380.

The image points of Gmin are plotted as mi, i = 1..6 as shown in Fig. 2. We
can see that there is no linear relation among them. The value of f , 0.0380, says
that they are from degenerate configuration.

We calibrate the camera from the six pairs of space and image points in Gmax

by DLT method, and the results are:

K1 =

⎛⎝2140.9987 −2.1069 570.3262
0 2138.6413 452.6338
0 0 1

⎞⎠ ,R1 =

⎛⎝ 0.7668 −0.6409 0.0358
−0.2772 −0.3808 −0.8822
0.5790 0.6665 −0.4696

⎞⎠ ,

t1 =
(
−1.4424, 3.9693, 32.1664

)T
.

Similarly, we calibrate the camera from the six pairs of space and image points
in Gmin, and the results are:

K2 =

⎛⎝980.4078 26.8782 430.9372
0 870.5114 541.8497
0 0 1

⎞⎠ ,R2 =

⎛⎝−0.6666 0.7454 0.0062
−0.0205 −0.0266 0.9994
0.7451 0.6661 0.0330

⎞⎠ ,

t2 =
(
−1.0456,−1.5375,−18.0317

)T
.

We evaluate the estimated K1 and K2 by comparing them with K:

K1 −K =

⎛⎝91.1859 0.6914 46.4060
0 88.0809 58.4953
0 0 0

⎞⎠ ,

K2 −K =

⎛⎝−1069.4050 29.6765 −92.9830
0 −1180.0491 147.7112
0 0 0

⎞⎠ .



Detecting Critical Configuration of Six Points 455

It is clear that the absolute error for each intrinsic parameter from K2 is
much greater than each one from K1. We evaluate the recovered R1 and R2 by
comparing them with R:

R1−R =

⎛⎝−0.0116 −0.0137 0.0087
−0.0123 −0.0137 0.0095
0.0098 −0.0205 −0.0178

⎞⎠ ,R2−R =

⎛⎝−1.4450 1.3725 −0.0208
0.2443 0.3405 1.8911
0.1759 −0.0208 0.4848

⎞⎠
And also, the recovered t1 and t2 are evaluated by the differences between them
and t:

t1−t =
(
−0.6922,−0.8931, 1.4368

)T
, t2−t =

(
−0.2954,−6.3999,−48.7613

)T
.

Also, it is clear that the accuracies of R1, t1 are higher than the accuracies of
R2, t2 except the first element of the translation. For the first element of the
translation, the absolute error from t1 is greater than the absolute error from
t2, but the difference between these two absolute errors is not so large as that
for the second or third element of the translation.

So, we can see that the calibration result from six pairs of space and image
points with smaller value of the criterion function f (i.e. space points and opti-
cal center are near to the twisted cubic degenerate configuration) is not better
than the one from six pairs of space and image points with larger value of the
criterion function f (i.e. space points and optical center are far from the twisted
cubic degenerate configuration). The proposed criterion function f , thus, can
be faithfully trusted for camera parameter estimation from six points. We also
perform the experiments from other real images and obtain the similar results.
The details are omitted due to the space limit.

5 Summary and Conclusions

We establish the invariant relationship between six space points and their images
under a perspective view when camera optical center and the space points lie on a
twisted cubic. Then, the invariant relationship is used to recognize the nontrivial
degenerate configuration of six points through a new algorithm. The algorithm
is based on a criterion function, does not need explicit computations on the
optical center or projective matrix, and is shown stable and robust against noise.
We believe that it has further usefulness. For example, when applying RANSAC
during the process of determining camera parameters, the critical groups of data
can be filtered by the criterion function of this method, and then the algorithm
can be extended to more than six pairs of space points and image points. The
sample of six pairs of space points and image points with poor performance will
not be chosen in RANSAC. How to know whether a sample is unreliable or not?
The criterion function in this paper just can be used to detect the unreliability.
We will report this work in future. The invariant relationship can also be easily
extended to the the invariant relationship between two perspective views when
the two camera optical centers and space points lie on the same twisted cubic,
and then the result can similarly be used to detect critical data for computing
fundamental matrix or epipoles [6, 8].
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Abstract. The averaging of multiple pairwise relative motions in a sequence
provides a fast and accurate method of camera motion estimation with a wide
range of applications, including view registration, robotic path estimation, super-
resolution. Since this approach involves averaging in the Lie-algebra of the under-
lying motion representation, it is non-robust and susceptible to contamination due
to outliers in the individual relative motions. In this paper, we introduce a graph-
based sampling scheme that efficiently remove such motion outliers. The result-
ing global motion solution is robust and also provides an empirical estimate of
the inherent statistical uncertainty. Example results are provided to demonstrate
the efficacy of our approach to incorporating robustness in motion averaging.

1 Introduction

Estimation of the camera motion from an image sequence is a well-studied problem [1].
Most conventional approaches can be classified either as algebraic methods involving
a few frames or optimisation methods that solve for the global motion of the entire
sequence. Examples of the former approach include epipolar and trilinear geometry
representations whereas motion estimation using bundle-adjustment is an example of
the later approach. While the algebraic approaches are fast, they are inherently inac-
curate as they use information from only a few frames. In contrast, bundle-adjustment
results in accurate solutions but is computationally expensive and also requires an ac-
curate initial guess.

To overcome both these limitations, averaging of relative motions between image
pairs was introduced in [2] and further developed in [3]. In this approach the efficiency
of the algebraic approach was exploited to provide multiple relative motion estimates
between image pairs that were subsequently averaged resulting in a fast, flexible and
accurate estimate of the global motion. This method uses the Lie group structure of
the motion representation to give a principled algorithm for averaging of relative mo-
tions. The averaging scheme has a wide range of applications including camera motion
estimation, robotic path reconstruction, multi-view registration, and super-resolution.
However since the method involves averaging of multiple relative motions in their cor-
responding Lie-algebra, it is inherently susceptible to error due to contamination by
outliers. This is the property of any scheme that involves averaging of multiple obser-
vations, for example the arithmetic average of a scalar x̂ = 1

N

∑
xi. A single outlier

element xi will cause the estimate x̂ to be grossly incorrect. In the case of relative
motions, the outliers may arise due to incorrect feature correspondences. In this pa-
per we introduce a randomised sampling scheme that can detect such outliers in the
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set of relative motions estimated from a sequence. While we will elaborate the ap-
proach in subsequent sections, we briefly describe our approach here. In the spirit of
the RANSAC [4, 5] approach to robustness we derive global motion estimates that in-
volve the minimal number of pairwise observations. As we shall show in Sec. 3 this
is equivalent to selecting minimum spanning trees (MST) of a graph. The relative mo-
tions that survive the sampling process are data inliers that can be averaged resulting
in accurate and robust estimates. The sampling scheme can be further applied to the
inliers themselves to provide covariance estimates which is equivalent to the bootstrap
approach to empirical estimation of uncertainty [6].

The rest of the paper is organised as follows. In Sec. 2 we describe the motion av-
eraging scheme presented. Sec. 3 motivates and develops the graph-sampling based
approach to outlier detection in relative motions. The result of applying this approach
to a real image sequence is shown in Sec. 4. Finally, Sec. 5 presents some conclusions
and directions for further work.

2 Averaging of Relative Motions

In this section we summarise previous results on motion averaging. The following anal-
ysis applies equally to both rotation and Euclidean motion estimation and a linear so-
lution for this formulation was described earlier in [2] and developed into a Lie group
representation in [3]. For N images, the globally motion can be described by N−1 mo-
tions, if we pick any image as the reference frame. Without loss of generality, we can
assume that the reference frame is attached to the first image frame. We denote the mo-
tion between frame i and the reference frame as Mi, and the relative motion between
two frames i and j as Mij , where Mij = MjMi

−1. This relationship captures the
notion of “consistency”, i.e. the composition of any series of transformations starting
from frame i and ending in frame j should be identical to Mij (See Fig. 1). Due to the
presence of noise in our observations the various transformation estimates would not be
consistent with each other. Hence Mij 
= MjMi

−1, where Mij is the estimated trans-
formation between frames i and j. However we can rewrite the given relationship as
a constraint on the global motion model {M2, · · · ,MN} which completely describes
the motion. The first image being the reference frame, M1 is an identity transformation.

... ... ...2FRAME # FRAME #FRAME # j N

.
REFERENCE FRAME

M M M M 2 i j   N

M   ij

iFRAME #

... ... ...

Fig. 1. The relative motions are estimated from the data. The global motion with respect to the
first frame is estimated by averaging the over-determined set of relative motion constraints.
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Since in general we have upto N(N−1)
2 such constraints, we have an over-determined

system of equations.

MjMi
−1 = Mij , ∀i 
= j (1)

where the variables on the left-side are unknowns to be estimated (“fitted”) in terms
of the observed data Mij on the right. Intuitively, we want to estimate a global mo-
tion model {Mi} that is most consistent with the measurements {Mij} derived from
the data. Thus the errors in individual estimates of Mij are “averaged” out resulting
in reduced error. It may be noted that in Eqn. 1, we are not required to use every pair-
wise constraint. For extended sequences, there is seldom any overlap between frames
well separated in time, therefore their relative two-frame motions cannot be estimated.
However we can still get a consistent solution as long as we have at least N − 1 relative
motions. In fact, the sampling procedure to be outlined in Sec. 3 exploits this property
to incorporate robustness into the estimation procedure.

2.1 Averages on the Lie Group

The idea of averaging on the Lie group is at the heart of the motion averaging approach
used in this paper. In this subsection we shall provide an extremely elementary summary
of the properties of Lie groups and the related approach to averaging. For further details,
the reader should consult [3]. A group G is a set whose elements satisfy the relation-
ships of associativity, identity and the existence of an inverse. A Lie group is a group
which also behaves like a smooth, differentiable manifold. Intuitively, Lie groups can
be locally viewed as topologically equivalent to the vector space, R

n and can be locally
described by its tangent-space whose elements form a Lie algebra g. The Lie algebra g
is equipped with a bilinear operation [., .] : g× g → g known as the Lie bracket which
satisfies the property of anti-symmetry and the Jacobi identity. All finite-dimensional
Lie groups have matrix representations and the bracket in this case is the commutator
operation [x,y] = xy − yx. The Lie algebra and the associated Lie group are related
by the exponential mapping. This exponential mapping and its inverse (i.e. logarithm)
enable us to freely operate in either the Lie group or its associated algebra according
to convenience. The motion models that we are interested in, namely three-dimensional
rotations and three-dimensional Euclidean motion are elements of the Special Orthog-
onal SO(3) and Special Euclidean SE(3) groups respectively. For non-commutative
Lie groups, the usual exponential relation exey = ex+y does not hold. The equivalent
mapping is defined by d : g× g �→ g, i.e. exey = ed(x,y), where d(., .) is given by the
Baker-Campbell-Hausdorff (BCH) formula [7] and is the intrinsic (Riemannian) dis-
tance on the manifold representing the group. For example, for rotations ω1 and ω2,
d(ω2,−ω1) represents the rotation (“distance”) that will take us from ω1 to ω2. Using
this intrinsic distance between points on a Riemannian manifold the ‘intrinsic’ average
can be defined as

μ = arg min
X∈G

N∑
k=1

d2(Xk,X)

In general this intrinsic average is preferable to other approximations as the estimation
process always confirms to the underlying group structure involved. The reader can
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refer to [8] for further details including an algorithm for averaging elements on the
group manifold. For matrix groups, the Riemannian distance is defined by the matrix
logarithm operation. By using the BCH formula this distance can be approximated as
d(X,Y) = || log(YX−1)|| ≈ || log(Y) − log(X)|| = ||y − x|| where x and y are
logarithms of matrices X and Y respectively.

2.2 Lie Averaging of Relative Motions

The scheme for averaging relative motions is similar in spirit to the intrinsic averaging
approach of [8]. Starting from the constraint Mij = MjMi

−1, by applying the first-
order approximation to the Riemannian distance, we have mij = mj − mi since m =
log(M). Arranging in the form of a column vector, we have v = vec(m) implying
vij = vj − vi. If we stack all the column vectors for the global motion model into one
big vector V we have V = [v2; · · · ; vN ]. Given this unified vector representation for
the global motion model, we have

Mij = MjMi
−1 ⇒ mij = mj −mi

⇒ vij = vj − vi =
[
· · · − I · · · I · · ·

]︸ ︷︷ ︸
=Dij

V (2)

where I denotes an identity matrix. While Eqn. 2 denotes a single relative motion in
terms of the global motion model, we can stack all the relative motion vectors vij into
one big vector Vij = [vij1; vij2; · · · ] where ij1, ij2 etc. denote different relative motion
indices. Similarly we can stacked D = [Dij1;Dij2; · · · ] leading to

MjMi
−1 = Mij

� DV = Vij ⇒ V = D†
Vij (3)

where D† is the pseudo-inverse. This results in the following iterative scheme :

A1 : Algorithm for Relative Motion Averaging
Input : {Mij1,Mij2 · · · ,Mijn} (n relative motions)
Output : Mg : {M2, · · · ,MN} (N image global motion)
Set Mg to an initial guess (Linear solution in [2])
Do

ΔMij = Mj
−1MijMi

Δmij = log(ΔMij)
Δvij = vec(mij)
ΔV = D†ΔVij

∀k ∈ [2, N ],Mk = Mkexp(Δvk)
Repeat till ||ΔV|| < ε

While further details cannot be provided here due to space constraints, for our purposes
it is sufficient to note that we can use the above approach to accurately average the
relative motions on the appropriate Lie group representation.



Robustness in Motion Averaging 461

3 Sampling on the View-Graph of Relative Motions

While the algorithm described in Sec. 2 is an effective scheme for estimating the global
camera motion from multiple estimates of relative motions, it suffers from the limi-
tation of being non-robust. Consider a scenario where an individual relative motion
is corrupted, say, due to incorrect correspondences used in the estimation of epipolar
geometry. This would result in an incorrect estimate for Mij . When this incorrect mea-
surement is incorporated into the averaging scheme of Algorithm A1, the entire result
would be corrupted. Therefore, we require a procedure that would identify outliers in
the set of relative motions and discard them prior to the averaging of these measure-
ments using the Lie-algebraic averaging scheme.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

Correct Line

Incorrect Line Hypothesis

(a) RANSAC Example

Mij

j
i

(b) Viewgraph of relative motions

Fig. 2. (a) illustrates the RANSAC approach. Some points fall on a line whereas others are out-
liers. (b) shows a view graph representing relative motions identified by the vertices. Each edge
represents an estimated relative motion between the two vertices. The bold edges represent a
minimum spanning tree (MST).

A well-known approach for incorporating robustness in computer vision is the Ran-
domised Sampling Consensus (RANSAC) method [4, 5]. This randomised scheme has
been shown to have desired statistical properties in that it can effectively identify data
outliers that do not satisfy a given geometric model. The idea behind RANSAC is
illustrated in Fig. 3(a) where we have points that lie on a straight line along with some
outlier points. If we were to seek the least squares fit for the full set of data points
the resulting line solution would be grossly incorrect as it would average over the cor-
rect points and the outliers. The RANSAC approach to detecting outliers works by
generating solutions that use the minimal number of data points. Since a line can be
defined by two non-identical points, we randomly select a pair of points and use the
line passing through them as our hypothesis. All points that fall within a pre-specified
distance (say D) from this hypothesis line are declared to fit the line. In Fig. 3(a)
this range is indicated by the two dotted lines around the true line. For each trial, we
count the number of points that fall within this bounding region. For a given num-
ber of trials, the hypothesis with the maximum number of points within the bound-
ing region is selected and all points within the bounding region are declared as
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(a) MOVI data
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(b) Non-robust Averaging
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(c) Robust Averaging

Fig. 3. (a) shows one image from the MOVI sequence; (b) shows the results from [9] and the
incorrect estimate due to outliers; (c) shows our estimate after automatic removal of the outliers.
The covariance is shown in an exaggerated form for visualisation. See text for details.

inliers and those outside this region are classified as outliers. The line estimate is
now obtained by least-squares fitting of all inliers. The green line in Fig. 3(a) indi-
cates a line hypothesis that includes outliers, but the score for this line will always be
less than that for a true hypothesis, implying robustness to as many as 50% of data
outliers.

3.1 A Robust Algorithm for Motion Averaging

In the case of motion models that describe the global motion we can develop a sampling
method similar in spirit to RANSAC. We can describe the information of all the rela-
tive motions estimated in a sequence in a graph. Consider a graph G = (V,E) where
V is the set of vertices and E the set of edges. Each vertex of the graph denotes an
individual image, resulting in N vertices. If we are able to estimate the relative motion
between a pair of images i and j we add an edge Eij between the said vertices. Such a
representation of relative motions is called a view-graph and capture all the information
available and has also been used to solve other problems, for instance see [10]. We show
an example of such a view-graph in Fig. 3(b). The absence of an edge connecting two
vertices implies that the relative motion between those two vertices in not available. To
keep our analysis simple, we assume that we are given a set of relative motions {Mij}
and no more information to indicate their reliability. Therefore no weight information
is used for the edges, i.e. all edges have the same weight. Moreover the resulting graph
is bidirectional.

Since the RANSAC approach requires a minimal solution we need such a solu-
tion that can capture the global motion for the image sequence. Since the relative
motions between images are represented by edges on the view graph it will be im-
mediate obvious that the minimal solution for our problem is given by the minimum
spanning tree (MST) of the graph G. When the graph G has a single connected
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component, the minimum spanning tree is a set of edges such that every vertex in V is
reachable from every other vertex in V and the total weight of all edges in the tree is
minimum. For a graph with N vertices, the minimum spanning tree always has N − 1
edges [11]. In Fig. 3(b) we have a graph representing the relative motions available and
an MST is shown in bold edges. Since in an MST every vertex is reachable from any
vertex, given an MST and the corresponding relative motions we can solve for the global
motion model1. Now given an MST on the view-graph G, we can solve for the global
motion model {Mi} and consequently every relative motion can be compared to this
solution. For example, if the global motion model for an MST is M = {M2, · · · ,MN}
and the relative motion between vertices i and j is given by Mij , then the “distance” of
this edge from the global motion model is given by d(Mij ,MjMi

−1).
Each MST of the view-graph represents a model hypothesis, i.e. a solution for the

global motion. Given a pre-specified distance threshold, we can count the number of
relative motions (i.e. edges) that fall within this distance from the global motion. Thus
for each MST, we count the number of inliers in the original set of relative motions.
This is repeated for a given number of trials and the MST with the maximum number of
inliers declared the winner. Subsequently we use Algorithm A1 to solve for the global
motion using all inliers, resulting in an accurate solution that is also robust to the pres-
ence of outliers. Since each edge has the same weight and every MST has N − 1 edges,
the total weight for all spanning trees is the same. Therefore for our problem we need
to generate many spanning trees for the view-graph. This can be achieved by randomis-
ing a depth first search (DFS) on the graph G. The DFS is a standard algorithm for
systematically creating a tree given a starting vertex of a graph. In our modification, in
each instance we start at a random vertex and at every parent vertex, we randomly pick
the next adjacent vertex to be visited in the search process. For each run of this proce-
dure we generate a spanning tree that is used in the RANSAC procedure as described
above.

While in this paper we have chosen to ascribe equal weights to all edges, in the pres-
ence of appropriate measures of reliability for each individual relative motion estimate,
we can easily incorporate that information as a weight on the view-graph G. For exam-
ple, if eij is the root mean squares error for the estimation procedure for relative motion
Mij we can choose the weight for the edge connecting vertices i and j as wij = eij

2.
In such a scenario the minimum spanning tree procedure will seek to minimise the sum
of the edge weights, which is equivalent to a minimal solution for the global motion
model with the least squared error for all the measurements used. However since now
the edge weights are not identical the procedure for generating a randomised MST has
to utilise the weight information. The algorithm in [12] is a randomised linear time al-
gorithm for generating MST’s and can be used as the MST-generator for the RANSAC
procedure. While this approach will be considered in subsequent work, in this paper we
shall use an unweighted graph so as to focus on the basic idea of our approach. Thus
our method can be summarised as:

1 Consider a case where an MST has edges between vertices {1, 2} and {2, 3} but not between
{1, 3}. In such a case we can reach vertex 3 from vertex 1 via vertex 2. Thus the relative
motion M13 is given by M13 = M23M12.
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A2 : RANSAC Algorithm for Robust Motion Averaging
Input : {Mij1,Mij2 · · · ,Mijn} (n relative motions)
Distance threshold D0 and number of trials T
Output : Mg : {M2, · · · ,MN} (N image global motion)

– Set G : view-graph of relative motions
– Generate MST e = MST (G)
– Solve for global motion Mmst using MST e
– Count number of relative motions within distance D0 of Mmst

– Repeat for T trials and select MST with maximal count
– Discard relative motions that are outliers for this MST
– Using the inliers solve for Mg using Algorithm A1

4 Examples

To demonstrate the efficacy of robust motion estimation we present an experiment on
the well-known MOVI house sequence2. This sequence consists of 118 images of a
house model and other objects rotated on a turn-table. Fig. 3(a) shows one image from
the sequence. As a baseline for comparison, we use the point correspondences of this
sequence used in [9].3 For every possible image pair with more than 20 correspondences
we estimated the epipolar geometry using the Eight Point Algorithm of [13]. The cam-
era calibration was estimated using the method outlined in [14] and subsequently the
epipolar geometries were decomposed into rotations and translation directions. Instead
of applying our approach to the entire set of relative rotations we used a sliding window
of 10 images with a shift of 5 images. In other words, we applied the outlier detection
algorithm to images 1 to 10, 6 to 15, etc. The RANSAC threshold was set to 0.25◦ and
10000 trials were used. Out of an original set of 2209 relative geometries, only 1130
were selected as inliers. The results of using our method are shown in Fig. 3(b) and (c).
In all cases we represent the result as the location of the camera’s viewing direction. In
Fig. 3(b) the viewing directions of the result of [9] are shown in solid line and the re-
sults of an average of all 2209 relative motions is shown as a dashed line. As can be seen
there are gross errors in the averaging result due to the presence of outliers. In compar-
ison the motion shown in Fig. 3(c) is the result of our averaging scheme applied to the
1130 inliers detected. Here the correct nature of the sequence is captured implying that
outliers were correctly identified and removed, thus demonstrating the effectiveness
of our approach to robust motion averaging4. In addition to using graph-sampling to
identify outliers we can also apply the same MST-based sampling approach on a graph
representing all the inliers. This results in a different solution for each MST generated

2 We are unable to present an analysis of the method’s performance on synthetic data due to
space constraints.

3 Thanks to Bogdan Georgescu for providing us with his correspondences and motion estimates
for this sequence.

4 While we do not have any ground truth for this sequence, our results for rotation estimation
are on an average within 2 degrees from the estimate of [9]. This is a very good fit given that
the estimation of the eight-point algorithm is intrinsically error prone.
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and these solutions represent an empirical estimate of the covariance in our estimation
process. This is a principled approach in statistics known as bootstrap, further details
can be found in [6]. In our case we generate 100 such estimates and the covariance of
viewing directions were computed. In Fig. 3(c) we show the covariance of the view-
ing direction for 6 images in the entire sequence. The covariances were exaggerated 25
times to enable easy visualisation. As can be observed, for some images there is larger
variance of the viewing direction in a direction orthogonal to the viewing direction of
the camera. This implies that for these frames the uncertainty of the rotation estimate
is higher in a direction orthogonal to the viewing direction. The ability to estimate
the covariance in this manner can be used in further analysis and improvement of the
estimates.

5 Conclusions

In this paper we have presented a RANSAC style sampling approach to incorporate
robustness into motion averaging algorithms which accurately identifies statistical out-
liers in a set of relative motions. The effectiveness of the method was demonstrated on a
motion estimation problem. Future work will include effective utilisation of confidence
information for the relative motions which can be used in the randomised MST ap-
proach of [12] and the development of this robust motion averaging approach for image
registration and super-resolution, and robotic path planning approaches like Simultane-
ous Localisation and Mapping (SLAM).
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Abstract. Detection and tracking of moving objects is very important in various 
ways. Concerning the detection of moving objects by stationary cameras, the 
background looks different as the illumination changes. In this paper, we con-
sider a particular image in an image sequence as the sum of a reference image 
containing the background and a difference image containing the moving ob-
jects but not the background. We show that a reference image and difference 
images can be obtained as the independent components of input images by In-
dependent Component Analysis. Moving objects can then be located on the ref-
erence image and the difference images. Experimental results show that the 
proposed approach produces accurate detection of moving objects even if illu-
mination changes. 

1   Introduction 

Detection and tracking of moving objects is very important in various ways, such as 
traffic control and video surveillance. For detecting moving objects, there are mainly 
three methods. They are background subtraction, frame differencing and optical flow 
segmentation [1 ~ 3]. Since it takes a lot of computational time to extract optical flow, 
optical flow based methods does not suit for a real time processing. On the other 
hand, difference images are generated by a very simple processing, so difference im-
ages based methods can be performed in real time. Generally, either a background 
image obtained in advance or an image taken just previously in the image sequence is 
used to calculate the difference with the current image. For solving illumination 
change problems, there are background estimation and histogram adjustment method 
[11, 12]. But it is very difficult for background estimation to get a background image 
in a street or behind the crowd. And it occur error detection of moving objects for the 
object’s shadow, spotlight, etc [10, 14]. 

Recently, some applications of Independent Component Analysis (ICA) that is a 
statistical data analysis method [4] have been exploited in the field of image process-
ing and computer vision. For example, the face recognition [5, 6], the blind deconvo-
lution of the blurred image [7] and the separating reflections [8, 9]. 

The input images observed by stationary cameras consist of the background and 
moving objects, so we consider a particular image in an image sequence as the sum of 
a reference image containing the background and a difference image containing the 
moving objects but not the background. We show that a reference image and differ-
ence images can be obtained as the independent components of input images by ICA. 
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Moving objects can then be located on the reference image and the difference images. 
Experimental results show that the proposed approach produces accurate detection of 
moving objects even if illumination changes. 

Section 2 describes our new formulation of moving object detection problem. Sec-
tion 3 presents separation by ICA and moving object localization. Section 4 describes 
experimental results. Section 5 summaries our conclusion. 

2   Formulation of Moving Object Detection Problem 

For detecting moving objects, we need to separate moving object areas and the back-
ground. The easiest way to detect moving objects is to subtract the background image 

from the input image. In this case, the images ( nIII ,,, 21 K ) can be represented by 
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where BackgroundI  is the background image and nI�  is a difference image between 

nI  and BackgroundI . Note that the n input images are separated into one background 

image and n difference images. 
Another way to represent the input images is as follows: 
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where iI  acts a reference image that contains the background and niI�  is the dif-

ference between nI  and iI  that does not contain the background. 

An example of two images is shown below in Fig. 1. One of the two images can be 
understood as the sum of the other image as the reference image and the difference 
image. 

When the lighting condition is constant, the difference images have zero intensity 
except in the areas of moving objects. Note that in this separation, there are one refer-
ence image and n-1 difference images, and the total number of images remains to be 
n. Also notice that such separation is not unique. Actually, many linear combinations 
can serve the same purpose.  
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Fig. 1. Representation of a particular image in an image sequence. (a) a particular image in an 
image sequence. (b) a reference image. (c) a difference image that is subtracted (b) from (a). 

 
Assuming the lighting condition may change, Eq.(2) can be generalized as 
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where ),,,,( 211211 nn aaaa K are coefficients, which will be computed by ICA. 

It is important to observe that moving objects and a background are statistically in-
dependent. Therefore, the above separation can be achieved by ICA. In the strict sense, 
a reference image is not the “pure” background as ICA assumes. In frame image se-
quence, the reference image is a frame image. That is why the “pure” background can-
not be recovered by ICA directly. One merit of using ICA is that the background does 
not need to be constant. That is the separation will not be affected even if the back-
ground changes due to a lighting variation and/or a change in the camera contrast. 
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3   Separation by ICA and Moving Object Localization 

3.1   Brief Introduction of ICA 

ICA generalizes the technique of Principal Component Analysis (PCA) [13] and has 
proven to be a good tool of feature extraction. When some mixtures of probabilisti-
cally independent source signals are observed, ICA recovers the original source sig-
nals from the observed mixtures without knowing how the sources are mixed. The 
general model can be described as follows: 

We start with the assumption that the observation vectors T
M ),,,( 21 xxxX L=  

can be represented in terms of a linear superposition of unknown independent vectors 
T

N ),,,( 21 sssS L= . 

ASX =  (4) 

where A is an unknown mixing matrix (M×N) . The goal of ICA is to find a matrix 
W, so that the resulting vectors 

WXY =  (5) 

recovers the independent vectors S, probabilistically permuted and rescaled. W is 
roughly the inverse matrix of A. 

Before performing ICA, the problem of estimating the matrix A can be simplified 
by a prewhitening of the vectors X. The observed vectors X is first linearly trans-
formed to other vectors 

MXZ =  (6) 

whose correlation matrix equals unity: IZZ T =⋅ )(E . This can be accomplished by 

PCA with 

VDM 2/1−=  (7) 

where the matrix V is the eigenvector matrix of the covariance matrix of X and the 
matrix D is the eigenvalue matrix of the covariance matrix of X. At the same time, the 
dimensionality of the vectors is reduced. After this transformation we have 

BSMASMXZ ===  (8) 

where the matrix B is the mixing matrix. ICA is performed on the sphered vectors Z 
and the estimated mixing matrix B is an orthogonal matrix, 

since IBBBSSBZZ TTTT ==⋅=⋅ )()( EE . 

After a prewhitening of the vectors X, we can rewrite Eq.(5) to: 

WZY =  (9) 

Several ICA algorithms have been proposed for solving W. Here we use a neural 
learning algorithm proposed by Bell & Sejnowski [4]. The algorithm is to maximize 
the joint entropy by using a stochastic gradient ascent. The gradient update rule for 
the weight matrix W is as follows: 

( )WYYIW Tg )(+=Δ  (10) 

where )1/(21)( YY −+−= eg  is calculated for each component of Y. 
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3.2   Moving Object Localization and Background Synthesis 

From the reference image and the difference images produced by ICA, we can further 
detect moving objects and synthesize a “pure” background image without moving 
objects. By comparing each pixel in an original input image with all the difference 
images, we can determine if the pixel belongs to the background or to a moving ob-
ject. Since zero intensity pixels in the difference images are background, we simply 
check each pixel in an original input image that correspond to the other pixel except 
zero intensity pixel in difference images with thresholding. This way, each input im-
age is divided into the background pixels and the moving object pixels. Excluding the 
pixels belonging to the moving objects, the original input image has a few empty ar-
eas. The colors in these areas can be filled by pasting from other input images where 
the background is not occluded by moving objects. 

4   Experimental Results 

In this section, we present the moving object detection results both for a constant 
background and for a changing background. In these experiments, we used a digital 
video camera whose frame rate is less than 30 fps with a dimension of 320*240  
pixels. 

4.1   Constant Background 

In the case of two input images, Eq.(4) becomes 
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In the example shown in Fig.2, two input images in video image are used and two 
independent components are separated by ICA. 

The estimated weight matrix A (Fig.2) is given by 

−
=

94.099.0

06.096.0
A  (12) 

As can be seen from Fig.2, Fig.2(c) is very close to Fig.2(a), which serves as the 
reference image. Fig.2(d) is the difference between Figs.2 (b) and (a). This can be 

verified from Eq.(12). The fact that 11a  is close to 1 and 12a  is close to 0 means that 

Fig.2(a) is almost the same as the reference image. The fact that both 21a  and 22a  

are close to 1 means that Fig.2(b) is almost the sum of Figs.2 (c) and (d), that is the 
reference image and the difference image. From these separated images, we can fur-
ther synthesize a “pure” background image and localize moving objects in each input 
image, as shown in Figs.2 (g), (e), (f), respectively. 
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Fig. 2. ICA of two input images. (a), (b) two input images. (c), (d) two separated images by 
ICA. (e), (f) moving objects. (g) a synthetic background image. 

 
In the case of three input images, Eq.(4) becomes 
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In the example shown in Fig.3, three input images in video image are used and 
three independent components are separated by ICA. 
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Fig. 3. ICA of three input images. (a), (b), (c) three input images. (d), (e), (f) three separated 
images by ICA. (g), (h), (i) moving objects. (j) a synthetic background image. 

 

Fig. 4. ICA of five input images. (a), (b), (c), (d), (e) five input images. (f), (g), (h), (i), (j) five 
separated images by ICA. (k), (l), (m), (n), (o) moving objects. (p) a synthetic background image. 

The estimated weight matrix A(Fig.3) is given as follows: 

−
−−

=
96.009.097.0

04.002.195.0

06.003.004.1

A                            (14) 
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As can be seen from Fig.3, Fig.3(d) is very close to Fig.3(a), which serves as the 
reference image. Figs.3 (e) and (f) are the differences between Figs.3 (a), (b) and (c). 

This can be verified from Eq.(14). The fact that 11a  is close to 1, and 12a  and 13a  

are close to 0 means that Fig.3(a) is almost the same as the reference image. The fact 

that both 21a  and 22a  are close to 1 and 23a  is close to 0 means that Fig.3(b) is al-

most the sum of Figs.3 (d) and (e). The fact that 31a  is close to 1 and that the sum of 

32a  and 33a  is close to 1 means that Fig.3(c) is the sum of Fig.3(d) and a linear 

combination of Figs.3 (e) and (f), with Fig.3(f) weighted more. 

 

Fig. 5. ICA of two input images. (a), (b) two input images. (c), (d) two separated images by 
ICA. (e), (f) moving objects. (g), (h) two synthetic background images. 
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Without giving detailed explanations, we show an example of five input images in 
video image in Fig.4. 

4.2   Changing Background 

The method based on ICA is not only effective in the case of constant background but 
also very effective in the case of changing background due to lighting variations and  
 

contrast changes. Two examples are shown in Fig. 5 and Fig. 6. They are the same 
scene but with different lighting conditions. 

 

Fig. 6. ICA of two input images. (a), (b) two input images. (c), (d) two separated images by 
ICA. (e), (f) moving objects. (g), (h) two synthetic background images. 
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Fig. 7. ICA of three input images. (a), (b), (c) three input images. (d), (e), (f) three separated 
images by ICA. (g), (h), (i) moving objects. (j), (k), (l) three synthetic background images. 

The estimated weight matrix A(Fig.5) is given as follows: 

−
=

94.091.0

09.012.1
A                                 (15) 

Compared with the example shown in Fig.2, 11a  and 21a  are less close to 1, be-

cause the background change has to be accounted for by the weights. The more the 

background changes, the more 11a  and 21a  differ from 1, as can be verified by 

Eq.(16) which is for the example given in Fig.6. From these separated images, we can 
further synthesize a “pure” background image by adjusting the scale of the pasted 
empty areas to that of the background and localize moving objects in each input im-
age, as shown in Figs.5,6 (g), (h), (e), (f), respectively. 

The estimated weight matrix A(Fig.6) is given as follows: 

−
=

96.082.0

11.019.1
A                                 (16) 

The same trend can be seen in the case of three input images in video image with a 
changing background as shown in Fig. 7. The estimated weight matrix A (Fig.7) is 
given as follows: 
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−
−−

=
91.006.081.0

09.093.092.0

13.011.021.1

A .                  (17) 

4.3   Comparison with Other Related Methods 

We compare our proposed method with common frame differencing method in the 
same scene. As a result of experiments, our proposed method is almost the same per-
formance. With regard to lighting results, it occur error detection of moving objects 
when partial illumination changes (spotlight etc). These problems, however, can be 
solved if partial illumination change periods are parameterized. Our proposed method 
has the merit of dealing with several images at once. That is to say, it is possible to 
get more information about moving objects. 

5   Conclusions 

We have presented a new method for detecting moving objects based on ICA. A  
particular image in an image sequence can be modeled as a linear combination of a 
reference image containing the background and a difference image containing the 
moving objects but not the background. The reference image and difference images 
can be obtained by applying ICA to the input images. Moving objects are then  
detected by using the separated images by ICA. Experimental results agreed well with  
the assumed model and have shown that our proposed method is effective in detecting 
moving objects even if changing lighting conditions except partial illumination 
changes (spotlight etc). 

Many methods for moving object detection have both good points and bad points. 
So we need design effective algorithm by the problem conditions. Further investiga-
tions will extend the proposed algorithm to tracking of moving objects in real time by 
combining with other algorithm. 
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Abstract. OK-Quantization Theory for the digitization in value ensures the re-
constructivity of the probabilistic density function of the image. This paper 
shows some experimental demonstrations to reduce the number of the gray lev-
els, and shows mainly that there is a necessary analytical relationship between 
sampling and quantization based on the equivalence relationship between two 
kinds of the integral, Riemann and Lebesgue integrals for calculating the vol-
ume of the image. Experimental demonstrations are also shown in this paper.  

1   Introduction 

Complete digitization of image f(x) is composed by a pair of digitization processes, 
sampling and quantization for space(x) and value(f), respectively. Shannon’s Sam-
pling Theorem (ST) [1],[2] is a unique mathematical basis for the digitization of the 
space x, but there is no mathematical basis for the value f. [3],[4],[5] Being inspired 
by the fact that ST is a reconstruction theorem of the continuous image from the spa-
tially discrete samples of the image, this paper proposes a new mathematical theory 
for the quantization of the image. This theory, Quantization Theory (QT) is a recon-
struction theory for the continuous probability density function(PDF) p(f) of the value 
f of the image from the digitized PDF. Comparing with the related  researches such as 
the vector quantization, rate distortion theory, Llod-max quantization, Isomichi's 
inverse quantization, OK-QT is an unique theory from the view point of the mathe-
matical reconstruction basis. This paper investigates briefly an outline of ST for the 
preparation of the introduction of QT, and QT is proposed as the reconstruction the-
ory of p(f) from the digitized PDF. Executive procedures for estimating p(f) based on 
a histogram of the given digital image is successively introduced, and some experi-
ments are given to demonstrate the practical impacts of this QT by means of SEM 
images. Further subjects such as the interference between QT and ST are also pointed 
as one of the future research subjects and a relationship between OK-QT and ST was 
presented as an important necessary condition together with some experimental con-
siderations. This was initiated by the fact the volume of the image defined on the 
Riemann integral must be always equivalent to that on the Lebesgue integral. 
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2   The Outline of OK-QT 

OK-Quantization theory is a reconstruction basis for the probability density function 
of the image from its digital data. 

2.1   Sampling Theorem and Quantization Theory 

ST is a theorem for perfect reconstructing of analog image f(x) from the digital data 
f( x*i) defined by the given sampling interval x. Equation (1) gives the digitized 
image f = (fi), where fi = f( x*i). Here let the Fourier transform of f(x) be F(u).

)*( ixffi Δ=  , i= …,-1,0,1,2,3,…    (1) 

When and only when the Fourier transform F(u) of f(x) is satisfied by eq. (2) (inte-
grable) and F(u) has a cut-off frequency uc as eq.(3), if and only if the sampling inter-
val x be defined by eq. (4), the image can be reconstructed from the digitized image 
f = (fi) introduced by eq. (1) as given in eq. (5).  
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∞<dxxf

2
)(     (2) 

0)( =uF cu≥u     (3) 
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Based on the above discussion, we have proposed a unique que to introduce a new 
quantization theory, called OK-Quantization as follows. Let the probability density 
function PDF of the image f(x) be p(f) and its Fourier transform be P(v). If the cut-off 
frequency of P(v) is vc as shown in eq. (6), then PDF p(f) can be perfectly recon-
structed by eq. (8) from the digitized PDF by the interval f defined by eq. (7).

0)( =vP cvv ≥                                (6) 

)21( cvf ≤Δ                               (7) 

{ }Δ−Δ=
k

fkfSinckfpfp )*(2)*()( π .                 (8) 

2.2   Estimation of PDF  Engineering of OK-Quantization Theory 

The only one clue to know the PDF p(f) of an image f(x) is a gray value histogram h(f)
of the digital image f = (fi) preliminarily prepared in advance, i.e. VGA with 8 bit gray 
scale.

Let us suppose that the gray value histogram h(f) be distributed on finite discrete  
(= integer) space, and that the minimum interval fmin of the value f be ‘1’ , and that 
the maximum value fmax of it be ‘256’. For example of 8 bit gray scale, fmin = 1 and 
fmax = 256.We introduce a method to estimate p(f) from h(f), which is defined on the 
finite space [0, fmax], as follows:Let us assume that the PDF p(f) of the given image be 
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a series of rect-functions rect(f) introduced on a finite space   [0, fmax] as shown in 
Figure 1, and that the estimated PDF p(f) can be expressed by eq. (9) on a infinite 
space.

=

=

××

−××

=
max

1

minmin

max

1

min

)(

)()(

)(
f

n

f

n

fnfh

nfrectnfh

fp (9)

Here the definition of rect function is shown in eq. (10). 
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The PDF p(f) [f:– , + ] has been introduced from the gray value histogram h(f)
[f: 0, fmax]. Figure 1 shows a h(f) (dots on the graph) and the estimated PDF p(f) (trains 
of rect functions). Note that the correspondence between [f: 0, fmax] and  [f: – , + ] is 
one to one mapping only at the integer. As shown in Figure 2, since the Fourier trans-
form RECT(v) of rect(f) becomes a sinc(v), the Fourier transform of PDF p(f) can be 
analytically calculated as given in eq. (11). 
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Fig. 1. Gray value histogram and estimated PDF P(f)
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Fig. 2. rect[x]function and its Fourier transform 
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2.3   Experimental Consideration 

SEM digital image (Semiconductor Resist, 256 gray value levels) shown in Figure 3 
is used. The gray value histogram h(f) of this image is shown in Figure 4.  

Figure 5 shows the Fourier transform P(v) of PDF p(f) of the image f(x) given in 
Figure 3. By means of the procedure preliminarily given in [6], the cut-off frequency 
was extracted at vc = 0.055 [line pairs / 1 gray scale unit], and therefore the best quan-
tization pitch f was decided by OK-Quantization Theorem as follows: 

909.9)11.0(1)2(1 ===Δ cvf [gray scale unit]  (12) 

It was known from this result that the quantization pitch f =9 is (necessary and) 
sufficient for reconstructing PDF p(f) estimated in Figure 4, and that the number of 
gray levels (necessary and) sufficient for the image given in Figure 3 could be  
reduced to 28 because 256 / 9 28.

2.4   Major Three of the Expected Subjects in OK-QT Are as Follows 

(1) Restoration of  PDF and Visual Evaluation 
OK-QT does not guarantee the visual evaluation of a image directly. But as known 
from SEM image with 32 gray levels shown in Figures 6(a), degradation is hardly 
seen. Therefore , a practical applicability of OK-Quantization Theory to the quantiza-
tion methodology was clearly suggested. For example, as known in SEM image with 
8 gray levels, a false outline occurs and degradation is clear like Figures 6(b). 

(2) OK-QT and Reverse Quantization 
OK-Quantization theory will be effective in the reverse quantization procedure from 
the following aspect: When the image with full number of gray levels is restored from 
the image with the reduced number of gray levels, the gray histogram which is com-
pletely restored from the reduced histogram by OK-Quantization theory will regulate 
the gray level restoration process. 

(3) Interference Problem Between ST and OK-QT 
In general, if the digitization in value is applied to a image f(x) based on OK-QT, the 
size of the digitized image will become larger than that of the digitized image where 
the digitization in space is primary applied. Therefore, the digitization process S(Q(f))
to a image f(x) provides the different digital image of the reverse process given by 
Q(S(f)) This means that ST and OK-QT must be discussed simultaneously. This prob-
lem is one of the most important coming subjects.[8] 

Fig. 3. SEM Image (256gray levels) 
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Fig. 4. Gray value histogram h(f)
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Fig. 5. Fourier transform P(v)of SEM image of p(f)

Fig. 6(a). SEM Image (32 gray levels) 

Fig. 6(b). SEM Image (8 gray levels) 
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3   A Necessary Condition Between ST and OK-QT 

3.1   Equivalence Between Riemann and Lebesgue Integrals of the Image Volume 

We discuss here how OK-QT[6],[10][11][12] closely relates to ST. Let us imagine to 
calculate the volume of the given image from the image f(x) and the probability den-
sity function p(f) of its gray value. The volume defined on the image f(x) is provided 
by Riemann integral, and that on the PDF p(f) is provided by Lebesgue integral. Then 
we can extract an analytical relationship between them. Hereafter a new notation ,

=2 u, is used for convenience.

3.2   Sampling Theorem and Riemann Integral 

In this section, let us denote a image as f(x) and a image must be satisfied by eq.(13). 

0)( ≥xf ∞<
∞

∞−
dxxf )( (13)

Here let the Fourier transform F( ) of a image f(x)  be band-limited at the cut-off 
frequency W by eq.(14). 
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The digital image )( nxf ( ,2,1,0 ±±=n ) is defined at every sample points as 

eq.(15). 
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The analog image f(x) can be reconstructed from the digital image by eq.(16)  based 
on Sampling Theorem. 
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This is the contents of  Sampling Theorem known well. 
Now, if the integration formula of Fourier is applied, the formula (17) will be 

proved easily. 

W
dx

Wx

Wx π=
∞

∞−

sin (17)

As easily known, the integral of the sinc function becomes /W, the volume IR of
the image can be derivated as eq.(18) based on the Riemann integral scheme, and as a 
result, IR can be expressed by the digital image. 
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It becomes clear that the value of definite integral IR is expressed with the sample 
value )( nxf  of a function and the cut-off frequency W.
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3.3   Overview of OK-Quantization Theory 

Let a measure D be defined by eq.(19) such that the value of a image f(x) comes be-
tween f1 and  f2 in the image domain x.

[ ]21 )( fxffxD <≤ (19)

Then a function h(f) of the value of the image can be expressed by  eq.(20). 

[ ] fffxffxDfh
f
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Since Fourier transform H( ) of h(f) is band-limited, H( )  is represented as eq.(21). 
∞

∞−

−= dfefhvH ivf)()( )0( Vv ≤≤

)(0 ∞<<= vV (21)

Just in the same way of  ST, the digitized data h(fr) of h(f) ...),2,1,0( ±±=r sampled 

at every fr introduced by eq.(22) will reconstruct h(f) as eq.(23). 
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It means that this result had achieved Quantization of the original function f(x) This is 
the outline of Quantization Theory. 

3.4   OK-Quantization and Lebesgue integral 

Let us imagine to calculate the volume of the image by way of the integral of h(f). It is 
promising to know that this integral is equivalent to the Lebesgue integral of the im-
age f(x) as follows: If a measure S(f) is introduced as eq.(24) by using the measure D 
in eq.(19), the volume IL of the image can be formulated as eq.(25). 

[ ] ∞
′′=∞<≤=

f
fdfhxffxDfS )()()(          (24)                 

∞
≡

0
)( dffSI L (25)

Substituting S(f) by eq.(24) and executing partial integral, the volume IL can be repre-
sented  simply by h(f) as shown in eq.(26). 

∞
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As h(f) can be replaced by the digitized one by eq.(23), IL can be represented by 
eq.(27) and be derivated as eq.(28). 
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Finally the volume of the image can be represented by h(fr) and cut-off frequency V.
as shown in eq.(29). 
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It is clear that the value of IL becomes settled from this formula only with the density 
function h(fr) of frequency and the cut-off frequency V about a function value. 

4   Relationship Between ST and OK-Quantization 

The volume of the image IR based on Riemann integral is originally equivalent to IL

based on Lebesgue integral as shown in eq.(30), therefore we can have an interesting 
relationship given in eq.(31). For a given image, the cut-off frequency W in image 
space must be analytically constrained by the cut-off frequency V in PDF space.

LR II ≡ (30)
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Also it is easily known that this equation could be extended as eq.(32) in  
2-dimensional image. W and W' are the cu-off frequency for x and y axis, respectively. 
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5   Experiments and Considerations 

Modifying eq.(32), we get eq.(33) to investigate experimentally how 1/WW'  is con-
strained by the change of V.
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Figures 7 and 8 are a set of examples, where the upper is the image and the lower is 
the respective graph in which the horizontal axis represents the value V and the verti-
cal one is the value of the right term of eq.(32). It is generally known that W and V are 
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approximately linear and that the shape of the graph is strictly dependent to the re-
spective property of the image. This means theoretically that the finer resolution in 
space requires the finer resolution in value. 

Fig. 7. Input image (flower pollen) and experimental result 

Fig. 8. Input image (plant) and Experimental result 
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6   Conclusion 

In this paper, after considering the outline of OK Quantization Theory briefly, a theo-
retical relationship between OK-QT and Sampling Theorem was discussed mathe-
matically. From the view point of the equivalence between Riemann and Lebesgue
integrals of the volume of the image, we introduced a necessary condition between 
cut-off frequencies W and V in the respective spatial and gray value domains. We also 
showed an experimental demonstration of this necessary condition. In the future, it is 
expected to introduce a practical procedure for the simultaneous design of sampling 
and quantization. 
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Abstract. In this paper, we try to use graphical model based probabilis-
tic inference methods to solve the problem of contour matching, which
is a fundamental problem in computer vision. Specifically, belief prop-
agation is used to develop the contour matching framework. First, an
undirected loopy graph is constructed by treating each point of source
contour as a graphical node. Then, the distances between the source
contour points and the target contour points are used as the observation
data, and supplied to this graphical model. During message transmission,
we explicitly penalize two kinds of incorrect correspondences: many-
to-one correspondence and cross correspondence. A final geometrical
mapping is obtained by minimizing the energy function and maximiz-
ing a posterior for each node. Comparable experimental results show
that better correspondences can be achieved.

1 Introduction

1.1 Background and Related Work

Shape matching is an essential and critical topic in computer vision. The task of
shape matching is to find the point-to-point geometric correspondences between
two sets of 2D or 3D points [1] to establish an optimal aligning transformation
for shape-based image analysis or object recognition [2, 3]. Many approaches to
shape matching have been proposed [1]. However, matching shapes with local
non-rigid deformations and different topologies is still a tough issue.

In real applications, the shapes of the objects to be matched can be specified
by a set of structured or unstructured points [4, 5, 6, 7, 8, 10]. This paper considers
the special case where the shape is represented by a single closed contour.

Various efforts on improving contour matching are concentrated on contour
feature and matching algorithm. To obtain accurate correspondences, one needs
shape descriptors with local rich descriptive power [3, 9, 11].

Dynamic programming (DP) is commonly used to match contours [7, 12, 13].
By means of DP, one can get a mapping with order preserving. But many-to-one
correspondences may appear (Figure 1(a)). So a lot of continuous points on the
target contour may miss to be matched. Frenkel et al. introduce a continuous
formulation for this problem by using Sethian’s fast matching method [12].

Another popular optimization strategy is energy or distance minimization
[4, 5, 14]. Chui et al. choose to relax the constraints on the correspondence to
construct a soft mapping [4] for minimizing the thin-plate-spline (TPS) energy.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 489–498, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A B C D E F  G 

(a)

 

A B C D E F  G 

(b)

Fig. 1. Incorrect correspondences: (a) many-to-one correspondence and (b) cross cor-
respondences

Coughlan et al. formulate the template shape contour as a Bayesian graphical
model [6]. Belief propagation (BP) is performed on this model to match the
template to the image [5]. These approaches are very suitable for the sets of
unstructured or orderless points. But directly applying them to contour matching
may require one to deal with the case of cross correspondence (Figure 1(b)), that
is, neighboring points are no longer neighbors after mapped. Grauman et al. use
the low-distortion embedding of the earth mover’s distance as the minimum cost
for contour matching [14]. However, there also lacks of an explicit mechanism to
punish cross correspondences.

1.2 Overview

Contour can be defined in the form of a closed sequence of points. Thus order
relationship is a natural characteristic for this point sequence. By treating each
point as a node, we can get an undirected loopy graph. Each node on the loop
has two neighbors. It should share its two neighbors’ matching information. The
node ‘A’ and node ‘C’, for example in Figure 1, should simultaneously transfer
information to node ‘B’. therefore, it is necessary to introduce a mechanism of
dual way message transmission. This treatment is essentially different from DP
based frameworks, where the information is transferred in a single way from ‘A’
to ‘B’, then to ‘C’ in the first phase of cost aggregation, and inversely collected
from ‘C’ to ‘B’, then to ‘A’ in the second phase of back-tracing.

Since neighboring points on the source contour should be mapped to the
neighboring points on the target contour in an order preserving way, the mapped
indexes provide the information for introducing penalty term to local messages.

Motivated to the above analysis, in this paper we formulate contour matching
as a probabilistic inference problem. The inference is implemented on a loopy
graph model by using Bayesian belief propagation algorithm [15].

To obtain an accurate point-to-point mapping, local shape descriptor with
rich descriptive power is desired for calculating the distance between a pair of
points to be matched. In this paper, we use shape context [3] and curvature
information to extract the features of the points.

2 Local Shape Descriptor and Distance Measurement

The shape context [3] has been shown to be a powerful tool for representing
shapes. For a single contour point, called as reference point, its shape context
is a log-polar histogram of the relative coordinates of the remaining points. The
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shape context summarizes global shape in a rich and local descriptor. Since each
point can be associated with a histogram, we can get a detailed description about
the shape perception.

Invariance to translation is intrinsic to the shape context. To achieve scale
invariance, all radial distances are normalized by the median distance between
all the point pairs [3].

The drawback of shape context descriptor is that the log-polar coordinate
system makes it more sensitive to the positions near the reference point [11].
In fact, it is unable to robustly reflect the local geometrical property at the
reference point very well. But the degree of curvature is only related to a few
neighbor points and can be easily calculated. We use it as an additional feature.

Let point P i
S belong to contour S, and P j

T belong to T , the distance between
P i

S and P j
T is computed as:

d(P i
S , P j

T ) = χ2(Ci
S ,Cj

T ) + s1ds2(Ci
S ,Cj

T ) + s2dk(κi
S , κj

T ) + s3dk2(κi
S , κj

T ) (1)

where Ci
S and κi

S denote the shape context and the curvature of point P i
S ,

respectively. Cj
T and κj

T have the same meanings as Ci
S and κi

S . s1, s2 and s3
are weighting parameters, which are all manually set as 0.001.

In (1), χ2(Ci
S ,Cj

T ) and ds2(Ci
S ,Cj

T ) are calculated as the χ2 test statistics
and the two order derivative of the shape context cost at the pair point of
(P i

S , P j
T ) [11, 16], dk(κi

S , κj
T ) and dk2(κi

S , κj
T ) are the curvature cost and the two

order derivative of the curvature cost. The reason here we use the two order
derivatives is that neighboring points on S should also be neighboring after
matched to T .

3 Contour Matching with Belief Propagation

The problem we consider can be described as follows. Let Cs and Ct be a source
contour and a target contour. Suppose Cs is defined as a set of m points,
{P 0

s , P 1
s , · · · , Pm−1

s }, and Ct is defined as a set of n points, {P 0
t , P 1

t , · · · , Pn−1
t }.

For simplicity, we use two indicator sets to denote them, P Δ= {0, 1, · · · ,m−1} and
L

Δ= {0, 1, · · · , n−1}. The task now is to assign a label fp ∈ L to each point p ∈ P .

3.1 The Max-Product Algorithm

For each point in P , we first assign a node to it and then orderly connect all
the nodes to construct an undirected loopy graph. In the setting of probabilistic
inference, each node is called a hidden node, which is associated with a state
variable. An edge of this undirected graphical model describes the compatibil-
ity relationship between the two hidden nodes [15]. By attaching an additional
node to each hidden node to transfer observation information, a graph model is
constructed as illustrated in Figure 2.

A clique of this model contains a node and its two neighbors. The description
and analysis on this model with pairwise cliques of belief propagation become
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m-1 0  1 2 m-1  

observation  
node  

MRF  

Fig. 2. A loopy graph with hidden nodes and observation nodes for contour matching

more specific and simpler [15]. In an iteration, each node sends a message to
each of its two neighbors and receives a message from each neighbor.

Let fi and fj be two state variables of two neighboring nodes i and j in the
graphical model. Suppose yi be the associated observation node of hidden node
i. We denote by mt

ij the message that node i sends to j at time t, by mii(fi)
the message that yi sends to i, and by bi(fi) the belief at i. The max-product
update rules [15], which control the quality of a labelling, are as follows:

mt
ij(fj)← αmax

fi

(Vij(fi, fj) ·mii(fi) ·
∏
k∈N

mt−1
ki (fi)) (2)

bi(fi)← α ·mii(fi) ·
∏

k∈N(i)

mt
ki(fi) (3)

where α denotes a normalizing constant, N = N(i)\j, denotes the neighbors of
i other than j and Vij(fi, fj) is a potential function of assignments fi and fj ,
which is the cost of assigning labels fi and fj to two neighboring nodes. Actually,
Vij(fi, fj) is the penalty term to penalize the cross correspondence.

Following the idea used in [17], the equivalent computation can be imple-
mented with negative log probabilities. We rewrite (2) and (3) as follows:

mt
ij(fj) = min

fi

(Vij(fi, fj) + mii(fi) +
∑
k∈N

mt−1
ki (fi)) (4)

bi(fi) = mii(fi) +
∑

k∈N(i)

mt
ki(fi) (5)

When using negative log probabilities, all the message vectors are initialized to
zero. During message transmission, observation nodes do not receive messages
and they always transmit the same vector. After iterations, the label f∗

i that
minimizes bi(fi) is finally selected as the optimal assignment of the ith node.

The principal of the assignment is intrinsically equivalent to Pearl’s rule of
finding maximum a posterior [18]. The convergence has not been proven, but
several groups have recently reported excellent experimental results by running
the max-product algorithm on graphs with loops (for details through [15, 18] ).

3.2 Computing Messages

Note that the hidden node i is associated with the point of P i
S , and its assignment

fi is connected with the point of P fi

T . Therefore, in negative log probability
framework, mii(fi) can be calculated as the distance between points P i

S and
P fi

T . According to (1), we have:



Contour Matching Based on Belief Propagation 493

mii(fi) = d(P i
S , P fi

T ) (6)

The potential function Vij(fi, fj) is related to the cost of the assignment
discontinuity in the MRFs for early vision. However, for contour matching, if
two neighboring points are assigned to a same label and the cost is zero [17], the
situations, that a few continuous points are mapped together to a same point
(Figure 1(a)), would appear with higher possibility. Actually, the continuity here
is referred to as the order of the assignment. For two neighbor nodes i and j,
we hope ‖fi − fj‖ = 1 holds when ‖i− j‖ = 1. When a cross correspondence
appears (‖fi − fj‖ > 1), a bigger penalty should be given. Thus we define the
following cost function:

Vij(fi, fj) =

⎧⎨⎩0 if ‖fi − fj‖ = 1
s if fi = fj

s · ‖fi − fj‖ otherwise
(7)

where s is the increasing coefficient and ‖fi − fj‖ denotes the distance of two
labels, which is measured on a loop with n labels.

‖fi − fj‖ =
{
‖fi − fj‖ if ‖fi − fj‖ < n/2
n/2− ‖fi − fj‖ otherwise (8)

Note that (7) holds only on the assumption that m is equal to n . When this
condition does not meet, we can insert dummy points to one of the point sets
such that m = n satisfies. To this end, we copy the points according to a uniform
step. For example, when we want to expand a set of six points to a set of eight
points, we need to copy two points. The result is: 0, 1, 2, 2, 3, 4, 5, 5.

3.3 Updating Messages

Our model is a bipartite graph. Therefore, the belief propagation can be alter-
natively performed on two node subsets [17]. Let P = A ∪B (A ∩B = ∅). Now
the message is updated as follows [17]:

mt
ij(fj) =

{
mt

ij(fj) if i ∈ A (if i ∈ B)
mt−1

ij (fj) otherwise (9)

It is necessary for negative log probability framework to normalize the message
vectors when updating. According to (2) and (4), the normalization for each
message vector can be implemented by translating all the elements such that
their mean is zero.

4 Fast Algorithm

In each iteration, the performance of the max-product algorithm executes in
O(mn2) time. Felzenszwalb’s work [17] shows that the computation time can
be reduced from O(mn2) to O(mn) and one can also get good results. This
Section develops a fast algorithm for our contour matching framework introduced
in Section 3.
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Fig. 3. The computation of the lower envelope of 4 ‘W’s for developing fast algorithm

As can be seen, only the first term in (4) is related to fj . Thus we have:

mt
ij(fj) = min

fi

(Vij(fi, fj) + h(fi)) (10)

where h(fi) = mii(fi) +
∑

k∈N(i)\j

mt−1
ki (fi). Given a fi, the curve of the function

(Vij(fi, fj) + h(fi)) has a similar form of character ‘W’ (see Figure 3). It is the
lower envelope of two ‘V’ functions: V1 = (Ṽij(fi − 1, fj) + h(fi)) and V2 =
(Ṽij(fi + 1, fj) + h(fi)), here Ṽij(fi, fj) = s · ‖fi − fj‖.

Thus we can first calculate the minimum of ‘V1’ functions located at ‘-1’ and
then calculate that of the ‘V2’ functions located at ‘+1’. As a result, we get two
mappings. The best one can be finally selected from two results. Now we give
the steps of our fast algorithm:

Step 1: Let m1(i) = h(i + 1), i = 0, · · · , n − 2, m1(−1) = h(0), m1(n − 1) =
h(n− 1) + s, m1(n) = h(n− 1) + 2 · s;
Step 2: Let m2(i) = h(i− 1), i = 1, · · · , n− 1, m2(−1) = h(0) + 2 · s, m2(0) =
h(0) + s, m2(n) = h(n− 1);
Step 3: Do 1D distance transform on m1and m2 [17];
Step 4: Let mt

ij(fj , V1) = min(m1(fj),min
fi

h(fi)) and mt
ij(fj , V2) = min(m2(fj),

min
fi

h(fi)), fj = 0, 1, · · · , n− 1.

Step 5: Based on mt
ij(fj , V1) and mt

ij(fj, V2), run twice max-product algorithm
and select the best of the two mappings.

The above algorithm can be further improved since the arrays m1 and m2
are similar to each other, except the first two and the last two elements. Thus,
we need to perform the distance transformation only once. The steps can be
rewrited as follows:

Step 1: Do 1D distance transform on h;
Step 2: Let m(i) = min(h(i−1), h(i+1)), i = 1, 2, · · · , n−2, m(0) = min(h(0)+
s, h(1)) and m(n− 1) = min(h(n− 2) + s, h(n− 1) + s);
Step 3: Let mt

ij(fj) = min(m(fj),min
fi

h(fi));

Step 4: Run max-product algorithm.
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However, the above operation can not be applied to the labels located on a
circle. To this end, we extend h from two sides respectively to get a new one
with 2n elements. Actually, the real labels of the new h array are:

([n/2] , · · · , n− 1, 0, 1, · · · , n− 1, 0, 1, · · · , [n/2]− 1)

In an iteration, we first perform the above fast algorithm on new h. Then for
each label we select the smaller one from the two beliefs. Thus the length of h
is reduced to the original level.

5 Experimental Evaluation

In this Section we describe the experimental evaluation of our contour match-
ing based on belief propagation and compare it to two matching algorithms:
the standard DP and the soft correspondence approach (SC) used in [4]. The
reason that we do not use the whole TPS-based shape matching framework to
do comparison is that the performance in [4] is based on an interim point-set
which is warped from the source shape by the estimated transform parameters.
Thus for TPS-based shape matching framework, a good initial matching is very
important. Different from the work in [4], when iteratively performing SC, we
use the local descriptors in Section 2 to replace the simple distance description
based on the spatial positions.

In all experiments reported in this paper, the size of the shape context his-
togram is 5 × 12 and the increasing coefficient in (7) is taken as 2.5. When
performing SC and the BP matching algorithm, the iteration times are both
manually set as 30. We report three experimental results in Figure 4.

In Figure 4(a) and 4(d), we can see that the results obtained by standard DP
approach are very good except that the first and last several points miss to be
matched. In Figure 4(g), the source contour and target contour have different
local non-rigid deformations except that the two segments ‘ABC’ and ‘DEF’ in
source contour are equal to ‘A1B1C1’ and ‘d1E1F1’ in target contour, respec-
tively. Although the correspondence are all order preserving, there are a lot of
points mapped to a same target point, resulting in that a lot of continuous points
in the target miss to be matched.

In Figure 4(b) and Figure 4(h), there exist evident cross correspondences. In
Figure 4(e), some many-to-one correspondences are generated.

Figure 4(c), 4(f) and 4(i) demonstrate the results which are obtained by the
standard BP matching algorithm introduced in Section 3. We can see that the
results are better than those obtained by standard DP approach and the SC
approach. Globally, good local matching is achieved. Actually, in our BP match-
ing framework, we explicitly penalize the two cases: i.e. cross correspondences
and many-to-one correspondences. We also calculate the cost of Vij(fi, fj) in a
circular way. This guarantees that the first and the last several indexed points
in target contour can also be matched correctly.

In Figure 5, we illustrate the results obtained by the fast BP (FBP) matching
algorithm. The iteration times are also set as 30. As can be seen, the results are
very similar to those obtained by the standard BP.
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Fig. 4. Three examples. (a), (d) and (g) demonstrate the results matched by dynamic
programming; (b), (e) and (h) show those by soft correspondence, and (c), (f) and (i)
show those by our approach. Contours in (a) are extracted manually from two frames
in a diving video, contours in (d) correspond to two postures of two persons, while
contours in (g) are drawn by hand.
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Fig. 5. (a), (b) and (c): Results by the fast matching algorithm

Table 1. Computation time (100ms) (CPU: Intel Pentium 2.4GHz; RAM: 512M)

NN 60 90 120 150 180 210 240 270 300 330 360

DP 0.01 0.02 0.03 0.04 0.06 0.09 0.15 0.24 0.35 0.43 0.70
SC 0.02 0.05 0.09 0.17 0.31 0.47 0.62 0.78 0.94 1.05 1.41
SBP 0.83 2.80 6.47 12.3 20.9 33.0 48.6 69.0 94.0 124. 161.
FBP 0.03 0.09 0.26 0.53 0.81 1.12 1.40 1.93 2.58 3.09 3.63

To analyze computation complexity, we perform the algorithms with different
number of nodes (NN). Table 1 illustrates the computation time, i.e. the average
time of 10 tests, which does not contain the time spending on calculating the local
shape features. When using the standard BP (SBP), we store all the Vij(fi, fj)
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in a table to improve the computation speed. We can see that the computation
time is drastically reduced when using FBP approach.

6 Conclusion

This paper introduces a new method for contour matching builded on belief
propagation. Each of the points, which are used to define the source contour,
is associated with a graph node to construct an undirected loopy graph. As
observation information, the distance between source point and target point to be
matched is measured by the shape context descriptor and curvature information.
When computing the discontinuity cost of one message, we explicitly penalize
two cases of incorrect correspondences: cross correspondence and many-to-one
correspondence. Finally, the messages are transferred iteratively on this graph
and a geometrical mapping can be obtained by minimizing the energy function
and maximizing a posterior for each node.

The standard belief propagation for contour matching is time consuming.
To reduce computation complexity, this paper introduces a fast algorithm and
satisfactory matching results are achieved.

In the further, we would like to use belief propagation to match segment-to-
segment contour matching.
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Abstract. Many activities may be characterized by a sequence of key
frames that are related to important changes in motion rather than domi-
nant characteristics that persist over a long sequence of frames. To detect
such changes, we define a transformation operator at every time instant,
which relates the past to the future states. One of the useful quanti-
ties associated with numerical range of an operator is the eigenvalue. In
the literature, eigenvalue-based approaches have been studied extensively
for many modeling tasks. These rely on gross properties of the data and
are not suitable to detect subtle changes. We propose an antieigenvalue -
based measure to detect key frames. Antieigenvalues depend critically on
the turning of the operator, whereas eigenvalues represent the amount
of dilation along the eigenvector directions aligned with the direction of
maximum variance. We demonstrate its application to activity modeling
and recognition using two datasets: a motion capture dataset and the
UCF human action dataset.

1 Introduction

The scope of modeling human activities has expanded from recognizing simple
activities such as walking, running and making hand gestures, to more complex
ones that involve an underlying structure. While statistical techniques have been
applied in the case of simple activities ([1],[2]), primitive - based approaches that
rely on domain knowledge have been proposed for complex ones ([3], [4]). We
attempt to provide an unsupervised key frame based representation for human
activities by focusing on changes in motion properties rather than a sequence of
dominant features that form primitives.

In many activities, the relevant information is contained in a few key frames.
These frames may be significant due to certain changes in the data, such as
direction, speed and deviation from a known behavior. As an illustration, con-
sider the trajectory traced by a hand when opening the door. The shape of the
trajectory depends on the person opening the door, the initial position of the
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hand, the camera’s viewing direction, etc. Modeling these variations is neither
easy nor relevant for the activity of opening. The opening action occurs within
a few frames when the hand makes contact with the door. The sequence of key
frames - extending the hand, grabbing the handle and opening the door - is a
sufficient representation. Similarly, we may say that walking is a sequence of
events or key stances including the rest stance when the feet are closest to each
other and the swing stance when the feet are maximally apart. Jogging may
be represented by a similar set of freeze frames, but the changes from frame to
frame are different from those of walking.

The theory of antieigenvalues is based on changes in the data. It is sensitive
to how much a data vector is turned from a known direction, rather than the
direction of persistence [5]. On the other hand, eigenvectors represent the direc-
tion of maximum spread of the data and the eigenvalues are proportional to the
amount of dilation. We propose an antieigenvalue-based approach for detecting
key frames by investigating properties of operators that transform past states to
observed future states.

The paper is organized as follows. Section 2 motivates the key-frame based
representation for activities. Section 3 gives a brief overview of antieigenvalue
theory. Section 4 describes the proposed approach. Section 5 demonstrates the
proposed method using two datasets: the MOCAP database and the UCF human
action database. Section 6 concludes the paper.

1.1 Prior Work

Aggarwal and Cai [6] present a comprehensive review of human motion and
human activities. Ivanov and Bobick [7] propose a two-step procedure where
primitives are modeled using HMMs and a sequence of primitives is parsed us-
ing stochastic grammar. Hamid et al. [3] present a dynamic Bayesian network
framework for tracking and recognizing complex multi agent activities. Vaswani
et al. regard a sequence of moving points engaged in the activity as a shape
using Kendall’s shape space theory [8]. Nevatia et al. [9] present an Event Rep-
resentation Language (ERL) that captures the ontological structure of activities
using events. Rao et al. [10] detect dynamic instants, which are defined as points
of maximum curvature along a trajectory. Parameswaran and Chellappa [11]
compute view invariant representations for human actions in both 2D and 3D.
State-space approaches have been used by many researchers. For example, Brand
et al. [1] use coupled HMMs to model human actions that involve multiple parts
such as hands and the head. Eigenvalue (and singular value)-based methods have
been used extensively in many modeling tasks including face, gait and activities
([12], [13], [14]).

2 Key Frame Representation

As we argued through examples of opening a door, walking, etc., many activ-
ities can be represented using key frames instead of the entire video sequence.
Generally, there are three ways to decide on what constitutes a key frame. We
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may use domain knowledge in a top-down fashion. It requires an extensive model
for the activity, which may be tedious. It relies on our ability to detect the key
frames across variations in the data that occur due to structural changes and
noise [3]. We may hypothesize that the important characteristics of the activity
are present in the persistent and dominant frames [14]. This makes it difficult to
detect subtle changes, since it may be difficult to distinguish them from noise.
We may look for key frames that are a result of certain changes in the data. In
other words, changes in the activity may be more useful than the absolute values
of a dominant feature in representing the activity. We present an unsupervised
approach for detecting key frames based on changes in the data.

Let the past state vector x− be transformed by an operator At to a future
state vector x+. If motion properties do not change appreciably, then x+ may be
related to x− by an identity transformation modulo translation. Such a trans-
formation may be less interesting compared to the case where At turns the state
x−. We show how antieigenvalues may be used to detect such changes and to
identify the key frames. In contrast, eigenvalues are tuned to detecting identity-
like transformations. It is important to point out that these quantities are of
intrinsic interest in their own right. As the term denotes, however, it may be
easier to gain an insight into antieigenvalues by contrasting with eigenvalues
and eigenvectors of the operator.

The motion trajectories are associated with two quantities: the antieigenvalue
sequence, which is the sequence of antieigenvalues for the operator At for every
time t, and the location of the key frames detected using minima in the average
antieigenvalue sequence. Both the extent of change as given by the antieigenval-
ues and the location of key frame are useful for recognition. If viewing conditions
change, we may expect the time instants of occurrence of key frames to be more
useful since the extent of change depends on viewing direction. On the other
hand, if the viewing direction is fixed, antieigenvalues may be used in comparing
two activities. We illustrate both these cases in our experiments.

3 Mathematical Preliminaries: Antieigenvalues

We present a brief description of antieigenvalues before discussing its application.
A detailed discussion of antieigenvalues may be found in [5] or [15].

For a square matrix A, a non-zero vector x is said to be an eigenvector if
Ax = λx, and λ is called the eigenvalue. Equivalently, we may state the condition
as cos θ = 1, where θ is the angle between x and Ax. Geometrically, we may think
of eigenvectors as those that dilate A but do not turn at all. The eigenvalues
represent the amount of dilation. On the other hand, antieigenvectors are critical
to the turning of A. Instead of seeking cos θ = 1 or θ = 0, antieigenvectors
minimize cos θ, or equivalently, maximize θ. The nth antieigenvalue is defined
variationally [5] as

μn(A) = inf
Axn =0

�〈Axn,xn〉
‖Axn‖‖xn‖

, (1)
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where the nth antieigenvector xn⊥{x1, . . . ,xn−1}. It has been shown [15] that
all antieigenvectors for 2× 2 matrices are of the form

x =

(
±
√

λj√
λi + λj

,

√
λi√

λi + λj

)
, (2)

where i, j index all eigenvalues. For example, let

A =
(

9 0
0 16

)
(3)

The eigenvalues of A are λ = 9, 16. Using (2), the first antieigenvector is
x1 = (−4

5 , 3
5 ). The antieigenvalue may be calculated by substituting the value

of x1 in (1). The first antieigenvalue is μ1(S) = 〈Ax1,x1〉
‖Ax1‖ = 0.96 The second

antieigenvector is x2 = (3
5 ,

4
5 ) and the corresponding antieigenvalue is 0.97.

The first total antieigenvalue is defined as |μ1(A)| = infAx =0
|〈Ax,x〉|
‖Ax‖‖x‖ . The

higher total antieigenvalues are similarly defined.
The total antieigenvalues for matrices of size greater than 2 × 2 may be cal-

culated as follows (theorems 2.1 and 2.2 in [5]). Let A be a normal operator
with eigenvalues λi = βi + iδi, i = 1, . . . , n. Then the first total antieigenvalue
is either 1 or the smallest number in the set of values

G = {
√

(βi|λj |+ βj |λi|)2 + (δi|λj |+ δj |λi|)2

(|λi|+ |λj |)
√
|λi||λj |

, (4)

where i 
= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}. If |μ1(A)| = 1, then the first total
antieigenvector is z1 = (z1, z2, . . . , zn) with |zj | = 1 for some j and all other
zi = 0. If |μ1(A)| is one of the values in G, then the components of z1 satisfy
|zi|2 = |λj |

|λi|+|λj | , |zj|2 = |λi|
|λi|+|λj | , all all other zk = 0. Further, all higher total

antieigenvectors take their value from the set G and the corresponding higher
total antieigenvectors possess the same component structure as the first total
antieigenvector.

4 Key Frame Detection Using Antieigenvalues

In this section, we describe the proposed antieigenvalue-based key frame detec-
tion procedure. The key frames are used to compare two activities.

4.1 Feature Selection

We obtain trajectories of the moving object and compute its apparent veloci-
ties. The tracking procedure for the different datasets is outlined in section 5.
The state of a moving object is said to be the tuple (x(t), y(t), ẋ(t), ẏ(t)), where
(x(t), y(t)) represents the instantaneous position. We assume that the state un-
dergoes certain important changes at the key frames. We are interested in de-
tecting these changes, rather than modeling the entire sequence of frames. Let
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At : H → H be an operator that relates the past state x(t−) into the future
state x(t+), where H is the Hilbert space domain. There are two estimation
tasks here. We need to estimate the past and future states x(t−) and x(t+).
For robust estimation, we assume that the state of the system remains constant
for a short interval of time. The other estimation tasks involves optimizing the
parameters of the operator At. If there is no change in the state from t− to t+,
we may expect A to be the identity matrix (modulo translation).

4.2 Computing the Transformation Operator

We assume that the speed remains approximately constant for W frames. The
value of W depends on the type of data. For instance, it may be reasonable to
assume W = 25 or 1 second in far field surveillance data. On the other hand, we
may assume W = 3 or 0.1 second for short-term human actions (e.g. opening
the door, picking up an object, etc.) performed in an office environment. Using
W frames of the data, we estimate the state variables x(t−) and x(t+). Assume
that the two states are related by a linear transformation, i.e., x(t+) = Atx(t−).
We estimate the parameters of the operator At using least squares technique
and W frames each for x(t−) and x(t+).

For two vectors x,b ∈ Rn, let A be the transformation operator such that
Ax = b, where A = [aij ], i, j = 1, 2, . . . , n. This can be rewritten as Xa = b,
where a = (a11, a12, . . . , a1n, a21, . . . , a2n, . . . , an1 . . . , ann) and X is a matrix
that consists of rows of the form (0, 0x1, x2, . . . , xn, 0, 0, . . . , 0). Suppose Ax = b
holds for W vector pairs (x1,b1), . . . , (xW,bW), we can write⎛⎜⎜⎜⎝

X1
X2
...

XW

⎞⎟⎟⎟⎠ a =

⎛⎜⎜⎜⎝
b1
b2
...

bW

⎞⎟⎟⎟⎠ (5)

We use least squares technique to solve for a in (5) and recompose the vector a
into the matrix A.

4.3 Numerical Range of the Operator

The numerical range of an operator A is defined as the set W (A) = {〈Ax,x〉,x ∈
H, ‖x‖ = 1}, where H is the Hilbert space. For example, consider an operator

defined by the matrix A =
(

0 1
0 0

)
. Let x = (p, q). For simplicity, assume ‖x‖ =

|p|2 + |q|2 = 1. Then Ax = (q, 0) and 〈Ax,x〉 = qp. A simple calculation shows
that W (A) = {x = (p, q) : |p|2 + |q|2 ≤ 1

2} or the half disk. Closely related
to the numerical range, we can define the angle of the operator cosA and the
antieigenvalues of the operator A as discussed in section 3.

4.4 Choosing Key Frames

We compute antieigenvalues of At using (4) and use the mean antieigenvalue
as a measure of relative significance of the frame in representing the activity.
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Fig. 1. Average antieigenvalue for A in (6) as a function of increasing k, the change in
velocity

A small value of the mean antieigenvalue indicates that the minimum cosAt is
small or that the turning angle is large. This indicates a larger relative change in
the state vector and hence significant for representing the activity. We illustrate
the use of antieigenvalues in detecting key frames through a few examples in the
1-D case. The state of the moving object is the pair (x(t), ẋ(t)). Suppose the
transformation operator is given by

A =
(

2 0
0 k

)
. (6)

For differing values of k, this means that the change in the state of the object is
due to a changing speed, while the position remains constant (modulo transla-
tion). Figure 1 shows the variation of the average antieigenvalue as the value of
k is increased. We observe that, as expected, the average antieigenvalue varies
inversely as the extent of change in the state of the moving object.

4.5 Matching Two Sequences

We compute the similarity score between two video sequences by comparing the
sequences of key frames. Clearly, an activity need not be repeated with the same
timing scale from one instantiation to the next and the location of key frames
may change slightly. To allow for non-linear time normalization while matching,
we use dynamic time warping (DTW) [16]. The similarity score is computed by
traversing the warping path, which gives the correspondence of the frames in the
reference and probe sequences.

To place the proposed approach in context, we compare this to the eigenvalue
based methods. Various approaches in the literature have used eigenvalue-based
ideas to model activities in two main ways: for pre-processing or filtering the
data and for extracting the dominant characteristics for representation. The ba-
sic hypothesis in all these approaches is that the dominant characteristics of the
signal are important. Also, the main characteristics are assumed to be highly
structured and stationary. In such a setting, the eigenvectors capture the dom-
inant characteristics and the eigenvalues represent the relative contribution of
the eigenvectors for representation. For example, eigenfaces capture the domi-
nant characteristics for face recognition [12]. By reconstructing the signal using
the top few eigenvectors, it induces a smoothing operation on the original signal
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[13]. Zhong et al. [14] use this idea for activity classification where they cluster
the sequence of frames into prototype classes.

4.6 Algorithm Overview

– Pre-processing: Extract object trajectory from video and smooth it.
– For every time t, compute the state x(t) = (x(t), y(t), ẋ(t), ẏ(t)). For com-

puting ẋ(t), ẏ(t)), we use finite differencing over W frames of data.
– Compute the least squares estimate of the operator At : x(t−) → x(t+).
– Compute the antieigenvalues of the operator At using (4). Compute its mean.
– Recognition: compare the key frames detected from the average antieigen-

value sequence for the training using DTW.

5 Experiments

We demonstrate our approach to activity recognition using the MOCAP action
dataset and the UCF human action dataset.

5.1 Motion Capture (MOCAP) Dataset

The MOCAP dataset available from Credo Interactive Inc. and Carnegie Mel-
lon University consists of motion capture data of subjects performing different
activities including different kinds of walking, jogging, sitting and crawling. The
system tracks 53 joint locations and the tracks are stored in the bvh format.
Since not all the 53 points are relevant, we use only a few of the trajectories. For
example, trajectories of the different fingers and toes may not be as informative
as the location of the arms, legs or hip for activities such as walking or sitting.
We choose 5 regions of the 53 locations to demonstrate activity classification.
This dataset allows us to test the efficacy of the proposed method in the absence
of noise and errors due to low-level issues. There are 9 activities in the dataset
and approximately 75 sets of observation overall. The tracks for an activity such
as walking consists of multiple cycles of the activity. We divide the sequence into
individual walking cycles and treat each half-cycle as an observation. Half-cycle
refers to the part of the walking cycle starting from the standing pose, right
(or left) leg forward, reaching the swing pose, and withdrawing the right (or
left) leg to the standing pose. The number of observations is increased to 365
by treating similar trajectories of nearby locations as multiple samples, i.e., 2
locations near the abdomen are treated as multiple samples of the same location.
To ensure that there is no bias due to the displacement, we use mean-subtracted
trajectories for all locations.

We compute the state vector for every time instant and estimate the trans-
formation operator At as described in section 4. We compute the antieigenvalue
and use its mean as a signature for the activity. The antieigenvalue sequences are
matched using DTW. All the activities were correctly recognized. Table 1 sum-
marizes the activities that were the closest matches following the top match. We
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Table 1. MOCAP dataset: Closest-matching activities based on comparing event prob-
ability sequences. All activities were correctly recognized. Table shows the matches
following the top match.

Test activity Match #2 Match #3
Blind-walk Normal walk Normal walk
Prowl-walk Jog Exaggerated walk

Broom Sit Exaggerated walk
Crawl Broom Sit

Exaggerated walk Sad walk Normal walk
Jog Jog2 Normal walk
Sit Sit1 Neutral

Normal walk Normal walk Sad Walk
Sad walk Exaggerated walk Normal walk

Fig. 2. Confusion matrix for activities in the MOCAP dataset

observed that the different types of walking resembled each other while the sim-
ilarity scores corresponding to sitting, sweeping with a broom were significantly
larger. Figure 2 shows the confusion matrix across all activities. It may not be
straightforward to associate a physical meaning to the detected key frames for
activities such as walking, etc. other than saying a key frame was detected at the
stance when the feet are maximally apart, and so on. In the UCF action dataset
described below, the key frames are more readily apparent.

5.2 UCF Human Actions Dataset

The UCF dataset consists of 60 trajectories of common activities. We divide
these into 7 classes: open door, pick up, put down, close door,erase board, pour
water into cup and pick up object and put down elsewhere. The hand trajectories
are obtained after initialization using a skin detection technique. The resulting
trajectories are smoothed out using anisotropic diffusion. A detailed description
of the dataset, tracking and smoothing operations are available in [10].

The average antieigenvalue sequence was computed as outlined in section 4.6.
The key frames were identified by finding the minima in the average antieigenval-
ues. Figure 3 shows the key frames identified for some of the activity trajectories.
The dots marked along the trajectory denote the key frames detected along the
trajectory. Figure 3(a) shows the key frames for opening a door. In figure 3(b),
the trajectory for picking up an object from the desk and putting it on the floor
shows two key frames detected, one of which is the result of a sharp change in
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(a) (b) (c) (d) (e) (f)

Fig. 3. Sample trajectories from UCF dataset showing key frames detected

direction and the other a gradual change. The second sharp change is not de-
tected due to boundary effects. In the case of erasing a white board, we observe
a key frame when the eraser is picked up, and several key frames at the left
side of the erasing back-and-forth action of the hand (figure 3(c). This means
that each back and forth action of the hand may be considered as the past and
future states separated by the key frames. Figures 3(d) and (e) show trajectories
of picking up objects. They each have one key frame detected at approximately
the instant the object is picked up. Figure 3(f) shows the trajectory of a random
action. The lack of structure in the data is reflected by a large number of changes
leading to the detection of several key frames.

Comparison with the UCF method[10]: Rao et al. treat activities as a
sequence of dynamic instants that are defined as the points of maximum cur-
vature along the trajectory [10]. The key frames in the proposed approach are
detected based on changes in the data including changes in direction and changes
in speed. The comparison of recognition rates are given in figure 4.

Open Pick
 up

Put
down

Close Erase Pour
water

Pick up/
put down

Fig. 4. UCF dataset: Comparing recognition rates. Solid black bar represents proposed
method, dashed gray bar are the rates reported in [10].

6 Summary

We have presented a key frame based activity representation using the largely
unexplored theory of antieigenvalues. We have argued that key frames should be
related to changes in the data, rather than dominant, persistent properties. This
allows a natural way to detect both subtle and sudden changes, which are often
more interesting than the portions of the data that are normally observed. As
part of future work, we will investigate the measures to compare antieigenvalues.
It may be useful to obtain more efficient ways of calculating antieigenvalues.
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Abstract. We developed a system including two modules: the texture analysis 
module and the texture synthesis module. The analysis module is capable of 
analyzing an input image and performing the training process by using this im-
age data. According to the training non-periodic or periodic pattern, we use dif-
ferent sampling methods to have different amount of patches in order to reduce 
the emergences of the seams of the output synthesized image. In addition, the 
properties of principal component analysis (PCA) are used to reduce the dimen-
sions of the data representation and to recombine the appearance of the features 
(i.e. eigenvectors). Then the vector quantization (VQ) algorithm is employed to 
reduce the time spent on matching comparison. For the synthesis module, the 
training data is used to synthesize a large output texture, or is employed to re-
place the removed regions of an image. The multi-resolution approach is ap-
plied to accelerate the procedure of our algorithm: the down-sampling step is 
the training process and the up-sampling step is in the order of reconstructing 
(or synthesizing) the large removed region without needing to assign initial ran-
dom values or approximate values. Therefore, our system can rapidly obtain a 
high image quality and promising result. 

1   Introduction 

Photographs sometimes include unwanted objects. Conversely, it is sometimes 
desirable to replace an existing object in a photograph by a new object. Although 
techniques, which enable the unwanted object to be removed and replaced by a new 
object, do exist a problem frequently in that the shapes and the sizes of the two 
objects differ, and hence a gap is apparent in the reconstructed image. Consequently, 
the present study develops an approach to fill in the gap left in an image when an 
unwanted object is removed. 

Most existing algorithms are based on obtaining a minimum difference between 
the synthesizing patches. These represent having the minimum parallax in vision. In 
some approaches, the continuous structures are important and the discontinuous 
features are rough. However, these methods are very slow and result in a loss of 
definition in the reconstructed images. Clearly then, there exists a requirement to 
develop image replacement algorithms. Accordingly, the present study develops a 
method in which an approximation is used to establish suitable patches with which to 
fill the gap in the image. In the developed process, additional techniques are adopted 
in order to accelerate the process without losing its detail features. 
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(a)            (b)   (c)       (d) 

Fig. 1. (a) Input image. (b) Inverse matte that defines the removed (or replaced) region. (c) The 
result of the synthetic region. The result is shown by zooming in the replaced region. (d) Output 
synthesized image. 

2   Related Work 

Several researchers have developed gap-filling methods based on an examination of 
the neighborhood pixels [1], [12], [13], or using dynamic programming (DP) [4], [8] 
to find the minimum error for cutting. However, these methods have a gradual change 
in two different sources. Hence, sharp-pointed edges become blurred. Recent studies 
have presented the use of analysis and sampling techniques for the regular or near-
regular patterns, and have then used tiles to synthesize the image [5], [10]. These 
approaches commence by identifying the features or structures. These are then 
arranged as skeletons images, and the texture is wrapped onto these skeletons [10], 
[14], [16]. Such methods are suitable for the regular or near-regular patterns. They 
can solve the discontinuous condition. But these methods are inapplicable to non-
structured and non-regular images. 

In an alternative approach, an inverse matte is used to preserve the necessary 
background while removing the unnecessary region [2], [7]. In nature, the noises are 
Gaussian signals. These noises spread everywhere and cause a photograph to be truer 
and more pellucid. In order to merge the fragments more smoothly with no seam, 
Drori et al. [2] used a Gaussian mask to blend the various fragments. This approach 
successfully creates a flawless image. However, the results tend to be more blurred 
and some detailed feature information is lost. 

Some studies use patch-based approaches to synthesize image, but these 
approaches may make the structure of reconstructed image discontinuous [9], [11]. 
Similar patches are then developed to fill in the resulting holes. In this technique, 
weighting information is used to blend patches that will lose the detailed features. 

It has been shown that multi-resolution approach provides a reasonable technique 
for obtaining an initial value or for developing an approximate result, called push-pull 
[2], [3], [6], [15]. The approximate result can then be used as the basis to develop a 
superior result. Although this method can yield reasonable results, it involves the use 
of repeated reconstruction procedures, with the result that errors can occur. 
Furthermore, these errors can be compounded in the subsequent reconstruction steps. 

To solve above existing problems, this paper proposes two modules: texture analysis 
(training) module and texture synthesis module. The texture analysis module is capable 
of analyzing input images (or textures) and training by using these data (Section 3). The 
synthesis module can rapidly synthesize a large image (or texture) based on these 
training data (Section 4). The synthesis process performs on a real-time basis. In 
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addition, the synthesis process is then modified by applying the multi-resolution 
approach to the image replacement process by initially assigning meaningful definition 
values instead of giving random values or approximate values (Section 5). This 
approach also accelerates the image replacement process and is capable of handling the 
large removed region. Section 6 presents the current experimental results by evaluating 
time cost of the training and reconstruction (or synthesis) processes, and analyzing our 
developed approaches. Finally, Section 7 presents the conclusion. 

3   Texture Analysis (Training) Module 

The output big image is synthesized based on the small single input image (texture). 
The input image is divided into several patches, which are investigated in the 
subsequent analysis process. The important data of the input image are selected for  
 

Fig. 2. Framework of the texture analysis (training) 
module 

 
 
Fig. 3. Processing for non-periodic 
pattern. A pixel-by-pixel shifting 
method is used to divide the input 
texture into M patches, where M = 
(W–Wp+1)×(H–Hp+1), in which W is 
the width of the input image (or 
texture), H is the height of the input 
image, Wp is the width of the patch, 
and Hp is the height of the patch. 
 
 
 

 
 
Fig. 4. Processing for periodic pattern. 
The pattern is divided into M patches, 
where M=W×H. When the patch 
reaches the boundary of the input 
image, in order to form a complete 
patch, additional pixels are supplied 
from the opposite border. 

Input image for training (size: WxH pixels). 

Is Periodic? 

Yes No 

Non-periodic 
pattern 

side-by-side 

W 

H 

Periodic 
pattern 

side-by-side 

W 

H 

Processing for non-periodic 
pattern (Figure 3) 

There are Mn patches. 

Hp 

Wp 

Mn < Mp 

M = Mp or Mn 

Processing for periodic pattern 
(Figure 4) 

There are Mp patches. 

Wp

Hp 

Processing for -shaped pattern (Figure 5). 

Principal Component Analysis (PCA): Generating weight vector 
(W1…WN) for each -shaped pattern (Figure 7 and Equation 1). 

Vector Quantization (VQ): Clustering for speeding up to search the 
best matching patch. 
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training purposes. Principal component analysis (PCA) is employed to reduce the 
dimensions of the data, and vector quantization (VQ) is adopted to reduce the time 
required for comparison. Figure 2 illustrates the system framework extending from 
the input image to the output image. 

3.1   Processing for Non-periodic and Periodic Patterns 

The training data is obtained by cropped patches (or windows) of pre-defined size 
(WpxHp pixels) from the original input image (WxH pixels). Two different patch-
dividing schemes are employed depending on whether the image has a non-periodic 
pattern or a periodic pattern, as shown in Figure 3 and Figure 4, respectively. Periodic 
patterns have continuous veins between two equivalent patterns when positioned side 
by side (see Figure 2). Non-periodic patterns do not have this property. When non-
periodic patterns are placed side by side, there is a visible discontinuity seam between 
the textures (also see Figure 2). Therefore, periodic patterns can be divided into more 
patches than non-periodic patterns. For example, an input image of size 64x64 pixels 
can be divided into 4096 patches of size 32x32 pixels if the pattern is periodic, but 
can only be divided into 1089 patches if the pattern is non-periodic. 

3.2   Processing for -Shaped Pattern 

Taking the whole pieces of the patch as training data may lead to an overestimation of 
the underlying structure of the patch and will certainly increase the length of the 
training time. In addition, searching the matching patches by considering their whole 
contents generally produce unsatisfactory results since the whole contents tend to be 
quite different from the initial random values (which will be mentioned in Section 4 
and Figure 8) and it may cause the rim effect to become distinct. According to our 
experience, more suitable approach is to choose just the left border and the top border 
of the training patch as the training data, as shown in Figure 5. An additional reason 
for selecting just the border part is that the image scanning convention adopted in this 
study is from top-left to bottom-right, as shown in Figure 6.

Fig. 5. Using only the left border and the top 
border for each search patch, which has a 
thickness of  pixels ( =2 pixels in this 
study) and is called a -shaped pattern. Each 
pattern contains K pixels, where K
= ×(Wp+Hp ). So the size of each patch is 
reduced from a WpxHp dimensional (pixel) 
vector to a K-dimensional (pixel) vector 
(P1…PK). (K<<WpxHp).

Fig. 6. For the output synthetic image and the 
search window (or patch), the blue color 
region has been already completed; the gray 
color region has a random value originally, 
and is not synthesized yet; and the red color 
window indicates the region undergoing 
synthesis 

The overlapped region (the 
blue color region) is the same 
as the -shaped pattern. Output synthesized image. 
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3.3   Principal Component Analysis (PCA) 

PCA is applied to the training data to obtain their eigenspace, , as shown in Figure 7. 
Two important properties of PCA are employed to obtain the best performance: (1) 
reducing the dimensions of the data representation from K dimensions to N
dimensions, where N<K, as shown in Figure 7. This can reduce most of the time 
complexity operations, and hence dramatically increases the performance; (2) 
recombining the appearance of the features while maintaining the coherence of the 
characteristic content. After the PCA process and a sort based on the eigenvalues with 
corresponding eigenvectors, it is found that the first several eigenvectors control the 
global geometrical structure, while the middle eigenvectors control the local features. 
Meanwhile, some noises are controlled by the last few eigenvectors. These noises 
cause the photograph to appear truer, but have no influence on the geometric 
structure. Therefore a good matching structure need only compare the first several 
eigenvectors. Consequently, this study uses only the first N eigenvectors, whose 
corresponding eigenvalues occupy 98% of total eigenvalues, for comparison purposes 
to identify the patch which results in the best matching of the geometrical structure. 
This approach makes the result more fitted visually.
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Fig. 7. M patches can be obtained from Section 3.1. Each patch has K elements (see Section 3.2.) 
During training, PCA is used to transform the original K×M matrix to an N×K matrix, where 
N<K<<M. And there are N eigenvectors. 

Because there are M patches for any single input image, and K elements in each 
patch P (P=[P1…Pk]

T) projected onto N eigenvectors (E1i…ENi, where i=1~K), as 
shown in Equ. (1).
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So the corresponding N-dimensional weight vector can be obtained. This weight 
vector represents the information relating to the origin of each patch. Therefore, there 
are a total of M N-dimensional weight vectors. 

3.4   Vector Quantization (VQ) 

Searching for the best matching pattern from the eigenspace  during the synthesis 
process is a computationally expensive task. In order to speed up the synthesis process, 
the training data is initially projected onto the eigenspace  in order to retrieve the 

PCA
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weight vectors. The data is then separated into C clusters by means of VQ. Using this 
approach, the computational time can be reduced from O(M) to O( M ).

4   Texture Synthesis Module 

The texture synthesis module comprises four steps, as shown in Figure 8. Given a 
predefined size (WoxHo pixels) of the RGB image, the RGB values of each pixel in 
the output image are initialized randomly from 0~255, individually. The whole 
content of the output image is retrieved by shifting a search window (or patch) of size 
WpxHp over this image buffer in the scan-line order mentioned previously and 
acquiring the -shaped pattern from the region of the search window. Traditionally, 
synthesis processes using PCA process reconstructed the desired patches via the linear 
combination of the first N eigenvectors. This study has attempted to project the whole 
patch having random value for each pixel onto the training patch’s eigenspace, and 
then to reconstruct the whole patch in one step for the output synthetic image. 
However, in implementation, it was found that this approach produced a blurred result 
and that much of the original detail was lost. 

Accordingly, an indirect approach was developed in which the -shaped pattern of 
each search window, which contains random value for each pixel, was first projected 
onto the eigenspace  to have the corresponding weight vector. Second, based on the 
similarity measure of using the sum of squared difference (SSD) between the weight 
vector of this search window and M patches in the original input image, this weight 
vector was classified to the closest cluster and then this cluster was searched to find 
the best matching weight vector. Third, the matching patch, which corresponds to the 
best matching weight vector, in the original input image was taken to fill the region of 
this search window. 

Fig. 8. Framework of the texture synthesis module. All images here have the same size of 
WoxHo pixels. 

1. Initialization: Each pixel 
is assigned a random value 
in the WoxHo-pixel output 
image area. 

4. Result: Find the best patches 
to fill in the WoxHo-pixel 
output image. 

2. -shaped pattern projecting:
Each WpxHp-pixel search window 
(or patch) is taken the -shaped 
pattern (Figure 5) and then pro-
jected onto the eigenspace  to 
obtain one N-dimensional weight 

t
Shifting this search window over this image in the scan-line 
order from the top-left order to the bottom-right order. 

3. Similarity measure (based on SSD): Using the weight vector to find the 
closest cluster and then find the best matching patch from this cluster in 
the input image. Then this matching patch is called to fill the region of the 
search window. 

…… …… …… 
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5   Image Replacement Through Texture Synthesis 

Both texture analysis module and texture synthesis module can be applied to the 
image replacement of the particular region for a given image, as shown in Figure 1. 
Here an original input image is selected and is annotated as I0 (Figure 1.a). And the 
regions containing the replaced pixels are manually acquired and are called inverse 
matte, 0 (Figure 1.b). 

This matte is binary, such that the white regions which are to be retained are set to 
1, and are the known regions, while the black regions which are to be replaced regions 
are set to 0, and are the replaced region. In addition, the replaced regions can 
comprise many subregions, must contain the removable objects, can exceed the 
boundaries of the removable objects, and can be of any shapes. But too many or too 
large replaced regions will lead to a poor quality result. The known region serves as 
the source of the replaced regions. The analysis module developed in Section 3 is 
used for training, while the synthesis module presented in Section 4 is employed for 
filling the replaced region. But some revisions are performed to be suitable for the 
process of image replacement. 

5.1   Preprocessing Using Multi-resolution Approach 

The multi-resolution approach makes the input image I0 and the inverse matte 0 to do 
l times down-sampling , then to get each level of input image Ii and inverse matte i,
i=0~l, as shown in Figure 9. The value of the level i can serve as the initial values of 
the level i-1. And the size of the replaced region at the lowest level l of image Il is less 
than that of one patch, so we need not assign an initial random value or approximate 
value to each pixel in the replaced region. Instead, relevant definition values located 
at the background region are used to be the initial values of the search patch. In 
addition, Bi denotes the background region, which must be preserved for training data, 
as in Equation (2), 

liI iii ~0, ==  (2) 

and the foreground region Fi, as in Equation (3), 

liIF iii ~0, == (3) 

is then utilized to search the background Bi to locate the best patch with which to fill 
in the replaced region. 

I0                             I1       I2 I3        I4             0                       1                   2             3      4

Fig. 9. We have input image I0 and inverse matte 0, and then do l times down-sampling  to 
get each level of input image Ii and inverse matte i, i=0~l
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5.2   Training Process Based on Background Region 

For the training process, we get the whole piece of the patches from the background 
regions, which are preserved for training data from the level 1 image Il to the level l
image Il. We drop the patches at the level 0 image I0 for the following reasons: (1) 
The total amount of patches are too many (usually 100~300 thousands of patches) and 
cost much time in many unnecessary operators. (2) Using plenty of patches is 
unnecessary to fill in the removed (or replaced) region. VQ needs to separate such 
many patches into more clusters for speeding up searching the matching patches. 
Furthermore, more clusters raise the probability of matching the wrong patches, and 
the time of VQ training increases exponentially following the increasing cluster. (3) 
The level 0 image I0 has more noise influence on the process of PCA training. That 
results easily in getting the wrong information. (4) While reconstructing the lower 
level images (ex. I2~Il), the system needs stronger structural patches to fill the 
replaced region. Because of applying multi-resolution to input image I0, the patches at 
the lower level of image structurally are more powerful. 

Fig. 10. Acquire the four borders with 
thickness  ( =2) pixels for each search 
patch. There are K pixels in each patch, 
where K = 2× ×(Wp+Hp–2). 

                 
(a)                                  (b) 

Fig. 11. (a) Input image with the removed 
object between two different appearances 
(textures) and including light effect. (b) 
Output reconstructed image using the 
modified patch shown in Figure 10. 

The training process of image replacement is the same as that of the texture 
analysis in Section 3. However, if the same -shaped pattern of the search window (or 
patch) is applied (Figure 5), the fragment between two different textures will be 
mapped by only one texture rather than being mapped by the mixing of two different 
textures. Hence, the search window is modified, as shown in Figure 10, and the 
performance looks promising as shown in Figures 11, 13, and 14. Here, we analyze 
the problem when applying the -shaped pattern to the process of image replacement. 
For example, in Figure 11(a), the top half of the image is sky, the bottom half of the 
image is grass, and the middle part shows some trees. If our previous proposed 
approach is used to remove the tree region and to fill in the removed region by using 
the -shaped pattern to reconstruct the image. It can be seen that the resulting image 
is filled well near the sky in the original location of the trees, but the region of the 
image toward the grass is filled in with sky data and hence does not merge 
satisfactorily with the grass region. 

In an alternative approach, two patterns are used, i.e. the top-left -shaped pattern 
and the bottom-right -shaped pattern. Initially, the top-left -shaped pattern is used  

…

K pixels
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to reconstruct the image in a top-down order. The bottom-right -shaped pattern is 
then employed to reconstruct the image in a bottom-up order. The two steps are then 
repeated. In the case of Figure 11, the replaced region is initially filled completely 
with sky data and then filled in completely with grass data. As the two-step process is 
repeated, these two actions are repeated continuously and convergence cannot be 
achieved. 

5.3   Completion Process 

In order to practice for convenience, one minimum rectangular boundary covering the 
entire replaced region is identified. Then the same texture synthesis process as in 
Section 4 is applied to this rectangular region. We only change the compared part to 
four borders of the patch, whose thickness is  pixels, as shown in Figure 10. In our 
algorithm, the reconstructed order is from the level l image Il to the level 0 image I0.
First, the system reconstructs the level i (i=l) image Ii. The replaced part is 
reconstructed (or synthesized), called Ii

’. Only the reconstructed part of Ii
’ is preserved 

at position Fi. The other parts are replaced by the original background Bi. This gives 
the first step of the reconstructed image Ci, as in Equation (4). 

iiiii IIC ′+= (4) 

The system applies the up-sampling  technique from the reconstructed image Ci at 
level i and proceeds to only replace the level i-1 image Ii-1 at position Fi-1, as in Equa-
tion (5). 

1111 )( −−−− ↑+= iiiii CII (5) 

Then the system repeats above process of Equations (4) and (5) from the level l-1 
image Il-1 (i=l-1) to the level 0 image I0 (i=0). But the process of Equation (5) does not 
require at the last time (i=0). According to our experiments, when the system 
reconstructs directly the level 0 image I0, the output image is often converge to the 
worse result or needs to repeat many times (usually 70~100 times) of reconstructing 
processes. But using the multi-resolution approach, our system can reconstruct image 
not only fast but also promising, as shown in Figure 12. 

C4      C3       C2             C1            C0

Fig. 12. Show reconstructed image Ci from the lowest level 4 to the origin level 0, i=0~4. Ci

does up-sampling , and then serves Ii-1 as initial value for searching the matching patch to fill 
the removed (or replaced) region of Ci-1.
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6   Experimental Results 

In acquiring the experimental statistics presented below, the process was performed 
ten times and the average time calculated. The experiments were performed on a 
personal computer with a AMD K8 3200+ (2.0 GHz) processor, 512MB DDR 
SDRAM, and the Windows XP SP2 operating system. The current system was written 
in Visual C++. 

Figure 13 shows various results by using our developed modules in Section 3 and 
Section 4. The width of the patch, Wp, is 32 pixels, the height of the patch, Hp, is 32 
pixels, and the thickness of the patch, , is 2 pixels. As shown in Table 1, the training 
process can be completed rapidly, and the time complexity is proportional to the size 
of the input image. Furthermore, the proposed method can synthesize a seamless 
texture rapidly, as shown in Table 2. Table 3 and Table 4 show the processing 
information in Figure 9 and Figure 12. The required time is also proportioned to the 
size of the output image and the value of N for the dimension of eigenspace. Figure 18 
shows various results of Section 5. The size of the patches is modified such that Wp is 
16 pixels and Hp is 16 pixels. However, the same thickness as prescribed in Section 5 
is retained. The results have a higher quality and are also completely rapidly. 

        
(a)           (b)                 (c)        (d) 

Fig. 13. Left column: Input images (a)~(c) (size: 64x64 pixels) and (d) (size: 128x128 pixels). 
Right column: Output images using the proposed approach described in Sections 3 and 4 (size: 
300x300 pixels). 

(a)

(b) 

Fig. 14. From left to right columns: input images, inverse mattes, output images, and the synthesis 
results used to replace the replaced regions 
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Table 1. Average training time in Section 3 
for input images of various sizes. Units of 
time: milliseconds (ms). 

Table 3. The synthesized information of each 
level in Figure 9 and Figure 12 for multi-
resolution approach. “~0” means close to 0 
ms. 

Size of input image (pixels) 64x64 96x96 128x128
PCA 250 437 875
Projecting to eigenspace 359 703 1656
VQ 203 391 953
Total time (ms) 812 1531 3484

Level 
Width 
(pixels) 

Height 
(pixels) 

Number of 
whole 

patches 

Synthesis 
time (ms) 

0 392 364 114034 63 
1 196 182 24272 16 
2 96 91 4024 ~0 
3 49 46 110 ~0 
4 25 23 0 ~0 

Table 2. Average synthesizing time in 
Section 4 for output images of various 
sizes 

Table 4. The time in Figure 9 and Figure 
12 for various processes. The total time of 
the training and synthesis processes 
include the processes of the multi-
resolution approach, PCA, projection (the 
patches are projected onto eigenspace  to 
obtain the weight vectors), VQ, and 
synthesis. 

Size of output 
image (pixels) 

200x200 300x300 400x400 600x600 

Synthesis time 
(ms) 

11 37 59 140 

Method Time (ms)
Data type Gray value RGB space 

Multi-
resolution 

32 31 

PCA 891 7719 
Projecting to
eigenspace 

1828 4906 

Training 
process 

VQ 421 375 
Synthesi
s process

Synthesis 78 108 

Total time 3250 13139

7   Conclusions 

We developed a system including two modules: the texture analysis and synthesis 
modules. This system is able to be applied to the two different purposes: the synthesis of 
a large image, and the replacement of local removed region. According to the training 
non-periodic or periodic pattern, we use different sampling methods to obtain different 
amount of patches in order to reduce the emergences of the seams of the output 
synthesized image. And because the analysis module can reduce dimensions of the 
training data and cluster these data, so the synthesis module can synthesize a large 
output image very fast and keep geometrical structures and veins continuous. The same 
process can also be used to replace the removed regions. Here, the multi-resolution 
approach is applied to the image replacement without needing to assign initial random 
values or approximate values. The down-sampling step is used for the analysis process 
as compiling the training data, and the up-sampling step is used for the reconstructing 
process as assigning initial values. So this approach enables the system to handle the 
large removed region and obtain more realistic image (or textures) quickly. 
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Abstract. The face pattern is described by pairs of template-based his-
togram and Fisher projection orientation under the paradigm of Ad-
aBoost learning in this paper. We assume that a set of templates are
available first. To avoid making strong assumptions about distributional
structure while still retaining good properties for estimation, the clas-
sical statistical model, histogram, is used to summarize the response of
each template. By introducing a novel “integral histogram image”, we
can compute histograms rapidly. Then we turn to Fisher linear discrim-
inant for each template to project histograms from d−dimensional to
one-dimensional subspace. Best features, used to describe face pattern,
are selected by AdaBoost learning. The results of preliminary experi-
ments demonstrate that the selected features are much more powerful
to represent the face pattern than the simple rectangle features used by
Viola and Jones and some variants.

