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Preface

Welcome to the 7th Asian Conference on Computer Vision. It gives us great plea-
sure to bring forth its proceedings. ACCV has been making its rounds through
the Asian landscape and came to India this year. We are proud of the technical
program we have put together and we hope you enjoy it.

Interest in computer vision is increasing and ACCV 2006 attracted about 500
submission. The evaluation team consisted of 27 experts serving as Area Chairs
and about 270 reviewers in all. The whole process was conducted electronically
in a double-blind manner, a first for ACCV. Each paper was assigned to an Area
Chair who found three competent reviewers for it. We were able to contain the
maximum load on the reviewers to nine and the average load to less than six.
The review form had space for qualitative and quantitative evaluation of the
paper on nine aspects. The submitted reviews underwent an elaborate process.
First, they were seen by the Area Chair, who resolved divergences of opinion
among reviewers, if any. The Area Chair then wrote qualitative comments and
a quantitative score along with his/her initial recommendation on the paper.
These were looked at by Program Co-chairs and compiled into a probables list.
The Area Chairs and Program Co-chairs met in Beijing during ICCV to discuss
this list and arrived at the final list of 64 oral papers and 128 posters. Naturally,
many deserving papers could not be accommodated.

Katsushi Ikeuchi has been unflinching in his support of ACCV as a whole
and ACCV 2006 in particular. His help was critical at many stages. We must
thank the Area Chairs and the reviewers for their time and effort towards the
conference. From IIIT Hyderabad, C.V. Jawahar and Anoop M. Namboodiri con-
tributed in many ways with the program. The enthusiastic team of students from
the Centre for Visual Information Technology (CVIT) was behind it fully. Kar-
teek Alahari, Kiran Babu Varanasi, Sumeet Gupta, Sukesh Kumar, and Satya-
narayana made all the logistics of the CFP, paper submission, review process,
and preparation of the proceedings really possible. The International Institute
of Information Technology was fully behind the conference as a team and de-
serves our deep gratitude. Finally – but most importantly – we wish to thank
the authors who showed great enthusiasm for ACCV.

ACCV has been gaining in stature as a platform to showcase the best of
computer vision research over the years. We hope the 2006 edition has brought
it forward at least a little. Computer vision continues to be an exciting area and
conferences like these provide the much needed light to many who will embark
on a journey down its path.

P J Narayanan
Shree Nayar
Harry Shum

(Program Chairs)
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Shinsaku Hiura
Jeffrey Ho
Ki-Sang Hong
Anthony Hoogs
Osamu Hori
Kazuhiro Hotta
Changbo Hu

Gang Hua
Rui Huang
Szu-Hao Huang
Daniel Huber
Sei Ikeda
Ali Iskurt
C.V. Jawahar
Jiaya Jia
Seon Joo Kim
Ioannis Kakadiaris
Atul Kanaujia
Masayuki Kanbara
Moon Gi Kang
Sing Bing Kang
Mark Keck
Zia Khan
Ron Kimmel
Koichi Kise
Dan Kong
Ravi Kothari
Ryo Kurazume
Uday Kurkure
James Kwok
Shang-Hong Lai
Arvind Lakshmikumar
Shihong LAO
Kyoung Mu Lee
Wee Kheng Leow
Maylor Leung
Thomas Leung
Dahua Li
Liyuan Li
Min Li
Lin Liang
Chia-Te Liao



X Organization

Jenn-Jier James Lien
Joo-Hwee Lim
Stephen Lin
Che-Bin Liu
Zhiheng Liu
Qingshan Liu
Tyng-Luh Liu
Xiaoming Liu
Zicheng Liu
Yogish Mallya
Jose Marroquin
Daniel Martinec
Bogdan Matei
Yasuyuki Matsushita
Scott McClosskey
Paulo Mendonca
Shabbir Merchant
Branislav Micusik
Karol Mikula
James Miller
Anurag Mittal
Daisuke Miyazaki
Kooksang Moon
Yasuhiro Mukaigawa
Dipti Prasad Mukherjee
Jayanta Mukhopadhyay
Kartik Chandra

Muktinutalapati
Rakesh Mullick
Christopher Nafis
Anoop Namboodiri
Srinivasa Narasimhan
Ko Nishino
David Nister
Naoko Nitta

Takahiro Okabe
Shinichiro Omachi
Sean O’Maley
Taragay Oskiper
Jiazhi Ou
Dirk Padfield
Kannappan Palaniappan
Vladimir Pavlovic
Shmuel Peleg
A.G. Amitha Perera
Michael Phelps
Carlos Phillips
Marc Pollefeys
Daniel Pooley
Arun Pujari
Kokku Raghu
Deepu Rajan
Subrata Rakshit
Srikumar Ramalingam
Ravi Ramamoorthi
Visvanathan Ramesh
Anand Rangarajan
Sohan Ranjan
Cen Rao
Christopher Rasmussen
Alex Rav-Acha
Sai Ravela
Jens Rittscher
James Ross
Amit Roy-Chowdhury
Hideo Saito
Subhajit Sanyal
Alessandro Sarti
Imari Sato
Tetsu Sato

Tomokazu Sato
Yoichi Sato
Peter Savadjiev
Konrad Schindler
Andrew Senior
Erdogan Sevilgen
Shiguang Shan
Ying Shan
Vinay Sharma
Zhang Sheng
Sheng-Wen Shih
Ikuko Shimizu Okatani
K.S. Shriram
Kaleem Siddiqi
Terence Sim
Sudipta Sinha
Jayanthi Sivaswamy
Thitiwan Srinark
S.H. Srinivasan
Christopher Stauffer
Jesse Stewart
Henrik Stewenius
Svetlana Stolpner
Peter Sturm
Akihiro Sugimoto
Rahul Sukthankar
Qibin Sun
Srikanth

Suryanarayananan
Bharath Kumar SV
Rahul Swaminathan
Gokul Swamy
Kar-Han Tan
Ming Tang
Hai Tao



Organization XI

SriRam Thirthala
Ying-Li Tian
Prithi Tissainayagam
George Toderici
Shoji Tominaga
Wai Shun Dickson Tong
Philip Torr
Lorenzo Torresani
Emin Turanalp
Ambrish Tyagi
Seiichi Uchida
Norimichi Ukita
Anton van den Hengel
Rajashekar Venkatachalam
Svetha Venkatesh
Ulas Vural
Toshikazu Wada
Meng Wan
Huan Wang
Liang Wang
Shu-Fan Wang
Chieh-Chih (Bob) Wang
Zhizhou Wang
Tomas Werner
Frederick Wheeler
Kwan-Yee Kenneth Wong
Woontack Woo
Wen Wu
Yihong Wu
Ying Wu
Jing Xiao
Jiangjian Xiao
Wei Xu

Yasushi Yagi
Shuntaro Yamazaki
Kazumasa Yamazawa
Shuicheng Yan
Hua Yang
Ming Yang
Changjiang Yang
Jie Yang
Ming-Hsuan Yang
Ruigang Yang
Qingxiong Yang
Jieping Ye
Dit-Yan Yeung
Ting Yu
Xinguo Yu
Jingyi Yu
Ali Zandifar
Xiang Zhang
Hongming Zhang
Li Zhang
Tao Zhao
Wenyi Zhao
Jiang Yu Zheng
Wei Zhou
Yongwei Zhu
Andrew Zisserman
Larry Zitnick



Table of Contents – Part I

Camera Calibration

On Using Silhouettes for Camera Calibration
Edmond Boyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Towards a Guaranteed Solution to Plane-Based Self-calibration
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Abstract. This paper addresses the problem of camera calibration using object
silhouettes in image sequences. It is known that silhouettes encode information on
camera parameters by the fact that their associated viewing cones should present
a common intersection in space. In this paper, we investigate how to evaluate cali-
bration parameters given a set of silhouettes, and how to optimize such parameters
with silhouette cues only. The objective is to provide on-line tools for silhouette
based modeling applications in multiple camera environments. Our contributions
with respect to existing works in this field is first to establish the exact constraint
that camera parameters should satisfy with respect to silhouettes, and second to
derive from this constraint new practical criteria to evaluate and to optimize cam-
era parameters. Results on both synthetic and real data illustrate the interest of
the proposed framework.

1 Introduction

Camera calibration is a necessary preliminary step for most computer vision applica-
tions involving geometric measures. This includes 3D modeling, localization and navi-
gation, am-ong other applications. Traditional solutions in computer vision are based on
particular features that are extracted and matched, or identified, in images. This article
studies solutions based on silhouettes which do not require any particular patterns nor
matching or identification procedures. They represent therefore a convenient solution
to evaluate and improve on-line a camera calibration, without the help of any specific
patterns. The practical interest arises more specifically in multiple camera environments
which are becoming common due, in part, to recent evolutions of camera acquisition
materials. These environments require flexible solutions to estimate, and to frequently
update, camera parameters, especially because often calibrations do not remain valid
over time.

In a seminal work on motion from silhouettes, Rieger [1] used fixed points on sil-
houette boundaries to estimate the axis of rotation from 2 orthographic images. These
fixed points correspond to epipolar tangencies, where epipolar planes are tangent to the
observed objects’ surface. Later on, these points were identified as frontier points in [2]
since they go across the frontier of the visible region on a surface when the viewpoint is
continuously changing. In the associated work, the constraint they give on camera mo-
tion was used to optimize essential matrices. In [3], this constraint was established as
an extension of the traditional epipolar constraint, and thus was called the generalized
epipolar constraint. Frontier points give constraints on camera motions, however they
must first be localized on silhouette boundaries. This operation appears to be difficult:

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 E. Boyer

in [4] inflexions of the silhouette boundary are used to detect frontier points from which
motion is derived, in [5] infinite 4D spaces are explored using random samples and in
[6] contour signatures are used to find potential frontier points. All these approaches
require frontier points to be identified on the silhouette contours prior to camera pa-
rameter estimation. However such frontier points can not be localized exactly without
knowing epipoles. As a consequence, only approximated solutions are usually obtained
by discrete sampling over a space of potential locations for frontier points or epipoles.
We take a different strategy and bypass the frontier point localization by considering the
problem globally over sets of silhouettes. The interest is to transform a computationally
expensive discrete search into an exact, and much faster, optimization over a continuous
space.

It is worth to mention also a particular class of shape-from-silhouette applications
which use turntables and a single camera to compute 3D models. Such model acqui-
sition systems have received noticeable attention from the vision community [7, 8, 9].
They are geometrically equivalent to a camera rotating in a plane around the scene. The
specific constraints which result from this situation can be used to estimate all motion
parameters. However, the associated solutions do not extend to general camera config-
urations as assumed in this paper.

Our approach is based first on the study of the constraint that both silhouettes and
camera parameters must satisfy. We then derive two criteria: a quantitative smooth cri-
terion in the form of a distance, and a qualitative discrete criterion, both being defined
at any point inside a silhouette. This provides practical tools to qualitatively evaluate
calibrations, and to quantitatively optimize their parameters. It appears to be particu-
larly useful in multiple camera environments where calibrations often change, and for
which fast on-line solutions are required.

This paper is organized as follows. Section 2 recalls background material. Section 3
precises constraints and respective properties of silhouettes, viewing cones and frontier
points. Section 4 introduces the distance between viewing cones that is used as a geo-
metric criterion. Section 5 introduces the qualitative criterion. Section 6 shows results
on various data before concluding in section 7.

2 Definitions

Silhouette: Suppose that a scene, containing an arbitrary number objects, is observed
by a set of pinhole cameras. Suppose also that projections of objects in the images are
segmented and identified as foreground.O denotes then the set of observed objects and
IO the corresponding binary foreground-background images. The foreground region
of an image i consists of the union of objects’ projections in that image and, hence, may
be composed of several unconnected components with non-zero genus. Each connected
component is called a silhouette and their union in image i is denoted Si.

Viewing Cone: Consider the set of viewing rays associated with image points belong-
ing to a single silhouette in Si. The closure of this set defines a generalized cone in
space, called viewing cone. The viewing cone’s delimiting surface is tangent to the
surface of the corresponding foreground object. In the same way that Si is possibly
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viewpoint
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Fig. 1. A visual hull and 2 of its viewing cones

composed of unconnected components, the viewing cones of image i are possibly sev-
eral distinct cones, one associated with each silhouette in Si. Their union is denoted Ci.
Note that individual objects are not distinguished here.

Visual Hull: The visual hull [10] is formally defined as the maximum surface consistent
with all silhouettes in all images. Intuitively, it is the intersection of the viewing cones of
all images (see figure 1). In practice, silhouettes are delimited by 2D polygonal curves,
thus viewing cones are polyhedral cones and since a finite set of images are considered,
visual hulls are polyhedrons. Assume that all objects are seen from all image viewpoints
then:

VH(IO) =
⋂

i∈IO

Ci, (1)

is the visual hull associated with the set IOof foreground images and their viewing
cones Ci∈IO . If all objectsO do not project onto all images, then the reasoning that fol-
lows still applies to subset of objects and subsets of cameras which satisfy the common
visibility constraint.

3 Geometric Consistency Constraint

In this section, the exact and optimal geometric consistency which applies with silhou-
ettes is first established and its equivalence with more practical constraints is discussed.

3.1 Visual Hull Constraint

Calibration constraints are usually derived from geometric constraints reflecting geo-
metric coherence. For instance, different image projections of the same feature should
give rise to the same spatial location with true camera parameters. In the case of silhou-
ettes, and under the assumption that no other image primitives are available, the only
geometric coherence that applies comes from the fact that all viewing cones should
correspond to the same objects with true camera parameters. Thus:

O ⊂ VH(IO),

and consequently by projecting in any image i:

Si ⊂ Pi(VH(IO)), ∀i ∈ IO,
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where Pi() is the oriented projection1 in image i. Thus, viewing cones should all inter-
sect, and viewing rays belonging to viewing cones should all contribute to this intersec-
tion. The above expression is equivalent to:⋃

i∈IO

[Si − Pi(VH(IO))] = ∅, (2)

which says that the visual hull projection onto any image i should entirely cover the
corresponding silhouette Si in that image. This is the constraint that viewing cones
should satisfy with true camera parameters. It encodes all the geometric consistency
constraints that apply with silhouettes and, as such, is optimal. However this expression
in its current form does not yield a practical cost function for camera parameters since
all configurations leading to an empty visual hull are equally considered, thus mak-
ing convergence over cost functions very uncertain in many situations. To overcome
this difficulty, viewing cones can be considered pairwise as explained in the following
section.

3.2 Pairwise Cone Tangency

We can easily derive from the general expression (2) the pairwise tangency constraint.
Substituting the visual hull definition (1) in (2):

(2) ⇔
⋃

i∈IO

[Si − Pi(
⋂

j∈IO

Cj)] = ∅.

Since projection is a linear operation preserving incidence relations:

(2) ⇒
⋃

i∈IO

[Si −
⋂

j∈IO

Pi(Cj)] = ∅.

Note that, in the above expression, the exact equivalence with (2) is lost since projecting
viewing cone individually introduces depth ambiguities and, hence, does not ensure a
common intersection of all cones as in (2). By distributive laws:

(2) ⇒
⋃

(i,j)∈IO×IO

[Si − Pi(Cj)] = ∅. (3)

Expression (3) states that all viewing cones of a single scene should be pairwise
tangent. By pairwise tangent, it is meant that all viewing rays from one cone intersect the
other cone, and reciprocally. This can be seen as the extension of the epipolar constraint
to silhouettes (see figure 2). Note that this constraint is always satisfied by concentric
viewing cones, for which no frontier points exist. Note also that if (3) and (2) are not
strictly equivalent, they are equivalent in most general situations.

1 i.e. a projection such that there is a one-to-one mapping between rays from the projection
center and image points.
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S i S j
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CjCi

O
j ii j

Fig. 2. Pairwise tangency constraint: silhouette Si is a subset of the viewing cone projection
Pi(Cj) in image i

3.3 Connection with Frontier Points

A number of approaches consider frontier points and the constraints they yield on cam-
era configurations. Frontier points are particular points which are both on the objects’
surface and the visual hull, which project onto silhouettes in 2 or more images, and
where the epipolar plane is tangent to the surface (see figure 1). They satisfy therefore
what is called the generalized epipolar constraint [3]. They allow hereby projective re-
construction when localized in images [5, 6]. The connection between the generalized
epipolar constraint and the pairwise tangency constraint (3) is that the latter implies the
former at particular frontier points. Intuitively, if two viewing cones are tangent then
the generalized epipolar constraint is satisfied at extremal frontier points where viewing
lines graze both viewing cones.

4 Quantitative Criterion

The pairwise tangency is a condition that viewing cones must satisfy to ensure that the
same objects are inside all cones. In this section, we introduce a distance function that
evaluates this condition.

4.1 Distances Between a Viewing Ray and a Viewing Cone

The distance function between a ray and a cone that we seek should preferably respect
several conditions:

1. It should be expressed in a fixed metric with respect to the data, thus in the images
since a 3D metric will change with camera parameters.

2. It should be a monotonic function of the respective locations of ray and cone.
3. It should be zero if the ray intersect the viewing cone. This intersection, while

apparently easy to verify in the images, requires some care when epipolar geometry
is used. Figure 3 depicts for instance a few situations where the epipolar line of a
ray intersects the silhouette, though the ray does not intersect the viewing cone.
These situations occur because no distinction is made between front and back of
rays.

4. It should be finite in general so that situations in figure 3 can be differentiated.



6 E. Boyer

viewing cone 
sectionray

Fig. 3. A ray and the cross-section of the viewing cone in the corresponding epipolar plane. 3 of
the situations where unoriented epipolar geometry will fail and detect intersections.

viewing
cone

epipole

distance

epipolar arc
epipolar plane

viewing
ray

apex

Fig. 4. The spherical image model: viewing rays project onto epipolars arcs on the sphere

In light of this, a fairly simple but efficient approach is to consider a spherical image
model instead of a planar model (see figure 4), associated to an angular metric. The
distance from a ray to a viewing cone is then the shortest path on the sphere from the
viewing cone to the ray projection. This projection forms an epipolar circle-arc on the
sphere delimited by the epipole and the intersection of the ray direction with the sphere.
The ray projection is then always the shortest arc between these 2 points, which can
coincide if the ray goes trough the viewing cone apex. Two different situations occur
depending on the respective positions of the ray epipolar plane and the viewing cone:

1. The plane intersects the viewing cone apex only, as in figure 4. The point on the
circle containing the epipolar arc and closest to the viewing cone must be deter-
mined. If such point is on the epipolar arc then the distance we seek is its distance
to the viewing cone. Otherwise, it is the minimum of the distances between the arc
boundary points and the viewing cone.

2. The plane goes through the viewing cone. The distance is zero in the case where
the ray intersects the viewing cone section in the epipolar plane, and the shortest
distance between the epipolar arc boundary points and the viewing cone section in
the other case. This distance is easily computed using angles in the epipolar plane.

4.2 Distance Between 2 Viewing Cones

A distance function between a ray and a viewing cone has been defined in the previous
section, this section discusses how to integrate it over a cone. The distance between



On Using Silhouettes for Camera Calibration 7

angle

focal length

translation

Fig. 5. The distance between 2 viewing cones as a function of: (green) one focal length which
varies in the range [f −0.4f, f +0.4f ], with f the true value; (blue) one translation parameter to
which is added from −0.4 to 0.4 of the camera-scene distance; (red) one Euler orientation angle
which varies in the range [α − 0.4π, α +0.4π] with α the true value. The filled points denote the
limit distances on curves above which the 2 cones do not intersect at all.

2 viewing cones is then simply defined by a double integration over the 2 concerned
cones.

Recall that silhouettes and viewing cones are discrete in practice and thus defined by
sets of contour points in the images and boundary rays in space. The simplest solution
consists then in summing individual distances over boundary rays. Assume that rki is
the kth ray on the boundary of viewing cone Ci, and d(rki , Cj) = dk

ij is the distance
between rki and Cj as defined in the previous section. Then the distanceDij between Ci
and Cj is:

Dij =
∑

k

dk
ij +

∑
l

dl
ji = dij + dji. (4)

Remark that Dij = Dji but dij �= dji. The above expression is easy to compute
once the distance function is established. It can be applied to all boundary viewing rays,
however mainly rays on the convex hulls of silhouettes are concerned by the pairwise
tangency constraint, we thus consider only them to improve computational efficiency.
Figure 5 illustrates the distanceDij between 2 viewing cones of a synthetic body model
as a function of various parameters of one cone’s camera. This graph demonstrates the
smooth behavior of the distance around the true parameter values, even when the cones
do not intersect at all.

5 Silhouette Calibration Ratio

Following the quantitative criterion, we introduce a simple qualitative criterion which
evaluates how silhouettes contribute to the visual hull for a given calibration.

Recall that any viewing ray, from any viewing cone, should be intersected by all
other image viewing cones, along an interval common to all cones. Let ωr be an interval
along ray r intersected by viewing cones, and let us call N (ωr) the number of image
contributing (image for which a viewing cone intersects ωr) inside that interval. Then
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the sum over the rays r:
∑

r maxωr (N (ωr)), should theoretically be equal tom(n−1)
ifm rays and n images are considered. Now this criterion can be refined by considering
each image contribution individually along a viewing ray. Let ωi

r be an interval, along
ray r, where image i contributes. Then the silhouette calibration ration Cr defined as:

Cr =
1

m(n− 1)2
∑

r

∑
i

max
ωi

r

(N (ωi)), (5)

should theoretically be equal to 1 since each image should have at least one contribution
interval with (n − 1) image contributions. This qualitative criterion is very useful in
practice because it reflects the combined quality of a set of silhouettes and of a set of
camera parameters. Notice however that it can hardly be used for optimizations because
of its discrete, and thus non-smooth, nature.

6 Experimental Results

The pairwise tangency presented in the previous section constraint camera parameters
when a set of static silhouettes IO is known. For calibration, different sets IO should
be considered. They can easily be obtained, from moving objects for instance, as in [5].
The distances between viewing cones are then minimized over the camera parameter
space through a least square approach:

θ̂IO = min
θ

∑
(i,j) ∈ IO×IO

D2
ij , (6)

where θ is the set of camera parameters to be optimized. θ̂IO is equivalent to a maximum
likelihood estimate of the camera parameters under the assumption that viewing rays
are statistically independent. The above quantitative sum can be minimized by standard
non-linear methods such as Levenberg-Marquardt.

6.1 Synthetic Data

Synthetic sequences, composed of images with dimensions 300×300, were used to test
the approach robustness. 7 cameras, with standard focal lengths, are viewing a running
human body. All camera extrinsic parameters and one focal length per camera, assum-
ing known or unit aspect ratios, are optimized. Different initial solutions are tested by
adding various percentages of uniform noise to the exact camera parameters. For the
focal lengths and the translation parameters, the noise amplitudes vary from 0% up to
40% of the exact parameter value; for the pose angle parameters, the noise amplitudes
vary from 0% up to 40% of 2π. Figure 6 shows, on the left, the silhouette calibration
ratios after optimization; and on the right, relative errors in the estimated camera pa-
rameters after optimization using 5 frames per cameras. These results first validate the
silhouette calibration ratio as a global estimator for the quality of any calibration with
respect to silhouette data. Second, they show that using only one frame per camera is
intractable in most situations. However, they prove also that using several frames, cali-
bration can be recovered with a good precision even far from the exact solution. Other
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Fig. 6. Robustness to the initial calibration: right, the silhouette calibration ratio; left, the relative
errors in the estimated camera parameters for the 5 frame case: errors relative to the true value
for the focal length, errors relative to the distance camera-scene for the translation parameter and
errors relative to π for the angle parameter

experiments, not presented due to lack of space, show that adding a reasonable amount
of noise to silhouette vertices, typically a 1 pixel Gaussian Noise, only slightly changes
these results.

6.2 Real Data

Our approach was also tested in a real environment with 6 firewire cameras viewing a
moving person. A calibration obtained by optimizing an initial solution using known
points is available and will be considered as the ground truth. In the following experi-

Fig. 7. Top, one of the original image, the corresponding silhouette and the visual hull model ob-
tained with ground truth calibration. Bottom, 3 models which correspond to calibrations obtained
with our method and using respectively 1, 3 and 5 frames per camera.
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ments, we use the same initial solution for the calibration with viewing cones. As for
the synthetic case, all camera extrinsic parameters and one focal length per camera are
optimized. Figure 7 shows, on top, the input images and a visual hull model obtained
using ground truth values for calibration. In the bottom, models obtained from the same
silhouettes, but using our approach with respectively 1, 3 and 5 frames per camera.
Apart from a scale difference, not shown and due to the fact that fixed dimensions were
imposed for the ground truth solution, the 2 most-right models are very close to the
ground truth one.

7 Conclusion

We have studied the problem of estimating camera parameters using silhouettes. It has
been shown that, under little assumptions, all geometric constraints given by silhouettes
are ensured by the pairwise tangency constraint. A second contribution of this paper is
to provide a practical criterion based on the distance between 2 viewing cones. This
criterion appears to be efficient in practice since it can handle a large variety of camera
configurations, in particular when viewing cones are distant. It allows therefore multi-
camera environments to be easily calibrated when an initial solution exists. The criterion
can also be minimized using efficient and fast non-linear approach. The approach is
therefore also aimed at real time estimation of camera motions with moving objects.
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Abstract. We investigate the problem of self-calibrating a camera, from multiple
views of a planar scene. By self-calibrating, we refer to the problem of simultane-
ously estimate the camera intrinsic parameters and the Euclidean structure of one
3D plane. A solution is usually obtained by solving a non-linear system via lo-
cal optimization, with the critical issue of parameter initialization, especially the
focal length. Arguing that these five parameters are inter-dependent, we propose
an alternate problem formulation, with only three d.o.f., corresponding to three
parameters to estimate. In the light of this, we are concerned with global opti-
mization in order to get a guaranteed solution, with the shortest response time.
Interval analysis provides an efficient numerical framework, that reveals to be
highly performant, with regard to both estimation accuracy and time-consuming.

1 Introduction

The self-calibration of a camera consists in determining, either partially or completely,
the metric properties of the camera and/or the scene, from a set of uncalibrated views.
The principle of self-calibration is to use “absolute entities” as targets, geometrically
constrained by some prior information about the internal or external parameters of the
camera. Absolute targets are abstract entities, located at infinity, encoding the Euclidean
structure (ES) of the considered d-dimensional space, with the characteristic property
of being left invariant under similarities1 in d-space [1, 2]. In 3-space, the target is the
absolute conic (AC), which is a circle of imaginary radius on the plane at infinity π∞.
The AC has the well-known property that its image (IAC) is globally invariant under
camera motion, providing the camera internal parameters are constant. This is the start-
ing point of numerous 3D self-calibration methods (see [1, chapter 19] for a review).
On the basis of a projective reconstruction of the scene, 3D self-calibration determines
the ES of the 3D space in terms of the AC and the plane at infinity, in projective coor-
dinates. This can be achieved either separately, or simultaneously. In the latter case, the
AC is treated as a rank-3 envelope of 3D planes, known as absolute dual quadric in the
literature. Assuming that the focal length is the only unknown, closed-forms and linear
solutions can be obtained e.g., as in [3].

The problem up to discussion in this work is the 2D (or plane-based) self-calibration
of a camera i.e., by observing a 3D plane π, with regard to general camera motion. In

1 i.e., transformations preserving angles and changing distances in the same ratio.
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2-space, the self-calibration targets are the circular points (CP) that are two conjugate
complex points of π on the line at infinity, meeting all the circles of π and the AC
of π∞. Since Triggs’ work [4], it is known that 2D self-calibration is possible, using
the constraint that the image of the CP (ICP) lie on the IAC, only involving inter-view
homographies induced by π. Because no other (general) invariance of the ICP can be
exhibited, very few 2D self-calibration methods have been reported [5, 6, 4], except for
some specific camera motion [7, 8]. Furthermore, contrary to 3D self-calibration, even
with a simplified model of the camera, no closed-form or linear solution exist. Such a
problem, consisting in determining simultaneously the CP and the AC, is non-linear in
essence. As stated in [4], the problem parameterization requires 4 d.o.f. for the ICP plus
5 d.o.f. for the AC. A solution can be obtained via local optimization, from at least 5
views, with the critical issue of parameter initialization, especially the focal length.

Our starting point is to reduce the number of parameters to estimate by using the fact
that, since the CP lie on the AC, there is a redundancy in the problem parameterization.
This inter-dependence of parameters in Triggs’ statement is a modeling constraint that
has no reason not to be exactly ensured. Actually, Triggs initially treated it as an equa-
tion, which does not really make sense as we will argue later. That said, our contribution
is to propose a new minimal parameterization of the 2D self-calibration problem, by in-
troducing as target a degenerate conic envelope, consisting of the point-pair at which
the AC meets the line at infinity i.e., consisting of the CP. Thanks to our propositions (1)
and (2), we show that we only require to estimate the affine structure of the plane along
with the internal parameters. This leads to a formulation with seven unknowns/d.o.f.
instead of the nine initially mentioned in [4]. Assuming that the constant focal length
is the sole unknown, only three parameters have to be estimated. This paves the way
for finding a guaranteed solution to the problem as this small number of unknowns is
well adapted to the use of interval analysis [9]. Interval analysis has been widely used
in global optimization problems [10] and afford the guarantee that the global minimum
has been found. Interval analysis has been succesfully used to the 3D self-calibration
problem [11]. It provides an efficient numerical framework, that reveals to be highly
performant, with regard to both estimation accuracy and time-consuming.

This paper is structured as follows. First, starting with the basic 2D self-calibration
equations of [4], we explain how to obtain a minimal parameterization of the problem
from which we derive a cost function. Second, we review the main rules of interval
analysis and the global minimization scheme used here. Eventually, we give the results
obtained with synthetic and real data and conclusions are drawn.

2 Minimal Parameterization of 2D Self-calibration

2.1 Foreword and Notations

Our problem is that of recovering the Euclidean structure (ES) of some 3D plane π,
called world plane, seen in multiple views, for some uncalibrated camera. What is only
assumed to be known is the inter-view homographies induced by π.

Without any additional knowledge, this problem cannot be separated from that of
calibrating the camera i.e., of recovering its intrinsic parameters. Stated together, these
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are then referred to as the plane-based self-calibration problem [4]. [5] describes an
alternative to [4]. We will give in §2.2 the link between these two constraints.

We use some MATLAB-like notations: 1 : n denotes the range 1, . . . , n. M(1:r,1:c)
denotes the r × c submatrix of M selected by the row range 1 : r and the column range
1 : c. The notation M(:,1:c), resp. M(1:r,:), selects the first c (resp. r) columns, resp. rows,
of M. We also define the canonical vectors:

e1 ≡ (1, 0, 0)�, e2 ≡ (0, 1, 0)�, e3 ≡ (0, 0, 1)�. (1)

The matrix [x]× refers to the skew-symmetric, order-3, matrix, such that [x]× y =
x× y, y ∈ R3. In this paper, we will make a heavily use of the equality [Tx]× =
det(T)T−� [x]× T−1. The notation i always refers to the imaginary number

√
−1.

In the following we assume some basic results on projective geometry. These can be
found in standard textbooks e.g., in [1, 2]. We remind the reader some essential notions
and establish some novel properties relevant to our work.

The image of the absolute conic (IAC) matrix satisfies ω = K−�K−1, where K is
the calibration matrix [1, §5.1] that encodes the internal camera parameters, which is,
in its more general form:

K ≡

⎛⎝αu γ u0
0 αv v0
0 0 1

⎞⎠ , (2)

whereαu, αv represent the focal length in terms of pixel dimensions in the u, v direction
respectively, (u0, v0) are the principal point pixel coordinates and γ is the skew factor.

2.2 Plane-Based Self-calibration Equations

Let P denote the unknown (Euclidean) world-to-image homography, mapping entities
of π to their projections on the image plane π̃, and let Hj be the known inter-view
homography, induced by π, from the current view to some view number j.

The (Regular) Plane-Based Self-calibration Equations. Rigorously, the ES of π is
given in terms of its imaged circular points (ICP) P (I±), whereas the circular points
(CP) I± are, by definition [1, pp. 52-53], conjugate complex points at infinity in π,
common to all of its circles. In any Euclidean representation, the CP have canonical
coordinates e± ≡ e1 ± ie2 = (1,±i, 0)�, which are invariant under any 2D similarity
S of π i.e., e± ∼ Se±, where S ∈ R3×3 is the matrix of S. In image representation, the
coordinates of the ICP P (I±), denoted by x± ≡ x1 ± ix2, satisfy x± ∼ PSe±, where
P ∈ R3×3 is the matrix of P . Note that x± only have four d.o.f., basically the eight
d.o.f. of P minus the four d.o.f. of S.

The ICP are, by projective invariance, on the vanishing line, common to all imaged
circles, including the image ω of the absolute conic [1, pp. 81-83] of the plane at infinity.
The IAC ω is the locus of all ICP (i.e., of all 3D planes) which entails that x�

±ωx± = 0,
or equivalently (see [1, p. 211] for more details):

x�
1 ωx2 = 0 and x�

1 ωx1 − x�
2 ωx2 = 0. (3)
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In view number j, the constraint is described by x�
±H

�
j ωjHjx± = 0, or:

x�
1 H

�
j ωjHjx2 = 0 and x�

1 H
�
j ωjHjx1 − x�

2 H
�
j ωjHjx2 = 0, (4)

where ωj is the matrix of the IAC in view number j and Hj is the matrix ofHj .

The Dual Plane-Based Self-calibration Equations. A (maybe) most intuitive para-
meterization of the ES can also be given in terms of any (Euclidean) world-to-image
homography P ◦ S, where S denotes an arbitrary 2D similarity. Indeed, by applying
(P ◦ S)−1 to the image plane, we get an Euclidean reconstruction of π, P ◦ S being
referred to as rectifying homography.

If we treat the ICP as a degenerate conic envelope i.e., as the assemblage of isotropic
lines as tangents, we get a conic, referred to as the image of the conic dual to circular
points (ICDCP) in [1, p.52], whose matrix is of the form:

C∗ ∼ x−x�
+ + x+x�

− ∼ P(e−e�+ + e+e�−)P� ∼ PS(e−e�+ + e+e�−)S�P�, (5)

where S ∈ R3×3 is the matrix of S. As e−e�+ + e+e�− ∼ diag(1, 1, 0), a rectifying
homography can be obtained by the adequate factorization [1, pp.55-56] of C∗ e.g.,
based on the singular value decomposition (SVD), with singular values σ1 ≥ σ2 > 0
and σ3 = 0:

±C∗ = UΣU� ≡ X diag(1, 1, 0)X� =
[
x1 x2

] [
x1 x2

]�
. (6)

Therefore, the ICP can be specified in the form of x± = U(:,1:2)
√

Σ(1:2,1:2) ∼ XSe±.
Consequently, the constraints (4) can be put in the matrix form:[

x1 x2
]�

H�j ωjHj

[
x1 x2

]
∼ I2×2. (7)

We now highlight an interesting decomposition of the ICDCP matrix C∗. Basically,
our aim is to put into equation the fact that the degenerate conic C∗ consists of the two
points at which the vanishing line v meets the IAC ω. Since the AC is a circle on the
plane at infinity, these two points are the ICP.

Proposition 1. The ICDCP matrix satisfies the following decomposition:

C∗ ∼ [v]× ω [v]× , (8)

where ω is the IAC matrix and v is the vanishing line vector.

Proof. Define Δ ≡ [v]× ω [v]×. Clearly Δ is rank-2, so as a conic envelope, Δ consists
of two distinct points p, q i.e., Δ ∼ pq� + qp�. Let us show these are the ICP. On the
one hand, we see that Δv = 0 which implies that both p, q are on the vanishing line v.
On the other hand, any line w �= v, verifying w�Δw = 0, passes either through p or
q. Assume w contains p: this entails that v ×w ∼ p and so p�ωp = 0. As a result,
since ω is the locus of all ICP, p is one ICP of π and q its conjugate.
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Minimal Parameterization. As explained above, the ICP can be specified from C∗ in
the form of x1 ± x2, with

[
x1 x2

]
≡ U(:,1:2)

√
Σ(1:2,1:2) obtained from (6).

In this work, we will need a formal expression of x1 and x2.

Proposition 2. Vectors x1, x2 satisfying (6), and so (7), can be written in the form of:[
x1 x2

]
∼
[
[v]× ek μ [v]× ω [v]× ek

]
, k ∈ {1, 2, 3}, (9)

where μ ≡ αuαv/
∥∥K�v

∥∥ and ek is a canonical vector, as defined in (1).

The proof requires to remind the reader that the vanishing line can be written as
v = K−�n, where n is the unit normal to π in the camera frame. Let us also define the
‘calibrated’ ICDCP C̄∗ ≡ ξK−1C∗K−�, where ξ is a scalar such that C̄∗ = [n]�× [n]×.

Proof. The singular values of C̄∗ are {1, 1, 0} so ran(C̄∗) = ran([n]×) and null(C̄∗) =
null([n]×). Thanks to the SVD theorem [12], we know that the matrix W ∈ R3×3,
WW� ∼ I3, such that C̄∗ ∼ W diag(1, 1, 0)W�, has the properties that ran(C̄∗) =
span{w1,w2} and null(C̄∗) = span{w3}. As a result, we can compute:

w1 = [n]×ek, w2 = [n]2×ek, w3 = n, (10)

where w2 = w3 × w1 = [w3]×w1. Substituting K�v to n into (10), after some nor-
malizations, we obtain (9).

The proposed form (9) offers an obvious advantage of minimal parameterization of
the self-calibration problem. Substituting (9) into (4), there are now seven d.o.f. instead
of the nine in [4].

Link with Malis’ Constraint [5]. Introducing H̄j ≡ K−1
j HjKj , the ‘calibrated’ ICDCP,

in the view number j, is C̄∗j ≡ [nj ]
�
× [nj ]× ∼ H̄j [n]�× [n]× H̄�j , where nj is the unit

normal to π in the camera frame number j. Interestingly enough, since the singular
values of C̄∗j are {1, 1, 0}, those of H̄j [n]�× are also {1, 1, 0}, up to a scale factor. This
latter property is the theoretical foundation of the self-calibration constraints of [5].

2.3 Formulation of the Problem

Assume that the IAC is constant in the views i.e., ω ∼ ωj . GivenN views, i.e. (N − 1)
inter-view homographies Hj , 2 ≤ j ≤ N , the self-calibration problem of a camera is
that of solving the system consisting of two equations (3) and 2(N − 1) equations (4)
for the p d.o.f. in the IAC matrix plus q in the ICP vectors. This is a non-linear, possi-
bly constrained, problem which has, until now, been solved using iterative methods. It
requires initial values which is a critical issue, already mentioned in [4].

Because of the proposed form (9) of ICP, compared to [4], our problem modeling
only exhibits seven unknowns instead of nine. However, there is no magic: With the
proposed form, the equation (3), related to the key view, is implicitly satisfied, while,
in [4], it is considered as an equation to be satisfied. We ask the question: do we have
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to consider (3) as a constraint or as an equation? Since no input data i.e., no estimated
homography is involved in (3), there is no logical reason for this equation not to be ex-
actly satisfied. Actually, the nine parameters of [4] are not independent and must satisfy
the additional constraint (3). More generally, with regard to the estimation of the ho-
mography, from key view to some view number j, using feature correspondences, there
is no logical reason for assigning any error to the positions of the (arbitrary) features in
the key view.

As one can expected, there are no more than two constraints for the plane-based
self-calibration problem, but several ways of expressing them.

Simplified Camera Model. We investigate now the minimal parameterization of ICP
under the assumption of a simplified camera model. Let the calibration matrix be K =
diag(α, α, 1), whereα represents the focal length in pixels. Let v≡(cosφ, sin φ,−ρ)�,
where ρ is the orthogonal distance from the principal point to the vanishing line in
pixels. This means that (9) can also be written in the form of (7), with:

[
x1 x2

]
=

⎡⎣−
√
α2 + ρ2 sinφ ρ cosφ√
α2 + ρ2 cosφ ρ sinφ

0 1

⎤⎦ . (11)

3 Global Optimization Using Interval Analysis

3.1 Interval Analysis

Interval analysis (IA) is born about forty years ago [13]. Several good introductions to
IA are available in [10, 9].

An interval is denoted by x = [x, x], where x and x are the lower bound and the
upper bound of x respectively. Interval vectors are called boxes. If x and y are two
intervals, then the four elementary operations are defined by x op y = {x op y |
x ∈ x and y ∈ y} for op ∈ {+,−,×,÷}. By composing these operations, we can
compute an extension of the range of a function over an interval. For instance, if f(x) =
x(x − 1), then an extension of f over [−1, 1] is f([−1, 1]) = [−1, 1]([−1, 1] − 1) =
[−1, 1][−2, 0] = [−2, 2], which necessarily contains the exact range [−1/4, 2] of f .

3.2 IA-Based Global Optimization

The idea of using IA for global optimization has been investigated by many authors
[10, 14], to cite a few. In recent years, IA-based global optimization has exhibited
many successes in various domains. It has also been successfully applied to 3D self-
calibration [11]. The problem is the following: Find the global minimum f� of a smooth
function f , f� = min{f(x) | x ∈ D}, as well as the set of points for which it is ob-
tained, X� = {x ∈ D | f(x) = f�}, where D is a box. IA-based global optimization
usually uses IA along with a branch and bound algorithm. Let X be the box represent-
ing the search region and L a list of boxes to be processed. The basic scheme of the
method can be stated as follows:
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1. Initialize L by placing the initial search region X0 in it.
2. While L �= ∅ do:

a Remove a box X from L .
b Process X (rejecting, reducing, critical point existence, ...).
c Subdivise X and insert the boxes derived from X onto L .

Many details, such as stopping criteria or tolerances have been omitted here. We refer
the reader to [10] for a complete description of the method.

3.3 Implementation

We give here pratical details about our implementation. We use the simplified camera
model described in §2.3. The cost function we minimize is the sum of the two squared
residuals of the equations (4) in which we use the simplified form of the ICP (11):

f(α, ρ, φ) =
N∑

j=2

(xT
1H

T
j ωHjx1 − xT

2H
T
j ωHjx2)2 + (xT

1H
T
j ωHjx2)2.

We derived the symbolic expression of the residuals. At each function evaluation, the
developped residuals are numerically evaluated. This choice seems to be a good com-
promise between the evaluation time and the quality of the function extension. We have
implemented a C++ code based on the PROFIL/BIAS library2.

4 Experimental Results

4.1 Synthetic Data

The experimental setup is the following: The world plane is a planar grid composed of
100 points, projected onto 720× 576 images, adding a Gaussian noise with a standard
deviation equal to σ pixels. In our simplified camera model, the principal point is fixed
to the center of the image, aspect ratio is equal to 1 and skew is 0. The focal length α
is set to 1024 pixels. The camera fixates the center of the plane from a varying distance
of 1460 ± 570 pixels, from randomly generated orientations varying in [10◦, 70◦] in
the world plane X axis, by ±30◦ in the Y axis and by ±90◦ in the Z axis. The inter-
view homographies are estimated using the normalized DLT method [1, chapter 4].
The homographies are then transformed such that the principal point coincides with the
image frame origin and such that α→ α/360 and ρ→ ρ/360.

In order to assess the benefit of a global optimization method, we have minimized
the cost function using an iterative method: We have performed tests with 5 images
and σ = 1 pixel. For each test, the unknowns have been randomly initialized such
that α = α� ± 30%, ρ = ρ� ± 30% and φ = φ� ± 30%, where (α�, ρ�, φ�) was the
real global minimum. The method converged to the global minimum (within a 20%
tolerance) in 38% of cases. The global optimization method we used found the solution
in 100% of cases. In our experiments, we have taken an initial interval corresponding to
[300, 3000]× [100, 12000]× [0, 360]. The initial interval has no effect on the accuracy

2 http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
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Fig. 1. Estimation error and computation time for varying noise level and varying image number.
Each black point counts an excluded test (in (a) and (c)) or a failure (in (b) and (d)).

of the calculated minimum but only on the computation time. When a test cannot finish
in a reasonable time, then we declare it as a failure. A few time-consuming tests will
dramatically increase the mean computation time so we will present the median of
computation time instead. Sometimes, the motion induced by the image sequence is
closed to a degenerate configuration. In these cases, the global minimum is a bit far
away from the real minimum. Therefore we exclude the tests such that the relative error
is greater than 10% in the mean and standard deviation computations. The compuation
times are given on a Pentium M 2GHz. Figure 1 gives some results about the estimation
of α with respect to the noise level. Results for ρ and φ are very similar and are not
presented here due to a lack of space. The accuracy remains quite good, even for σ=5
pixels. There are only a few excluded tests (there were 4 excluded tests over a total of
11000 tests). The estimation of α with respect to the image number is shown in the
figure 1. The estimation error decreases when adding more images but the benefit is
less relevant after 5-6 images. Figure 1 also shows the computation time with respect to
noise and image number. In the first case, the presence of noise has a critical issue on
the computation time whereas the noise level is less relevant. Indeed, the computation
time does not dramatically increase with the noise level (the increasing looks linear).
In the second case, the figure shows that after 5 images the computation time remains
approximately the same: There are more terms to evaluate in the cost function whereas
adding images makes the global minimum easier to enclose.

Since we have made hypotheses on τ , u0 and v0, we have assessed the tolerance of
our method to a variation of these internal parameters. We first made the principal point
varying randomly in a 50×50 pixels square. Second, we made τ varying in [0.95, 1.05]
(i.e. a variation of 5%). We used 5 images and σ = 1 pixel. The results are shown in
table 4.1. Both varying principal point and varying τ have not critical consequences
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Table 1. Estimation error and computation time for varying principal point and aspect ratio

Experiment
fixed (u0, v0),

fixed τ
varying (u0, v0),

fixed τ
fixed (u0, v0),

varying τ

mean relative error of α (%) 0.5 ± 0.5 2.1 ± 1.8 2.7 ± 2.3
median computation time (sec) 43 92 83

number of failures 0 2 34

(a) (b) (c) (d)

(e) (f)

Fig. 2. Results for real images: (a) and (b) Key image and another image of the tintin sequence,
along with the matched points. (e) The rectified image. (c), (d) and (f) Same results for septimus.

on the estimation of the parameters. However, we can see that varying τ has a critical
impact on the number of failures. This is not a real limitation of the method since τ is
usually very close to 1.

4.2 Real Data

We have tested the method on two sequences, tintin and septimus, composed of 7 and
4 640 × 480 images respectively. Homographies have been estimated by using the
Kanatani optimal method [15], from automatically matched points. Then, we have ap-
plied a metric rectification of the key image. In the rectified image, the world plane
should be parallel to the image plane and parallelism and angles should be recovered.
Figure 2 shows two images of each sequence, including the matched points, and the
rectified key image. We can see that the rectifications are quite good. The computation
took 4 min 34 sec in the case of tintin and 8 min 14 sec in the case of septimus.

5 Conclusion

We proposed a minimal parameterization of the 2D self-calibration problem. Assuming
the focal length is the only unknown, there are 3 parameters that can be estimated
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using a global minimization method, providing a guaranteed solution. A guaranteed
solution to 3D self-calibration has been recently proposed by [11], for which closed-
form solutions exist [3], contrary to 2D self-calibration. Although our constraint is more
complex than Triggs’ one, this not a real problem for the global optimization method
we have used. Only the number of unknowns is relevant here. Our simplified camera
model does not reveal some real limitation since we showed that the method is tolerant
to consequent variations in the principal point position and since the hypothesis of a
unit aspect ratio is quite realistic regarding recent digital cameras. The proposed method
seems to work well provided the degeneracies of the problem are avoided. The study of
such degeneracies is outside the scope of the current work, but reveals to be essential
if we are aimed at using a minimal set of images [16]. We also aim at improving the
performances of the algorithm we used.

Acknowledgement. The authors wish to acknowledge Frédéric Messine for fruitful
discussions.
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Plane-Based Calibration and Auto-calibration of a
Fish-Eye Camera
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Abstract. We propose a systematic way for (auto)calibrating a fish-eye lens
camera. By taking images of a planar scene with a fish-eye camera, our method
automatically estimates the centre-of-distortion (COD), distortion parameters,
and other conventional camera intrinsics. We fulfil this by a three-stage algo-
rithm. Each stage accounts for one of the above three calibration tasks. Our main
contributions reside in the second stages, in which we design a nine-point mini-
mal solver for the purpose of distortion correction. Our method is applicable to
both known planar scene and unknown planar scene. The later case corresponds
to an auto-calibration version of the fish-eye camera calibration algorithm.

1 Introduction

Fish-eye camera (as well as other wide-angle and mirror-based omnidirectional cam-
era), has a much larger field-of-view than most pinhole cameras. This has facilitated its
wide and increasing applications in many computer vision tasks such as video surveil-
lance, panoramic mosaic, vision reconstruction, augmented reality, etc.

Images captured by this type of cameras often contain large distortion. The distortion
is often purposely designed to be so in order to enable the camera possessing a large
field-of-view. We focus in this paper on radial distortion, as it is often the dominant
type of lens distortion. Lens distortion effectively changes the geometric property of the
camera, for example, the effective centre-of-projection are no longer unique. Conven-
tional pinhole camera model no longer applies to such camera. Therefore, most classic
vision algorithms, which were designed for pinhole model, can not be readily applied
to fisheye camera. To better use these fisheye images, a procedure (algorithm) must be
developed in order to handle such distortion. Besides, developing special procedure for
calibrating fisheye camera, (i.e, to recover the Euclidean frame of the camera) are also
crucial for many real world vision problems.

This paper aims at providing a systematic and automatic approach for fisheye camera
(auto)calibration. Specifically, by calibration we mean a procedure that maps every
image pixel into the direction of the corresponding incoming ray. To do so, we propose
a three-stage procedure, first estimate the centre-of-distortion, then correct the radial
distortion, and finally calibrate other conventional intrinsic parameters.

We use a planar scene for the calibration task. This is rather practical because planes
abound in natural and man-made environments. This planar scene can be either known
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or unknown. For the later case, we in fact fulfil an auto-calibration algorithm for fish-
eye image.

As will be explained later, our method has several unique advantages that make it
distinct from existing algorithms: (1)In essence, it makes use of the epipolar relation-
ship, however, it does not need to actually estimate any fundamental matrix. In other
words, the method has successfully decoupled the estimation of lens distortion from
the estimation of other camera parameters, thus gains more stability. (2) we propose
a nine-point algorithm, which is basically high-degree nonlinear. However, we do not
need to perform any iteration or minimization. Therefore, applying our method risks
nothing in the convergence and local minima issues. (3) It successfully handles outliers
or mismatches, by using a newly proposed kernel-voting technique, as oppose
to the popularly adopted RANSAC. Experiments have demonstrated this technique very
robust to outliers and noise. (4) Not like many previous distortion-correction methods,
our method does not rely on a particular choice of radial distortion model.

2 Plane-Based COD Estimation

While it is common in the literature to assume the COD is known, usually at the prin-
cipal point, we argue that this is not a safe assumption in general. The real COD can be
displaced from the principal point. However, an accurate estimation of the COD is very
crucial for a vision reconstruction algorithm. A small error in COD may lead to evident
skewness in the final 3D reconstruction result [4].

Traditionally, the estimation of COD is obtained at the same time of performing
a full-range camera calibration. For fish-eye camera, [8] suggests a method using the
center of the circular (or elliptic) field-of-view as the COD. However, this method is
valid only for situation where the whole field-of-view is seen in-full in the image plane.
This is not always the case in reality, because the area of CCD imaging device is often
not large enough to afford a full field-of-view.

With Known Planar Scene. Paper [10] first introduces a novel centre-of-distortion esti-
mation algorithm. We employ this algorithm as the first stage of our calibration method.
A brief description of the procedures of the COD algorithm is summarized below.

Consider a fish-eye camera observing a known planar calibration grid. Assume that
the image have all square pixels. This assumption simplifies our derivation, and it can
be relaxed easily. It is easy to verify that any two corresponding points in the image
plane and in the calibration plane will remain coplanar. This is due to the fact that
radial distortion only affects the radial component of image coordinates. And this is
nothing but a (generalized) epipolar relationship. Figure-1 illustrates the geometric
configuration of the imaging process. We (bravely) write down this generalized radial-
epipolar relationship as:

xT
d Frxc = 0. (1)

where the xd, xc are the coordinates of the distorted image point, and of the corre-
sponding known planar calibration grid point, respectively. The matrix Fr is called the
radial fundamental matrix, which is a generalization of the conventional fundamental
matrix [9].
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Fig. 1. The imaging process of a planar calibration grid by a camera with square pixels and radial
distortion. The image point (e.g.,p) and its corresponding 3D scene point (e.g., p’) are always
coplanar, even under radial distortion. This coplanarity relationship is represented by a radial-
epipolar relationship.

This matrix may be computed in the usual way (for example, by the eight point al-
gorithm) from several point correspondences, and the COD extracted simply as the left
epipole. More formal and mathematically rigorous derivations of the above algorithm
can be found in [10].

With Unknown Planar Scene. The above idea of COD estimation can be easily extended
to images of unknown planar scene, thus we obtain an auto-calibration algorithm for
COD estimation. In this case, at least three views of an unknown planar scene will be
needed. For example for three views, in a similar way a generalized three-view trilinear
relationship—the so-called radial trifocal tensor—will be derived. This method resem-
bles very much to radial trifocal tensor in [6] not only by their names, but also by their
spirit. However, they made no attempt at estimating COD.

In order to linearly compute this radial trifocal tensor, at least 26 points across three
views are needed. Simulations have given good results, which proves the feasibility of
the theory and method. For simplicity, in the remaining parts of the paper, we sim-
ply assume that the COD e has already been estimated and subtracted from the point
coordinates xu and xd.

3 Plane-Based Distortion Estimation

Models for Radial Distortion. Polynomial Model (PM) [3]is the most popular distortion
model. However it works best for lens with small distortions. For fish-eye lens, whose
distortion is much larger, the PM model often requires too many terms than practical
[3]. In this paper we adopt the Division Model (DM) [4] for describing the fisheye radial
distortion:

xu − e = (xd − e)/L(rd,k), (2)

whereL(rd,k) = 1+k1r2d+k2r4d+· · ·+kpr
2p
d , and 2p is the model order, e the centre-

of-distortion (COD) and rd the pixel radius to e. The most remarkable advantage of this
DM model is that it is able to express high distortion at much lower order. Often, one
parameter suffices for many applications (see [4][7]). For demonstration purpose we
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adopt this DM model. However, in principle our method does not rely on any particular
choice of distortion model, so long as it is algebraic. The reason will become clear later
in this paper.

3.1 With Known Planar Scene

Consider a fisheye image of a known planar calibration grid, for example, as shown in
figure-2. Let xc denotes a point on the planar grid, and xd the corresponding radially
distorted image point. The ideal (i.e., un-distorted) version of the xd is denoted by xu.
Then xc and xu are related by a planar homography H. This homography will actually
induce a degenerate epipolar relationship, namely,a fundamental matrix F = sH, where
s is an arbitrary homogeneous 3-vector.

The epipolar relationship between corresponding pixels can be written as:

xT
u Fxc = 0.

Assuming that image pixels are square (i.e.,zero-skew and unity aspect-ratio), we then
plug an (algebraic) distortion model into it, thus get a generalized epipolar equation,
which now explicitly depends on the distortion parameters k. For example, using (2)
we get [xT

d /L(rd,k)]Fxc = 0. Notice that the image coordinates being used are ho-
mogeneous, they therefore admit arbitrary changes in the scale without affecting the
equality of the equation. We thus left-multiply a L(rd,k) to the left-hand side of the
equation, and rearrange the result in a bilinear form using Kronecker product symbol
⊗, then get:

((xd, yd, L(rd,k)) ⊗ xc)vec(FT) = 0. (3)

Now we do so for a group of nine points, whose coordinates denoted by matrices X′ and
X. We then stack the resulting nine bilinear equations together, and get a homogeneous
equation system:

M(X′,X,k)f = 0, (4)

where the square matrix M is called measurement matrix, which depends explicitly on
input distorted coordinates and the distortion parameter k, and f the right null-vector.
For simplicity, later we will drop the index of X and X′ in M.

There are two important observations that justify this processing: firstly, we find that
the f is no other but vec(FT). This is because the row-wise re-scaling of M does not
affect its null-space at all; secondly, this row-wise re-scaling does not change its rank
either. The above homogeneous equations will have non-trivial solution if and only if
the matrix M(k) is singular.

Fig. 2. One sample input image pair taken by a Canon-EOS camera with fish-eye lens
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More precisely, since the plane-induced fundamental matrix is degenerate, it is
thereby that a noise-free M(k) must be at most rank-six. This leads to: rank(M(k))=6.

