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Abstract. We present an image segmentation technique using the mor-
phological Waterfall algorithm. Improvements in the segmentation are
brought about by using improved gradients. These are based on the
detection of object boundaries learnt from human segmentations intro-
duced by Martin et al. (2004). We avoid the usual pitfall found when
applying Watershed algorithms to these boundaries, namely that the
boundary lines usually contain gaps, by making use of distance func-
tions on the boundary image. Two types of distance function are used:
the classic distance function and a distance function for numerical images
recently introduced by Beucher (2005). Resulting segmentations are com-
pared to human segmentations using the Berkeley segmentation bench-
mark. The benchmark results show that the proposed segmentation al-
gorithm produces segmentations comparable to those produced by the
Normalised Cuts algorithm.

1 Introduction

Image segmentation is often used as a first step in general object recognition in
complex, natural scenes, for example in [1, 2]. The object recognition is simplified
if the regions produced by the segmentation algorithm already correspond to
“meaningful” objects. Nevertheless, even humans often cannot agree on the best
segmentation of such a scene [3].

Many algorithms for image segmentation are available, two of the most popu-
lar being the Normalised Cuts (NCuts) [4] and the Watershed [5]. Both of these
algorithms require a way of measuring the similarity (or difference) between pix-
els in an image. The Watershed, for example, is usually applied to some sort
of gradient of an image. A particularly promising algorithm for detecting the
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boundaries in an image based on brightness, colour and texture cues learnt from
human segmentations of an image was presented in [6], and is briefly described
in Section 2. Unfortunately, these boundaries are not suitable to be used as a
gradient for a Watershed algorithm due to gaps in the boundary lines. In this
paper, we present a solution to this problem, which is to fill the small gaps by
applying a distance transform to the boundary image, as described in Section 3.
An enhanced version of the Watershed algorithm, the Waterfall algorithm (Sec-
tion 4), is used to segment the images. The complete algorithm is summarised in
Section 5. The comparison of the Waterfall algorithm with the NCuts algorithm
using the Berkeley Segmentation Benchmark is presented in Section 6.

2 Boundaries Based on Learning

We briefly review the boundaries based on learning introduced by Martin et al.
[6]. They make use of brightness, colour and texture gradients to compute the
boundaries. To calculate the gradients, a circular area is moved over the image.
At each pixel, for a number of orientations of a line dividing the circle into two
halves, the χ2 histogram difference is evaluated for histograms of the features
in the two halves. For brightness and colour, the features are the values of L∗,
a∗ and b∗ in the CIELAB space (taken separately) and for texture, the features
are 64 textons used in [6]. For each feature, the gradient is taken to be the
maximum value obtained over all the orientations of the line dividing the circle.
The result of this algorithm is therefore a vector of four gradient values at every
pixel (3 colour and 1 texture).

These gradients are combined to form a boundary probability by using a lo-
gistic model, where the weights for each gradient are obtained by supervised
training of the model on the human segmentations. We made use of the weights
provided by the authors of [6] in their software1. The resultant boundary prob-
abilities are in the range [0, 1]. As an example, the boundaries detected in
Figure 1(a) are shown in Figure 1(b).

3 Distance Functions

A common problem when attempting to segment a boundary image produced
by the algorithm outlined in the previous section is the gaps in the boundary
lines. These can be clearly seen in Figure 1(c), which is an enlargement of part of
Figure 1(b). This results in very few local minima in the image (often only one),
which makes applying Watershed based segmentation algorithms difficult. Our
solution to the problem is to attempt to close the gaps by calculating a distance
function of the boundary image.

The classic distance function takes as input a binary image. It associates with
each foreground pixel the distance to the closest background pixel. See Figure 2
1 Downloadable on the Berkeley Segmentation Benchmark page: http://www.
cs.berkeley.edu/projects/vision/grouping/segbench/

http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
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(a) (b) (c) (d)

Fig. 1. (a) An image and its (b) boundary probabilities (darker pixels indicate higher
probability). (c) Detail of (b) showing the gaps in the contour. (d) Threshold of (b).

for an example. The maxima of the distance function (pixels represented with
a hatched pattern in Figure 2(b)) mark the different particles contained in the
connected component. The Watershed applied to the inverse of the distance
function is a well known approach for segmenting overlapping binary objects [7,
8]. In Figure 2(b), the Watershed line is represented by the grey pixels. We can see
that this line correctly separates the two particles of the connected component.