1 Introduction

Face detection is one of the visual tasks which humans can do effortlessly. Yet in
computer vision community, this task is not easy. As a visual frontend processor,
a face detection system should be able to achieve the task regardless of illumi-
nation changes, and orientation, position, scale, expression variations of human
faces.

Viola and Jones [1] present the first highly accurate as well as real-time frontal
face detector at 15 frames per second for 384 by 288 image. They use simple rect-
angle features to describe face pattern that can be computed rapidly via “integral
image”. Best features are selected automatically with AdaBoost algorithm, and
cascade architecture is adopted to speed up detection. Many researchers present
their works following the idea of Viola and Jones, mainly addressing two issues:
(i) how to develop more powerful features to represent face pattern, and (ii) how
to classify examples based on the chosen representation.

From the view of feature selection, Murphy et al. [2] use a set of filters to
convolve the image, and utilize the second and the fourth moments to calculate
features from the different patches on the filtered images. Levi and Weiss [3]
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Template set

Step 3: Choose features by AdaBoost  learning to construct face detector.

Example set

Faces

Non-faces

Step 1: Build template-based histogram feature set.
Step 2: Utilize Fisher 
linear discriminant to 

project histogram.

Fig. 1. Framework of face detection algorithm

take local edge orientation histograms (EOH) as features. Wang et al. [4] take
histograms computed from a set of rectangles in the filtered images as features.
For the second issue, Wu et al. [5] propose a cascade learning algorithm based on
forward feature selection which is two orders of magnitude faster than the Viola-
Jones’ approach and yields classifiers with similar quality. Li et al. [6] present the
first real-time multiview face detection system by FloatBoost. Torralba et al. [7]
propose a multi-class boosting procedure (joint boosting) that reduces both the
computational and sample complexity, by finding common features that can be
shared across the classes.

In this paper, we propose the novel feature, template-based histogram along
with Fisher projection orientation, for face detection in the paradigm of Ad-
aBoost algorithm. The results of preliminary experiments demonstrate that the
selected features are much more powerful to represent the face pattern than the
simple rectangle features used by Viola and Jones and some variants.

Our face detection algorithm consists of three major steps (see Fig. 1), as
listed below.

(i) Build template-based histogram feature set. We assume that a set of
templates are available first, then summarize the response of each template
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patch using one histogram, which represents marginal distribution of the
patch. To speed up histogram computation, we extend “integral image” pro-
posed by Viola and Jones [1] from one-dimensional to n−dimensional integral
image, called “integral histogram image”.

(ii) Utilize Fisher linear discriminant to project histogram. Fisher lin-
ear function yields the maximum ratio of between-class scatter to within-
class scatter. Thus, for each template patch, we turn to Fisher linear dis-
criminant to find a projection orientation of histograms. Two classes (faces
and non-faces) are well separated by this Fisher projection orientation.

(iii) Choose features by AdaBoost. The best features to separate face and
non-face examples are chosen by AdaBoost learning.

The paper is structured as follows. In Section 2, we present the template-based
histogram feature set. Fisher linear discriminant is used to project histogram
in Section 3. The AdaBoost training to choose best features is described in
Section 4. Experimental results are shown in Section 5. Finally, conclusions and
directions for future research are given.

2 Template-Based Histogram Feature Set

We assume that a set of reference patterns (templates) are available in this
section. To seek statistical models that avoid making strong assumptions about
distributional structure while still retaining good properties for estimation, the
best compromise we found was histograms. To speed up histogram statistics, we
extend “integral image” proposed by Viola and Jones from one-dimensional to
n−dimensional integral image, called “integral histogram image”.

Taking a 64 × 64 image for example, there are totally 892 different rectangle
templates. Fig. 2 shows 59 reference patterns with the top left point (0, 0). The
orange rectangles are the masks used to calculate histogram features. Other rect-
angle templates are created in a step of eight pixels. Each template includes 256
pixels at least. Both width and height of each template are no less than eight pixels.

Fig. 2. Example templates with the top left point (0, 0) for 64× 64 image. The orange
rectangles are the masks used to calculate histogram feature.

Our histogram statistics can be computed rapidly using an intermediate rep-
resentation for the image which is called the “integral histogram image” [4] (see
Fig. 3). Given a p× q image, the integral histogram image I is (p + 1)× (q + 1)
arrays of length d (dimension of histogram). The integral histogram image Ix,y[k]
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(b) Integral Image 
(Viola and Jones)

(c) Integral Histogram Image
(Our Approach)(a) Coordinate of Rectangle

(x,y)

w

h

(x+w,y)

(x+w,y+h)(x,y+h)

-

+ -

+
I[2]

I[d]

I[1]

(x+w,y+h)
(x+w,y)

(x,y)

(x,y+h)

Fig. 3. Integral Image vs. Integral Histogram Image. Based on the same rectangle
region shown in (a), (b) gives the integral image proposed by Viola and Jones [1]; and
our integral histogram image is shown in (c).

at location (x, y) corresponds to the histogram of the image above and to the
left of (x, y), inclusive:

Ix,y[k] =
∑

x′≤x,y′≤y

δ(x′, y′), k = 1, . . . , d (1)

where δ(x′, y′) = 1 if the intensity of pixel at location (x′, y′) belongs to the
k-th bin of histogram; otherwise let δ(x′, y′) = 0. Using the following pair of
recurrences:

ix,y[k] = ix,y−1[k] + δ(x, y)
Ix,y[k] = Ix−1,y[k] + ix,y[k], k = 1, . . . , d (2)

where ix,0[k] = 0 for any x and k, the integral histogram image can be computed
in one pass over the original image. The histogram hr[k](k = 1, . . . , d) of any
rectangle region r can be determined in (4 × d) array references (see Fig.3 and
Equ.(3)) by integral histogram image for k = 1, . . . , d:

hr[k] = Ix+w,y+h[k]− Ix+w,y[k]− Ix,y+h[k] + Ix,y[k] (3)

where Ix,0[k] = I0,y [k] = 0, w and h are the width and height of rectangle r,
respectively.

3 Histogram Projection by Fisher Linear Discriminant

Different from PCA (principal component analysis), which seeks directions that
are efficient for representation, Fisher linear discriminant seeks directions that
are efficient for discrimination. Its linear function yields the maximum ratio
of between-class scatter to within-class scatter. Thus, we turn to Fisher linear
discriminant for each template to find an projection orientation of histograms
by which two classes (faces and non-faces) are well separated. That is, each
template is corresponding to one Fisher projection orientation. Moreover, the
classification task can been converted from a d−dimensional problem to a one-
dimensional one.
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We consider our problem as projecting template-based histograms from d-
dimensional subspace onto a line for subsequent AdaBoost learning. For any
one template, suppose that we have a set of n (n1 + n2 = n) d−dimensional
histograms h1, . . . ,hn, where n1 is the size of the subset H1 labeled τ1 (face
class) and n2 the subset H2 labeled τ2 (non-face class). If we form a linear
combination of the components of hi, we obtain the scalar dot product

zi = vthi (4)

and a corresponding set of n projected points z1, . . . , zn divided into the subsets
Z1 and Z2. Geometrically, if ||v|| = 1, each zi is the projection of the corre-
sponding hi onto a line in the direction of v.

The Fisher linear discriminant employs the linear function Equ.(4) for which
the criterion function

J(v) =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2
(5)

is maximized. That is, the v maximizing J(·) leads to the best separation between
the two projected sets (H1 and H2). Here m̃i is the mean for the projected
histograms (Zi) of set Hi. We define the scatter for projected histograms labeled
τi by

s̃2
i =
∑
z∈Zi

(z − m̃i)2, i = 1, 2 (6)

Thus, (1/n)(s̃2
1 + s̃2

2) is an estimate of the variance of all histograms, and s̃2
1 + s̃2

2
is called the total within-class scatter of the projected samples.

According to the generalized Rayleigh quotient known in mathematical
physics, the criterion function J(·) shown in Equ.(5) can be written as

J(v) =
vtSBv
vtSV v

(7)

SV is called the within-class scatter matrix defined by

SV = S1 + S2, Si =
∑
h∈Hi

(h−mi)(h−mi)t (8)

where mi is the d−dimensional histogram mean of set Hi. SB is called the
between-class scatter matrix defined by

SB = (m1 −m2)(m1 −m2)t (9)

Now we get the solution for the v that optimizes J(·) as:

v = S−1
V (m1 −m2) (10)

which is sometimes called the canonical variance. Thus the classification has
been converted from a d−dimensional problem to a hopefully more manageable
one-dimensional one by Equ.(4).
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4 Feature Selection by Gentle AdaBoost Algorithm

Boosting algorithm, proposed in the Computational Learning Theory literature
[8], is a method to find a highly accurate hypothesis by combining many “weak”
hypotheses, each of which is based on the reweighted version of the training
data, and only moderately accurate. The adaptive version of Boosting is called
AdaBoost [9]. We choose template-based Fisher projection orientation and cor-
responding threshold value to construct the weak hypothesis, which are used to
separate face and non-face examples, by each round of AdaBoost learning. We
and others [10], have found that Gentle AdaBoost gives higher performance than
Discrete AdaBoost and Real AdaBoost, and requires fewer iterations to train.
We will briefly present the Gentle AdaBoost below.

Given a set of training examples X with its weight distribution D, the Boost-
ing procedure computes a weak hypothesis f : X �→ R, where the sign of f is
the predicted label λ ∈ {τ1, τ2} of the example x ∈ X , and the magnitude |f(x)|
is the confidence in this prediction. This is called Real AdaBoost (RAB) [11].
The simplest case, f : X �→ {−1,+1}, is called Discrete AdaBoost (DAB) [9].
Let f1, f2, . . . , fT stand for a set of learned weak hypotheses, thus the ensemble
hypothesis is F (x) = E [λ|x] =

∑T
t=1 ft(x), where E represents the expectation.

Suppose we have a current estimation F and seek an improved estimation F + f
by minimizing criterion shown in Equ.(11):

J(F + f) = E [e−λ(F (x)+f(x))] (11)

RAB optimizes J with respect to f(x) at each iteration. Gentle AdaBoost (GAB)
[12], a modified version of RAB, takes adaptive Newton steps to minimize J(F +
f) by

F (x) ← F (x) +
E [e−λF (x)λ]
E [e−λF (x)]

= F (x) + Eω[λ|x] (12)

Here the notation Eω[λ|x] refers to a weighted conditional expectation, and the
weight is updated by Equ.(13).

ω ← ω · e−λf(x) (13)

Therefore, the weak hypothesis f(x) is written as

f(x) = Eω[λ|x] =
E [e−λF (x)λ]
E [e−λF (x)]

(14)

To get optimized f(x), we expand J(F + f) to the second order about f(x) = 0.
Minimizing pointwise with respect to f(x), there is

f̂(x) = argmin
f
Eω[(λ − f(x))2|x] (15)

Equ.(15) shows the way to obtain the weak hypothesis f(x).
We utilize Gentle AdaBoost (GAB) to train the final cascade face detec-

tor [13]. Each trained classifier f(x) produces a weak classification rule based
on Equ.(15) with one histogram Fisher projection orientation described in the
previous section. The weight distribution of examples is updated via Equ.(13)
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at each round of GAB learning. The threshold value of the final strong classifier
is decided by the prescribed hit ratio of the strong classifier F (x) to the training
example set X . The construction of the final cascade detector depends on the
ratio of false positives for the training set.

5 Experimental Results

In this section, we first introduce the training data set and feature set. Then
learning results and detection results are described.

(d) 1st feature is located at (0, 24) with 64 
pixels width and 16 pixels height. Its threshold 
is 0.6545119. Fisher  projection direction is
[-0.544449   0.076002   0.106248   0.198058 
 0.278724   0.358871    0.462607   0.476238].

(e) 2nd feature is located at (0, 8) with 64 pixels 
width and 16 pixels height. Its threshold is 
0.8787123. Fisher  projection direction is
[0.489481   0.586122   0.310000   0.204857    
0.245492   0.271704   0.208871   0.317939].

(a)

(b)

(c)

2nd

1st

Fig. 4. (a) and (b) are the original positive image and the image after histogram
equation, respectively. (c) shows the locations of the first and second features. The
projections of all training samples corresponding to the first and second features of the
detector are shown in (d) and (e). X axis represents the sample ID. The first 10, 135
samples are positives (faces) and the Id from 10, 136 to 20, 135 represents negatives
(non-faces). Y axis is the Fisher linear projection value.
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Fig. 5. ROC curves for our face detector on the CMU new test set. X axis and Y axis
represent detection rate and false positives, respectively. The detection rate achieves
90% with 86 false detections.
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Fig. 6. Output of our face detector on a number of test images from the CMU new
test set

We crop 10, 135 frontal face images as training samples. The negative samples
are collected by selecting random sub-windows from a set of 24, 621 images which
do not contain faces. For each layer training, the maximum size of the negative
set is 10, 000. Each sample is scaled to 64 by 64 pixels, which includes enough rich
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information for template-based histogram calculation. We take histogram equal-
ization for both training samples and test samples to make each image with equally
distributed brightness levels over the whole brightness scale. One example image
(see Fig. 4(a)), preprocessed by histogram equation, is given in Fig. 4(b).

Given the base resolution of the detector is 64 × 64, our feature set only
includes 892 template-based features, which is far less than 45, 396, the size of
Viola and Jones’ 24× 24 detector. We calculate eight dimensional histogram at
each template location.

Our cascade detector only includes 17 layers with 2347 features. The first and
second features are shown in Fig. 4. However, the final detector of Viola and Jones
is a 38 layer cascade of classifiers which includes a total of 6, 060 features [14].

For Viola and Jones’ approach, training time for the entire 38 layer detector
was on the order of weeks on a single 466 MHz AlphaStation XP900. Utilizing
novel “integral histogram image” and our small feature set (892) comparing with
the size of Viola and Jones (45, 396), our training process can be finished in two
days on a single Pentium 4 CPU 3.00GHz. “Integral histogram image” saves one
third times for both training and detection.

It is an original unoptimized face detection system combining our novel feature
set. The detector scans the image at multiple scales and locations. And the test
set is the CMU new face test set without containing images with line drawn faces.
The detection rate achieves 90% with 86 false detections. The face detector can
process a 256 by 377 pixel image in about 12 seconds (using a start scale of 1
and a step size of 1.5). ROC curve is shown in Fig. 5. Fig. 6 gives some typical
detection results.

6 Conclusions

Fisher linear discriminant is used to project template-based histograms features
for the task of face detection in this paper. We choose best features, pairs of
template-based histogram along with Fisher projection orientation, by AdaBoost
algorithm. The experimental results demonstrate that the selected features are
very powerful to describe the face pattern. There are a number of directions
for future work, including adaptive selection of histogram dimensions, extending
the framework to multi-view face detection, and employing more sophisticated
image preprocessing and normalization techniques.
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Abstract. For robust face detection, lighting is considered as one of
the greatest challenges. The three-step face detection framework pro-
vides a practical method for real-time face detection. In this framework,
the last step can employ computation extensive method to remove the
false alarm and usually some de-lighting methods are done. It is com-
plex to model the lighting variance precisely. The usually used simplified
lighting model fails under non-uniform lighting conditions for the rea-
son that it cannot account for the cast shadow, shading, and highlight,
which are the main variances caused by non-uniform lighting. According
to the adaptation capacity of the human vision system, we propose a
perception based mapping method (PMM) to balance the influence of
non-uniform lighting. Experimental results indicate that with PMM as
the lighting-filter the false positives caused by lighting variance can be
removed more accurately in the face detection tasks. PMM shows its out-
standing performance especially under the extreme lighting conditions.

1 Introduction

Face detection has been well recognized as a challenging problem in the vision
community. Due to variations caused by pose, expression, occlusion, lighting
and illumination, the distributions of face objects are highly nonlinear, and thus
make the learning extremely difficult. Among these variations, light/illumination
and pose changes are regarded as the most critical factors for robust face de-
tection. Recently, view-based framework has been widely applied to reduce the
variances caused by pose changes[1],[2]. However, problems caused by lighting
or illumination are less addressed according to the literature.

The challenges of de-lighting for detection mainly focus in the following as-
pects. Firstly, there is no prior knowledge, e.g. the 3D information, except the
image to be detected itself. Therefore the lighting models that are successfully
applied in face recognition tasks[3],[4] cannot be applied in face detection tasks.
Secondly, the de-lighting work, as the preprocessing step to every candidate test
window, will bring a huge amount of computation. It is not affordable in real-time
detection systems. Rowley[1] proposed a linear de-lighting algorithm as well as
a histogram equalization algorithm to alleviate lighting and contrast variations
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in detection systems. However, several problems need to be addressed. Firstly,
the lighting map estimated for a plane is just a rough approximation of the face
lighting map. Secondly, subtracting the lighting map from the face deviates from
the reflection function[5]. Thirdly, as the pre-filter of the detection procedure,
the de-lighting algorithm introduces much computation cost for real-time detec-
tion system. To enable the rapid face detection, Xiao[6] proposed a three-step
face detection framework. By dividing the detection procedure into three steps
(pre-filter, boosting filter and post-filter), the computation extensive algorithm
can be applied in the post-filter step. In this approach, linear de-lighting and
histogram equalization algorithms are used in the post-filter step to reduce the
lighting variations. However, this de-lighting approach still suffers from the per-
formance inefficiency similar to Rowley’s approach except the computation cost
to the system. With the assumption that lighting is slowly changed information
the quotient image (QI) based methods [7]∼[9] take the low-pass version of orig-
inal image as the lighting map. The original image divided by the lighting map
is the so-called intrinsic image. Roughly separating the lighting and reflectance
with a fixed threshold of the frequency is not very suitable. That will make the
intrinsic image lose the low frequency information of the reflectance, which con-
tributes to the detection task, and some high frequency information enlarged
greatly, which contains the original noise in the image and the abrupt changes
of the lighting. This is the halo effect of QI.

Due to the complexity of modeling the lighting variance we proposed a method
to balance the lighting influence motivated by the adaptation of human vision
system (HVS). For an image taken under non-uniform lighting conditions, we
should make it rich of details and in a proper brightness, intuitively. That is the
image should be adjusted according to the local as well as the global situation.
To decide the adjustment parameters we apply the intensity entropy as the
assessment of the adjusted images.

The rest of the paper is organized as following. In Sec. 2, we present the
perception based lighting balance method and its application in the face detec-
tion system. Sec. 3 compares some different lighting adjustment methods in face
detection on different face databases. The conclusions are drawn in Sec. 4.

2 Perception Based Mapping

In this section we will first introduce the relationship of the lighting and intensity
value in the images. Then we apply the adaptation model of HVS to adjust the
lighting conditions of the images. At last the parameters are optimized according
to the assessment of the images.

2.1 Background

According to the reflection function

I(x, y) =
∫

Ω

ρ(x, y)Li(x, y) cos θidω (1)
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Fig. 1. (c)and(d) are the mesh figures of (a)and(b),respectively.The mesh figures in-
dicate that the lighting influences the dynamic range of the images. (e)The curves of
perception mapping function (the x-axis is the value of I and y-axis is the value of V ).

The intensity I(x, y) of the point (x, y) is decided by the reflectance ρ(x, y) and
all the effective incident lighting Li(x, y) cos θi on that point. We can rewrite it
in the discrete form,

I(x, y) =
∑

i

R(x, y)× Li(x, y) cos θi = R(x, y)× L(x, y) (2)

where L(x, y) =
∑

i Li(x, y) cos θi is the sum of all the effective lighting for that
point, and R(x, y) is the reflectance character of the point. According to the
discrete reflection function (equation 2), lighting takes charge of perception gain.
As seen in Fig.1(c) and (d), the non-uniform lighting suppresses the features in
the shadow region and exaggerates the features in the highlight region.

2.2 Mapping Function

The accurate adaptation of HVS is achieved through the cooperation of me-
chanical, photochemical, and neural processing in the vision system. According
to the results from electro-physiology, the photoreceptor is the crucial element
that takes charge of the procedure of adaptation. The photoreceptor can be
modeled as the function of intensity as follows,[10][11]

V =
I

I + σ(Ia)
Vmax (3)

where V is the potential produced by cones; I is the input intensity; and Vmax

determines the maximum range of the output value. Function σ(Ia) = (fIa)m

takes the role of the semi-saturation constant, i.e. when I = σ(Ia), the output
value is half of the input intensity. Since the new image should be in the range
of [0,255], we set the maximum range Vmax = 255.

In Fig.1(e), the curves are drawn using the log linear scale. The curves are the
value of perception mapping function with m = 1, f = 1 and Vmax = 1. Although
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Fig. 2. (a) coefficient α controls the detail information (b) m and f control the contrast
and brightness respectively

Ia is variant, the shape of the curves still keeps more or less the ”S” shape. This
behavior is close to old photographic transfer functions, and is also a defining
characteristic of parts of human vision. These functions are fitted for electrophys-
iological measurements of photoreceptors and concluded from psychophysical
experiments. At the same time the curves satisfy the requirement of adjustment
for the images. For the darker region, the absolute intensity of pixels and the
contrast will be enhanced, while the difference between the pixels in the highlight
part will be suppressed. As a result, the image is adjusted to a better situation.

Adaptation Level Ia. If we choose the average intensity of the image as the
adaptation level Ia, the adjustment is global. It does not perform any specific
processing to the darker or brighter region and some details in those regions may
be lost. To compensate the details, the local conditions of every point should
be considered. We can use the bi-linear interpolation to combine the global
adaptation Iglobal

a and local adaptation I local
a (x, y) as,

Ia(x, y) = αI local
a (x, y) + (1− α)Iglobal

a (4)
I local
a (x, y) = K(I(x, y)) (5)

Iglobal
a = mean(I) (6)

Different kernel K(•) can be applied to extract the local information. Gauss
kernel is the most commonly used one. The interpolation of the global and
local information will adjust the details. In Fig.2(a), with the increasing of the
parameter α, the details become notable gradually. When α = 1, i.e.Ia = I local

a ,
all the details are expressed out including the noise.

Parameter f and m. The other two parameters f and m control the inten-
sity and contrast, respectively. Parameter f is the multiplier in the adaptation
function, i.e. to every point’s adaptation level Ia(x, y), f magnifies them on a
same scale. The brightness of the whole image will be enhanced or suppressed
accordingly. The alternation of brightness can be shown only when changes on
f is large enough. In [11], the parameter f is suggested to be rewritten in the
following form

f = exp(−f ′) (7)
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With a comparative smaller changing range of f ′, f can alter the brightness of the
image. The parameter m is the exponent in the adaptation function. Different
from the parameter f , m magnifies every Ia(x, y) on a different scale based
on adaptation value. Therefore, the parameter m can emphasize the difference
between every point, i.e. the contrast. In Fig.2(b), the parameter α is fixed. With
the increment of m, the contrast of the image is enhanced in every row. And in
every column, the brightness of the image is enhanced with the increase of f .

2.3 Image Assessment

We need a comparatively objective standard to evaluate the lighting conditions
of the image so that we can optimize the parameters of mapping function. An
image with larger entropy means the distribution of intensity is more unified,
i.e. every different intensity value has almost the same probability to appear in
the image. Consequently the image will be rich of smooth changes. In vision
the image will be abundant of details and without abrupt noises. Therefore, we
evaluate the image with its intensity entropy.

H(X) = −
255∑
x=0

p(x)log2(p(x)) (8)

where p(x) is the probability of the intensity value that appears in the image.
We take 65 sets of images in PIE database[12]. Each set of the images are

taken with flashes in 16 different positions. The sample of images is shown in
Fig.3(a). The mean value of the entropy with different flash position is given in
Fig.3(b). We can see that the more uniform the lighting conditions are, the larger
the entropy value is. The images taken with flash 6 and 11 have the maximum
entropy, and in vision, the lighting is most uniform in those images.

We should point out that the histogram equalization (HE) will make the
histogram flatter in theory. However, it may lose information instead of adding

Fig. 3. (a) Example of face images under different lighting conditions (from left to
right the flash number is from 2 to 17); (b)The mean value of the entropy for images
taken under different lighting
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Fig. 4. The entropy curves with different f ′ and m. (x-axis is the parameter α and
y-axis is the entropy.)

new information to the image. Thus, the resultant image will always show abrupt
changes and lose details. Therefore, an image through histogram equalization will
not increase the entropy but always reduce it.

2.4 Parameters Optimization

Applying the entropy as the standard to evaluate the image, we can choose a
set of optimized parameters. In Fig.4, we show a set of entropy curves of the
same image corrected with different parameters. As illustrated in the figure,
with the increasing of m, the entropy value is enlarged regardless of f ′ and α.
From every subfigure, we can find that the parameter α controls the shape of
the curves regardless of f ′. Based on the above observations, we can first fix m
and f ′ to optimize α. That is we first find the point can combine the local and
global adjustment best. Accordingly the information containing in the image
can be presented to a full extent. Then with α0 (the optimized α) we adjust the
dynamic range and contrast of the image, i.e. to optimize the parameter f and
m, respectively.

The initial estimation of m is given based on the key of the image. The image
key value k can be estimated using the log average Lav, log minimum Lmin, and
log maximum Lmax luminance,

k =
Lmax − Lav

Lmax − Lmin
(9)

Then m is chosen as,
m = 0.3 + 0.7m (10)

This function is based on extensive experiments and it makes the value of m
in the range reported by electro-physiological researches[11]. For the parameter
f ′, we usually set f ′ = −2. With the estimated m and f , we can optimize the
parameter α first. α0, the optimized α, will make the image entropy maximum.

With α0 and estimated m, we optimize the parameter f ′ as

minf ′|H(I(α0,m, f ′))− T | (11)

where T is the expected entropy value. We do not choose the parameter f ′ with
the maximum entropy. The reason is that with the increasing f ′, the brightness
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is increased. So we set a threshold to hold the brightness, e.g.T ∈ [7.0, 7.5].
Finally, with α0 and f ′

0 (the optimized f ′) we adjust the parameter m to make
the image entropy maximum.

3 Experiments

In the three-step face detection framework [6], the classifier in the first step is
designed to be simple. It can reject negative samples with little computation over
two to three features. The classifier of the second step is designed to be efficient.
It should reduce the false positive (FP) rate to the scale of 10−7 with as little
computation as possible. And the classifier of the third step is designed to be
accurate. It should remove the FPs precisely. To test the effect of the de-lighting
methods on the face detection, we only train the face detector with the third step
classifier. And the de-lighting method is designed as pre-filter of the classifier.
First, we do de-lighting for the images. Then, we extract the Gabor feature of
the adjusted images and choose the most discriminative features that can decide
whether the image is face or non-face through boosting method. With different
pre-filters, we train four face detectors. The four pre-filters are PMM, HE, QI
and none de-lighting, respectively.

3.1 De-lighting Results

In Fig.5, we compare the results of these de-lighting methods and their edge
images. Edge is the representation for the local contrast. It can be applied to
express the effect of the de-lighting methods. As illustrated in Fig.5, the PMM
has some great advantages. In vision, it can module the images to a better
condition. The effect of the non-uniform lighting is weakened and the appearance
of the face is kept. From the edge images we can see that the PMM recoveries
the details of the face, especially the part in the deep shadow, e.g. the left eye.
Although HE can also do the recovery, it brings much abrupt noise. QI removes
the low-frequency information and makes the appearance of the face destroyed.
It also magnifies the original noise in the image, such as the abrupt changes of
the lighting on the nose.

Fig. 5. The de-lighting results of different methods and their corresponding edge images
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3.2 Comparison of Detectors

Training Detectors. More than 12000 images without faces and 10000 face
images were collected by cropping from various sources, such as AR, Rockfeller,
FERET, BioID and the WEB [13][14]. Most faces in the training set have varia-
tions in terms of pose and lighting. A total number of about 80000 face samples
with the size of 32 × 32are generated from the 10000 face images by random
transformation: mirroring, four-direction shift with 1 pixels, in-plane rotation
within 15 degrees, and scaling within 20% variations. 20000 face samples are
chosen randomly for training the face detectors.

Table 1. Illumination condition of every PIE subset

subset1 subset2 sebsut3 subset4
Ambient Lighting Yes Yes No Yes No

Flash No. None 4∼22 5∼18 2,3 2∼4 and 19∼22

Table 2. Detection results on the PIE subsets

subset1 subset2 subset3 subset4
Raw 436/2 1266/26 893/22 535/63
HE 438/0 1292/0 914/1 591/7
QI 435/3 1289/3 913/2 585/13

PMM 438/0 1292/0 914/1 598/0

Testing Detectors. 1) PIE Test Set: We separate the frontal face of PIE
(c27 serial) into four sets based on the lighting conditions. The details of every
set are shown in Table 1. The detection results of the detectors with different
pre-filters on these data sets are shown in Table 2. (Raw means do not do de-
lighting; the value X/Y in the table means True Positive/False Negative) As
seen in Table 2, the performances of these detectors are almost same when the
objects are under nearly uniform lighting conditions. Under those conditions,
the commonly used assumption that lighting is the low-frequency information
and the object is the convex Lambertian is tenable. Based on this assumption,
these methods can alleviate the lighting influence. Under the extreme lighting
conditions (e.g. set 4), the lighting’s real influence on the non-strict convex object
is shown and the traditional methods do not work under that situation. Under
such an extreme lighting condition, PMM can still keep its performance. The
PMM is derived from the mechanism of photoreceptor that is adaptable to a
wide range of lighting conditions. The global and local information are both used
to adjust the image so that the image can be presented in a better condition.
As a result, the non-uniform lighting influence is balanced. As the pre-filter in
the face detector, PMM achieves its task to accurately remove the FPs caused
by the lighting variance.

2) Composite Test Set: As we mentioned before, about 80000 face samples
are generated from 10000 face images, out of which 9024 faces and 9315 non-face
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Fig. 6. (a)some sample of composite test set. (b)the PMM de-lighting results of (a).
(c)ROC curves of different detectors.

images are chosen randomly to test the detectors. Fig.6(a) gives some examples
of the test images and(b)are the PMM results of (a). Fig.6(c) shows the ROC
curves of the detectors. Comparing the ROC curves of different detectors, we can
see that the performance of the detector using PMM as the pre-filter is better
than the others. There are not so many images taken under extreme lighting in
the test set. Therefore, the improvement made by PMM filter is not so great.
However, for the lighting correction filter in the detection framework, it needs to
eliminate the effect caused by lighting whatever the lighting is. PMM shows that
it can discard the FPs caused by lighting variance more precisely than others.
This characteristic of PMM is necessary for the lighting-filter in the three-step
face detection framework.

4 Conclusion

To model the lighting variance is very complex . The simplified lighting model
only works under uniform lighting conditions and will fail under non-uniform
lighting conditions. Therefore, we do not try to model lighting with the rough
model. Motivated with the super adaptation of HVS to different lighting environ-
ment, we introduce the perception based mapping methods to eliminate lighting
variance. Taking the entropy as the image assessment criterion, we optimize the
parameter for the mapping function. PMM can balance the non-uniform light-
ing influence and modulate the image to a better situation. Even under extreme
lighting conditions, PMM still can keep its performance. As the lighting-filter,
PMM removes FPs caused by lighting variance more precisely than other meth-
ods in the face detection experiments.

PMM does not require the prior knowledge of the subject. Thus the PMM also
can be applied to adjust the lighting conditions of images about other subjects ex-
cept face. It can serve as the lighting-filter for other image processing algorithms.
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Abstract. A methodology for determining the level of confidence of a sub-
region in the overall classification of a given face image affected due to varying 
expressions, illuminations and partial occlusions is presented in this paper. The 
technique for obtaining the weights for each individual region of the test image 
is based on a measure of optical flow between that test image and a face model. 
Individual image regions or the modules are also assigned additional weights by 
arranging them in the order of their importance in classification. The approach 
presented is applicable mainly in scenarios where the number of samples in the 
training set is too little. A K-nearest neighbor distance measure is used in classi-
fying each module of the test image after dimensionality reduction. A total 
score is calculated for each training class based on the classification result of 
each module and its associated weights. Considerable increase in recognition 
accuracy has been observed for PCA, LDA and ICA based linear subspace ap-
proaches when implemented using the proposed technique. 

1   Introduction 

Over the past 15 years, research has focused on making face recognition systems 
more accurate and fully automatic. Significant advances have been made in the design 
of classifiers for successful face recognition. Among appearance-based holistic ap-
proaches, eigenfaces [1, 2] and Fisherfaces [3] have proved to be effective on large 
databases. PCA performs dimensionality reduction by projecting the original n-
dimensional data onto the lower dimensional linear subspace spanned by the leading 
eigenvectors of its covariance matrix. Its goal is to find a set of mutually orthogonal 
basis functions that capture the directions of maximum variance in the data and for 
which the coefficients are pair-wise de-correlated. Unlike PCA, LDA encodes dis-
criminating information in a linearly separable space using bases that are not neces-
sarily orthogonal. Kernel methods such as Kernel Principal Component Analysis 
(KPCA) and Kernel Fisher Discriminant Analysis (KFDA) [4] show better results in 
face recognition than linear subspace methods. Nonlinear projection based methods 
have been able to overcome the problem of expressions and lighting in face images to 
some extent. But there has not been a significant improvement in the recognition ac-
curacy in situations where the face images undergo lot of variations including expres-
sions, partial occlusions and lighting variations and at the same time not many sam-
ples are available to represent the distribution. This paper implements a method of 
face recognition which is based on locally weighted regions. The weights assigned to 
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the image regions enhance the recognition accuracy by decreasing confidence in the 
modules which are affected due to facial variations. There are recent publications [5-
7] in this direction of expression, occlusion and lighting invariant face recognition. In 
[6] a weighted distance measure is implemented which reduces the effect of pixels in 
the test image which underwent significant movement from the corresponding posi-
tions in the training images caused due to expression variations.  

The technique presented in this paper is aimed to deal with varying expressions, 
partial occlusions and extreme lighting variations. It also implements a technique in 
which the regions which are highly affected due to facial variations are automatically 
located and the results of classification of such regions are replaced with the classifi-
cation result of the corresponding regions on the other half of the test image provided 
those regions have been determined to be less affected due to facial variations. This is 
implemented by assuming that the test image is a frontal face image, with proper 
alignment with the training images. A technique based on the optical flow between 
the test image and a face model is implemented to determine the weights associated 
with the modules of the test image. The weight assigned to each module is propor-
tional to the sum of magnitudes of the optical flow vectors within that module. An 
overall score is calculated taking into consideration the classification result of each of 
the modules and the weights associated with that module after replacement procedure 
to determine the final result of classification of the test image. The technique pre-
sented here is computationally efficient and has achieved very high accuracy rates on 
certain freely available standard face databases. The testing strategy is implemented 
such that the training set consists of face images taken under controlled conditions 
where as the testing set consists of images captured in uncontrolled conditions. The 
paper is organized as follows. The second section describes the effect of facial varia-
tions on recognition accuracy and the role of modularization in reducing those effects. 
Third section provides the implementation steps of the proposed technique. Section 
four explains the details about the type of testing strategy that is implemented along 
with the obtained recognition accuracies on various databases. 

2   Variations in Face Images 

Variations caused in facial images due to expression, makeup and non uniform light-
ing tend to move the face vector away from the neutral face of the same person both 
in image space and reduced linear subspace. It has been observed that the dimension-
ality reduction techniques on individual modules of the face images improve the accu-
racy of face recognition compared to applying on the whole image. An experiment is 
conducted on AR database to show the effect of modularization of the face images on 
recognition accuracies. Two sets of images, one with expressions mostly affecting the 
mouth regions and the other set with partial occlusions on the bottom half of the face 
images. The two sets are tested separately using a leave one out strategy. All the train-
ing images are divided into 64 local regions. Each region or the module is projected 
into a reduced eigen space. The test module is classified using a nearest neighbor  
algorithm. The accuracies of the individual modules for both the sets are shown in  
figure 1. 
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Fig. 1. Percentage of accuracies of each module in the images affected due to partial occlusion, 
expression variation 

    Sample face images of each set are also displayed besides the accuracy results in 
the figure 1. It can be observed that only the regions that are affected adversely due to 
facial variations have low accuracy rates. Hence it can be said that in most cases it is 
still possible to obtain good accuracy results if we are able to find out the amount of 
variation on a local region of the face image. 

3   Weighted Modules 

In many of the face recognition techniques [8] which are based on segmented hu-
man face regions, each module or the local region of the test image is classified 
separately and the overall classification of the test image is determined by employ-
ing a voting mechanism on the classification results of all the individual modules. 
The classification is done in favor of the class or individual who obtains the maxi-
mum votes. Instead of a voting technique to classify the test image, a weighted 
module approach is implemented in this paper. Initially images in the face database 
are divided into a predefined set of modules, ‘m’. These modules are arranged in 
the order of importance of classification using the first set of weights as given in 
[10]. The directions of maximum variance are then calculated for each module 
separately using principal component analysis and the weights are obtained after 
projecting the vectorised modules of each training image onto their respective sub-
spaces. The algorithm presented in this paper differs from the earlier works in using 
the image modules more effectively for the overall classification of the image. A 
second set of weights are assigned to the modules dynamically. A less weight  
or confidence is given to those modules of the test image which are affected due to 
the variations caused because of expressions, makeup or decorations, occlusions, 
and lighting. Determination of the weights associated with each module is achieved 
by the application of an optical flow algorithm between the test image and a face 
template. 
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3.1   Optical Flow 

Optical flow between the test image and a neutral face template is calculated to de-
termine the regions with expressions, partial occlusions, and extreme lighting 
changes. The face model which is used as a reference image for a neutral face is the 
mean of all the face images in the training database. Lucas and Kanade’s algorithm 
[9] is a classical technique and is implemented to find the optical flow between the 
test images and the face model in this paper. A brightness constancy constraint is as-
sumed in the calculation of optical flow as given in equation 1. 

),,(),,( tttvytuxItyxI δδδ +++=  (1) 

I(x,y,t) is the intensity at the image pixel (x,y) at time t. (u,v) is the horizontal and ver-
tical velocities, t is a very small time interval. Tailor series expansion of equation 1 
results in the optical flow constraint as given in equation 2.  
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An additional smoothness constraint [9] is assumed to solve for the velocity vectors at 
each pixel of the image. The test images are preprocessed before applying the optical 
flow algorithm. Each of the test images is passed through a low pass filter to reduce 
the resolution of the image. This step helps in ignoring the smaller variations between 
the test image and the face model. The optical flow algorithm which is applied after 
low pass filtering the image captures the variations which are prominent in both the 
images, such as expressions, decorations, and occlusions.  
 

 

Fig. 2. Left to right are the test image, low pass filtered image, optical flow magnitude image 
and the face template 

    We are only interested in the magnitudes of the optical flow vectors and not the di-
rections of the vectors at each pixel. It can be observed in the figure 2 that the regions 
which have undergone a lot of variation with respect to the face model have a higher 
sum of magnitudes of optical flow vectors. It is assumed that the face images are 
properly aligned prior to finding optical flow. Any changes in alignment could pro-
duce false variations. 

3.2   Assignment of Weights 

There are two sets of weights that each individual face module is associated with. The 
first weight assignment scheme is based on the importance of each module for the 
overall face recognition [10]. The assumption is that the various facial regions have 
different amounts of importance, whereby the eye and mouth regions play  
important role in face recognition [10]. A weighted function defined according to the 
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spatial position of the respective regions of the facial features is used in this paper. 
The second weight assignment scheme is based on the optical flow magnitudes within 
each module. The modules enclosing the regions with higher variations are assigned 
lesser weight in order to minimize the influence of such modules on the overall accu-
racy of classification. Equations 3 and 4 explain the process of assignment of weights.  
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where Gi is the sum of the magnitudes of the optical flow vectors within each module. 
T is the magnitude threshold, below which the module is given full confidence during 
classification. T is specific to each module and is set in such a way that variations that 
exist within the neutral face images i.e., without any expressions or decorations or 
lighting variations are not penalized. 
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where Fpq  is the magnitude of the optical flow between the test image and the av-
erage face template at pixel (p,q).  
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The weights are set in such a way that the modules that enclose maximum variations 
are given zero weightage or no confidence. The modules whose flow magnitude does 
not exceed threshold T are given a weightage of ‘1’ and the rest of the modules that 
lie between the limits are assigned weights according to equation 3. Figure 3 shows a 
graphical representation of the assignment of weights. 

 

Fig. 3. Illustration of the linear weight assignment policy 

3.3   Threshold Calculation 

Threshold ‘T‘ represents the magnitude of variations below which the weights as-
signed is always ‘1’. The variations below this threshold are not considered as the 
ones that are caused by expressions, occlusions and non uniform lighting. The mean 
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image of the set of face images belonging to the same individual is selected to repre-
sent the neutral face of that individual. Then optical flow is calculated on the mean 
image of each individual and the face template. Sum of the magnitudes of flow vec-
tors within each module is calculated. Maximum magnitude obtained for each module 
over all the mean images is taken as the threshold for that module. Equations 7 and 8 
further explain the procedure of calculating threshold ‘T’. 
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Gnr is the summation of the magnitude of the optical flow vectors within each module 
for all the mean faces of the individuals with respect to the face template. Tr is the 
threshold for each of the module obtained by taking the maximum value of Gnr. 

3.4   Symmetrically Opposite Modules 

When very less training images are available, it is not possible to easily determine the 
intra personal subspace probability distribution for each module. In such cases it is 
observed that replacing the result of classification of a module which had undergone 
higher variations in comparison with the corresponding module on the other half of 
the symmetric frontal face image which had undergone lesser variations would pro-
duce better results. 

 

Fig. 4. Classification result of the regions encircled are replaced with the result of the symmet-
rically opposite modules 

    The classification result of a module is replaced by the other only when the differ-
ence between the magnitudes of variations exceeds beyond a certain level. This 
threshold is experimentally determined in order to maximize the recognition accuracy. 
The product of weights corresponding to the modules belonging to the same class are 
summed up. Which ever class receives the highest score determines the classification 
result of the test image. 

4    Experimental Results 

PCA, which is a linear subspace approach, is implemented to prove the efficiency and 
do the analysis of the proposed method in improving the recognition accuracy. Test-
ing of the proposed technique is carried out on three databases, AR, AT&T and Yale 
individually. 40 individuals are chosen randomly from the AR database. 13 images of 
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each individual are present in this database. The AT&T database has 40 individuals 
with 10 images of each. Yale database has 150 images in total with 15 individuals. 
Two types of testing strategies are implemented here. The first one is the classical 
leave one out technique. In the second testing policy, only 4 images of each individual 
are chosen to form a training set. For example in AR database, out of the 13 images 
corresponding to each individual, 4 images are selected to form the training set. The 
rest of the 9 images form the testing set. Similarly when dealing with Yale database, 
out of the 11 images of each individual, 4 are assigned for training and 7 for testing. 
This represents the real life situation where the training set consists of images taken in 
controlled environments where as the probe images are uncontrolled. The images se-
lected for training are closer to the neutral face of the individuals. The sample images 
for both the training and testing from the AR database are provided in figures 5 and 6 
respectively. probe image is aligned with the face model to eliminate the possibility of 
false motion between the two images due to misalignment. A second step is to estab-
lish a dense correspondence between the two face images using optical flow tech-
nique and then to calculate the magnitudes of the flow vectors. The probe image is 
  

 

Fig. 5. Face images of an individual in the training set from the AR face database 

 

Fig. 6. Some of the face images of a individual in the testing set from the AR face database 

 

Fig. 7. Accuracy vs the number of dimensions of the subspace corresponding to AR database 
for testing strategy 1 
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Fig. 8. Accuracy vs. the number of dimensions of the subspace corresponding to AT&T data-
base for testing strategy 1 

modularized and the summations of the magnitudes of the vectors within each module 
are calculated and the weight factor is assigned to each module. Each module of the 
probe image is projected onto the corresponding linear subspace created from the 
training set and then a K- nearest neighbor distance measure is used to classify that 
module. A final score for each class or individual in the training set is calculated by 
taking consideration of the weightage associated with each module. A winner takes all 
strategy is followed in determining the final classification result. Figures 7 and 8 illus-
trate the accuracies of the proposed technique on AR and AT&T databases respec-
tively. Leave one out testing strategy was used for testing to obtain the results. It can 
be observed that even with comparatively large set of training images. 
    The holistic linear subspace approach is unable to provide high accuracy on AR data-
base. On the other hand it can be observed that the accuracy results of both PCA and the 
proposed method (WMPCA) are closed to each other in the case of AT&T database. 
 

 

Fig. 9. Accuracy vs the number of dimensions of the subspace corresponding to AR database 
for testing strategy 2 
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This is mainly due to the fact that AT&T database has almost all the images under 
controlled conditions. Figure 9 and 10 demonstrate the results of three different tech-
niques, PCA, MPCA (modularized principal component analysis with voting), and 
WMPCA using the second testing strategy explained above on AR and Yale data-
bases respectively. It can be observed that the holistic PCA has failed miserably on 
AR database. The modularized PCA approach with voting did provide better results 
but still around 12 % less accurate when compared to that of the proposed technique. 
The same explanation can be attributed to the obtained results i.e., uncontrolled test 
images when compared to controlled training images. The difference in accuracy lev-
els between the three methods in the case of Yale database shown in figure 10 is not 
so prominent due to the fact that the variations are less between the training and the 
test images. 

.  

Fig. 10. Accuracy vs the number of dimensions of the subspace corresponding to Yale database 
for testing strategy 2 

Table 1. Accuracy of PCA, LDA , ICA methods vs proposed technique on AR and AT & T 
databases 

% Accuracy 
Proposed method  

Database 
PCA ICA LDA 

PCA ICA LDA 
AR 61.15 63.75 70.32 98.85 97.88 98.9 

AT&T 96.00 96.72 97.87 99.25 99.12 99.42 

Table 1 gives the recognition accuracies of holistic PCA, ICA, LDA and that of the 
proposed weighted local regions method with the same linear subspace approaches for 
64 modules. It is evident that the accuracy levels do improve than the conventional 
implementation of these techniques. Leave one out testing strategy was implemented 
to obtain the demonstrated results in the table. 
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5   Conclusion 

The paper presented an efficient methodology of estimating the amount of variations 
on the local regions of a face image due to varying expressions, non uniform lighting 
and partial occlusions. A weight assignment scheme which assigns a proportional 
weight to account for the variations is also implemented. An additional weight which 
is based on the importance of the module in classification has also been assigned to 
individual modules. Classification of the test image was carried out by taking into 
consideration the result of classification of each module of the test image along with 
the associated weights with that module. Recognition accuracies provided in the paper 
using different testing strategies demonstrated the capability of the proposed tech-
nique in comparison with other conventional methods. 
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Abstract. This paper presents a practical method for hypothesizing
hand locations and subsequently recognizing a discrete number of poses
in image sequences. In a typical setting the user is gesturing in front of a
single camera and interactively performing gesture input with one hand.
The approach is to identify likely hand locations in the image based on
discriminative features of colour and motion. A set of exemplar templates
is stored in memory and a nearest neighbour classifier is then used for hy-
pothesis verification and pose estimation. The performance of the method
is demonstrated on a number of example sequences, including recognition
of static hand gestures and a navigation by pointing application.

1 Introduction

Detecting and tracking hands is a problem in computer vision, which has been re-
ceiving significant attention. The applications in the domain of human computer
interaction (HCI) are appealing: Systems have been designed for sign language
recognition [1, 2, 3], navigation and control by hand motion [4, 5, 6, 7], and cap-
turing detailed finger articulation [8, 9, 10, 11, 12]. For a given recognition task,
it is important to look at the assumptions made in each system in order to deter-
mine whether or not the method will work. Two common assumptions are that
foreground segmentation is reliable and that object segmentation (the hand from
the rest of the body) is feasible. Relaxing these assumptions makes the problem
significantly harder, particularly when using a single CCD camera.

In this paper we consider the problem of hand tracking in an HCI applica-
tion. The system first hypothesizes a number of hand locations in the image,
yielding estimates of location x, y and scale s of the hand. This information
can then be used in subsequent steps. The image subwindow is normalized and
classified as background or one of several pre-defined hand poses. The suggested
method requires little computational power thus allowing for interactive gesture
recognition. The following section briefly reviews some recent work in which the
problem of hand tracking and pose recognition has been addressed.

1.1 Related Work on Hand Tracking and Pose Recognition

A vision-based drawing system, working in real-time, was presented by Mac-
Cormick and Isard [6]. The 2D shape of a pointing hand parallel to the image
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plane was tracked using a top-down camera. The system used a particle filter
together with colour segmentation and background subtraction. Recognition sys-
tems that work in more general settings typically discriminate between few poses
only. For example, Triesch and von der Malsburg [7] used Gabor-jets as features
in a classification task to discriminate between ten hand poses in visually com-
plex scenes. For each hand pose an elastic graph was built, in which each node
contained a Gabor-jet. These graphs were then matched to each frame indepen-
dently in a coarse-to-fine fashion. Bretzner et al. [4] took a scale-space approach
to locate a hand parallel to the image plane and to distinguish between five dif-
ferent poses. Wu and Huang [13] recognized a number of discrete poses using a
learning approach, where a labelled data set is combined with a large unlabeled
data set. Kölsch and Turk [5] combined tracking with detection in a real-time
interface for a wearable camera system: The global hand position was estimated
by tracking a large number of skin-coloured corner features. The detection sys-
tem was able to detect a particular pose at a fixed orientation using cascaded
classifiers. Such classifiers were also used in the sign language recognition system
presented by Kadir et al. [1]. However, the background in the sequences shown
was relatively simple and the emphasis was placed on reliable high-level gesture
recognition. Finally, a number of methods have been suggested for the task of 3D
hand pose estimation from a single view: A 3D geometric model is used to gener-
ate a large number of 2D appearances, which are stored in a database [8, 10, 11].
This makes the collection of a large training data set unnecessary. In many ap-
plications, however, it is not necessary to capture the pose at each frame, but
only to detect certain types of poses.

2 Subwindow Localization

This section proposes an efficient method for hypothesizing a number of locations
and scale (x, y, s) of hands based on colour and motion features with no prior
knowledge. This is done by searching for maxima in scale-space of the different
feature likelihoods. The principle is similar to multi-scale blob detectors that
look for scale-space extrema, e.g. using a Laplacian or difference of Gaussian

0
50

100
150

200
250

300

0

50

100

150

200

250

300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

UV

f(
zC

)

fg
bg

0 100 200 300
0

0.05

0.1

0.15

0.2

0.25

zM

f(
zM

)

bg
fg

Fig. 1. Discriminative features for localization. (left) Colour and (right) motion
features are used to hypothesize hand regions. The feature distributions of foreground
and background regions are used to compute likelihoods for subregions in an image,
which can be done efficiently using cumulative likelihood maps.
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Table 1. Run-time comparison. This table shows the run-times to generate lo-
cation hypotheses by finding maxima in scale space of a likelihood map, (top) using
DoG filters by computing a Gaussian pyramid, and (bottom) using box filters on the
original image (measured on a 3 GHz Pentium IV). The resulting top hypotheses were
the same for both methods on the test sequences. The overhead for computing the
Gaussian pyramid is high, whereas the cost for the box filter grows linearly with the
number of scales. In the recognition experiments 10 scales are used.

Number of scales 3 6 9 12 15
DoG filter [14] 80 ms 99 ms 106 ms 108 ms 111 ms
Box filter 12 ms 24 ms 36 ms 48 ms 61 ms

filter [4, 14]. However, instead of working on an image pyramid we use an effi-
cient box filter. At each image location square subwindows of different sizes are
placed, and each subwindow is divided into centre foreground and surrounding
background region [15], see figure 1. The relative size of the regions is fixed and
is 1/8 for the case of colour features and 1/4 for the case of motion features (the
inside region is larger since observable motion is often around the object silhou-
ette). The likelihood for each subwindow in eqn (1) can be computed efficiently
using integral images of the likelihood maps [15, 16]. Table 1 shows a run-time
comparison of generating hypotheses by computing scale-space extrema using
box filters and difference of Gaussian filters [14].

A likelihood model is defined, which explains the observation in each sub-
window based on a foreground and a background feature distribution. If a hand
is located within the centre region of such a subwindow, surrounded by back-
ground, the correct feature distribution will be chosen for most pixels, leading
to a high subwindow likelihood. The state variable x is given by the parameters
that define the location and scale of a chosen subwindow: x = [x, y, s]. The ob-
servation vector z is described in terms of image features. At each time instant, a
foreground feature distribution p fg and a background distribution pbg are given.
Let z(u) be the observation at image location u ∈ R

2, and fg(x) and bg(x) the
foreground and background image regions, respectively, given by the subwindow
with parameters x. We write the log-likelihood for a subwindow as

log p(z|x) =
∑

u∈fg(x)

log p fg(z(u)|x) +
∑

u∈bg(x)

log pbg(z(u)|x). (1)

The features are colour features zC and motion features zM , described in detail in
the following sections. Colour and motion features often complement each other
in practice. For example, when a hand moves in front of a static skin coloured
background, such as the face, motion features can still be discriminative. On the
other hand, if the scene contains moving background objects, the colour features
are more discriminative. Thus we treat the the features independently at this
stage and for both colour and motion features separately sort the subwindows
according to their likelihood values log p(z|x) normalized by the subwindow size.
Local maxima are extracted, while applying non-maximal suppression in order
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Fig. 2. Colour adaptation based on face detection. Each of the four examples
shows the input frame from a sequence with varying colour balance, the smoothed skin
colour (green) and background distributions (red) in UV-colour space, probabilities
for a static colour model model in normalized UV-space, probabilities for the adaptive
model based on face detection.

to obtain a better spatial distribution of the extracted regions. We take the k
local maxima of each likelihood map as hypothetical object regions (k = 3 in
the experiments).

2.1 Colour Model

Skin colour is a useful cue for hand tracking, however one major practical issue
is to maintain a robust model under varying conditions: changing illumination,
different skin tone of different people and varying background scenes. A popular
approach is to work in an intensity-normalized colour space. However, this alone
is often not sufficient and a method that is able to initialize and adapt the colour
model is required [17, 18, 5, 15]. In this paper the skin colour model is obtained
from a frontal face detector, which is run at every kth frame (k = 30) and which
does not rely on colour information [19]. The assumption is that the skin colour
of face and hands have similar distributions, allowing the system to adapt to
a specific user as well as the current lighting conditions, even in extreme cases
(see figure 2). Colour is represented using a 2D histogram of size 642 for vectors
zC = [U, V ], containing the chromatic components of the Y UV representation.
When a face is detected, the colour values within an ellipse centered and scaled
according to a detected location give the distribution p(zC |xC = skin), estimated
by histogramming and smoothing the distribution. The background distribution
is estimated as a mixture of a uniform distribution and a colour distribution
obtained from image regions adjacent to (left, right, and above) the detected
face locations.

2.2 Motion Model

Motion is another valuable cue that has been extensively used in HCI applica-
tions [18] as it is robust under a wide range of conditions. The motion feature
zM is computed from the difference image as the L1-norm of the pixel-wise RGB
difference vectors at times t and t− 1:

zM = |Rt −Rt−1|+ |Gt −Gt−1|+ |Bt −Bt−1| . (2)

We differentiate between static background and moving objects, not between dif-
ferent foreground objects at this point. The distributions p(zM |xM = motion)
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and p(zM |xM = static) depend on a number of factors, such as the background
scene, the illumination and the motion velocity. We obtain estimates from ex-
ample sequences of difference images: the distribution for static background is
computed from sequences with no moving objects and represents accounts for
noise and some lighting variation. The distribution for moving objects is esti-
mated from sequences of a moving hand. The distributions (see figure 1) were
found to be reasonably stable across sequences with different backgrounds.

3 Hand Pose Estimation

Given a hypothesized image subregion, the aim is to determine whether the
region contains a hand and if so, which pose it is in. The regions are normalized
to a size of 40 × 40 pixels and are classified using nearest neighbour classification.
We propose two distance measures based on oriented intensity edges and skin
colour likelihood, respectively. The next section introduces a distance measure,
which is based on oriented edges and avoids the thresholding step of a binary
edge detector.

3.1 Oriented Edge Distance

Given a hand image in a normalized window, we compute a descriptor using
oriented edge energy [20]. This is based on the response to a pair of even and
odd filters, fe

θ and fo
θ , respectively, at orientation θ:

uOE
θ = (fe

θ ∗ I)2 + (fo
θ ∗ I)2. (3)

Figure 3 shows the filter responses for four example images, showing the advan-
tage of these features in complex scenes over using binary edge maps obtained

Fig. 3. Oriented edge energy vs. Canny edges. This figure shows the results
of the filtering operations on example images from the database of hand images from
Triesch and von der Malsburg [7]. For each image triple: left: input images, middle:
Canny edges (constant parameter settings), right: oriented edge energy (pixel-wise
maximum of responses to four filters with different orientation). The Canny detector
often outputs spurious background edges or leads to premature loss of edge information.
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with a standard Canny detector, which are widely used to extract geometric
information [8, 11]. The value uOE

θ is computed at four discrete orientations for
each pixel location, θ = {0, π

4 , π
2 , 3π

4 }, yielding vectors {ui}i=1,...,4, each of which
is then normalized and stacked into one vector uOE [21]. The distance measure
between two oriented edge maps uOE and vOE is defined as

dOE(uOE ,vOE) = 1− 1
4

4∑
i=1

〈uOE
i ,vOE

i 〉. (4)

The values in each feature vector uOE
i are then multiplied with the pixel-wise

skin colour probability.

3.2 Colour Based Distance

In order to compare templates using colour, the oriented filters are applied to
the colour likelihood map. These vectors are also normalized and stacked into
one feature vector uC . The distance measure is defined similar to the previous
section as

dC(uC ,vC) = 1− 1
4

4∑
i=1

〈uC
i ,vC

i 〉. (5)

By using the filter responses directly in the distance function, binary thresholding
of edges or skin colour at an early stage is avoided.

3.3 Local Template Registration

In order to compute a more exact distance, a continuous image alignment trans-
formation Tα with parameters α is computed for the best 50 matches. This
is necessary to reduce jittered motion, but also to better discriminate between
similar poses. A similarity transform is used for this purpose, represented by the
3× 3 homogeneous matrix

Tα =
[

sR t
0T 1

]
, (6)

where α = {s,R, t}, s ∈ R is a scale factor, R ∈ SO3 a rotation matrix and
t ∈ R

2×1 a translation vector. Similarity transforms are chosen over affine trans-
formations, because shapes under affine transform can look indistinguishable
from the hand shape in a different view. The transformation parameters are
found by searching over a grid of size 34 within the four dimensional parameter
space.

3.4 Template Likelihoods

Based on the distances dOE and dC , a likelihood function is defined for a hand
being in a particular pose based on matching to a set of exemplar templates
{yj}j=1,...,Nj . The exemplars are then clustered such that each of the origi-
nal examples is within a certain distance of at least one of the cluster centres
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{ŷk}k=1,...,Nk
for both features, edges as well as colour. The feature likelihood

of a hand pose is estimated as [22]

p(z|α, k) =
1

2πσ2 exp−d(z,Tαŷk)/2σ2 (7)

where z is the current image observation and Tαyk is the exemplar template ŷk,
transformed by Tα. This term is computed for both oriented edge and colour
features, where the parameters are estimated off-line using a set of 500 registered
hand images containing variation in illumination and skin coloured background.
A pose is detected when the distance value for either oriented edges or colour is
below a threshold value, chosen in the experiments as 2σ.

4 Experimental Results

This section shows experimental results the localization task and on two different
applications using pose estimation. The first application is a recognition task of
ten different hand poses. The second task is a navigation by pointing application,
where the user can indicate a direction by pointing at the camera. A system
overview is given in figure 4. Both experiments are carried out using 320× 240
images from a single camera directed at the user in an office environment. The
skin colour model is initialized using frontal face detection (not shown in the
figures). The likelihoods for subwindows is computed at 10 scales.

Face detector

Motion model

Color model

Exemplar−based

Region

Pose
verification

Set of poses

Input image

hypotheses

shape model

Fig. 4. System overview. In each frame motion and colour features are used to
hypothesize image subregions, which are subsequently verified using an exemplar based
shape model that includes oriented edge and colour features.

4.1 Pose Recognition

The top of figure 5 shows the ten different poses to be recognized. They are the
same poses that have been used in [7]. First, a number of templates are obtained
from a sequence taken in front of neutral background. For the recognition stage
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Fig. 5. Hand posture recognition. top: the ten hand postures to be recognized,
recorded against a neutral background, below: example frames from the sequence with
recognition results superimposed. In this sequence the camera is moved for a number
of times and there is large variation in lighting conditions.

Table 2. Recognition results for (left) static gesture recognition. This
table shows the correctly classified poses on three image sequences (3000 frames
each). Each column shows the results of different combinations of localization features
(colour/motion) and template features (colour/edges). Different rows show the classi-
fication result if the same pose has been classified consistently over a certain number
of consecutive frames. (right) Results for the navigation application. This table
shows the correctly classified poses on four image sequences (3000 frames each) taken
of different users.

Consec col win mot win col win mot win

frames col tmpl col tmpl edge tmpl edge tmpl

1 0.85 0.33 0.67 0.29
2 0.91 0.50 0.78 0.42
3 0.94 0.63 0.84 0.51
4 0.95 0.73 0.87 0.59
5 0.96 0.79 0.88 0.66

Consec col win mot win col win mot win

frames col tmpl col tmpl edge tmpl edge tmpl

1 0.73 0.61 0.57 0.35
2 0.81 0.65 0.69 0.42
3 0.84 0.73 0.74 0.49
4 0.86 0.79 0.80 0.53
5 0.88 0.83 0.84 0.54

40 templates for each pose are used, encoding variation in pose. To increase
tolerance to small rotations, for each template a further four templates are gen-
erated by rotation around the image centre (-10 to 10 degrees). Three sequences
of 3000 frames each were recorded in which a user performed all ten gestures
five times. The bottom row of figure 5 shows example frames, demonstrating the
variation in scale and lighting conditions. Projected onto each frame is the pose
estimate, represented by the closest exemplar template. Table 2 (left) shows the
average classification rates in the image sequences according to individual fea-
tures. Temporal continuity is added by requiring detection of the same pose over
a number of consecutive frames. Most errors occur due to confusion of two sim-
ilar poses (pointing with one or two fingers, respectively). Another error source
are highlights on the hand, where pixels have low skin colour probability. Using
1000 templates, the system currently runs at 6 fps on a 3 GHz Pentium IV.
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Fig. 6. Navigation by pointing at the camera. This figure shows frames from
a test sequence. The overlays represent the estimated pose. Each template is labeled
as one of the classes forward, left, right, up, down, stop. The examples are from four
sequences where three different users perform the gestures.

4.2 Navigation by Pointing

The second application we consider is a navigation by pointing application. In
this experiment 300 templates are used for each pose, covering the range of
motion of a hand pointing toward the camera. No rotated templates are gen-
erated in this case as the orientation is critical for determining the pointing
direction. The templates are manually labeled as one of six classes, forward,
left, right, upward, downward, stop. Four sequences of 3000 frames each were
recorded from three different users. Example frames are shown in figure 6. The
pose estimate is superimposed, showing that the poses are indeed recognized
fairly accurately. Table 2 (right) shows the results on the example sequences.
The difficult case here is when the hand is pointing upward, which looks similar
to when it points forward with the thumb extended. The system currently runs
at 5 fps.

5 Summary and Conclusions

This paper presents a solution to hand pose recognition in cluttered scenes. Ini-
tial location hypotheses are obtained using colour and motion, which are verified
using normalized template matching with a pre-selected number of templates.
The method has been applied to a recognition task with ten poses as well as
a navigation by pointing application. A number of techniques have been com-
bined in this system: The colour model is initialized and updated by a frontal
face detector. Hand locations and scale are hypothesized efficiently using cu-
mulative likelihood maps, and the hand pose is estimated by normalized tem-
plate matching. The system lifts several restrictions which are often present in
real-time systems: In contrast to other methods, the system in this paper uses
neither background subtraction [6] nor does it rely on binary colour segmenta-
tion [17, 2, 3] or gesturing at a fixed distance to the camera [23]. Finally, the
method is efficient enough to detect the hand in each frame independently. Fu-
ture extensions of the system include a tracking element that helps to improve
the efficiency and accuracy of the pose estimation, as well as an increase in the
number of poses.
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5. Kölsch, M., Turk, M.: Fast 2D hand tracking with flocks of features and multi-cue
integration. In: Workshop on Real-Time Vision for HCI. (2004)

6. MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-
quality hand tracking. In: Proc. 6th ECCV. Volume 2. (2000) 3–19

7. Triesch, J., von der Malsburg, C.: Classification of hand postures against complex
backgrounds using elastic graph matching. IVC 20 (2002) 937–943

8. Athitsos, V., Sclaroff, S.: Estimating 3D hand pose from a cluttered image. In:
Proc. CVPR. Volume II. (2003) 432–439

9. Rehg, J.M., Kanade, T.: Model-based tracking of self-occluding articulated objects.
In: Proc. 5th ICCV. (1995) 612–617

10. Shimada, N., Kimura, K., Shirai, Y.: Real-time 3-D hand posture estimation based
on 2-D appearance retrieval using monocular camera. In: Proc. Int. WS. RATFG-
RTS. (2001) 23–30

11. Stenger, B., Thayananthan, A., Torr, P.H.S., Cipolla, R.: Filtering using a tree-
based estimator. In: Proc. 9th ICCV. Volume II. (2003) 1063–1070

12. Wu, Y., Lin, J.Y., Huang, T.S.: Capturing natural hand articulation. In: Proc.
8th ICCV. Volume II. (2001) 426–432

13. Wu, Y., Huang, T.S.: View-independent recognition of hand postures. In: Proc.
CVPR. Volume II. (2000) 88–94

14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60
(2004) 91–110

15. Micilotta, A., Bowden, R.: View-based location and tracking of body parts for
visual interaction. In: Proc. BMVC. (2004) 849–858

16. Movellan, J.R., Hershey, J., Susskind, J.: Real-time video tracking using convolu-
tion HMMs. In: Workshop on Generative Models for Vision. (2004)

17. Argyros, A.A., Lourakis, M.I.A.: Real-time tracking of multiple skin-colored ob-
jects with a possibly moving camera. In: ECCV. (2004) 368–379

18. Crowley, J.L., Berard, F.: Multi-modal tracking of faces for video communications.
In: Proc. CVPR. (1997) 640–645

19. Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57 (2004) 137–154
20. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries

using local brightness, color, and texture cues. PAMI 26 (2004) 530–549
21. Everingham, M.R., Zisserman, A.: Automated person identification in video. In:

3rd Int. Conf. on Image and Video Retrieval. (2004) 289–298
22. Toyama, K., Blake, A.: Probabilistic tracking with exemplars in a metric space.

IJCV 48 (2002) 9–19
23. Von Hardenberg, C., Bérard, F.: Bare-hand human-computer interaction. In: Proc.

ACM Workshop on Perceptive User Interfaces. (2001)



Scalable Representation and Learning for 3D
Object Recognition Using Shared Feature-Based

View Clustering

Sungho Kim and In So Kweon

Dept. of EECS, Korea Advanced Institute of Science and Technology,
373-1 Gusong-Dong, Yuseong-Gu, Daejeon, Korea

{sunghokim, iskweon}@kaist.ac.kr

Abstract. In this paper, we present a new scalable 3D object repre-
sentation and learning method to recognize many objects. Scalability is
one of the important issues in object recognition to reduce memory and
recognition time. The key idea of scalable representation is to combine
a feature sharing concept with view clustering in part-based object rep-
resentation (especially a CFCM: common frame constellation model). In
this representation scheme, we also propose a fully automatic learning
method: appearance-based automatic feature clustering and sequential
construction of view-tuned CFCMs from labeled multi-views and multi-
objects. We applied this learning scheme to 40 objects with 216 training
views. Experimental results show the scalable learning results in almost
constant recognition performance relative to the number of objects.

1 Introduction

Object recognition has become mature in terms of identification level with local
feature-based approaches. Local features are extracted by the following process:
interest point detection [1], region selection [2], and region description [3][4].
Based on these local features, several object recognition methods such as the
probabilistic voting method [5], constellation model-based approaches [6], and
SVM, Adaboost [7] are introduced. The state-of-the-art methods such as SIFT
[3] show very high detection and recognition accuracy in general environments.
However, as the number of objects increases, the issue of scalability becomes
more important. Conventional object representations require linear memory and
recognition time proportionate to the number of objects. This problem can be
more severe if the objects are 3D. Storing all the multiple views of 3D objects is
almost impractical.

Recently, some feasible approaches have been proposed to alleviate the scal-
ability problem. Torralba et al. [8] modified the Adaboost to recognize mul-
ticlass object using a feature-sharing concept. They demonstrated that shared
features outperform independently learned features. Murphy-Chutorian and Tri-
esch adapted feature clustering to solve the problem [9]. This method recognizes
objects by nearest voting using the clustered-feature database. Lowe proposed
a local feature-based view-clustering scheme to represent multiple views of 3D
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Many 3D objects with multi-views

Scalable object representation & automatic learning

Feature sharing View clustering
Part-based

representation

Many 3D objects with multi-views

Scalable object representation & automatic learning

Feature sharing View clustering
Part-based

representation

Fig. 1. Key idea of scalable object representation: We apply the feature sharing and
view clustering to multiple views of 3D object for scalable object representation

objects [10]. But, these approaches are partial works to minimize the scalability
problem in terms of feature level and multiple view level.

How can we reduce the DB size from many objects and views without de-
grading recognition performance? In this paper, we present a new object repre-
sentation and learning method by combining a feature-sharing concept [9] and a
view-clustering concept [10] in part-based object representation [6] as shown in
Fig. 1. In Section 2, we introduce a scalable 3D object representation scheme. Sec-
tions 3 and 4 explain a proposed learning method for the representation. Section
5 details a recognition method for the validation. In Section 6, we demonstrate
the scalability of the proposed method and conclude in Section 7.

2 Scalable 3D Object Representation

As we discussed, simply storing all possible views of many 3D objects requires
huge memory and recognition time. The main cause is originated from the redun-
dancy in DB generation. We have to remove the redundancies effectively to get
minimal DB construction. In advance, we adapt a part-based object representa-
tion, specifically a common-frame constellation model (CFCM) [6] instead of a
holistic appearance representation. The CFCM representation scheme provides
useful advantages in terms of computation and redundancy.

Computational efficiency : An object can be represented as a set of visual
parts. The well-known mathematical model is a fully parameterized constellation
model as in Fig. 2 (a) (top) [11]. The circle means an object part which contains
appearance information and part pose. If each part is xi and the number of part
N , then it can be modeled as full covariance-based joint pdf, p(x1, x2, . . . , xN ).
The DOF (degree of freedom) of required parameters O(N2). However, if we fix
the object ID and view point, each part can share the viewing parameters, θ =
[objectID, pose] as Fig. 2(a) (bottom) [6]. Then the mathematical representation
can be reduced to the product form conditioned on an object parameter like
ΠN

i=1p(xi|θ). In this scheme, the order is reduced to O(N) which is useful during
object recognition. We refer to this part-based object representation as CFCM
since each part shares object parameters (objectID, pose).

Easy redundancy removal : In a CFCM, we can find the source of redundan-
cies easily. One source of the object parts and the other is the object parameters
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Fig. 2. (a) (top) Fully connected constellation model: It can model objects which con-
tain up to 5 7 parts. (bottom) Common-frame constellation model: It can model objects
which have hundreds of parts. (b) Any 3D objects can be rerepsented by shared part-
based CFCMs which are view clustered.

of object ID and view point. Since training images are composed of many mul-
tiple views of 3D objects, there exist redundant parts and views. We can reduce
the redundancies by applying a clustering concept to both parts and views.

Based on these motivations, the proposed scalable object representation frame-
work is shown in Fig. 2(b). The bottom table is the feature (appearance of part)
library. Each feature represents an appearance vector which is obtained by vector
clustering. The appearance feature of an individual part can be anything such as
a SIFT descriptor [3], PCA [12], or moments [13]. A 3D object is represented as a
set of view-clustered CFCMs. Each CFCM contains object parts which have part
pose and the link indices to part libraries (appearance). The part pose represents
part size, part orientation, and position in a CFCM. These kinds of information
are available in [1][3]. Likewise, each element in the library contains all the links to
the parts in the CFCMs. We can use this fact to generate hypotheses during ob-
ject recognition. The next two sections explain the details of learning by feature
and by view clustering respectively.

3 Visual Feature and Clustering

3.1 Generalized Robust Invariant Feature

We detect visual parts based on object structures. First, high-curvature points
and radial symmetry centers are extracted using the Harris corner and DoG
(difference of Gaussian) methods respectively. Second, part size is determined at
the local maxima of convexity where DoG is compared in scale space (see Fig. 3).
This method can extract complementary object parts. Dominant orientation of
visual part is calculated using a weighted steerable filter. Finally, the detected
convex part is encoded using a set of localized histograms (a total of 21) of edge
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(a) (b) (c)

Fig. 3. We can detect structure-based object parts: (a) radial symmetry part (b)
corner-like part (c) complementary visual part detector (proposed) [14]

orientation (4 bins), edge density (1 bin), and hue (4 bins). This is a generalized
form of contextual descriptor [3][4]. The feature dimension is 189 (21*(4+1+4)).
More details is explained in [14]. We call the feature G-RIF for its properties.
We will use the term G-RIF throughout this paper.

3.2 Automatic Feature Clustering

A feature library or code book can be generated by feature clustering from train-
ing features. There are several clustering methods, such as k-means algorithm,
vector quantization [15]. These methods are based on iterative optimization
starting from random cluster centers with a predetermined number of clusters.
In our database, the dimension of a feature is over hundred (189) and the size of
a feature is more than several hundred thousand. In this case, the conventional
energy minimization-based approach is impractical due to the convergence time.
The main problems of k-means algorithm for huge data are:

– How to set the cluster size.
– How to set the initial cluster centers.
– How to effectively compare distances between data and cluster centers.

We propose a simple and practical clustering algorithm suitable for high di-
mensional visual features. We solve the above problems by utilizing the proper-
ties of part structures, and a nearest-neighbor search using a k-d tree [16]. As
we can see in Fig. 4(a) (top), we can cluster visually similar parts using only
the distance threshold (ε) between normalized feature vectors. As the threshold
becomes larger, roughly similar structures are clustered. In part-based object
recognition, part structures have very important roles. So, first we find rough
structure centers by sequentially performing the ε-nearest neighbor search as in
Fig. 4(a) (bottom). The clustered features are removed in search space. Then,
cluster centers are optimized using k-means clustering. This process corrects the
features on the cluster boundaries. By merging the ε-nearest neighbor search, k-d
tree-based distance calculation, and k-means algorithm, we can solve the above
three problems simultaneously. Fig. 4(b) shows the convergence rate of clustering
with the proposed initialization and random samples in k-means clustering. The
proposed automatic clustering is almost converged within two iterations due to
the good initial estimation of cluster centers.
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Fig. 4. (a) ε-NN search results from training parts (top) automatic sequential cluster-
ing proces (bottom), (b) Convergence comparisons between the proposed automatic
clustering and conventional k-means algorithm

4 Sequential Construction of Scalable Object Model

As we said, we represent a 3D object by a set of view-tuned CFCMs. Visual parts
in a CFCM are conditioned on the view-tuned parameters. The term view-tuned
means view clustering in a similarity transform space. Fig. 5(a) shows the overall
object learning structure. Given labeled multi-views and multi-object images, we
have to find view-tuned CFCMs. In a CFCM, each part is represented in terms
of pose and the appearance index to the shared feature libraries learned in the
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Fig. 5. (a) Object learning by the sequential view clustering: Given appearance library,
image features are extracted from each training image. Then proper clustering action
(Case I, II, III) is selected based on the the reuslt of core functional blocks in Fig. 6. (b)
An example of view clustering: The 4 training images are represented by a view-tuned
CFCM.
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5 Multi-object Recognition

How can we fully utilize the shared feature-based view clustering method in
object recognition? Basically, we modify the well-known hypothesis and veri-
fication framework for recognizing multiple objects with the proposed object
representation scheme.

If S represents a set of scene features, D represents a set of database entries
(shared feature lib. + CFCMs), and H is hypothesized CFCMs which describe
the scene best, then the objects recognition problem can be formulated as a
mixture form (the 1st line in eq. 2: assume multiple objects in a scene). πm is
the mixture weight of object m which is estimated on-line by a set of CFCMs
belonging to m. ĥm is the optimal transformed CFCM for object m. If we as-
sume uniform priors, the equation can be reduced to the 2nd line in eq. 2. We
select the best hypothesis (ĥm) which has the maximal conditional probability
(pm(Sm|h(i)

m , D)).

p(H |S, D) =
∑M

m=1 πmpm(ĥm|Sm, D)

∝
∑M

m=1 πmpm(Sm|ĥm, D) (2)

where pm(Sm|ĥm, D) = argmaxi∈Im{pm(Sm|h(i)
m , D)},

∑M
m=1 πm = 1. We can

model pm(Sm|h(i)
m , D) by a Gaussian noise model of appearance and pose using

eq. 3. We assume that the appearance and pose of each part is independent. In
addition, since features in a CFCM are conditioned on a common-frame, they
can be handled independently. yapp is the shared feature closest to scene feature
xapp. yloc is the position of a part hypothesized by h

(i)
m . σapp, σloc are estimated

from training data during sequential CFCM constrcution as Fig. 5(a).

pm(Sm|h(i)
m , D) =

∏
x∈Sm

papp(x|h(i)
m , D)·ppose(x|h(i)

m , D) (3)

where papp(x|h(i)
m , D)∝exp(−‖xapp−yapp‖2/σ2

app), ppose(x|h(i)
m , D)∝exp(−‖xloc

− yloc‖2/σ2
loc). Fig. 7(a) summarizes the object recognition procedures graphi-

cally. We can get all possible matching pairs by an NN (nearest neighbor) search
in the feature library. Hypotheses are generated by Hough transform in the
CFCM ID, scale (11 bins), orientation (8 bins) space [3], and grouped by ob-
ject ID. Then we accept or reject the hypothesized object based on the bin size
with an optimal threshold [9]. Finally, we select the optimal hypotheses using
equation (3) which can best be matched to object features in a scene.

6 Experimental Results

We prepared 40 3D objects to test the scalability of the proposed method. The
object are segmented and labeled as shown in Fig. 7(b). The total number of
training views is 216. We use 90 test scenes where each scene contains 0∼6
objects (total: 247 objects) not used in the learning process.
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Fig. 7. (a) Multiple object recognition is conducted by hypothesis and test (verifica-
tion). Hypotheses of all possible CFCMs are generated from Hough transform of match-
ing pairs. CFCMs are grouped then maximal CFCMs are selected for each group. (b)
Partial examples of labeled multi-view/multi-object images for training.

Table 1. The size of clustered features and CFCMs is reduced as the thresholds (ε,
T2 respectively) increase

ε 0 0.1 0.2 0.3 0.4 0.5

No. of shared feature 35,027 32,627 24,957 18,439 14,061 8,472
T2 0 1 2 4 10 20

No. of view-tuned CFCM 216 179 147 120 100 97

Given the huge training data set, we first extract all visual features using
G-RIF [14]. Then we apply automatic clustering as Fig. 4(a). The clustered fea-
tures are stored in a k-d tree structure to reduce the search time by O(log(N)).
Based on these clustered features, we sequentially construct view-tuned CFCMs
using the learning method shown in Fig. 5(a). The size of the view-tuned CFCM
is determined by the threshold (T 2) of similarity transform error. Table 1 sum-
marizes these learning results by changing two parameters. We can reduce the
number of features by feature sharing and also reduce the size of the CFCMs by
view clustering.

Next, we evaluated the recognition performance for the various learning data
shown in Table 1. We decide that a recognition result is successful if both object
ID and pose are correct by human eye. Fig. 8 shows the results. Fig. 8(a) is
obtained by fixing the size CFCM at 100 (T 2=4). As the feature size increases,
the system shows higher recognition rate. However, the recognition is almost
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Fig. 8. Evaluation of object recognition according to database size: (a) number of
shared feature, (b) number of view-tuned CFCMs, (c) Recognition time vs. number of
objects (d) recognition rate vs. number of objects

Fig. 9. Object recognition results by hypothesis and verification scheme

converged at the size of feature 24,957 (ε =0.2, 95%). Likewise, we can get the
recognition performance according to the size of a view-tuned CFCM (we fix the
number of feature to 24,957) as Fig. 8(b). We can get very high accuracy with
only 120 CFCMs (T 2=4, 95%).

Finally, we checked the recognition time and recognition rate according to the
number of objects. Note that the recognition time is log-linear to the number of
object as Fig. 8(c). Furthermore, the recognition rate is almost constant to the
number of object as Fig. 8(d). From these experiments, we can determine if the
proposed object representation scheme is scalable. If we set ε to 0.2, T 2 to 4,
the overall recognition rate is 95.8% with false alarm rate 2.43% (this is, rate of
incorrect poses). Fig. 9 shows examples of multiple object recognition results by
selecting maximal CFCMs in multimodal probability in eq. 2.

7 Conclusions

In this paper, we focus on scalable 3D object representation and its learning by
combining feature sharing and view clustering in part-based recognition. Visual
structure-based automatic clustering is especially useful to feature sharing and
sequential construction of CFCMs that can learn any new incoming objects of
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practical importance. We experimentally validate that the shared feature-based
view clustering scheme can effectively represent 3D objects and is scalable to the
number of objects. We recognize multiple objects by a hypothesis and verifica-
tion method in identification level. We will next investigate how to upgrade the
scalable object representation and learning scheme to the categorization level.
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Abstract. We propose an empirical computational model for generat-
ing an interpretation of a video shot based on our proposed principle of
perceptual prominence. The principle of perceptual prominence captures
the key aspects of mise-en-scène required for interpreting a video scene.
We present a novel approach for applying perceptual grouping principles
to the spatio-temporal domain of video. Our spatio-temporal perceptual
grouping scheme, applied on blob tracks, makes use of a specified spatio-
temporal coherence model. A high level semantic interpretation of scenes
is done using the mise-en-scène features and the perceptual prominence
computed for the perceptual clusters.

1 Introduction

Our understanding of the scene draws mainly from the characteristics and the
context of the scene components we focus on. What we focus onto depends on the
mise-en-scène and also our world knowledge. The perceptive and the cognitive
phenomena work together to direct our attention. Computer vision techniques
can be exploited to identify the perceptible attributes. Our world knowledge
and expectations, together with the temporal behavior analysis of the perceptible
attributes taking the context into account, constitute as inputs for computing
the perceptual attributes of the scene components.

In this work we propose the concept of perceptual prominence for the sub-
jects in the scene. Prominence can have different interpretations, which may
lead to different specifications of cognitive interest in the perceptual attributes
of the subjects. The specifications can be parametrized into different promi-
nence models. A prominence model specifies a set of perceptual attributes, and
a prominence function which uses them to compute a measure signifying the
prominence.

Different subjects may turn out to be prominent when using different promi-
nence models. Video shot interpretation follows from the analysis of the promi-
nent subjects in the scene. We do not attempt to model the psychophysical
sensory mechanisms of human visual system, as is done in Visual attention [1].
We deal with prominence arising as a result of “perceiving”, ie, the cognitive
interest coming up as a result of understanding and awareness of the complete
visualization space (2D + time).
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Several approaches have made use of perceptual organization to identify mean-
ingful structures in images and videos. [2] have used perceptual grouping to esti-
mate a dense velocity field given a pair of frames. [3] have presented a perceptual
grouping based algorithm for segmenting motion trajectories. [4] have applied
the principle of perceptual organization to track geometrical structures like rect-
angles, quadrilaterals, ellipses, circles, ribbons, triangles, etc. [5] have worked
on perceptual grouping in spatio-temporal domain using motion cues. Pascal et
al. [6] have formulated a perceptual organization approach based on Dempster
Shafer Theory.

Prior attempts to quantify the saliency of perceptual structures have made
use of structural information, local characteristics, and probability of occurrence
of the structure [7], [8], [9], [10]. We have extended the concept of saliency to be
evaluated at the cognitive level, and term it as perceptual prominence. We make
use of context and mise-en-scène to compute the perceptual prominence.

We identify the subjects using perceptual grouping principles. Perceptual or-
ganization deals with identifying inherent organizations in primitives which can
lead to more meaningful structures. We develop here an empirical computational
model for classifying a video scene into two broad categories: subject-centric
scenes, that have one or few prominent subjects, and, frame-centric scenes, where
none of the subjects can be attributed a high prominence and hence the entire
frame is a subject of interest.

The contributions of our work lie in the use of a novel clustering methodol-
ogy for identifying space time regions homogeneous in color, a novel perceptual
grouping algorithm which identifies the foreground clusters (subjects) by group-
ing the blob tracks of homogeneous color regions, use of a novel principle of
perceptual prominence to generate a taxonomy of interpretation of video scenes,
and the use of mise-en-scène features for scene classification.

2 Space-Time Homogeneous Color Regions by Clustering

In this section we provide an overview of our clustering methodology to identify
tracks of homogeneous color regions modeled as 2-D blobs. The 6-D feature space
of video data (3 for color, 2 for position and 1 for time coordinates) is a seman-
tically heterogeneous feature space because color, position and time are features
with different semantics. Our scheme uses a decoupled clustering along different
feature dimensions. The set of samples within a cluster are further organized into
subclusters in the subsequent level of the hierarchy. The hierarchical sequence
of clusters can be represented in the form of a tree which we refer to as the
Decoupled Semantics Clustering tree (DSCT). Selection of the clustering scheme
(and thus the clustering model) to be used for a given hierarchy level is done by
taking into account the nature of data distribution along the feature set chosen
for partitioning at that level. At the first level, the feature space is partitioned
along time to give video stacks, each of size 10 frames. For the second level, we
do a color clustering of the 3-D color (in LUV space) data for the pixels in the
video stack. The color clustering is done using hierarchical mean shift [11]. The
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color model comprises of color modes selected from the mean shift dendrogram.
Selection of the color model is done such that the color distance between the
color modes is less than a threshold τc (chosen 12). At the third level, each color
cluster is partitioned along time to obtain a projection of the color cluster on the
frames, yielding a set of pixels depicting regions homogeneous in that color for
each frame of stack. At the fourth level, we apply GMM clustering on the (x,y)
position features of these pixels to model them as 2-D blobs. As a final step, we
generate tracks of these 2-D blobs using a criteria of smooth motion of the blobs
from one frame to another. The blobs are tracked within the stacks and then
across the stacks using a criteria of smooth motion and color similarity. The
blob tracks are also linked across occlusions by formulating a track similarity
measure.

3 Perceptual Grouping in Spatio-temporal Domain

The space time homogeneous color regions (blob tracks) need to be organized
into meaningful clusters using a grouping process. For the spatio-temporal do-
main, the grouping criteria are formulated using attributes that characterize the
spatial coherence as well as the temporal characteristics so that the grouping
persists in time. In our formalism, the Gestalt principle of common fate [12] is
functionally modeled as the temporal consistency of attributes of a spatial or-
ganization of patterns. A grouping is valid in the spatial domain, if it follows
Gestalt principles such as connectedness, proximity and similarity of motion.
We quantify the grouping saliency measure of a cluster as the grouping proba-
bility of the cluster. Our computational model for evaluating a spatio-temporal
grouping is a belief network which provides the grouping probability of a cluster
cj . The belief network is shown in Fig 1 where the node S takes on two values
[groupingIsSalient, groupingIsNotSalient]. The grouping probability P(cj) com-
puted at node S is evidenced on a set of Gestalt criteria (the nodes A, B, C, D,
E) for spatio-temporal grouping.
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For computing the virtual evidence at each of the nodes (A,B,C,D,E) we
analyze the attributes of associations between patterns to evaluate the specific
Gestalt associations which lead to a salient grouping. Each pattern in a putative
cluster contributes an evidence for the saliency of the grouping. An evidence is
computed by evaluating a specified Gestalt association of a pattern pi to the
rest of the cluster cj . If a cluster cj has a pattern that does not form a valid
association (say association type g) with the remaining patterns of the cluster,
then the computed evidence by evaluating that association would lead to a low
probability of grouping Pg(cj). The pattern with the longest lifespan in the
cluster is referred to as the generator of the cluster. We take the generator node
as the representative pattern of a cluster. We approximate the spatial association
measure of pattern pi with cluster cj using the spatial association between pi and
the generator of cj . We next describe the computation of evidences (at the leaf
nodes V mi, V ni, V bi, etc) for each of the 5 different grouping criteria formulated
as associations between a pattern and a cluster.

(A) Motion Similarity and Adjacency: This association plays the important role
of grouping the foreground blobs having a distinct motion relative to the back-
ground blobs. We compute the frame to frame motion vector for a blob track
as the displacement between the blob centroids. The evidence is proportional to
the average difference in the motion vectors of the two patterns computed over
all the frames in which the patterns exist simultaneously. Adjacency evidence is
formulated as proportional to the number of frames for which the pattern has
an overlapping boundary with the cluster.

(B) Cluster bias for a Pattern: The cluster bias signifies the affinity of the cluster
towards the pattern. A pattern may be important for the cluster if it could facil-
itate the adjacency of other patterns towards the cluster. For example, removing
a pattern pi may cause a set of patterns q to get disconnected from the cluster.
The cluster bias for pi is formulated as proportional to

∑
∀qk∈q dk, where dk is

the period for which the pattern qk ∈ q gets disconnected from the cluster

(C) Self bias of a Pattern: It signifies the pattern’s affinity towards a cluster. A
pattern will have a self bias to a cluster if it happens to share an adjacency to
the cluster for a temporal period which is a large fraction of its own lifespan.
These are the patterns which remain mostly occluded during the cluster lifespan
and appear for only short durations. The self bias is proportional to the fraction
of the pattern’s lifespan relative to the cluster lifespan.

(D) Configuration Stability: There are situations when it is desirable that the
relative geometrical configuration of the patterns in a cluster be stable for the
grouping to be valid. Our formulation for configuration stability quantifies the
relative change in the configuration of the pattern with respect to other patterns
in the cluster.

(E) Expectations: Recognition of a part of an object is a cue for the presence of
other parts, which can be identified and grouped to form the complete object.
For example, in scenes where the subjects are stationary, we use a face detector
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to identify the face regions. A face region is then grouped with other blobs below
it to delineate the human body.

4 The Perceptual Grouping Algorithm for Cluster
Identification

In this section we discuss our algorithm for identifying clusters from a given set
of spatio-temporal patterns (blob tracks). The grouping saliency S of a cluster
is a measure of goodness of the grouping. We formulate the grouping saliency
measure of a cluster as the grouping probability for the cluster, computed using
the belief network of Fig 1. The grouping saliency of a cluster cj denoted as
Scj is computed as: Scj = P(cj), where P(cj) is the grouping probability of
the cluster cj. If C be the set of all perceptual clusters in the scene, then the
grouping saliency for the entire scene is the sum Sscene =

∑
∀cj∈C Scj . The

spatio-temporal grouping problem is to identify the set C of perceptual clusters
in the scene so as to maximize Sscene such that the final set of clusters have

P(ci) ≥ 0.5, P(ci ∪ cj) < 0.5, and ci ∩ cj = φ ∀ ci, cj ∈ C, i 
= j (1)

We have thus formulated the perceptual grouping problem as an optimization
problem. We outline our algorithm which maximizes Sscene to a local maximum,
while satisfying constraint 1.

Step 1. Instantiate a new cluster if there are patterns without any cluster label, ie
which do not belong to any of the clusters. From amongst the unlabeled patterns,
pick up the one that has the maximum lifespan. This pattern is called as the
generator pattern for the new cluster. Put the newly instantiated cluster, which
right now consists of only the generator pattern, into a queue clusterQ. If all the
patterns have cluster labels and the clusterQ is empty, then exit.

Step 2. Take the cluster at the front of the clusterQ. Call this cluster cf .

Step 3. Consider a pattern pi of the cluster cf . Compute the grouping saliency
of this pattern with every cluster. From amongst the clusters that form a salient
grouping with this pattern, choose the one for which the increase in the scene’s
grouping saliency is maximum. If the chosen cluster is different from the existing
cluster label of pi, then relabel pi. As a result of relabeling, some patterns may
leave membership of cf and some patterns may become new members of cf . If
any pattern changes its cluster label from k to j, then insert the clusters ck and
cj into the clusterQ if they are not already present in the queue.

Step 4. If any pattern changes its label as a result of step 3, then go to step 2.
If none of the patterns changes its label, remove the front element (cf ) of the
queue and go to step 1.

The iterative process terminates when the pattern labels have stabilized. It at-
tempts to hypothesize new clusters and organizes them such that Sscene reaches
a local maximum. Convergence to a local maximum is guaranteed since we en-
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sure that at every step of the algorithm, �Sscene ≥ 0. The foreground and the
background blobs get grouped into separate clusters.

5 Perceptual Prominence

We first give the formal definition of Perceptual Prominence and then provide
the illustrations. Let S = {p1, p2, .., pn} be a set of elementary patterns. Let
C = {c1, c2, .., cm}, such that c1 ∪ c2∪, ...,∪cm ⊆ S, where ci ∩ cj = φ, i 
= j,
be a set of perceptual clusters identified using the spatio-temporal grouping
algorithm. The members of each cluster ci share some set of common charac-
teristics c∗i . This set of common characteristics may be defined distinctly for
different clusters. Let ψ denote the perceptual attributes of a cluster. These at-
tributes are common to all clusters. Denoting ψi as the value of ψ for ci, let
Ψ = {ψ1, ψ2, ψ3, ..., ψk} be the set of perceptual attributes of all the clusters
in C. The perceptual prominence P(ci) for a cluster ci is defined as its contex-
tual perceivability under some interpretation I. The interpretation I specifies a
vector of perceptual attributes ψ and a methodology which gives a prominence
measure for the cluster ci in the context Ψ .

The perceptual attributes of a cluster characterize the contextual behavior
and appearance of the cluster. A contextual attribute captures the distinguish-
ing properties of the cluster with respect to the neighboring region or the other
clusters. Not all attributes need to be contextual. When all the perceptual at-
tributes are computed without taking the context into account, the prominence
measure is called as the self prominence. Our methodology for computing the
prominence measure is a belief network which models the prominence of a cluster
as a proposition (a node in the network) and the observable nodes of the be-
lief network are the perceptual attributes which constitute the evidence for the
prominence. The prominence measure is formulated as the probability computed
for the prominence. Our belief network for modeling the prominence is shown
in Fig 2. The conditional probability tables used for the belief network dictate
how the various evidences influence the prominence measure.

Prominence can be characterized in several ways. For example, in a subject
oriented scene, the leading subject generally lasts for a long duration and hence
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can be identified as prominent. In surveillance scenes, subjects which appear
for a short span of time, or subjects which move in a direction different from
other subjects are regarded as prominent (deserving attention). In many scenes,
a subject occupying a position so as to create an imbalance in the arrangement
of the scene components, turns out to be prominent. The perceptual attributes
leading to prominence are formulated as virtual evidences. Each virtual evidence
provides beliefs in favor and against the proposition of prominence. Different
interpretations of prominence can be encoded into different prominence models.

6 Scene Interpretation

Scene interpretation involves the recognition and analysis of scene components
which comprise of both the background and the foreground subjects. A specific
type of a scene dictates a specific composition and behavior model for its con-
stituent subjects. The perceptual attributes for the subjects show adherence to
the scene-type-specific behavior model (henceforth referred to as the the scene
model). Our model for scene interpretation is a belief network in which the belief
for a given scene type is computed using a set of evidence nodes which correspond
to observations related to: (1) mise-en-scène, (2) identification of the subjects,
(3) behavior of the subjects.

Observation of a specific behavior pattern for a set of subjects may constitute
an important evidence (positive or negative) for a given scene type. This requires
making specifications of the behavior attributes in the form of a prominence
model. Adherence to a given prominence model is quantified by the computed
prominence value. Several prominence models may be relevant to a scene. We
identify the clusters which show compliance to a given prominence model as the
ones which show a prominence value greater than 0.5.

We interpret a scene into two broad categories: Subject Centric and Frame
Centric. Subject centric scenes contain fewer subjects with independent spatio-
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(d) Original (Crowd Walking)(c) Foreground blob
tracks

(e) Foreground blob
tracks

(b) Color Clustering
on the stack

(a) Original Frame
Person Walking

(f) A bowling sequence
     (Cricket)

(j) Tennis(i) Persons Walking(h) A news reporter(g) Football scene

Fig. 4. Shows some example scenes which were correctly classified by the belief network.
The foreground clusters identified in each scene are shown bounded in a box.

temporal interactions. The subjects normally exist for most of the duration of
the shot. Frame centric scenes contain multiple subjects that may be engaged in
a group specific activity or independent activities. The overall belief in a scene is
computed using a belief network shown in Fig 3 (a). The node hierarchy in the
belief network is constructed in the reverse order of the scene hierarchy as in the
taxonomy. In the independent-activity scenes, a subject follows an independent
movement pattern without any influence from other subjects. In the involved-
activity scenes, a subject normally moves in response to the movement of other
subjects in the scenes. In the no-activity scenes, the subjects do not show any
significant activity. Specifically we have used 4 prominence models which identify
subjects with uniform motion (Pu), zigzag motion (Pzz), no motion (Pnm), and
those showing a reasonable speed (Puf ) respectively. The scene evidence from a
given prominence model is computed using a belief network shown in Fig 3(b)
and comprises of the count n of the clusters which show compliance and the
average prominence Pavg shown by the complying subjects. Different mise-en-
scène cues are relevant to different scene types. These cues get instantiated as
virtual evidences in the belief network. The node state which gets the highest
scene probability is taken as the scene category of the given sequence.

7 Results

We have characterized different scenes by making use of key mise-en-scène as-
pects and subject behaviors specific to the scene types. For testing our system,
we have chosen example scenes from certain sports videos. A video of any sport
comprises of several types of scenes, like close-up shots of players, crowd scenes,
etc. For classification purpose, we consider only those mise-en-scène cues which
capture the distinguishing aspect of that game video.

We now discuss the mise-en-scène observations which we have used for differ-
ent types of scenes:
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Cricket: (1) Presence of grass (identified as blobs with a green hue), (2) the
bowler/fielder (subject) appearing in a single color of the dress, and surrounded
by grass, (3) the subjects being a humans. (4) subjects showing fast motion in a
uniform direction. The last observation is common in the cricket shots in which
the camera follows the ball after the batsman has played it. The camera moves
fast, thus providing the subjects with an apparent fast motion in a uniform direc-
tion. Our prominence model for cricket identifies subjects which move speedily
in a uniform direction. We take a cluster (subject) to be a human if the aspect
ratio of its bounding box is less than 1.

Tennis: (1) the motion trajectory of a subject confined to the upper half or the
lower half of the frame. (2) the subjects identified as humans (aspect ratio test)
and not more than two in number, and (3) subjects adhering to the prominence
model corresponding to zigzag motion. The motion of players observed in a
tennis shot is primarily zigzag.

Football: The mise-en-scène observations used for football are: (1) presence of
grass, (2) players distributed over the field of the view, and (3) a few of the
subjects showing a zigzag motion.

News Report: We make use of the OpenCV library implementation of the face-
detector to identify frontal view faces in the scene. The blobs characterizing the
face region form evidence for the presence of human subject. These blobs are
further grouped with other blobs below the face such that the width of the body
region below the face is not more than four times the width of the face region.
This kind of a grouping is likely to identify a (stationary) human body. In a
news report, the reporter (subject) may stand infront of a background which
may have static or moving objects (eg a traffic scene). The foreground subject in
a news report adhere to a prominence model highlighting subjects with a large
lifespan, and showing no motion.

Crowd Scenes: For scenes which have got frontal faces of human beings with a
reasonable resolution, we use the face detector to identify face regions and then
group the blobs below the face region to delineate the body region. A walking
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Fig. 5. Shows the results of scene interpretation on a few example video scenes
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sequence of a few subjects or several subjects(crowd) is identified by evaluating
the adherence of a subject to the prominence model specifying uniform motion.

Fig 4 shows some video scene examples we have used for our experiments, and
Fig 5 tabulates our results for scene interpretation. Extensibility of our interpre-
tation framework to incorporate other classes of scenes is straightforward. The
success of our framework depends crucially on the kind of observation model
(evidences) used for characterizing the scenes.

8 Conclusions

As noted in the previous section, we have made use of hand-picked mise-en-
scène cues and prominence models for formulating the evidences supportive for
various scene types. We have achieved success in interpreting a few classes of
scenes using our framework which processes and gathers evidences from raw
video data. Further research is required to automatically derive the observation
models for a variety of scene classes and plugging in the appropriate evidence
computation modules.
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Abstract. We propose an efficient way to account for spatial smooth-
ness in foreground-background segmentation of video sequences. Most
statistical background modeling techniques regard the pixels in an image
as independent and disregard the fundamental concept of smoothness. In
contrast, we model smoothness of the foreground and background with
a Markov random field, in such a way that it can be globally optimized
at video frame rate. As a background model, the mixture-of-Gaussian
(MOG) model is adopted and enhanced with several improvements de-
veloped for other background models. Experimental results show that
the MOG model is still competitive, and that segmentation with the
smoothness prior outperforms other methods.

1 Introduction

A basic requirement for video processing tasks with static cameras, such as
surveillance and object tracking, is to segment the objects of interest from the
permanently observed background. To this end, a model is estimated which
describes the background, and parts of a frame which do not fit the model within
a certain tolerance are labeled as foreground. What makes the task difficult is
the fact that the background dynamically changes over time. Toyama et al. have
termed the task “background maintenance” to point out the dynamic aspect
of keeping the model up to date, and have presented a taxonomy of possible
difficulties [1]. These include gradual and sudden illumination changes, shadows,
vacillating background, foreground objects which share the characteristics of
the background, foreground objects which remain static and must be merged
into the background model, and the situation where no training images without
foreground objects are available. Examples for these difficulties can be found in
the test sequences in Sect. 4.

The literature about background maintenance can be broadly classified into
two main approaches. Non-predictive methods recover a probability density func-
tion (pdf ) of the observations at each pixel, and classify pixels as foreground,
which do not match the function. The pdf can be approximated by a single Gaus-
sian [2], a mixture of Gaussians [3] or a non-parametric distribution [4]. Some
authors use not only intensities, but also higher-level information such as optical
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flow [5]. A few methods do not work on single pixels: in [6], the background
model is compressed to a set of codebook vectors, while [7] uses a simple mean
image as background model, and normalized cross-correlation of small windows
to measure how well two regions match.

A second class of methods uses prediction rather than density estimation to
predict the pixel value, and classifies pixels as foreground, which do not match
the prediction. Linear prediction is the basis of [1]. That paper also introduced
the notion that background maintenance has to take into account different spa-
tial scales: the initial result is improved using information at region-level for
hole-filling, and at frame-level by maintaining several background models and
switching between them, such that the foreground does not become too large.
Prediction can also be performed with a Kalman filter [8], through projection
onto a PCA-basis [9], or with an autoregressive model [10].

A classical statistical model, which is able to deal with many difficulties, is
the mixture-of-Gaussian (MOG) model introduced by Stauffer and Grimson [3].
It describes the values of each background pixel throughout the sequence with a
mixture of Gaussian distributions. Since several Gaussians are used, it correctly
models multi-modal distributions due to periodic changes (e.g., a flag in the wind
or a flickering light source), and since the parameters of the Gaussians are con-
tinually updated, it is able to adjust to changing illumination, and to gradually
learn the model, if the background is not entirely visible in the beginning.

A straight-forward implementation of the MOG method has been shown to
fail on several of the difficulties described above [1]. One goal of this paper is
to show that most of these failures can be avoided, if the improvements sug-
gested for different other background maintenance algorithms are incorporated
into the MOG model, too. If the method is implemented carefully, the results
are at least as good as for other standard methods. Firstly, the difficulties due
to shadows and highlights can be solved using chromaticity coordinates, as al-
ready proposed in [11]. The second difficulty is more deep-rooted: the method
uses a single learning rate to control two distinct phenomena, the adaptation to
changing illumination and the fading of static foreground objects into the back-
ground. Therefore, foreground objects which stop moving are absorbed into the
background too quickly. To overcome this limitation, a learning delay is intro-
duced, which explicitly states how long a static object should remain foreground.
Thirdly, we show that information, which can only be detected at frame-level
(e.g. sudden changes in global illumination), can easily be fed back into the MOG
model via the learning rate.

The main contribution of the paper does not concern the maintenance of the
background model itself, but the way it is used to label pixels as background
or foreground. Commonly, the background likelihood is simply thresholded for
each pixel independently. In contrast, we argue that even at a low level the
field of background probabilities contains spatial information. For a long time
researchers have recognized that even prior to any semantic interpretation the
visual world is smooth, in the sense that an image is generated by objects which
are mapped to image regions with common properties [12]. This does not require
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Fig. 1. Smoothness as prior belief. Random samples from the posterior distributions
of segmentations without (left) and with (right) smoothness prior. Background proba-
bilities are uniformly distributed, there is no semantics. Still the patterns on the right
are visually more realistic.

semantic interpretation – even if the objects are unknown, the world is a priori
more likely to generate a smooth foreground/background pattern than a random
pattern (see Fig. 1). To make full use of the estimated likelihoods and add a
smoothness prior, we cast the foreground/background segmentation as a labeling
problem on a first-order Markov random field (MRF), and show how its optimal
configuration can be efficiently found.

The approaches closest to ours probably are [13], and very recently [14]. The
former also model smoothness with a MRF. In their posterior, they combine
normalized color and intensity (as advocated in Sect. 2), conventional (R,G,B)-
color, and the output of an edge detector. For the resulting complicated energy
functional, only a minimum of undetermined goodness is found. We propose a
simpler posterior, which uses less information, but can be globally optimized and
requires fewer parameters. [14] model both position and appearance in a single
pdf, estimated with a kernel density method. They also estimate a foreground dis-
tribution, assuming smoothly changing foreground, and use a MRF-formulation
similar to the one presented here to enforce spatial coherence.

In the last section, experiments on the Wallflower benchmark are presented,
which show that the enhanced MOG-model is competitive with all other back-
ground maintenance methods we are aware of, and that, when used with a
smoothness prior, it outperforms all other tested methods.

2 The Mixture-of-Gaussian Model

Principle. The intuition behind the MOG-model is the following: the intensities
�x of a given pixel form a time series, which can be represented as the mixture
of a small number of Gaussians. Let the maximum number of Gaussians for a
pixel be K (in our implementation set to K = 5). The probability that a pixel
assumes a value �x at a certain time t is then given by [3]

P (�xt) =
K∑

i=1

wi,t√
(2π)n|Si,t|

e−
1
2 (�xt−�mi,t)TS−1

i,t (�xt−�mi,t) (1)

where �mi is the mean of the ith Gaussian, Si is its covariance matrix, and wi is
its weight (the portion of data it accounts for), all at time t. For computational
reasons, the channels of the image are assumed to be independent, so that Sk =
diag(�s2

k). To determine how many of the K Gaussians are needed for a pixel,
the Gaussians are sorted by wk

mean(�sk) , meaning that distributions based on a lot
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of evidence and distributions with low uncertainty come first. Only the first B
distributions are chosen to represent the background, where

B = argmin
b

(
b∑

k=1

wk > T

)
(2)

The value T determines the minimum fraction of the recent data at the location
�x, which should contribute to the background model. If the background distri-
bution is complicated, a larger value is needed to ensure enough Gaussians to
approximate it. We use T = 0.9.

The parameters of the model are estimated in an initial training phase, and
then continually updated as new data is observed. If the new pixel value �xt

belongs to the ith distribution, the parameters are updated to

�mi,t = (1 − α)�mi,t−1 + α�xt

�s2
i,t = (1− α)�s2

i,t−1 + α(�xt − �mi,t)T(�xt − �mi,t)
(3)

Here, α is the learning rate, which determines, how fast the parameters are
allowed to change. The weights are updated to

wk,t = (1− α)wk,t−1 + αUk,t , Uk,t =

{
1 . . . if i = k

0 . . . else
(4)

Since new data gradually replaces older data in the background model, the al-
gorithm can deal with gradual changes of the background, such as the ones
typically encountered with natural light.

Implementation Issues. After its appearance in the literature, the MOG-
model has been criticized by proponents of other background models, based on
failure in a number of experiments. In this section we will argue that the MOG-
model performs at least as well as other state-of-the-art methods, if it is carefully
implemented. A quantitative comparison is presented in Sect. 4.