In computation, we simply use the following procedures to enforce the above rank-
condition. We keep only the 7 × 9 upper sub-matrix of the 9 × 9 measurement matrix,
then arbitrarily choose seven columns from it and assemble a 7× 7 sub-matrix M7(k).
Thus we use the following singularity condition to replace the above rank-six condition.

det[M7(k)] = 0 (5)

This condition, though not mathematically strict—since it is a necessary condition
only—however, delivers good result in practice (partially also because of the kernel-
voting scheme that we adopt).

Moreover, since the solution of Eq.-(4) f itself is a valid fundamental matrix, so it
(after rearrangement) must be singular too. Hence obtain another equation:

det(Mtx[Ker[M(k)]]) = 0, (6)

where the Ker[] is the null-space operator, and Mtx[] is the matrix operator which
rearranges a vector into a matrix (i.e., the reverse operator of vec[]).

Equations (5) and (6) are the basic equations of our method. Note that the distortion
parameters only depend on the above two equations, and there is no need to actually
compute the value of the fundamental matrix F.

Now that having a group of nine correspondences, two nonlinear equations are estab-
lished. If a distortion model involves two parameters only, then nine points are sufficient
to compute them. When more parameters are required, in order to solve for them we
can simply collect more groups of measurements. Now, we can even relax the square-
pixel assumption, as the unknown aspect ratio can be regarded as a further parameter to
be solved for. Moreover, the above method does not reply on any particular parametric
form of the distortion model.

3.2 With Unknown Planar Scene

If the planar scene is unknown, then we are facing an auto-calibration problem. Now the
rank-six condition is no longer hold. However, the singularity of the 9×9 measurement
matrix is still valid. Then we can simply replace Eq.5 with the following one:

det[M(k)] = 0 (7)

Except for this, there is few other thing needs to be changed. The only difference will
be the degree of the resultant basic equations. For example, for unknown planar scene
one now will get a sixth-degree and a eighteenth-degree basic equations for the one-
parameter DM model. Nevertheless, the required solution technique and computational
complexity remain very much the same. This constitutes another merit of our algorithm.

3.3 The Proposed Distortion Estimation Algorithm

In this section we demonstrate our algorithm on the DM model with a known plane.
Remember the convention that the COD is assumed already estimated, and the image
has been centered. The algorithm goes as follows.
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The Nine Point Algorithm

1. Input two images; find feature point correspondences.
2. Normalize the image coordinates by an isotropic scaling so that the maximal radius is 1.0.
3. Collect a group of nine points, write down the pair of basic equations Eqns.(5) and (6).
4. Solve these two basic equations by, for example, the Sylvester resultant method or Groebner

basis method.
5. Discard those non-real roots. Add the real root pairs into list R.
6. Do the above three steps for other data groups, and add the resulting real root pairs into R.
7. Choose the best roots from R by kernel-voting [11].
8. Substitute the best roots to the DM model to correct the images.

Kernel Voting. One could use RANSAC technique to find the best real root. But
RANSAC is not particularly efficient in such context. First, unlike in the problem of
estimating a line or a fundamental matrix where the inlier/outlier test can be performed
fairly efficiently, for the distortion estimation problem there is no such simple way to
do so; Second, because noise also affects the nine-point group, it significantly distorts
the basic equations as well. In other words, the equation we just solved is not the exact
equation that we intended to solve. In such case, there is little hope to obtain a genuine
root from RANSAC.

We advocate the method of kernel-voting ([11]). The main operation of kernel-voting
is to project every valid real root onto the real-line, then use a kernel density estimation
technique to find the root distribution function. The peak position is thus considered
to be the best root, as it is satisfied by the majority of the measurements. This scheme
looks similar to the Randomized Hough Transforms [17]. However, the RHT works
only in a discretized linear parameter space, while ours can easily deal with continuous
nonlinear problem.

4 Estimate Other Intrinsincs

Once we successfully correct the radial distortion, what we obtained is an equiva-
lent ideal pinhole camera. Then many conventional plane-based calibration and auto-
calibration algorithms can be used here. For example the reader can simply use the
methods reported in [3] [12] [19] [9], etc.

5 Results

This section gives some experimental results. We focus on the second stage: plane-
based distortion estimation.

5.1 Distortion Estimation

Synthetic Images: With Known Planar Scene. We generated a 3D planar points scene,
where the points are uniformly randomly distributed. Then perspectively projected them
on two image planes at different viewpoints, and applied the radial distortion. We used
one-parameter DM model with a single parameter k for better illustration. We added
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noise to the image coordinates, then tested our method for different values of k. Ran-
domly choosing nine-point data groups from 100 feature points, we then applied our
nine-point algorithm to each group, and get a cubic polynomial equation corresponding
to the first basic equation.

An example of real-root distribution is shown in figure-3. It is the average result
of 200 random trials. The noise level was 0.1 pixels. From this figure we can eas-
ily find out the root value at the peak position to be k = −2.014, while the ground-
truth value is k = −2.000. We tested the algorithm for different noise levels. Figure-4
shows the parameter estimation result versus noise. It is seen that the algorithm de-
grades smoothly and gracefully as the increasing of the noise. When the noise level is
below 1.0 pixel,(obtaining which is not a difficult task for many corner detection meth-
ods,) the result is quite accurate. We have tested distortion-removal performance. Two
synthetic images were first distorted by an inverse DM model, and add-into noise of 0.5
pixels (in std). Then fed the results into our algorithm to correct the distortion. After
the correction, the maximal pixel deviation was reduced from 28.3 pixels to 3.7 pixels,
while the average deviation is reduced from 4.3 pixels to below 0.5 pixels.

Synthetic Images: With Unknown Planar Scene. In this experiment we demonstrate
that our algorithm works equally well for unknown planar scene. Essentially no change
needs to be made to the algorithm. The only difference is that: now we have to solve a
polynomial equation of higher-degree. For example for the one-parameter DM model,
with known planar scene we get a cubic equation corresponding to the first basic equa-
tion. But now for an unknown plane, we get a degree-six equation. One example is
given as:

Equ = −.2918e−17k6 − .9439e−15k5 − .7113e−14k4

−.1505e−13k3 + .1929e−14k2 + .3141e−13k + .1771e−13

Figure-5 gives the root distribution chart for the unknown-plane case. We test the relia-
bility of our method against outliers (mismatches). In this experiment, we first rounded
the image coordinates into integers, and arbitrarily added a small numbers of mis-
matches into the input data, then ran our algorithm again. We found that although the
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roots became more scattering, the peak position remained stable. Moreover, by increas-
ing the sampling number of groups, the peak can always be made as sharp as that of the
outlier-free case.

Test on Real Images: With Real Unknown Planar Scene. We tested our algorithm on a
Canon-EOS digital camera equipped with a fisheye lens (image resolution 1536×1024).
One obtained sample image pair is shown in figure-2. Note that in this experiment we
assume that we are working with unknown planar scene. Image feature points were

Fig. 7. Correction results for figure-2

Fig. 8. Left: white-board input image; Right: correction result
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extracted by a corner detector. In fact we used in our experiments Lowe’s SIFT code,
since there are large distortions near the periphery of the image. After that, we manually
identified the correspondences within the same planar region of the two images. After
applying the nine-point algorithm, we obtained the following roots distribution result
(See figure-6, from which we get the distortion parameter is k = −1.537. Using this
value, the corrected images are shown in figure-7. Another example result of a planar
white-board image is shown in figure-8.

6 Conclusions and Future Work

Our method allows the user to correct the fish-eye lens distortion simply from two im-
ages of a known or unknown planar scene. This facilitates many practical applications,
such as panoramic image stitching, image-based location estimation (i.e, vision-based
GPS), etc. The later is one of our current research focuses. To solve a system of incon-
sistent simultaneous equations, we suggest a kernel-voting technique. This technique
gives much reliable and robust results with respect to noise and outliers. Moreover, it is
easy to implement. With some necessary but minor modifications, our method is also
useful for other types of distortion models, and other types of omnidirectional cameras,
for examples, in [18] [23] [15], or the LadybugR camera [24].

In addition, as pointed out by one of the reviewers, the rank-six condition may sug-
gest that less than nine points are already enough for solving the underlying problem.
To verify this point will be one of our future work.
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Abstract. In this paper, we propose a new stereo matching algorithm
using an iterated graph cuts and mean shift filtering technique. Our algo-
rithm consists of following two steps. In the first step, given an estimated
sparse RDM (Reliable Disparity Map), we obtain an updated dense dis-
parity map through a new constrained energy minimization framework
that can cope with occlusion. The graph cuts technique is employed for
the solution of the proposed stereo model. In the second step, we re-
estimate the RDM from the disparity map obtained in the first step.
In order to obtain accurate reliable disparities, the crosschecking tech-
nique followed by the mean shift filtering in the color-disparity space
is introduced. The proposed algorithm expands the RDM repeatedly
through the above two steps until it converges. Experimental results on
the standard data set demonstrate that the proposed algorithm achieves
comparable performance to the state-of-the-arts, and gives good results
especially in the areas such as the disparity discontinuous boundaries
and occluded regions, where the conventional methods usually suffer.

1 Introduction

Stereo matching is one of the classical problems in computer vision and has many
potential application areas including the robot navigation, 3D modelling, and im-
age based rendering. In the stereo matching problem, we are given more than
two images of the same scene. Then the goal of stereo matching is to compute
the disparity map for the reference image. A disparity describes the difference in
the positions of two corresponding pixels. Therefore, to get the disparity map, we
have to solve the correspondence problem for each pixel. Generally, in binocular
stereo, we assume that two input images are calibrated and rectified in advance,
so that the epipolar line becomes horizontal. However despite those constraints,
due to the ill-posed nature of the stereo matching problem, determination of
accurate disparities is still a hard problem, especially in the occluded and tex-
tureless areas. To resolve this problem, many stereo matching algorithms have
been proposed, and a detailed review of those algorithms can be found in [1].

In general, stereo algorithms can be classified into the local or global ap-
proaches. Local algorithms often use a finite-size window to increase the dis-
crimination power of correspondence. Corresponding points can be found by
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comparing the intensity values of the local windows with various matching met-
rics like SSD, SAD, NCC, and Birchfield measure [2]. Local algorithms are very
efficient, but they are sensitive to locally ambiguous regions (e.g., occlusion re-
gions or regions with uniform texture) and disparity discontinuous boundaries.

Global algorithms use the smoothness constraint in order to resolve the ill-
posed problem of stereo matching. By using this, the problem of textureless
regions can be handled successfully. However, the discontinuous features of the
disparity map usually cannot be recovered by the simple linear or quadratic
smoothness constraint. Thus, the discontinuity preserving smoothness constraint
such as Potts model has been employed for the stereo model, and the energy
function including such a smoothness constraint is minimized through various
minimization techniques. Among them, graph cuts [3, 4] and belief propagation
[5] have attracted much attention due to their excellent performances. Never-
theless, since many global stereo algorithms still do not consider the occlusion
problem explicitly, eventually reconstruction errors dominate in the occluded
regions.

Recently, stereo matching algorithms using color segmentation has received
a lot of attention [6, 7, 8, 9]. These algorithms are based on the assumption that
there are no large disparity discontinuities inside homogeneous color segments.
In general, we can get much sharper intensity boundaries by using color segmen-
tation. Therefore color segmentation based stereo matching algorithms produce
better performance on disparity boundaries. Tao et al. [6], Ernst et al. [7], and
Hong and Chen [8] made an assumption that pixels inside each color segment
produced by a color segmentation algorithm have the same disparity value. Un-
der this assumption, the stereo matching problem can be formulated as an en-
ergy minimization problem in the segment domain instead of the pixel domain.
Specifically, the energy function contains two parts; the data energy term and the
smoothness term. The data energy measures the disagreement of corresponding
segments given disparity value. The smoothness energy measures how smooth
the disparities of neighboring segments are. In order to minimize both the data
energy and the smoothness energy, Tao et al. [6] used a local greedy search algo-
rithm, Ernst et al. [7] used the relaxation algorithm, and Hong and Chen [8] used
the graph cuts technique. However these methods depend largely on the initial
color segmentation result. Consequently, these methods usually get in trouble
when there exist disparity boundaries inside the initial color segments.

In this paper, we present a new segmentation-based stereo matching algorithm
using an iterated graph cuts and mean shift filtering technique. In contrast to
most conventional segmentation based stereo matching methods that exploit
only the color segmentation information or the disparity segmentation informa-
tion independently, our proposed method considers the segmentation using both
the color and disparity information simultaneously in the color-disparity space.
Through the mean shift filtering [10] in the color-disparity space, the proposed
method corrects the current disparity map coherently with the disparity distri-
bution information as well as the color information. In order to reduce the effect
of outliers and to obtain more reliable disparities, the disparity crosschecking
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(left-right checking) is performed before the mean-shift filtering. Thus, through
the crosschecking and mean shift filtering, we obtain a RDM (Reliable Disparity
Map) from the current disparity map, that is sparse but contains reliable dispar-
ities (of ground control points). Such a RDM is then used to guide more correct
and dense disparity map through a constrained energy minimization framework
that can handle the occlusion. The reliable disparity constrained energy mini-
mization is solved via graph cuts, and it makes the proposed algorithm more
robust to the occlusion problem.

The rest of the paper is organized as follows. First we present the constrained
stereo matching method by the reliable disparities in Section 2. Then we explain
how to compute the RDM through the crosschecking and mean shift filtering
procedures in Section 3. And we describe the structure of the overall algorithm
in Section 4. Experimental results on various data sets are shown in section 5,
and finally, conclusions are drawn in Section 6.

2 Stereo Matching with the RDM

In this section, we present the first part of the proposed algorithm, that is, the
stereo matching with the RDM. Firstly, we introduce the conventional energy-
based stereo model. Then, we explain how to formulate and solve the constrained
stereo model with a given RDM.

2.1 Energy-Based Stereo Matching Model

Let L and R be the sets of pixels in the left and right images, respectively. The
goal of stereo matching is to determine a label fp for each pixel p in the left
image, which denotes a disparity value for that pixel. Then, the stereo matching
can be modelled as the following energy minimization problem,

E(f) = Edata(f) + Esmooth(f). (1)

The data term, Edata(f), measures how consistent the disparity function f agrees
with the input images, and can be written as

Edata(f) =
∑
p∈L

Dp(fp), (2)

where Dp(fp) is a penalty function of the pixel p having the disparity fp. This
penalty function can be the usual SSD, SAD or normalized correlation. However,
in this paper, we use the pixel dissimilarity measure proposed in [2], since it is
known to be insensitive to the image sampling noise. The smoothness term,
Esmooth(f), encodes the smoothness assumption imposed by the algorithm, and
can be written as

Esmooth(f) =
∑

p,q∈N

Vp,q · T (fp �= fq), (3)
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where N is a neighborhood system for the pixels of the left image, Vp,q is a
function to control the level of smoothness, and T (·) is 1 if its argument is
true and 0 otherwise. This is called the Potts energy model, and we adopt this
smoothness model for its discontinuity preserving feature.

2.2 A New Modified Stereo Model

By employing the Potts energy model for the smoothness constraint, we can rem-
edy the problems of disparity discontinuous boundaries as well as the textureless
regions. However, the conventional energy-based stereo models still lack proper
consideration of the occlusion problem. A simple example is shown in figure 1.
The arrows indicate the true correspondences between pixels in two images. The
true disparity value of white pixels is 0, and that of gray pixels is 1. According
to the conventional stereo model, the data term for these true correspondences
becomes Edata(f) = Dp(0) + Dq(0) + Dr(1) + Ds(1). However, note that the
pixel q is occluded by the pixel r, and true corresponding pixel does not exist in
the right image. Thus, minimizing the penalty term of the occluded pixel q, Dq

is meaningless, and produces false matching.
Therefore, in order to make the penalty term of each pixel in the left image

contribute to the data term properly, we have to check the visibility of each
pixel in the right image. For that purpose, we introduce a function V isp that
indicates whether the occlusion is occurred or not for pixel p. When the pixel p
is occluded, V isp is 0, otherwise, V isp is 1. Note that, in general, the occlusion
of a pixel p depends not only fp, the disparity at p, but also the disparities of the
neighboring pixels that can occlude it. So, V isp should be a function of fp and
f . Now, the data term modified by the visibility function V isp can be written by

E′
data(f) =

∑
p∈L

V isp(fp, f) ·Dp(fp). (4)

Because of the dependency of the visibility function V isp on f , minimizing
the total energy function E(f) becomes a nontrivial problem. Actually, we can

Fig. 1. An example of stereo matching with occlusion: L = {p, q, r, s} and R =
{w, x, y, z}. Arrows indicate the true correspondences between pixels in two images.
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prove that the new energy function does not satisfy the regularity condition
[11]. And, according to [11], the regularity condition is a necessary and sufficient
condition for minimizing the energy function via graph cuts. Thus, the energy
function involving the modified data term in (4) can not be solved by the graph
cuts directly.

In order to minimize the modified energy function via graph cuts efficiently,
we introduce a RDM, r in which each element rp can have a label of reliable
disparity value, or the UD label for the undetermined or invalid disparity. Thus,
the RDM provides the information on each pixel whether its disparity has been
already determined reliably or to be further estimated. By using a given RDM,
we can modify (4) by

E′′
data(f) =

∑
p∈L

D′
p(fp), (5)

D′
p(fp) =

⎧⎨⎩
V isp(fp, r) ·Dp(fp), if rp = UD;
0, if rp �= UD and fp = rp;
∞, if rp �= UD and fp �= rp,

(6)

where D′
p(fp) is a modified data penalty term by the RDM constraint. For the

pixels that have reliable disparities (rp �= UD), we do not change the current
disparity values. While, for the pixels that need new disparity estimation (rp =
UD), by using the visibility function V isp(fp, r) constrained by the reliable
disparities, we can eliminate the effect of the occluded pixels efficiently. Thus, by
employing this new data term, we can resolve the occlusion problem effectively.

Now, the proposed energy function consists of the modified data term with
given r in (5) and (6), and the traditional Potts energy model in (3) given by

E(f) = E′′
data(f) + Esmooth(f). (7)

Note that the modified data term is a summation of the new penalty terms
that depend only on the disparity fp of each pixel p, and has the same formation
as the conventional data term in equation (2). Therefore the proposed energy
function can be minimized via graph cuts. In this paper, we use the α-expansion
algorithm [3].

3 Computing the RDM

In this section, we explain the second part of the proposed algorithm, that is, how
to construct the RDM from the disparity map estimated in the first step. The
RDM consists of pixels with reliable disparity values and pixels of which disparity
values are invalid. For estimating whether given disparity values are reliable or
not, we use the conventional crosschecking technique followed by clustering in
the color-disparity space. Through the crosschecking of left and right disparity
maps, only the disparity values that are consistent in both maps are survived
as the reliable disparities, and the others are assigned by UD label that means
undetermined disparity. Next, as in many other works [6, 7, 8, 9] that successfully
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applied the color segmentation information to stereo matching, we also use the
color information to refine and correct the crosschecked disparity map. We adopt
the mean shift algorithm [10] for this purpose.

3.1 Crosschecking Technique

Let fp and f ′p′ be the disparity values of the corresponding pixels p and p′ in the
left and right images, respectively. Then, if fp = f ′p′ , we consider the disparity
fp at p as a reliable disparity value, otherwise an invalid one.

3.2 Mean Shift Algorithm

The mean shift algorithm is a nonparametric density estimation-based method
for feature space analysis, proposed by Comaniciu and Meer [10]. It assumes that
the feature space can be regarded as an empirical probability density function
(p.d.f) of the represented parameter. Dense regions in the feature space corre-
spond to local maxima of the p.d.f., that is, the modes of the unknown density.
Once the location of a mode is determined, the cluster associated with it can
be delineated based on the local structure of the feature space. Thus, the mode
detection is an important part for the feature space analysis. In the mean shift
algorithm, such a mode detection process is based on the mean shift procedure.

According to the work of Comaniciu and Meer [10], the mean shift procedure
that is the successive iteration of the following two steps;

– computation of the mean shift vector mh,G(x),
– translation of the kernel G(x) by mh,G(x),

is guaranteed to converge at a nearby point where the density estimator has zero
gradient, that is, a mode. Here, mh,G(x) is the mean shift vector defined by

mh,G(x) =
∑n

i=1 xig(‖x−xi

h ‖2)∑n
i=1 g(‖x−xi

h ‖2)
− x, (8)

where xi, i = 1, ..., n, are data points, and the function g(x) is the profile of the
kernel. The set of all locations that converge to the same mode defines the basin
of attraction of that mode. Thus, the delineation of the clusters is a natural
outcome of the above mode detection process. After convergence, the basin of
attraction of a mode, i.e., the data points visited by all the mean shift procedures
converging to that mode, automatically delineates a cluster of arbitrary shape.

3.3 Mean Shift Filtering in Color-Disparity Space

Most conventional color segmentation based stereo matching algorithms use the
segmentation information in the color space. However, the color segmentation
algorithm cannot produce correct scene segmentation results, because it does
not consider the disparity (or depth) information. Therefore, in this paper, we
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incorporate the disparity information with the color and spatial coordinates
information through the mean shift algorithm. We compose the CSD (Color-
Spatial coordinates-Disparity) space by adding the disparity component xd to the
conventional color-spatial coordinates space. We use the crosschecked disparity
as the disparity component xd

p at the pixel p. Then, the feature vector of each
pixel p in the input image can be represented by xp = (xc

p, x
s
p, x

d
p), a point

in the 6-D CSD space. In this expression, xc and xs are the color and spatial
coordinates part of the feature vector, respectively. We apply the mean shift
procedure to such feature points in the CSD space repeatedly until it converges,
and replace the disparity value of each pixel by that of the corresponding point
of convergence. The mean shift filtering algorithm in the CSD space can be
summarized as follows. Let xp and zp, p = 1, ..., n, be the input and filtered
feature vector of a pixel p in the CSD domain, respectively. For each pixel,

1. Initialize i = 1 and yp,1 = xp.
2. Compute yp,i+1 according to yp,i+1 = yp,i + mh,G(yp,i) until convergence.
mh,G(yp,i) is the mean shift vector at the point yp,i. Let yp,c be the converging
point.

3. Assign zp = (xc
p, x

s
p, y

d
p,c).

After convergence, we define a reliable disparity map r as rp = zd
p .

In order to perform the above mean shift clustering algorithm, we have to
compute the mean shift vector mh,G(x). However, because of the characteristic
of the disparity space different from the color and spatial coordinates space, we
have to set a new definition of the mean shift vector.

Distance in Disparity Space. Let x be a point in the CSD space. Then, the
mean shift vector at the point x can be computed by (8). In order to compute the
mean shift vector, we have to compute the distance between the point x and the
data points in the input image. We can compute the distance by the sum of the
distances of each component normalized by the bandwidth in its domain. For the
color and spatial component, we use the Euclidean distance. However, it is not
appropriate for the disparity space, since we assume the piecewise constant con-
straint among local disparities by Potts model as in (3). Moreover, the UD label
makes the Euclidean distance unusable. By the piecewise constant assumption,
we enforce the same cost for the neighboring pixels with unequal disparities, re-
gardless of the magnitude of the disparity difference. Thus, following this notion,
let us define the distance in the disparity domain as follows:

‖x
d − xd

i

hd
‖ =

{
0, if xd = xd

i ;
k, otherwise, (9)

where k is some constant.

Mean Shift Vector in Disparity Space. In the mean shift procedure, the
position of the kernel is translated by the mean shift vector. The mean shift
vector (8) implies the difference between the weighted means with the weighting
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kernel G. Therefore, by the mean shift procedure, the kernel is moved to the
mean of data points that belong to the kernel G. However, for the disparity
space, the arithmetic mean of disparity values is meaningless. Therefore, instead
of the arithmetic mean, we define the mean value in the disparity domain as the
most frequent disparity value (mode) among disparity values of points in the
kernel:

mh,G(x)d = arg max
j∈D

∑
xd

i =j

g(‖x− xi

h
‖2). (10)

In this equation, D is the set of all possible disparity values.

4 Experimental Results

For the quantitative evaluation and comparison of different stereo algorithms,
Scharstein and Szeliski [1] have proposed a test bed along with ground truths
which is available at their website (http://www.middlebury.edu/stereo). We have
evaluated the proposed algorithm on these test data sets. The evaluation metric
is the percentage of bad pixels, of which disparity are different from the true
values more than 1 pixel. This measure is calculated in three different parts of
an input image including the entire image (all), untextured (untex), and discon-
tinuity (disc) regions. And, only non-occluded pixels are considered in all three
cases.

Our algorithm has four parameters; one parameter that controls the level of
smoothness Vp,q in the stereo matching part, and three parameters, hc, hs, and k
for the mean shift filtering part. In this paper, following other researchers’ works
[1, 3], we employed the gradient-dependent smoothness cost for the smoothness
control, given by

Vp,q =
{

2λ, if |Ip − Iq| ≤ 5;
λ, otherwise, (11)

where Ip and Iq are intensity values of pixel p and q, respectively.
All the parameters were fixed for all the test sets, and the best results were

obtained when λ = 10, hc = 6.5, hs = 7, and k = 0.7. The proposed algorithm
has been implemented on a Pentium IV 3.0GHz PC. Typically, after few iter-
ations, the RDM converged, and the final dense disparity map was computed
within few minutes (e.g. Tsukuba data, 3 iterations, 95 seconds).

Figure 2 reports the detailed intermediate results on the Tsukuba data. We
can see that through the crosschecking and mean shift filtering process, reliable
disparities coherent with color information have been extracted from the given
disparity map. And through the updating stereo matching process guided by
those ground control points with reliable disparities, more undetermined pixels
become fixed and the reliable disparity range expands.

Table 1 presents the overall performance of our algorithm, where it summa-
rizes the quantitative evaluation results. The proposed algorithm performs quite
well, and our overall rank is 4th out of about 30 algorithms. From the extracted
disparity maps, we can observe that especially good performances have been
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Detailed results on the Tsukuba data. (a) Reference image. (b) disparity map
in the first iteration, (c) RDM after crosschecking, (d) RDM after mean shift filtering,
(e) disparity map in the second iteration, (f) final disparity map after convergence.

Table 1. Evaluation table of different stereo algorithms

Algorithms Tsukuba Sawtooth Venus Map
all untex disc all untex disc all untex disc all disc

Sym.BP+occl. 0.97 0.28 5.45 0.19 0.00 2.09 0.16 0.02 2.77 0.16 2.20
Segm.-based GC [8] 1.23 0.29 6.94 0.30 0.00 3.24 0.08 0.01 1.39 1.49 15.46
Graph+segm. 1.39 0.28 7.17 0.25 0.00 2.56 0.11 0.02 2.04 2.35 20.87
Our method 1.13 0.48 6.38 1.14 0.06 3.34 0.77 0.70 3.61 0.95 12.83
Segm.+glob.vis. 1.30 0.48 7.50 0.20 0.00 2.30 0.79 0.81 6.37 1.63 16.07
Layered 1.58 1.06 8.82 0.34 0.00 3.35 1.52 2.96 2.62 0.37 5.24
Belief prop. [5] 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
MultiCam GC 1.85 1.94 6.99 0.62 0.00 6.86 1.21 1.96 5.71 0.31 4.34
2-pass DP 1.53 0.66 8.25 0.61 0.02 5.25 0.94 0.95 5.72 0.70 9.32
GC+occl. 1.19 0.23 6.71 0.73 0.11 5.71 1.64 2.75 5.41 0.61 6.05

achieved in the areas such as disparity discontinuous boundaries and occluded
regions, where the conventional stereo algorithms usually suffer.

5 Conclusion

In this paper, we presented a new stereo matching algorithm based on iterated
constrained graph cuts with reliable disparities obtained by the mean shift fil-
tering in the CSD space. Through the mean shift filtering in the CSD space,
a RDM coherent with disparity information as well as color information is ob-
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tained. And computing the solution of a new constrained stereo energy model
with given RDM enables the proposed algorithm to be more robust to the occlu-
sion. Evaluation and comparison result shows that our algorithm is one of the
state-of-the-arts.
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Abstract. Panoramas and object movies are popular image-based techniques 
for modeling and rendering 3D scenes and objects. In this paper, we present a 
method which allows the authors of virtual exhibition systems to produce an 
augmented stereo panorama by interactively integrating stereo object movies 
into a stereo panorama. When navigating in the augmented stereo panorama 
with a stereoscopic display, the user can directly browse the stereo object mov-
ies that he is interested in.  With augmented stereo panoramas, the user can en-
joy more persuasive interaction with better depth perception. To our best 
knowledge, this paper is the first work to integrate stereoscopic image-based 
scenes with stereo object movies. 

1   Introduction 

Image-based modeling and rendering techniques have become popular approaches to 
yielding photorealistic rendering results. These techniques model the scenes/objects 
by a collection of images and generate novel images representing the scenes/objects 
appearance at arbitrary points. McMillan and Bishop [13] proposed an image-based 
rendering method to sample and render novel views using the 5D plenoptic function. 
The original 7D plenoptic function was presented by Adelson and Bergen1. The Light 
Filed [9] and the Lumigraph [5] are two methods which reduce the 5D plenoptic func-
tion into the 4D plenoptic function, but their large memory requirements make them 
impractical for real applications, especially for those requiring Internet transmission. 
The simplest way to model scenes is panorama, which is a 2D plenoptic function. The 
technique was first proposed by Chen [3], and allows the user to navigate the scene 
toward any viewing direction at a fixed view point.  

An object movie (OM) is a set of images taken from different perspectives around 
a 3D object; when the images are played sequentially, the object seems to be rotated 
around itself. When captured, each image is associated with distinctive pan and tilt 
angles of the viewing direction, and thus some particular images can be chosen and 
shown on screen according to user interaction. This technique was first proposed in 
Apple QuickTime VR [8] which allows the users to interactively rotate the virtual 
artifacts. Recently, object movie is a popular image-based approach to model and 
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render 3D objects, and has been widely applied to many areas, e.g., E-Commerce, 
digital Archive, Digital Museum [12], etc. 

If we do not have 3D information of the 3D image-based objects and the panorama 
scenes, to integrate panoramas and object movies together is not a trivial problem. In 
[10], we proposed a pure image–based approach, which does not have to reconstruct 
the geometric models of the 3D objects, to augment a panorama with object movies in 
a visually 3D-consistent way.  

Since the binocular vision provides the human depth perception of 3D objects in 
three-dimension, with stereo vision, the viewer can see where objects are in relation to 
them with much greater precision, especially when those objects are moving toward 
or away from them. To benefit from human binocular visions, we extend the work on 
augmented panorama to augmented stereo panorama.  

The organization of this paper is as follows. First, the related works will describe in 
Section 2 followed by the methods to obtain stereo object movies and panoramas in 
Section 3 and 4, respectively. In Section 5, we describe the detail of our interactive 
method to augment stereo panoramas with stereo object movies. Some experimental 
results will be presented in Section 6. Finally, the conclusion will be given in Section 7.  

2   Related Works 

Our work involves creating stereo panoramas and object movies and integrating ste-
reo object movies into stereo panoramas. To generate stereo panoramas, Huang and 
Hung [9] proposed a method to automatically generate a stereo panorama with two 
cameras. One of the cameras is rotating on the axis and the other is off-center rotating. 
This method generates two sets of panorama, one for the left view and the other for 
the right view. 

In [14], Peleg and Herman proposed a new method to capture stereo panoramas by 
using only an off-center rotating camera. They assume the viewer’s eyes are on a 
viewing circle. The projections of the left view and the right view are tangent to the 
viewing circle. One is clockwise and the other is counter-clockwise. 

The method, named Parallel Ray Interpolation for Stereo Mosaicing (PRISM) pro-
posed in [17], is to stitch mosaics seamlessly for aerial images. The authors generated 
stereo panorama from an aerial camera. The aerial camera, which undergoes a domi-
nant translational motion, is mounted on an aerial plane. To calibrate the aerial cam-
era, they estimate the extrinsic parameters of the camera by an aerial instrumentation 
system, such as GPS, INS and laser profiler. After estimating camera parameters, they 
rectified the captured images to eliminate rotational components. 

Shum and He proposed concentric mosaic [15] to capture rays in the environment. 
Those rays are all tangent to several specific circles and form several cylindrical im-
ages with different radius. The concentric mosaic can render scenes at any view point 
toward any viewing direction inside the circle. Shum and Szeliski [7] further use the 
concentric mosaic to generate stereo. Because the depth of any vertical strip of cap-
tured rays is not identical, they apply depth correction for captured rays. 

Based on augmented panorama, we developed a stereoscopic kiosk [12] for virtual 
museum, which consists of two display devices: one is a touch screen and the other is 
a stereoscopic display. In the kiosk system, artifacts are presented as object movies, 
and can be integrated with both image-based panoramas and geometry-based scenes 
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for constructing virtual museum. Through the touch screen, the users can arbitrarily 
navigate in the virtual museum, select artifacts, and interactively view the detail in-
formation of the selected artifacts. Once an artifact on the touch screen is selected, the 
stereoscopic object movie of the selected artifact will be synchronously shown in the 
stereoscopic display. The kiosk system provides the user a better experience for 
browsing the 3D object through the stereoscopic display, however, the exhibition 
environment and the stereo OMs are displayed in separated devices. In this paper, we 
will integrate them together so that the user can navigate the virtual exhibition and 
browse the 3D objects using a stereoscopic display. 

3   Stereo Object Movies 

In this section, we discuss how to obtain stereo object movies (stereo OMs). A stereo 
OM consists of a pair of monocular OMs: one for left view (the left-OM) and the 
other for the right view (the right-OM). To acquire object movies (OMs), we use the 
motorized object rig, autoQTVR, developed by Texnai Inc. The motorized object rig 
is a computer-controlled 2-axis omniview shooting system, as shown in Fig. 1. By 
controlling the 2-axis, each captured image is associated with distinctive pan and tilt 
angles of the viewing direction. With the known pan and tilt angles, some particular 
images can be chosen and shown on screen according to user interactions.  

For obtaining stereo OMs, we first acquire a monocular OM, e.g., for the left view, 
and then shift camera rightward to acquire the other monocular OM. Fig. 2 shows the 
3D configurations when capturing a stereo OM. As it should be, we can use a stereo 
camera to acquire a pair of OMs simultaneously. Another method to obtain stereo OMs 
is to generate the right-OMs from the left-OMs using view morphing techniques.  

In order to integrate a stereo OM into a new background, we have to remove the 
original background of the stereo OMs. In this work, we use the system proposed in 
[16] to remove the background of OMs. Using the system, we can perform back-
ground removal in less time with least human intervention.  

 

Fig. 1. The motorized object rig, autoQTVR, is used to acquire OMs 
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Fig. 2. The motorized object rig, autoQTVR, is used to acquire OMs 

4   Stereo Panoramas 

As mentioned in Section 2, there are many methods to obtain stereo panoramas. In this 
work, we adopt the method proposed in [14], because their method is easy to imple-
ment. Their method generates stereo panoramas by stitching vertical strips of a series 
images captured by a video camera. These image strips can approximate the desired 
circular projection on a cylindrical image surface. As shown in Fig. 3, the camera with 
an optical center O and an image plane is rotated about the rotation axis behind the 
camera. Strips at the left side of the image are seen from viewpoint Vr, and strips at 
right side of the image are seen from viewpoint Vl. The left strips are extracted for the 
right panorama and the right strips are for the left panorama. Therefore, the left pano-
ramic image can be constructed from strips located at the right side of images and the 
right panoramic image can be constructed from strips located at the left side of images. 

O
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Fig. 3.  A diagram of the method [14] to create a pair of stereo panoramic images 
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5   Augmented Stereo Panoramas 

To integrate stereo OMs into a stereo panorama, we have to know where the objects will 
be inserted in. As mentioned in [10], to achieve the task for a monocular panorama, the 
user is only required to specify four vertices of a cuboid to define a 3D reference frame, 
named shadow reference frame (SRF), in a 2D dewarped view. This reference frame 
defines where the shadow of the object is supposed to be projected onto. Once the user 
has specified a SRF in the dewarped panoramic view, the geometric transformation 
between this SRF and the panorama reference frame (PRF) can be computed using this 
information [4]. By referring to the SRF, the user can insert stereo OMs into the stereo 
panorama in a visually 3D-consistent way. Each stereo OM is associated with a refer-
ence frame, named object reference frame (ORF), so the user can manipulate the stereo 
OM according to the orientation and location where the user desires. In this paper, we 
extend the method to augment a stereo panorama with stereo OMs. Our system provides 
two approaches for the users to quickly and accurately specify shadow reference frames 
in a stereo panorama. When rendering, the left panorama with left-OMs and right pano-
rama with right-OMs are processed separately but in the same way.  

5.1   Defining a Reference Frame  

In this section, we will discuss two approaches allowing the user to specify where the 
stereo OMs will be inserted into a stereo panorama. One is a 2D approach, which the 
user can determine the SRFs in dewarped views of the stereo panorama. The other is a 
3D approach, which allows the user to specify the SRFs in 3D space with stereoscopic 
display devices. The 3D approach is intuitive while the 2D approach does not require 
the stereoscopic devices.  

(1) 2D approach 
First, we let the user to define a SRF for the left panorama by specifying four verti-
ces of a cuboid projected in the dewarped image, and the system can solve the 
geometric transformation between the SRF and the PRF. Furthermore, our system 
then automatically estimates the corresponding SRF in the right panorama by find-
ing the corresponding vertices of the SRF. If the estimated result does not meet the 
user’s expectations, the user can adjust the corresponding SRF in the right pano-
rama. Here, our system provides a user interface to help the user performing the 
adjustments for more accuracy. First, we automatically find some corresponding 
features between both dewarped views of the stereo panorama using pyramidal 
KLT [2]. The extracted correspondences are shown on both dewarped images for 
the user to select good correspondences. After selecting correspondences (at least 8 
correspondences), the fundamental matrix can be computed. Using the fundamen-
tal matrix, we can draw the epipolar line in the right dewarped image for a given 
point in the left dewarped image, as shown in Fig. 4. Therefore, the user can adjust 
the corresponding vertices of SRF in the right view with the help of epipolar lines. 
(2) 3D approach 
In this approach, the user is asked to wear a stereo glasses and directly manipulates 
a 3D SRF. By scaling, rotating and translating the 3D SRF, the user can determine 
the orientation and location of the SRF in 3D space.  
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Fig. 4.  An example of determining corresponding point with the help of the epipolar line

5.2   Rendering 

An augmented stereo panorama consists of the left augmented panorama and the right 
augmented panorama. The left augmented panorama is composed by left OMs and the 
left panorama, and the right augmented panorama is composed by right OMs and the 
right panorama. We separately render the left augmented panorama and the right 
augmented panorama in the same viewing direction. 

When rendering, we sequentially render the background layer, the shadow layer 
and the object layer. The background layer is composed by the de-warped view of the 
panorama. After the viewing direction of viewer is specified, we can dewarp the view 
according to the specified viewing direction and render it. 

An OM with no 3D geometric model is impossible to generate a realistic shadow. 
To cope with this, we assume the shadow to be generated is produced by a set of paral-
lel light sources. The lighting directions of the parallel sources can either be estimated 
from photographs containing the global illumination or manually specified by the user. 
We then can generate shadow of an OM by putting the correct shadow map at the 
correct position with respect to a user-specified SRF. As shown in Fig. 5, we generate 
a viewing image by composing the image of the OM correspond to the viewing direc-
tion nL and its shadow, on the x-z plane of the SRF, produced by shadow map. 

Fig. 5. Illustration of casting shadow for an object movie 
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To render object layer, we first compute the viewing direction, from the center of 
PRF (Cp) to the center of the ORF, and select and render the image of the OM accord-
ing to the viewing direction. 

6   Experimental Results 

Fig.6 shows the stitched results of a stereo panorama from photos taken in our labora-
tory. Fig. 7 shows the result of integrating a stereo OM into the stereo panorama. The 
shadow is properly rendered under the inserted object and the perceived depth of the 
OM is consistent with its nearby scene objects. Fig. 8 shows the consecutive views of 
rotating the stereo OM in the stereo panorama. 

(a)

(b)

Fig. 6. Stitching result of a stereo panorama 

      (a)                                      (b) 

Fig. 7. Result of the augmented panorama with a stereo OM. (a) shows the rendered left view, 
and (b) shows the right view. 

7   Conclusion 

In this paper, we extend our previous work on augmented panorama to augmented 
stereo panoramas. We develop an interactive system which allows the user to integrate 
stereo  OMs  into  a  stereo  panorama,  and interactively browse the augmented stereo 
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(a)                                      (b) 

(c)                                      (d) 

Fig. 8. Rotating the OM in the augmented stereo panorama. (a) and (c) are the left views. (b) 
and (d) are the right views. 

panorama. In our system, we provide the users two approaches to determine the refer-
ence frames where the object will be inserted in a stereo panorama. After determining 
the reference frames, we render the left view and the right view separately. For each 
view, we first render the background layer, then the shadow layer and the object layer. 
When browsing the augmented panorama, the user can directly rotate and translate the 
stereo object movie that he is interested in. With augmented stereo panoramas, the 
user can enjoy more persuasive interaction with better depth perception.    
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Abstract. Recovering the pose of a person from single images is a challenging
problem. This paper discusses a bottom-up approach that uses local image fea-
tures to estimate human upper body pose from single images in cluttered back-
grounds. The method takes the image window with a dense grid of local gradient
orientation histograms, followed by non negative matrix factorization to learn a
set of bases that correspond to local features on the human body, enabling selec-
tive encoding of human-like features in the presence of background clutter. Pose
is then recovered by direct regression. This approach allows us to key on gradi-
ent patterns such as shoulder contours and bent elbows that are characteristic of
humans and carry important pose information, unlike current regressive methods
that either use weak limb detectors or require prior segmentation to work. The
system is trained on a database of images with labelled poses. We show that it
estimates pose with similar performance levels to current example-based meth-
ods, but unlike them it works in the presence of natural backgrounds, without any
prior segmentation.

1 Introduction

The ability to identify objects or their parts in the presence of cluttered backgrounds
is critical to the success of many computer vision algorithms, but finding descriptors
that can distinguish objects of interest from the background is often very difficult. We
address this problem in the context of understanding human body pose from general
images. Images of people are seen everywhere. A system that was capable of reliably
estimating the configuration of a person’s limbs from images would have applications
spanning from human computer interaction to activity recognition from images to an-
notating video content. In this paper, we focus on recognizing upper body gestures.
Human arm gestures often convey a lot of information — e.g. during communication
— and automated inference and interpretation of these could allow for critical under-
standing of a person’s behaviour.

Current methods for human pose inference usually rely on background subtraction
to isolate the subject. This limits their applicability to fixed environments. Model-based
approaches use a manual/heuristic initialization of pose as a starting point to optimize
over image likelihoods, or to track through subsequent frames in a video sequence. The
application of such methods to 3D pose recovery requires camera parameter estimates
and realistic human body models. We prefer to take a bottom-up approach to the prob-
lem, considering pose inference from general images in terms of two interdependent
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sub-problems: (i) identifying/localizing the human parts of interest in the image, and
(ii) estimating 3D pose from them. We combine methods that are currently used mainly
for object and pedestrian detection with recent advances in example-based pose esti-
mation from human silhouettes or segmented images, implicitly using the knowledge
contained in human body configurations to learn to localize body parts in the presence
of cluttered backgrounds and to infer 3D pose.

Our approach to modeling human body parts is based on using SIFT-like histograms
[5] computed on a uniform grid of overlapping patches on an image to encode the image
content as an array of 128-d feature vectors. This scheme encodes local image content in
terms of gradient patterns invariant to illumination changes, while still retaining spatial
position information. It allows us to key on gradient patterns such as head/shoulder con-
tours or bent elbows that are characteristic of humans and that contain important pose
information, in contrast to limb based representations that either key on skin colour and
face detection (e.g. [11]), or learn individual limb detectors and then apply kinematic
tree based constraints [16,20].

As the human body is highly articulated, it is a complicated object to detect, par-
ticularly at the resolution of individual body parts. Although explicit kinematic tree
based structures can be an effective tool in this regard, we avoid such assumptions,
instead learning characteristic spatial configurations directly from images. Our patch
based representation allows us to work on the scale of small body parts, and besides
providing spatial information for each of these parts, enables us to mix and match part
combinations for modeling generic appearance.

Previous work: There are currently only a few bottom up approaches to the estimation
of human pose from images and video. Many of these methods use combinations of
weak limb detectors to detect the presence of a person [16,9], but are not capable of
deducing 3D poses accurately enough to infer actions and gestures. Similarly, in [15],
loose 2D configurations of body parts are used to coarsely track people in video by
filtering potential limb-like objects based on motion and color statistics.

Most methods for precise pose estimation adopt top-down approaches in the sense
that they try to minimize projection errors of kinematic models, either using numerical
optimization [21] or by generating large number of pose hypotheses [11]. With suitable
initialization or sufficiently fine sampling such methods can produce accurate results,
but the computational cost is high. Efficient matching methods such as [6] fall back to
the assumption of having pre-segmented images. [20] discusses an interesting approach
that combines weak responses from bottom-up limb detectors based on a statistical
model of image likelihoods with a full articulated body model using belief propaga-
tion. However, this approach uses background subtraction and it also relies on multiple
calibrated cameras.

A recent work that addresses upper body pose from single images in clutter is [11].
This is based on the use of heuristic image cues including a clothes model and skin
color detection; and relies on generating and testing large numbers of pose hypotheses
using a 3D body model. Here we adopt an example based approach inspired by [19]
and [1]. Both of these approaches infer pose from edge feature representations of the
input image using a model learned from a number of labeled training examples (image-
pose pairs). However, both require clean backgrounds for their representations. Here
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1 1

(a) (b) (c) (d) (e)

Fig. 1. An overview of our method of pose estimation from cluttered images. (a) original image,
(b) a grid of fixed points where the descriptors are computed (each descriptor block covers an
array of 4x4 cells, giving a 50% overlap with it’s neighbouring blocks), (c) SIFT descriptors
computed at these points, the intensity of each line representing the weight of the corresponding
orientation bin in that cell, (d) Suppressing background using a sparse set of learned (NMF) bases
encoding human-like parts, (e) final pose obtained by regression.

we develop a more general approach that works with cluttered backgrounds. Our im-
age representation is based on local appearance descriptors extracted from a uniformly
spaced grid of image patches. This notion, in the form of superpixels, or image sites,
has previously been used in several different contexts, e.g. [4,13,17]. We also take in-
spiration from the image coding and object localization methods described in [22,14].

2 Regression Based Approach

Example based methods often have problems when working in high dimensional spaces
as it is difficult to create or incorporate enough examples to densely cover the space.
This is particularly true for human pose estimation which must recover many articular
degrees of freedom from a complex image signal. The sparsity of examples is usually
tackled by smoothly interpolating between nearby examples. Learning a single smooth
inference model in the form of a regressor was suggested in [1]. This has the advantage
of directly recovering pose parameters from image observations, which obviates the
need to attach explicit meanings or attributions to image features (e.g. labels designating
the body parts seen). However it requires a robust and discriminative representation of
the input image. Following [1], we take a regression based approach, extending it to deal
with the presence of cluttered image background. Encoding pose by the 3D locations
of 8 key upper body joint centres, we regress a 24-d output pose vector y on a set of
image features x:

y = Aφ(x) + ε (1)

where φ(x) is a vector of basis functions, A is a matrix of weight vectors, and ε is a
residual error vector. The matrix A is estimated by minimizing least squares error while
applying a regularization term to control overfitting.

The method turns out to be relatively insensitive to the choice of regression methods.
Here we work with a classical single-valued regressor as frontal upper body gestures
have relatively few multimodality problems in comparison to the full body case, but the
multimodal multi-valued regression method of [2] could also be used if necessary. Our
main focus is on exploring suitable image representations and mechanisms for dealing
with background clutter.



A Local Basis Representation for Estimating Human Pose from Cluttered Images 53

3 Image Features

Image information can be encoded in many different ways. Given the variability of
clothing and the fact that we want to be able to use black and white images, we do
not use colour information. Silhouette shape and body contours have proven effective
in cases where segmentations are available, but with current segmentation algorithms
they do not extend reliably to images with cluttered backgrounds [12]. Furthermore,
more local, part-based representations are likely to be able to adapt better to the highly
non-rigid structure of the human body. To allow the method to key on important body
contours, we based our representation on local image gradients. For effective encoding,
we use histograms of gradient orientations in small spatial cells. The relative coarse-
ness of the spatial coding provides some robustness to small position variations, while
still capturing the essential spatial position and limb orientation information. Note that
owing to loose clothing, the positions of limb contours do not in any case have a very
precise relation to the pose, whereas orientation of body edges is a much more reliable
cue. Hence a SIFT-like representation is appropriate. We compute these histograms in
the same way as SIFT descriptors [5], quantizing gradient orientations into discrete
values in small spatial cells and normalizing these distributions over local blocks of
cells to achieve insensitivity to illumination changes. To retain the information about
image location that is indispensable for pose estimation, the descriptors are computed
at fixed grid locations in the image window. Figure 1(c) shows the features extracted
from a sample image. We denote the descriptor vectors at each of these L locations as
vl, l ∈ {1 . . . L}, and represent the complete image as a large vector x, a concatenation
of the individual descriptors: x ≡ (v1�

,v2�
, . . .vL�)�.

An alternate approach that failed to provide convincing results in our experiments
is a bag of features style of representation. In the absence of reliable salient points on
the human body, we computed SIFT descriptors at all edge points in the image and
added spatial information by appending image coordinates to the descriptor vector. For
effective pose estimation, though, it seems that coding location precisely is extremely
important and extracting descriptors on a fixed grid of locations is preferable.

3.1 Similarity Based Encoding

Representations based on collections of local parts are commonly used in object recog-
nition [18,3,7]. A common scheme is to identify a representative set of parts as a vo-
cabulary for representing new images. In an analogous manner, the human body can
be represented as a collection of limbs and other key body parts in particular configura-
tions. To test this, we independently clustered patches at each image location to identify
representative configurations of the body parts that are seen in these locations. Each im-
age patch was then represented by softly vector quantizing the SIFT descriptor by vot-
ing into each of its corresponding k-means centers, i.e. as a sparse vector of similarity
weights computed from each cluster center. Results from this and other representations
are summarized in figure 4 and discussed in the experimental section.

3.2 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a recent method that can exploit latent
structure in data to find part based representations [10,8]. NMF factorizes a non-
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Fig. 2. Exemplars, or basis vectors, extracted from SIFT descriptors over 4000 image patches
located close to the right shoulder. The corresponding block is shown in figure 3. (left) Represen-
tative examples selected by k-means. (right) Much sparser basis vectors obtained by non-negative
matrix factorization. These capture important contours encoding a shoulder, unlike the denser ex-
amples given by k-means.

negative data matrix V as V ∼ WH, where W and H are both constrained to be
non-negative. If the columns of V consist of feature vectors, W can be interpreted as
a set of basis vectors, and H as corresponding coefficients needed to reconstruct the
original data. Each entry of V is thus represented as vi =

∑
j wjhji. Unlike other lin-

ear decompositions such as PCA or ICA [23], this purely additive representation (there
is no subtraction) tends to pull out local fragments that occur consistently in the data,
giving a sparse set of basis vectors. The results of applying NMF to the 128-d descriptor
space at a given patch location are shown in figure 2.

Besides capturing the local edges representative of human contours, the NMF bases
allow us to compactly code each 128-d SIFT descriptor directly by its corresponding
vector h of basis coefficients. This serves as a nonlinear image coding that retains good

(a) (b) (c)

Fig. 3. To selectively encode foreground features and suppress unwanted background, we use
NMF bases learned on clean images (with no clutter) to reconstruct the cluttered image patches.
For each image, the original SIFT feature and its representation using the bases extracted using
NMF are shown for the patch marked. Features corresponding to background edges such as those
of the building on the left in (a) and the arch in (b) are clearly suppressed, while background
clutter in (c) is downweighted.
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locality for each patch: φ(x) ≡ (h1�
,h2�

, . . .hL�)� in (1). Having once estimated
the basis W (for each image location) from a training set, we keep it fixed when we
compute the coefficients for test images. In our case, we find that the performance tends
to saturate at about 30-40 basis elements per grid patch.

Selectively removing clutter: An interesting advantage of using NMF to represent
images is its ability to selectively encode only the foreground of regions of interest,
hence effectively rejecting background. We find that by learning the bases W from a
set of clean images (containing no background clutter), and using these only additively
(with NMF) to reconstruct images with clutter, only the edge features corresponding
to the foreground are reconstructed, while suppressing features in unexpected parts of
the image. This happens because the bases are constructed from clean human images
and hence forced to contain mass only in regions containing human-like features. Some
examples illustrating this phenomenon are shown in figure 3.

4 Experimental Performance

We trained and evaluated the methods on two different databases of human pose exam-
ples. The first is a set of randomly generated human poses using a human model render-
ing package, POSER from Curious Labs. This is a subset of the data used in [19], kindly
supplied to us by its authors. The second dataset contains motion capture data from hu-
man recordings of several sets of arm movements. It was obtained from http://mocap.cs.
cmu.edu. Unfortunately neither set has significant background clutter, nor are we aware
of any existing dataset that combines images of human poses with background clutter
and motion capture data for training and ground truth. However, as all of this data was
created under controlled conditions, we were able to artificially add random backgrounds
to the images while retaining their 3D pose ground truth information for comparative
testing with and without background clutter. So we have clean and cluttered versions of
both image sets, albeit with somewhat artificial poses (for set 1) and backgrounds.

For descriptor computation, we quantized gradient orientations into 8 orientation
bins (in [0, π]) in 4×4 spatial cells, as described in [5], using blocks 32 pixels across.
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over different combinations of training and testing on clean and cluttered data. See text.
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Our images are centered and resized to 118×95 pixels. The descriptor histograms are
computed on a 4×6 grid of 24 uniformly spaced overlapping blocks on each image,
giving rise to 3072-d image descriptor vectors x.

Figure 4 shows the performance of different feature encodings over all combinations
of training and testing on clean and cluttered images. The regularization parameter of
the regressor was optimized using cross validation. These figures are reported for 4000
training and 1000 test points from the POSER dataset. The errors reported indicate, in
centimeters, the RMS deviations for the 3D locations of shoulder, elbow, wrist, neck and
pelvis joints. The best performance, as expected, is obtained by training and testing on
clean, background-free images, irrespective of the descriptor encoding used. Training
on clean images does not suffice for generalization to clutter. Using cluttered images for
training provides reasonably good generalization to unseen backgrounds, but the result-
ing errors are larger by 2-3 cms on both clean and cluttered test sets than the best case.
Surprisingly, a linear regressor on the vector x performs very well despite the clutter —

Fig. 5. Sample pose estimates from a test set of 1000 images in cluttered backgrounds. No knowl-
edge of segmentation is used in the process.
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an examination of the elements of the weight matrix A reveals this is due to automatic
downweighting of descriptor elements that usually contain only background. On aver-
age, the k-means based representation performs the worst of all and the NMF-based
representation gives the best performance. To study the space of encodings ‘between’
an extreme exemplar based k-means representation and the set of basis vectors obtained
by NMF, we tested NMF with constraints on the sparsity level of the basis vectors and
coefficients [8]. Varying the sparsity of the basis vectors W has very little effect on the
performance, while varying the sparsity of the coefficients H gives results spanning the
range of performances from k-means to unconstrained NMF. As the sparsity prior on
H is increased to a maximum, NMF is forced to use only a few basis vectors for each
training example, in the extreme case giving a solution very similar to k-means.

To see the effect of depth ambiguities on these results, we computed errors separately
in the x and y coordinates corresponding to the image plane and z, corresponding to
depth. We find that errors in depth estimation are a little higher than those in lateral
displacement. E.g., of the 10.88 cm of error obtained in the experiment on cluttered
images, 9.65 cm comes from x and y, while 12.97 cm from errors in z. In the absence
of clutter, we obtain errors of ∼8 cm. This is similar to the performance reported in
[19] on this dataset (when transformed into the angle based error measure used in that
paper), showing that regression based methods can match the performance of nearest-
neighbourhood based ones, while avoiding having to store and search through exces-

Fig. 6. Pose reconstructions on real unseen images. The first 3 images are taken from a test se-
quence in our motion capture dataset which includes similar gestures made by another person,
while the last 3 are example images obtained using Google. The results on the real images are
not very precise if overlayed on the images, but they do capture the general appearance of the
subject’s gestures fairly well. They would probably improve considerably given more training
data for common gestures.
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sive amounts of training data. Examples of pose estimation on the cluttered test set are
shown in figure 5.