If we take the boundaries detected by the

(a)

(b)

Fig. 2. (a) Binary image. (b) As-
sociated distance function.

Martin et al. algorithm as the background,
the distance function encodes the shortest
distance to each of the detected boundary
lines. The value of the distance function
within small gaps in the detected boundaries
will therefore be lower. In the inverse of this
distance function, the detected boundaries
will have the maximum possible value. The
lower values of the distance function in small
gaps lead to higher values in the inverse, ef-
fectively closing the gaps in the topographical
representation of the image used by the Wa-
tershed. Two distance functions were used:
the classic distance function and the quasi-
distance function.

As the classic distance function requires a
binary image as input, a threshold at level t
is applied to the boundary image. We used a
relatively low value of t = 0.07 for all exper-
iments. This was found by experiment on a
number of images to be the value below which
the boundaries are mostly due to noise. The threshold of Figure 1(b) is shown
in Figure 1(d). The classic distance function applied to this thresholded image
is shown in Figure 3(a), with a zoomed in area shown in Figure 3(b).
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(a) (b) (c) (d)

Fig. 3. (a) Distance on the thresholded boundary image. (b) Detail of (a). (c) Quasi-
distance on the boundary image (without threshold). (d) Detail of (c).

To avoid the necessity of choosing this threshold we also made use of the
quasi-distances introduced by Beucher [9]. The quasi-distance qd of an image I
is defined as:

qd(x, y) = arg max
i

(εi−1(x, y) − εi(x, y)) (1)

where εi is the morphological erosion of size i, and (x, y) a given pixel of the
image I. In other words, the quasi-distance associates with each pixel (x, y) the
size i of the erosion that produces the biggest change in greylevel, among all
possible sizes of erosions. Thus the quasi-distance is able to characterize the size
of objects in a greylevel image without applying a threshold first. The quasi-
distance function applied to the boundary image in Figure 1(b) is shown in
Figure 3(c), with a zoomed in area shown in Figure 3(d).

4 Waterfall Algorithm

The Watershed algorithm usually leads to a strong over-segmentation of an im-
age. The Waterfall [10] is a hierarchical approach that selects among all the
contours of the Watershed those that are completely surrounded by more con-
trasted contours. By removing these contours, a simplified partition is obtained.
The process may be iterated. At the end, a single region covering the whole image
is obtained. An efficient graph-based Waterfall algorithm is presented in [11].

Examples of the Waterfall algorithm applied to the classic distance function
and quasi-distance function of the detected boundary image are shown in Fig-
ures 4 and 5 respectively. In these figures, image (a) shows the result of applying
the Watershed algorithm to the distance function, image (b) is the result of ap-
plying the Waterfall algorithm once (referred to as level 1 of the hierarchy) and
image (c) is the result of two iterations of the Waterfall (level 2). Segmentation
results on the 100 images of the Berkeley segmentation test dataset are available
on the author’s home page2.
2 http://www.prip.tuwien.ac.at/∼hanbury/ACCV06

http://www.prip.tuwien.ac.at/~hanbury/ACCV06
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(a) (b) (c)

Fig. 4. (a) Watershed of distance function on the thresholded boundary probability
image (level 0). (b) Waterfall level 1. (c) Waterfall level 2.

(a) (b) (c)

Fig. 5. (a) Watershed of quasi-distance on the boundary probability image (level 0).
(b) Waterfall level 1. (c) Waterfall level 2.

5 Complete Segmentation Algorithm

We summarise here the algorithm used to perform the segmentation:

1. Calculate the learning-based boundaries (we used the combined colour and
texture gradients [6]).

2. Calculate one of the two distance functions described in Section 3: the classic
distance function on the threshold of the boundary image (abbreviated TD)
or the quasi-distance function directly on the boundary image (QD).

3. Calculate the Waterfall hierarchy on the inverse of the distance function.
The results of this Waterfall are referred to as “WF xD level y”, where x is
‘T’ or ‘Q’, referring to the type of distance function used, and y gives the
level of the Waterfall hierarchy, where level 0 is the result of the Watershed
algorithm, level 1 is the first Waterfall level, etc.



Waterfall Segmentation of Complex Scenes 893

6 Results and Evaluation

The results of the proposed segmentation approach are compared to those pro-
duced by the NCuts algorithm using the error measures proposed in [3].