A frequent problem of background modeling methods is that cast shadows
and moving highlights are incorrectly labeled as foreground, because they in-
duce a sudden change of brightness. The common assumption to deal with these
situations is that a change in illumination intensity alters only the lightness,
but not the color of the region [15]. To suppress the influence of the light-
ness, several background modeling methods use normalized chromaticity coor-
dinates, e.g. [4, 5]. The normalized chromaticity values are defined by (r, g, b) =

1
R+G+B (R,G,B), where two of the three values are sufficient. As a third coor-
dinate, the intensity I = (R + G + B) is used, which otherwise would be lost.
In the new colorspace (r, g, I), color and intensity have been separated, and a
shadow or highlight is expected to alter only the intensity. In any environment
with a diffuse lighting component or multiple light sources, a shadow will only
occlude a certain portion of the light, and a similar argument can be made for
a highlight. Hence, the change in intensity is expected to stay within a certain
range, β ≤ It/It−1 ≤ γ. Within that range, the distribution is not Gaussian.
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Translated to the MOG-model, where we have to deal with multiple modes, and
the expectation of the previous intensity is the mean mIi, we get the condition
β ≤ It/mIi ≤ γ. Empirically, the intensity change due to shadows and highlights
is at most 50%, so β = 0.6, γ = 1.5. In [11], a more exact procedure is derived
based on statistical hypothesis-testing. However, we found that our simple ap-
proach gives good results and thus avoid the hypothesis test, which may be
particularly vulnerable to the simplifying assumption of independence between
the color channels.

Another issue when using the MOG-model is that the gray-value distribution
is at best approximately Gaussian, so that the standard deviations �s may be
estimated incorrectly. On one hand, the sensor accuracy is limited, so extremely
small standard deviations do not make sense. On the other hand, each Gaussian
accounts only for one mode of the distribution, so �s should only account for
the variation within that mode. It is a matter of good engineering to bound �s
to reasonable values. In our implementation, we use 2 < sr,g < 15 (for 8-bit
images).

Thirdly, there is a dilemma how to set the correct learning rate. If a low
α is chosen, the background model will take too long to adapt to illumination
changes, while a high α will quickly merge the objects of interest into the back-
ground when they stop or move slowly. The reason is that a single learning rate
is used to cover two different phenomena, namely the smooth variation of the
background process over time, and the transition from foreground to background.
This transition is a discrete process depending on the user’s requirements (“af-
ter how many frames shall a static foreground object become background?”). A
straight-forward way to separate the two phenomena is to stop learning a pixel’s
process, when it becomes foreground. After the pixel has continuously remained
in the foreground for a given number of frames, background learning with equa-
tions (3) and (4) continues, and it will fade into the background with the speed
given by the learning rate, if it remains static.

Finally, Toyama et al. have used a long-term memory to maintain multiple
background models and switch between them to cope with sudden changes,
such as switching on the light in a room. We agree with their reasoning that
information at the frame level, rather than pixel level, is required to detect this
type of change. The MOG-model provides an elegant way to deal with such
situations: if a global change occurs, and almost the entire image is labeled as
foreground, increasing the learning rate will automatically boost the adaptation
to the new global conditions.

3 Adding Smoothness

In most probabilistic background models, each pixel is considered independent of
the others, and a binary decision is taken: if the pixel does not match any of the
background distributions, it is labeled as foreground. This contradicts the well-
known fact that the world consists of spatially consistent entities, often called
the smoothness assumption. In fact, standard background modeling algorithms
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such as the original MOG-method or Wallflower use an ad-hoc version of the
smoothness assumption: they clean the foreground/background segmentation by
deleting small foreground clusters using connected components.

We propose a more principled way to incorporate a smoothness prior: rather
than simple thresholding, a continuous background probability value is retained
for each pixel, and the foreground segmentation is treated as a labeling problem
on a first-order Markov random field. Maximizing the posterior probability then
results in a smooth, and more correct, segmentation.

Markov Random Fields (MRF) are a probabilistic way of expressing spatially
varying priors, in particular smoothness. They were introduced into computer
vision by Geman and Geman [16]. A MRF consists of a set of sites {x1 . . . xn}
and a neighborhood system {N1 . . .Nn}, so that Ni is the set of sites, which
are neighbors of site xi. Each site contains a random variable Ui, which can
take different values ui from a set of labels {l1 . . . lk}. Any labeling U = {U1 =
u1 . . . Un = un} is a realization of the field. The field is a MRF, if and only if each
random variable Ui depends only on the site xi and its neighbors xj ∈ Ni. Each
combination of neighbors in a neighborhood system is called a clique Cij , and the
prior probability of a certain realization of a clique is e−Vij , where Vij is called
the clique potential. The basis of practical MRF modeling is the Hammersley-
Clifford Theorem, which states that the probability of a realization of the field
is related to the sum over all clique potentials via P (U) ∝ exp(−

∑
Vij(U)).

If only cliques of 1 or 2 sites are used, the field is called a first-order MRF.
The 1-site clique for each xi is just the site itself, with likelihood e−Wi(ui). Each
2-pixel clique consists of xi and one of its neighbors, and has the likelihood
e−Vij(ui,uj). Following Bayes’ theorem, the most likely configuration of the field
is the one which minimizes the posterior energy function

E(U) =
∑
xi

∑
xj∈Ni

Vij(ui, uj) +
∑
xi

Wi(ui) (5)

It remains to define the clique potentials Vij . If the goal is smoothness, and the
set of labels does not have an inherent ordering, a natural and simple definition
is the Potts model [17]

Vij =

{
dij if ui 
= uj

0 else
(6)

If two neighboring sites have the same label, the incurred cost is 0, else the cost
is some value dij , independent of what the labels ui and uj are.

Application to Background. In the following, we will convert the background
modeling problem into an MRF and show how to efficiently solve it. First, we
have to define a background likelihood for each pixel. In the conventional MOG-
method, a pixel �x = [xr, xg, xI]T in the current frame is labeled as foreground,
if it is far away from all modes of the background in terms of color or intensity.

�x→ F if

{
(xri−mri)2

s2
ri

+ (xgi−mgi)2

s2
gi

> θ2 ∀i ∈ {1..K} or
xI

mIi
< β or xI

mIi
> γ ∀i ∈ {1..K}

(7)



Smooth Foreground-Background Segmentation for Video Processing 587

In other words: �x matches the ith Gaussian, if its normalized distance from
the mean is below a threshold θ (to cover 99.5% of the inliers to a Gaussian,
θ = 2.81). The evidence that �x belongs to the background B is the probability
that it belongs to the Gaussian, which it fits best, and only those Gaussians are
valid, for which the intensity difference is not too large.

It is easy to convert this condition into a likelihood. The cost for labeling a
pixel as foreground is constant, and shall be lower than the cost for labeling it
as background only if condition (7) does not hold. The negative log-likelihood
(the cost) of �x in the ith Gaussian is

Wi(�x) =

{
(xr−mri)2

s2
ri

+ (xg−mgi)2

s2
gi

if β ≤ xI
mIi

≤ γ

aθ2 else
(8)

where a is a constant >1, stating that the background cost is higher than the
foreground cost, if the intensity difference is large Empirically, a = 2.5 performs
satisfactory for all image sequences we have tested. Among the K Gaussians, the
strongest evidence that �x belongs to the background is the one with the lowest
cost. If the modes are well separated, the likelihood of belonging to any other
Gaussian is small, so the cost of assigning �x to the background/foreground is

W (�x ∈ B) = argmin
i

(Wi(�x))

W (�x ∈ F) = θ2
(9)

To model the neighborhood, we use the simplest possible definition: a pixel is
connected to each neighbor in its 4-neighborhood, and the clique potential is
a constant, which determines the amount of smoothing. We write the constant
Vij = bθ2, so that the cost for large intensity differences in equation (8) and the
clique potential are on the same scale. Useful values are 1 ≤ b ≤ 4.

Maximizing the posterior likelihood of the MRF is equivalent to minimizing
the energy functional (5) over the space of realizations of the MRF. Since our
special case has only 2 labels (background and foreground), the global minimum
can be found in low polynomial time with the min-cut algorithm [18]: the MRF
is converted into a graph, where the sites xi are the nodes, and the cliques Cij

are the arcs joining the nodes xi and xj , with cost Vij . The graph is augmented
with two extra nodes for the two labels, which are connected to every site by
an arc representing the corresponding likelihood Wi (plus a constant larger than
the maximum clique potential for one node). The minimum cut on this graph
partitions it into two sub-graphs, such that each node is only connected to one
label. Min-cut is very efficient: we have tested it with the Wallflower benchmark
with image size 160×120 pixels (see Sect. 4 for results). On a 2 GHz desktop PC,
constructing the graph, solving the optimization, and clearing the memory takes
on average 14 milliseconds, and thus does not impair the real-time capabilities
of the MOG method.
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4 Experimental Results

The algorithm has been tested with the Wallflower benchmark. This data set has
been used by Toyama et al. to assess a large number of background maintenance
methods. It has also been used by Kottow et al. to assess their method [6].
The data set consists of 7 video sequences of resolution 160×120 pixels, each
representing a different type of difficulty that a background modeling system may
meet in practice. For the last used frame of each sequence, manually segmented
ground truth is available to enable a quantitative comparison. Tab. 1 shows the
number of foreground pixels labeled as background (false negatives - FN), the
number of background pixels labeled as foreground (false positives - FP), and
the total percentage of wrongly labeled pixels FN+FP

160×120 . Furthermore, the total
number and percentage of wrongly labeled pixels over all 7 difficulties is given.
As explained above, the authors of Wallflower have noted that information at
the frame level is needed to deal with sudden illumination changes. However,
they do not seem to have included this information in their implementations of
other tested algorithms. This distorts the comparison, hence we also display the
total results without the Light Switch sequence (column TOTAL*).

We have presented two improvements. First, we have shown that the original
MOG-method is a valid and competitive algorithm, if implemented with the
same care as other methods, and secondly we have applied the MRF-concept
as a sound way to incorporate spatial smoothness. To separate the two parts’
contributions, we present the results of our MOG algorithm cleaned up with
the conventional connected component method, and the improved results using
MRF smoothing. We did not tune towards the single sequences. All parameters
were kept constant, except for the (automatic) increase of the learning rate in
case of a sudden illumination change, as explained above. For some practical
applications it may be possible to exclude certain scenarios and empirically find

Fig. 2. Left: Wallflower benchmark. Right: “Car” and “fountain” videos. 3 frames of
each sequence, results of improved MOG, results of MOG with MRF smoothing.
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Table 1. Wallflower benchmark. † were reported in [1], ‡ were reported in [6].

Algorithm errors MO TOD LS WT C B FA TOTAL TOTAL*
Eigen- FN 0 879 962 1027 350 304 2441
background† FP 1065 16 362 2057 1548 6129 537 17677 16353

% 5.6 4.7 6.9 16.1 9.9 33.5 15.5 13.2 14.2
MOG FN 0 1008 1633 1323 398 1874 2442
(original)† FP 0 20 14169 341 3098 217 530 27053 11251

% 0.0 5.4 82.3 8.7 18.2 10.9 15.5 20.1 9.8
Wallflower† FN 0 961 947 877 229 2025 320

FP 0 25 375 1999 2706 365 649 11478 10156
% 0.0 5.1 6.9 15.0 15.3 12.5 5.1 8.5 8.8

Tracey FN 0 772 1965 191 1998 1974 2403 12035 8046
Lab LP‡ FP 1 54 2024 136 69 92 356

% 0.0 4.3 20.8 1.7 10.8 10.8 14.4 9.0 7.0
this paper FN 0 203 1148 43 110 1159 1023 7340 5628
(only MOG) FP 19 1648 564 278 468 143 534

% 0.1 9.6 8.9 1.7 3.0 6.8 8.1 5.5 4.9
this paper FN 0 47 204 15 16 1060 34 3808 3058
(MRF smoothed) FP 0 402 546 311 467 102 604

% 0.0 2.3 3.9 1.7 2.5 6.1 3.3 2.8 2.7

better parameter settings. However, we have found that this is not critical. The
overall performance only increases by ≈600 pixels (15%), even if the optimal
values are chosen for each sequence separately (which of course is improper
tuning towards a specific data set).

Figure 2 shows the segmentation results for the most successful algorithms
on the Wallflower data. A quantitative comparison is given in Tab. 1. The
comparison should be taken with a grain of salt: choosing an algorithm will
depend on the expected difficulties in a given application. Note however that our
method yields the best result for all sequences. Also, an actual implementation
must take into account the nature of the application. For example, in a high-
security setting, one will seek to minimize false negatives and rather accept
more false alarms. Any of the given algorithms has a parameter, which governs
its sensitivity (up to which distance from the model a pixel is assigned to the
background), and can be tuned accordingly. Two more results of our method
are shown in Fig. 2: a car moving in front of waving trees, and a person walking
past a fountain, which is similar in color to the person’s clothing.

5 Conclusions

A framework for smooth foreground/background segmentation in video streams
has been presented, which can be applied with any probabilistic background
model. In the present work, an improved MOG method is used, which overcomes
a number of problems of the original method. The assumption of a smooth
foreground/background pattern is treated in a principled, but computationally
tractable way: segmentation is cast as a labeling problem on a particularly simple
Markov random field, and solved with a classical algorithm.

It has been demonstrated that the method is fast enough for video-processing,
and that it outperforms methods, which neglect smoothness or incorporate it in
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an ad-hoc manner. We do not challenge the principle formulated by Toyama et al.,
that semantic segmentation should not be handled by a low-level module like back-
ground maintenance. Rather, we claim that spatial smoothness already is a guiding
principle before semantic interpretation.
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Abstract. We developed an automatic object segmentation system to separate 
the foreground objects from the background scene in the MPEG video sequence.  
The system consists of two modules: the background modeling and updating 
module and the foreground object extraction module. For the first module and 
comparing to existing methods, the background model can be constructed no 
matter whether there exist moving foreground objects or not. In addition, the 
background model is capable of handling the illumination changes and intrusive 
but motionless targets by using the short-term approach and long-term approach, 
respectively, to keep updating the background model. For the second module, 
the noises and shadows are eliminated and the holes are filled in order to reduce 
the false and the missing foreground detection components, respectively. Fur-
thermore, one particular function in this module is the automatic digital matting, 
which can be applied to have visually accurate segmentation result for the fore-
ground objects. 

1   Introduction 

Video segmentation, which separates the foreground objects from the background 
scene in the video sequence, is one of the essential works for video compression like 
MPEG. Because the background regions are more stable than the foreground objects 
over the video sequence, so to have the efficient and fast compression process, it is 
necessary to process the foreground objects and the background regions individually. 

Background subtraction is a typical method to extract the moving foreground ob-
jects in image sequences. For recent works of background subtraction, a Gaussian 
model [7] or mixture of Gaussian models (MOGS) [6], [10] are used. But they may 
not get the complete foreground regions and shadow effects may still exist. Espe-
cially, the approaches of these papers need a period of time without any moving ob-
jects in the beginning of video sequence to model the background. The work in [3] 
proposed a predictive watershed method to improve the segmentation result of using 
background subtraction method.  But the boundaries of foreground objects do not 
segment precisely. 

To solve above existing problems, we developed an automatic object segmentation 
system, which consists of two modules, as shown in Fig. 1. The first module is the 
background modeling and updating module, which can construct the background 
model with or without existing moving objects. The background model will also be 
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updated to adapt to the illumination variances of the background scene and the intrus- 
ive but motionless targets of the foreground objects by the short-term approach and 
the long-term approach, respectively. The second module is the foreground object ex-
traction module, which not only eliminates the noises and the shadow regions, but 
also applies automatic digital matting approach to optimize the segmentation results 
of the objects’ boundaries. In addition, in this work, all image sequences were shot by 
one single video camera, which was supported by a tripod without any pan-tilt-zoom 
movements and has the frame rate as 30 frames per second. 

Video
Sequence

Background 
Model 

Construction

Background
Subtraction

Background
Updating

(Short term)

Background
Updating

(Long term)

Digital
Matting

Noise and Shadow
Region

Elimination

Current
Image

Background Modeling and Updating

Final result of foreground object extraction 

Foreground Object Extraction

Initial result of  
foreground object extraction 

Fig. 1. The flowchart of the object segmentation system in a video sequence 

2   Background Modeling and Updating 

The background modeling and updating module of the proposed system is modified 
the works in [7], [6], and [10]. This module is built based on the Gaussian model and 
is capable of handling the illumination changes and intrusive but motionless targets 
by using the short-term approach and long-term approach. 

2.1   Background Model Construction  

We will construct a background model no matter whether there exist foreground ob-
jects or not in the beginning of the video sequence. Initially, we make an assumption 
that the appearance frequency of a pixel belonging to the background region must be 
higher than that of this pixel belonging to the foreground objects in the first M con-
secutive frames. Then let VM be a matrix containing M consecutive images, each of 
which is a W*H-pixel (width * height = 320*240) image vector; and V i (x, y) is the 
intensity value of a pixel located at (x, y) in the ith image of VM. Thus, the intensity 
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distribution of a pixel V(x, y) over the first M (M=60) consecutive images (as shown 
in Fig. 2.a) at one of the RGB channels can be represented as shown in Fig. 2. b. 
Based on the median value (x, y) and the standard deviation (x, y) of the intensity 
distribution for the pixel V(x, y), VM(x, y) is classified as stationary pixels, where 

y)(x,*2<|y)(x,-y)(x,V| M (1)

Subsequently, the average value μ(x ,y) of VM(x, y) is calculated and assigned to the 
background model for the pixel located at location (x, y). Based on the same process 
for the entire W*H-pixel image over the M consecutive images, the background model 
can be constructed for each video sequence, as shown in Fig. 2.c. 

The reason why the median value is chosen instead of the mean value for the ini-
tial process is because median value is not sensitive to noises, such as the appearances 
of the moving foreground objects or sudden illumination change, as shown in Fig. 2.b.  
In addition, our assumption is adjustable. That is, if the background scene is stable, 
then the appearance frequency of the pixel belonging to the background region can be 
higher. On the contrary, if the background scene is unstable, such as affected by 
slowly moving foreground objects or unstable lightings, then the appearance fre-
quency of the pixel needs to be lower. 

.… .…

(a)

(b)(c)

0
255

10

25 41

Median

Mean
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Total 
count

(x,y)

M1 I

Fig. 2. Background model construction. (a) The first M(M=60) consecutive images in the video 
sequence. (b) The intensity distribution of M consecutive images for a pixel located at (x,y). (c) 
The background image (or model) is built based on the average value μ (x,y) of vz (x,y) located 
at location (x,y).

2.2   Background Updating 

The initial background model cannot be expected to work for long periods of time.  
Without updating the background model, it will cause the false extraction (or detec-
tion) results by illumination changes, such that the sun is blocked by clouds and then 
appears again, or physical changes, such that an object is deposited or a car is parked.  
To overcome above problems, two different approaches are applied to update the 
background model: the short-term updating approach and the long-term updating 
approach. 

For the short-term updating approach, this approach will quickly update the 
background pixels in order to maintain the sensibility of extracting or detecting the 
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moving foreground pixels. The intensity of the background pixel μt(x, y) at location 
(x, y) and time t is updated by following equation: 

∈
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where  is the updating rate.  If the  value is higher, then the background pixel is 
easier to adapt to the new environment. For example, it is necessary to have the higher 
 value when the branches or leaves of trees move periodically by wind in the back-

ground scene. Furthermore, according to our experience, if more than 80% pixels of 
the image are suddenly classified as foreground pixels for longer than 5~15 co-
nsecutive frames, then this factor is not caused by flashlight and the background 
model will start to reconstruct completely from the beginning. 

For the long-term updating approach, this approach will update to the background 
pixels when the moving foreground object is detected for a long time without any 
motion. Then the region of this foreground object should be updated into background 
pixels. We apply the stationary map method in [2] and [7] to this approach. That is, 
each pixel has its corresponding value in the stationary map (Sp). The corresponding 
value of the foreground pixel in the stationary map will increase by one if its intensity 
difference between two consecutive input images is less than the threshold value (th).
Otherwise, the corresponding value will be reset to zero if this pixel is not stationary. 
Following equation represents this approach:  
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Therefore, if the corresponding value of the foreground pixel in the stationary map is 
bigger than a predefined value, then this pixel will be updated to the background 
model with the current intensity value. 

3   Foreground Object Extraction 

After the background model is constructed, the foreground object extraction module 
can be applied to visually accurately extract the foreground objects. This module 
consists of three approaches: the background subtraction, noise and shadow region 
elimination, and digital matting. 

3.1   Background Subtraction 

Based on the background model, the background subtraction approach is applied to 
initially separate the foreground objects from the background scene. Each pixel of the 
input image in the video sequence is compared with the corresponding pixel at the 
background model. If the absolute difference of the intensity values between both 
pixels is larger than a predefined value, then this pixel is extracted to be the candidate 
foreground pixel. Otherwise, this pixel will be assigned to follow the process in the 
background modeling and updating module. Some example results of the background 
subtraction process are shown in Fig. 3.a and 3.b and Fig. 4.a and 4.b. 
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(a) (b) (c)

Fig. 3. Noise region elimination. (a) The original image. (b) The result of the background sub-
traction. There still exist a lot of noises, which are caused by illumination variances or small 
movements of tree branches or leaves. (c) The result after eliminating the noise region. 

(a) (b) (c)

Fig. 4. Shadow region elimination. (a) The original image. (b) The result of the background 
subtraction with shadow effects. (c) The result after eliminating the shadow region. 

3.2   Noise and Shadow Region Elimination 

As shown in Fig. 3.b and Fig. 4.b, simply applying the background subtraction proc-
ess cannot perform accurate result of separating the foreground pixels from the back-
ground pixels. The existing problems include the false detection foreground pixels 
and missing detection foreground pixels. The situations of the false detection fore-
ground pixels include the white noises, especially, in the outdoor environment (see 
Fig. 3.b), the reflection of light, small movements of tree branches or leaves in the 
background scene (see Fig. 3.b), and the shadows (see Fig. 4.b). The situation of the 
missing detection foreground pixels is the foreground region with holes, which are 
caused by the similar intensity values between foreground pixels and background 
pixels (see Fig. 3.b). 

This work applies the morphological operations including the erosion, dilation and 
connected-component labeling (CCLabeling) [9] operations to eliminate those false 
detection foreground pixels excepting those pixels belonging to the shadows and to 
fill the holes inside the foreground region, as shown in Fig. 3.c. The shadow region is 
easily detected as the foreground region and it always follows the movement of the 
foreground object, so it is a challenging work to discriminate between the foreground 
object region and the background shadow region. Here, this work can successfully 
reduce the shadow effects by using the method of the vector model proposed in [5]. 
That is, each detected foreground pixel P is the center pixel of one 3×3-pixel window, 
and there are 8 pixels in its 8-connected neighboring area. Those 9 pixels located in 
the two-dimensional (2D) window are then regarded as one intensity column vector. 
Because shadow is usually caused by illumination factor, so if the pixel locates in the 
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shadow region, then the intensity vectors of this pixel exist a linear dependent relation 
between the shadow region and the corresponding background region. Conversely, 
the linear dependent relation does not exist for any foreground pixels. By using this 
method, the shadow region is successfully removed, as shown in Fig. 4.c. 

3.3   Digital Matting 

Because of the background subtraction process and morphological operations, the 
segmentation results of the foreground objects are fragmentary, especially, in the 
boundaries.  In order to improve the segmentation performance, the digital matting 
approach is applied in this system. In digital matting, a foreground component is ex-
tracted from a background scene by estimating a color and opacity for the foreground 
component at each pixel. That is, each pixel of the input image C is a composite of the 
foreground color F and the background B by the compositing equation:   

BFC )1( αα −+= (4)

where α  is the opacity value between zero and one.  Using this opacity value α , we 
can form the composite C as a linear combination of F and B. By calculating the best 
parameters of α , F, and B of the composite C, we can extract the foreground compo-
nents accurately from the input image.  Modern approaches [1], [4] that work with 
natural images often require user to manually segment each image into three regions 
“background,” “foreground,” and “unknown.” For a long video sequence, it will cause 
a lot of loading to users. In order to build an automatic object segmentation system in 
video sequences, the proposal system needs to be capable of automatically segment-
ing the image into foreground, background, and unknown regions as the segmented 
image of digital matting, called matting mask (see Fig. 5.c). 

(a) (b) (c) (d)

Fig. 5. Foreground object segmentation using the digital matting approach. (a) The original 
image. (b) The background model. (c) The initial result of extracting foreground objects, which 
contain foreground (white color), background (black color), and unknown (gray color) regions. 
(d) The result after digital matting.

The flowchart of the automatic digital matting process is shown in Fig. 6. Digital 
matting needs to use the image, which has been segmented into three regions: “back-
ground,” “foreground,” and “unknown.” So we directly use the result of the background 
subtraction (including the morphological operations) to provide a segmented image for 
digital matting process instead of segmenting image by user (see Fig. 5.a and c). Based 
on the extracted foreground objects, we apply erosion operation to shrink the object 
regions. All pixels inside the shrunken object regions are defined as the “foreground”  
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Fig. 6. The flowchart of the digital matting approach

pixels, F. Then the dilation operation is applied to original extracted objects to extend 
the object regions. After subtracting the shrunken object regions from the extended 
object regions, the “unknown” regions are defined. 

Since F, B, and C have RGB channels, individually, we need to solve the problem 
with three equations and seven unknown parameters. But in our case, the pixel inten-
sity μ(x, y) of the background model are calculated and known as B, so the unknown 
parameters can be reduced from seven to four. Thus, the problem is formatted as by 
giving the background color B and the observed color C, we need to find the best 
solution for the foreground color F and the opacity value α . The optimization proc-
ess is as following statement. Each pixel in the unknown region is the center of a 
given window, which is used to define the neighborhood region. So the foreground 
probability distribution can be built based on the pixel intensities inside this window.  
The matting problem is then solved by using the maximum a posteriori (MAP) tech-
nique to estimate the foreground color F and opacity α  by giving B and C. Using the 
Bayes rule, we can express the result as a sum of log likelihood, 

(5)

where L( ) is log likelihood of P( ). We do not care P(C) and P(B) because they are 
constant and do not affect the result of the optimization parameters.  In addition, we 
can solve the problem by maximizing the sum of L(C, B | F, α ), L(F), and L(α ).

The first term L(C, B | F, α ) measures the error between the observed color C and 
the estimate color C  by estimating F, B, and α :



598 Y.-T. Jason Tsai and J.-J. James Lien 

22 2/||)1(||),|,( CBFCFBCL σααα −−−−= (6)

The second term L(F) is used to build the probability distribution of the foreground 
color, so the N (N=15 samples) foreground pixels inside the window are selected.  In 
order to be sure of having the robust distribution of the foreground color, each pixel is 
weighted by: 

||)||||,max(|| ininn yyxxw −−= (7)

where (
ii yx , ) is the center location of the window for the pixel i in the unknown 

region, and (
nn yx , ) is the location of the pixel n inside this window. Following, the 

color space has been quantized into several clusters by using VQ (vector quantization) 
[8].  So each pixel inside the window is classified to corresponding bin in color space.  
Then we compute the weighted mean F  and weighted covariance matrix F of each 
cluster: 
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1 . Subsequently, we use a Gaussian distribution in the RGB color 

space to model the log likelihoods for foreground L(F):
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To find the parameters α  and F, we assume that L(α ) is constant. First, we as-
sume that F values in the RGB color channels are constant and then C is projected on 
the line FB to solve α  by using following equation:  

2||||/)()( BFBFBC −−⋅−=α (11)

Here, the initial value for F is the mean value F . Second, we assume that α  is a 
constant and then we take the partial derivatives of (5) with respect to F. We can find 
the extreme value when the result of derivatives is equal to 0. Therefore, the best 
solution for the parameter F is obtained. 
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where I is a 3×3 identity matrix because F, B, and C have three color channels, indi-
vidually. 

The process is computing iteratively to optimize equation (5) until it convergences.  
Initially, to estimate α  by calculating equation (11), we will assume that the F values 
in RGB color channels are fixed, and then to estimate F by calculating equation (12), 
we assume that α  is fixed.  When we solve equation (5) and optimize the F and α ,
we can get an improvement result of the foreground extraction, as shown in Fig. 7. By 
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comparing the zooming in parts between the original foreground object and the im-
provement result, we can see that the boundaries of objects are segmented accurately 
after applying digital matting process. 

Matting MaskOriginal  Image Foreground Objects ImprovementZoom
in

Zoom
in

Zoom
in

Zoom
in

Fig. 7. The improvement result by using digital matting. We can see details by comparing the 
zooming in parts of the images. After digital matting is applied, we can have visually accurate 
segmentation result for object’s boundaries.

4   Experimental Results 

The system proposed in this paper has been successfully tested by several MPEG 
video sequences.  The image size is 320 * 240 pixels. One example is shown in Fig. 8. 

O
riginal  Im

age
T

he B
ackground M

odel
Foreground O

bject

Frame #35 Frame #135 Frame #165

Fig. 8. Segmentation results with updating backgrounds and shadow effects in a video se-
quence. The deposited object in the image sequence is detected initially. After a period of time, 
this object would be updated into the background model. In addition, the shadows in the image-
sequence are eliminated by using our approach.
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In the beginning, the first 60 (M=60) frames of this image sequence are used to con-
struct the background model; meanwhile, there exists a moving object, which is also 
detected by applying the background subtraction approach during the initial interval 
of this video sequence.  In this outdoor environment, many factors will cause false or 
missing detections by simply applying the background subtraction process. So the 
short-term updating approach is applied to quickly updating the background compon-
ents, which are affected by illumination variances and the periodic movements of the 
branches or leaves of trees in the background scene. Then, the morphological opera-
tions are applied to eliminate the shadows and the remaining false detection compo-
nents caused by moving branches or leaves of tree.  Subsequently, we can find that 
the deposited jacket is detected initially. But after a period of time, it is updated into 
the background model by using the long-term updating approach. Finally, the digital 
matting approach is applied to improve the result of the foreground extraction, espe-
cially along the boundaries of the foreground object. 

5   Conclusions 

In this paper, we developed an automatic and efficient object segmentation system for 
MPEG video sequences. The system can separate the foreground objects from the 
background scene by using two modules: the background modeling and updating 
module and the foreground object extraction module. For the first module, a Gaussian 
model is applied to build the background model, which is able to be constructed with 
or without moving foreground objects in the background scene. In the indoor or out-
door environments, background changes all the time caused by the illumination vari-
ances or small movements in the background scene. Two updating approaches, the 
short term and the long term, are adapted to update the background components. For 
the second module, after the background subtraction approach is applied, the initial 
foreground regions may have holes due to missing detection for those misclassified 
pixels, false detections due to small movement components in the background scene 
and shadows. By using morphological operations, the missing and false detection 
components can be removed. In addition, the shadow components can be detected and 
removed by using the linear dependent relation approach. In order to have visually 
accurate object segmentation, the automatic digital matting approach is applied to 
improve the result of foreground extraction. Our experimental results show that the 
performance of this work is promising. Therefore, our system is also capable of ap-
plying to the composite image sequences, as shown in Fig. 9. 

Original Image Foreground Object Composite Result

Fig. 9. The composite result. By applying the digital matting approach, we can have the com-
posite images by replacing the background scenes in the video sequence.
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Abstract. To efficiently classify and track video objects in a surveillance
application, it is essential to reduce the amount of streaming data. One so-
lution is to segment the video into background, i.e. stationary objects, and
foreground, i.e. moving objects, and then discard the background. One
such motion segmentation algorithm that has proven reliable is the Stauf-
fer and Grimson algorithm. This paper investigates how different color
spaces affect the segmentation result in terms of noise and shadow sen-
sitivity. Shadows are especially problematic since they not only distort
shape but can also result in falsely connected objects that will compli-
cate tracking and classification. Therefore, a new decision kernel for the
segmentation algorithm is presented. This kernel alters the probability of
foreground detection to reduce shadows and to increase the chance of cor-
rect segmentation for objects with a skin tone color, e.g. faces.

1 Background

Video applications are omnipresent and they are essential for industries such as
surveillance, communications, entertainment, and healthcare. A common demand
among applications in these fields is that they require large bandwidth and human
interaction. To automate the process of separating relevant from irrelevant data,
to reduce bandwidth, advanced image processing is necessary,which often requires
hardware accelerators to solve the computational bottlenecks. An attempt to au-
tomate a surveillance system for indoor monitoring has been initiated, where the
goal is to hardware accelerate computational complex parts of a self contained
intelligent surveillance camera that can track and classify moving objects.

A conceptual overview of the surveillance system is shown in Fig. 1. The image
processing system is supplied with a real-time image stream from a camera,
Fig. 1a. A segmentation algorithm preprocesses the image stream and produces
a binary mask, Fig. 1b, in which zeros and ones correspond to background and
foreground, respectively. In order to remove noise and reconnect split objects,
morphologic post processing is performed on the mask [1], Fig. 1c. The object
classification part then uses the mask to extract moving parts of the image,
Fig. 1d and e, and performs classification and tracking.

This paper addresses two major problems with this type of segmentation,
shadows and false-negative detection. Both phenomena are seen in Fig. 1d, where
a large shadow is detected to the right of the person in the middle and part of the
left person’s torso is missing. To reduce these effects, different color spaces and
extensions to the decision logic in the segmentation algorithm are investigated.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 602–612, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Surveillance system, (a) original image, (b) binary motion mask, (c) filtered
motion mask, (d) detected objects, and (e) detected objects improved result

The goal is to improve performance of the existing segmentation algorithm and
not to include additional post processing as in for example [2] and [3].

2 The Segmentation Algorithm

Among many of the algorithms for video segmentation, one based on a Gaus-
sian mixture model [4] was developed with the unique feature of robustness in
multi-modal background scenarios and in slowly changing lighting conditions. A
multi-modal background distribution is caused by repetitive background object
motion, e.g. swaying trees, reflections on a lake surface, flickering of a monitor
etc. By representing each pixel process using a mixture of Gaussian distribu-
tions, repetitive background motions are merged into one of several background
distributions for each pixel.

In short the algorithm works as follows. For each pixel location and distribu-
tion a mean, variance, and likelyhood value is stored, based on previous values
for this location. A new input is compared to the stored mean values for each
distribution at this location. If the difference is less than a constant times the
variance, this pixel is part of that distribution and it is updated accordingly.
Otherwise a new distribution is created which replaces the least probable distri-
bution. A new input belongs to the background if the distribution that it is part
of is one of the most likely distributions. Thus, a foreground pixel that keeps the
same color over time is slowly incorporated into the background.

The decision rule, whether a new pixel belongs to an existing distribution or
not, can be written as

if (|Pnew − P d
mean| ≤ KP d

std) then Pnew ∈ Distribution d (1)

where Pnew is the new pixel value, P d
mean and P d

std are the stored mean value
and standard deviation of distribution d, and K is a constant. In the original
paper [4], K is set to a fixed value of 2.5 based on experimental results. In this
paper we suggest to change K for two different cases. First, if Pnew could be
part of a moving shadow, K is increased, i.e. the sensitivity is decreased, and
second, if Pnew has skin tone color, K is decreased. These changes are discussed
further in Section 3.
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To reduce computational complexity the algorithm assumes that the three
input colors of each pixel are independent. This avoids costly matrix inversions.
However, all color spaces consists of more or less dependent color channels, which
will reduce accuracy of the algorithm. The used color space will also determine
how sensitive the algorithm is to shadows. Therefore, different color spaces have
been investigated with regard to both shadow and noise sensitivity.

3 Color Spaces and Shadows

3.1 Shadows

Shadows can be divided into two classes, dynamic and static shadows. Dynamic
shadows occur when an object moves in between a light source and the back-
ground or another object, and static shadows are cast by static objects in the
scene. Segmentation algorithms based on statistical background models, as the
one used in this paper, are not affected by static shadows, since they are in-
corporated as part of the background model. However, dynamic shadows are of
major interest since they can be erroneously detected as an object.

In order to remove shadows, pixels that could be part of a shadow have to
be identified. In the RGB space, difference in color between a pixel before and
after it becomes part of a shadow can be simplified to

Cshadow = αcClight C, c ∈ {R, G, B}, αc ≤ 1, (2)

where αc depends on the present light sources and reflection terms of the surfaces
[5]. For example, with a white light and uniform reflection terms, αc is equal for
all three colors. White light means that the color spectrum is flat, i.e. all colors
are equally represented. In addition to light sources and reflection terms the used
color space will also affect the behavioral of a shadow.

3.2 Color Spaces

Many different color space models can be found in the literature, but the most
commonly used are RGB, HSI, and YCbCr. RGB is the color space commonly
acquired directly from a sensor or camera, since a color sensor often uses red,
green, and blue filters to obtain color information. Red, Green, and Blue are
usually measured with 8-bits resolution, where 0 is no color at all and 255 is
the maximum color, hence the 24-bit true color definition. HSI and YCbCr are
closer to human interpretation of colors in the sense that brightness, or intensity,
is separated from the base color. YCbCr uses Cartesian coordinates to describe
the base color while HSI uses polar coordinates. In addition to these three color
spaces, normalized-RGB (rgb), C1C2C3, l1l2l3, and m1m2m3 are investigated [6].
They are all invariant to changes in brightness, a feature that should decrease
their sensitive to shadows. Equation 3 to 8 show the relationship between RGB
and respective color space, since it is assumed that the camera or sensor output
is in the RGB color space.
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H =
θ if B ≤ G, θ = arccos 0.5[2R−G−B]

[(R−G)2+(R−B)(G−B)]0.5

360 − θ if B > G

(3)

S = 1 − 3[min(R,G, B)]
R + G + B

, I =
1
3
(R + G + B)

rgb = C
R+G+B

, C ∈ {R, G, B} (4)

Y = 0.257R + 0.504G + 0.098B + 16 (5)

Cb = −0.148R − 0.291G + 0.439B + 128, Cr = 0.439R − 0.368G − 0.071B + 128

C1C2C3 = tan−1 R

max(G, B)
, tan−1 G

max(R, B)
, tan−1 B

max(R,G)
(6)

l1l2l3 =
(C)2

(R − G)2 + (R − B)2 + (G − B)2
, C ∈ {R − G, R − B, G − B} (7)

m1 =
R1G2

R2G1
m2 =

R1B2

R2B1
m3 =

B1G2

B2G1
, (8)

where RGB1 and RGB2 are two neighboring pixels.
To compare color spaces in terms of noise and shadow sensitivity, two proper-

ties are investigated. First, how the color space handles small changes in RGB,
since these should not cause a pixel to accidentally become foreground. Small
changes in RGB are common in a video sequence due to noise and preprocess-
ing in the camera. Secondly, how the color space reacts to changes in lighting
conditions. With a high sensitivity to light changes, shadows will be detected,
while on the other hand low sensitivity to light could result in missed object
detections.

An example on how the different color spaces react to noise and lighting
changes are presented in Table 1, where m1m2m3 is excluded since it depends
on pixel pairs. The noise property is tested both for a dark color, i.e. RGB close

Table 1. Noise and light properties. For each property and color space, two triplets are
presented, the top one shows the original values and the lower one shows the change in
color when affected with noise or brightness changes. In RGB, noise is a small change
in each color channel, and for decreased and increased brightness each color channel is
multiplied with 0.7 and 1.4, respectively.

Mode RGB HSI YCbCr rgb C1C2C3 l1l2l3

noise in a (1,3,2) (107,171,2) (18,128,128) (43,128,85) (52,159,95) (171,43,43)
dark color (1, -2, 1) (85, 0, 0) (1, 1, 1) (42,-85,43) (43,-107,64) (-128,0,128)
noise in a (180,129,172) (220,73,160) (144,140,148) (96,69,92) (131,101,124) (148,4,105)
bright color (2,-2,-2) (3,4,0) (-1,-1,2) (1,-1,-1) (2,-2,-2) (6,3,-11)
decreased (90,130,150) (142,102,123) (119,143,110) (62,90,104) (88,116,139) (73,165,18)
brightness (-27,-39,-45) (0,0,-37) (-31,-4,5) (0,0,0) (0,0,0) (0,0,0)
increased (130,160,90) (61,112,127) (139,102,120) (88,108,61) (111,144,83) (31,55,170)
brightness (52,64,36) (0,0,50) (49,-10,-3) (0,0,0) (0,0,0) (0,0,0)
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to zero, and for a bright color. The light property is tested both for a decrease
and an increase in brightness. White light is assumed and all colors have been
fitted to an 8-bit representation, i.e. 0-255.

In Table 1 it is seen that HSI, rgb, C1C2C3, and l1l2l3 are highly sensitive to
noise in the dark color, l1l2l3 is in addition also somewhat sensitive to noise in the
bright color. The only color spaces that handle noise well are RGB and YCbCr.
HSI is sensitive to noise due to its polar coordinate description. For colors close
to the origin, i.e. the gray scale, a small change can result in a large change of the
H component. In Equation 7 it is seen that l1l2l3 is also sensitive to changes close
to the gray scale, since it is normalized with the differences between R, G, and B.
The color spaces rgb, C1C2C3, and m1m2m3 are all normalized, see Equation 4,
6, and 8, which means that they are unstable when RGB is close to zero.

The effect of a change in brightness differs much between color spaces. In
RGB all three channels change values, while for HSI only the I channel changes.
YCbCr has the largest change in the Y component and only minor changes in
Cb and Cr. Remaining color spaces, rgb, C1C2C3, and l1l2l3, are affected neither
by an increase nor a decrease in brightness since they are normalized, i.e. they
are light invariant.

3.3 Exprimental Results

To experimentally evaluate the segmentation algorithm a short video sequence
of a walking human was recorded and transformed to all different color spaces.
All colors have been fitted to an 8-bit representation and in the case of m1m2m3,
RGB1 and RGB2 are taken to be two horizontally adjacent pixels. The back-
ground in the video is mostly white and gray but many static objects are in-
cluded with different properties, e.g. shiny, colorful, and matt. Three different
light sources are present, overhead fluorescent light, day light from the windows
to the right of the scene, and a strong spotlight (not visible) to introduce addi-
tional shadows. Fig 2 shows the segmentation results of each color space for a
video frame in the middle of the sequence. The segmentation result is presented
as the input image with the background set to black.

Many of the experimental results confirm theory. HSI, rgb, C1C2C3, l1l2l3,
and m1m2m3 are noisy but less sensitive to shadows than RGB and YCbCr.
Additional observations are:

Input image RGB YCbCR HSI

rgb C1C2C3 l1l2l3 m1m2m3

Fig. 2. Input image and segmentation result for the different color spaces
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1. YCbCr experiences less noise than RGB, due to the more independent color
channels. The segmentation algorithm assumes that all color channels are
independent, see Section 2.

2. Even though both HSI and l1l2l3 are sensitive to changes close to the gray
scale, the result is much worse for l1l2l3.

3. The light invariant color spaces do not detect as much shadows as the other
color spaces, at a cost of missed detection of bright areas. This is easiest seen
on the person’s white arm in Fig. 2.

4. With the m1m2m3 color space the segmentation algorithm becomes more of
an edge detector, since it is based on two neighboring pixels.

The overall most suitable color space for the segmentation algorithm is YCbCr.
It is least sensitive to noise, due to numerical stability and more independent
color channels. No information is lost when it is calculated from RGB compared
to the normalized color spaces in which brightness information is lost. However,
it is affected by shadows and compared to RGB it is too insensitive in some cases,
e.g. compare the face detection of RGB and YCbCr in Fig. 2b and c. Section 4
presents compensation methods for these two cases.

4 Performance Improvement

4.1 Increased Sensitivity

Note in Equation 5 that the complete dynamic range is not utilized. Maximum
and minimum values are {235, 240, 240} and {16, 16, 16} respectively. This is due
to the intended original application of YCbCr, television broadcast [7]. However,
in our application no extra information has to be transmitted and the dynamic
range can be extended to 0-255.

In YCbCr the Y component contains more information than the color com-
ponents, as shown in Fig. 3a. This is also observed in the segmentation result
shown in Fig. 3b. Two observations can be made from this; first, Cb and Cr have
low sensitivity to shadows and secondly, the color variance is lower than gray
scale variance. To increase the amount of information in Cb and Cr the following
transformation from RGB is proposed:

a) b)

c)

Fig. 3. a) Original image divided into the three color channels, Y, Cb, and Cr. b)
Segmentation result for each color channel with q=1. c) Segmentation result for CbCr

with q = 1, q = 1.3, and q = 1.6.
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Y = 0.299R + 0.586G + 0.114B (9)

Xb =(−0.167R−0.330G + 0.497B)q + 128 Xr =(0.497R−0.417G − 0.080B)q + 128,

Cb =
255 if Xb > 255
0 if Xb < 0
Xb else

Cr =
255 if Xr > 255
0 if Xr < 0
Xr else

where q is a scale factor. With q = 1 the range is from 0-255 and no over- or
underflow will occur. If q > 1 the sensitivity for mid range colors are increased
at the expense of decreased sensitivity for pure colors. An example is shown in
Fig. 3c, where the segmentation results for CbCr with q =1, 1.3, and 1.6 are
shown. As q is increased, more and more of the person is detected and more
noise is introduced.

The optimal value for q depends on data and has to be adjusted from case to
case and over time as lightning conditions and background change. To change
q during runtime is possible as long as the change is slow, since any sudden
change in color will result in foreground detection. To automate this process two
measurements can be used; Number of under- and overflows in CbCr and the
number of small isolated objects. For example in Fig. 3c, one such noise object
can be seen in the middle picture and two in the right picture.

4.2 Shadow Reduction

To reduce the number of detected shadows, pixels that could be part of a po-
tential shadow have to be recognized. Using Equation 2 and 9 it is seen that Y
will always be smaller when shaded and that Cb and Cr will go towards 128,
i.e. the origin. Since Y is calculated as a sum of the RGB colors, changes due to
shadows will generally be larger in Y than in CbCr which are calculated from
the differences between R, G, and B. With this information a simple rule for
shadows can be formed; A potential shadow is found if a large negative change
is detected in Y and CbCr have moved slightly towards origin, compared to the
stored mean of YCbCr. However, if noise is taken into consideration this rule
might no longer hold, Cb or Cr could actually move away from the origin when
shaded. This means that a small error margin has to be incorporated in the rule.

In the upper part of Fig. 4 three different rules for the CbCr plane to detect
potential shadows are shown. All three assume that a negative change in Y has
already been detected. The gray areas represent the part of the CbCr plane
where a new pixel is ruled to be a potential shadow. The area location is based
on the stored mean of Cb and Cr (Cb Cr), five example points are shown for each
rule. The first rule, shown in Fig. 4b, is the simplest rule. A new pixel is part
of a potential shadow if the sum of absolute differences in CbCr is less than a
threshold. The second rule, shown in Fig. 4c, compares the difference in Cb and
Cr separately to thresholds that depends on the position of Cb Cr. The last rule,
shown in Fig. 4d, allows changes in a small sector from origin or, if the values are
close to origin, in a small box around Cb Cr [8]. This rule is the most complex
rule, since it involves a division to approximate the arctan function.

The segmentation result with the three different shadow rules are shown in
Fig. 4. How the rules are used in the segmentation algorithm are explained in
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Fig. 4. The original result (a) and the result with three different shadow detection rules
(b,c,d) in the CbCr plane, where X is the stored mean of CbCr, five example points
are shown for each rule. A new pixel part of a potential shadow if it falls in the gray
area and there is a negative change in the Y component. (e) Skin color distribution in
the CbCr plane and the thresholds used to find skin color.

Section 4.4. As seen, most of the shadows are removed compared to Fig. 4a, with
all three rules. However, the rule in Fig. 4d removes some parts of the object
as well, due to acceptance of large changes in color and that color can move
away from origin and still be classified as a shadow. In this particular image no
significant performance difference can be seen between the two simpler rules.

4.3 Skin Tone

If any form of human recognition is to be included in the surveillance system, face
detection becomes very important. To increase the chances of correct segmen-
tation of faces, we try to find pixels with skin tone and use that information to
improve the foreground/background decision. Skin tones differ much for human
races, from black to white and with different tones of red and yellow. However,
in the YCbCr color space, these colors are tightly distributed in the CbCr plane
along the Y axis. This means that the Y component can be disregarded, since
human skin tone has about the same color distribution in CbCr for most Y values
[9][10][11]. In Fig. 4e, a simplified reprint of the CbCr distribution found in [9]
together with the thresholds used in this paper to find skin color are shown. The
distribution applies to faces with a Y component in between 60-175. Thresholds
are chosen for simplicity and not for perfect matching, since the result will only
be used to increase the chance of correct segmentation.

4.4 Extended Segmentation Logic

With the methods described previously in Section 4 pixels that are likely to be
part of a shadow or human skin can be found. With this information the decision
kernel of the segmentation algorithm, see Equation 1, can be altered to vary the
likelihood of including these pixels as part of the foreground. Shadows should
have a lower and human skin should have a higher probability to be included in
the foreground. Below a more advanced decision kernel is proposed. This kernel
is executed once for each stored distribution or until a matching distribution is
found.
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/* Advanced decision kernel */
skin = 1; shadow = 1; Threshold = 2.5 * Standard_deviation;
d’Y = Y_new - Y_mean; d’Cb = Cb_new - Cb_mean; d’Cr = Cr_new - Cr_mean;

if (d’Y<0 and d’Y>-Max_shadow and d’CbCr<Shadow_rule) then shadow=2;
if (CbCr == skin color ) then skin=0.5;

distribution_found = true;
if (d’Y>skin*Threshold or d’Y<-skin*shadow*Threshold)

distribution_found = false;
if (abs(d’Cb) > skin*Threshold)

distribution_found = false;
if (abs(d’Cr) > skin*Threshold)

distribution_found = false;

where shadow rule is one of the rules described in Section 4.2 and Max sha−
dow express how dark a shadow is allowed to be. For example, if Max shadow
is set to 255 a pixel that change color from pure white to pure black would be
classified as a shadow. Most indoor scenarios do not have such dark shadows
and this result in a loss of sensitivity instead of a shadow reduction. Based on
experimental results, a suitable indoor value for Max shadow is around 50-80.

In the modified kernel the threshold value to find a matching distribution
is based on the standard deviation and it is increased if a potential shadow
is detected. This method, compared to take a hard decision about shadows,
allows the algorithm to exploit the property of the standard deviation which
generally is higher in bright areas and lower in dark areas [4]. Thus, a higher
threshold is used for a shaded bright area than for a shaded dark area. A non-
uniform decision threshold reduces the number of misclassified pixels, since a
higher threshold is required to avoid foreground detection of a bright area that
becomes shaded compared to a dark area that becomes shaded. With a uniform
threshold the segmentation algorithm would be too insensitive in dark areas or
classify shadows as foreground in bright areas.

There are two effects of increased sensitivity in skin colored areas. First, any
visible skin is more probable to be detected as foreground, which is desired. Sec-
ondly, background areas that are skin colored produce more random foreground
noise. However, most noise is removed by the morphologic filtering that follows
the segmentation, as shown in Fig 1. With this approach it is not crucial to
choose perfect decision boundaries for skin colors. Objects with naked skin that
are not classified as skin are not automatically mistaken as background, they
will in most cases be correctly classified as foreground by the unaltered decision
rule. Hence, a low complexity skin color threshold, like the one shown in Fig. 4e,
can be used.

5 Results

In Fig. 5 the step-by-step improvements outlined in Section 4 are shown, from
original RGB segmentation to the morphologic filtered YCbCr segmentation with
stretched color space, suppressed shadows, and increased skin color sensitivity.
The two largest noise objects to the right in Fig. 5f are due to increased lightning,
since the person in the video entered from the right and blocked the window light
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a) b) c) d) e) f)

Fig. 5. Segmentation result with: (a) RGB, (b) YCbCr, (c) stretched YCbCr, (d)
shadow suppression, (e) increased skin sensitivity, and (f) morphologic filtered. All
effects in (b)-(f) are cumulative.

before entering. Since these objects are not shadows they are correctly detected as
foreground, but they will disappear with time as the background model adapts.

All results presented in this paper are retrieved from the same video frame,
for comparison reasons. However, all results are data dependent and must be
verified for a large set of input data with varying backgrounds and lighting con-
ditions. To simulate this is a very time consuming process. Thus, only a limited
set of scenarios have been tested so far, all with a promising degree of success.
For example, Fig. 1e shows the improved result of the original example. Video
results are found on the homepage [12]. For the same reasons, time and a lim-
ited test set, no exact numbers on the input parameters are presented. Extensive
testing will begin as soon as the first part of the system, i.e. the sensor, segmen-
tation algorithm, and morphologic filter, is integrated on an FPGA board. These
hardware architectures are presented in [13] and [14]. Reduced simulation time
means that long-term effects and fine-grain adjustment of parameter settings
will be possible to investigated.

6 Conclusions

In this paper it is shown how different color spaces affect the result of a Gaussian
mixture model segmentation algorithm. The YCbCr is found to be best in terms
of noise, due to numeric stability and an independent brightness channel. Since
the YCbCr color space is sensitive to shadows, three different classification rules
to identify shadows are investigated and it is found that the simplest rule is as
good as the more advanced.

A more advanced decision kernel for the segmentation algorithm is presented.
With this kernel the probability to detect a foreground pixel is altered depending
on the nature of the pixel. If a pixel is part of a potential shadow the probability
is reduced and if the pixel has a human skin tone the probability is increased. It
is found that with these small additions to the decision kernel the segmentation
result is significantly improved without costly post processing.
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13. Jiang, H., Ardö, H., Öwall, V.: Hardware accelerator design for video segmen-

tation with multi-modal background modelling. In: Proc. of IEEE International
Symposium on Circuits and Systems (ISCAS’05), Kobe, Japan (2005)

14. Hedberg, H., Kristensen, F., Nilsson, P., Öwall, V.: A low complexity architecture
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Abstract. We propose a new method for classification of photometric
factors, such as diffuse reflection, specular reflection, attached shadow,
and cast shadow. For analyzing real images, we utilize the photometric
linearization method which was originally proposed for image synthesis.
First, we show that each pixel can be photometrically classified by the
simple comparison of the pixel intensity. Our classification algorithm
requires neither 3D shape information nor color information of the scene.
Then, we show that the accuracy of the photometric linearization can
be improved by introducing a new classification-based criterion to the
linearization process. Experimental results show that photometric factors
can be correctly classified without any special device.

1 Introduction

The appearance of an object changes due to lighting direction and surface re-
flectance. Since real images include complex factors such as specular reflections
and shadows, it is difficult to directly apply various computer vision algorithms,
such as photometric stereo[1], to real images. Therefore, it is important to ana-
lyze the photometric factors included in real images.

A lot of methods have already been proposed for separating photometric
factors. The dichromatic reflection model [2] is often used for separating diffuse
reflections and specular reflections [3, 4, 5]. Wolff et al.[6] proposed a method
to separate specular reflections by analysis of reflected polarization, Nayar et
al.[7] combined color and polarization to separate specular reflections. Ikeuchi
et al.[8] proposed a method to classify photometric factors based on range and
brightness images. These methods, however, have a common restriction in that
shadows cannot be analyzed.

On the other hand, there are some methods which express real images in a
linear subspace. Shashua[9] showed that an image lighted from any direction can
be expressed by a linear combination of three base images taken under different
lighting directions under the assumption of a Lambertian surface and a parallel
� This work was mainly accomplished when the authors were with Okayama

University.
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ray. That is, an image can be perfectly expressed in a 3-D subspace. Belhumeur
and Kriegman[10] showed that an image can be expressed by the illumination
cone model even if the image includes attached shadows. In the illumination cone,
images are expressed by a linear combination of extreme rays. Georghiades et
al.[11] developed the illumination cone so that cast shadows can be also expressed
by the shape reconstruction. Although any photometric factors can be ideally
expressed by the illumination cone, a large number of images corresponding to
extreme rays are necessary.

We have proposed the photometric linearization method[12], which converts
real images into ideal images that include only diffuse factor. After the photo-
metric linearization, all images are expressed as a linear combination of three
base images. The method was originally proposed for image synthesis. In this
paper, we show that the method can also be used for classifying photometric
factors. It can classify not only diffuse reflections and specular reflections, but
also attached shadows and cast shadows. We present a new criterion for clas-
sification of photometric factors based on the photometric linearization. The
classification algorithm requires neither 3D shape information nor color infor-
mation of the scene. The classification is accomplished by the simple comparison
of pixel intensities.

Moreover, we show that the accuracy of the original photometric lineariza-
tion can be improved by introducing a new classification-based criterion to the
linearization process. The original photometric linearization method does not
work stably when pixels are not illuminated in a number of input images. Our
physics-based analysis can solve this problem.

2 Classification

2.1 Photometric Factors

Photometric factors are classified into reflections and shadows (Fig.1). The re-
flections are classified into diffuse reflections and specular reflections. According
to the Lambert model, the intensity of the diffuse reflection is expressed by

i = nT s. (1)

Here, n denotes the surface property vector which is a product of the unit
normal vector and the diffuse reflectance, and s denotes the lighting property
vector which is a product of the unit vector along the lighting direction and the

specular reflection
diffuse reflection cast shadow

attached shadow

Fig. 1. Photometric factors included in an image
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lighting power. The specular reflections are observed as the sum of diffuse factors
and specular factors.

Shadows are classified into attached shadows and cast shadows. Attached
shadows depend on the angle between the surface normal and the lighting di-
rection and are observed where the surface does not face the light source. Cast
shadows depend on the overall 3-D shape of the scene, and are observed where
light is occluded by other objects. If there is no ambient light and interreflec-
tion, the intensity in shadows becomes zero. However, Eq.(1) indicates that the
intensity in attached shadow is negative, while that in cast shadow is positive.

2.2 Photometric Linearization

We have proposed the photometric linearization method[12] which converts real
images including various photometric factors into ideal images including only
diffuse reflection factor. After the photometric linearization, all pixels in images
fully satisfy Eq.(1). Hence, any image can be expressed by a linear combination
of three base images[9].

For the photometric linearization, multiple images are taken under various
lighting directions. The camera and target objects are fixed. It is important that
the lighting direction, the 3-D shape of the target objects, and the reflectance
of the surface are unknown.

2.3 Criterion for Classification

In this section, we show that each pixel can be easily classified into diffuse re-
flection, specular reflection, attached shadow, and cast shadow based on the
photometric linearization. The classification is accomplished by the simple com-
parison of the pixel intensity.

Let i(k,p) be the intensity of the pixel p in the image k, and let iL(k,p) be the
linearized intensity. The relationship between i(k,p) and iL(k,p) is as follows. In
the diffuse reflection region, iL(k,p) is equal to i(k,p), because the intensity is not
changed by the linearization. In the specular reflection region, iL(k,p) is smaller
than i(k,p), because the specular factor is eliminated. In the attached shadow
region, iL(k,p) becomes negative, which satisfies Eq.(1). In the cast shadow region,
iL(k,p) is larger than i(k,p), because iL(k,p) has a diffuse reflection factor while i(k,p)
is near zero. Hence, each pixel can be classified by the following criterion:

Region(k, p) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

D : if (|i(k,p) − iL(k,p)| ≤ T × i(k,p)) ∩ (i(k,p) ≥ Ts)
S : if (i(k,p) − iL(k,p) > T × i(k,p)) ∩ (iL(k,p) ≥ 0) ∩ (i(k,p) ≥ Ts)
A : if (iL(k,p) < 0) ∩ (i(k,p) < Ts)
C : if (iL(k,p) ≥ 0) ∩ (i(k,p) < Ts)
U : otherwise

(2)

Here, D,S,A,C, and U denote diffuse reflection, specular reflection, attached
shadow, cast shadow, and undefined factor, respectively. The threshold T is
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used to check the equality of i(k,p) and iL(k,p), and empirically determined. Since
T is normalized to be relative to i(k,p), the check becomes independent of the
brightness. In real images, the intensities of shadows are not zero. The threshold
Ts is used to distinguish shadows, and can be determined by manually sampling
some pixels in shadow regions.

In this criterion, the shadow regions are classified just by using threshold Ts.
Although the classification is very simple, attached shadows and cast shadows
can be distinguished by the sign of iL(k,p). It is one of the significant advantages
of the criterion because two types of shadows can be distinguished without any
3D shape information. Figure 2 illustrates Eq.(2) as a 2-D plane spanned by
i(k,p) and iL(k,p). The photometric factors are easily classified if the photometric
linearization is accomplished.

3 Improvement of Photometric Linearization

3.1 Key Idea

In the previous section, we showed that photometric factors are correctly clas-
sified if the photometric linearization is perfectly accomplished. That is, any
pixel is never classified into the undefined factor. This fact suggests that the
photometric linearization becomes more accurate by introducing the criterion
for classification to the linearization process. We can use the criterion to verify
the accuracy of the photometric linearization.

3.2 Flow of the Process

First, we summarize the photometric linearization. Shashua[9] showed that if a
parallel ray is assumed, an image Ik under any lighting direction can be ex-
pressed by a linear combination of three base images (I1, I2, and I3) taken
under different lighting directions,

Ik = c1
kI1 + c2

kI2 + c3
kI3. (3)
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Here, let ck = [ c1
k c2

k c3
k ]T be a set of coefficients of the image Ik. Real images,

however, do not satisfy Eq.(3), because shadows and specular reflections are
observed. The photometric linearization can convert real images to ideal images
which perfectly satisfy Eq.(3). The process of the photometric linearization is
divided into the following three steps (Fig.3).

1. Calculation of a set of coefficients
First, three base images I1, I2, and I3 are selected from among the input
images. A set of coefficients ck of the k-th input image Ik is calculated from
the intensities in I1, I2, I3, and Ik.

2. Photometric linearization of base images
Next, the base images are linearized for every pixel based on the input images
and the coefficients. Let iL

p = [ iL(1,p) iL(2,p) iL(3,p)]
T be a set of intensities in

the linearized base images at pixel p. This process is performed for all pixels,
and three base images I1, I2, and I3 are converted into the linearized base
images IL

1 , IL
2 , and IL

3 .
3. Photometric linearization of all images

Finally, all input images are linearized. The k-th input image Ik is linearized
by the linear combination of the linearized base images IL

1 , IL
2 , and IL

3 using
ck. We denote the linearized Ik as IL

k .

3.3 Calculation of Candidates by Random Sampling

The coefficients of the linear combination and the base images have to be deter-
mined to satisfy Eq.(3). If we calculate them by minimizing root mean square
errors, input images are not converted to ideal images that include only diffuse
factor because of shadows and specular reflections.

The photometric linearization solves this problem by the RANSAC-based
approach. A lot of candidates are iteratively calculated by random sampling,
and the correct value calculated from only diffuse reflections is selected from
among the candidates. If all pixels are sampled from the diffuse reflection region,
the correct value, which is not affected by specular reflections and shadows, is
calculated. That is, we can regard the photometric linearization as a problem to
find one correct value calculated by only diffuse reflection factors from among a
lot of candidates.

In order to calculate a candidate of the coefficients, three pixels are randomly
selected from base images I1, I2, I3, and each input image Ik. Note that same
pixels are selected from every image. A set of coefficients ĉk is calculated from
the intensities of the pixels. By the iteration of this process, a lot of candidate
coefficients are obtained.

On the other hand, in order to calculate a candidate of the linearized intensi-
ties, three images are randomly selected from the input images. If the coefficients
ck have already been correctly calculated, the intensities î

L

p in the linearized base
images at pixel p can be easily calculated. By the iteration of this process, a lot
of candidate intensities of the linearized base images are obtained.
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3.4 Introducing the Criterion for Classification

In order to find a correct value from the numerous candidates calculated by
iteration of random sampling, the previous method[12] iterates the estimation
of the center of gravity and outlier elimination. However, the algorithm based
on a principle of majority has weaknesses. Since the center of gravity may be
affected by outliers, an incorrect candidate may be selected because of shadows.
So the process tends to be unstable.

Now we propose a new algorithm which can accurately determine the correct
value from the numerous candidates. Let’s consider the reason why candidates
become isolated outliers. That is, we have to check the photometric factors of
inliers and outliers. Therefore, we introduce the criterion for classification into
the photometric linearization process.

If a candidate is correct, each pixel is classified into the defined factors (D, S,
A, and C) by Eq.(2). Any pixel is never classified into the undefined factor (U).
Each candidate is evaluated based on the number of pixels which are classified
into the defined factors. The candidate which has the maximum number of pixels
can be regarded as the correct value.

Basically, the evaluation is based on the defined factors. The specular reflec-
tions are, however, excepted from the defined factors. The specular reflection
occupies a large area in Fig.(2). If we regard S as the defined factor, incorrect
candidates may be accepted. Since the size of the specular region is relatively
small in images, we can ignore specular factors in this evaluation. Hence, we
evaluate pixels that are classified into diffuse reflection, attached shadow, and
cast shadow by

Classifiable(k, p) =
{

1 if (Region(k, p) = D ∪A ∪C)
0 if (Region(k, p) = S ∪ U) . (4)

3.5 Evaluation of Candidates

In this section, we present the detailed algorithm to evaluate candidates. For
each candidate ĉk of a set of coefficients, the k-th input image Ik is linearized
to IL

k by the linear combination of the three base images I1, I2, and I3. If ĉk

is correct, Eq.(4) becomes 1 for almost all pixels. Hence, we define the following
function to evaluate candidates of the coefficients ĉk.

SupportC(k) =
∑

p

Classifiable(k, p) (5)

On the other hand, the linearized intensities iL(k,p) are calculated by the linear

combination using coefficients ck for each candidate î
L

p . If î
L

p is correct, Eq.(4)
becomes 1 for almost all input images. Hence, we define the following function
to evaluate candidates of the linearized intensities.

SupportL(p) =
∑

k

Classifiable(k, p) (6)
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The SupportC(k) and SupportL(p) are used to calculate the number of pixels
which are classified into valid factors. We can regard the candidates for which
the function SupportC(k) or SupportL(p) returns the maximum as the correct
value. By using the estimated coefficients ck and intensities iL

p in the linearized
base images, the accuracy of the photometric linearization can be improved.

3.6 Comparison with the Previous Method [12]

It is noted that the proposed method takes the physical photometric phenomena
into account, and considers the photometric factors of outliers, while the previous
method [12] is based on only the statistical framework. Therefore, the accuracy
can be improved especially in shadow regions.

One may think that if we simply modify [12] so that pixels below the threshold
Ts are excluded as outliers, the accuracy can be improved. By ignoring dark
regions, similar results may be acquired. However, the new method can analyze
the reason of shadows and classify the outliers into two types of shadow.

4 Experimental Results

For the experiments, we used three kinds of materials that have different reflec-
tion properties. A ceramic cup (Fig.4) is an example of rough glossy objects, a
pot (Fig.7) is an example of very shiny objects, and a marble sphere (Fig.8) is
an example of complex reflections such as sub-surface scattering.

4.1 Photometric Classification

We took twenty-four images under various lighting directions in a darkroom
keeping a halogen light away from the ceramic cup as shown in Fig.4. Since this
cup has a concave surface, some pixels are not illuminated in a number of the
input images.

Figure 5 shows three base images selected from input images. (a) shows orig-
inal base images. (b) and (c) show the results of the photometric linearization.
Since the linearized images have negative values, a zero level is expressed as a

Fig. 4. Input images taken under various lighting directions (cup: twenty-four images)
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(a) three base images (b) linearization by previous method

(c) linearization by proposed method

Fig. 5. Linearized base images

(a) (b) (c) (d) (e) (f)

Fig. 6. Classification results of the photometric factors (cup). (a): an input image, (b):
linearized image, (c): diffuse reflections, (d): specular reflections, (e): attached shadows,
(f): cast shadows.

gray intensity. (b) shows the results of the previous method. Many pixels are
incorrectly linearized to be zero, because the previous method is strongly af-
fected by cast shadows. (c) shows the results of the new method based on the
classification criterion. We can see that the base images are correctly linearized
even if some pixels are not illuminated in a number of the input images.

Figure 6 shows the results of the photometric classification. (a) is an input
image, and (b) is the linearized image. Comparing (a) and (b), each pixel was
classified into (c) diffuse reflections, (d) specular reflections, (e) attached shad-
ows, and (f) cast shadows. Although attached shadows and cast shadows cannot
be classified by a simple threshold, the proposed method can distinguish them.

Next, we applied our method to a glossy object having complex shape. Figure
7(a) shows an example of twenty-four images. (b) is the result of the photometric
linearization. (c), (d), (e), and (f) show the results of classification as diffuse re-
flections, specular reflections, attached shadows, and cast shadows, respectively.
Each pixel can be classified into a suitable photometric factor even if the target
object has a complex shape.
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(a) input image (b) linearized image (c) diffuse reflection

(d) specular reflection (e) attached shadow (f) cast shadow

Fig. 7. Classification results of a glossy pot

4.2 Photometric Stereo

Next, we show that the photometric linearization can be used for the preprocess
of the photometric stereo[1]. We took twenty-four images of a marble sphere un-
der various lighting directions (Fig.8). A part of the surface is not illuminated by
obstacles, and complex reflections including subsurface scattering are observed.

After the photometric linearization, the 3-D shape was reconstructed by pho-
tometric stereo. Because the lighting directions are unknown, the surface normals
cannot be uniquely determined[13]. Therefore, the surface normals are adjusted
by the affine transformation to be symmetric around the center of the sphere.
Fig.9(a) is a true shape obtained by manual measurement, (b) and (c) are the
reconstructed shapes by the previous method and the proposed method, respec-
tively. The previous method failed in the reconstruction due to shadows. On the
other hand, new method can correctly linearize and reconstruct at the entire

Fig. 8. Input images taken under various lighting directions (sphere)

(a) true shape (b) previous method (c) proposed method

Fig. 9. Reconstructed 3-D shapes
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sphere. This result indicates that the photometric linearization method can be
applied to objects which have complex BRDFs.

5 Conclusions

In this paper, we proposed a new photometric classification method based on
the photometric linearization. While the photometric linearization was originally
proposed for generating images under the arbitrary lighting direction, we showed
that the method can also be used for the classification of photometric factors.
We have improved the accuracy of the photometric linearization method by
introducing the classification criterion into the linearization process.

The photometric linearization has an important role as a fundamental tech-
nique of computer vision such as photometric stereo and shape-from-shading.
We confirmed that our method can be applied for a variety of materials, and
that the photometric stereo becomes robust to shadows by applying the photo-
metric classification as a preprocessing. In the future, we intend to analyze more
complex factors such as interreflection.

This research was supported by the Ministry of Education, Science, Sports
and Culture, Grant-in-Aid for Young Scientists (A), 17680018.
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Abstract. In this paper, we address one very important industrial ap-
plication of computer vision – automatic classification of materials. In our
work, we have considered materials that are mixtures of two or more ele-
ments. Such materials are called alloys. It is observed at the microscopic
level that an alloy is composed of small randomly distributed crystals
of varying shapes and sizes called grains. Also, the color and hence the
intensity of the grains vary in alloys. Generally, this shape-size-intensity
distribution of the grains is different for different materials. This means
micrographs obtained from different materials form texture-like images
that differ from one material to another in appearance. Therefore, in prin-
ciple, any texture analysis method may be used for material classification.
In our method, we propose to extract textural features corresponding to
grain geometry and intensity and use them for analysis and classification
of alloys. These features are extracted via gray-scale morphological op-
erations and are measured in terms of Size-Intensity-Diagram (SID) and
Tri-variate Pattern Spectrum (TPS) coefficients. In our experiments, we
achieved 83.43% and 89.43% classification accuracies in cases of SID and
TPS, respectively. This demonstrates the effectiveness of the proposed
method for material classification which in turn confirms that our choice
of features is indeed appropriate for the purpose.

1 Introduction

In recent years, Computer Vision has been extensively used in real world systems
for commercial, industry and military applications. Some of these applications
include industrial automation, biometrics, 3D modelling, video surveillance, clas-
sification and recognition, document analysis, medical analysis, human-computer
interaction, robotics and so on. In the field of industrial automation, its appli-
cations include nondestructive quality and integrity inspection, on-line measure-
ments, etc. thereby aiding the process of manufacturing and inspection. Conse-
quently, computer vision related technologies have started migrating from aca-
demic institutions to industrial laboratories.

The objective of this paper is automatic classification of materials which may
find application in industry and material science research. However, in this paper,
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we do not intend to develop any new algorithm for material classification but to
build up a system that will view a material sample at microscopic level and will
subsequently classify it on the basis of some visual features extracted from the
micrograph making use of some existing image processing and computer vision
techniques.

In our present work, we have considered materials that are mixtures of two
or more elements. Such materials are called alloys. Different elements mixed in
different proportions give different types of alloys. It is observed at the micro-
scopic level that an alloy is composed of small randomly distributed crystals
of varying shapes, sizes and colors called grains. This means a material micro-
graph obtained from an alloy resembles a texture image in which the grains
form the texels (texture elements). It is also observed that the shape-size-color
distribution of the grains generally differs from one material to another. As a
consequence, texture images obtained from the micrographs of different types
of materials generally look different in appearance. Therefore, in principle, any
texture analysis method may be used for material classification. Based on this
principle, some texture-based material classification schemes had been proposed
in [1], [2], [3], [4] and [5]. However, these methods do not take into account the
grain geometry and color which otherwise seem to be the most appropriate char-
acterizing features in the context of material classification. On the other hand,
the structure of the texture primitive elements (texels) is one very useful and
important feature that may be used for the purpose of texture analysis and clas-
sification. Therefore, it makes sense to classify materials by extracting textural
features corresponding to grain shape and size from the texture-like material
micrographs and then apply any available texture classification scheme.

It has been demonstrated through research in material science that the shape
and size of the grains composing a material provide important information nec-
essary for characterizing the material, as mentioned in [6] and [7]. In view of this,
an earlier attempt to classify materials on the basis of grain size was proposed
in [8]. The method involves grain boundary detection and moment calculation.
Another efficient tool for shape-size analysis used frequently in image processing
and computer vision applications is the mathematical morphology [9]. This is
mainly due to its capability in extracting grain geometry and structural informa-
tion efficiently. Accordingly, some morphological approaches for shape-size based
texture analysis were developed in [10], [11], [12] and [13]. Consequently, any of
these texture analysis methods may be used for material classification. One such
method for material grain size determination using morphological texture anal-
ysis is given in [14]. But, all these methods are based on shape-size analysis only
and hence are suitable only in cases where color information does not play any
significant role.

Apart from grain geometry, another important property that distinguishes
one material from another in appearance is the color. An impure material, for
example an alloy, when viewed at the microscopic level will show variation in
grain color depending on the concentration and nature of different types of crys-
tals composing the material. As a result, a brilliantly white pure material may
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become cream, grey, pink, brown, or even red due to impurities contained in the
crystal structure even in trace amounts. Therefore, extraction of grain color in-
formation, in addition to grain shape and size, is equally important for achieving
better accuracy in material classification. However, in order to reduce compu-
tational complexity, in our work we use monochrome images only where grain
color variation manifests as intensity variation in the micrographs. Accordingly,
in our work we use gray-scale morphology which is capable of deriving informa-
tion regarding intensity variation, in addition to shape and size.

2 Proposed Method

Mathematical morphology is an useful tool in many image processing applica-
tions that involve shape analysis. In particular, the Pattern Spectrum proposed
by Maragos [15] gives us the size distribution of objects within a given image.
Extension of the Pattern Spectrum to gray images is the Size Intensity Diagram
(SID) [16] which gives a breakdown of the size and gray-level distribution of
objects in an image. Another variant of the basic Pattern Spectrum is the Bi-
variate Pattern Spectrum (BPS) [17] which yields the shape-size distribution in
true sense, while the Tri-variate Pattern Spectrum (TPS) [18] is the extension of
BPS to gray images. TPS generates the size, gray-level and shape distribution
under a single framework. In this paper, we now propose to build up a material
classification system based on texture analysis using two variants of the basic
Pattern Spectrum, viz., Size-Intensity Diagram and Tri-variate Pattern Spec-
trum, that give information about the shape, size and intensity variation in a
gray image.

2.1 Basic Morphological Operations on Binary Images

The two basic operations in morphology are dilation and erosion. Given a 2-
dimensional image, the object(s) present in it may be represented as a set A
whose elements are the coordinates of the object pixels. Therefore, A is a set in
a 2D Euclidean space �2, i.e., A={(ax, ay)} where (ax, ay) are the coordinates
of the object pixels. Let, B be another set in �2 given as B={(bx, by)}. Then
dilation and erosion of A w.r.t. B are defined as

Dilation: A⊕B =
⋃

(bx,by)∈B

{
(ax, ay) + (bx, by)

∣∣∣ (ax, ay) ∈ A
}

, (1)

Erosion: A$B =
⋂

(bx,by)∈B

{
(ax, ay)− (bx, by)

∣∣∣ (ax, ay) ∈ A
}

. (2)

The set B is called the structuring element (SE). Combinations of dilation and
erosion give two other morphological operations as follows:
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Opening: O(A, B) = A ◦B = (A$B)⊕B , (3)

Closing: C(A, B) = A •B = (A⊕B)$B . (4)

The opening operation acts as a morphological filter in the sense that it retains
only those object(s) where the SE can fit in and eliminates the remaining ob-
ject(s). Closing operation is essentially the opening of the complemented input.

2.2 Pattern Spectrum

A quantitative measure for the size distribution of the objects in an image is
the Pattern Spectrum. The number of pixels in the set obtained by subtracting
the opened objects from the original one gives the area of those objects that
cannot contain the SE. Thus, iterative application of the morphological opening
and the measurement of the residues, while increasing the size of the SE, gives
the size distribution of the objects contained in the given image. So, if A is the
set representing the objects in a given 2D image, then following [9] and [19] the
pattern spectrum or pecstrum may be defined as

PSnB(A) =
1

Mes(A)

[
Mes(A ◦ nB)−Mes(A ◦ (n + 1)B)

]
, (5)

where Mes(·) denotes the finite set cardinality and nB is the expanded SE of
size n (n is any integer in the range 0 to +∞) obtained by dilating B iteratively
for (n− 1) times, i.e.,

nB = B⊕B⊕ . . .⊕B︸ ︷︷ ︸
n−1 times

. (6)

2.3 Bivariate Pattern Spectrum

The pattern spectrum defined above, does not convey the information about the
shapes of the objects present in the image. This drawback may be overcome by
using Bivariate Pattern Spectrum (BPS). Unlike the usual Pattern Spectrum
described above, the size of the SE is increased in vertical and/or horizontal
direction so as to vary both the size and the shape of the SE. Thus, the residues
so obtained at all stages of opening and subsequent subtraction give the shape
distribution of the objects to some extent, in addition to the size description.
Therefore, BPS is the generalization of the usual Pattern Spectrum and is the
true shape-size descriptor for the objects present in the given binary image.
Accordingly, the BPS is defined as

BPS((nx,ny)B)(A)

= 1
Mes(A)

{Mes(A ◦ (nx, ny)B) + Mes(A ◦ (nx + 1, ny + 1)B)

−Mes(A ◦ (nx + 1, ny)B)−Mes(A ◦ (nx, ny + 1)B)} ,

(7)

where (nx, ny)B is the SE of dimension nx by ny.
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2.4 Basic Morphological Operations on Gray Images

A gray scale image is defined as a 2D function f(ax, ay) where (ax, ay) is the
coordinate of a pixel in the image and f(ax, ay) gives the corresponding pixel
intensity. The object present in the image, hence, may be defined in the form
of a set of triples A = {(ax, ay, ag)} where (ax, ay) are the object pixels and
ag = f(ax, ay). The gray scale structuring element B may also be defined in a
similar way in the form of a set {(bx, by, bg)}. The morphological operations on
the image A, hence, are defined in [19] and [20] as

Gray scale dilation:

A⊕B = EXTSUP
(bx,by,bg)∈B

∣∣∣ {(ax, ay, ag) + (bx, by, bg)
∣∣∣ (ax, ay, ag) ∈ A

}
, (8)

Gray scale erosion:

A$B = INF
(bx,by,bg)∈B

∣∣∣ {(ax, ay, ag)− (bx, by, bg)
∣∣∣ (ax, ay, ag) ∈ A

}
. (9)

The opening and closing operations are defined as their counter parts in binary
operations.

2.5 Size Intensity Distribution

Using the idea of the Pattern Spectrum, and incorporating gray level (intensity)
information, Size-Intensity Diagram (SID) is obtained as

SID((n,g)B)(A) =
1

Mes(A)
{Mes(A ◦ (n, g)B) + Mes(A ◦ (n + 1, g + 1)B)

−Mes(A ◦ (n + 1, g)B)−Mes(A ◦ (n, g + 1)B)} , (10)

where (n, g)B is a flat SE of size n with gray level g.

2.6 Tri-variate Pattern Spectrum

Using the above relations for the gray scale morphological operations, the idea
of BPS is extended to Tri-variate Pattern Spectrum (TPS) so as to obtain the
shape-size description in a gray scale image. In the TPS, the shape of the struc-
turing element B is varied via separate expansion in the x and y dimensions
together with the variation of gray levels of the structuring element. The TPS
defined at each gray level g is defined as

TPS((nx,ny,g)B)(A)

= 1
Mes(A)

{Mes(A ◦ (nx, ny, g)B) + Mes(A ◦ (nx + 1, ny + 1, g)B)

−Mes(A ◦ (nx + 1, ny, g)B)−Mes(A ◦ (nx, ny + 1, g)B)} ,

(11)

where (nx, ny, g)B is a flat structuring element of dimension nx by ny with gray
level g, g = 1, 2, . . . , L − 1, L is the number of gray-levels in the image. Gray
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level g = 0 generally corresponds to the inter-grain gaps and cavities and hence
is not considered in evaluating the TPS coefficients.

2.7 Material Classification Using SID and TPS

Using Scanning Electron Microscope, microscopic images of materials known
as micrographs are obtained. These micrographs are subsequently converted to
gray images. As mentioned before, at the microscopic level, it is observed that
materials are made up of grain patterns that give texture-like appearance to
the micrographs. Also, the shape, size and intensity distribution of grains in
one material is generally different from that of another material. This aspect of
the micrographs is utilized for the purpose of material classification. In other
words, a material may be recognized on the basis of the shape, size and intensity
distribution of the grains that the material is composed of. And for the purpose of
feature extraction from different materials the SID and TPS seem to be suitable
in the present context while classification may be accomplished by employing
any gray texture analysis scheme.

As with binary textures, gray-scale morphological approach seems to be an
efficient tool in gray texture analysis involving grain shape analysis. One such
morphological approach to gray texture analysis is given in [21] in which a model
of the elementary particles that form a texture is obtained by applying pattern
spectrum with gray-scale structuring elements. However, in this method, the
extra step necessary to determine optimal structuring elements increases the
computational overhead. In later times, a TPS-based texture analysis scheme
had been developed in [22] which may be applied on material micrographs so as
to accomplish material classification. However, TPS is generally computationally
expensive. A relatively less complex scheme may be to use SID in place of TPS
but at the cost of classification accuracy. The set of SID or TPS coefficients
forms the set of textural features corresponding to shape, size and intensity of
the material grains and is subsequently used in the classification stage.

3 Experimental Results

In our experiments, we have evaluated the accuracy in classifying different mate-
rials by applying texture analysis on material micrographs in which the textural
features are measured in terms of SID and TPS coefficients, as proposed in this
paper. Seven different types of materials with 250 training and 50 test micro-
graphs per material type are taken. The colored micrographs are converted to
gray images with 256 gray levels. The basic structuring element taken is a 3× 3
square and a k-NN classifier is used for classification. The different types of ma-
terials taken are (A) Copper-Zinc alloy, (B) Steel with 0.1% Carbon, (C) Steel
with 0.5% Carbon, (D) Silicon-Carbide (E) Steel with 0.4% Carbon, (F) Steel
with 1.25% Carbon, and (G) Ferrite XIV. Figure 1 shows the micrographs for
each of these materials, one sample per material type. The classification results
obtained in our experiments are given in Table 1 and Table 2.
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We see that the proposed material classification scheme using SID and TPS
coefficients works well yielding accuracy rate as high as 100% for some materi-
als while the overall recognition rates are 83.43% and 89.43% in cases of SID
and TPS, respectively. From Fig. 1, we see that the microscopic views of some
materials are so similar (e.g., CuZn and Steel with 0.1% Carbon) that man-
ual discrimination is almost impossible. Even then, our classifier is capable of
discriminating them to some extent. We also observe that TPS yields better
recognition rate compared to SID, but at the cost of increased computational
load. This is because TPS has better shape analyzing capacity than SID.

Table 1. Recognition result in material classification using SID coefficients. Seven
different types of materials are taken and our proposed classification method is tested
on 50 samples per material type.

Class labels Number of test samples classified to Recognition
of input to each of the seven material classes Rate

test samples
A B C D E F G

in percentage

A 31 15 0 2 1 1 0 62.0
B 1 45 2 1 0 1 0 90.0
C 1 1 36 6 0 6 0 72.0
D 0 0 0 50 0 0 0 100.0
E 0 0 0 0 50 0 0 100.0
F 0 0 0 4 16 30 0 60.0
G 0 0 0 0 0 0 50 100.0

Average Recognition Rate 83.43

Table 2. Recognition result in material classification using TPS coefficients. Seven
different types of materials are taken and our proposed classification method is tested
on 50 samples per material type.

Class labels Number of test samples classified to Recognition
of input to each of the seven material classes Rate

test samples
A B C D E F G

in percentage

A 35 8 1 2 0 4 0 70.0
B 0 40 1 1 1 7 0 80.0
C 0 0 44 0 0 6 0 88.0
D 0 0 0 50 0 0 0 100.0
E 0 0 0 0 50 0 0 100.0
F 0 0 0 5 0 45 0 90.0
G 0 0 0 0 0 1 49 98.0

Average Recognition Rate 89.43
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Fig. 1. Micrographs of the seven different types of materials used in our experiment.
For computational simplicity the actual color micrographs have been converted to gray
images as shown here. The texture like appearance of the micrographs can be observed
in the figures.

4 Conclusion

In this paper, we have explored the potentiality of using morphological pattern
spectrum for material classification. Two variants of the morphological Pattern
Spectrum, namely the Size-Intensity-Diagram (SID) and the Tri-variate Pattern
Spectrum (TPS), are used for extracting textural features from the texture-
like microscopic images of the materials and are then used for classification
in a manner similar to any texture analysis and classification method. Based
on our experimental results, it is found that the SID and TPS coefficients, in
particular the TPS coefficients, are indeed good measure for the textural features
corresponding to the shape-size-intensity distribution of the material grains in
the micrographs. Hence our proposed method may be reliably used for material
analysis, process control, etc.

The scheme described in this paper may be extended to some applications as
follow.

1. Material inspection: The proposed method may be used for locating any
defect, fault, presence of impurities, etc. in a material sample. The shape-size-
intensity distribution of the material grains may be extracted by scanning
the input sample thoroughly. Deviation from this distribution measure at
any point in the sample will indicate defect or presence of impurity at that
location.
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2. Material characterization: The structure, size and color of the grains deter-
mine important physical properties of a material. For example, high aspect-
ratio in grain size indicates good mechanical reinforcing effect. Materials
composed of coarse sized grains generally detract from mechanical reinforce-
ment, segregate and settle quickly, affect the processing and quality of end-
use products, lead to higher abrasion, and affect surface finish. On the other
hand, excessive amounts of fine grains can lead to ineffective mechanical re-
inforcement, high resin consumption as a filler, and problems with materials
handling. Also, the density of a material may be assessed by evaluating the
number of grain pixels in a micrograph. Similarly, distribution of grain inten-
sity (or color) may be used to assess the concentration of different elements
in an alloy.
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Abstract. A five layered, event driven hierarchical framework for
generic sports video classification has been proposed in this paper. The
top layer classifications are based on a few popular audio and video con-
tent analysis techniques like short-time energy and Zero Crossing Rate
(ZCR) for audio and Hidden Markov Model (HMM) based techniques for
video, using color and motion as features. The lower layer classifications
are done by applying game specific rules to recognize major events of the
game. The proposed framework has been successfully tested with cricket
and football video sequences. The event-related classifications bring us
a step closer to the ultimate goal of semantic classifications that would
be ideally required for sports highlight generation.

1 Introduction

Event-based storage and retrieval of sports video sequences and automated gen-
eration of highlights are highly demanding topics, because of their popularity
and commercial importance. Therefore, there has been a widespread studies in
the field of sports video classification. E. Kijak et. al. [1] have presented the use of
HMM for the structure analysis of Tennis video. J. Assfalg et. al. [2] have worked
upon football video classification using camera motion and player’s location. L.
Duan et. al. [3] have proposed the color characterization model for sports video
indexing and browsing. L. Xie et. al. [4] have proposed an algorithm for pars-
ing the structure of soccer sports video. These works provide fairly compressive,
solutions to the task outlined, however the challenge of developing a solution
or scheme that can reveal common structures of multiple events across multiple
domains remains under-investigated. In practice though, such a scheme could
not exist without some limit of domain constraint, i. e. the design of common
feature extraction metrics applied to two vastly different sports types. On the
other hand it is important to avoid becoming too context specific. With this
trade-off in mind, our research is aimed towards designing techniques such that
they can be globally applied to all sports types, which come under the umbrella
of ’ball and field sports’. Recently, unified general frameworks were proposed in
[5],[6]. In their work, excitements were extracted for highlight generation, but
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detailed event classification was not carried out. The sports video classification
schemes proposed till date fail to respond to action-based queries, such as “ex-
tract the goal clips out of this football sequence”, or “find out when the batsman
got run-out in this cricket video”, etc. Such queries may be always needed for
editing and retrieval.

Very recently, W. Hsu et. al. [7] have presented the scheme for the fusion of
multimode features for TRECVID news video classification. L. Chaisorn et. al.
[8] has proposed two-level framework for news classification. In these approaches,
they segment the full video into video shots and then clustering the shots to gen-
erate the concept hierarchies. In contrast to these method, we have used the top
down approach, which permits us to avoid clustering and consequently improves
the classification accuracy and also maintains the temporal order of shots.

Successful solution of this problem has to address two basic issues; (a) the
classification should be event-related, and (b) such events should fit well within
a generic framework that can be used for any popular sports. The first issue is
not easy to solve since the classification schemes do not use semantic informa-
tion directly, but use basic clues like color, motion etc. At the top layers, we
use these clues to achieve basic classifications and for the subsequent layers, we
apply event-driven rules from the top layers to recognize the events. We success-
fully tried our approach with two popular games - football and cricket, but it is
applicable to other games as well. To address the second issue, we have proposed
a generic event representation framework, that is simple, hierarchical in nature
and makes indexing and retrieval process easy, and straightforward.

The fundamental problem associated with the top-layer video classification
is the large volume of data that we have to deal with. In every game, there
are moments of excitement, with relatively dull periods in between. Only mo-
ments of excitements qualify for inclusion in the highlights and the dull periods,
which are often lengthy in terms of number of frames, need to be filtered out.
Excitements are always accompanied by significant audio content resulting from
spectators’ cheering, increase in the audio level of the commentators’ voice etc.
After carrying out large set of experiments, we conclude that audio serves as the
most basic clue to filter out the dull contents and extract clips that may qual-
ify for inclusion in highlights. We have used two popular audio content analysis
techniques- short-time energy and ZCR for extracting possible moments of ex-
citements. However, all excitements detected through audio features may not
correspond to game excitements. Even commercial clips are sometimes associ-
ated with excitement type of audio contents and these must be detected and
filtered out. In the next layers, video features, like color and motion have been
used for classification. One of the major characteristics of sports video is that
the sequences are highly structured in the sense that the number of events is
usually limited in number and there are repetitive transitions, often back and
forth between those events. Using a large number of video sequences for training,
we have derived the scene structure in terms of the transition probabilities from
one event to the other and trained a HMM model [9] for classification of the
events.
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2 Hierarchical Classifications

The tree diagram shown in Fig 1 is our proposed generic framework for the
sports video classification. At the top layer, the requirement is to skim the video
sequence to a significant extent and extract the possible moments of excitements.
As explained in the previous section, audio features serve as a very important
clue for this top-layer classification, which is essentially binary - excitement (L1:
class-0) and non-excitement (L1: class-1). Of the clips labeled as “excitement”
in level-1, some frames show direct game actions (L2: class-0), some display the
spectators (L2: class-1), especially after the major events like goal in football
and “out” or “sixer” in cricket. The first level audio classification even picks
up the commercials (L2: class-2), since often those are presented with exciting
tones and background effects added. At the next level, i.e., level-3, the game
actions are further sub-classified into real-time events, post-event activities and
replay. Every major event is followed by some post-event activities like players’
celebrations and finally, replays are presented, while the audio excitements still
continue. At level-4, real-time shots (L3: class-0) are classified into actions, based
on a set of rules applied on real-time shots and post-event activities. At the next
level, the actions are further classified into a set of rule-based sub-actions. The
definition of action and sub-action can be specialized to a specific sports based
on specific domain knowledge. For example, an action can be wicket and sub-
action can be the type of wicket e.g. bowled, catch etc. in the cricket. In football,
goal is an action and the type of goal, e.g. goal by penalty kick, goal by head etc.
are sub-actions. The rules applied for action and sub-action detection are game-
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specific. For example, in cricket, if the real-time actions are followed by fielders’
celebrations and batsman’s departure in close-up, it is a wicket, otherwise, it is
a hit. In football, if the real-time actions are followed by players’ celebrations
and close-up, it is a goal, otherwise, a goal-miss.

3 Event Detection and Classification

3.1 Excitement Detection at Level 1

We have observed that whenever there is an important activity in the game,
there is a corresponding increase in audio energy. We have used two popular au-
dio content analysis techniques- short-time energy and ZCR [10] for extracting
commercials. A particular video frame is considered as an excitement frame if
its audio excitement or ZCR exceeds the threshold. The short time audio energy
E(n) and ZCR Z(n) for frame n is computed as follows:

Short-time audio energy

E(n) =
1
V

V −1∑
m=0

[x(m)w(n −m)]2

where,

w(m) =
{

1 if 0 ≤ m ≤ V − 1
0 otherwise

x(m) is the discrete time audio signal, V is the number of audio samples corre-
sponding to one video frame.

Short-time average zero-crossing rate
In discrete-time signals, a zero crossing is said to occur if successive samples
have different signs. The short-time average zero-crossing rate Z(n), as defined
below, gives rough estimates of spectral properties of audio signals.

Z(n) =
1
2

V −1∑
m=0

|sgn[x(m)]− sgn[x(m− 1)]|w(n−m)

where,

sgn[x(m)] =
{

1 x(m) ≥ 0
−1 x(m) < 0

where, and w(m) is a rectangular window. It is observed that audience cheering
generally leads to high ZCR.

The strategy for the excitement detection is already explained in our previous
work [10].
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3.2 HMM Based Video Classification for Level 2 to 5

We have used HMM model to classify the trimmed video into one of the pre-
defined classes. The class transition diagram is generated by training HMM
through a number of sports video sequences and once trained, video shots can
be classified into available classes by matching to the models of these classes.
Our approach can be summarized as follows:

Step-1: Likelihood computations
Compute the likelihood lt(k) that the frame-t belongs to the class-k, based on
the similarity of the features (such as color, motion etc.) of frame-t with those
of class-k.

Step-2: Accumulated Likelihood Computation
Corresponding to the starting frame, the accumulated likelihood Lt(k) for every
class and the backtracking indices At(k) for every class are initialized as follows:

L1(k) = α l1(k)

and
A1(k) = 0 for k = 0, 1, 2, 3, ...N

where α is a multiplication constant.
For all subsequent frames, the accumulated likelihood and backtracking in-

dices of every class is computed through a dynamic programming based optimum
path search and is given by:

Lt(k) = max
1≤i≤N

(Lt−1(i) + c(i, k)) + α lt(k)

and
At(k) = arg max

1≤i≤N
(Lt−1(i) + c(i, k))

In the above equations, c(i, k) indicates the transitional probability from class-i
to class-k, determined through training. It is obvious from accumulated likeli-
hood equation that higher value of multiplication factor α contributes to pre-
dominance of current likelihood over the accumulated ones.

Step-3: Frame-by-frame classification
Following step-2, the frames are classified individually, starting with the class
C∗

t for the last frame of the sequence and continuing through a process of back-
tracking, as given below

C∗
T = arg max

1≤i≤N
(LT (i))

and
C∗

t = At+1(C∗
t+1),

where, t = T − 1, T − 2, ....., 1
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3.3 Rule Based Activity Detection

To bridge the semantic gap, we have used the rule-based approach for level-4 for
extracting semantic video concepts. The generic rule can be formed as follows

If{event A is followed by
post event activity  1 and/or post event activity  2
and/or· · · · · post event activity  k}
Then {event A belongs to class i}
Else {event A belongs to class j }
Typical Examples of the rules for cricket video:
If {real time (L3: class-0) is followed by:
{Fielders’ celebration (L3: class-1)} and/or {Batsman’s departure (L3: class-2)}}
Then {action is wicket (L4: class-0)}
Else {action is hit (L4: class-1)}
Such many rules can be generated at different levels of hierarchical structure to
extract the semantic concepts of the sports video.

4 Implementation and Results

We have tested our proposed approach using live recording of cricket and football
video sequences. We sampled audio at a rate of 44.1 KHz. The performance
of excitement detection was tested using the measure detection accuracy ηD,
which is the ratio of number of excitement frames correctly detected, to the
total number of actual excitement frames. Table 1 and Table 2 presents the
detection accuracy for cricket video clip of 5:10 minutes and football video clip
of 2:24 minutes respectively. For cricket video clip, we have extracted total 3109
video frames at the rate of 10 frames/second and for football video clip, we have
extracted total 725 video frames at the rate of 5 video frames/second to increase
computational speed. Fig 2 and Fig 3 show the graphs of audio energy and ZCR
vs video frame number for cricket and football video respectively. We observed
the average detection accuracy as 98.23% for cricket test video and 100% for
football test video.

The overall performance of event classification is tested using the measure
classification efficiency ηc, which is the ratio of the number of frames correctly
classified to the total number of frames belonging to that particular class. Table 3

Table 1. Cricket video classification at Level 1 for various values of window size

Window Actual 
 of 
 of excitement ηD

size (sec) excitement frames frames correctly detected %
5 1137 1094 96.22
10 1137 1110 97.63
20 1137 1132 99.56
40 1137 1129 99.30
50 1137 1119 98.42
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Table 2. Football video classification at level 1 for window size of 10 seconds

Activity Actual 
 of 
 of excitement ηD

observed excitement frames frames correctly detected %
Foul 69 (1-68) 69 100

Goal miss 154 (175-329) 154 100
Free kick 140 (535-675) 140 100
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Fig. 2. (a) Audio Energy (b) ZCR Vs Video Frame Number for cricket video sequence
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Fig. 3. (a) Audio Energy (b) ZCR Vs Video Frame Number for football video sequence

Table 3. Class Definitions of level-3

Class Number Cricket Football
0 Real time Real time
1 Fielders’ Celebration Players’ Celebration
2 Batsman’s Departure Players’ Close-up
3 Replay Replay

indicates our class definitions for level-3 for cricket and football video sequences.
Table 4 and 5 represent the classification accuracy of cricket and football videos
respectively.

Fig 4 shows boundary frames of the scenes of level-2 of cricket video, where we
have used color as a likelihood function, since the color of ground is green and
can be easily distinguished from spectator and commercial class. Fig 5 shows
boundary frames of the scenes of level-3 of cricket video, where we have used
color and motion as a likelihood function, since the color of ground is green and
can be easily distinguished from fielders’ celebration (where the dominance of
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Table 4. Cricket video classification

Level Beginning-end frame/ 
 of frames in observed class ηc η̄c

total frames/actual class 0/1/2/3/.. % %
2 525-894/370/0 314/38/18 84.86 94.28

895-964/70/1 0/70/0 100
965-1661/697/2 0/14/683 97.99

3 525-627/103/0 73/12/18/4 70.87 79.02
628-733/106/1 2/83/21/8 78.30
734-790/57/2 1/1/54/1 94.74
791-894/104/3 12/8/11/74 71.15

4 525-627/103/0 103/0 100 100
5 525-627/103/0.4 4/3/4/4/88 85.44 85.44

Table 5. Football video classification

Level Beginning-end frame/ 
 of frames in observed class ηc η̄c

total frames/actual class 0/1/2/3/.. % %
2 175-329/154/0 154/0/0 100 100

-/0/1 0/0/0 100
-/0/2 0/0/0 100

3 175-198/24/0 19/2/2/1 79.16 87.30
-/0/1 0/0/0/0 100

199-219/21/2 2/2/17/1 80.95
220-329/110/3 2/6/4/98 89.09

4 175-198/24/1 0/24 100 100
5 175-198/24/1.2 3/2/17/2 70.80 70.80

         894         964         1661 

Fig. 4. Boundary frames of the scenes classified into class-0, class-1, and class-2 in
level-2 of the cricket video

blue color is observed because our test video contains Indian fielders whose dress
color is blue.) and batsman’s departure (where the dominance of yellow color
is observed because the color of Australian batsman’s dress is yellow). We have
also used motion as a likelihood to separate the real time action on the ground
from the replays. Since the real time action is followed by fielders’ gathering, our
rule based classifier has declared the event in the cricket test video as a wicket.

Fig 6 shows boundary frames of the scenes of level-2, where we have used color
as a likelihood function, since the color of ground is green and can be easily dis-
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 627      733                     790                894  

Fig. 5. Boundary frames of the scenes classified into class-0, class-1, class-2, and class-3
in level-3 of cricket video

 329 

Fig. 6. Boundary frames of the scenes classified into class-0, class-1 (no frame) and
class-2 (no frame) in level 2 of football video
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Fig. 7. Boundary frames of the scenes classified into class-0, class-1 (no frame), class-2
and class-3 in level 3 of football video
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Fig. 8. Tree path followed by (a) cricket, and (b) football test video sequences
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tinguished from spectator and commercial class. Fig 7 shows boundary frames
of the scenes for level-3 for football video sequence where we have observed that
the frames of class-1 are absent. This indicates that the players’ celebration is
absent. Hence our rule-based classifier has declared this activity as goal miss.
Fig 8 shows the tree path followed by cricket and football test video sequences.

5 Conclusion and Future Work

In this paper, we have presented a generic hierarchical framework for sports
video classification and successfully applied it to cricket and football. Integrat-
ing audio and video features for classifier not only reduces the cost of process-
ing data drastically, but also increases the classifier accuracy significantly. The
proposed modeling is readily applicable to media database management applica-
tions, where common operations such as indexing, retrieval, logging, annotation
and highlights, etc can all benefit from the breakdown of a video into the smaller
segments.
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Abstract. The problem of detecting local image features that are invariant to 
scale, orientation, illumination and viewpoint changes is a critical issue in many 
computer vision applications. The challenges involve localizing the image fea-
tures accurately in the spatial and frequency domains and describing them with 
a stable analytical representation. In this paper we address these two issues by 
proposing a new non-linear scale-space implementation that improves the local-
ization accuracy of the SIFT [3] local features. Furthermore we propose a sim-
ple adjustment to the standard SIFT descriptor and show that the modified ver-
sion is more robust to affine changes. 

1   Introduction 

Interest point detection is a key issue in many computer vision applications including 
motion tracking, object recognition and 3D reconstruction. An interest point is any 
point in the image that is characterized by distinctive neighboring features. This in-
cludes L-corners, T-junctions, Y-junctions and highly textured areas. The detection of 
interest points is a dual stage process, (a) localization and (b) representation. In the 
localization phase we detect the position and the scale of each interest point and in the 
representation phase we use an analytical model to describe the local shape or pattern 
at each interest point. The goodness of a model (i.e. also known as a local descriptor) 
is measured in terms of its degree of invariance over transformations caused by view-
point and illumination changes. A good model (i.e. highly invariant descriptor) would 
identify a local pattern, before and after being transformed, with the same numeric 
measure. 

Schmid and Mohr [1] examined a wide variety of interest point detectors and 
categorized them, based on their localization criteria, into three main groups: Con-
tour-based, Intensity-based and Parametric-model based methods. The Contour-based 
methods define interest points either at the intersections of grouped line segments  
or at the maximum curvature of approximated contours. Intensity-based methods  
define interest points through the illumination distribution of the neighborhood. In 
most cases these algorithms are based on the second moment matrix, which is a 
mathematical measure for the distribution of the local image gradients. Parametric-
based methods on the other hand define interest points at regions that fit a predefined 
analytical intensity model. This paper focuses on a group of Intensity-based detectors 
[3, 4], which define the interest points as the local peaks of grayvalue derivatives  
in scale-space. In most cases these detectors are capable of identifying local patterns 
independent from any scale changes. In this paper we propose a new non-linear  
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scale-space representation, which improves the localization accuracy of the aforemen-
tioned detectors [3, 4]. 

In all our experiments we used the SIFT descriptor [3] to define the local patterns 
at each interest point. Mikolajczyk and Schmid [7] proved that the SIFT descriptor is 
more robust to affine changes than many other descriptors including steerable filters 
[8], differential invariants [2, 9], complex filters [11] and moment invariants [10]. We 
did also use a modified version of the SIFT descriptor which is more distinctive and 
in many cases leads to a much better matching results. 

Overview. Section 2 presents different implementations for the scale-space including 
a new proposal, which in general uses the non-linear spatial filter of Köthe [6]. 
Section 3 reviews the main features of the detectors and descriptors used in our tests. 
Section 4 introduces the evaluation criteria. Section 5 and 6 present the experimental 
results and the conclusion. 

2   Scale-Space Representations 

A linear scale-space is defined by the solution of the following diffusion equation; 
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with the initial condition that L(z,0) (i.e. initial scale s=0) is equal to the original im-
age I(z), ∇2 is the Laplacian kernel and z is the spatial coordinates of the interest 
point. Equivalently a linear scale-space can be defined by convolving I(z) with the 
Gaussian kernel G(z,s). 
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To reduce the amount of smoothing around edges Perona and Malik [5] proposed 
the use of anisotropic diffusion as a generalization of the linear scale-space represen-
tation.  
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where h(z, s) is defined to be dependant on the image gradient. A possible solution for 
h(z, s) is presented by eq.4 where k defines the range of gradients in an image and 
thus controls the amount of smoothing at point z.    
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2.1   Hourglass Representation 

Köthe [6] proposed an oriented non-linear spatial filter that looks like an hourglass. 
The new filter modulates the Gaussian so that it becomes zero at a perpendicular dis-
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tance from the local edge direction φo. The output of the filter at point (x,y) is given 
by the following equation:    
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where z and φ are the polar coordinates of point (x, y),  ρ defines the width of the 
Hourglass filter, the larger the value of ρ the more the filter tends to become uniform, 
and N is a normalization factor that sums the weights of the filter to 1. Köthe recom-
mended that ρ should be set to a value between 0.3 and 0.7.  

The dimension of the Hourglass scale-space is defined by an initial scale σ0, final 
scale σf, and a factor k of scale change between successive levels. At each scale level 
σ a local direction φo is calculated for each sample point using a simple derivative 
function. Next the Hourglass kernel is rotated by φo degrees and applied to the sample 
point. 

3   Experiment Setup 

In the following we will review the implementation details of two interest point detec-
tors and two descriptors used in our experimental tests. The detectors are invariant to 
scale and rotation changes. The descriptors on the other hand are distinctive and rela-
tively robust to common image transformations. 

3.1   Interest Point Detectors 

The detection scheme in the following two algorithms starts with an appropriate im-
plementation of the scale-space. 

SIFT: first, local peaks are selected from a Difference of Gaussian pyramid. A 3D 
quadratic function is fitted at each local peak and an interest point location is calcu-
lated up to a sub-pixel /sub-scale accuracy at the extremum value of this quadratic 
function. Finally interest points with low contrast values and points located along 
edges are considered unstable and rejected. 

Harris-Laplacian [4]: a scale-space is built for the Harris function using the second 
moment matrix C(z,s,s-). At each scale-space level s the local peaks of the Harris 
function are selected as possible interest point candidates. Finally, candidates with the 
local scale-space maximum of the Laplacian function are identified as interest points.     

  
Harris function   =   det(C) - αtrace2(C  
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),(),(

),(),(
*),(),,( 2

2
2

szLszLL

szLLszL
szGssszCWhere

yyx

yxx , 

Lz and Ly are the gradients along the x and y axis respectively. 

(6) 
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3.2   Descriptors  

The descriptors used in our tests are: (1) the standard SIFT and (2) a modified version 
of the SIFT. In the remaining part of this section we will review the design aspects of 
these two descriptors.  

SIFT: A descriptor is calculated for each interest point with a spatial location z and 
scale s through to the following steps: 

1. A dominant orientation angle θ is calculated from the local neighborhood of p, 
which is defined by a circular region of radius 1.5s. The method of detecting θ is 
explained in detail in [3].  

2. A local window W of size 16x16 is fitted at location z and scale s.  
3. A gradient orientation and magnitude are calculated for each sample point that lies 

within W.  
4. To achieve rotation invariance, the coordinates and the gradient orientations of W 

are rotated by angle -θ. 
5. The gradient magnitudes of W are smoothed with a uniform Gaussian kernel of 

scale k=1.5 the width of W. This step is meant to reduce the effect of sample points 
that lie away from z as they are considered the most likely affected points with 
misregistered errors. 

6. The local window W is divided into 16 different 4x4 sample regions. 
7. The weighted gradient magnitudes of each sample region are summed in an orien-

tation histogram with eight directions as shown in figure.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. (a) The neighborhood of the interest point is divided into 16 sample regions. (b) The 
gradients of each sample region (i.e. as in region B) are accumulated in an orientation histo-
gram with 8 directions and distributed among the histogram bins of neighboring regions (i.e. 
regions A, C and D) through a tri-linear interpolation.   
 

16 sample regions of size 4x4 pix-
els surrounding the interest point.   
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8. The descriptor is formed from a vector containing the values of all the 8x16=128 
orientation histogram bins. 

9. To reduce the effects of illumination change the vector elements are normalized to a 
unit length, then thresholded to values not greater than 0.2 and finally renormalized.  