For our second set of experiments, we use ∼1600 images from 9 video sequences
of motion capture data. Performance on a test set of 300 images from a 10th sequence
gives an error of 7.4 cm in the presence of clutter. We attribute this slightly improved
performance to the similarity of the gestures performed in the test set to those in the
training sequences, although we emphasize that in the test set they were performed by
a different subject. Figure 6 shows sample reconstructions over test examples from the
second database and from some natural images found with Google. We find that train-
ing on the second dataset also gives qualitatively better performance on a set of ran-
domly selected real images. This suggests that it is important to include more ‘natural’,
human-like poses in the training set, which are not covered by randomly sampling over
the space of possible poses. We are currently collecting more training data to improve
performance on typical human gestures.

5 Conclusion

We have presented a method that is capable of estimating 3D human upper body pose
from a single image. To the best of our knowledge, this is the first totally bottom-up
approach to this problem that works in the presence of background clutter. An image
representation based on a set of local descriptors computed at known locations in the
image allows us to model the appearance of different parts independently, before com-
bining the information for pose regression. The regression based approach eliminates
the need to store large numbers of training examples. We have also demonstrated a
novel application of non-negative matrix factorization that allows us to discriminate
features of interest from background. This is likely to prove useful in other applications
including segmentation and recognition.

Future work: We currently work with centered images of people. The framework could
be applied as it is on the output of a person detector to estimate pose or infer activity of
multiple people in a scene. In fact, we are hoping to construct a unified person detector
and pose estimator that uses a knowledge of human body configurations for complete
detection. As regards immediate extensions, the method will be trained on a larger data-
base of common gestures and extended to incorporate motion information for tracking
full body motion in cluttered backgrounds.
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Abstract. Mutual information has been used for matching and register-
ing 3D models to 2D images. However, in Viola’s original framework [1],
surface albedo variance is assumed to be minimal when measuring simi-
larity between 3D models and 2D image data using mutual information.
In reality, most objects have textured surfaces with different albedo val-
ues across their surfaces, and direct application of this method in such
circumstances will fail. To solve this problem, we propose to include spa-
tial information into the original formulation by using histogram-based
features of local regions that are robust to local but significant albedo
variation. Neighborhood Extended Gaussian Images (NEGI) are used as
descriptors to represent local surface regions on the 3D model, while pixel
intensity data are considered within corresponding region windows on the
image. Experiments on aligning 3D car models in cluttered scenes using
this new framework demonstrate substantial improvement as compared
to the original pixel-wise mutual information approach.

1 Introduction

One of the difficult problems in computer vision is the registration of a 3D model to
an image. 2D-3Dalignment techniques are applied in the medical images domain to
register 3D volumetric data with 2D images, with mutual information as one of the
most popular similarity measures [2]. 3D geometric models are used for detecting
faces and objects in 2D images by finding pose estimates through alignment.

Representations of object models have been studied extensively for varied
detection techniques and application purposes. Some existing 2D-3D alignment-
based detection methods use edges of the 3D geometric models as a matching cue,
through finding invariant descriptors from 2D projection profiles or by defining
shape signatures [3, 4, 5, 6]. Viola [1] and Maes et al. [7] proposed an alignment
approach using a similarity measure derived from information theory [8]. An
interesting application in [1] is that we can take surface normal samples (N)
from a geometric model, collect the corresponding intensity values (I) in the
image and then compute the mutual information (MI) between N and I. Object
pose in the image is estimated by maximization of mutual information.
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As a similarity measure, mutual information does not assume a known func-
tional relationship between the model and the image. Rather, it only assumes
that a consistent relationship exists. The consistency principle states that simi-
lar model data will map to similar image data and it is observed that a correct
alignment will generally lead to a consistent relationship (figure 3). This makes
mutual information a more robust similarity measure for matching multi-modal
data [2]. A likely situation for object detection is that functional relationships
between 3D model and 2D image can be difficult to model or hard to establish
due to complexities such as illumination changes and shadows, the 3D model
being a weak descriptor (for instance, the available model is only a rough ap-
proximation of the object shape with low polygonal counts), or the rather un-
usual appearance of the object for its image being captured using a thermal
camera. Mutual information has been shown to be a promising matching metric
in such situation, but very little has been studied in the case of 2D-3D align-
ment beyond the initial framework in [1] and the medical image registration
domain.

There is an important limitation to mutual information applied in alignment
of 3D geometric models to image data: it fails on surfaces that have signifi-
cant albedo variation. The reason for the failure is that, as mutual information
takes into account only the relationship between single dimension points (i.e.
a single model normal and intensity of a single pixel), the consistency princi-
ple breaks down when similar surface normals map to different intensity values
(figure 2). In reality, many objects have textured surfaces with varying albedo
values across their surfaces. To make mutual information more applicable to real
world scenarios, it is important to handle the issue of varied albedo across object
surface.

In this paper, a method to solve the aforementioned problem is presented. We
propose to include spatial information into the original formulation by including
a neighborhood set of points in a novel manner that makes it robust to albedo
variation. To accommodate the extension to alignment of 3D models to 2D image
data, we define the Neighborhood Extended Gaussian Images to represent shape
within local surface regions on the model, and consider intensity data within
region windows on the image. The method makes it more practical for 2D-3D
alignment based on the mutual information for non-medical images.

The paper is organized as follows: section 2 contains review of related work.
Section 3 presents discussion on the mutual information as a matching metric
and an extension of its original formulation. Section 4 presents the Neighbor-
hood Extended Gaussian Images. Section 5 presents our experimental results
and finally Section 6 presents some conclusions and future research directions.

2 Previous Work

Instead of comparing images using singleton pixels, Russakoff et al. [9] extended
mutual information to include spatial information by using more pixels in a
neighborhood when computing the mutual information – this is applied to 2D
medical image registration. The framework exploits the spatial relationship of
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pixels in a simple manner to provide greater regularization to the optimization
problem, but does not deal with significant albedo variation. Our method not
only extends the problem to 3D alignment, but is specifically designed to handle
substantial (albeit local) albedo variation.

Campbell and Flynn provide a comprehensive survey of 3D object recognition
techniques using 3D geometric models [3]. Two related works that use 3D ve-
hicular models are that of Kollnig and Nagel [5] and Tan et al. [6]. Kollnig and
Nagel made use of intensity discontinuities along projection contours to update
object pose while Tan et al. estimated the model pose by matching 2D image
and 3D model lines using the Hough Transform.

Recently, Suveg and Gosselman [4] aligned simple polyhedral block models to
aerial views of buildings using mutual information as matching metric. Mutual
information between gradient magnitude along model contour and image data is
computed. Their framework is still subject to the consistency breakdown issue
as no spatial information is included in the formulation.

In Viola’s alignment approach [1], surface normals of the object are matched to
intensity values by maximizing their mutual information with respect to a set of
transformation parameters. Leventon and Grimson [10] extended the alignment
framework to using multiple views of the object when single image does not
provide enough information.

3 Mutual Information as Similarity Measure

Mutual information is a statistical measure assessing the dependency between
two random variables, without requiring that functional forms of the random
variables be known [8]. It can be thought of as a measure of how well one random
variable explains the other, i.e. how much information about one random variable
is contained in the other random variable. If random variable A explains random
variable B well, their joint entropy is reduced. Defined in terms of entropies, the
mutual information between two random variables A and B, I(M, I) is

I(A,B) = H(A) +H(B)−H(A,B)

where H(A) and H(B) are marginal entropies derived from the probability dis-
tribution functions corresponding to A and B, i.e.

H(A) = −
∑

a

p(a) log p(a)

H(B) = −
∑

b

p(b) log p(b)

H(A,B) is the joint entropy of the two random variables that is defined as

H(A,B) = −
∑

a

∑
b

p(a, b) log p(a, b)
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Fig. 1. Consistent relationship between model and image. The figure shows a scatter plot
of the variation of intensity values on the white scan line of the teapot image versus vari-
ation of the corresponding x components of the surface normals for a correct alignment.

Mutual information is assumed to be maximal when the model is aligned
correctly with the image for a set of transformation parameters (we consider
six-parameter rigid transformation of the object model, i.e. 3 for rotations and
3 for translations).

For our 2D-3D alignment framework using polygonal models, mutual infor-
mation is computed from the joint and marginal entropies of surface normals
(using x and y components of the normals) and image intensities. However, the
original formulation is only feasible for surfaces with minimal albedo variance.
As mutual information does not contain information about spatial distributions
of intensities and surface normals, ambiguity arises when the maximum mutual
information doesn’t occur at the correct object pose due to varying albedo on
surface points. Longer-range interaction between point samples is ignored when
they are considered independently in the mutual information formulation.

Russakoff et al. [9] extended the original formulation of mutual information
(MI) to include spatial information by using higher dimensional points consist-
ing of pixels in a neighborhood – the regional mutual information (RMI). For a
sample point S, spatial information is brought into MI by grouping neighboring
pixels within a chosen radius to form a higher dimensional vector. When apply-
ing Russakoff et al. ’s formulation to our case, the normals in a neighborhood
(here, a 4x4 window) are grouped into a higher dimensional vector N , and the
corresponding pixels in the image form the vector I:
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Fig. 2. Consistency breakdown: a scatter plot of the intensity values on the same scan
line of the teapot image versus variation of the corresponding x components of the
surface normals when the teapot is textured

N = {x1, x2, x3, x4, y1, y2, y3, y4}
I = {i1, i2, i3, i4}

where xi and yi are x and y components of the normals. ii is intensity value for
the corresponding image pixel.

To deal with the curse of dimensionality, the dimensions are assumed to be in-
dependent from each other to allow entropy calculation to be decoupled from one
involving d-dimensional distribution to one involving d one-dimensional distrib-
utions. Shanon’s entropy formulation for a set of points distributed in Rd with
covariance matrix Σd is then used to calculate entropy of the high-dimensional
points [11]:

Hg(Σd) = log((2πe)d/2det(Σd)
1
2 )

4 Region Mutual Information Using the Neighborhood
Extended Gaussian Images

The straightforward concatenation of neighborhood pixel data into a high di-
mensional state vector does not automatically induce invariance to non-constant
albedo. A different representation is therefore required.

In our framework, the assumption is that while albedo may be substantially
different from one point on the object to the next and uncorrelated with the
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geometry of the object, the statistics of the albedo within a larger semi-local
region on the object surface is much more strongly correlated to the geometry.
This is based on the observation that, at least for the classes of objects that
we are interested in, the portion of albedo variation that is independent of the
object geometry is often only of higher spatial frequencies. These high-frequency
variations are substantially reduced by considering histogram-based features of
larger regions on the object and image. On the other hand, the portion of albedo
variation that directly depends on the object geometry can be preserved and used
in the computation of mutual information.

The Extended Gaussian Images (EGI) [12] is a 3D shape descriptor obtained
by having each polygon vote on the bin corresponding to its normal direction,
with a weight equal to the area of the polygon. It is a global representation of
the model as normals on all polygons are mapped spherically to the histogram
(figure 3).

The Neighborhood EGI (NEGI) describes local shape of surface regions by
grouping neighborhood surface normals according to their spherical coordinates
(i.e. latitude and longitude){θ, φ}. When building the EGI, one has to tessellate

Fig. 3. High-dimensional point to include spatial information. The mannequin model
is shown with normals on the triangles. For a 2D window on the projection screen of
the 3D model, normals that fall within the window are collected. Spherical coordinates
of each normal, N , are computed. Corresponding intensity values, I , in the image are
collected. Both vectors then combined to form a high-dimensional point for estimation
of joint entropy term in the mutual information formulation.
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the Gaussian sphere into cells. These cells should have the same area and similar
shape. As the NEGI represents local normals within a small region window, we
can assume that the surface patch on the Gaussian sphere that corresponds to
the region window is finely subdivided.

Normals are sampled from normal maps generated using OpenGL. All pixels
on the object in the normal map have RGB corresponds to (x, y, z) of surface
normals on surface points at the pixel locations. An example normal map is
shown in figure 4. We note that instead of one normal for a polygon with area A
on the geometric model, normals are continuous on the normal map. Therefore
when only normals within a small 2D window on the normal map are consid-
ered, we can assume that the model has very high resolution and unit weight is
associated with each normal sample.

Fig. 4. A sample normal map for a car model. We uniformly sample pixel locations
on the normal map. RGB values of each pixel correspond to (x, y, z) components of
surface normal at the pixel location.

As shown in figure 3, for a normal sample n on the normal map, neighboring
normals within a 2D region window w (in this case, a 2 by 2 window) are collected
to form a high-dimensional vector N :

N = {θ1, θ2, θ3, θ4, φ1, φ2, φ3, φ4}

and the corresponding image intensity values are collected to form the high-
dimensional vector, I.N and I are then concatenated to form a high-dimensional
point p:

p = {θ1, θ2, θ3, θ4, φ1, φ2, φ3, φ4, i1, i2, i3, i4}

4.1 Algorithm

The algorithm proceeds as follows:

– Given an object A and image B, render normal map of object A at current
pose, generate sample locations on the normal map.

– For each sample location on the normal map, collect N and I. Concatenate
N and I to form p.

– For n sample locations, we have n high-dimensional points, pi,
P = [p1, p2, ..., pn].

– Calculate covariance of the points [9], C = (1/n)P0P
T
0 , where P0 is zero-

mean of P .
– Calculate joint entropy using Hg(C) and marginal entropies using the

method described in [9].
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5 Experimental Results

5.1 Alignment Using the NEGI

In the first experiment, we looked at misalignment with respect to rotational off-
sets along the y-axis. Region mutual information is plotted with varying neigh-
borhood sizes (r = 2, r = 3, r = 4, r = 5) (figure 5). As we consider region
mutual information with larger neighborhoods, more spatial information is in-
cluded and we get a stronger peak at the global optimum. This distinctiveness of
the response at the ground truth point will help to reduce ambiguity, as shown
in the following detection experiments.
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Fig. 5. Combined plots of RMI as a function of rotational misalignment in the y-axis
with neighborhoods of varying sizes (r = 2, r = 3, r = 4, r = 5) to clearly show
that a stronger peak is obtained at the global optimum when more spatial information
is brought into the metric, thus reducing ambiguity when comparing model to image
data. Original MI is also plotted in the graph.

5.2 Detection

For comparing detection performances, we did a naive search of the pose space.
This allows us to obtain the global optimal pose parameters, without having to
worry about the issues of local optimums and convergence failures. We manually
aligned a detailed 3D car model to the test image (some of the test images
are shown in figure 6). Ground truth poses for the model are recorded. When
plotting the receiver operating characteristics (ROC) curves, these ground truth
poses are the true positives. The average of the mutual information values at the



68 H.-K. Pong and T.-J. Cham

Fig. 6. Test images
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Fig. 7. ROC curves for RMI and MI

ground truth poses is used as detection threshold. ROC curves for original MI
and RMI with varying neighborhood sizes are shown in figure 7. The plots show
that when spatial information is included, there is gain in detection performance.

6 Conclusion

This paper presents a method to align 3D geometric model to image using mu-
tual information (MI) as similarity measure. While MI has enjoyed a great deal
of success in the medical image registration domain, its application to general
object detection has been limited, one major reason being its failure in captur-
ing longer-range information when comparing model to image data. To solve
this issue, we propose to use a region-based method so that ambiguity due to
albedo variance is reduced when spatial information is included. We defined the
Neighborhood Extended Gaussian Images for the case of 3D model-2D image
alignment. Experiments showed that the method works better than the original
formulation. In the future, we plan to include regional edge information in the
mutual information calculation, which we believe would make the metric more
discriminative. Additionally, we have made some progress in designing an ap-
proach to allowing this framework to run much more quickly [13]. We would also
like to validate the method more extensively with other data set.
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Abstract. This paper introduces a novel texture descriptor, the Eigen-
transform. The transform provides a measure of roughness by considering
the eigenvalues of a matrix which is formed very simply by inserting the
greyvalues of a square patch around a pixel directly into a matrix of
the same size. The eigenvalue of largest magnitude turns out to give a
smoothed version of the original image, but the eigenvalues of smaller
magnitude encode high frequency information characteristic of natural
textures. A major advantage of the Eigen-transform is that it does not
fire on straight, or locally straight, brightness edges, instead it reacts
almost entirely to the texture itself. This is in contrast to many other
descriptors such as Gabor filters or the standard deviation of greyval-
ues of the patch. These properties make it remarkably well suited to
practical applications. Our experiments focus on two main areas. The
first is in bottom-up visual attention where textured objects pop out
from the background using the Eigen-transform. The second is unsu-
pervised texture segmentation with particular emphasis on real-world,
cluttered indoor environments. We compare results with other state-of-
the-art methods and find that the Eigen-transform is highly competitive,
despite its simplicity and low dimensionality.

1 Introduction

Texture analysis has applications in several areas within computer vision such
as image segmentation[15, 7], the classification of objects [19] or materials [9, 17,
10]. Many different descriptors for texture have been proposed such as filters,
wavelets, co-occurrence matrices, energy measures from the Fourier transform,
Markov random fields, local binary patterns, and texton histograms, to name but
a few. In this paper we introduce a novel texture descriptor, the Eigen-transform
which is derived in a manner very different to those descriptors reviewed above.
The key idea is to investigate the eigenvalues of matrices formed directly from
greyvalues of local patches. Eigenvalues play an important role in the analysis
of many systems, for instance via linear ordinary differential equations, and can
correspond to frequencies of vibration, critical values of stability parameters,
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energy levels of atoms and more. This inspired us to use eigenvalues to char-
acterise image patches. More specifically, we consider a square patch around
a pixel, insert the greyvalues of that patch into a matrix the same size as the
original patch, and compute a descriptor as an average of some of those eigenval-
ues. It turns out that the eigenvalue with largest magnitudes essentially gives a
smoothed version of the original image, but the smaller magnitudes eigenvalues
encode high frequency variations characteristic of visual texture. This yields a
texture descriptor with a number of properties which are desirable for bottom-
up processing in real-world applications: (i) It captures small-scale structure in
terms of roughness or smoothness of the image patch. (ii) It provides a compact
representation which is easy to store and perform calculations on. (iii) Few para-
meters need tuning. The most significant parameter is a notion of scale provided
by the size of the local image patch. (iv) Unlike most other texture descriptors,
it does not generate spurious responses round brightness edges. (v) Last but
not least, it is extremely easy to implement. Although the eigen-decomposition
is commonly used in image processing and computer vision, to the best of our
knowledge, and indeed somewhat to our surprise, it appears not to have been
applied directly to the image patch in the manner proposed in the current pa-
per. The quality of a texture-based algorithm should be defined as how well
the final output agrees with human perception in tasks such as segmentation or
classification. We demonstrate the effectiveness of the Eigen-transform in three
applications: (i) attention for an autonomous robot; (ii) texture segmentation to
locate textured areas in indoor scenes.

The rest of the paper is organised as follows. After reviewing some relevant
literature in sec. 1.1, the Eigen-transform is presented in sec. 2. Applications are
described in sec. 3 and conclusions are drawn in sec. 4.

1.1 Previous Work

The purpose of this section is to highlight differences between our work and
previous papers which used the eigen-decomposition or SVD for related appli-
cations. Principal component analysis (PCA) performs eigen-decomposition of
an N × N covariance matrix formed e.g. by considering N pixels as a single,
large, vector. In recognition tasks it was used for objects [13] and faces [4] yield-
ing a global rather than local representation since the entire object or face is
captured. However, [5] used PCA to describe smaller image patches for tex-
ture segmentation. The singular value decomposition (SVD) has been applied
to image compression and noise reduction [1]. The basic idea is to describe the
original greyscale image as a matrix which is well approximated by its largest
singular values and corresponding singular vectors, ignoring the contribution of
the smaller singular values. Our work differs from the papers listed above in that
(i) only the smallest eigenvalues are used; (ii) the eigenvectors (or singular vec-
tors) are discarded completely; and (iii) unlike [13, 4, 5] we operate directly on
local patches of greyscale images. In our own previous work [16] we studied the
application of singular values within a similar framework to the current paper,
while here we focus on eigenvalues.
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2 Computing the Eigen-Transform

In this section we describe the computation of our texture descriptor based on
the eigen-decomposition. We consider a w × w square neighbourhood centred
at the pixel, and copy its greyvalues directly into a w × w real matrix, W . We
proceed by computing the eigenvalues of W , taking their magnitude, and sorting
them in decreasing order, {‖λ1‖, ‖λ2‖, ..., ‖λw‖}. We will not use the eigenvectors
in this paper at all. At this stage we have a set of w numbers, the magnitude
of the eigenvalues, describing each pixel in an image. What do these numbers
tell us? This is best illustrated with an example. Fig. 1a shows an image of a
table on which six different objects from a database [10] of materials are placed.
Eigenvalues were computed from 32 × 32 patches. First consider the largest
eigenvalue, ‖λ1‖, which is shown as an image in Fig. 1b where the intensities of
the response image have been rescaled such that the highest response is white.
It resembles a smoothed version of the original image, so the largest eigenvalue
captures the DC component. This eigenvalue is therefore of no use for describing
image texture. The smallest eigenvalue (Fig. 1d) corresponds to high frequencies,
but is mainly noise. An intermediate eigenvalue (Fig. 1c) is somewhat similar
to the smallest eigenvalue, but less noisy. It reveals some form of roughness of
the texture: rougher regions like bread (labelled “3”) appear light while smooth
regions like cotton (labelled “5”) appear dark in the eigenvalue response image,
even though cotton was brighter than bread in the original image.

To reduce noise further we average over multiple eigenvalues, defining the
Eigen-transform, Γ , at each pixel as

Γ (l, w) =
1

w − l+ 1

w∑
k=l

‖λk‖ , 1 ≤ l ≤ w . (1)

For a descriptor that reacts to texture as opposed to brightness, the largest few
eigenvalues should be ignored; we typically choose l to be in the range [2, w/3].
An important aspect of this combination of eigenvalues is that it yields a more
compact representation: w eigenvalues are reduced to a single number.

Fig. 1e shows the Eigen-transform for l = 12.
To further illustrate that the Eigen-transform responds to roughness, it was

averaged over images of six different, natural materials. Fig. 2 shows the original
images and the Eigen-transform values.

2.1 Interpretation of the Eigen-Transform

It is not trivial to explain exactly what properties are captured with the Eigen-
transform, yet it is instructive to recall that the eigenvalues provide information
about the dependence between rows and columns of the matrix W . In a patch
of uniform brightness, all but the largest eigenvalue are zero. If any two rows
or columns are identical, the matrix drops rank, that is the smallest eigenvalue
becomes zero. If those two rows or columns are similar but not quite identical,
the smallest eigenvalue will be close to, but not exactly equal to zero. Similarly,
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(a) Original image (b) Largest eigenvalue

(c) 12th eigenvalue (d) Smallest
eigenvalue

(e) Averaging the
21 smallest
eigenvalues

Fig. 1. A demonstration of what the eigenvalues of 32 × 32 image patches encode. (a)
shows the original image with six materials placed on a table-top (1-cracker, 2-corduroy,
3-bread, 4-linen, 5-cotton, 6-sponge). (b) shows the largest eigenvalue which appears
as a (brightened) smooth version of the original image. (c) and (d) show the 12th and
32nd eigenvalues respectively. (e) takes the mean of the 21 smallest eigenvalues, giving
a less noisy response than in (c) and (d).

3.4 7.8 13.1 15.8 19.9 24.4

Fig. 2. The Eigen-transform Γ (12, 32) on 6 materials from [10]. Higher scores are
indicative of rough, coarse structure, while lower numbers correspond to smooth, fine
materials.

n similar rows or columns yield n − 1 small eigenvalues. Already at this stage
we may therefore state that the Eigen-transform Γ (l, w) of the w × w image
patch W will be low if there is little variation in the rows or columns of W ,
implying that there is little 2D texture. It is also easy to think of patches that
produce high values of the Eigen-transform. First, uncorrelated high-magnitude
noise is clearly highly unlikely to produce linearly dependent rows or columns,
and we may expect the same to apply to stochastic visual texture arising from
natural materials. Second, a diagonal edge or bar produces independent rows
and columns. We observe that a patch containing any number of horizontal or
vertical brightness step edges will have zero Eigen-transform if l > 1. On the
other hand another single channel approach like taking the standard deviation
of greyvalues at each w × w patch, (see e.g. [20]) exhibits a strong response
at illumination edges which tends to dominate over actual small-scale image
structure.
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2.2 The Minimum-Response Eigen-Transform

A simple solution to the problem of spurious responses at diagonal brightness
edges is obtained by rotating the image patch at regular intervals between 0◦

and 90◦, recomputing the Eigen-transform at each interval, and then storing
only the minimum response over orientation θ,

ΓMR(l, w,W ) = min
θ
{Γ (l, w,Rθ(W )} , (2)

where Rθ(W ) represents the image patch rotated by θ. Note that it is sufficient
to consider only a 90◦ interval since the eigenvalues of a matrix are invariant
to rotations of the matrix by 90◦ . We found intervals of θ = 30◦ sufficient, im-
plying that two rotated images need be created. The Minimum-Response Eigen-
transform ΓMR(l, w) will be used by default in the remainder of this paper . It
will be compared with the regular Eigen-transform in sec. 2.3.

2.3 The Effects of Illumination Change

A multiplicative scaling a of greyvalues within a patch, W → aW , gives an
Eigen-transform of Γ (l, w, aW ) = a Γ (l, w,W ) from the property that λ(aW ) =
a λ(W ). Unfortunately, results are hard to predict for more complicated models
involving for instance an additive term W → aW + b.

We therefore settle for demonstrating robustness to lighting changes empiri-
cally. Fig. 3 shows the same image as Fig. 1 but with some squares of the original
image artificially brightened or darkened in PhotoShop. In the Eigen-transform
image (Fig. 3b) it is impossible to detect the presence of squares with edges of
horizontal and vertical orientations, the Eigen-transform responds to the tex-
ture as opposed to the overall brightness. There are also a couple of diagonally
oriented squares. Their edges give rise to a high response, as was predicted in
Sec 2.1. However, using the Minimum Response Eigen-transform presented in
Sec 2.2, it is possible to remove also these edges (Fig. 3c). It would, for instance,
be easy to segment this transform image, despite the variations in illumination.

3 Applications

We now present results which use the eigen-transform in practical real-world
applications. Our overall goal is a system for recognising objects or object cat-
egories, intended for use on autonomous, indoor assistive robots. Inspired by
human visual processing, such a system may be split into three stages, (1) at-
tention, (2) segmentation, and (3) recognition.

3.1 Attention and Object Detection

Attention [8, 18] concerns locating and ranking salient parts of the image, en-
abling subsequent processing to focus on a reduced amount of visual data. In our
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(a) Original image (b) Regular
Eigen-transform
Γ (12, 32)

(c) Minimum-
Response
Eigen-transform
ΓMR(12, 32)

Fig. 3. The Eigen-transform is remarkably robust to illumination changes. (a) shows
the same image as Fig. 1a, but four squares have been artificially brightened, and one
darkened. The Eigen-transform in its original form (b) is robust to the horizontally-
oriented squares and the internal regions of the diagonal squares, but responds to
diagonal edges. The Minimum-Response Eigen-transform (c) is robust to edges of all
orientations.

(a) Detected objects (b) ΓMR(12, 32) (c) Segmentation

Fig. 4. An experiment using the Eigen-transform as a saliency map (b) for attention
for a mobile robot. The objects on the table have saliency values of 57 and 50 whereas
the next highest value (corresponding to the chair) is 20. Results using a very simple
segmentation method by thresholding are also shown (c).

work the goal is to obtain a bottom-up texture cue capable of identifying the lo-
cation and physical extent of objects. We demonstrate that the Eigen-transform
may be used directly to form a saliency map well-suited to this purpose.

In a first experiment (Fig. 4), small, man-made textured objects on a table
pop out from the striped tablecloth, and the wooden cupboards at the top of
the image also have a much lower response. Our results compare very favourably
with the method of [18] based on multiple cues. It appears that the Eigen-
transform would provide an excellent texture feature for their system (they used
edge filters).

We also show results from a more complex desktop scenario in Fig. 5. The
scene was imaged from two very different positions, and a desk-lamp was turned
off after the first image was taken. Various items are detected. The Minimum
Response Eigen-transform was used. The same regions are detected as salient in
both images, apart from the monitor where the screensaver blanked the screen
after the first image. This degree of repeatability is not merely interesting for
attention, it is also of potential use in wide-baseline matching, though we have
not investigated this possibility further.
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(a) Original image (b) Objects detected in (a)
via the Eigen-transform

(c) Same scene as (a), but
with different pose and
lighting

(d) Objects detected in (c)
via the Eigen-transform

Fig. 5. Attention in complex, desktop scenes. Interesting objects are detected.

3.2 Texture Segmentation for Material Classification

Many objects are characterised not by their colour or shape, but by the material
of which they are made, which in turn may be captured by the visual texture.
Performing a segmentation based on texture can assist during subsequent clas-
sification of the materials.

Fig. 6a shows an image from a rather cluttered kitchen cupboard in which
we placed a sponge, a slice of bread and a cracker, all of which are objects best
represented by their visual texture as opposed to other cues. All three objects
are evident in the Eigen-transform in Fig. 6b. Also note that the brightness
edges caused by the shelves and frame of the cupboard are invisible in the trans-
form, thus the descriptor is truly responding to texture and not to brightness
edges. This transform image may then be input to a segmentation algorithm
for greyscale images, the argument being that this transform image is easier to
segment than the original greyscale or colour image. Fig. 6a shows good results
achieved with publicly available code for JSEG [7, 6]. All three objects have
been successfully segmented out from the background, and the number of other
regions is remarkably low. Unlike some other methods from the literature, it
was not necessary to supply the number of segments to the segmentation algo-
rithm. This is a crucial requirement for fully unsupervised systems. As a proof
of concept 1, this segmentation was used before computing a dense representa-
1 As yet we have performed very few experiments on this, so by no means do we wish

to give the impression that this is a solved problem.
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(a) Original Image showing
segmentation from the
Eigen-transform in (b)

(b) The Eigen-transform ΓMR(12, 32)

(c) Classification results.
Nearest-Neighbour distances (×100)
and the closest class.

(d) Segmentation from JSEG on RGB
image gives a higher number of
candidate regions.

Fig. 6. Segmenting materials out from a cluttered kitchen cupboard. JSEG was applied
to the Eigen-transform (a-b). (c) The three materials for which models were trained are
correctly identified with low distances to the training set, whereas “junk” regions have
much higher distances and may therefore be removed by thresholding the distance.

tion of each region in an attempt to classify the materials. All three objects are
taken from a ten-class database for material classification [10]. For each region
we posed the question which of the ten materials it most closely resembled, and
with what score. We used multi-scale histograms of LBP descriptors [17] and
a Nearest-Neighbour classifier using the χ2-distance between histograms as the
similarity measure. Fig. 6c shows that all three materials were classified cor-
rectly. Note that all regions are forced to make a decision, but that the distances
for the “junk” regions were considerably higher. Therefore it should be possible
to set a threshold on this distance such that those segments would be labelled
“unknown”.

We also performed comparisons with other state-of-the-art texture segmenta-
tion algorithms. By applying JSEG [7, 6] directly to the RGB image (Fig. 6d),
all three materials were successfully segmented out. Yet since JSEG combines
both texture and colour information, there are also many regions of constant
colour as opposed to texture. Thus, if our task is to look for and recognise an
object which we know, from training, is well characterised by its texture, we
can save a lot of computation time in the recognition stage by using the seg-
mentation from Fig. 6a rather than Fig. 6d since there are fewer regions to
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(a)Segmentation result (b) The eigen-transform ΓMR(12, 32)

Fig. 7. Using the Eigen-transform for segmentation of a sample image from the Berke-
ley database [12]

Fig. 8. Segmentation results for [2] and [14]. Mean-Shift is applied to the Eigen-
transform. With only a single channel in the descriptor, it is obviously not possible
to separate all textures, as in the rightmost example.

process. In experiments (not depicted due to space limitations) we also tested
Normalised Cuts [21] using filter-bank texton histograms [11] as features. This
yielded many superfluous regions. Similar results were obtained with Mean-Shift
[3] on the RGB image. Other texture segmentation resuls are shown in Fig. 7
and Fig. 8.

4 Discussion

In this paper we presented a novel descriptor for texture, particularly well-suited
to applications in autonomous indoor assistive robots. It is extremely easy to
implement, reasonably fast to compute, and requires very little tuning of para-
meters. It responds to natural textures, but not to brightness edges, implying
that spurious regions are not detected around those edges. As such it is very well
suited for bottom-up attention or object detection, and it shows great promise
for segmenting different materials out from the background with a view to subse-
quent classification. In our current work we are attempting to further interpret
exactly what the eigenvalues represent, although this is by no means trivial.
A promising framework is in the correlations of pixels with their neighbouring
pixels, as modelled by 2D Markov random fields.
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Abstract. Multiresolution subbands have a characteristic structure
composed of sparse positive and negetive linear patterns present in close
spatial proximity. This implies that there must be efficient ways to rep-
resent these subband images as compared to general images. Pixel and
block transform approaches based on regular spatial sampling are unale
to take this structure into account. This work introduces a novel way
of representing Laplacian subbands using (oriented) edge elements. The
representation is based on selecting an appropriate set of 7 × 7 primi-
tives that captures the type of structures present in Laplacians. Unlike
contourlets, the primitive set does not constitute a basis but has the
twin advantages of small set size and close correspondence between set
elements and edge elements that can be interpolated using prior models.
As the chosen primitive set is not a basis, the computed representation
is formulated by matching given primitives to various image regions,
as opposed to decomposing given regions in terms of a basis set. This
representation can be used for edge sharpness preserving magnification
required in super resolution. The representation can also be exploited for
lossy compression and noise removal

Index terms: subband representation, primitive set, image magnification,
scale-space interpolation, super-resolution.

1 Introduction

The ability to interpolate subbands across scales is relevant in the context of com-
pression, super resolution and multiresolution theory. One approach has been to
study the values of subband pixels across scales in order to predict pixel val-
ues for (assumed) higher resolution scales. The correlation across scales for zero
(small) pixels is at the heart of the Zero Tree Wavelet [1] based coding schemes.
Mallat and Zhong [2] have studied the variation of pixel values across subband
scales to classify discontuities into three categories and predict pixel values in
higher resolution scales. Freeman et. al. have used Markov Random Fields [3] to
learn characteristics of Laplacians to synthesize high frequency details. Similar
� This work was funded by DRDO through Proj CAR-008. Authors wish to thank
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learning based approaches form the basis of various learning based super res-
olution schemes [4] [5]. Greenspan and Anderson had formulated a scale-space
interpolation scheme based on the idea of using existing high frequency com-
ponents in images to introduce coherent higher frequencies that would enhance
edges on magnification [6]. Inter-subband prediction also forms the basis of Sym-
metric Residue pyramids [7] that are a more sparse pyramid representation than
the Laplacian pyramids [8]. In general, the correlation across subbands arise
because strong step edges give rise to coherent harmonics at all scales. Know-
ing the components at one scale, it should be possible to predict the coherent
high frequency harmonics. Alternately, one can postulate the sharpness of edges
and introduce the required coherent harmonics at the (synthesized) higher level
subbands to ensure that edges remain sharp after image magnification. Iterative
super resolution schemes that need to create a putative high resolution image
would benefit from such a technique. The present work is aimed at developing
such a scheme for synthesis of Laplacian subbands having coherent high frequen-
cies. As explained below, an ability to model subbands using suitable primitives
is essential for this task.

In this work we represent Laplacians using a small set of fixed modelling
elements, called the Primitive Set (PS). The endeavour is to have a fixed set of
primitives that can suffice for all images, requiring no image specific learning.
The scope of this paper is limited to showing that Laplacians can be satisfactorily
modelled using a small set of functions that are suitable for later interpolation.
The main challenges addressed here are the selection of model elements and the
computation of a representation using a set that does not constitute a basis.

2 Representation of Laplacians with Primitive Set

The Burt Laplacian are composed of tightly coupled positive and negetive ridges,
with the ridge width dependent on the filter order (W ) for sharp edges. As shown
in Figure 1, the Laplacians can be easily distinguished from randomly generated
zero-mean images. It would appear that it should be easy to come up with
an image model for Laplacians that explitly captures their characteristic linear
structures. Unfortunately, any arbitrary W × W subimage is not guaranteed
to be zero-mean or have both the positive and negetive linear patterns. As a
result, when a PCA is done on a large sample set of W × W extracts from
Laplacian subbands, the result looks similar to that for regular Gaussian images
(in effect, one gets the DCT basis). When Laplacian images are represented as
collection of individual pixel values (raw) or even as coefficients of a transform
(Fourier transform, block DCT), it is not possible to manipulate these images in a
manner consistent with their inherent structure. Consider the problem of having
a Laplacian subband for a simple image (a solid square on a blank background)
and trying to create the next level Laplacian. As shown in Figure 2, pixel based
interpolation creates an uncharacteristically low frequency subband (Fig 2b)
which will blur the edges in the resulting Gaussian. One would like to preserve
the edge location but create a higher frequency subband like that shown in
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Figure 2c. In effect, one would like to create linear structures of twice the length,
corresponding to the ones present at the lower resolution, but without doubling
the width of the structures. This paper formulates a model based representation
of Laplacians that will allow one to synthesize magnified Laplacians with correct
edge widths. This is in contrast to the work of Simoncelli [9] and Greenspan [10]
that model edges present in images with oriented Laplacians. The work on image
interpolation by Li and Orchard [11] is similar in intent to our work. The edges in
images are interpolated anisotropically to preserve sharpness. However, they do
not use multiscale intermediates and models. As a result, that approach cannot
provide the flexibility to do prior-based interpolation, lossy compression, noise
removal etc. that our model based representation allows.

We use the Laplacain pyramid as our multiresolution representation of choice,
rather than the wavelets, as Laplacians are not critically subsampled. The edges
representations in Laplacians are smooth and regular. In contrast, wavelet sub-
bands - even when the three directional subbands are upsampled and combined
- have irregular edges due to critical sampling. This effect is illustrated with
an example in Figure 3. The Laplacian is made with a 5 × 5 filter and daub6
wavelet H1, V1 and D1 subbands have been upsampled and combined to make
it comparable to the non-directional Laplacian.

The approach used here is more akin to vector quantization than decomposi-
tion using basis functions. Vector quantization techniques do not require a basis
set, but they also attempt to model extracts from an image sampled from a
fixed grid. The proposed method therefore differs from standard VQ techniques
in three ways: (i) it uses a fixed, small sized codebook, (ii) it uses a signal de-

a b c

Fig. 1. Laplacian images: (a), (c). Zero mean image: (b).

a b c

Fig. 2. Laplacian of square subband (L0)
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Fig. 3. Laplacian (left) and wavelet (right) edges

pendent sampling process to model what it can using the limited codebook and
(iii) the reconstruction process uses a differect codebook in order to achieve the
desired anisotropic interpolation between subbands at various levels. We select
the model elements using our judgement to mirror the typical patterns found
in Laplacians at the W ×W scale. Then we move the model elements over the
Laplacians to find W × W subimages that they can best model. The criteria
for selecting members of the Primitive Set and the algorithm for computing the
representation are described in detail in this section.

2.1 Selection of Primitive Set Elements

In order to generate the Primitive Set (PS) for Laplacians created with a 5-tap
filter, we consider the various basic edges that may be defined at in a 7 × 7
window. In terms of ease of interpolation, straight edges would be the simplest:
one can define model elements of twice the length along the same orientation to
create a longer edge. In a 7× 7 window, one can create edges with eight distinct
orientations - at 0, 22.5, 45, 67.5, 90, 112.5, 135 and 157.5 degs. The PS with
these 8 elements is designated as PS8. In order to capture sharp curves and
isolated spots, additional elements would be needed to enhance the modelling
ability. The four quadrants of a disk edge (radius = 4) were used to define four
additional elements. For modelling spots, two more elements were defined using
edges defined by a single pixel spot and a 3×3 blob. This enhanced primitive set,
PS14, will need slightly more complex rules for interpolation than PS8 in order
to deal with the curves and spots. However, the ability to deal with sharp curves
was considered essential for modelling Laplacians of natural scenes. Images were
created with the above type of sharp edges and their resulting Laplacian patterns
were extracted to form PS14. These patterns are shown in Figure 4a.

It was found that though the representation based on PS14 was visually sat-
isfactory, thick edges were not modelled accurately. The top most Laplacian
subband, L0, captures frequencies ranging from the highest frequencies to the
midfrequency region. Primitives based only on abrupt edges were inadequate to
model the smoother edges. To capture these, another set of 14 primitives were
introduced based on slightly smoothed edges as shown in Figure 4b. This com-
bined set of 14 sharp and 14 smoother patterns constitute the primitive set PS28
(Fig 4). The interpolation set corresponding to PS28 is constructed by synthet-
ically creating the corresponding Gaussian images at twice the scale, comput-
ing their Laplacians and extracting 15× 15 subimages. This set constitutes the



84 M.K. Nema and S. Rakshit

(a) PS14 elements based on sharp edges (b) 14 elements based on smoother edges

Fig. 4. The PS28 primitive set elements. The 7 × 7 elements, scaled for display.

(a)Interpolation elements for sharp edges (b) Interpolation elements for smoother edges

Fig. 5. The IPS28 set elements. 15 × 15 images, scaled for disply.

Interpolation Primitive Set, IPS28. As can be seen from Figure 5, these elements
are similar to those of PS28, except in the length to width ratios of the edge
patterns.

2.2 Computing the Representation

The PS28 elements are defined as 7× 7 images. At that image size there will be
49 degrees of freedom, requiring a basis set to have 49 elements. PS28 clearly
does not have the ability to serve as a basis set (even if one were to perform
an orthogonalisation procedure). As mentioned earlier, the problem simplifies if
one moves away from the task of representing arbitrary 7× 7 blocks to selecting
7 × 7 blocks that can be represented using the PS. The expectation is that
the structure in Laplacians will enable such a method to create a reasonably
good approximation. The method needs to be iterative as a given pixel or area
could be covered by many possible 7× 7 windows. One would like to first model
those areas where the residual error will be small compared to the signal that is
modelled. Subsequently, one could model both the initial residual errors and the
unmodelled regions of the previous iterations. Hence we iterate the modelling
process in a way that picks the Laplacian edges in the following order.

1. High amplitude edges that have a good fit to an element of the PS
2. Lower amplitude edges that have a good fit to an element of the PS
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3. High amplitude edges that do not have a good fit to an element of the PS
4. Lower amplitude edges that do not have a good fit to an element of the PS

The quantification for the above enumerated criteria is done on the basis of
energy and modeling error. For each 7 × 7 block extracted from the laplacian
image, the following are computed. The energy of the extract determines the
amount of signal present. Laplacians, like all subbands, are zero-mean and sparse.
The energy is concentrated in only a few areas. Only blocks having energy above
a threshold are considered for modelling. The threshold is initially set high and
reduced with each iteration till it reaches a lower cut off. This cut off determines
the termination of the iterative process, as errors below this threshold will not be
further modelled. For blocks where the energy crosses the current threshold,the
block is considered for modelling by elements of the primitive set (PS14 or PS28).
Denoting the PS elements as pi and the block to be modelled as x, we need to
find the model element and associated scalar α that minimises

J(α, i) = ‖(x− α.pi)‖ (1)

For a given pi, the best α is given by

αopt =
pi.x
‖pi‖

(2)

A search over the elements gives the best fit. However, one cannot straight
away commit to this modelling decision as it is possible that a neighboring
(overlapping) extract may produce a x that is more ammenable for modelling.
Thus a relaxation process is required to ensure that the best possible fits are
committed first. This requires another iterative procedure, runing outside the
iteration for energy, that ensures that better fits are explored and committed
first. The quality of fit, γ, is defined as the ratio of the energy of the residual to
the original when approximated by a pi using the optimum α as given above.

γ =
||x− α.pi||
||x|| (3)

In performing the modelling, quantization effects arising due to integer arith-
metic become significant. The edge signatures for low amplitude edges differ
from that due to high amplitude edges. As we did not want to expand PS28 to
include separate elements for low amplitudes, we introduced dynamic scaling of
the model elements, prior to the computation of α. As the α computed above
is determined both by the quality of fit (dot product between the vectors) and
the relative norms of the two vectors, it cannot be used to determine the right
scale factor. This factor, β, is computed based on the ratio of peak-to-peak am-
plitudes between the x and the pi. The scaled model element, β.pi computed
with integer precision, is then used in the computation of α and γ.

2.3 Modelling Algorithm

The parameters for modelling a given Laplacian using a primitive set can be
computated as follows.
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1. Set the modelling error threshold, Thm, to 0 (or a very low value)
2. Set the energy threshold The to a high value (say 20,000)
3. Extract 7× 7 subimages, x, from the Laplacian using single pixel shifts.
4. Check if the energy of this block, (E(x)), is above The. If E(x) < The,

proceed to the next x
5. Find the best model element from the PS by computing β, α and γ for each

pi. Let the minimum γ be γ∗ for element pi∗

6. If γ∗ < Thm, then commit α(β.pi∗ as the representation for x. Update x to
x− α(β.pi∗ in the Laplacian.

7. On completing a pass through the Laplacian, decrement The and start an-
other pass over Laplacian

8. When The reaches the lower cut off, increment Thm, reset The and iterate
Step 3 - 7

9. When Thm reaches the upper cut off, exit

The bounds on The and Thm depend on the application. If one wants to get
as complete a representation as possible, the The must be allowed to decrement
to very small values. If the intent is to capture only strong edges and ignore the
rest (e.g., for a noise removal application), then The must be given a fairly high
lower cut off ( 500). If we wish to restrict the size of our PS, the Thm must be
allowed to increase to a higher cut off to get good modelling.On the other hand,
if we wish to get compact representation, we should use a large PS with a lower
upper cut off on Thm (say 0.5).

3 Results

The ability of the modelling algorithm to compute the correct model parameters
is established by testing it with a synthetic Laplacian composed of PS elements
themselves. A Laplacian was created having the the PS28 elements with their
original amplitudes and after scaling them by 0.1. The results for modelling this
test Laplacian with PS14 and PS28, with and without the β logic, is shown in
Table 1. It can be seen that PS28 with β is clearly the best strategy for generating
accurate and compact models. Without β, some small amplitude structures are
omitted in the model, leading to compact models but higher errors.

The PS28 set along with β logic was used to model the first Laplacian band
(L0) of the four natural images shown in Figure 6. These images have strong

Table 1. Effect of primitive set (PS) size and scaling (β) on accuracy and model size.
The image consisted of 56 (scaled) primitive elements. The model size indicates the
number of primitive set elements needed on average to model each scaled element in
the test image.

PS14 PS14+β PS28 PS28+β

Err % 2.5 2.28 0.353 0.257
Size 1.57 2.86 0.98 1.82
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(a) Test set of four images: left to right - L, C, R, A

(b) Actual L0 Laplacian subbands of images

(c) L0 subbands reconstructed from models of (b) above

(d) Reconstruction errors for the four Laplacians [(b)-(c)]

Fig. 6. Modelling accuracy of Laplacians for natural images

Table 2. Modeling accuracy and model sizes for laplacians of four test images. The
error energy is given as a % of the true laplacian subbands. The model size indicates
the number of model elements used to represent the laplacians. The images are shown
in Figure 6.

L C R A

Err % 39.8 32.9 31.0 31.5
Size 2083 3440 1306 3012

edges and curvilinear structures of varying degrees of sharpness. The original
Laplacians, the model based reconstructed Laplacaians and the residual errors
are also shown in Figure 6. The model sizes generated and the residual error
energies are shown in Table 2. It is seen that the dominant edges are well modeled
while the residuals are mainly the texture/small edges.
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The model generated for Lena was also used to generate a magnified version
using IPS28. This result is shown in Figure 7, where frequency extrapolation [6]
and bilinear interpolation is also shown for comparison. The model based mag-
nification is able to retain the sharpness of major edges by introducing correct
coherent harmonics at the required places. The edges are slightly overemphasized
by [6], which leads to ringing.

(a) Frequency (b) Spatial (c) Model

Fig. 7. Comparison of frequency extrapolation [6], spatial interpolation and model
based magnification

When given a noisy image, the model ignores the unstructured edges due
to noise. Thus the model based reconstruction can be used for noise removal
without blurring the sharp edges. This is shown in Figure 8. The Lena image was
corrupted by white noise. A one level pyramid was constructed (G1, L0), the L0
was replaced by its model based reconstruction and the pyramid reconstructed.
For comparison, the low pass and median filtered versions are also shown in
Figure 8.

(a)Noisy image (b) Low pass (c) Median filtered (d)Model based

Fig. 8. Noise removal ability using L0 modeling based approach

4 Conclusion and Future Work

The structure of Laplacians is exploited to generate a model of Laplacians. The
algorithm for creating such a representation is developed and the ability to model
Laplacians is demonstrated. Preliminary results of applications of this represen-
tation for magnification and noise filtering is shown. The problem of creating the
optimum Primitive Set and exploring further applications of this representation
are directions of future work.
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Abstract. In this paper, a novel approach to non-rigid moving object
detection under varying chromatic illumination is proposed. Different
from most algorithms that utilize color information, the assumption of
smooth or global change of illumination is no longer needed. Our method
is based on the observation that the color appearance of objects may al-
ter as the change of light intensity and color, but their texture structures
remain almost the same. Therefore, texture based invariant characteris-
tic to varying illumination is extracted and modeled, which can be used
to guide for obtaining color appearance model at each frame. By this phi-
losophy, firstly texture variation, which is not sensitive to illumination,
is extracted by comparing the current image with background image.
Secondly, the instantaneous color model is created by a special sampling
algorithm according to the texture variation and previous consecutive de-
tection results. By fusing texture variation and on-line color sampling, an
energy function is founded and minimized to obtain the target contour.
Experiments show that this approach has a great capability in detecting
non-rigid objects under global or local varying illumination even when
the hue and saturation of the lighting change abruptly or locally.

1 Introduction

Moving object detection is one of the primary problems in computer vision, but
most detection algorithms based on background subtraction strategy are suffer-
ing from illumination variation. However, the varying chromatic illumination is
ubiquitous. In this paper, we focus on extracting the moving object contour un-
der chromatic illumination, where light intensity or color may change abruptly
or locally. The detection results represented as contours instead of rectangle or
ellipse can benefit further analysis, e.g., pose estimation or action analysis.

In the literature, many methods have been proposed to deal with color
illumination variation. For example, model based approach has been pre-
sented using features insensitive to chromatic illumination variation, such as
edges or textures [1]. The limitation is high level knowledge dependence, since
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edge and texture cue alone is not strong enough to extract target from the
scene.

Color constancy strategy has also been suggested to reduce the influence
of varying illumination, where color is usually represented by two compo-
nents of the YUV, HSV[2], rgb color space or by linear combinations of the
RGB components[3]. But this method performs poorly if the light chromatic
changes.

The third class of methods adopts estimation and prediction strategy to evolve
color distributions. Some researchers proposed using parameter-based prediction
and update, that is, generate a stochastic model of color distribution, and evolve
model parameters over time [4]. Others proposed using non-parameter prediction
and update based on statistic techniques[5]. Both of these methods are suitable
for coping with smooth temporal illumination change only.

In [6], the input frames are decomposed into reflectance and illumination
images, so detection algorithm can be performed on the reflectance images. This
scheme utilizes the illumination eigenspace to capture the illumination variation
due to environmental factors. But it needs to store a lot of illumination images
captured under different illumination conditions in advance.

Recently, some papers have tried to integrate above methods together
[7], which based on a new LDA color space that maximizes the fore-
ground/background class separability. Then multiple hypotheses about the next
state of the color distribution using CONDENSATION are derived and the best
hypothesis is adopted to generate the best object segmentation by introducing
a dynamic color model. But it has to keep a certain number of particles in order
to cover the color distribution, so the computation is expensive.

Other papers also try to pursue accurate moving object contour[8][9], or in-
tegrate multiple cues[10], but them still suffer from light changes. In this paper
a novel method is proposed for moving object detection indoor captured by a
fixed camera under varying chromatic illumination. It means that the chroma
and intensity of the illumination can vary abruptly within the whole image or
partial of it, so temporal consistent color model is abandoned. Instead, based on
the features insensitive to illumination variation, an on-line local color model is
built by virtue of a special sampling strategy. Specially, a novel dynamic tex-
ture coefficient (DTC) is defined to measure the texture consistency of each
pixel as insensitive feature between current frame and background image. Then
the probability of each pixel belonging to the target or background color model
is assigned. Finally, an energy function fusing DTC and on-line color model is
introduced, leading to the solution via level set framework.

The main contributions in this paper include: 1) Propose a novel feature in-
sensitive to varying chromatic illumination; 2) Develop an on-line color sampling
scheme to deal with abrupt light changes; 3) Fuse texture variation and online
color modeling via the level set framework; 4) No shape information about the
moving objects is necessary, so it is especially suitable for the situation that the
prior of shape information is hard to be obtained.
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2 Dynamic Texture Coefficient

It is well known that illumination variation can make captured images look quite
different. So features insensitive to illumination variation should be developed for
distinguishing the target from the background reliably. It is observed that texture
structure is very insensitive to illumination variation. For example, if the local
texture structure of the current image is similar to that of the background image,
it probably indicates that the corresponding background region still can be seen
by the camera and not occluded by moving objects. Otherwise moving object is
supposed to entry. Based on this observation a dynamic texture coefficient (DTC)
is defined formally to describe the texture variation between the corresponding
region of the current frame and the background image.

Texture variation is calculated block-wisely by using window with size N ×N
between the current frame and background image, denoted as block B and block
C respectively as shown in Fig. 1. The intensity value in block B and C are
represented by two N2 dimensional vectors Vb(x, y) and Vc(x, y) corresponding
to block B and C respectively with (x, y) the coordinates of the block centers.

Here normalized correlation is used to compute the local texture variation as

|Vc
T · Vb|∥∥Vc‖ · ‖Vb

∥∥
where Vc = Vc−mean (Vc), Vb = Vb−mean (Vb), ‖ · ‖ is vector norm, and mean
is the mean of vector elements. The reason of using such kind of description is
based on the observation that if block B is a textured Lambert surface (no strong
specular reflection) and not occluded by moving objects, then the correlation
value will close to one. However, whenever it is occluded by a moving object,
Vc(x, y) will quite different from Vb(x, y). As a result, it can be used to extract
contours of the moving objects effectively.
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Fig. 1. Block extraction and color distribution. (a)(b): Two blocks extracted from back-
ground and current images in the same position for matching. (c)(d): Color distribution
in HS space of background and current image. (e): Dynamic texture result.

In practice, however, four different kinds of situations should be concerned.
For example, if both blocks are textured we can use the correlation value to
judge whether the texture changes or not. If both blocks are uniform, then there
is probably no target contour exists in this local area. If block B is uniform while
block C is textured, we can make a strong judgment that there exist moving
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objects. The situation that block B is textured while block C is uniform should
be considered carefully, as it may not necessarily relative to target occlusion but
to strong illumination for camera saturation as well indicated some regions in
Fig. 1 (a) and (b).

From above analysis, the DTC used to indicate moving objects as insensitive
feature to varying illumination can be defined as

DTC(Vc, Vb) =

⎧⎪⎨⎪⎩
1− |Vc

T ·Vb|
‖Vc‖‖Vb‖ , if var(Vc) ≥ T & var(Vb) ≥ T

0, if var(Vc) < T
1, if var(Vc) ≥ T & var(Vb) < T

(1)

where var means the variance of pattern vector, and T is the threshold discrim-
inating whether textured or not. It is obvious that the DTC close to 1 means a
moving object edge around.

For camera dither or image noise, we do not use calculated DTC value from
each pixel directly, but choose the minimum DTC value in the neighborhood of
each pixel instead. Then the following equation is added for modification:

DTC(x, y) = min
(x′,y′)∈N(x,y)

DTC (Vc(x′, y′), Vb(x′, y′)) (2)

where N(x, y) is pixel (x, y) and its 4-neighborhood.
Fig. 1(e) illustrates the DTC result for image pair shown in Fig. 1(a) and

(b), where bright region presents high confidence of non-matching degree. It is
obvious that this result is very useful to extract moving object edges despite of
dramatic illumination variations.

Some methods of moving object edge extraction have been proposed using
edge magnitude. For instance, Jabri[11] proposed edge subtraction method by
integrating edge magnitude and direction. But edge magnitude is unstable to
illumination, because the surface reflectance on each side of an edge is not equal.

Fig. 2 illustrates the comparison between Jabri’s and our algorithm. When
the intensity varies drastically between Fig. 2(a) and (b), the performance of his
algorithm is very poor, as many static edges of background are misclassified as
moving edges, while our method can get good performance as shown in Fig. 2(d).

It is obvious that moving object edge (MOE) can be obtained by thresholding
the DTC value. Since the DTC is region-based, actual MOE can be refined from
the current image by applying Nonmaximum Suppression procedure.