6.1 Error Measure Definitions

To benchmark the results of the algorithms, we made use of the Berkeley segmen-
tation benchmark [3]. Two measures of the difference between two segmentations
S1 and S2 are introduced in [3]: the Global and Local Consistency Errors (GCE
and LCE). As the GCE is a tougher measure, we make use of only this measure.

Let S1 and S2 be two segmentations of an image. The region R (S, pi) is
the set of pixels corresponding to the region in segmentation S that contains
pixel pi. A segmentation S1 is a simple refinement of S2 if at every pixel pi,
R (S1, pi) ⊆ R (S2, pi). The GCE is defined in terms of the local refinement
error:

E (S1, S2, pi) =
|R (S1, pi) \ R (S2, pi)|

|R (S1, pi)|
(2)

where \ denotes the set difference and |x| is the cardinality of set x. As can be
seen, this error measure is not symmetric. If, at pixel pi, R (S1, pi) ⊆ R (S2, pi),
then E (S1, S2, pi) = 0, but E (S2, S1, pi) > 0. The GCE of segmentations S1
and S2 is defined as

GCE (S1, S2) =
1
n

min

{∑
i

E (S1, S2, pi) ,
∑

i

E (S2, S1, pi)

}
(3)

where n is the number of pixels and the sums are over all pixels. If S1 (resp.
S2) is a simple refinement of S2 (resp. S1), then GCE (S1, S2) = 0. As the local
refinement error is not symmetrical, the minimum of the local refinement error
sums calculated in both directions is taken.

We used the 100 colour test images from the Berkeley Segmentation Dataset
and Benchmark as well as the corresponding human segmentations. For each of
the images, at least 5 segmentations produced by different people are available.
To evaluate a segmentation algorithm, it was first applied to each of the 100
images. Then, for each image, the GCE of the segmentation produced by the
algorithm with respect to each of the available human segmentations for that
image was calculated. The mean of these values gives the mean GCE per image,
which was plotted in a histogram. The global GCE was calculated as the mean
of these 100 mean GCE values.

As the human segmentations often differ considerably, we first calculated a
“best possible” GCE by comparing each human segmentation of an image to the
remaining segmentations for that image. The “best possible” global GCE is 0.08
and the histogram of its distribution is shown in Figure 6(c).

For each algorithm, the mean of the number of regions produced by the seg-
mentation algorithm for each of the 100 images was also calculated (for the
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Table 1. The Global GCE, average number of regions and region number agreement
with the human segmentations for various segmentation algorithms. These are: the
Waterfall algorithm (WF) operating on different types of distance function (TD and
QD) for two different levels of the hierarchy, and the NCuts algorithm. The results of
the human-human segmentation comparison are also shown.

Method GCE Ave. #Reg.
#Reg. Agree.

WF TD level 1 0.16 51.4 24
level 2 0.23 7.8 39

WF QD level 1 0.21 28.6 46
level 2 0.22 5.6 35

N. Cuts (5 reg) 0.34 5.0 31
N. Cuts (16 reg) 0.24 16.0 63
N. Cuts (28 reg) 0.18 28.0 45
Human 0.08 16.8 -

human segmented images, this is 16.8). Finally, for each image, the mean m̄ and
standard deviation σm of the number of regions in the human segmentations is
calculated. This allows the number of images for which the segmentation algo-
rithm produces a region count lying within this range (m̄±σm) to be determined
(this is referred to as the region number agreement, shown in the rightmost col-
umn of Table 1).

6.2 Comparison of Segmentation Algorithms

We calculated the global GCE values for levels 1 and 2 of the WF TD and the
WF QD, as well as for a segmentation by the NCuts algorithm3. These GCE
values are shown in Table 1. Histograms showing the distributions of the mean
GCE values of each of the 100 images are shown in Figure 6. Note that some
of the segmentations at level 2 of the Waterfall hierarchy consist of only one
region. As the GCE for such a segmentation is zero, we chose to use level 1 of
the hierarchy if the number of regions in level 2 was smaller than 3.

The NCuts algorithm was applied directly to the boundary images. The im-
plementation of the NCuts used requires that the number of regions required
be passed as a parameter. We used values of 5, 16 and 28, corresponding to the
average number of regions obtained by respectively the WF QD level 2, humans
and WF QD level 1. The average number of regions produced by each algorithm
as well as the region number agreement are also shown in Table 1.