Modified-SIFT: Steps ‘1’ and ‘5’ in the above algorithm are modified and applied for 
each interest point z with scale s as follows: 

− Step 1:  In the SIFT algorithm the pixels at spatial distances less than 1.5s from z 
are defined as the local neighbors of z while in the modified-SIFT the pixels with 
both grayvalue and spatial distances less than 1.5s are defined as the local 
neighbors of z.  

−  

− Step 2:  A Gaussian function with scale k is used to weight the gradients of the local 
neighbors of point z in the SIFT algorithm. The weight is set to decrease exponen-
tially as the spatial distance between the local neighbor and point z increases. In the 
modified-SIFT a weight wi(c) is assigned for each local point i using the function 
of equation.7. The weight wi(c) is defined in terms of the gravalue distance c be-
tween i and point z.  
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The reason behind the above modifications is that normally local regions are iden-
tified by their color distribution. The distribution is in most cases continuous and of 
size proportional to the scale of the local region.   

4   Evaluation 

We have conducted two matching tests to measure the performance of the interest 
point detectors of section 3.1 before and after applying the Hourglass scale-space rep-
resentation and the SIFT descriptor before and after applying the modifications of 
section 3.2.  

In the first test a number of synthetically transformed images were used for match-
ing. These transformations included, scale changes, rotation, brightness changes and 
noise addition. In this test the Receiver Operating Characteristics (ROC) curves were 
used for evaluation as indicated by Carneiro and Jepson [12], where for each type of 
transformation and each feasible combination of the three different elements under 
test (i.e. scale-space representation, interest point detector and local descriptor) a de-
tection rate versus a false positive rate is plotted.  

Given a test image I and its transformed version I’, where I’= M I+b, a detection 
rate is defined as the ratio between the number of correct matches (correct-positives) 
and the total number of interest points of I. A correct match is scored between two in-
terest points x and y, where x ∈ I and y ∈ I’, if y is very close to the mapped point 
x’=M x+b (i.e. ||y-x’||< ε) and has nearly the same local descriptor as x (i.e. ||D(y)-
D(x)||< τ).  

On the other hand given a database of images that doesn’t include I nor I’, a false 
positive rate is defined as the ratio between the number of false matches (false posi-
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tives) and the total number of interest points of I.  A false match is scored if there ex-
ists an interest point z in the database that is similar to x (i.e. ||D(z)-D(x)||< τ). In our 
tests ε was set to 3 pixels and τ was changed in regular steps of 0.03 to form the ROC 
curves. 

The second test involved matching real images taken from different viewpoints. In 
this test the evaluation of the matching results of each image pair (I, I’) was based on 
the following criteria: for each interest point x that belongs to I the two points (x1 and 
x2) with the most similar descriptors to x are identified in I’, where ||D(x1)-D(x)||< 
||D(x2)-D(x)||. Next x1 is considered a valid match to x if ||D(x1)-D(x)|| is less than 
90% of ||D(x2)-D(x)||. For further validation the matching results of this test were 
visually inspected and reported in table.3. 

5   Results 

The 8 test images of figure.4.a and a database of 60 different images representing a 
collection of natural scenes were used to create the ROC curves of figure 2, 3 and 5. 
These curves were designed to evaluate the performance of the five different tech-
niques of table.1. In this test a total of 1.04 million interest points were detected ac-
cording to the distributions of table.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. ROC curves for simple image transformations that include (a) an increase in the  
illumination by a factor of 0.3 and (b) a decrease in the illumination by a factor of 0.3, and an 
addition of Gaussian noise with variances of (c) 0.04 and (d) 0.06. The curves were plotted for 
interest points detected by the SIFT and the Harris_Laplacian(HL) detectors and matched 
through the SIFT and modified_SIFT descriptors.  
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Fig. 3. ROC curves for image rotations of 15, 30 and 45 degrees 

 

 

 

 

 

 

Fig. 4. Test images including the (a) original series and (b) an affine-transformed version 

Table 1. The five techniques under test 

Method Title  Detector Descriptor Scale-Space 

HL_standard_SIFT Harris Laplacian SIFT Linear 

modified_SIFT SIFT modified_SIFT Linear 

modified_SIFT_HG(0.7) SIFT modified_SIFT Hourglass ρ=0.7 

standard_SIFT SIFT SIFT Linear 

HL_modified_SIFT Harris Laplacian modified_SIFT Linear 

In case of the Hourglass scale-space, experimental results showed that the number 
of detected interest points is directly proportional to the size of the smoothing kernel 
and inversely proportional to the value of the ρ-parameter (see equation.5), where in 
general an increase of 0.2 in the value of ρ results in the reduction of the number of 
points by a factor of 0.81. Making use of this fact and in order to speed up the process 
of building the Hourglass scale-space the SIFT algorithm was slightly modified, 
where instead of expanding the input image by a factor of 2 the first level of the 
Gaussian pyramid was sampled at the same rate of the input image and the smoothing 
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kernel was increased from size 7 to 13. This automatically implies that in case of the 
Hourglass scale-space no interest points can be detected with a scale less than 0.5.  

The ROC curves of figures 2a and 2b show that under illumination changes the 
highest two detection rates were scored for the standard_SIFT and the modified_SIFT 
consequently. The   HL_modified_SIFT was ranked third up to a false positive rate of 
0.27. At false positive rates greater than 0.27 the modified_SIFT_HG was ranked third 
and both the HL_modified_SIFT and the HL_standard_SIFT were ranked fourth.  

The curves of figures 2c and 2d show that the HL_modified_SIFT is the most resis-
tant to noise at lower false positive rates while the modified_SIFT_HG performs 
much better at higher false positive rates. 

To evaluate the performance for orientation changes the test images were rotated at 
15, 30 and 45 degrees and the ROC curves were plotted for each angle change. The 
results of figure 3 show that the modified_SIFT and the modified_SIFT_HG worked 
much better than the other three techniques for all the three angle changes with an ex-
ceptional performance at angle 15.  

 

 
Fig. 5. ROC evaluation curves for scale changes between 0.7 and 1.8  

The matching results of figure 5 involve a wide range of scale changes starting 
from a factor f of 0.7 and increasing in steps of 0.2 up to a factor of 1.8. The ROC 
curves show that the modified_SIFT_HG performed outstandingly well at f=0.7, the 
standard_SIFT dominated the range between 0.9 and 1.5 and the modified_SIFT had 
the highest detection rates at f=1.8. Moreover in the range between 0.9 and 1.1 the 
HL_modified_SIFT worked much better than the HL_standard_SIFT.  

The reason behind the results of figure 5.a is that in the linearly smoothed version 
of a downscaled image the nearby edges merge causing small structures to disappear 
and consequently affects the localization accuracy of the interest points. On the  
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contrary the modified_SIFT_HG preserves these structures through non-linear 
smoothing, which in turn lead to a more accurate localization and much better match-
ing results. Moreover the inadequate performance of the modified_SIFT_HG at f >1 
(i.e. see figures 5c - 5.f) was due to the fact that the modified_SIFT_HG usually ig-
nores the local structures of very high spatial frequencies (i.e. scales less than 0.5) and 
in turn reduces the number of valid matches between the input image and its scaled 
version.   

The results of figure 5.f show that the modified-SIFT descriptor is more robust to 
large scale changes than the standard-SIFT because it gives more emphasis to local 
neighbors with similar gray values to the interest point and consequently is affected 
by less misregistration errors. The matching results of table.3 further prove that the 
modified_SIFT_HG algorithm is more resistant to affine changes than the stan-
dard_SIFT algorithm.  

Table 2. Distribution of the detected interest points 

Image Group  % Method % 

Image Database  41 HL_standard_SIFT 13 

Test Images 4 modified_SIFT 25 

modified_SIFT_HG(0.7) 26 

standard_SIFT 20 

Transformed 
Test Images 

 

55 

 

 

 

 

 

 

 HL_modified_SIFT 16 

Table 3. Visually inspected matching results for the test images of figures 4.a and 4.b 

Percentage of valid matches Image  Title 

standard_SIFT modified_SIFT modified_SIFT_HG (0.5) 

Bottle 2.72 7.09 19.9 

Child 5.36 13 38.1 

Croc 5.88 16.8 18 

Desk 8.14 17 36.6 

Lamp 0.623 2.2 12.3 

Pei 2.71 7.25 13.6 

Toy 9.7 13.7 24.6 

Car 12.8 24.9 44.8 
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6   Conclusion  

In this paper we have presented an experimental evaluation for a new non-linear 
scale-space representation and a modified version of the SIFT descriptor. The evalua-
tion was based on matching images with both synthetic and real geometric transfor-
mations. Two different techniques were used for evaluation including the Receiver 
Operating Characteristic (ROC) curves and an ordinary visual inspection method. The 
standard SIFT descriptor proved to have better matching results under illumination 
changes. The results of the proposed non-linear scale-space and the modified_SIFT 
descriptor were superior under orientation and large-scale changes.  

The assumption of eliminating the local structures of very high spatial frequencies 
from the proposed non-linear scale-space proved to be a time saving step. On the 
other hand it underestimated the matching results of the modified_SIFT descriptor. 
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Abstract. Image classification could be treated as an effective solution
to enable keyword-based semantic image retrieval, while feature selec-
tion is a key issue in categorization. In this paper, we propose a novel
strategy by using feature selection in learning semantic concepts of im-
age categories. To choose representative and informative features for an
image category and meanwhile reduce noisy features, a feature selection
strategy is proposed. In the feature selection stage, salient patches are
first detected by SIFT descriptor and clustered by DENCLUE algorithm.
Then the pointwise mutual information between the salient patches and
the image category is calculated to evaluate the important patches and
construct the visual vocabulary for the category. Based on the selected
visual features, the SVM classifier is applied to categorization. The exper-
imental results on Corel image database demonstrate that the proposed
feature selection approach is very effective in image classification and
visual concept learning.

1 Introduction

CBIR is a challenging task for a large-scale image database and web pages due
to the semantic gap between low level features and high level semantic concepts.
An alternative solution is to search images by text keywords, which makes the
automated or semi-automated image categorization and annotation increasingly
important. A successful annotation and categorization will significantly enhance
the performance of content-based image retrieval systems by filtering out images
from irrelevant classes during matching.

Many good results have been reported in two class image classification tasks,
such as city vs. landscape [1], indoor vs. outdoor [2]. Recently, many promising
approaches for general object recognition were proposed and demonstrated to
solve multiple class image classification tasks. Fergus et al. proposed constella-
tion model, which is learned in a Bayesian manner, to recognize six classes of
objects [3]. The model could be learned from unlabeled and unsegmented clut-
tered scenes in a scale invariant manner, and is capable of recognizing six object
classes. This classification scheme was further improved by Li et al. to classify
more categories with less training samples [4]. A good application of this scheme
is filtering Google images [5]. Taking into account shape, appearance, occlusion
and relative scale, the constellation model well describes an object in multiple
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semantic aspects with low-level features, and demonstrates promising potentials
in image understanding. However, its computational cost is too expensive in both
learning and recognition, and it is difficult to extend the algorithm to large-scale
image databases. Csurka et al. proposed bags of key-points of objects as fea-
tures. Based on that, the visual vocabulary is constructed by k-means clustering
algorithm. Both Näıve Bayes and SVM classifiers are applied to categorization
[6]. But the noise affected the results significantly.

On the other hand, it is useful to have access to high-level information about
objects contained in images to manage image collections. To achieve this goal,
high-level information must be learned and modeled from low-level features. A
significant number of models have been proposed to model objects from low-level
features. As low-level features are usually noisy and uninformative, feature se-
lection is of great importance and needs to be conducted before modeling object.
Nuno et al. [7] exploited recent connections between theoretic feature selection
and minimum Bayesian error solutions to derive feature selection algorithm that
are optimal in a discriminant feature sense without compromising scalability.
However, they did not provide feature selection from image content, in which
semantic feature is not included.

In image classification, features are required to be representative within the
same class and discriminative for different classes. Therefore it is essential to
select the most informative features. In text categorization, a significant number
of feature selections have been proposed in order to reduce the dimensions of
the documents. In image categorization, feature selection should be proposed to
extract more effective features. Thus a robust feature selection strategy based
on image category is crucial and worthy of investigation. Based on the selected
features, images can be expressed as combination of the informative visual key-
words.

In this paper, we propose a novel image classification framework. First, a
feature selection strategy is explicitly conducted. For every image category, the
salient patches on each image are detected by SIFT (Scale Invariant Feature
Transform [8, 9]) and quantized by DENCLUE (DENsity-based CLUstEring)
[10] algorithm. Then a visual keyword dictionary is constructed. Unlike the
method in [6], the proposed visual keywords collection is coutinuous while the
visual vocabulary in [6] is discrete (i.e. only the cluster centers are applied).
Thereafter, the pointwise mutual information between each salient patch and
image category is calculated. Since the clustering is conducted as the patch dis-
tribution density, those salient patches with larger pointwise mutual information
to the category are selected. The larger the distribution density is, the more the
salient patches are selected. Based on the selected patches, the categorization is
performed. The SVM classifier, as the widely used discriminative classification
model, is applied. Compared with other image classification methods, we focus
on the effectiveness of the proposed feature selection algorithm.

The rest of the paper is organized as follow: Section 2 presents the extraction
of the salient patches; section 3 proposes feature selection strategy; Section 4
presents the classification methods, SVM classifier and the utility of the features;
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Section 5 shows the experimental results to evaluate the performance of our
techniques; Section 6 gives conclusions.

2 Salient Patches Extraction

Recent progresses in object recognition and image annotation have shown that
local salient features are more informative in describing image content than
global features [3, 4, 6]. So the local salient features are applied in the pro-
posed method. The salient patches extraction includes two steps, detection and
description.

2.1 Salient Patches Detection

Object recognition in cluttered real-world scenes requires local image features
that are unaffected by nearby clutter or partial occlusion. The features must be
at least partially invariant to illumination and sufficiently distinctive to identify
specific objects among many alternatives. So local features are preferred. SIFT is
developed by Lowe [8, 9]. In [11, 12] this descriptor was shown to be superior to
others used in the literature. Therefore, SIFT is used to detect the local features
in the proposed approach.

SIFT is built by selecting key locations at maxima and minima of a differ-
ence of Gaussian function applied in scale space. The local maxima and min-
ima are not only in the same level, but also in the adjacent level of the Gaus-
sian pyramid. It can identify location in image scale space that are invariant
with respect to image translation, scaling, and rotation, and are minimally af-
fected by noise and small distortions. It generates large numbers of features that
densely cover the image over the full range of scales and locations. By SIFT
descriptor, image data are transformed into scale-invariant coordinates relative
to local features. Generally, this detector gives hundreds of salient patches for
a typical 256 by 384 (or 384 by 256) pixel image, without color information
included.

2.2 Salient Patches Description

Once the salient patches are identified, they are cropped from the image and
rescaled to the size of a small pixel patch. Because a high dimensional description
is difficult to manage, principal component analysis (PCA) is performed on the
patches from all images. Then each patch is represented by a vector of the
coordinates within the first 10 principal components. Thus each salient patch is
described as a 10-dimensional feature vector.

3 Feature Selection Strategy

Feature selection aims at the most informative and discriminative features of
the image category. From the point of view of information theory, whether



656 F. Xu and Y.-J. Zhang

a feature is informative can be well evaluated by pointwise mutual informa-
tion between the feature and the class. Pointwise mutual information has been
proved to be effective in text classification [13]. Since the detected local salient
patches can be clustered as ’visual keywords’, the pointwise mutual information
between salient patches and image category can be used to select informative
features.

3.1 Salient Patches Clustering

The 10-dimensional PCA salient features are clustered to construct visual key-
word dictionary. The DENCLUE clustering algorithm is applied.

It is assumed that f i(x) is the influence function of a data object. The density
function is defined as the sum of the influence functions of all data points. Given
N data objects described by a set of feature vectors D = {x1, · · ·xN}, the density
function is defined as

f
(
x
)

=
N∑

i=1

fxi
(
x
)

(1)

In principle, the influence function can be an arbitrary function. Here, two types
of influence functions are applied and Euclidean distance is used.

1. Distance influence Function:

f
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x, y
)

=
1

d
(
x, y
) (2)

The corresponding density function is
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x
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=
N∑

i=1

1
d
(
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2. Gaussian influence Function:
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(
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)

= e−
d(x,y)2

2σ2 (4)

The corresponding density function is

f
(
x
)

=
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e−
d(x,xi)

2

2σ2 (5)

This function is affected by the parameter σ significantly.
The details about DENCLUE can be referred to [10].
Thus, the density of each data in each cluster can be estimated. After obtain-

ing the density of the whole data set, a Parzen estimation algorithm is applied
to obtain the clusters [14]. Assume that the current partition with density func-
tion f

(
xi | Cj

)
for each data xi in each cluster Cj , j = 1, · · ·J . The objective

function is:
f
(
xi | Cj

)
= max

l
f(xi | Cl) (6)
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So three steps are conducted in this clustering algorithm:

Step 1: Initializing clusters for the data set.
Step 2: For each data xi, conditional densities in each cluster are calculated.
Then label xi according to Eq. (6).
Step 3: If some labels of xi are changed, go to step 2.

Thus the data are clustered according to the distribution density. The higher
the density is, the compact the cluster is. The clusters of salient patches can be
regarded as a continuous visual keyword dictionary.

The advantages of DENCLUE are mainly in: it has a firm mathematical
basis; it has good clustering properties in data sets with large amounts of noise;
it allows a compact mathematical description of arbitrarily shaped cluster in
high-dimensional data sets.

3.2 Pointwise Mutual Information

The estimated density function can be regarded as probability density function
after normalization.

p
(
�xi | Cj

)
∝ f
(
�xi | Cj

)
(7)

where p
(
�xi | Cj

)
is the estimated class conditional probability density function.

When the class conditional probability density is estimated with the cluster-
ing, the pointwise mutual information of a salient patch in each cluster can be
calculated. The pointwise mutual information between the salient patch �xi and
the class Cj is:

I
(
�xi, Cj

)
= log

p
(
�xi | Cj

)
p
(
�xi

) (8)

where p
(
�xi

)
is the estimated probability of salient patch in the image category.

Pointwise mutual information tells us how information the occurrence of one
visual keyword is about the occurrence of one cluster. If the pointwise mutual in-
formation of a visual keyword in a cluster is high, this visual keyword contributes
and influences more to the cluster.

3.3 Representative Salient Patches Selection

The pointwise mutual information between the salient patch and the data clus-
ters reflects how a salient patch is representative in the image category. So the
pointwise mutual information between the salient patch and the data cluster
can be regarded as the pointwise mutual information between the salient patch
and the image category. Therefore, those salient patches with higher pointwise
mutual information in image category are selected as the features for this image
category.

All the salient patches are ranked as the pointwise mutual information rang-
ing from high to low and the top M salient patches are selected. M is the
pre-determined number of features. M should be balanced between the compu-
tation complexity and the capability of description. Too many salient patches
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will lead to large quantity of computation while too few salient patches will lead
to incomprehensive description for image content.

The clusters by DENCLUE are obtained according to density of data distri-
bution. In order to avoid the selected features with the higher pointwise mutual
information are from the same cluster, the density is used as weight. For the
cluster with higher density, more salient patches are selected; for the cluster
with lower density, less salient patches are selected.

Thus, the selected salient patches represent not only the relation to the image
category but also the feature distribution. These selected salient patches can
describe the image category comprehensively.

4 Image Categorization

Once the feature descriptors have been selected, the problem of generic visual
categorization is reduced to that of multi-class supervised learning. As SVM
(Support Vector Machine) is a well-known classifier to produce state-of-the-art
results in high-dimensional problems, we apply SVM classifier to the image clas-
sification.

SVM classifier aims at finding a hyperplane which separates two-class data
with maximal margin [15]. The margin is defined as the distance of the clos-
est training point to the separating hyperplane. For given observations �x, and
the corresponding labels �y which take values ±1, SVM will find a classification
function:

f
(
�x
)

= sign
( �wT �x +�b

)
(9)

where �w and �b are the parameters of the classifying plane.
In the visual categorization task, �x is the selected feature vector, in which the

representative salient patches from each visual keyword in an image category are
integrated into training set. The top M salient patches with the higher pointwise
mutual information are selected, in which M is a pre-determined number. The
similarity measure is the combination of the most informative salient patches
in the classification. The elements of the selected feature vector with the higher
pointwise mutual information are used to measure the similarity between two
images. In order to apply SVM to multi-class problems we take the one-against-
all approach. That is, given an m-class problem, we train m SVM classifiers. Each
classifier distinguishes images in one category from all the other m-1 categories.
Given a query image, the salient patches are also extracted and classified by the
SVM classifier. Then the label frequencies of all the salient patches are counted.
Finally the label with the highest frequency of the salient patches is assigned to
the image.

5 Experimental Results and Discussions

The experiments are conducted on Corel image database. The 25 image cate-
gories with labels corresponding to object semantic concepts are selected. Each
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image category consists of 100 images, in which 80 images are used to train the
classifier and the other 20 images are used to test. To make experiments more
convincing, a 5-fold cross validation has been carried out.

The benchmark metrics for classification evaluation are classification precision
α and recall β, defined as:

α =
φ

φ + ε
, β =

φ

φ + η

where φ is the number of true positive samples that are correctly classified to
their corresponding category, ε is the number of true negative samples that are
irrelevant to the corresponding category and are classified incorrectly, η is the
number of false positive samples that are related to the corresponding category
but are misclassified.

In SVM classification, each category is classified by linear binary classifier.
Using kernel SVM will possibly improve the performance, but here we compare
the performance between methods with feature selection and without feature
selection, in which linear SVM performs well. The features before feature se-
lection and after feature selection are used respectively. In our experiment, 100
salient patches per image can describe image comprehensively. So M is set to
100. For SVM classifier with feature selection, the salient patches on each im-
age are arranged as the pointwise mutual information and the top 100 patches
are integrated as the training data, weighted by the cluster density. For SVM
classifier without feature selection, the 100 salient patches are selected randomly.

The performance of the 5-fold cross validation is shown in Table 1.

Table 1. The precisions and recalls of 5-fold cross validation

Precision Recall

Validation 1 69.03% 57.90%
Validation 2 63.51% 58.42%
Validation 3 69.00% 55.87%
Validation 4 73.83% 62.83%
Validation 5 61.94% 55.06%
Average 67.46% 58.02%

From this table, the performance of the proposed feature selection and clas-
sification method has been exhibited to be effective.

In one of the classifications, the precisions of all image categories are illus-
trated in Fig. 1.

From this figure, it can be found that most of the image categories can achieve
precisions over 50%. Those categories with concrete concept, such as Building,
Bus, Firework etc, achieve quite higher precisions. However, there are also some
categories perform weakly, such as Beach and Ski, which is probably due to the
diversity and complex background and noise.
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Fig. 1. Precisions of image categories in Validation 1

Table 2. Comparison between precisions without feature selection and with feature
selection

Without feature selection With feature selection

Average Precision 56.67% 67.46%

Comparison between the precisions without feature selection and with feature
selection is shown in Table 2.

Compared with precision without feature selection, the precision with feature
selection has been improved over 10 percent, which proves the effectiveness of
the proposed approach. The most representative and informative features are
selected through pointwise mutual information and the image categories can be
classified discriminatively.

Although the visual keyword method is similar to that reported in [6], the
results cannot be directly compared with each other due to the different image
database. However, only seven image categories are used in the experiment in
[6] while dozens of image categories are used in our experiment. Some precisions
in Fig. 1 suggest that our approach will give as good results as that in [6].

The continuous visual vocabulary is more appropriate to image categorization
since the image features are in continuous space instead of the discrete feature
space of the text. If the image feature space is quantized and only the cluster
centers are applied as the discrete visual keywords, it is probably lose some
important image information. So the feature selection according to the cluster
density and pointwise mutual information is more reasonable and effective. Fig. 2
shows several images in the same category, in which the images with all the
detected SIFT descriptors are shown in the first row and the images with the
selected descriptors are shown in the second row.

From the above images, it can be found that the representative salient patches
are preserved by feature selection. In Beach category, a majority of preserved
points are located on sand, sky and sea which are the most relevant to the cate-
gory concept. Secondly, the pointwise mutual information promises that the most
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Fig. 2. Image examples from Beach category. The upper images show all the detected
patches and the lower images show the selected patches.

informative points are preserved. Thirdly, the continuous visual vocabulary can
be explained by an example in Fig. 3. The left image illustrates all the detected
patches correspoingding to window concept while the right image illustrates the
selected patches. In the Building image, the salient patches on windows tend to
be clustered together. Several salient patches located on windows are selected
in the proposed approach while only one key point (cluster center) is selected in
discrete visual keyword [6]. Since window is one of the most important features
for building concept, the corresponding cluster is always with higher distribution
density. So the clustering according to density is more effective.

Fig. 3. An image example with patch cluster corresponding to window. The left image
shows all the patches while the right image shows the selected patches.

6 Conclusions and Future Work

In this paper, a novel content-based feature selection approach is proposed for
image classification. To select features for classification, the salient patches are
detected by SIFT and the 10-dimentsional feature vectors are formed by PCA.
Then the EDNCLUE clustering algorithm is applied to construct the continuous
visual keyword dictionary. After estimating the density, the pointwise mutual
information between the salient patches and the class is calculated and used to
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select the representative patches. Finally, the SVM is used for classification. The
experimental results prove the effectiveness of the proposed approach.

In the future, unsupervised feature selection algorithm should be investigated.
The feature selection can also be applied to image annotation.
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Abstract. Eye feature extraction is of crucial importance for face recog-
nition. Deformable template is an efficient model for this task. However,
it usually suffers from the problem of local minima. To avoid local min-
ima, in this paper, a new energy minimization process is proposed, which
emphasizes on local properties of energy terms. The minimization process
is divided into three steps. The iris is located firstly. Then the eye bound-
aries are adjusted. Finally, all energy terms are activated to tune the eye
template. Each step needs not to be split to some sub-steps. Empirical
comparison with other minimization processes shows the superiority of
the proposed process in terms of both efficiency and accuracy.

1 Introduction

Eye feature extraction plays an important role in many applications, such as
visual interpretation, recognition of human face [1], intelligent coding system
and HCI (human-computer interface) [2, 3]. In the case of interpretation and
recognition of human faces, most of attempts are made using geometrical fea-
tures, where the relative positions and the shapes of the different features are
measured. In HCI, the facial features, including the important part on face - eye,
are extracted first, then these features are tracked to get the information of the
facial expressions [3].

In eye feature extraction, the deformable template is an efficient model. Many
methods [4-8] use deformable template to extract eye feature after the pioneer
work of Yuille [9]. However, it always suffers from many problems, such as local
minima, and low convergence speed. To improve the convergence speed, and to
guarantee a good fit for avoiding local minima, minimization process has been
extensively studied [4, 5, 7, 9] beside designing new energy function that can
grasp the essence of eye feature. In this paper, we focus on the minimization
process to improve the performance of eye feature extraction. The details of
analyzing the problems about minimization process are described in section 2.

In this paper, a new minimization process is proposed to alleviate the problem
of local minima. Considering the local properties of some energy terms, such as
corner energy terms, the energy function of the deformable template is optimized
in three epochs. The proposed method has been applied to real eye images.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 663–672, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The experiments show that the proposed method can balance the precise of eye
feature localization and the time complexity.

The remainder of this paper is organized as follows. In Section 2, a review
of some existing minimizing processes is provided. In Section 3, the geomet-
ric template and energy function used in our method is brief overviewed. The
proposed minimization process is described in Section 4. The comparative ex-
perimental results for showing the superiority of the proposed method over some
existing methods are presented in Section 5. Finally, the conclusions are given
in Section 6.

2 Related Works

The existing minimization methods differ in both epochs and iteration methods.
Summaries of three methods are given in Tables 1 to 3.

Table 1. Yuille et al’s method [9]

steps Energy function Parameters adjusted

Adjust iris 1 Valley Iris location
2 Valley, Intensity, Edge Iris location and size
3 Valley, Intensity, Edge

Adjust eye Boundaries 4 Peak Eye location and angle
5 Peak, Intensity, Edge,

Prior potential
about eye boundaries Eye location, size and angle

Finely tune 6-8 All energy term All parameters

Table 2. Lam et al’s method [5]

steps Energy function Parameters adjusted

Adjust iris 1 Valley Iris location and size
2 Valley, Intensity, Edge

Adjust eye Boundaries 3 Orientation,Boundary Angle
4 Edge, Intensity, Prior Eye location and size

Finely tune 5 All energy term All parameters

Some questions of these methods exist. First, is it necessary to divide each
epoch into some sub-steps? In general, too many minimization steps would re-
sult in some parameters of the eye template being overly changed [4]. Some
energy terms are conflicted, and only these conflicted terms reacted with the
eye template would let the template deform correctly [4]. Second, whether the
fewer epochs is the better? Some energy terms only work in small neighborhood.
That is, only after the template is moved near the correct location, the energy
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Table 3. Shan et al’s method [5]

steps Energy function Parameters adjusted

Adjust iris 1 Weighted edge map, Internal, Prior Iris location and size
Adjust upper 2 Weighted edge map, Internal, Prior Upper eyelid boundary
eyelid boundary
Adjust lower 3 Weighted edge map, Internal, Prior Lower eyelid boundary
eye boundary

terms could interact with the input image to deform the template. For example,
the corner energy term in [4] uses local information, which would interact with
the input image only after the corners of the template near the right locations.
If all energy terms are activated with the template in only one step, from our
experiment results, the problem of local minima is serious and the convergence
speed is slow in many cases.

Using too many epochs (or steps) in minimization process will result in pa-
rameters being overly changed, and using too few epochs is also harmful to
the minimizing process. A minimization process with suitable epochs should be
designed to minimize the energy function.

3 Geometric Model and Energy Function

3.1 Geometric Model

The eye template used in our system is parameterized as in Fig. 1 [8]. The circle
is centered at Xc with radius r. The two half parabolas are centered at Xe, both
with width b. The upper and lower parabolic curves have the heights a and c,
respectively. These curves intersect at the four points P1, P2, P3, P4. Therefore,
the eye template could be represented by (Xc,Xe, r, a, b, c, θ ). All parameters
are allowed to change.

Fig. 1. The eye template in our system
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3.2 Energy Function

The energy function used in our system is the same as [8] except using the
corner strength function in SUSAN (Smallest Univalue Segment Assimilating
Nucleus) [9] detector to define the corner energy term. The corner energy term
is defined as

Ec = 1− 1
n

n∑
i=1

Corstri . (1)

where Corstri is the value of corner strength at the i-th corner, n is the possible
number of corners in the eye template.

The corner strength in pixel (x, y), where x and y are the coordinate values
in X and Y direction respectively, is defined as

Corstri =
{

g − n(x, y) ifn(x, y) < g
0 otherwise (2)

where n(x, y) is just the number of pixels in the USAN (Univalue Segment
Assimilating Nucleus). The fixed threshold g (the ”geometric threshold”), which
is set to nmax/2 or even smaller to detect sharper corners, where nmax is the
maximum value which n can take. To be consistent with other energy terms,
which are normalized to (0, 1), the corner strength is also normalized. The
details of SUSAN detector can refer to [9].

Then the energy function is defined in terms of the deformation of the tem-
plate based on these fields. The details of other energy terms can refer to [4, 8].

4 Minimization Process

To avoid local minima, and to improve the convergence speed, improvement on
minimization process for energy function is required. The new method is pro-
posed based on the properties of energy function and our following observations.
Fig.2 shows the valley, peak, edge fields and the corner strength field. It can be
found that,

– The iris can be located rather well by only using the energy terms about the
iris.

– Some energy terms, such as that on valley field, peak field and edge field,
can interact with the template in big regions. These energy terms are the
main forces that drag the template in a large region to the correct position
and correct scale.

– Some energy terms, such as corner energy term, can only interact with the
eye template in small regions. When the whole template is located in its
neighborhood, the template can be refined by these energy terms. However,
when the whole template is far from its location, the forces associated with
these energy terms may drag the template to local minima.

Based on the observations mentioned above, and the discussion in Section 2,
the following rules that should be considered in the minimization process are
proposed:
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Fig. 2. The original image, valley, peak, edge fields and corner strength field of an eye
image from (a) to (e)

– The iris should be located firstly. Then, the eye boundaries can be modified
according to the location of iris.

– The energy terms that interact with the template in far ranges would be
active prior to those in small ranges. The energy terms that interact with
the template in far ranges can drag the template to its location, and avoid
to local minima, while the energy terms that interact with the template in
small ranges can adjust the template finely.

– Using as few as possible steps for minimization process to reduce the problem
of over-changing parameters.

Then, a three-steps minimization process is proposed to optimize the energy
function that would avoid the problem of local minima, that is,

Step 1. The iris is located in this step. The image intensity and edge forces for
the circle are allowed to act on the template. In this step, (Xe, r) are updated
and other parameters remain unchanged.

Step 2. The eyelids are adjusted to the correct location. The eyelids can be
rotated, translated and resized by using the exterior forces, i.e., the forces except
the interior force that only adjust the shape of the eye template. In this stage, the
corner strength image force would react with the input image, (Xc, a, b, c, θ) are
tuned in this stage and the parameters about the iris, (Xe, r), remain unchanged.

Step 3. In this step, all parameters are finely tuned by considering all the energy
terms.

Table 4. Proposed minimization process

steps Energy function Parameters adjusted

Locating iris 1 Valley, Intensity, Edge The parameters about iris
Adjust eye boundaries 2 Edge, Intensity, Peak,

Corner, Prior The parameters about eye boundaries
Finely tune 3 All energy term All parameters
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In the processing of minimization, each step needs not to be split into some
sub-steps. This proposed method is summarized in Table 4.

5 Experimental Results

5.1 Measurement

In order to evaluate the performances of locating eye features quantitatively, the
statistic errors of corner location is used in this paper because the location of
eye corners can reflect the structure of eye feature effectively. The error of corner
location is defined as the average Euclidean distance between the ground truth
and the detected location, i.e.

Errcorj =
1
N

N∑
i=1

‖Xtruthi,j −Xextractedi,j‖ . (3)

whereXtruthi,j represents the location of ground truth of j-th eye corner in the i-
th eye image, and Xextractedi,j represents the location of j-th eye corner extracted
from the i-th eye image. N is the number of examined eye images. Errcorj means
the error value of j-th corner.

5.2 Experimental Results

The proposed algorithm has been implemented using Matlab and applied to
real images. In the experiments, totally 120 eye images, in which 110 images
selected from the Pitt-CMU Facial Expression AU Coded Database [11] and 10
images downloaded from Internet, are used. The typical image size is 101x56, the
radius of the circle for computing corner strength is 3. The initial parameters of
eye feature are determined manually. Firstly, six points from the original image
are selected manually. Then the ground truth of the eye template is calculated.
Finally, the ground truth is displaced by a random variable as initial parameter
to simulate the real situations. Based on the initial parameters, the eye feature is
extracted through minimization process. Fig. 3 shows a sequence of eye templates
at the end of each step. In each step, the parameters obtained from the previous
step are taken as the initial parameters for the current step.

The performances of extracting eye feature using proposed minimization pro-
cess are compared with those of other minimization processes while using same
energy function proposed in [8]. Both one-step minimization process that likes
Xie et al’s method [4], and 5-step minimization that likes Lam et al’s method [5]
are taken into account here. To compare the behavior, these methods are all use
the same pre-process and initial parameters. The statistic results are reported
in Table 5. The first two columns show the distances of inner eye corner and
outer eye corner extracted from the ground truth respectively (unit is pixel).
The third column is the mean of the value in the first two columns. Some results
are shown in Fig. 4. For convenience, we only give the final extraction results.
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Fig. 3. Eye templates at the end of each step. (a) Original image (b) Initial template
(c) Result of step 1 (d) Result of step 2 (e) Result of step 3.

Table 5. Average error of corner of some minimization process (unit is pixel)

Inner corner Outer corner Mean

1-step 2.3 2.0 2.2
5-step 3.8 3.7 3.8
Proposed 1.5 2.0 1.8

Fig. 4. Results of comparison using proposed energy function. (a) 3-steps (b) one-step
(c) 5-steps.

From the experiments, the proposed method using 3-steps minimization process
gets the best results.

From Fig. 4, it could be found if too many steps were applied, some parameters
would be over changed. For example, in Fig. 4(c), the eye boundaries always tilt
in the same direction, which maybe caused by overly changed angle parameter. If
only one step is used to minimize the energy function, the eye template also fall
into local minima due to the disturbance of the energy terms that only interact
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Fig. 5. Results of comparison (a) Proposed (b) Xie et al [4] (c) Lam et al [5] (d) Shan
et al [7] (e) One step (f) Tan et al [8]

Table 6. Average error of corner of some methods(unit is pixel)

Inner corner Outer corner Mean

Xie et al [4] 6.2 5.8 6.0
Lam et al [5] 4.4 4.4 4.4
Shan et al [7] 5.1 5.2 5.1
Tan et al [8] 3.3 3.8 3.5
Proposed method 1.5 2.0 1.8

with eye template in small range, such as corner energy terms. However, the
proposed method can extract the eye template more robustly.

We also compared our proposed method with that of other eye feature extrac-
tion methods using the same eye images. The compared method are Xie et al
[4], Lam et al [5], Shan et al [7], Tan et al [8] and proposed method. Fig. 5 shows
some examples of the comparisons. The statistic value about corner location
from the ground truth is given in Table 6.

Xie’s method also fails in extracting eye boundaries in many cases. The reason
is also the local property of corner energy term. The method proposed by Lam et
al [5] could extract the eye boundaries but fail to extract the right corners. This
may be caused by the energy function. Because only edge and prior potential are
used by Shan’s method, and not having a finely tuned process, it is sensitive to
initial parameters and always falls into local minima. Both Tan’s method [8] and
proposed method use the same minimization process, their performances out-
perform others. And the proposed method is the best because the corner energy
function using SUSAN corner strength function can represent the properties of
corner more efficiently.
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Table 7. Comparison of process time (unit is second)

Method Xie et al [4] Lam et al [5] Shan et al [7] One step Tan et al [8] Proposed

Time 57.8 66.6 5.1 52.6 54.1 33.8

In addition, we have compared the convergence time of these methods. Table 7
shows the mean time used in optimization process. The speed of Shan’s method
is far faster than others are. The reason is the simplification of energy function.
However, the accuracy of Shan’s method is poor. In the remaining methods, our
method is faster than others are. This is because only fewer parameters require
modifications in the first two steps, and the parameters change only within a
very small region in the third step in the proposed method.

6 Conclusion

In this paper, a three-steps minimization process for energy functions has been
proposed to alleviate the problem of local minima by considering the local prop-
erties of energy terms. Experimental results show that our minimization method
works well, and justify its superiorities over the existing methods.

Comparing with previous minimization process using the same energy func-
tion, such as 1-step and 5-steps minimization process, the proposed method im-
proved the accuracy of locating eye corners about 22% and 111%, respectively.
Comparing with other eye feature methods using different energy function and
minimization process, such as the methods proposed by Xie et al [4], Lam et
al [5], Shan et al [7] and Tan et al [8], the mean error of proposed method is
reduced to 30%, 41%, 35% and 51%, respectively, while the speed was faster
than Xie et al ’s [4] and Lam et al ’s [5] methods.

Currently, there are still a number of coefficients in the different energy terms
that should be determined before minimization. This is our future work.
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Abstract. In this paper, we describe image feature as parameterized
model and formulate feature detection as robust model fitting problem. It
can detect global feature easily without parameter transformation, which
is needed by Hough Transform methods. We adopt RANSAC paradigm
to solve the problem. It is immune to outliers and can deal with im-
age contains multiple features and noisy pixels. In the voting stage of
RANSAC, in contrast with previous methods which need distance com-
putation and comparison, we apply Bresenham algorithm to generate
pixels in the inlier region of the feature and use the foreground pixels in
this region to vote the potential feature. It greatly improves the efficiency
and can detect spatially-linked features easily. Experimental results with
both synthetic and real images are reported.

1 Introduction

Image feature detection is an important topic in computer vision. Given a gray
or color image, edge detection can be applied to detect edges and output an
edge image which is a binary image of edge (foreground) pixels and non-edge
(background) pixels. Detecting features in this binary image is a difficult problem
and is the focus of this paper. The methods proposed up to date are categorized
into segment grouping based methods [1, 2] and Hough Transform methods (HT)
[3, 4, 5, 6, 7].

Segment grouping based methods consist of two stages: linking foreground
pixels into segment elements and grouping these elements into global features.
Since the grouping criteria are locally optimal, the performance of detecting
global features is poor.

In contrast with segment grouping based methods, HT methods map fore-
ground pixels into parameter space and detect features in parameter space. They
consist of voting and searching stages, i.e. mapping foreground pixels into ac-
cumulators in parameter space and detecting maximal value in accumulators.
Because pixels belong to one feature are mapped to one accumulator, they can
detect global features successfully at the cost of great storage for accumulators in
parameter space and computation time for voting and searching process. Besides,
the spatial relationship of foreground pixels is lost in the voting stage.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 673–682, 2006.
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To save computation time, Probabilistic HT (PHT) [5] selects a pre-selected
proportion of the foreground pixels in original image for voting. The time saved
depends on the ratio of selected pixels with respect to all foreground pixels.
Too small proportion frequently leads to incorrect detection results. To select
a proper proportion, a priori knowledge about the image is needed. Progressive
PHT (PPHT) [7] requests no a priori knowledge, it selects pixels randomly for
voting, removes the foreground pixels from image and un-votes accumulator once
a highest peak and corresponding line segment is detected. To alleviate the extra
storage requirement, Random HT (RHT) [6] adopts many to one mapping and
list structure techniques. The computation time is also saved by these techniques.

Chen and Chung have modified RANSAC and developed Random Line Detec-
tion (RLD) [8] and Random Circle Detection (RCD) [9] algorithms. They select
three or four foreground pixels respectively to define a line or circle and use the
left pixels to vote the defined feature. They can detect features with no need of
parameter transformation. But the algorithms are inefficient because of explicit
distance computation involved in the voting stage. Besides, the spatial rela-
tionship between foreground pixels is not well utilized. Zhang have investigated
different parameter estimation techniques and presented a tutorial focusing on
conic fitting [10].

Motivated by RLD and RCD, we formulate image feature detection as robust
model fitting problem in this paper: treat foreground pixels as data points, use
parameterized model to describe the image features (such as lines and circles),
and treat feature detection as model fitting. Since the global information is
implicated in the parameterized model, it can detect global features easily. We
adopt RANSAC [11] to solve to the fitting problem, RANSAC is a robust method
and is immune to outliers in the original data points, therefore it can detect
feature from image contains multiple features and noise pixels. In the voting
stage of RANSAC, instead of checking all foreground pixels to vote the feature,
we adopt Bresenham algorithm [12] to generate pixels within inlier region of the
feature and use foreground pixels in this region to vote the feature. This avoids
explicit distance computation and improves efficiency greatly. Besides, it detects
features directly in image space without involving parameter transformation,
therefore needs no extra time and storage requirement. The successive pixels
generated by the Bresenham algorithm are spatially neighboring, this property
is easily utilized to detect spatially-linked features.

We formulate image feature detection as robust model fitting problem in
section 2, propose the solution in section 3, and then present the detection algo-
rithm in section 4. After that, we show experiment results in section 5 and draw
conclusion in section 6.

2 Problem Formulation

2.1 Feature Representation

As shown in Fig 1, there are many foreground pixels in the image, some pixels
form line l1, l2 and l3 , some form ellipse e, some form circle c and some form
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Fig. 1. Image feature detection as robust
model fitting

Fig. 2. RANSAC for line fitting: the dot-
ted lines indicate the threshold distance

circle arc a, and others are just noise pixels. The lines, circle, ellipse etc. are
image features to be detected. All pixels on one feature satisfy Eq.(1):

ax2 + bxy + cy2 + dx + ey + f = 0 (1)

where a, b, c, d, e, f are free coefficients, so, the features can be described as Eq.(1)
with a, b, c, d, e, f being specified.

Eq.(1) is a conic equation describes general curves including circle, ellipse
and etc. And these curves are just specific conic with their coefficients meet
some constraints. For example, if a = c, b = 0, then the conic degrades to be a
circle, if a = b = c = 0, then the conic degrades to be a straight line. In this
paper, we represent image features as equations like that of Eq.(1) and call it as
model representation. We deal only with image features that can be described by
the parameter equation. The model has free coefficients a, b, c, d, e, f and their
specified values defines an image feature.

2.2 Image Feature Detection as Robust Model Fitting

Let us assume at first that there is only one line l1 in the image shown in Fig.(1)
and we want to detect it. As shown in subsection 2.1, l1 can be represented by
Eq.(1) with a = b = c = 0 and d, e, f being specified. What left to do is to
specify the free coefficients d, e, f , it is a well-known model fitting problem: fit a
model to the pixels so that the distance of the pixels deviated from the model
is minimized.

But there are l2,l3, etc. together with many noise pixels in the image, fitting a
model to all the foreground pixels is meaningless and can not detect the features
at all. It is necessary to distinguish pixels which belong to l1 from other pixels
first. Once this is done, the model fitting methods can be applied to fit a model
to the distinguished pixels. From the point of view of model fitting, all pixels on
line l1 are inliers to l1 while other pixels are outliers. The model fitting method
must be robust enough to deal with cases there are outliers in the original pixels.
It is the nature of robust model fitting problem [13].
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Since there are many features in the image, it is necessary to carry out the
model fitting method repeatedly until all the features are successfully detected.

3 Solution to the Feature Detection

In the previous section, we formulate the image feature detection as robust model
fitting problem. There are lots of methods designed to solve this problem [10, 11].
RANSAC can cope with a large proportion of (more than 50%) outliers. As
shown in 2.2, since pixels in l2, l3 etc. are outliers with respect to l1, there are
usually more than 50% outliers in the original data to be fitted. We adopt the
RANSAC algorithm in this paper to solve the model fitting problem.

3.1 RANdom SAmple Consensus

RANSAC does trial repeatedly to find the model. Each trial consists of sampling
and voting stages. In the sampling stage, it randomly selects a minimal subset of
the original data points and instantiates a model from the subset. In the voting
stage, it determines the consensus set of the determined model by distinguishing
the set of data points within a distance threshold of the determined model from
other points. The termination condition is either a model is found successfully
or the number of trials reaches a preset threshold. The algorithm is presented as
follow:

1. Set Csample = 0, while Tt > Csample do 2-5:
2. Sampling stage: Randomly select a sample of s points from original data

points and instantiate a model from the selected points,
3. Voting stage: Determine the consensus set (set of inlier points) which con-

tains points within a distance threshold Td of the model,
4. If the size of the consensus set is greater than a preset threshold Tc, report

the model and terminate,
5. Let Csample = Csample + 1,
6. The largest consensus set is selected as inliers and corresponding model is

selected as the final model.

where Csample is the counter for trial number, s is the minimal number of points
needed to determine a model. Td depends on the required fitting precision, Tc is
a function of number of inliers and Tt is specified by:

Tt = lg(1 − p)/ lg(1− εs) (2)

where p is the probability that at least one random sample is free of outliers, it
is always chosen as 0.99, ε is the proportion of inliers.

Fig. 2 illustrates how RANSAC fit a line to the data points. It randomly
selects 2 points to define a line, points between the two dashed lines parallel
with the defined line are within a distance threshold to the line and form the
consensus set. As shown, the size of consensus set of line (a, b) is 10 while that
of line (c, d) is 2, so, RANSAC selects line (a, b) as the fitting result at last.
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3.2 Sample Minimal Set

It might be thought that it would be preferred to use more than minimal subset
to instantiate a model as RLD [8] and RCD [9] do, because a better estimate of
the model would be obtained from them, and the measured support would reflect
the true support more accurately. However, this possible advantage in measuring
support is generally outweighed by the severe increase in computational cost
incurred by the increase in the number of trial.

Because there are often lots of pixels in the image, it is computationally infea-
sible to try every possible sample in the sampling stage. In fact, it is unnecessary
to enumerate all the possible samples exhaustively. Instead the necessary num-
ber of samples Tt is chosen sufficiently high to ensure that at least one of the
random sample of s points is free from outliers with a probability of p. Eq.(2)
shows the relationship between Tt and p, ε, s. Given an image, the ε is constant
with respect to the feature to be detected, the p is also constant in the detection
process (it is always chosen as 0.99), so, Tt increases exponentially with s. Tab.
1 shows an example of Tt for given s and e. As shown, the necessary number of
trials increases dramatically with s increasing, therefore the computation cost is
increased severely.

Based on these observation, we follow the minimal set principle, i.e. select
minimal number of points needed to determine the model to be found.

3.3 Instantiate Model from Minimal Set of Points

The minimal number of points needed to instantiate a model is equal to the num-
ber of free coefficients in the model representation of the feature to be detected.
For example, it is 2 for straight line, 3 for circle and 4 for ellipse.

Given a minimal set of points, the model is instantiated by solving the un-
known coefficients in the equations for the model. Suppose that(x1,y1),...,(x5, y5)
is selected as minimal set, then (xi, yi) is on the conic and we have:

AiX = 0 (3)

with
Ai =
[
x2

i xiyi y2
i xi yi 1

]
(4)

X =
[
a b c d e f

]T (5)

Stacking equations from each point (xi, yi), i = 1, ..., 5 in to one set of equations,
we get:

AX = 0 (6)

A =
[
AT

1 · · · AT
5
]T (7)

the unknown X = (a, b, c, d, e, f)T is a homogeneous vector and has only 5
degrees of freedom, so, it can be solved from the 5 equations in Eq.(6). Since
Eq.(6) is a set of homogeneous equations and the obvious solution X = 0 is
meaningless, it can be solved by putting an additional conditional on the norm of
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the unknown vector, e.g. ‖X‖ = 1. Instead, we turn Eq.(6) into a inhomogeneous
set of equations by imposing a condition Xi = 1 for one unknown and some
other conditions on the other unknowns. For example, in the case of a circle, a
in Eq.(1) is sure to be nonzero, therefore the additional condition X1 = a = 1
can be imposed. Further, b = 0 and c = a can also be imposed for a circle.
The number of free unknowns is left to be only 3. Based on these conditions,
Eq.(8) can be derived from Eq.(6), it have 3 linear equations and 3 unknowns,
the unknowns can be solved easily.⎡⎣x1 y1 1

x2 y2 1
x3 y3 1

⎤⎦⎡⎣ d
e
f

⎤⎦ =

⎡⎣−(x2
1 + y2

1)
−(x2

2 + y2
2)

−(x2
3 + y2

3)

⎤⎦ . (8)

3.4 Determine the Number of Samples Adaptively

The proportion of inliers ε is often unknown because we do not have statistics of
foreground pixels and features in advance. Further more, ε is different with re-
spective to different features and is varying while the detection process proceeds.
Therefore, Tt can not be determined in advance.

We apply an adaptive strategy to solve this problem, i.e. determine ε and Tt

adaptively while detection proceeds. It records the maximal value of ε
and use it to determine the necessary number of trials. The adaptive algorithm
is as follows:

1. Let Tt =∞, ε = 0, εmax = 0 and set Csample = 0.
2. While Tt > Csample do 3-7:
3. Sampling stage,
4. Voting stage,
5. Let ε = Ninlier/Ntotal, εmax = max(εmax, ε),
6. Compute Tt from εmax using Eq.(2),
7. Let Csample = Csample + 1.

where εmax records the maximal value of ε, Ninlier is the number of inlier points
found in each trial while as Ntotal is number of all points.

3.5 Voting Without Explicit Distance Computation

As shown in subsection 3.1, in the voting stage of RANSAC, it needs to determine
the consensus set and this needs distinguishing points within a distance threshold
Td of the model from other points. Obviously, it needs distance computation
and comparison which consume much time, and this is what previous method
really do. In this section, we will show how the distance computation can be
avoided and present a new voting method without involving explicit distance
computation.

In fact, the voting stage needs only counting points within a region we called
inlier region which centers at the model and dilates from it with diameter Td.
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Fig. 3. Inlier region of a model: the center
line indicates a model, the region between
the up and below line indicates the inlier
region and it contains only limited pixels

Fig. 4. Left image is an edge image of a
house, and right image shows the detected
line segments by our method

To do this, previous methods check all points by computing their distance from
the model and count the ones whose distance smaller than Td. But as shown
in Fig.3, images contain only discrete pixels, and there are limited pixels in
the inlier region. All the pixels in the inlier region are either foreground or
background pixel, and only foreground pixels in the inlier region vote the model.
Therefore, the alternative is checking all the pixels in the inlier region, if the
pixel is foreground, it votes the model.

Now, let’s assume that the model to be fitted is straight line. As shown in
Fig.3, the inlier region of the line model is the region between two lines deviate
from the model with a distance Td. This region is equivalent to a line with width
2Td centered at the model. This is also true for other models, therefore we have:

The inlier region of a model M is equivalent to a model Me with width 2Td

centered at M .
Generating a line or curve with a width is a standard rasteration problem

in computer graphics. Bresenham algorithm [12] is a widely used algorithm for
rasteration, it can be implemented with only integer calculations and is fast.
There are Bresenham algorithms [14] designed to generate straight line, circle
and ellipse etc.

In this way, the distance computation and comparison is avoided, and this
saves much computation time as will be shown in section 5. Furthermore, there
is another advantage for applying rasteration method as an alterative to distance
computation as shown in next subsection.

3.6 Explore Spatial Information in the Voting Stage

In fact, series of pixels are generated pixel by pixel in the rasteration methods.
As shown in Fig.3, for example, Bresenham algorithm generate pixels from left
to right, the successive pixels are spatially connected. Apparently, it is easy to
record the consecutive foreground pixels and consecutive background pixels. In
this way, we can detect spatially linked segments of straight line or curve. To
account for noisy pixels in the original data and errors in edge detection, it
should allow small gaps between segments. We set a threshold Tg for the gap
between segments, segments with gap smaller than Tg are merged to be one
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segment. Therefore, it does not need post-processing which is needed by RLD,
RCD and most Hough Transform method.

4 Robust Model Fitting Based Feature Detection
Algorithm

In this section, we present the proposed feature detection algorithm as follows:

1. Collect all foreground pixels in image I into set S and let Ntotal be the size
of S,

2. Let Tt =∞, ε = 0, εmax = 0, Csample = 0,
3. While Tt > Csample do 4-10:
4. Randomly select s points from S,
5. Determine a model M from the selected s points using method described in

subsection3.3,
6. Apply Bresenham algorithm to generate pixels inside the inlier region of

model M ,
7. Count the number of spatially-linked foreground pixels of the generated pix-

els as Ninlier ,
8. Let ε = Ninlier/Ntotal, εmax = max(εmax, ε),
9. Compute Tt from εmax using Eq.(2),

10. Let Csample = Csample + 1,
11. If Ninlier > Tinlier do 12-15:
12. Report the detected feature,
13. Remove the pixels on the detected feature from image I and corresponding

data points from set S,
14. Let Ntotal = Ntotal −Ninlier ,
15. go back to 2
16. Terminate.

where, Tinlier is a preset threshold for the minimal number of pixels one feature
should have.

5 Experiments and Comparison

Based on section 4, we develop a Robust Model Fitting Based Line Detection
method (RMFBLD) and apply it to both synthetic and real images to test its
correctness and efficiency. Size of synthetic images is 256× 256. The number of
line segments in one image is used to control complexity of image. It ranges from
10 to 50 using 10 as step. Noise level is characterized by number of noise pixels.
It ranges from 0 to 500 by a step of 50. For every level, 32 images are synthesized
using different random seed. PPHT, RLD and RMFBLD are applied to detect
line segments in these images. The total number of detected line segments and
time used are shown in Tab. 2. As shown, RMFBLD is the most efficient method.
Fig.5 shows one example of the results, it has 30 line segments and 300 noisy



Image Feature Detection as Robust Model Fitting 681

Table 1. The necessary number of sam-
ples Tt for a given s and e

s e
90% 80% 70% 60% 50%

2 3 5 7 11 17
3 4 7 11 19 35
4 5 9 17 34 72
5 6 12 26 57 146
6 7 16 37 97 293

Table 2. Comparison of RMFBLD with
RLD and PPHT Method

Method Detected Time Lines
line (second) per

segments second
RLD 3494 52,793 66.2

PPHT 18127 503,222 36.0
RMFBLD 18769 127,357 147.4

pixels, the original and detected line segments using RMFBLD, PPHT and RLD
are shown from left to right, as shown, RMFBLD can detect features from image
contains multiple features. As can be seen in both Tab. 2 and Fig.5, TRMFBLD
and PPHT detect approximately the same number of lines, but RLD detects less
lines.

Fig. 5. Result example

Fig.4 shows another example, left figure is an edge image of an image of a
house, and right one shows detected line segments by RMFBLD. It can be seen
that global line features are successfully detected.

6 Conclusion

We formulate feature detection as robust model fitting problem. First, we use
parameterized model to describe image features, and treat feature detection as
model fitting problem. The global information is implicated in the parameter-
ized model, global features can be easily detected without involving parameter
transformation. Second, we adopt RANSAC as a solution to the model fitting
problem. Because RANSAC is immune to outliers, the proposed method can
deal with images contains multiple features and noisy pixels. Third, we develop
a novel voting method for RANSAC, it avoids explicit distance computation by
generating inlier pixels and checking if they are foreground. Besides the efficiency
improvement, it provide a good chance to detect spatially connected feature.

Apart from presenting the framework of robust model fitting based image
feature detection, we also develop Robust Model Fitting Based Line Detection
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method for line detection at present. We plan to develop another method for
detecting other features, such as circle and ellipse in the near future.
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Abstract. In this paper we mimic a biological visual strategy to extract salient 
contours from complex scenes. Psychophysical and physiological studies show 
that the response to the stimulus within the receptive field is affected by the 
presence of surrounding stimuli— the response is suppressed significantly by 
similarly oriented stimuli in the surround while this suppression is converted to 
strong facilitation with the addition of collinear stimuli in the surround. 
According to this property of visual perception, we enhance salient contours and 
at the same time reduce the interference of the extraneous elements. Our results 
show the feasibility of the proposed method. 

1   Introduction 

It has long been a puzzle that how to automatically extract contours from complex 
scenes. This is because it requires distinguishing contours from non-contour edges, and 
grouping local elements into meaning global features. The human visual system 
presents an outstanding ability to contour processing, thus understanding the visual 
mechanisms can provide a biologically motivated scheme for contour extraction in 
computer vision.  

A number of studies have shown that the stimuli outside classical receptive field 
(RF) exert a significant influence over the activities of cells in the primary visual 
cortex. Knierim and van Essen [1] observed experimentally that the response to 
stimulus in the RF is suppressed significantly by similarly oriented stimuli in the 
surround, i.e., iso-orientation suppression, and the suppression is reduced when the 
orientations of the surround stimuli are random or different from the stimulus in the RF. 
However, if the surround stimuli are aligned with the optimal stimulus inside the RF to 
form a smooth contour, then suppression becomes facilitation [2],[3]. Whether the 
response to stimulus presented within the receptive field can be facilitated or 
suppressed by other stimuli falling outside the receptive field depends on the relative 
orientation of stimuli inside and outside the receptive field [4]. Bonneh and Sagi [5] 
found that detectability depends on stimulus geometry and is constrained by 
collinearity and proximity spatial relationships, and therefore a coherent’ configuration 
is more easily detected than a ‘non-coherent’ one. 
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In this paper, we design a model for contour extraction according to the above 
description of visual cortex. Compared to our previous work [6], the model is more 
reasonable. The improvement is as follows: I) for excitatory interactions, previous 
short-range connections are taken place by long-range horizontal ones, an important 
aspect of which is their ability to provide more excitatory inputs to their postsynaptic 
cells, which contribute to link local elements forming collinear alignment via more 
local information; II) for inhibitory interactions, we consider bow-tie-shaped inhibitory 
regions located in the side of the RF rather than ring-formed regions surrounding the 
RF, and the separation between inhibitory and excitatory regions void the suppression 
among collinear elements. 

2   Algorithm Implementation 

A complex cell in V1 can be regard as a local oriented energy operator. Gabor energy 
that is defined as the square root of the sum of responses of odd-even pairs of Gabor 
filters is used to represent the initial responses of V1cells. V1cells dynamically tune 
their responses according to contextual interactions, and then make local elements 
group into global features. 

2.1   Collinear Excitation 

While stimuli in the surround are located along the axis of the RF and share similar 
orientation tuning, they will enhance the responses of V1 cells. The two enhanced 
conditions are named as axial specificity and modular specificity by Shouval et al. [7]. 
Thus facilitation depends on the precise spatial alignment of the RF and surround, and 
the facilitatory effect decreases with the distance between the surround and the RF.  

 

Fig. 1. The geometrical relationship based on the co-circularity rule 

We combine the co-circular constraint proposed by Parent and Zucker [8] with the 
visual preference for low curvature to define a local grouping function of contour 
integration. Fig.1 illustrates the geometrical relationship based on the co-circularity 
constrain. A and B denote the cells inside and outside the RF respectively, and their 
spatial coordinates are ( )yx,  and ( )',' yx  respectively. The edge elements belong to the 

same physical contour satisfy the co-circularity constraint to a large extent [9]. If the 
preferred orientation of A is α , then in term of the co-circular relationship, the 
orientation of B should satisfy the following,  



 Extraction of Salient Contours Via Excitatory-Inhibitory Interactions  685 

 

−≤−−
<−≤−

<−+−
=

αγππαγ
παγαγ

αγπαγ
β

22

202

022

if

if

if
 (1) 

whereγ is the angle of the line connecting the two cells A and B, and assume that 

πα <≤0  and πγ <≤0 . When the preferred orientation of B is β , B and A can form 

a co-circular smooth contour. The closer B’s dominant orientation (i.e., corresponding 
to the orientation of the strongest response over all the orientations of B) approaches β , 

the stronger its response at the orientation β (relative to other orientations), and the 

greater the element with A produces collinear excitatory effect, otherwise, the weaker. 
Thus we can consider B’s response at the orientation β  only, and the amplitude of the 

response reflects the degree of both the elements satisfying the co-circularity. 
Curvature is an important factor determining natural contour detectability. The 

dynamic process of contour integration varies with the curvature of the contour, and in 
general, visual sensitivity to contours increases with the length and straightness of the 
path [10]. The curvature k of the co-circular elements is given by, 
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where ( ) ( )22 '' yyxxd −+−= . 

In addition, excitatory regions should be disposed along the axis of the cell 
according to the axial specificity. Consequently, the deviation of the connecting line 
AB from the orientation axis of A is limited, i.e., ϕαγ ≤− , ϕ  is the upper bound of 

the angular deviation. 
A curvature-based weighting function which reflects visual preference for the path 

with low curvature is expressed as follows, 
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where the parameter 
cσ  establishes the decrease with the curvature. 

In addition, since the connection strengths between cells decay with distance, we 
also define a distance weight function and then normalize the values, 
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where 
eA  denotes excitatory regions. The parameter 

dσ  establishes the decrease with 

the distance. 
The excitatory connection strengths depend on curvature and distance. Accordingly, 

the facilitatory input ( )α,, yxF  for the cell with the RF center ( )yx,  and preferred 

orientation α , coming from its surround, can be expressed as follows, 

( ) ( ) ( ) ( )
( )∈

=
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dc yxRyxyxWyxyxWyxF
','

,',',;',',,;,',',,
β
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where 
eA  is the same description as above, ( )β,',' yxR  denotes the response of the cell 

of position ( )',' yx  and orientation β . 

2.2   Iso-Orientation Inhibition 

The responses of cortical cells to stimuli in the RF are suppressed by their 
environments, and the degree of suppression depends on the orientation contrast of the 
surround and the RF stimuli [1]. The inhibitory effect also declines with increasing 
distance to the RF. We construct a center-surround difference-of-Gaussians (DoG) 
filter to implement the distance-weighted representation, 
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In addition, inhibitory regions whose direction is complementary with excitatory 
ones (i.e. παγϕπ <−<− ) are located in both sides of the RF with bow-tie-shaped 

neural connections. The oriented inhibitory regions 
sA  are relevant to the preferred 

orientation α of the stimulus within the RF. We normalize the weighting function in the 
method similar to in [11], and it is defined as follows, 
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where 
sA  denotes inhibitory regions, the function ( )⋅N  ensures to generate inhibitory 

action only in the inhibitory regions. 
An orientation difference-based weighting function is given by,  
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where Δθ  denotes the orientation difference between A and B, its definition as follows: 

( )αβπαβθ −−−=Δ ,min     (13) 

where α and β denote the orientations inside and outside the RF, respectively.  

Thus the stimulus with the RF center ( )yx,  and preferred orientationα  suffer the 

surround suppression ( )α,, yxS  coming from all the orientations is computed as 

follows, 

( ) ( ) ( )
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where K  is the number of sampling orientations, ( )iyxs β,,  which represents the 

inhibitory element coming from orientation
iβ  is computed in the following way, 

( ) ( ) ( ), , , ; * , ,i r is x y W x y R x yβ α β=     (15) 

where ∗ denotes the convolution operator, and ( ), , iR x y β  is as in (7).  

2.3   Model Description 

The recurrent connections of excitatory and inhibitory neurons indicate that the cortical 
networks achieve specific visual tasks in a dynamic and flexible fashion [5]. A dynamic 
model is provided to describe the local interactions in perceptual grouping, 

( ) ( ) ( ) ( ) ( )1, , , , , , , ,t t
i i i iR x y R x y t F x y S x yα α η α α−= + −  Ki L,2,1=  (16) 

( ) ( )102.0 −−= tetη  (17) 

with K  as in (14). The factor ( )tη  gradually decreases with the increasing iterations to 

ensure that the dynamic process would converge. According to a subjective visual 
appreciation, we choose Gabor energy filters with a proper center frequency from a 
series of frequencies to pre-process an input image, and then the corresponding Gabor 
energy is used to initialize ( )iyxR α,,0 . To terminate the iteration, we can define, in 

advance, either the maximum number of iterations or a lower bound of the change in 
successive steps. 

Finally, a winner-take-all selection procedure is performed, e.g., the maximum 
response of each pixel over all the orientations as the model’s output. 

3   Experimental Results 

To verify the performance of our algorithm, we carry out the following experiments, 
including analysis of excitatory lateral connections, analysis of inhibitory lateral 
connections and effect of applying the model to real images.  
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Fig. 2. Enhancement effect. The left, middle, right columns correspond to original image, Gabor 
energy and output only considering excitatory connections, respectively. (center frequency of 
Gabor energy is 0.325). 

 
First, we test the ability of the collinear enhancement scheme in (7) to extract 

coherent spatial configuration from the cluttered background. From fig.2, it can be seen 
that surround facilitatory actions make cluttered elements tend to be uniform while a 
well-organized structure pop out perceptually from its background. An additional 
advantage, some small gaps on the curve are filled in by contextual interactions.   

 

   

Fig. 3. Suppression effect. The left, middle, right columns correspond to  original image, Gabor 
energy  and output  only considering  inhibitory connections, respectively.  (center frequency of 
Gabor energy is 0.275). 

 
Fig.3 illustrates iso-orientation inhibition effect, which is obtained by only 

considering inhibitory term. The loss of this suppression in areas where there is a 
change in orientation results in enhanced saliency of the texture boundary. The 
proposed scheme shows an excellent performance for this implicit contour extraction. 

From the above two examples, we can see that facilitation and suppression play 
different roles in contour processing— the former is deemed to be important in contour 
integration and saliency; the latter is thought to be important in the segmentation of 
surfaces and textures. Both the mechanisms are necessary to contour processing. Our 
results are in agreement with the perception of visual system. 

Finally, we apply the model to real images, as shown in fig.4. The top right image is 
a model with a stripe coat and camouflage trousers, the middle a snail, the bottom a 
satellite photo of a river. The contours of these images are embedded in cluttered  
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Fig. 4. Results of applying the model to real images. The left, middle, right columns correspond 
to original image, Gabor energy and outputs of our model. (from top to bottom, center frequency 
of Gabor energy is 0.225, 0.250, 0.225). 

 
backgrounds, especially, in the first, the object per se has texture. The iso-orientation 
inhibition dramatically reduces the response of uniform texture and moreover, plays an 
important role in eliminating the interference of the extraneous elements and 
preventing them from extending to the contour of object. The collinear excitation 
strengthens coherent elements and preserves the integrity of the smooth contour. 

The results show that the model indeed effectively suppresses texture edges and 
cluttered elements, and enhances well-organized shape contours.    
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4   Conclusions 

Contour plays a key role in shape-based object detection. Several difficulties lie in 
drawing the object contour from complex natural scene: I) most local oriented edges 
engendered by texture must be eliminated while preserving the object border; II) some 
important shaping contours have not been well defined such as texture boundary. To 
address this problem, we developed a bottom-up model directly inspired by the 
long-range neural interactions in primary visual cortex. 

Several main contribution of this paper lies in applying perceptual characteristics of 
prime visual cortex to contour extraction in computer vision, and obtaining satisfactory 
results in the test for objects with relatively simple and smooth structures. In this 
process, we put some emphases on the two different roles - facilitation and suppression - 
played in the contour processing. For the facilitation our facilitatory scheme can better 
interpret visual perceptual grouping, and contribute to further understand visual 
mechanisms. For the suppression, we stress the importance of anisotropic inhibition to 
popping out texture boundaries, which differs intrinsically from the isotropic inhibition 
adopted in many literatures.  

The present work may be further improved by adopting different local scales 
according to local features of an image, which can more accurately extract local edges 
and supply more integration information for local element grouping. This is the work 
we plan to extend. 
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Abstract. Inkjet and laser printers, and photocopiers are being increas-
ingly used in criminal activities such as counterfeiting currency, creating
forged documents, illegitimate business transactions and terrorism re-
lated acts. Identification of the printing process greatly aids in detecting
such activities and is extensively used in the field of document examina-
tion. In this paper, we propose the use of image processing techniques
in identifying the printing process used to generate a document. The
characteristics of the various types of non-impact printing methods used
by photocopiers, inkjet and laser printers are studied using colour im-
age processing. HSV color space and, in particular, hue images at high-
resolution, distribution of isolated spots in the vicinity of hue edge pixels
and periodicities in edge intensity profiles distinguish between the differ-
ent printing processes. Our initial study indicates their promise in repli-
cating the results traditionally obtained by document examiners using a
microscope or through chemical analysis.

1 Introduction

Forensic examination of documents is fast emerging as a challenging field of
research with the proliferation of fake and questioned documents through the use
of computers or computer-based technologies. A document is labeled a questioned
document if its authenticity is in doubt. A questioned document may be genuine;
partially faked by obliterating, erasing or altering the original information; or,
completely faked as, for example, in counterfeit currency and lottery tickets, and
blank educational certificates.

A useful first step in examining documents is to detect how they are created.
Are they printed using an inkjet or a laser printer, or are they photocopies?
The examination of printing method is useful in detecting whether a number
of documents originated from the same source. It is also useful in tracing the
document’s source much the same way a bullet may be traced to the gun from
which it is fired. It is often possible to identify the make of the printer or the
copier and sometimes even the individual machine from a careful examination
of the marks left behind on the paper or in the inking of the letters.

The conventional methods used by expert questioned document examiners are
varied, sophisticated and sometimes very specific involving both destructive and

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 692–701, 2006.
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non-destructive tests. Brunelle[3], Ellen[5] and Hilton[7] offer excellent overviews
of such techniques and methods. Some commonly examined physical features are
machine defects such as trash marks, pitting in the rollers, broken mechanisms
and indentations. Additional information is obtained by chemical analysis of inks
and papers.

In 1999 Doherty [4] gave an overview on the state-of-the-art in classification of
inkjet printers and inks. Examination under a microscope is a favoured method
in distinguishing between photocopiers, laser and inkjet printers. When magni-
fied, inkjet appears as a series of irregular coloured dots at planar level with
some peripheral bleeding caused by absorption on the paper. Laser printers and
photocopiers scatter toner particles over non-image areas. Unlike in inkjet print-
ing, the image areas do not appear as discrete dots because the toner is heated
and pressed into the paper. However, the image appears to be raised due to the
deposition of toner on the paper[6].

Printing inks may be distinguished chemically to some extent using Mass spec-
troscopy and chemical analysis. The binding agents are subjected to Pyrolysis
Mass spectroscopy and infrared absorption spectroscopy to isolate the inorganic
components which are then identified by emission spectroscopy and microprobe
electron microscopy[5]. In 1993 Lofgen[8] worked on HPLC analysis of printing
inks as a non-destructive technique. Yair’s work[11] on classifying printers using
colour registration, resolution, text quality, line quality and dot quality is also
often quoted in forensic journals.

The use of image processing techniques in forensic document examination is
relatively new[5] and is an exciting application area. The work of Agarwal and
others[1] described algorithms to decipher obliterated text and analyse stroke
sequences. Our earlier experiments [2] show that the hue, saturation and value
histograms are similar for the sample words written by the same writing instru-
ment (pen or printer). We also showed that saturation histograms reveal the
difference in absorption characteristics of inks and are thus useful in discrim-
inating between liquid, viscous and powdered inks. The Center for Excellence
in Document Analysis and Recognition (CEDAR) at Buffalo is also reporting
interesting results on writer identification[10].

In this paper, we study the problem of identifying different printing processes
using HSV colour space with emphasis on inkjet and laser prints, and photo-
copies as they are the most common forms of documents. The basic idea is
to replicate the analyses and the features used by document examination ex-
perts. We selected HSV colour space as subtle changes in colour are significant
in the analysis. HSV space offers several advantages in representing colour for
image processing. Colour, given by H and S, is decoupled from intensity and
operations may be defined that manipulate colour independent of intensity and
vice-versa. Also, MacAdam ellipses[9], representing regions in colour space that
contain undistinguishable colours, are more homogeneous and compact in HSV
space. It implies that colour distances are simpler to interpret in HSV space.
HSV space is also useful in document examination as we found that variations
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in ink colours are well captured in hue, while absorption of the inks into the
paper are reflected in saturation values.

The rest of the paper is organized as follows. Section 2 describes characteristics
of different printing processes. Section 3 presents our measures and methods
using HSV colour space to measure the characteristics described in Section 2.
Results are presented and discussed in Section 4 with conclusions in Section 5.

2 Printing Processes and Their Characteristics

There are two primary characteristics in the analysis of printing methods: the
nature of the ink used, and the process by which ink is transferred to the paper.
Ink may be solid (as generally used in laser printers and photocopiers), viscous
paste (as in ballpens) or liquid (as in laser and inkjet printers). The transfer
process may broadly be impact type (as in typewriters) or non-impact type
(as in laser and inkjet printers). Most modern solid inks are in the form of fine
powders which are fused into the paper by applying heat. Mixture of dyes provide
the coloring matter, and an important constituent is the resinous material which
serves to bind the ink to the paper. Liquid inks by contrast are usually water
soluble and do not have a paste-like consistency but are otherwise similar to
viscous inks. Offset printing differs in the use of a plate used for selectively
applying liquid ink. It consists of letter areas that absorb water and others that
do not and, consequently, the lettered areas transfer ink to the paper pressed
against the plate.

Inkjet Printers use the “Non Impact” method with liquid inks. They use the
principle of spraying tiny spots of ink on to the paper. The spots are aimed at
the desired locations by a thermal or a piezo electric system.

Laser printers and photocopiers both use indirect electrostatic imaging and
are extremely similar in operation. Lasers use dot matrix grid pattern while
forming the images on the drum. A laser beam scans across the surface of the
drum, selectively imparting points of negative charge in a grid pattern onto the
drum’s surface that will ultimately represent the output image. The selective
charging is done by turning the laser on and off as it scans the rotating drum,
using a complex arrangement of spinning mirrors and lenses. The faster the laser
beam is switched on and off, the higher the resolution across the page. On the
other hand, fast switching is not possible in photocopiers as they use ordinary
white light and differ from lasers in the absence of the dot matrix pattern. In
both types of instruments, the image is transferred on to the paper by applying
negative charge that attracts toner to the drum. The toner is transferred to the
paper as it rolls under the drum, and heat and pressure are applied to the paper.
This melts the toner which contains small amounts of wax and fixes it to the
paper. Colour is printed as seperate images or layers by mixing Magenta, Cyan,
Yellow and finally black toners.

Several attributes define the text quality of a printed page. The main phys-
ical characteristics are character hue, edge smoothness, presence of artifacts,
uniformity of area fills, raised letters and indentations. Hue refers to the tone
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of the colour used to print the character. It does not remain constant but is
affected by a number of factors such as the rate of ink flow, ink and paper
types, the printing process, and many others. Edge roughness or smoothness is
determined by printer resolution, dot placement accuracy and the interactions
between the colourant and the paper. Unwanted artifacts such as inkjet spray
and laser background scatter leave undesirable toner particles near the printed
zones. Non uniformity of area fills can occur in a variety of ways, such as the
mottle (light and dark areas) caused by the uneven penetration of ink and devia-
tions from true flat surfaces on the drums and papers. Uneven image formation,
and temperature and pressure distributions during transfer stage often appear
as uneven gloss, banding and density gradients. All non-impact printing meth-
ods deposit ink on the paper resulting in raised letters. An impact method on
the other hand leaves behind indentations in the paper corresponding to the
impacting objects.

3 HSV Colour Features

A colour image is scanned at a high optical resolution (≥ 1200 dpi) using a
regular flatbed scanner of a popular make. The image is then converted into
HSV and used in the analysis. The saturation and intensity values are scaled
to 0 – 255 range. Any pixel whose saturation is less than 30 and intensity is
greater than 235 is taken as a background pixel, i.e., paper. As we used samples
printed on white paper in our initial tests, such a global thresholding scheme
proved adequate. The focus of this paper is on methods for identifying printing
processes rather than on preprocessing and the separation of foreground text
from background paper is not discussed any further.

The raised letters in photocopiers, inkjet and laser printers are revealed in
the hue components. As the scanner scans the document in a single direction,
the light first strikes the rising edge of the letters and then the falling edges. The
movement of the light source in a single direction causes shadows to be formed
beyond the falling edges. The increased brightness on the rising edge and the
shadows on the falling edges result in a characteristic row-wise hue profile that
produces low contrast on the rising edges and high contrast on the falling edges.

The second feature used in discrimination is image overspray/smear. It is
a measure of the extraneous ink spots that are adjacent to the actual printed
matter. To the unaided eye, it appears as either noise or blurring of the edges
of the letters. We measure the amount of extraneous dots in a user defined area
located within a specified distance from text lines.

Inkspray and oversmear are identified by performing edge-detection on the hue
image. Hue component is convolved with a Sobel edge detector and the result
is blurred with a 3× 3 averaging window to obtain an edge-detected image. We
count the number of edge pixels within a distance d in directions orthogonal to
the edge orientations. The higher the number, the greater the inkspray.

A third feature is the presence of serrations caused by charging the drum in
a grid pattern in laser printers. We found that the serrations are best revealed
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in the saturation component of the image. We perform edge detection using the
same operation described in the previous paragraph and obtain an edge-detected
saturation image. The column-wise edge intensity profiles are periodic reflecting
the grid pattern of image formation in laser printers. We tested our methods
only on documents containing English text and as the English alphabet contains
a large number of vertical strokes, the column-wise profiles were found useful.
For other types of printed matter, it may also be necessary to examine the row
profiles.

4 Results and Discussion

Document samples were taken from six popular inkjet printers manufactured by
Canon, Epson, HP and Lexmark, four colour laser printers by HP, Canon and
Xerox, and two colour photocopiers. The scanned documents contained text in
either blue or green colour on a white background. These documents are scanned
at 1200 dpi (optical resolution) and then converted into HSV format.

Figures 2–3 show the hue components of inkjet original and its photocopy,
and a laserjet original and its photocopy (Figure 1). Figures 4–5 show the corre-
sponding hue histograms. First, it may be seen that the hue hiostograms of pho-
tocopies are wider and sometimes bimodal. The original inkjet and laser prints
result in unimodal and narrower hue histograms. The peaks are also shifted in
the photocopies. The primary colours used as toners differ for inkjets, lasers and
photocopier, the hues present in the original are approximated by a combination
of hues corresponding to the toner in the photocopier. It might be inferred that
the toner in the inkjet has a blue primary with a hue value of approximately
220, the laser, a value of roughly 210 and the photocopier, a value of 230. The
bimodal nature and the broader histograms of the photocopies may be due to
the increased variance in the copy and the interaction between the differing hues
of the toners that produced the original and its copy.

The appearance of raised letters is clearly seen for laser printers and photo-
copiers in Figures 2 and 3. It may also be seen that the contrast is lower on
the left side of the strokes comprising the letters for the photocopied sample in
Figure 2 (note especially the letter ‘i’). For the laser print in Figure 3, it is the
left side that has greater contrast (again best seen for the letter ‘i’). One may
conclude that the direction of motion of illuminating source is in opposing di-
rections for the particular laser printer and the photocopier used in our testing.
It may offer a novel method of identifying the printer model because different
printers use different paper paths during the printing process.

Figures 6 – 7 show edge-detected hue components of the images in 1. It may
be clearly seen that ink spray is significant in inkjet printing. Laser prints show
the least amount of inkspray and it is also restricted to tight boundaries from
the actual lettering. Photocopiers show more overspray than laser prints and it
is also more distributed. However, an interesting feature is that the inkspray is
less in the photocopied inkjet print than in the original (Figure 6). It is possible
that the photocopier does not have sufficient sensitivity and resolution to copy
all the isolated dots found in the original inkjet print. Therefore, a moderate
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Fig. 1. Samples of inkjet printing, its photocopy, laser printing and its photocopy

amount of inkspray in conjunction with an absence of raised letters may indicate
a photocopy of an original inkjet printed document.

Figures 8 – 9 show edge-detected saturation images. The serrated edges of
a laser printer are clearly visible in the saturation images. The inkjet and pho-
tocopied images do not show such a striking pattern. We plot the column-wise
intensity profiles for the edge-detected images. The serrated edges are shown by
periodicities in the intensity profiles.

A quantitative measure of periodicity may be derived from Time-Series analy-
sis. A moving average measure may be subtracted from the intensity profile, and
the variance of the resulting residual data is a measure of the periodic structure.
A high variance indicates periodicity. The period for computing the moving av-
erage is given by the grid resolution of the laser printer.

Our initial testing and analysis on blue-coloured text gave very good results
on nearly 100 sample images. We replicated the common features, obtained from
microscopic examination and variety of chemical and physical analyses by doc-
ument examiners, using image processing techniques. A new promising result,
although not yet conclusive given the small sample size used in initial testing, is
a method to identify the relative direction of movement of paper with respect to
the illumination source. Such information has a great significance in narrowing
down the identification of the printer used to print the document. The method,
by itself, may not be robust as the original document may be placed upside-
down or in other orientations. In conjunction with the other tests, however, it
may provide strong corroborative evidence. Table 1 summarizes our approach.

The experiments are recently extended to documents containing text in green
and other colours on a white background and those obtained from two more
photocopiers. The results obtained are in accordance with the analysis and con-
clusions we made in case of blue-coloured text. Examples (Figures 10 and 11)
show the similarities in results. First, it may be seen that the hue hiostograms of
photocopies are wider and sometimes bimodal. The hue histograms are narrower
in original inkjet and laser prints. The peaks are also shifted in the photocopies.
The edge-detected saturation images show serrated edges in laser printer out-
put and their distortion in other outputs. There is, thus, a significant poten-
tial for applying better image processing techniques for forensic examination of
documents.
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Fig. 2. Hue image of inkjet (left) and photocopied inkjet (right) print samples

Fig. 3. Hue image of laser (left) and photocopied laser (right) print samples

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 140  160  180  200  220  240  260  280  300

hue

"2400ink1_raw_1.huedat1" using 1:2
"2400ink1photo_raw_1.huedat1" using 1:2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 140  160  180  200  220  240  260  280  300

hue

"2400ink2_raw_1.huedat1" using 1:2
"2400ink2photo_raw_1.huedat1" using 1:2

Fig. 4. Hue histograms of inkjet sample and its photocopy for two different printers
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Fig. 6. Edge-detected hue image of inkjet (left) and photocopied inkjet (right) samples

Fig. 7. Edge-detected hue image of laser (left) and photocopied laser (right) samples

Fig. 8. Edge detected saturation image of inkjet (left) and photocopied inkjet (right)
print samples

Fig. 9. Edge detected saturation image of laser (left) and photocopied laser (right)
print samples
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Fig. 10. Hue histograms of inkjet, laser and corresponding photocopied samples for
green-coloured text

Fig. 11. Sobel edge detected saturation image of laser (left) and photocopied laser
(right) print samples for green coloured text

Table 1. HSV features for identifying printing processes

Printing Process HSV Features
Original Inkjet Print Narrow unimodal hue histogram, large number of isolated

dots near the strokes and no variation in contrast on opposite
sides of strokes in edge-detected hue image

Original Laser Print Narrow unimodal hue histogram, small number of isolated
dots near the strokes; alternating low and high contrasts on
opposite sides of strokes in edge-detected hue images; and,
periodic variation in column-wise intensity profiles in edge-
detected saturation images

Photocopied Inkjet
Print

Wide, bimodal hue histogram; small number of isolated dots
near the strokes; and, no periodicity in column-wise intensity
profiles in edge-detected saturation images

Photocopied Laser
Print

Wide, bimodal hue histogram; large number of isolated dots
near the strokes; and, irregular variations in column-wise in-
tensity profiles in edge-detected saturation images
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5 Summary and Conclusions

In this paper, we have shown that features derived from HSV colour space are
useful in forensic examination of documents. In particular, we showed that hue
and saturation components reveal vital information about the printing processes
used in generating a document. We replicated the most common features used
traditionally by document examiners and also potentially discovered a new
method to identify printer model based on the relative direction of movement of
paper with respect to the illuminating source for laser printers and photocopiers.
In conjunction with the results on identifying ink types, the results in this paper
present a powerful set of tools to assist a document examiner in detecting forg-
eries. Finally, we suggest that developing algorithms and techniques for use by
document examiners is an exciting area of research for document image process-
ing community in addition to the traditional applications of preprocessing images
and extracting features for use in optical character recognition.
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Abstract. In this paper, we propose a method of detecting liver can-
cers from dynamic X-ray computed tomography (CT) images based on
a two-dimensional histogram analysis. In the diagnosis of a liver, a doc-
tor examines dynamic CT images. These consist of four images, namely
the pre-contrast phase, early phase, portal phase, and late phase ones,
which are taken sequentially within a few minutes. Since the early and
late phase images are important for diagnosing liver cancer, our method
refers to both of them for detecting suspicious regions and eliminating
false positives. First, it extracts liver cancer candidates by applying an
adaptive neighbor type filter to the late phase image. Then, precise can-
cerous regions are specified by a region forming method. Most of the false
positive regions are eliminated by two-dimensional histogram analysis of
each region of interest. We applied the proposed method to 21 dynamic
CT images. The results showed that sensitivity was 100% and there were
0.33 false positives per case on average.

1 Introduction

As a result of recent progress in computed tomography (CT) imaging devices
such as multi-detector row CT(MDCT) scanners, these devices now generate a
huge number of high-resolution slice images of a patient. In particular, in diag-
nosis using CT angiography, a doctor examines two or more three-dimensional
images. For example in liver diagnosis, four CT images taken at different phases
after the injection of a contrast medium are used routinely. Studying these im-
ages imposes a heavy load on medical doctors. Therefore, a computer aided
diagnosis system is required.

In this paper, we propose a method of detecting liver cancer from CT an-
giography by using a registration technique and a two-dimensional histogram
analysis of registered images. There has been some research on computerized
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detection of cancerous regions from CT angiography [1-4]. Masumoto et al. [1]
developed the image features for detecting cancer lesions from a single phase
image, and Hong et al. [2] studied the same kind of scheme for three phase im-
ages independently. Watanabe et al. [3] proposed two kinds of density transition
features to enhance the cancerous region. Their system needs four phase images
that must be registered beforehand. Thus, their system suffers from the limita-
tions of the medical situation. That is, in liver diagnosis, only the early and late
phase images are frequently taken to reduce radiation exposure. Shimizu et al.
[4] used the early and late phase images that were aligned using a non-rigid reg-
istration technique based on free-form deformation. They enhanced cancerous
regions from each phase image independently by using an adaptive convergence
index filter [5] and integrated these enhanced images into one image using addi-
tion operations. Some of these systems are sensitive to the image conditions and
do not treat an important medical finding of hepatocellular carcinoma (HCC)
mentioned in the next section.

The proposed system consists of three parts: detection of cancerous regions
from late phase images, estimation of region borders, and false positive reduc-
tion based on two-dimensional histogram analysis to quantify important medical
findings.

2 Characteristics of Liver Cancer

The early phase image is acquired shortly after the injection of contrast medium,
and the late phase image is taken several minutes later. In a CT image, the con-
trast medium makes the CT value high because it absorbs more X-rays than the
abdominal organs. In the early phase image, the contrast medium accumulates
in the hepatic artery. It also accumulates in the HCC. On the other hand, in
the late phase image, the contrast medium does not accumulate in any specific
organ, but is distributed uniformly among all the organs. However, within an
HCC lesion, the CT value is lower than that of surrounding tissues because the
contrast medium had flowed out by that time.

Examples of each phase image are shown in Fig.1. From these figures, it
looks easy to detect cancer regions from early phase images by using a simple
thresholding technique. However, it is difficult to separate an HCC lesion from
the hepatic artery because most HCCs are connected to the artery. On the other
hand, in the late phase image, while differences in CT value between an HCC

Fig. 1. Examples of CT angiogram
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lesion and surrounding tissues are relatively small, the lesion border stands out
clearly. Using these image features, we detect HCCs in the following way.

1. Partially detect a cancerous region from late phase images by spatial density
analysis.

2. Estimate its border from late phase images by modifying the region forming
method from partial borders.

3. Eliminate false positive regions by two-dimensional histogram analysis from
early and late phase images aligned by a non-rigid registration technique.

3 Method

The processing flow of our method is shown in Fig.2. The inputs are the early
and late phase images and the liver region in the late phase image detected by
the method given in ref. [6].

3.1 Detection of Cancer Candidates

We evaluated the features of cancer lesions in late phase images, where the CT
value of a cancer lesion is lower than that of surrounding tissues. It is difficult to
extract cancerous regions using a simple thresholding technique because there
is no significant difference in CT value between a cancerous region and non-
cancerous liver tissues. Therefore, we extracted hollows from the late phase image
by applying an adaptive neighbor type filter. Then, precise cancerous regions
were specified by a three-dimensional region forming method.

Finding Cancer Candidates. The adaptive neighbor type filter involves the
following steps.

1. Set 26 search directions for an arbitrary voxel xxx = (i, j, k) in the liver region.
The three components of direction vector dddn(|dddn| > 0, n = 1, 2, . . . , 26) are
defined by all combinations of -1, 0, 1.

2. Find the nearest voxel that satisfies at least one of the following conditions
for every n-th (n = 1, 2, . . . , 26) direction.
(C1) f(xxx− rdddn)− f(x) > T1, r = (1, 2, . . . , Lmax)
(C2) h(xxx− rdddn) = 0, r = (1, 2, . . . , Lmax),
where f(xxx) is the CT value at voxel xxx of the late phase images, h is a binary
image whose value is 1 for the liver region detected by the method in [6] and
0 outside the liver region. Lmax and T1 are predefined threshold values. Only
if the farthest voxel to xxx satisfying at least one above mentioned conditions
is found in the n-th direction, we call this voxel a reach voxel Rn (see Fig.3).

3. Set the value of voxel xxx to 1 only if all the following three conditions are
satisfied.
(C3) Reach voxels are detected in all directions.
(C4) The number of reach voxels located outside the liver region is smaller

than a predefined threshold value T2.
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Fig. 2. Flow of the proposed method Fig. 3. Illustration of reach point

(C5) At least one reach voxel is located within the liver region from all
combinations of two reach voxels that have point symmetry to voxel xxx.

The concept of this filter is similar to the Radial Reach Filter (RRF) proposed
by Satoh et al. in [7]. The RRF is a two-dimensional robust gray value change
detector for temporal subtracted images, while the filter that we propose is a
three-dimensional hollow detector that is sensitive to changes in ambiguous gray
values. Conditions (C2), (C4), and (C5) are taken into account to detect cancer
lesions at the border of the liver for practical reasons.

Extraction of Precise Region of Cancer Candidates. In this section,
we describe a technique for forming the three-dimensional border from partial
border voxels. Using the above procedure, we can detect the central part of
cancer lesions and some false positive regions. To eliminate these false positive
regions by the histogram analysis (explained later), it is important to extract
the precise cancerous region. However, it is difficult to detect the actual lesion
border because of the unevenness of the contrast medium, unevenness of the
cancer lesion itself, and the effect of the contacting tissues. Incidentally, reach
voxels tend to be located close to the region border like the RRF [7]. The results
of detected cancer candidates and the frequency image of reach voxels are shown
in Fig.4. However, voxels that are frequently selected as cancer candidate voxels
do not always form a closed surface if there are no significant differences at the
partial lesion border. To cope with such situations, we extend the region forming
method from the partial borders proposed by Sonka et al. [8] as follows.

1. Count the number of times that each voxel is selected as a reach voxel.
2. For all voxels xxx among cancer candidates, for all twenty-six directions, mark

voxels locatedbetweenxxxand the selectedvoxels as reachvoxelsmost frequently.
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3. Compute the number of times each voxel in the image is marked. Let b(xxx) be
the number of times voxel xxx is marked. If xxx is marked from a single direction,
then b(xxx) is set to zero.

4. The weighted number of marked B(xxx) is determined as follows:

B(xxx) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for b(xxx) = 0

1/27 for b(xxx) = 1
2/27 for b(xxx) = 2
5/27 for b(xxx) = 3
10/27 for b(xxx) > 3

5. Compute Bm(xxx) that is a median of B(xxx) among the 3×3×3 neighborhood
of voxel xxx.

6. Set the value of voxel xxx to one as a component of a cancer candidate if
the sum of Bm(xxx) of the 3 × 3× 3 neighborhood voxels is greater than 1.0,
otherwise mark it as background.

Fig.5 shows the result of region forming method mentioned here.

(a) (b) (c)

Fig. 4. Extracted cancer candidate and fre-
quency image of reach voxels. (a) Magnified
view of cancer lesion in late phase image. (b) ex-
tracted cancerous voxels by 3.1.1. (c) frequency
image of reach voxels.

(a) (b)

Fig. 5. Example of extracted can-
cer candidate after 3D region form-
ing method. (a) extracted cancer-
ous voxels by 3.1.1. (b) extracted
results by region forming method.

4 Image Registration

The liver is an elastic organ, so it is easily deformed by the patient’s respiration,
and it also moves along with body movement. Since there is an interval of several
minutes between the taking of early and late phase images of CT angiography,
non-rigid registration is required for the evaluation of CT value transition. To
align the early and late phase images, we used non-rigid registration using the
free form deformation technique proposed by Rueckert et al. [9]. This non-rigid
registration uses normalized mutual information as a similarity criterion. The
early phase image is deformed based on the B-spline interpolation. Fig.6 shows
examples of the integrated pre-registration of early and late phase images and the
results of non-rigid registration of the two images. The chess-board visualization
technique was used to show the results. Brighter rectangles correspond to the
late phase image.
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(a) (b)

Fig. 6. The chess-board visualization of (a):pre-registration images and (b):the results
of non-rigid registration

5 Elimination of False Positives

As mentioned in section 2, the CT value of the cancer lesion is higher than that
of surrounding tissues in the early phase image and lower in the late phase image.
False positive regions are eliminated by evaluating this phenomenon through the
following procedure.

1. Definition of region of interest (ROI)
The ROI is defined for each cancer candidate in order to include normal liver
tissue around the cancer candidate region (CCR). The shape of the ROI is
a rectangular parallelepiped, whose edges are parallel to the image axes. It
is similar to the rectangular parallelepiped circumscribing each CCR. The
ROI’s center of gravity coincides with that of the CCR, and the volume of
the ROI is determined to be 20 times that of the CCR. The volume of voxels
outside the liver region is not taken into account in the ROI’s volume.

2. Making a joint histogram of the ROI
A joint CT value histogram of the ROI obtained using registered early and
late phase images is calculated. This two-dimensional histogram has one
large peak corresponding to the normal tissues around the CCR (see Fig. 7).

3. Estimation of normal tissue distribution
In this step, the distribution of CT values of normal tissues around the
CCR is estimated from the joint histogram. Most of the voxels in the ROI
correspond to normal tissues. The joint histogram is projected onto each
axis by the maximum intensity projection method. Then, the distribution
of normal tissues is defined by the intersection of the following two closed
intervals.
[μx − 0.5σx, μx + 0.5σx],
[μy − 0.5σy, μy + 0.5σy],
where μx and σx are the average and standard deviation, respectively, of the
curve projected onto the early phase axis, and μy and σy are those for the
late phase axis.
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Fig. 7. Example of joint histogram

4. Estimation of the lesion’s distribution
Because the CT value of a cancer lesion is higher than that of normal tissues
in the early phase image and lower in the late phase image, voxels satisfying
both of the following conditions are detected as the cancerous region.
– CT value of early phase is higher than μx + 0.5σx

– CT value of late phase is lower than μy − 0.5σy

Let H be the number of voxels in each CCR.
5. Elimination of false positives

If H is small relative to the CCR volume, such a CCR might be a false
positive region. Actually, all CCRs that satisfy the following condition are
eliminated as false positives.
H/(S − C)× 100 < T3,
where S is the volume of CCR and C is the volume of cyst in the CCR.
The CT value of the cyst is relatively low and hardly changes in the CT
angiogram. In this experiment, voxels with a CT value lower than 50 [H.U.]
were attributed to the cyst in the CCR.

6 Experiment

The procedure mentioned above was applied to 21 cases of multi-phase abdom-
inal X-ray CT images. Every image was a slice with a size of 512× 512 [points]
having spatial resolution of about 0.6 [mm]. Nineteen cases were taken from a
4-line MDCT device and had a beam thickness of 2 [mm] and reconstruction
interval of 1 [mm]. The other two cases were taken from a 16-line MDCT device

Table 1. Image specification of CT images

Image size 512 × 512
# of slices 161∼464

Pixel size[mm] 0.546∼0.625
Reconstruction pitch[mm] 0.5∼1.0

Slice thickness[mm] 1.0∼2.0
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and had a beam thickness of 1 [mm] and reconstruction interval of 0.5 [mm].
Seventeen cases included one or more liver cell cancers and the other four cases
had no cancer lesions. The image specifications are shown in Table 1. Threshold
values were set to T1 = 15, T2 = 13,and T3 = 16, experimentally.

7 Results

The experimental results show that the average number of false positives per
case was 0.33 with sensitivity of 100%. This result is promising because it shows
fewer false positives per case for the same database than refs. [3] and [4], which
had 0.71 and 0.53, respectively. Fig. 8 shows a free-response receiver operating
characteristic(FROC) curve drawn by changing the threshold value T3. Some
detection results are shown in Fig. 9 and 10. False positives that still remained
were located at the border of the liver. The cancer lesion corresponding to the
minimum value of the false positive elimination criterion makes it difficult to
improve accuracy. In this experiment, extraction of the precise border did not
work well because this lesion was surrounded by many cysts.

Fig. 8. The FROC curve drawn by changing the threshold value T3

(a) (b) (c) (d)

Fig. 9. Examples of detection results. Regions surrounded by the black line are the can-
cer lesions detected correctly. Regions surrounded by the white line are false positives
eliminated correctly.
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(a) (b)

Fig. 10. Volume rendering views of results. Yellow regions are the cancer lesions de-
tected correctly. Blue regions are false positives eliminated correctly.

8 Conclusion

This paper presented a novel computer aided liver cancer detection system for
three-dimensional CT angiogram. The concept consists of the following.

– Integration of the early and late phase images by non-rigid registration
– Quantification of the density transition state, which is an important diag-

nostic finding, for each cancerous region detected by spatial density analysis

First, spatial density analysis is used to detect ambiguous three-dimensional hol-
lows as cancer candidates and form a precise region from partial border voxels.
Then, spatiotemporal density feature analysis of the two aligned images (early
and late phase images) is performed to eliminate false positives. Experimental
results showed that the number of false positive regions per case was 0.33 with
sensitivity of 100%. This is superior to previous work using the same image data-
base [3, 4]. In the future, we plan to perform fine registration for each ROI to
eliminate false positives and develop some new features to reduce false positives.
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Abstract. A fast block matching algorithm, namely Fast Walsh Search, is pro-
posed for motion estimation in block-based video coding. In our approach, tar-
get blocks in current frame and their candidates in reference frame are projected 
onto Walsh Hadamard domain, allowing early rejection of mismatch candidates 
to reduce computation requirement. Moreover, we introduce a new method 
called block pyramid matching that re-uses many previous calculations to fur-
ther lessen the computation load of our approach.  Experimental results show 
that the proposed algorithm can achieve more accurate motion estimation than 
the popular three-step-search and diamond search with slight increase in com-
putation requirement only. 

1   Introduction 

Most video coding standards use motion compensation to reduce temporal redun-
dancy. Motion compensation requires block matching which is to find a matching 
block in the reference frame that is close to the target block in the current frame. The 
displacement vector of the matching block is called motion vector, therefore block 
matching is also called motion estimation.  Full search block matching (FSBM) algo-
rithm exhaustively searches through all possible locations in the search window to 
obtain the matching block that has the least matching error with the target block. 
However, the computation requirement of FSBM is too high for real-time applica-
tions.  Fast search algorithms such as three-step search (TSS) [4], four-step search 
(FSS) [5], new three-step search (NTSS) [6], and diamond search (DS) [7] were de-
veloped, which can reduce the computation time significantly at the cost of higher 
matching error.  These algorithms find the minimum error using a gradient-descent 
approach which implicitly assumes that there is no local minimum. 

Recently developed video coding standards such as H.264/AVC [8] use Walsh  
Hadamard Transform (WHT) to compress DC coefficients. Meanwhile, Hel-Or et al. 
[1, 2] proposed a real time pattern matching algorithm which works in the Walsh 
Hadamard (WH) domain. Their matching algorithm first computes a distance using a 
few WHT coefficients to perform early rejection of mismatch patterns and then focus 
on a small number of remaining candidates that are more likely to be a correct match 
of the pattern. Their proposed algorithm reduces computation overheads in WHT by 
an efficient pruning algorithm in which the intermediate data is effectively exploited. 

Motivated by [1, 2, 8], we propose a “Fast Walsh Search” (FWS) that performs 
block matching in the WH domain. Although it is straightforward to perform motion 
estimation in spatial domain [4, 5, 6, 7], our proposed algorithm requires only slightly 
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more computation than that of TSS and DS and achieves a more accurate block 
matching in terms of mean square error (MSE). The high efficiency is because of the 
pattern matching algorithm suggested by Hel-Or et al. [1, 2] as well as a new match-
ing technique called block pyramid matching (BPM).  

This paper is organized as follows. Section 2 introduces the proposed fast motion 
estimation algorithm in WH domain.  Section 3 describes the proposed block pyramid 
matching. Experimental results and conclusions are given in the Sections 4 and 5 
respectively. 

2   Fast Block Matching in Walsh Hadamard Domain 

2.1   Walsh-Hadamard Transform  

WHT BPs contain only ±1 and so the projections of a block of pixels on 2D WH 
domain require additions and subtractions solely. A particular 2D WHT coefficient of 
a k×k block is obtained by projecting the block on the corresponding k×k WHT BPs 
where k=2n, n∈Z+. In the following, we shall represent a k×k BP by a vector h(m,n) in 
ℜk×k where m and n are the number of zero-crossing in horizontal and vertical direc-
tion respectively. The BPs of an 8×8 block are shown in Fig. 1. 

In our approach, we follow the same zigzag path as in [1, 2] where the projections 
on WHT BPs are performed in increasing sequency (the number of zero-crossings 
along rows and columns) order. In general, the energy of WHT coefficients of an 
image decreases along the zigzag order [2, 3]; therefore the projections onto the first 
few WHT BPs capture a large proportion of information of an image. Hel-Or et al. 
has utilized this energy packing property in his fast pattern matching algorithm [1,2] 
which is a pruning algorithm that re-uses many intermediate results to further reduce 
the computation requirements of the WHT.  In this paper, we adopt the same idea to 
develop a block matching algorithm in WH domain. 

2.2   Proposed Block Matching System 

Motion vector estimation is an important step in video compression. Motion vectors 
can be estimated by block matching algorithms that minimize a measure of matching 
error. Suppose the matching error between the target block at position (x,y) in the 
current frame Fc, and the reference block at position (x+u, y+v) in the reference frame 
FR is E(u,v). The motion vector )ˆ,ˆ( vu  is defined as: 

),(minarg)ˆ,ˆ(
),(

vuEvu
Svu ∈

=  
(1) 

where S={(u,v)|-R≤u,v≤R} is the candidate set, and R is the maximum search  
distance. In most cases, sum-of-absolute difference (SAD) between the target block 
and the reference block as given in (2) is used as the matching error because of its 
simplicity. 
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where k is the block size. 
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Fig. 1. BPs [1, 2] of 8×8 WHT 

In this paper, we propose to perform block matching in WH domain and a partial 
absolute distance (PAD) Φp(u,v;q) is used as the matching error to reduce the compu-
tation requirement where q is the number of projections onto the WHT BPs. PAD 
may be regarded as an approximation of the SAD but requires significantly less com-
putations. We shall show that block matching using PAD can find matching blocks of 
mean square error very close to that of SAD. 

Suppose a k×k target block at (x,y) in current frame Fc is matched with a reference 
block of the same dimension at (x+u,y+v) in its search area in reference frame FR . 
The target block and the reference block are represented by vectors bT at (x,y) and bR 
at (x+u,y+v) respectively in space ℜk×k. A difference vector d between bT and bR is 
defined as 

           RT bbd −= . (3) 

The SAD d between the reference block and the target block is shown in (4) where 
||.||p is the p-norm of a vector. 

            
11 RT bbd −==d  (4) 

Let Sq be a set of index (m,n), and each of them represents the number of horizon-
tal and vertical zero-crossing of the first q BPs along the zigzag path. Projecting bT 
and bR onto BPs with indices in Sq, we get sets of cT(x,y;m,n;k) and cR(x+u,y+v;m,n;k) 
respectively.  The Φp(u,v;q) between bT and bR is then defined by projecting d onto q 
WHT BPs as shown in (5).   

If an additional WHT BP h is added into Sq, then PAD can be refined iteratively 
using (6) and becomes closer to SAD. Those reference blocks with PAD greater than 
a given threshold TΦ will be rejected, and we search for the best match among the 
remaining candidates only. 
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Fig. 2.  Flowchart of the proposed FWS system 

The proposed motion estimation algorithm can perform fast block matching be-
cause of two reasons. Firstly, the low sequency order WHT BPs are highly probable 
to be parallel to the difference vector d so that the first few projections can acquire 
most of the distance between the targets block bT and their candidates block bR. The 
second reason is the fast pruning algorithm of WHT, which computes the projections 
of the candidates in reference frames onto various BPs efficiently. We use a recursive 
structure of Walsh Hadamard tree [1, 2] in which the calculations applied to one can-
didate in reference frame or one BP projection are exploited when the projections of 
candidate or the projections onto another BP are computed.  

The flowchart of the algorithm is shown in Fig. 2. To begin with, our algorithm 
computes PAD of each candidate in reference frame according to the corresponding 
WHT coefficients of the target blocks and reference blocks. If the PAD of a candidate 
is greater than a given threshold TΦ ,  the location will be rejected. The remaining 
candidates in the reference frame are projected onto the higher sequency order WHT 
BPs. The PAD comparison repeats until a predefined number of projections is reached 
because the block matching in the WH domain is efficient only when the number of 
projections is small. We found that efficient block matching completely in WH do-
main is still possible by using a technique called pyramid block matching, which will 
be explained in the next section. In our implementation, only two projections are used 
to find the PAD.  More projections require more computation but do not reduce MSE 
significantly.  

The computation of PAD includes the transformation of frames, and the accumula-
tion of absolute differences of WHT coefficients.  Transforming reference and target 
frames requires about 8 operations, which include additions, subtractions, and abso-
lute, per pixel for 2 projections 8×8 block [2, 3].  Total number of operations per pixel 
required to find PAD of the first and the second projections for one block is 

        ( ) ( )1
2

2, 3212
1

PR
k

N PADo ++=  (7) 

where P1 is the percentage of candidates remains after first projection.   

3   Block Pyramid Matching 

Hel-Or et al. suggest that the best matching position is the one with the minimum 
sum-of-squared distances (SSD) among the remaining candidates. However, the com-
putation requirement of SSD is heavy, and we propose to use a block pyramid match-
ing scheme to find a distance approximating the SAD such that computation can be 
reduced while not affecting the MSE performance much.  In the first stage of BPM, 
each k×k block in reference frame and current frame is decomposed into four non-
overlapping k/2×k/2 sub-blocks, and the projection of each k×k block onto h(0,0) 
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(a) (b) 

Fig. 3. Illustrate the locality relationship between  (a)  the WHT coefficient of the k×k block 
and (b) that of its corresponding  k/2×k/2 sub-blocks 

 
(shaded box in Fig. 3a) is expressed as the sum of projections of the corresponding 
sub-blocks onto h(0,0) (shaded boxes in Fig. 3b). Therefore, Φp(u,v;1) can be formu-
lated as (8) when k=8. 
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The relationship of the coefficient of blocks and their sub-blocks is illustrated in 
Fig. 3. We define the first level BPM estimation based on the projection onto h(0,0) as 
E1(0,0), and it is shown in (9). 
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Because of Triangular Inequality in (10),  
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where aj∈R and M∈Z+, E1(0,0) is closer to the SAD than Φp(u,v;1), but is still smaller 
than or equal to the SAD. In other words, E1(0,0) is a more accurate estimation of the 
SAD than Φp(u,v;1), i.e.  