(a) (b) (c) (d)

Fig. 2. The comparison of algorithm performance between Jabri’s and our algorithm.
(a) Background image. (b) Current image. (c) Jabri’s result. (d) Our DTC result.
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3 On-Line Color Sampling

DTC distribution is usually fragmented when background texture structure is
similar to moving object contour. So local color models of the background and
foreground are established around the contours of the moving objects as a sup-
plement used for extracting the nearby target area from background. The color
models are calculated from the samples selected from both sides of the target
contours. Since we use DTC for detecting the target contours, the samples are
selected around the edges with high DTC values. The problem is, however, that
such kind of edges may be inside the target area not on the boundary of the
objects. As a result they should be excluded from the sample set. So we use
predicted contour in combination, and restrict the samples around the MOE
near the predicted contours. The on-line sampling sketch map is illustrated in
Fig. 3(a), where blue curve is the predicted contour based on previous detection
results and yellow short line is sampling route located in the gradient direction
of pixel on moving object edges. The hollow red circle is background sampling
pixels, while the solid red circle is the extracted foreground sampling pixels.

(a) (b)

Fig. 3. On-line color sampling. (a) Sketch map of on-line color sampling. (b) Distribu-
tion of two kinds of sampling pixels.

The key point of creating color model is to distinguish which sampling pixel
is inside the target area and which is not. Then a special judgment scheme based
on predicted target region and MOE, as shown in Fig. 4, has been developed.

First, a pixel on the MOE is selected as the base point. Then two pixels along
its normal line with fixed distance from the base point but on different sides are
sampled for color modeling, shown as red solid and hollow circles. There are two
situations shown as Case one and Case two, as shown in Fig. 4. In Case one,
MOE is located outside of predicted target region, and in Case two it is inside
of that. Actually the role of the predicted target region plays is indicating which
side of the MOE is inside of the target and which is outside. In case one the
sampling point nearer to the predicted region is assigned as the sampling point
of the target. In case two, however, the point far away from the predicted border
is the target sample. The sampling result is shown in Fig. 3(b) where red points
represent sampling target pixels and green points represent sampling.

Considering spatial information, the following color models are created. For
concision, we define (x, y) as X , and (x′, y′) as X ′. Let I(X) be the RGB vector
for a pixel at X , and F (X), B(X) be the foreground and background sampling
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Foreground
region

Background
region

Foreground
region

Background
region

Case one Case two

Predicted target
region

Base point

Moving object
edge

Fig. 4. The judgment scheme. Case one: moving object edge locating outside of the
predicted target region. Case two: MOE locating inside of the predicted target region.

pixel sets in the neighborhood of X respectively. Using these sampling pixels,
the foreground and background probability density functions, Pf (X) and Pb(X),
can be estimated using the Gaussian function N as

Pli(X) =
1∑

X′∈Si(X)
αX′

∑
X′∈Si(X)

αX′N(I(X)− I(X ′), Σ) (3)

where l = {f, b}, S = {F,B}, i = 1, 2, and weighted coefficient αX′ = ((x −
x′)2+(y−y′)2)−1/2 controls the influence of sampling point such that the further
from the current pixel to the sampling pixel, the weaker influence will be. Σ is
the covariance matrix of RGB color.

4 Construction of Energy Function

Let
{
C(p) : [0, 1]→ R2

}
be a closed curve in a Euclidean plane R2. Our goal

is to find the curve C∗(p) which divides the whole image area into targets and
background regions. Here, two items of energy functions about DTC and color
probability are introduced, and we define energy function of color model as

Ecolor = −
∫

ω

Pf (X)dX −
∫

ω−
Pb(X)dX (4)

where ω means the inner region of curve C(p), and ω− means the outer region.
Minimizing (4) means including pixels with similar color to foreground and ex-
cluding pixels with similar color to background.

On the other hand, since big DTC value presents high confidence of moving
object existence, the Geodesic active contour model [12] is introduced to model
DTC information and aims at attracting the curve to high DTC value region by
minimizing the following energy function:

EDTC =
∮

C

g(|∇DTC(C(p))|)︸ ︷︷ ︸
Boundary attraction

|Ċ(p)|︸ ︷︷ ︸
Regularity

dp (5)
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where Ċ(p) is the partial derivative of curve with respect to p, and g(.) is a
monotonically deceasing function such that g(r)→ 0 as r →∞, and g(0) = 1.

To combine color probability and dynamic texture, the goal for object detec-
tion is converted to find the curve C∗(p) minimizing following energy function:

C∗(p) = min
C
E(C(p))

E(C(p)) = αEcolor + βEDTC

(6)

where α and β are weighted coefficients which modulate the influence of color
model and DTC model.

5 Contour Evolution Via Level Set

For (6), a time variable t is added and using gradient descent process:

∂C

∂t
= −δE(C)

δC
= −

(
α
δEcolor

δC
+ β

δEDTC

δC

)
(7)

Applying Euler-Lagrange equation and gradient descent process:

δEDTC

δC
=
[
g(∇DTC(C))k −∇g(∇DTC(C)) · −→N

]−→
N (8)

Let {φ(x, y) : R2 → R} be an implicit representation of C(p), such that C is
zero level set of φ : C = {(x, y) : φ(x, y) = 0}. Similar to the deduction in [13], a
steady state solution of (8) can be given by:

φt,DTC = g(∇DTC)k|∇φ|+∇g(∇DTC) · ∇φ (9)

The normal −→N , as well as the curvature value k, can be estimated directly

from the level set function φ. Using step function H(φ) =
{

1, if φ ≥ 0
0, if φ < 0 and delta

function δ(.), the first item of (7) about color energy is

φt,color = −αδEcolor

δC
= α [Pf (X)− Pb(X)] δ(H(φ)) (10)

Then level set function φ deduced from (6) is given as

φt = α [Pf (X)− Pb(X)] δ(H(φ)) + β [g(∇DTC)k|∇φ|+∇g(∇DTC) · ∇φ]
(11)

Eq.(11) indicates that the flow can be divided into three components. One is
the force deduced from the color model which may raise the three dimensional
surface φ if the region color is more like foreground, and descend it otherwise.
The second part is a contractive item in proportion to the curvature. And the
third part attracts the curve to the dynamic textures. By harmonizing these
three forces via level set, the curve of moving objects can be extracted.
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6 Experiments

This section shows the performance of proposed method with different illumina-
tion covering typical illumination, especially for sudden and local variation. The
varying of chromatic illumination in these videos can not be dealt with correctly
by previous methods, such as color prediction [14].

6.1 Human Body Detection

This video sequence is taken in a classroom equipped with a projector. A human
body stands in front of a board full of pictures. The projector casts a beam of
chromatic light onto the board and human body at the same time. The color
light from the projector changes frequently from frame to frame, and the body
also turns around continuously.

Frame 33 Frame 34 Frame 85 Frame 86

Frame 138 Frame 139 Frame 191 Frame 192

Frame 297 Frame 298 Frame 402 Frame 403

Frame 507 Frame 508 Frame 667 Frame 668

Fig. 5. Human body detection under abrupt local varying chromatic illumination in
smart classroom

In Fig. 5, 8 pairs of consecutive frames with drastically different illumination
condition are shown with the extracted contours of the person. These results
indicate that our approach can get good performance despite of local abrupt
light variation and target appearance alteration with time.

6.2 Fish Detection

Fig. 6 shows the experiment result of a fish sequence under synthesized chromatic
sudden varying illumination to test the algorithm robustness. Each selected pair
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Frame 4 Frame 5 Frame 24 Frame 25 Frame 119 Frame 120

Frame 184 Frame 185 Frame 479 Frame 480 Frame 564 Frame 565

Fig. 6. Fish detection under chromatic sudden varying illumination

of consecutive frames is under drastic different illumination conditions. Despite
of the significant chromatic difference, it can still get good performance.

The video sequence is processed with a Pentium4 2.4 GHz processor, and the
system can process averagely 15 fps with frame size 384 x 288. For comparison,
the algorithm proposed by Stauffer [14] is adopt, where each pixel is modeled as
a mixture of Gaussians and an on-line approximation scheme is used to update
the model. Here we use three Gaussians to model each pixel and YUV color space
to reduce the influence of light intensity, and update rate for model update is
set as 0.2. The experiment results are shown in Fig. 7 where the upper row
is original image and the low row is the result of foreground detection. It can
be seen obviously that update algorithm can hardly produce good performance
while illumination changes abruptly.

Frame 1 Frame 6 Frame 15 Frame 16

Fig. 7. Foreground detection using mixture Gaussian model and on-line update scheme.
Upper row: original images; lower row: foreground detection results.

7 Conclusion

In this paper, we propose a new robust approach for moving object detection,
which integrates the color and texture variation information within an energy
function and carries out the tracking procedure in the framework of level set. The
main contribution of this paper is that a feature, dynamic texture coefficient,
insensitive to illumination variation is defined to extract moving object edge,
and an on-line color model via sampling is created. Therefore texture variation
information and on-line color model can be integrated to trace the target contour
in level set framework under illumination variation environment.
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We intend to explore several avenues in future work. First, a new scheme
should be proposed for invariant feature derivation under chromatic illumination
without textureless light assumption. We also plan to adopt target model for
high level supervising to improve the robustness.
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Abstract. This paper presents a new, simple approach for rotation and
histogram equalization invariant texture classification. The proposed ap-
proach is based on both microscopic and macroscopic information which
can effectively capture fundamental intensity properties of image tex-
tures. The combined information is proven to be a very powerful texture
feature. We extract the information at the microscopic level by using the
frequency histogram of all pattern labels. At the macroscopic level, we
extract the information by employing the circular Gabor filters at dif-
ferent center frequencies and computing the Tsallis entropy of the filter
outputs. The proposed approach is robust in terms of histogram equal-
ization since the feature is, by definition, invariant against flattening of
pixel intensities. The good performance of this approach is proven by the
promising experimental results obtained. We also evaluate our method
based on six widely used image features. It is experimentally shown that
our features exceed the performance obtained using other image features.

1 Introduction

Texture analysis plays an important role in computer vision and image process-
ing. Translation, rotation, and histogram equalization invariant texture analysis
methods have been of particular interest. Some researchers have considered to
extract rotation-invariant features for image textures. Greenspan et al. [1] ap-
plied a set of oriented pyramid filters to an image texture and obtained a set
of filtered energies. Porter and Canagarajah [2] removed the HH wavelet chan-
nels and combined the LH and HL wavelet channels to obtain rotation-invariant
wavelet features. Haley and Manjunath [3] used Gabor filters to extract rotation-
invariant features. Kashyap and Khotanzad [4] constructed an isotropic circular
Gaussian Markov random field (GMRF). To capture directional information in
the possibly non-isotropic textures, Deng and Clausi [5] extended the ICGMRF
model [4] into anisotropic circular GMRF model. Utilizing similar circular neigh-
borhoods, Arof and Deravi obtained rotation invariant features with 1D DFT
transformation [6]. Also, Ojala et al. [7] proposed rotation invariant features
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by observing statistical distributions of uniform local binary patterns (LBP).
Huang, Li and Wang extended the conventional LBP method to calculate the
derivative-based local binary patterns in the application of face alignment [8].

In this paper, we propose a new approach to histogram equalization nd
rotation invariant texture classification by capturing and combining both mi-
croscopic information: characteristics of local details in the textures, and
macroscopic information: blob-like texture pattern in the image. The main
contributions of this work are as follows. First, along the same line of Ojala et al.
[7], instead of just observing the ”uniform LBP”, we propose to use frequency
histogram of all pattern labels. At the microscopic level, it is found that this can
better represent the dominant patterns in the texture images than the conven-
tional LBP method [7]. Second, we use the Gabor filters to extract macroscopic
information [10], and represent the extracted macroscopic information by com-
puting the Tsallis entropy from the histogram of the image filtered using the
circular Gabor filters because of the fact that the histogram can be transformed
into a vector of generalized image entropies [9]. Finally, we found that the mi-
croscopic and macroscopic features can complement with each other effectively.
This can lead to higher classification accuracy when the resolution of the image
is low, e.g. 16× 16, or the textures in the images are difficult to be classified. In
this paper, we employ the support vector machines for performing classification,
and the grid search to find the best setting of parameters which can produce the
highest classification accuracy for each feature.

The performance of the proposed approach is demonstrated with three exper-
iments on three databases: Brodatz [11], Meastex [12] and CUReT textures [13].
Excellent experimental results demonstrate that our method is able to produce,
from any random rotation angle, a representation that allows for discriminating
a large number of textures at other random angles. The features are computa-
tionally attractive as they can be extracted in just a few operations.

2 Microscopic Information

At the microscopic level, we show how to derive features based on the modified
version of local binary patterns (LBP) using frequency histogram of all pattern
labels in the images. It will be experimentally shown that, using frequency his-
togram of all pattern labels, our new features outperform the conventional LBP
and other five widely used image features (see Section 4 for details). Our features
are simple, and robust to image histogram equalization and rotation.

An advantage of using frequency histogram of all pattern labels over using
the histogram of ”uniform LBP” in the conventional LBP method [7] is that,
for some kinds of textures, the dominant patterns are not mainly the ”uniform
LBP”, especially for the textures whose edges and shapes are not regular. For
example, Table 1 lists the proportions of the ”uniform LBP” in some sample
images obtained from the Meastex database. As listed in the table, even with
different values of radius R, the majority of textural information cannot be
effectively represented by merely considering the histogram of ”uniform LBP”.
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Table 1. Proportions (%) of ”uniform LBP” for some samples in the Meastex database.
It shows that, for some kinds of textures, the dominant patterns are not mainly the
”uniform LBP”.

Textures P=8,R=1 P=16,R=2 P=24,R=3
Concrete0002 52.30 38.54 24.85
Concrete0003 63.72 45.05 31.95
Concrete0006 50.15 34.94 26.70
Concrete0007 40.64 26.07 13.58

Misc0000 58.61 42.50 30.84
Misc0001 46.40 32.78 20.80
Rock0015 56.80 41.83 27.32
Rock0016 64.42 50.52 24.10
Rock0017 44.93 31.70 16.33
Rock0018 51.68 36.85 22.78

It shows that the ”uniform LBP” are not the dominant patterns in these sample
images. Moreover, the approach of ”uniform LBP” is not very robust against
random rotation as the interpolation of pixel intensities of the rotated images
can change the original ”uniform” patterns into ”non-uniform”. Instead, the
frequency histogram of all pattern labels can be more robust to random rotation
as, no matter how much the images are rotated, the new patterns appear after
the interpolation will also be considered in the frequency histogram of all pattern
labels.

Based on the work of Ojala et. al [7], we first give the definition of pat-
tern labels, and then describe how frequency histogram of all pattern labels is
used for feature selection. Let V be a vector representing the neighboring in-
tensity values (anti-clockwise direction) at each image pixel (x, y), V (x, y) =
(t0, t1, . . . , tm−1)T , where (x, y) denote image pixel coordinates, and t1, t2, ... ,
tm−1 represent the intensity values of m equally spaced pixels around the pixel
at (x, y). In order to maintain rotation invariance, a circular neighborhood sys-
tem is used. Therefore, t1, t2, ... , tm−1 form a circularly symmetric neighbor set
on a circle of radius R. Fig. 1 illustrates the circularly symmetric neighbor sets
for different values of m and R. The intensity values of the neighboring pixels
are estimated using the bilinear interpolation. Let t0 be the intensity value of
a neighboring pixel, which is (R, 0), to the right of the center pixel tc, (0, 0),
and t1, t2, ... , tm−1 denote the intensity values in the order of anti-clockwise
from t0. To achieve histogram equalization invariance, the intensity value tc
at the center pixel is subtracted from the intensity values of the neighbor sets
t1, t2, ... , tm−1. A vector is defined to represent the trend of each pixel to
its neighbors in the image, Trend(x, y) = (u(t0 − tc), u(t1 − tc), . . . , u(tm−1 −
tc))T , where u(x) is a step function, u(x) = 1 when x ≥ 0; else, u(x) = 0.
The vector Trend at each pixel is a highly discriminative microscopic tex-
ture feature. It is robust to histogram equalization because the sign of differ-
ence between two pixels will not be changed after performing histogram equal-
ization. Then, a binary weighted factor 2i, i = 0, 1, ...,m − 1 is assigned to
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Fig. 1. Circularly symmetric neighbor sets for different values of m and R

each element in vector Trend in order to label each pattern, which is given
as,

Mic(m,R) =
m−1∑
i=0

u(ti − tc)2i. (1)

This feature is an effective representation of the information at the microscopic
level because its value denotes a unique label number which describes the pattern
characteristics centered at a particular pixel.

Suppose that the image is rotated by an arbitrary angle, the intensity val-
ues of ti will correspondingly move along the perimeter of the circle centered at
tc. Therefore, rotating the image with a particular angle naturally results in a
different Mic(m,R) value. To remove the rotation effect and achieve rotation
invariance, we need to group two pattern structures together if one can be ob-
tained by performing rotation with the other. To assign a unique identifier to
each rotation invariant group, the feature is now re-defined as,

Mics(m,R) = min(Cir(Mic(m,R), n)), (2)

where n = 0, 1, ...,m − 1, Cir(x, n) performs a circular anti-clockwise bit-wise
shift on the m-bit number by n times. Unlike the conventional LBP, we consider
all the pattern combinations and group them into the same rotation invariance
group. Therefore, no matter how much the image is rotated (randomly rotated),
we can still map each pattern in the rotated image into one group, while for
the approach of local binary patterns some kinds of rotation angles will lead
to rotation variant effects due to interpolation of pixels intensities of rotated
images.

In the real world applications, rotation angles are not always integers or reg-
ular angles. As such, any texture classification approach should be robust to
random rotation. For the approach of ”uniform LBP”, some patterns that are
uniform will be changed to non-uniform due to the interpolation of random ro-
tated images. To solve this problem, we propose to consider all pattern labels
and use the frequency histogram to find a minimum set of pattern labels that
represent 80% of the pattern labels in an image because they should correctly
represent the dominant pattern labels given the image. This is more robust to
random rotation because no matter how much the image is rotated, the domi-
nant texture pattern information will be captured by the frequency histogram of
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the dominant pattern labels. According to our experimental results, it appears
that the first 20 pattern labels are generally sufficient to reach or exceed 80% of
the pattern labels in the image, and can effectively reflect the characteristics of
the dominant textures in the image.

3 Macroscopic Information

Although the microscopic information can effectively represent the small, local
pattern distribution in the image, it is still not sufficient to represent all the
information or characteristics of the whole image. It becomes obvious especially
when the resolution of the image is relatively high. To overcome the shortage of
the microscopic information, we need to derive the macroscopic information in
the image so that the microscopic and macroscopic information can complement
well with each other. We use the circularly symmetric Gabor filters to extract
macroscopic features of the image. The magnitude of the filtered image measures
existence of blob-like structures in textures, which describes whether the textural
pattern forms clusters. Apart from the traditional approach that averages pixel
magnitude of each filtered image, we compute the Tsallis entropy [14] from the
filter outputs. The reason is that the average pixel magnitude can be affected by
histogram equalization and suffered by the lost of individual general information
because of taking the average value. The Tsallis entropy of the filter outputs
can be expressed as a linear function of the histogram and is more robust to
histogram equalization.

Gabor filters are often used in texture analysis to provide features for texture
classification and segmentation [15], [16]. It functions over the whole image.
Therefore, the features extracted from the filtered image are the macroscopic
features. It is also resistant to histogram equalization as it takes the overall
intensity distribution into consideration.

The traditional Gabor filter varies along one direction alone, thus making it
highly orientation specific. As a result, the filter is not suitable for achieving
rotation invariance. To achieve rotation invariance, we need to have circularly
symmetric Gabor filter, which is given by h(x, y) = g(x, y)e−2πjF

√
x2+y2 where

F is the required center frequency. To extract macroscopic texture-based features
from an image using the circularly symmetric filters, we use four circularly sym-
metric Gabor filters, with different center frequencies (measured in cycles/image)
F1 = 2.0, F2 = 3.17, F3 = 5.04 and F4 = 8.0 so that they are spaced in geomet-
ric progression across the Fourier domain to achieve optimum coverage. These
four filters overlap slightly and the Fourier domain is almost evenly covered.
Finally, four filter responses to the input image can be obtained. We denote the
histograms of four filter responses as H1, H2, H3, H4, respectively. The fea-
tures at macroscopic level are then extracted from the individual histograms by

computing the corresponding Tsallis entropy [14] Sq =
1− m−1

j=0 hq
j

q−1 , where q is a
continuous parameter, m denotes the maximum bin number for the histogram,
hj is the value of the corresponding histogram density, e.g. H1, H2, H3 or H4.
The Tsallis entropies are powerful features to represent the macroscopic infor-
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mation extracted from the histogram [18]. For texture classification, the four
Tsallis entropies extracted from H1, H2, H3 and H4 are used as the features at
the macroscopic level.

4 Experimental Results

We have evaluated our method on three different databases with large sets of
texture images: (1) 24 source textures captured from the Brodatz album [11];
(2) all textures (28 kinds of texture in total) in the Meastex database [12], which
is very challenging as most of the textures are very similar to each other; and
(3) 47 textures selected from the CUReT database [13]. We have also reduced
the resolution of the images to study the effect of different image resolutions on
classification accuracy. In the experiments, we performed histogram equalization
and randomly rotated each image in order to test the robustness of our method.
The robustness of our approach is compared with six commonly used image
features, which are listed below.

1. Daubechies wavelet packet features (DWPF) [17] and [2]: The feature
vector consisted of the L2 norms of the images of the wavelet packet transform
[17]. The wavelet transform was combined with spatial sub-sampling to give
critical image sampling. The rotation-invariant version DWPFRT [2] was also
implemented.

2. Traditional Gabor filters (Gabor) [3]: Eight Gabor filters were chosen,
spaced at the frequencies, F = 2.0, 3.17, 5.04 and 8.0 and oriented at angles of 0
and 90 degrees to achieve optimal coverage in the Fourier domain. Average pixel
magnitude of each filtered image was used as feature. The circularly symmetric
version CGabor was also implemented.

3. Gaussian Markov random field parameters (GMRF) [19]: Each
pixel was assumed to be a linear combination of the intensities of its neighboring
pixels. We utilized the 4th order neighborhood system. The linear parameters
were computed with the least square estimation.

4. Anisotropic Circular Gaussian MRF parameters (ACGMRF) [5]:
An improved version of the Gaussian MRF mentioned above was implemented.
It was rotation invariant with strong response to directional features. In total,
36 parameters were calculated using approximated least square estimation from
a 3rd order symmetrical 24 orientation neighborhood system.

5. Multiresolution Histograms (MH) [18]: The generalized Tsallis en-
tropy and Fisher information were computed over different resolutions. In this
experiment, generalized Tsallis entropy and Fisher information were computed
over three resolution levels and let the continuous parameter q = 2.

6. Local binary patterns (LBP) [7]: The occurrence histogram of the
uniform local binary patterns were computed when P = 8, 16, 24 with R = 1, 2, 3
respectively. The final features were the features obtained after combining the
three sets of features computed over P = 8, R = 1; P = 16, R = 2; P = 24, R = 3
together. It was claimed to have the best performance of local binary patterns
in Ojala et al.’s experiment [7].
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Also, the microscopic information is denoted as Mic and the macroscopic
information is denoted as Mac, and the combination of them is denoted as
MicMac. We used the support vector machine (SVM) as the classifier in our
experiments. SVM can perform binary classification and regression. They per-
form classification using the structural risk minimization principle. In particular,
the SVM creates a classifier with minimized VC dimension.

4.1 Experiments on Brodatz Database

The image data set includes 24 texture classes from the Brodatz album [11]. For
each texture class, there are 25 128×128 source images, in which initially we
divide each 128×128 source image into 4 disjoint 64×64 subimages. As such, we
have 100 samples for each texture class (25 source images×4 divisions). We use
the first 50 samples for the training of the classifier and the other 50 images are
used for the testing of the classifier.

Training and classification are first performed on the textures at their original
orientation and resolution, and without histogram equalization and rotation. It
produces the results listed in the first column of Table 2. Testing on the original
textures only verifies the basic capability of each feature, and does not test its
histogram equalization and rotation invariance. The training and testing sets
are then presented after performing histogram equalization but without rota-
tion. It yields the second column of results listed in Table 2. Then, the original
training and testing sets are presented by rotating each of them in a randomly
generated angle between 0 and 360 degrees (angles were uniformly distributed).
It should be noted that the randomly generated angle is not necessary an in-
teger value (e.g. generating 23.24 degree is possible), but without performing
histogram equalization. The classification results are presented in the third col-
umn of Table 2. The fourth column in Table 2 gives the results of performing
both histogram equalization and random rotation for each training set and test-
ing set.

Table 2. Performance of different features of 64×64, (32×32) and [16×16] image reso-
lutions in the Brodatz Database. Results of our methods are listed in the last three
rows. For each test (column), the highest classification accuracy is highlighted in bold.

Classification accuracy %
Features Original Histogram Randomly Histogram Equalized

Textures Equalized Rotated & Random Rotated
Textures Textures Textures

DWPF [17] 98.61(88.89)[80.56] 89.35(72.69)[55.56] 83.06(79.63)[59.72] 56.94(64.81)[41.20]
DWPFRT [2] 91.67(79.17)[68.06] 75.00(52.78)[43.06] 91.20(78.24)[64.81] 78.70(60.19)[38.43]

Gabor [3] 96.76(79.17)[56.02] 91.67(62.96)[38.43] 64.35(47.69)[45.37] 54.63(34.26)[29.17]
CGabor [3] 90.07(62.50)[48.61] 51.85(26.40)[32.90] 87.87(58.80)[50.46] 55.09(33.80)[29.63]
GMRFs [19] 96.70(53.40)[36.81] 84.33(44.20)[27.11] 44.30(24.74)[23.90] 40.40(22.43)[14.62]

ACGMRFs [5] 95.22(75.00)[33.19] 86.52(75.46)[42.13] 93.72(76.94)[31.48] 80.56(74.33)[37.96]
MH [18] 96.35(78.31)[53.68] 63.61(48.74)[25.12] 87.64(80.21)[56.27] 54.86(41.43)[24.76]
LBP [7] 98.37(92.85)[83.24] 97.44(90.07)[78.22] 92.13(86.37)[80.91] 91.67(84.81)[74.30]

Mic 98.61(93.96)[89.91] 97.69(93.33)[83.98] 94.44(89.16)[82.80] 91.82(85.46)[80.93]
Mac 87.84(63.00)[52.12] 60.73(29.25)[38.06] 85.65(62.17)[55.24] 63.47(39.02)[35.43]

MicMac 99.54(94.91)[93.02]99.54(95.37)[92.18]99.54(97.69)[92.35]99.07(94.32)[90.11]
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To observe the robustness of different approaches, we reduce the original im-
age resolution from 64×64 to 32×32, and to 16×16. To achieve the resolution
reduction, we first perform histogram equalization and random rotation on the
original 64×64 images. Then, we take the 32×32 and 16×16 resolution images
from the 64×64 images. Table 2, (see the numbers in brackets for 32×32 and
squares for 16×16), correspondingly lists the results of histogram equalization
and random rotation perform on the textures when all training and testing im-
ages are reduced to resolution of 32×32 and 16×16. It is observed that our
method based on both microscopic and macroscopic information outperforms
other six widely used image features.

4.2 Experiments on Meastex Database

In the Meastex database [12], images are divided into 28 kinds of textures, each
image is of resolution of 512×512, and there are 69 source images. It is a very
challenging database because, in 28 kinds of textures, some of the images, which
are very similar to each other, are divided into two different kinds of textures.
Since the Meastex database is very challenging, we do not reduce the resolution
less than 64×64 pixels. To setup the experimental environment, we first divide
each (512×512) source images into 64 disjoint (64×64) subimages. Half of the
subimages of each texture class is used as the training sets, while the other half
of the subimages of each texture class is used as the testing sets.

Table 3. Performance of different features of 64×64 image resolution in the Meastex
Database. Results of our methods are listed in the last three rows. For each test
(column), the highest classification accuracy is highlighted in bold.

Classification accuracy %
Features Original Histogram Randomly Histogram Equalized &

Textures Equalized Rotated Random Rotated
Textures Textures Textures

DWPF [17] 50.74 42.34 36.31 30.50
DWPFRT [2] 42.53 31.63 48.52 27.39

Gabor [3] 56.06 52.63 46.23 39.61
CGabor [3] 51.30 42.63 53.68 38.10
GMRFs [19] 56.78 32.10 37.52 24.68

ACGMRFs [5] 60.73 58.71 50.31 48.64
MH [18] 51.66 26.74 46.32 22.64
LBP [7] 58.32 54.75 57.80 55.94

Mic 61.06 58.34 57.73 60.18
Mac 42.10 38.52 33.50 31.08

MicMac 81.57 81.57 81.06 80.48

The experimental results are listed in Table 3, which shows that Meastex is
a very challenging database because the classification accuracies are generally
lower that the Brodatz database. For our approach, if we just consider the mi-
croscopic information (see bottom third row in Table 3), it just has a mediocre
performance on the original textures (63.40%). On the other hand, if we just
consider the macroscopic information (see bottom second row in Table 3), its
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performance is not good (42.44%) because the detailed information is lost. How-
ever, if we combine the microscopic and macroscopic information (see last row in
Table 3), we can see that the performance is greatly improved (81.57%), which
is better than other methods listed in the table. This is a promising perfor-
mance in such challenging database. Also, even in the most difficult condition,
after performing histogram equalization and random rotation, our approach can
still maintain a good performance (81.07%), its robustness against histogram
equalization and random rotation is strongly implied.

4.3 Experiments on CUReT Database

For the CUReT database [13], there are 47 textures and each texture source
image is of 320×320 pixels. We first divide each source image into 25 disjoint
(64×64) subimages. Then, we use the first 12 subimages as the training set,
and the other 13 subimages are used as the testing set. We choose the CUReT
database to evaluate the performance of our approach because it contains more
nature images. It is also a very challenging database. The experimental results
are listed in Table 4, in which our method gives promising performance when
both microscopic and macroscopic information is used.

Table 4. Performance of different features of 64×64 image resolution in the CUReT
Database. Results of our methods are listed in the last three rows. For each test
(column), the highest classification accuracy is highlighted in bold.

Classification accuracy %
Features Original Histogram Randomly Histogram Equalized &

Textures Equalized Rotated Random Rotated
Textures Textures Textures

DWPF [17] 88.30 57.98 75.53 36.70
DWPFRT [2] 79.26 35.64 65.96 32.98

Gabor [3] 57.45 39.89 57.45 21.81
CGabor [3] 45.74 24.47 48.94 20.56
GMRFs [19] 75.85 53.60 41.52 38.63

ACGMRFs [5] 64.89 63.29 39.36 38.83
MH[18] 67.08 40.31 53.75 33.38
LBP [7] 69.15 67.55 65.43 65.85

Mic 81.38 77.12 76.60 77.05
Mac 68.80 60.47 71.31 63.37

MicMac 95.21 96.28 94.15 92.02

5 Conclusion

It is experimentally shown that our approach is capable of effectively capturing
and combining both microscopic and macroscopic information in the texture
images. Moreover, its excellent classification performance in Brodatz, Meastex
and CUReT databases was demonstrated experimentally. It was also shown to be
robust to image histogram equalization and random rotation. Our method was
compared with six widely used image features. It was shown that our approach
is the most robust one. To make our method invariant to other complex textures,
the macroscopic part of the method, i.e., the filters used in the method, can be
modified.
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Abstract. This paper discusses Gaussian decomposition of facial
images for robust recognition. While it cannot sufficiently extract an
effective component, it can decompose an image into two effective com-
ponents, the filtered image and its residual. The Gaussian component
represents rough information for a lighting condition and small individ-
uality. The residual represents individuality and the other information
including small noise. The two components complement each other and
they are evaluated independently in the framework of eigenface method.
The image decomposition can also collaborate with parallel partial pro-
jections for robust recognition.

1 Introduction

The appearance of a human face changes with the conditions under which the
face images are taken, and it is difficult to control these conditions in a natural
environment. Although eigenfaces[1, 2] can efficiently represent changes in light-
ing conditions when a sufficient set of images are provided for the registration,
they cannot be appropriately constructed when too few images are available for
the registration. In this case, we must extract a component that is insensitive to
the lighting conditions for the robust face recognition.

In image processing, simple filters, for example a Gaussian filter and a dif-
ference of Gaussian (DoG) filter, are widely used for extracting intrinsic infor-
mation from an input image. In the present study, we attempt to utilize these
filters for facial image recognition. An input image is decomposed by the filters
into a filtered image and its residual. We show a novel method for robust face
recognition using both the filtered images and their residuals. The basic idea of
image decomposition is proposed in our previous work[3]. Further development
of Gaussian decomposition and sufficient experimental results are extensively
discussed in this paper.

2 Definitions

2.1 Normalized Eigenspace

Basic definitions and the notation scheme are summarized here. Since the pro-
posed method is based on eigenspace, this section deals mainly with the concept
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of eigenspace. All images are normalized as follows: Let an N -dimensional vec-
tor X denote an original image composed of N pixels, and let 1 denote an
N -dimensional vector in which each element is 1. The normalized image x of
an original image X is defined as x = X/(1T X). After the normalization, x is
normalized in the sense that 1T x = 1. An image space constructed by a set of
normalized images is called the Normalized Image Space (NIS).

An eigenspace constructed by mean vector x andm-principal eigenvectors Φm

in NIS is described as 〈x, Φm〉. In the concept of NIS, an image x is projected onto
eigenspace 〈x, Φm〉 by x̃∗ = Φ̃+

mx, where Φ̃m = [Φm x] and Φ̃+
m = (Φ̃T

mΦ̃m)−1Φ̃T
m.

In order to measure a similarity between an input image x and the eigenspace
〈x, Φm〉 , we define a normalized correlation in terms of NIS. It can be defined
by a cosine of angle when an image 1/N is regarded as the origin of NIS. That
is, a normalized correlation CI between x and 〈x, Φm〉 is defined as

CI = C(x, Φ̃mx̃∗) (1)

where

C(x,y) =
(x − 1/N)T (y − 1/N)

(||(x − 1/N)||||(y − 1/N)||)1/2 .

A given image x can be evaluated in terms of NIS without explicit normalization
in this definition.

2.2 Partial Projection

Let us define an indicator matrix P , which is an N × N diagonal matrix, each
diagonal term of which is 1 or 0, which indicates whether the pixel is effective (1)
or ineffective (0) for the projection. Then, x is partially projected onto 〈x, Φm〉
with indicator matrix P by

x̃∗
P = (PΦ̃m)+Px, (2)

where Φ̃m = [Φm x] and (PΦ̃m)+ = (Φ̃T
mPΦ̃m)−1(PΦ̃m)T . A partial residual is

defined as
x̃�

P = P (x− Φ̃mx̃∗
P ). (3)

The last element of x̃∗
P is important and denoted by βP . βP is equivalent to a

total of pixel values estimated by the partial projection. When the eigenspace
cannot be constructed since only one image is available, we can regard the image
as a 0-dimensional eigenspace. The normalized correlation CI can be extended
to span the partial projection. A partial correlation CP between x and 〈x, Φm〉
within a pixel set indicated by P is defined as

CP = C(Px, P Φ̃mx̃∗
P ). (4)

When P is an identify matrix, Eq. (4) is equivalent to Eq. (1).
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Input

σ = 0.5 σ = 1.0 σ = 2.0 σ = 3.0 σ = 4.0

Fig. 1. Examples of the Gaussian decomposition: original images (x)(left), Gaussian
images (x$

G)(upper row), and residuals (x�
G)(lower row)

3 Gaussian Decompositions

3.1 Decomposition by Gaussian Filter

An image decomposition by a universal eigenspace, so called the canonical eigen-
face, is proposed by Shakunaga and Shigenari[4] when the eigenspace is con-
structed from a lot of facial images taken under various lighting conditions.
The decomposition using the canonical eigenspace is useful when an appropri-
ate learning set can be registered. However, when a face image is taken from a
different camera under a different condition, the eigenspace may not properly de-
compose the image. In addition, when a test image contains a lot of noises, such
as occlusions, the noises may affect the entire image by the projection onto the
eigenspace. In order to refrain from these problems, we consider an alternative
method without using the eigenspace for image decomposition.

Wang et al.[5] proposed a self quotient image (SQI) that extracts the insensi-
tive component for illumination. In their method, the Gaussian filter is applied
for getting the lighting information. The Gaussian filter is used in our method
for image decomposition. The 2-d Gaussian function G(u, v) is defined as

G(u, v) = (2πσ2)−1 exp
(
−u

2 + v2

2σ2

)
,

where σ is the standard deviation of the Gaussian function. Let G denote an
N × N matrix that works as the Gaussian filter. Then, the decomposition of
image x into a Gaussian image x$

G and its residual x�
G can be represented in

x$
G = Gx (5)

and
x�

G = x− x$
G. (6)

An input image x is decomposed into the Gaussian image x$
G and the residual

x�
G. The two components complement each other. Figure 1 shows examples of

the Gaussian decomposition. If the SQI should be made, each pixel value of the
input image is divided by the corresponding pixel in the Gaussian image. In the
proposed method, however, the Gaussian image is subtracted from the original
image to calculate the residual.
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Input
σ1 =
0.5

σ1 =
1.0

σ1 =
2.0

σ1 =
3.0

σ1 =
4.0

Fig. 2. Examples of the DoG decomposition: original images (x) (left), DoG images
(x$

D)(upper row), and residuals (x�
D) (lower row)

A face recognition algorithm is constructed in the ordinary way using the
two components. In the registration stage, one eigenspace is constructed from a
set of the filtered images and is denoted by 〈x$

G, Φ
$
mG〉. The other eigenspace is

constructed from a set of the residuals and is denoted by 〈x�
G, Φ

�
mG〉. In the recog-

nition stage, a filtered image x$ and a residual x� are evaluated independently
by

C$ = C(x$
G, Φ̃

$
mGΦ̃

$+
mGx$

G) (7)

and
C� = C(x�

G, Φ̃
�
mGΦ̃

�+
mGx�

G). (8)

Finally, the image x is evaluated using the sum of C$ and C�.

3.2 Decomposition by Difference of Gaussian (DoG)

The Difference-of-Gaussian (DoG) filter is often used for edge detection[6]. Since
edge features are effective for image recognition, the DoG filter provides a can-
didate feature for face recognition. The DoG x$

D of an image x is defined by
x$

D = G1x − G2x, where G1 and G2 are two Gaussian filters that have differ-
ent standard deviations, σ1 and σ2, respectively. In this paper, σ2 is equal to
1.6σ1. Here, the residual x�

D is defined as x�
D = x− x$

D. These components are
evaluated in face recognition in the same manner as discussed for the Gaussian
decomposition. Figure 2 shows examples of the DoG decomposition. When σ1 is
small, the edge component is emphasized by the DoG filter and the residual x�

D

is smoothed. On the other hand, when σ1 becomes larger, the residual gets less
smooth because the DoG image is excessively smoothed and the high-frequency
component remains in the residual.

4 Face Recognition by Parallel Partial Projections

4.1 Parallel Partial Projections

When an input image contains local noises such as shadows or occlusions, the
noises affect the recognition results. First, in the most commonly used method,
although images for face recognition are normalized by some method, when the
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Parallel Partial Projections 

Partial Correlation

Final Result

Gaussian-Decomposition

Fig. 3. Combination of Guassian and locational decompositions

image contains noises, the image cannot be properly normalized. Second, when
we use an eigenspace, the effects of noises is spread to the entire image by the
projection onto the eigenspace, affecting the face recognition results.

In order to avoid this problem, we use local information independently. In
this section, we introduce a locational decomposition algorithm, which can use
local information independently.

Parallel partial projection (PPP) onto eigenspaces is proposed for face recog-
nition under various lighting conditions. This is one method for implementing
the locational decomposition, and so local information is treated independently
and the spread of noises is prevented. In this paper, this method is used as the
locational decomposition of the image.

Let us describe the j-th partial projection x̃∗
Pj

onto eigenspace 〈x, Φm〉. Here,
PPP is a set of partial projections {x̃∗

P1
, · · · , x̃∗

PM
}, where M is the number of

parts indicated by Pj . This can be represented by the backprojected image,
which can be calculated as

x$′
=

M∑
j=1

Pj Φ̃mx̃∗
Pj
.

4.2 Discriminant Functions

A Gaussian decomposition and PPP can be combined in a simple manner. In
the combination method, an input image is decomposed by the Gaussian decom-
position, and the two decomposed components are evaluated in a framework of
the PPP. Figure 3 shows the concept of the combination.

At first, an input image x is decomposed by Eqs. (5) and (6). The decomposi-
tion dose not affect parallel partial projections because the method decomposes
an input image without any noise expansion.

The decomposed images are evaluated by a framework of PPP. In the com-
bination method, the partial correlation should be defined for each component.
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SS1
θ ≤ 12◦

SS2
θ ≤ 25◦

SS3
θ ≤ 50◦

SS4
θ ≤ 77◦

SS5
θ > 77◦

Fig. 4. Example images in subsets 1-5 (SS1-5), where θ is the angle between the light
source direction and the camera axis

When an eigenspace constructed from a set of x$
G is denoted by 〈x$

G, Φ
$
mG〉, a

partial correlation C$
Pj

between x$
G and 〈x$

G, Φ
$
mG〉 within a pixel set indicated

by Pj is calculated by

C$
Pj

= C(Pjx$
G, Pj(Φ̃$

mG(Pj Φ̃
$
mG)+x$

G)). (9)

In the similar way, a partial correlation C�
Pj

between a residual x�
G and an

eigenspace 〈x�
GΦ

�
mG〉 is calculated by

C�
Pj

= C(Pjx
�
G, Pj(Φ̃

�
mG(Pj Φ̃

�
mG)+x�

G)). (10)

where 〈x�
GΦ

�
mG

′
〉 is constructed from a set of the residuals defined in Eq. (6).

Then, a total correlation CG
′ is defined as

CG
′ = w

M∑
j=1

C$
Pj

+ (1− w)
M∑

j=1

C�
Pj
, (11)

where w is a weight for the Gaussian components.
While the parallel partial projections provides robustness against local noises,

effective information for face recognition does not increase in the whole image.
The parallel partial projections still requires a sufficient number of registered
images for each person since the conventional eigenface method requires a lot of
images for the stable recognition. On the other hand, the Gaussian decomposi-
tion often provides stable results even when only a few images are registered.
However, it is sometimes seriously affected by local noises. In the combination
method, however, the parallel partial projections prevents local noises spreading
to the whole image when the Gaussian decomposition provides a sufficient in-
formation for face recognition. Therefore, the combination method works better
than the single method.

5 Experimental Results

5.1 Results for Yale Face Database B

Data Specifications: We performed discrimination experiments on 640 frontal
face images of 10 people, which were taken from the Yale Face Database B [7].
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Table 1. Discrimination rates(%) for Yale Face Database B when only one image is
registered. NN indicates the Nearest Neighbor method, PPP indicates Parallel Partial
Projections, Gaussian and DoG indicate Gaussian and DoG decompositions, and PPP-
Gaussian and PPP-DoG are combination methods.

Method NN PPP Gaussian DoG PPP-Gaussian PPP-DoG
Subset 2 99.2 100 100 100 100 100
Subset 3 74.6 99.2 99.2 98.3 100 100
Subset 4 30.4 78.3 90.6 71.7 100 98.6
Subset 5 12.2 78.3 57.7 32.3 100 100

Table 2. Discrimination rates(%) for Yale Face Database B when seven images are
registered: EF indicates the eigenface method and the other methods are as listed in
Table 1

Method EF PPP Gaussian DoG PPP-Gaussian PPP-DoG
Subset 2 100 100 100 100 100 100
Subset 3 100 100 100 100 100 100
Subset 4 93.5 100 98.6 99.3 100 100
Subset 5 56.1 100 74.1 72.0 100 100

The database includes 65 frontal face images of each person. Sixty-four of the
images were taken under different lighting conditions. Each image was converted
to a 64 × 64 pixel image such that the eyes of all of the images are in the same co-
ordinates.Discrimination experiments were performed using the segmented data
set. Figure 4 shows examples of the five subsets (SS1-5).

Discrimination results: Table 1 shows the discrimination rates for the dataset
when only one image is registered. In the methods which use the PPP, images
were divided into sixty-four squares. In the Gaussian and DoG decompositions,
σ and σ1 are fixed to 0.5 and 1.0, respectively. Table 2 shows discrimination rates
when seven images are registered. In the experiments, PPP and the combina-
tion methods give the complete discrimination because a sufficient number are
registered. Gaussian and DoG decomposition methods give slightly worse results
than PPP because they cannot sufficiently suppress the noises.

Table 3 shows results when the σ and σ1 for Gaussian and DoG filters change.
In the Gaussian decomposition, the best discrimination rate is given when σ =
0.5 and the best discrimination rate for DoG decomposition is given when σ1 =
1.0. Almost all the rates become worse for a larger value of σ or σ1. The results
suggest that effective features for facial image recognition are contained in the
high-frequency components. Table 4 shows results when the number of image
parts changes. When the number is too big, the discrimination rate becomes
worse because each part could not provide sufficient information for recognition
because it is too small. In the experiments, the best result is provided when the
number of parts is 4 × 4 and 8 × 8.

Tables 5 and 6 show results when images classified into SS4 are registered.
In these experiments, images for registration are randomly selected from SS4.
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Table 3. Comparison of the σ (or σ1) for Gaussian (DoG) filter when only one image is
registered from SubSet 1. Subset 4 and Subset 5 are used as test sets in the experiment.

Test σ (σ1)
Class 0.5 1.0 1.5 2.0 2.5 3.0

Gaussian SS4 90.6 89.9 86.2 81.2 74.6 71.7
SS5 57.7 55.6 45.5 37.0 27.0 22.2

DoG SS4 26.8 71.7 58.7 37.7 31.9 23.2
SS5 16.4 32.3 19.6 13.2 14.3 16.9

PPP- SS4 100 100 99.3 97.8 97.1 94.2
Gaussian SS5 100 100 100 100 100 100
PPP-DoG SS4 75.4 98.6 79.0 43.5 35.5 34.1

SS5 82.5 100 98.4 85.7 71.4 49.7

Table 4. Comparison of the number of segments for each algorithm when 7 images are
registered from SubSet 1. Subset 4 and Subset 5 are used as test sets in the experiment.

# parts Test Class PPP PPP-Gaussian PPP-DoG
1 × 1 SS4 93.5 98.6 99.3

SS5 56.1 74.1 72.0
2 × 2 SS4 96.4 99.3 100

SS5 94.7 97.4 94.2
4 × 4 SS4 100 100 100

SS5 100 100 99.5
8 × 8 SS4 100 100 100

SS5 100 100 100
16 × 16 SS4 98.6 100 89.9

SS5 96.3 99.5 87.3

Table 5. Discrimination rates(%) when one image from SS4 is registered

Method NN PPP Gaussian DoG PPP-Gaussian PPP-DoG
Subset 1 16.7 41.3 83.9 69.8 97.4 97.1
Subset 2 18.4 41.2 81.8 65.9 98.5 96.7
Subset 3 22.0 37.3 68.7 63.3 94.0 90.6
Subset 5 21.4 37.0 56.8 47.6 96.5 94.3

Table 6. Discrimination rates(%) when 7 images from SS4 are registered

Method EF PPP Gaussian DoG PPP-Gaussian PPP-DoG
Subset 1 86.7 99.5 100 100 100 100
Subset 2 91.3 99.9 99.9 100 100 100
Subset 3 95.5 97.8 99.4 97.4 100 100
Subset 5 7.09 98.1 87.0 88.2 100 100
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Table 7. Discrimination rates(%) using other methods. Illumination cone (IC1), illu-
mination cone with cast shadow (IC2), photometric alignment using RANSAC (PA),
segmented linear subspace method (SLS) and proposed methods using 1 or 7 images.

Method IC1[8] IC2[8] PA[9] SLS[10] PPP- PPP- PPP- PPP-
Gaussian(1) Gaussian(7) DoG(1) DoG(7)

Subset 2 100 100 100 100 100 100 100 100
Subset 3 100 100 100 100 100 100 100 100
Subset 4 91.4 100 100 100 100 100 92.8 100
Subset 5 - - 81.5 - 100 100 100 100

This process was repeated twenty times and registered images for each person
were varied. Most results in these experiments are worse than those shown in
Tables 1 and 2 because images in SS4 include more shadows than SS1. However,
results of the combination methods still keep high discrimination rates in these
experiments. Table 7 shows results reported in literatures[8, 9, 10]. It shows all
the algorithms provide good results when a sufficient number of images are
registered. However, it should be noted that our method can provide almost
same results even when only few images are registered.

In conclusions, the combination methods work better than the single decom-
position methods. In addition, the combination methods have the advantages
of both Gaussian decomposition and parallel partial projections and work well
even when only one image is registered and the test images include a significant
amount of shadows.

5.2 Results for the AR Database

The AR database[11] contains images of 135 people taken under various condi-
tions for each person. For this experiment, we used database images taken under
seven different conditions. The example images are as shown in Fig 5. In this

Under the normal
condition (registered)

Under different lighting
conditions (light-set)

Wearing a scarf
(scarf-set)

Fig. 5. Examples of segmented images in the AR Database. The top row shows regis-
tered images taken under normal conditions. The middle and bottom rows show test
images taken under conditions that differed from those of the registered image.

Table 8. Discrimination rates(%) for the AR Database

Method NN PPP Gaussian DoG PPP-Gaussian PPP-DoG
light 40.5 70.1 76.8 81.0 94.1 93.1
scarf 3.7 45.3 55.1 64.4 86.2 84.4
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experiment, only one image was registered and the other images were used as
the test set from which test images were selected.

Table 8 shows the discrimination rates obtained in the experiments. The
Gaussian decomposition and DoG decomposition gave better results than PPP
because PPP cannot work when only one image is registered. The combination
methods worked better than the other methods for both of the individual sets.
The results of this experiment indicate that the combination methods work well
when only one image is registered and the test images include a large occlusion.

6 Conclusions

The combination of the Gaussian/DoG decomposition and the parallel partial
projections has the advantages of the both methods. While the use of only one
of the method cannot handle complex problems, the combination of the decom-
positions can easily overcome such problems. works even when only one image
is registered and test images include a lot of noises.

This work has been supported by Grant-In-Aid for Science Research under
Grant No.15300062 from the Ministry of Education, Science, Sports, and Cul-
ture, Japanese Government. It has also been supported by National Institute of
Information and Communications Technology.
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Abstract. In this paper, we propose a novel occlusion invariant face recognition 
algorithm based on Selective Local Nonnegative Matrix Factorization  
(S-LNMF) technique. The proposed algorithm is composed of two phases; the 
occlusion detection phase and the selective LNMF-based recognition phase. We 
use local approach to effectively detect partial occlusion in the input face im-
age. A face image is first divided into a finite number of disjointed local 
patches, and then each patch is represented by PCA (Principal Component 
Analysis), obtained by corresponding occlusion-free patches of training images. 
And 1-NN threshold classifier was used for occlusion detection for each patch 
in the corresponding PCA space. In the recognition phase, by employing the 
LNMF-based face representation, we exclusively use the LNMF bases of occlu-
sion-free image patches for face recognition. Euclidean nearest neighbor rule is 
applied for the matching. Experimental results demonstrate that the proposed 
local patch-based occlusion detection technique and S-LNMF-based recogni-
tion algorithm works well and the performance is superior to other conventional 
approaches. 

1   Introduction 

One of the most important goals of computer vision is to achieve visual recognition 
ability comparable to that of human [11],[12],[13]. And among many recognition 
subjects, the face recognition problem has been researched intensively during last few 
decades, due to its great potential in the various practical applications such as HCI 
Human Computer Interface), intelligent robot, surveillance, and so on. And, if the 
face recognition is diverged further, obvious problem of occlusion by other objects or 
apparels such as sunglasses or scarves becomes eminent. Thus a robust algorithm for 
occluded faces is required for real applications. So far, several approaches dealing 
with occlusion have been proposed in the literature. A. Leonardis and H. Bischof 
[1],[2] proposed a robust PCA approach that could estimate the coefficients of  
eigenimages from partially degraded images. This approach presented successful 
reconstruction of partially occluded images, however the performance was usually 
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depended on training set. S. Z. Li et al. proposed a novel method, called local non-
negative matrix factorization (LNMF) [3], for learning spatially localized, parts-based 
subspace representation of visual patterns. In addition to the non-negativity constraint 
in the standard NMF, the prescribed objective function imposed localization con-
straints, [4]. Experimental results compared LNMF with the NMF and PCA methods 
for occluded face recognition, where the advantages of LNMF were demonstrated. A. 
M. Martinez [5] described a probabilistic approach that is able to compensate for 
imprecisely localized, partially occluded, and expression-variant faces when only 
single training sample per class was available to the system.  

In this paper, we present a novel face recognition algorithm robust to occlusion us-
ing S-LNMF technique. The proposed algorithm is based on a local approach where 
face images are divided into a finite number of disjointed local patches. But, unlike 
previous approaches, we perform occlusion detection explicitly. The occluded regions 
in the face images are detected by 1-NN classifier. Afterwards, the recognition proc-
ess is performed over selected LNMF bases of occlusion-free patches. We evaluate 
our algorithm on the occlusion subset of the AR database [6], and demonstrate that 
the proposed algorithm has superior performance than previous face recognition 
schemes. 

2   Occlusion Detection 

The proposed face recognition algorithm is based on selected LNMF subspace match-
ing. Note that since each LNMF basis image exhibits high localization characteristics 
in spatial domain, local occlusion affects only the coefficients of the corresponding 
bases, so that the error becomes local and not global. So, by using the LNMF bases 
for occlusion-free regions exclusively, we can achieve robust matching for occlusion. 
However, in order to select relevant local bases, we need to determine the occluded 
regions in a face image in advance. In this section we propose an occlusion detection 
algorithm based on one class classifier in PCA space. 

2.1   Local Subdivision of a Face Image 

Partial occlusions in face images usually occurs when subjects wear adornments like 
sunglass or scarf, or when faces are covered by other objects such as hands, cup and 
so on. In order to detect the locally occluded regions in a face image, we first divide 
the image into a finite number of local disjoint patches as in Fig. 1, and then examine 
each patch individually [5].  

 
 

Fig. 1. Local subdivision of a face 
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2.2   Local Occlusion Detection in PCA 

Occlusion detection of a given face image is accomplished for each local patch inde-
pendently by employing pattern classification framework. Note that each local patch 
is still high dimensional data that are computationally infeasible. So we deal with 
each patch image in a low dimensional subspace after dimension reduction using PCA 
(Principal Component Analysis) [10],[14],[15],[16],[17]. 

6 PCA subspaces corresponding to 6 local patches of occlusion-free faces are 
trained by normal face images. When a test face image is given, it is divided into 6 
local patches as shown in Fig. 1, and then each patch,   k=1,2,…6, are projected onto 
the corresponding eigenspace, producing the PCA coefficients. So, the occlusion 
detection for each patch is accomplished by comparing the coefficient vectors of 
occlusion-free images with that of the test image in the corresponding eigenspace. 

2.3   Supervised l-Nearest Neighbor Threshold Classfiers 

To distinguish normal data from occluded ones in eigenspace, we need a proper classi-
fier. Occlusion detection problem can be seen as a type of one class classification prob-
lem [7],[8]. That is, the goal of one class classification is to accurately describe one 
class of objects, disregarding a wide range of other objects that are not of interest. 

In general, the performances of conventional classifiers such as k-NN and 1-NN 
classifier are highly dependent on the number of training samples. However, sufficient 
training samples are not always provided. To improve the classification performance 
when the number of training data is limited, we introduce a supervised  
1-NN threshold classifier that employs absolute distance between samples contrast to 
the relative distance of k-NN classifier and 1-NN distance classifier. With a reasonable 
threshold value, making hyperspheres of target class data can reduce the classifier’s 
dependency upon the number of training data. Fig. 2 (a) shows the concept of the pro-
posed classifier. The radius of hypersphere is represented as the circles and outlier 
class data are illustrated as X. When an unknown input test data is entered, the nearest 
neighbor among training data is found. If the nearest neighbor is an outlier class data, 
the test data is labeled as outlier class data. If the nearest neighbor is a target class data, 
distance between the input data and the nearest one is measured. 

                  (a)                                                                       (b) 

/* Supervised 1-NN threshold classifier */ 

Find the nearest neighbor of a test data. 
If the nearest neighbor is an outlier, 

test data is assigned to the outlier class . 
Else

if distance < threshold, 
test data is assigned to the target class. 

else 
   test data is assigned to the outlier class. 