6.3 Discussion

The lowest GCE value in Table 1 (excepting humans) was obtained by the
WF TD level 1. However, as the average number of regions for this method
3 We used an implementation by J. Shi available here: http://www.cis.upenn.edu/

∼jshi/software/

http://www.cis.upenn.edu/
~jshi/software/
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Fig. 6. Histograms of the distribution of the mean GCE for each of the 100 test images
for: (a, b, d, e) the four different applications of the Waterfall algorithm, (f) the NCuts
algorithm with 16 regions, and (c) the human-human comparison (note that this has
more than 100 values as the human segmentations for each image are compared using
a leave-one-out approach)

is 51.4, it appears that the images are over-segmented. It is mentioned in [3]
that as the GCE measure is tolerant of refinement (splitting of regions), an
over-segmentation can result in a smaller GCE value. This method also has the
smallest region number agreement.

The other three Waterfall-based methods produce GCE values between 0.21
and 0.23, even though the average number of segments is much higher for the
WF QD level 1 than for the two level 2 results. The WF QD level 1 has the
smallest GCE of three along with the highest region number agreement. The
GCE distributions for these three methods shown in Figure 6(b), (d) and (e)
are similar. Figure 7(a) shows the mean and standard deviations of the GCE
obtained for each of the 100 images when comparing the segmentation obtained
by the WF QD level 1 to the corresponding human segmentations. The large
differences in the mean GCE as a function of the image, as well as the large
standard deviations due to significant differences in the human segmentations
are clearly visible.

Concerning the number of segments produced, level 1 of the Waterfall-based
methods tends to be an over-segmentation of the image, whereas level 2 tends
to be an under-segmentation. This can be seen when comparing the average
number of regions obtained (given in Table 1) with the average number of 16.8
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Fig. 7. (a) Mean and standard deviation of the GCE calculated for the WF QD level 1
with respect to the corresponding human segmentations for each test image. (b, c)
Mean and standard deviation of the number of regions in the human segmentations
for each of the test images (bars) and the number of regions in the (b) WF QD level 1
and (c) WF QD level 2 (crosses).

obtained for the human segmentations. Figure 7(b) and (c) give a more detailed
view of the number of regions obtained per image. The bars show the mean and
standard deviations of the number of regions in the human segmentations for
each image, while the crosses show the number of regions obtained respectively
by the WF QD level 1 and level 2. The large variation in the number of regions
in the human segmentations of some of the images are visible. Furthermore, one
can see that the majority of crosses are above the error bars for level 1 and below
for level 2. This suggests the introduction of an alternative (less strict) merging
rule in the Waterfall algorithm.

The Waterfall-based approaches produce smaller global GCE values than the
NCuts with 5 and 16 regions. The GCE for level 2 of the Waterfall methods,
even with the small number of regions, is significantly lower than the GCE of
the NCuts for 5 regions. This suggests that the regions found by the Waterfall
method are a better match to the human segmentations. The NCuts with 16
regions has a GCE value similar to those of the majority of Waterfall methods.
The distribution of these GCE values are shown in Figure 6(f). This method
also has the highest region number agreement. The second smallest GCE value
in Table 1 corresponds to the NCuts with 28 regions, nevertheless it is possible
that this is again due to over-segmentation. The Waterfall-based approaches
have the advantage that the number of regions do not need to be specified in
advance. There is a version of the NCuts which determines the number of regions
automatically [12], but we currently have no implementation of it.

7 Conclusion

We have compared a morphological Waterfall-based segmentation algorithm to
the Normalised Cuts algorithm using the Berkeley Segmentation Benchmark.
Both segmentation algorithms are applied to boundary images obtained from a
learning-based algorithm. These boundary images are not suitable for use with
Watershed-based algorithms due to gaps in the boundary lines, a problem we
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have solved by calculating a distance function of the boundary images. Two types
of distance function were tested, with one of them requiring no parameters as it
operates directly on the greyscale images.

Based on the results of the benchmark, it is difficult to make a final pronunci-
ation on which of the tested algorithms are better. For a small number of regions,
the Waterfall algorithm has a lower GCE than the NCuts, but the GCE values
are similar for segmentations with a higher number of regions. The Waterfall al-
gorithm tends to produce too many regions at the first level of its hierarchy and
too few at the second level. It should be possible to change the region merging
criteria to improve this. It would also be interesting to test the version of the
NCuts which does not require the number of regions to be specified in advance.
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