)1;,()0,0(1 vuEd pΦ≥≥  (11) 

It should be noted that the projection of k/2×k/2 sub-blocks onto h(0,0) are the inter-
mediate data in the calculation of the WHT coefficient of k×k blocks using the recur-
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sive WH tree [1,2] . As a result, evaluating E1(0,0) requires much fewer computations 
than that of SAD, and contribute to the success of our fast block matching algorithm. 

In the second stage of BPM, each k/2×k/2 sub-block is further decomposed into 
four k/4×k/4 sub-blocks. The projection of each k/2×k/2 sub-block onto h(0,0) (shaded 
box in Fig. 4a) can be expressed as the sum of four projections of the corresponding 
sub-blocks onto h(0,0) (shaded boxes in Fig. 4b), which are available when we calcu-
late the WHT coefficient of k×k blocks.  In this stage, the k×k block is divided into 
sixteen k/4 × k/4 sub-blocks.  The first level BPM estimation E1(0,0) can then be ex-
pressed as (12). 
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Similar to the first level BPM estimation, we define the second level BPM esti-
mation E2(0,0) based on the projection of h(0,0) as 

)0,0(

4,0 4,0 2,0 2,0
2

)
4

 ;","()
4

 ;","(

)0,0(
h

= = = =

++−
= i j m n

RT

k
vyuxc

k
yxc

E . (13) 

Because of Triangular Inequality, E2(0,0) is more accurate to approximate d than 
E1(0,0) as shown in (14).  Theoretically blocks can be decomposed further until the 
block size becomes one.  In that case the BPM estimation becomes the SAD itself.    

)1;,()0,0()0,0( 12 vuEEd pΦ≥≥≥  (14) 

In our previous discussion, we concern with the BPM based on the projection  
onto h(0,0) only. It can be shown that E1(0,0) is also the first level BPM based on the 
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Fig. 4. Illustrate the locality relationship between  (a)  the WHT coefficients of the k/2 × k/2 
block and (b) that of its corresponding  k/4 × k/4 sub-blocks 
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projection onto h(a,b) where 0≤a,b≤1. Similarly, E2(0,0) is the second level BPM based 
on the projection onto h(c,d)  where 0≤c,d≤3, i.e. 

        E1(a,b) = E1(0,0) (15) 
        E2(c,d) = E2(0,0) (16) 

where 0≤a,b≤1 and 0≤c,d≤3.  

Therefore, when we compare E1(0,0) or E2(0,0) of the target block and the refer-
ence blocks, we have already compared their E1(a,b) or E2(c,d) where 0≤a,b≤1 and  
0≤c,d≤3 respectively. In other words, we have used the information from the projec-
tions onto higher sequency order WHT BPs to get more precise similarity evaluation 
when we compare the corresponding E1(0,0) and E2(0,0) of the target block and the 
reference blocks. 

In the proposed algorithm, after rejecting candidates in reference frame using 
PAD, the best K1 % of the remaining candidates, i.e. those with the least PAD, will go 
through the first level BPM in which the E1(0,0) difference between the target block 
and the remaining candidates are computed. Then, the best K2% candidates after first 
level BPM will be further examined by evaluating their E2(0,0) difference. The candi-
date with smallest E2(0,0) difference between the target block is elected as the best 
match of the target block, and will be regarded as the location pointed by the corre-
sponding motion vector. Assuming the maximum allowed candidates are used for first 
and second stage of BPM, the number of operations required to find the best match 
per pixel is 
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4   Experimental Results 

We applied the FWS to 80 frames of three standard sequences:  Football, Foreman, 
and Stefan with k=8 and R=16.  For each candidate in reference frame, the maximum 
number of projections allowed is two and the remaining candidates will go through 
BPM.  The threshold TΦ is 10.  For BPM, K1=10% and K2=5%. 

4.1   Computation Requirement 

Finding the SAD of a k×k block requires k2 subtractions, k2 absolute operations, and 
k2-1 additions; therefore, the total number of operations is 3k2-1.  In FSBM, the num-
ber of candidate for each block is (2R+1)2, and each frame with A number of pixels 
has number of blocks A/k2.  Then the total number of operations No,FS required per 
pixel is 

( )13)12(
1 22

2, −+= kR
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. (18) 

With k=8 and R=16,  No,FS = 3245. On the other hand, TSS has only 8log2R+1 candi-
dates for each block, therefore, the total number of operations per pixel, No,TSS, becomes 
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In our experiment, No,TSS = 98.  Since DS has no fixed number of search points, its 
computation varies for different videos.  According to [7], DS has a computation of 
about 80% of TSS. Similar to DS, the computation of FWS also varies for different 
videos since the numbers of remaining candidates after each projection are different.  
Experimental results show that around 40% of candidates remain after first projection, 
and 25% remains after second projection. Table 1 shows the total number of addition, 
subtraction and absolute operations required per pixel for FS, TSS, and FWS.  
The computation of the proposed FWS includes WHT of frames, PAD, and BPM 
computations.  FWS usually requires about 20% more computation than TSS.   
Because the intermediate data in the recursive WH tree are reused, more memory is 
needed compared to FS and TSS.   

4.2   MSE Performance 

Experimental results show that two projections are enough and additional projections do 
not reduce MSE significantly, but will increase the computation time.  About 75% of 
candidates will be eliminated after two projections. Table 2 shows the average MSE 
over 80 frames of the three sequences using different algorithms and Fig. 5 shows the 
MSE of the each frame.  The performance of FWS in terms of MSE is very close to FS, 
but the computation required is only a little bit more than TSS.  TSS and DS, while 
much faster than FS, produce MSE which are significantly larger than FS and FWS.   

Replacing SAD by BPM after two projections can significantly reduce computa-
tions. The resultants MSE, however, are not affected much. Table 3 shows the  
increase in MSE when SAD is replaced by BPM.  On average, the MSE is increased 
by merely 5%.  

Table 1.  Operations per pixel needed for different search methods 

Sequence FS TSS FWS 
Foreman 3245 98 118 
Football 3245 98 126 
Stefan 3245 98 123 

Table 2.  Average mean-squared-error of 80 frames 

Sequence FS TSS DS FWS 
Foreman 31.5 41.1 36.4 34.5 
Football 94.4 167.0 220.0 155.4 
Stefan 142.5 341.1 308.0 181.3 

Table 3.  MSE comparison of SAD and BPM 

MSE 
Sequence 

SAD BPM MSE 
Foreman 32.8 34.5 +5.4% 
Football 148.8 155.4 +4.4% 
Stefan 169.2 181.3 +7.1% 
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(a) (b) 

 
(c) 

Fig. 5.  MSE plots for sequence (a) Foreman  (b) Football  (c) Stefan 

5   Conclusions 

A fast block matching method, FWS, which is based on a pattern matching algorithm 
in Walsh Hadamard domain, is proposed in this paper. The computation requirement 
is similar to the three-step-search, but the accuracy is comparable with the full-search 
method.  Efficient projection scheme is utilized for fast WHT. Furthermore, we ex-
ploit the intermediate results in WHT calculation to reject candidate blocks that are 
unlikely to be a good match. Both measures significantly reduce computations in the 
block matching process.  Experimental results show that the performance of FWS in 
terms of MSE is very close to that produced by full search algorithm. 
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Abstract. Many active safety technologies for the driver support system are 
developed. Most of the traffic accidents are caused by driver’s inattentive or 
drowsy. We are developing a driver support system that protects from traffic 
accidents by these causes. Our purpose is to detect the driver’s face region. A 
lot of face detection methods are proposed, but there is not a technique 
addressing every environment inside the car. In this paper, we propose a skin 
detection method by the unique reflection characteristics of the materials. We 
developed the skin detection system, and confirmed the effectiveness by the 
evaluation experiment. 

1   Introduction 

In recent years ITS technologies are developed and used practically in various fields 
[1]. A study of the Advanced Safety Vehicle (ASV) becomes popular. A lot of 
researches of the system to improve safety, operability and convenience by a camera 
put on outside and inside of the car are proposed [2][3][4]. 

We are developing a system that supports the driver by estimating state of the 
driver. At first, to estimate state of the driver, a face region of the driver has to be 
detected from the input image. A lot of face detection methods are proposed [5][6][7], 
but these does not yet address all environment in the car. Usually, most methods use 
skin color segmentation [8] and template matching [9]. There methods have many 
problems which are influence of lighting conditions, matching error, the calculation 
cost and etc.. 

We had proposed the face region detection system by switching ON/OFF of near 
infrared (IR) light and using a band-pass filter [10]. However, it is difficult to 
distinguish the face and the headrest, because the region which is illuminated IR was 
defined face region. 

Therefore we paid attention to the reflectance characteristics of individual material 
in the near IR spectrum. Considering about the face, there is much difference in the 
reflection characteristic of the material between hair and skin. Therefore, we can 
detect skin region if the feature of the reflection characteristic is extracted. In 
addition, we can irradiate strong IR light enough to detect, because near IR light is 
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invisible to the human eye. The purpose of our research is to extract the material of 
skin by the near IR spectrum multi-band directly. 

2   System Configuration 

In this research, the camera is installed on front of the meter as shown in Fig.1, and 
we studied basic experiment and verification in the room. Fig.2 shows the overview 
of this system. CCD camera and the near IR illuminator are set up for driver's face. 
The image is acquired by using near IR-LED for the irradiation equipment by 
installing near-IR penetration filter (IR-Pass-Filter) that penetrates only the near-IR 
light in the camera. 
 

 

Fig. 1. Camera position                                  Fig. 2. System configuration 

2.1   Effectiveness of Near IR Light 

This system illuminates light to the driver's face and takes the image. This chapter is 
considered the selection of the band wavelength for the irradiation equipment. 

In the case of using visible light, skin region is detected by using the skin color 
segmentation. In the nighttime, it is necessary to illuminate strong light to the driver 
in the dark car. This light will be stress dazzling, and of cause it will be an obstacle to 
driving. Therefore, it is difficult to use only a visible optical band. 

 

Fig. 3. Solar radiation spectrum at the earth's surface 

Wavelength (nm) 
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On the other hand, in the case of using IR light, this light does not give the stress 
for driver, because it is invisible. Therefore, enough level of light can be illuminated 
even if it is in the night. Fig.3 shows spectrum distribution of the sun light. In Fig.3, 
IR light intensity is less than visible light intensity. 

Therefore, by using a filter that penetrates only IR light (IR-Pass-Fi1ter) and a 
specific band wave length (BP-IR-Fi1ter), it is able to construct the illuminant system 
that is not influenced by ambient light such as the sun light. Consequently, the 
effectiveness of the near IR light can be shown. 

3   Detection Method of Skin Region 

3.1    Reflection Characteristic of Skin and Hair 

Fig.4 shows the reflection characteristic of the skin and the hair [11]. It is generally 
said that the visible optical area is 380~760nm, and the near-IR radiation area is 
800~2400nm. 

We defined that the region 800~1400nm is the lower band and the region 
1400~2400nm is the upper band in the near IR region. It is shown in the Fig.4 that the 
skin the lower near IR band more than the hair. On the other hand, the hair reflects the 
upper near IR band more than the skin. Therefore, the skin can be detected by taking 
subtraction between the irradiation image of a lower band and the irradiation image of 
the upper band. 

 

Fig. 4. Reflectance characteristics of skin and hair 

Dowdall developed a multi-band system by three bands of the visible band, the 
lower band and the upper band, and he proposed a technique for detecting the 
camouflaged person by the method of the skin region detection [12]. He used three 
cameras corresponding to those bands. Therefore, three cameras for each light source 
and three wavelengths were needed. 

The purpose of this paper is to propose a technique for extracting the material of 
the skin that composes the face by only one camera and two wavelengths. We propose 
a face extraction technique based on the characteristic of the materials. 
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3.2   Near-IR Multi-band Illuminant 

The camera which has dynamic sensitivity range from the lower band to the upper 
band is very expensive. But, the camera of this system is required to be inexpensive. 
We use the CCD camera with sensitivity range 400~1000nm which is XC-EI50 made 
by SONY. 

The available sensitivity band is limited as had described in the preceding chapter. 
Therefore, we choose 870nm and 970nm as the spectrum of multi-band. Table 1 
shows the reflection characteristic of the skin and the hair between these two 
wavelengths. 

Table 1. Difference of reflection characteristic of skin and hair 

Skin The reflectivity of 870nm is higher 
Hair The reflectivity of 970nm is higher 

 
The irradiation equipment is made by using two kinds of IR-LED with different 

output wave length [13]. Fig.5 shows the arrangement pattern of IR-LED of two 
wavelengths. The diffusion filter which is set in front of the illuminator was resolved 
the inhomogeneous irradiation of two wavelengths. 

The output of IR-LED is set at the level that there is no influence on the human 
body according to JIS (Japanese Industrial Standards). 
 

 
Fig. 5. LED arrangement pattern 

4   Fundamental Experiment in Indoor Environment 

The preceding chapter showed a method to distinguish each material by detecting the 
reflection characteristics of skin and hair. In this chapter, we considered the 
effectiveness of this method in indoor environment. 

4.1   Skin Detection Method 

We can distinguish a material of the skin or the hair by only subtraction of two 
images which are taken with irradiating two several frequencies. 

At first, an image irradiated 870nm is taken, and then an image irradiated 970nm is 
taken by same method. Fig.6(a) is an image irradiated 870nm, and Fig.6(b) is an 
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image irradiated 970nm. These images are defined I870 and I970. Let f870(i,j) and f970(i,j) 
be pixels of images I870 and I970, the subtraction value fs (i, j) is expressed eq.(1). 

fs (i,  j) = f870 (i, j) – f970 (i, j) . 

                                    I870 – I970 = fs (i, j) . 
(1) 

In a wavelength of 870nm, the skin is the material that the reflection rate is high. 
Therefore, the difference value fs (i, j) becomes a positive value. On the other hand, 
the difference value fs (i, j) of hair becomes a negative value. The background where 
light does not reach is removed by subtraction. 

The subtraction image Is is expressed as follows. n is normalization value. 

Is  = fs (i,  j) × n . (2) 

 

 

Fig. 6. Irradiation image each wavelength 

 

Fig. 7. Subtraction result 

 

Fig. 8. Skin region detection 

(a)  Positive value (a) Binarization 

(a) 870nm (b) 970nm 

(a) Binarization (b) Skin region 
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Fig.7(a) shows region of positive difference values, and the skin region is detected. 
Fig.7(b) shows region of negative difference values, and also the hair region is 
detected. 

It is easy to detect the skin region or the others. To detect the skin region, at first, 
the image which has a positive value is binarized (as shown Fig.8(a)). The image of 
Fig.8(b) shows the hugest region of the binarized image by the labeling operation. We 
see from Fig.8(b) that the search result is skin region. 

4.2   Normalization of Distance 

The unique reflection characteristic of the material is extracted by simple subtraction 
(eq.(1)). However, the subtraction value is influenced by the attenuation of light when 
the distance for the subject changed. A face position is not fixed at all in a driving 
person. Therefore, the subtraction value has to be normalized in distance. We 
normalize the subtraction value to distance. The normalized value f (i, j) is expressed 
in eq(3). 

fn (i, j) = f870 (i, j) – f970 (i, j) / f870 (i, j) + f970 (i, j) 

                                                                                      [-1 < fn (i, j) < 1] 
(3) 

Since attenuation of light of two lengths are linear level corresponding to distance, 
the normalized value will be equal even if any distance. The subtraction image In is 
expressed as follows. m is normalization value. 

In =  fn (i, j) × m . (4) 

Fig.9(a) shows region of positive difference values, and Fig.9(b) shows region of 
negative difference values. 
 

 

Fig. 9. Subtraction result by eq.(4)                  Fig. 10. Normalization image 

Noise is occurred in two images as shown in Fig.9. This cause is that it is 
influenced a value of the denominator greater than the molecule in eq.(3). 

However, as for the molecule and the denominator of eq.(3), the attenuation of 
light is stored in the both values. Therefore we gave the condition types as follows. 

max( f870 – f970 , p ) . (5) 

max( f870 + f970 , q ) . (6) 

(a)  Positive value (b) Negative value (a)  Positive value (b) Negative value 
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When the subtraction value is smaller than p of error, the region of the value is 
considered a background (as shown in eq.(5)). In the same reason, when the sum 
value is smaller than q of the attenuation of light, the region of the value is considered 
background (as shown in eq.(6)). The subtraction image is taken from two input 
images of Fig.6 by adding the condition types. Fig.10(a) shows region of positive 
difference values, and Fig.10(b) shows region of negative difference values. 

In Fig.10, influence of background is decreased, and the reflection characteristics 
are extracted then Fig.9. Furthermore, influence of shape of a face is decreased then 
Fig.7(a). Therefore, the reflection characteristic of skin is clearly appeared. 

4.3   Comparative Experiments for Distance 

We conducted comparative experiments about the technique of normalization by 
eq.(3). We show an experiment procedure in the following. 

We experimented in the room, and the illumination environment is a general 
illumination. The subject is the same person. We took the images of two lengths in 
distance of 50cm~80cm with an interval 10cm from the system. We calculated each 
subtraction values by eq.(1) and eq.(3). For eq.(3), parameters were set as p=3, q=10 
in eq.(5) and eq.(6). We took average of the positive difference value as skin region. 
The graph in Fig.11 shows the subtraction values in each distance. The both 
difference value are normalized in -1<N<1. 

From Fig.11, the values of eq.(3) are stably in any distances. Consequently, the 
subtraction value in material distinction is stable, besides setting of the threshold 
becomes easier. 

 

 

Fig. 11. Average value of the difference of two methods 

4.4   Experiments of Skin Region Detection 

We experimented skin region detection by using eq.(3). The experimental condition is 
same as previous experiment. The subjects were twenty four men and four women 
sum total twenty eight, and nobody wear glasses. Results were checked the success or 
failures from manually check. In the case of detecting skin region, it was evaluated 
success. 
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Fig.12 shows examples of the subtraction image as a result of experiment. Fig.12 
takes a look at some examples of man and woman. Fig.12(a) shows region of positive 
difference values, and Fig.12(b) shows region of  negative difference values.  

From the result, 100% (28/28) detection rate was given in indoor environment. 
 

 

Fig. 12. Examples of experimental result 

5   Experiments in the In-Vehicle Environment 

In the preceding chapter, it was suggested the skin detection method and observed the 
effectiveness of our method by the basic experiment in the room. Therefore, we 
experimented it on the car in the night when skin color detection is impossible. 

5.1   Experiment Method 

We experimented on the in-vehicle environment to confirm the effectiveness of our 
method in the night. The experimental time is the approx. 20 minutes ride in the urban 
area from the suburbs without a streetlight. The experiment has done at 19:00 after 
sunset. A subject did not wear glasses. Results were checked the success or not from 
manually check. In the case of detecting skin region, it was evaluated success. 

The irradiation method is devised because a subject did not always stop in the 
driving. When we got an image of NTSC, the illuminator emitted light of 870nm at 
the time of odd number field in one frame, and emitted light of 970nm at the time of 
even number field. Fig.13 shows a provided image. This method can get two 
wavelength images from one NTSC image. Therefore, real-time processing of 30 
frames second is enabled without reducing the frame rate. It was able to take in 
influence from rolling of the head of a driver. 

 

 

Fig. 13. Input image in the experiment 

(d) Even number field 
(a) Input image (b) Augmentation image 

(c) Odd number field 

(a)  Positive value 

Man 

(b)  Negative value 

Woman

(a)  Positive value (b)  Negative value 
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5.2   Experimental Result of Night Driving 

As well as shine of street lights of a town area, light of headlights of oncoming cars 
illuminated the face of a driver. There was not the influence of those light. Because of 
the system was set the filter transmitting only by near IR light in front of the camera, 
and illuminated strong near IR spectrum than ambient lights. 

As a consequence of this experiment, face region detection rate was 100% 
(36000/36000 [frames]) for 20 minutes from the suburbs to the urban area. 

6   Conclusion 

We proposed that detection method of the skin region by focusing on the unique 
reflection characteristic in materials of skin and hair. By using multiple near IR bands, 
the skin region is easily detected only by subtraction of the two images. We 
confirmed the effectiveness in indoor environment by the evaluation experiment and 
stability by the distance normalization to the subject. Furthermore, it was shown that 
this method is effective by the in-vehicle experiments. 

Near IR light is invisible to the human eye the system cannot be stress dazzling in 
the night. Moreover, this method can extract directly material of human skin. 
Moreover, the system cost and the calculation cost are a few because the system and 
the algorithm are simple. 

For future work, we are going to experiment in-vehicle environment, and develop 
this method’s application for detection inattentive and drowsy driving. 
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Abstract. In this paper, we design and implement a novel method for construct-
ing a mixed triangle/quadrangle mesh from the 3D space curves (rims) estimated
from the profiles of an object in an image sequence without knowing the original
3D topology of the object. To this aim, a contour data structure for represent-
ing visual hull, which is different from that for CT/MRI, is introduced. In this
paper, we (1) solve the “branching structure” problem by introducing some ad-
ditional “directed edge”, and (2) extract a triangle/quadrangle closed mesh from
the contour structure with an algorithm based on dynamic programming. Both
theoretical demonstration and real world results show that our proposed method
has sufficient robustness with respect to the complex topology of the object, and
the extracted mesh is of high quality.

1 Introduction

In 3D model reconstruction from image sequences, silhouettes are often a reliable and
obvious feature that can be extracted from the images easily. With the knowledge of
the epipolar geometry, which governs the relative positions and orientations between
cameras, it is possible to recover the 3D space curves lying on the surface of the object
that are projected onto the images as the silhouettes. In the literature, such 3D space
curves are known as contour generators or rims.

Various techniques[1, 2, 3] have been developed for estimating rims from silhouettes.
The rims so obtained carry not only 3D positional information of the space curves, but
also surface information like the surface normal. It is desirable to extract a surface
representation of the object from the rims. However, this is not a trivial task as the rims
cannot be recovered perfectly. Very often, the rims recovered may be discontinuous due
to self-occlusion. Besides, they may intersect with each other at frontier points (see
[1] for details). The points forming the rims are also not evenly spaced. Hence, direct
triangulation of the points on the rims using existing algorithms often cannot produce
satisfactory results.

In this paper, a novel method for constructing a surface mesh from the rims es-
timated from the silhouettes is introduced. Instead of triangulating the rims points di-
rectly, the rims are first re-sampled by evenly spaced parallel slicing planes. The sample

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 732–741, 2006.
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points on each slicing plane then forms the 2D cross-section contours of the object. The
problem of forming a surface mesh is then converted into the problem of joining these
cross-section contours on adjacent layers. Unlike cross-section data commonly seen in
MRI/CT related research, we observe that the contours recovered from silhouette data
do not always overlap with each other. This is the well-known problem of ”branching
structure” in MRI/CT visualization. A method based on “directed edge” is introduced
here to solve this problem. By exploiting the dynamic programming (DP) techniques, it
is shown that the mesh ‘belt’ can be reconstructed from two adjacent cross-section con-
tours with a low computation complexity, which is linear to the product of the numbers
of the mesh vertices on the two contours. This technique also allows us to build a high
quality mesh in terms of surface smoothness.

Another contribution of this paper is that the final surface can be presented in the
form of a mixed triangle/quadrangle mesh, which can be rendered more efficiently than
the pure triangle mesh. The mixed triangle/quadrangle mesh has only been used in mesh
subdivision and mesh edit, and it is the first time that it is extracted directly from image
data.

The latter of this section gives the overview of related works. Section 2 presents the
theoretical background of mesh. Section 3 describes the algorithms and implementa-
tions for extracting a mesh surface from the rims. Experimental results from real models
will be given in Section 4, and Section 5 concludes this paper.

1.1 Related Works

In the literature, there have been some related researches that attempt to extract a mesh
from the rims of an object. In [2], the triangular mesh is extracted directly based on the
relationship between neighboring rims with minimal computation complexity. How-
ever, such a relationship between rims will not hold if the rims are fragmentary, and this
happens quite often for complex shapes with non-zero genus. Note that this approach
makes no guarantee on the quality nor the obturation of the outcome mesh.

Since the connectivity information is implied for points recovered along the rims,
such points can be reformed into another data structure which makes the surface extrac-
tion easier. In this paper, the rims are re-sampled into cross-section contours. There are
numerous researches on the contour data, but most of them are based on contour data
derived from CT/MRI. In [4], Cong and Parvin recovered a surface from planar sec-
tional contours based on the “Equal Importance Criterion” which suggests that every
point in the region contributes equally to the reconstruction process. This algorithm de-
rives the iso-surface constructed by PDE and the primitive representations by Voronoi
Diagram transformation. However, this approach is of very high complexity and not
suitable for the surface reconstruction of the visual hull.

There are also attempts made to extract a surface from contours for visual hull recon-
struction. In [5], Boissonnat exploited Delaunay’s triangulation, a method commonly
used in reconstructing 3D surface from unorganized points, to extract a surface from
the planar contour structure. The algorithm is robust but the resulting surface is not ob-
turated. Besides, the algorithm produces low quality mesh near branching structures on
the surface.
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2 Theoretical Background

2.1 Quality of Mesh Elements

A mesh with high quality not only can faithfully capture the true topology of a complex
3D object, but also can be rendered efficiently. According to [6], a high quality visual
hull surface should be a compact, connected, orientable, two dimensional manifold, and
with or without boundary.

Let us first define quantitatively a measurement of the quality for the mesh elements.
Traditionally, the quality of a mesh triangle is measured by the smallest internal angle,
and the quality of the triangle is said to increase with its smallest internal angle [7].
Since in this paper, our output mesh will be a mixed triangle/quadrangle mesh (to be
introduced in next subsection), the internal angle measurement cannot be applied. Here,
a distance measurement similar to that used in [8] and [9] is used to measure the quality
of triangles and quadrangles.

During the extraction from cross-section contours, every mesh elements are formed
from points on the contours lying on adjacent layers, and are either a triangle or a
quadrangle. A triangle consists of a vertex from the contour polygon on one layer and
an edge of a contour polygon on another layer. By projecting the vertex onto the other
contour plane, the Error of Triangle is defined as the squared distance between the
projection (pi) and the center (cj) of the edge (see (1) and (2)).

A quadrangle consists of an edge of the contour polygons lying on one layer and
an edge of the contour polygons lying on the other layer. By projecting the center
of one edge onto the other contour plane, the Error of Quadrangle is the defined as
twice the squared distance between the projection (ci) and the center (cj) the other edge
(see (3)).

2.2 Mixed Triangle/Quadrangle Mesh

A mesh formed using the triangle scheme can retain sharp features more faithfully,
while that formed using a quadrangle scheme is more suitable for representing smooth
surfaces. Triangle meshes generate poor limiting surface when using quadrangle-only
scheme, while quadrangle meshes behave poorly with triangle-only scheme. To increase
flexibility, both triangle and quadrangle schemes are needed in modeling real world
data. Recently, Stam and Loop [9] introduced a new subdivision operator that unifies
mixed triangular and quadrilateral subdivision schemes on C1 surfaces. Latter, Schaefer
and Warren [8] proved that mixed triangle/quadrangle scheme mesh could be used in
C2 surfaces. Here, in this paper, the mixed triangle/quadrangle meshes on C2 surfaces
are extracted from the contour data structure directly.

3 Surface Extraction from Rims

In this work, the cross-section contours are first formed from the rim fragments esti-
mated from the silhouettes. A dynamic programming based method is then introduced
to produce a high quality triangle/quadrangle mesh from these cross-section contours.
We will explain the algorithm and our implementation in detail.
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3.1 Contour Data from Rims

To extracting a high quality mesh, the rims are first transformed into a more efficient
data structure bearing the topological information observed from the silhouettes. A
cross-section contour data structure is adopted here for representing the surface of the
visual hull.

We adopt the method introduced in [1] to recover the rims from the silhouettes in an
image sequence. These rims are then re-sampled into cross-section contours by parallel
slicing planes. The normal of the slicing planes are chosen to be the direction parallel
to the longest shaft of the original object. To recover the contour structure for complex
models, we back-project the points onto the extracted silhouettes and regroup points
into one or more contours on the same sliced plane. After regrouping, points on each
cross-section form one or several planar polygons (contour polygons) which correctly
capture the topology observed from the silhouettes.

As mentioned earlier, the recovered rims are inevitably fragmentary. Moreover, the
number of rim curves are limited by the number of images/cameras. As a result, the
edge of the contour polygons at places where the rims are very sparse will be very
long. During reconstruction, long edges will lead to ill-formed triangles. In this paper,
long edges are subdivided by inserting additional points along it. A more aggressive
scheme is also possible: since we know the surface normal for each vertex of the con-
tour polygon, long edges can be replaced with fitted parabola curves to make it look
smoother. Since the surface normal at each vertex is known, we can make sure the con-
tour polygons, and hence the final surface, always fall within the visual hull defined by
the silhouettes, while making them look smoother and aesthetically pleasing. Extracting
Surface Representations From Rim Curves.

3.2 Mesh Extraction from Cross-Section Contour

The major difficulty in the extraction of a mesh from cross-section contours is the
branching problem [5]. Here, one reasonable assumption is made that the object is not
extremely skew and the intercrossing planes are dense enough to present the topology.

Let us consider two adjacent contours, and denotes Ai the contour polygon on one
layer andWj the contour polygon on the layer immediately below.

Definition 1. If and only if the center of Ai can be projected within Wj or the center
ofWj can be projected within Ai, Ai andWj have a connectedness relationship.

Definition 2. 〈{A1, . . . ,Am} , {W1, . . . ,Wn}〉 is an m-n connectedness pair if and
only if:

– Neither m nor n is 0,
– For any Ai ∈ {A1, . . . ,Am}, there exists Wj ∈ {W1, . . . ,Wn} that Ai and
Wj are having a connectedness; For any Wk having a connectedness with any
Ai ∈ {A0, . . . ,Am},Wk ∈ {W0, . . . ,Wn} is true and vice versa.

According to the definition above, the 1-1 connectedness pair corresponds to a simple
structure, while others are branching structure [10, 11] (see Fig. 1(a) and Fig. 2(a)).
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Fig. 1. (a) Contour data with branching structure. (b) Centers of the contour polygons. (c) Vertices
to be slipped is selected by considering the line joining the two centers. (d) Conversion of the
structure into a simple structure with the additional directed edge pair.

Branching structure is a challenging problem in contour reconstruction. The major
difficulty is how to slip from one branch to another automatically. Further, the output
mesh should be obturated.

To handle the branching structure, an additional directed edge pair is introduced. The
additional directed edge pair is formed by two edges with the same ends but opposite
directions. They are used to decide where to slip from one polygon into another. The
aim is to emerge all the polygons on each side of the m-n connectedness pair. Here, we
introduce a method to gain the additional directed edge pair.

First, consider a 2-1 branching structure (see Fig. 1). The centers of the two polygons
that to be connected are first computed (see Fig. 1(b)). Two vertices each from one
polygon are then selected. The vertex should be the one closest to the line segment
connecting the centers of the two polygons (see Fig. 1(c)). Finally, a directed edge pair
with these selected vertices as end points is added between the two polygons, and the
branching structure is transformed into a simple structure (ss Fig. 1(d)).

Actually, the real world topology might be much more complex than a 2-1 branch-
ing structure. We solve it by recursively applying the above method. To do this, each
time we pick two polygons on one slicing plane having the shortest center distance.
These polygons form a 2-1 branching structure and can be solved by earlier mentioned
method. We repeat the process of picking and solving a 2-1 branching structure in one
slice until the m-n branching structure becomes a 1-n branching structure. The same
process is then applied to the other slice until the structure becomes a 1-1 structure
(simple structure).

Some polygons are formed from several polygons via additional directed edge pairs.
If a mesh is extracted by a naive greedy algorithm that produces edges with minimum
length at every step, the output mesh will be in an ill form (see Fig. 2(b)). To make
the mesh obturated, the mesh has to be extract by the vertex sequence. On the other
hand, to guarantee the maximal quality, all possible edges linking the vertices on the
two cross-section contours should be considered. Thus, our optimization problem of
identifying an energy minizing connectedness pairs perfectly fits into the context of
dynamic programming techniques.

There are three kinds of mesh elements in the mesh belt between two polygons on
adjacent contours, namely right triangle, invert triangle and quadrangle.
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Definition 3. Begin with two vertices having the shortest distance between two poly-
gons, denotes:

pci,j : the error of a right triangle<i,j> formed by the ith vertex on the polygon above
and the edge (j,j+1) on the polygon below, defined as

pci,j = |pi, cj |2 ; (1)

cpi,j : the error of an invert triangle<i,j> formed by the edge (i,i+1) on the polygon
above and the jth vertex on the polygon below, defined as

cpi,j = |ci, pj |2 ; (2)

cci,j : the error of a quadrangle<i,j> formed by the edge (i,i+1) on the polygon above
and the edge (j,j+1) on the polygon below, defined as

cci,j = 2 ∗ |ci, cj |2 ; (3)

Ei,j : the minimum error of the mesh belt from begin to the ith vertex of the polygon
above and the jth vertex of the polygon below, defined as

Ei,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, i=0, j=0;
E0,j−1 + pc0,j−1, i=0, j
=0;
Ei−1,0 + cpi−1,0, i
=0, j=0;
min{Ei,j−1 + pci,j−1,
Ei−1,j + cpi−1,j , otherwise

Ei−1,j−1 + cci−1,j−1}

(4)

Note that for the case i 
= 0 and j 
= 0 in (4), if we set

Ei,j = min {Ei,j−1 + pci,j−1, Ei−1,j + cpi−1,j} , (5)

the outcome will be triangle-only scheme mesh with maximal quality as showed in
Fig. 4(f).

To extract a mesh belt, we first computer all the Ei,j , and record the corresponding
values from pci,j , cpi,j and cci,j . By backtracking from the end to the beginning, the
mesh belt with minimal error (maximal quality) could be extracted (see Fig. 2(c)). Next
we scan the whole mesh belt and find out all pairs of mesh elements which involve the
additional directed edge pair. If any of these mesh elements is a quadrangle, it will be di-
vided along its shorter diagonal and converted into a triangle. The pair of mesh elements
can thus always be converted to the form of two triangles with the additional directed
edge being the common edge (see Fig. 2(c)). Finally, the directed edge is replaced by
an edge joining the two opposite vertices of the two triangles (see Fig. 2(d)).

After the above process, there may still be some polygons that do not belong to any
connectedness pair. Actually, they lie on the top/bottom layers of the real world model
or the ends of branches. We simply close these polygons to make the final mesh water
tight. To do this, concave polygons are first divided into convex ones. By dividing by
its shortest diagonal, each convex polygon will become two smaller convex polygons
recursively until all are triangles.

The complete process of extracting mesh from 3D contour structure is summarized
in algorithm 1.
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Fig. 2. (a) Contour data with branching structure. (b) Mesh extracted in local optimal by naive
greedy algorithm. (c) Mesh extracted in global optimal using the proposed dynamic programming
based algorithm. (d) Mesh after removing additional directed edge pair.

Algorithm 1. Mesh Extraction from 3D Rims

1: construct topologically correct cross-section contours;
2: construct the connectedness pair;
3: for all connectedness pairs do
4: if the structure contains branching structure then
5: convert the branching structure into simple structure;
6: end if

7: compute the minimal error with (4);
8: record the choice of computation in each step;

9: while backtracking the steps do
10: recover the mesh element;
11: move backwards;
12: end while

13: if the structure contains branching structure then
14: reconstruct all the elements involving the additional directed edge pair;
15: end if
16: end for
17: for all polygons not belong to any connectedness pair do
18: repeat
19: divide the polygon with the shortest diagonal;
20: until all are triangles
21: end for

4 Experiments and Results

The first experimental sequence consists of rims recovered from 20 images from a
turntable sequence of “Girl and Teddy” toy with fairly complex topology (see Fig. 3).
The cameras are calibrated using a method proposed in [12]. The recovered 3D rims are
sliced by 121 planes and this results in 6,207 vertices. After reconstruction, the maximal
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Fig. 3. Reconstruction of a girl and teddy toy with complex topology from a turntable sequence
(20 images). (a) The original image. (b) Recovered 3D rims. (c) Resulting surface with texture
mapping. (d) Resulting surface with the wire-framed mesh superimposed. (e) Local view of the
mesh.

Fig. 4. Reconstruction of a David statuette from a turntable sequence (20 images). (a) The orig-
inal image. (b) Recovered 3D rims. (c) Resulting surface with texture mapping. (d) Resulting
surface with the wire-frame mesh superimposed. (e) Local view of mesh under triangle/quad
mixed scheme. (f) Local view of mesh under triangle-only scheme.
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quality mesh is formed by 5,805 triangles and 3,334 quadrangles. Figure 3(c) shows the
final result after texture mapping from the original image.

The second experimental sequence consists of 3D rims recovered from 18 images
of a turntable sequence of a David statuette (see Fig. 4). The recovered 3D rims are
sliced by 110 contour planes and this results in 5,990 vertices. Figure 4(c) shows the
final result after texture mapping from the original image. Figure 4(e) shows the optimal
mesh under mixed scheme with 5,990 triangles and 3,116 quadrangles, comparing with
the optimal mesh under triangle-only scheme with 11,980 triangles (see Fig. 4(f)).

5 Conclusions and Future Work

In this paper, we present a novel method for extracting a surface from 3D rims recov-
ered from silhouettes. This method exploits the connectivity information implied by
the rim curves to produce a set of topologically correct cross-sections, from which the
final surface is extracted. The final surface is a mixed triangle/quadrangle scheme op-
timal mesh, which produces more regular yet feature-preserving meshes than using the
traditional triangle-only mesh.

One limitation is that the geometric position of each vertex is fixed a priori to mesh
extraction. Thus, the four vertices of a quadrangle obtained in the reconstruction may
not be co-planar. We are now exploring a new algorithm to handle this problem which
subdivides the extracted mesh according to the curvature and other local properties of
the surface.
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Abstract. To recognize or identify objects it is desirable to use features
which are minimally affected by changes in lighting and non-stationary
noise. This requires accurate estimation of both signal and noise.

In response to this challenge, this paper proposes a method for es-
timation of non-stationary isotropic noise based on steering filters to
directions perpendicular and parallel to the local signal. From the filter
responses in this direction equations for signal and noise are obtained
which lead to an edge detection method dependent solely upon local
signal-to-noise ratio. The proposed method is compared to various com-
mon edge detection methods from the literature, on synthetic and real
images. Quantitative improvement is demonstrated on synthetic images
and qualitative improvement on real images.

1 Introduction

The extraction of edges and curves is of considerable interest to the vision
community, as is evident from the large, diverse literature on the subject, e.g.
[1, 2, 3, 4, 5, 6]. From the literature, perhaps three key ideas have emerged. Firstly,
orienting filters according to some notion of local optimality: often defined as the
direction in which the least squares energy is maximized [1]. Secondly, the idea
that on an edge the responses to filters at different scales must be maximally in
phase [1, 3] : essentially meaning that as an edge is an odd function, at an edge
responses to odd filters will be maximal and even will be zero. The third idea is
that structures should be associated with filter scale [4, 6, 7].

However, two related problems remain difficult: estimation of contrast change
and non-stationary noise. Unaccounted for, both can lead to poor repeatability
and instability. Contrast correction has been most successfully attempted using
the Retinex transform [8]. However, it can err in dark regions. Possibly more
promising is estimation of noise. If local signal s and noise σn are estimated,
signal-to-noise ratio (SNR) can be established. This leads toward an edge mea-
sure such as

(
1− σn

s

)
. Assuming both signal and noise share the same relation

to contrast or illumination, this implies detected structures would be contrast
invariant. The assumption is not unreasonable as edges occur where phase is
congruent [1, 3] leading us to infer that signal power is significantly greater than
noise power for the case of uncorrelated, isotropic noise. Consequently, even in
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poor contrast areas an edge requires that the ratio between signal and noise is
significant.

Approaches to noise estimation are often statistically based [3, 9, 10]. They
assume that a high pass filtered image contains solely noise coefficients [3] and
from an assumption on the expected noise distribution estimate noise variance
[3, 11]. Other approaches have attempted to account for structure, for example
through anisotropic evolution of the intensity [6]. However, this approach still
requires an initial noise estimate. More recent alternatives have attempted to
suppress structure, estimating noise from the remainder [12].

This paper focuses on estimation of non-stationary, uncorrelated isotropic
noise as part of the structure detection process. Although the focus is on edge
detection, the method is general and could equally well be applied to other types
of feature, e.g. corners. We make two contributions. Firstly, an integrated model
for simultaneously estimating the local noise and structure to obtain an edge
measure dependent solely upon the SNR. This improves stability to contrast
change. Secondly, we show how scale affects the problem of noise estimation and
its applicability to distinguishing a step edge from shadowing.

2 A Combined Edge and Noise Model

This section first focuses on the edge and noise model, considering a single scale.
It then proceeds to consider the differences for edges at different scales; i.e. with
different degrees of blurring.

Figure 1 contains two diagrams showing an abstraction of a generic edge, a
step change in intensity I, positioned at angle θ to image axes x and y. Axes u and
v are aligned at π

4 to x and y. ∂I
∂θ and ∂2I

∂(θ+ π
2 )2 denote two of the partial derivatives

of I(x, y) perpendicular (orthogonal) and parallel to the edge, our third co-
ordinate system. It is assumed that non-stationary Gaussian noise N (0, σ2

n) is
present. It has been shown, see [1, 3], that a one dimensional edge is comprised
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∂θ

∂2I
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(a) Plan schematic (b) Isometric view

Fig. 1. Schematic for a general curve-like point. The derivatives are derivatives of the
intensity function perpendicular and parallel to the local edge structure.
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solely of odd sinusoids: a sum which is theoretically in phase at the location of the
step. This sum must be large relative to σn to facilitate detection. Conversely, the
sum of co-sinusoids will be small. These properties can be stated mathematically:∣∣∣∣∂I∂θ

∣∣∣∣% σn ,

∣∣∣∣∂2I
∂θ2

∣∣∣∣ ∼ ∣∣N (0, σ2
n)
∣∣ . (1)

Moving perpendicularly away from the edge (axis θ), equations 1 do not hold.
The second derivative ∂2I

∂θ2 will increase, making this pair unsuitable for noise
estimation. However, equations 1 consider behaviour solely in spatial direction
θ. Derivatives in directions θ and θ + π

2 are related via curvature κ:

κ =
∂I
∂θ

∂2I
∂(θ+π

2 )2 −
∂I

∂(θ+π
2 )

∂2I
∂θ2[(

∂I
∂θ

)2
+
(

∂I
∂(θ+π

2 )

)2] 3
2
≈

∂I
∂θ

∂2I
∂(θ+ π

2 )2[(
∂I
∂θ

)2
+
(

∂I
∂(θ+π

2 )

)2] 3
2

(2)

as ∂2I
∂θ2 ∼ 0. As ∂2I

∂(θ+π
2 )2 varies, the local structure changes from a straight line

to more tightly curved structures (eventually corner-like). Assuming curvature
varies smoothly then ∂I

∂(θ+ π
2 ) should be relatively small. For the case where κ = 0,

a straight edge, ∂2I
∂(θ+π

2 )2 = 0. In this case, if ∂I
∂(θ+π

2 ) 
= 0, it must be responding

to some disturbance. We make the assumption that the measurement ∂I
∂(θ+π

2 )
must be related to the local noise σn. Generally, for any smoothly curving struc-
ture, it can reasonably be assumed that this will be true. With equation 2 this
observation completes our edge model:

∂2I
∂(θ + π

2 )2
∝ κ , and (3)

∂I
∂(θ + π

2 )
∼ N (0, σ2

n) . (4)

Although equation 1 is directly suitable for implementation, equation 4 is not.
It yields, not σn, but one sample from a noise distribution at each point. An
estimate of σn, σ̂n can be made using samples from a small region about each
point. Using δ to denote the extent of this area, about point x = xi, y = yi,

σ̂n ≈

√√√√√ 1
4δ2

xi+δ∫
xi−δ

yi+δ∫
yi−δ

(
∂I

∂(θ + π
2 )

)2

dydx . (5)

Note that E[ ∂I
∂(θ+π

2 ) ] is expected to be zero and is therefore not required for
the estimation of σ̂n in equation 5. δ should be set in proportion to the spatial
extent of the derivatives filter. Practically a value of twice the largest filter
dimension in pixels is used. Furthermore, note that σ̂2

n is scaled by the filter
used in obtaining ∂I

∂(θ+π
2 ) . σ̂2 ∼ σ2

true

∑
i f 2

i where fi are the filter coefficients.
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This becomes important if more than one filter scale is used. Using the estimate
of signal energy ∂I

∂θ and σ̂n, the edge detection measure Pr(S) is then simply

Pr(S) =

(⌊∣∣∂I
∂θ

∣∣− ασn

⌋∣∣∂I
∂θ

∣∣
)

, (6)

where �f ()� bounds the function, f (), from below with zero. As the energy re-
sponse function is statistical in nature, it suppresses a fraction of all noise re-
sponses. For example, setting α = 1.6449 will suppress 90% of noise. Practically,
α can be adjusted according to whether it is preferable to suppress noise or
obtain every potential structure. Results in this paper use α = 2.5.

2.1 Natural Scale and Edge Detection

As the model we have defined assumes that fixing filters at one scale is sufficient
for edge detection, we briefly justify this with respect to scale invariance. Scale
invariance, see [4], shows that a filter has a size or scale by which it may be
parameterized and normalisation by this parameter makes the response inde-
pendent of scale. For instance, the one dimensional family of Gaussians ∂nG(x)

∂xn ,
n = 0, 1, 2, can be parameterized by standard deviation γ. Scale invariance is
achieved through multiplication by γn.

For an ideal edge, with no blur, the response of γ∂G will theoretically be con-
stant until γ increases such as to cause interaction with a second edge. After this
the response decreases [4]. In practice, for γ < 2, the filter approximation tends
to yield a quickly rising step which plateaus between 1.5 ≤ γ ≤ 3. Consequently,
for an ideal edge using a filter with γ ≥ 2 should yield constant results. For
shadowed edges, with pre-blur γs, the response of γ∂G, γ ≤ γs, grows linearly
plateauing at γ = γs. Consequently, we can detect (and remove) shadowed edges
by comparing the ratio of coefficients at two or more different scales. This part
of the contrast problem is not further examined in this paper.

3 Implementation

Having detailed a model for an edge in non-stationary noise along with the
requisite equations for estimating these properties we now detail the approxima-
tions made between the theoretical model and its practical implementation. For
context, we first state the complete algorithm.

1. Convolve the image with a Gaussian, of deviation γ1 = 2. Calculate ∂I in
directions x, u, y and v.

2. Estimate the global noise, σg, using an Expectation Maximization (EM) on
the magnitudes of ∂I in directions x and y to obtain weights (ω1, ω2) and
variances (σ2

1 , σ
2
2) for a Gaussian Mixture Model (GMM) of signal and noise.

(μ1 = μ2 = 0.)
3. At each point: estimate θ and use it to select signal and noise samples from

amongst the four derivatives.
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4. At each point: evaluate equations 5 and 6.
5. If a binary edge map is desired, threshold using an estimate of the existing

fraction of edges, min(ω1, ω2), from the EM algorithm.

Considering the filters, normal image blur normally has deviation less than 2
pixels: the Gaussian smoothing filter’s is set to the same. It is truncated at 2 de-
viations. Derivatives are simple central differences, with the diagonal directions
scaled appropriately by 1√

2
. The separation of filter responses into noise and sig-

nal is then achieved using the least squares estimate of θ: θ = arctan
(

∂I
∂y /∂I

∂x

)
[13]. For π

8 ≤ θ ≤ 3π
8 and for 5π

8 ≤ θ ≤ 7π
8 derivatives along axes u and v are used,

otherwise along x and y. With respect to the choice of filters, first derivatives in
four directions is simple and suffices. Although equations 1,3 and 4 are specified
in terms of the edge co-ordinate system θ and θ + π

2 , the question of how to es-
timate this is not simple. Although other methods for steering filters exist, e.g.
[2], they can be computationally expensive in practice and the complex steering
mechanism can induce errors for small (7x7 pixels) filters. However, using only
four filters, responses away from the axes are affected by image quantisation.
For example, edges oriented at θ = (2n+1)π

8 , n = 0, 1, 2 fall directly between the
filter directions. Noise in these directions will be over-estimated leading to de-
creased stability. If speed is less important than accuracy, more complex steering
techniques could be used [13, 2].

Equation 6 is calculated as stated. Two practical changes are made to 5.
Firstly, the integral over the image grid is replaced by convolution with a Gaus-
sian. This second Gaussian’s deviation γ2 is set at twice that of the Gaussian
used for the first image convolution: γ2 = 2γ1 = 4. Secondly, if σ̂n ≤ σg

20 σ̂n is
set equal to the global noise.

Finally, estimation of σg models wavelet coefficients as being comprised, at
each scale, by a two state GMM [11]. One state has large variance and denotes
structure, the other small variance and denotes noise. Both have zero mean.
This idea is also used in wavelet based denoising [10]. The parameters for this
model are fitted using an EM algorithm, yielding σg and weights, ω1, ω2, for the
fractional split between edges and noise. The threshold for equation 6 is chosen
to obtain this fraction of image points as edges. The EM algorithm is selected
simply as it is one method appropriate for fitting a model to unlabeled data.

4 Experimental Results

Our method has been evaluated on a wide range of images; real and synthetic.
As ground truth is difficult to establish for real images, the performance of the
noise estimation is established on synthetic images. Sample results from many
tested real images are given.

In our first test, synthetic images containing a mixture of curved and straight
lines were created. To these, noise with a deviation equal to 1

4 the edge size is
added. Note that the image’s left and right hand halves are exact duplicates.
Then, a contrast step is applied to one half of the image. This yields images
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(a) Mean response for whole image (d) Mean response for affected region
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(c) False Positives for whole image (f) False Positives for affected region

Fig. 2. Evaluation of common measures on Synthetic Test Images containing various
oriented and curved structures

with varying contrast but constant SNR: suitable to test whether a method
is stable with respect to contrast change. As the images are synthetic, ground
truth is known. Various measures are evaluated; True positives: number pixels
correctly classified; False positives: number incorrectly classified and, the edge
detection energy (equation 6) at an edge. The tests were repeated to remove any
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statistical bias from a particular set of generated noise. Stability was evaluated
for Sobel, Canny, oriented bandpass filters, phase congruency, pseudo-steering
through taking the maximum and minimum of four oriented filters to be signal
and noise respectively (Max-Min) and the proposed edge detection methods.
Results are shown in figure 2. As can be seen from figure 2, (a) and (d), the
proposed method produces a more stable edge energy measure with respect
to contrast change than the tested alternatives. Although it experiences some
disturbance, for contrast step factors (CSF) ≤ 0.4, this is smaller than for the
alternatives. True positives for most methods remain stable down to a CSF of 0.1.
In this respect, no method is clearly better. A final point is that increases in false
positives in 2(c) reflects the fact that global noise will be underestimated in the
presence of significant contrast changes across the image. The proposed method
is also affected, despite estimating noise locally, as it will make a percentage
of errors in regions where there are no real edges: steering the estimation to
the direction perpendicular to the strongest response (which in these regions is
noise) leads to under-estimation of noise.

Our second set of tests repeats the experiment on synthetic images with real
images to which noise and contrast steps were applied. Two sample images from
amongst these are shown in figure 3;from the ’Bad Etting’ sequence, available
at iw1www.ira.uka.de/image sequences, and the ’Graffiti’ data set, available at
www.inrialpes.fr/lear/people/Mikolajczyk/). The only difference from the first
test, is that after adding noise, the images were requantised to 8 bits. The edge
energy functions for the Canny edge function and the proposed method are
shown for these images in figures 4 and 5. The Canny edge function is used
as the comparison simply as it is probably the most widely used and available

Fig. 3. The image pairs, with contrast steps, used for the tests shown in fig. 4 and 5
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(a) Canny, Global noise, (No step) (b) New method, (No step)

(c) Canny, Global noise, (×0.5 step) (d) New method (×0.5 step)

(e) Canny, Global noise, (×0.25 step) (f) New method (×0.25 step)

Fig. 4. Test set 1: Comparison of Edge detection methods. The two columns show
the new method versus the standard Canny edge function, for the original image and
with contrast steps of ×0.5 and ×0.25 applied. Images additionally had 2% Gaussian
isotropic noise added, prior to the contrast step being applied. Note that the images
show the edge response energies, and are NOT binary edge images.
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(a) Canny, Global noise, (No step) (b) New method, (No step)

(c) Canny, Global noise, (×0.5 step) (d) New method (×0.5 step)

(e) Canny, Global noise, (×0.25 step) (f) New method (×0.25 step)

Fig. 5. Test set 2: Edge detection methods for original image and with varied contrast
and noise. The two columns show detection the new method versus the standard Canny
edge function, for the original image and with contrast steps of ×0.5 and ×0.25 applied.
These images have additionally had 2% Gaussian isotropic noise added, prior to the
contrast step being applied. Note that the images show the edge response energies, and
are NOT binary edge images.
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method. As can be seen, the energies obtained from the proposed method are
noticeably more stable with respect to contrast change. A final point is that
weak structure can vanish with requantisation: for CSF = 1

δI , a step of less
than 1

2δI becomes constant. Noise magnifies this effect. Generally, from testing
on various sequences, e.g. traffic, people, the method appears stable and reliable.
Improvement relative to a standard method, e.g. Canny, depends upon whether
contrast changes are present and whether the image quantisation has left the
structure intact.

5 Summary and Conclusions

We have presented a method for incorporating local noise estimation into edge
detection, thereby improving resilience to illumination change. Testing on syn-
thetic and real data demonstrated improvement over previous methods.
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Abstract. In this paper we propose an effective and robust approach for  
detecting corner points on a given binary image.  Unlike other corner detection 
methods the proposed method is non-parametric in nature, that is, it does not  
require any input parameter.  The proposed method is based on mathematical 
morphology.  It makes use of morphological skeleton for detecting corner 
points. Convex corner points are obtained by intersecting the morphological 
boundary and the corresponding skeleton, where as the concave corner points 
are obtained by intersecting the boundary and the skeleton of the complement 
image.  Experimental results show that the proposed method is more robust and 
efficient in detecting corner points. 

Keywords: Corner points, Morphological skeleton, Non-parametric. 

1   Introduction 

Corner points on shape curves are effective primitives for shape representation and 
analysis.  Corner points on a digital boundary are found at locations where the nature 
of the boundary changes abruptly and significantly. They provide critical information 
of a shape which is useful in pattern analysis and recognition problems. Therefore 
corner detection in images is an important aspect of computer vision applications. 

Many algorithms have been developed for detecting corner points on the boundary 
curve of an object.  The existing corner detection schemes can be broadly classified 
into two classes, (i) boundary based methods and (ii) Morphology based methods.  
The former methods involve computation of curvature at every point over a small 
segment of curve called region of support within the vicinity of the point of interest.  
The main problems of the boundary based methods are that they are computationally 
less efficient as they involve determination of region of support and then computation 
of curvature over the determined region of support involving lots of floating point  
operations. On the other hand the methods based on mathematical morphology are 
computationally efficient as they involve only integer operations.  In view of this many 
methods based on mathematical morphology have been proposed in the literature.  

[5] have proposed a method for corner detection using mathematical morphology, 
which makes use of morphological residue for detecting corner points. In their 
method convex and concave corner points are detected separately. Convex corner 
clusters are obtained by performing (A – (A ° B)) operation.  Subsequently boundary 
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of the corner cluster is obtained by intersecting the obtained corner clusters with the 
original boundary. A convex corner point is obtained for each corner cluster. Corner 
point corresponding to a corner cluster is defined to be the point of intersection of the 
boundary of the cluster and the normal line passing through the center of the corre-
sponding corner cluster. To detect concave corner points, the procedure is repeated  
on the complement image. Though the approach is fast, the boundary point detected 
as corner point is not necessarily a true corner point and some time they are shifted 
from the actual location.  To overcome this problem [2] have suggested a modifica-
tion by redefining the process of shrinking a corner cluster into a single point. In their 
approach a corner point in a cluster is defined to be the point with maximal N-hit 
number.  Though the result of the method proposed by [2] is superior to that of [5],  
it fails to detect all corner points, as the method assumes the existence of only one 
corner point on each cluster, but in reality there may be more than one corner points 
in each corner cluster.  In addition their method is sensitive to the boundary noise as 
the N-hit number is susceptible to noise.  

[1] proposed a method for corner detection using the asymmetrical closing which is 
defined as a dilating of an image by a structuring element followed by eroding the re-
sult with another structuring element.  The idea is to make the dilation and erosion 
complementary and correspond to variant types of corners.  The disadvantage of this 
method is that sometimes it misses obtuse-angled corners and sharp-angled corners.  
[4] have proposed a corner detection algorithm based on the morphological skeleton.  
In this method the corner points are obtained by detecting the zero radius of the 
maximum plate on the morphological skeleton.  The result of the corner detection is 
achieved by using logical hetero-OR operation between two corner sets of the source 
image and its complement set.  But the drawback of this method is that it detects more 
spurious corner points. [3] have proposed an improvement to [1].  They have also 
proposed a method for corner detection using modified regulated morphological op-
erators with adjustable strictness parameters.  However, the method is sensitive to the 
value of strictness parameter, which is difficult to select. 

In view of this, in this paper we propose a novel technique for detecting corner 
points which is as effective as any boundary based technique in detecting corner 
points and as efficient as any morphology based techniques. The proposed method de-
tects convex and concave corner points separately.  At first, morphological skeleton is 
obtained for a given image. Convex corner points are obtained by intersecting the ob-
tained morphological skeleton of the image with its boundary.  Similarly, concave 
corner points are obtained by performing the same set of operations on the comple-
ment image.  Further, corner points of the complete image are obtained by performing 
the union of convex and concave corner points.  Even though the method is based on 
mathematical morphology, the results of the proposed method is independent of size 
and shape of the structuring element and hence the method does not require any input 
parameter to decide the size and shape of the structuring element, thus the method is 
non-parametric in nature. 

Rest of the paper is organized as follows: the proposed method is explained in  
section 2. Experimental results are presented in section 3 followed by the discussions 
in section 4.  Finally paper concludes in section 5. 
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2   Proposed Method 

In this section, we describe the proposed method for detecting corner points present 
on a given binary image.  The proposed method has two stages, skeletonization of the 
given image followed by localization of corner points. 

2.1   Skeletonization  

Skeletonization is a process of reducing foreground regions in a binary image to a 
skeletal residue that largely preserves the extent and connectivity of the original re-
gion while throwing away most of the original foreground pixels. To realize this, 
imagine that the foreground regions in the input binary image are made of some uni-
form slow-burning material.  Ignite simultaneously at all points along the boundary of 
this region and watch the fire move towards the centre of the image.  At the points 
where the fire traveling from two different boundaries meet, the fire will extinguish 
itself.  Such points put together form the so called `quench line' and this line is taken 
as the skeleton of the image. From the above definition it is clear that thinning of an 
image produces a sort of skeleton.  

Skeletonization of an image is also defined as the loci of centers of bi-tangent cir-
cles that fit entirely within the foreground region of the image and Fig-1 illustrates 
this for a rectangular shape. 

 

Fig. 1. Skeleton of a rectangle defined in terms of bi-tangent circles 

Though, the terms medial axis transform (MAT) and skeletonization are often used 
interchangeably, in a strict sense, skeletonization is defined for a binary image and 
MAT is defined for a graylevel image, where each point on the skeleton has an inten-
sity which represents its distance to a boundary in the original object.  

The skeleton/MAT can be produced in two ways. The first is to use some kind of 
morphological thinning that successively erodes away pixels from the boundary 
(while preserving the end points of line segments) until no more thinning is possible, 
at which point what is left approximates the skeleton. The alternative method is to 
first calculate the distance transform of the image. The skeleton then lies along the 
singularities (i.e. creases or curvature discontinuities) in the distance transform. This 
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latter approach is more suited for calculating the MAT since the MAT is same as the 
distance transform but with all points off the skeleton suppressed to zero.  

The skeleton of a given image A can be expressed in terms of erosions and open-
ings. That is, skeleton S of A denoted by S(A), is given by  
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where B is a structuring element, (A Θ kB) indicates k successive erosions of A; that is  

(A Θ kB) = ((… (A Θ B) Θ B Θ …) Θ B 

k times, and K is the last iterative step before A erodes to an empty set.  In other 
words,  

K = max{k | (A Θ kB) ≠ ∅}. 

It can be noticed that A can be reconstructed from these subsets by using the equation 
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2.2   Corner Localization 

The proposed corner localization scheme detects convex and concave corner points 
separately. In order to obtain the convex corner points, the proposed method first ex-
tracts the morphological skeleton of the given image, and then the obtained morpho-
logical skeleton is intersected with the boundary of the image.  Since morphological 
skeleton always touches the convex corner points, the intersection of morphological 
skeleton with the boundary helps us in detecting all convex corner points.  Therefore, 
convex corner points are obtained as follows: 

Let C be the boundary curve of the image A, which is obtained by  

C = [A – (A Θ B)] 

where, B is 3 × 3 square structuring element. 
Convex corner points are obtained by  

Convex_Corner (A) = C ∩ S(A) 

Similarly, the concave corner points are obtained by  

)()(_ 1 EASCACornerConcave ⊕= I  

where, A1 is the complement image of A, and C is the boundary of A1 and E is a 
rhombus structuring element.  In case of detecting concave corner points, before ob-
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taining the skeleton, A1 is dilated with a rhombus structuring element E, because 
S(A1) does not have any point common with the C. 

Overall corner points are obtained by performing union of convex corner set and 
concave corner set, that is, 

Corner Points (A)  = Convex_Corner(A) ∪ Concave_Corner(A) 

The proposed method is explained in detail with the help of the following illustra-
tion, Fig-2(a) shows the original image. Fig-2(b) shows the boundary of the original 
image and its morphological skeleton. It can be observed that morphological skeleton 
intersects the boundary of the image at convex corner points and hence the convex 
corner points are the points where the skeleton of the image intersects with the 
boundary of the image (Fig-2(c)). Fig-2(d) shows the boundary of the original image 
and the morphological skeleton for the complement of the original image. It can be 
observed that the skeleton of the complement image intersect the boundary at concave 
corner point.  The detected concave corner points are given in Fig-2(e), and the corner 
points on the image, which is the union of convex and concave corner points is shown 
in Fig-2(f). 

 

Fig. 2. (a) original image, (b) Boundary and skeleton of (a), (c) Convex Corner points,  
(d) skeleton of complement image,  (e) Concave corner points and (f) All corner points 
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Thus, the proposed algorithm for detecting corner points on a given binary image is 
as trivial as follows: 

Algorithm: Detect Corner Points 
Input:  Binary Image (A) 
Output: Corner points of the image (A) 
Method: 

Step 1: Extract the Boundary C as, C = A - (A Θ B). 
Step 2: Extract the Morphological Skeleton S(A). 
Step 3: Obtain Convex corner points as Convex_Corners (A) = C ∩ S(A). 
Step 4: Extract the Morphological Skeleton S(A1 ⊕ E). 
Step 5: Obtain Concave corner points as Concave_Corners (A) = C ∩ S(A1 ⊕ E). 
Step 6: Obtain Corner points (A) by performing union of Convex and Concave 

corner sets. 
Algorithm ends. 

It can be observed that the proposed method for detecting corner points does not 
require any input parameters, and hence it is non-parametric.  Further, for detecting 
corner points it is not necessary to obtain the complete skeleton. Thus, it is quite 
enough if we apply four or five iteration of skeletinization process. In addition, effi-
ciency of the proposed method further be improved by implementing the proposed 
method on parallel computers with SIMD architecture, where the process of convex 
corner and concave corner can be run parallely.  Therefore the proposed method is 
both effective and efficient. 

3   Experimental Results 

In order to reveal the robustness of the proposed method in real pragmatic situa- 
tion we have conducted several experiments on several shapes (including the shapes  
 

 

Fig. 3. Results of the proposed method for shape shown in Fig-2(a), in different orientations 
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Fig. 4. (a) Input Objects, (b) Corner points detected by proposed method and (c) Corner points 
detected by Yu et. al., (2001) 

 
Fig. 5. Results of the proposed method for shapes in different orientations and scaling factors 

(a) (b) (c) 
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considered by many researchers) with different scaling factors and in different orien-
tations. The set of shapes considered for experimentation includes shapes with smooth 
curve segments of different radii or curvature, curvilinear segments, straight line  
segments. Fig-4 (b) shows the results of the proposed method for various shapes. For 
the purpose of establishing the superiority of the proposed method over existing mor-
phology based methods, the results of the proposed method are compared with that of 
the method proposed by [4], this method is purposefully chosen, as it is claimed to be 
the best method in the literature.  The results of the [4] method is given in Fig-4 (c) 
for the input images shown in Fig-4 (a). It can be observed from the Fig-4, that the 
method proposed by [4] has detected many spurious corner points.  On the other hand 
the proposed method has not detected even a single spurious corner point.  Fig-3 and 
Fig-5 show the results of the proposed method for the shapes in different orientations 
and scaling factors, which reveals the invariance property of the proposed method in 
detecting corner points.  The objects shown in Fig-5 contains moderate amount of 
noise, the results of the proposed method on these objects demonstrates the noise 
withstanding property of the proposed method. 

4   Discussion 

The major problem with the existing boundary based corner detection schemes is that 
they are less efficient since at every boundary point, it is required to compute the re-
gion of support and as well the curvature at that point to decide if the point is a corner 
point. In addition they are parametric in nature.  The advantage of these methods is 
that all true corner points are detected.  On the other hand, the morphological opera-
tion based approaches appear to be more efficient since they selectively decide the 
parts of the boundary which have corner points to locate the true corner points.  But 
they are less effective as they failed to detect all true corner points.  Unlike these, the 
proposed method being simple approach is both efficient and effective.  In addition, 
the proposed method is nonparametric, as it does not require any input parameter ei-
ther to decide the size or shape of the structuring element.  The existing morphology 
based methods ([5], [2], [1]) demand input parameters to decide the size and shape of 
the structuring element and the performance of these methods are heavily driven by 
the chosen input parameters. 

5   Conclusion 

A simple method for corner detection using mathematical morphology is presented in 
this paper. The method is based on morphological skeleton. Corner points are the 
points where the morphological skeleton intersects the boundary of the image. The 
proposed method unlike the other morphology based methods detects all corner points 
present in the extracted corner clusters.  In addition the proposed method is non-
parametric. The experimental results reveal that the proposed method outperforms the 
existing morphology based corner detection schemes. 
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Abstract. In this paper, we present a new method to deal with specular high-
lights in correspondence search. The proposed method is essentially based on
the specular-free two-band image that we introduce to deal with specular reflec-
tion. For given input images, specular-free two-band images are generated using
simple pixel-wise computations in real-time. Specular-free two-band images are
then used to compute per-pixel raw matching costs. By using the specular-free
two-band images instead of input images, reliable raw matching costs that are
independent of the specularities of image pixels are obtained. As a result, we can
find correct correspondences even in the presence of specular highlights. Exper-
imental results show that the proposed method successfully produces accurate
disparity maps for stereo images with specular highlights.

1 Introduction

Correspondence search has been a long lasting research topic in the computer vision
community since that is the crux of many classical computer vision problems such
as motion estimation, object tracking, object recognition , 3D structure reconstruction,
etc. To solve the correspondence problem, many methods have been proposed for last
decades [1, 2, 3, 4, 5, 6] (See [7] for more information). Most correspondence search
methods first compute per-pixel raw matching costs using pixel intensities or colors
to measure the similarity between image pixels, assuming that the surfaces in a scene
are perfectly Lambertian so that the ICA (Intensity Conservation Assumption) is valid
in all input images. However, unfortunately, specular highlights due to non-Lambertian
surfaces are frequent in real situations. Because specular reflection makes the intensities
and the colors of corresponding pixels different according to the viewpoints, the ICA
is not valid any more and the per-pixel raw matching costs for the pixels in specular
highlights are erroneous. As a result, severe matching errors occur in specular highlights
when using existent correspondence search methods.

Nevertheless, there is a relatively small amount of work to deal with specular high-
lights in correspondence search. To prevent the errors due to specular highlights, Bhat
and Nayar [8] analyzed the physics of specular reflection and the geometry of stereopsis
which lead to a relationship between stereo vergence, surface roughness, and the likeli-
hood of a correct match. Based on this analysis, an optimal binocular stereo configura-
tion is determined, which maximizes precision in depth estimation despite specular re-
flection. Zickler et al. [9] presented a new method that is named as the Helmholtz stere-
opsis to overcome the specular reflection problem. In this method, stereo images are
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obtained by switching the positions of a light source and a camera to prevent the color
changes due to specular highlights. However, these two approaches require specialized
camera configurations, which make the methods impractical. Some other methods tried
to deal with specular highlights just by using given input images. In [10, 11], specu-
lar pixels in multi-view images are detected first by computing the uncertainty of depth
estimates. Detected pixels are then treated as outliers when computing the similarity be-
tween pixels to reduce the effect of specular reflection. Yang et al. [13] proposed a new
photo-consistency measure that is valid for both diffuse and specular surfaces based on
the observation that the reflected colors for most surfaces are co-linear in the RGB color
space. However, these methods need many input images to detect specular pixels and to
estimate the disparities of specular pixels. Some methods that can be applied to the two-
frame stereo problem also have been proposed focusing on the similarity computation.
Kim et al. [12] proposed an EM(energy minimization)- and MI(mutual information)-
based method without assuming that scene points have similar intensities in different
views. The key contribution of their work is to develop the data term that uses mutual
information. We also presented an adaptive support-weight method that can deal with
specular reflection by adjusting support-weights in the similarity computation step [6].
However, this method requires an accurate analysis of specular reflection to compute
support-weights.

In this work, we propose a new method that can efficiently deal with specular high-
lights in correspondence search. The proposed method is essentially based on the
specular-free two-band image that we introduce to deal with specular reflection. It pro-
vides a specularity-invariant image representation that can be used for many computer
vision methods such as shape from shading and reflection components separation as
well as correspondence search. Throughout this work, we assume that the images are
taken by cameras with the gamma correction off and that all input images and pixels
are chromatic and that there is no saturated pixel.

2 Reflection Model and Image Formation

To deal with specular highlights, we model the image formation process by using the
dichromatic reflection model that describes both diffuse and specular reflection.

There are two kinds of reflection under the dichromatic reflection model: diffuse and
specular. Diffuse reflection is caused by the subsurface scattering of light, and specular
reflection is caused by the surface reflection, as with a mirror. The dichromatic reflection
model for dielectric materials, which was proposed by Shafer [16], suggests that the
spectral factor can be expressed as the linear weighted sum of two reflectance functions.
When an image is taken by a camera, image formation can be described as⎡⎣Ir(x)

Ig(x)
Ib(x)

⎤⎦ = md(x)

⎡⎣Λr(x)
Λg(x)
Λb(x)

⎤⎦+ ms(x)

⎡⎣Γr(x)
Γg(x)
Γb(x)

⎤⎦ (1)

Λ = [Λr(x), Λg(x), Λb(x)]T denotes the diffuse chromaticity at x and Γ(x)=[Γr(x),
Γg(x), Γb(x)]T the specular or illuminant chromaticity at x. md(x) and ms(x) are the
diffuse and specular reflection coefficients, which depend on scene geometry at x. To
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summarize, the first term and the second term of the right side in Eq. (1) represent the
diffuse reflection component and the specular reflection component, respectively.

In this work, it is assumed that input images are taken under the white illumination so
that the color of specular reflection is pure-white regardless of an image position in input
images. If input images are taken under the non-white illumination, we normalize the
input images by using illuminant colors. When assuming a uniform illuminant color in
a scene, the illuminant color for a given image can be estimated by using existing color
constancy methods [18, 19, 20, 21, 22]. Once the illuminant color is estimated, we can
normalize the input image using the estimated illuminant color to yield an image that
has pure-white specular components as if it were taken under the white illumination. In
this case, Eq. (1) can be simply rewritten as⎡⎣Ir(x)

Ig(x)
Ib(x)

⎤⎦ = md(x)

⎡⎣Λr(x)
Λg(x)
Λb(x)

⎤⎦+ ms(x)

⎡⎣1/31/3
1/3

⎤⎦ . (2)

3 Errors in Raw Matching Costs Due to Specular Reflection

Because support aggregation and correspondence selection are performed by using raw
matching costs, it is important to get errorless raw matching costs. However, when one
of corresponding pixels have a large specular reflection component, the computed raw
matching cost tend to be erroneous because specular reflection makes the intensities
and the colors of corresponding pixels different according to the viewpoints.

Suppose that the pixel at x in the reference image corresponds to the pixel at x′ in
the target image. Because the diffuse reflection is independent of viewing directions,
two pixels have the same diffuse color (i.e. [Λr(x), Λg(x), Λb(x)] = [Λr(x′), Λg(x′),
Λb(x′)]) and, therefore, the color difference between those pixels can be expressed as⎡⎣Ir(x)

Ig(x)
Ib(x)

⎤⎦−
⎡⎣Ir(x′)
Ig(x′)
Ib(x′)

⎤⎦ =
(
md(x)−md(x′)

)⎡⎣Λr(x)
Λg(x)
Λb(x)

⎤⎦+(ms(x)−ms(x′)
)⎡⎣1/31/3

1/3

⎤⎦ (3)

Here, md(x) = md(x′) (i.e.,
(
md(x) −md(x′)

)
= 0) because diffuse reflection coef-

ficients are independent of viewing directions. Therefore, Eq. (3) is simplified as⎡⎣Ir(x)
Ig(x)
Ib(x)

⎤⎦−
⎡⎣Ir(x′)
Ig(x′)
Ib(x′)

⎤⎦ =
(
ms(x) −ms(x′)

)⎡⎣1/31/3
1/3

⎤⎦ (4)

When the raw matching cost between two pixels e(x,x′) is computed in the AD
(Absolute Differences) manner, it is expressed as

e(x,x′) =
∑

c∈{r,g,b}
|Ic(x)− Ic(x′)| = |ms(x) −ms(x′)| (5)

From Eq. (5), it is clear that, although two pixels are corresponding to each other,
their raw matching cost may not be zero when the scene surface that two pixels come
from is not perfectly Lambertian. For that reason, raw matching costs computed by
using pixel colors tend to be erroneous for non-Lambertian surfaces and this causes
severe matching errors in specular highlights.
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4 Error Reduction in Specular Highlights

According to the observation described in the previous section, we have to find out
some specularity invariance for each pixel, which is independent of the specularity (i.e.
specular reflection coefficient) of a pixel, to get correct correspondences regardless of
specular reflection. For this, we propose a specular-free two-band image that provides
a specularity-invariant image representation.

4.1 Specularity-Invariant Representation: Specular-Free Two-Band Image

A specular-free image is a specularity-invariant representation of an input image, which
is free from specular reflection and has the same geometrical profile as the diffuse re-
flection component of the input image. Recently, a few methods have been proposed to
generate a specular-free image [14, 23, 24, 15]. The resultant specular-free images are
used for reflection components separation [14, 15] and surface shape recovery [23, 24].
In this work, we propose a new method for specular-free image generation that is more
intuitive, faster, and also proper to correspondence search.

The idea of the proposed specular-free two-band image is shown in Fig. 1. Two di-
mensional representation is given for visualization. Suppose that we have two adjacent
pixels at x1 and x2 with the same diffuse color. When denoting the diffuse and spec-
ular reflection components of two pixels as Rd(x1), Rd(x2), Rs(x1), and Rs(x2),
respectively, the pixel intensities at x1 and x2 can be expressed as

specular reflection
(pure white, slope=1)

1Î( )x

2Î( )x

2( )dR x

2( )sR x

1( )dR x

1( )sR x

2( )I x

1( )I x

rI

gI

Fig. 1. Specularity-invariant value and ratio. All Î values are specularity-invariant and the local
ratios of them provide the geometric profile of diffuse reflection components.
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I(x1) = Rd(x1) + Rs(x1) (6)

I(x2) = Rd(x2) + Rs(x2) (7)

Here, when Ig(x1) ≥ Ir(x1) and Ig(x2) ≥ Ir(x2), we can compute Î(x1) and Î(x2)
simply as

Î(x1) = Ig(x1)− Ir(x1) , Î(x2) = Ig(x2)− Ir(x2) (8)

since the color of specular reflection is pure-white.
From Fig. 1, we can see that Î is independent of the specular reflection component

and depends only on the diffuse reflection component — Î is specularity-invariant. In
addition, the following ratio is dependent on only diffuse reflection components.

‖ Î(x1) ‖:‖ Î(x2) ‖=‖Rd(x1) ‖:‖ Rd(x2) ‖ (9)

Based on this observation, we propose a new method to generate a specular-free image.
Let Ĩ(x) = min{Ir(x), Ig(x), Ib(x)} and Λ̃(x) = min{Λr(x), Λg(x), Λb(x)}.

Then, the relationship between Ĩ(x) and Λ̃(x) is easily derived from Eq. (2) as

Ĩ(x) = min{Ir(x), Ig(x), Ib(x)} = md(x)× Λ̃(x) +
1
3
ms(x) (10)

Since Ĩ(x) can be computed simply, we can get the following values for each pixel.⎡⎣Îr(x)
Îg(x)
Îb(x)

⎤⎦ =

⎡⎣Ir(x)
Ig(x)
Ib(x)

⎤⎦−
⎡⎣Ĩ(x)
Ĩ(x)
Ĩ(x)

⎤⎦ = md(x)

⎡⎣Λr(x) − Λ̃(x)
Λg(x) − Λ̃(x)
Λb(x)− Λ̃(x)

⎤⎦ (11)

As shown in Eq. (11), Îr(x), Îg(x), and Îb(x) are independent of the specular re-
flection coefficient ms(x). In addition, they have the same geometrical profile as the
diffuse reflection component of the input image. Therefore, a specular-free image is
simply generated by subtracting Ĩ(x) from the intensities in all color bands as Eq. (11).
This is named as the specular-free two-band image because one of Îr(x), Îg(x), and
Îb(x) is zero according to the definition of Ĩ(x) and Λ̃(x).

The proposed method for specular-free two-band image generation is very simple.
An input image can be transformed into a specular-free two-band image in real-time.
In fact, the specular-free two-band image generation can be achieved by a one-line
MATLAB instruction as shown in Algorithm 1.

Algorithm 1. MATLAB code for specular-free image generation
I: RGB input image
ISF: specular-free two-band image
ISF=I-repmat(min(I,[ ],3), [1,1,3])

4.2 Raw Matching Cost Using Specular-Free Two-Band Images

The proposed specular-free two-band images can be efficiently used for correspondence
search in the presence of specular highlights as well as reflection component separation
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and shape recoverty. Suppose again that the pixel at x in the reference image corre-
sponds to the pixel at x′ in the target image. Then, Λ̃(x) = Λ̃(x′) because two pixels
have the same diffuse color (i.e. [Λr(x), Λg(x), Λb(x)] = [Λr(x′), Λg(x′), Λb(x′)]).
The color difference between these two pixels in the specular-free two-band images is
then expressed as⎡⎣Îr(x)

Îg(x)
Îb(x)

⎤⎦−
⎡⎣Îr(x′)
Îg(x′)
Îb(x′)

⎤⎦ = (md(x) −md(x′))

⎡⎣Λr(x)− Λ̃(x)
Λg(x) − Λ̃(x)
Λb(x)− Λ̃(x)

⎤⎦ =

⎡⎣00
0

⎤⎦ (12)

Equation (12) is very obvious because Îc(x) and Îc(x′) values in specular-free two-
band images are independent of specular reflection and md(x) = md(x′). Therefore,
the raw matching cost between corresponding pixels is equal to zero. Therefore, match-
ing errors due to specular highlights can be greatly reduced by using specular-free two-
band images instead of input images.

5 Experiments

The proposed method was applied to synthetic and real images with specular high-
lights. All real images used for experiments are obtained by cameras with the gamma
correction off.

The specular-free two-band images for the images with specular highlights are shown
in Fig. 2. The specular-free two-band images for relatively simple images are shown in
the first two rows while the specular-free two-band images for highly textured images
are shown in the last two rows. We can see that, although the color of each pixel is
changed during the transformation, the specularity of each pixel is close to zero in a
specular-free two-band image. In addition, we can see that the shading information of
an input image is correctly preserved in a specular-free two-band image. Because the
transformation from an input image to a specular-free two-band image is achieved by
pixel-wise local operations, a highly textured image with specular highlights can be also
transformed into a specular-free two-band image without any difficulties.

We then tried to produce dense disparity maps for the rectified synthetic and real
stereo images with specular highlights by using the specular-free two-band images. For
correspondence search, we have used some different correspondence search methods
such as the simple SAD-based method, the adaptive support-weights method [6], and
the dynamic programming method [2]. In fact, the proposed specular-free two-band
image can be easily used for any existent correspondence methods to make the corre-
spondence method robust to specular reflection.

The correspondence search results for some images with specular highlights are
shown in Figs. 3 – 6. Each figure shows input images (left and right) and specular-
free two-band images with the resultant disparity maps when using input images and
specular-free two-band images, respectively. When using input images, severe matching
errors occur in the areas corresponding to specular highlights in both input images re-
gardless of correspondence search methods. However, as we expected, severe matching
errors due to specular highlights are greatly reduced by using specular-free two-band
images instead of input images.
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Fig. 2. Results of specular-free two-band image generation. Note that the shading information is
preserved in specular-free two-band images.

(a) left image (b) right image (c) disparity map using input
images - SAD

(d) specular-free two-band
image of a left image

(e) specular-free two-band
image of a right image

(f) disparity map using
specular-free two-band
images - SAD

Fig. 3. Correspondence search results for synthetic images with specular highlights (1)
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(a) left image (b) right image (c) disparity map using input
images - DP [2]

(d) specular-free two-band
image of a left image

(e) specular-free two-band
image of a right image

(f) disparity map using
specular-free two-band
images - DP [2]

Fig. 4. Correspondence search results for synthetic images with specular highlights (2)

(a) left image (b) right image (c) disparity map using input
images - SAD [6]

(d) specular-free two-band
image of a left image

(e) specular-free two-band
image of a right image

(f) disparity map using
specular-free two-band
images - SAD [6]

Fig. 5. Correspondence search results for real images with specular highlights (1)
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(a) left image (b) right image (c) disparity map using input
images - SAD [6]

(d) specular-free two-band
image of a left image

(e) specular-free two-band
image of a right image

(f) disparity map using
specular-free two-band
images - SAD [6]

Fig. 6. Correspondence search results for real images with specular highlights (2)

6 Conclusion

In this work, we have proposed a new method for correspondence search in the presence
of specular highlights. For given input images, we first generate specular-free two-band
images and measure the similarity between pixels by using specular-free two-band im-
ages. By using the specular-free two-band images instead of input images, we get reli-
able raw matching costs that are independent of the specularities of image pixels. As a
result, we can find correct correspondences even in the presence of specular highlights.

The proposed method is essentially based on the specular-free two-band image. It
provides a specularity-invariant image representation that can be used for many com-
puter vision problems such as reflection component separation and shape from shading
as well as correspondence search. The propose method for specular-free image gen-
eration is very simple, fast, and proper to correspondence search. Input images can
be transformed into specular-free two-band images in real-time so that the proposed
method can be applied to real-time applications. In addition, the proposed specular-free
two-band image can be easily used for any existent correspondence methods to make
the correspondence methods robust to specular reflection.
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Abstract. A window-based stereo matching, which matches pixel val-
ues within a window between two images, produces a dense disparity
map, and as a result, constructs a dense depth structure. Many algo-
rithms of the window-based stereo matching have been proposed. The
conventional algorithms, however, face a trade-off between accuracies of
the disparity map in disparity continuity and discontinuity regions due
to the window size dependence. In this paper, to solve the issue, we
proposed a new algorithm of the window-based stereo matching. In the
algorithm, the disparity map is computed using a weighted average of
costs aggregated by various window sizes from large to small. Therefore,
our algorithm improves accuracy of the disparity map in both disparity
continuity and discontinuity regions. In order to evaluate the perfor-
mance, we have designed C++ programs. The simulation result shows
that our algorithm is effective compared to conventional algorithms.

1 Introduction

Stereo matching produces a dense disparity map by using a pair of left and
right images of a stereo camera system, and as a result, constructs a dense 3-
dimensional depth structure. The stereo matching algorithm is categorized into
three major groups: phase-based[1], feature-based[2] and intensity-based[3]. The
phase-based algorithm uses phase values of two stereo images processed by spa-
tial band-pass filters to compute a disparity map. The algorithm has advantage
of DC independence by low cut filter, but disadvantage of phase-wraparound.
The feature-based algorithm uses extracted features from the two images, such
as edge, straight line and curve, etc. The algorithm realizes high-speed process-
ing, but cannot generate a dense disparity map due to sparse features. The
intensity-based algorithm uses pixel intensities in the two images. Generally, the
intensity-based algorithm can generate a dense disparity map while the pro-
cessing speed is inferior to that of the feature-based algorithm. Therefore, the
intensity-based algorithm can be applied to a view synthesis and an image-based
rendering that are remarkable applications, which require a dense depth map.

In the intensity-based algorithm, a window-based and a coarse-to-fine algo-
rithms are commonly known as typical approaches. The window-based algorithm

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 771–780, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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matches intensity values within windows between two stereo images. The con-
ventional window-based algorithms, however, face a trade-off between accuracies
of the disparity map in disparity continuity and discontinuity regions due to the
window size dependence. To solve the problem, the coarse-to-fine algorithm has
been proposed[4],[5]. The coarse-to-fine algorithm starts the matching process by
the largest window size and gradually decreases the window size with narrowing
a range of candidates. However, the conventional coarse-to-fine algorithm often
cannot find true disparities due to a limitation of the range of candidates. In this
paper, to solve these issues, we proposed a new algorithm of the window-based
stereo matching.

2 Intensity-Based Stereo Correspondence Algorithm

A fundamental process of window-based algorithm is generally divided into four
steps; matching cost computation, cost aggregation, disparity computation and
disparity refinement. Many algorithms have been proposed in each step[3]. The
processing flow is explained below. The first step is a matching cost computation.
The matching cost means a similarity between left and right pixel intensities in
two stereo images. There are some matching cost computation methods: absolute
intensity differences (AD), squared intensity differences (SD), cross-correlation,
and etc. For example, the matching cost of the AD, Cmat, is defined as

Cmat(x, y, d) = |Ir(x, y)− Im(x + d, y)|. (1)

Here, in the two stereo images, one is a reference image, the other is a matching
image. Ir(x, y) is a pixel intensity at (x, y) in the reference image. And Im(x +
d, y) is a intensity of pixel shifted in horizontal by the disparity value, d, from
(x, y) in the matching image. Therefore, if d is true disparity, the matching cost,
Cmat(x, y, d), is reduced to almost zero because Ir is approximately equal to Im

at the disparity. The matching cost is computed for every pixel position to form
a matching cost map. The matching cost map is computed for every possible
disparity value.

In the next step, the matching costs within a window are aggregated. Because
the cost aggregated within the window (hereinafter called an aggregated cost)
allows a comparison of texture and inhibition of noise component, there is a clear
difference in the aggregated cost between true and fault disparities. The cost
aggregation has been implemented using box, binominal, Gaussian filters and
shiftable window, etc[6],[7],[8],[9]. If the box filter is used for the cost aggregation,
the aggregated cost, Cagg(x, y, d), is defined as

Cagg(x, y, d) =
1

i× j

∑
i,j∈W

Cmat(x + i, y + j, d), (2)

where, W denotes the window region. Thus, the matching costs, Cmat, within
the window, W , are aggregated by moving average at a given disparity, d. The
aggregated cost map is computed for every matching cost map.
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In the disparity computation step, the best disparity is selected by comparing
the aggregated costs across all disparities. Various disparity computation meth-
ods have been proposed: local optimization, global optimization and cooperative
algorithm, etc. In these methods, the most simple and widely used disparity
computation method is a winner-take-all (WTA) optimization categorized the
local optimization[3]. The WTA finds a disparity when the aggregated cost is
minimum value at each pixel position. The disparity of the minimum aggregated
cost is defined as the best disparity. And the disparity selected for every pixel
position forms the disparity map. A processing time of the WTA is faster than
that of the global optimization.

In the last step, the sub-pixel disparity refinement is computed by fitting a
curve to the aggregated costs at discrete pixel units to increase a resolution of
the disparity map[3],[10]. It is note that the intensities being matched must vary
smoothly to compute accurately[3].

3 Issues of the Conventional Algorithms

In the conventional window-based stereo algorithms, the optimal window size
depends on variation in disparity value around a given pixel position. The de-
pendence of the window size is explained below by using Fig. 1. Fig. 1 shows
a disparity map of a box. The disparity map is divided roughly into two re-
gions, disparity continuity region, A, and discontinuity region, B. The disparity
continuity region, A, is defined as a region where the all disparities are same.
Fig. 2(a), (b) show aggregated costs in the disparity continuity region using a
large window and a small window at the true disparity when a noise is injected.
We assume that the AD and the box filter are used as the matching cost com-
putation and the cost aggregation, respectively. As shown in Fig. 2(a) and (b),
matching costs around a given pixel are almost zero because the disparity is
true. But, an adjacent matching cost at a given pixel is 20 by noise component.
In the case, the aggregated cost is reduced to almost zero as the window size
increased because of a smoothing of the noise component. Thus, in the disparity
continuity region, a larger window is desirable to avoid the noise influence.

In contrast, the disparity discontinuity region, B, is defined as a region where
some disparities are existed. Fig. 2(c), (d) show aggregated costs in the disparity

B A
B A

Depth

close

far

Fig. 1. Disparity map of a box, A: disparity continuity region, B: disparity discontinuity
region
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aggregated cost

matching costs

0.4

(a)

20
0(noise)

(b) (c) (d)

2.2 5.7 0

Fig. 2. Aggregated cost computation in a disparity continuity region with a large win-
dow (a), with a small window (b), and in a disparity discontinuity region with a large
window (c), with a small window (d)

discontinuity region using a large window and a small window at the true dis-
parity where there are different disparities on the left side at a given pixel. As
shown in Fig. 2(c), the aggregated cost using the large window becomes large
because there are two different disparities within the window. However, in case
of the small window, because there is only one disparity in the window, the ag-
gregated cost can be reduced to zero though the given pixel approaches an edge
between the different disparities. Thus, in the disparity discontinuity region, a
small window is desirable to avoid including the different disparities.

(a) (b)

co
st

disp
0 153 6 9 12

(c)

candidates for
the best disparity

true disparity

co
st

disp
0 153 6 9 12A B

Fig. 3. Issue of the coarse-to-fine algorithm, (a) a disparity map of a box with plated-
like bulge, (b) the aggregated cost using a large window “A” against disparity, (c)
aggregated cost using a small window “B”

The coarse-to-fine algorithm solves the issue by using multiple costs aggre-
gated by various window sizes. However, the conventional coarse-to-fine algo-
rithm is difficult to find a true disparity of small object differed vastly from a
disparity of background. Fig. 3(a) shows a disparity map of a box with plate-like
bulge at the front. The aggregated cost is computed at a center of the bulge
by the coarse-to-fine algorithm. Fig. 3(b) shows the aggregated costs using a
large window, A, against disparity. The aggregated cost at a disparity of the
background is smaller than at a disparity of the bulge due to a strong influence
of the background. Thus, a disparity of background, 3, is selected as the best
disparity. And then the aggregated costs using a small window, B, as shown in
Fig. 3(c). In this case, the aggregated cost at the disparity of the bulge is smaller
than at a disparity of the background. In the coarse-to-fine algorithm, however,
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candidates for the best disparity are limited within a given area centered on the
disparity computed by the large window. Therefore, the disparity of the bulge
is not selected as the best disparity.

4 Proposed Algorithm

To solve above issues, we propose a new window-based and coarse-to-fine like
stereo matching algorithm. A process flow of the proposed algorithm is almost
the same as the conventional process flow in the section 2. The AD, which is given
by Equ. (1), and the Gaussian filter are used as the matching cost computation
and the cost aggregation, respectively. The aggregated cost by the Gaussian
filter, Cagg(x, y, d), is given by

G(i, j) =
1

2πσ2 exp

(
− i2 + j2

2σ2

)
, (3)

Cagg(x, y, d) =
∑
i,j

G(i, j)Cmat(x + i, y + j, d), (4)

where, σ2 is a variance of the Gaussian distribution and the filter size increased
with the σ. The Gaussian filter has a better performance than the box filter
in the disparity discontinuity region because a weight of the Gaussian filter is
the largest at a given pixel position and decreases with distance from the pixel
position.

In the proposed algorithm, the aggregated cost maps are computed in se-
quential order while the window size is reduced gradually, like the coarse-to-fine
algorithm. And a new cost (hereinafter called an averaged cost) map is computed
using a weighted average of the aggregated cost maps recursively and given by

C[n] =

{
Cagg[n], n = 1,
w1 · C[n− 1] + w2 · Cagg[n]

w1 + w2
, n ≥ 2.

(5)

Here, C[n] and Cagg [n] are the averaged and aggregated costs in n-th itera-
tion, respectively. And w1 and w2 are weights of the averaged and aggregated
costs, respectively. At first, an aggregated cost, Cagg[1], is computed using the
largest window for every possible disparity value at each pixel and is equal to
the averaged cost in first iteration, C[1]. Then, a next aggregated cost, Cagg[2],
is computed at each pixel using a window whose size is reduced compared to
the first iteration. The averaged cost, C[2], is renewed at each pixel using the
weighted average of the present aggregated cost, Cagg[2], and the previous av-
eraged cost, C[1], according to the Equ. (5) for every possible disparity. These
processes are computed recursively while the window size is reduced gradually.
The final averaged cost map, C[N ], is computed when the window becomes the
minimum size and has every characteristic of aggregated costs using various
window sizes.

In the next step, the WTA optimization is used as the disparity computation.
The WTA finds a disparity, d, when the averaged cost, C[N ](x, y, d), is minimum
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value at each pixel, (x, y). And the disparity map is formed by the disparity of
the minimum averaged cost. In the last step, a parabolic approximation is used
as the sub-pixel disparity refinement. The parabola fits three values that are
the averaged costs at the selected disparity by the WTA and both adjacent
disparities.

In the proposed algorithm, because the aggregated costs computed for every
possible disparity value, the issue of limitation of candidates in the coarse-to-fine
algorithm is solved. And, to construct a dense disparity map, the weight of the
aggregated cost increases with reducing the window size due to the recursive
formula (5). The characteristic of the averaged cost is changed by the maximum
and minimum sizes of the window, a reduction ratio of the window size and the
increasing rate of the weight, which is controlled by a ratio between w1 and w2
and an iteration count of the recursive formula, N .

5 Simulation

We have designed C++ programs of the proposed algorithm in order to evaluate
the performance compared with the other conventional algorithms. We used a
stereo image data, Tsukuba, from the Middlebury stereo evaluation page[11] for
our simulation as shown in Fig. 4. Fig. 4(a) and (b) show a reference image, which
is one of the stereo images, and a true disparity map (16 scales) , respectively.
We have computed disparity maps according to the proposed algorithm in the
section 4. The iteration count of the recursive formula (5) was five and the win-
dow size was gradually reduced, σ = 24, 12, 6, 3, 1.5. And both of the weights, w1
and w2, were set to one. Fig. 5(a) shows the disparity map computed by the aver-
aged cost at first iteration. The disparity map was broadly correct compared with
the true disparity map and inhibited the noise component significantly though
detailed characteristics of objects in the disparity discontinuity region could not
be detected because the computation at the first iteration used only the largest
window. Fig. 5(b) shows the final disparity map. The detailed characteristics
in the disparity discontinuity region, such as poles and edges of the lump, were
detected and there was a little terrible error in the disparity continuity region
since the final averaged cost computed by Equ. (5) contained every characteristic
of aggregated costs using various window sizes from large to small. To explain
the effect of the proposed algorithm, Fig. 6 shows costs for disparity in disparity

(a) (b)

Fig. 4. Simulation images: (a) reference image, (b) true disparity map
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(a) (b)
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B

Fig. 5. Disparity maps by our algorithm at the first iteration (a) and at the final
iteration (b)
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Fig. 6. Comparison of aggregated costs with the averaged cost in disparity continuity
region, aggregated costs using a large window (a) and a small window (b), the final
averaged cost (c), and in disparity disconitnuity region, aggregated costs using a large
window (d) and a small window (e), the final averaged cost (f)

(a)

(b) (d) (f)

(c) (e)

Fig. 7. Disparity maps: (a) box filter (window size = 15), (b) box filter (window size
= 3), (c) shiftable window (window size = 21), (d) shiftable window (window size =
3), (e) coarse-to-fine (the first iteration), (f) coarse-to-fine (the final iteration)
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Fig. 8. Plots of the three evaluation measures of (a) box filter, (b) shiftable window,
(c) coarse-to-fine algorithm and (d) our algorithm

continuity and discontinuity regions at pixel positions A and B in Fig. 5(b). In
these figures, (a) and (b) show the aggregated costs using the largest and small-
est window size against disparity in the disparity continuity region, respectively,
and (c) shows the final averaged cost. As shown in Fig. 6(c), in the disparity
continuity region, the averaged cost at the true disparity was minimum due to
a influence of the aggregated cost using the largest window though there was a
little difference in the aggregated cost using the smallest window around the true
disparity and the true disparity was not selected. By the same token, as shown in
Fig. 6(f), in the disparity discontinuity region, the averaged cost at the true dis-
parity was minimum due to a influence of the aggregated cost using the smallest
window though the aggregated cost using the largest window was not minimum.
Therefore, the proposed algorithm computed the disparity map well in both of
the disparity continuity and discontinuity regions. And, as shown in Fig. 6, the
aggregated cost using the smallest window had more strongly influence to the
averaged cost than that using the largest window to detect detail characteristics
of objects. We compared our algorithm with the conventional algorithms. We
selected the box filter and the shiftable window for the cost aggregation as the
conventional window-based algorithms. The box filter, which is introduced in the
section 2, is simple and therefore widely used. The shiftable window is introduced
as the best aggregation method in the review [3]. Additionally, the conventional
coarse-to-fine algorithm was simulated to the comparison. To compare the cost
aggregation step, these conventional algorithms used the same methods as the
proposed algorithm in the other steps. Namely, the AD, the WTA optimization
and the parabolic approximation are used as the matching cost computation,
the disparity computation and the sub-pixel refinement, respectively. Fig. 7(a)
and (b) show disparity maps by the box filter using the large and small windows,
respectively. And Fig. 7(c) and (d) show disparity maps by the shiftable window
using the large and small windows, respectively. The sizes of the shiftable window
were selected to get the best results. As shown in Fig. 7(a) and (c), when these
algorithms used the large box filter and shiftable window, these algorithms had
similar characteristics to the proposed algorithm at first iteration (Fig. 5(a)).
However, as shown in Fig. 7(b) and (d), when these algorithms used the small
box filter and shiftable window, the disparity maps of these algorithms had many
terrible errors though the detailed characteristics in the disparity discontinuity
region were detected.
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The coarse-to-fine algorithm used the same filter and condition as the pro-
posed algorithm. Namely, the iteration count was five and the window size of
the Gaussian filter was gradually reduced, σ = 24, 12, 6, 3, 1.5. In the coarse-to-
fine algorithm, the range of candidate was reduced, ±4, 3, 2, 1, with reducing the
window size. Fig. 7(e) shows the disparity map by the coarse-to-fine algorithm
at first iteration. The first disparity map of the coarse-to-fine algorithm was
exactly the same as that of the proposed algorithm because of the same con-
dition. Fig. 7(f) shows the final disparity map by the coarse-to-fine algorithm.
As shown in Fig. 7(f), the coarse-to-fine algorithm had almost similar charac-
teristics to the proposed algorithm and there was a little terrible error in the
disparity continuity region. However, the detailed characteristics in the dispar-
ity discontinuity region, such as poles and edges of the lump, were not detected
due to an influence of the background and this result indicated the issue of the
coarse-to-fine algorithm in the section 3. Therefore, the coarse-to-fine algorithm
has the limitation to detect the detailed characteristics. Fig. 8(a), (b), (c) and
(d) show plots of the three evaluation measures, BŌ, BT̄ and BD, of the box
filter, the shiftable window, the coarse-to-fine algorithm and the proposed algo-
rithm, respectively. BŌ is the error rate in the non-occluded region. BT̄ is the
error rate in the texture-less region. The texture-less region includes a part of
the disparity continuity region since disparities within the texture-less region
are same unless this region is slanted. BD is the error rate in the disparity dis-
continuity region. The error rate represents the percentage of bad pixels, which
mean false disparities compared with the true disparities as shown in Fig. 4(b).
In the Fig. 8, the horizontal axis measures window size and the vertical axis
measures the error rates. As shown in Fig. 8(a) and (b), in the plots of the box
filter and the shiftable window, when window size is small, BT̄ is high and BD is
low. In contrast, when window size is large, BT̄ is low and BD is high. Namely,
these results indicate the issue of the trade-off accuracies of the disparity map
in disparity continuity and discontinuity regions against the window size. As
shown in Fig. 8(c) and (d), in the coarse-to-fine and proposed algorithms, BT̄

and BD decrease with increasing the iteration. However, in the coarse-to-fine
algorithm, BD does not decrease in the final iteration because of the limita-
tion of candidates. Contrastively, in the proposed algorithm, BD decreases more
than the coarse-to-fine algorithm. Therefore, these above results indicate that
the proposed algorithm solves the issue of the conventional window-based and
coarse-to-fine algorithms in the section 3. The table 1 shows the best results of
the evaluation measures, BŌ, BT̄ , BD and BA, in the conventional and proposed

Table 1. The best results in the conventional and proposed algorithms

BŌ [%] BT̄ [%] BD[%] BA[%]
box filter 8.40 8.65 33.85 10.20
shiftable win. 6.31 4.64 28.36 8.06
coarse-to-fine 8.48 9.23 31.59 10.31
our algorithm 5.57 6.20 23.14 7.64
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algorithms. BA is the error rate in all regions. As shown in the table 1, BA of the
proposed algorithm is minimum. Therefore the proposed algorithm got better
results than the conventional algorithms.

6 Conclusion

We proposed a new window-based and coarse-to-fine like stereo matching al-
gorithm. The disparity map was computed using a weighted average of costs
aggregated by various window sizes from large to small. And we have designed
C++ programs to evaluate the performance. The proposed algorithm solved the
issue of the trade-off between accuracies of the disparity map in disparity con-
tinuity and discontinuity regions against the window size, and the limitation of
candidates of the coarse-to-fine algorithm.
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Abstract. This paper presents a robust player tracking method for
sports video analysis. In order to track agile player stably and robustly,
we employ multiple models method, with a mean shift procedure corre-
sponding to each model for player localization. Furthermore, we define
pseudo measurement via fusing the measurements obtained by mean shift
procedure. And the fusing coefficients are built from two likelihood func-
tions: one is image based likelihood; the other is motion based association
probability. Experimental results show effectiveness of our method in the
hard case of player tracking literature.

1 Introduction and Related Work

Object tracking is one of crucial communities in computer vision. Good solutions
to this problem (i.e. Real time and robust tracking) have a variety of applications
such as navigation [6][8], missile defense [6], surveillance, human computer in-
terface [7], intelligent transportation system and so on. Its application to sports
domain also provides us with individuals moving analysis of team sports [4].

Usually, object tracking consists of two major components: Target Represen-
tation and Filtering [5]. In radar tracking domain, target is a simple echo and
is only represented by coordinate value. So here filtering, which aims at tar-
get dynamics, is more important than target representation model. Whereas in
visual tracking literature, target is large enough to be modeled by its appear-
ance, shape, color or other specific features. When the sample rate of image data
sequence is high enough, motion of the visual target between two consecutive
frames will be negligible. Thereby, target representation is more important than
filtering techniques in visual tracking literature. However, we pay attention to
both of target representation and filtering because of the character of player
tracking.

In sports video analysis, it’s quite difficult to track players stably since they
are highly non-rigid, identical dressing, dynamic uncertainty and occlusion of
teammates frequently occurs. The method based on template matching [9] is easy
to drift; therefore it is inevitable to be inaccurate in tracking and easy to loose
the track. [10] and [11] used the top view to track handball game players indoor.
[12] tracked multiple players in a video of American football. [13] used boosting

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 781–790, 2006.
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technique to reinforce the proposal distribution of particle filter for tracking
multiple hockey players. [14] tracked athletes via multiple features of multiple
views. They all pay attention to only one point of view, target representation
or filtering. There are a lot of research works on how to remove camera motion
from a game video [2], so it is out of scope in this paper and we use a static
camera here.

Even though the accuracy is less important to help the audience to enjoy
the sports, filtering do much help to tackle the difficulties of player tracking,
such as uncertainty of dynamics of agile player, partial occlusion of two or more
players and clutter background. We insist on a good motion model so much that
multiple model approach for hybrid system [8] will be chosen to track players.
Consequently, a new algorithm, pseudo measurement based multiple model, is
proposed for player tracking. It employs multiple model method, with a mean
shift procedure corresponding to each model for player localization. Pseudo mea-
surement is built via linear fusion technique by two likelihood function: one is
image based likelihood; the other is motion based association probability. An
important motivation for this idea is cue integration between image and motion
to overcome the weakness of individual cue. Hence, pseudo measurement based
multiple model algorithm is adaptive to some hard problem in player tracking
literature, such as non-rigid target and agile motion.

We begin in section 2 with player localization. In section 3, the proposed
pseudo measurement based multiple model method is introduced. Experimental
results and some minor problems present in section 4. Finally, conclusion and
future work are discussed in section 5.

2 Mean Shift Based Player Localization

In this section, we first recall the well-known mean shift procedure for player
localization, and then discuss the hard situations in localization of players.

Mean shift is a nonparametric estimator of density gradient. When used in
computer vision, color based mean shift is robust and also fast [5][15].

Color based mean shift models the target by the color histogram. Let {xi}n
i=1

be a set of n points in R
2 space to represent pixel locations of target. Then the

probability of color u in the target model is derived by employing a convex and
monotonic decreasing kernel function k : [0,∞)→ R.

[5] has defined a distance metric,

d(y) = (1 −
∑

u

√
p̂u(y)q̂u)1/2

based on Bhattacharyya coefficient to denote how well the candidate and model
match. Maximizing this distance (see [5] for details) yields mean shift vector
computed with kernel k and its bandwidth h:

Mh(y) =
∑n

i=1 xik(y−x
h )∑n

i=1 k(y−x
h )

− y (1)
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[5] recommends Epanechnikov kernel function. After a few iterations, mean shift
vector will converge to zero.

Only localization is not sufficient for filtering technique because of the mea-
surement uncertainty. We assume the measurement uncertainty is Gaussian dis-
tribution and use three special point’s sum of squared differences (SSD) value
to approximate the Gaussian distribution, according to [17].

Fig. 1. Three modes (marked in red×, red+ and red◦) are formed nearby two team-
mates. Consequently localization with mean shift procedure is inaccurate.

Here we notice that only color histogram information used, which will lead
to large variations for adjacent location on the image lattice and the spatial
information is lost. On the other hand, mean shift algorithm searches a local
density extremum. Therefore, mean shift is sensitive to its initial placement.
Especially when two players (team mates) get close, we probably obtain error
localization with mean shift procedure (e.g. Fig.1). To tackle this difficulty, we
use probabilities belonging to the real target, i.e. pseudo measurement presented
in section 3, to constrain the localization results.

3 Pseudo Measurement Based IMM Filtering

A principled choice of dynamics of a tracking system is essential for good re-
sults. However, players are highly maneuvering targets, which is the reason that
leads to awful player track with only one fixed dynamic model. Nowadays, con-
siderable research has been undertaken in the field of hybrid system estimation
theory [6] in radar tracking literature. That means we can make use of several
dynamic models simultaneously to characterize the target’s motion. In our re-
search, we pick IMM (interacting multiple model) method, one of suboptimal
filtering techniques, along with a pseudo measurement to fuse multiple models.

In this section, we first introduce pseudo measurement into IMM framework
via Bayesian filtering theory, and then rectify the pseudo measurement with ad-
ditional image based likelihood function and motion based likelihood function. In
the end, the whole pseudo measurement based multiple model filtering algorithm
we have proposed is listed.
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3.1 Pseudo Measurement Based Multiple Model Filtering
Framework

In radar tracking literature, IMM has been verified to be a best compromise
between optimal filtering and computational complexity [6]. Fig.2 demonstrates
our framework.

11, | 1 1, 1| 1k k k kx F x− − −=
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Fig. 2. Pseudo Measurement based MM Filtering Framework

According to Fig.2, we define n motion models to form a IMM filter. The ith
state transition equation and measurement equation are written as{

xi(k + 1) = Fix
i(k) + vi(k)

zi(k + 1) = Hix(k + 1) + wi(k + 1) (2)

Where xi(k) and zi(k) are state vector and measurement vector belonging to ith
model at time k. Process noise vi(k) and measurement noise wi(k) are indepen-
dent Gaussian noise with mean zero, covariance Qi(k) and Ri(k) respectively.