 

Fig. 2. Supervised 1-NN threshold classifier 
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Fig. 3. Example of LNMF bases 

If the distance is smaller than a threshold value, which is the hypersphere radius, 
the test data is labeled as target class data, or else outlier class data. The algorithm is 
summarized as in Fig.3 (b). According to this algorithm, data a and c are classified 
correctly as the target class since the nearest neighbor is the target class data and they 
are within the hypersphere. And although data b is located in the hypersphere, it is 
correctly classified as an outlier since its nearest neighbor is the outlier.  

3   Face Recognition Using Selective LNMF Basis Images 

After detecting occluded regions by the methods mentioned in the previous section, 
LNMF based matching technique is applied for recognition. Since the occluded re-
gions are already identified, LNMF bases corresponding to only occlusion-free re-
gions are to be integrated. 

3.1   LNMF Basis Selection 

Unlike PCA which exhibits holistic features of an image, LNMF can learn spatially 
localized, parts-based subspace representation [3]. Moreover, the significance be-
tween LNMF bases is non-hierarchic. Since the maximum number of LNMF bases 
that can be learned is infinite, we can initiate the number of bases. Note that LNMF 
bases are spatially localized; some are corresponding to occluded regions and the 
others are corresponding to occlusion-free regions. If we choose to indiscriminately 
use all the bases for face recognition, the bases corresponding to occluded regions 
will degrade the recognition performance. Therefore it is natural to employ the bases 
corresponding to the occlusion-free regions selectively. In Fig. 3, 6 images on left 
show an example of LNMF basis images corresponding to the occlusion-free upper 
left region of a face. These bases are nearly independent to the lower occluded part by 
scarf, and thus can be used to reconstruct the local region correctly. Similarly, other 
bases, not located at the occluded region can contribute to the recognition.  

In order to detect bases for occluded region, let us define a measure for occluded 
energy per each basis as follows. 
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where RC ×  is the image size, ),( yxIi  is the value of the thi  LNMF basis at x  

column and y  row, W is the detected occluded region, and N is the number of bases. 

3.2   Face Recognition in LNMF Subspace 

Face recognition is performed in the LNMF subspace spanned by occlusion-free 
bases. Since LNMF bases set is not orthonormal like PCA bases set, in order to calcu-
late the LNMF coefficients of an input image, we use pseudo inverse of the selected 
occlusion-free LNMF bases matrix. Let ][ 21 NbbbB L=  be the original LNMF 

bases set. For a given test face y , we can determine the occlusion-free basis set asso-

ciated with it, and denote it as ),(][ 21 NMM ≤⊂= BWwwwW L . Then the 

selected coefficient vector h  of y  can be obtained by   

y,Wh +=                           (2) 

where +W  is the pseudo inverse of W . Similarly, each training face im-

age ),,2,1( Kii L=x , where K  is the total number of training faces, is projected 

into the same selected occlusion-free LNMF subspace with coefficient vec-

tor ),,2,1( Kii L=g .  

.,,2,1, Kiii L== + xWg    (3) 

Then, the recognition is performed by finding the closest training face in the fea-
ture space as follows. 

.,,2,1||,||minarg Kii
i

L=− hg          (4)  

Since only selected basis images are used in the proposed algorithm, unlike origi-
nal face recognition technique using LNMF [3], the number of basis images used for 
recognition changes according to the result of the occlusion detection.  

4   Experimental Results 

4.1   The AR-Face Database 

We used the AR face database for our test [6]. For illustration, normal and partially 
occluded images by sunglass and scarf are shown in Fig. 4 (b) and (c). Localization 
and normalization for each face images are performed by aligning eye positions,  
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removing background and warping, so that each face became a 64 x 88 array of 256 
grayscale values. We performed experiments with 56 men and 44 women selected at 
random. We use normal (occlusion free), sunglass, and scarf images totaling 300 
images. Among them, 100 normal images are used for LNMF bases learning. For the 
supervised classifiers for occlusion detection, 50 sunglass images and 50 scarf images 
are used as outlier class data in the training phase. The rest 50 sunglass and 50 scarf 
images are used for the test of face recognition. 

 
 

                      
   (a)                (b)               (c)                                (a)                 (b)              (c) 

Fig. 4. Example of partially occluded faces         Fig. 5. Synthetic occlusion patterns 

4.2   Occlusion Detection Results 

4.2.1   The Performance Comparisons of the Classifiers 
We quantitatively evaluated the performances of the occlusion detection schemes. 
Occluded regions are detected in the eigenspace, the feature space trained by PCA. 
Each training normal face image is divided into 6 disjoint patches as shown in Fig. 4 
(a), and the corresponding 6 eigenspaces are learned. Fig. 4 (b) and (c) show exam-
ples of test occluded faces, in which patches (c, d) and (e, f) are occluded, respec-
tively. Considering LNMF bases selection after occlusion detection, discarding the 
normal data labeled as the occluded data may reduce the information that can be used 
for recognition to some extent. However, using the occluded data labeled as the nor-
mal data in the recognition phase lowers the performance seriously since it delivers 
disturbed information. Thus, as a measurement compared with the performances of 
the classifiers, we evaluated the false alarm rate when the detection rate is 100% 
(false rejection rate is 0%).  

The detection results on test images are shown in Table 1. In case of k-NN classi-
fier the performance when k = 3 is worse than when k = 1. This shows that the finding 
numerous nearest neighbors lowers the detection performance. The supervised 1-NN 
threshold classifier and the k-NN with k = 1 gave the best results in this test. Now, 
these two classifiers were tested on test images with synthetic occlusion pattern that 
were quite different from the trained outlier patterns as shown in Fig. 5 (b) and (c). 
We have examined the occluded patches a, b, c, and d. Since no false alarm can occur 
in this test, detection rates were calculated and summarized in the Table 2. Note that 
the supervised 1-NN threshold classifier still gave robust performance, while the k-
NN classifier didn’t work at all under this circumstance. Based on the above results, 
we chose the supervised 1-NN threshold classifier as the occlusion detector for our 
face recognition system. 
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Table 1. The performance comparison of the classifiers on real occlusion 
 

Detection Rate / False Alarm Rate (%) 
Classifier 

c d e f 

Aver-
age FAR 

(%) 

k-NN (k=3) 100/0 100/0 100/4 100/2 1.5 

k-NN (k=1) 100/0 100/0 100/0 100/0 0 

Supervised 1-NN threshold 100/0 100/0 100/0 100/0 0 

4.2.2   Subdivision of Face Image 
Proposed partial occlusion detection and face recognition algorithm are developed based 
on local patches of a face image. Thus, different division methods may result in differ-
ent performances on both occlusion detection and recognition. In this section, we exam-
ine the optimal subdivision method of face images in an empirical sense. Fig. 6 shows 
12 possible subdivision layouts that we have considered in this experiment. The super-
vised 1-NN threshold classifier was used for the comparison of the occlusion detection 
performances. And the false alarm rate with 100% detection rate for each subdivision 
method was calculated for the performance evaluation. Table 3 shows the results of the 
test. From these results, we concluded that the method 6-1 is optimal.  

Table 2. The performance comparison of classifiers on synthetic occlusion 

Classifier Detection Rate / False Alarm Rate (%) 
Average  DR 

(%) 

 a b c d  

k-NN (k=1) 0/- 0/- 0/- 0/- 0 

Supervised 1-NN threshold 100/- 100/- 100/- 100/- 100 

         
(a) 6-1          (b) 6-2          (c) 6-3          (d) 7-1         (e) 7-2         (f) 9-1 

 

         
(g) 9-2          (h) 12-1         (i) 12-2         (j) 12-3       (k) 12-4       (l) 24-1 

Fig. 6. Subdivision methods 
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Table 3. Detection performance of subdivision method 
 

Method 6-1 6-2 6-3 7-1 7-2 9-1 
Average  FAR (%) 0 32.5 15.5 1.2 0.4 14.3 

Method 9-2 12-1 12-2 12-3 12-4 24-1 
Average FAR (%) 9.7 3.8 7.0 16.7 7.0 16.3 

                 
(a)              (b)              (c)               (d)                (e) 

Fig. 7. Examples of Synthetically occluded test images 

4.3   Face Recognition Results 

4.3.1   LNMF Bases 
We have trained 100 occlusion-free training face images in the AR database. The 
bases for occluded regions are detected by the equation (1) with a threshold of 0.1, 
which means that any basis, whose energy in an occluded region is greater than 10% 
of the total energy, will not be used for matching. 

4.3.2   Experiments on Synthetic Occlusions 
First, we tested our S-LNMF based recognition algorithm on synthetically occluded 
images as shown in Figs. 8 (b)-(e). Occlusion-free images as in Fig. 7 (a) were used 
for the training. Some conventional algorithms including PCA [10], LNMF [3] and 
R-PCA [1],[2] were also tested for the comparative performance evaluation. The 
recognition rate, defined as the percentage of correctly recognized faces, is used as 
the performance measure. Table 4 show the recognition results. The recognition rate 
of the proposed algorithm was obtained when the number of bases was 100. Ex-
perimental results show that the proposed algorithm achieved the highest recogni-
tion rate. Although R-PCA gave slightly better results than PCA and LNMF, the 
performance decreased drastically as the size of the occluded region became larger. 

4.3.3   Experiments on Real Occlusions 
We have tested our algorithm on real face images occluded by sunglass and scarf in 
AR database. All 135 people (76 men and 59 women) in the AR face database were 
used. Among these, all 135 normal face images and 70 occluded face images (35 
sunglass images and 35 scarf images of 20 men and 15 women) were used for the 
training the target class and the outlier class, respectively. The remaining 100 sun-
glass images and 100 scarf images were used for probes and all the normal frontal 
faces were used for the gallery.  
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Table 4. Recognition rate (%) on synthetic occlusions 
 

 
 

(a) (b) (c) (d) (e) 

PCA 100 100 24 8 6 

LNMF 100 96 28 10 4 

R-PCA 100 100 46 24 6 

S-LNMF 100 100 100 100 100 
 

Table 5. Recognition rate (%) on real occlusions 
 

Algorithm smile scream sunglass scarf 

PCA 94 44 40 14 

LNMF 95 44 46 14 

R-PCA 94 80 50 16 

AMM 96 56 80 82 

S-LNMF 95 44 90 92 
 

Note that if there is no occlusion in a test face, then the algorithm becomes the very 
original LNMF-based recognition scheme, in which whole LNMF bases are inte-
grated for matching, and the recognition performance of our algorithm will be the 
same as the original LNMF’s [3]. Thus, in this paper, we investigate the performance 
of our algorithm on the occluded face images exclusively. Unlike the syntactic occlu-
sion test where the occlusion-free parts of the gallery and the corresponding test im-
ages are exactly the same, in this case, those parts may differ since they are taken in 
different conditions. We found empirically that the optimal number of bases could be 
chosen from 200 to 400. The performances of PCA, LNMF, R-PCA and AMM (Mar-
tinez’s algorithm [5]) were also evaluated and compared to that of the proposed algo-
rithm, and the results are summarized in Table 5. The recognition rate of the proposed 
algorithm was obtained when the number of bases was 200.  

From these results, we can conclude that our algorithm is more robust than other al-
gorithms including AMM. AMM gave relatively better results than PCA, LNMF and 
R-PCA for both sunglass and scarf tests. This is because it also uses local approach. 
However, since the matching is done in probabilistic framework with the sum of the 
Mahalanobis distances between all the corresponding local parts, the effect of the oc-
cluded parts are not removed completely and still affects final matching. 

5   Conclusion 

In this paper we have dealt with the occlusion problem, which has been researched 
relatively less than illumination and pose problems in face recognition. We have pro-
posed a new robust face recognition algorithm called S-LNMF to the partial occlusion, 
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based on selective LNMF bases matching. Local occluded area in faces are first de-
tected by a supervised 1-NN threshold classifier in PCA space, and then matching is 
performed in the LNMF subspaces with the selected occlusion-free bases. Experimen-
tal results demonstrated that the proposed algorithm could reliably recognize partially 
occluded faces with higher recognition rate than the existing methods.  
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Abstract. Image matrices are often transformed into vectors prior to
feature extraction, which results in the curse of dimensionality when the
dimensions of matrices are huge. In order to effectively deal with this
problem, a new technique for two-dimensional(2D) Fisher discriminant
analysis is developed in this paper. In the proposed algorithm, the Fisher
criterion function is directly constructed in terms of image matrices.
Then we utilize the Fisher criterion and statistical correlation between
features to construct an objective function. We theoretically analyze that
the proposed algorithm is equivalent to uncorrelated two-dimensional dis-
criminant analysis in some condition. To verify the effectiveness of the
proposed algorithm, experiments on ORL face database are made. Exper-
imental results show that the performance of the proposed algorithm is
superior to those of some previous methods in feature extraction. More-
over, extraction of image features using the proposed algorithm needs
less time than that of classical linear discriminant analysis.

1 Introduction

Linear subspace analysis is a popular technique for feature extraction, which
has been successfully applied in many fields such as face recognition and char-
acter recognition. Among them, principal component analysis (PCA) and linear
discriminant analysis (LDA) are two of the most commonly used methods for
feature extraction, which can effectively reduce the number of features. The idea
of PCA is to generate a set of orthogonal vectors by maximizing the variance
overall the samples, while linear discriminant analysis seeks to find the direction
which maximizes between-class scatter and minimizes the within-class scatter.
Based on linear discriminant analysis, Foley and Sammon [1] proposed optimal
discriminant vectors for two-class problems. Duchene and Leclercq [2] further
presented a set of discriminant vectors to solve multi-class problems. Although
Foley-Sammon optimal discriminant vectors(FOSDV) are orthogonal and per-
form well in some cases, the features which are obtained by optimal orthogonal
discriminant vectors are statistically correlated. To avoid this problem, Jin et

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 130–139, 2006.
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al.[3, 4] proposed a new set of uncorrelated discriminant vectors(UDV) which is
proved to be more powerful than that of optimal orthogonal discriminant vectors
in some cases. Then Jing et al.[5]further stated improvements on uncorrelated
optimal discriminant vectors. Subsequently, Xu et al.[6]further researched the re-
lationship of the Fisher criterion value between FOSDV and UDV. Recently, Xu
et al [7] developed a new model for Fisher discriminant analysis, which applies
the maximal Fisher criterion and the minimal statistical correlation between
features. Since the methods mentioned above are based on vectors rather than
matrices, these methods face the computational difficulty when the dimension
of data is too huge. To overcome this problem, Liu et al.[8] firstly proposed a
novel linear projection method, which performs linear discriminant analysis in
terms of image matrices. However, feature vectors using Liu’s method could be
statistically correlated. In order to effectively deal with this problem, Yang et
al.[9] proposed a set of 2D projection vectors which satisfy conjugate orthogonal
constraints. Most importantly, feature vectors obtained by Yang’s method are
statically uncorrelated. Then Yang et al. [10, 11] proposed a two-dimensional
principal component analysis for image presentation, whose idea is that 2D im-
age matrices are used to directly construct the image covariance matrix. In short,
one of advantages of linear subspace methods based on image matrices is their
computational efficiency in feature extraction.

In this paper, we propose a new and effective method for 2D linear discrim-
inant analysis, which applies the Fisher criterion and statistical correlation be-
tween extracted features. We also demonstrate that the Fisher criterion value
obtained by the proposed algorithm corresponding to each vector is not smaller
than that of corresponding uncorrelated image discriminant analysis(UIDA).
Most importantly, we find a relationship between the proposed algorithm and
UIDA. Experimental results on ORL face database show that neither the Fisher
criterion nor statistical correlation is an absolute criterion for measuring the dis-
criminatory power of discriminant vectors. Moreover, the recognition rate of the
proposed method is higher than that of classical linear discriminant analysis.

The rest of paper is organized as follows. In Section 2, we briefly discuss
two-dimensional linear discriminant analysis. Then we propose a novel method
for two-dimensional linear discriminant analysis in Section 3, which applies the
Fisher criterion and statistical correlation between extracted features. Experi-
mental results and discussion are given in Section 4. Conclusions are made in
Section 5.

2 Two-Dimensional Linear Discriminant Analysis

Without loss of generality, let the image A be an m × n matrix. Then the
image A is projected onto an n-dimensional vector X . That is, the following
transformation is adopted:

Y = AX. (1)

It is obvious that the projection vector Y is anm-dimensional vector. In this case,
the image A is transformed into an m-dimensional vector Y and each image cor-
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responds to a vector. Let L be the number of classes and nj(j = 1, · · · , L)denote
the number of samples in the jth class. Let Aij denote the ith image in the jth
class. Then we project the image onto X and obtain the following form:

Yij = AijX, i = 1, 2, · · · , nj , j = 1, 2, · · · , L. (2)

Let mj = 1
nj

∑nj

i=1 Yijand Pj = nj/M , where M is the total number of training
samples, mj denotes the mean projection vector of class j and Pj is a prior
probability of class j.Then the between-class scatter matrix Sb , within-class
matrix Sw, and total population scatter matrix St are defined as

Sb =
∑L

j=1
Pj [mj − E(Y )][mj − E(Y )]T , (3)

Sw =
∑L

j=1
PjE[(Y −mj)(Y −mj)T |j ], (4)

St = E{[Y − E(Y )][Y − E(Y )]T } = Sb + Sw, (5)

where E( ) denote the expectation value of vectors or matrices. In order to
construct the criterion function for class separability, we need to transform the
above matrices to numbers. The criteria should be larger when the between-
class scatter is larger or the within-class scatter is smaller. To this end, the
following function is constructed from Eqs. (3) and (5), which is a generalization
of classical linear discriminant analysis.

J =
tr(Sb)
tr(St)

, (6)

where tr() denote the trace of matrices. According to Eq.(3), we obtain the
following equation:

tr(Sb) =
∑L

j=1
Pj [mj − E(Y )]T [mj − E(Y )]. (7)

Substituting Eq.(2) into Eq. (7), we obtain

tr(Sb) =
∑L

j=1
Pj [AjX − E(A)X ]T [AjX − E(A)X ]

= XT
∑L

j=1
Pj [Aj − E(A)]T [Aj − E(A)]X, (8)

where Aj is the average image matrix of class j. Define the matrix below

Sb1 =
∑L

j=1
Pj [Aj − E(A)]T [Aj − E(A)]. (9)

The matrix Sb1 is called image between-class scatter matrix. It is obvious that
Sb1 is an n×n matrix. In a similar way, we can define the following two matrixes:

Sw1 =
∑L

j=1
PjE[(A −Aj)T (A−Aj) |j ], (10)
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St1 = E{[A− E(A)]T [A− E(A)]}. (11)

The matrix Sw1 is called image within-class scatter matrix and the matrix St1
is called image total population scatter matrix. Accordingly, it is easy to verify
that Sw1 and St1 are n × n matrices. In such a case, we transform Eq.(6) into
the following form:

J(X) =
XTSb1X

XTSt1X
. (12)

In general, the problem of Eq.(12) can be solved by the following generalized
eigenvalue problem:

Sb1X = λSt1X. (13)

In general, the matrix St1 is nonsingular for two-dimensional linear discriminant
analysis. As discussed in [9], the eigenvector corresponding to maximum eigen-
value of Eq.(13) is taken as the first uncorrelated discriminant vector. According
to Jing’s theory, the (r+1)th uncorrelated discriminant vectorXr+1 is the eigen-
vector corresponding to maximum eigenvalue of the following eigenequation:

PSb1X = λSt1X, (14)

where P = I − St1D
T (DSt1D

T )−1D, D = (X1 X2 · · ·Xr)T , and I = diag(1,
1, · · · , 1).

3 An Effective Method for 2D Linear Discriminant
Analysis

In this section, we propose an effective method for two-dimensional linear dis-
criminant analysis, which applies the Fisher criterion and statistical correla-
tion between extracted features. Assume that optimal 2D projection vectors
X1, · · · , Xr are used for feature extraction. Let Yk = AXk(i = 1, · · · , r). Thus,
the image space is transformed into the feature space. Let Yi and Yj be any two
features. Then the covariance between them is defined as

cov(Yi, Yj) = E[(Yi − EYi)T (Yj − EYj)] = XT
i St1Xj . (15)

Accordingly, the correlation coefficient between Yi and Yj is defined as

ρ(Yi, Yj) =
cov(Yi, Yj)√

cov(Yi, Yi)
√
cov(Yj , Yj)

=
XT

i St1Xj√
(XT

i St1Xi)
√

(XT
j St1Xj)

. (16)

For the sake of discussion, let ρ(Yi, Yj) = f(Xi, Xj). In a similar way, we select
the vector corresponding to maximum value of Eq.(12) as the first discriminant
vector. Then the following optimization model is used to obtain the (r+1)th
discriminant vector, denoted as

max J(X), (17)

min f2
1 (X,X1),
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...

min f2
r (X,Xr),

where fi(X,Xi) = XT
i St1X√

XT
i St1Xi

√
XT St1X

, i = 1, · · · , r.
It is obvious that the correlation between X and Xi(i = 1, · · · , r),namely Y

and Yi(i = 1, · · · , r), is the lowest when f2
i (X,Xr)(i = 1, · · · , r)are zero. This

new model shows that the feature vector extracted by the (r+1)th discriminant
vector has the lowest correlation with those extracted by previous r discriminant
vectors.

In order to deal with the above model, the model is further transformed into
the following equation:

G(X) = s0J(X)−
∑r

i=1
sif

2
i (X,Xi), (18)

where si ≥ 0(i = 0, · · · , r) are weighting factors and
∑r

i=0 si = 1. From Eq.(18),
we can see that the smaller f2

i (X,Xr) is and the bigger J(X) is, the bigger
G(X) is. Therefore, it is necessary to obtain the (r+1)th discriminant vector
corresponding to the maximal value of G(X). Substituting Eqs. (12) and (16)
into Eq.(18), we obtain

G(X) = s0
XTSb1X

XTSt1X
−
∑r

i=1
si

(XT
i St1X)2/(XT

i St1Xi)
XTSt1X

. (19)

From Eq. (19), it is straightforward to verify that for any nonzero constant
μ, G(μX) = G(X). In such a case, we add the constraint to G(X) and the
corresponding model is denoted as

maxG(X), (20)

XTSt1X = 1.

In order to further deal with Eq. (20), we construct the following Lagrange
function in terms of the Lagrange multiplier λ, denoted by

L(X) = G(X)− λ(XTSt1X − 1). (21)

Setting the partial derivative of L(X) with respect to X equal to zero, we obtain

2s0Sb1X − 2λSt1X − 2
∑r

i=1
siSt1Xi(XT

i St1X)/(XT
i St1Xi) = 0. (22)

Then we obtain the following equation:

(s0Sb1 −
∑r

i=1
siSt1(XiX

T
i )St1/(XT

i St1Xi))X = λSt1X, (23)

From the above discussion, we obtain the following theorem.
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Theorem 1. The (r + 1)th discriminant vector is the vector corresponding to
maximum eigenvalue of the following generalized eigenequation:

PX = λSt1X, (24)

where
P =s0Sb1−

∑r
i=1 siSt1(XiX

T
i )St1/(XT

i St1Xi),
∑r

i=0 si = 1, si ≥ 0(i = 0, · · · , r).
Compared with Eq. (14), we can see that it is not necessary to use the matrix in-
verse in Eq. (24). Moreover, we can directly apply previous results to compute P
in Eq. (24). Therefore, performing the proposed method costs less computational
time than performing uncorrelated discriminant analysis. Applying Eq. (24), we
can obtain optimal discriminant vectors {X1, · · · , Xr}. Then correspondingFisher
criterion values can be obtained by Eq.(12). As pointed out in [6], the Fisher cri-
terion value of Liu’s method corresponding to each discriminant vectors is not
smaller than that of the corresponding uncorrelated discriminant vector. We ask:
does there exist a relationship of Fisher criterion values between the proposed
method and UIDA. To answer this question, we firstly give some related knowledge
on generalized eigenvalue problems. Assume that X1, · · · , Xn are linear indepen-
dent eigenvectors of S−1

t1 Sb1corresponding to the eigenvalues λ1 ≥ · · · ≥ λn.
Let W1 = span{Xr+1, · · · , Xn}and W2 = span{X1, · · · , Xr}. Then we obtain

λr+1 = max{J(X) |0 �= X ∈ W1}, (25)

λr = min{J(X) |0 �= X ∈W2}. (26)

According to the above theories, we can obtain the following proposition.

Proposition 1. Let Jy(Xi)(i = 1, · · · , n) be Fisher criterion values obtained
by uncorrelated image discriminant analysis and Jl(Xi)(i = 1, · · · , n) be Fisher
criterion values obtained by the proposed method. Then we obtain

Jl(Xi) ≥ Jy(Xi)(i = 1, · · · , n). (27)

Proof. According to the theories of generalized eigenvalue problems, it is sure
that Jy(Xi) = λi(i = 1, · · · , n),where Xi is obtained using uncorrelated image
discriminant analysis. However, the discriminant vectors {X1, · · · , Xn} obtained
by the proposed method may not be a basis of Rn. Assume that the rth dis-
criminant vector Xr1 is obtained using the proposed method. If Xr1 ∈ W2,
Jl(Xr1) ≥ λr = Jy(Xr); if Xr1 ∈ W1,Jl(Xr1) ≤ λr+1 ≤ λr = Jy(Xr). Therefore,
the proposition holds.

Proposition 1 states that Fisher criterion values of the proposed algorithm must
not be smaller than those of corresponding uncorrelated discriminant vectors.

Since we apply the Fisher criterion and the statistical correlation to construct
the evaluation function, we guess there exists some relationship between the
proposed method and uncorrelated discriminant analysis. To this end, we further
analyze the proof of uncorrelated discriminant analysis which can be found in
[3]. In deducing Eq.(14), the following equation is applied:

2Sb1X − 2λSt1X −
∑r

i=1
St1Xiμi = 0, (28)
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where μi = 2XT
i Sb1X/(XT

i St1Xi).
Substituting μi into Eq.(28), we obtain

Sb1X −
∑r

i=1
St1XiX

T
i Sb1X/(XT

i St1Xi) = λSt1X. (29)

In what follows, we further discuss the relationship between Eq.(29) and Eq.(24).
Let

ci = St1XiX
T
i Sb1/(St1XiX

T
i St1).

Then we transform Eq.(29) into the following form:

(Sb1 −
∑r

i=1
ciSt1XiX

T
i St1/(XT

i St1Xi))X = λSt1X. (30)

Let s0 = 1
1+ r

i ci
andsi = ci

1+ r
i ci

(i = 1, · · · , r). In such a case, it is obvious that∑r
j=0 sj = 1, which satisfies the constraint in Eq. (24). Therefore, Eq.(24)is a

generalization of Eq.(14). In other words, if we choose suitable parameters in
Eq.(24), the solutions to Eq.(24) is equivalent to the solutions to Eq.(14). As a
result, we build a bridge between the proposed algorithm and UIDA. That is, the
relationship between Eq.(24)and Eq.(14) is revealed. From the above discussion,
we also find an efficient method for computing the matrix P in Eq.(14), which
does not need to use the matrix inverse.

4 Experimental Results and Discussion

In order to verify and test the effectiveness of the proposed method, experiments
are made on face images which are obtained from Olivetti Research Lab (ORL,
http://www.cam-or.co.uk/facedatabase.html). This set of data consists of 40
distinct persons, with each containing 10 different images with variation in pose,
illumination, facial expression and facial details. All the images are taken against
a dark homogeneous background with the subjects in an upright, frontal position
(with tolerance for some side movement). The original face images are sized
112× 92 pixels with a 256-level gray scale. Each face image is downsampled to
28 ×23 pixels to reduce the computational complexity. In all experiments, we
apply the first five images of each subject for training and others are for testing.
Namely, 200 samples are used for training and 200 samples are used for testing.

The first set of experiments is used for showing the effectiveness of the number
of features. The parameters in the proposed algorithm are set as follows: si =
1/(r + 1)(i = 0, · · · , r). At the same time, the proposed method is compared
with uncorrelated image discriminant analysis(UIDA) and Liu’s method (LM).
In addition, the nearest-neighbor classifier is adopted for classification due to the
simplicity. Table 1 shows the classification performance of several methods when
the number of feature vectors varies from 1 to 6. From Table 1, we can surprisedly
see that the results of the proposed method are the same as those of UIDA. We
also note that the classification performance of the proposed algorithm is superior
to that of Liu’s method.



Two-Dimensional Fisher Discriminant Analysis and Its Application 137

Table 1. Recognition rates(%) of several methods when the number of features varies

The number Methods (recognition rates(%))
of features UIDA LM Ours

1 83.5 83.5 83.5
2 89.0 84.5 89.0
3 88.5 86.5 88.5
4 88.5 85.5 88.5
5 89.0 85.5 89.0
6 89.0 85.0 89.0

In the second set of experiments, similarly, the nearest-neighbor classifier is
used for classification and the parameters are set as follows: si = 1/(r + 1)(i =
0, · · · , r). In such a case, the execution time for feature extraction and classifica-
tion of several methods are compared, which is shown in Table 2. As can be seen
from Table 2, the methods based on image matrices including UIDA, LM and
the proposed method need less time than Eigenfaces [13]or Fisherface[12]. There
is no remarkable difference in time for UIDA, LM and the proposed method.
Since both Eigenfaces and Fisherfaces need to convert image matrices into vec-
tors in the process of recognition, the classification time of these two methods
are more than that of 2D linear discriminant analysis. Moreover, 2D linear dis-
criminant analysis is superior to classical linear discriminant analysis in terms
of the computational efficiency for feature extraction.

In the third set of experiments, similar experimental conditions are set. Based
on this, the classification performance of the proposed algorithm is compared
with other methods including Fisherfaces[12], Eigenfaces[13], ICA[14], uncorre-
lated image discriminant analysis(UIDA), Liu’s method and direct recognition
method(DRM). The detailed experimental results are listed in Table 3. From
Table 3, we can see that the proposed method is better than other methods
except for uncorrelated image discriminant analysis in recognition rates. To our
surprise, the results of the proposed algorithm are the same as those of uncor-
related image discriminant analysis.

In the fourth set of experiments, we discuss the Fisher criterion values of sev-
eral methods such as Liu’s method and uncorrelated image discriminant analysis.
Firstly, we set the parameters as follows: si = 1/(r+1)(i = 0, · · · , r). In addition,
we also discuss another case, namely s0 = 0.0001 and si = 1/r(i = 1, · · · , r). In
such a case, we think that the Fisher criterion plays an insignificant role and the

Table 2. The execution time for feature extraction and classification of five methods

Methods Eigenfaces Fisherfaces UIDA LM Ours
Dimension 1×200 1×39 32×2 32×3 32×2

The time for extraction(s) 27.85 97.14 4.23 7.18 4.03
Classification time(s) 59.51 34.46 4.01 5.81 3.96

The total time(s) 87.36 131.60 8.24 12.99 7.99
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Table 3. Recognition rates (%) of several methods

Method Dimension Recognition rates
Eigenfaces 1×200 88.0
Fisherfaces 1×39 86.0

LM 32×3 86.5
UIDA 32×2 89.0
ICA 1×40 84.2
DRM 32×28 83.5
ours 32×2 89.0

Table 4. Fisher criterion values of several methods

J(Xi) X1 X2 X3 X4 X5 X6

UIDA 0.8667 0.8315 0.6562 0.5804 0.5012 0.4725
LM 0.8667 0.8399 0.7479 0.6757 0.6498 0.5746

Ours(1) 0.8667 0.8315 0.6562 0.5804 0.5012 0.4725
Ours(2) 0.8667 0.8315 0.6563 0.5806 0.5014 0.4727

statistical correlation between feature vectors plays an important role in feature
extraction, denoted by ours(2). From Table 4, it is obvious that the Fisher cri-
terion value of UIDA corresponding to each feature vector is the smallest in all
methods. From Table 3, we know the classification performance of the proposed
algorithm is superior to that of Liu’s method. This means the Fisher criterion
value is not an absolute criterion for measuring the discriminatory power of dis-
criminant vectors. We also find that the classification performance is not superior
to that of uncorrelated image discriminant analysis in the sencond case, which
also shows that statistical correlation is not an absolute criterion for measuring
the discriminatory power of discriminant vectors. Therefore, in order to obtain
powerful discriminant vectors, it is necessary to combine Fisher criterion values
and statistical correlations among feature vectors.

5 Conclusions

In this paper, a novel method for two-dimensional linear discriminant analysis is
developed for image feature extraction. The proposed algorithm directly utilizes
image matrices to construct the Fisher criterion function, which doesn’t need
to convert image matrices into high-dimensional vectors such as classical PCA
or LDA. Then discriminant vectors are obtained by maximizing Fisher crite-
rion functions and minimizing statistical correlation between extracted features.
Since the size of image matrices is much smaller that of vectors, the execution
time of the proposed algorithm for feature extraction is much less than that
of traditional linear discriminant analysis. Moreover, we demonstrate that the
Fisher criterion values of the proposed algorithm are smaller than the Fisher
criterion values of uncorrelated discriminant vectors. In addition, the feature
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vectors obtained by the proposed algorithm are the same as those obtained by
uncorrelated discriminant vectors in some condition. Experimental results on
ORL face database show the proposed method outperfoms some previous meth-
ods in feature extraction. At the same time, experiments also show that Fisher
criterion values and statistical correlation must be simultaneously considered to
obtain effective discriminant vectors. Finally, it should be pointed out that the
proposed method requires more coefficients for feature extraction than LDA. In
other words, the 2DLDA method needs more storage space than the classical
LDA method, which is one of disadvantages of 2D linear discriminant analysis.
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Abstract. In automated face recognition, a human face can be described by 
several features, but very few of them are used in combination to improve dis-
crimination ability. This paper demonstrates how different feature sets can be 
used to enhance discrimination for the purpose of face recognition. We have 
used geometrical features and Gabor features in combination for face recogni-
tion. The geometrical features include distances, areas, fuzzy membership val-
ues and evaluation values of the facial features namely eyes, eyebrows, nose 
and mouth. The Geometric-Gabor features are extracted by applying the Gabor 
filters on the highly energized facial feature points on the face. These features 
are more robust to image variations caused by the imprecision of facial feature 
localization. An Extended-Geometric feature vector is constructed by combin-
ing both the feature sets and is found to achieve satisfactory results for face rec-
ognition using a simple matching function. The matching performance is ana-
lyzed for both the feature sets as well as for an Extended-Geometric feature 
vector. Experimental results demonstrate that no feature set alone is sufficient 
for recognition but the Extended-Geometric feature vector yields an improved 
recognition rate and speed at reduced computational cost and yet it is more dis-
criminating and easy to discern from others.  

1   Introduction 

Face is one of the important biometric identifier used for human recognition.  A num-
ber of other biometric identifiers namely finger print, hand geometry, iris, keystroke, 
signature and voice have been in use in various applications. Each biometric has its 
strengths and weaknesses and the choice depends upon the application [10]. The face 
recognition involves the computation of similarity between face images belonging to 
the determination of the identity of the face. The accurate recognition of face images 
is essential for the security based applications. A number of approaches for face rec-
ognition for real time applications have been proposed in the literature [16]. Many 
researchers have addressed face recognition based on geometrical features and tem-
plate matching [1]. There are several well known face recognition methods such as 
Eigenfaces [14], Fisherfaces [2], [11], Laplacianfaces [7]. The wavelet based Gabor 
functions provide a favorable trade off between spatial resolution and frequency  
resolution [5]. Gabor wavelets provide superior representation capability for face 
recognition [17], [13], [12]. An information fusion based algorithm for retrieval and 
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verification of person identity is presented in [6]. In face recognition, different facial 
local features have different contributions in personal identification. The use of geo-
metrical features will always have the credit of reducing huge space that is normally 
required in face image representation, which in turn increases the recognition speed 
considerably [16]. With this as the motivation, in the proposed approach, the geomet-
ric features are extracted by exploiting the geometrical knowledge of the human face 
which includes distances, areas, fuzzy membership values, and evaluation values of 
the eyes, eyebrows, nose and mouth. These local features are optimized and are ex-
perimentally shown to be invariant to pose, scale and facial expressions [8]. The 
Geometric-Gabor features are extracted from the Gabor responses by applying the 
Gabor filters at the highly energized points on the face. The matching performance is 
analyzed for Geometric feature set and Geometric-Gabor feature set as well as for an 
Extended-Geometric feature vector using a matching function. 

2   Feature Extraction 

In the human ability of recognizing a face, the local features such as eyes, eyebrows, 
nose and mouth dominate the face image analysis. In the present study, these features 
are used for the recognition, and the efficacy of the approach is demonstrated. 

2.1   Geometric Feature Extraction 

The locations of the facial features are obtained from our face detector [9] based on 
the fuzzy face model as shown in the Fig. 1 using the face detection algorithm as 
follows. 

 
Input: Preprocessed image 
Output: Most probable face is detected 
Step 1: Input image is binarized and feature blocks are labeled. 
Step 2: Select any pair of feature blocks to be probable eye candidates in given image. 
Step 3: Compute the slope angle HRL of the line joining the two feature blocks and if 

it is between o45± , then compute the evaluation value EyeE  using the equation: 

( ) ( ) ( ) ( )( )[ ]2
HRL2

2
HRL1

2
21

2
21Eye 1llll2.1expE θθθθ −+−+−++−−=  

 
(1) 

where 21 landl denote the semi major axis; and 21 andθθ  denote the orientations of 

the two blocks. If EyeE  is greater than the empirical threshold value 0.7, then these 

feature blocks are accepted as the potential eye candidates. Further, with respect to 
these candidates, construct the fuzzy face model as shown in the Fig. 1. Otherwise, 
reject this pair of blocks and go to step 2. 
Step 4: For searching left eyebrow, choose any feature block K located in the support 
region of the left eyebrow and determine its horizontal and vertical dis-
tances KK vandh , respectively from Vertical Reference Line (VRL) and Horizontal 

Reference Line (HRL). Then compute evaluation value KE  using the equation: 
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where, LebLeb VandH denote the estimated horizontal and vertical distances of the left 

eyebrows respectively and are normalized by the distance between eyes D. The esti-
mated distances are determined experimentally based on the observation of several 
face images of the databases.  
Step 5: Determine fuzzy evaluation value LebE of the left eyebrow and its membership 

value Lebμ by computing the membership values Kμ of KE for every feature block K 

in the support region of the left eyebrow using the min-max fuzzy composition rule 
given by the equations: 

( )
KK vhK ,min μμμ = , for each K, { }K

K
Leb max μμ =  (3) 

where 
KK vh ,μμ  denote the trapezoidal fuzzy membership values for horizontal and 

vertical distance of the Kth block.  For example, 
Kvμ  is given by equation: 
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where 
LebvLeb 5.0v σα −=  and 

LebvLeb 5.0v σβ +=  ; and Lebvmin , Lebvmax , Lebv and 

Lebvσ  are the empirically determined minimum, maximum, mean and standard devia-

tion of the vertical distances of the centroid of the left eyebrow feature, respectively. 
These distances are normalized by the distance between eyes D. 
Step 6: Perform steps, similar to step 4 & 5, for searching right eyebrow, nose and 
mouth and determine their fuzzy evaluation values MouthNosebRe EandE,E  and corre-

sponding membership values MouthNosebRe and, μμμ  respectively. 

Step 7: Compute overall fuzzy evaluation E of the fuzzy face with respect to the eye 
pair candidate chosen in the step 2 and its membership value Eμ using the fuzzy com-

position rule given by the equations: 

bReLebNoseMouthEye E05.0E05.0E2.0E3.0E4.0E ++++=  (5) 

{ }bReLebNoseMouthE ,,,min μμμμμ =  (6) 

Step 8: Repeat the steps 2 to7 for every eye pair candidate to obtain the evaluation 

value E and its corresponding membership value Eμ  for each potential fuzzy face. 
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Step 9: Perform the defuzzification process as following: For the set  of {E, Eμ } 

values computed in Step 8, find the maximum membership value maxEμ  given by: 

{ }E
E

maxE max μμ
Ω∈

=  (7) 

Then the E value corresponding to maxEμ  is the defuzzified evaluation value DE  

of the face. If there is more than one E value corresponding to maxEμ , the maximum 

among those values is the defuzzified evaluation value DE  of the face. 

Step 10: The potential eyes, mouth, nose, and eyebrows corresponding to the overall 
evaluation value DE  constitute the most probable face in the given image provided 

DE  is greater than the empirical threshold value 0.7. Otherwise, the input image 

contains no face. Further, the detected facial features are projected on to the Diagonal 
Reference Line (DRL). For example, left eyebrow is projected on to DRL as shown in 
Fig. 2. The distances of all the facial features along the DRL are used to compute the 
distance ratios as follows.  

bRe

Leb
bRe2Leb MP

MP
R =   and   

Nose

Mouth
n2m MP

MP
R =  (8) 

The triangular area Aen formed by eyes and nose; and, the triangular area Aem 
formed by eyes and mouth are used to compute the ratio of triangular area EyesA . 

Similarly, the triangular area Aebn formed by eyebrows and nose; and, the triangular 
area Aebm formed by eyebrows and mouth are used to compute the ratio of triangular 
area EyebrowsA  using the equation: 

 

 
 

Fig. 1. Fuzzy face model with support regions 
for facial features shown in boxes 
 

Fig. 2. Projection of Facial Features on to 
DRL 
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Finally, the geometrical feature set contains the fourteen geometrical features i.e. 

=
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Further, the locations of the facial features of the detected face namely eyes, eye-
brows, nose, and mouth are considered as highly energized points on the face, which 
are used to determine the Geometric-Gabor features using Gabor responses as de-
scribed below. 

2.2   Geometric-Gabor Feature Extraction 

The local information around the locations of the facial features is obtained by the 
Gabor filter responses at the highly energized points on the face. A Gabor filter is a 
complex sinusoid modulated by a 2D Gaussian function and it can be designed to be 
highly selective in frequency. The limited localization in space and frequency yields a 
certain amount of robustness against translation, distortion, rotation and scaling. The 
Gabor functions are generalized by Daugman [4] to the following 2D form in order to 
model the receptive fields of the orientation selective simple cells. The Gabor re-
sponses describe a small patch of gray values in an image I(x) around a given pixel 
x=(x,y)T. It is based on a wavelet transformation, given by the equation: 

xd)xx()x(I)x(R ii ′′−′= ψ  (11) 

which is a convolution of image with a family of Gabor kernels.  
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Each iψ  is a plane wave characterized by the vector ik enveloped by a Gaussian 

function, where σ  is the standard deviation of this Gaussian. The center frequency of 
thi  filter is given by the characteristic wave vector ik  having a scale and orientation 

given by ),k( v μθ . The first term in the Gabor kernel determines the oscillatory part of 

the kernel and the second term compensates for the DC value of the kernel. Subtract-
ing the DC response, Gabor filter becomes insensitive to the overall level of illumina-
tion. The decomposition of an image into these states is called the wavelet transform 
of the image given by the equation 11. Convolving the input image with complex 
Gabor filters with 5 spatial frequencies )4,...0v( =  and 8 orientations )7,...0( =μ will 
capture the whole frequency spectrum, both amplitude and phase, as shown in the 
Fig.3. 
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Fig. 3. Gabor filters (5 frequencies and 8 orientations) 
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Several techniques found in the literature for Gabor filter based face recognition 
consist of obtaining the response at grid points representing the entire facial topology 
using elastic graph matching for face coding [15], [3], which generate the high dimen-
sional Gabor feature vector. In the proposed approach, however, instead of using the 
graph nodes on entire face, we have utilized only the locations of the facial features 
extracted by our face detector [9] as the highly energized face points and Gabor filter 
responses are obtained at these points only. This approach leads to reduced computa-
tional complexity and improved performance on account of the low dimensionality of 
the extended feature vector, which is demonstrated in experimental results. A feature 
point is located at (x0,y0) if 

( ) ( )( )y,xRmaxy,xR i
W)y,x(

00i
0∈

=  > ( )
= =

1 2N

1x

N

1y

i
21

y,xR
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1
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where i=1,…,40, iR is the response of the image to the ith Gabor  filter. The size of 

the face image is 21 NXN  and the center of the window, 0W , is at ( )00 y,x . The win-

dow size W must be small enough to capture the important features and large enough 
to avoid redundancy. In our experiments, 9x9 window size is used to capture the Ga-
bor responses around the face points. For the given face image, we get 240 Gabor 
responses (40 filters applied to 6 energy points) as a Geometric-Gabor feature set. 
These feature vectors are used for the recognition of a face by applying the matching 
function as below. 

3   Face Matching 

The traditional PCA technique [14] considers each face image as a feature vector in a 
high dimensional space by concatenating the rows of the image and using the inten-
sity of each pixel as a single feature. Hence, each image can be represented as an n-
dimensional random vector x. The dimensionality n may be very large, of the order of 
several thousands, which accounts for more computational cost. In this paper, a face 
image is represented by Geometric feature set and also by Geometric-Gabor feature 
set. Further, these two feature sets are integrated into an Extended-Geometric feature 
vector, which is considerably very small compared to that of the feature vector used in 
[14]. The matching function is evaluated for all the feature sets of the training face 
images in order to assess the match between the images of the same person (or sub-
ject) and the images from different individuals. The match value d is determined by 
comparing a host face with the other face images using the negative exponential func-
tion given by: 

( )
=

−−=
N

1i

ii yxexp
N

1
d , where 0<d<1 (14) 

where xi and yi are the feature elements of the face images X and Y, respectively, N is 
the total number of elements of the feature. The results of the matching performance 
for the database faces considering the Geometric feature set and for the Geometric-



146 P.S. Hiremath and A. Danti 

Gabor feature set are shown in the Fig. 5(a) and 5(b) respectively. The match value 
for an Extended-Geometric feature vector is determined by the average of the match 
values of Geometric and Geometric-Gabor feature sets. The matching performance of 
extended vector is presented in the Fig. 5(c) in which the horizontal axis represents 
the face number and the vertical axis represents the match between faces for that 
feature set. The value of the match is within the range [0,1] and it can be given prob-
ability interpretation. The match is 1, when the host face is having highest match with 
that of the target face and the match is zero, when the host face is having lowest 
match with that of the target face. The performance of the features are analyzed by 
searching for target faces that match with the given host face. The targets are different 
images of the same person as the host. The analysis is based on the individual assess-
ment of the two feature sets as well as the performance when both the feature sets are 
integrated into the extended feature vector. 

4   Experimental Results 

For experimentation, we have used ORL and MIT face databases, which are the pub-
licly available benchmark databases, to evaluate our proposed method. The ORL 
database consists of 400 images, in which there are 40 subjects (persons) and each 
having 10 variations i.e. varying expressions, poses, lighting conditions under homo-
geneous background. The MIT database consists of 432 images, in which there are 16 
subjects and each having 27 variations i.e. different head tilts, scales and lighting 
conditions under moderate background.  

The experimentation is done with 40 face images, which consist of 10 subjects and 
each of 4 variations. To illustrate the analysis of experimental results, Fig. 4 depicts 
face no 21 as host face and face nos. 22, 23 and 24 as its target faces, i.e. these face 
images pertain to the same subject (person). Results of the match between the face 21 
and the other 39 faces are shown in the Figs. 5(a), (b) and (c) for the Geometric fea-
ture set, the Geometric-Gabor feature set and the Extended-Geometric feature vector, 
respectively. In the Fig. 5(a), we observe that some of the non-target faces also yield a 
comparable match value as that of target faces leading to recognition errors, e.g. non-
target face nos. 3, 26 and 27 have match values close to that of target faces no. 23. 
Further, many of the non-target faces have match values greater than 0.5 leading to 
the poor discrimination ability of the geometric feature set. Similar observations can 
be made in the Fig. 5(b), but the discrimination ability of Geometric-Gabor feature set 
is found to be better than the geometric feature set. Only few non-target faces have 
match values greater than 0.4 and close to the target faces. However, still improved 
match results are found in case of the integrated feature vector combining geometric 
as well as Geometric-Gabor features and are depicted in Fig. 5(c). All the non-target 
faces have their match values much less than 0.4 and are well discriminated from the 
target faces leading to enhanced recognition rate. The possibility of a good match of 
the non-target faces on individual feature sets have been reduced and such faces are 
well discriminated by combining both the feature sets as shown in the Fig. 5(c). Simi-
lar discrimination results are reported when comparing the effectiveness of template 
matching to geometric features [1]. In matching, the geometric features remain rea-
sonably constant for a certain extent of variations in face orientation, expressions and 
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tolerate side-to-side rotation better than up-down movement, which are attributed to 
the normalization by the distance between eyes. However for the geometric features, 
match fails for upside down faces and extreme illumination conditions, due to the fact 
that, the proposed fuzzy face model is constrained by the face orientation within the 

range o45±  and minimum face area of 500 pixels, otherwise the facial features are 

miss-detected. These factors are greatly affecting the matching performance of the 
Geometric feature set. The Geometric-Gabor feature set performed well on all the 
faces due to the fact that, Gabor features capture most of the information around the 
local features, which yields a certain amount of robustness against lighting variations, 
translation, distortion, rotation and scaling. Further, robustness of Gabor features is 
also because of capturing the responses only at highly energized fiducial points of the 
face, rather than the entire image. The Gabor filters are insensitive to the overall level 
of illumination, but fails for the images under extreme illumination conditions (too 
darkness). Hence, the match on the Extended-Geometric feature vector exhibits a 
balanced performance. Face movement not only affects feature translation and rota-
tion but also causes variation in illumination by changing the position of shadows 
especially in case of up-down, and side-to-side face movements.  Hence the proposed 
approach is tolerant not just to face movement but also to a certain extent of variations 
in illumination. The proposed method is compared with the well known algorithms 
for face recognition such as eigenface [14] and elastic graph matching [15] with re-
spect to the recognition performance and the results are presented in the Table 1. The 
eigenface method did reasonably better on MIT database with 97% recognition and 
also has acceptable performance on ORL database with 80% recognition. Eigenface 
technique uses minimum Euclidian distance classifier, which is optimal in perform-
ance only if the lighting variation between training and testing images is around zero-
mean. Otherwise, minimum distance classifier deviates significantly from the optimal 
performance, which is resulting in the deterioration of performance. Elastic matching 
method also performed well on the MIT database with 97% recognition and 80%  
recognition on ORL database. This method utilizes Gabor features covering entire 
face and it has some disadvantages due to their matching complexity, manual local-
ization of training graphs and overall execution time. The proposed method per-
formed reasonably well on MIT database with 89% recognition, which is comparable 
to the other two methods and significantly better performance on ORL database with 
91% recognition in comparison to other two methods. 

The comparison reveals that the Extended-Geometric feature vector is more  
discriminating  and  easy  to  discern  from  others and has a credit of low dimensional 

(a)  (b) 

21             22               23               24 

 

Fig. 4. Sample faces in MIT database images a) Host face b) Target faces 
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vector when compared to the high dimensional vectors used in [14] and [15]. The 
reduced dimension increases the recognition speed and reduces the computation cost 
considerably. 

Face
(a) (b)

M
at

ch
 

(c)

 

Fig. 5. Match between host face and training faces on feature sets a) Geometric b) Geometric-
Gabor c) Extended-Geometric 

Table 1. Recognition Performance 

 
Face Databases Method 

MIT ORL 
Eigenface [14] 97% 80 % 
Elastic graph Matching [15] 97% 80 % 
Proposed Method 89 % 91 % 

5   Conclusion 

In this paper, human face is described by the Geometric feature set and Geometric-
Gabor feature set. Further these two sets are combined into an Extended-Geometric 
feature vector. The discrimination ability of these feature sets are analyzed by compar-
ing the face images using the matching function. The proposed method is compared 
with other well known methods. The Geometric features are extracted from the geomet-
rical configuration of the facial features namely eyes, eyebrows, nose and mouth. These 
features are normalized by the distance between eyes and they are reasonably constant 
for a certain extent of face orientation, expressions and tolerate side-to-side rotation 
better than up-down movement. However, the geometric features are sensitive to the 
upside down faces and extreme illumination conditions, due to the constraints of the 
proposed fuzzy face model. Otherwise the facial features are miss-detected. These fac-
tors are greatly affecting the matching performance of the Geometric feature set. The 
Geometric-Gabor features are extracted by applying the Gabor filters only on the highly 
energized facial points namely eyes, eyebrows, nose and mouth.  These features capture 
most of the information around the local features, which yield a certain amount of  
robustness against lighting variations, translation, distortion, rotation and scaling. Con-
sidering the Gabor responses only at the highly energized fiducial points of the face, 
instead of entire image will reduces the dimension of the feature vector to a minimum. 
The Gabor filters are insensitive to the overall level of illumination, but fail for the im-
ages under extreme illumination conditions. Hence, the match on the Extended-
Geometric feature vector exhibits a balanced performance, and the proposed approach is 
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tolerant not just to face movement but also to a certain extent of variations in illumina-
tion. Experimental results reveal that Extended-Geometric feature vector has a credit of 
low dimensionality when compared to the high dimensional vectors used in [14], [15]. 
The reduced dimension increases the recognition speed and reduces the computational 
cost considerably. The analysis of the matching performance shows that though the 
Extended-Geometric feature vector is low in dimension, yet it is more discriminating 
and easy to discern from others, when compared to only Geometric feature set or only 
Geometric-Gabor feature set. These results are expected to be useful in the design of 
efficient face recognition system. 
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Abstract. Stochastic grammar has been used in many video analysis and event 
recognition applications as an efficient model to represent large-scale video ac-
tivity. However, in previous works, due to the limitation on representing paral-
lel temporal relations, traditional stochastic grammar cannot be used to model 
complex multi-agent activity including parallel temporal relations between sub-
activities (such as “during” relation). In this paper, we extend the traditional 
grammar by introducing Temporal Relation Events (TRE) to solve the problem. 
The corresponding grammar parser appending complex temporal inference is 
also proposed. A system that can recognize two hands’ cooperative action in a 
“telephone calling” activity is built to demonstrate the effectiveness of our 
methods. In the experiment, a simple method to model the explicit state dura-
tion probability distribution in HMM detector is also proposed for accurate 
primitive events detection. 

1   Introduction 

Activity recognition in video is a key problem in many computer vision applications, 
such as video indexing and retrieval, intelligent surveillance, human computer inter-
action and intelligent robot. In most previous works, the bottom-up method based on 
statistical learning is widely used. Some statistical tools were used to model the state 
transition process in the feature space. HMM and DBN are the typical statistical mod-
els. In early work [5], HMM was used to recognize the sign language. In [6], the  
authors exploited Coupled Hidden Markov Models to model more complicated inter-
action activity. In [7], the authors developed a Dynamically Multi-Linked Hidden 
Markov Model (DML-HMM) to interpret group activities involving multiple objects 
captured in an airport scene. 

These statistical methods can model the activity automatically, but most works 
focus on the short-term activities, and the basic premise of the approach is that the 
observed feature sequence can be considered Markovian. However, the pure bot-
tom-up method may fail due to the need of a large training data and the huge com-
putation complexity of the model structure, when we consider a large temporal 
scale activity. 

Fortunately a complex large-scale activity often can be considered as a combina-
tion of several simple sub-activities that have explicit semantic meanings. So, as  
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proposed in [3], the activity recognition task can be split into two steps: first bottom-
up statistical method can be used to detect simple sub-activities. Then the prior struc-
ture knowledge is used to construct a composite activity model. 

In some examples, the prior structure knowledge has been combined into activity 
model successfully. In [9], the authors made up several concept hierarchies of actions 
to describe activities in an image sequence. In [10], the authors extended CASE that 
was used for language understanding previously to represent complex temporal rela-
tions between sub-events. In [11], the author propose an event ontology for represent-
ing complex spatio-temporal events, then a new model called as Event Recognition 
Language (ERL) was defined to represent the events of interest. 

Stochastic grammar is also used to embed the prior structure knowledge. In [3], the 
authors gave a set of special solutions for handling uncertain input and errors in primitive 
detection. And some composite activities in gesture and surveillance applications were 
used to demonstrate the effectiveness of grammar parsing. In [1], the rules of Black-
jack card game were specified by stochastic context-free grammar (SCFG), which 
was a multi-tasked activity including two player’s interaction. In [2], the Towers of 
Hanoi task was analyzed by stochastic grammar, and the experiments demonstrated 
the high-level parser could give feedback to influence low level tracking result. In 
these studies, grammar method has shown some advantages for activity representa-
tion: (1) Event structures can be simply embedded in grammar productions. The rep-
resentation is concise and easy understanding; (2) Many efficient parsing algorithms 
have been studied in speech recognition and natural language processing, which can 
be used for reference in computer vision; (3) Previous works have given good solu-
tions to some problems appearing in computer vision application, such as the uncer-
tainty input and various detection errors. 