In order to locate the targets (players), a mean shift procedure is employed
for each motion model. Then n measurements are produced. Let {zi(k)}m(k)

i=1 be
the measurements at time k, i.e. localizations obtained by mean shift procedure
in this paper. However, only one integrated measurement, which is called pseudo
measurement here, will be used to drive IMM filter. Hence we define pseudo
measurement z̄(k) as

z̄(k) =
m(k)∑
i=1

ωi(k) · zi(k) (3)

ωi(k) =
pi(k)∑
i pi(k)

(4)

Here, m(k) is the number of measurement at time k. And ωi(k) is weighting
factor determined by the likelihood pi of each candidate measurement belong-
ing to the real target. The likelihood pi will be made clear in next subsection.
z̄(k) in (3) is named pseudo measurement and is similar with but distinct from
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probabilistic data association [17], which is a radar tracking fusion strategy to
handle the problem of data association when more than one or no measurement
emerges. In our situation, each mean shift procedure returns a converging point,
thus the number of measurement is changeless, i.e. n. (3) indicates that fused
pseudo measurement is more accurate than any individual measurement.

When teammates get close, it’s reasonable that motion information is prior
to appearance information for player tracking system due to easily confusing
the localization of teammates. So we try to employ the prediction of pseudo
measurement to emphasize the motion information from multiple motion models.
Let Mj(k) be the jth model at time k, then the model probability conditioned
on history measurements is

p(Mj(k)|Zk−1) =
n∑

i=1

p(Mj(k)|Mi(k − 1), Zk−1) · p(Mi(k − 1)|Zk−1) (5)

Where, Zk−1 is history measurement up to time k−1. p(Mj(k)|Mi(k−1), Zk−1)
indicates the model transition probability which is preset and p(Mi(k−1)|Zk−1)
means the previous model probability conditioned on history measurements.
For each model, each corresponding filter (such as standard Kalman filter) can
calculate a measurement prediction, denoted by Ẑj(k). Then we achieve the
pseudo measurement prediction by

ẑ(k) =
n∑

j=1

p(Mj(k)|Zk−1) · ẑj(k) (6)

This pseudo measurement prediction is crucial in our method in the case of
players’ occlusion and no real measurement achieved (see next subsection for
details).

3.2 Measurement Likelihood

In this subsection, we’ll build a straightforward likelihood function for pi in (4)
using appearance information as well as motion information.

In our method, likelihood function of the measurement is defined as below,

pi = (Lai)α · (Lmi)β (7)

Where, Lai denotes the likelihood from target appearance and Lmi from target
motion. α and β are the weights implying the reliabilities of appearance based
and motion based information respectively, satisfying 0 ≤ α, β ≤ 1. (7) indicates
the likelihood pi is more rigorous after considering both points of view in tracking
literature: target representation and filtering. In our experiments, we fix α and
β for simpleness in spite of their significance for adaptiveness.

Firstly, the image based likelihood Lai function can be many of similarity
function, such as image based template matching function, feature based tem-
plate matching function and even statistics based likelihood function. Without
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loss of generality and for simpleness, we apply Bhattacharyya coefficient, which
has been defined in mean shift procedure [15], to get a robust image based like-
lihood function. Hence, we define Lai as

Lai = exp(γ · ρi) (8)

ρi =
∑

l

√
p̂l(zi)ql (9)

Here, ρi is Bhattacharyya coefficient between the color distribution of model
q and that of candidate measurement p̂(zi), also an intermediate result from
mean shift procedure. Notice that (8) is a nonlinear function and γ is another
parameter to adjust the impact of appearance based likelihood. The influence of
γ can be grasped more easily in our experiments.

Secondly, when player occlusion occurs, appearance information of target
fades out and their motion information should take over the tracker. We assume
that the measurement innovation, which is obtained via the pseudo measure-
ment prediction, obeys Gaussian distribution. Similar to IMM’s mode likelihood
definition, we define Lmi as

Table 1. Detailed steps of pseudo measurement based MM filtering in one circle

1. Calculate the mixing probabilities: μk−1|k−1(i, j) = p(i,j)·μk−1(i)

i p(i,j)·μk−1(i)

2. Redo the filters’ initialization

x̂
(j),0
k−1|k−1 = i x̂

(i)
k−1|k−1μk−1|k−1(i, j)

νk−1(i, j) = x̂
(i)
k−1|k−1 − x̂

(j),0
k−1|k−1

P
(j),0
k−1|k−1 = i μk−1|k−1(i, j) · P

(i)
k−1|k−1 + νk−1(i, j) · νT

k−1(i, j)

3. Filters’ prediction: ẑj = Hj · x̄
(j)
k|k−1 = Hj · Fj · x̂

(j),0
k−1|k−1

4. Calculate pseudo measurement prediction ẑ(k) in (6);
5. Mean shift procedure from ẑj for player localization zj and SSD for its
uncertainty Rj ;
6. Get the appearance likelihood Lai via (8) and (9);
7. Obtain the motion based likelihood Lmi by (10);
8. Calculate measurement likelihood pi in (7);
9. Combine pseudo measurement z̄ via (3) and (3);
10. All filters run as standard Kalman filter;
11. Update model likelihood and probabilities

Λ
(j)
k = N Z̄ − h(x̂(j),0

k|k−1); 0, S
(j)
k ;

η
(j)
k = Λ

(j)
k i p(i, j) · μ

(i)
k−1; μ

(j)
k = η

(j)
k

i η
(i)
k12. Estimate and covariance combination

x̂k|k = i x̂
(i)
k|kμ

(i)
k ; Pk|k = i μ

(i)
k P

(i)
k|k + [x̂(i)

k|k − x̂k|k] · [x̂(i)
k|k − x̂k|k]T
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Lmi =
1√

2π|Si|
exp
[
− (zi − ẑ)T · S−1

i · (zi − ẑ)
2

]
(10)

Where ẑ, the pseudo measurement prediction is introduced in previous subsec-
tion and Si is the innovation covariance which is calculated with measurement
covariance Ri in standard Kalman filter. Now the motion based likelihood func-
tion Lmi is indicating that the pseudo measurement is biased to motion predic-
tion, controlled by the parameter α and β.

3.3 Pseudo Measurement Based MM Filtering

In this subsection, the detailed steps of pseudo measurement based MM filter-
ing algorithm for player tracking are present for summary. In Table 1 Some
procedures can be achieved from IMM algorithm (seeing [6] for details) directly.

4 Implementation and Results

The proposed method, pseudo measurement based multiple model, has been
tested under various football game video. To evaluate the performance of the
method, we compared our tracking results with ground truth, marked manu-
ally, and with other tracking strategies, such as mean shift and mean shift with
Kalman filtering.

4.1 Experiment Configuration

The implementation configuration is set as below. To describe the player state,
we use

x(k) = [x, vx, ax, y, vy, ay]Tk

where (x, y) is coordinate of player location in image plane, (vx, vy) is its velocity
and (ax, ay) the acceleration. Since we can only ”see” the player’s position infor-
mation in image sequence, our system measurement is denoted by zk = [x, y]Tk
only. Three models are used to characterize the player motion. They are constant
velocity model (CV), constant acceleration model with small noise (LowCA) and
constant acceleration model with large noise (HighCA).

Since the football court is looked down, the size of the player varies slightly.
Therefore, we won’t adapt the model size in our experiments. To be simple, α
and β are both set to 1. However, γ adjusts the impact of appearance based
likelihood, thereby we set γ to different value to test the effectiveness of our
method, seeing next subsection.

4.2 Implementation Results

In this subsection, we test our algorithm with the video sequence ”football.avi”,
compared with other two common algorithms (one is mean shift procedure only,
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06 10 27 28 29

06 10 27 28 29

06 10 27 28 29

Fig. 3. In these tracking result sequences, player position estimated is marked with a
red cross. The first row displays mean shift only tracking result. The second row shows
the result of Kalman + mean shift method. And the result of our method, pseudo
measurement based multiple model approach, is put in the third row.

Fig. 4. The left figure is motion model probability of player selected. The right one
demonstrates γ adjusting the effectiveness of the image based likelihood.

the other is mean shift with CV based Kalman filtering) in several phases. In
video ”football.avi” a special target with agile motion is selected to be tracked.

Firstly, the sequences with estimated position marked with Red Cross (Fig.3)
are present. In Fig.3, only frames 6\10\27\28\29 are shown as key frames. Obvi-
ously, mean shift method failed when two teammates are very close to each other
from frame 6 to frame 10, because mean shift can’t distinguish them well only by
player’s appearance. From frame 27 to frame 29 mean shift + Kalman method
also failed since the player’s position predicted in Kalman filter dropped into the
region of another similar player. However, our approach is such a robust tracking
method for player tracking that it can succeed in many hard cases. Secondly,
the left figure in Fig.4 shows the history of the motion model probabilities for
the player selected by our algorithm. Obviously, the motion model probability



Pseudo Measurement Based Multiple Model Approach 789

is not as stable as that in radar literature because the mean shift procedure is
not stable for player localization. Thirdly, we redo our method only under the
modification of parameter γ, comparing their square root position error with
the ground truth marked by hand (the right figure in Fig.4). This experimental
result has proven that the image based likelihood did help us to improve the
player tracking.

5 Conclusion and Future Works

In this paper, we first present the challenges in player tracking area, for in-
stance, the unknown motion mode and unknown noise level. Then to localize
the player, we apply mean shift procedure which has been verified to be robust
in visual system. However, mean shift procedure is dependent on the initial-
ization so severely that only one initialization is not enough for robust player
tracking. Furthermore, we import a multiple model method designed for hybrid
system in radar tracking literature, to get multiple measurements which include
true measurement and false measurements. To tackle the multiple measurements
problem, a pseudo measurement is designed via two likelihood function: motion
based likelihood and image based likelihood.

The experimental results show the performance of our method in player track-
ing. However, there are several minor problem need to be taken into account
further. For example, non-rigid player varying all the time challenges the model
of image based likelihood. So a better model updating scheme may help a lot in
accuracy. In addition, how to choose the parameter α, β and γ to be adaptive
in different cases needs more research.
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Abstract. We propose a hierarchical method for 3D rigid motion esti-
mation between two 3D data sets of objects represented by triangular
meshes. Multiresolution surfaces are generated from the original sur-
face of each object. These surfaces are decomposed into small patches
based on estimated geodesic distance and curvature information. In our
method, segment-to-segment matching to recover rigid motions at each
resolution level of surfaces is performed. Motion results from low resolu-
tion surface matching are propagated to higher resolution surface match-
ing in order to generate a spatial constraint for similar segment selection.
Our approach can recover 3D rigid motion of both rigid body and non-
rigid body (with partial rigid areas). The method was tested to estimate
rigid motions of 3D data obtained by the Cyberware scanner.

1 Introduction

Rigid motion analysis is a fundamental problem in computer vision. It is closely
related to the problems of surface matching, surface registration, and object
recognition. In the literature, a large number of techniques have been developed
to solve these problems. The iterative closest point (ICP) algorithm [1] by Besl
and McKay is the most popular method. It has many derivatives improving the
original one, e.g., using point-to-normal in the distance evaluation instead of
point-to-closest point [2], applying features to match compatible points [3, 4, 5],
etc. However, ICP based methods will converge only if good initial approxima-
tions are provided, and the closest point searching method does not lead to local
minima. In [6], Johnson and Hebert proposed Spin-image a 2D-histogram based
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representation, that has been successfully applied to surface matching of clut-
tered objects in 3-D complex scenes. Zhang and Hebert applied Harmonic map
in surface matching [7], which emphasizes handling of occlusion and different res-
olution. Yahia et al. used geodesic distance evolution of surfaces in the matching
problem [8]. The method can handle a topological change and deformation of
surfaces. Sun and Abidi developed point’s fingerprint from geodesic circles [9]
and used it in image registration, e.g., for matching overlapping surface area.

Most of the previous methods can perform matching of surfaces and partial
surfaces, but these surfaces must not be very noisy. Also, good initialization of
motion parameters plays essential role in these methods, along with smallness of
motion. In our method, flexibility is introduced such that we allow local deforma-
tions, missing of some partial surface regions, and noise. Also, no initialization
is required. In our method, surfaces of objects are segmented into small patches
based on geodesic distance and curvature information. Similarity of segments is
measured by a set of error functions which are invariant to rigid motion. We
then select patches from each object which are similar to each other to perform
matching and estimate possible rigid motions. Some motion results are then fil-
tered out based on error functions which are variant to the rigid motion. The
motion that gives the smallest mean distance between surfaces is returned. We
apply multiresolution analysis techniques on the original surfaces to generate
surfaces that are less complex and contain less details than the original ones. We
formulate a hierarchical method for rigid motion estimation such that motion
results from coarser levels are propagated to the finer levels.

2 Rigid Motion Estimation

The problem of rigid motion estimation is defined as follows. Given two sets of
3D data points without known correspondence, recover the (global) rigid motion
that includes rotation (3-DOF) and translation (3-DOF) between these two data
sets. Suppose these two data sets are O (before motion) and O′ (after motion).
We want to find the transformation consisting of the rotation matrix R and
translation vector T such that RO + T & O′. In the following, we present
error functions used in our method, and later we explain about our rigid motion
estimation algorithm.

2.1 Error Functions

Error functions are defined to measure segment similarity. We have two groups
of error functions. The first group consists of error functions that are invariant to
rigid transformation such as EigenDiff,CurvednessDiff, and SizeDiff. These three
components measure the similarity of two segments and are used in segment
selection before applying motions. The second group of error functions are vari-
ant to rigid transformation such as SegDist,NormalDiff, OrientDiff, and ObjDist.
These error functions measure how well each motion performs in segment-to-
segment and object-to-object matching. Suppose S and S′ are segments we want
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to perform matching. S and S′ belong to objects O and O′, respectively. The
error functions are defined as follows.

EigenDiff is the difference of eigenvalues of two covariance matrices. The
covariance matrix is computed from (x, y, z) coordinates of vertices in each seg-
ment, thus the covariance matrix size is 3×3. Let A and A′ be covariance matri-
ces of segments S and S′, respectively. Let vi = (xi, yi, zi) be points belonging to
S, where i = 1, ..., n. To compute the covariance matrix, vi are centered around
vi, which is the mean point in S, so vi = vi−vi. The covariance matrix A is thus
computed as A = VVt. The covariance matrix A′ is also computed in similar
fashion. Let λ1 > λ2 > λ3 be eigenvalues of A/||A||; and λ′

1 > λ′
2 > λ′

3 be
eigenvalues of A′/||A′||, where ||.|| denotes the matrix norm. EigenDiff is thus
defined as,

EigenDiff =
3∑

i=1

(λi − λ′
i)

2.

CurvednessDiff is the difference of segment curvedness values. The curvedness
of a segment is estimated by the curvedness at the segment center. The curved-
ness at a point is computed by that point’s principal curvatures, k1 and k2 [10].

The curvedness C is, C =
√

k2
1+k2

2
2 . Let C and C′ be the curvedness values of

segments S and S′, respectively. CurvednessDiff is thus defined as the absolute
difference between C and C′, CurvednessDiff = |C − C′|.

SizeDiff is the absolute difference between two segment sizes. The size of a
segment is defined using area of the segment. Let |S| and |S′| be the size of S
and S′, respectively. Then, SizeDiff = ||S| − |S′||.

The next four error functions are applied after rigid motion is recovered.
Suppose (R,T) is one of the recovered motions. Let vi and ni be vertices and
normals belonging to S, respectively. Thus the motion (R,T) is applied to S as,
vi = Rvi + T and ni = Rni.

NormalDiff is the difference between normals of two segments. Suppose |S| <
|S′|. Therefore,

NormalDiff =
|S|∑
i=1

√∑
k

(nki − nkj)2,

where k ∈ {x, y, z}, [nxi, nyi, nzi] are normals of the first segment, and [nxj, nyj ,
nzj ] are normals of corresponding vertices in the second segment. The corre-
sponding vertex is estimated from the vertex of the closest match.

OrientDiff measures how well the surfaces of two objects are aligned with each
other after applying motion. Let Oc and O′

c be centroids of objects O and O′,
respectively. The motion (R,T) is applied to Oc such that Oc = ROc + T. Let
Sc and S′

c be centroids of segments S and S′, respectively. Compute two normals
N and N ′, where N = (Sc−Oc)/||Sc−Oc||, N ′ = (S′

c−O′
c)/||S′

c−O′
c||, and ||.||

denotes the vector norm. Hence OrientDiff is computed as, OrientDiff = 1−N ·N ′.
Since N and N ′ should be aligned with each other in the same direction for good
matching, we can discard any motions whose corresponding OrientDiff > 1.
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SegDist and ObjDist are the average distances between the surfaces of two seg-
ments and of two objects, respectively. They are calculated based on computation
of distances between surfaces by the GTS library [11]. Surfaces are represented
by bounding box trees. The distance from a triangle on a surface to the other
surface is computed by (i) sampling points on that triangle, (ii) calculating the
distance from each sampling point to the closest object (bounding box) of tree
that represents the other object, and (iii) averaging these sampled point distances
as the triangle distance. Then the distance between surfaces is defined as the sum
of the distances of triangles weighted by their area and divided by the total area
of the surface. However, it is possible that SegDist(S,S′) 
= SegDist(S′,S), and
ObjDist(O,O′) 
= ObjDist(O′,O). Therefore, we always make sure to compute
the distance from the smaller surface to the larger surface such that if |S| < |S′|,
we compute SegDist(S,S′), otherwise, we compute SegDist(S′,S) (similarly for
ObjDist(O,O′)).

2.2 Rigid Motion Estimation Algorithm

Our rigid motion estimation method consists of six steps: (i) multiresolution
analysis, (ii) surface segmentation, (iii) segment selection, (iv) segment-to-seg-
ment matching, (v) transformation filtering, and (vi) transformation scoring.
The first step generates multiresolution surfaces when the level number is given.
The higher number corresponds to the lower resolution. We apply a decimation
algorithm [12], which is a fast mesh simplification method, to generate multires-
olution surfaces. However, the resulting surfaces are not smooth, making surface
analysis difficult. Therefore, we need to apply a surface smoothing method to
smooth these simplified surfaces [13]. The second step is to segment surfaces
provided by the previous step. This method segments triangular surface meshes
based on estimated geodesic distance and curvature. Resulting segments are clas-
sified into (1) peak-type, (2) pit-type, (3) minimal surface-type, and (4) flat-type.
Each segment type includes vertices with its type, and nearby vertices based on
estimated geodesic distance.

In the next step (segment selection), each segment of one surface is compared
with each segment of the target surface. From segmentation, segments are clas-
sified into different types based on curvatures. Thus, we use this information to
select matching pairs such that only segments having the same type are allowed to
align with each other. Also we use three error functions that are invariant to rigid
transformation to measure similarity between two segments. These error functions
are EigenDiff, CurvednessDiff, and SizeDiff. For each segment Si belonging to O, we
compute EigenDiff(Si,S

′
j), CurvednessDiff(Si,S

′
j) and SizeDiff(Si,S

′
j), where S′

j

are segments belonging to O′, and j = 1, ...,m. Then for each Si, we compute the
average of each error with all S′

j , EigenDiffi,CurvednessDiffi, and SizeDiffi. There-
fore, for each Si, we select S′

j such that EigenDiff(Si,S
′
j), CurvednessDiff(Si,S

′
j),

and SizeDiff(Si,S
′
j) are less than EigenDiffi, CurvednessDiffi, and SizeDiffi,

respectively.
In segment-to-segment matching, transformations (R,T) are computed by

aligning selected pairs of similar segments together. We compute principal com-
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ponents of vertices in each segment. These principal components are used to
form orthogonal matrices and these matrices are used to calculate rigid trans-
formations. Suppose S and S′ are segments we want to perform matching where
S and S′ belong to objects O and O′, respectively. For each segment, we create
the covariance matrix from points in the segment. Eigenvectors and eigenvalues
are then computed from the covariance matrix. Eigenvectors are considered as
principal components of the segments. Let �ei, �ej, �ek be eigenvectors of S, and
let �ei

′, �ej
′, �ek

′ be eigenvectors of S′, where �ek and �ek
′ are most aligned with the

normal directions of S and S′, respectively. The orthogonal matrices E and E′

are formed as follows,

E = [�ei, �ej, �ek],
E′ = [�ei

′, �ej
′, �ek

′],

where the coordinate system of matrices is defined as,

�ei × �ej = �ek, �ej × �ek = �ei, �ek × �ei = �ej ,

�ei
′ × �ej

′ = �ek
′, �ej

′ × �ek
′ = �ei

′, �ek
′ × �ei

′ = �ej
′.

There are four combinations of alignment for the two matrices, so E′ is
modified by rotating �ei

′ and �ej
′ around �ek

′ by 0◦, 90◦, 180◦and270◦. There-
fore, we have E′

1 = [�ei
′, �ej

′, �ek
′],E′

2 = [�ej
′,−�ei

′, �ek
′],E′

3 = [−�ei
′,−�ej

′, �ek
′],E′

4 =
[−�ej

′,−�ei
′, �ek

′]. Let v and v′ be mean points of S and S′, respectively. Rigid
transformations are hence computed as Ri = E′

iE
t,Ti = v′ − Riv, where

i = 1, 2, 3, 4. To find the best matching among these four transformations, we
apply each (Ri, Ti) to vertices of S and apply Ri to normals of S. Then we use
two error functions, SegDist and OrientDiff, to compute how good the alignment
of two segments is after applying the motion. We select the one which gives the
smallest SegDist and also gives the valid orientation of object alignment, e.g.,
OrientDiff < 1.

The next step is two-pass transformation filtering. The first pass is to fil-
ter transformations within the same group, and the second pass is to filter all
transformations selected from the first pass. Suppose the segment Si of O is
matched with S′

j of O′, where j = 1, ...,m and the transformations (Rij,Tij)
are computed from matching Si and S′

j . We compute the weighted sum of two
error functions, NormalDiff and OrientDiff, to measure matching error in segment
level. Let Align be the matching error of two segments,

Align(Si,S
′
j) = β1NormalDiff(Si,S

′
j)

+ β2OrientDiff(Si,S
′
j),

where β1 and β2 are weighting parameters. In the first pass, the same group of
transformations includes all transformations which are computed from the same
Si, i.e., (Rij,Tij), j = 1, ...,m, are in the same group. For each group, we compute
the average of the Align of all (Rij,Tij), and select only the transformations
whose Align are smaller than the average. In the second pass, the new average
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Align is computed from Align of all transformations selected from every group.
Then only the transformations whose Align are smaller than the new average are
passed to the next step.

For the remaining transformations, we compute their ObjDist score, and we
select the transformation which gives the smallest ObjDist to be the best trans-
formation. The best transformation is then passed to the finer surface matching
as an initial transformation. At the finer surface matching, the initial transfor-
mation is used as an additional spatial constraint to pair nearby segments in
segment selection, thus matching of far away pairs can be cut off. The threshold
distance between segments is defined in order to limit the maximum distance
between two segments that are allowed to be paired. The size of this threshold
is proportional to the size of ObjDist passed from the previous level. The other
parts of the method are processed similarly. The method returns the final trans-
formation when the finest surface matching is done, or when ObjDist is below a
defined threshold.

3 Experiments

We tested our method on 3D data obtained by the Cyberware scanner; face data
is obtained from UIUC, rest of the data is from the www.cyberware.com. The
test data consist of two sets: open surface and closed surface objects. The open
surface objects include four 3D face data that have different facial expressions
and data completeness as shown in Figure 1. The face data are nonrigid objects
having some local rigid parts, e.g., nose (nose is elastic, but does not contribute
to the nonrigid motion in most facial expressions). We classify the face data
experiments into four test groups based on the motion of objects, and complete-
ness of the data surfaces. We have four groups of experiments. In TEST A and
TEST C, we want to test on pure rigid motion recovery when data surfaces
are complete and incomplete, respectively. In TEST B and TEST D, we want
to test on recovery of rigid motions when nonrigid motion is also present with
complete and incomplete data, respectively. Incomplete surfaces mean that only
partial data is available. We created the incomplete surfaces using MayaTM, a
modeling software package. The closed surface objects include six pairs of ob-
jects: the models of Venus head, dinosaur, ball joint, Isis statue, hip, and teeth.
Each object is matched with its pair that is locally deformed, added with noise,
and whose parts are partially missing by MayaTM.

We applied a set of rigid motions to one of each object pair in both test
sets. The set of rigid motions contains seven different transformations (R,T)
with −135◦ ≤ (θx, θy, θz) ≤ 135◦ and −30 ≤ (tx, ty, tz) ≤ 30, where θx, θy, θz

are rotation angles about X,Y,Z axes, respectively, and tx, ty, tz are translations
along X,Y,Z axes, respectively. We evaluated the results by computing the error
distance between the correct rigid motion (Rc,Tc) and the results (Ri,Ti). Note
that rotations are represented by 3×3 matrices, and translations are represented
by 3× 1 vectors. The translation error between Tc and Ti is computed as

εt =
√

(Tc −Ti)(Tc −Ti)t.
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(a). FACE CN (b). FACE CS

(c). FACE IN (d). FACE IS

Fig. 1. (a). Original complete normal face, (b). Original complete smiling face, (c).
Incomplete normal face, (d). Incomplete smiling face

(a) TEST A (b) TEST A: result (c) TEST B (d) TEST B: result

(e) TEST C (f) TEST C: result (g) TEST D (h) TEST D: result

Fig. 2. Examples of rigid motion estimation results of face data

The rotation error between Rc and Ri is computed as

εr =
√

trace((Rc −Ri)(Rc −Ri)t).

Figure 2 visually shows examples of motion recovery results of the face data
by our method, and Table 1 shows the average εt and εr. Note that in each test
group, εt from all seven transformations are very close to each other, e.g., the
variance of seven εt is less than 10−11. This is true for εr values also, e.g., the
variance of seven εr is less than 10−6. Figure 3 illustrates examples of results



798 T. Srinark, C. Kambhamettu, and M. Stone

(a) Venus (b) Venus (distorted) (c) Misaligned models (d) Recovered motion

(e) Dinosaur (f) Dinosaur (distorted) (g) Misaligned models (h) Recovered motion

(i) Ball Joint (j) Ball Joint (distorted) (k) Misaligned models (l) Recovered motion

Fig. 3. Example of rigid motion estimation results of closed surface models

Table 1. Rigid motion error results of face data

Face Tests εr εt

TEST A 10−7 10−6

TEST B 0.1089 3.8881
TEST C 0.0008 10−5

TEST D 0.0928 3.0607

for closed surface data after recovering rigid motions. Table 2 shows the average
εt and εr of all results of the closed surface data. In each test, εt from all seven
transformations are very close to each other, i.e., the variance of seven εt is
less than 0.6626. This is true for εr values also, i.e., the variance of seven εr is
less than 0.0042.

From the results of the face data, it can be seen that our method can give
accurate rigid motion recovery. In the case where both rigid and nonrigid motions
are present, the approach can still give very good estimation of rigid motion. We
can also see that incompleteness of the data does not have much influence on
the algorithm. The method is robust and gives good estimation of rigid motion
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Table 2. Rigid motion error results of closed surface data

Models εr εt

Venus 0.0015 0.8911
Isis 0.1155 2.2082
Dinosaur 0.0074 3.1196
Ball Joint 0.0734 1.4513
Hip 0.0008 1.6311
Teeth 0.1418 2.1735

parameters. For the closed surface data, our method gives good estimates for
rigid motion, even though matching surfaces are distorted, noisy, and partially
missing.

4 Conclusions

We present a hierarchical method for 3D rigid motion estimation which utilizes
techniques in multiresolution surface analysis including surface mesh decimation
and surface fairing. A 3D mesh segmentation method is used to segment mul-
tiresolution surfaces into small patches based on geodesic distance and curvature
information. Rigid motions are computed by matching of similar pairs of seg-
ments. The similarity of segments is measured by the group of error functions
which are invariant to rigid motion. We also use another group of error functions
which are variant to rigid motion, to filter and score the transformation results.
The best transformation result at the lower resolution surface matching is passed
to the higher resolution surface matching for an additional constraint such that
the search space in segment selection is reduced. The method was tested to re-
cover rigid motions of various 3D data. From the results, it is shown that our
method gives good estimations of rigid motions. The method is also robust in
the presence of noise, data distortion, and missing information.
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Abstract. This paper presents a motion capture system using two cam-
eras that is capable of estimating a constrained set of human postures
in real time. We first obtain a 3D shape model of a person to be tracked
and create a posture dictionary consisting of many posture examples.
The posture is estimated by hierarchically matching silhouettes gener-
ated by projecting the 3D shape model deformed to have the dictionary
poses onto the image plane with the observed silhouette in the current
image. Based on this method, we have developed a virtual fashion show
system that renders a computer graphics-model moving synchronously
to a real fashion model, but wearing different clothes.

1 Introduction

In a virtual fashion show application the goal is to animate a computer-graphics
(CG) model in real-time according to the motion of the real person, while the CG
model is wearing a costume different from the actual clothes of the real model.
Essentially this task requires an efficient technique for human motion capture
with real-time estimation capability.

Currently available commercial motion capture systems require markers or
sensors attached to a person. In our system we want to avoid use of visible
markers and sensors because fashion models are watched by audiences and we
think this is important for variety of motion capture applications in the case
of home or office use. One well known approach to vision-based motion capture
uses space-carving methods. The shape of a target person is obtained as the
intersection of 3D regions generated by inverse projection of silhouettes. This
technique [1, 2] requires relatively clean silhouette data obtained from many
cameras surrounding the person to be captured. Many approaches that makes
use of a 3D shape model of the human body have also been proposed, such as
matching feature extracted from captured image and that from the projected 3D
shape model [3, 4], learning direct mapping from image features to 3D body pose
parameters [5], and defining the force that moves the 3D model to the extracted
image feature [6]. These method works with a small number of cameras, but many
problems such as stability over long sequences, accuracy, and computational cost
remain to be solved. Choosing suitable image feature, such as silhouette [5, 6, 7],
depth [4], and edge [3], depending on an individual target application is one of the
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important issues. Another problem is how to search for the optimal posture in the
high-dimensional parameter space. Real-time motion capture has been achieved
using incremental tracking, however, in this case the problem of initial posture
estimation needs to be solved [8], and often estimation errors can accumulate over
long image sequences [9]. The highly nonlinear relationship between similarity
and posture parameters further complicates the problem. In order to address
this, versions of particle filtering have been suggested [10, 11], which have been
shown to yield good results, given manual initialization and off-line processing.
Part-based methods [12] or the use of inverse kinematics [13] may be able to solve
the initialization problem and reduce the computational cost of the estimation.
However, these methods require the localization of individual body parts, which
is difficult in cases where self-occlusion occurs and there are few cameras.

Best match

Posture 
dictionary

3-D body shape data Motion data 
Real scene

target

Camera
1

Camera 
23-D position

Estimated posture

Compare

Silhouette extraction

Generating  
various postures

Fig. 1. Overview of the motion capture method

The virtual fashion show application requires real-time processing for synchro-
nizing the motion between the real fashion model and the CG fashion model.
Some conditions appropriate for this application can simplify the problem for
achieving real-time posture estimation. First, the type of motion is restricted
and known beforehand because the motion of the real fashion model is limited
to walking and several types of posing. In our setting the fashion model can be
required to wear clothes that tightly fit the body, making silhouette matching
possible, whose simple definition of cost function also contributes to real-time
processing. We are also able to obtain an individual 3D body shape model using
a 3D body scanner, as well as posture sequences obtained by a marker-based mo-
tion capture system. These data are used to generate a posture dictionary off-line
(see section 2 and Fig. 1). Our posture estimation method consists of global posi-
tion estimation (see section 3) and local pose estimation (see section 4) based on
silhouette matching between the observed foreground silhouette and the candi-
date silhouettes generated from the posture dictionary. We show tracking results
and a performance evaluation of posture estimation in section 5 and describe a
virtual fashion show in section 6.
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2 Posture Dictionary

The 3D body shape model is obtained using a laser 3D shape scanner. The num-
ber of polygons is reduced from two million to 2000 by deleting vertexes having
small curvatures manually in order to achieve a low computational time for sil-
houette projection. For 640 × 480 images the time is 1.2–2.0 ms per silhouette
projection on a standard PC. The kinematics of the human body are commonly
represented by a tree structure whose top node is the body center. Local coordi-
nate systems are defined relative to each body part corresponding to the parent
node in the tree structure.

A commercial marker-based motion capture system is used to collect a variety
of postures, including walking, posing and turning. A posture captured by the
marker-based motion capture system is represented in terms of rotation angles
and translation vectors for each joint, which are the parameters to transform
a local coordinate system to that of its parent node. Note that the translation
parameters are constant except for the body center because the lengths of the
body parts do not change, and the parameters of the body center stand for
transformation between the local coordinate of the body center and the world
coordinate. We call the set of rotation parameters for a posture p a posture
vector, which is denoted by rp = (rp1, · · · , rp(3Nb)), where Nb = 21 represents
the number of joints.

Due to periodic motion, some poses are very similar, and similar postures are
represented by prototype, found by greedy clustering, based on the difference
d1(a, b) between postures a and b:

d1(a, b) = max
i=1,···,3Nb

|(rai − rbi) mod π|, (1)

which is the largest angle difference of all the rotation parameters. As a result
of the clustering, the distances d1 between any two prototypes are larger than a
threshold, which is 7 degrees in our experiments.

3 Global Position Estimation

For estimating the global body position in the 3D scene, we track the target
person in two camera views independently based on our previously proposed
tracking algorithm [14]. The algorithm enables us to stably track an object in
an image sequence captured at a high frame rate as the motion in the image is
very small. In our experiments a frame rate of 100 fps is used. The algorithm
consists of corner point tracking and outlier elimination using an affine motion
model, and estimates the target position in the image as the mean location of
the tracked corner points (see Fig. 2(a)).

Next, we compute the global position of the body center in the world coordi-
nate system by triangulation of the two calibrated cameras using the estimated
target positions in the images. The postures that we estimate in the virtual fash-
ion show are all upright, so that the body center moves almost parallel to the
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Fig. 2. Estimation of global positions of a target person. The tracked feature points
are indicated by the white ‘+’ marks on the original images in figure (a). The white
rectangle is the tracking window, which is the minimum rectangle containing all feature
points. The large white ‘+’ marks are the mean positions of the feature points, which is
the estimated target position in the image (P g1 and P g2), and the white line segment
attached to it is the estimated motion vector.

floor and the height is approximately fixed to a constant hb, the height of the
body center in standing pose. As shown in Fig. 2(b), we project a line passing
through both the camera center Oc and the target position P gc in the image
plane onto the plane H, parallel to the floor with distance hb, and denote the
projected line by lc. Assuming that the XZ-plane of the world coordinate system
corresponds to the floor, lc is expressed as follows:

lc = {PH(t(P gc −Oc) + Oc) | t ∈ R} , c ∈ {1, 2}, PH =
(

1 0 0 0
0 0 0 hb
0 0 1 0
0 0 0 1

)
, (2)

where PH denotes the projection matrix onto the plane H. The global position
G of the target is the point of intersection of the projected lines l1 and l2.

Fig. 2(c) shows results of global position estimation. The target person walks
along the Z-axis at X = 1500 and poses at Z = 500 and Z = 4000 shifting
the body weight in the X-direction. In this experiment, two pairs of cameras
are used to cover the entire area, but one of them is used for global position
estimation at each time instance. The area covered by each pair of cameras is
determined beforehand and the pair of cameras is selected when the estimated
global position is in its predetermined area.

4 Posture Estimation

We perform the posture estimation procedure at every fourth frame, i.e. at 25
fps, because the computational cost of the posture estimation is much higher
than that of global position estimation. First, candidate postures that are in the
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Fig. 3. Silhouette extraction and similarity computation

neighborhood of the posture in the previous frame are selected as candidates
to restrict the search: We select postures that have similar joint angles to the
previous posture p, i.e. the distance d1(p,m) between p and a selected posture
m is smaller than a threshold (60 degrees in our experiments). Since the sim-
ilarity is defined in terms of silhouette difference in the image (see section 4.1
for details), we impose a further restriction on the number of postures based
on an appearance-based distance: We define such an appearance-based posture
difference, d2(a, b), using the positions of joints projected onto the image plane
for fast computation as

d2(a, b) = max
i=1,···,Nb

|pai − pbi|, (3)

where pai and pbi denote the positions of joints in the image that are obtained by
orthogonal projection of the 3D joint coordinates. We sort the postures selected
by d1(p,m) based on the appearance-based distance d2(p,m), and select the first
n postures as the set M of candidate postures. We use n = 60 in our experiments.
The silhouettes of each candidate posture m in the set M are generated by (1)
translating the 3D body shape model to the estimated global position G in order
to correspond the size of the silhouette with that of the observed silhouettes, (2)
deforming the 3D body shape model to assume the pose m, and (3) projecting
the polygons of the deformed 3D body shape model into each camera view.

The observed silhouette is extracted using background subtraction (see
Fig. 3(a)). This often results in noisy silhouettes, but has proved sufficiently
stable in our application with reasonably stable lighting conditions.

4.1 Similarity of Silhouettes

As shown in Fig. 3(b), Sp(c,m) and So(c) denote a candidate silhouette obtained
from the candidate posture m, and an observed silhouette for a camera c. R(c)
represents the smallest rectangle that contains all candidate silhouettes. The
similarity of the silhouettes, Sp(c,m) and So(c), should be high when the area of
the observed silhouette is large in the candidate silhouette and is small outside
the candidate silhouette. Thus, we use the difference between the occupancy rate
of the observed silhouette in the candidate silhouette ρi(c,m) and that outside
the candidate silhouette ρo(c,m) for the similarity normalized with the area of
the silhouette:
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ρi(c,m) =
|Sp(c,m) ∩ So(c)|

|Sp(c,m)| , ρo(c,m) =
|Sp(c,m) ∩R(c) ∩ So(c)|

|Sp(c,m) ∩R(c)|
, (4)

where | · | represents the area of a region.
The similarity measure is affected by the estimation error of the global posi-

tion. It is therefore necessary to perform optimization for both posture and local
shift of the global position. We shift the candidate silhouette in each camera view
with a shift d, and maximize the similarities independently for each camera in
order to optimize the global position locally. Thus, we redefine the similarity for
a posture m as

s(m) =
∑

c

max
d∈D

(ρi(c,m,d)− ρo(c,m,d)), (5)

where ρi(c,m,d) and ρo(c,m,d) denote the occupancy rate using a candidate
silhouette shifted with a shift d in the range of shifts D.

4.2 Hierarchical Posture Search

In order to reduce the computational cost of searching for the posture with
the greatest similarity, we adopt a coarse-to-fine strategy using a two-level tree,
which is generated on-line for each frame. The first layer of the search tree
consists of postures selected from M at every t-th posture and the rest of the
candidate postures are attached to the closest posture in the first layer as pos-
tures in the second level. We search for the optimal posture using the search tree
as follows: (1) compute the similarity based on eq. (5) for the postures on the
first level of the tree, (2) select the k postures with the greatest similarity, (3)
compute the similarity for the postures on the second level in the subtrees of the
k selected postures, and (4) select the posture that has the greatest similarity.
We use t = 3 and k = 3 in our experiments.

4.3 Initialization

If a sufficiently large silhouette is extracted in the current image based on the
background subtraction, we set the observed silhouette to be the initial target
region and start tracking based on our object tracking algorithm [14].When the
tracking results come from two or more cameras for the first time, we compute
the initial global position, and start the posture estimation with suitable initial
posture. Although the initial posture does not fit completely to the posture of
the target person, the estimated posture gradually fits to the target person in
the subsequent frames.

5 Experiments

Fig. 4 shows the results of posture estimation using four cameras for two subjects
who walk and pose differently. In each case the camera arrangement is the same
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(a) Results of posture estimation for subject N viewed from camera 3

frame 30 frame 80 frame 130

(b) Results of posture estimation for subject S viewed from camera 2

Fig. 4. Results of posture estimation using four cameras. Estimated postures are in-
dicated by white contour lines on the original image. The 3D figures shown in gray
beside the contours represent postures with smoothed motion for CG animation.

as that shown in Fig. 2(c) and the cameras capture gray-scale images with a
resolution of 640x480 pixels at a frame rate of 100 fps. Note that the frame rate
for posture estimation is 25 fps as described in section 4. The posture sequence
for each subject obtained by the marker-based motion capture system contains
about 3600 postures captured at a rate of 120 fps. After clustering the posture
vectors the dictionary for each subject consists of about 500 postures, which are
experimentally sufficient for our restricted set of motions in the virtual fashion
show. Fig. 4 shows that postures are correctly estimated in most frames. In some
frames, such as frame 150 in Fig. 4(a), however, the contour lines showing the
estimated postures are incorrect.

We have conducted experiments on 27 image sequences for evaluating the
performance of the posture estimation. The image sequences include four types
of motion shown in Fig. 5(b) performed by three subjects. We use an individual
3D body shape model and motion data for each subject obtained by a laser 3D
shape scanner and a commercial marker-based motion capture system, respec-
tively. Table 1 shows the number of misestimations and the number of frames
in which misestimation occurs. The number of misestimations, e.g. frame 150
in Fig. 4(a), is counted by comparing the estimate to the ground truth, where
postures with small alignment errors are not counted as a misestimation. The
misestimation often occurs for a particular subject H compared to the other sub-
jects. This is because her postures in the image sequences are not contained in
the posture dictionary. In total misestimation occurs 34 times for 27 sequences,
on average about 1.3 times per sequence (0.089 times per second), correspond-
ing to 4.3 % of the total number of frames. Although we have restricted the
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Table 1. Performance evaluation. The first column represents the type of scenario.
For example, S-M1 stands for motion sequence M1 performed by subject S. The sec-
ond column is the number of sequences, which are used in the experiments, and the
third column is the total number of frames. Columns four to six show the number of
misestimations, the number of frames in which misestimation occurs and the error rate.

Scenario # Sequence Frames Failures Failure frames Error in %
S-M1 4 1318 4 12 0.9
S-M2 3 1120 4 87 7.8
S-M3 3 1017 1 17 1.7
S-M4 4 1414 5 37 2.6
H-M2 4 1593 7 127 8.0
H-M3 4 1475 6 64 4.3
N-M1 3 924 6 62 6.7
N-M4 2 694 1 5 0.7

search space for posture estimation by selecting candidate postures similar to
the previous estimated posture, misestimation occurs for a short period. Such
temporal jitter can be reduced by temporal filtering. In our system smooth mo-
tion is generated based on the posture sequence recorded by a marker-based
motion capture system (see section 6.1). Another reason for the misestimations
is the fact that the extracted silhouettes can be very noisy due to shadows on
the floor.

6 Virtual Fashion Show

We have developed a virtual fashion show system using our motion estimation
method described in sections 2–4. Fig. 5 shows an overview of the system. A
fashion model walks and poses on the stage according to four types of scenarios

High-speed cameras

Stage

Overview

Projector screens

(a) Virtual fashion show set up (b) Examples of scenarios

Fig. 5. Overview of the virtual fashion show. Three pairs of cameras are placed along
both sides of the stage. Two projectors show the CG model wearing clothes different
from the actual model as shown in the left images of figure (b).
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shown in Fig. 5(b), and our motion capture system estimates her posture. While
the fashion model walks along the stage, she poses twice at different positions
according to the scenario. Two large projector screens display a full-CG model
wearing a costume different from the actual clothes, based on clothes simulation
and CG techniques.

6.1 Smooth Motion Generation

As described in section 5, misestimation of the posture occurs at a certain rate.
Even when the posture is correctly estimated, the estimated motion, which is
the time series of the estimated postures, is not smooth because the estimated
postures can be slightly misaligned. These problems are critical for generating
natural motion of the CG model in the virtual fashion show. We thus combine
the estimated motion with the motion data recorded with the marker-based
motion capture system.

The recorded motion sequence contains all the postures in the same order as
the motion of a real fashion model, except for the timing of walking and posing.
We generate smooth motion by changing the playing speed of the recorded pos-
ture sequence according to the estimated posture. We start playing the recorded
posture sequence when the current estimated posture e is similar to the posture
i in the first frame of the recorded posture sequence in terms of the posture
difference d1(e, i).

The 3D figures shown in gray in Fig. 4 represent postures generated by the
smooth motion generation method. In the 150th frame in Fig. 4(a) where the pos-
ture is misestimated, the motion model finds a plausible posture, even if the silhou-
ette of the estimated posture is slightly misaligned with the observed silhouette.
While this smooth motion generation method is straightforward and effective for
a specific application of the virtual fashion show, accurate posture estimation and
a universal motion generation method are necessary for general applications.

6.2 Hardware Configuration

We place three high-speed cameras on each side of the stage (six cameras in
total) in order to cover the entire stage which measures about 10 m × 3 m. Each
high-speed camera is connected to a PC mounting dual Xeon 3.0 GHz CPUs
that captures images and tracks the fashion model in the images as described
in section 3. The captured images and the tracking results are transfered to two
PCs for posture estimation mounting quad Itanium 2 1.6 GHz CPUs through a
high-speed network Myrinet, and the two PCs compute the global position and
estimate the posture with smooth motion generation. The estimated posture is
sent to a PC for clothes simulation and CG rendering through Gb Ethernet, and
the generated CG animation is displayed on two projector screens.

7 Conclusions and Future Work

We have presented a real-time motion capture system using pairs of cameras
and have demonstrated that the system works efficiently for a virtual fashion
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show based on several constraints appropriate for the virtual fashion show, such
as known body shape, tight fitting clothes and limited types of motion.

A possible future application is a virtual try-on for online clothes shopping.
However, in order to make this approach work in more general settings, some
issues that need to be considered are automatic 3D body shape model acquisi-
tion, the use of more robust image features, and efficient matching techniques
for increasing the number of postures in the posture dictionary.
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Abstract. Recently, it has been shown that invariants on motions can
be extracted from sequential images and these can be applied for rec-
ognizing dynamic events from images viewed from arbitrary viewpoints.
These invariants are called space-time invariants since they are defined
in space and time. Unfortunately, the existing space-time invariants are
limited for planar motions viewed from affine cameras. In this paper,
we propose a method for computing space-time invariants on general
3D motions viewed from projective cameras. Furthermore, we show that
by using the epipolar geometry derived from the mutual projection of
cameras, the stability of space-time invariants can be improved drasti-
cally. The extracted invariants are applied for distinguishing non-rigid
3D motions from video sequences viewed from arbitrary viewpoints.

1 Introduction

For recognizing dynamic events, it is important to analyze visual events both
in space and time domains [4, 2, 1]. However, it is difficult to recognize motions
from conventional statistical methods if the viewpoints of cameras are arbitrary.
Even if we can sometimes use assumptions on the structure of moving objects,
such as articulated motions[9, 6], these assumptions limit the class of objects or
events to be recognized.

For recognizing objects from arbitrary viewpoints, geometric invariants are
very useful [7, 10, 13, 11], and Levin et al. showed the invariance on multiple
points with constant motions [5]. For recognizing general motions, Sato proposed
the space-time invariants [8]. The important properties of the space-time invari-
ants are that they are identical even if the image motions are viewed from arbi-
trary viewpoints, and thus they can be applied for recognizing dynamic events
from arbitrary views. However, the existing space-time invariants are limited in
two folds. Firstly, the dynamic actions, which can be recognized from the existing
space-time invariants are limited to planar motions. Secondly, the existing space-
time invariants assume affine projections or weak perspective projections, and
thus they cannot be applied if we have strong perspective distortions in images.

In this paper, we propose a method for computing space-time invariants for
general non-rigid 3D motions from image sequences viewed from projective cam-
eras. In particular, we show that space-time invariants for non-rigid 3D motions
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can be computed from a set of 6 points in sequential images observed from ar-
bitrary viewpoints. We also show that the stability of space-time invariants can
be improved drastically by using the epipolar geometry derived from the mutual
projection of cameras. The extracted invariants are applied for distinguishing
non-rigid 3D motions from video sequences viewed from arbitrary viewpoints.

2 Invariants on 3D Motions

The motions of a point, X = [X,Y, Z]�, in a 3 dimensional space, Π3, can be
considered as a set of points, W = [X,Y, Z, t]�, in 4 dimensional space-time,
Π3 × Σ. The motions in the real space are projected to images, and can be
observed as a set of points, w = [x, y, t]�, in a 3 dimensional space-time π2 × σ
on image motions.

The 4 dimensional information, W = [X,Y, Z, t]�, is required for computing
space-time invariants of general 3D motions. However, we have only 3 dimen-
sional information W = [X,Y, t]� from a single camera image. Thus, a single
camera is not enough for computing projective space-time invariants of general
3D motions.

Since 3 dimensional information w is available from a single camera, the
necessary condition for computing invariants in 4D space-time from N cameras
is 3N ≥ 4. Thus, two or more than two cameras are required for computing the
4D projective space-time invariants. In this paper, we consider a method for
computing the 4D projective space-time invariants from two projective cameras.

3 Projective Bases and Projective Depth

Since the computation of projective depth is important for computing 4D space-
time invariants, we quickly review a method for computing projective depth from
the epipolar geometry.

Let a point, X = [X,Y, Z]�, in the 3D space be projected to image points, x =
[x, y]� and x′ = [x′, y′]�, by two projective cameras at two different viewpoints
as follows:

λx̃ = PX̃ λ′x̃′ = P′X̃ (1)

where, (˜) denotes homogeneous coordinates, and P and P′ denote 3× 4 pro-
jection matrices.

The epipolar geometry between these two cameras can be computed non-
linearly from 7 corresponding points [12] and linearly [3] from 8 corresponding
points in images. Once the epipolar geometry is obtained, we can calibrate these
two cameras with respect to some specific projective frames, and we can recon-
struct 3D points, X, up to a projective ambiguity. Then the projective depth,
λ and λ′, can be obtained with respect to the projective frame. The projective
frames can be defined by a set of 5 basis points. Although we can choose any 5
points as bases, it is important to choose two viewpoints as two of 5 basis points
for defining space-time invariants later. The remaining 3 basis points can be cho-
sen from general 3D points freely, but it is better to choose these points from the
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Fig. 1. The projective bases for computing the projective depth of each point on 3D
motions. Two viewpoints and three points on the 3D motions are chosen as the pro-
jective bases.

3D motions (i.e. loci of points), since in this case we do not need to consider ad-
ditional points in the scene. Thus, we choose 5 basis points, {C,C′,X1,X2,X3}
as shown in Fig. 1, and give them standard basis coordinates, such as [0, 0, 0, 1]�,
[1, 1, 1, 1]�, [1, 0, 0, 0]�, [0, 1, 0, 0]� and [0, 0, 1, 0]�. Then, we can derive projec-
tive depth, λ and λ′, with respect to these projective bases.

4 Projective Space-Time Invariants for 3D Motions

We next consider a method for computing projective space-time invariants for
3D motions.

Suppose a point W = [X,Y, Z, t]� in the real space-time Π3×Σ is projected
to a point w = [x, y, t]� in the image space-time π2 × σ by a projective camera.
Then, this space-time projection can be described as follows:

⎡⎣λxλy
t

⎤⎦ =

⎡⎣p11 p12 p13 0 p14
p21 p22 p23 0 p24
0 0 0 1 0

⎤⎦
⎡⎢⎢⎢⎢⎣
X
Y
Z
t
1

⎤⎥⎥⎥⎥⎦ (2)

Although the space-time projection from W to w cannot be described by affine
cameras nor projective cameras, (2) describes that a point W in the real space-
time is projected to a point [λx, λy, t]� by an extended affine camera.

If the point, W, is also projected to w′ = [x′, y′, t]� in another viewpoint, the
space-time projections of these two cameras can be described as follows:⎡⎢⎢⎢⎢⎣

λx
λy
λ′x′

λ′y′

t

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
p11 p12 p13 0 p14
p21 p22 p23 0 p24
p′11 p′12 p′13 0 p′14
p′21 p′22 p′23 0 p′24
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
X
Y
Z
t
1

⎤⎥⎥⎥⎥⎦ (3)

From(3),wefind that the relationshipbetween [W� , 1]� and [λx, λy, λ′x′, λ′y′, t]�

can be described by affine transformations in 5D space with no translations. Thus,
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affine invariants computed from [W�, 1]� coincidewith affine invariants computed
from [λx, λy, λ′x′, λ′y′, t]�. Therefore, if we know the projective depth, λ and λ′,
from the projective reconstruction of a point X, then the projective space-time in-
variants for 3Dmotions, I, can be defined as affine invariants in 5D space as follows:

I =

∣∣∣∣∣∣
λixi λjxj λkxk λlxl λnxn

λ′
ix

′
i λ′

jx
′
j λ′

kx
′
k λ′

lx
′
l λ′

nx′
n

ti tj tk tl tn

∣∣∣∣∣∣∣∣∣∣∣∣
λixi λjxj λkxk λlxl λmxm

λ′
ix

′
i λ′

jx
′
j λ′

kx
′
k λ′

lx
′
l λ′

mx′
m

ti tj tk tl tm

∣∣∣∣∣∣
(4)

Where, | · | denotes the determinant of a 5× 5 matrix which consists of five vec-
tors, [λx�, λ′x′�, t]�. The index i, j, k, l,m, and n of these vectors can be chosen
from the permutation of 1, · · · , 6, but the number of functionally independent
space-time invariants I is only 5.

Note, in general we need 7 points for defining affine invariants in 5D space,
but we need only 6 points in this case, since there is no translation component
in the affine transformation in (3).

However, we have to note one important thing. That is the ambiguity of the
projective depth, λ and λ′. In general, the projective depth changes projectively,
if we choose different sets of basis points. Thus, the affine invariants defined by
(4) is no longer invariant if we change projective bases. However, if we choose
two viewpoints as two of five basis points as shown in section 3, the changes in
projective depth caused by the changes in viewpoints can be described by affine
transformations. Thus, the space-time invariant defined by (4) is invariant under
the changes in viewpoints.

The proposed space-time invariants are different from simple invariants on
loci without time. Suppose we have two motions which have the same loci in the
3D space but have different speed patterns, for example one has a constant speed
and another has non-constant speed. Although these two motions have the same
loci, we consider these two are different motions, since the speed patterns are
different. If we simply consider invariants on loci without considering the time
domain explicitly, these two motions have the same invariants and we cannot
distinguish them. However, if we compute space-time invariants proposed in this
paper, the invariants computed from these two motions have different values and
we can distinguish these two motions. Thus the proposed space-time invariants
are very useful for distinguishing motions from arbitrary viewpoints.

5 Invariants on Non-rigid Motions of Multiple Points

Up to now we find that the space-time invariants can be computed from 6 frame
motions of a single point. If we have more moving points in the space, the space-
time invariants can be computed from less image frames. The important point
here is that the motions of these multiple points can be non-rigid. That is, by
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using the proposed method, non-rigid 3D motions of multiple points can be
recognized from arbitrary views.

Since we can compute space-time invariants from any set of 6 points in the 4D
space-time, the space-time invariants can be derived if the following condition
holds:

Np ×Nf ≥ 6 (5)

where, Np denotes the number of points in the 3D space, and Nf denotes the
number of frames. This means we can also compute projective space-time invari-
ants from two points with three frames or three points with two frames. These
invariants enable us to distinguish non-rigid 3D motions of multiple motions
from arbitrary views.

6 Epipolar Geometry from Mutual Projection of Camera

Up to now, we have seen that we can compute space-time invariants on 3D
motions from image sequences viewed from arbitrary multiple viewpoints. In
this section, we consider mutual projection of cameras in images and show that
we can further stabilize the projective space-time invariants by using the mutual
projection of multiple cameras.

We consider the case, where two cameras for computing invariants are pro-
jected each other as shown in Fig. 2 (a). If the projection of a camera is small
enough, the center of the projected camera in images can be considered as the
projection of a viewpoint, C′, to the other viewpoint, C. In this case, we can di-
rectly obtain an epipole, e = [eu, ev, ew]�, as well as e′ = [e′u, e′v, e′w]�, from the
projection of cameras C and C′. As shown in Fig. 2, the projected cameras are
in general enough small to be considered as a viewpoint, and this approximation
is valid in most of the case.

(a) mutual projection of two cameras (b) C′ in image 1 (c) C in image 2

Fig. 2. Epipolar geometry from mutual projection of cameras

Since the relationships between the epipoles, e and e′, and the fundamental
matrix, F, can be described by Fẽ = 0 and F�ẽ = 0, we have the following
equation on the components of F:

Mef = 0 (6)
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where, f is a 9 vector which consists of the 9 components of F, and Me is a 6×9
matrix as follows:

Me =

⎡⎢⎢⎢⎢⎢⎢⎣
eu ev ew 0 0 0 0 0 0
0 0 0 eu ev ew 0 0 0
0 0 0 0 0 0 eu ev ew

e′u 0 0 e′v 0 0 e′w 0 0
0 e′u 0 0 e′v 0 0 e′w 0
0 0 e′u 0 0 e′v 0 0 e′w

⎤⎥⎥⎥⎥⎥⎥⎦
Although the matrix Me is 6× 9, its rank is five. If we have 3 corresponding

points, mi and m′
i (i = 1, · · · , 3), in images besides the given two epipoles,

we have 3 more linear equations, Mpf = 0, from m′
i
�Fmi = 0. and f can be

computed by solving the following linear equations:

[M�
e ,M�

p ]�f = 0 (7)

where, Mp is a 3× 9 matrix which consists of the components of m and m′. If
we have more than 3 corresponding points, we compute least square solutions
to [M�

e ,M�
p ]�f = 0 subject to Mef = 0.

Although the 8 points algorithm provides us good epipolar geometry from
general point constellations, it is inaccurate and unstable if the corresponding
points are close to coplanar in the 3D space. This means if the 3D motions are
close to planar motions, the space-time invariants computed by using the 8 point
algorithm are sensitive to image noises. On the other hand, by using the mutual
projection of cameras, we can compute accurate and stable epipolar geometry,
even if the 3D points are coplanar. Thus we can extract accurate space-time
invariants even if the 3D motions are close to planar motions.

7 Experiments

We next show the results from some real image experiments and efficiency anal-
ysis of the proposed invariants on 3D motions.

7.1 Real Image Experiments

We first show the results from some real image experiments. Fig. 3 (a) and (b)
show a pair of image motions extracted from a single 3D motion, and (c) and
(d) show another pair of image motions extracted from the same 3D motion.
These image motions are extracted by using a correlation tracker. As shown in
these figures, the image motions are very different if the viewpoints are different.
The projective space-time invariants are computed from Fig. 3 {(a), (b)} and
Fig. 3 {(c), (d)} respectively. Fig. 3 (e) shows a projective space-time invariant
signature computed from (a) and (b), and Fig. 3 (f) shows that from (c) and
(d). As shown in these figures, the projective space-time invariants are almost
identical, even if the image motions are very different as shown in Fig. 3 (a),
(b), (c) and (d). As described in section 4, we have 5 functionally independent
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space-time invariants and we used invariants whose index is {i, j, k, l,m, n} =
{1, 2, 3, 4, 5, 6} in our experiments.

Fig. 4 (a), (b), (c) and (d) show image motions extracted from another 3D mo-
tion, and (e) and (f) show projective space-time invariants computed from {(a),
(b)} and {(c), (d)} respectively. As shown in Fig. 4 (e) and (f), the projective
space-time invariants are almost identical again.

As shown in Fig. 3 and Fig. 4, the projective space-time invariants are very
different if the motions are different each other. From these figures we find that
the proposed space-time invariants are very useful for distinguishing different
motions from video sequences extracted from arbitrary viewpoints.

(a) (b) (c) (d)
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(e) (f)

Fig. 3. The image motions at four different viewpoints. (a), (b), (c) and (d) show
image motions at four different viewpoints. (e) shows projective space-time invariant
signatures computed from (a) and (b). (f) shows those from (c) and (d).
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Fig. 4. The image motions at four different viewpoints and projective space-time in-
variants. (a), (b), (c) and (d) show image motions at four different viewpoints. (e)
shows a projective space-time invariant signature computed from (a) and (b), and (f)
shows that computed from (c) and (d).
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Table 1. Coincidence degrees e computed from two space-time invariant signatures

two invariant signatures e

Fig.3 (e) and (f) 0.0999
Fig.4 (e) and (f) 0.0613

Fig.3 (e) and Fig.4 (e) 1.6838

We next evaluate the similarity of invariant signatures numerically. We define
a coincidence degree of two invariant signatures, I and I ′, as follows:

e =
1
N

N∑
t=1

(I(t) − I(t)′)2 (8)

where, N denotes the total number of frames in invariant signatures.
Table 1 shows coincidence degrees computed from two invariant signatures

of motion 1, two invariant signatures of motion 2, and invariant signatures of
motion 1 and 2 respectively. As shown in this table, the coincidence degrees
computed from the same motions are very small, while the coincidence degree
computed from different motions is large.

Up to now, we have computed the space-time invariants on 3D motions from
the 8 points algorithm. We next compare the stability of projective space-time
invariants computed from the 8 points algorithm and the mutual projection
algorithm. In this experiment we used 3D motions which are close to planar
motions. Fig. 5 (a), (b), (c) and (d) show image motions at four different view
points. Fig. 5 (e) and (f) show space-time invariants computed by using the 8
points algorithm, and (g) and (h) show those from the mutual projection al-
gorithm. As shown in (e) and (f), the invariants computed from the 8 points
algorithm is far from identical, although they are computed from the same mo-
tion. This is because the epipolar geometry computed from nearly coplanar 3D

(a) (b) (c) (d)
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Fig. 5. The space-time invariants computed from a 3D motion which is close to copla-
nar. (a), (b), (c) and (d) show image motions at four different viewpoints. (e) and (f)
show projective space-time invariants computed from ((a), (b)) and ((c), (d)) respec-
tively by using the 8 points algorithm. (g) and (h) show those computed by using the
mutual projection of cameras.
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points is in general very unstable. On the other hand, the space-time invariants
computed from the mutual projection algorithm is almost identical, as shown
in (g) and (h). From these results, it is clear that the stability of projective
space-time invariants is drastically improved by using the mutual projection al-
gorithm. Thus, if we have the projection of cameras in images, we had better
use the information for computing invariants.

7.2 Stability Evaluation

We next compare the stability of space-time invariants computed from the 8
points algorithm and the mutual projection algorithm by using a synthetic 3D
motion which is close to coplanar. The red curve in Fig. 6 (a) shows a synthetic
3D motion used in this experiment. (A) and (B) show viewpoints of the pair
of cameras. The invariant signatures are extracted from images viewed from
these two cameras adding Gaussian image noises with the standard deviation
of 1 pixel. Fig. 6 (b) and (c) show space-time invariants computed from the 8
points algorithm and the mutual projection algorithm respectively. As shown in
these figures, the uncertainty bound of the space-time invariants computed from
the mutual projection algorithm is very small comparing with those from the 8
points algorithm. This agrees the results in Fig. 5.

7.3 Non-rigid 3D Motions

Finally, we show the results from non-rigid 3D motions of multiple points. Fig. 7
(a) and (b) show two different motions of Japanese “Karate”. The 4 markers are
put on two hands and two legs, and image motions of these 4 markers are taken
by using a correlation tracker. The color lines in (a) and (b) show extracted image
motions of these 4 points. Fig. 7 (c) and (d) show the space-time representation
of motion 1 viewed from two different viewpoints, and (e) and (f) show those
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Fig. 6. (a) shows an example 3D motion which is close to coplanar. The red curve
shows a synthetic 3D motion. (A) and (B) show viewpoints of two cameras. (b) shows
the uncertainty bound of projective space-time invariants computed from a pair of
cameras shown in (a) by using the 8 points algorithm. (c) shows the uncertainty bound
of projective space-time invariants extracted by using the mutual projection of cameras.
These invariants are computed by adding Gaussian noises with the standard deviation
of 1 pixel.
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Fig. 7. The space-time invariants computed from non-rigid 3D motions of multiple
points. (a) and (b) show two different motions of “Karate”. The four markers are put
on two hands and two legs and are tracked in images. (c) and (d) show the space-time
representation of motion 1 viewed from two different viewpoints. (e) and (f) show those
from motion 2. The red and blue curves in (g) show space-time invariants on motion 1
computed from two different pairs of cameras. (h) shows those on motion 2.

from motion 2. Note that the motions of these 4 points are non-rigid. The 4
points with 2 frames provide us 8 points in the space-time. Thus we chose 6
points from these 8 points, and computed space-time invariants from (4). The
space-time invariants computed from motion 1 and motion 2 are shown in Fig. 7
(g) and (h) respectively. The red and blue curves in these figures show the space-
time invariants computed from two different pairs of cameras. As shown in these
figures, the space-time invariants are almost identical if the non-rigid 3D motions
of multiple points are same, and the invariants are different if the 3D motions are
different. Thus, even if the viewpoints are arbitrary, we can distinguish non-rigid
3D motions efficiently by using the proposed space-time invariants.

8 Conclusions

In this paper, we proposed a method for computing projective space-time in-
variants for distinguishing non-rigid 3D motions from arbitrary viewpoints. We
first proposed a method for computing projective space-time invariants for non-
rigid 3D motions. In particular, we showed that projective space-time invariants
for 3D motions can be computed from 6 points in the 4D space-time. We also
showed that even if the space-time projection under perspective cameras can-
not be described by affine projections nor projective projections, we can still
compute invariants on 3D motions by using projective camera calibrations. We
next showed that we can further stabilize the projective space-time invariants
by using the mutual projection of multiple cameras. The proposed space-time
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invariants were tested by using real image sequences taken from 3D motions.
Since the projective space-time invariants are identical even if the viewpoints
are different, the result of the proposed method can be used for distinguishing
3D motions from video sequences captured at arbitrary viewpoints.
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Abstract. Moving object detection is a challenging task for night security be-
cause of bad video quality. In this paper, we propose a robust real time objects 
detection method for night visual surveillance based on human visual system. 
By measuring contrast information variation in multiple successive frames, a 
spatio-temporal contrast change image (CCI) is formed. Then the multi-frame 
correspondence technology is employed to robustly extract salient motions or 
moving objects from CCI. Since CCI is a statistical measurement of variation 
based on human visual system, the proposed method is effective at night and 
better than traditional detection methods. Experiments on real scene show that 
the method based on contrast feature is effective for night object detection and 
tracking, our approach is also robust to camera scale variation as well as low 
computation cost. 

1   Introduction 

Night security has gradually attracted more and more attentions. Object detecting and 
tracking is the first step and have been studied widely. Various approaches have been 
proposed including feature-based object detection [1,2] template-based object detec-
tion [6,7] and background subtraction or inter-frame difference based detection 
[3,4,5].  

However, most of these approach intent to solve object detection on daytime. As 
we know, nighttime image or video captured by common CCD camera has low 
brightness, low contrast, low Signal to Noise Ratio (SNR) and nearly no color infor-
mation, so it is a great challenge to detect objects at night because most of features 
used in daytime such as color, local edge, contour features etc. will fail at night. It is 
also very difficult to model night background because of noise and variation of light-
ing condition. 1While human can easily detect object in this condition and human 
visual system characteristics have been proved useful in computer vision and image 
processing field, such as image enhancement, denoising, compression and watermark-
ing applications [8,9]. In this paper, motivated by human visual system, we will pro-
pose a robust object detection and tracking method at night. Contrast, as one of the 
most important feature to distinguish objects from background for human, is used to 

1 Here, we focus on the light condition where human can discriminate objects, otherwise  ther-
mal Infrared camera will be considered, which is used in night visual surveillance for objects 
detection while the cost is so high that it is not be considered in this condition [10].
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detect object in the first step, then temporal information (contrast change information) 
is combined to get more robust results. Experiments on real night scene show that the 
contrast feature is effective for night object detection and tracking and our approach is 
effective for camera zooming objects detection and tracking as well as low computa-
tion cost.  

2   Algorithm Motivation 

There are evidences from psychology physiology show that response of the Human 
Visual System (HVS) depends much less on the absolute luminance than on the rela-
tion of its local variations to the surrounding background, which is measured by con-
trast and is commonly used in vision models [8,9]. Human can detect objects only if 
the contrast is above some threshold. Coarseness is another significant feature for 
giving information about the size of the objects, which is described by various win-
dows. The higher the coarseness value is, the rougher the object is [18]. On the other 
hand, human pay more attention to change and motion provides other useful informa-
tion for objects detection and tracking [15]. Here we use local contrast to describe 
coarseness and contrast and contrast change (CC) to describe the motion information. 
Based on the human visual system characteristics we give the algorithm framework 
in the next section. 

3   Object Detection and Tracking Algorithm for Night Visual 
Surveillance Based on HSV 

3.1   Algorithm Framework  

Our algorithm framework consists of object detection and tracking as Fig 1. Similar to 
human discrimination model, the object detection algorithm includes two steps: visi-
ble content detection based on local contrast computation and moving object detection 
based on contrast change (CC). In the first step, the visible object will be detected 
based on local contrast computation and we will get the contrast images ICi. In this 
step, all the contents we can see can be detected, including the interesting objects or 
not. Contrast Change (ICij), which gives information of moving objects in last frame 
and current frame, is used to get the moving objects in the second step. i j means 

.

Fig. 1. Algorithm framework of object detection and tracking for night visual surveillance 
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frames. Object tracking will not only get the correspondence between objects but also 
filter the false detection objects by feedback. Next we will give the algorithm details. 

3.2   Visible Image Content Detection Based on Local Contrast Computation 

Contrast plays an important role to detect object for human especially at night  
because most of the features used by present detection algorithm such as color,  
contour, local edge are lost. Based on this motivation, we propose local contrast 
feature to detect objects. There are many methods to compute contrast [11,12,13,14]. 
Typically, luminance contrast is defined as the relative difference between lumi-

nance of the object,
oL , and the surrounding background, 

BL , as 
B

Bo
L

)L(LC −= , which 

is called Weber contrast [13]. Michaelson defined contrast for elementary patterns as 

)LL(
)LL(C

maxmin

minmax
+

−= [14]. Recently more complex contrast computation meth-

ods are proposed in the FFT and wavelet domain [11, 12].Here, we make use of a 
simple and low computation statistics contrast method, defined as the standard devia-
tion σ of all pixel intensities divided by the mean intensity μ  [16],  

                  
μ

σ=C
                                                  (1) 

Considering the coarseness feature, we can compute the local contrast 

)q,p(

)q,p(
q)(p,C μ

σ= where [p,q] is the window size. 

Table 1 gives some local contrast computation examples. The window size for lo-
cal contrast computation is 5044× . As Table 1, we can detect one person from frame 
75-100, most of the contrast of frame 75-100 is larger than some threshold (nearly 
0.6), and the contrast of black part is only 0.4280, there is distinguished difference 
between this two kinds of image. It is should be mentioned that the contrast of light 
part is also over 0.6 (equal to 0.6335), which shows that the edge part will also can be 
detected in the result of contrast image but it will be stable most of time and can be 
filtered by contrast change step.  

From analysis of Table 1, we can get formula to compute local contrast image ICm as  

)]y,I(x[T1I q,pqp,Cm
=                                                    (2) 

Table 1. Local contrast computation for three kinds of image 
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Where contrast threshold 1T
2indicates we can see content above the threshold and 

)y,x(I q,pq,p
is the image after local contrast computation. Fig 2 is another example 

about visible objects detection step on real scene night image, the window size is 
16x20 and threshold T1 is 0.45. (a) is original image with the size of 320x240, (b) is 
the detection result. The red rectangles indicate the visible content in the image. We 
can see that the interesting object and other information are also detected by this step. 

               (a)                                (b) 

Fig. 2. (a) original image, (b) visible content  

3.3   Moving Object Detection Based on Contrast Change 

In the first step, we have detected the visible image content including the interesting 
objects and some information with high edge. Human often pays more interesting to 
the change, so in the second step we will use the contrast change (CC) to filter the 
result in the first step and get the moving objects. This step can be indicated by For-
mula (3) as followed: 

)IIT(I
2121 CCC −=                            (3) 

Where 1CI  and 2CI  are contrast images we get from the first step, 21CI  is the contrast 
difference between two contrast images. T is the threshold to filter some little change 
caused by other factors such as noise or little light variation. 

Fig 3 is an example on real scene video captured by CCD camera at night. (a) 
shows local contrast computation results of two frames. We can see that most of the 
visible content in the images can be detected by this step. (b) is the result based on 
contrast change. We plot the detection result on the second frame. The three red rec-
tangles indicate the objects contrast change between two frames and locate the objects 
position in the last and current frame. The result is so good as to detect the people 
running from dark place and people occluded by pillar. 

3.4   Object Tracking 

There are a large number of object tracking methods, which can be classified into four 
groups: region-based, contour and mesh-based, model-based and feature-based [17]. 
As we have detected the rectangle region, we focus on region-based tracking method 
here.  

2
1T indicates we can see content above the threshold, and threshold T in the next step indi-

cates the change we can detect above the threshold ,threshold T ,which can be decided by p 
tile method adaptively in every frame.
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                 (a)      (b) 

(a) Visible image content detection based on 
contrast 

(b) Moving object detection based on Contrast 
Change (CC) 

Fig. 3. Objects detection results based on contrast and contrast change 

In the last step, objects may be detected by several local windows, such as  
Fig. 4.(a), so we should choose a bounding box including the local windows as  
Fig. 4(b), which can be solved by grouping together 8-connected clusters of blocks 
having similar (and non-zero) displacement vectors [14]. Once the object areas are 
determined in each frame, the tracking algorithm is needed to trace the objects from 
frame to frame.  

                        

Fig. 4. (a) connected before   (b) connected behind 

The tracking algorithm includes two purposes: 
To establish correspond relationship by distance computation between the last 

frame and current frame. 
The result of the distance computation can be represented as a matrix },{ qp ddD = ,

where each row, p , corresponds to a rectangle descriptor in frame n+1, and each 

column, q , corresponds to a rectangle descriptor in frame n .We refer to this matrix 

as distance matrix. Each element of the distance matrix represents the distance be-
tween two rectangles. The element under some threshold for each row and for each 
column identifies a possible correspondence between two rectangles.    

To filter the false detection objects as Fig 5(a) caused by edge or large light varia-
tion by multi-frame matching relation.  

When a rectangle region is detected while there is no corresponding object in the 
past, it may signal a candidate. If the candidate can be traced successfully for several 
frames (here two frames), it will then be considered as a new object and displayed 
with a unique label assigned, otherwise it will be discarded. By this way, we can get a 
more accurate detection result as Fig.5. (b). 
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                                (a)   (b) 
(a) false object detection caused by large light variation; 
(b) false object has been filtered by temporal duration. 

Fig. 5. Example for discarding the wrong detection object

4   Experimental Results and Discussion 

In this section, the results of proposed algorithm for real scene night objects detection 
and tracking are assessed. All the real scene night videos are captured by common 
CCD camera with the sizes of 320x240. In our experiments, only value in R channel 
is used as the input. The effectiveness of the proposed method is verified by detection 
results and tracking results.  

4.1   Algorithm Testing 

First, we test the detection algorithm from frame 1 to frame 120 for sequence “two 
person”. Fig.6 gives the detection results from frame 1-120. The first column is the  

L ocal contrast in  Fram e  1, 20,   C ontrast C hange betw een F ram e 1-20,    O bjects detection  F rom  Fram e 1-120 

40,60, 80, 100,120               20-40,40-60, 60-80,80-100,100-120          in the fir st F ram e(Fram e 1) 

                                                 

             

Fig. 6. Detection results from Frame 1-120, first column: Local Contrast computation results. 
Second column: Contrast change results From Frame 1-120. Third column: Detection results 
from Frame 1-120 on the first frame (frame1).
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                               (a)                                                        (b) 
 (a) First frame from test sequences “two persons”, “bikemen”,

           (b) Trajectories of video objects for the sequence in the corresponding row. 

Fig. 7. Trajectories of real scene night objects. The horizontal and vertical axes of the graphs 
represent the width and the height of the frame, respectively.

local contrast computation result in frame 1, 20, 40, 60, 80, 100, 120. As we can see, 
the moving objects and other visible content can be detected in this step. The second 
column is the contrast change result between frame1, 20, 40, 60, 80, 100, 120. As we 
have hoped, the results are good to detect the change. We plot all the detection results 
from frame 1 to frame 120 on the first frame as the third column in Figure 6, It is clear 
that all the positions the objects appear can be detected accurately from frame 1-120.  

Fig 7 shows the tracking results from two sequences “two persons” and “bike-
man”. The left column as (a) is the first frames of the two sequences, (b) gives the 
trajectories of objects for the sequences in the corresponding row.  It is clear that the 
two persons in the first sequence can be detected and tracked exactly except for  

Frame 8                    Frame 9                    Frame 10 
(a) continuous three frames during zooming in 

Frame 38                  Frame 39                    Frame 40         
(b) continuous three frames during zooming out 

                                (c) Trajectories of camera zooming in and zooming out  

Fig. 8. Objects detection and tracking for camera zooming
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the occlusion by pillar. The occlusion tracking is not the focus in this paper, more 
information for occlusion tracking should be considered in the future. In the second 
sequence, two persons are also can be robustly detected and tracked while they are so 
close that they are detected as one object and there is one trajectories in the right.    

Second, our algorithm is also robust to camera zooming, which outgoes back-
ground modeling based detection methods in substance. Fig 8 (a) is the detection 
results of continuous three frames for camera zooming in and (b) is the detection 
results of continuous three frames for camera zooming out. We can see that the ob-
jects can be detected accurately without losing. (c) is the trajectories of objects when 
camera zooms in and zooms out. It is clear that objects can be tracked robustly with-
out losing. All video results can refer to the attachments. 

4.2   Algorithm Evaluation 

We also give the comparison between our algorithm and Adaptive Mixture Gaussian 
Model (MOG) based method [3] by the measure similar to Jaccard coefficient [19], 
which gives the detection accuracy for each frame of sequence: 

                                        
FN)FP(TP

TPJ ++=                                                  (4) 

Where True positives (TP) is number of moving objects correctly detected. False 
positives (FP) is number of false detection by the algorithm. False negatives (FN) is 
number of missing detection objects by the algorithm. Detection Ground truth is given 
by our eyes for each frame of the sequence. 

Fig 9 is the detection result comparison between our algorithm and MOG based 
method, which is classic as one of the most popular object detection algorithm, (a) is 
the detection results of CC with tracking feedback, (c) is the detection results of CC 
without tracking feedback, (b) and (d) are detection results of MOG with different 
variance. The horizontal axes are frame index and the vertical axes are Jaccard coeffi-
cient. Higher J coefficient indicates the better detection results. We can see that J is 
the best for most frame of (a) and (c) is the worst. For MOG algorithm, (b) gets the 
better result in missing object detection (frame 60-100) while worse in false object 
detection in the beginning and (d) gets the inverse result, but both of them will be 
better after some frames learning (from frame 100).  

Fig. 9. Algorithm comparison for each frame of sequence “two persons”
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Table 2. Algorithm comparison with MOG method on difference sequences 

Table 2 gives the comparison between our algorithm and MOG based methods on 
different sequences. The results of CC method and MOG methods are compared by 
Normalized Jaccard Coefficient, which gives the detection accuracy for whole se-
quence. For sequence “two persons” and “bikemen”, it is clear that the result of CC 
method with tracking feedback is the best. As we have tested in Fig 9, the MOG 
methods with parameter 12=σ  does well for false detection(noise compression) 
while not good for missing detection and MOG methods with parameter 

8=σ achieves inverse result, so these NJ are neither high as our method. We also test 
these algorithms with about 4-minutes sequence at the same scene as above two se-
quences, the results of MOG method are slightly more better for either 12=σ or

8=σ in this condition because MOG method has the learning ability, but for zooming 
camera sequence, it will not work while our method is robust to it. 

5   Conclusion and Future Work 

In this paper, motivated by human vision system, we proposed objects detection and 
tracking algorithm for night visual surveillance. The objects detection is based on 
local contrast saliency information and detection results can be improved by tracking 
step. Experimental results have demonstrated that our approach has the ability to 
detect and track objects robustly at night as well as camera scale changing, which is 
challenging for most of present methods. In the future, more information should be 
considered for occlusion tracking at night. 
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Abstract. We present an algorithm that synchronizes two short video sequences
where an object undergoes ballistic motion against stationary scene points. The
object’s motion and epipolar geometry are exploited to guide the algorithm to the
correct synchronization in an iterative manner. Our algorithm accurately synchro-
nizes videos recorded at different frame rates, and takes few iterations to converge
to sub-frame accuracy. We use synthetic data to analyze our algorithm’s accuracy
under the influence of noise. We demonstrate that it accurately synchronizes real
video sequences, and evaluate its performance against manual synchronization.

1 Introduction

An increasing number of computer vision applications are being developed that process
multiple videos recorded simultaneously from different locations. Some applications
of multiple view video analysis include comparisons of human motion [1], virtualized
reality [2] and reconstruction of non-rigid scenes [3]. In these applications, synchro-
nization is essential to ensure consistency in the structure recovered from the videos.

Synchronization involves finding the temporal relationship between two or more
video sequences. Most literature focuses on a linear model, where there is a temporal
offset Δ between the sequences, and the ratio of frame rates is denoted α. This can be
expressed mathematically by:

j = αi + Δ, (1)

where i and j are frames from each sequence recorded at the same instant in time.
Synchronization can be performed in hardware, for example, by embedding a times-

tamp in the video stream, or sending a synchronization signal to cameras [2]. However,
this can be costly and must be set up prior to recording. Alternatively, software algo-
rithms can recover synchronization from visual cues.

There are two general classes of synchronization algorithms: direct and feature-based
alignment. Direct alignment [4] uses all pixels in a video frame for synchronization
and is suitable for videos containing lighting changes, e.g., fireworks. Feature-based
alignment uses features such as points on moving objects or object trajectories as a
basis for the synchronization algorithm.

Many feature-based synchronization methods are based on a multiple-view geomet-
ric entity such as the fundamental matrix or homography. When either entity is esti-
mated from stationary background scene points, the synchronization can be established
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via the calculation of reprojection errors of moving object points [5]. For instance, Reid
and Zisserman [6] synchronize two videos of a critical passage of play in a soccer match
by firstly relating the homography of the ground plane between two views using ground
markings; they then align the sequences by minimizing the reprojection errors of play-
ers’ shadows on the ground. Similarly, with object motion occurring mainly on the
dominant ground plane, Stein [7] and Lee et al. [8] synchronize multiple surveillance
videos using homographies. A fundamental matrix based algorithm proposed by Pooley
et al. [9] synchronizes sequences captured by two moving cameras via the Hough trans-
form on a reparameterized space of α and Δ. They refine these estimated parameters
using a gradient descent method to minimize the reprojection error. A further funda-
mental matrix based algorithm developed by Carceroni et al. [10] employs the epipo-
lar constraint to establish tentative synchronized frames to estimate an N -dimensional
timeline using RANSAC [11]. The timeline encapsulates the ratio of frame rates and
temporal misalignment between all pairs of the N video sequences to be synchronized.

A feature-based algorithm by Caspi and Irani [4] synchronizes two sequences by
integrating multiple trajectory observations where α is known, and the cameras have
fixed internal parameters throughout the sequences. A homography or fundamental ma-
trix between views is also estimated, depending on the type of motion contained in the
scene (planar for a homography, or free motion for a fundamental matrix). An iterative
step alternately refines the temporal offset, and the homography or fundamental matrix.

Tuytelaars and Van Gool [12] track five points undergoing non-rigid motion through-
out each video sequence, and recover an affine projection matrix for each camera. In
each frame, one tracked point is back-projected into space, and for temporally corre-
sponding frames, lines corresponding to the same 3D point will intersect; this is the
basis of their synchronization algorithm.

Wolf and Zomet [13] use the singular values of the joint image measurement matrix
to synchronize videos recorded by two affine cameras. Their algorithm does not require
the specification of stationary background points, nor point correspondences on moving
objects in each sequence. Tresadern and Reid [3] extended this method to synchronize
to sub-frame accuracy, where the cameras film at different frame rates; however, their
algorithm requires objects to be tracked through a video sequence, and corresponding
trajectories in each sequence to be known. Giese and Poggio [14] tackled the modelling
of biological motion patterns as a synchronization problem. Later, Rao et al. [1] solved
for a non-linear temporal relationship between two sequences. Their algorithm synchro-
nizes videos of the same action performed at different rates, e.g., dancing routines. The
smallest singular value of the measurement matrix used in the linear estimation of the
fundamental matrix is used as an error measure.

An alternative feature-based approach is demonstrated by Yan and Pollefeys [15],
who analyze the distribution of space-time interest points [16] throughout two video se-
quences to solve for Δ. The curves that represent the distribution of space-time features
throughout each sequence are cross-correlated for a range of frame offsets; the offset
where the maximum cross-correlation score is achieved is deemed the actual alignment.

Frontier points are an alternative feature used by Sinha and Pollefeys [17] for syn-
chronization of videos containing object silhouettes recorded by cameras operating at
the same frame rate. A RANSAC based approach considers lines tangential to the sil-
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houette’s convex hull and passing through frontier points as potential epipolar lines. The
algorithm can simultaneously estimate the temporal offset and the fundamental matrix.

We introduce an algorithm that synchronizes two short videos of an object undergo-
ing ballistic motion, recorded using stationary cameras with fixed intrinsic parameters.
We use stationary background points to estimate a fundamental matrix, and exploit the
motion of an object moving in a short ballistic trajectory to rapidly converge to the
correct synchronization. Our method is based on epipolar geometry and can accurately
synchronize videos recorded with both an unknown temporal offset and ratio of frame
rates. Our work is similar to Carceroni et al. [10] in that epipolar geometry is used to
find corresponding frames; however, we exploit object motion to converge to the cor-
rect solution. We present results where the algorithm is applied to synthetic and real
data where the cameras remain stationary. We show that the algorithm can synchronize
sequences to sub-frame accuracy, and that the influence of noise on the coordinates in
the trajectory used for synchronization is not significant.

2 Motion Guided Synchronization

The algorithm consists of three steps: estimating the fundamental matrix from a num-
ber of corresponding stationary background points; finding temporally corresponding
points on the object’s trajectory in each view iteratively by exploiting object motion
and epipolar geometry; lastly, estimating the ratio of frame rates and the frame offset
from pairs of temporally corresponding frames.

In the following sections, frame i in video sequence 1 is referred to as Si, and frame j
in sequence 2 is denoted by S′

j . Image points and lines are in homogeneous coordinates,
and denoted by lowercase boldface letters, e.g., xi denotes an image point in frame Si.
Points and lines in sequence 2 are distinguished by a prime, e.g., l′j . Throughout this
paper, we use the term corresponding frames to mean a pair of frames, one from each
video sequence, that are recorded at the same time instant. We use a ball as the moving
object in this paper, though it can be substituted for any object undergoing ballistic
motion. To avoid confusion with other moving objects in the videos, we refer to the
moving object as a ball throughout this paper.

2.1 Finding Corresponding Frame Pairs

Given that the position of the moving ball has already been identified by a feature
tracking process, we aim to establish temporal correspondences of the ball’s motion
in the two video sequences by exploiting epipolar geometry and the ball’s motion.

In our algorithm, the fundamental matrix F [5] is estimated from stationary back-
ground points. If the ball’s location xi is known in frame Si, we can compute the
corresponding epipolar line l′i in S′

j , via l′i = Fxi. For video sequences recorded by
stationary cameras with fixed intrinsic parameters, F is invariant and the images of all
corresponding stationary scene points satisfy the epipolar constraint. If Si and S′

j are
corresponding frames, then the ball’s imaged position x′

j in S′
j will lie on l′i, and the

epipolar constraint holds. This fact is used to search for the correct alignment.
First, a frame Si is randomly chosen where the ball’s vertical velocity is significant

(explained later in Section 4). Rather than searching through all values of j to find the
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corresponding frame, the ball’s motion is exploited to reduce the search. A frame S′
j is

selected such that the direction of the ball’s vertical motion is the same as in frame Si.
It is assumed that the frame rate is sufficiently high that the ball’s inter-frame motion
is approximately linear. Thus, the ball’s velocity in S′

j can be approximated linearly
from the ball locations in two consecutive frames. Then, from the ball’s position in S′

j

and its velocity, the number of frames until the ball crosses the epipolar line l′i can be
calculated. The following steps outline an iterative method to estimate the value of j
given an epipolar line l′i:

1. Calculate the ball’s inter-frame velocity: v′
j = x′

j+1 − x′
j .

2. Let t′ be the linear approximation of ball’s trajectory in S′
j . Assuming a constant

velocity model, t′ is a straight line passing through x′
j and x′

j+1, calculated via the
cross product: t′ = x′

j × x′
j+1.

3. Next, calculate the intersection point p′ of the approximated trajectory t′ and the
epipolar line l′i: p

′ = t′ × l′i.
4. To estimate the number of frames until the ball crosses the epipolar line, firstly let

d′ be the vector from x′
j to p′. Then the ball is estimated to cross the epipolar line

in n = ‖d′‖/‖v′
j‖ frames. However, there is an ambiguity in the motion of the

ball as the ball may have already passed the intersection point, in which case the
algorithm must look backwards in time .

5. The direction ambiguity can be resolved by examining the vectors v′
j and d′. The

search should be directed forwards if both v′
j and d′ have the same orientation, oth-

erwise, the search should move backwards. n is then modified: n← n sgn(v
′T
j d′).

6. – If n ∈ [0, 1) then the ball must have just crossed the epipolar line in the time
interval [j, j + 1). The synchronized frame can then be estimated to be frame
j ← j + n. At this stage, the iteration can terminate and the temporal corre-
spondence Si ↔ S′

j is established.
– If n /∈ [0, 1) then the frame that is closest in time to frame i must be j + �n�,

where �n� is the largest integer less than n. The strategy is to update j as
j ← j + �n� and repeat the process by looping back to Step 1. Although j
is updated by a whole number here, synchronization to sub-frame accuracy is
achieved when the iteration terminates as described in the previous paragraph.
We note that an integer update �n� is enforced because the ball’s velocity is
approximated using the forward, rather than the backward, difference.

2.2 Convergence of Algorithm

A formal proof of the convergence of the algorithm in the previous subsection is not
given here except for a brief mention of the idea and an example. Firstly, we divide
the algorithm into two cases: case (a), where the ball is above the epipolar line l′i; and
case (b), where the ball is below l′i. In case (a), the value of n will be overestimated
because the magnitude of the ball’s vertical velocity increases as it approaches l′i, and
this apparent acceleration causes the distance to l′i to be covered in fewer frames than is
estimated under a constant velocity model. In case (b), using a constant velocity model
causes n to be underestimated when the ball is below the epipolar line, for the same
reason as in case (a). Because of this underestimation, if the algorithm starts in case (a),
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Fig. 1. An example illustrating the convergence of our algorithm, as detailed in Section 2.2

it will soon reach case (b) because of the overestimation. Then, n will converge to 0 as
in case (b), the algorithm underestimates the number of frames, and at each step, the
distance from the ball to the epipolar line always decreases and never increases.

Fig. 1 shows an example where the ball is moving upwards towards the epipolar line
and decelerating, with the iteration arbitrarily starting at j = 2. The velocity of the ball
is shown by the solid line v2 and, with the constant velocity assumption, is expected to
cross the epipolar line (dashed) in frame 11. This estimate is refined to frame 15 using
the ball’s velocity v11 at frame 11, then to frame 16, and finally, frame 16.20. This
example demonstrates n being underestimated in case (b).

2.3 Combining Observations

Given a frame Si, the iterative procedure in Section 2.1 estimates the corresponding
frame j in S′ to sub-frame accuracy. If this procedure is repeated for frames {i1,. . . ,im},
for m ≥ 2, then the set of corresponding frames {j1, . . . , jm} from the second video
sequence can be established. Since the values {i1, . . . , im} and {j1, . . . , jm} are related
via Equation (1), the values of α and Δ can be estimated via least-squares.

3 Results

We present results for synchronizing synthetic and real data sets. The synthetic data
allow us to test the accuracy of our algorithm in the presence of added noise, whilst
testing on real videos shows that the algorithm can be applied in a practical setting.

We used simulated trajectories to analyze the accuracy of our algorithm in the pres-
ence of noise. A large number of these tests showed that our algorithm can accurately
synchronize two videos containing only one trajectory; on average, the frame rate ratio
was accurate to within 2% of the actual ratio, and the estimated frame offset shown
to have a small mean error, particularly when many pairs of corresponding frames are
used to recover α and Δ. The setup used in our experiments on synthetic data is shown
in Fig. 2. The ball’s maximum vertical speed was 26 pixels/frame at the point of the tra-
jectory closest to the camera, and averaged 7 pixels/frame throughout both sequences.
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Fig. 2. A trajectory and football goals as viewed by two cameras, with the ball locations in each
frame marked by circles

In the following subsections, we analyze the effect of adding noise to the trajectories
in both sequences, and also to the stationary points used to estimate the fundamental
matrix. We also demonstrate the application of the algorithm to real video sequences
and compare the recovered synchronization parameters with manual synchronization.
We use ᾱ and α̂ to denote the true and recovered values of α respectively. Similarly, we
use Δ̄ and Δ̂ to indicate the real and estimated frame offsets.

3.1 Simulated Experiments

We conducted experiments to evaluate the accuracy of the algorithm in the presence of
isotropic Gaussian noise. The noise was added to the x and y components of the ball’s
position, and no smoothing process was applied to the trajectory. Table 1shows the results
for integrating different numbers ofcorresponding frames forvarious standard deviations,
σ, of Gaussian noise. In these experiments, the ratio of frame rates and the frame offsets
were fixed to isolate the influence of noise. The true values were ᾱ = 5/6 and Δ̄ = 3.5
frames, and the sequences contained 80 frames. At each level of noise, we compared the
results of using 2, 5, and 8 pairs of corresponding frames in estimating α̂ and Δ̂.

It can be seen from Table 1 that when noise is present, the accuracy of α̂ and Δ̂
is improved by solving for more pairs of corresponding frames. Even with significant
amounts of noise, the algorithm accurately computes α̂. The recovery of Δ̂ is affected
more by noise, but acceptable accuracy is still achieved. As expected, the rate of con-
vergence decreases as the level of noise increases. In the noise free case, an average of
3.63 iterations were required for the algorithm to converge to sub-frame accuracy.

The accuracy of this algorithm relies heavily on the accurate estimation of the fun-
damental matrix. We examined the effect of estimating the fundamental matrix from
stationary points affected by noise and the importance of the position of the selected
stationary points relative to the trajectory. In the following experiments, twelve points
(the corners of the football goals and line markings shown in Fig. 2) were used to es-
timate the fundamental matrix, with each point perturbed by isotropic Gaussian noise
of various σ values. We conducted three sets of experiments: first with the goals the
same as in the previous sub-section; second, with the goals one-tenth of the size; third,
with the goals distant from the trajectory. Table 2 shows the mean error in estimating
the ratio of frame rates and frame offset over 100 trials. Again, we used ᾱ = 5/6 and
Δ̄ = 3.5, and no noise was added to the points in the trajectories.
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Table 1. Results for recovering α and Δ from m pairs of corresponding frames when isotropic
Gaussian noise of standard deviation σ is added to the trajectory, with the number of iterations
required for convergence shown. The errors shown are the mean over 100 trials.

σ m α error (%) Δ error (frames) Iterations
0.25 2 0.261 0.144 3.8
0.25 5 0.059 0.032 3.8
0.25 8 0.042 0.021 3.8
0.50 2 0.415 0.236 4.0
0.50 5 0.174 0.089 4.0
0.50 8 0.093 0.047 4.0
1.00 2 1.624 0.802 4.2
1.00 5 0.346 0.192 4.2
1.00 8 0.226 0.146 4.2

Table 2. Mean errors in estimating α and Δ when the fundamental matrix is estimated from
points affected by noise. The synchronization parameters were calculated from 5 corresponding
frames, over 100 trials.

Goals σ α error (%) Δ error (frames) Iterations
Standard 0.25 0.430 0.189 3.84
Standard 0.50 0.861 0.366 3.89
Standard 1.00 1.703 0.690 3.65

Small 0.01 2.789 1.285 3.40
Small 0.05 7.873 3.121 3.79

Distant 0.25 1.168 0.538 3.79
Distant 0.50 1.688 0.702 3.77
Distant 1.00 3.512 1.621 3.63

From the results in Table 2, it is clear that suitable stationary points are required for
estimating the fundamental matrix. This is highlighted in the Small and Distant cases.
In the former case, the image of the goals spanned only ten pixels vertically, and less
than one hundred horizontally, so the level of noise was significant. In the Distant case,
the goals were placed 100m away from the trajectory in the virtual world, so the points
used to estimate F were not close to the trajectory. Hence, it is essential that the sta-
tionary points used for estimating the fundamental matrix are not only spatially well
separated, but also surround the trajectory in each dimension in order to achieve accu-
rate synchronization. It can also be noted that fewer iterations were required on average
for convergence than in Table 1; in this case, the trajectory was not perturbed by noise,
leading to a more accurate estimation of the ball’s velocity, and faster convergence.

3.2 Real Video Sequences

The algorithm was tested on real video sequences recorded on videos filming at 25
frames per second. Each interlaced frame was separated into two independently recorded
fields, so our data was captured at 50 fields per second. A number of stationary back-
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Fig. 3. Two views of the indoor sequence. The five corresponding frames used for synchroniza-
tion are indicated by circles in the left image, with the corresponding epipolar lines shown in the
right image, and the ball’s position indicated by triangles.

Fig. 4. Two views of the outdoor sequence, zoomed in for greater detail. The image markings are
the same as in Fig. 3.

ground points were manually selected, and a ball-tracking algorithm [18] was used to
track the centroid of the ball through the video sequences.

Figs. 3 and 4 show frames taken from video sequences, with the ball’s trajectory
overlaid. The ground truth synchronization was obtained by manually locating frames
in which the ball bounced. We display the data used for synchronization; in one view,
points on the trajectory are shown, and in the other view, the epipolar lines correspond-
ing to these points are shown, and also the point where the lines intersect with the tra-
jectory. Table 3 summarizes results of synchronizing the real video sequences. Where

Table 3. Results of synchronizing two real video sequences, compared with manual synchro-
nization based on frames where the ball bounced. Where Δ̄ is given as a range, accurate manual
synchronization was not possible because the ball bounced between frames.

Scene ᾱ α Δ̄ (frames) Δ (frames)
Outdoors 1.00 0.97 4-5 4.26
Outdoors 1.00 Forced 1 4-5 4.52
Outdoors 2.00 1.94 5-6 5.16
Indoors 1.00 1.04 −8 −7.64
Indoors 1.00 Forced 1 −8 −8.33
Indoors 2.00 2.06 −7 −6.73
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ᾱ is given as 2, we discarded even-numbered frames from one sequence to test the
estimation of α̂. “Forced 1” indicates that we assumed that ᾱ = 1, and estimated Δ̂
accordingly. This knowledge makes the estimation of Δ̂ more accurate.

4 Discussion

Our algorithm assumes that the ball moves along a single ballistic trajectory (with one
upward motion segment and one downward segment) in a short video sequence. This
ensures that the epipolar line intersects the trajectory only once in each segment. If a
video contains multiple such trajectories, then an ambiguity may arise if the trajectory
intersects the epipolar line multiple times. When an epipolar line does cross the tra-
jectory twice, we must determine which intersection is correct. Since we assume that
the cameras have the same vertical orientation, we can impose a constraint that the di-
rection of the ball’s vertical motion in S′

j matches that in Si. It should be noted that
any algorithms based on epipolar geometry and using reprojection error as a measure
of synchronization are bound to have an ambiguity when an epipolar line crosses a tra-
jectory multiple times. This is also observed by Carceroni et al. [10]. We note that the
epipolar constraint is a necessary, but not sufficient, condition for synchronization.

Care must be taken when choosing the frame Si for synchronization. There may be
a point on the trajectory such that the ball’s approximated trajectory t′ in S′

j is parallel
to the epipolar line l′i corresponding to the ball’s location in Si. In this case, Step 3 in
Section 2.1 yields a point p′ at infinity, and there is no finite solution for the number of
frames until the ball crosses the epipolar line. To resolve this problem, a different frame
Sj should be chosen such that the ball has significant vertical velocity and is not moving
parallel to l′i. We assume that the vertical separation of cameras is small relative to the
lateral separation, hence when the ball has significant vertical velocity, it should not be
moving parallel to an epipolar line which is likely to be close to horizontal. Sometimes,
an epipolar line may not intersect the trajectory due to errors in estimating F. Again, Si

should be chosen such that the ball has significant vertical velocity, such that it will not
be at the peak of the trajectory, and l′i will not be tangential to the trajectory.

5 Conclusions and Future Work

We have presented an algorithm that uses object motion to recover the ratio of frame
rates and temporal offset of two video sequences recorded by two stationary cameras
with fixed intrinsic parameters. Experiments on synthetic and real data have shown that
the algorithm produces promising results. As expected, as the level of noise increases,
the algorithm’s accuracy decreases gradually, and gracefully. The fundamental matrix
plays an important role in our algorithm and needs to be estimated accurately.

Future work will focus on extending the algorithm to synchronize three sequences,
and adopting the trifocal tensor in place of the fundamental matrix. We are also inter-
ested in how the algorithm can be modified to allow for camera motion; whilst it is clear
that a fundamental matrix is required for each pair of frames, it is less clear how to trans-
fer the ball’s velocity between frames. We are also working on an alternative algorithm
based on one object trajectory without requiring stationary background points.
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Abstract. We present a stereo vision based global self-localization
strategy for tiny autonomous mobile robots in a well-known dynamic
environment. Global localization is required for an initial startup or
when the robot loses track of its pose during navigation. Existing ap-
proaches are based on dense range scans, active beacon systems, arti-
ficial landmarks, bearing measurements using omni-directional cameras
or bearing/range calculation using single frontal cameras, while we pro-
pose feature based stereo vision system for range calculation. Location
of the robot is estimated using range measurements with respect to dis-
tinct landmarks such as color transitions, corners, junctions and line
intersections. Unlike methods based on angle measurement, this method
requires only two distinct landmarks. Simulation results show that robots
can successfully localize themselves whenever two distinct landmarks are
observed. As such marked minimization of landmarks for vision based
self-localization of robots has been achieved.

1 Introduction

In mobile robotics the basic requirement for autonomous navigation in any en-
vironment is self-localization. There are two different approaches for position
estimation: global position estimation and local position tracking. Methods for
local position tracking suffer from accumulation of minute measurements to ob-
tain the final estimate, whereas, techniques for global position estimation, are
less accurate and often require significantly more computational power [1].This
leads to techniques [2, 3, 4, 5, 6, 7, 8, 9, 10] where local measurements are fused
with measurements from the robot environment. However, the robot must be
able to estimate its position from the very beginning or when/if it loses track of
its position during navigation.
� Supported by Higher Education Commission of Pakistan.
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Currently, soccer robots of the size of Tinyphoon are marked on their top with
special patterns, which are then tracked for position estimation using a global
camera and a host computer. We aim at a shift towards complete autonomy,
where all sensing and processing is onboard. However, we look at localization
techniques of other (much bigger and slower) soccer robots and also of indoor
robots.

Gutmann et al. use a localization method based on dense range scans of the
surrounding walls [11]. Whereas, in another approach line segments from range
data are matched with the field model to estimate robot position [12]. These
methods require that the environment must be surrounded by rectangular walls.

There are several approaches using omni-directional cameras. The major ad-
vantage of these approaches is that the robot has a panoramic view of its en-
vironment and consequently can acquire more landmark features. Marques and
Lima [13] detect field lines using the Hough transform [14] and correlate them
with the field model to estimate the robot position. In [8] odometry is used to
calculate the expected position of landmarks and then a local search algorithm
finds their exact position. Whereas, Motomura et al. localize their robots using
dead-reckoning and angle measurements between two landmarks [5].

Approaches using single frontal cameras in conjunction with odometric sen-
sors are widely used for self-localization. These methods are either based on
calculating range and bearing based on known shape and size of landmarks or
enforce special constrains on environment features[15, 7, 16, 17].

Herrero-Pérez et al. [18] detect features such as goal posts and corners made
by the field lines. These features are treated as landmarks in a technique that
uses fuzzy logic to account for errors and imprecision in visual recognition.

Approaches using omni-directional cameras with viewing angle of 360 ◦provide
more landmarks but suffer from high cost of the mirror, low resolution of the
camera, and requirement of an additional space to fit the mirror and the camera.
With frontal cameras one can have high resolution but the field of view is limited.
Furthermore, range measurement using single image is too erroneous and the
approach cannot be used all the time [19].

To overcome these limitations we propose a stereo vision system with piv-
oted camera head. This approach would enable us to measure the distance to
landmarks and to use bi/trilateration approach to calculate robot position. The
pivoted camera head enables the robot to have a 360 ◦view of its environment.
The major advantage of our approach is that it requires less landmarks as com-
pared to the angle based methods.

In this paper we focus on global localization using stereo range measurements.
The robot environment consists of visual landmarks i.e. lines, corners, junctions,
line intersections and color transitions [20]. The test bed for our algorithm is a
soccer playing robot called Tinyphoon (http://www.tinyphoon.com) [21].

The balance of the paper is organized as follows: Section 2 discusses robot
localization using range or bearing to distinct features in the environment. Po-
tential landmarks are discussed in Section 3. Experimental results are presented
in Section 4, finally the paper is concluded in Section 5.
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2 Landmark-Based Methods

Landmarks are distinct features that a robot can recognize from its sensory
input. Landmarks can be geometric shapes (e.g., rectangles, lines, circles), and
they may include additional information (e.g., in the form of bar-codes). In
general, landmarks have a fixed and known position, relative to which a robot
can localize itself [1].

The input data for position estimation in landmark-based systems may be
of range or bearing type. This leads to two different techniques, trilateration
and triangulation, respectively. Trilateration is the determination of a robot’s
position based on distance measurements to known landmarks, whereas, in tri-
angulation, bearing to different landmarks in the environment is used [1].

Fig 1(a) shows the case when the robot identifies a landmark, p1, and mea-
sures the distance r1. This constrains the robot position to a circle, C1. Similarly,
detection of landmark point p2 and its measured distance r2 will constrain the
position of the robot to a circle C2. If two points, say p1 and p2, are detected
at one time then the robot position will be constrained to two points p or p′,
determined by the intersection of the circles C1 and C2 (see Fig 1(b)). The
ambiguity between these two points can be resolved by considering a fixed order
of landmarks.

Fig 1(c) illustrates the case when the robot can only measure the angle α
between two landmarks p1 and p2. The angle between p1 and p2 remains equal
to α if the robot is moving along the circular arc C or C’ (shown dotted in Fig
1(c)) [22, 23]. In this case there are infinite number of possible positions and the
robot must detect a third landmark point.

(a) The robot is some-
where on the circle

(b) Robot position con-
strained to two points

(c) The robot position
is constrained to circular
arcs

Fig. 1. Constraining robot position with landmarks

Error free measurements will result in perfect localization. However, mea-
surements are never perfect and errors in distance and angle estimates can vary
significantly [23]. Position of the robot will be constrained to a thick ring instead
of a perfect circle if there is any error in distance measurement. The intersection
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of such thickened circles/rings will determine the uncertainty in robot position
when two or more landmarks are used.

In addition to measurement errors there could be error in landmark identi-
fication and matching with the world map. For the identification errors, some
landmarks may not be detected, and some spurious landmarks may be detected.
Errors in correspondence could be such that what has been identified as point x
on the map may really be point y [23].

3 Landmarks for Self-localization

We use color transitions, corners, junctions and line intersections as landmarks.
These landmarks are detected using semantic interpretation of line segments
extracted using gradient based Hough transform [20]. Fig 2 illustrate detection
of these features.

The vertical edges of the goal corners are normally missed during edge detec-
tion and consequent line segments extraction as the change in y-channel value
between white and yellow is not significant and the length of the edge is small as
compared to other lines in the environment. Therefore, we extract goal corners
based on color transitions as discussed in the following section.

(a) Left camera image (b) Detected features superimposed over
the edge map

Fig. 2. Line based landmarks for self-localization

3.1 Detecting Goal Corners

Goals are marked with different colors (blue and yellow). We use color segmen-
tation of the camera images to detect corners of the goal. The process is outlined
as follows.

In the left camera image, pixels are tested if they belong to either blue or
yellow color. This ’segmentation’ is done at a lower scale. Every fourth pixel in a
row of every fourth row is tested, which results in a rectangular window around
the blue or yellow color patches, if any. The neighborhood of this ’rectangular’
window is searched for color transition (color transition from white to yellow,
yellow to white, white to blue, or blue to white represents a goal corner), using
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a full scale. If a color transition is detected in the left image, the corresponding
feature points are searched in the right image. The search in the right image is
based on parameters of the feature points in the left image. If the corresponding
feature point is detected in the right image, its distance from the current robot
position is calculated. Detection of two such points determine the robot position
as shown in Fig 1(b).

The use of two colors to detect a transition makes the process robust against
outliers. All rows inside the rectangular window are searched for transition pix-
els. One value in a group of pixels is taken as the x-component of the edge
between the wall and the colored goal. Outliers in the group are eliminated us-
ing simple statistical measures. The calculated stereo range is used to estimate
robot position and orientation as discussed in the following sections.

3.2 Calculating Robot Position

We assume that the robot’s motion is two dimensional where pose of the robot
has 3 degrees of freedom i.e. x, y and θ. The global coordinate system is rep-
resented by X and Y axis, whereas the robot coordinate system by xr and yr

axis. Rotation of robot coordinate system with respect to the global coordinate
system is represented by the angle θ. Suppose the robot detects two distinct
landmark points p1 and p2 at (x1, y1) and (x2, y2) in the global coordinate sys-
tem and measures their distances r1 and r2, respectively. The two circles at p1
and p2 can be described by ( 1) and ( 2) as follows.

(x− x1)2 + (y − y1)2 = r2
1 (1)

(x− x2)2 + (y − y2)2 = r2
2 (2)

Solution of these equations, which is the intersection of the two circles, will
give the possible robot position in the global coordinate system. Subtracting ( 2)
from ( 1) and re-arranging terms we have

x = A + By (3)

where

A =
r2
1 − r2

2 + x2
2 − x2

1 + y2
2 − y2

1

2(x2 − x1)

B =
y1 − y2

x2 − x1

further simplification results in

y =
−D ±

√
D2 − 4CE

2C
(4)

where

C = B2 + 1
D = 2AB − 2x1B − 2y1

E = A2 + x2
1 − 2x1A− r2

1
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One of the solution pairs (px1, py1) and (px2, py2) (if any) from ( 3) and ( 4) will
qualify for the possible robot position. The ambiguity between the two positions
is resolved by considering a fixed order of landmark points.

3.3 Calculating Robot Orientation

In this section we discuss calculation of robot orientation with respect to goal
corners which is done after position is estimated. The process is illustrated in
Fig 4. When robot calculates its position with respect to the blue goal θ can be
calculated using ( 5) or ( 6). One of these equations is used depending on the y
coordinate of the robot position.

θ = α1 − α2 (5)

θ = −(α1 − α2) (6)

where α1 = arctan( ly−py

lx−px
) and α2 = arctan( yr

xr
).

In these equations (lx, ly) is the location of one of the landmarks, (px, py)
is robot position and (xr , yr) is the location of the selected landmark in robot
coordinate system. The landmark and robot position are in global coordinate
system. Similarly when the robot position is calculated with respect to the yellow
goal θ can be calculated using (7) or ( 8) as shown in Fig 3(b).

θ = 180 ◦ − (α1 + α2) (7)

θ = 180 ◦ + (α1 − α2) (8)

where α1 = arctan( ly−py

px
) and α2 = arctan( yr

xr
).

(a) Blue goal (b) Yellow goal

Fig. 3. Robot orientation with respect to goal corners
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4 Experimental Results

We simulate the performance of our algorithm using only goal corners as land-
marks. We have conducted 14 trials where each one has 100 steps. These trials
are further grouped into motion without rotation, rotation without motion and
motion with rotation. At every step the robot is taking images of its environ-
ment, search for color transitions and calculates its position if it finds both the
corners.

Fig 4(a) shows the path followed by the robot. Locations where images were
taken and searched for color transitions are shown as dots (·). However, depend-
ing on the instantaneous pose of the robot both corners are not visible all the
time therefore robot pose is estimated only at limited locations shown as plus
(+) superimposed on the dots(·).

(a) Actual locations from where posi-
tion was calculated

(b) The robot is following rectangular
paths but is looking only at the blue or yel-
low goal i.e no rotation

(c) In this case the robot is following rect-
angular paths and is rotating as well

(d) The robot is rotating in small steps
but without any motion

Fig. 4. Experimental trials
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Table 1. Error in x,y and θ for the motion only case

Mean Std Min Max
δx 63.55 37.10 0.46 157.5
δy 58.99 49.42 0.01 247.14
δθ 3.19 ◦ 2.19 ◦ 0.04 ◦ 11.50 ◦

Table 2. Error in x,y and θ for the rotation only case

Mean Std Min Max
δx 58.00 26.90 8.10 123.91
δy 78.53 73.52 0.51 240.00
δθ 2.05 ◦ 1.58 ◦ 0.03 ◦ 8.53 ◦

Table 3. Error in x,y and θ for the final case (motion and rotation)

Mean Std Min Max
δx 36.01 14.32 3.48 69.86
δy 35.92 30.98 1.03 166.24
δθ 3.09 ◦ 2.52 ◦ 0.03 ◦ 13.40 ◦

Table 4. Normalized range error

Mean Std Min Max
6.98% 5.26% 0.01% 25.00%

Fig 4(b) shows the case where the robot follows a rectangular path around
the field but its orientation remains fixed at 0 ◦or 180 ◦. The plus (+) show the
actual position whereas the calculated position is shown as star (∗). A rotation-
only case is illustrated in Fig 4(c). The robot is placed at five locations: near the
four corners and at the center of the field. Both motion and rotation is shown
in Fig 4(d). Here in this case the robot is moving on a rectangular path and is
rotating in fixed steps. In the motion-only and motion-with-rotation cases the
robot follows rectangular paths of different sizes.

Statistical results for error in pose are shown in Table 1, Table 2 and Table 3
for all the three cases as discussed above. Whereas, normalized error in range
measurements is shown in Table 4. The first column in all tables show values
for the average absolute error. The standard deviation (Std), minimum (Min)
and maximum (Max) values for each group are presented in the 2nd, 3rd and
4th columns. Error δx and δy in Table 1, Table 2 and Table 3 is expressed in
millimeters.

As can be seen from Table 4 the normalized error of range is very high.
This error is due to several reasons, like, we use a narrow baseline stereo since
the construction of the robot does not allow the use of a wide baseline. Again,
all processing has to be done by the onboard processors we use low resolution
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images(QVGA, 320× 240). Moveover, due to the size and concavity of the goal,
it is often difficult to determine which point on the goal is being observed. This
results in inconsistent ranges and inconsistent landmark positions [15].

5 Conclusion

The method presented in this paper demonstrates that the robot can successfully
localize itself with two distinct landmarks. The distinct and bright color of the
goals makes them the strongest candidates to be selected as landmarks. Further-
more, calculating robot position and orientation with respect to goal corners is
very efficient as only N/16 pixels are tested to determine the rectangular bound-
aries around the color patches (if any), N being the total number of pixels. This
results in localization of color patches which are then searched for the actual
corners. The error in range estimation is acceptable as we are using just a single
shot localization and have not incorporated any kind of temporal redundancy.
The robot pose could be refined once a rough estimate is available.

Currently we are working on methods for efficient interpretation of landmarks
other than the goal corners, tracking of landmarks, tracking robot position with
local sensors and information fusion. Furthermore, we are also investigating self-
localization using range measurement to a single landmark where orientation
could be obtained with some other means i.e compass or line segments such as
the center line of the soccer field.
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Abstract. This paper proposes a new method based on self-calibration to 
estimate the ball’s 3D position in broadcast soccer video.  According to the 
physical limitation, the ball’s 3D position is estimated through the camera 
position and the ball’s virtual shadow, which is the point of intersection 
between the playfield and the line through the camera’s optical center and the 
ball. First, the virtual shadow is computed by the homography between 
playfield and image plane. For the image having enough corresponding points, 
the map is determined directly; for those images not having enough these 
points, their homographies are estimated through global motion estimation. 
Then, based on self-calibrating for rotating and zooming camera, and the 
homography, the camera’s position in the playfield is estimated. Experiments 
show that the proposed method can extract ball’s 3D position information 
without referring to other object with assuming height and obtain promising 
results. 

1   Introduction 

Soccer is the most popular sports in the world and appeals to plenty of fans. Every 
year many matches are broadcasted and stored in digital format. In the last decade, to 
facilitate audience to rapidly access the stream and enjoy the enriched program, 
researchers have paid attention to these two research fields: in the first field, they aim 
to provide tools to help users find important events; for the second, they make efforts 
to extract 3D information from video, in order to analyze the match or let audience 
better appreciate the match [1-6]. In this paper, we will focus on the second problem. 
Based on the knowledge of computer vision, the ball’s 3D position is estimated, then 
cartoon is generated for the highlight segment. 

According to the data to be processed, current research can be categorized into two 
classes: The first class focuses on the data shot by special camera; the second class 
aims at the broadcast video. 

For first class, researchers generally use high-speed camera or multiple cameras. 
Distante use high-speed camera mounted near the base line to detect ball [7,8]. 
J.Orwell [9,10] and Hideo Saito [11,12] adopt multiple cameras to monitor the match 
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and it is relative easier to track ball and players. According to multi view geometry 
relationship to reconstruct players’ and ball’s positions [13]. With many restrictions, 
such as the expensive equipment, researchers focus their research on broadcast video. 

Yu and Tong exploit size, color and shape information to detect ball candidates 
among playfield and find the ball track in image by Kalman filter or particle filter [14, 
15, 16]. In order to acquire the ball’s real position, Reid uses infinite point light 
source and the ball’s shadow to estimate the ball’s 3D position. However, it is 
difficult to detect the shadow by computer in image. Ohno [5] and Yamada [6] 
introduce dynamic equation to estimate the ball’s position, while it is not easy to 
acquire the ball’s speed. Kim’s method can calculate the ball’s position, but it needs 
two channel signals [17]. The most similar work to ours is [18]. The authors utilize 
similar triangle to estimate ball’s position. The method has to face two difficulties. (1) 
They have to find two objects, which are perpendicular to playfield and have similar 
view depths. (2) The method has to assume that a player’s height is known. To reduce 
manual interference, in this paper, we propose a new method to estimate the ball’s 3D 
position based on self-calibration, which does depends on much less hypothesis. 

The paper is organized as follows. In section 2, the proposed algorithm is introduced 
in theory. Section 3 presents experimental results. The last section concludes the paper. 

2   The Proposed Method 

In what follows, we will describe how to utilize visual geometry to estimate the ball’s 
3D position. First, we derive the computing formula, then the methods of estimating 
the involved parameters are described respectively. 

2.1   The Formula of Estimating the Ball’s Position 

As it is known, in the soccer broadcast, the main cameras are generally placed on 
fixed positions, so it is reasonable to assume that most shots are shot by rotating and 
zooming camera. According to the physical restriction, the ball’s 3D position can be 
estimated from geometry relationship, figure 1 shows the relationship among the 
objects, including ball, camera position and the plane in which the ball flies. Figure 1a 
illustrates the case of the ball’s height is lower than the camera’s position, and figure 
1b is the case of the height is higher than the camera’s position. It is needed to point 
out that our proposed method can deal with these two cases. Explanations for figure 1 
are as follows. 

• Let the playfield plane be the XOY plane of the world reference frame, and the 
origin is at the center of the base line, and axis X is perpendicular to the baseline. 

• The camera is mounted a fixed position with its coordinate T
ccccw ZYX ),,(=t  in 

the world reference frame. Generally, the information is unknown in broadcast 
video. 

• In principle, movement of ball can be categorized two classes: the first is on the 
ground; the second is the ball flies in the air. In the second case, let 

T
uuu YX )0,,(=p  be the taking-off point and T

eee XX )0,,(=p  be the touching-

town point. Based on the physical restriction, it is can be assumed that the ball flies 
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in the plane, which passes the two points and is vertical to the ground. The function 
of the plane is given by (1) 

−=
≠−−−−==++⋅

otherwise   

0  if , )/()( ,0
:

dY

XXXXYYkdYXk ueueueπ  (1) 

• Virtual shadow is the point T
sss YX )0,,(=b of intersection between the line, which 

passes through the camera’s position T
ccccw ZYX ),,(=t  and the ball’s position  

wb  in the air, and playfield plane. The line’s function is described by (2).  

[ ] [ ] [ ]0: ss
T

cscsc
T YXtZYYXXZYXl +⋅−−=  (2) 

• Computing the ball’s position 
wb . Combining function (1) and function (2), we 

have 
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                       a                                                                    b 

Fig. 1. The geometry relationship for computing the ball’s height 

From figure 1, we can get the following conclusions: (1) when the ball is on the 
ground, if we know the transformation between the playfield plane and the image 
plane, the ball’s position can be determined; (2) when ball is in the air, if the positions 
of camera, the virtual shadow and the plane π  are known, then the ball’s 3D position 
can be estimated. The coming subsections specify the calculation of virtual shadow 
and the estimation of the camera position. 

2.2    The Camera Model 

Let ),,( ZYX=M be a point in space, with the homogenous coordinate )1,,,(
~

ZYX=M , 

and let ),( vu=m  be a point on image, whose homogenous coordinate is )1,,(~ vu=m . 
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According to the pin-hole camera model, the point in space and its image have the 
following relationship 

[ ]MtRKm
~~ ≈ , (4) 

where ≈  defines two vectors up to a  scale factor. In (4), K , called intrinsic matrix, 
is a 33×  matrix with the form of 

=
100

0 0

0

v

u

β
γα

K . (5) 

α  and β  are the horizontal and vertical focal length respectively. ),( 00 vu  is the 

principal point coordinate. γ  is the skewness of the two image axes. In order to use 

linear method to determine K , assuming that 0=γ . 0u  and 0v  do not vary with 

the focal length change. In our system, the principal point is assumed to be at the 
center of image, and later experiments show that this hypothesis affects the camera 
position estimation trivially. R  is a rotation matrix and t  is the ordinate of the origin 
of the world reference frame in the camera’s reference frame. 

2.3   Computing the Virtual Shadow 

Without loss generality, the playfield plane can be denoted as 0=Z and is 
substituted into (4), then we have 

[ ] [ ]≈≈
1

1

0
1

21321 Y

X
Y

X

v

u

trrKtrrrK . 
(6) 

[ ]T
p YX ,=M  denotes the point on playfield with its homogenous coordinate 

[ ]T
p YX 1,,

~ =M , then (6) can be depicted in the concise form 

[ ]trrKHMHm 21       where
~~ ≈≈ p

. (7) 

 

Fig. 2. Soccer playfield model. The red points can be used to calculate an image’s homography 
matrix. 
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Formula (7) describes the correspondence relationship between two planes. That is 
to say, when an image’s H  is known, for a point in image: if it is a point on the 
playfield, through (7), its coordinate in world reference frame can be calculated; if the 
point is not on the playfield, the acquired vector is the coordinate of the virtual 

shadow. The 33×  matrix H  is called Homography matrix, which has 8 
independent components, so it need 4 pairs of corresponding points to determine H . 
Figure 2 shows the soccer field model. As [19] regulates that the size of the field is 
not unique, and only the red points in the figure can be used to compute homography 
matrix. When an image has enough these points, its H  is computed directly. For the 
image with insufficient corresponding points, the image’s H  is calculated indirectly. 

As the camera is mounted at a fixed position, the image points 1
~

−tm  and tm~  of a 

still point M
~

 in space in two adjacent frames have the transform 

11,
~~

−−≈ tttt mPm , (8) 

where 1, −ttP  has the similar property with H . In some literatures, 1, −ttP  is called 

inter-frame homography. To differentiate it from H , we call it global motion 
parameter. Let 

1−tH  and 
tH  are the homography matrixes of frame 1−t  and frame t  

respectively. According to (7), we have  

≈

≈ −−

MHm

MHm
~~

~~
11

tt

tt
. (9) 

Substituting (8) into (9), the following recursive function is acquired, 

ktktktttttttttttt −+−−−−−−−−− ≈≈≈≈ PPPHPPHPH 1,,121,2,11,1 LL . (10) 

Formula (10) tells us that if some image’s homgraphy matrix in a video sequence is 
known, then the H  matrix of image with insufficient corresponding points can be 
estimated based on (10). 

2.4   Camera Position Estimation 

Camera position is another important factor for estimating the ball’s 3D position. Let 
us study the relationship between H  in (7) and the intrinsic and extrinsic parameters, 
then we get 

[ ] [ ]trrhhhK 21321
1 ≈− , (11) 

in which 3,2,1, =iih  is a column of H .  According to (11), the camera’s extrinsic 

parameters are calculated by formula (12) 

2
1

21
1

13
1    ;  ; hKrhKrhKt −−− ⋅=⋅=⋅= sss . (12) 
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Using the restriction of R  being an orthonormal matrix, where 2,1,/1 1 == − is ihK  

and 
213 rrr ×= [20]. Here, t  is the coordinate of the origin world reference frame in 

the camera’s reference frame, then the camera’s position in the world is  

tRt 1−−=cw
 (13) 

It is seen from (12) and (13), in order to compute 
cwt , an image’s H  and the 

intrinsic parameter K when capturing the image are known in advance. Since camera 
exploited in soccer broadcast can think as rotating and zooming camera, we adopt the 
method proposed in [21].  The principal point is assumed to at the center of image (as 
literature [22] and our experiments later show that this setting affects the result little), 
then the components α  and β  of  K can be acquired by solving equation system 

(14) 

−
−
−

=

3323

3313

2313

2

2

3222

3212

2212

3111

3111

2111

pp

pp

pp

pp

pp

pp

pp

pp

pp

β
α , (14) 

where 3,2,1,, =jipij
 is the component of the global motion parameter. 

3   Experiments 

In this section, we give three experiments. The first experiment is done on the 
synthesized data and used to verify the proposed method, in which the effect of 
principal point position is considered. The second experiment is made on real 
broadcast video, and the goal post height is adopted as estimating object as its height 
is known. At last the extracted 3D information is applied in highlights cartoon 
generation. 

3.1   Synthesized Data 

The synthesized data is generated by a virtual pin-hole camera on a virtual playfield. 
The playfield is of 100 yard long and 70 yard wide. The world reference frame is set 
up as figure 1 shows. The virtual camera is mounted at )10,50,50( −− , and the 

initial focal length is 1100,1200 == βα . The size of image is 572720× . The 

camera pans from right to left and the focal length increases 1% per frame. At the 
same time, random movement is added to tilt angle. The ball flies from (-60,0,0) to  
(-40,0,0) , the highest point is 8 yard. 

First, we consider how the principal point position deviation and noise affect the 
camera position and the ball’s 3D position estimation. The noise is a normal 
distribution with mean 0 and standard deviation σ . Figure 3a and 3b give the 
experiment results. At every noise level (11 levels, from 0-2 pixels), 100 runs are 
done. In the figure, PP denotes the principal point real position, while the principal 
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Fig. 3. The effect on camera position (a) and ball position estimation (b) of deviation of 
principal point position and noise 
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Fig. 4. Ball’s height estimation under the condition of its height is higher than the camera 
position 

point is always assumed to be at the centre of image in the calibration process. From 
the figure, it is concluded that the estimation precision decreases when the deviation 
of the center from the real PP position increases, and the same to noise level. As the 
figures show, the effect is trivial (The results are consistent with the report in [22]). 
So it is reasonable to adopt the center of image as principal point position in practice.  

Then the camera is moved to )5,50,50( −− , thus highest point of the ball is higher 

than the camera. We also use the proposed method, under the case of the real PP 
position is at (340,306) and the noise level is 2 pixels, to estimate the ball’s height. 
Figure 4 gives the result, which indicates that the proposed method still work when 
the camera is lower than the ball. 

3.2   Real Video 

In this section, we test the proposed method on real video (352x288). Since these 
videos are recorded from broadcast, it is impossible to know the ball’s real height. We 
use the method to estimate the goal post height instead of the ball. Figure 5 gives the 
estimated goal post height, in which the red line indicate the real height (2.44m),the 
other lines are the estimated goal post height on two sequences (the vertical plane 
passing through the base line). From the figure, we can find that the estimated value is 
close to the real value.  
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At last, we apply the proposed method to extract 3D information from some 
highlights segment from the last year Europe cup. Figure 6 is a highlight sequence. 
The black circle is the ball. Through calibration, the camera is at (-51.8,-66.0,22.1), 
and the unit is yard. The ball in image are detected and tracked by our prior work 
[23]. 
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Fig. 5. The estimated goal post height of two sequences 

Figure 7 illustrates the ball track in space. Yellow region is the goal area. The 
green cure is ball track on ground. Red cure is the ball’s position in the air after the 
first pass. Blue cure is ball’s position after the goal when the ball is in the air. The six 
figures depict the scenes from different view points. The ball’s flying plane is 
determined manually. 

 

Fig. 6. A highlight sequence. The black disc is the enlarged ball. 
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Fig. 7. The ball track from different view point. a: From the main camera. b: Along the base 
line. c: Opposite side of the camera. 
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3.3   Cartoon Generation 

The extracted ball 3D position and the player’s position on the ground are used to 
generate high light cartoon. Our system allows users to watch the game at any point 
of view using a 3D viewer based on OpengGL1. 

4   Conclusion 

In this paper, we propose a new method to estimate the ball’s 3D position from 
broadcast video based on self-calibration. This method reduces manual interference 
and does not depend on other object with known height. Experiment show that the 
method is right in theory, and it can be applied in practical video. At last, the 
extracted information is used in cartoon generation. This makes audience appreciate 
match different view point. 
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Abstract. Despite the long history of studies on weak-perspective pro-
jection and the intuitive notion that this model has better numerical
stability compared to the perspective model under appropriate condi-
tions, there lacks a deep understanding about the error characteristics of
motion and depth recovery process under this model. In this paper, we
present the differential approach to SFM under weak-perspective projec-
tion. Based on this approach, error behavior which governs the formation
of motion ambiguities under weak-perspective is investigated. Recovery
of depth information and its distortion are also discussed. Regions where
ordinal depth can be extracted is shown to be following a simple rela-
tionship under all types of motion, a different result compared to the
case of perspective projection.

1 Introduction

Weak-perspective projection model is a good approximation for a full perspec-
tive model when field of view is small and the depth relief of the observed object
is small compared to its distance from the camera. In this situation, using weak-
perspective model can provide us a simpler and often more robust method to
solve the structure from motion (SFM) problem. Many works have been done for
motion and structure recovery under such model, including the discrete approach
under orthographic and weak-perspective projection [1][2][3][4], the continuous
approach under orthographic projection [5] and the factorization approach [6].
The latter work has spurred tremendous interest in SFM under situations where
orthographic model can be applied. Another motivation for considering weak-
perspective model concerns various novel camera systems, whereby dense arrays
of cameras have been proposed, some of these inspired by biological visual sys-
tems such as compound eyes [7][8]. While these camera systems may have a
panoramic field of view, they are made up of discrete units of small visual sen-
sors, each of which might be modeled by a weak-perspective camera.

However, despite all these amounts of work, little has been known on the
error characteristics of the motion and depth recovery process under the model.
What are the error behaviors governing the recovery of the observable parame-
ters? And how are these behaviors affected by the motion-scene configuration?

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 862–871, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Only when we have such theoretical analysis, can we fully understand why the
model is stable under certain circumstances and what kind of information can
be extracted robustly.

A differential approach to SFM problem under weak-perspective is presented
in this paper. We formulate the motion field equations and solve the instanta-
neous motion parameters via the differential epipolar constraint. Based on this,
we investigate how the cost function changes its value when errors in the motion
estimates or noise in the image measurement arise. This helps us to understand
the stability of the motion recovery process and alerts us to specific motion-
scene configurations that might be susceptible to errors under weak-perspective
model. We also present a method to recover relative depth from relative motion
field. The distortion of the recovered relative depth due to errors in the motion
estimates is analyzed. It is shown that depth order information can be recovered
robustly within a region whose geometry follows a simple relationship unlike the
case of the perspective projection [9].

The paper is organized as follows. In section 2, we describe the weak-perspec-
tive model and discuss what and how 3D motion parameters can be recovered.
Section 3 presents the error analysis on the motion estimates. Section 4 presents
method for recovering relative depth and discusses the distortion of the relative
depth arising from errors in the motion estimates. Section 5 discusses the ro-
bustness of ordinal depth recovery. Experimental result of motion recovery and
ordinal depth recovery is presented Section 6 and the conclusions are drawn in
Section 7.

2 Motion Recovery Under Weak-Perspective Projection

2.1 Weak-Perspective Projection

We assume the world and the camera coordinate systems are aligned and the
camera is calibrated. Consider N points P1, · · · ,PN , where Pi = (Xi, Yi, Zi)

T
,

i = 1, · · · , N , weak-perspective projection is denoted by

pi =
f

Z

(
Xi

Yi

)
(1)

where pi = (xi, yi)
T is the projection of Pi on the image plane and Z is the

mean value of Z1, · · · , ZN . This projection can be constructed by an orthographic
projection of the points onto Z = Z plane followed by a perspective projection
onto the image plane. The first projection omits the depth relief of the scene and
the second scales the points on the plane by a scaling factor f/Z.

2.2 Weak-Perspective Motion Field Equations

Suppose the camera is undergoing a rigid motion with translational velocity T =
(Tx, Ty, Tz)

T, and rotational velocity Ω = (ωx, ωy, ωz)
T. The relative motion

between the camera and point P is

V = (Vx, Vy, Vz)
T = −T−Ω×P (2)
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Taking time derivatives of both sides of Eq.(1), we get the 2D motion field (u, v)T

under weak-perspective projection as follows:

u = sVx + δx, v = sVy + δy (3)

where s = f/Z is the scaling factor, δ = 1
s

ds
dt = −VZ

Z
is the relative changing

rate of the scaling factor. Substituting Eq.(2) into Eq.(3), we have

u = −tx − ωyz + ωzy + δx
v = −ty + ωxz − ωzx + δy

(4)

where tx = sTx, ty = sTy, z = sZ. Eq.(4) tells us that under weak-perspective
projection, it is impossible to recover the absolute magnitude of the translational
components Tx, Ty, the absolute depth Z and the scaling factor s from the motion
field since they are coupled together.

2.3 Epipolar Constraint Equation

Eliminating z from equation Eq.(4), we get the differential form of the weak-
perspective epipolar constraint:

ωxu + ωyv + (ωyωz − δωx)x + (−ωxωz − δωy) y+ωxtx + ωyty = 0 (5)

The above equation can be written as

au + bv + cx + dy + e = 0 (6)

which has similar form as its discrete counterpart in [3]. As pointed out in [10],
for an image point (xi, yi)T, the epipolar constraint equation forces the end of
its 2D motion field vector (ui, vi)T to lie on a constraint line in the motion field
vector space.

2.4 Cost Function

Given N (N ≥ 4) points and their weak-perspective motion fields, a, b, c, d, e can
be solved from equation Eq.(6) up to an unknown scale factor. In the face of
measurement noise in u, v, x and y, the problem can be solved by minimizing
the following cost function

J =
1

a2 + b2

N∑
i=1

(aui + bvi + cxi + dyi + e)2 (7)

which is the sum of the squared distances between each measured motion field
and its constraint line in motion field vector space. Eq.(7) can be simplified by
scaling a, b, c, d, e with a scale factor k =

√
ω2

x + ω2
y and redefining a, b, c, d, e by

their scaled value as in Eq.(8) such that a2 + b2 = 1.

a = cosα, b = sinα, c = ωz sinα− δ cosα,
d = −ωz cosα− δ sinα, e = tx cosα + ty sinα

(8)
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where α = tan−1 (ωy/ωx). From ∂J/∂e = 0, we have e = − (au + bv + cx + dy),
where u, v, x, y are the centroids of the measured data ui, vi, xi, yi (i = 1, · · · , N),
respectively. Thus, J can be simplified as

J =
N∑

i=1

(au′
i + bv′i + cx′

i + dy′i)
2 (9)

where notation ′ denotes value with respect to the centroid of the original data.
Minimizing J in Eq.(9) is equivalent to getting the least square solution of Eq.(6)
under constraint a2 + b2 = 1, which can be solved using singular value decom-
position technique.

2.5 Solving for Motion Parameters

The following motion parameters can be determined from a, b, c, d, e
(
a2 + b2 =1

)
,

by using Eq.(8):

α = tan−1 (b/a), ωz = bc− ad

δ = − (ac + bd), tα = (tx, ty) · (cosα, sinα)T = e
(10)

In other words, given a, b, c, d, e, we can determine:

1. α, the direction of (ωx, ωy)
T up to a 180◦ ambiguity;

2. angular velocity ωz (the cyclotorsion);
3. relative changing rate of the scaling factor δ;
4. tα, the component of the translational velocity (scaled by s) along the

(ωx, ωy)
T direction.

Recall, however, that a, b, c, d, e are only determined up to an overall scale factor.
Thus, we cannot determine k, the magnitude of (ωx, ωy)

T. The translational
component perpendicular to the direction (ωx, ωy)

T is also indeterminate.

3 Error Analysis on Motion Estimates

We denote the estimated parameters with the hat symbol ˆ and errors in the
estimated parameters with the subscript e (where error of any estimate is defined
as se = s− ŝ ). Symbol˜denotes the measured value. Noise in a measured value
is denoted with the subscript n (where noise of any measured value is defined as
sn = s− s̃ ). Notation ′ denotes value with respect to the centroid of the original
data.

3.1 Analyzing Cost Function in Noise-Free Case

First, we analyze J in the noise-free case, which means un = vn = 0 and xn =
yn = 0. We aim to see how J changes with errors in the 3-D motion estimates.
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Substituting Eq.(4) into Eq.(9) and expressing a, b, c, d in terms of the 3D
motion estimates, we obtain the cost function J in the following form:

J =
N∑

i=1

(sin (α̂− α) kz′i − ωzeri sin (α̂− θi) + δeri cos (α̂− θi))
2 (11)

where ri =
√

x
′2
i + y

′2
i , θi = tan−1 (y′i/x

′
i) and z′i = zi − z, z =

N∑
i=1

zi. Obviously,

for ∀i, (i = 1, · · · , N), the term in the parentheses in Eq.(11) is a sine function
of α̂, which can be readily simplified to

J =
N∑

i=1

(Ai sin (â− ψi))
2 (12)

where for compactness of expression, the magnitude Ai and phase ψi are cus-
tomarily expressed in the corresponding complex form:

Ai exp (jψi) = kz′i exp (jα)− ωzeri exp (jθi)− δeri exp (j (θi + π/2)) (13)

α̂ can be taken out the of the summation sign via further manipulation:

J =
1
2

(
N∑

i=1

A2
i −A

2

)
+
(
A sin (α̂− Ψ)

)2
(14)

with
(
Aexp (jΨ)

)2
=

N∑
i=1

(Ai exp (jψi))
2. Let Jmin = 1

2

(
N∑

i=1
A2

i −A
2
)

. We have

the following observations from the preceding equations:

1. Given fixed values of ωze and δe , the cost function J is a squared sine
function of α̂ , with minimal value Jmin at α̂ = Ψ .

2. Jmin = 0 if and only if all the ψi’s have the same value. Given uniform
feature distribution, this can only happen if and only if ωze = δe = 0. Under
these conditions, Ai exp(jψi) = kz′i exp(jα). J vanishes if and only if α̂ = α
(or α̂ = α + π) and ωze = δe = 0.

3. Any residual values in ωze and δe will increase the minimum Jmin as well as
changing the value of Ψ at which this minimum is obtained. Nevertheless,
given any fixed ωze and δe, the minima of J are still the minima of the
sinusoid (Fig.1(a)), even though the values of these minima monotonically
increase as ωze and δe increase (Fig.1 (b)). This should also mean that ωz

and δ can be estimated quite robustly.
4. If the feature points are evenly and densely distributed around their cen-

troid, the shift in Ψ(and hence α̂) caused by nonzero ωze and δe would be
significantly ameliorated. On the other hand, local and sparse features would
mean that α̂ is more susceptible to errors in ωz and δ.
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(a) (b) (c)

Fig. 1. (a) J as function of α and ωze (δe = 0). (b) In noise free case, Jmin increases
monotonically as ωze increases, regardless of the value of α. (c) Gaussian noise with zero
mean and a deviation equal to %10 of the average optical flow is added to the optical
flow. The curve is non-monotonic, causing biased estimate in ωz. (ωze ranges from 0
to 0.1|ωz |. The solid curve corresponds to δe = 0 and the dot-dash curve δe = 0.1|δ|.)

3.2 Role of Noise

In practice, optical flow is always estimated with noise. We express the measured
flow which is corrupted by noise as (u′

in, v
′
in)T Recall that the notation ′ denotes

value with respect to the centroid of the original data (see Eq.(9)). It can be
proven that the forms of Eq.(12) and Eq.(14) still hold with Eq.(13) changed to

Ai exp (jψi) = kz′i exp (jα)− ωzeri exp (jθi)
−δeri exp (j (θi + π/2)) + ‖u′

in‖ exp (j (ηi + π/2)) (15)

where ‖u′
in‖ =

√
u

′2
in + v

′2
in, ηi = tan−1 (u′

in/v
′
in).

Generally, when noise exists (‖u′
in‖ 
= 0), ψi’s cannot be the same for all

points. The term ‖u′
in‖ exp (j (ηi + π/2)) will pull Ai exp (jψi) in the (ηi + π/2)

direction resulting in non-zero Jmin, and a biased estimate of α̂. The minimum
of Jmin might be achieved at certain value of ωze and δe other than ωze = δe = 0
(Fig.1 (c)).

4 Recovery of Structure

4.1 Recovery of Relative Depth Information

If the camera is undergoing a rigid motion with translation T and rotation Ω,
the relative motion field between the two image points pi and p0 under weak-
perspective projection are

�ui = −ωy�zi + ωz�yi + δ�xi, �vi = ωx�zi − ωz�xi + δ�yi (16)

where �ui = ui − u0,�vi = vi − v0,�zi = zi − z0,�xi = xi − x0,�yi =
yi − y0. Thus the relative motion field between image points does not contain
the translational part of the motion field. Furthermore, since�zi is coupled with
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ωx and ωy,the magnitude k =
√

ω2
x + ω2

y is indeterminate from the motion field.
However we can recover the quantity k�zi under the condition k 
= 0 as follows:

k�zi = (ks)�Zi = (−�ui sinα +�vi cosα)
+ωz(�yi sinα +�xi cosα) + δ (�xi sinα−�yi cosα) (17)

If k = 0, no depth information can be recovered from the motion field. To sum
up, relative depth can only be determined up to a scale factor ks (ambiguity in
k results in the bas-relief ambiguity in addition to the overall scale ambiguity
s) and a reflection about the plane Z = Z0 (mirror ambiguity as α is recovered
with a 180◦ ambiguity).

We can now recover the relative position of point Pi with respect to P0 as
(�xi,�yi, k�zi). In this way, the object structure is recovered up to an affine
transformation which scales the X,Y, Z axis by the unknown scaling factors
s, s,± (sk), respectively, where the negative sign in the last scaling factor indi-
cates mirror ambiguity. Given the true position of one point P with respect to
P0 , both s and k can be solved and the Euclidean structure of the object can be
recovered. For notational convenience, we use �z to denote k�z in the following
discussion.

4.2 Error Analysis on Relative Depth Estimate

If motion parameters are not estimated precisely, error will arise in the estimated
relative depth. According to Eq.(17), the estimated relative depth (up to a scale
sk) �ẑ between two scene points is

�ẑi = (ks)�Ẑi = (−�ui sin α̂ +�vi cos α̂)
+ω̂z(�yi sin α̂ +�xi cos α̂) + δ̂ (�xi sin α̂−�yi cos α̂)

(18)

Substituting Eq.(16) into Eq.(18) and simplifying, we obtain

�ẑ = �z cosαe − ωzer cos(θ − α̂) + δe sin(θ − α̂) (19)

where r(cos θ, sin θ) = (�x,�y). Eq.(19) can also be written as �ẑ = �z · D,
where D is the distortion factor given by

D = cosαe −
r

�z
(ωze cos(α̂− θ) + δe sin(α̂− θ)) (20)

The above tells us how errors in the estimates of motion parameters may distort
the recovered relative depth by the multiplicative factor D. For instance, in the
case of the 180◦ ambiguity in the estimate of α, αe = π and ωe = δe = 0, we
have D = −1, �ẑ = −�z. This case is due to the mirror ambiguity. The object
structure is recovered as the reflection of the true structure.

5 Ordinal Depth Recovery

For two points in the scene P1 and P2, if and only if the relative depth between
�z and the estimate �ẑ have the same sign, we say that the relative ordinal
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depth between P1 and P2 is preserved in the recovered object structure. For
�ẑ and �z to have the same sign, the distortion factor D must be positive. If
cosαe > 0, the condition:

r/ |�z| <
∣∣∣cosαe/

√
ω2

ze + δ2
e

∣∣∣ (21)

ensures that D is positive. On the other hand, if cosαe < 0, the same condition
ensures D is negative. In the latter case, the relative depth order between any two
points which satisfy equation Eq.(21) is reversed. Therefore, for ordinal depth to
be fully preserved or fully reversed, Eq.(21) must be satisfied for any two points
in the scene.

We define the visual angle subtended by two image points as τ = 2 tan−1 r
2f

Eq.(21) can be rewritten as

τ < 2 tan−1
(

εk

2

∣∣∣∣�Z

Z

∣∣∣∣) (22)

where ε =
∣∣∣cosαe/

√
ω2

ze + δ2
e

∣∣∣. This tells us that given certain k and ε, if the

scaled relative depth
∣∣�Z/Z

∣∣ of two points and their visual angle is such that
Eq.(22) is satisfied, then their ordinal depth estimate can be recovered. In other
words, given a region subtending an angle τi, we can determine the depth order
of any two points within this region up to a resolution of

∣∣�Z/Z
∣∣ = 2 tan(τi/2)

εk .
The smaller the scaled relative depth we want to resolve, the smaller the region
becomes. This agrees with the intuition that in human vision, the depth order
of two objects close together can be determined with much greater ease than
that of objects far apart. The size of this region is also dependent upon the
magnitude of the in-plane rotation k. Lastly, we note that the geometry of this
region depends on the various factors in a simple manner, in the sense that it
is independent of the image coordinates. This is a virtue against which depths
recovered from perspective projection cannot prevail, because in the latter case,
the properties of the recovered depths depend critically on the types of motion
being executed and in general on the image location [9].

6 Simulation

In this section, we compute motion estimates from synthetic image data and show
how the extent of the region within which the ordinal depth can be recovered
varies with different errors in the motion estimates and different values of scaled
relative depth.

1. 100 points were generated randomly in space within the depth range [60, 80]
such that their projections in the image were evenly distributed around the
image center.

2. All these points were subjected to a rigid motion with translation T =
(0.0002, 0.0004, 0.0005)T and rotation Ω = (0.0007, 0.0003, 0.0005)T(or α̂ =
0.4049, k = 7.6158× 10−4, δ = −2.5728× 10−5). 2D motion fields were then
generated using weak-perspective projection.
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3. Gaussian noise with zero mean was added to each component of the 2D
motion field with different noise levels. The standard deviation of the noise
varied from 0 to 20% of the average magnitude of the optical flows. For each
noise level, the corrupted flows were used to compute the motion parameters
by the method described in Section 2.

4. The extent of the region within which the ordinal depth can be recovered was
computed using Eq.(22), for different resolutions of

∣∣�Z/Z
∣∣ = 1

20 ,
1

200 ,
1

2000 .
What these values of

∣∣�Z/Z
∣∣ mean is as follows. For instance, if a weak-

perspective model is applied to a scene where the maximum depth variation
compared to the average depth is about 1

20 , using a value of say
∣∣�Z/Z

∣∣ =
1

2000 in Eq.(22) would mean that we want to further resolve these depths
into 100 different depth levels. The results are shown in Fig. 3.

Fig. 2 shows that as noise level increases, all motion estimates shift gradually,
with ω̂z and δ̂ exhibiting stable recovery (error less than %1 in ω̂z and %15 in δ̂
given noise level of %20).

(a) α̂ (b) ω̂z (c) δ̂

Fig. 2. Result of motion estimates for different noise levels

Fig. 3. Extent of the region within which ordinal depth can be recovered, ex-
pressed as visual angle subtended by the region. Noise level is expressed as per-
centage of the average magnitude of the optical flows, ranging from 0 to %20.
�Z/Z =1/20,1/200,1/2000.
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As can be seen from Fig. 3, even given a substantial level of noise, the extent
of the region within which ordinal depth can be recovered up to a fine degree
is still quite sizable. Even at a desired resolution of

∣∣�Z/Z
∣∣ =1/2000 and noise

level of %20, the extent of the region is approximately 30◦. This is good news for
weak perspective model. The jagged nature of the curves stems from the noisy
flows affecting the motion estimates in a stochastic manner.

7 Conclusion and Future Work

Based on the proposed differential approach, we investigate the error character-
istics of SFM under weak perspective projection. Motion estimates are shown to
degenerate in a graceful manner with the presence of noise. The nature of depth
distortion under weak perspective model are also elucidated for the first time.
It is shown that, for a given level of depth resolution, ordinal depth information
can be recovered robustly within an image region satisfying a simple relationship
and occupying a significant spatial extent in practice. Future work will be done
in adapting the analysis to discrete approach and to images under perspective
projection.
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Abstract. We present a method for the reconstruction of a specular
surface, using a single camera viewpoint and the reflection of a planar
target placed at two different positions. Contrarily to most specular sur-
face reconstruction algorithms, our method makes no assumption on the
regularity or continuity of the specular surface, and outputs a set of 3D
points along with corresponding surface normals, all independent from
one another. A point on the specular surface can be reconstructed if
its corresponding pixel in the image has been matched to its source in
both of the target planes. We present original solutions to the problem
of dense point matching and planar target pose estimation, along with
reconstruction results in real-world scenarii.

1 Introduction

Reconstructing surfaces from images usually relies on the identification and
matching of pixels corresponding to a same 3D point on the surface. On un-
polished surfaces, matching can be fulfilled by analyzing surface texture, and
assuming that identical texture patches correspond to identical points on the
surface. In the case of specular surfaces, the apparent surface texture is the re-
flection of the object’s surroundings, being de facto viewpoint-dependent, thus
invalidating the geometric constraints used by all non-specific reconstruction al-
gorithms. Even standard laser scanners are unable to acquire specular surfaces,
as all of the laser energy is reflected symmetrically to the normal of the surface,
and therefore cannot be detected by the sensor [1]. Consequently, specularities,
and even more importantly specular objects, are usually discarded as noise by
most surface reconstruction algorithms. However, specular reflections give rise
to strong constraints on surface depth and orientation, and we take advantage
of these additional cues to reconstruct a precise model of the surface.

We describe a method recovering points of a specular surface, independently
from one another. We assume an internally calibrated pinhole camera viewing the
reflection of a planar target, and a dense matching of the camera pixels with the
points on the target. While the camera is rigidly attached to the specular surface,
we acquire images of the reflection of the target placed at two different unknown
locations. The foundation of our method is closely related to the work on general
(i.e. non central) cameras, as the reconstruction of the specular surface from the
images of a calibrated camera is equivalent to the calibration of a non-central
catadioptric system. The output of the algorithm is a collection of 3D points of

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 872–881, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the specular surface, and the two transformations (rigid displacements) from the
camera reference coordinate system to the target plane coordinate systems.

1.1 Previous Work

Though less actively than for lambertian surfaces, the reconstruction of specular
surfaces from images has interested researchers in the field of computer vision
for the past 20 years. For example, Blake and Brelstaff [2] study the disparity
of highlights on a specular surface in a stereoscopic framework. Zisserman et al.
[3] tracked the motion of specularities obtaining a degree-1 family of curvatures
along the tracked path.

In [4], Oren and Nayar study the classification of real and reflected features,
and recover the profile of a specular surface by tracking an unknown scene point.
The work was extended to complete object models by Zheng and Murata in
[5], who reconstruct a rotating specular object by studying the motion of the
illumination created by two circular light sources.

Halstead et al., in [6], fit a spline surface to a set of normals, iteratively refining
the result. Their method requires an initial seed point on the specular surface,
and was applied to the sub-micronic reconstruction of the human cornea. The
approach was extended by Tarini et al. [7] who integrate around a seed point,
and use a global self-coherence measure to estimate the correct depth for the
seed point. Under a distant light configuration, Solem et al. [8] fit a level-set
surface with a variational approach.

Savarese et al. detail in [9] the mathematical derivations allowing the recovery
of surface parameters up to 3rd order from one view of a smooth specular object
reflecting two intersecting calibrated lines, when scale and orientation can be
measured in the images.

Bonfort and Sturm [10] present a space carving approach using surface nor-
mals instead of color as a consistency measure.

1.2 Notation

The following notation will be used throughout the article: bold letters rep-
resent a vector in 3D space, while italic letters represent scalars. Matrices are
represented by CAPITAL letters.

2 Approach

Suppose a calibrated pinhole camera located at Oc = 0T observing the reflection
in an unknown specular surface of a known 3D feature Q. As the camera is
calibrated, recovering the position of the surface at the point p of reflection is
simply the estimation of its depth along the corresponding projection ray. This
already constrained scenario is still insufficient in order to obtain a solution
to the depth estimation, as for every point P along the projection ray, we can
compute a surface orientation that would produce an identical observation: depth
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estimation of a point on a specular surface from one image gives rise to a one
dimensional solution, function of surface depth and orientation.

Now consider the same setup, except that for a given camera pixel p, two
3D point correspondences Q1 and Q2 are given. This constraint is sufficient
to uniquely determine the depth of the specular surface at p, namely as the
intersection of the lines formed by the camera’s projection center and p on the
one hand, and Q1 and Q2 on the other.

If we consider the ( camera + specular surface ) system as a general camera,
finding two points Q1 and Q2 for each p, and therefore obtaining a reconstruc-
tion of the surface, is equivalent to calibrating this camera, as this is usually
done as a one-to-one mapping of image pixels with lines in 3D space. In [11] or
[12], such a calibration is achieved by using points on calibration planes: pix-
els in the image are matched with their 2D correspondent in the target planes,
then the only step necessary in order to obtain 3D coordinates of these points
is to estimate the pose of the planes in the camera reference coordinate system.
Figure 1 summarizes our reconstruction method for 3 point correspondences:
reconstructing the specular surface sums down to matching camera pixels with
their source in the target planes, then estimating the two transformation matri-
ces T1 and T2, that map points from the target reference coordinate system to
the camera one.

P Q2
Q1

Oc

T1

p

T2

Fig. 1. Reconstruction Approach. Matching of image pixels with their source in the
targets and estimating two plane poses is sufficient to reconstruct the surface.

3 Dense Matching

The 3D position of a point on the specular surface corresponding to a given
pixel in the camera image plane can only be computed if a correspondence
can be found in both of the target planes. As such, in order to obtain a dense
reconstruction of the specular surface, each pixel of the specular surface must
be matched to its target correspondence.
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3.1 Initial Matching

We use a standard computer monitor displaying Gray codes, once original and
once inverted [13]. The total number of images taken for each pose of the target
is therefore twice the binary resolution in each direction.

The resolution of the codes and the width of the low order stripes must be
chosen according to the shape of the specular object and the resolution of the
camera. Too high resolution codes tend to be blurred out and become unusable,
whereas too coarse ones lack in precision. In most cases, multiple pixels in the
camera image correspond to the same code in the target planes. Figure 3 (top
right) shows the result of a reconstruction if we apply this initial matching
directly.

3.2 Sub-pixel Matching

From the Gray code decoding we get an initial integer-valued estimate of the
pixel matching. To get more accurate correspondences, this initialization has to
be refined. Let u(x, y) and v(x, y) denote the coordinates of the target point
corresponding to the camera pixel (x, y). Instead of directly smoothing u and v
as in [13], we use an energy minimization approach to ensure that the smoothed
correspondences will still link camera pixels with their corresponding origin on
the target planes.

We minimize the following energy functional with respect to u and v:

E(u, v) =
∑

k

∫
Ω

(Gk(u, v)− Ik(x, y))2 dx dy

+ λ

∫
Ω

|∇u|2 + |∇v|2 dx dy

where Ω is the mirror image region, Gk are the Gray code images and Ik are the
images captured by the camera.

The first energy term is the data term. It penalize correspondences for which
the color Ik(x, y) captured by the camera and it’s corresponding Gray code
Gk(u, v) are not the same. We first scale the camera images intensities pixel-
wise, so that 0 and 1 intensities correspond to pure black and pure white. This
referential is computed by displaying entirely black and entirely white images
on the planar targets. For non-integer values of u and v, Gk(u, v) is computed
using bilinear interpolation.

The second term is a homogeneous regularizer. It penalizes large variations
on the correspondence functions. The λ parameter sets the compromise between
data evidence and smoothing.

The energy functional is minimized by a steepest descent. The descent direc-
tion is given by the Euler-Lagrange equations,

∂ui

∂t
= −
∑

k

2(Gk − Ik)
∂Gk

∂ui
+ λ 2Δui

for u1 = u and u2 = v.
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Figure 3 (bottom right) shows the result of the reconstruction after having
smoothed the orginal matches.

4 Target Pose Estimation

Our reconstruction algorithm requires knowledge of the relative pose between
the camera and target plane, in its different positions.

The first and simplest method is to ensure that the target plane is partially
visible in the camera, as seen in figure 3, and apply any pose estimation method
[14]; we use the method proposed in [15].

To ensure a much higher flexibility, we wanted to be able to work with se-
tups where the camera hasn’t any direct view of the target plane; if this was
possible then one would be able to take “better” images of the specular surface
to be reconstructed. The second solution is to estimate the pose of the targets
through the reflection by a known mirror. We therefore suppose having a means
of estimating the pose of the planar mirror: this can either be done by placing
markers on the mirror and performing a classical plane pose estimation, or in
our case by using a hard-drive platter, whose known interior and exterior radii
allow an ellipse based pose to be estimated. More details on the reflection by a
known plane can be found in the next paragraph.

4.1 Pose Through Reflection by 3 Unknown Planes

We acquire images by holding a planar mirror in front of the camera in different
positions, such that the target plane’s reflection is seen by the camera. We now
briefly describe how to solve the relative pose between camera and target plane,
from three or more such images, or one image of three or more such mirrors.

In the following, we adopt a global reference frame such that the target plane
is at Z = 0, and first carry out a pose estimation for each image, as if the image
were a direct view of the target plane.

Target plane
(screen with
coded pattern)

Camera

Planar mirror

Virtual (reflected)
camera

Fig. 2. Reflected pose. The estimated pose of a reflected plane is equivalent to its pose
viewed from a virtual reflected camera.
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This procedure gives us the pose of the virtual camera that would be produced
by reflecting the real camera in the planar mirror, cf. figure 2. If we knew the
pose of the planar mirror, we could of course immediately recover the camera’s
true pose, as follows. Let the recovered pose of the virtual camera for image i
be given via the projection matrix:

Pv
i ∼ Si

(
I| − ti

)
where Si is a reflection matrix (a rotation matrix multiplied by −1), and let the
associated pose of the planar mirror be represented by homogeneous coordinates

Πi ∼
(
ni

di

)
where we distinguish the plane’s normal vector ni (of unit norm), and its distance
di from the origin. The true camera’s pose can be recovered by multiplying Pv

i

with the transformation modeling the reflection in the plane Πi:

Pi ∼ Pv
i

(
I− 2ninT

i −2dini

0T 1

)
(1)

∼ Si

(
I− 2ninT

i | − ti − 2dini

)
We now have to address the question how to recover the true camera’s pose,

knowing that with the correct mirror positions Πi, the camera poses Pi com-
puted according to (1), have to be equal to one another: Pi ∼ Pj . Due to
det
(
I− 2ninT

i

)
= det Si = −1, we can safely eliminate the scale ambiguity

in the equation Pi ∼ Pj , and obtain element-wise equalities:

∀i, j : Si

(
I− 2ninT

i

)
= Sj

(
I− 2njnT

j

)
(2)

∀i, j : Si (ti + 2dini) = Sj (tj + 2djnj) (3)

Computing mirror plane normals ni. Let Xi = I−2ninT
i , which is of course

a symmetric matrix. From (2), we get:

Xi = ST
i Sj︸ ︷︷ ︸
Rij

Xj (4)

Furthermore, Xj is a reflection, i.e. XjXj = I, therefore:

Rij = XiXj (5)

Let aij be a vector orthogonal to ni and nj . We therefore have:

Rijaij = XiXjaij

=
(
I− 2ninT

i

) (
I− 2njnT

j

)
aij

=
(
I− 2ninT

i

)
aij

= aij
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which implies that aij is the eigenvector to the eigenvalue 1 of Rij , i.e. that aij

is the rotation axis of Rij .
We now have the means to compute all mirror normals ni, provided at least

3 mirrors are used.

1. Compute the pose eq. (1) of all virtual cameras, as described above.
2. For all pairs of mirrors (i, j), compute Rij , as per eq. (4). Compute their

eigenvectors to the eigenvalue +1, i.e. vectors aij .
3. For every mirror i, stack all aT

ij (respectively aT
ki) in a matrix A of size

(n− 1)× 3 (where n is the number of mirrors), and compute ni as the unit
eigenvector to the smallest eigenvalue of ATA.

Computing the true camera’s pose. The last step is to compute the least
squares solution for the di of the linear equation system composed of one equation
(3) per pair of mirrors. The system’s design matrix is of size 3n(n− 1)× n and
very sparse.

We now know all mirror planes Πi, and can compute the camera pose from
any one of them, according to eq. (1). In practice, we do this computation for
every mirror, and then “average” the resulting rotation matrices and position
vectors that represent camera pose. We then apply a bundle adjustment style
procedure for simultaneously optimizing the pose of the camera and the planar
mirrors. The cost function minimized here is the reprojection error of target
points, projected in the camera after reflection in the mirrors.

5 Optimization

In practice, we also perform a global non-linear optimization of the poses T1
and T2 of the target planes, before the triangulation. The cost function to be
minimized is the distance between matching lines in 3D space which we minimize
using a Levenberg Marquardt algorithm.

cost(T1,T2) =
∑

i∈{matches}
dist2((Oc,pi), (T1Q1i,T2Q2i)).

6 Results

We tested our reconstruction method on real specular surfaces, using the different
pose estimation methods presented in section 4. As seen on figure 3, no continuity
or regularity is assumed.

Having no ground truth results, we evaluated the correctness of the method
by fitting a plane to the part of the reconstruction we knew was planar, i.e. the
hard drive platter (linear least squares fitting, without outlier removal). In the
reconstruction shown on figure 3, over 98% of the computed points were less than
0.2 mm away from the surface, and 64% less than 0.1 mm. The approximate
diameter of the reconstructed part of the platter was 80 mm, resulting in a
maximum 0.3% relative error in the reconstruction.
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Fig. 3. Validation Setup and Results. The top row shows two of the images used for
the reconstruction. Notice the 3 curved mirrors (an ice-cream cup and two small wide-
angle rear-view mirrors, the planar hard drive platter, and a direct view of the target
plane, in the upper part of the image. The second row shows the reconstruction viewed
from two locations. The model contains over 525 000 independent points. Note the
planarity of the reconstructed hard drive platter in the left image. Only a few points
could be computed on the ice-cream cup, as its surface covered by the exploitable Gray
codes was limited. The two small rear-view mirrors (one with circular, the other with
rectangular based shape) were completely reconstructed (apart from a non specular
dent in the circular one). The two images on the right show the effect of the sub-pixel
matching and constrained smoothing: top image shows result using raw gray codes,
while the bottom one shows results after the smoothing step.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

500

1000

1500

2000

2500

3000

3500

Fig. 4. Point-plane distance. Histogram of the distance in of each point to the linear
least squares fitted plane (in millimeters) with the poses estimated with the three
unknown mirror planes (section 4.1).

The accuracy of the reconstruction also depends on the quality of the pixel
matching. Indeed, when experimenting with purely piecewise planar surfaces,
where the sub-pixel matching was ”easy” to compute, the distances to the fitted
planes dropped down to 99.9% of the computed points less than 0.1 mm away
from the surface, and 88% less than 0.05 mm. This is because the average quality
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Fig. 5. Real World Reconstruction. Reconstruction of a car windshield. The method
allowed us to easily obtain a 800 000 + point model using a classical video projector,
on a large scale reflective surface. The hole in the middle is due to a non-specular patch
on the surface.

of the matches is higher compared to when the scene also contains curved spec-
ular surfaces. Hence the pose of the target planes and finally the reconstruction
are more precise.

We tested the reconstruction on another setup composed only of planes with
the different pose estimation techniques presented in section 4. Although the
initial estimation of the poses given by the different techniques are not exactly
identical, the non-linear optimization converged to very similar poses in all cases.
The histogram of the point-plane distance, with the poses estimated with the
three unknown planes (section 4.1), without global optimization, can be seen in
figure 4.

7 Conclusion

We have presented a novel method that reconstructs a specular surface from
two views. Compared to other reconstruction methods, we attain a high level
of accuracy, without having the need to suppose surface continuity or regular-
ity. We believe it could easily be implemented in an industrial surface inspection
application, at least to provide an accurate initialization for integration based re-
construction methods, probably the only purely vision based ones able to detect
surface micro-structure. We also proposed a novel method for the pose estima-
tion of a target plane even if it is never directly seen in the images, requiring the
view of its reflection through unknown planar mirrors.

The drawback of the method is the need to obtain a dense matching over the
complete surface we want reconstructed. This in practice is difficult to obtain
with only two positions of the target plane, meaning multiple reconstructions
have to be computed then stitched together.
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Abstract. In this paper, we describe a novel uncalibrated active stereo
system using coded structured light. Structured-light-based active stereo
systems generally consist of a camera and projector that require precise
precalibration. Therefore, if we can eliminate the precalibration process
from the system, the user can merely place the equipment arbitrarily and
directly begin scanning the objects. This will greatly improve both the
convenience and practicality of the system. In order to achieve this, we
propose an original self-calibration method that can be considered as a
camera-to-camera self-calibration method in which one of the cameras is
replaced with a projector. We also propose a simultaneous 3D reconstruc-
tion method that utilizes multiple captured stereo pairs to increase the
accuracy of the 3D estimation. Further, we suggest a simple solution to
eliminate the ambiguity of scaling by attaching a laser pointer to the pro-
jector, which is important for the practical use of the 3D reconstruction.

1 Introduction

3D acquisition stereo systems can be categorized into two basic types: a passive
stereo system and an active stereo system. The former can recover 3D shapes
only from multiple images, therefore no special devices are necessary and the
systems are usually easy to use. However, in order to recover 3D shapes from
images by passive stereo, accurate correspondences between images are required,
making this a difficult task.

On the other hand, an active stereo system utilizes a light or laser projector
for scanning and can thus retrieve high-precision correspondences with ease;
therefore, the accuracy of the 3D points is relatively high. Another benefit of
this system is that dense 3D points can be captured easily by controlling the
light-projecting devices. Among the different types of active stereo systems, the
structured-light-based system is widely used because of its several advantages
such as simplicity, efficiency of scanning , and inexpensiveness for production.

One of the serious drawbacks of active stereo systems is that they essentially
require precalibration between the camera and projector whenever the system

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 882–891, 2006.
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conditions are changed. Since the precalibration is usually complicated and la-
borious task, it significantly reduces the convenience of the system. If we can
eliminate the precalibration process from an active stereo system, it will greatly
improve both the convenience and practicality of the system.

On the bases of these facts, we propose an active stereo system that does not
require precalibration. Our proposed method is based on a self-calibration stereo
method that can be considered as a camera-to-camera self-calibrated method
in which one of the cameras is replaced with a projector. The relative posi-
tion and parameters of the projector model are estimated from the epipolar
constraints between the camera and projector. The estimation is performed by
applying Levenberg-Marquardt method to the correspondence points obtained
by the coded structured light. We also propose several methods to eliminate
the ambiguity of scaling, which is inevitable in uncalibrated 3D reconstruction
methods.

The contributions of our work are as follows: the first is that our system
does not assume any limitations on the shapes of objects in the scenes (e.g.,
the inclusion of planar surfaces or calibration objects) or on the camera models
(e.g., assumption of an orthogonal camera model); the second is that we propose
the simultaneous 3D reconstruction of multiple scans by which we can obtain
constant scaling for multiple scenes and can greatly enhance accuracy; the third
is that we propose a simple solution to eliminate the ambiguity of scaling by
attaching a laser pointer to the projector, which is important for the practical
use of 3D scanners.

2 Related Works

Many active 3D scanning systems have been proposed to date. Among them, a
projector-camera based system is commonly used because of several advantages.
However, the system requires a precise precalibration for installation and this is
usually a laborious task.

In order to avoid the calibration problems mentioned above, many uncal-
ibrated active stereo methods have been proposed [1, 2, 3]. Takatsuka [1] and
Furukawa [3] have proposed active stereo 3D scanners with online calibration
methods. Each of their systems consists of a video camera and a laser projector
attached with LED markers, and executes projector calibration for every frame.
Thus, system configuration is relatively free and a real-time system is achieved.
However, when calibration is performed for each frame, the system tends to have
insufficient accuracy and low efficiency for practical use.

Self-calibrated stereo techniques have been studied extensively with regard
to passive stereo systems (i.e., camera-to-camera systems)[4], and several re-
searchers have attempted to apply these techniques to active stereo systems by
substituting one of the paired stereo cameras with a projector [5, 6]. Fofi et al.
developed an active vision system with self-calibration of extrinsic parameters,
however, they assume an affine camera model and require planes to be scanned
in the target scenes. Chen et al. estimated relative pose between the camera and
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the projector using nine points on a plane, thus, their method also needs planes
in the scenes.

3 Uncalibrated Active Stereo System

3.1 System Configuration

The 3D reconstruction system developed in this work consists of a video projec-
tor and a camera. A laser pointer is attached to the projector and is used for
determining the scaling parameter, which cannot be estimated with uncalibrated
stereo methods. If the ambiguity of the scaling parameter can be left unsolved,
the laser pointer can be omitted. Fig. 1 shows the configuration of the system.

Projector Camera
Laser pointer

Target object

Fig. 1. Components of the 3D measurement system

The camera and projector are oriented toward the object to measure the
shape. A set of dense correspondence points is obtained by the structured light
method. The camera-projector parameters are self calibrated using the points.
The 3D locations of the correspondence points are then reconstructed by using
the stereo method.

Our proposed system has the following features, which are highly desirable in
a practical 3D measurement system. Firstly, the projector and the camera can be
located arbitrarily. Secondly, there are no limitations imposed on the geometry
of the measured scene.

3.2 Obtaining a Set of Correspondence Points by Structured Light

To obtain correspondence points effectively by using video projector, coded
structured light methods have been used and studied extensively[7, 8]. In the
present method, directions from the projector are encoded into the light pat-
terns, which are projected onto the target surface. The light patterns projected
to each pixel are decoded from the obtained images, and the mapping from each
pixel in the images to directions from the projector is obtained.

Since the light patterns encode 1D locations in the projected patterns, we
applied the code twice, once for the x-coordinate of the projected pattern and
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once for the y-coordinate. Based on the compound light patterns, point-to-point
correspondences between the directions from the projector and the pixels in the
image are resolved.

3.3 Self-calibration and 3D Reconstruction

Our aim is to construct an active stereo system that does not require any cali-
bration process even if the camera or projector is moved arbitrarily; therefore,
the camera parameters should be self-calibrated. We assume that the intrinsic
parameters of the camera and the projector are known, except the focal length
of the projector. This is because the intrinsic parameters of the camera can be
obtained easily by existing methods, while those of the projector are more diffi-
cult to obtain. Another reason is that, in our experience, focus of the projector
must be adjusted more frequently than those of the cameras in actual scanning
processes, due to the relatively shallow depth of field of the projectors. There-
fore, we estimate the focal length of the projector and the extrinsic parameters
of the relative position between the camera and projector by the self-calibration
method.

For the self-calibration, a nonlinear optimization, Levenberg-Marquardt
method, is applied. Recently, due to the improved computational capabilities
of PCs, self-calibration and 3D reconstructions using only nonlinear optimiza-
tions have been studied [9], and this approach is employed in our study.

We call a coordinate system which is fixed with the projector (or the cam-
era) the projector (camera) coordinate system. Coordinate values expressed in
this system are the projector (camera) coordinate. The origin of the projector
(camera) coordinate system is the optical center of the projector (camera). The
forward direction of the projector (camera) is the minus direction of the z-axis
of the projector (camera) coordinate system. The x and y-axis of the projector
(camera) coordinate system are parallel with the vertical and horizontal direc-
tions of the image coordinate system of the screen.

Let the focal length of the projector be fp, and the direction vector of the ith
correspondence point expressed in the projector coordinates be (upi, vpi, −fp)t.

Here, we express the rigid transformation from the projector coordinates to
the camera coordinates as the rotation matrix Rp and the translation vector tp.
The rotation is expressed by the parameters of Euler angles αp, βp and γp, and
the rotation matrix is thus expressed as Rp(αp, βp, γp). Since the norm of the
translation vector ‖tp‖ cannot be resolved by a self-calibration, tp is assumed
to be an unit vector and is expressed by two parameters of polar coordinates.
Thus, tp is expressed as tp(ρp, φp) := (sinφp cos ρp, sinφp sin ρp,− cosφp)t.

The direction of the correspondence points observed by the camera is con-
verted to the screen coordinates of a normalized camera, with corrected effects
of the lens distortions. Let the converted coordinates be (uci, vci, − 1)t.

If the epipolar constraints are met, the lines of sights from the camera and the
projector intersect in the 3D space. The line from the projector in the camera
coordinates is

r{Rp(αp, βp, γp)}(upi/fp, vpi/fp,−1)t + tp(ρp, φp) (1)
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where r is an arbitrary value. The line from the camera is expressed as s(uci, vci,
−1)t where s is an arbitrary value.

To achieve the epipolar constraints, the distance between the two lines should
be minimized. Let the direction vectors of the lines be expressed as

pci := N (uci, vci, − 1)t,

qci(θ, fp) := N {Rp(αp, βp, γp)}(upi/fp, vpi/fp,−1)t, (2)

where N is an operator which normalizes a vector (i.e. N x := x/‖x‖), and
θ := (αp, βp, γp) represents the parameters of rotation of the projector. Then,
the signed distance between the lines is

Ei(θ, τ, fp) := tp(τ) ·N (pci × qci(θ, fp)), (3)

where “·” indicates dot product, and τ := (ρp, φp) represents the parameters of
the translation.

Ei(θ, τ, fp) includes systematic errors whose variances change with the param-
eters (θ, τ, fp) and the data index i. To compose an error evaluation function un-
biased about the parameters (θ, τ, fp), Ei(θ, τ, fp) should be normalized by the
expected error level. Assuming the epipolar constraints are met, the distance
from the intersection of the lines to the camera and the projector are

Dci(θ, τ, fp) := ‖tp(τ) × qci(θ, fp)‖/‖pci × qci(θ, fp)‖,
Dpi(θ, τ, fp) := ‖tp(τ)× pci‖/‖pci × qci(θ, fp)‖. (4)

Let the angle between the line of sight and the optical axis of the camera be
ψc. Also, let the angle between the epipolar plane and the optical axis of the
camera be ωc. Let ψc and ωc be defined similarly for the projector. These angles
can be easily calculated.

Using the distances and angles, the signed distance normalized by the error
level is expressed by Ẽi(θ, τ, fp) in the forms

wi(θ, τ, fp) := {εc cosψc cosωcDci(θ, τ, fp) + εp cosψp cosωpDpi(θ, τ, fp)/fp}−1

Ẽi(θ, τ, fp) := wi(θ, τ, fp) Ei(θ, τ, fp) (5)

where εc and εp are the errors intrinsic to the camera and the projector expressed
as lengths in the normalized screens. In our experiments, we used pixel sizes for
εc and εp.

Then, the function f(θ, τ, fp) to be minimized with the non-linear optimiza-
tion is expressed as the following form:

f(θ, τ, fp) :=
K∑

i=1

{Ẽi(θ, τ, fp)}2, (6)

where K is the number of correspondences. The function is minimized using
Levenberg-Marquardt method.

Once we obtain the parameters tp and Rp , we can directly recover the 3D
shapes by the stereo method.
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3.4 Simultaneous Reconstruction of Multiple Scenes

Since the ambiguity of scaling inevitably exists in uncalibrated stereo methods,
several problems occur in practical use. For example, when we scan an object
from various view directions to capture its entire shape, different scaling parame-
ters for each scan make it difficult to achieve correct registration and integration.

The simultaneous 3D reconstruction is performed as follows. First, multiple
scenes are captured by keeping both the camera and projector fixed. The intrinsic
and extrinsic parameters of the camera and projector are identical for all the
scenes. Therefore, by merely joining the sets of correspondence points for all
the scenes and applying the self-calibration algorithm described in section 3.3,
consistent camera and projector parameters are obtained. The 3D reconstruction
can then be performed for each scene using the estimated camera/projector
parameters.

An advantage of this method is that the scalings of all the reconstructed scenes
are the same because of the use of consistent camera and projector parameters
for multiple scenes. This simplifies the problem of registration and integration
for capturing the entire shape of an object.

3.5 Estimation of Scaling Parameter

A reconstructed 3D shape produced by our method is scaled by an unknown
multiplier from the real shape. The simultaneous reconstruction described in the
previous subsection is useful for obtaining multiple reconstructions with constant
scaling, but we cannot estimate “real” factor of scaling for the scene with the
method. For some applications, estimation of the real scaling factor is needed.

To achieve this, the following methods can be applied to determine the mul-
tiplier: which are

(1) measuring the length of the two points on the real shape,
(2) measuring an object with a known shape (a calibration object) and the target
object successively without moving the camera nor the projector,
(3) or measuring a calibration object and the target object simultaneously.

However, all of these techniques normally require some human intervention such
as measuring or specifying the calibration object, making it difficult to develop
a completely automatic measuring process.

To determine the scaling parameters more easily, we attach a laser pointer
to the projector and project a mark onto the measured surface, which is then
observed by the camera. The projected laser light forms a fixed line in the 3D
space expressed by the projector coordinates. From the 3D point lit by the
pointer in the image, the line of sight to the point is determined. The scaling
parameter is calculated by applying triangulation to the line of the laser and the
line of sight.

The line formed by the laser pointer should be calibrated in the projector
coordinate system. To do this, multiple points on the laser are obtained by
measuring an object with a known shape lit by the laser line. The points are
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fitted to a line to obtain the parameters of the laser line. Calibration is needed
only once when the laser pointer is attached to the projector.

4 Experiments

4.1 Evaluation of Accuracy

To evaluate our proposed method, we scanned a scene of a cube (20cm × 20cm ×
20cm) (Fig.2(a)and(b)), calculating the extrinsic parameters and the focal length
of the projector. To evaluate the effectiveness of our simultaneous 3D reconstruc-
tion method, we performed simultaneous 3D reconstructions and single-scene 3D
reconstructions and compared the results. For a comparison, we also performed an
explicit calibration of the extrinsic parameters and the focal length of the projector
using the known 3D positions of the markers on the cube as the ground truth.

For the test data, we scanned a cube-shaped object 5 times changing the posi-
tion of the object. During the scanning, we kept the camera and projector fixed.
Then,3D reconstruction was performed for each scanned data, which was referred
as a single-scene reconstruction. Simultaneous reconstruction was performed as
follows. First, self-calibration was done using all the scanned data as a single
input. Then, using the estimated parameters, each 3D shape was reconstructed
by using the stereo method. Each of the self-calibrations was performed under 2
conditions: one was a self-calibration with fixed focal length of the projector and
the other included the estimation of the focal length. For the fixed focal length
condition, the focal length calculated by the explicit calibration was used. The
initial values of the position and direction of the projector were αp=0̊ , βp=20̊ ,
γp=0̊ , tp=(1,0,0), fp = 0.05 . The estimated parameters are shown in Tab. 1.

We also evaluated the accuracy of the obtained 3D point set shown in Fig.2(c),
(d). We applied a plane fitting algorithm for the faces in the scene, obtaining 3
planes (A,B,C) shown in Fig.2(a). The fitting of planes to the point sets were

Table 1. Parameters estimated by calibration and from data

By calibration From data
fp 0.0338[m] 0.0329[m]
(αp, βpγp) (-9.3̊ , -31.6̊ , -13.0̊ ) (-8.2̊ , -30.9̊ , -12.7̊ )
tp/‖tp‖ (-0.610,0.446,-0.655) (-0.581,0.441,-0.684)

Table 2. Results of angles between estimated planes

Single Input Simultaneous
Focus of projector Fixed Selfcalib Fixed Selfcalib

between A-C 89.95̊ 90.23̊ 90.17̊ 90.06̊
between B-C 89.87̊ 90.99̊ 89.88̊ 90.56̊
between A-B 90.39̊ 92.09̊ 90.07̊ 91.33̊
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Table 3. Summary of 3D reconstruction

Single Input Simultaneous
Focus of projector Fixed Selfcalib Fixed Selfcalib

Ave. errors 0.02̊ 2.65̊ -0.01̊ -0.52̊
RMSE (degree) 0.10˚ 3.78̊ 0.07̊ 1.79̊

RMSE of plane(mm) 0.72 0.77 0.62 0.65

(a) (b) (c) (d)

Fig. 2. Scanning of a cube with known size: (a) 3 faces used for accuracy estimations,
(b) reconstructed 3D points, (d) 3D point set acquired by single-scene reconstruction,
and (d) by simultaneous reconstruction

performed by principal component analysis. By using the estimated plane param-
eters, we calculated angles between the estimated planes. One of the measured
angles of the 5 data sets are shown in Tab. 2. The averaged signed errors from
the actual angles (90 )̊and the roots of mean squared errors (RMS errors) of
them are shown in Tab. 3.

Also, the residual RMS errors of the plane fitting algorithms were calculated,
which are shown in Tab. 3.

From the results, we can see that the shapes of the cubes are correctly recon-
structed for all of the conditions. From the tendency of the results, we can see
that the results of the simultaneous reconstructions were better than the single
reconstructions for both of the accuracy of angles and residuals of plane-fittings.
Thus, these experimental results show the effectiveness of the simultaneous re-
constructions.

The results of the calibrated focal lengths were slightly worse than those
of fixed focal lengths, but they had sufficient accuracy for practical use. One
possible reason for the estimation errors might be inappropriate error model
used in our system.

4.2 Scaling Parameter Evaluation

We evaluated our method for estimating the scaling parameter. First, the line
formed by the laser light was calibrated by measuring 2 points lit by the laser.
Then, we moved the camera and projector, scanned a cube with the initial values
(αp, βp, γp)=(0̊ , 20̊ , 0̊ ), tp=(1,0,0), fp = 0.05, and calculated the scale of the
measured point set from the data. To evaluate the accuracy of the estimated
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scaling factor, we measured the length of 3 edges of the cube, a, b, and c.
The results were 199.9mm, 199.2mm and 199.8mm, respectively. All estimated
length of edges were close to the actual length 200.0mm, thus confirming that
our estimation method is effective and practical.

4.3 Entire Shape Acquisition by Simultaneous Method

To demonstrate the effectiveness of our simultaneous 3D reconstruction method,
we performed entire shape acquisitions of two objects, a china figurine and a
helmet.

In order to reconstruct entire shapes, we scanned each of the objects 8 times,
rotating it by 45̊ . Then, all 3D shapes were recovered simultaneously by our
simultaneous 3D reconstruction method. Finally, we appled an alignment algo-
rithm for shape registration.

Results are shown in Fig.3. We can observe that multiple scanned shapes
are integrated into a single shape without any gaps, although the system is
uncalibrated. This is because all the scaling parameters for 8 scan data sets are
the same, which is achieved by the simultaneous reconstruction method.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Examples of the scanned objects: (a)(b)(c)(d) a china figurine, (e)(f) a helmet

5 Conclusion

In this paper, we propose a novel uncalibrated active stereo system that enables
dense 3D scanning with a single scanning process and without any precise cal-
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ibrations or special devices. Our proposed method is based on an uncalibrated
stereo technique for a passive stereo system in which one of the cameras is
replaced with a projector. We also propose a simultaneous 3D reconstruction
method to increase accuracy and a simple method to eliminate the ambiguity of
scaling by attaching a laser pointer to the projector.

By using our proposed method, the camera and projector can be arbitrarily
installed and it is possible to start 3D scanning immediately and without any
precalibrations or complicated preparations. To verify the reliability and effec-
tiveness of our proposed method, we conducted several experiments with the
proposed system and actual objects. The results of our experiments confirm the
effectiveness of our proposed system.
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Abstract. Some issues on direct-projected augmented reality (DirectAR) are 
addressed: the projection may be geometrically distorted due to the non-planar 
surface (geometric distortion); the projection cannot be seen to user as intended 
because the position of the projector is not the same as that of the user’s view-
point (viewpoint-ignorant projection); the projection may be modulated by sur-
face color (radiometric distortion); the projected area may not have uniform 
brightness when the projection is obliquely headed for the surface (uneven pro-
jection). We propose an integrated framework for handling all the problems. 
Experimental results demonstrate that the problems unavoidable in surface-
independent DirectAR can be successfully resolved. 

1   Introduction 

Direct-projected augmented reality (hereafter, it is called DirectAR) approaches have 
been proposed and applied to many applications such as enhancing the face of an 
actor or changing the color and texture of real objects [12]. Projection made it possi-
ble to use 3-D real and large objects as displays [7] and freed from discomforts inci-
dental to wearing a device such as HMD. For instance, surgeons schedule the opera-
tion and check up the state of patient while seeing magnetic resonance imaging (MRI) 
or computed tomography (CT) images. Medical image visualization has been proved 
to be useful since the methods for 3-D reconstruction and visualization of the MRI or 
CT images were emerged [1]. However, it is still stressful for surgeons to keep peer-
ing at the CRT display or wearing HMD to see the information during operation. By 
directly projecting the 3-D reconstructed MRI or CT images onto the patient’s body, 
surgeons can be visually assisted in such a way that they can operate and monitor the 
patient’s state simultaneously. 

However, DirectAR usually suffers from the following problems: the projection may 
be geometrically distorted due to the non-planar surface (geometric distortion); the 
projection cannot be seen to user as intended because the position of the projector is not 
same as that of the user’s viewpoint (viewpoint-ignorant projection); the projection may 
be modulated by the surface color (radiometric distortion); the projected area may not 
have uniform brightness when the projection is obliquely headed for the surface (uneven
projection). Some papers have addressed these problems partially [8, 11]. In this paper, 
we aim at providing an integrated framework for handling all the problems.  
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Recently, multi-projector-based methods have been proposed to resolve the prob-
lems such as multi-focal projection [14] and specularity-free projection [15] other 
than the aforementioned problems. In this paper, we focus only on the problems re-
garding using a single projector. 

2   Method 

In this paper, we attempt to provide practical and easy-to-use algorithms coping with 
the problems of DirectAR. There is still room for improving the accuracy and further 
exploration. 

2.1   Geometric Registration  

Geometric registration indicates that projection is exactly overlaid on the surface 
without distortion. To do so, the projectors should be calibrated and the surface ge-
ometry should be known first. We use a modified version of the well-known Zhang’s 
calibration method [6] for calibrating projectors and a linear triangulation method [5] 
for recovering the geometry of projection surface. The surface is triangularly repre-
sented using the recovered points on the surface because the surface is assumed to be 
piece-wise planar. Finally, the projection images are patch-wise prewarped using 
homography to be undistorted. 

 
Fig. 1. Projector calibration 

2.1.1   Projector Calibration 
For calibrating a projector, a modified version of the well-known Zhang’s calibration 
method [6] is used. Coplanar 3-D points and their corresponding 2-D points are re-
quired in the Zhang’s calibration method. In our method, the points m(x,y) on a 
source pattern of a projector correspond to 2-D points and the projected points 
M(X,Y,0) correspond to 3-D points (see Fig. 1). The coordinates of the projected 
points are computed from the image captured by a camera as follows1. 

( ) cHYX oc
T ~1 −=  (1) 

where ocH −  is camera-to-surface homography and c~  is the homogeneous coordi-

nates of the camera image. The relationship between 3-D points (M) and 2-D points 
(m) is represented in homogeneous coordinates as 
                                                           
1 In this paper, tilde indicates homogenous coordinates. 
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( )T
po YXHMPm 1

~~
−== (2)

where poH −  is surface-to-projector homography. Given the 3-D and 2-D points, 

optimization algorithms of Zhang’s method are used as it is [6]. 

2.1.2   3-D Surface Modeling 
Assuming that the camera and projector are calibrated, a linear triangulation method 
[5] is used for recovering the geometry of projection surface. The relationship be-
tween the coordinates of projection surface, projector coordinates, and camera coor-
dinates is represented as 

MPm
~~ = , MPc c

~~ = . (3)

The homogeneous scale factor is eliminated by a cross product as 

0MPm =× )
~

(~ , 0MPc c =× )
~

(~ (4)

where cP  is camera projection matrix. An equation of the form 0AM =  can then 

be composed, with  

[ ]TT
c

T
c

T
c

T
c

TTTT pvppuppyppxpA 23132313 −−−−= (5)

where iTp  are the rows of P . This is a redundant set of equations, since the solution 

is determined only up to scale. A has a 1-dimensional null-space which provides a 
solution for M and can be computed using Singular Value Decomposition (SVD) [5]. 

The surface is triangularly represented using the recovered points on the surface 
because the surface is assumed to be piece-wise planar. In practice, we project a grid 
pattern onto the surface and compute the 3D coordinates of only the corner points. A 
dense grid pattern can be used to model the complicated surface. 

2.2   Radiometric Compensation 

The color of projection is dependent on that of the projection surface. In other words, 
if the color of the surface is not pure white, the projection is modulated by the color of 
the surface. The radiometric compensation is a technique that makes the color of 
projection look unchanged by adjusting the color of the projection in advance when 
the projection surface has colorful texture. Letting I be the projector input image, the 
projected image IP is acquired by projector response function f as 

)(IfI P = . (6)

Thus, the projector input image Î  should be compensated by f -1 in advance such that 

)(ˆ 1
PIfI −= . (7)

In this paper, the color change of projection is observed by a camera. The compensa-
tion result may be incomplete due to the unknown response function of the camera. 
However, the response function of camera can be easily estimated from multiple im-
ages captured with different exposure time [10]. 

The procedure of radiometric compensation consists of six steps in this paper.  

Step 1: The geometric mapping between a projector and a camera is computed. It is 
explained in Section 2.1. 
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Step 2: The radiometric model of the pipeline from input projector color to the meas-
ured camera color is defined as 

FVIC P += where C: camera image point 

V: color mixing matrix 
IP: projected image point 
F: ambient light

(8)

The V matrix captures all the coupling between the projector and camera channels 
and their interactions with the spectral reflectance [4]. 
Step 3: F using black projector image is computed.  

Step 4: 1ˆ −= VDV  is computed using one reference image and three images which 
have different values in R, G, B channel, respectively. D is the diagonal matrix with 

diagonal entries of V [4]. The recovery of V̂  thus allows us to decouple the color 
channels. It means that Ck(k=r,g,b) is determined by only the input brightness of the 
channel k in Eq. (8). The entries of D can be computed from the linear equations 

which are given by multiplying Eq. (8) by 1ˆ −V .
Step 5: The inverse response function f -1 of a projector is computed by comparing the 
26 projector images with different gray-level i.e. I = 0, 10, 20, …, 250 with the 26 
camera images which are acquired by capturing the projector images. f -1  is defined as 
4th-order polynomial function in this paper because the plot of input projector bright-
ness vs. camera image brightness has the shape as shown in Fig. 2.  This computation 
is performed pixel-wise and channel-wise because each pixel has different response 
function and each channel also has different response function. 

Step 6: The compensated projector input image Î  is computed by Eq. (7). 

Fig. 2. Plot of projector input brightness (x-axis) vs. camera image brightness (y-axis). The 
curves are 4th- order approximation. 

2.3   Viewer-Dependent Projection 

For coping with the user’s viewpoint which is tracked using an optical tracker [9] (see 
Fig. 3), it is assumed that the geometric transformation between user, projectors, and 
display surface is recovered and 3-D coordinates of the display surface is known. This 
problem has already been addressed in the previous section.  

Figure 3 shows an AR-assistant surgery system [2] as an example of DirectAR 
system. The system visualizes the 3D position of tumor and additional information on 
the surface of human body. In the viewpoint of the projector, the direction of the 
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Fig. 3. DirectAR-based surgery system considering user’s viewpoint. The graphical contents 

should be projected to not  but .

projection should be . However, it is clear that the direction of the projection should 

be changed into  when considering user’s viewpoint. 

To do so, the intersection point between e
v

 and the 3-D target object should be es-
timated. In this paper, a ray/triangle intersection algorithm is used [3]. The algorithm 
is divided into 2 steps. First, it is estimated if a ray is intersected with a certain trian-
gle. Next, the coordinates of the intersection point is computed. 

Step 1: Let Vi for i ∈ 0,1,2 be the coordinates of the three vertices of the triangle. The 
normal vector of the triangle is represented by 

)()( 0201 VVVVn −×−=v
. (9)

Any point V in the triangle’s plane satisfies V⋅ n
v

 + constant = 0. The constant d is 
computed by  

nVd 0

v⋅−= . (10)

If a ray parameterized by O+ e
v

t is intersected with a triangle, t parameter is computed 
by 

)/()( enOndt
vvv ⋅⋅−= . (11)

When 1t0 ≤≤ , the ray intersects with the triangle. 
Step 2: A point V in the triangle plane is defined by 

20100 VVVVVV βα += where .1,0,0 ≤+≥≥ βαβα (12)

In the image plane, this can be written as 

),(),(),( 222011100 vuvvvuvvvuvv βα += (13)

where iv  is an image point of Vi. Therefore, α  and β  are computed by 
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21
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After computing the intersection point, the graphical contents are properly pre-warped 
and projected to the point without geometric distortion. 

2.4   Intensity-Compensated Projection 

When the projection is obliquely headed for the nonplanar surface, the area of the 
projection has uneven brightness as shown in Fig. 4. In this paper, we present a ge-
ometry-based method for making the projected area have even brightness. The target 
brightness is obtained by the average brightness of the projection area.  

Fig. 4. Uneven projection. The projector lights the nonplanar surface in the left side. The pro-
jection is not uniform although an unicolored projection is applied to the surface. 

The intensity of projection is dependent on the angle  between the projection vec-
tor and the normal vector (see Fig. 5). The intensity is compensated as follows. 

bgriwII ii ,,,ˆ == . (15)

where  

)sin(1 pckw θθ −+=   where kc: constant regarding the surface material 

p: reference angle 

(16)

Here,  is computed as  

( ) oovv
900pn1 ≤≤⋅−= − θθ ,cos . (17)

This sinusoidal model for compensation was heuristically employed because it 
showed best performance in the various experiments. 

p
v

n
v−

1=p
v

1=n
v

Fig. 5. Projection on nonplanar surface.  represents the angle between two vectors. The inten-
sity of projection per unit area is determined by .
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The intensity of projection to the darker area is increased while the intensity of pro-
jection to the brighter area is decreased. Thus, the overall brightness of projection is 
similar to the brightness in the reference angle p. 

3   Experimental Results and Discussion 

A projector (SONY VPL-CX6) and a camera (PointGrey Dragonfly) were used in our 
experiments. The images were at a resolution of 1024 by 768 pixels. An optical 
tracker (NDI Polaris) was used in the viewer-dependent projection. 

Figure 6 shows the result of correcting the geometric distortion using the geometric 
registration method. After the projector was calibrated and the geometry of the cylin-
drical surface was recovered, the projection was prewarped to be undistorted.  

Figure 7 shows the result of viewer-dependent projection. In the viewpoint of the 
projector, the projection is correct in Fig. 7-(b). However, the projection is wrong 
when considering the user’s viewpoint. It was corrected and projected as shown in 
Fig. 7-(d) using the method explained in Section 2.3.  

 

Fig. 6. Geometric distortion correction. Left image: before correction. Right image: after cor-
rection. 

 
 
 

 

(a) Experimental setup (b) Projection in the viewpoint of projector 

 
(c) Projecting a grid pattern for surface modeling

 
(d) Projection in the viewpoint of user 

Fig. 7. Viewer-dependent projection 

Target 

Object surface 

Projector 

User’s viewpoint 
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For radiometric compensation, the geometry of projection surface was recovered 

using the geometric registration method first. To compute V̂ , four images were used 
in Fig. 8. The black image is required to estimate F. Let I0, Ir, Ig, Ib be the pixel of 

each camera image, respectively. Then, the entries vij of V̂  have the values as 

v11 = v22 = v33 = 1.0, 
v12 = (Ig(R)-I0(R))/(Ig(G)-I0(G)), v13 = (Ib(R)-I0(R))/(Ib(B)-I0(B)),
v21 = (Ir(G)-I0(G))/(Ir(R)-I0(R)), v23 = (Ib(G)-I0(G))/(Ib(B)-I0(B)),
v31 = (Ir(B)-I0(B))/(Ir(R)-I0(R)), v32 = (Ig(B)-I0(B))/(Ig(G)-I0(G)). 

The channel-wise and pixel-wise response function of the projector was estimated 
from 26 projector input images with different values and their camera images as men-
tioned in Section 2.2. Figure 2 shows an example of the estimated projector response 
function of a point. The coefficients ci (i=0,1,2,3,4) of the blue-channel response 
function were as follows. 

c0 = -27.6826, c1 = 2.7801, c2 = -0.0165, c3 = 3.3769e-005, c4 = 1.2253e-008 

(a) Projector input image 

(b) Camera image (black)    (c) Camera image (red)    (d) Camera image (green)   (e) Camera image (blue)

Fig. 8. Estimating the color mixing matrix V̂

Fig. 9. Radiometric compensation. The right-top image shows that the projection color was 
distorted due to the texture of projection surface. There is no color distortion in the left-bottom 
image by compensating the projector input image. The right-bottom image shows the change of 
pixel values of projector input image for compensating the color distortion. 
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Fig. 10. Intensity-compensated projection. Left image: a projector lights the cylindrical surface 
on the left side and thus the left part of the image is brighter than the right part of the image. 
Right image: after compensation, the brightness of the whole image became similar. 

Fig. 11. Surface-independent direct-projected augmented reality. All the component methods 
are combined. First row: 3D target object (three blocks), nonplanar colored screen, without any 
compensation, magnification of the third image. Second row: after only geometric correction 
and after fully compensated projection when user’s viewpoint is located on the left side of the 
screen, after only geometric correction and after fully compensated projection when user’s 
viewpoint is located on the right side of the screen. Third row: magnification of the images of 
second row. 

Figure 9 shows the result of compensating the color distortion using the radiometric 
compensation method. There is no color distortion in the left-bottom image of Fig. 9. 

Figure 10 shows the result of intensity-compensated projection. The projector was 
calibrated and the geometry of the cylindrical surface was recovered. In the experi-
ment, the brightness of the pixels within the red rectangle is the reference brightness 
and thus the brightness of the rest of the pixels was fit into the brightness.  

The component methods for surface-independent DirectAR were combined to re-
solve mixed problems. The results are shown in Fig. 11. 
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4   Conclusion 

A new framework for surface-independent DirectAR was presented. Various practical 
problems regarding DirectAR were addressed. Experimental results demonstrated that 
the problems unavoidable in realizing surface-independent DirectAR could be com-
pletely resolved using the proposed methods. 

Currently, we are trying to develop an intelligent projection system using a single 
projector and apply to medical field. Developing an intelligent projection system 
using multiple projectors would be interesting as a future research. 

Acknowledgement. This study was supported by a grant(02-PJ3-PG6-EV04-0003) of 
Ministry of Health and Welfare, Republic of Korea. 
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Abstract. In the past decades, most object recognition systems were
based on passive approaches. But in the last few years a lot of research
was done in the field of active object recognition. In this context, there
are several unique problems to be solved, such as the fusion of views and
the selection of an optimal next viewpoint.

In this paper we present an approach to solve the problem of choosing
optimal views (viewpoint selection) and the fusion of these for an optimal
3D object recognition (viewpoint fusion). We formally define the selection
of additional views as an optimization problem and we show how to use
reinforcement learning for viewpoint training and selection in continu-
ous state spaces without user interaction. In this context we focus on
the modeling of the reinforcement learning reward. We also present an
approach for the fusion of multiple views based on density propagation,
and discuss the advantages and disadvantages of two approaches for the
practical evaluation of these densities, namely Parzen estimation and
density trees.

1 Introduction

The results of 3D object classification and localization depend strongly on the
images which have been taken of the object. For difficult data sets, usually more
than one view is necessary to decide reliably on a certain object class. Viewpoint
selection tackles exactly the problem of finding a sequence of optimal views to
increase classification and localization results by avoiding ambiguous views or
by sequentially ruling out possible object hypotheses. The optimality is not only
defined with respect to the recognition rate, but also with respect to the number
of views necessary to get reliable results.

In this paper, we present an approach for viewpoint selection based on rein-
forcement learning. The approach shows some major benefits: First, the op-
timal sequence of views is learned automatically in a training step without
any user interaction. Second, the approach performs a fusion of the generated
� This work was partially funded by DFG under grant SFB 603/TP B2. Only the

authors are responsible for the content.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 902–912, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Aspects of Optimal Viewpoint Selection and Viewpoint Fusion 903

views, where the fusion method does not depend on a special classifier. This
makes it applicable for a very wide range of applications. Third, the possible
viewpoints are continuous, so that a discretization of the viewpoint space is
avoided.

Viewpoint selection has been investigated in the past in several applications.
Examples are 3D reconstruction [1] or optimal segmentation of image data [2]. In
object recognition, some active approaches have already been discussed as well.
[3] plans the next view for a movable camera based on probabilistic reasoning.
The active part is the selection of a certain area of the image for feature selection.
The selected part is also called the receptive field [4]. Compared to our approach,
no camera movement is performed, neither during training nor during testing.
Thus, the modeling of viewpoints in continuous 3D space is also avoided. The
work of [5] uses Bayesian networks to decide on the next view to be taken. But
the approach is limited to special recognition algorithms and to certain types
of objects, for which the Bayesian network has been manually constructed. In
other words, the approach is not classifier independent and cannot be applied
without user interaction. [6] showed that the optimal action is the one that
maximizes the mutual information between the observation and the state to be
estimated.

In section 2 we will show how the viewpoint fusion of multiple views can be
done based on recursive density propagation in a continuous state space. Our
reinforcement learning approach for viewpoint selection is presented in section 3.
The experimental results in section 4 show that the presented approach is able to
learn an optimal strategy for viewpoint selection that generates only the minimal
number of images. The paper concludes with a summary and an outlook to future
work in section 5.

2 Viewpoint Fusion

In active object recognition, a series of observed images 〈f〉t = ft,ft−1, . . . ,f0 of
an object are given together with the camera movements 〈a〉t−1 = at−1, . . . ,a0
between these images. Based on these observations of images and movements,
one wants to draw conclusions for a non-observable state qt of the object. This
state qt must contain both the discrete class Ωκ and the continuous pose φ =
(φ1, . . . , φJ )T of the object, leading to the state definition qt = (Ωκ, φ

t
1, . . . , φ

t
J )T .

Please note that most related work is either restricted to just handling the class
[7] or does not even claim to work on continuous poses [8]. The actions at consist
of the relative camera movement with J degrees of freedom, in the following
written as at = (Δφt

1, . . . , Δφt
J). Generally, disturbances of these actions by some

kind of inaccuracy within the movement have to be taken into consideration.
In the context of a Bayesian approach, the knowledge on the object’s state is

given in form of the a posteriori density p(qt| 〈f〉t , 〈a〉t−1) and can be calculated
from

p
(
qt| 〈f〉t , 〈a〉t−1

)
=

p
(
qt, 〈f〉t , 〈a〉t−1

)
p
(
〈f〉t , 〈a〉t−1

) (1)
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=
p
(
ft|qt, 〈f〉t−1 , 〈a〉t−1

)
p
(
qt| 〈f〉t−1 , 〈a〉t−1

)
p
(
ft| 〈f〉t−1 , 〈a〉t−1

)︸ ︷︷ ︸
=k

(2)

=
1
k
· p (ft|qt) p

(
qt| 〈f〉t−1 , 〈a〉t−1

)
(3)

=
1
k
· p (ft|qt)

∫
p (qt|qt−1,at−1) · p

(
qt−1| 〈f〉t−1 , 〈a〉t−2

)
dqt−1 (4)

(1) results directly from the definition of the conditional probability p(A|B) =
p(AB)/p(B) and the further steps to (2) from the multiplication theorem for
probability densities. In (3) the Markov assumption p(ft|qt, 〈f〉t−1 , 〈a〉t−1) =
p(ft|qt) is applied. The formulation of p(qt| 〈f〉t−1 , 〈a〉t−1) as an integral in (4)
results from the total probability theorem. Obviously the probability (4) depends
only on the camera movement at−1. The inaccuracy of at−1 is modeled within
the state transition component p(qt|qt−1,at−1).

The classic approach for solving this recursive density propagation is the
Kalman Filter. But in computer vision, the necessary assumptions for the
Kalman Filter (p(ft|qt) being normally distributed) are often not valid due to
object ambiguities, sensor noise, occlusion, etc. This is a problem since it leads
to a distribution which is not analytically computable. An approach for the com-
plicated handling of such multimodal densities are the so called particle filters
[9]. The basic idea is to approximate the a posteriori density by a set of weighted
samples. In our approach we use the Condensation Algorithm [9] which uses a
sample set Yt = {y1

t , . . . , y
K
t } to approximate the multimodal probability distri-

bution p(qt| 〈f〉t , 〈a〉t−1) by K samples yi
t = {xi

t, p
i
t}. Each sample y consists of

the position x = (Ωκ, φ1, . . . , φJ ) within the state space and a sample weighting
p with

∑
i p

i
t = 1.

The Condensation Algorithm starts with an initial sample set Y0. The samples
of this set are distributed uniformly over the state space in our application as
we have no knowledge given about the objects before observing the first image.
For the generation of a new sample set Yt, K new samples yi

t are

1. drawn from Yt−1 with probability proportional to the sample weightings.
2. propagated with the necessarily predetermined sample transition model xi

t =
xi

t−1 + (0, r1, . . . , rJ )T with rj ∼ N (Δφt
j , σj) and the variance parameters

of the Gaussian transition noise σj .
3. evaluated in the image by p(ft|xi

t). This evaluation is performed by the
classifier. The only requirement for the classifier that shall be used together
with our fusion approach is its ability to evaluate this density. In this work
we use a classifier based on the continuous statistical eigenspace approach
as presented in [10]. Other classifiers have been proven to work as well with
the presented fusion approach.

In the context of our viewpoint selection, the densities which are represented
by sample sets have to be evaluated. The direct evaluation of them beneath the
positions given by the individual samples is not possible. It is necessary to find a
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continuous representation of the density. This will be done in two different ways
in this paper.

Parzen estimation: A common way to evaluate non-parametric densities is
the Parzen estimation [11] which is calculated from a sample set Y by

p(qt| 〈f〉t , 〈a〉t−1) ≈
1
K

∑K

i=1
g0
(
qt − xi

t

)
, (5)

with g0(v) = N (v|μ = 0,Σ) denoting a windowing function. In this paper only
a Gaussian window function is used. The choice of the mean vector μ = 0 is
comprehensible as the difference (qt − xi

t) in (5) results in zero-mean data. In
contrast, the definition of the covariance matrix requires a careful consideration
of methods like the mean minimal distance of samples or the entropy-based ap-
proach of [12] and will be omitted in this paper. For a more detailed explanation
on the theoretical background of the approximation of (1) by a sample set we
refer to [9].

Density trees: Another way to evaluate the densities represented by the sample
set are the so-called density trees [13]. They use a tree structure to transform
the discrete samples into a continuous density. Each node of the density tree
represents a hyperrectangle in the state space over q. A density is built by the
repeated partitioning of the parameter space and refining the tree structure until
a stop criterion is reached. A detailed description of that process is given in [13].

3 Viewpoint Selection

A straight forward and intuitive way to formalizing the problem is given by
looking at Fig. 1. A closed loop between sensing st and acting at can be seen.
The chosen action at corresponds to the executed camera movement, the sensed
state

st = p(qt| 〈f〉t , 〈a〉t−1) (6)

ta
ac

tio
n

r t
re

w
ar

d

rt+1

st+1

ts
st

at
e

Viewpoint
Selection

Environment
(Fusion)

Fig. 1. Reinforcement learning

is the density as given in (1). Additionally, the
classifier returns a so called reward rt, which
measures the quality of the chosen action resp.
the resulting viewpoint. It is well known that
the definition of the reward is an important as-
pect, as this reward should model the goal that
has to be reached. Proper definitions for the re-
ward in the context of our viewpoint selection
problem are given later in this paper.

At time t during the decision process, i.e. the selection of a sequence of view-
points, the goal will be to maximize the accumulated and weighted future re-
wards, called the return

Rt =
∞∑

n=0

γnrt+n+1 with γ ∈ [0; 1], 00 =: 1 . (7)
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The weight γ defines how much influence a future reward will have on the overall
return Rt at time t + n + 1. Of course, the future rewards cannot be observed
at time step t. Thus, the following function, called the action-value function
Q (s,a) = E {Rt|st = s,at = a} is defined, which describes the expected return
when starting at an arbitrary time step t in state s with action a. In other
words, the function Q (s,a) models the expected quality of the chosen camera
movement a for the future, if the viewpoint fusion has returned s before.

Viewpoint selection can now be defined as a two step approach: First, estimate
the function Q (s,a) during training. Second, if at any time the viewpoint fusion
returns s as classification result, select that camera movement which maximizes
the expected accumulated and weighted rewards. This function is called the
policy

π(s) = argmax
a

Q (s,a) . (8)

The key issue of course is the estimation of the function Q (s,a), which is the
basis for the decision process in (8). One of the demands defined in section 1
is that the selection of the most promising view should be learned without user
interaction. Reinforcement learning provides many different algorithms to esti-
mate the action value function based on a trial and error method [14]. Trial and
error means that the system itself is responsible for trying certain actions in a
certain state. The result of such a trial is then used to update Q (·, ·) and to
improve its policy π.

As a result for the next episode one gets a new decision rule πk+1, which is
now computed by maximizing the updated action value function. This procedure
is repeated until πk+1 converges to the optimal policy. The reader is referred
to a detailed introduction to reinforcement learning [14] for a description of
other ways for estimating the function Q (·, ·). Convergence proofs for several
algorithms can be found in [15].

We are still missing the definition of the reward rt. In the context of viewpoint
selection the following two different definitions of rewards make sense.

Fixed Value: A way to model the goal is to define a reward that has a value
of 0 except when reaching the terminal state:

rt+1 =

{
C st is terminal state, C > 0
0 otherwise

(9)

This approach has the advantage that the goal is defined very clearly. But the en-
vironment has to decide when the confidence of the classification is high enough
to stop the viewpoint selection. If this decision is hard to make, no proper strat-
egy will be learned. The advantage is that (9) maximizes the return of an episode
for short episodes (at least for γ 
= 0, γ 
= 1). So this strategy promises to look
for episodes with only a minimal number of views. In our work we use C = 1.0.

Entropy Based: Another approach follows the idea that viewpoints that in-
crease the information observed so far should have large values for the reward.
A well-known measure for expressing the informational content that fits our
requirements is the negative entropy −H , yielding
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rt+1 = −H(st) = −H
(
p(qt| 〈f〉t , 〈a〉t−1)

)
. (10)

In that sense the reward expresses the gain of knowledge about the object. (10)
has the advantage that the goal is to improve the classification without only
trying to reach a stop criterion. But it can not be made sure that maximizing
the sum of entropies in (10) will always and under any circumstances lead to the
absolutely shortest episodes.

Most of the algorithms in reinforcement learning treat the states and actions
as discrete variables. Of course, in viewpoint selection parts of the state space
(the pose of the object) and the action space (the camera movements) are con-
tinuous. A way to extend the algorithms to continuous reinforcement learning is
to approximate the action-value function

Q̂ (s,a) =

∑
(s′,a′)

K (d (θ(s,a), θ(s′,a′)))Q (s′,a′)∑
(s′,a′)

K (d (θ(s,a), θ(s′,a′)))
(11)

which can be evaluated for any continuous state/action pair (s,a). Basically,
this is a weighted sum of the action-values Q (s′,a′) of all previously collected
state/action pairs (s′,a′). The other components within (11) are:

The transformation function θ(s,a) transforms a state s with a known
action a with the intention of bringing a state to a “reference point” (required
for the distance function in the next item). In the context of the current definition
of the states from (6) it can be seen as a density transformation

θ(st,at) = θ
(
p(qt| 〈f〉t , 〈a〉t−1),at

)
= det

(
Jζ−1

at
(qt)
)
p
(
ζ−1

at
(qt)| 〈f〉t , 〈a〉t−1)

) (12)

with ζ−1
a (q) = (q1 + a1, . . . , qm + am)T . It has been shown in [16] that the den-

sity transformation simply performs a shift of the density, so that Jζ−1
a

(q) = I.
A distance function d(·, ·) is needed to calculate the distance between

two states. Generally speaking, similar states must result in low distances. The
lower the distance, the more transferable the information from a learned action-
value to the current situation is. As the transformation function (12) results
in a density, the Kullback-Leibler Distance dKL(sn, s′m) between the two states
sn = p(q| 〈f〉n , 〈a〉n−1) and s′m = p(q| 〈f ′〉m , 〈a′〉m−1) , which can easily be ex-
tended to a symmetric distance measure, the so called extended Kullback-Leibler
Distance dEKL(sn, s′m) = dKL(sn, s′m)+ dKL(s′m, sn, ), can be used. Please note
that in general there is no analytic solution for the extended Kullback-Leibler
Distance, but as we represent our densities as sample sets anyway (see section 2),
there are well-known ways to approximate it by Monte Carlo techniques. The
Monte Carlo techniques will use either the Parzen estimation or the density trees
to evaluate the densities.

A kernel function K(·) weights the calculated distances. A suitable kernel
function is the Gaussian K(x) = exp(−x2/D2), where D denotes the width of
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the kernel. Low values for D will result in very detailed approximations provided
that a lot of action-values Q (s′,a′) are available.

Viewpoint selection, i.e. the computation of the policy π, can now be written,
according to (8), as an optimization problem which is solved in this work by
applying a global Adaptive Random Search Algorithm [17] followed by a local
Simplex:

π(s) = argmax
a

Q̂ (s,a) . (13)

4 Experimental Evaluation

Our primary goal in the experiments was to show that our approach is able
to learn and perform an optimal sequence of views. We have shown in several
publications (e.g. [18]) that the viewpoint fusion of a sequence of randomly cho-
sen views works very well in real world environments and improves classification
and localization result significantly. For that reason we decided to use the rather
simple (from the pure object recognition’s point of view) synthetic images of
the two types of cups shown in Fig. 2 for the evaluation of our viewpoint selec-
tion approach. It was explicitly desired to have objects that can reach a 100%
recognition rate given the optimal views.

The four cups of “type one” in the upper row of Fig. 2 show a number 1 or
2 on one, and a letter A or B on the other side. A differentiation between the
4 possible objects is only possible if number and letter have been observed and
properly fused. The five cups of “type two” in the lower row of Fig. 2 show a
number (1 2 3 4 5) on the front side. If this number is not visible the objects
can not be distinguished or localized.

cups “type one”

views from 0◦/180◦ views from 90◦ views from 270◦

cups “type two”

views from 90◦ no differences
with number visible from 150◦ to 30◦

Fig. 2. Examples for objects that require viewpoint selection and fusion of images for
proper recognition

The cups can be classified correctly and stably within an area of about 120◦.
Localization of the cups is possible within an area of approximately 140◦. In our
setup the camera is restricted, for both types of cups, to a movement around the
object on a circle, so that the definition of the samples reduces to x = (Ωκ, φ1)
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Fig. 3. Recognition rates of the viewpoint selection after planning n steps for the four
different variations rep, red, rfp, rfd compared to randomly chosen views. At step n = 1
all results are the same as no planning was done. These results compare to recognition
rate that could be reached by pure passive recognition approaches. The parameters
used for these results are D = 50 and γ = 0.5.

with actions at = (Δφt
1), Δφt

1 ∈ [0◦, 360◦]. Our sample sets had size of K = 1440
(cups “type one”) resp. K = 1800 (cups “type two”) samples.

In our experiments we evaluated scenarios that differ in the way they evaluate
the densities represented by our sample sets (Parzen estimation or density trees)
and in the type of reward used (fixed value according to (9) or entropy-based
as given in (10)), leaving the four variations rep (entropy-based reward, Parzen
estimation), red (entropy-based reward, density trees), rfp (fixed value, Parzen
estimation) and rfd (fixed value, density trees). Additionally, three different val-
ues of the return parameter γ ∈ {0, 0.5, 1} (see (7)) were used as they cover
the two extreme values 0 and 1 which might have significant influence on the
learned strategy and a value of 0.5 which represents the whole parameter range
in-between. In a training step a total of 1000 episodes (with a maximal total
length of 8 steps independent of the fact that the stop criterion was reached or
not) were performed for every object, each value of γ ∈ {0, 0.5, 1} and any of
the variations rep, red, rfp and rfd. The evaluation was performed on the results
of a total of 1000 (for cups of “type one”) resp. 1250 (for cups of “type two”)
episodes with randomly chosen classes and starting views.

In a first step we look at the recognition results of the viewpoint selection for
the four variations rep, red, rfp, rfd given values of γ = 0.5 and D = 50 in the
kernel function K(·) for the approximation of the action-value function (11). As
one can see in Fig. 3, the recognition results of the viewpoint selection reach a
recognition rate of or close to 100%, as expected.

So the next question is if best viewpoints are selected in sense of the minimal
numbers of views required. Number and letter are visible within the area stated
above. Considering this, a theoretical minimum for the necessary mean sequence
length exists:

– ≈ 2.2 views for the cups of “type one”. Two views are required if number or
letter is initially visible, three views otherwise.