However, traditional stochastic grammar is only suited for the specification of tem-
porally well-ordered activities. But different agents may play different roles simulta-
neously in many interaction activities. Traditional stochastic grammar may fail to 
encode these parallel relations in the interaction activities. 

In order to solve the above problem, we extend traditional stochastic grammar by 
introducing Temporal Relation Event (TRE) and designing the corresponding parsing 
algorithm. Experiments have demonstrated the effectiveness of our methods. The 
main contributions of this paper are as follows: 

(1) Extend traditional stochastic grammar to represent complex temporal relations 
and an event ontology is used to instruct the foundation of activity grammar. 

(2) Modify the parsing algorithm to adapt for the extended grammar, and the new 
parser is compatible with traditional parsing. 

(3) For primitive event detection, a simple alternative method is used to model the 
explicit state duration probability distribution in the HMM detector. The detector 
can identify the time interval of primitive events accurately. 

The remainder of this paper is arranged as follows. In Section 2, the extended sto-
chastic grammar is defined and the corresponding parsing algorithm is proposed. 
Section 3 introduces our experiment system architecture and the techniques to detect 
primitive events. Experimental results and some analysis are shown in Section 4. 
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2   Extended Stochastic Grammar Representation and Parsing 

2.1   Grammar Representation 

A hierarchical event ontology similar to that in [11] is introduced to instruct gram-
mar’s foundation. The events can be classified into three categories: primitive event, 
single-agent event and multi-agent event. Primitive event is the simplest event that is 
regarded as terminal in the grammar. Single-agent event is a combination of several 
primitive events with temporal sequencing. Multi-agent event is composed of single-
agent events, and the composition operator may be complex temporal relation.  

Different from previous works, single-agent event and multi-agent event are repre-
sented by different strategies. Traditional production is used to define single-agent 
event. For multi-agent event, we introduce seven temporal relation events (TRE) to 
handle the complex temporal relations. TREs include: “before”, “overlap”, “during”, 
“finish”, “meet”, “equal”, “start”. The meanings can refer to Allen’s interval logic 
relations [4]. A TRE connects two common events that belong to different agents or 
different agent groups involved in an interaction activity. For example, a production: 

[ ]S A d u r in g B p→                                               (1) 

That means if an agent completes event A, another agent completes event B, and the 
interval of event A is during the interval of event B, event S occurs. P is the conditional 
probability of the production being chosen. 

By introducing TREs, a multi-agent event can be represented conveniently. But 
TREs are not actual primitive events. They are generated in the parsing process. So 
the parsing algorithm must be changed. 

2.2   Grammar Parsing 

Our parsing algorithm is derived from the Earley-Stolcke algorithm [12] and its sub-
sequent application to computer vision by Ivanov and Bobick [3]. Some parsing de-
tails, such as uncertainty handling may be found in their works. In the following, we 
mainly explain our modification on the original parsing algorithm.  

2.2.1   Parameters 
Three parameters agent, start and end are augmented to characterize primitive event 
and parsing state. So a parsing state can be represented as follows: 

[ ]: , , , ,ji X Y during Z agent start endα γ→ ⋅                  (2) 

where agent indicates the executor of a primitive event or parsing state. [start, end] 
denotes the time interval of a primitive event or parsing state.α is called as forward 
probability, γ is called as inner probability, the dot is the marker of the current posi-

tion in the input string. For simplicity,α γ ’s computation can refer to [3]. 

2.2.2   Parsing algorithm 
The Earley-Stolcke algorithm [12] analyzes a symbol string iteratively through three 
steps: scanning, completion and prediction. We prefer to embed the modification in 
such framework to assure the compatibility with the traditional parsing. 
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Scanning: 
According to the agent of the current scanned primitive event, new scanned states are 
generated for the current state set as follows: 

[ ]
[ ]

, ,

1 : , ,
a a a

a s
k s

a agent start end
if agent agent

i X a agent start endλ μ
=

− → ⋅
 

[ ]
[ ]

: , ,

: , ,
k a a a

k a a

i X a a gen t start end if

i X a a gen t start end o th erw ise

λ μ λ ε
λ μ

→ ⋅ =
→ ⋅

       (3) 

If the current scanned symbol is a TRE, the new scanned states should also be 
added into the kth state set, which is prepared for the backtracking in completion step. 

If no state is matched successfully with the agent constraint, there may be a new 
agent appearing in the scene. Do scanning process again in those states whose agent is 
zero. Here agent is zero means the state has not been specified by any agents. 

[ ]
[ ]

, ,

1 : 0 , 0 , 0
a a a a

k

a a g en t s ta r t en d if a g en t is a n ew a g en t

i X a a p p ea r in g in th e sce n eλ μ− → ⋅
 

[ ]: , ,k a a ai X a agent start endλ μ→ ⋅        (4) 

Besides the above operations, another function in scanning is to judge whether a 
TRE should be generated in the next completion step. A sign flag will be evaluated as 
true, if and only if the following conditions are satisfied: 

a) In the last predicted state set, there is a predicted state that denotes the next 
scanned event should be a TRE. We define the primitive event on the right part of the 
TRE as the post-event, the left one as the pre-event; 

b) The current scanned primitive event’s agent is different from the state that satis-
fies condition a. 

Completion: 
If the current scanned symbol is a TRE, there will be no completion step, because 
there is no completed state in the current state set. 

Otherwise, the completion process is implemented appending the agent constraint: 

[ ]
: , ,

: , ,

j f f f

f m

k m m m

i Y v agent start end
if agent agent

j X Y agent start endλ μ
→ ⋅

=
→ ⋅

 

: , ,k m m fi X Y a g en t s ta r t en dλ μ→ ⋅        (5) 

Then, if the sign flag is true, a TRE can be generated according to the following steps: 
First, in the current state set, some states whose production head is identical with 

the post-event are selected out for the next temporal inference. 
Then for each state selected in the last step, if the marker has been at the rightmost 

position of the production, which means post-event has been completed, two values 
are computed to measure the temporal relation between pre-event’s interval and post-
event’s interval. 

( ) ( )1 . . / . .post start pre start pre end pre startη = − −                      (6) 
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( ) ( )2 . . / . .post end pre end pre end pre startη = − −                      (7) 

where the post-start means post-event’s start point, post.end means the end point; 
post-start means pre-event’s start point, post.end means the end point. 

Finally, a TRE is generated according to Table 1. The threshold is selected empiri-
cally. If the post-event has not been completed, the end time must be later than the 
pre-event’s end time, which can be equal to 2η  > 0.1 So TRE also can be generated 

according to Table 1. The TRE’s agent is to be specified by a group agent: one is the 
pre-event’s agent; another is the post-event’s agent. 

Table 1. TRE generation 

Conditions TRE 

2 10.1 1.1η η> ∧ > before 

2 10.1 0.9 1.1η η> ∧ < ≤ meet 

2 10.1 0.1 0.9η η> ∧ < ≤ overlap 

2 10.1 0.1 0.1η η> ∧ − < ≤ start 

2 10.1 0.1η η> ∧ ≤ − during 

2 10.1 0.1η η≤ ∧ > i-finish 

2 10.1 0.1η η≤ ∧ ≤ − finish 

2 10.1 0.1 0.1η η≤ ∧ − < ≤ equal 

In the next iteration, the TREs become the scanned events. The event that triggered 
the generation of TRE should be handled again after the scanning of TRE. 

Prediction: 
If the current scanned primitive event is a TRE, the prediction step only rewrites all 
the predicted states in the last state set into the current state set. Otherwise, common 
prediction is processed. 

If the predicted production includes a TRE, the post-event of the TRE should also 
be predicted: 

[ ]: , ,ki X Z a g e n t s t a r t e n d

Y v N i f i s a T R E

M

λ μ
ω ω

ψ

→ ⋅
→
→

 

[ ]
[ ]

: , 0 , 0

: 0 , 0 , 0
i

i

i Y v N a g en t

i M

ω
ψ

→ ⋅
→ ⋅

         (8) 

where ( )L LR Z Y and ( )L LR N M  are both nonzero. Here, the RL is the left corner 

relation matrix [12]. 
Finally, all predicted states in the last state set whose agent is different from the 

current scanned primitive event should be rewritten in the current state set, which are 
prepared for handling other agent’s event in the next parsing iteration. 
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3   System Architecture and Primitive Event Detection 

3.1   System Architecture  

The system architecture is shown in Figure 1. First, the video signal is fed into the 
object detection and tracking module (red part of Figure 1) that includes the whole 
low level processing. In this module, we can robustly obtain the moving object’s 
position, direction and other low level features. Then each moving object’s feature 
sequence (such as trajectory, etc) is fed into the primitive event detection module 
(green part of Figure 1). In here, we train a HMM for each primitive event and a 
backward-looking algorithm is implemented to detect whether a primitive event has 
occurred. Once a primitive event has been detected, it is sent to the grammar parser 
module (blue part of Figure 1) where the event is analyzed with context information. 
Finally, higher semantic interpretation is inputted. 

 

Fig. 1. System architecture 

In our experiment, a tracking system was constructed, which used mean-shift 
tracker to get the robust multiple objects’ trajectories and other low-level features. 
The details on the tracking method may be found in [8]. 

3.2   Primitive Event Detection  

As shown in [3], we also choose HMM as the primitive events’ detector. However 
traditional HMM has the limitation on modeling the state duration [13], which often 
leads to inaccurate detection results. In our experiment, the detected errors between 
the detected results and the ground truths can reach nearly 30 frames if we only use 
pure HMM as the primitive event detector. Such errors are unacceptable for the tem-
poral inference in grammar parsing. For this problem, we use a simple histogram 
method to measure the state duration density. Different with directly measuring from 
the  training  sequences  used in the segmental k-means procedure [13], we count each  
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Fig. 2. Normalized duration Histograms for the 3-state HMM of a primitive event in our  
experiment 

state’s duration in Viterbi path to acquire each state’s duration histogram. A histo-
grams for a 3-state HMM of a primitive event in our experiment is shown in Figure 2. 

For primitive event detection, first the Viterbi path and the corresponding probabil-
ity is computed for an observed sequence. Then as proposed in [13], a post-processor 
is added to the Viterbi probability according to the explicit state duration histogram: 

( ) ( )
1

l o g , | l o g , | l o g ( )
N

j j
j

p q O p q O p dλ λ
=

= +%   (9) 

where jd  is the duration of state j along the Viterbi path, ( ), |p q O λ is the Viterbi 

probability and ( )j jp d  is the duration probability of state j. 

4   Experimental Results and Analysis 

Here, “telephone calling” activity is introduced to demonstrate the effectiveness of 
our methods. In our study, a telephone calling activity can be decomposed into two 
hands’ cooperative actions. The left hand and right hand are regarded as two agents. It 
is our experiment’s target to recognize the temporal relation between “pick up phone” 
and “dial telephone number”. The temporal relations between the two sub-events can 
be described as variant types: before, during and overlap. 

 

Fig. 3. Two types of “telephone calling” activities 
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Fig. 4. “Telephone calling” activity grammar 

Two types of “telephone calling” activities are presented in Figure 3. The left pic-
ture shows the "pick up" action is before the "dial telephone number" action. The 
right one shows the "dial telephone number" action is during the "pick up" action. 
According to prior knowledge, we obtain the activity grammar, as shown in Figure 4.  

We have recorded 12 consecutive “telephone calling” activities. Using our tracking 
system, 48 trajectories are acquired by specifying different initial tracking position. 
Among these 48 trajectories, 40 consecutive trajectories are used to train HMMs and 
explicit state duration model. Other trajectories are used to test. For each primitive 
event, we train 3-states HMM with a Gaussian Mixture output probability. 

To compare primitive event detection accuracy between pure HMM and HMM 
with explicit state duration model, the results are evaluated by labeling each frame. 
For each frame a values is evaluated that specify whether a particular primitive event 
is active or inactive. By comparing these labels with ground truth, we can compute 
the overall-correct ratio as [correct_positive+ correct_negative]/[all_frames]. The 
statistical results are available in the left part of Table 2. As shown in this table, the 
detector with explicit duration model is more accurate than the pure HMM detector. 

The middle part of Table 2 shows the results on primitive event detection. The 
right part is TREs recognition results through grammar parsing. We can find that the 
temporal relations are all recognized successfully, and all the true primitive events are 
recognized, but there are many insertion errors in primitive event detection. Two 
reasons may lead to the problem: (1) due to the influence of viewing angle, the trajec-
tories of some primitive events are very similar in the image coordinate. So a  
trajectory segment may be received by two HMMs simultaneously. For example, the 
trajectory of action “w” is very similar to the trajectory of action “p” in our experi-
ments. (2) Some primitive events are just a part of other primitive events in the trajec-
tory space. For example, the trajectory the action “t” is just a part of the action “e”. 
But these errors can be corrected completely through grammar parsing, as shown in 
the last column of middle part of Table 2. 
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Table 2. Recognition results. The left and middle parts are the results for primitive events 
detection. The right part denotes the recognition result of TREs. The symbols’ meaning can be 
referred to Figure 4. 

 

 

Fig. 5. Illustration of the “telephone calling” activity recognition process 

Two activity recognition processes are shown in Figure 5. In the left part, the 
primitive events detection results are shown at the top, including left hand and right 
hand’s actions. Compared with the ground truth (the thick line), the detection result is 
accurate enough for the temporal inference. The symbol string in the middle part is 
the primitive events string, the number in the bracket represent the primitive events’ 
agent (“1” represents left hand, “2” two represents right hand). The events are ordered 
by their end times. At the bottom, the parsing tree is shown. The symbol “Z” and 
other capital letters of terminals (“R”, etc) are all derived by the skip rule that is used 
for correcting insertion errors [3]. As we can see, the whole activity is recognized 
successfully, the “U” action (pick up) is before the “I” action (dial telephone number), 
and the insertion error “t” is corrected. The right part of Figure 5 shows another type 
of “telephone calling” activity, the temporal relation “during” between the “I” action 
(dial telephone number) and the “U” action (pick up) is also recognized successfully. 

5   Conclusion 

In this paper, we have extended the traditional stochastic grammar and designed the 
corresponding parsing algorithm to recognize complex activities involving parallel 
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temporal relations. We have applied the extended stochastic grammar parser in an 
activity recognition system. For accurate primitive event detection, a simple method 
has been proposed to model the explicit state duration probability distribution in the 
HMM detector. Experimental results have demonstrated the validity of our method.  
An advantage of the two phases strategy is also shown: higher grammar parsing can 
correct the errors in lower primitive event detection that may be difficult to be identi-
fied only using image features due to some reasons (viewing angle, etc). 

In this work, the grammar is defined manually. In the future work, the association 
rules between primitive events may be learned using some data mining techniques. 
The quantitative description of the temporal relations is also our future work. 
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Abstract. In this paper, we propose a new approach to multi-people
activity recognition in outdoor scenes. The proposed method is based on
Hidden Markov Models with parameters of reduced dimensionality. Most
existing work is based on HMMs and DBNs, and focuses on the inter-
actions between two objects. However, longer feature vectors of HMMs
usually lead to covariance matrix singularity in parameter learning and
activity recognition. Moreover, arbitrary structure of DBNs can intro-
duce large computational complexity. Compared with former works, the
proposed method named PCA-HMMs reduces the dimensionality of the
model parameters while retains most of the original variability, and thus
avoids overflowing and weakens the constraints on observations in con-
ventional HMMs. The experimental results proved that the modified
HMMs are effective solutions for multi-people interactive activity recog-
nition.

1 Introduction

The visual analysis of human movements has long been one of the most com-
pelling computer vision problems. In recent years, there have been more and
more research efforts in providing machines with the ability to recognize human
activities and analyze events. Although some successful algorithms from indi-
vidual activity recognition have been developed, there is still much work to do
for multi-people interaction analysis. In this paper, we propose an approach to
multi-people activity recognition using modified HMMs.

HMMs are the most widely used solutions to model behaviors of dynamic
systems because of their double stochastic processes, a marriage of low-level
features and high-level semantic interpretation. Moreover, efficient algorithms
for parameter estimation and recognition are available.

Since Yamoto et al. used HMMs to model simple tennis swings in 1992 [1],
some extensions of HMMs have been employed to solve different problems.
Galata et al. applied variable-length Markov models to recognize highly struc-
tured aerobics behavior [2]. The key idea of this approach is to use cross-entropy
measure in optimizing memory length in order to capture different tempo-scale
behaviors. However, complex activities and human interactions have not been
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modeled effectively because of the requirement of one-hidden node. Then CHMM
(Coupled Hidden Markov model) is introduced by Brand et al. to recognize in-
teractions with different state structures [3]. Conditional probability matrices
of the coupled hidden states are used to model causal relationship between dif-
ferent action processes. Bui et al. constructs AHMM (Abstract Hidden Markov
model) to describe behaviors in different scenarios over a long period of time [4].
Unfortunately, these extensions of HMMs have complex structures which need
as complex algorithms for learning, and inference with large training samples.
The learning algorithm of parameters is so intractable that it is difficult for gen-
eralization. In the case of multi-people activity recognition, much information
is needed to represent the low-level features. Moreover, the dimension of the
feature vector increases in proportion to the number of people and thus is often
very long. Meanwhile, longer feature vectors usually cause more errors in the
processes of parameter distribution estimation.

As the general form of HMMs, DBNs with arbitrary structure provide a de-
tailed interpretation of events according to the state transition between different
hidden nodes[5, 6]. DBNs take advantage of multi-node structure to decrease
the dimensionality of low-level feature vector, however, the online recognition
efficiency is much lower than the Baum-Welch algorithm of HMMs[7].

The proposed method uses the classic Baum-Welch algorithm in parameter
learning. After PCA is applied, the recognition procedure is modified in state
level with the conventional HMM. We call this model PCA-HMMs. The advan-
tage of dimensionality reduction is to improve the recognition speed and fuse the
observation data. Our experimental results have demonstrated its effectiveness.

The organization of this paper is as follows: Section 2 briefly introduces our
method. Three different models are compared in this section. Section 3 analyzes
the experimental results. Section 4 concludes the paper and discusses future
work.

2 Activity Recognition

2.1 System Platform and Hardware Components

All videos in the experiment are real-life activities in a cluttered environment.
They are obtained by surveillance platform which consists of multiple sensors
distributed around the campus. There are tricolor CCD cameras with active pan,
tilt and zoom control which can monitor a scene of interest effectively. Moreover,
sixteen signal lines connecting to the fixed area supply adequate data.

2.2 Tracking and Low-Level Feature Extraction

Object tracking is the first step in human activity analysis. When tracking ob-
jects in the case of group merging and splitting, it is difficult to extract visual
features of the occluded objects. However, the complete dynamic information,
namely the low-level feature is important to activity recognition. Our system suc-
cessfully uses a tracking algorithm to handle multi-target problems in complex
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Fig. 1. The tracking results of our plat-
form

Fig. 2. Event description chart

and dynamic scenes. Detailed discussions about the algorithm can be found in
[8]. Figure 1 shows the tracking results of our system. The figure on the top-left
corner is the video sequence without any processing. The results of motion detec-
tion is shown on the top right of Figure 1. The experiment results before erosion
and dilation are illustrated on the bottom left corner. This system yields robust,
real-time outdoor tracking results even in the case of lighting changes, repetitive
motions, or long-term scene changes[9]. Note that tracking is not the focus of
this paper, we just use the low-level results to obtain required observation data
of our graphical models.

For each object, its velocity, acceleration and distance between different ob-
jects forms a feature vector. It should be noted that the distance feature includes
the distance to their respective initial positions and the relative distance to an-
other interactive object. The relative distance is introduced in order to normalize
the different start point. Since the relationship of these features is nonlinear, it
is reasonable to reduce the dimensionality of the feature vector by PCA.

2.3 Event Models Via Different Graphical Models: DBNs, HMMs
and PCA-HMMs

It is important for behavior understanding to model the reference behavior se-
quences from continuous time sequences. Then DBNs, HMMs and PCA-HMMs
are presented to model activities not only for two-object interactions but also for
three-object activities such as “meeting”, “ chasing” and “forming a new group
in different directions”.The details of each activity can be described as below:

Event 1: Two objects approach each other, and halt for a while when they
meet, then one returns while the other goes in his original direction.

Event 2: Two objects approach in the same way in opposite directions, meet
and halt, then they all return.

Event 3: One object walks ahead, another object follows him.
Event 4: One object walks, another object follows him, then overruns him.
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Event 5: Three objects in two groups, A and B in group 1, C in group 2.
The two groups approach in opposite directions, when they meet, they stop for
a moment, and then they keep going in their original direction respectively.

Event 6: The activity relationships among three objects are similar to the
beginning of Event 5. After meeting, B turns back and forms a new group with
C, whereas A and C keep going in their respective original direction.

These events can be described clearly by Figure 2.
All the low-level features (distances, velocities and accelerations) for each

event are shown clearly by Figure 3. All features for the same object are in
the same color, and the same feature of different objects are represent by the
same type of lines. Namely the lines in blue and red represent the features of A
and B respectively, the lines linked by diamond, circle and x-mark denote the
distance to each object’s start point, velocity and acceleration respectively. In
the case of three-objects activities, the relative distance between different objects
are denoted by the line in black, magenta and yellow respectively. Since Event
1 is divided into three phases, each hidden node has three states representing
its motion status. The distances, velocity and acceleration represent the motion
features, and the relationship between these features is independent, so they can
be extracted as the low-level features.

According to the prior knowledge of the specific events, the DBN’s topology of
the state-to-state and state-to-observation connection is illustrated in Figure 4.
The number of states of each hidden node is different according to corresponding
interaction.
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Fig. 4. The network structure of two-object activities where Dis(i)(t), Vi(t) and ai(t),
(i=1,2) represent the distance, velocity and acceleration respectively, relDis(t) is the
relative distance between them. Object1 and object2 are hidden nodes representing
different objects in each time slice.

It should be noted that the structure of HMMs and PCA-HMMs is conven-
tionally ergodic. Considering the structure of HMM with one hidden node and
one observation node, more objects result in longer feature vectors, decreas-
ing the length of feature vectors without reducing the key components of the
variables is needed for multi-object activity recognition, and hence comes our
PCA-HMMs model.

2.4 Parameter Learning Via DBNs, HMMs and PCA-HMMs

Since the structure has been defined according to human understanding in our
case, the learning task of DBNs is to estimate the conditional probability distri-
bution associated with the network[10]. Meanwhile, [11] gives more details about
HMMs learning. There are many ways to represent this distribution, which de-
pends in part on whether nodes are discrete or continuous. Since the feature
data coming from sequences are continuous, the output distribution is a mixture
of M multivariate Gaussians to represent each state of these graphical models.

2.5 Recognition by DBNs, HMMs and PCA-HMMs

In the case of DBNs, there are many inference algorithms. To split the difference
between speed and complexity, we use the conventional junction tree algorithm
in the computation of pairs of neighboring slices [10].

In the recognition of HMMs, the Baum-Welch algorithm is efficient to calcu-
late the probability of the observation sequence given the model parameters [7].
For convenience, we use the following symbols as the parameters of HMM [11].
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The initial state distribution matrix π = {πi}, where

πi = P [qi = Si], 1 ≤ i ≤ N (1)

N is the number of states in the model, Si is the ith state.
The state transition probability distribution matrix A = {aij}, where

aij = P [qt+1 = Sj|qt = Si], 1 ≤ i, j ≤ N (2)

In this paper, considering the continuity of the trajectory data, the conditional
probability distribution is presumed to be a mixture of M multivariate Gaussians
for each state, then the observation symbol probability distribution matrix B =
{bj(ot)}, where

bj(ot) =
M∑
l=1

cjlN (ot|μjl, Σjl) =
M∑
l=1

cjlbjl(ot) (3)

cjl is the mixture coefficient for the lth mixture in state j and N denotes
Gaussian distribution with mean vector μjl and covariance matrix Σjl for the
lth mixture component in state j. Our approach distinguishes itself from the
standard HMM work in that it uses the parameters with reduced dimensions by
PCA in recognition, then, the dimensionality of the observation data is reduced
based on the level of state. The main steps of the recognition in our method are
as following:

1. Get the parameter πi, aij , μil, Σil by the standard Baum-welch algorithm.
2. Get μi, Σi using the following equation

μi =
M∑
l=1

cilμil, Σi =
M∑
l=1

cil[Σil + (μil − μi)(μil − μi)τ ] (4)

3. Here PCA is used to reduce the dimensionality of the parameters but retain
most of the original variability in the parameters. So we compute the principal
components matrix Pci of the covariance matrix Σi, then the percentage of
the total variance in the observations decides the dimensions to be reduced. So
instead of working with all the original parameters, we use only some principal
components Pc∗i with largest variance to reduce the dimensionality of the mean
vector, covariance matrix and observation data.

μ
′
il = μilPc

∗
i , Σ

′
il = PcτiΣilPc

∗
i , o

′
t = otPc

∗
i (5)

4. Calculate the probability of the observation sequence using the reduced
dimension parameters of each competing model, and the model, which best
matches the observations, is chosen as the recognition result.

bj(o
′
t) =

M∑
l=1

cjlN (o
′
t|μ

′
jl, Σ

′
jl) (6)
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Referring to the Baum-Welch procedure in the recognition[7, 11], we define

αi(t) = P (O1 = o1, ..., Ot = ot, Qt = Si|π,A,B) (7)

which is the probability of the partial observation sequence o1, ..., ot and state
Si at time t, given the model parameters π,A,B.

βi(t) = P (Ot+1 = ot+1, ..., OT = oT |Qt = i, π, A,B) (8)

which is the probability of the partial observation sequence ot+1, ..., oT , given
the state Si at time t and the model parameters π,A,B. where T is the length
of the observation sequence. An efficient forward iterative computation is:

α
′
i(1) = πib

′
i(o

′
1), α

′
j(t+ 1) = [

N∑
i+1

α
′
i(t)aij ]b

′
j(o

′
t+1),

P
′
(O|π,A,B′

) =
N∑

i=1

α
′
i(T ) (9)

Similarly the backward iterative computation is:

β
′
i(T ) = 1, β

′
i(t) =

N∑
j=1

aijb
′
j(o

′
t+1)β

′
j(t+ 1), P

′
(O|π,A,B′

) = β
′
i(1)πib

′
i(o

′
1)

(10)
However, from this iterative equations we should compute b

′
j(o

′
t+1) with the

reduced dimension observation input, which is obtained from the third formula of
equation (5). Moreover, we only use PCA in the recognition but not in parameter
learning so that we can keep the characteristics of each activity and fuse the main
features of the observation data.

3 Recognition Result Analysis

In our experiments, all images are 320×320 pixels in the video sequence from
a stationary camera. Parameter learning was done offline with 20 to 60 train-
ing sequences for each event, depending on the complexity of the events. All
trajectory data are obtained by the object tracking system described in Section

Table 1. The number of the states and training data for different events

DBN States Training data
Event1 3 40
Event2 3 40
Event3 2 25
Event4 3 22
Event5 3 60
Event6 3 50
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2.1 and 2.2. Two or three states are used for each hidden node in DBN model
according to the real trajectory data. Table 1 shows the the number of the states
and training data for different events.

To compare the recognitionperformance of the threepreviouslymentionedmod-
els we convert the DBN with discrete hidden nodes to an equivalent HMM. Com-
pared with DBNs, HMMs compress all of the observation nodes and hidden nodes
into one observation node and one state node, therefore the feature vector is 7-
dimension because DBN has 7 observation nodes in the case of two-objects. Since
DBN has 15 observation nodes in the case of three-objects, the feature vector of
HMM is 15-dimension. Assume a DBN has n hidden nodes and each node has M
states, then the equivalentHMMshouldhaveMn states.Thenwe can get the states
for each HMM according to Table 1. Moreover, the search space in training process
for HMM is much larger, much more data are required for HMM to converge to
true distribution during the training. However, if we use the same data to train,
obviously, the number of iterations would increase during the parameter learning.

Figure 5 shows that the log likelihood of each event approaches the final
convergence point quickly in the case of DBNs. The number of iterations for
each event is shown in the brackets of Figure 5.

Figure 6 shows that the learning curve of four events approaches in the case of
HMMs. The number of iterations for each event is shown in the brackets. Since
state converting between DBN and HMM has the exponential relationship Mn,
the number of the states for each HMM become so large that the convergence of
the traditional HMMs is difficult. Unfortunately in the learning stage of Event 4
and Event 5, the final convergence is not achieved because of the longer feature
vector and less training data. However, we have to use more data to train than
that of DBNs.
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Fig. 5. The number of the states and training data for different events
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Fig. 6. The learning curve of HMM: the vector of log-likelihood scores at each iteration
of different events

Table 2. The percentage of variance
in the observations of each eigenvector
(in the case of two objects)

Event1 Event2 Event3 Event4
97.1154 98.2802 99.1350 99.3682
1.4095 1.6560 0.5125 0.5340
1.1937 0.0398 0.2518 0.0630
0.2241 0.0141 0.0903 0.0277
0.0409 0.0051 0.0063 0.0052
0.0147 0.0044 0.0036 0.0017
0.0016 0.0005 0.0005 0.0003

Table 3. Activity recognition rates
in the six trained Events

Event DBNs HMMs PCA-HMMs
Event1 86% 78.7% 95%
Event2 84.5% 80% 93%
Event3 91% 77% 100%
Event4 92% 91.6% 100%
Event5 95% 56% 96.7%
Event6 92% 60.4% 90%

Once all of parameters of each event are obtained, we reduce the dimension-
ality of mean vector and covariance matrix by PCA, then the percentage of the
total variance in the observations are explained by each eigenvector in Table 2.

We find that almost all of the first two components of Pci for each covariance
matrix account for 99% of the original variability. So instead of working with all
the original parameters, we use only first two principal components.

In the stage of recognition, the values of log likelihood are applied to classify
the activities. The experimental results of activity recognition rates are shown
in Table 3.

For the three models, these recognition rates are all similar in the case of two-
object activity whereas the results are so different in the case of three-objects.
The recognition result of HMMs is not satisfactory because with the increasing
of the objects, the number of states are larger and feature vectors are longer.
When we reduce the dimensionality of the model parameters but retain most of
the original variability using PCA, obviously, the recognition results for Event 5
and Event 6 are much better.

4 Summary and Conclusions

The model PCA-HMM was developed because the Baum-Welch theory allows a
well-founded set of statistical estimation and PCA reduces dimensionality with-
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out sacrificing accuracy. During the learning process, we use the standard Baum-
Welch algorithm to obtain the parameters. Then a new HMM is designed to
reduce the dimensionality of the model parameters while retain most of the
original variability using PCA and alleviate the constraints on observations in
conventional HMMs. The advantage of this modified HMM is that it can reduce
the dimensionality of the feature space and thus avoid overflowing. The promis-
ing experimental results demonstrate that the PCA-HMMs based approach to
activity recognition is effective.
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Abstract. This paper introduces a novel scheme which works on symbolizing 
every line in an object image for object recognition. Symbolizing is 
accomplished in terms of angles of intersection with regard to a line under 
consideration. Spatial relationship existing among the symbolized lines is 
represented using the notion of Triangular Spatial Relationship (TSR). A set of 
quadruples which preserves the TSR is subjected to principal component 
analysis to obtain the principal component vectors. These vectors are then 
stored in the knowledgebase for the purpose of recognition. Experimental 
results demonstrate that the proposed approach is efficient, invariant to linear 
transformations and capable of learning. To substantiate the success of the 
proposed model, a comparative study is performed with Murase and Nayar 
approach. 

Keywords: Line drawing interpretation; Spatial relationship; Principal 
component analysis; Object recognition. 

1   Introduction 

Appearance-based object recognition models have been receiving much attention by 
researchers because of their efficiency and ease of implementation. Moreover, the 
combined effects of shape, reflectance properties, pose, and the illumination 
conditions will be learnt during learning phase and hence robust recognition is 
possible [8]. Murase and Nayar [10] devised an efficient approach that has 
parametric eigenspace representation for object recognition. The approach has been 
improved by many researchers [8, 9, 11, 13, 14]. In [10], for each object of interest, 
a set of images containing object in different poses and lighting conditions are 
obtained during training. Each object is represented as a manifold by projecting all 
the views of an object onto a subset of eigenvectors. During recognition, the image 
of a test object is projected to the subspace and the object is recognized based on 
the manifold it lies on. Object eigenspace is used to identify the pose parameters. 
Using a subset of the Columbia Object Image Library (COIL-100), they show that 
the 3D objects can be recognized accurately from their appearances in real-time. 
Although the approach is robust and efficient, as noticed by many rsearchers  
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[8, 9, 11, 13, 14], the method in its standard form cannot handle problems such as 
occlusion, and of varying background. Pentland suggested the use of modular 
eigenspaces [14] to overcome the problem of occlusion. Ohba and Ikeuchi [13] 
proposed the eigen-window method in order to recognize partially occluded objects. 
But, due to local windows, these methods lack the global aspect and usually require 
further processing [8]. To eliminate the effects of varying background, Murase and 
Nayar [11] introduced a search window, which is the AND area of the object 
regions of all the images in the training image set. To alleviate the problem of 
occlusion and segmentation of an object from background, Leonardis et al. [9] 
proposed a robust and an efficient approach which is based on multiple eigenspaces. 
A novel self-organizing frame-work has been used in their work to construct 
multiple, low-dimensional eigenspace from a set of training images. Thus, the 
eigenspace approach has since been used in different vision tasks. However, in all 
these appearance-based  approaches,  all the images need to have the same 
dimension during training as well as in recognition and hence normalization is 
required which may result in loss of significant information. Moreover, these 
eigenspace approaches are not so robust to image transformations. Training a 
system on a data set which has linear transformation effects is time consuming and 
inclusion of a new object requires retraining of the system.  

On the other hand, it could be seen in literature that there are several other models 
which work on geometrical properties of objects. Geometrical criteria such as line 
drawings invaraince is used by Bergevin and Levine [1] in their PARVO system. For 
the success of PARVO system, line drawings must satisfy a certain number of 
assumptions. Tsai [15] identified line invariants under various transformations for the 
recognition of 2D objects. Geometric hashing technique [7] was used in their system 
to speed-up the process of recognition. The system is capable of indentifying partially 
visible objects. However, complex trigonometric calculations involved in their 
approach to compute invariants and the performance of the system is shown against 
the model database only. ORASSYLL [6] - developed by Kruger and Peters is a 
robust object recognition system where objects are represented as a spatially 
organized set of local line segments. The symbolic representation used in 
ORASSYLL system has a parameterized description. Comparative analysis is 
presented in their work with PCA based models [10] too. However, the problem of 
representing 3D objects has not been addressed in their work. Cootes et al. [3] 
introduced an object recognition system based on line segments. A sort of similarity 
exists between ORASSYLL and Cootes approach.  

In view of these, we propose a novel scheme for recognizing 3D objects invariant 
to image transformation. The proposed model being simple to implement, has 
efficient computing performance in terms of feature extraction and recognition. Since 
the feature extration of one object is independent of other objects, the proposed 
system possesses learnability. Representation of spatial relationship existing among 
the symbolized data through triangular spatial relationship further strengthen the 
claim that the method is invariant to image transformations.  

The rest of the paper is organized as follows. Proposed methodology is presented 
in section 2. Experimental results are given in section 3. A comparative study is given 
in section 4. Discussions and conclusions are presented in section 5. 
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2   Proposed Methodology 

The proposed model has three stages viz., line extraction from edge image, 
transformation of line image to symbolic image, and feature extraction and 
representation.  

Quite often, object recognition systems were designed based on the nature of 
distribution of generic components or parts rather than the physical image itself. In 
such cases, components themselves are assumed to be the local features of the object 
and hence it is necessary to study the spatial topology existing among the 
components. In view of this, we decompose a gray image into a number of 
components. In our work, a gray image is considered as the physical image and each 
line segment in the line image is treated as a component and represented 
symbolically. Such a symbolically encoded image is called a symbolic image.  

2.1   Transformation of Line Image to Symbolic Image 

The line image obtained due to eigen transformation process [4] is used to obtain a 
symbolic image. For each line segment found in the line image, its angle of 
intersection with other line segments is computed. The computed angles are sorted in 
ascending order. The first k angles are called as k-smallest angles and the last k angles 
are called as k-largest angles. The ratio of the sum of k-largest angles to the sum of k-
smallest angles is defined to be the label for a line segment under consideration. This 
process is repeated for all the line segments present in the line image. The resulting 
image is the desired image consisting only symbols (real values) instead of lines. This 
symbolic image is used for feature extraction purpose.  

More formally, let m be the number of lines present in the line image. For each 
line, say li, kααα ≤≤≤ ...21 be the k-largest angles and kβββ ...21 ≤≤ be the k-

smallest angles. The label of li is the ratio of sum of kααα ,...,, 21 to the sum of β1, 

β2,…,βk. 
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The line image thus transformed is called as a symbolic image. 

2.2   Feature Extraction and Representation 

Spatial topology existing among the components of symbolic image is preserved with 
the help of Triangular Spatial Relationship [5]. A brief review of TSR is given below 
followed by feature extraction and representation.  

2.2.1   Triangular Spatial Relationship 
A TSR is defined by connecting three non-collinear components in a symbolic image. 
Let X, Y and Z are any three non-collinear components and Lx, Ly and Lz be their 
respective labels. Connecting the centroids of these components mutually forms a 
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triangle as shown in Fig. 1. Let M1, M2 and M3 be the mid points of the sides of the 
triangle and θ1, θ2, and θ3 be the respective subtended smaller angles, as shown in Fig. 
1. The TSR among the components X, Y, and Z is represented by a set of quadruples 
{Lx, Ly, Lz, θ3), (Lx, Lz, Ly, θ2), (Ly, Lx, Lz, θ3), (Ly, Lz, Lx, θ1), (Lz, Lx, Ly, θ2), (Lz, Ly, 
Lx, θ1)}. Since there are six quadruples for every three non-collinear components, the 
representation is unwieldy and hence the following conventions were adopted to 
choose one out of six quadruples. 

If (Li1, Li2, Li3, θ) is the quadruple to be chosen, then the labels Li1, Li2, and Li3 
must satisfy any one of the following conditions. 

• The labels Li1, Li2, and Li3 are distinct and Li1>Li2>Li3. 
• Li1=Li2 and Li3 < Li1 
• Li1 > Li2 and Li2 = Li3 and DIST(Comp(Li1), Comp(Li2)) ≥ 

DIST(Comp(Li2), Comp(Li3)) 
• Li1=Li2=Li3 and DIST(Comp(Li1), Comp(Li2)) ≥ M where M = 

max(DIST(Comp(Li1), Comp(Li3)), DIST(Comp(Li2), Comp(Li3)). 

Here, DIST(X, Y) is a function which computes the Euclidean distance between 
the mid-points of the components X and Y. max(a, b) denotes the maximum among a 
and b, and Comp(L) indicates the component, the label of which is L. 

The TSR among any three non-collinear components in a symbolic image is 
invariant to translation and rotation since the distance between any two components is 
invariant to translation and rotation, and invariant to scale since the angle θ in the 
quadruple (Li1, Li2, Li3, θ) remains same. Proof for linear transformation invariance 
can be found in [5]. 

2.2.2   TSR Model for Object Recognition 
The triangular spatial relationship existing among every possible combination of three 
non-collinear components are computed and represented by a set S of quadruples. If 
there are m number of lines, then we have m number of components and hence the set 

S has c
m NC −3 numbers of quadruples, where Nc is the number of triplets of collinear 

components (parallel line segments). The set S can itself be stored in the symbolic 
image database for the matching process at the time of recognition. However, it could 

be unwieldy as the size of S in general is )( 3 c
m NCO − . Thus, in order to minimize 

the storage requirement, we find the first principal component vector (PCV), D, the 
vector on which the variance of the corresponding projected points is maximally 
preserved after projecting the quadruples of S onto D, assuming that the set S is a set 
of four dimensional samples, each of which is represented as a point in 4-dimensional 
space. The first PCVs computed for each symbolic image are stored in the 
knowledgebase called symbolic image database (SID) for recognition purpose. Hence, 
the algorithm for object representation is as follows. 

2.2.3   Algorithm: Object Representation (TRAINING) 
Input:     Set of Objects, say O = {O1,O2, ..., Om} 
Output:  Symbolic Image Database:  SID 
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Procedure: 
    For each object, say Oi  
         For each view, say vij ∈ Oi 

1. Extract the lines from the edge image of vij 
2. Transform the line image to symbolic image. 
3. Compute the set of quadruples, S using TSR. 
4. Compute the variance-covariance matrix, CV of S 
5. Find the eigenvectors of CV. 
6. Choose the eigenvector, D associated with a largest eigenvalue of CV 

and store it as the representative of view vij in SID 
Algorithm Object Representation ends. 

Subsequently, the algorithm for recognition of an object is as follows: 
Algorithm: Object Recognition   
Input:       Test object image, OI 

     Symbolic Image Database, SID 
Output:      Object class label of OI 
Procedure: 

1. Extract the lines from edge image of OI. 
2. Transform the line image to symbolic image. 
3. Compute the set of quadruples, Q. 
4. Compute the variance-covariance matrix CVQ of Q. 
5. Find the eigenvectors of CVQ. 
6. Choose the eigenvector, Ej associated with the largest eigenvalue of CVQ. 
7. Use nearest neighbor classifier to find the nearest vector Ek in SID to Ej and 

return the corresponding Object class label. 
Algorithm Object Recognition Ends. 

In general and in most of the cases, it is found that the object class label returned on 
classification of test view using Euclidean distance measure is unique. If two different 
object views are almost similar, then there is a possibility of obtaining two different 
object class labels. In such cases, second principal component vector is used to 
resolve the problem of ambiguous classification. It is possible to go up to 4 principal 
component vectors to resolve the ambiguity. However, if the object view 
classification is still unresolved, then the test view is treated as ambiguous view and  
 

     

          Fig. 1. Triangular Spatial Relationship               Fig. 2. COIL-20 database 
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could be resolved with the help of having an additional test view. This issue has not 
been addressed here since it is another major work under ‘active object recognition’ 
theory.   

A binary search technique could be employed to search for the computed PCVs of 
a given object image in the symbolic image database provided the PCVs are stored in 
a sorted order in SID, and hence the proposed algorithm requires O(log n) search time 
in the worst case. Here n represents the number of object views considered for 
training. 

3   Experimental Results 

In this section, we present several experiments conducted to demonstrate the 
performance of the proposed method. To corroborate the efficacy of the proposed 
model for 3-D object recognition, we performed all experiments on the standard set of 
images, COIL-20 [12] which is used by many researchers as a benchmark dataset. 
Fig. 2 shows the images of the 20 objects taken in frontal view, i.e., zero pose angle 
of COIL-20 database. Each object is represented in the database by 72 views obtained 
by rotation of the object through 360o in 5o steps (1440 views in total). To validate our 
claim of transformation invariance, each object view is rotated randomly in in-plane 
(rotation of an image perpendicular to the image plane) to generate 3 additional views 
and hence the total size of the database is 5760 views in total.  

Table 1. Object recognition performance of the Proposed Method 

Number of k-
smallest and k-
largest angles used 
for labeling 

Computing time 
for recognition 
(5760 views) 
 (in secs.) 

% of Recognition 
with 1440 views 
knowledgebase 

% of Recognition 
with 720 views 
knowledgebase 

2 9490.14 63.453 50.819 
3 9498.25 64.346 58.912 

4 9396.53 62.753 51.597 

5 9518.48 65.745 56.736 

6 9399.00 64.677 57.684 

7 9478.43 68.887 58.277 

8 9978.11 64.227 60.694 

An experiment has been conducted by considering the original 1440 views as 
training samples and the recognition rate is obtained with all 5760 views as testing 
samples. Similarly, we have conducted experimentation by considering the alternate 
views as training samples (720 views) and the recognition rate is obtained with 5760 
views as testing samples. The percentage of recognition for different values of k, the 
parameter used to specify the number of smallest and largest angles considered for  
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labeling purpose, and the computing performance is reported in Table-1. Recognition 
performance of the proposed methodology with varying number of k smallest/largest 
angles and training views is given in Fig. 3.  

      

Fig. 3. Performance of the proposed method 
with varying number of training samples 

Fig. 4. Performance of the Standard-PCA 
with varying number of training samples 

4   Comparative Study 

We have conducted a series of experiments to compare the performance of the 
proposed method with the traditional PCA based approach [10] under the conditions 
where the number of training views varied. We performed seven tests with varying 
number of training views. More specifically, we have considered the original 1440 
views of 20 objects as training views and the testing is performed with all views 
(5760 views). In the next case, we have chosen alternate views from the original 1440 
views collection and testing is performed with all views. Similarly, we have 
conducted experiments considering 480, 360, 240, 160 and 120 views as training 
views of the COIL-20 database choosing 24, 18, 12, 8 and 6 views respectively from 
each object and the recognition performance is obtained considering the all views as 
test views. A nearest neighbor classifier was employed for recognition purpose. 
Recognition time taken by the proposed methodology and PCA based approach for 
different training samples are given in Table-2. Recognition accuracy is also given in 
Table-2. Here, it should be noticed that the traditional PCA consumes less recognition 
time when compared to our method and it is apparent when the number of training 
samples decreases. However, recognition rate is very high in the case of proposed 
methodology at the cost of computing time. Recognition performance of traditional 
PCA with varying number of principal components along with varying number of 
training views is given in Fig. 4.  
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Table 2. Recognition performance and computing time of Standard PCA and Proposed 
methodology 

Computing time for 
recognition  

(in secs.) 

Percentage of 
Recognition 

Number 
of 
training 
views 

Number of 
testing 
views 

Standard 
PCA 

Proposed 
method  
(k=8) 

Standard 
PCA 

(20-D) 

Proposed 
method 
(k=8) 

1440 5760 766.532 9974.11 36.04 64.227 

720 5760 609.955 9932.50 35.59 60.694 

480 5760 605.334 9810.49 35.07 55.069 

360 5760 528.462 9896.33 37.78 52.153 

240 5760 522.906 9822.42 28.44 58.681 

160 5760 510.953 9761.44 26.39 53.681 

120 5760 489.765 9656.81 22.22 50.833 

5   Discussions and Conclusions 

Recognition of an object plays a vital role in machine vision applications. Devising an 
efficient object recognition system is a challenging issue. This paper proposes an 
efficient and linear transformation invariant object recognition system. The 
performance of the proposed system is based on low-level image processing. 

Well-known appearance based model proposed by Murase and Nayar [10] works 
very well for noisy as well as unstructured environment and has traditionally been 
improved by many researchers. However, it is possible that the objects can be placed 
with at most one degree of freedom (i.e., it does not taken into account in-plane 
images). Besides, it suffers from illumination problem too. In the case of the proposed 
method, at the lowest level, we have used canny edge detector [2] and since canny 
edge detector tolerates noise to some extent, we have a claim that the proposed system 
is capable of withstanding noise. Moreover, we have used a linear transformation 
invariant scheme for transforming the line image to symbolic image and hence the 
proposed system provides two-degrees of freedom (i.e., in-plane images are 
considered during testing). In the case of Murase and Nayar approach, it is required to 
have the same size for both the training views as well as test view, which is not 
required in our approach. However, the proposed method has some limitations. The 
performance of the system is heavily dependent on low-level image processing such 
as lines/edges extraction unlike traditional PCA which works directly on intensity 
values without any intermediate processing. Moreover, labeling of lines depends on 
all the lines presence in an image. The proposed approach uses only first PCVs for the 
purpose of recognition. In order to improve the recognition rate, we can have second 
PCVs and so on. No doubt, incorporation of the second, third, etc., PCVs improve the 
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recognition rate to some extent which can be realized from Fig. 5 and it is at the cost 
of increased recognition time and more memory. But, when compared to Murase and 
Nayar approach where it is required to have a minimum of 20-dimensional feature 
vector to have good recognition accuracy, we have used p-dimensional (p is at most 
16) feature vector for the purpose of recognition. Moreover, it should be noticed that 
the incorporation of another object to the trained knowledgebase requires to re-train 
the system with the new object set introduced in the case of PCA based approaches 
which is not required in our method. 

 

Fig. 5. Recognition performance of the proposed method with varying number of principal 
component vectors 

In summary, we have proposed a simple and an efficient method for 3-D object 
recognition. The proposed method has three stages namely lines extraction from edge 
images, transformation of line image to symbolic image and feature extraction by 
employing PCA on a set of quadruples which are used to represent spatial relationship 
existing among the components. The proposed method is invariant to linear 
transformation and consumes less time not only for training, even for recognition too. 
The proposed method is capable of learning also when an unknown object is given as 
test object for recognition. 

We believe that the system presented here will be a good basis for further 
improvement. Adaptation of local window technique to design a robust mapper to 
transform line image to symbolic image, efficient indexing data structure to represent 
spatial relationship among the components will certainly improve the recognition 
accuracy which is our future research.  
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Abstract. In this paper, we propose a new method for denoising of images 
based on the distribution of the wavelet transform. We model the discrete wave-
let coefficients as mixture of Laplace distributions. Redundant, shift invariant 
wavelet transform is made use of in order to avoid aliasing error that occurs 
with critically sampled filter bank. A simple Expectation Maximization algo-
rithm is used for estimating parameters of the mixture model of the noisy image 
data. The noise is considered as zero-mean additive white Gaussian. Using the 
mixture probability model, the noise-free wavelet coefficients are estimated us-
ing a maximum a posteriori estimator. The denoising method is applied for gen-
eral category of images and results are compared with that of wavelet-domain 
hidden Markov tree method. The experimental results show that the proposed 
method gives enhanced image estimation results in the PSNR sense and better 
visual quality over a wide range of noise variance. 

1   Introduction 

Wavelets have emerged as a new mathematical tool for statistical image processing. 
Many image processing tasks are efficiently carried out in the wavelet-domain. Wave-
lets provide a compact and decorrelated image representation. The wavelet transform 
uses a set of basis functions, which are shifted and dilated versions of a band pass 
wavelet function and shifted versions of low pass scaling function. The basis func-
tions of wavelets are localized both in time and frequency. The wavelet coefficients 
are computed using filter banks, where the analysis and synthesis filters form a quad-
rature mirror filters. For images, separable transform is constructed by applying filter 
bank to each column and then to each row of the result. The multiresolution nature of 
wavelets gives both local and global view of an image. For an image the wavelet 
coefficients are naturally arranged in the form of quad trees. The children coefficients 
in the quad trees analyze the image at one scale finer than the parent does. 

The wavelet transform can be redundant. The redundancy allows enriching the set 
of basis functions so that the representation is more efficient in capturing information 
contained in an image. Many applications such as edge detection and denoising can 
greatly benefit from redundant representations. In noise filtering, the study the signal 
is required in the domain where statistics of the clean signal and the noise are mod-
eled effectively via appropriate transforms such as the wavelet transform. 
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The simplest method for wavelet-based image denoising is a thresholding rule. 
More advanced image denoising approaches begin with a probability model for the 
wavelet coefficients and then obtain an estimator via Bayesian estimation techniques, 
such as the MAP or MMSE estimator [1]. In this direction, wavelet-domain Hidden 
Markov Tree (HMT) models have demonstrated superior performance in image de-
noising [2]. Wavelet-domain thresholding is used to get an optimal performance in 
[3]. Authors in [4] have proposed bivariate shrinkage function for denoising of images 
by modeling non-Gaussian nature of the wavelet statistics. They have used a bivariate 
probability distribution function for modeling the discrete wavelet coefficients. 

The key point in signal denoising is to choose appropriate probability distribution 
functions (pdf) that represent the wavelet coefficients and estimation of parameters of 
that distribution from noisy data. In this paper, we propose a nonlinear image denois-
ing algorithm based on mixtures of Laplacian distributions for modeling the discrete 
wavelet coefficients. 

2   Background 

Multiscale image expansions implemented with filter banks offers possibility of decom-
position that is shift-invariant. In image denoising applications via thresholding in the 
wavelet-domain, the lack of shift-invariance causes pseudo-Gibbs phenomena around 
singularities. To solve this problem, it is recommended to use decomposition with less 
shift sensitivity than the standard maximally decimated wavelet decomposition [5]. 
Generally, cycle spinning algorithm is employed to improve the denoising performance 
of a non-shift-invariant design. It is equivalent to a shift-invariant denoising if all the 
possible shifts of the input image are used and it is computationally more expensive. 

The wavelet coefficients of natural images are generally having heavy tailed distri-
butions and approximately uncorrelated. There exists a strong dependence on adjacent 
coefficients in scale and space. This suggests that multivariate Gaussian model is not 
accurate for wavelet-domain modeling of natural images, even though it is easy to 
work with such models. In wavelet-based image denoising, non-Gaussian probability 
models may provide superior performance in achieving high quality results. 

3   Formulation of Problem 

In this section, mathematical formulation of image denoising problem is explained. An 
image corrupted with zero-mean additive white Gaussian noise is considered. In the 
orthogonal wavelet domain, the problem can be formulated as y w n= + , where y  is 

the noisy wavelet coefficient, w  is the noise free wavelet coefficient and n  is the noise. 
For wavelet-based denoising using distributions, it is useful to know the distribution of 
the clean and noisy wavelet coefficients. Let ( )wp w  be the probability distribution 

function (pdf) of w  and ( )np n  be the pdf of n . In [6] pdf of wavelet coefficients is 

modeled as a generalized Gaussian with  ( ) ( , ) exp
p

w

w
p w K s p

s
= − , where, ,s p  

are the parameters of the model and ( , )K s p  is the normalization factor. 
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Fig. 1. Histogram of a subband of wavelet coefficients of Lena image. Solid line plot is the 
corresponding Laplacian distribution fit for the wavelet coefficients of the subband. 

Figure 1 shows bar graph of histogram of a subband of wavelet coefficients for a 
noise-free Lena image. The distributions are characterized by a sharp peak at zero 
amplitude and extended tails on either side of the peak. The histograms of different 
subbands in different scales show that the marginal distributions of natural images in 
the wavelet-domain are highly non-Gaussian. Suppose consider that, the noise-free 
wavelet coefficients are modeled using Laplace distributions. The solid line plot in the 
Figure 1 shows the Laplace distribution fit for the data. The pdf of wavelet coeffi-

cients and noise are 
1 2

( ) exp
2

w
ww

p w w
σσ

= − , 
2

2

1
( ) exp

22
n

nn

n
p n

σπσ
= −  

respectively, where 2
nσ  is the variance of the noise and 2

wσ  is the variance of wavelet 

coefficients. When the w  and n  are independent, the pdf of y  is the convolution of 

the pdfs of w  and n . Since the noise-free wavelet coefficient is Laplacian distributed 
and the noise is Gaussian distributed, the pdf of their sum is given by the formula [7]. 
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2( ) exp( ) ( )erfcx x x erfc x= , ( ) 1 ( )erfc x erf x= − ,  
2
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2
( )

x terf x e dt
π

−= . A maximum 

a posteriori (MAP) estimator is used to estimate w  from the noisy observation y . The 

MAP estimator can be written as; ˆ ( ) arg max ( )w yw
w y p w y= . Upon simplification, the 

MAP estimator of w  uses a threshold 
22 nT

σ
σ

= , where ( )2 2
y nσ σ σ= − . The esti-

mate of wavelet coefficients is ( )ˆ ( ) ( )w y sign y y T
+

= − , where 

( ) 0

0

x x
x

otherwise+

≥
= . We call this rule as Tresh  and ˆ ( ) ( , )w y Tresh y T= . It is 

equivalent to soft-thresholding rule. 
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Fig. 2. Mixture of two Laplace distributions 

 

Fig. 3. Histogram of a subband of wavelet coefficients and solid line plot is modeling of wave-
let coefficients with a mixture of two Laplace distributions 

The plots in the Figure 1 show that the Laplace distribution does not follow the his-
togram very closely. To tackle this problem, we have used a mixture of two Laplace 
distributions. The estimation of the mixture model is performed using Expectation 
Maximization (EM) algorithm. The plots in the Figure 2 show that the mixture of two 
Laplace distributions. From the Figure 3, it is clear that, the mixture of two Laplace 
distributions matches the wavelet histogram quite well. 

4   Mixture Model of Wavelets 

A mixture model for a random variable has a pdf that is the sum of two simpler pdfs. 
The model can be written as; 1 2( ) ( ) (1 ) ( )p x ap x a p x= + − , where 1( )p x  and 2 ( )p x  are 

two pdfs and ( )p x is the combination of the two. Using a mixture of two Laplace pdfs 

to model the distribution of wavelet coefficients, the expression can be written as; 

1 21 2

1 2 1 2
( ) exp (1 ) exp

2 2
p w a w a w

σ σσ σ
= − + − − . It is necessary to esti-

mate three parameters, 1σ , 2σ and a  from the data. For the mixture model, an itera-

tive EM algorithm is used to estimate the parameters. 
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4.1   EM Algorithm 

The Expectation Maximization algorithm is an iterative numerical algorithm, each 
iteration of which consists of an E-step and an M-step. We use a simple EM algorithm 
as described in this section. For the mixture model 1 2( ) ( ) ( )p x ap x bp x= +  

where 1a b+ = , the observed data be nx  for 1,...,n N= .  

Introduce auxiliary variables 1( )r n  and 2 ( )r n  that represent for each data point, 

how likely that the data point was generated by one or the other of the two compo-
nents 1( )p x  and 2 ( )p x . The 1( )r n  represents how responsible 1( )p x  is for generating 

the data point nx , while the 2 ( )r n  represents how responsible 2 ( )p x  is for generating 

the data point nx . To start with, we have to initialize the variables a , b , 1σ and 2σ . 

The initial values for a  and b  should satisfy 1a b+ = . Sequences of E-M-steps are 
used until the parameters satisfy some convergence condition. 

The E-step calculates the responsibility factors as;  

1
1

1 2

( )
( )

( ) ( )
n

n n

ap x
r n

ap x bp x
=

+
 and 2

2
1 2

( )
( )

( ) ( )
n

n n

bp x
r n

ap x bp x
=

+
. 

These responsibility factors are between 0 and 1 and 1 2( ) ( ) 1r n r n+ = . The M-step 

updates the parameters a , b , 1σ  and 2σ . The mixture parameters a and b  are com-

puted as; 1
1

1
( )

N

n

a r n
N =

=  and 2
1

1
( )

N

n

b r n
N =

= . We estimate 2
1σ  as a weighted sum of 

the data point, where the weight for nx  is the responsibility of 1( )p x  for the data 

point nx  . The 2
1σ  and 2

2σ  are calculated as; 

2
1

12
1

1
1

( )
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N
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n

N

n

r n x

r n

σ =

=

=  and 

2
2

12
2

2
1

( )
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N

n
n
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r n x
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σ =

=

=  respectively. 

 

Fig. 4. Sum of Laplacian and Gaussian pdfs. The dotted plot is Laplacian pdf, the dash-dot plot 
is Gaussian pdf and solid plot is the sum of the two. 
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5   Image Denoising 

The wavelet coefficient w  is modeled as having the pdf  1 2( ) ( ) ( )wp w ap w bp w= +  

where 1a b+ = , and n  is modeled as having the pdf ( )np n , then the pdf of y  is of 

the form 1 2( ) ( )* ( ) ( )* ( )y n np y ap y p y bp y p y= + , where * denotes convolution opera-

tion. Given the noisy data y , and assuming the noise standard deviation nσ  is 

known, we can estimate the model parameters a , 1σ  and 2σ  using the EM algorithm. 

The EM algorithm is modified to model y  as a mixture of two Laplacian-Gaussian 

components. Figure 4 shows a sum of Laplacian and Gaussian pdfs. 
Let ŵ  be the estimate of w . The estimate can be written as; 

1 2ˆ ˆ ˆ( ) ( ) ( ) ( )a bw p y w y p y w y= + , where ( )ap y  is the probability that w  was generated 

by 1p  and where similarly ( )bp y  is the probability that w  was generated by 2p . The 

1ˆ ( )w y  is an estimate of w  based on the assumption that n  was generated by 1p  and 

that similarly 2ˆ ( )w y  is an estimate of w  based on the assumption that w   was gener-

ated by 2p . 

We determine ( )ap y and ( )bp y  respectively as;  

1

1 2

( )
( )

( ) ( )a

a g y
p y

a g y b g y
=

+
, 2

1 2

( )
( )

( ) ( )b

b g y
p y

a g y b g y
=

+
 , where 1( )g y  is the pdf of 

y  under the assumption that w  was generated by 1p  and similarly where 2 ( )g y  is 

the pdf of y  under the assumption that w  was generated by 2p . Because y  is the 

sum of w  and independent Gaussian noise n , the pdf of y  is the convolution of the 

pdf of w  and the Gaussian pdf. This leads to the relations 

( ) ( )1 1( ) , * , ng y Laplace y Gaussian yσ σ=
2

1 2
11

1 2 1
( ) exp * exp

22 2 nn

y
g y y

σ σσ πσ
= − −

( ) ( )2 2( ) , * , ng y Laplace y Gaussian yσ σ=  

2

2 2
22

1 2 1
( ) exp * exp

22 2 nn

y
g y y

σ σσ πσ
= − − . 

Since 1p  and 2p  are Laplace pdfs with parameters 1σ  and 2σ  respectively, the 

threshold function Tresh  can be used to get 1ˆ ( )w y  and 2ˆ ( )w y . The estimate of w  

can be written as follows ( ) ( )ˆ ( ) ( ) , ( ) ,a bw y p y Thresh y T p y Thresh y T= + . Thus a 

nonlinear mixture shrinkage rule is derived from the mixture model. We call this 
method of denoising as Laplace Mixture Distribution Model (LMDM). 

The nonlinearity shrinks the value of y  to estimate w . Some of the shrinkage 

functions are given in the Figure 5. From the plots it is clear that, the nonlinear func-
tion does not shrink large values of y  as much as the threshold function Tresh  does.  
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Fig. 5. Shrinkage functions for different subbands of the wavelet transform 

6   Experimental Results 

To evaluate the proposed algorithm, we performed several experiments by applying 
the algorithm on a variety of test images, all of size 512 x 512. The images are made 
corrupt by a zero-mean Gaussian noise with different standard deviations. We used 
Daubechies-4 wavelet to decompose images into five levels. The noise power in the 
transformed domain is calculated using the median estimate of the finest scale wave-

let coefficients fy as; 
( )

2

0.6745

f

n

median y
σ = . 

PSNR measure is used to compare the performance of the denoising results. Table 
1 shows the denoising results for different noise powers. The denoising results of soft 
threshold rule Tresh  and that of wavelet-domain HMT methods are also tabulated. 

The peak signal to noise ration (PSNR) is calculated as; 
2255

10log10PSNR
MSE

= , 

( )
2

2
1 1

1 N N

ij ij
i j

MSE X Y
N = =

= − , where the MSE is the mean squared error and X and Y 

are original and denoised images of size N x N respectively. In terms of PSNR, the 
Laplace Mixture Distribution Model (LMDM) gives the highest value of the other 
methods compared. Figure 6 shows the denoised results of a segment of Lena image. 
It is clear that the denoising scheme is capable of retaining edges and fine details. The 
algorithm removed most of the noise preserving high frequency details. The visual 
quality of the image is also improved. 
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(a)                                           (b) 

   

(c)                                          (d) 

Fig. 6. Image denoising results. (a) Noisy image (b) Denoised image using HMT, 
PSNR=31.09dB (c) Denoised image using Tresh , PSNR=31.85dB (d) Denoised image using 
LMDM, PSNR=32.37dB. 

Table 1. Denoising results for various noise powers 

“Lena” PSNR(dB) 

nσ  Noisy HMT Tresh  LMDM 

10 28.12 33.79 34.46 34.86 
15 24.60 31.74 32.49 32.97 
20 22.10 30.31 31.44 31.62 
25 20.16 29.28 30.15 30.60 
30 18.58 28.50 29.35 29.76 

“Barbara” PSNR(dB) 

nσ  Noisy HMT Tresh  LMDM 

10 28.12 31.34 31.94 32.34 
15 24.60 28.98 29.59 29.83 
20 22.10 27.47 27.76 28.06 
25 20.16 26.38 26.42 26.72 
30 18.58 25.47 25.35 25.69 

“Boats” PSNR(dB) 

nσ  Noisy HMT Tresh  LMDM 

10 28.15 32.17 32.97 33.13 
15 24.63 30.23 30.88 31.13 
20 22.13 28.82 29.35 29.70 
25 20.19 27.72 28.18 28.59 
30 18.61 26.91 27.29 27.61 
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7   Conclusion 

Modeling is at the core of image denoising problem. In this paper, we have proposed 
a new method for denoising images based on MAP estimator by modeling wavelet 
coefficients as a mixture of Laplace distributions. A simple EM algorithm is used for 
estimating the parameters of the model. The proposed denoising method produces 
superior PSNR performance and better visual quality. The denoising results are com-
parable to that of the wavelet-domain HMT method. 
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Abstract. Watermarking techniques that need no original information during 
watermark detection, the so-called blind watermark, are more desirable than in-
formed ones for practical usage and convenience in watermark extraction. In 
this paper, a rule-based multi-bit watermarking technique is presented. Regular 
pixel patterns are used as base patterns in the watermark bit modulation, and 
each bit is embedded in one spreading pattern of 8x8 block, which is the com-
bination with base patterns. Space  division multiple access is applied to obtain 
high data-hiding capacity. The main advantage of the scheme is its simplicity, 
blindness and high capacity. Selected experimental results are reported. 

1   Introduction 

Digital watermarking is the communication of information by embedding it into mul-
timedia data, called "host data," without introducing perceptual changes and receiving 
it later. The data with embedded watermark are denoted as "container". The embed-
ded information can be used for copyright protection or covert message. 

Most of the existing watermarking schemes are always based on some assumptions 
for watermark detection and extraction. Some schemes require the previous knowl-
edge of watermark location, strength or some threshold. For example, to ensure the 
robustness and invisibility of a watermark, the optimum embedding location are gen-
erally different for different images. For a large image database, it could be a disad-
vantage if requiring watermark location and strength information for detection and 
extraction, since a large amount of information are needed to be stored. In the Internet 
distribution, the owner can always distribute the multimedia data by assigning differ-
ent watermarks to different users in order to prevent illegal redistribution of data by a 
legal user. In such scenario, the watermark detection/extraction algorithms requiring 
the information of watermark location and strength, or the original watermark should 
fail, since the users do not know exactly which watermark is embedded in this copy of 
the watermarked image. 

Thus a new blind watermarking scheme which overcomes the problems discussed 
above is proposed in this paper. One of the advantages of the proposed watermarking 
is that it has a general framework for covert message delivery, since extraction  
algorithm does not require any information on watermark locations and strengths. 



190 Y. Wang and J. Guo 

Secondly, due to its high payload, some readable signature or logo can be used as 
watermark. By using such a watermark, it is more robust semantically against attacks, 
because the signature or image pattern can always preserve a certain degree of struc-
tural information, which are meaningful and recognizable, can be more easy to be 
verified by human eyes rather than some objective similarity measurements.  

The proposed algorithm operated in spatial domain, and watermark extraction is 
performed without resorting to the original image. Though at the expense of a slight 
loss of robustness, the proposed technique represents a major improvement to meth-
ods relying on the comparison between the watermarked and original images 
[1,2,3,4,5].  

The detailed embedding scheme is introduced in section 2, including the informa-
tion embedding and extraction. Selected experimental results are presented in section 
3. The paper closes with concluding remarks in section 4. 

2   Proposed Scheme 

In most applications, the original host signal is not available to the watermark detec-
tor. Therefore, many watermarking schemes suffer considerably from the host-signal 
interference. The technique we present in this paper does not reply on the correlation 
detection, but on extracted patterns. For each pixel 8x8 block, regular-shape patterns 
are selected as Reference Patterns (RP), so the detection error due to attacks can be 
partially remedied by median filter and edge-detection image processing method. 
Though we can use the 64 separated pixels, which are mutually orthogonal in loca-
tion, to make the distance as far as possible, it can not be remedied by filter for its 
shape is not a close set. Furthermore, we can select some regular-shape RPs which are 
invariant in shape after rotation. As for the shape, they can cover different area with 
any shape. The farther the distance among RPs is, the better for detection to distin-
guish. This is the part of the task, which we call it as top layer of watermark embed-
ding. On the bottom layer, each pattern is constructed with the change of individual 
pixel. How can we change individual pixel? 

In mathematics as we know, if g(i,j) which is an integer  belongs to [0,255], for ex-
ample, and if  
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Then [ (i,j) ÷L] mod K = k always holds for all the above conditions. 

In equation (1), (i,j) represents the modified valued of g(i, j), and 

    K ------- the total different number of element  k  
    L ------- the modification step, which is integer number 
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    k -------  the possible element, which is integer number 
    p ------- [g(i,j) ÷L] mod K 
    [ ] ------ the truncation to an integer value, and mod is the modular operation. 

The above formula means no matter how much the original value g(i,j) is modified, 
we can extract the same result from its counterpart (i,j). In this paper, we will use 
this formula to slightly modify the host image. The detailed technique is introduced in 
the following sub-section. 

2.1   Watermark Embedding  

We select 6 base block patterns of the size 8x8, which can be used to construct 26 
different patterns, representing 64 self-defined ASCII codes if we embed text message 
in the image. The selected 6 base patterns RP1, RP2, …, RP6 are non-overlaid each 
other, or so-called orthogonal, which are shown in figure 1. 

 

Fig. 1. Six base reference patterns (RPs) which are mutually orthogonal 

Correspondingly, we divide one image into 8x8 blocks. In every block, by the 
combination of the 6 base reference patterns with each representing one bit watermark 
information, we can embed 6 bits in one 8x8 block. By using self-defined ASCII 
codebook which consists of 26 letters and digitals, we can embed text message in the 
host image. For example, if we want to embed a letter  'c' in one selected block, then 
we first look up the self-defined codebook to get the ASCII code of  'c', e.g. '001010', 
the map this bit-string into the combination of the 6 base reference patterns as shown 
in figure2. Sign '-' represents bit '0' and '+' represents bit '1'. Following the steps in the 
figure, we generate a modulation matrix, which consists of only 0s and 1s, as shown 
on the right of the figure 2. 
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Fig. 2. The generation of modulation matrix with the Reference Patterns 

Now we turn to the bottom layer.  First of all, we convert the pixel value of the 
host image to the range of integer number [0, 255] if necessary. If we denote each 
element in the above modulation matrix in figure 2 as k, then k = {0,1}. If we denote 
the total statuses of k as K, then K=2. Then we can use the formula (1) to modify the 
luminance value of individual pixel in one image by assigning the meanings of the 
symbols as follows: 

 K ------- the total different number of k 
 L ------- watermark modulation depth 
 k -------  the logic value of the modification 

The value of L affects the watermark imperceptibility. In our experiment, we select 
different values of L for comparison. The bigger the value of L, the higher the energy 
of the watermark, but at the same time the artifact will appear. 

Inserting the k in the above modulation matrix, as well as L and K into formula (1), 
we modify the original pixel value g(i,j) in the pixel block, and get modified value 
(i,j). After all related pixels in the host image are modified, we get the watermarked 

image   of the original image g. Here we use g to denote image, and use g(i,j) to 
denote individual pixel at location (i,j), and similar notation is applied to  and (i,j). 

2.2   Extraction of Watermark Bit 

The watermark bit extraction from the watermarked image  is nearly the reverse 
process of the watermark bit embedding. We briefly describe it as follows: 

• Getting one 8x8 pattern matrix WM', consisting of 1s and 0s, by the calcula-
tion of [ (i,j) ÷L] mod K within one 8x8 block; 

• Changing the 0s in WM' matrix to  –1s; 
• Obtaining the corresponding combination of the 6 base reference patterns by 

checking the new matrix row by row; 
• Extracting the 6 watermark bits in the block; 
• Repeating the above procedures until the all the watermark bits in the related 

blocks are extracted. 

Since the watermark embedding is changing g(i,j) to (i,j)  by k based on formula (1), 
and the watermark extraction is recovering k from (i,j). We needn’t remember the 
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value of change of individual pixel, since [ (i,j) ÷L] mod K=k always holds. But if 
the watermarked image  is attacked, some of the extract bits will be incorrect. If the 
watermark to be embedded is a binary logo as done in our experiment, the incorrectly 
extract bits are displayed as noise in the extracted logo. 

3   Experimental Results 

In figure 3, we embed the logo of Queen Mary in the image Lena with L=6. Figure 
3(a) and 3(b) are the original image and the watermarked image respectively, but we 
can hardly identify their difference. After the watermarked image is compressed by 
JPEG with quality factor=60 (QF), the extracted logo as shown in 3(d), though noisy, 
can still be identified. 

In figure 4, we repeat the same experiment with L=6, 26 and 36, respectively. The 
host image used is peppers. Since only part area of the image is needed to embed the 
small logo, we only demonstrate the enlarged watermarked area of the image for the 
clarity of comparison, as shown in figure 4(d), 4(f) and 4(h) for L=6, 26 and 36 re-
spectively. You can find that the bigger the value of L, the artifact will appear due  
 

 

Fig. 3. Comparison between the original and watermarked image (L=6, PSNR= 43.4dB) (a) 
Original host image Lena (512x512); (b)Watermarked Lena, and compressed by JPEG with 
QF=60; (c) Queen Mary Logo embedded (50x45); (d) Extracted logo from b) 
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Fig. 4. Comparison with different L values, under the same attack, compressed by JPEG with 
QF=40). (a) Original Logo; (b) Original host image (part area of the image peppers); (c) Ex-
tracted Logo from (d); (d) Watermarked  area of the image with L=6; (e) Extracted Logo from 
(f); (f) Watermarked  area of the image with L=26; (g) Extracted Logo from (h); (h) Water-
marked  area of the image with L=36 

 

to watermark embedding. Under the same attack ---- compressing by JPEG with qual-
ity factor=40 (QF), the Logo are extracted as shown in figure 4(c), 4(e) and 4(g) re-
spectively. Obviously the bigger the value of L, the higher the energy of the water-
mark, and then the percentage of the incorrectly extracted bits is less. 
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4   Conclusion 

In this paper, a novel technique based on regular-shape data patterns is presented. The 
energy of each watermark bit is spread into one of the possible patterns. If these basic 
reference patterns are the cyclically shifted versions each other, the modulation for 
watermarking is actually is phase-modulation. The great advantage of the scheme is 
its high payload, blindness and simplicity both in watermark embedding and extrac-
tion. Though it's slightly weak to numerical attacks, but has potential robustness 
against geometrical attack, such as rotation, re-sizing or ratio-changing if embedding 
concentric circular arcs globally in the whole image, and assisting with error correct-
ing code (ECC), majority-voting rule and/or median filter.  

High-payload data hiding is very useful in covert communication application, in 
which the main concerns are capacity and imperceptibility and blind extraction. This 
is also target of the proposed scheme in the paper. 
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Abstract. A new approach to the Ordinary Kriging interpolation
method based on the combination of local interpolation and variogram
modelling with Adaptive Neuro-Fuzzy Inference System (ANFIS) is pro-
posed for surface interpolation. In this method, the experimental vari-
ogram is modelled by ANFIS and this model is used to interpolate the
unknown values of specific points in a new local manner. In this local way,
all the unknown points are grouped based on each reference point. As the
study data, two types of data sets coming from mathematical functions
and a 3D scanning system are used. The tests show that the proposed
method produces better performances for all data sets in comparison to
the well known and highly approved interpolation methods; Ordinary
Kriging, Triangle Based Cubic and Radial Basis Function-Multiquadric.
Moreover, by the proposed method the computational complexity im-
pressively decreases compared to the global Ordinary Kriging.

1 Introduction

The surface interpolation is a process of constructing a multi-dimensional con-
tinuous function. This function defines a surface that passes the known scattered
points. The dimensions of independent variables of a function are generally two
or three. The surface interpolation process is needed in various fields including
surveying, cartography, geology, medical imaging, some industrial designs and 3D
visualization. The general approach in the surface interpolation is computing the
unknown nodes of the underlying grid surface through interpolation function de-
termined by known scattered data points. The interpolation of the single-valued
data where underlying function has the form f : R2 → R or f : R3 → R is
generally needed [1].

The interpolation methods can be generally classified into these categories; i-
triangulation based methods, ii- inverse distance weighted methods, iii- radial
basis function methods, iv- natural neighbor methods, and v- stochastic process
methods based on the mathematical derivation. Based on the used reference
points, global and local methods are also used. In the global methods, each
interpolated value is affected by all of the data whereas in the local methods
the interpolated value is only affected by the values at nearby points from the
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scattered point set. Because of the huge computational efforts, global methods
are practically limited to small data. An addition or deletion of a data point, or a
correction in any of the coordinates of a data point will change the interpolated
values throughout the entire domain of definition. Opposed to global methods,
local methods are capable of treating much larger data and they are less sensitive
to data modifications. However, they may become quite complex, if a smooth
result is required [1].

As a global method, Kriging interpolation algorithm belongs to the stochastic
process category that generates spatial fields over the geographical region of
interest. Kriging has been developed in the field of mining [3], and is one of the
efficient tools of geostatistics. It has found many applications in other fields such
as surveying, hydrogeology, environmental monitoring, meteorology, soil science
and agriculture and ecology [4] and [7].

As a soft-computing technique, ANFIS model combines the learning capabil-
ity of neural networks with the expressiveness and the capabilities for reasoning
within uncertainty of the fuzzy logic. ANFIS is effectively used in different med-
ical, engineering and computer vision applications [2], [13], [16], [18], [22].

The motivating factor of preparing this study is that ANFIS and Kriging
have great potentials for surface data interpolation since Kriging can represent
the spatial roughness mathematically enough and can be easily integrated with
an effective soft-computing algorithm like ANFIS. The aim of this study is to
develop a new surface interpolation method by integrating ANFIS and Kriging
algorithms in a local manner. In this method, ANFIS is used to model the exper-
imental variogram which is used to construct the spatial separation in Kriging.
After the global variogram is modelled by ANFIS, the unknown spatial areas
are interpolated in a different local method through Ordinary Kriging interpo-
lation algorithm. The reference points within a specific range of a specific refer-
ence point are used to interpolate the unknown points closest to this reference
point. Consequently, the combination of ANFIS and Kriging in a local manner
impressively increases the interpolation performance while the processing time
decreases.

2 Ordinary Kriging

In basic, an Ordinary Kriging estimate of an unobserved location is an optimized
linear combination of the data at the observed locations. Ordinary Kriging is
known as the best linear unbiased estimator. It is linear because its estimates
are based on weighted linear combinations of available data. It is unbiased since
it tries to have the mean error to be zero. It is the best because the error variance
is minimized:

V ar[
�

Zp − Zp] = min (1)

Where;
�

Zp : interpolated value of point p
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Zp: true value of point p
In the ordinary kriging, any drift function predefined over interpolation sur-

face is not employed. So, the regional random variables are assumed as constant.
Ordinary Kriging is an exact interpolator at the point of the data, i.e. the esti-
mated value is equal to the data value. The general interpolation equation;

Ẑp =
n∑

i=1

WiZi (2)

Where;
Zi: reference points used in the interpolation
Wi: weight values corresponding to each Zi

n; number of reference points
The weighting model of Kriging supplies that the closer point more effective to

the interpolation as in inverse distance weighted methods. The Kriging weights
are completely a function of variograms of data set. A variogram function is as
follow:

γ(hm) =
1

2N(h)

∑
(Z(xi, yi)− Z(xj , yj))2 (3)

hij =
√

(xi − xj)2 + (yi − yj)2 (4)

Where;
γ(h): semi-variance value at distance h
hij : horizontal distance between i and j reference points
hm: mean of hij distances
N(h): number of pairs with distance h
(xi,yi): planimetric coordinates of reference point i
Z(xi,yi): interpolated target value of reference point i
Semi-variogram values are computed at specific ranges. In order to compute

an unknown value of a specific point, it is needed to determine the variogram
values of the distances from this point to the reference points. So, it is needed a
theoretical variogram model to determine the unknown variograms of these dis-
tances. The theoretical models are determined through the experimental values.
The most common models used for theoretical variogram are linear, exponential
and spherical models [6]. The exponential model is given in Equation 5;

γ(h) = C0 + C(1− e
−h
H ) (5)

where;
C0: nugget effect, quantifies the sampling and assaying errors
C: vertical scale for the structured component of the variogram
H: the horizontal range of the variogram
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After the theoretical variogram model has been constructed, the solution of
the system based on ordinary kriging is done according to this set of equations:

W1γ11 +W2γ12 + · · · +Wnγ1n + λ = γ1P

...
...

W1γn1 +W2γn2 + · · · +Wnγnn + λ = γnP

W1 +W2 + · · · +Wn + 0 = 1

(6)

Then, the weight values (Wi; i=1, 2,...,n) computed from Equation 2 are used
in Equation 6. The difference between ordinary kriging and simple kriging is the
constraint about weights of adding up to one to ensure the solution is unbiased.
The balance between the number of equations and unknowns is supplied by using
the Lagrange coefficient λ. The detailed mathematical and statistical equations
of the solution for kriging and variogram can be found in [10].

3 Adaptive Neuro-fuzzy Inference System (ANFIS)

In the last decades, soft-computing techniques (artificial neural networks, fuzzy
systems, genetic algorithms, etc.) have been successfully applied in the area of
image processing [2] and computational geometry [17], [20]. The soft-computing
techniques are preferred for different applications because of their ability to
approximate complex nonlinear functions effectively [19]. A key advantage of the
fuzzy system is its usage in representation of data information. Usually, a fuzzy
system represents information in the form of logic rules, which effectively mimic
the decision making of human brain. Neuro-fuzzy systems are hybrids of fuzzy
systems and neural networks [11]. The goal of neuro-fuzzy systems is to combine
the learning capability of a neural network with the intuitive representation of
knowledge found in a fuzzy system.

ANFIS based on Sugeno type fuzzy inference system (FIS) uses a hybrid learn-
ing algorithm to identify the membership function parameters of single-output.
The membership functions used in ANFIS can be Simple Gaussian, General-
ized Bell Curve, 2-Sided Gaussian, Triangular, Trapezoidal, Sigmoid Curve and
S-Shape Curve. The simple Gaussian membership function is defined as follows;

f(X ;α, β) = e
−(X−α)2

2β2 (7)

In Equation 7, f(X;α,β) returns a matrix which is the Gaussian membership
function evaluated at X. The parameters α and β determine the shape and
position of this membership function. The optimal values of these parameters
are computed by training ANFIS structures with enough epochs.

In ANFIS, the membership function parameters are tuned (adjusted) using
either a backpropagation algorithm alone, or in combination with a least squares
type of method using a given set of input/output data [12].

Some of the advantages of ANFIS are very fast convergence due to hybrid
learning and the ability to construct reasonably good input membership func-
tions. The most important advantage is that ANFIS provides more choices over
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membership functions [5]. The detailed information about neuro-fuzzy systems
can be found in [14], [19].

4 The Proposed Method

The main novelty of the proposed method is using ANFIS to model the ex-
perimental variogram in stead of conventional parametric models in Ordinary
Kriging. By this way, the modelling power of soft-computing techniques over
nonlinear complex systems is introduced into an effective interpolation method
and thus a new more effective hybrid method could be obtained. Moreover,
the interpolation strategy has also been changed. In the classical way, Ordi-
nary Kriging, as a global method, uses all the reference points to interpolate
the unknown values of the specific points. Thus, all reference points are used
recurrently at each interpolation point. This drives a computational complex-
ity into the system. In the proposed method, each reference point is considered
as a cluster center, and the unknown points of the closest Euclidean distances
are assigned to this reference point. Then, by using the proposed method, the
unknown values of the interpolation points are computed with respect to the
reference points staying in a user defined circle centered at the reference point
to which the unknown points are the closest. It is seen from application that
this method decreases the computational complexity in an impressive manner
whereas it increases the performance. The graphical representation of this local
approach is given in Figure 1. The general steps of the proposed method in this
study can be summarized as follows:

Construct the global experimental variogram model.
Construct the ANFIS object which models this experimental variogram.
Adjust the parameters of membership functions of ANFIS by training.
Cluster the unknown points assuming the reference points as cluster centers

in one step.
Define the radius of interpolation circle and determine the reference points

staying within this circle centered at each station reference point.
Interpolate the unknown points nearest to the target reference point by using

the in-range reference points in the manner of Ordinary Kriging.

Fig. 1. Illustration of the local approach of the proposed interpolation method
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In order to evaluate the performances of the interpolation processes, the root
mean squared error function, (RMSE), is employed (Equation 8).

RMSE =

√√√√ 1
n

n∑
i=1

(Zi − Ẑi)2 (8)

Where Ẑi is true values of test points, Zi is interpolated values of test points
and n is the number of test points

5 Study Data

Three study data sets are used in the application. The first of them is a mathe-
matical surface defined with the Equation 9 as in [15], [21].

z = 0.75e
−(9x−2)2+(9y−2)2

4 + e
(9x+1)2

49 − (9y+1)
10 +

0.50e
−(9x−7)2+(9y−3)2

4 − 0.20e−(9x−4)2−(9y−7)2+
e−0.04

√
(80x−40)2+(90y−45)2 cos(0.15

√
(80x− 40)2 + (90y − 45)2))

(9)

Where (x,y) is the pair of planimetric grid coordinates and z is the function
values corresponding to each (x,y) pair. The planimetric grid coordinates of this
surface is ranged from 0 to 1 The other two data sets are real 3D scanned models
of a human face [9] and a rabbit model [8]. These two models are quantitatively
diversified to enable the comparisons of interpolation methods in a gridding
manner with a reasonable computation time.

The reference data points are selected uniform randomly from inside the
known x, y, and z values [21], [23]. The numbers of reference points are 500
for mathematical surface, 6500 for rabbit model and 3000 for human face. Af-
ter the reference points are extracted from the main population, the remaining
points are employed as the test data sets. Consequently, the training and test
data sets are (500-9500), (6500-58778) and (3000-20208). The mesh display of
the mathematical surface and 3D point clouds of scanned data are displayed in
Figure 2.

6 Application

In the application of the proposed method, firstly the experimental variogram
model is generated from the reference points isotrophically, i.e. all possible dis-
tances in all possible directions. Then ANFIS objects are created to model these
experimental variograms. Despite having relatively heavy computational cost,
the simple Gaussian membership function is found as the most optimal mem-
bership function for all study data sets. The numbers of membership functions
are determined experimentally. Optimization method used in the training is the
default hybrid method, which combines least squares estimation with Backprop-
agation. The required parameters of ANFIS, i.e. training error goal, initial step
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Fig. 2. Study data sets: Mathematical surface, 3D scanning results of Human face and
Rabbit Model

size, step size decrease rate, step size increase rate, are used as default values,
0, 0.01, 0.9, and 1.1 respectively. And output membership function of system
is considered as linear type. The optimal epoch number for each interpolation
is determined analyzing the step-size parameter of ANFIS training. This para-
meter changes proportionally depending on the error value. All the tests show
that the peak points of the step-sizes gathered from the training of ANFIS are
critical points stand for the optimal size of the training epoch.

After the training of ANFIS, clustering process is done. By this clustering,
each unknown point is assigned to the neighborhood of a reference point. The
unknown points having the neighborhood of the same reference point are inter-
polated through the same in-range reference points within the circle centered at
the center reference point. Here, another critical parameter is the radius of the
interpolation circle. This parameter is experimentally determined, too. This pa-
rameter affects both the performance and the computation time. Moreover, the
number of reference points in each local area is not allowed being less than 10
reference points. This threshold of 10 is also determined empirically. When the
number of reference data points is less than 10, it is seen that the performance
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Table 1. The optimal values of the parameters used in the proposed method

Data MF Number-of-MF Epoch Radius
Mathematical Surface Simple Gaussian 5 4000 15
Face Simple Gaussian 9 110 12
Rabbit Simple Gaussian 5 190 15

dramatically decreases. The optimal values of the required parameters for the
proposed interpolation method are listed in Table 1.

Finally, to determine the effectiveness of the proposed method, all the study
data sets are interpolated by Ordinary Kriging, Radial Basis Function-
Multiquadric and Triangle-Based Cubic methods. In Ordinary Kriging, an
exponential model is used to model the experimental variogram. The RMSE
performance results for all of the interpolation methods are given in Table 2.

Table 2. The RMSE performance results: Proposed Method (PM), Ordinary Kriging
(OK), Triangle Based Cubic (TBC) and Radial Basis Function-Multiquadric (RBF-M)
interpolation methods

Study Data Method RMSE(10−3)

Mathematical Surface

P.M. 1.812
O.K. 9.554

T.B.C. 16.504
RBF-M. 6.158

Face

P.M. 1211.057
O.K. 1234.686

T.B.C. 1282.049
RBF-M. 1299.000

Rabbit

P.M. 9.244
O.K. 11.567

T.B.C. 11.344
RBF-M. 12.353

7 Results and Conclusions

In this study, a new surface interpolation method based on local ordinary Kriging
with ANFIS variogram modelling is proposed. This proposed method is tested
through three data sets; a mathematical surface and two 3D scanned models by
comparing with the well known and highly approved interpolation methods; Or-
dinary Kriging, Triangle Based Cubic and Radial Basis Function-Multiquadric.
It is seen from this comparison that the proposed method gives the best perfor-
mances for all the data sets.

In the application, simple Gaussian membership function is found as the op-
timal one. It is seen that the optimal epoch number which is the most difficult
parameter to determine than other parameters can be directly determined ac-
cording to the step-size values of ANFIS training. The optimal length of the
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radius of the interpolation circle is both surface and number of reference data
points dependent.

As a general conclusion, the proposed method is reasonably increased the
performance of the surface interpolation compared to not only the Ordinary
Kriging but also the other two well known methods; Triangle Based Cubic and
RBF-Multiquadric. So, the results obviously point out that the fusion of geo-
statistical and soft computing methods is effective for surface interpolation and
must be examined more detailed in future studies.
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Abstract. We present a technique for efficiently constructing a “clean”
texture map of a partially occluded building facade from a series of im-
ages taken by a moving camera. After a robust registration procedure,
building regions blocked by trees, signs, people, and other foreground
objects are automatically inferred via the median absolute deviation of
colors from different source images mapping to the same mosaic pixels.
In previous work we extended an existing non-parametric inpainting al-
gorithm for filling such holes to incorporate spatiotemporal appearance
and motion cues in order to correctly replace the outlier pixels of the
texture map. In contrast to other inpainting techniques that perform an
exhaustive search over the image, in this work we introduce a principal
components-based method that learns to recognize patches that locally
adhere to the properties of the building being mapped, resulting in a
significant performance boost with results of indistinguishable quality.
Results are demonstrated on sequences where previous stitching and in-
painting algorithms fail.

1 Introduction

As part of a vision-based architectural modeling project, we want to capture the
visual appearance of buildings via robot-based “scanning.” Assuming a poly-
hedral model of a building’s structure [1, 2], a major subgoal of the task is to
obtain a high-fidelity texture map of each planar section of its facade. Creating
such a mosaic from a sequence of overlapping images via homography estimation
has been thoroughly studied [3, 4, 5]. However, a complicating factor that moti-
vated our work in [6] is the possible presence of other, unknown objects in the
scene between the camera and building plane—e.g., trees, people, signs, poles,
and other clutter of urban environments. These create “holes” in the mosaic by
occluding parts of the building wall from particular views.

Image/video inpainting [7, 8, 9, 10], a method for image restoration or object
removal, offers a principled way to fill such holes from contextual information
surrounding them either spatially or temporally. In [6] we introduced two novel
methods: (1) a technique for automatically identifying occluded regions (i.e., the
areas to be filled) in building facade sequences, in contrast to existing inpainting
algorithms that rely on manual segmentation; and (2) a novel spatiotemporal
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601 751 1 6

Fig. 1. Raw frames from Wolf Hall sequence (top row) and Hullihen sequence (bottom
row) with frame numbers

inpainting algorithm that combines spatial information from pixels in a partially-
completed mosaic with temporal cues provided by images in the timeline, or se-
quence of images captured. Like other non-parametric texture synthesis methods
[8, 11], our algorithm required an exhaustive search to identify the most likely
candidate pixels for replacement—over both the temporal and spatial domains.
Though the visual results were satisfactory, for long sequences they could be very
expensive to obtain, requiring on the order of hours to complete the inpainting
procedure.

The key motivation of this work is to improve our earlier algorithm by fram-
ing the search problem in inpainting as one of learning and recognizing object
classes, which is much more efficient than traditional Sum-of-Squared Distances
(SSD)-based searching. In a similar vein to this work, eigenface methods for face
identification [12] represent the whole image as a vector of weights in a linear
subspace, and some recent techniques in image retrieval [13, 14] model the ap-
pearance of object classes with a constellation of discriminative features. Here we
use Principal Component Analysis (PCA) to learn a lower dimensional represen-
tation of image patches that facilitates easy recognition of the most appropriate
patch. Applied to building sequences, we exploit motion cues from the timeline
to restrict the number of candidate pixels that will be filled. The problem then
becomes one of “building-patch recognition”, akin to the face recognition meth-
ods in [12]. The most likely building pixels can then be efficiently retrieved from
these candidates using the PCA-based representation.

In the rest of the paper, we first explain our PCA-based inpainting technique
that searches over a much lower dimensional feature space compared to other
exemplar based methods. We then extend our synthesis from the spatial domain
to include temporal information also and apply it to a vision-based application
that aims to recover texture maps of occluded building facades. We compare
these results to a previous technique and show equally good results at vastly
improved efficiency.

2 Inpainting by PCA-Based Recognition

In this section we present an algorithm for filling holes in images that is built
upon the work in Criminisi, Pérez, and Toyama [8], a patch-based copying
method combining ideas from non-parametric texture synthesis and diffusion-
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based inpainting. We will refer to their method as CPT inpainting and briefly
recapitulate the algorithm.

An empty target region Ω’s pixels are filled from its border dΩ inward by
copying square image patches from a source region Φ to target patches Ψp cen-
tered on p = (x, y) ∈ dΩ. Given the next target patch Ψp̂, an exemplar patch
Ψq̂ is selected from Φ and pixels are copied to the unfilled portion of the target
patch Ψp̂∩Ω from the corresponding part of Ψq̂. Letting the entire image region
be denoted by I, Ψq̂ is chosen as the source patch with the minimum distance d
(commonly the SSD) between it and the already-filled part of the target patch
Ψp̂ ∩ (I − Ω) (normalized for area). As inpainting proceeds Ω shrinks while Φ
remains constant, leaving a band of filled pixels Ω0 −Ωt at step t.

In the mold of [15, 8], a priority function P (p) = C(p)D(p) sets the order in
which patches along dΩ are filled. C(p) is a confidence term that measures the
amount of reliable information around p with the formula∑

q∈Ψp∩(I−Ω)

C(q)
|Ψp|

Initially, C(p) = 0 ∀p ∈ Ω0 and C(p) = 1 ∀p ∈ I−Ω0. When pixels in Ψp̂∩Ω are
filled in, their confidence values are updated from 0 to C(p̂), having the effect of
preferring higher confidence sections of dΩ to grow before low confidence regions.
D(p) is a data term proportional to the dot product of the tangent vector to dΩ
at p and the gradient vector ∇p with the maximum magnitude in Ψp ∩ (I −Ω).
This encourages the extension of linear structures by boosting the priorities of
patches with a strong edge “flowing into” them.

Most exemplar-based methods [11, 15] use the SSD as the distance function
d(·, ·) between two image patches. In addition to the lack of perceptual uniformity
in RGB space, for large search regions (as typically occurs with panoramas or
videos), this could be very inefficient. For an 11 × 11 color image patch, the
SSD to find the closest matching feature in Φ would require matching pairs of
363-element vectors over Φ. This can be potentially unmanageable. We therefore
choose to encode image patches from Φ as a set of compact feature vectors in a
lower dimensional eigenspace that allows much more efficient matching.

2.1 Computing the Patch Eigenspace

Given several image patches from Φ, we wish to capture almost all the variability
across those patches with as few dimensions as possible. PCA has been a very
popular dimensionality reduction technique widely used in recognition. It gener-
ates a set of orthonormal basis vectors, that maximize the scatter of all training
samples. In spite of various limitations (gaussian distribution, orthogonal lin-
ear combinations), we have found it to be simple and adequate for the task at
hand. Moreover, PCA is considered to be the most optimal with respect to the
reconstruction error. Given an image to be inpainted and the source region Φ,
we extract n × n patches from Φ that will be used to guide the inpainting. For
regular inpainting, we extracted patches at every pixel, but this can be a more
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Fig. 2. Given a set of image patches, classify them as belonging to bulding or fore-
ground. Note the analogy with face recognition/detection schemes.

coarse sampling as we show in the timeline mosaicing application. Typical patch
sizes that we’ve used are n = 9 and n = 11. We then create a vector out of these
patches by concatenating all 3 color channels.

PCA is then applied to the set of 3n2-element vectors to build the eigenspace
of patches that capture the statistics of these image patches. A similar method
was also used in PCA-SIFT [16] to encode SIFT features for image retrieval ap-
plications. After PCA, each n× n patch is expressed as a vector of coordinates
along the first k principal components. The value of k is chosen based on the
decreasing magnitude of eigenvalues as well as empirical evaluation of the qual-
ity of reconstruction. Given a new high-dimensional patch, it is projected into
feature space, where euclidean distance between points can be used to measure
similarity.

3 PCA-Based Timeline Inpainting for Mosaicing

In this section we present an efficient algorithm for filling holes in sequence-based
mosaics using the PCA-based recognition scheme. The goal of the application
is to construct high-fidelity texture maps of building facades from an image
sequence, even though parts of the building might be occluded by foreground
objects such as trees or signs in a majority or even all of the views. Assuming that
the building plane accounts for the majority of pixels in the sequence, with robust
methods we can estimate the dominant motion of the building and stabilize it
against the camera motion. If the foreground objects are small or fleeting, a
temporal median filter can effectively recover the background from the stabilized
sequence. Here we describe how our recognition-based inpainting method can
efficiently recover the background even when these assumptions do not hold.

3.1 Pre-processing

Image registration is carried out to warp each frame in the sequence to a mosaic-
aligned frame Wt. Every location p = (x, y) in the mosaic reference frame has a
set of pixels from the warped images {Wt(p)} associated with it which we call its
timeline T (p). The size of each timeline |T (p)| may vary from 0 to N depending
whether the pixel at p was imaged or not in each frame. Intuitively, since all
pixels on the building facade exhibit the dominant motion, they should appear
stationary in the mosaic whereas foreground objects such as trees and signs move
due to parallax. This variability is measured using the median absolute deviation
(MAD), and a high MAD at p indicates an outlier pixel in the median mosaic
Mmed(p) that needs to be inpainted.
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(a) (b)

Fig. 3. (a) KLT features labeled as RANSAC inliers (green) and outliers (red) can be
used to extract training examples. (b) Plot of first 3 principal components in feature
space for the training set.

Given that each T (p) contains an unknown mixture of background and fore-
ground object pixels, our goal is to correctly pick or estimate each background
pixel M(p) where |T (p)| > 0, forming a building mosaic M. Our inpainting
framework from the previous section fits in well with the solution of this prob-
lem. The temporal information available from the timeline has already limited
the possible number of candidate pixels that can be copied into the mosaic. The
appearance matching problem has now become one of “recognizing” the appro-
priate background from a set of patches consisting of building and foreground
objects (Fig. 2).

As explained in the previous section, we use PCA to project a set of labeled
training image patches into a lower dimensional feature subspace. The positive
examples of building patches are automatically extracted from Φ by uniformly
sampling from 11× 11 grids. The negative patches belonging to trees, grass and
so on could either be marked manually in a semi-supervised learning fashion
or automatically inferred from the RANSAC outliers in the image registration
step (Fig 3a). Since the labeling of negative training examples is performed only
once and offline, it doen not affect the run time. The original patches used to
construct the eigenspace can be discarded after this step.

3.2 Timeline Inpainting by Recognition

Let the MAD outlier pixels be the target region Ω and the rest of the median
mosaic Mmed be the source region Φ. Our problem differs from pure spatial
inpainting in that the timeline T for each p ∈ Ω, provided it contains at least
one background pixel, should constrain the filling process. Thus, our major goals
are to determine which, if any, pixels in T (p) are from the building background,
and to integrate this information into the inpainting process. Letting T (Ψp) =
{Ψ1

p, . . . , Ψ
|T (p)|
p } be the timeline of patches centered on p, we create a timeline

mosaic Mtime by modifying CPT inpainting in three major ways:
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1. In the first of two stages, each patch-wise pixel copy to Ω comes from one
timeline patch Ψ∗

p̂ ∈ T (Ψp̂) maximally likely to have come from the building
2. During stage one, the updated confidences C(p) of newly-filled pixels are set

to the motion-based background likelihoods p∗motion(p) of the pixels in Ψ∗
p̂

3. If the mean background likelihood p̄motion(Ψ t
p̂) for every patch in T (Ψp̂) is

below a threshold τmotion , Ψp̂ is not filled at that time. Stage two begins
when all remaining areas of Ω meet this definition, and consists simply of
CPT inpainting

Each of these three modifications is explained below:

Timeline patch selection. Consider a patch Ψp̂ in the mosaic Mtime that
is the next to be inpainted. Pixels in its unfilled part Ψp̂ ∩ Ω will come from
the corresponding part of one timeline patch Ψ∗

p̂ ∩ Ω. We copy pixels from the
timeline rather than Φ to maximize correctness, improve feature alignment, and
allow for the retention of unique features not present in Φ. To pick a Ψ∗

p̂ that
is most likely to contain building pixels rather than foreground pixels, we rely
upon two cues: (1) Appearance-based similarity to other features in the presumed
“all-building” region Φ; and (2) Minimal motion energy (indicating no occlusion
in that frame).

Most buildings have repeated patterns such as windows, doors, columns,
bricks, etc., so building (as opposed to foreground) timeline patches in Ω are
likely to have a similar appearance to features in Φ. However, appearance match-
ing alone is a less reliable indicator of “buildingness” in homogeneous areas, and
can be improved by incorporating the likelihood that motion occurred in that
patch in a particular timeline frame. By combining the unfilled portions of each
timeline patch with the filled part from the mosaic to create a timeline of com-
posite patches T (Ψ̃p̂) = {(Ψ t

p̂ ∩Ω) ∪ (Ψp̂ ∩ (I − Ω))}, we jointly measure patch
t’s building similarity and motion energy with the formula

B(Ψ̃ t
p̂) = papp(Ψ̃ t

p̂)p̄motion(Ψ t
p̂),

where the probabilities measure the likelihood of a patch belonging to the back-
ground building based on appearance and motion cues respectively. Pixels are
then copied from Ψ∗

p̂ determined by ∗ = argmaxtB(Ψ̃ t
p̂).

The evaluation of papp can be expressed in a probabilistic framework using the
N-Nearest Neighbor rule. Given a test patch Ψy, we can classify it as belonging
to class ν̂ that has the maximum posterior probability:

ν̂ = argmaxν∈V P (ν|Ψy).

V is the set of classes and in our case would be building and foreground. A
straightforward method of computing the likelihood for each class is based on a
voting scheme that returns the fraction of N -neighbors belonging to that class,
but this is sub-optimal if the number of training image patches from each class
is not guaranteed to be approximately the same. To evaluate the appearance
properties, we first project the patch Ψy into the k-dimensional eigenspace. Let
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(< x1, V (x1) > . . . < xN , V (xN ) >) be the N nearest neighbors and their
associated labels from the training examples. Then we return a distance weighted
likelihood

papp(Ψy) =
∑N

i=1 wi(Ψy,xi)δ(Building , V (xi))∑N
i=1 wi(Ψy,xi)

where w(·, ·) is the reciprocal of the euclidean distance between the two patches
and δ(a, b) = 1 if a = b and 0 otherwise. Compared to [6], computing distances
in a 25-dimensional eigenspace that captures almost all the variance across the
patches is much more efficient than performing the SSD over the whole timeline
for 11× 11 patches.

The intersection of a pair of successive, thresholded difference images was
suggested in [17] as a method for identifying foreground pixels. By converting
the warped images to grayscale and scaling their intensity values to [0, 1] to get
{W′

t}, we can adapt this approach to define a motion energy or foreground image
at time t as Ft = (|W′

t −W′
t−1|) ⊗ (|W′

t+1 −W′
t|) where | · | is the absolute

value and ⊗ is the pixelwise product.1 Letting μ be the mean foreground image
value over all t, we define the background likelihood for pixel p in warped image
t as pt

motion(p) = e−Ft(p)/μ, and p̄motion(Ψ t
p̂) as the mean pixelwise background

likelihood over all pixels in Ψ t
p̂ ∩Ω.

Confidence term. The background likelihoods p∗motion(Ψp̂ ∩ Ω) are copied as
the confidence values of the newly filled-in pixels in Ψp̂ ∩Ω. This tends to limit
the propagation of bad choices in subsequent iterations—i.e., patches bordering
areas of higher motion energy are bypassed for low motion energy areas first.
The decaying confidence scheme of CPT inpainting does not apply in our case
because timeline patch pixels in the interior of Ω are no less reliable than those
near its edges.

Stopping criterion. With no patch in T (Ψp̂) from the background, there are
no temporal constraints on what pixels to fill it with. Because unique features
in Ω may not be similar to any patches in Φ, we detect all-foreground timelines
solely on the basis of excessive motion energy. Specifically, if for every patch in
T (Ψp̂) the mean background likelihood p̄motion(Ψ t

p̂) < τmotion , Ψp̂ is not filled.
Subsequent inpainting in adjacent areas may allow some skipped pixels to be
filled later, but stage one halts when this condition is true at every remaining p ∈
Ω. The holes that are left are generally much smaller than Ω0, with more building
structure revealed, and thus stage two can consist of pure CPT inpainting with
much better results than if it had been run in place of stage one.

4 Results

We show the result of our facade construction algorithm on image sequences that
would not work well with current stitching or inpainting algorithms. The Wolf

1 This of course excludes the timeline’s first and last images.
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Hall sequence consists of 17 subsampled images from an 801 frame sequence,
and captured at 30 fps from a camera moving parallel to a building facade.
Examples of these are shown in the top row of Fig. 1. Several objects at different
depths occlude parts of the building including trees, bushes, and a large sign.
The sequence was taken in early fall and some of the leaves closely match the
color of the brick, making the case for highly discriminative encoding - even in a
low dimensional space. We have found our technique to be robust to these effects.
The Hullihen Hall sequence is a short sequence of 6 images taken by a camera,
meant to illustrate the efficacy of our technique in recovering even unanimously
occluded building regions. The first and last frames, shown in the bottom row
of Fig. 1, emphasize how some parts of the facade behind the bushes are never
seen throughout the sequence.

Fig. 4 shows the result of our recognition-based inpainting algorithm that
looks into the timeline of image sequences. The initial set of positive training
patches to construct the eigenspace was selected from Φ. The negative examples
of trees and leaves were extracted from a manually marked section in a single
frame. RANSAC outliers could also be used for automatic segmentation of nega-
tive examples. In both mosaics, the ground plane outside the region of the facade
was excluded from timeline inpainting.

(a) (b)

(c) (d)

Fig. 4. (a) Median mosaic outliers for Wolf Hall sequence to be inpainted; (b) Result
of PCA-based timeline inpainting followed by CPT inpainting after affine rectification
(c) Median mosaic outliers for Hullihen Hall sequence (d) Result of inpainting and
rectification as in (b)
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(a) (b)

Fig. 5. Comparison of solutions in a problem area around the central window of the
Wolf Hall Sequence. (a) Result of timeline inpainting using SSD measure; (b) Result of
timeline inpainting using the PCA-based recognition scheme. Results are comparably
good, but the runtime for (b) was many times faster.

Fig. 5 compares the result of our technique to [6]. Compared to [6] that used
optimized SSD code in C as the distance function, our recognition-based ap-
proach was as much as 30 times faster even with unoptimized Matlab code.
There are a couple of factors that have contributed to this improvement. Firstly,
the reduced number of dimensions from 363-element vectors to k = 25 dimen-
sions in the PCA eigenspace, while still retaining the distinctiveness of the patch
improves the search procedure. Secondly, by our use of temporal information,
we have at most |T (p)| patches that can be copied to the mosaic at p. Since
these frames are all aligned in the mosaic frame, it is theoretically enough to give
a binary classification of {Builiding, Foreground}. However, by using N = 10
nearest neighbors, we are able to give a probabilistic likelihood without having
to do the fine-grained appearance matching over every pixel as is done with the
SSD function.

5 Conclusion

We have presented an approach to inpainting for sequences using a PCA-based
recognition as opposed to exhaustive searching. We claim that representing im-
age patches in a lower dimensional search space can vastly improve the efficiency
of the search, especially in spatio-temporal analysis. We demonstrate the effec-
tiveness of our technique in removing occlusions of building facades in image
sequences using a combination of temporal and spatial inpainting.

There are several aspects of the problem that is the current focus of research.
An important unaddressed image processing issue is the photometric artifacts
that can be introduced due to shadows or different lighting conditions through a
long sequence. Much work has been done in the face recognition community to
make PCA robust to illumination. We would like to examine the adaptability of
those techniques to smaller patches. We could also potentially have more speedup
with better searching to find the N -nearest neighbors in the PCA eigenspace.
Methods such as k-means or approximate nearest neighbor can be used to index
into the feature vectors. We are also examining low-level texture-based segmen-
tation for recovery of the building planes that will be fed to the inpainting.



PCA-Based Recognition for Efficient Inpainting 215

References

1. Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., Master, N.:
Calibrated, registered images of an extended urban area. Int. J. Computer Vision
(2003)

2. van den Heuvel, F.: Automation in Architectural Photogrammetry; Line-
Photogrammetry for the Reconstruction from Single and Multiple Images. PhD
thesis, Delft University of Technology, Delft, The Netherlands (2003)

3. Davis, J.: Mosaics of scenes with moving objects. In: Proc. IEEE Conf. Computer
Vision and Pattern Recognition. (1998)

4. Hansen, M., Anandan, P., Dana, K., van der Wal, G., Burt, P.: Real-time scene sta-
bilization and mosaic construction. In: DARPA Image Understanding Workshop.
(1994)

5. Szeliski, R.: Video mosaics for virtual environments. IEEE Computer Graphics
and Applications 16 (1996) 22–30

6. Rasmussen, C., Korah, T.: Spatiotemporal inpainting for recovering texture maps
of partially occluded building facades. In: IEEE Int. Conf. on Image Processing.
(2005)

7. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIG-
GRAPH. (2000) 417–424
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Abstract. Texture segmentation is a long standing problem in computer
vision. In this paper, we propose an interactive framework for texture seg-
mentation. Our framework has two advantages. One is that the user can
define the textures to be segmented by labelling a small part of points be-
longing to them. The other is that the user can further improve the seg-
mentation quality through a few interactive manipulations if necessary.

The filters used to extract the features are learned directly from the
texture image to be segmented by the topographic independent compo-
nent analysis. Transductive learning based on spectral graph partition is
then used to infer the labels of the unlabelled points. Experiments on many
texture images demonstrate that our approach can achieve good results.

1 Introduction

Automatic texture segmentation [1, 2] is a tough problem as witnessed in the
past decades. It is challenging since it is under-constrained for the following
reasons:

The first is the intrinsic ambiguities in texture perception. We can distinguish
a texture when we see it. However, it is difficult to give an accurate definition
[1] which can be applied to a vast amount of vision patterns in generical images.
Texture is a scale-related regional process, which may be understood in different
ways by different people for different purposes.

The second is the scale selection. Texture features for segmentation are all
computed over local windows, whose size should be selected properly to contain
the wide range of basic patterns. It is difficult to determine automatically an
adaptive size without any prior information.

The third is the uncertainty in quantity. In real applications, an image region
may be explained as a texture or a combination of several vision objects. It is
important to know the number of the textures in an image for later statistical
pattern analysis.

Motivated to the above observations, this paper addresses the problem of
texture segmentation in a user controllable environment. The goal is to achieve
good performance at the cost of modest human-computer interaction.

The interactive framework needs the user to define his/her own textures by
labelling some points belonging to them, supply the total number of the textures

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 216–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in the texture image and the size of the local window for feature extraction. So
the segmentation is controlled by the user.

Through human-computer interaction, the class IDs (labels) of labelled points
are all known. Then the task is to infer the labels of the unlabelled points based
on those labelled ones. This is a typical learning problem.

We use transductive learning via spectral graph partition [3] to solve the
learning problem. Different from inductive learning and semi-supervised learning
[4, 5], transductive learning only aims to infer the labels of the points in a given
data set. Statistical learning results suggest that better results can be achieved
[6]. In addition, a small part of labelled points are often enough to design an
effective transductive learner (transducer). This means that the user is only
required to label relatively few points.

To extract the adaptive texture features, we use the topographic independent
component analysis (TICA) [7] to learn the filters directly from the texture image
to be segmented.

2 Related Work

Interactive image segmentation. The recent years have seen a surge of inter-
est in interactive image segmentation[8, 9, 10]. By indicating certain pixels that
absolutely belong to the parts of the objects, the background or the foreground,
hard constraints are imposed to the segmentation system to alleviate the prob-
lems inherent to fully automatic segmentation. Another advantage is that the
user can make final decision whether the current result is good or not.