– ≈ 2.0 for the cups of “type two”. Depending on the strategy three to four
views are required if number is not initially visible, one view otherwise.
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Table 1. Mean number of views needed to allow for a reliable classification for different
system settings. Object recognition stopped when the probability of the best class
reached at least 95%.

cups “type one”
Vari- D=2, γ=...
ation 0 0.5 1

rfp 2.17 2.18 2.40
rfd 2.28 2.29 5.70
rep 2.19 2.17 2.20
red 2.21 2.23 2.22

cups “type two”
Vari- D=2, γ=...
ation 0 0.5 1

rfp 2.06 2.00 2.15
rfd 2.02 2.03 2.82
rep 2.06 2.01 2.05
red 2.10 2.02 2.00

Anyhow, the theoretical minimum for the necessary mean sequence length
can be shown to be always ≈ 2.0 steps.

Setting D = 2 since 1000 training episodes justify a detailed approximation
and stopping when the probability of the best class is at least 95%, the mean
number of views required to reach the stop criterion are summarized in Table 1.
These numbers show that most configurations are very close to the theoretical
minimum of required views. Exceptions are the variations rfp and rfd in combi-
nation with γ = 1.0. The reason can be found in the definition of the this reward
in (9). Above we mentioned that the reward has to model the intended goal. This
was done correctly in (9) but a reward of 0 means that if the end of the episode
is not reached with the next step no “costs” are caused. In combination with
γ = 1 this results in a total return according to (7) that is 1 independent of the
length of the episode. In the sense of reinforcement learning, there is no need for
the agent to look for short episodes. As one can see by means of the rightmost
graph of the approximated action-value function in Fig. 4 no proper strategy
was learned since all possible actions show nearly the same value. The small
dents at 0◦ and 180◦ result from the limitations of the episode length to 8 steps
(see above) that forces the system to learn at least a little bit of knowledge. This
behavior could be changed in (9) if a negative value instead of 0 is returned. This
could be seen as costs that force the agent to minimize the episode length. But
the discussion of how to properly model costs in viewpoint selection is outside
the scope of this paper.

Another observation from Table 1 is that the results for the variations that
use the Parzen estimation for the evaluation of the densities p(qt| 〈f〉t , 〈a〉t−1)
are better than the ones that use the density trees. The reason is obvious if one
looks at the left and middle approximated action-value function in Fig. 4. The
variations that use the Parzen estimation have a smoothly approximated action-
value function. In contrast the approximations of the density trees are highly
jagged. This is due to the nature of the density trees: They approximate densities
by piecewise constant values, leading to densities that are not continuous.

The computational effort and the required memory resources for planning a
new viewpoint is rather high. For the cups of “type one” one planning step,
i.e. the evaluation of (13), requires 550 to 750 evaluations of (11), each lasting



Aspects of Optimal Viewpoint Selection and Viewpoint Fusion 911

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

 0  45  90  135  180  225  270  315  360

Q
(s

,
a
)

a

D=5
D=20
D=50

rep, γ=0.5

-11

-10

-9

-8

-7

-6

-5

-4

-3

 0  45  90  135  180  225  270  315  360

Q
(s

,
a
)

a

D=5
D=20
D=50

red, γ=0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  45  90  135  180  225  270  315  360

Q
(s

,
a
)

a

D=5
D=20
D=50

rfp, γ=1.0

Fig. 4. Influence of D, γ and the type of reward and density evaluation to the ap-
proximation of the action-value function. All graphs show the estimated quality of the
possible action for a current view of 0◦ to the cups of “type one”. Graphs for γ = 0
are very similar to the ones with γ = 0.5 and omitted for that reason.

≈130ms. The 3670 action-values collected during the 1000 training episodes allo-
cate 371 MB of memory if using the Parzen estimation and 96 MB for the density
trees. The cups of “type two” require between 120 and 220 evaluations of (11)
each lasting ≈150ms. The memory allocation for storing the 3160 action-values
of the 1000 training episodes is 382 MB (Parzen estimation) resp. 116 MB (den-
sity trees). All numbers were evaluated on a Linux PC with a Xeon 2.80 GHz
processor and 2 GB of main memory.

The conclusion of the experiments are that both types of introduced rewards
lead to good planning results, at least for γ 
= 1. The necessary evaluation of the
densities from the viewpoint fusion should be done with the Parzen estimation
although the results of the density trees are better than the approximated action-
value functions promise. If lack of memory is a problem the density tree variations
might be an interesting alternative as they show huge memory saving compared
to the Parzen estimation.

5 Summary and Future Work

In this paper we have presented the impact of several types of rewards and
approaches for working with the densities given by the viewpoint fusion on
the recognition rates of our general framework for viewpoint selection. We dis-
cussed several aspects of how to model the reward and the effects of different
approaches for the evaluation of densities given as sample sets by the viewpoint
fusion.

The viewpoint selection works in continuous state and action spaces and is
independent of the chosen statistical classifier. Furthermore, the system can be
trained automatically without user interaction. The experimental results on two
objects that require different strategies for recognition have shown that an opti-
mal planning strategy was learned.

In our future work we will evaluate how much the planning of optimal view
sequences improves object recognition rates on real world objects compared to
the random strategy we used in [18]. Finally, for higher dimensional state spaces,
other reinforcement learning methods might be necessary to reduce training
complexity.
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Abstract. Multi-view face animation is widely required in various applications 
nowadays, but most of existing relative techniques have burdensome computa-
tional load in data registration, model construction and animation. Addressing 
those problems, this paper proposes an efficient approach via employing quasi 
3D model, which is the fusion of a 3D geometry model with 2D facial textures. 
3D Point Distribute Model (PDM) serves to model geometrical deformation in 
the shape model. By preserving depth information, the proposed approach is 
convenient to manipulate pose variation and deal with new-coming subjects. By 
taking advantages of image-based techniques, data collection is facile and the 
number of our 3D model vertices is reduced to less than one hundred, while 
animated faces still keep expressive by incorporating with partial Expression 
Ratio Image (ERI). The primary experiments demonstrate that our approach ef-
ficiently achieved individual animated face among viewpoint range of [-60, 60] 
based on only 2 input facial images. 

1   Introduction 

Multi-view face animation is widely required in video conference, visual presidents, 
SMS reader for mobile-phone, and other applications. Real-time and easiness for 
people to use are two important demands for face animations in those applications. 
However most of portable devices are with relatively low computing power, thus 
efficient vivid multi-view face animation, which needs to achieve both video-realistic 
facial textures and natural head movement, is a significant challenge. And it is also 
much trouble to animate different individuals’ faces without a lot of repeated work as 
data registration and training. Existing face animation techniques are respectively in 
3D [6], [9], [11], [13] or 2D [1], [2], [3], [8].  

Face animation exhibits both facial texture changes and facial motion. In 3D 
model-based animation approaches, 3D facial model integrating 3D shape and 3D 
texture is built up to parameterize facial geometry and texture for each individual, and 
then manipulate the surfaces of face over time [9], [11]. Taking advantages of depth 
information, 3D model-based animation approaches are competent in pose variability 
and occlusion estimation. Concerning facial texture, intricate diversification of facial 
textures root in intricate motions of human face, such as mouth self-occlusion caused 
by motion of lips and teeth, subtle wrinkles around mouth corners caused by smiling, 
and deep furrows on facial forehead caused by frowning. To obtain 3D facial texture 
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for animation, one adoptable way is to use laser scanners, but it is too expensive and 
rare for common people. In other techniques, photogrammetric techniques, dealing 
with shading, edge, facial features and so on, are required to retrieve precise 3D in-
formation from images or video [11]. Pighin [11] captured 3D face geometry and 
textures by correspondences in a set of calibrated images, but they may be too diffi-
cult to achieve vast expressional 3D facial textures so that naturalness of animation is 
limited. 3D model-based techniques do have difficulties in capturing dynamic 3D 
facial textures during data collection and registration. Additionally, 3D facial models 
usually have thousands of vertices, and improvement of animation reality for those 
models may cost much animation complexity and rendering latency. 

Compared with 3D approaches, image-based animation approaches are superior in 
visual effect [8]. By analyzing and training on a set of collecting images, image tex-
tures’ information is organized and structured serving for synthesis of animated facial 
texture [1], [8]. Collection of 2D facial images is much tractable than obtaining of 3D 
facial textures. Ezzat [8] employed Multidimensional Morphable Model (MMM) and 
achieved novel pronouncing video with intricate mouth texture from a small number 
of prototype images, but the system can only generate pose-fixed facial animation. 
Different poses bring much non-linearity in both shape and texture. In 2D, due to lack 
of depth information, pose variations and self-occlusions are too difficult to be treated 
with, though there are some view-based approaches. Besides, it is also inconvenient to 
animate a new-coming face without training, so they are not suitable for modeling 
different individuals’ face animation.  

For texture synthesis, morph-based approaches and geometric-warping-based  
approaches are the two basic classes of techniques. Those techniques are based on 
interpolation or 2D transfiguration [1], [7], [8], [11], but they can only capture facial 
geometrical changes and 2D transfiguration, completely ignoring expression details. 
The reason is that those approaches have no sense on depth variation; so that the  
3D objects’ appearance affected by illumination is disregarded. Moreover, they take 
no consideration into subtle detail changes in illumination and appearance, such as 
wrinkles near canthus, crease in forehead, which are actually expressive and maybe 
important visual cues [14], [15]. To represent expression details, simple facial shape 
approximation by 2D texture warping should be improved. Expression Ration Image
(ERI) was introduced by Liu et al [14]. ERI can capture and generate detailed texture 
diversification caused by illumination changes, hence makes the animated face more 
expressive and convincing. It is very helpful for vivid face animation [12]. 

Both 3D and 2D techniques have their own intrinsical problems. This inspires us 
that the advantages of two kind techniques should be fused to improve performance of 
animation and they can supply a gap for each other.

For the goal of different users’ vivid multi-view face animation with low system 
requirement, we propose an approach based on our quasi 3D face model which is a 
fusion of 3D techniques and 2D techniques. In our previous work, based on quasi 3D 
model, we have achieved a given subject’s real-time multi-view face animation by 
training on a subject’s two synchronously captured corpuses [7]. But for each given 
subject, a training and analysis step is inescapable. So in this work for convenient 
personalized face animation, the main problems are how to conveniently personalize 
quasi 3D model and how to apply deformation to new-coming model.  
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Quasi 3D face model is constituted by shape model and texture model. Considering 
that depth information gives much advantage in dealing with facial pose variety and 
self-occlusion estimation, essential 3D information is preserved in 3D facial geometry 
model.  Point Distribute Model (PDM) [4] serves to model geometrical deformation.  

The correspondence of 3D meshes and 2D meshes serves as the cues between 
shape and texture model in quasi 3D facial model. The 2D meshes of texture model 
are rightly the projection of 3D meshes of the shape models, so in this way the texture 
model is well integrated with the shape model. 2D texture space incorporated with 
partial Expression Ration Image (ERI) is employed as the texture model. ERI is 
trained based on a collection of example images from a corpus and applied in part of 
facial area where movements of facial muscles are complicated. 

The remainder of this paper is organized as follows. The framework of our ap-
proach based on quasi 3D face model is introduced in section 2. In section 3, the 
shape model is described, including individualization of generic 3D facial geometry 
model and the adjustment of vertex motion vectors. Section 4 introduces construction 
of partial ERI, synthesis of animated face and pro-processing. The experiment results 
are shown in section 5 and conclusions are drawn in section 6. 

2   Framework of Our Approach 

The framework of our approach based on quasi 3D model is shown in Fig. 1. Quasi 
3D model is composed of a shape model and a texture model. The shape model con-
tains a 3D facial geometry model and vertex motion vectors. Vertex motion vectors 
are vectors representing the moving direction and magnitude for each vertex and in 
form of sparse 3D PDM (Point Distributed Model) [7]. It flexibly represents allowed 
geometry variability for face deformation and preserves important depth information 
for pose and occlusion estimation. To attain an individual’s 3D facial geometry model 

Fig. 1. Framework of quasi 3D model. The model is composed of a shape model, which con-
tains a 3D facial geometry model and vertex motion vectors in form of PDM, and a texture 
model, which is a 2D texture space integrated with partial ERI. 
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conveniently, a generic 3D facial geometry model is individualized by two corre-
spondent face images.  Furthermore, for animation, the vertex motion vectors, should 
be adjusted too. Those vectors are adjusted according to the scale ratio between per-
sonalized and generic model. By this way, personalized facial animation shape can be 
achieved by applying personalized vertex animation vector on personalized model. 

The texture model is facial texture space integrated with partial Expression Ratio 
Image (ERI). It describes both texture deformations caused by facial features’ dis-
placements and detailed texture diversifications caused by illumination changes. The 
shape and texture model is connected by correspondence of 3D and 2D meshes. Be-
cause 2D texture space has strong capability in representing natural appearance, the 
density of vertices in 3D geometry model can be comparatively sparse. The facial 
geometry model we employed has only 62 vertices. 

We expressed quasi 3D model with a parameter set as follow: 
TTVPC ),,,,,( γβα= (1)

where P denotes vertex set of 3D facial geometry model as N
iip 1}{ = (N is the number 

of vertices), V denotes vertex motion vectors as N
iiv 1}{ =  , and γβα ,,  respectively 

represents Euler angles of face motion. T denotes facial textures as L
iiT 1}{ = , and it is 

the combination of partial ERI texture L
i

E
iT 1}{ =  ( L  is the number of prototype im-

ages) and non-ERI texture L
i

NE
iT 1}{ = .

3   Shape Model of Quasi 3D Model 

To construct shape model of quasi 3D model, firstly, individual’s facial geometry 
model is achieved with aid of a generic 3D geometry model. Then generic vertex 
motion vectors in PDM, which have been achieved in our previous work [7], should 
be adjusted according to the individual’s geometry model. 

3.1   Generation of Personalized 3D Geometry Model 

To generate 3D geometry model for individual is to achieve geometrical positions for 
each 3D vertex. Firstly from the inputted front-view and profile-view facial images, 
fiducial facial features (32 for front-view and 16 for profile-view) are extracted by 
view-based ASMs [16]. Then the generic 3D facial geometry model is deformed ac-
cording to the facial features by Radial Basis Function (RBF).  

RBF is an approach to achieve interpolation between two corresponding datasets 
[5]. Supposing that all positions of the first dataset and key points of the second data 
set are known, the position of other points of the second dataset can be interpolated by 
the corresponding relationship of the known key points’ pairs. Given two correspond-

ing 3D datasets N
iipP 1}{ ==  and 1{ }D D N

i iP p == , an arbitrary subset M
jjqQ 1}{ ==

(N and M is respectively the number of points in dataset P and Q.) and a Radial Basis 

Function )(riφ (r is the supporting radius which is used to control the density of in-

terpolation), the deformation can   be determined by equation (2). 
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where 0c , 1c , 2c , 3c and iλ are coefficients determined by equation (2). 

The deformation of the generic 3D facial geometry model is based on assumption 
of orthographic between front and profile, and performed in three steps (see Fig. 2).  

1) Given known facial feature points in front-view image and the generic model, 
apply RBF based deformation and interpolation in X and Y coordinates, and set 
the value of each vertex’s position in Z coordinate the same as the generic model. 

2) Given known facial feature points in profile-view image and the generic model, 
apply RBF based deformation and interpolation in Y and Z dimension and keep 
the X coordinate values. 

3) Given all the feature points in front and profile view images, apply RBF based 
deformation and interpolation in all dimension.  

After these three RBF deformations, an adapted individual’s 3D face geometry 
model is easily obtained with only 2 inputted facial images. 

Fig. 2. Generation of 3D facial geometry model based on a generic 3D facial geometry model 
and two facial images (front and profile view). 32 facial feature points are extracted from front-
view image and 16 from profile-view. Then 3-step RBF deformation is performed. 

3.2   Vertex Motion Vector Adjustment 

3D generic PDM has been trained in our previous work [7], so the allowed deforma-
tions of animation have been preserved in the PDM. The generic vertex motion vec-
tors for each vertex can be decoded from PDM [7]. Those vectors should be adjusted 
to adapt to the individual’s geometry model so that can be used to drive the corre-
spondent geometry model. Because in the deformed facial geometry model, the rela-
tive positions and relative distances of vertices may have been changed, both direction 
and magnitude of the motion vectors should be adjusted [10].  

Direction adjustment is carried out firstly. As the topology between the generic and 
deformed individual’s 3D geometry model is consistent, the direction adjustment of 
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vertex motion vectors can be performed for each pair of correspondent vertices. The 
adjustment is based on local coordination system transformation. Local coordination 
system for each vertex in geometry model is constructed as following.  

For each vertex, among the meshes sharing this vertex, the X-axis is the average of 
meshes’ normal. Given planeφ is the vertical plane of X-axis and the Y-axis is the 

projection of any connected edge ontoφ , then Z-axis is the cross product of X and Y. 

Supposing that matrix RS
W denotes the rotation from a local source vertex coordinate 

to the world coordinate, RW
D  from the world coordinate to the local deformed vertex 

coordinate, and RS
D  from a local source vertex coordinate to the local deformed 

vertex coordinate, RS
D can be calculated as equation (3). 

RRR S
W

W
D

S
D =                 aiv

S
Wv

W
Daiv

S
D

T
ai vRRvRv

iii ,,, == (3)

Given
iv

S
W R ,

iv
W
D R and a vertex motion vector aiv , which is applied on vertex iv ,

transformed correspondent vertex motion vector T
aiv , can be computed as equation (3). 

Fig. 3. Local Bounding Box for vertex motion vector magnitude adjustment.  (a) is the source 
BB, (b) is the transformed BB by multiplying RS

D
, and (c) is the deformed BB. The local scale 

factor θ is decided by the proportion of size (c) and (b). 

Secondly, magnitude adjustment of vertex motion vector for each vertex is per-
formed. The magnitude adjustment is decided by local scale factorθ , which is the 

proportion of the local scales at correspondent vertices. It should be noticed that θ  is 
restrained by a global threshold, in case that there may be too large geometrical dif-
ference between the source model and deformed model., Local scale of each vertex is 
defined by local Bounding Box (BB) around the meshes sharing the  vertex  as  Fig. 3  
shown. To get a fair comparison of local scale and eliminate the disturbance of rota-

tion, the source BB SB  is transformed to TB by multiplying rotation matrix RS
D .

Given deformed BB DB , θ is computed as equation (4). Then motion vector adjust-

ment factor 
iVA  for each vertex iv is equal to

ii v
S

Dv Rθ , and the deformed animation 

vector D
aiv ,  can be calculated as equation (4). 
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4   Texture Model for Quasi 3D Model 

The texture model of quasi 3D model is not 3D facial texture model but 2D facial 
texture space integrated with partial ERI. Two facial textures respectively from front-
view and profile-view have been captured for each individual. ERI is employed in the 
facial area with abundant expressions. 2D meshes are aligned on the front-view im-
ages and they are rightly the projection meshes of 3D geometry meshes (Fig. 4). 

Fig. 4. Meshes and images for texture model. (a) is 3D meshes; (b) is 2D meshes; (c) is 2D 
meshes with texture and (d) is 2D meshes for partial ERI. 

4.1   Training of Partial ERI 

Partial ERI can enhance facial expression mapping with illumination changes [14]. 
Based on a collected corpus data [7], partial ERI is trained for each phoneme in 
mouth and its neighborhood area (see in Fig. 4(d)). 

Key-frames{ }L

iiI 1= are achieved by Principal Component Analysis (PCA) (Please 

refer to [7]). A reference image 1I without any expressions and motion (named NA), is 

defined in image set { }L

iiI 1= . All the other key-frame images { }L

iiI 2= are aligned to 

reference image 1I  sharing same shape with 1I . Then the ratio of expression image 

can be calculated by equation (5). 

L
ii

L
ii vuIvuIvuR 212 |),(/),(|),( == = (5)

where ),( vu denotes the coordinates of a pixel in the images, and ),( vuIi denotes 

the color values of the pixel in image iI . Given a new individual’s NA facial tex-

ture 1T , the correspondent expression texture E
iT  can be computed by equation (6). 

L
ii

EL
i

E
i vuRvuTvuT 212 |),(),(|),( == ×= . (6)

4.2   Synthesis and Pro-processing 

There are four steps in animation synthesis: shape generation, texture generation, 

trajectory synthesis and pro-processing. Since V = N
iiv 1}{ = in 3D PDM have been 

achieved by model fitting and trajectory distribution parameters has been trained in 

our previous work, the new individual’s vertex motion vectors D
aV = N

i
D

aiv 1, }{ = can also 
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be acquired by adjustment in direction and magnitude (see section 3.2). When D
aV is

applied to the individual’s geometry model 1{ }D D N
i iP p ==  (section 3.1), animated 

3D geometry D
aP  is generated. According to γβα ,, , 2D animated shape is attained 

by projecting 3D geometry D
aP  followed with occlusion estimation.  

The synthesis of texture is to apply partial ERI to achieve E
iT , and then warp E

iT

and n
iT to the generated 2D shape according to the 2D meshes.  

Trajectory synthesis is processed to make animation imaged sequence smoothly as 
we have done in [7]. During pro-processing, boundary of animated face is smoothed 
and blurred. It must be noticed that individual’s inside mouth texture including teeth 
and tongue texture is not captured in data collection. So the generic inside-mouth 
texture is adopted when mouth is open. 

5   Experiment Result 

We focused on facial expressions in mouth area, where movements of facial features 
and diversifications of facial textures are most abundant, to experiment face anima-
tion based on quasi 3D model.  

In shape modeling, individuals’ pair images from front and profile view were cap-
tured and used to personalize generic 3D geometry model (section 3.1). Our 3D ge-
ometry model has only 62 vertices and 102 meshes, among which there are 14  

Fig. 5. Facial images (front and profile view) and the correspondent personalized 3D geometry 
models (front and half-profile view) 

Fig. 6. Different individuals’ talking faces selected from their generated talking video. The first 
image of each person is the input front view image, the male.The first row: a female talking 
head pronouncing different phoneme (/ang/, /q/, /m/, /y/ in Chinese) with same pose; the second 
row: the female talking head pronouncing a same phoneme with different poses.the third row: a 
male talking head pronouncing different phoneme (/ang/, /q/, /g/, /u/ in Chinese) with same 
pose; the fourth row: the male pronouncing a same phoneme with different poses. 
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meshes for partial ERI around mouth area (Fig. 5).  After vertex motion vectors per-
sonalization, personalized vertex motion vectors were used to generate personalized 
animation shape. The shape variation is still represented in a low dimension in virtue 
of PDM. 

In Fig. 6, two different individuals’ talking faces are shown. The time for creating 
an animation image takes about 100ms in Pentium 4-M CPU 2.00GHz processor. We 
only used front-view facial texture for animation synthesis, so the experiment view-
point range is [-60, 60]. If profile-view texture is also used, the possible view range 
can be as wide as [-90, 90]. 

6   Conclusion 

We presented a novel approach for realistic multi-view face animation based on quasi 
3D model. With only two face images, front and profile view respectively, different 
individual’s face animation allowing head movement is generated without any other 
training. And the animation is achieved with low computational requirement in virtue 
of PDM. Fusing Advantages of 3D and 2D animation techniques, the limitations of 
both two techniques are weakened. Mouth area has the most complex expressions, our 
approach captured the details of mouth motion, which can be extended to model the 
other face expression. Considering low computational and resolving power of mobile 
devices, we reduced the number of geometry model vertices to 62, which is the mini-
mum for realistic animation based on current experiments. The geometrical model can 
be designed and adjusted according to the computational power of mobile devices, 
also the demand of animation naturalness. Our experiments on pro-processing sug-
gested that the density of vertices along facial contour plays key role in generating 
natural animation.   

Presently, the animations of all individuals are performed in the same style without 
their own acting characteristic. How to learn a personal acting style easily is our re-
search work in future. 
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Abstract. Super resolution technique could produce a higher resolu-
tion image than the originally captured ones. However, a few works have
been done in 3D models. In this paper, we focus on generating the 3D
face model of higher resolution from one input of 3D face model. In our
method, the 3D face models including the training samples and input
model are remeshed to construct consistent mesh to find out the corre-
spondence among the models. The super resolution then is performed in
the remeshed models to reconstruct the high resolution model. The ex-
periments using USF HumanID 3D face database of 100 3D face models
are carried out, and demonstrate the presented algorithm is promising.

1 Introduction

Super-resolution is a technique that could obtain the higher resolution image
from the originally captured ones. Numerous approaches have been presented
[1, 2, 3, 4, 5, 6, 7]. These approaches can be generally classified into reconstruction-
based approaches, which reconstruct high resolution image from a series of im-
ages, and learning-based ones, which usually generate high resolution image from
low resolution image by learning from training sample or strong image priors
learned before.

Nowadays, with rapid advance in 3D acquisition technique, 3D data are be-
coming more and more popular. It is of great needs of this kind of 3D super-
resolution in practice, because sometimes we can’t get enough information of a
3D model for rendering or recognition due to limitation of 3D acquisition system
or environment condition, for example, acquisition at a long distance, capturing
3D data from non-collaborated target object.

However, most work focuses on 2D image. There is few work on 3D super
resolution for 3D model as input. Our early work[11] proposed a learning-based
3D super resolution algorithm of which result is fairish but has limits such as
it can not be expanded to more complex models, because what it deal with are
mainly 2D data mapped from the 3D models and the mapping function can not
be found in some situations.
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In this paper, we propose another method for super resolution in 3D domain.
When the input data is a low resolution 3D face model, the algorithm will give
a high resolution version which has more detail information.

2 Algorithm

Given a low resolution face model, the purpose is to reconstruct the high resolu-
tion model which has more detail information. The new model can be represented
as the combination of training samples based on the input model.

Our algorithm mainly focus on hallucinating 3D face. The whole process can
be divided into two sections. The task of first section is to build the consis-
tent mesh for all 3D face. Based on the result of first section, the hallucinating
algorithm can be applied in the second section.

Low Resolution
Input

 High Resolution
Training Samples

High Resolution
 Output

Remesh

Consistent Regular Mesh

Optimal Linear
Combination

Normalized Models

Fig. 1. The algorithm diagram

Consistent mesh. First we define a base mesh which consists of about 21 points
shown in Fig.2 and manually mark the corresponding points in model we want to
process. Then we use fast marching method to calculate the shortest path on the
model and mark these points on the path to get the patches corresponded to the
faces of base mesh. At last, we map these points in patches to the corresponding
faces using area preserving mapping and subdivide the pathes to construct the
consistent mesh.

Hallucinating. From the result of consistent mesh, we have built one-to-one re-
lationship among all 3D faces including training data and input model. The hallu-
cinating face problem could be converted to an optimal linear combination prob-
lem. To cope with limitation of shape variation in training samples, we divide the
model to several patches, then the optimization of linear combination is separately
solved for each patch and sew the results together to get the last result.
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(a)Base mesh (b)Base mesh on 3D face

Fig. 2. The definition of the base mesh

3 Consistent Mesh for 3D Face

Given a face, we can represent it with it’s original triangular mesh. But if there
are more than one face model, there will be more than one mesh which does
not exist the correspondence. Finding the relation between them is very impor-
tant. Therefore, we need a new mesh representation called consistent mesh[8] to
represent these models. It is called consistent because it is easy for us to find
the approximate points’ relationship between different faces. We define the facial
base mesh and then build the consistent mesh for each given face.

3.1 Terminology

We adopt the same terminology as [8]. A triangle mesh M is a pair (P,K),
where P is a set of N point P={pi = (xi, yi, zi) ∈ R3|1 ≤ i ≤ N}, and K is
an abstract simplicial complex which contains all the topological information.
The complex K is a set of subsets of {1, ..., N}. These subsets come in three
types: vertices {i}, edges {i, j}, and faces {i, j, k}. Two vertices {i} and {j}
are neighbors if {i, j} ∈ K. The 1-ring neighbors of a vertex {i} form a set
V (i) = {{j}|{i, j} ∈ K}.

3.2 Facial Base Mesh

Let common base mesh B = (P,L), each vertex p ∈ P has a corresponding point
p′ in the Mi as illustrated in Fig.2. The most important part of the base mesh
is the topological relationship of points instead of the positions of the them. For
example, we can consider the p8 ∈ P the right nose corner and p21 ∈ P the
left mouth corner, but the positions of them are not determinate. Only after all
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corresponding points in Mi being found, we can construct a real mesh K0 which
will be described later based on B.

We should manually label these corresponding points which are also called
landmarks on the Mi. Therefore, each p ∈ P has a determinate position and
we can use these positions and the relationship extracted from B between these
points to construct the mesh K0.

If there are more than one model, we can construct a ont-to-one relationship
between the points labelled in these models. But this is not enough. What we
want to do is to set up correspondence of all elements among them.

3.3 Building Consistent Mesh

As describe above, we have already constructed the real mesh K0 which has the
same amount of points of base mesh B. In fact, K0 is the consistent mesh which
has then insufficiency of information compared with Mi. Obviously, this is not
enough because of the insufficiency. So we must construct the consistent mesh
KN which has the enough details.

The 3D face model Mi will split into several patches, then the model will be
separately remeshed. In the following paragraphs, the main operations will be
explained. Boundary tracing finds out the boundary of the patches; Parametriza-
tion describes how to map the patch into a plan. In the last step remesh, the
consistent mesh will be constructed.

Boundary Tracing. The landmarks we marked on the Ml can be denoted as
pf that means f−th landmarks in Ml. These landmarks in the base mesh form
a group of triangle faces that can be mapped to the Ml as a group of patches of
which boundaries consist of points and segments existing or being added later
in the model. We called this process boundary tracing.

Given two points pa and pb in the base mesh and corresponding points pma
and pmb in one model. Our task is to find the points and segments or to add
the points or segments that do not exist in the model. In [8], Praun proposed a
method to trace a fair boundary. It is suitable for some complex conditions. But
in our experiment, the points we given are limited in the face and the models
do not include the afterbrain because of uselessness of their information to us.
Therefore we can firstly use fast marching method [13] to get the geometry dis-
tance from pma to pmb, and then retrace from pmb to calculate the intersections
of the boundary and the triangles on the model. These newly added points and
edges form a boundary of a patch which we will use to form new model.

Applying this operation on each pair of points which lay on the same edge in
the triangle face of base mesh will get all boundaries of patches.

Parametrization. The patches actually split the model into many small parts.
Each patch can be dig up as a single object to handle. A patch Pt which consists
with a set of triangles Tm have a corresponding triangle in the base mesh, so we
can map all points in the Pt to the triangle. As mentioned above, the coordinates
of points in base mesh do not make any sense, so we can let the coordinates of
points in one triangle be any values in x− y plan if them don’t lay on the same
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line. The points on the boundary of patch Pt can simply mapped to the edge
through relative position. This process is a boundary fixed mapping problem.
We adopt the area preserving mapping method mentioned in[14].

We denote the triangles in the x − y as Tb. Obviously there is a bijective
mapping δp from elements in Tb to Tm. For every vertex in Tb we can calculate
its real coordinate in 3D space through δp. And for the point p lying on a triangle
t ∈ Tb, we can represent this point as the linear combination of three vertexes
p1, p2 and p3 of t.

pi = a× p1 + b× p2 + c× p3 (a + b + c = 1 and a, b, c ≥ 0)

So the coordinate of corresponding point p′ in Pt can be calculated with the
same equation just replace the p1, p2 and p3 with the corresponding points
δp(p1), δp(p2) and δp(p3). We denote this parametrization as ρ : B →Ml.

Remesh. We use a method modified from [10] to remesh a model. Based on the
resolution of training samples, we must adjust the J which used to control the
precision of remeshed model. KJ means that perform J recursive 4-to-1 splits
showed in Fig.3 of each triangle face of K0 to represent the 0 recursive splitting.
And then we find out the newly added points, which is also called knots in [10] in
the Ml through function ρ. In [10], the process of remesh is divided into two types:
parametrically uniform resampling and geometrically uniform resampling. We let
our method restricts in the first condition because the geometrically morphing
between K0 and Ml is not so big.

Fig. 3. 4-to-1 split in the ρ′(M)

4 Hallucinating 3D Face Using Consistent Mesh

4.1 Hallucinating as Optimal Linear Combination

Suppose a set of training sample Mt which has ‖Mt‖ elements. For each model
in Mt, we build the consistent mesh of it. Therefore we can represent a new
model with the combination of these remeshed models which will be normalized
to the same standard firstly. To a specified input low resolution model Ml, we
can find out a most suitable combination for it. The process of hallucinating 3D
face can be formulated as an optimization problem as following:

minimize ‖M ′
h −Ml‖, M ′

h =
‖Mt‖∑
i=1

αiM
i
t

The essential of this optimization problem is searching for the shortest path
problem which can be solved easily.
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4.2 Divding and Sewing

If we treat M ∈ Mt as an element in the combination, the sample number is
too small to cover variation of face shape. Thus, we divide a face model M into
several parts and calculate the combination of each part, then, sew the results.

Divding Face. Given the remeshed models M t, each model m ∈ Mt has Npc

patches that can be assigned to a separate coefficient which is an element in
matrix C. Cm,n is the coefficient of the n-th patches in Mt(m) such that:

∀ 1 ≤ j ≤ Npc, 1 ≤ j ≤ ‖M t‖ =⇒ Ci,j ≥ 0

∀ 1 ≤ j ≤ Pc =⇒
‖Mt‖∑
i=1

Ci,j = 1

For an input face Ml of low resolution, we can also find the patches Pl correspond
to a triangle face in base mesh and then find the corresponding patches Pt(m)
in m ∈Mt, which means the bijective mapping δ from p to p′ ∈ Pt(m) could be
obtained for each p ∈ Pl. Given a pair of patches p and p′ such that p′ = δ(p),
the coordinates of them in Cartesian Coordinate System(CCS) have the different
metric. For example, if Ml is acquired for one system which differs from the
system used for training sample, the metric may be different. So we should
normalize them to the same frame, using the Pl as the reference model.

The first step is scaling. For p and p′ we can get the reference triangles tr
and t′r of which vertexes can be located through base mesh. The scaling s can be
approximately get from the area ratio. Then we can represent every point pt in p′

as the (d,A) which d means distance from pt to t′r and A is barycentric coordinate
coefficients of pt′ which is perpendicularly projecting point of p′ in the plan in
which tr is located. Finally, we move the vertexes of t′r to the corresponding
vertexes of tr and denote pt as (sd,A) which can be transformed to CCS.

Thus based on the input model Ml, a linear combination of human face is
constructed. We can represent any face mf with the linear combination through
the patches Pf contained in mf . For j-th Pf we have:

Pf (j) =
‖Mt‖∑
i=1

Ci,jPt(i, j)

d

s*d
tr

pt

pt' t'r

Fig. 4. Normalize patches between input data and training samples
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Prior to calculate C, we define the distance function Dist(p1, p2) as:

Dist(p1, p2) =‖ p1 − p2 ‖

As mentioned above, we have already normalized the training samples. So the
operator ‖ • ‖ is a L2 norm of differences of coordinates between p1 and p2. The
our task is to find the coefficient C to construct face Md in high resolution which
is similar to the input model Ml, solved as following:

C = argmin
C

Npc∑
j=1

Dist(Pd(j), Pl(j))

Sewing Face. Because the face we get is generated from the combination of
patches of other faces. There are some slots between these patches. We blend the
patches at the borders according to an algorithm proposed for images by [16].
Figure 5 shows some sewing result.

Sew

Fig. 5. Sewing Illustration

Normalize

High resolution
samples

 Normalized samples

Remeshed input
model

Fig. 6. The process of normalization. The left models are high resolution samples.
Based on the input data, they are normalized to the right ones.
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5 Simulation

Our experimental data set consists of 100 3D face models from USF Human ID
3D face database [12]. There are more than 90,000 vertices and 180,000 faces after
reducing of the invalid vertices for our experiment. Considering time consuming
because of the amount of data, for convenience, we use [9] to reduce the vertices
of the model. We get the high resolution training models each of which has about
8,000 vertices with error tolerance 10−7. The low resolution input models each
of which has about 130 vertices are obtained with error tolerance 10−3.

Fig. 7. Hallucinating results. The first column is the low resolution input. The middle
one is reconstructed by the proposed method. The third column is the original model
of high resolution.
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Figure 6 depicts the normalizing step. The left models are training samples.
After being normalized based on the input model, the models on the right side
look like the left ones and also the input model. This operation make our latter
work fall within the same frame.

Figure 7 shows the hallucinating result. The first column is the input data
in low resolution, the middle one is the hallucinating result by the proposed
algorithm, the third column is the original high resolution model. From the
figure, our algorithm adds many details to the input data and the information
added makes the input model approach the original high resolution model.

6 Conclusions

This paper has presented a super-resolution method for 3D face model, which
employs the consistent mesh as the immediate form. The 3D model of halluci-
nating result is smoother than [11]. When no high resolution model is available
in some conditions, it could give a reconstructed model with more details. It is
potential to be used in many application such as rendering, editing and even
recognition.
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Abstract. With multimedia E-learning becoming popular, better compression 
algorithms are required that are space efficient but maintain the quality of video 
data, particularly slide and blackboard text. In this paper, an educational video 
compression technique is presented that dynamically allocates the space accord-
ing to the content importance of each video segment in the educational videos. 
We present a phase correlation based motion estimation and compensation  
algorithm to encode important moving objects in efficient manner. Temporal 
coherence is exploited in a two phase manner. First, the frames with high 
similarity are categorized and encoded efficiently. Secondly, the compression 
ratio is adapted according to the frame content. The algorithm is compared with 
the state-of-the-art standards such as H.261, MPEG-4, etc. on large database. 
The comparison shows that for similar bit rates, the video quality for our 
algorithm is significantly better than the other methods. 

1   Introduction 

In recent years, the acquisition and indexing of rich media content has been largely 
automated [11], however, research challenges still remain for mass distribution of 
multimedia content from annotated University repositories to the learners. The chal-
lenges in instructional video streaming are the dynamic change of bandwidth (as in 
wireless networks), the package loss, and the differences of video content and users’ 
preferences [2]. Some of the streaming issues have been well dealt in previous work 
such as [7]. This paper focuses on improving the compression of lecture videos as 
lack of bandwidth is one of the major bottlenecks of multimedia based distance learn-
ing. A significant research effort has been put in the last decade to achieve sufficiently 
high compression while retaining satisfactory video quality. MPEG-1 and MPEG-2 
were introduced in the early 1990s which were based on the block based motion en-
coding techniques [10]. MPEG- 4, which was introduced in 1997, considers a frame 
to be made up of background and video objects [12]. Despite the enormous potential 
advantages of object based encoding, the adoption of MPEG-4 has so far been limited 
to the core profile - the special case of block based encoding that is very similar to the 
MPEG-2 standard [9].  
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    In this paper, we propose an efficient phase correlation based video compression 
technique that uses object based encoding of educational videos and provides quality 
videos at low bit rates. Adaptive compression is accomplished by automatically iden-
tifying the importance of content of each frame and changing the bit rate according to 
the content priority. Also, temporal redundancy is avoided in consecutive frames that 
have very little change. The experimental results and comparison with the state-of-
the-art compression algorithms such as MPEG-1, MPEG-2, RealMedia, etc., show the 
effectiveness of our approach. A typical one hour video data can be compressed to as 
low as 20 Megabytes using our algorithm. 

2   Related Works 

Using video for educational purposes is a topic that has been addressed at least since 
1970s [8]. Recently, several universities have started offering entire degree programs 
based on transmission of lecture videos. A case in point is Singapore-MIT Alliance 
(SMA) development program1. SMA lectures are given daily, and it is expensive to 
process, index and label them through manual methods. The focus of the research in 
educational video data has been significantly on content creation and indexing. Ip and 
Chan in their Automatic Segmentation and Index construction for the Lecture Video 
[11] use the lecture note along with Optical Character Recognition (OCR) techniques 
to synchronize the video with the text. Content-based adaptive streaming system has 
been designed for baseball and other sports videos [1]. In a similar work for low bit-
rate video streaming for face-to-face teleconferencing, the input video frame is first 
processed to allocate the face and its components. Although these works have shown 
significant improvement in compression performance, they cannot be applied directly 
to E-learning video. 

3   System Overview 

Figure 1 presents a high level overview of our entire video compression system. In the 
first step, a content based classification of the frames is performed. Each frame is 
classified into one of the four classes, which can be transmitted at different bit rates. 
Next, the blackboard is extracted from these frames. Then, a model of the background 
without the teacher is created using input from multiple segmented frames. This in 
turn aids in segmenting the teacher in further frames. It can be safely assumed that for 
this part of video processing, the changes in the background are unimportant. The 
changes in the blackboard are captured through an efficient binary encoding tech-
nique, and an efficient phase correlation based motion estimation algorithm is used 
for transmitting the teacher data over the channel. Judicious handling of redundant 
data aids in increasing the compression performance while providing high quality 
videooutput. At the receiver side, all the frames are reconstructed in real time using 
the transmitted data. 

                                                           
1 Web.mit.edu/sma/ 
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Fig. 1. Overview of the educational video compression system 

4   Content Based Classification 

Content based video classification can be used to divide the video into various seg-
ments depending upon their contents and transmit these segments at varying bit-rates. 
Scenes containing slides and question answer session can be transmitted at lower bit 
rates in an efficient manner, whereas close up scenes with teacher in focus and his 
expressions being very prominent may require higher bit rates than normal full view 
scenes. Typically, in a classroom video, we can have four categories of shots - a full 
view of the classroom, a close-up of the teacher, slides and a typical shot in a question 
answer session [3]. Here, we discuss how all these scenes can be identified and seg-
mented out from an educational video. 

4.1   Detecting a Full Class View 

Full view classroom frames have some typical characteristics such as the complete 
board is shown, some students may be visible in the view and a significant part of the 
teacher’s body may be visible in the frame. Thus, a frame can be classified in the 
above category if it satisfies the following two conditions: The board should be pre-
sent and completely detected and the computed area representing the teacher should 
be less than one-third of the entire frame. 
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4.2   Detecting Slides 

Slides can be detected by computing the motion between consecutive frames. If the 
motion is almost zero for a couple of seconds, then the frames are labelled as slides. 
The frames corresponding to the slides do not change over time, so all we need to 
transmit in case of slides is the initial frame and the time for which the slide persists. 

4.3   Detecting Close Up Scene and Question Answer Session 

If a scene has not been classified in the above two classes, either it should be the close 
up scene with teacher in focus or a Question Answer session. In either case, the com-
plete board would not be visible. The scene is classified as a close up scene if the area 
containing teacher is quite large, typically around half of the overall frame size and 
the number of edges detected in such frame are very small. If the teacher’s area is 
small and the number of edges is large, the scene is classified as a Question Answer 
scene. Our algorithm for detection of this category is simpler than the algorithm pro-
posed by Li and Dorai [6]. 

5   Object Segmentation and Compression 

In this module, we segment all frames into their constituent components, that is, the 
teacher, the blackboard and the background. 

5.1   Board Segmentation 

For detecting the blackboard in any frame (Figure 2a), the Canny edge detector is 
applied for finding the horizontal and vertical edges. A typical set of horizontal and 
vertical edges detected by applying a Canny edge detection algorithm on a frame 
containing the complete view of the class are shown in Figures 2b and 3a, respec-
tively. Next, we perform the dilation of the horizontal edges using a vertical element 
of 5-6 pixel length, and the dilation of the vertical edges using a horizontal element of 
the same dimensions. We obtain two different images containing the horizontal edges 
and the vertical edges as shown in Figures 2c and 3b. It may be observed that the 
horizontal and vertical edges may not necessarily correspond to the board but may be 
due to the walls. The correct region representing the board has to be selected. 

Next, the largest horizontal edge detected in Figure 2c is chosen and the longest 
vertical edge close to its end points is detected in Figure 3b. Then a rectangular region 
is constructed using these two edges that may represent a blackboard region. Several 
 

 
 

Fig. 2. a) The original frame b) The horizontal edges detected c) The dilated horizontal edges 
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rectangular regions are chosen within the blackboard and the average intensities are 
computed in these regions to verify that the intensity values correspond to the black-
board region. In this method, if the verification provides negative results, the horizon-
tal edge is discarded and the next largest horizontal edge is chosen. Figure 3c shows 
the board detected (the patterned region) using images Figure 2c and 3b.  

 
Fig. 3. a) The vertical edges that have been detected, b) The dilated vertical edges and c) The 
patterned blackboard that has been detected 

5.2   Teacher Segmentation 

We propose a pixel-ratio comparison based robust algorithm that accurately segments 
the teacher. For teacher segmentation first the background is modelled, and then the 
teacher can be tracked in any of the subsequent frames. 

5.2.1   Background Modelling 
In most videos, the reference image of a classroom without the teacher is not avail-
able. To model the background, we need to subtract the region corresponding to the 
teacher [5]. For the initial prediction of the background, we assume a set of frames 
that have significant teacher motion. This can be accomplished by taking frames that 
are widely separated in time. Let the two frames to be compared be represented as 
frames f(i) and f(j). For each pixel (x,y) in f(i) and f(j), we compute the ratio of the 
intensity values. We cluster all the pixels where the ratio is smaller than a prespecified 
threshold. Small and noisy clusters are eliminated through morphological operations 
viz. erosion and dilation. Next, we enclose the clusters with rectangular boxes and 
discard the boxes that do not have sufficient pixels to represent a teacher. This results 
in two possibilities: either the rectangular regions overlap in two frames or they have 
no common regions. We discard the cases of images where the rectangles overlap 
because they cannot be used for reconstructing the background information com-
pletely. The entire background can be modelled when we come across a case with two 
large rectangles which are not overlapping. In this case the entire background can be 
reconstructed by simple masking of the teacher and combining the regions of the two 
frames. 

5.2.2   Predicting the Region of the Teacher 
It can be done by simple comparison of the given frame with the background frame. 
For each pixel in the two frames we compute the ratio of the intensities. If the inten-
sity ratio is larger than one, we interchange the numerator and denominator. If the 
resultant ratio is smaller than a specified threshold (typically 0.6-0.8), it is inferred 
that a significant change has taken place at that pixel and it belongs to a region of 
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moving object - the teacher. The results over several frames show that this technique 
is a robust one for teacher segmentation. 

5.3   Board and Background Transmission 

After the segmentation of each frame into its three components, we can deal sepa-
rately with these objects. The background needs to be transmitted infrequently as it is 
usually static. The changes in the blackboard have to be transmitted from time to 
time. The region corresponding to the teacher is masked and the remaining portion of 
the blackboard is visible in each view. A binary region transmission of the blackboard 
is performed. First, a binary thresholding of the blackboard region is done. Next, 
regions which have values smaller than the threshold are taken to be black regions 
and those above the threshold are assumed to be white. The contents of the black-
board region get enhanced by the above process because of better contrast. 

6   Phase Correlation Based Motion Estimation 

There are three main types of motion estimation methods: block matching methods, 
phase correlation methods, and gradient based methods. The phase correlation motion 
estimation has much lower complexity as compared from other methods it measures 
the motion directly from phase correlation, and gives much smoother motion vector 
field. The major overhead for our algorithm is the transmission of the teacher’s image. 
We use the phase correlation based motion estimation for compression of the image 
sequences containing the teacher. Due to its advantage of immunity to overall illumi-
nation changes and noise, it provides a better video compression. 

In this technique, we compute the displacement of a pixel directly by using the 
phase information. 

The objective is to compute the displacements x and y of all pixels (x,y) in a 
frame f(x,y) at time t1 to time t2, with the condition that: 

f(x, y, t1) = f(x + x, y + y, t2) (1) 

Taking Fourier transform F(u, v) of an image f(x, y) between these two frames, we 
get: 

F(u, v, t1) = F(u, v, t2)e2j (_ x×u+ y×v) (2) 

From Equation 2 it is clear that any translation motion between two frames is depicted 
as a phase change in the frequency domain. In order to determine the interdependence 
of two frames, we compute the cross-correlation between them. The cross correlation 
function, R(x,y)(t1, t2) provides a means of quantifying the interdependence of the two 
signals. The cross correlation function can be represented as: 

R(x,y)(t1, t2) = E[f(t1)f(t2)] (3) 

Where E[X(t)] is the expected value of X(t). Hence, in the frequency domain, its 
equivalent, the power spectral density S( ), is given by the following convolution  
operation: 

S(x,y)( ) = F(u, v, t1)  F (u, v, t2) (4) 
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Normalized power spectral density, SN(x,y)( ), is used to remove any luminance 
variation. Using Eq. 2 and 4 , we have: 

SN(x,y)( ) = exp[−2j  ( x u + y v)] (5) 

Note that the phase value of SN(x,y)( ) is equal to the conjugate of the phase value 
obtained in Eq. 2. This relationship can be used to compute the displacement by tak-
ing the inverse Fourier transform of normalized power spectral density which gives us 
the R(x,y)(t1, t2) as: 

R(x,y)(t1, t2) = (x − x, y − y) (6) 

This  function corresponds to the displacement of a pixel from one frame to the next. 
To find a better correlation between adjacent frames, we dilate a block of size say n×n 
to block of size (2n) × (2n). A weighted raised cosine transform is applied to this 
(2n)×(2n) size block to assign more weightage to our original n × n size block [13]. In 
order to get better results we use Half-Pixel Motion Estimation method to improve the 
estimation of motion vectors. After computing all the displacement vectors, we recon-
struct the expected frame. Next, the peak signal to noise ratio (PSNR) is computed by 
comparing the reconstructed frame with the original frame. Similar to the MPEG B-
frames, P-frames and I-frames, we use the A-frames, B-frames and the C-frames. The 
A-frames are reconstructed using only the motion vectors, the teacher data in the B-
frames is compressed using the phase correlation based motion estimates and residual 
errors. In the C-frames the teacher region is compressed using only the JPEG com-
pression techniques. The C-frames are inserted in the regions where the PSNR values 
of the reconstructed frames fall below 1. The B-frames are required when the PSNR 
values fall between 1 and 2, and for PSNR values greater than 2, we transmit the A-
frames. 

7   Experimental Results 

We conducted experiments on several videos available as a part of the Singapore- 
MIT Alliance program, and those recorded at our Institute for testing the compression 
performance. In this section, the results for three video sequences are presented. The 
original videos are of 90 minutes duration corresponding to one lecture duration. For 
the purpose of brevity and illustration of working of our algorithm, we present the 
results computed over 4800 frames of video. The characteristics of these three video 
sequences are given in Table 1. Type 1 scenes are the complete view of the class, 
Type 2 scenes represent the close up views where the teacher is in focus, Type 3 
scenes are the slides and the Type 4 scenes are the Question and Answer sessions.   
 

Table 1. Results of Content Based Classification Algorithm for different video samples 

Sequence  Source Type1 Type2 Type3 Type4 
Video 1 MIT 3050 400 950 400 
Video 2 IITR 3200 650 700 250 
Video 3 MIT 2750 975 1075 0 
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Accuracy of the content-based classification algorithm for the Type 4 (slides) is 100% 
whereas accuracy varies in the range of 96-100% for other frames. 

We compare our algorithm(OA) with MPEG-1, MPEG-2, MPEG-4 and H.264. In 
order to do the performance comparison, videos of 20 MB size were generated by 
modifying the parameters of MPEG-1, MPEG-2, and other algorithms. The PSNR 
values for different frame types(FT) were computed for different algorithms and are 
tabulated in Table 2. Since we store the original slide (type 3 frame) in high resolution, 
the PSNR value of type 3 frame is infinite for our algorithm. It can be observed that for 
all types of frames, our algorithm gives significantly higher PSNR performance. 

Table 2. Comparison of PSNR value obtained from different algorithms for 20MB size videos. 
Higher PSNR value indicate better quality. 

Frame Type Our Algorithm Mpeg1 Mpeg2 Mpeg4 H.264 
1 31.8 23.1 22.3 23.4 23.6 
1 31.9 22.9 22.9 22.8 23.0 
1 32.2 22.9 23.2 23.9 23.7 

2 33.5 27.9 27.9 28.0 28.1 
2 34.8 27.9 27.9 27.9 27.9 
3 Infinite 21.0 20.9 21.1 21 

4 31.4 20.9 20.9 20.7 20.9 

    For lecture video compression, it is especially required that the text quality of the 
blackboard and the slides in the video is good. In order to evaluate the text legibility, 
we used luminance measure [4]. Luminance measure L is defined as: 

L = 0.3R + 0.59G + 0.11B.                                          (7) 

where R, G, and B are  red, green and blue respectively. A strong, sharp contrast of 
luminance levels between text and background makes text readable. Compressing text 
tends to smear out this sharp contrast, bringing the luminance of background and text 
closer to the middle luminance levels, while creating a spread of luminance levels in-
between. Plotting the frequency of each luminance level in a region of text on a curve, 
one would expect to see two modes, two strong local maxima, representing the text 
and the background. And when the text is blurred by compression, the strength of 
these modes is decreased, and they move closer together, reducing the contrast of the 
 

Table 3. Comparison of luminance values obtained for different algorithms over 20 MB video. 
Higher luminance value indicates better quality. The luminance is used to evaluate the slide 
quality.  

Original Our Algorithm Mpeg1 Mpeg2 Mpeg4 H.264 
6.8353 6.8353 2.0157 1.6941 2.5098 1.70 
5.7137 5.7137 1.6471 1.4392 2.2176 1.82 
6.7922 6.7922 2.0824 2.0549 2.1490 2.02 
8.9176 8.9176 1.8745 1.5373 2.5569 1.71 
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text. Table 3 presents the comparison of luminance values for different algorithms and 
a comparison of the quality of the frames for different techniques of compression  
is shown in the fig.4. Our algorithm preserves the slide quality for the entire video  
and thus has the same luminance value as the original uncompressed video. The  
luminance value of MPEG-4 is second best, though significantly less than that of our 
algorithm. 

 

Fig. 4. Comparison of different compression algorithms for video size of 20 MB 

Table 4. Comparison of performance of different algorithms in preserving edges of the black-
board text. The figures correspond to number of edges detected using Canny edge detector. 

Original Our Algorithm Mpeg1 Mpeg2 Mpeg4 H.264 
78 78 25 25 21 20 
80 80 31 27 28 25 
78 78 29 29 29 28 
75 75 28 38 47 42 

%Edge Preservation 100% 39.5% 38.3% 40.2% 37.0% 

Another measure for evaluating the readability of lecture videos is preservation of 
edges. Table 4 presents a comparison of different algorithms over the frame which 
consists of blackboard with text written on it. In our algorithm, we threshold the 
blackboard text and thus all the edges are preserved, while most of the edges are lost 
in other algorithms. 

8   Conclusions and Future Work 

In this paper, a strategy for content-adaptive video compression has been proposed. 
The key contribution of the paper is to provide a generic algorithm that significantly 
reduces the lecture video size, while maintaining the resolution of important video 
segments. The phase correlation based motion encoding of the moving objects pro-
vides high compression ratios. Robust algorithms for teacher and blackboard segmen-
tation results in accurate reconstruction of the scene during decoding. 
    A significant improvement could be accomplished by creating and transmitting  
the templates of teacher’s hand motions and facial expressions, as was done in face-
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to-face teleconferencing [15]. The technique presented in this paper can be extended 
to slow-moving structured videos, such as News, interview videos etc., for achieving 
high compression. 
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Abstract. Blind blur identification in video sequences becomes more
important. This paper presents a new method for identifying parame-
ters of different blur kernels and image restoration in a weighted double
regularized Bayesian learning approach. A proposed prior solution space
includes dominant blur point spread functions as prior candidates for
Bayesian estimation. The double cost functions are adjusted in a new
alternating minimization approach which successfully computes the con-
vergence for a number of parameters. The discussion of choosing regu-
larization parameters for both image and blur function is also presented.
The algorithm is robust in that it can handle images that are formed
in variational environments with different types of blur. Numerical tests
show that the proposed algorithm works effectively and efficiently in
practical applications.

1 Introduction

The primary goal of blind image deconvolution (BID) is to recover lost infor-
mation from a degraded image for obtaining the best estimate to the original
image. Its applications include photography debluring, remote sensing, medi-
cal imaging, and multimedia processing. An ideal image f in the object plane
is normally degraded by a linear space-invariant point spread function (PSF)
h with an additive zero mean Gaussian white noise n using g = hf + n. The
equation provides a good working model for image formation. An observed im-
age in the image plane g is formed by two unknown conditions h and n. The
two-dimensional convolution can be expressed as hf = Hf = Fh, where H
and F are block-Toeplitz matrices and can be approximated by block-circulant
matrices for large images.

In two decades, there are has been considerable interest in the regularization
theory. A regularization method is originally proposed by Tikhonov [1], Miller
[2] et al. which replaces an ill-posed problem by a well-posed problem with an
acceptable approximation to the solution. Later, Katsaggelos et al. [3] have intro-
duced an iterative regularization algorithm for image restoration based on a set
theoretic approach. This algorithm uses a deterministic framework to introduce
a priori knowledge in the form of convex sets, and to decouple the nonlinear
observation model into double linear observation models that are easy to solve.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 943–952, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A projection-based method with conjugate-gradient minimization for BID has
been proposed and extended by [4], [5], [6]. These methods have demonstrated
how the parametric models in image restoration methods are used [7], [8] in
some respects. However, these results are observed in underutilization of prior
information. The ill-posed image restoration problem needs more effective prior
information or constraints to yield a unique solution to the corresponding opti-
mization problem. Even if a unique solution exists, a proper initialization value
is still intractable, e.g. cost function is non-convex.

The Bayesian estimation provides a structured way to include prior knowledge
concerning the quantities to be estimated [9], [10]. The Bayesian approach is,
in fact, the framework in which the most recent restoration methods have been
introduced. When blur is present, different approaches have been proposed to
find a maximum a posterior (MAP) estimate. Blake et al. [11] propose the use of
gradually non-convexity method, which can be extended to the blurring problem.
Molina and Ripley [12] propose the use of a log-scale for the image model. Green
[13] and Bouman et al. [14] use convex potentials in order to ensure uniqueness of
the solution. Recently, an appreciable extension of the range of hyperparameter
estimation methods is used in Bayesian estimation. Molina et al. [15] use a
hierarchical Bayesian paradigm resulting from the set theoretic regularization for
estimating hyper-parameters. They also report that the accuracy of the obtained
statistic estimates for the PSF and the image could vary significantly, depending
on the initialization. To obtain accurate restorations in the Bayesian approach,
accurate prior knowledge of PSF or image must be available.

In this paper, a space-adaptive regularization method is integrated into a
Bayesian learning approach. A newly introduced solution space of PSF priors
supports accurate parametric PSF in the form of Bayesian MAP estimation. An
integrated quadratic cost function subject to convex constraints is minimized by
projecting iterations onto an alternating minimization within a specified range.
These positivity constraints and strictly convex property ensure that the al-
ternating minimization procedure converges globally. Although the convergence
solution depending on the initial value [16], the estimated PSF values support
accurate initial value. Regularization parameters and weight matrices are esti-
mated with the help of L-curve technique [17].

The paper is organized as follows. In Sect. (2), Bayesian estimation in the
context of double regularized iterations is described. In Sect. (3), the proposed
cost functions are optimized in alternating minimization. Experimental results
are shown in Sect. (4). Conclusions are summarized in Sect. (5).

2 Bayesian Estimation in Double Regularizations

The Bayesian MAP estimation utilizes a prior information to achieve a conver-
gent posterior. Following the Bayesian paradigm, the true f(x), the PSF h(x)
and the observed g(x) are formulated in

p(f, h|g) = p(g|f, h)p(f, h)/p(g) ∝ p(g|f, h)p(f, h) (1)
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Applying the Bayesian paradigm to the blind deconvolution problem, we try to
compute convergence values from Eq. (1) with respect to f(x) and h(x). This
Bayesian MAP estimation can also be seen as a regularization approach which
combines the optimization method to minimize two proposed cost functions in
the image domain and the PSF domain. The cost function of the true image f(x)
and the cost function of the PSF h(x) are deducted from Eq. (1), then we get
L(f̂(g,h)) ∝ p(g|f̂ , h)p(f̂), L(ĥ(g,f)) ∝ p(g|f, ĥ)p(ĥ). For the application of these
equations, some constraints are assumed due to the fact that the image pixels are
independent identically distributed and do not influence the pixel correlations.

2.1 Weighted Space-Adaptive Regularization

The direct least squares solution is
∑

x∈Ω (h(x) ∗ f(x)− g(x))2 = min. This
equation may lead to a vector f(x) that is severely contaminated with noise. A
Tikhonov regularization [2], [1] can efficiently solve such ill-posed inverse problem
with additive noise. This equation adds a penalty term L2 norm of the image
f multiplied by a regularization parameter λ for solving the linear least squares
problem, 1

2

∑
x∈Ω (h(x) ∗ f(x)− g(x))2 + 1

2λ
∑

x∈Ω f(x)2 = min. However, some
ringing artifacts near sharp intensity transitions are still attributable to the
Tikhonov regularization. To reduce the ringing effects, Lagendijk et al. [18] made
an extension of it by making use of the theory of the projections onto convex
sets [3], and the concepts of norms in a weighted Hilbert space. A weighted
space-adaptive regularization equation then seeks to minimize the following cost
function as shown in Eq. (2),

1
2

∑
x∈Ω

w1(h(x) ∗ f(x)− g(x))2 +
1
2
λ
∑

x∈Ω
w2(c(x) ∗ f(x))2 = min (2)

where the cost function is minimized based on the degraded image g(x), the
ideal image f(x), and the PSF h(x). c(x) is a regularization operator. λ is a
regularization parameter that controls the trade-off between the fidelity to the
observation and smoothness of the restored image. Normally, real images are
piecewise smooth and additive noise is not spatially stationary. The trade-off
should be spatially adaptive according to the local properties of image and noise.
The ringing artifacts and noise magnification can be roughly controlled by λ
firstly. Weights w1 and w2 can then reduce these two effects adaptively to achieve
better visual evaluation.

2.2 Solution Space of Blur Kernel Priors

We define a set Θ as a solution space of Bayesian estimation which consists of
primary parametric PSF models as Θ = {hi(θ), i = 1, 2, 3, ..., N}. hi(θ) repre-
sents the ith parametric PSF with its own parameters θ, and N is the number
of PSFs.

hi(θ) =

⎧⎨⎩
h1(θ) ∝ h(x, y;Li, Lj) = 1/K, if |i| ≤ Li and |j| ≤ Lj

h2(θ) ∝ h(x, y) = K exp(−x2+y2

2σ2 )
h3(θ) ∝ h (x, y, d, φ) = 1/d, if

√
x2 + y2 ≤ D/2, tanφ = y/x

(3)
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h1(θ) is a Pillbox blur kernel with a length of radius K. h2(θ) is a Gaussian PSF
and can be characterized by parameters with its variance σ2 and a normalization
constant K. h3(θ) is a simple linear motion blur PSF with a camera direction
motion d and a motion angle φ. The other blur structures like out-of-focus and
uniform 2D blur [19], [7] are also built in the solution space as a priori informa-
tion. The solution space is then constructed by a set of predefined parametric
PSFs for estimation in the Bayesian MAP Estimation.

2.3 Estimation in the Image Domain and the PSF Domain

In the image domain, the cost function of image estimate can be minimized iter-
atively in the weighted space-adaptive regularized formulation. In this equation,
p(g|f̂ , h) follows a Gaussian distribution and p(f) is prior knowledge with some
constraint conditions.

L(f̂(g,h)) = arg max
f̂

[p(g|f̂ , h)p(f̂)] (4)

=
1
2

∑
x∈Ω

w1(g(x) − h(x) ∗ f(x))2 +
1
2
λ
∑

x∈Ω
w2(c1(x) ∗ f(x))2

where p(g|f̂ , h) ∝ exp
{
− 1

2

∑
x∈Ω w1(g(x) − h(x) ∗ f(x))2

}
and the prior of im-

age is p(f̂) ∝ exp
{
− 1

2λ
∑

x∈Ω w2(c1(x) ∗ f(x))2
}

. The first term is a fidelity
term and the second is a smoothing term. Direct minimization of the cost func-
tion would lead to excessive noise magnification due to the ill conditioning of
blur operator. A smoothness constraint c1(x) is an regularization operator and
usually is a high-pass filter.

In the PSF domain, PSF can be seen as maximizing the conditional prob-
ability. However, manipulation of probability density functions (PDF) of PSFs
in Bayesian estimation is difficult. A PSF estimation of a given image must be
made firstly to attribute an accurate initial value in the regularization. The pro-
posed prior solution space supports the parametric structured PSFs in Bayesian
estimation. One more cost constraint for the estimated PSF is then added in the
equation. A new cost function for PSFs is following:

L(ĥ(g,f)) = arg max
ĥ

{
p
(
g
∣∣∣ĥ, f ) pΘ

(
ĥ
)}

=
1
2

∑
x∈Ω

w1(g(x)− h(x) ∗ f(x))2

+
1
2
β
∑

x∈Ω
w3(c2(x) ∗ h(x))2 +

1
2
γ
∑

x∈Ω
w4|ĥ− ĥf |2} (5)

where pΘ(ĥ) ∝ exp
{ 1

2β
∑

x∈Ω w3(c2(x) ∗ h(x))2
}
+exp
{

1
2γ
∑

x∈Ω w4|ĥ− ĥf |2
}

is the prior knowledge and need to be first computed . ĥ is the current PSF of
a given image and ĥf is the final result of PSF for this given image. Since both
the ideal and the observed image represent nonnegative intensity distributions,
the PSF coefficients are h(x) ≥ 0. Furthermore, the image formation system
normally does not absorb or generate energy, the PSF satisfies

∑
x∈Ω h (x) =

1.0. The probability of the current PSF is computed in a Gaussian distribution
density,
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hi(θ∗) ∝ argmax
θ

log p
(
hi(θ)
∣∣∣ĥ) (6)

= arg max
θ

log

{
1

(2π)
LB
2 |
∑

dd|
1
2
. exp
[
−1

2

(
hi (θ)− ĥ

)T∑−1
dd

(
hi (θ)− ĥ

)]}

We define the likelihood of the current PSF ĥ and in resembling the ith para-
metric model hi(θ), hi(θ) ∈ Θ. The first subscript i denotes the index of the
blur kernel. The modeling error d = hi(θ) − ĥ is assumed to be a zero-mean
homogeneous Gaussian distributed white noise process with covariance matrix∑

dd = σ2
dI independent of image f(x, y). LB is the support size of the blur.

The likelihood of the current PSF lij(ĥ) is computed using a Euclidean dis-
tance between the current PSF ĥ and the corresponding probability model
hi(θ∗), lij(ĥ) =

∑N
i=1 exp{−|hi(θ∗)− ĥ|2/[2tr(

∑
dd)]}. Using the K-NN con-

cept [9], we use a weighted mean filter to find the likelihood of ĥ belong-
ing to the ith parametric blur model. The mean value of likelihood lm(ĥ) is
lij(ĥ) weight-divided by d(ĥ, ĥj). d(ĥ, ĥj) is the Euclidean distance between ĥ

and its neighbor ĥj . The weighted mean likelihood lm(ĥ) should depend on
the likelihood value of the blur manifold lij(ĥ) and the distance between ĥ

and its neighbor PSF ĥj . The final PSF ĥf is obtained from the paramet-
ric PSF models using ĥf = [l0(ĥ)ĥ + ĥi(θ∗)

∑C
m=1 lm(ĥ)]/[

∑C
m=1 lm(ĥ)], where

l0(ĥ) = 1 −max(lm(ĥ)), m = 1, ..., C. The optimal parametric model ĥi(θ∗) is
computed based on the estimated ĥ. In reality, most blurs satisfy up to a certain
degree of parametric structure. The main objective is to assess the relevance of
current blur ĥ with respect to parametric PSF models hi(θ), and integrates these
prior knowledge progressively into the computation scheme. If the current blur
ĥ is close to estimated ĥf , that means ĥ belongs to a parametric blur structure.
Otherwise, the current blur ĥ may to not belong to the predefined PSF priors.

3 Alternating Minimization

The objective of the convergence procedure is to minimize double cost func-
tions by combining the cost functions of image and PSF. These two L2 norm
regularizations are shown to be quadratic with positive semi-definite Hessian ma-
trices. The two cost functions are convex functions which ensures the existence,
uniqueness and stability of the convergence value in their respective domains.
We propose to solve the equation as follows:

min
ĥ,f̂

L(f̂ , ĥ) =
1
2

∑
x∈Ω

w1(g(x)− h(x) ∗ f(x))2 +
1
2
λ
∑

x∈Ω
w2(c1(x) ∗ f(x))2

+
1
2
β
∑

x∈Ω
w3(c2(x) ∗ h(x))2 +

1
2
γ
∑

x∈Ω
w4(ĥ− ĥf )2 (7)

The resulting method attempts to minimize double cost functions subject to
constraints such as non-negativity conditions of the image and energy preserva-
tion of PSFs. During the implementation, λ, β, γ including diagonal matrices
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assign different emphases on the balance of the convergent PSF and image. The
weights are calculated according to [3], [6], [18]: w1 = 1, if data at x is reliable,
otherwise w1 = 0; the image weight w2 = 1/[1+α2σ̂

2
f (x)], σ̂2

f (x) is local variance
of the observed image at x in a given window, and α2 = 1000/σ2

max is a tuning
parameter designed so that w2 → 1 in the uniform regions and w2 → 0 near the
edges. As to the weight of PSF, we note that the initial PSF is estimated previ-
ously, we take w3 = 1, w4 = 1. The cost function of this equation is minimized
in an alternating optimization approach via conjugate gradient descent.

The alternating minimization (AM) decreases complexity. Derived from
Eq. (7), we get two partial differential equations p(x) = ∂L(f̂ , ĥ)/∂f̂(x) and
q(x) = ∂L(f̂ , ĥ)/∂ĥ(x). The AM procedure is,

1. Initialization: f̂0(x) = g(x), ĥ0 (x) is an estimated parametric model ĥf .
2. nth iteration: f̂n(x) = arg minLf (f̂ |ĥn−1, g), under a fixed h(x).
3. (n+1)th iteration: ĥn+1 = argminLh(ĥ|fn, g), h(x) ≥ 0, under a fixed f(x).
4. If convergence is reached, then stop the iteration.

The global convergence of the algorithm to the local minima of cost functions
can be established by noting the two steps 2 and 3. Since the convergence with
respect to the PSF and the image are separated and optimized alternatively,
the flexibility of this algorithm allows us to use conjugate gradient algorithm for
computing the convergence. Conjugate gradient method utilizes the conjugate
gradient direction instead of local gradient to search for the minima. Therefore,
it is faster and also requires less memory storage when compared with quasi-
Newton method. To get a convergent value of PSF, let v(x) be the component
at x of the conjugate vector. The conjugate gradient descent is given by the
following:

– Initialize the conjugate vector from q(x): v0(x) = −q0(x)
– Step size for updating the PSF in k iterations:

αk = [qk(x)]2/[(vk ∗ f̂k)2 + β(c2 ∗ vk)2 + γ(ĥ− ĥf )2]

– Update the PSF: ĥk+1(x) = ĥk(x) + αkvk(x)
– Step size for updating the conjugate vector: βk = [qk+1(x)]2/[qk(x)]2

– Update the conjugate vector: vk+1(x) = −qk+1(x) + βkvk(x)

The above steps should be stopped after n steps. To compute the image, the
conjugate gradient descent algorithm is described as:

– Initialize the conjugate vector: u0(x) = −p0(x)
– Step size for updating the image in k iterations:

αk = [pk(x)]2/[(ĥk ∗ uk)2 + λ(c1 ∗ uk)2]

– Update the estimated image f̂k+1(x) = f̂k(x) + αkuk(x)
– Step size for updating the conjugate vector: βk = [pk+1(x)]2/[pk(x)]2

– Update the conjugate vector: uk+1(x) = −pk+1(x) + βkuk(x)
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If an image has M × N pixels, the above conjugate method will converge to
the minimum of Lf (f̂ |g, h) after m ' MN steps based on partial differential
conjugate gradient method. The update of weights w1, w2, w3 and w4 is done
after the conjugate gradient descent algorithm in order not to influence the
conjugacy of the descent vectors. Real images or video have only a few very
large frequency components and the others are very close to zero. Thus the
Hessian matrices become sparse, and only small n = (5 − 15) iterations would
be sufficient for the convergence.

4 Experiments and Discussion

4.1 Choosing Parameters for Regularization

The choice of regularization parameters is crucial. We use L-curve [17] due to
its robustness for correlated noise. It is a graphical tool for analysis of dis-
crete ill-posed problems in a log-log plot for all valid parameters using the
compromise between minimization of these quantities. The novelty is that no
prior knowledge about the properties of the noise and the image (other than
its ”smoothness”) is required, and required parameters are computed through
this approach. There is a relatively general scale relation between λ and β.
It is formulated as β/λ =

∑
x∈Ω f̂ (x)maxx∈Ω f̂ (x). The order-of-magnitude

of two parameters are given using the normalized local variance of image and
PSF, λi = 0.5/(1 + 103var(f(i)), βi = 106/(1 + 103var(h(i)) and γi = 106/(1 +
103var(d(i)), where d = ĥ− ĥf . A meaningful measure called normalized mean
square-error (NMSE) is used to evaluate the performance of the identified blur,
NMSE = (

∑
x

∑
y (h(x, y)− ĥ(x, y))2)1/2/(

∑
x

∑
y h(x, y)). The closed PSFs

of NMSE normally has a range [0, 0.1] depending on the different PSFs.

4.2 Blind Deconvolution of Degraded Images and Video Objects

To evaluate this algorithm, the performance of the approach is investigated by
using simulated blurred image and real video at different signal-to-noise ra-
tios. The performance of image restoration is measured by SNR improvement
(ISNR) and formulated as ISNR = 10 log10(||f − g||2/||f − f̂ ||2) in decibels
(dB). Simulated experiments are performed in standard images. The identified
PSFs and restored images are illustrated in Fig. (2). A MRI image has been
degraded by three different blur with pure Gaussian quantization noise SNR
20dB. The proposed algorithm was applied to the degraded images. The final
restored image and the identified blur are given in Fig. (2), respectively. It can
be observed that the overall textured and edge region of the image has been
recovered.

The second experiment presents blind deconvolution of a degraded image to
demonstrate the flexibility of the proposed algorithm. The original ”Lena” image
has a dimension of [256, 256] with 256 gray levels. It was degraded by 20 pixel
linear motion kernel and additive pure Gaussian noise SNR 30dB in Fig. (1)
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(a) (b) (c) (d) 

Fig. 1. Example of blind image restoration and surface, 512 × 512. (a) Blurred noisy
image. (b) Corresponding surface. (c) Restored image. (d) Corresponding surface.

(a) (b) (c) (d) (e) (f)

Fig. 2. (a)(b) Blurred image and result of blind deconvolution, ISNR = 5.29dB. (c)(d)
Blurred image and result of blind deconvolution, ISNR = 5.27dB. (e)(f) Blurred image
and result of blind deconvolution, ISNR = 4.79dB. image size 231 × 241 pixel.

(a) (b) (c)

Fig. 3. (a) Blurred noisy image, 512 × 512 pixel. (b) Restored image based on Lucy-
Richardson algorithm 100 iterations with known PSF, ISNR=5.35 dB. (c) Blind image
deconvolution using our algorithm, ISNR = 6.16 dB.

Table 1. ISNR results on test data

SNR SNR IMPROVEMENT (dB)
(dB) Motion blur Gaussian blur Uniform

5x5 7x7 5x5 7x7 5x5 7x7
30 5.32 4.98 5.32 4.63 5.76 5.72
noiseless 5.88 5.12 5.56 4.86 5.87 5.97

and Fig. (3). Comparison between Fig. (3)(b) and (c) reveals the good perfor-
mance of our algorithm. The ringing reduction is efficient while preserving the
fine details of eyes and feather. Fig. (3) shows the efficiency and accuracy of
our proposed algorithm. The third experiment tests the robustness of the pro-
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Fig. 4. (a)(d)Real video frames, 1280 × 960 pixel. (b)(e) Blurred parts in video.
(c)(f)Results of blind deconvolution for blurred parts.

posed method in different blurs. The ”Lena” is simulated in different degraded
images. Table 1 summarizes the results and demonstrates that the method is
effective in restoring images under different sizes and types of blur with differ-
ent noise levels. The results of noiseless blurred images are better than noisy
images.

In this experiment, we illustrate the capability of the proposed algorithm to
handle real-life video data degraded by non-standard blur in Fig. (4). The video
frames are captured from films or video data. The degraded video objects are
separated into RGB colour channels and each channel is processed accordingly.
Based on the estimated PSFs and parameters, piecewise smooth and accurate
PSF model helps to suppress the ringing effects.

Most regularization methods like L1, L2 norms and the Mumford-Shah func-
tional do not necessarily imply better human perceptual sense. Depending on
the nature and magnitude of the blur degradation and noise, the initial value
for iteratively determining the optimum estimate is also crucial for the final
result. The proposed method support accurately initial PSF value so that the
L2 norm regularization can achieve better results. Although the L2 norm regu-
larization, compare to L1 norm, has rapid convergence of high frequency parts
like edges and textures, the adaptive weights technique based piecewise smooth
and ringing reduction can compensate such image reconstruction error. We have
not addressed the question of recovering the large size image, the ability of
the algorithm to recover images of moderate size with different blurs has been
demonstrated.
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5 Conclusion

The paper presents a weighted space-adaptive regularized Bayesian approach for
blind blur identification and image restoration. First, the approach improves the
accuracy of PSF estimation. Bayesian MAP estimation can then speed up the
minimization of related cost functions progressively based on the initialization
of accurate prior models. The double cost functions are then projected and con-
verged to the image and the blur domain respectively and precisely. During the
alternating minimization procedure, piecewise smooth mechanisms of both im-
age and PSF is adopted to improve the quality of restoration. It is clear that the
proposed method are instrumental in blind image deconvolution and can easily
be extended in practical environments.
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Abstract. A novel video object segmentation method is proposed which
aims at combining color and motion information. The model has a multi-
layer structure: Each feature has its own layer, called feature layer, where
a classical Markov random field (MRF) image segmentation model is de-
fined using only the corresponding feature. A special layer is assigned to
the combined MRF model, called combined layer, which interacts with
each feature layer and provides the segmentation based on the com-
bination of different features. Unlike previous methods, our approach
doesn’t assume motion boundaries being part of spatial ones. Therefore
a very important property of the proposed method is the ability to detect
boundaries that are visible only in the motion feature as well as those
visible only in the color one. The method is validated on synthetic and
real video sequences.

1 Introduction

Video object segmentation consists of labeling pixels which are associated with
different moving objects or parts. Most of the existing approaches tackle the
problem by assigning a label to each pixel based on its estimated motion vector.
This can be achieved in different frameworks like MRF modeling [1], mixture
modeling [2], etc. . . The evaluation of segmentation results depends on many
factors and is inherently subjective. However, many applications like MPEG-4
encoding, require that detected boundaries align with actual object boundaries.
Due to the aperture problem and occlusions, motion information alone may not
provide such high quality contours.

There has been some attempt to combine different features (like color and
motion) in order to improve segmentation quality. In [3], color, motion and
spatial information is used in a joint probabilistic model. Since features are
assumed to be independent, the joint probability is split into a weighted product
of the corresponding three terms. The weights assigned to the color and motion
part are computed as a confidence measure, which is basically derived from
the probability of the motion part. The optimal segmentation is then obtained
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via Maximum A Posteriori (MAP) estimation. In [4], a region based approach is
proposed which relies on the assumption that motion edges are a subset of spatial
edges. Therefore the method first detects regions using color and then motion
segmentation is based on these regions. However, the human visual system is
not treating different features sequentially. Instead, as pointed out by Kersten
etal. [5], multiple cues are perceived simultaneously and then they are integrated
by our visual system in order to explain the observations. Therefore different
image features has to be handled in a parallel fashion. In this paper, we attempt
to develop such a model in a Markovian framework. A very important property
of our approach is that it doesn’t assume motion boundaries being part of spatial
ones. Therefore it is able to detect boundaries that are visible only in the motion
feature as well as those visible only in the color one.

2 Multi-layer Segmentation Model

Our model consists of 3 layers. At each layer, we use a first order neighborhood
system and extra inter-layer cliques (Fig. 1). Let us denote the color layer by
Sc, the motion layer by Sm and the combined layer by Sx. All layers are of the
same size. Our MRF model is defined over the lattice S = Sc ∪ Sx ∪ Sm. For
each site s, the region-type (or class) that the site belongs to is specified by a
class label, ωs, which is modeled as a discrete random variable taking values in
Λ = {1, 2, . . . , L}. The set of these labels ω = {ωs, s ∈ S} is a random field, called
the label process. Furthermore, the observed image features (color and motion)
are supposed to be a realization F = {�fs|s ∈ Sc ∪ Sm} from another random
field, which is a function of the label process ω. Basically, the image process
F represents the deviation from the underlying label process. Thus, the overall
segmentation model is composed of the hidden label process ω and the observable
noisy image process F . Our goal is to find an optimal labeling ω̂ which maximizes
the a posteriori probability P (ω | F), that is the maximum a posteriori (MAP)
estimate [6]: arg maxω∈Ω P (ω | F) = argmaxω∈Ω

∏
s∈S P (�fs | ωs)P (ω), where Ω

denotes the set of all possible labellings. According to the Hammersley-Clifford
theorem [6], P (ω | F) follows a Gibbs distribution:

   

Inter−layer Cliques

Intra−layer Cliques

Motion

Combined

Color

Fig. 1. Multi-layer MRF model
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P (ω | F) =
exp(−U(ω))

Z(β)
=
∏

C∈C exp(−VC(ωC))
Z(β)

(1)

where U(ω) is called the energy function, Z(β) =
∑

ω∈Ω exp(−U(ω)) is the nor-
malizing constant and VC denotes the clique potential of clique C ∈ C having
the label configuration ωC . In our model, the energy function can be further
decomposed into the sum of the layer energies: U c + Um + Ux. Note that the
energies of singletons (ie. cliques of single sites s ∈ S) directly reflect the proba-
bilistic modeling of labels without context, while higher order clique potentials
express relationship between neighboring pixel labels. It is clear from Eq. (1)
that the MAP estimation is equivalent to finding the global energy minimum
of U(ω) = U c + Um + Ux. Since U(ω) is a non-convex function, we have to
use Simulated Annealing [6] or the ICM algorithm [7] for the minimization. In
the remaining part of this section, we will define these energy functions for each
layer (see Eq. (2), Eq. (5), Eq. (6)).

2.1 Color Layer

On the color layer, we use perceptually uniform CIE-L∗u∗v∗ color values where
color differences can be measured by Euclidean distance. The observed image
Fc = {�fc

s |s ∈ Sc} consists of the three spectral component values (L∗,u∗,v∗)
at each pixel s denoted by the vector �fc

s . We assume that P (�fc
s | ωs) follows a

Gaussian distribution, the classes λ ∈ Λc = {1, 2, . . . , Lc} are represented by the
mean vectors �μc

λ and the covariance matrices Σc
λ. The class label assigned to a

site s on the color layer is denoted by ψs. The energy function of the so defined
MRF layer has the following form:

U c = U(ψ,Fc) =
∑
s∈Sc

Gc(�fc
s , ψs) + β

∑
{s,r}∈C

δ(ψs, ψr) + ρc
∑
s∈Sc

V c(ψs, η
c
. ) (2)

where Gc(�fc
s , ψs) denotes the following log Gaussian:

ln(
√

(2π)3 | Σc
ψs
|) +

1
2
(�fc

s − �μc
ψs

)Σc
ψs

−1(�fc
s − �μc

ψs
)T (3)

δ(ψs, ψr) = 1 if ψs and ψr are different and −1 otherwise. β > 0 is a parameter
controlling the homogeneity of the regions. As β increases, the resulting regions
become more homogeneous. The last term (V c(ψs, η

c
. )) is the inter-layer clique

potential which will be defined later in Section 2.4.

2.2 Motion Layer

Herein, we will present both an optic flow based model as well as a motion
compensated color matching method.

Flow-Based Model. For this segmentation model, we use optical flow data
at the motion layer. The flowfield is obtained via the algorithm proposed in [8],
which provides smooth optic flow fields necessary for our MRF model. We then
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model each motion label by a Gaussian pdf which indicates a normally dis-
tributed noise around the mean flow. Therefore the MRF model itself is quite
similar to the one outlined in the previous section. Note that this kind of mod-
elization implicitly assumes translational motion. It is not too difficult, however,
to extend our model to use parametric motion models instead of Gaussians. One
such model is presented next.

Motion Compensated Model. Each region’s motion is modeled by an affine
model given by:

vx(i, j) = ax0 + axxi + axyj

vy(i, j) = ay0 + ayxi + ayyj (4)

where vx(i, j) (resp. vy(i, j)) denotes the X (resp. Y ) component of the flow
vector at pixel (i, j). If we know the flow �v at each pixel then we can warp the
reference frame into the second view. When the flows are correct then the color
differences between the warped and real second view must be low. Assuming
n different motions in a frame, we can assign a motion label to each pixel by
minimizing the warped (or motion compensated) color difference. However, we
also have to deal with occlusions. Clearly, occluded pixels would have a high color
difference as the warped pixel is not visible in the second frame. Therefore we
allocate an additional label λo at the motion layer for occlusions. Putting these
considerations together, we get the following energy function at the motion layer:

Um = U(φ, I, I ′) =
∑

s∈Sm,φs =λo

||I(s)− I′(�v(s))||2 +
∑

s∈Sm,φs=λo

V (λo)

+ β′ ∑
{s,r}∈C

δ(φs, φr) + ρm
∑

s∈Sm

V m(φs, η
m
. ) (5)

where I and I′ are the reference and second frames respectively, and V (λo)
denotes the constant penalty for occlusion. The second and third terms are the
intra- and inter-layer potentials similar to the color layer. In our experiments,
we have estimated affine motion parameters using the method from [9].

2.3 Combined Layer

The combined layer only uses the motion and color features indirectly, through
inter-layer cliques. A label consists of a pair of color and motion labels such
that η = 〈ηc, ηm〉, where ηc ∈ Λc and ηm ∈ Λm. The set of labels is denoted
by Λx = Λc × Λm and the number of classes Lx = LcLm. Obviously, not all
of these labels are valid for a given image. Therefore the combined layer model
also estimates the number of classes and chooses those pairs of motion and color
labels which are actually present in a given image. The energy function of the
combined layer is of the following form:

Ux = U(η) =
∑
s∈Sx

(Vs(ηs) + γcV c(ψ., η
c
s) + γmV m(φ., η

m
s )) + α

∑
{s,r}∈C

δ(ηs, ηr)

(6)
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where Vs(ηs) denotes singleton energies defined as

Vs(ηs) = R((10Nηs)
−3 + P(L)) (7)

The singleton potential controls the number of classes at the combined layer:
(10Nηs)−3 penalizes small classes (Nηs is the percentage of the sites assigned to
class ηs), while P(L) includes some prior knowledge about the number of classes.
Currently P(L) is expressed by a log Gaussian term (similar to the one in Eq. (3))
with mean value L̂ (basically an initial guess) and variance σ (confidence in the
initial guess). R is simply a weight of this term, we set it to 0.5 in our tests.

The last term of Eq. (6) corresponds to second order intra-layer cliques which
ensures homogeneity of the combined layer. α has the same role as β in the color
layer model and δ(ηs, ηr) = −1 if ηs = ηr, 0 if ηs 
= ηr and 1 if ηc

s = ηc
r and

ηm
s 
= ηm

r or ηc
s 
= ηc

r and ηm
s = ηm

r . The idea is that region boundaries present
at both color and motion layers are preferred over edges that are found only at
one of the feature layers.

2.4 Inter-layer Interactions

At any site s, we have an inter-layer clique C5 consisting of five interactions
between two layers: Site s interacts with the corresponding site on the other layer
as well as with the 4 neighboring sites two steps away (see Fig. 1). Depending on
where is the site s, V c(ψ., η

c
s) (s is on the combined layer) and V c(ψs, η

c
. ) (s is

on the color layer) denote the inter-layer clique potential of the following form:

V c(ψ., η
c
s) =

∑
{s,r}∈C5

WrD
c(ψr, η

c
s); V c(ψs, η

c
. ) =

∑
{s,r}∈C5

WrD
c(ψs, η

c
r) (8)

where Dc(ψr, η
c
s) =| Gc(�fc

r , ψr) − Gc(�fc
s , η

c
s) | (see Eq. (3)). V m(φ., η

m
s ),

V m(φs, η
m
. ) and Dm(φr , η

m
s ) are defined in a similar way using motion fea-

tures and corresponding singleton energies. Wr is the weight of the interaction
{s, r} ∈ C5. We assign higher weight (0.6) to the corresponding site whereas
smaller weights (0.1 each) to the other 4 neighboring sites. The latter 4 sites
help to ensure homogeneity on the combined layer (see Fig. 1). Note that Dc

and Dm equals to the difference of the first order potentials at the correspond-
ing feature layer. Clearly, the difference is 0 if and only if both the feature layer
and the combined layer has the same label. Otherwise it is proportional to the
energy difference between the two labels. γc (resp. γm) in Eq. (6) controls the
influence of the inter-layer cliques. A higher value will increase the importance
of the information coming from the feature layers. Furthermore, ρc in Eq. (2)
and ρm in Eq. (5) controls the influence of the combined layer to the color and
motion layers respectively. Therefore, depending on the ratios γc/ρc and γm/ρm,
one can balance the flow of information between the combined and feature layers.

3 Experiments

The proposed algorithm has been tested on real and synthetic video sequences.
The computing time was around 20 sec on a Pentium4 3GHz on 170 × 140
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Original frame Optic flow Color coded optic flow

Multilayer Color only Motion only

Fig. 2. Results of color only, motion only, and combined models using the flow-based
motion model. Segmented regions are sown as a cartoon image (region pixels are dis-
played using the average color of their region) in the second row while boundaries are
overlayed on the original image in the third row.

frames. Much of this CPU time is spent by the iterative optimization process
(Simulated Annealing [6] or ICM [7]). However, such algorithms are known to
be highly parallelizable allowing a near real time implementation on special
hardware (see [10] for an example). We also compare the results to motion only
and color only segmentation (basically a monogrid model similar to the one
defined for the feature layers but without inter-layer cliques).

Parameter Settings. Although we do not consider parameter estimation in
this paper, it is relatively easy to extend our method to handle this issue. The
so called hyper parameters (the different weights of intra- and inter-layer clique-
potentials) are less sensitive to the input data. We have found that one setting
works for all tested sequence. Hence the only real problem is the estimation of the
number of regions and the region parameters (Gaussian mean and covariance or
the affine motion parameters). Since we are working on video sequences, one can
naturally reuse parameters from previous frames (with some slight adjustment).
As for an initial setting of the first frame, mean shift clustering has been adopted
with success by many researchers [11, 12]. Once initial clusters are available,
one can adopt an adaptive segmentation procedure where region parameters
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Original frame Optic flow Color coded optic flow

Multilayer Color only Motion only

Segmentation result ob-
tained by the algorithm
of Khan & Shah [3]. Note
that the cartoon image is
randomly colored.

Fig. 3. Results of color only, motion only, and combined models using the flow-based
motion model. Segmented regions are shown as a cartoon image (region pixels are
displayed using the average color of their region) in the second row while boundaries
are overlayed on the original image in the third row. The last row presents the results
of the method from [3].

are regularly updated during the segmentation process. We have successfully
applied such a technique for color textured image segmentation [12]. In the
following experiments, the mean vectors and covariance matrices as well as the
affine motion parameters were computed over representative regions selected by
the user. The number of motion and color classes is known a priori but classes
on the combined layer are estimated during the segmentation process.
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Original frame #1 Original frame #2 Multilayer

Color only Motion only

Fig. 4. Results of color only, motion only, and combined models using the motion
compensated motion model. Segmented regions are sown as a cartoon image (region
pixels are displayed using the average color of their region) in the first column while
boundaries are overlayed on the original image in the second column of the result
images.

Original frame #1 Original frame #2 Multilayer

Fig. 5. Results of color only, motion only, and combined models using the motion
compensated motion model. Segmented regions are sown as a cartoon image (region
pixels are displayed using the average color of their region) in the first column while
boundaries are overlayed on the original image in the second column of the result
images.

Flow-Based Model. Fig. 2 and Fig. 3 show some segmentation results using
optical flow data and Gaussian motion model. In Fig. 2, note that the head of the
men can only be separated from the background using motion features. Clearly,
the multi-layer model provides significantly better results compared to color only
and motion only segmentations. See Fig. 3 to compare the performance of the
proposed method with the one from [3] on the Mother and Daughter standard
sequence: Some of the contours are lost by [3] (the sofa, for example) while our
method successfully identifies region boundaries. In particular, our method is
able to separate the hand of the mother from the face of the daughter in spite of
their similar color. This demonstrates again that the proposed method is quite
powerful at combining motion and color features in order to detect boundaries
visible only in one of the features.
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Motion Compensated Model. In Fig. 4 we present the results of a synthetic
sequence using the motion compensated model. The image contains regions vis-
ible only in the color layer and boundaries visible only in the motion feature.
The two white regions (one with a small painted area) are moving: the upper
region is translating while the lower one is rotating around its center. Note that
the moving objects are touching hence separation without motion information
is not possible. Observe also that the method has detected the occluded areas
(these boundaries are drawn in black). In the final segmentation, these occluded
areas can be assigned to a neighboring region based on its color label. This way,
a perfect segmentation can be obtained. In Fig. 5, we have used the same model
on the foreman standard sequence. Note that the head of the men is moving
hence his face is correctly separated from his neck (which is not moving). On
this image, we can also see the weak point of the algorithm: when neither the
color nor the motion layer can distinguish an object then it cannot be segmented.
This is why the men’s hat has been merged with the background: the colors are
similar (white) and motion is almost impossible to detect because of the smooth
homogeneous color of the hat.

4 Conclusion

We have proposed a novel multi-layer MRF segmentation model which success-
fully combines color and motion features. Although the current implementation
doesn’t estimate model parameters (except number of classes on the combined
layer), it is possible to use an adaptive segmentation technique [12] to tackle
this problem. Further research will concentrate on this issue as well as on using
motion history in our data model.
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Abstract. In this paper, we present a novel scene interpretation method
by unified modeling of visual context using a hierarchical graphical model.
Scene interpretation through object recognition is difficult due to several
sources of ambiguity (blur, clutter). We model the visual context of scene,
object, and part to disambiguate them during recognition. A precisely
designed hierarchical graphical model can represent the contexts in a
unified way. We also propose a new inference method, particle-based be-
lief propagation, optimized to scene interpretation in this hierarchical
graphical model. Such an inference method suits the high-level context
of scene interpretation. In addition, our core inference is so general that
it can be used in any complex inference problems. Experimental results
validate the power of the proposed model of visual context to solve the
ambiguities in scene interpretation.

1 Introduction

The main task of scene interpretation in high level vision is to identify and de-
termine the pose of 3D objects within a 2D image such as Fig. 1(a). A scene
usually contains several types of 3D object in front of a complex background.
The conventional local, feature-based object recognition methods [1][2][3], which
use only individual object information, may work under high-quality viewing
conditions, however, such methods often generate false alarms in ambiguous en-
vironments. In real, uncontrolled working environments, the ambiguities of scene
interpretation originate from image blurring, background clutter and similarity
of objects. Camera images can be blurred by short image acquisition time and
large distances. Features from the background or other objects can cause false
matching, which degrades object recognition performance. Previous works tried
to remove the influence of background clutter by stereo matching-based figure-
ground segmentation [4], distance ratio [1]. Another approach incorporates the
background information rather than removing it. Torralba et al. propose a sim-
ple Bayesian formula using background features [5]. They get prior distribution
of object label, position, and scale from background features. From the inter-
pretation of many scene-images, we find a very interesting fact: many objects
appear together and are strongly related to specific scenes.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3852, pp. 963–972, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a)

Exterior context

Scene Context

Part Context

Object Context

Pixel Context

Interior context

Exterior context

Scene Context

Part Context

Object Context

Pixel Context

Interior context

(b)

Fig. 1. (a) Scene interpretation result of our system: Labeled part, object and place
information is overlayed. (b) Four types of visual context such as scene, object, part,
and pixel context are interrelated within a scene.

The relational information between scene and objects, and between objects,
provides visual context in vision. Visual context can alleviate the recognition
problem enormously. If we view only the separated objects in Fig. 2(a), we
cannot discriminate between them because image blurring gives them similar
shapes and appearances. However, if we view Fig. 2(b), we can recognize that
the left object is a hair drier in a bathroom, and the right object is a drill in
a workshop. Objects are usually defined by function and relation. Objects are
associated with some scenes more than others, just as seagulls are associated
with the sea. Although there are many kinds of visual context, we confine them
to exterior context (scene,object context) and interior context (part, pixel con-
text) as Fig. 1(b). According to cognitive experiments performed by Bar and
Ullman [6], a spatial context between parts has substantial effect on recognition
performance. Carbonetto proposed MRF-based modeling of spatial context in
object layer only [7].

The key idea of this paper is to model this kind of relational information
and use it to resolve ambiguities. Section 2 explains the details of the compu-
tational model of context in scene interpretation. Section 3 and 4 deal with an
inference and a learning method respectively. Section 5 details the specific im-
plementations. We validate the proposed method through large-scale experiment
in Section 6 and conclude in Section 7.

(a) (b)

Fig. 2. (a)We cannot discriminate which one is a drier, which one is a drill without
scene context. (b) We can discern them more accurately with the scene context [8].
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2 Hierarchial Graphical Model of Visual Context

In this section, we present a novel framework, incorporating multiple visual con-
texts, to improve the efficiency and reliability of object recognition in ambiguous
environments. Pixel context is used to build the visual features of local image
patches. Spatial relations of each pixel’s edge orientation, edge magnitude and
color are encoded to form visual features. Part context prompts expectations for
neighboring parts and objects. Object context provides expectations of neigh-
boring objects and scene information such as place. Scene context provides the
priors of object existence. These contexts interact with one another and exchange
contextual information to provide reliable recognition results.

A graphical model is a suitable tool for dealing with such a complex system
description. A graphical model is simply a marriage between probability the-
ory and graph theory [9]. Nodes represent random variables, and the arcs or
edges represent probabilistic interaction between variables. This can solve un-
certainty and complexity problems simultaneously by compact representation of
joint probability distribution. We have to estimate multiple variables, such as
part identity and pose (xP ), object identity and pose (xO), and scene properties
like place identity (xS). If we model this problem using a simple Bayesian frame-
work with a simple directed graphical model, as Fig. 3(a), then we can represent
the joint probability distribution in a factored form, as in equation (1) (This is
conventional approach).

p(xS , xO, xP , I) = p(I|xP )p(xP |xO)p(xO |xS)p(xS) (1)

Although this graphical model can represent the joint probability density in a
simpler form, it cannot model the whole visual context correctly. The first prob-
lem of the model is that it cannot represent the hierarchical interaction of each
layer explicitly. Only top-down contexts are represented using directed arrows.
However, in practice, bottom-up contextual information also exist. As indicated
in [8], recognized objects can activate a scene context, and a recognized scene
can also activate object recognition. Objects and object parts have properties of
bidirectional exchange similar to the scene-objects case. The second problem is
that neighboring contexts of parts and objects are not reflected in this graphical
model. As Bar and Ullman showed when they demonstrated the importance of
spatial relation in object recognition [6], we have to insert the spatial relation
context or neighbor context in the part and object layer. Based on these cog-
nitive facts, we solve the first problem by introducing an undirected graphical
model, such as Markov Random Field (MRF), a generalized version of directed
graphical model. MRF can more accurately represent the bidirectional property
of each layer. We solve the second problem by adding more spatial nodes to
reflect the neighboring context in the part and object layer.

Fig. 3(b) shows the refined graphical model for multiple context-based ob-
ject recognition. This graphical model can represent all the contexts properly.
Contexts are reflected on two types of graphical representations. The top-down
and bottom-up context of hidden variables is handled in tree-structured graph-
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Fig. 3. (a) Simple Bayesian network can model only top-down influences. (b) Proposed
hierarchical graphical model (HGM) model can represent bottom-up, top-down and
neighboring context simultaneously. (c) An object node gathers three kinds of messages.

ical representation (here, red thick lines). In addition, sensory evidence is rep-
resented by thin black lines. The neighboring context of parts and object is
reflected on planar loop structured graphic (here, dotted thick blue lines). The
black nodes are pixel contexts acting as visual features robust to photometric
and geometric distortions. These pixel contexts provide bottom-up evidence to
the part layer. Similarly, whole scene features give bottom-up evidence to the
scene layer.

3 Inference by Particle-Based Belief Propagation

3.1 Modified Belief Propagation (BP)

The goal of scene interpretation using the graphical model of Fig. 3(b) is to
estimate hidden variables. We first assume discrete random variables for as part
identity, object identity and scene identity. From a statistical view point, variable
estimation is equivalent to computing certain marginal probabilities. The term
inference means the computation of marginal probabilities. A practical inference
method is belief propagation (BP), which is supposed to solve inference prob-
lem at least approximately [10]. We adapt the standard BP to the hierarchial
graphical model in terms of three aspects.

(1) Function-based message categorization: We can represent the multiple con-
texts by three types of messages: bottom-up (M1), top-down (M2), and neighbor
(M3) messages. Fig. 3(c) shows a part of the graphical model in object layer. An
object node receives messages from the lower node (part information), the higher
node (scene context) and neighboring nodes (neighboring object) simultaneously.
The belief at the object node is updated by

B(xO) = αM1(xO)M2(xO)M3(xO). (2)
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(2) Max-product rule: We use the max-product message update instead of sum-
product in standard BP because the max-product shows a significantly better
convergence [11].

(3) Approximation of message update: Message updating in standard BP is
very inefficient since the node where message is propagated has to be excluded
during message gathering and while other messages are recalculated. We make
the message update efficient by replacing it with a current belief (B(xS)) of that
node:

M2(xO)← max
xS

{ψOS(xO, xS)B(xS)} (3)

where ψOS(xO, xS) is the compatibility or correlation function between two
nodes. Contextual information is stored in this compatibility function. The mes-
sage is propagated by tune-MAX. We tune all possibly transferable messages by
multiplying current belief by the compatibility function, then only the maximal
message is propagated to the node. The modified BP is held for both part layer
and scene layer as object layer.

3.2 Particle-Based Belief Propagation (PBP)

In general, belief distribution of each node cannot be represented by parametric
forms. A stochastic approximate inference must represent the distribution by
a set of weighted samples. Conventionally, nonparametric BP is optimized to
continuous random variables such as tracking or feature localizations [12]. We
apply the concept of particle filter to the proposed HGM for object recogntion.

As discussed, there are many sources of ambiguities from object similarity,
blurring by motion, and image noises. One solution to these ambiguities, in
the computational approach, is not to jump to conclusions but to allow multiple
high-probability values to stay available until longer feedbacks like visual context
exert an influence. The concept of particle filtering is to compute a set of plausible
guesses instead of a single guess to estimate a variable. These guesses are then
assigned as weights to approximate a posterior distribution. Fig. 4(a) shows the
particle-based BP in the object layer. A particle is composed of a hypothesized
object ID and deterministically estimated object pose (scale, orientation, and
position in image) relative to model CFCM . Each particle weight is updated
by tune-max (M2(x

(i)
O ) = maxk{ψOS(x(i)

O , x
(k)
S )B(x(k)

S )}). In general, a particle
is generated using three kinds of correlation functions. After message update,
particles are resampled using optimal resampling [13]. The same PBP also exists
in the part layer, and the scene layer.

4 Learning of Compatibilities

The notion of learning in graphical model is the same as the learning of com-
patibility functions that relate two neighboring nodes. Fig. 4(b) shows seven
compatibility functions to learn. Two evidence functions (φ(y, xP ), φ(y, xS)),
part-part compatibility (ψ(xP , xP )), part-object compatibility for bottom-up
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Fig. 4. (a) Each node is represented by a set of particles, or possible hypotheses.
Belief of each particle is calculated by incoming bottom-up, top-down and neighboring
messages. (b) Learning is estimating both nodes and compatibilities. There are 7 kinds
of compatibilities to learn in the HGM.

(ψ(h({xP }), xO)), part-object compatibility for top-down (ψ(xP , xO)), object-
object compatibility (ψ(xO , xO)), and scene-object compatibility (ψ(xO , xS)).
These compatibilities can be regarded as functional representations of multiple
visual contexts. The compatibility functions are modeled as follows:

– φ(y, xP ) is bottom-up evidence to part and estimated by Gaussian noisy
measurement model of appearance similarity between scene and shared fea-
ture. Shared feature is generated by visual clustering in feature space.

– φ({y}, xS) is bottom-up evidence to scene and estimated by holistic voting
of the distribution of nearest features. Each clustered scene feature contains
the prior distribution of place.

– ψ(xP , xP ) is compatibility between neighboring parts and measured by same
labeling and proximity of part location.

– ψ(h({xP }), xO) is compatibility between parts and object, which estimated
through the size of Hough transform in pose space. Pose consistent parts
provide messages in approximated form of Hough size.

– ψ(xP , xO) is compatibility between part and object, which is estimated by
modeling Gaussian noisy model of part pose.

– ψ(xO, xO) is compatibility between objects and estimated by learning of
labeled training objects.

– ψ(xO, xS) is compatibility between object and scene. This is also estimated
by counting labeled training images (see Fig. 5(b)).

5 Details of Implementation

5.1 Representation of Object and Scene

We interpret scenes at identification level: identifying previously viewed objects
with place ID as in Fig. 1(a). We represent a 3D object with a set of view-
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Training images

Learned CFCM

Training images

Learned CFCM

(a) (b)

Fig. 5. (a) An example of 3D object representation: 5 mutliview objects are clus-
tered to a single CFCM. In a CFCM, each parts shares object pose parameters. (b)
Compatibility matrices: (Top) shows place-object and (bottom) shows object-object
compatibilities. Darker intensity represents stronger correlation.

clustered common frame constellation models (CFCM) that are extended to 3D
object representation using [3][15] (see Fig. 5(a)). Each CFCM is composed of
a set of learned parts. This means that each part contains both mean, variance
of pose and an index to the shared features to handle a variety of objects. We
assume that an object is decomposed into radial symmetry parts and corner-like
parts. Features are generated by describing them with the localized histograms
of edge orientation, edge density, and hue. This feature consists of a histogram
vector of appearance and image structure-based pose (part size, part orientation,
location) which is used to learn CFCMs. More details of the feature detector
and scalable 3D object representation scheme are explained in [14] and [15],
respectively. Place information is encoded into clustered features which store
the distribution of place information.

5.2 Particle Management in Scene Interpretation

Particle Generation: Ideally, we can generate particles using the compatibil-
ities in bottom-up, top-down, and neighboring messages. However, we generate
them using only bottom-up messages.

Resampling particles: The recognition system degenerates to a single peak
if we use unimodal particle representation. We solve this problem using multi-
modal particle representation in part layer and object layer [16].

Final particle selection : The system requires at least four steps of concurrent
message update and resampling to propagate the top-down context to the lowest
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layer. Final scene interpretation is performed by selecting the max particles in
each multi-modal representation.

6 Experimental Results

We evaluate the context-based scene interpretation system using a huge
database. Table 1 summarizes the database. After scalable learning of 3D by
feature clustering and view clustering, the feature size is reduced by 33.3%
from 72,083 to 48,063 (ε = 0.2). After shared feature-based view clustering, the
CFCM size is reduced from 5.5 CFCMs/object to 2.4 CFCMs/object (T 2=10
pixels). Fig. 5 shows the learning results of compatibility between place-object
and object-object by counting the occurrences.

The proposed system can remove the ambiguity of blurred object shown in
Fig. 6. The place information acquired from overall scene features provides priors
of certain objects. Finally, we evaluated our proposed method through extensive
experiments with 228 indoor scenes. Recognition is assumed to be successful if
both object ID and pose are correct. Fig. 7(a) is the results by cumulatively
adding contexts. L1, L2, L3 represent part, object, scene layer, respectively.
M1, M2, M3 represent bottom-up, top-down, neighboring message, respectively.

Table 1. Composition of database for training and test: We labeled place IDs to each
images and objects are segmented and labeled for training. Test set is composed of
unoverlapped images and unseened images (scene size: 640×480 color image).

Role Scene Object
No. of place No. of scene No. of objects No. of views

Training 12 228 (even) 112 620

Test
Learned 12 228 (odd) 112 645

Unlearned random 25 0 0

Fig. 6. The proposed context-based scene interpretation system can disambiguate
blurred objects successfully, especially with the help of scene context
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Fig. 7. (a) Performance by adding contexts: Full contexts show very low false alarm
rate. (b) Component effect of individual context: Part context shows most dominant.
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Fig. 8. Scene interpretation without scene context (a) and with scene context (b)

Especially C1 is basic recognition block which is composed of L1M1 and L2M1.
So, L1M3 denotes neighboring part context, L1M2 denotestop-down context to
part. L2M3 means neighboring object context. Without context, the detection
rate (DR) is 95.8% and the false alarm rate (FAR) is 15%. However, if we use
full context, the DR is 96.28% and FAR is 0.15%. Fig. 7(b) shows the impact of
each context to recognition. Fig. 8 represents the power of scene context.

7 Conclusions

In this paper, we proposed a novel scene interpretation paradigm using the hi-
erarchical context in cluttered indoor environments to remove ambiguities. The
key contribution is unification of scene, object and part context using a hierar-
chical graphical model. To handle the ambiguities, we proposed a particle-based
belief propagation method to object recognition problem. Finally, we validate
the feasibility of model-based scene interpretation by the experiments in com-
plex indoor environments. Work is underway to extend to the scene interpreta-
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tion of category level by properly modeling feature detector and compatibility
functions.
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