There exists a lot of work on this topic (refer to [8, 9, 10] for more literatures).
Most of the approaches are based on color and gray information. To our knowl-
edge, currently little work is developed on interactive texture segmentation.

Transductive learning. The setting of transductive learning is introduced in
[6]. A transducer is constructed on a set of fixed data points, which contains
two subsets [11]: a training set of labelled points and a working set, i.e. test
set, of unlabelled points. The general transduction task is to infer the labels
of the points in the working set. But in the traditional inductive setting, a
classification function is learned first and only later tested on a test set chosen
after the learning has been completed [11]. Algorithms for designing a transducer
can be found in [3, 11, 12, 13] and so on.

Texture segmentation. Texture segmentation includes two main steps: feature
extraction and pattern classification.

Literatures on feature extraction are rich [2, 14]. Among the majority of exist-
ing methods, filter based methods have won an emerging consensus [15]. Almost
all existing filters are designed under some mathematical framework, for example,
the optimized Gabor filter bank [16]. Differing from the traditional approaches
[15], Zeng et al. [17] apply the classical independent component analysis (ICA)
[18] to natural scene images to learn the filters, and have achieved good results.
In applications, filters adaptive to the texture image to be segmented are desired.
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Classification can be performed in an unsupervised or supervised way. Gener-
ally, most unsupervised clustering algorithms are designed on some prior knowl-
edge. Naturally, the prior knowledge can be supplied by an interactive way.

3 Interactive Texture Segmentation Framework

3.1 Basic Formulation

Suppose the texture image to be segmented is converted to an array of feature
vectors, X = (x1,x2, · · · ,xn). Each data point, xi(∈ RN), corresponds to a pixel
Pi and has a desired label of texture class yi ∈ {1, 2, · · · , C}, here C is the total
number of the textures that the user supplies. Let X = XT ∪XW , where XT is
the training set and XW is the working set. The labels of the points in XT are
given by the user when defining his/her textures. Now the task is to infer the
labels of the points in XW . This is a typical transductive learning problem.

We use Joachims’s spectral graph transducer (SGT) [3] to infer the labels.
The SGT is a transductive version of the k-NN classifier, which is very suitable
for our task since texture can often be modelled as a Markov random field.

The SGT is initially designed for two-class classification problems. For multi-
class problems (C > 2) [6], the labelled data should be divided into two subsets to
construct a basic SGT. This may result in that they are unbalanced in quantity.
But this factor is considered into the global optimization when using spectral
methods to design a SGT. A key advantage of the algorithm is that it does not
need additional heuristics to avoid unbalanced splits.

However, the SGT needs to perform singular value decomposition (SVD) of
Laplacian matrix whose size is equal to the number of the data points in X. Per-
forming SVD may need a huge amount of computing resource for large matrices.
Alternatively, to avoid labelling each pixel, we can label a representative subset
of all pixels. The points in this subset can be chosen uniformly from the image
by the user with proper resolution.

Actually, it is reasonable only to consider a representative subset for texture
image segmentation. This results from the fact that texture is a region process.
Every pixel in a window patch1 of a texture should be labelled as the same class.
We can use the center point as their representative. Thus, the total data points
to be considered can be reduced to a large degree. This skill is similar to the
technique applied in [19] to image segmentation.

However, this treatment will not produce pixel-level accuracy in the edge
regions between textures. The user can choose to increase the resolution by
reducing the size of the window patch to alleviate this problem.

3.2 Overview of the Framework

The interactive texture segmentation framework consists of five main modules: ini-
tialization, feature extraction, transductive learning, filtering and user evaluation.
1 Note that it is not the “local window” used to extract the features.
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Initialization. First, the user is required to provide four integers x0, y0, xs

and ys to construct a representative subset P = {(x0, y0), (x0 + xs, y0), · · · ,
(x0, y0 + ys), (x0 + xs, y0 + ys), · · ·}. Here, xs and ys control the resolution of
representatives.

Second, the user is required to supply the total number of textures C and the
size of the local window (wl, hl).

The third step is to define the textures. For user’s convenience, the user can
only need to mark a rectangle regionR. A subset is uniformly selected from R∩P
with two controlling parameters of row step sr and column step sc. For example,
sr/sc=2 means that the points in every two rows/columns will be selected. The
user can also label single important points to define a texture. Alternatively, the
user can also choose to provide a data file of labelled information. In this way,
the user is only required to supply the array with zeros for unlabelled pixels and
positive integers for labelled ones.

Feature extraction. We use TICA to learn the filters to extract the features
(Subsection 4.1).

Transductive learning. Based on the features of the points, single SGT is used
to solve two-class classification problem, while a group of transducers is designed
for multi-class problems (Subsection 4.2). The output of transductive learning
is an array of point labels.

Filtering. To smooth the labels, median filter is performed on the label array
according to the space relationship of data points.

User evaluation. The user can further improve the segmentation results until
s/he is satisfied. This provides a mechanism for the user to correct the errors.

Usually, there are two kinds of errors. One is due to the reason that some
basic vision patterns miss to be labelled. A part of image regions may be labelled
as error textures. Another error often appears in the edge regions of different
textures. When a patch in an edge region between textures is separated from the
image setting, the ambiguity in pattern classification increases. Supplying more
labelled points in the edge regions is desired.

4 Algorithm

4.1 Texture Feature Extraction

Recent researches suggest that ICA process of nature scene images can result
in edge detection [20]. Zeng et al. use the classic ICA to learn the filters from
images of four nature scenes [17]. Differing from their work, we use the TICA
to learn the filters directly from the texture image to be segmented. The reason
is that the TICA is more suitable for image decomposition [7], compared with
classic ICA.

According to image decomposition, each image patch x, treated as a vector
here, can be formulated as a linear combination of a set of image bases, i.e.
x = A · s. Equivalently, we have s = W · x. Each column of A is a mixing basis
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Fig. 1. Four groups of filters learned by the TICA. Here, wp = hp = 16, Ntica = 6000.
The dimensionality after PCA is reduced to 64 and Nf is equal to 40.

and each row of W is an unmixing basis. Note that the computation of W · x
is similar to the convolution operation in signal processing and each row of W
can be viewed as a filter. The steps of feature extraction are as follows:

(1) Given the size of image patch (wp, hp), we randomly choose Ntica patches
and convert each one (gray data) to a vector respectively to get samples {x}.
Then principal component analysis (PCA) is performed to reduce the redun-
dancy and construct the eigen-space. After whitening the eigenspace transformed
data, the TICA is used to learn the matrix W.

By reconverting each row of W to a patch form, we get a group of filters
denoted by F = (f1, f2, · · · , fNf

), where Nf is the total number of the filters
learned by the TICA. Figure 1 shows four groups of filters, which correspond
orderly to the source images in Figure 2. We can see that these filers are similar,
to some degree, to the vision patterns that the texture contains. Thus, they are
adaptive to the image data.

(2) convolute the texture image with F . For each pixel p(x, y), a response
vector is obtained, i.e. Rp(x,y) = (R1

p(x,y), R
2
p(x,y), · · · , R

Nf

p(x,y))
T .

(3) construct filter channels by pixel-to-filter mapping [24]. Each filter channel
Ii corresponds to a filter, which is a subset of pixels where the given filter gets
maximal response [17]. It can be calculated from Rp(x,y):

Ii = {(x, y)|i = arg
j

max{Rj
p(x,y), (x, y) ∈ I}

Obviously, {I1, · · · , INf
} is an equivalent partition of I, namely, I = ∪Ii and

Ii ∩ Ij = ∅, ∀ i �= j.
(4) For each p(x, y), calculate a locally windowed filter histogram from all

filter channels [17, 24]:

Hp(x,y) = (|H1
p(x,y)|, |H2

p(x,y)|, · · · , |H
Nf

p(x,y)|)
T

here Hi
p(x,y) = {(s, t)|(s, t) ∈ Ii ∩Np(x,y)}, Np(x,y) is the local window of p(x, y)

and | · | is the cardinality of a set. The size of the local window, (wl, hl), is given
by the user.

(5) Choose a Nd−dimensional sub-vector Fp(x,y) from Hp(x,y) by discarding
its components with small values.

(6) Let M = max
(x,y)∈I,1≤j≤Nd

{F j
p(x,y)}. After normalizing Fp(x,y) with M , we

obtain the texture feature.
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Fig. 2. Comparable experimental results by k-means cluster. In each of the four panels,
from the first to the fourth column are the source image [21, 22], the results by the
Gabor filter bank [16], by the filters learned from the 13 natural images [23] by TICA,
and by the filters learned from the image to be segmented. The upper and lower bounder
of interesting frequencies of Gabor filter bank are taken as 0.4 and 0.05, while the scale
number and orientation number are 4 and 6. For TICA, Nf = 40 and Nd = 20.

Gabor filter bank [16] is often used to extract texture features. However,
it may not be effective for the textures with irregular and non-periodic vision
patterns [17]. Some comparable results are reported in Figure 2.

4.2 Transductive Learning by Spectral Graph Partition

Joachims’s approach to transductive learning is a tranductive version of the
kNN rule. Without a greedy search, the global optimization problem can also be
solved effectively by spectral methods [3].

Two-class problem. The main steps of constructing a SGT are as follows:
(1) Construct the similarity-weight kNN graph:

A′
ij =

{
sim(xi,xj)

xk∈knn(xi)
sim(xi,xk) if xj ∈ knn(xi)

0 otherwise

where xi, xj and xk are texture features, and sim(xi,xj) is the similarity be-
tween xi and xj , calculated as sim(xi,xj) = (xi · xj)/(‖xi‖ · ‖xj‖).

(2) Compute weighted matrix A = A′ + A′T , diagonal degree matrix B,
Bii =

∑
j Aij , and Laplacian matrix L = B−0.5 · (B−A) ·B−0.5.

(3) Compute the smallest 2 to d+1 eigenvalues and the corresponding eigen-
vectors of L.

(4) Construct a SGT. According to the labels, we first divide the training set
into two subsets, i.e. positive training subset and negative training subset. Then,
We compute the indicative vectors [3] for these two subsets and the working set,
and evaluate the ratio of positive/nagetive points. Given the selected eigenvectors
and a parameter c that trades off training error versus cut value, a SGT is finally
constructed [3].

Multi-class problem. We use a method similar to one-versus-rest strategy [6]
to deal with the multi-class problem. Given a combination of the class labels,
we first partition the training set into positive and negative training subsets.
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A SGT is then constructed. According to different combinations of class labels,
we can get a group of transducers. Majority voting principle is applied to the
outputs of these transducers to infer the final labels of unlabelled points.

5 Results

5.1 Textures in Benchmarks

To demonstrate the effectiveness of our approach, we apply the SGT and our
texture features to many texture images constructed from two benchmarks, the
Brodatz and MIT VisTex texture libraries [21, 22], which are mostly used in
texture research. Some results are shown in Figure 3.

The upper row in Figure 3 shows the source texture images. The segmentation
results are demonstrated in the lower row. To construct a representative subset,
we input 16, 16, (10,10) for rs, cs and (x0,y0), respectively. Then the data points
used to define each texture are labelled by a window, as illustrated respectively
in the upper row in Figure 4. In Figure 3(a), 3(b), 3(c), 3(d), the numbers of
the labelled points for each texture are 8, 20, 8, and 12, respectively. The size of
local window (wl, hl) is 41×41.

(a) (b) (c) (d)

Fig. 3. Artificial texture images and the segmentation results. Only gray data are used.

When designing a SGT, we take k = 10, c = 5000.0 and d = 200. For feature
extraction, we take Nd=15. All the other parameters related to PCA and TICA
are the same as those used in the experiments demonstrated in Figure 2.

These parameters for transductive learning and feature extraction are fixed
for all experiments. For four experiments reported in Figure 3, we achieve 100%,
98.05%, 97.27% and 94.14% correct rate, respectively.
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5.2 Natural Texture Images

Figure 4 shows some results by applying our approach to real natural texture
images. In Figure 4(a), we use two windows to label 12 data points, taking sr=2
and sc=1. We can see, from the result demonstrated in Figure 4(b), that only a
few data points are incorrectly classified. To improve the performance, we add
three labelled data points as shown in Figure 4(c) with yellow circles2. Then
the transducer is reconstructed according to the new labelled information. New
result is shown in Figure 4(d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Natural texture images and the segmentation results. Only gray data are used.

Figure 4(e) shows another texture image. 16 data points are labelled for the
two textures respectively, taking sr = 1 and sc=2. The segmentation result is
shown in Figure 4(f). The error rate is about 12%. One reason is that the blue-sky
and white cloud texture is very complex. Besides the windowed vision patterns
in Figure 4(e), the cloud patterns located in the second window as demonstrated
in Figure 4(f) are also fundamental. Another reason is that the meadow patterns
labelled in Figure 4(e) are not enough to represent the patterns located in the
shadow region. To get better result, we add two labelled subsets of data points
as shown in Figure 4(g). The result is illustrated in Figure 4(h). We can see that
almost all data points are correctly labelled.

The sizes of local window used to extract the texture features for Figure 4(a)
and Figure 4(e) are 41 × 41 and 51×51, respectively. All the other parameters
are the same as those used in the experiments in Subsection 5.1.

2 This is equivalent to performing heuristic post-processing.
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6 Conclusion

In conclusion, a new framework for texture image segmentation has been pro-
posed and demonstrated, which can obtain good segmentation quality with a
few interactive operations. This framework allows the user to define his/her own
textures by supplying several labelled data points and make final decision by
evaluating the results. In this interactive setting, texture image segmentation is
formulated as one of designing transductive learners.

In addition, the TICA is used to learn the filters directly from the image to be
segmented. These filters are adaptive to the image data. Comparable experimen-
tal results shows that the features extracted by these filter are more separable
for classification.

The limit of our framework is that currently it is only suited for texture
images. However, most natural images include not only texture objects but also
other non-texture objects, such as objects with uniform color distribution, lines,
shapes, etc.. In the future, the main work is to integrate different perception
objects together into an interactive framework.

Another limit of our work is that we can not obtain pixel-level accuracy. In the
future, we would like to introduce hierarchical technique into our segmentation
framework.
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Abstract. Segmentation is a classical yet important problem in vision.
Most of the previous works are either region-based or boundary-based.
The two approaches own complementary merits - while the region-based
one always produces closed boundaries, the boundary-based one involves
primarily local operations and avoids the complexity of deciding how ho-
mogeneous a region and how inhomogeneous neighboring regions should
be. In this paper, we propose a new solution mechanism that makes use of
both cues. We use the boundary processing and a particular field model
to come up with a number of coarse, initial closed boundaries about
the image first. Such coarse boundaries will then, through an adapta-
tion of the Four Color Theorem, serve as the initialization to a level-set
method-based minimization that acts on the intensity distribution of the
image, and allows the final crispy segmentation result to emerge. Com-
pared with the existing solutions, our method requires no initialization
from the user, and the automatically extracted closed contours do pro-
vide guidance to derive more optimal and smoother segmentation result.
Experimental results with some benchmarking image-sets show that the
proposed solution could deliver accurate segmentation boundary.

1 Introduction

To segment an image into a number of regions so that each region corresponds to
a surface or an object in the imaged scene is trivial to humans but remains a chal-
lenge to machine vision [1]. Previous works could be classified to either boundary-
based or region-based. The boundary-based methods first detect places where
there are sharp jumps of intensity, and aim at bridging such fragments of bound-
aries to form closed boundaries. In contrast, the region-based methods aim
at dividing the image into a number of regions that have intensity distribu-
tions almost homogeneous within regions but inhomogeneous across neighboring
regions.

The edge detection algorithms such as those based on Roberts operator, Sobel
operator, Laplacian operator etc. [1] generally cannot provide closed contours;
they work on the local intensity gradients merely to detect edge elements. The
double-thresholding Canny edge detector [2] can outline longer chains of edge
elements but gaps still remain at places where intensity contrast is weak. The

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 226–235, 2006.
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saliency-enhancing operators proposed by Guy and Medioni [3] are capable of
highlighting features which are considered perceptually relevant; in other words,
they can provide gap-filling function in places where gradient information is al-
most absent, so as to construct closed contours. However, such segmentation
decisions, which do not get involved more global information like intensity ho-
mogeneity in a region, sometimes do not correspond to meaningful features.

In contrast, the parametric active-contour such as snake method starts with
a closed contour and seeks to refine its shape in accordance with the intensity
gradients that the contour could perceive from the image data over the contour
element positions where it holds. The active contour is guided by internal forces
(to maintain the continuity or even smoothness of the contour at all time) as
well as external forces (the intensity gradients in the image data over the contour
element positions where the contour holds at any given time) [4]. However, good
initialization of the contour is required, or else the contour will be easily trapped
in some local minimum.

Level set algorithms provide more freedom on the indication of the initial
contours in the active-contour methods. According to Chan and Vese [5], the
initial curve can be almost anywhere in the image and good segmentation result
could still be attained. In their formulation, the dynamics of the active contours’
deformation does not depend on the intensity gradients in the image data, but
is instead related to certain intensity partitioning threshold that distinguishes
what intensity should be inside the final boundary and what should be outside
it, and the threshold is determined from the initial contours. In another work of
theirs [6], they adopted multiple seed initialization in which the initial contours
such as circles are evenly and systematically distributed in the image. The results
have been much improved over those of the previous methods. However, the dy-
namics of the active contours is dependent on a particular intensity partitioning
threshold, which means the contours could still be arrested at local minima. In
other words, the initialization of the contours still contribute substantially to
the final result.

In our approach, the boundary information and the region homogeneity prop-
erties for the desired result are combined together to provide a more accurate
segmentation yet requiring minimal input from the user. First, an algorithm is
implemented on the image data to detect the edgel data in the form of linear
elements; both the orientation, edge strength, and inter-segment relationship of
the detected line segments are to be used in a later stage. Here, line segments
instead of edge elements are used for two purposes: to enhance the globality of
the processed features, and to reduce the computational complexities. Then, a
field model is constructed from the end-points (not all points) of the segments,
that indicates the probability distribution of the subjective contours’ location.
After that, we truncate the field with a threshold to form a binary image which
include the image positions that are of high values in the probability distribu-
tion. Medial axes are then extracted from such image positions, and only closed
contours are retained to provide initial contours to the subsequent processes. We
then use an algorithm adapted from the Four Color Theorem to label the regions
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separated by those closed contours. Finally, a level set algorithm is implemented
on the labeled regions to give the final segmentation result.

Compared with the previous methods, our approach combines information
from both boundaries and regions so as to enhance the quality of the solution.
The approach is without requiring the user to input initial contours. Experiments
on some real images show promising performance.

2 Previous Methods

2.1 Tensor Voting Method

In this method, each image position collects voting information including orien-
tation and strength contributed by all other line segments in the image. Then,
based on the collected voting data, a measure on the agreement is performed
to give the salient feature on each image position [3]. An example is illustrated
in Fig. 1: (a) is the original image; (b) shows the field model adopted in this
case – a ball field in which the strength’s distribution is evenly spread out in all
directions and decays from the point in the center of the field with increase of
distance; (d) shows the extracted curves basing on the field shown in (c). The
same original image is processed with a stick field as shown in (f), in which the
field strength decays with the increase of distance to the center point and the
increase of angle deviated from the direction of center point. Obviously, in this
case, the voting segments need to own orientation information along with the
intensity information. The images in Fig. 1 are derived from a matlab toolbox

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Tensor voting result
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that is based upon the work of Medioni [3]. We can find that the extracted curves
are quite noisy and the stick field provides a thinner curve containing original
point elements.

2.2 Level Set Method

Originally proposed by Osher and Sethian for capturing moving fronts, the level
set method has been developed to be a numerical tool for image segmenta-
tion [7]. In the framework proposed by Chan and Vese [5], [6], Mumford-Shah
functional is expressed in the level set formulation and compute the associated
Euler-Lagrange equations to evolve contours and derive the segmentation. The
model can detect contours with or without gradient, and closed contours can
be promised. Although it is said that the initial curve for the model can be
anywhere in the image, the fact that the stopping term of the Mumford-Shah
functional is related to the evolution of PDE deduced from the associated Euler-
Lagrange equation indicates that the location of initial curves will influence the
final segmentation.

3 Discription of Our Approach

Our approach consists of two substantial parts: in the first part, closed contours
are outlined from the detected separated edge elements by some edge detection
algorithm, in which regions in the closed contours correspond to features with
higher possibility to be objects; in the second part, image regions separated by
above closed contours are labeled under Four Color Theorem with four labels,
and then level set method is adopted to provide more homogeneous segmenta-
tion on the labeled regions. Steps of the procedure are listed in the following
diagram.

In the first step of Fig. 2, a linear edge element detection algorithm is per-
formed to extract line segments in one image and record the segment features
including orientation, average intensity value, length and the inter-segment rela-
tionship to each other. An example is shown in Fig. 3 (a) and (b) corresponding
to the original image and the extracted line segments separately.

Since the often separated and opened line segments can not be served as
the initial segmentation contours, a field model similar as that mention in [8]
is adapted to outline a saliency map to indicate the possibility distribution of
subjective contours in the image. As the schematic diagram shown in Fig. 4, we
consider the induced field contribution on a nearby position C around end point
A of a line segment AB with length c and orientation θ1, in which position C
locates at a distance r to end point A with an orientation angle θ2.

In our algorithm, in order to reduce the calculation consumption, the field
contributed by an line segment is restricted in a fan shaped region from the
corresponding end of the line segment with an angle spanned from -θ0 to θ0
relative to the line segment direction, which means, for example in the case of
Fig. 4, once |θ2 − θ1| is bigger than θ0 there will be no field contributed by line
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segment AB. Currently in our algorithm, we set θ0 as π/4 since normally the
accepted smooth contours will not own a direction change over this range.

σ = K
cos3(π|θ1−θ2|

2θ0
)

γ(c0/c) (1)

In equation 1, the field calculation equation: σ is the strength of field element
with orientation angle θ2; K is a constant; c0 is a length effect parameter to
control the field descent rate as well as the computation consumption, which
is set as one fifth of the length of the image here. The field element strength
decays with the increase of distance from the image position such as point C to
the end point of the considered line segment such as AB, and also decays with
the increase of the deviation to the line segment direction. Of course positions
on line segments possess highest strength values relative to the field generated
by them, and the values are proportional to the strength values of line segments.

After field calculation, one position will own several field elements with differ-
ent directions and strength values. To derive the saliency map on image positions,
the principle direction and strength of the field on each site is required which is
realized with Singluar Value Decomposition (SVD) in our work.

On the saliency map, we eliminate the sites with weak strength values under
a threshold and derive a binary image as the instance shown in Fig. 3 (c). In
this step, the threshold can be adjusted to detect strong or weak contours in the
image. As the fourth and fifth steps shown in Fig. 2, central lines are extracted

Fig. 2. Image processing steps of our approach
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(a) Original image (b) Edge elements (c) Binary image from field

(d) Closed contours (e) Labeled segments (f) Final segments

Fig. 3. Image results from main step

from the regions occupied by the points with higher strength values through
medial axis transformation (MAT) and only closed contours are retained in the
following step as the example shown in Fig. 3(d).

The derived closed contours divide the image into pieces adjacent to each
other. If the boundary of each piece is represented by a level set function, then
N pieces will require N level set functions which increase a large amount of
calculation expense as illustrated in [9]. Here, we adapt the method mentioned
in [6] that based on Four Color Theorem, then merely two level set functions are
sufficient to detect and represent distinct segments. Two C1 level set functions
φ1, φ2 are defined on the image, and φ1 = 0, φ2 = 0 are used to represent
the closed contours, then according to Four Color Theorem all separated pieces
can be labeled by (φ1(x) > 0, φ2(x) > 0) or (φ1(x) > 0, φ2(x) < 0) or (φ1(x) <
0, φ2(x) > 0) or (φ1(x) < 0, φ2(x) < 0) and any adjacent pieces can own different
labels. Using the notation Φ = (φ1, φ2) to represent the two level set functions

Fig. 4. Field element calculation model
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in which Φ = 0 represents the contours, we introduce an energy in level set
formulation, based on the Mumford-Shah functional [6]:

F (u,Φ) =
∫

Ω

|u++ − u0|2H(φ1)H(φ2)dx

+μ
∫

Ω

|∇u++|2H(φ1)H(φ2)dx

+
∫

Ω

|u+− − u0|2H(φ1)(1−H(φ2))dx

+μ
∫

Ω

|∇u+−|2H(φ1)(1−H(φ2))dx

+
∫

Ω

|u−+ − u0|2(1−H(φ1))H(φ2)dx

+μ
∫

Ω

|∇u−+|2(1−H(φ1))H(φ2)dx

+
∫

Ω

|u−− − u0|2(1 −H(φ1))(1 −H(φ2))dx

+μ
∫

Ω

|∇u−−|2(1 −H(φ1))(1 −H(φ2))dx

+ ν
∫

Ω

|∇H(φ1)|+ ν
∫

Ω

|∇H(φ2)| (2)

Herein u is a C1 function defined on the image to represent the resumed
image in a smooth way, u++, u+−, u−+, u−− are u in φ1(x) > 0 and φ2(x) > 0,
φ1(x) > 0 and φ2(x) < 0, φ1(x) < 0 and φ2(x) > 0, φ1(x) < 0 and φ2(x) <
0 respectively. In order to express the equation uniformly, each integration is
defined on the whole image region Ω, so, u++, u+−, u−+ and u−− are all zeros
outside of their defined regions. The Heaviside function H(φ) is defined as one
if φ ≥ 0 and zero if φ < 0. The last two items in Eqn. 2 is served as boundary
smooth constraints to prevent the zero level set contour to be too long; μ > 0,
ν > 0 are variable parameters to weight the region smooth constraints and
the boundary smooth constraints. A minimizer of the above energy will be an
“optimal” piecewise-smooth approximation of the initial image u0.

Examples of the labeled initial segments and the final segmentation result are
shown in Fig. 3 (e) and (f) respectively in which segments are expressed with
different grey levels.

4 Experimental Results

We compare the results derived from our method with those gotten from other
methods including JSEG method [10] and active contours algorithm based on
level set method [5], [6]. The active contour algorithm will run in two initializa-
tion modes, i.e., with two seeds and with multiple seeds for segmentation and
the results are shown in the third and fourth row of Fig. 6.
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(a) (b)

Fig. 5. Initial segmentation seeds

Compared with the results derived from JSEG method as shown in the second
row, the segmentation by our method exhibit smoother boundaries as shown in
the last row of Fig. 6 especially in (m) and (n). The Fig. 6 (o) shows more sepa-
rated and small segments than (f) however it can be found that the boundaries
are still more smoother than those in (f). Since the JSEG method develops re-
gion growing and merging under the influence of the J values distributed in the
image, the region’s evolution does not involve a constraint on boundary smooth-
ness as in our method. And in the comparison with the above mentioned active
contour algorithm, our method can derive more suitable segmentation and oper-
ate more effectively. Fig. 6 (g) - (i) exhibit the segmentation results from initial
seed segments indicated by two circles as shown in Fig. 5 (a); Fig. 6 (j) - (l)
exhibit results from multiple seed initial segments as that shown in Fig. 5 (b).
These kinds of initialization will induce under-segmentation result as shown in
(g) and (i) or over-segmentation as shown in (j) and (l) separately. On another
simple image (b), results derived from these methods are similar.

Our approach can automatically provide initial segments in the first part
as shown in Fig. 2. In the field generation and binary image generation steps,
the length effect parameter and the cutting threshold on saliency map can be
adaptive to the image size and the field strength.

5 Conclusion and Future Work

In this work, an image segmentation method which combines the boundary and
region information is presented. The segmentation consists of first closed-contour
extraction based on edge detection result, and subsequently region homogeneity
processing based on level set method. Compared with the existing solutions, our
method requires no initialization from the user on the approximate boundary
locations, and the automatically extracted closed contours which served as initial
segmentation boundaries result in more optimal and smoother segmentation.

The current scheme however has the processes of closed-contour initialization
and region-based optimization separated. Future work will be about how they
could be integrated more closely together for more thorough communication
between the two modules.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 6. Comparison result : (a)-(c) original images with size by pixel 58 × 131, 128
× 112 and 128 × 96 respectively; (d)-(f) results derived from JSEG method; (g)-(i)
results derived from active contour method with two initial seed segments; (j)-(l) results
derived from active contour method with multiple initial seed segments; (m)-(o) results
derived from our method
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Abstract. This paper focuses on automatic road extraction in urban
areas from high resolution satellite images. We propose a new approach
based on machine learning. First, many features reflecting road charac-
teristics are extracted, which consist of the ratio of bright regions, the
direction consistency of edges and local binary patterns. Then these fea-
tures are input into a learning container, and AdaBoost is adopted to
train classifiers and select most effective features. Finally, roads are de-
tected with a sliding window by using the learning results and validated
by combining the road connectivity. Experimental results on real Quick-
bird images demonstrate the effectiveness and robustness of the proposed
method.

Keywords: AdaBoost, Local Binary Pattern, Machine Learning, Road
Extraction.

1 Introduction

Road extraction in urban areas has been an important task for generating geo-
graphic information systems (GIS). Especially in recent years, the rapid devel-
opment of urban areas makes it urgent to provide up-to-date road maps. The
timely road information is very useful for the decision-makers in urban planning,
traffic management and car navigation fields, etc.

Nowadays, we are experiencing an explosion in the amount of satellite image
data, which provides us abundant data and also brings challenges to the road
extraction task at the same time. The conventional road extraction methods by
manual are time consuming and tedious, and cannot meet the increasing require-
ment for such tremendous data. Therefore, it has drawn considerable attention
of many researchers on how to develop automatic road extraction systems. And
much work has been done for this task. However, automatic extraction of urban
roads from high resolution remote sensing imagery is still a challenging problem
in digital photogrammetry and computer vision. The main reason is that the
diverse road surfaces and the complex surrounding environments such as trees,
vehicles and shadows induced by high buildings make the urban roads take on
different textures and gray levels in images.
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1.1 Related Work

In the past decades, a large number of papers have been published for automatic
road extraction. However, most of them focus on extracting roads in rural or open
areas. By contrast, the efforts made for urban road extraction are relatively
few [1], [2], [3], [4], [5], [6]. These methods can be roughly divided into two
categories: heuristic-based methods and Bayesian-based methods.

Heuristic-based approaches usually model roads in a semantic way and group
the extracted road components with the “hypothesis and test” paradigm. Hinz
et al [1] used road substructures such as markings and lanes to extract road
segments and further linked them into a global road network. In their later
work [2] road details from multiple sources were integrated and then roads were
found by iteratively grouping. The approach presented by Price [3] modelled the
road network as a regular grid. He assumed that the roads crossed at the specific
angles and the road width was approximately constant. After three initial seed
points on the grid were given by manual, the grid propagation, verification and
refinement process was performed based on edge and contextual information.
McKeown et al described a multi-level cooperative methods for road tracking by
assuming that there existed some specific patterns or textures for road surface [4].
They used a texture-correlation-based tracker and an edge linker to obtain the
road candidates.

By contrast, Bayesian approaches generally build stochastic process models
for road data and find roads by probability methods. For example, Barzohar and
Cooper [5] established a geometric-stochastic model for road image generation
and used maximum a posteriori probability to estimate road boundaries.

As can be seen from these methods, road details such as markings and struc-
tural information of road surface, are valuable cues for urban road detection
from high resolution images. Furthermore, it is advisable to combine the local
and global properties to extract road network. However, the two types of methods
described above are limited because of the difficulties for building comprehensive
road models covering all possible situations. As is known, the diversity of roads,
the complexity of surrounding environments, the variation of illumination, the
appearance of cars and trees and different view angles of sensors, make it very
difficult to built a general road model.

1.2 Overview of the Proposed Method

In order to deal with the difficulties for building comprehensive road models and
to make full use of the characteristics of urban roads, we propose an automatic
approach based on machine learning. It can be divided into three steps. First,
a series of features reflecting road characteristics are extracted. They include
the ratio of bright lines on the road surface, the directional consistency of road
markings and local binary patterns (LBP). These features are then input into a
learning container, and AdaBoost is adopted to train classifiers and select dis-
tinct features. Finally, on the basis of the learning results roads are detected
with a sliding window and further validated by combing the road connectivity.



238 Y. Wang et al.

The road extraction process is performed based on the essential features of ur-
ban roads which can be achieved by learning from a great amount of training
examples with diverse appearances.

The remainder of this paper is organized as follows. Section 2 and Section
3 describe the features and the machine learning process based on AdaBoost,
respectively. The experimental results and discussions are given in Section 4.
Finally, Section 5 concludes the paper.

2 Features

There are many valuable indications about urban roads in high resolution images,
for example, road markings are bright and parallel lines; road markings cover
only a part of road surfaces; there exist some patterns or textures for urban
roads.

Obviously, these assumptions are reasonable because the majority of main
urban roads satisfy these conditions, especially those in built-up areas. To make
the best use of these characteristics, it is important to extract features that are
robust to illumination variations, building shadows and disturbances by cars or
trees.

Here, three kinds of features are extracted, namely, the coverage ratio, the
direction consistency of road markings and LBP-based features for road textures.
There are mainly three reasons for choosing LBP as the road texture descriptor.
First, the adopted LBP-based features are invariant to orientations and the
monotonic transform of gray levels. Secondly, it can perform multi-resolution
analysis by combining different neighborhoods for LBP. Furthermore, LBP is
theoretically simple and easy to implement.

2.1 Coverage Ratio of Bright Lines

This feature is used to describe the distribution of road markings. First, the
image is segmented to obtain bright lines. This can be accomplished by ridge
detection based on the methods presented by Steger [12]. If bright regions are
denoted as foreground with 1, and dark regions as background with 0, then the
coverage ratio of the bright lines can be computed by the formula:

ratio =
M
i=1

N
j=1 I(i,j)

M×N

where

I(i, j) =
{

1, foreground;
0, background.

Here, M and N are the number of rows and columns of the image, respectively.
As is known, road markings cover only a part of road surface, therefore, the

ratio feature can be used as one of the indicators for urban roads.
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2.2 Direction Consistency

Most of road markings are parallel, so the direction consistency feature is con-
sidered to make use of their direction information. First, we obtain edges with
Canny edge detector, and then Hough transform is carried out to further get
their direction information. The results are shown in Figs. 1 and 2. The first
two rows in these figures are roads and their edge features, and the last two
ones are non-roads and their results. It can be seen that the directions of road
markings are obviously consistent. Fig. 2 (b) is obtained by accumulating the
votes of straight lines at different directions. The horizontal axis denotes the
angles ranging from 0 to 179, and the vertical axis is the number of occurring
times. Furthermore, the standard deviation can be computed directly from this
figure. In Fig. 2, one can see that when the directions of edges are similar, the
accumulation values converge on a small range of direction angles; otherwise,

(a) (b)

Fig. 1. (a) Original sub-images. (b) Detected edges.

(a) (b)

Fig. 2. (a) Hough transform. (b) Accumulation of the threshold result according to
different directions.
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they are spread on different angles. It shows that the direction consistency is a
good feature for urban road extraction.

2.3 Features Based on LBP

Local Binary Pattern (LBP) [7], [8] is a descriptor for local texture. The original
LBP operator labels each pixel in an image by comparing the gray values in
a circularly symmetric neighborhood with that of the center pixel and then
transforming the binary pattern into an integer. An example for LBP formation
is shown in Fig. 3. The operator is denoted as LBPP,R for a neighborhood of P
pixels that are symmetrically located on a circle of radius R. It can produce 2P

different binary patterns by the P pixels in the neighbor set. LBP is insensitive
to the monotonic intensity transformation, because it is only dependent on the
relative order of the gray levels. From its formation process, one can see that

206 300 180 

50 178 

120 168 203 

169 

Example

1 1 1 

0 1 

0 0 1 

Threshold LBP value

(10001111) 2 =143

Fig. 3. An example for LBP8,1 formation

LBPP,R is sensitive to image rotation, and cannot provide good discrimination
for small size images because of the divergence of pattern occurrences. Therefore,
as a variant of LBPP,R, LBP riu2

P,R , is introduced in [7]. This improved operator
is rotation invariant and deals with the frequently occurring patterns and the
less occurring ones in a different way. The procedure for LBP riu2

P,R is detailed as
follows:

LBP riu2
P,R =

{∑P−1
p=0 s(p), if U(LBPP,R) ≤ 2;

P+1, otherwise.

where

U(LBPP,R) = |s(p− 1)− s(0)|+
∑P−1

p=1 |s(p)− s(p− 1)|,

and s(x)= 0 or 1.
LBP riu2

P,R has only P+2 different output values, less than 2P ones, which makes
it more convergent for texture discrimination.

Choosing different P and R, we can get operators of different spatial reso-
lutions. Consequently, multi-resolution analysis can be realized by combining
multiple operators with different (P, R) pairs.
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Here, by simultaneously using LBP riu2
8,1 , LBP riu2

16,2 and LBP riu2
24,3 to extract

road texture features, we are able to get 54 (10+18+26)-bin histogram of LBP -
based features. Together with the two features described above, i.e., the coverage
ratio of bright lines and the direction consistency, 56 features are obtained for
the learning process.

3 Learning Based on AdaBoost

Given the road and non-road samples and their features, the current important
task is to choose a suitable learning algorithm. Consideration of the redundancy
of the 56-dimensional features, AdaBoost, which can serve as both a classifier
trainer and a feature selector, is used in this study.

AdaBoost is an adaptive learning algorithm that aims to build a strong clas-
sifier by linearly combining a set of weak learners [10], [11]. It works by updating
the weights of training samples dynamically according to the training error. Fre-
und and Schapire have proved that the training error of the strong classifier
decreases exponentially with the number of iterations. Furthermore, AdaBoost
achieves a good generalization performance because it manages to maximize the
margin between positive and negative examples.

In order to select important features, the weak learner of AdaBoost can be
constrained to rely on a single feature. Consequently, AdaBoost obtains a strong
classifier and effective features simultaneously during its learning process.

Motivated by the work of Viola et. al [11] we introduce the pyramid idea
into the learning process to improve the system efficiency. Similar to a pyramid
running from the top to bottom, at the first layer of the learning process a sim-
ple classifier with less features is trained to obtain a high detection rate, while
propagating to the next layers more accurate and complex classifiers with more
features are built to remove those false positives. The sub-images rejected by
earlier classifiers will not be evaluated by subsequent classifiers. So the highly
distinguishable but complex classifiers are only required to examine those poten-
tial regions, which can reduce the system spending effectively. As for the number
of pyramid layers and the number of features, they are determined by consid-
ering the detection rate and false positive rate. The learning algorithm for each
layer of the pyramid AdaBoost can be summarized as follows:

– Given training examples (xi, yi), i = 1, 2, ..., n, where xi is a 56-D feature
vector, and yi= 0, 1 for road (positive) and non-road (negative) samples
respectively.

– Initialize weights w1,i = 1
2m ,

1
2l for yi=0, 1 respectively, where m and l are

the number of positive and negative samples respectively.
– t=0; While (FAR and AR are not satisfied):

1. Update t: t := t+ 1;
2. Normalize the weights:

wt,i := wt,i
n
j=1 wt,j

.
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3. Train a classifier hj for each feature j, the error related to wt is εj =
Σiwi|(hj(xi)− yi)|.
Choose the classifier ht = hargminjεj .

4. βt = εt

1−εt
, αt = log 1

βt
, ei = |(ht(xi)− yi)|.

5. Update the weights:
wt+1,i = wt,iβ

1−ei
t .

– Obtain the number of weak classifiers: T= t.
– Output the strong classifier of this layer:

h(x) =
{

1,
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt;

0, otherwise.

From the above, it can be seen that for a certain layer features and weak
classifiers will be continuously added until both the FAR and AR requirements
are met. Then these weak classifiers are combined to get a strong classifier for
this layer. The number of layers can also be obtained when FAR and AR both
reach the expected value. Once the learning process is completed, all of the
classifiers for different layers and the selected features obtained by AdaBoost
are regarded as a paradigm. For a given image, urban roads are then detected
according to this paradigm.

4 Experiments

In order to demonstrate the performance of the proposed method, Quickbird
imagery, whose resolution is 0.61 m/pixel, is used in this study.

4.1 Training Data

We collected 833 positive samples from Quickbird images manually. These sub-
images consisted of various road directions and appearances, and their sizes were
also different, ranging from 14 × 14 to 30 × 30 pixels. In order to enlarge the
training data set, we rotated the road samples by 2◦, 4◦, 6◦, 8◦, 10◦, respectively.
Therefore, we obtained 4998 road samples in all for training. Some of the road
examples are shown in Fig. 4(a). The negative samples came from 320 gray-
level images which were manually examined and found no roads in them. Here,
5000 negative sub-images are used for the learning process, which are obtained
randomly from these gray-level images.

4.2 Experimental Results

The features extracted from the training set are input into the pyramid AdaBoost
procedure for learning. Three learning curves are obtained in this process, as
shown in Fig. 4(b). The horizontal axis in Fig. 4(b) denotes the learning layers,
and the vertical axis denotes false accept rate (FAR), accept rate (AR) and
correct classification rate (CCR), respectively. The curves reflect the fluctuating
trends of these indices according to different layers. As can be seen, FAR and AR



Extraction of Main Urban Roads from High Resolution Satellite Images 243

(a) (b)

Fig. 4. (a)Road examples and (b)FAR, AR and CCR curves

(b)(a) (c) (d)

Fig. 5. Experiment 1: (a) original image1 and (b) road extraction result of image1.
Experiment 2: (c) original image2 and (d) road extraction result of image2.

curves decrease with layers while CCR increases with layers, and the three curves
almost keep unchanged after four layers. Therefore, it is sufficient to choose the
first four layers for our AdaBoost. The corresponding number of selected features
is 1, 1, 4, 6, respectively. As is expected, the coverage ratio and the direction
consistency features are selected successfully.

When given an image, urban roads are to be detected with a sliding window.
First, feature extraction is performed for the window of interest according to the
learning results, which is followed by the multi-layer classification. Only when

(a) (b)

Fig. 6. Experiment 3: (a) original image3 and (b) road extraction result of image3.
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the window is considered as a road candidate by the earlier classifiers will it be
examined by the next classifiers. Road candidates can be found by altering the
size of the sliding window. Decisions are made by the majority-vote method for
these different windows, and the largest window of the voting for ones are kept.
Finally, the global connectivity of roads is integrated to obtain the final results.

Figs. 5, and 6 are three examples of our road extraction results on real Quick-
bird Pan imagery. Most of the roads are detected correctly though there are
many disturbances, such as, buildings, trees and cars in the image.

4.3 Analysis and Discussions

In Fig. 5(a), there are buildings, trees and a few cars around or on the roads.
Roads and buildings have a high similarity in intensity and local edges. Moreover,
cars on roads have a negative effect on detection results. However, our method
works very well on this image, as shown in Fig. 5(b), the majority of main
urban roads has been extracted correctly. Other experiments with more complex
surrounding environments and dense traffic flow in Figs. 5(c)(d)and 6 also give
fairly good results. All of them demonstrate the effectiveness and robustness of
the proposed method.

The qualitative evaluation results are shown in Table 1. Here, we select two
evaluation measures provided by [13], namely, completeness and correctness.
The reference road maps are obtained by manual, and the evaluation is based
on the length of extraction results and reference roads. One can see that both the
completeness and correctness are fairly good. The correctness for Experiment 1
and 3 are 100% and both of their completeness exceed 92%. Even for the complex
environments in Experiment 2, the completeness and correctness are 89.3% and
84.6%, respectively.

One reason for the robustness of the proposed method is likely because that
the vehicles on roads are aligned with the road direction and also appear as
bright lines, which resemble road markings. Therefore, vehicles, road markings
and road surfaces can be considered as an organic element. The robustness also
benefits from the fusion of many features, namely, the coverage ratio of bright
lines, the direction consistency and LBPs. Integrating these features is favorable
to distinguish urban roads from buildings. Although the results are encouraging,
there are some places to be improved further. For example, the road boundary
is not very precise. Our future work will focus on integrating the road bound-
ary detection into the current system. Additionally, some efforts are needed to
promote the proposed method in an operational road detection system.

Table 1. External evaluation of the extraction results
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5 Conclusion

In this paper, we present a new approach for main road extraction in urban areas
from high resolution satellite images. This method is distinguished from previous
work by two highlights. One is that a large number of robust features reflecting
the structural and texture properties of urban roads are extracted. The other is
to adopt the AdaBoost-based learning algorithm. AdaBoost can not only train
the classifiers but select most effective features as well. The experimental results
on real Quickbird imagery demonstrate that it is an effective way to detect urban
roads by learning from many intrinsic road features.
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Abstract. In this paper, we have presented a new algorithm for clas-
sification of the natural textures. The proposed classification algorithm
is based on the notions of soft set theory. The soft-set theory was pro-
posed by D. Molodtsov which deals with the uncertainties. The choice of
convenient parameterization strategies such as real numbers, functions,
and mappings makes soft-set theory very convenient and practicable for
decision making applications. This has motivated us to use soft set the-
ory for classification of the textures. The proposed algorithm has very
low computational complexity when compared with Bayes classification
technique and also yields very good classification accuracy. For feature
extraction, the textures are decomposed using standard dyadic wavelets.
The feature vector is obtained by calculating averaged L1-norm energy of
each decomposed channel. The database consists of 25 texture classes se-
lected from Bordatz texture Album. Experimental results show the supe-
riority of the proposed approach compared with some existing methods.
. . .

1 Introduction

Textures provide important characteristics for the analysis of many machine
vision and image processing problems such as image classification, segmentation,
synthesis and retrieval. Even though we recognize a texture when we see it, no
formal and complete definition of texture exists. Different people have defined
textures in different ways, depending upon the particular application in which
the textures are used or their perceptual motivation [1], [2]. One of the major
applications of texture processing is classification, which involves a decision as to
which texture category does a sample image belong to, using apriori knowledge
of the classes and classical pattern classification techniques.

For accurate classification, it is essential that proper features that differenti-
ate among textures for classification are extracted from the image. According to
Tuceryan and Jain [1], different categories of features used for texture identifi-
cation are statistical, geometrical, model-based, and signal processing features.
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In recent times, signal processing features obtained using wavelet transform,
have been widely used for texture classification. Unser [3] used wavelet based
features for texture analysis and segmentation. Ganesan [4] used wavelet sta-
tistical and wavelet co-occurrence features for texture classification. Chang and
Kuo [5] used wavelet packets for texture classification. Y. Chitre [6] employed
M -band wavelets for texture discrimination. The spatial/frequency information
of texture provided by wavelets is very useful for applications such as texture
classification, segmentation and retrieval.

We have presented herein, a novel method for classification of textures using
an algorithm based on soft-set theory. The concept of soft-set theory was pro-
posed by D. Molodotsov [7] to deal with the uncertainties which are free from
the inadequacy in the parameterization tool of fuzzy set theory. In the soft set
theory, the initial description of the object has an approximate nature. We can
use any convenient parameterization strategies, such as real numbers, functions,
mappings, words and so on. The problem of setting the membership function
does not arise in soft set theory, which makes soft set theory very convenient
and practicable. Maji et al. [8] have used soft sets in a decision making problem.
We have experimentally found that our classification method has low computa-
tional complexity as compared to Bayes classification whereas the classification
accuracy is much higher than that of the minimum distance classifier based on
Euclidean distance and slightly higher than that of the Bayes method.

The organization of the paper is as follows. Section 2 briefly overviews 2 -
dimensional discrete wavelet transform. Section 3, presents the notions of soft-
set theory and relevant definitions used in the proposed work. Section 4 is about
the algorithm used for classification. Section 5 gives experimental results and
section 6 concludes the paper.

2 Discrete Wavelet Transform

The 2 -dimensional discrete wavelet transform can be obtained by applying 1 -
dimensional discrete wavelet transform over image rows and columns separately
and then down sampling. In one level, the transform decomposes an image into
four sub-bands with an overall scale factor of 4 and provides one low resolu-
tion subimage LL1 and three wavelet coefficient sub-band images labeled LH1,
HL1, HH1 respectively. To obtain the next coarse level of wavelet coefficients,
the low resolution sub-band image is further decomposed and down sampled to
obtain low resolution sub-band image LL2 and wavelet coefficients LH2, HL2,
and HH2 respectively. This process continues until some final scale is reached.
The sub-band decomposition used for obtaining the textures features is shown
in Fig. 1. Every sub-band image contains the information of a specific scale and
orientation. The magnitudes of wavelet coefficients in a particular channel are
greater for images with a strong textural content at the frequency and orien-
tation represented by that channel. Therefore, the texture of an image can be
represented by a feature vector that contains the average coefficient magnitude,
known as averaged L1-norm energy function. We have used L1-norm energy sig-
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Fig. 1. The wavelet decomposition structure

nature for extraction of texture features as it reflects the distribution of energy
along the frequency axis over scale and orientation and has been proven to be
a very powerful for texture characterization. The L1-norm of the image is given
by,

E =
1
M2

M∑
m=1

M∑
n=1

|x(m,n)| (1)

where the image x is of dimension M xM. For k -level decomposition of the image,
the size of the feature vector is (3*k+1). In the proposed work we have used 3 -
level decomposition, so the feature vector is of length 10.

3 Soft-Set Theory

In this section, we present the notions of soft sets, fuzzy soft sets and some useful
related definitions introduced by Molodtsov in [7].

3.1 Definition of Soft Set

Let U be an initial universe set and let E be a set of parameters.

Definition 1. A pair (F, E) is called a soft set over U if and only if F is a
mapping of E into the set of all subsets of the set U: i.e. F : E → P (U), where
P(U) is the power set of U.

In other words, the soft set is a parameterized family of subsets of the set
U. Every set F(ε), for ε ∈ E, from this family may be considered as the set of
ε-elements of the soft set (F, E), or as the set of ε-approximate elements of the
soft set.

For example, we may consider a soft set, characterized by (F, E) over U,
where U represents a set of textures and E represents a set of texture features
and F is the mapping of all the above features onto the set U. Thus, a texture
database of a number of textures may easily be mapped onto a soft set.
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Table 1. Representation of Soft-Set

U e1 e2 e3

x1 0.5 0.5 1.0

x2 0.9 0.1 0.2

x3 0.4 0.6 0.8

x4 0.7 0.3 0.6

x5 0.2 0.8 0.4

x6 0.8 0.2 0.4

Let us consider U as a universe set of such objects (say textures) given by
U = {x1, x2, x3, x4, x5, x6} and E as a set of parameters (say texture features)
given by E = {e1, e2, e3}.
Suppose that,

F (e1) = { x1

0.5
,
x2

0.9
,
x3

0.4
,
x4

0.7
,
x5

0.2
,
x6

0.8
}

F (e2) = { x1

0.5
,
x2

0.1
,
x3

0.6
,
x4

0.3
,
x5

0.8
,
x6

0.2
}

F (e3) = { x1

1.0
,
x2

0.2
,
x3

0.8
,
x4

0.6
,
x5

0.4
,
x6

0.4
}

then we can represent a soft-set in the form of a table as shown in Table 1., in
which the entries hij corresponds to the texture xi and the texture feature ej ,
where hij is the value of xi in F (ej).

3.2 Comparison Table of a Soft Set (F, E)

It is a square table in which number the of rows and number of columns is equal,
the rows and the columns both are labeled by object names x1, x2, ...xn of the
universe, and the entry gij is the number of parameters for which the value of
xi exceeds or equals to the value of xj for i, j = 1, 2, ..., n.

Clearly, 0 ≤ gij ≤ d and gij = d, ∀i, j where d is the number of parameters in
E. Therefore, gij is a numerical measure that indicates the dominance object xi

over an object xj in gij number of parameters out of d parameters.

3.3 Row Sum, Column Sum and Score of an Object xi

Row sum of an object xi is denoted by ri and is calculated by using the formula,

ri =
n∑

j=1

gij (2)
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Column sum of an object xj is denoted by tj and is calculated by using the
formula,

ti =
n∑

i=1

gij (3)

Clearly, ri indicates the total number of parameters in which xi dominates
all the members of U and tj indicates the total number of parameters in which
xj is dominated by all the members of U.

Difference between ri and ti is called a score of an object and is given by the
formula,

Si = ri − ti, i = 1, 2, ..., n (4)

The score S is a vector containing n elements and the xi is the most favorable
object in the database where the index i corresponds to the largest element in S.

4 Classification Algorithm

Soft set theory has rich potential for applications in many areas. In [7] Molodtsov
presented applications of soft set theory in areas like study of smoothness of
functions, game theory, operations research etc., whereas Maji [8] presented its
application in decision making theory. Taking a motivation from this, we have
applied soft set theory for classification of natural textures.

In this section, we discuss the algorithm used for classification of textures.

4.1 Classification Algorithm

Training phase

1. Given N samples obtained from the texture w, decompose each sample with
wavelet transform.

2. Compute the L1- norm of each channel of the wavelet decomposition using
equation (1) and obtain a feature vector Ewi, i = 1, 2, ..., N.

3. Calculate the cluster center vector Ew using equation (5) given below,

Ew =
1
N

N∑
i=1

Ewi (5)

4. Repeat the process for all W classes.
5. Obtain a soft-set (F, E) which is basically a W x D table of cluster centers

in which an element of the table is gwd, w = 1, 2, ...,W and d = 1, 2, ..., D
and a row gw is a cluster center vector for class w having D features.

Classification phase

1. Decompose an unknown texture with the wavelet transform.
2. Compute the L1- norm of each channel of the wavelet decomposition using

equation (1) and obtain a feature vector Ef.
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3. Obtain a soft set (F, A) in which an element pwd, w = 1, 2, ...,W and
d = 1, 2, ...D is calculated using equation (6)

pwd = 1− |gwd − Efd|
max︸︷︷︸

w

(gwd)
(6)

4. Compute a comparison table of soft-set (F, A) as explained in section 3.2.
5. Computer the score vector S using equations (2), (3), and (4).
6. Assign the unknown texture to class w if

w = arg
[
maxW

w=1(S)
]

(7)

5 Experimental Results

Effectiveness of the proposed method for texture classification has been thor-
oughly tested using a database of 25 natural texture images from Brodatz’s
texture album [9]. The textures are shown in Fig. 2. The database is created
by dividing each image of size 256 x 256 pixels with 256 gray levels into 49 64
x 64 texture regions with an overlap of 32 pixels. Out of these 49 images, 14
randomly selected images are used for training the classifier and remaining 35
images are used for testing. Thus, there are 49 x 25 = 1225 images in the image
database, 14 x 25 = 350 images are used as training samples and remaining 35
x 25 = 875 samples are used for testing.

For designing a classifier, 14 randomly selected textures of each class are de-
composed using a standard 2 -dimensional discrete wavelet transform up to level
3, thus, giving 10 sub-band images. The 10 element feature vector is then ob-
tained by calculating averaged L1-norm energy for each sub-band using equation
(1). Thus we get 14 feature vectors for each class. The cluster centre vector is
then obtained by using equation (5). These steps are repeated for all 25 classes
and finally we obtain a table of cluster centers of size 25 x 10.

In the testing phase, remaining 35 textures from each class are used as test
samples. The 3 -level wavelet decomposition is performed and a 10 -element fea-
ture vector is obtained. A soft-set theory based classification algorithm, as dis-
cussed in previous section, is then used to classify the sample.

We conducted 4 experiments using 4 different wavelet decomposition filters
namely 4th order Daubechis (db4), Daubechis 16 -tap filter, 4th order Symlets
(sym4) and Haar wavelets. The decomposition filters are given in the Table 2.

In order to compare effectiveness of the proposed classification method, the
classification is also obtained using the Bayes classier that uses Mahalanobis
distance function and the minimum distance classifier based on Euclidean dis-
tance function. The results of these experiments are summarized in Table 3 and
Table 4.

The experiments are performed on a Pentium IV, 2.4 GHz computer using
MATLAB version 7.0. From Table 3, we observe that when the minimum dis-
tance classifier based on Euclidean distance is used, the classification accuracy
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Fig. 2. Twenty five classes of textures from Brodatz album. Row 1: D1, D6, D9, D11,
D15. Row 2: D16, D21, D26, D32, D34. Row 3: D38, D49, D53, D55, D56. Row 4: D57,
D65, D77, D78, D82. Row 5: D83, D84, D95, D104, D105.

in the range of 51.49% to 83.54% is achieved for different wavelet decomposition
filters. The accuracy is only 51.49% when 4th order Daubechis filter is used,
whereas, it is 83.54% when Haar wavelet is used. A better accuracy, in the range
of 88.8% to 96.46%, is obtained when Bayes classifier is used. The classification
accuracy is the lowest, i.e. 88.8% in case of Daubechis 16 -tap filter and the
highest in case a 4th order Daubechis filter is employed for decomposition. How-
ever, the best results are obtained when soft-set based classification algorithm
is used. Classification accuracy is 97.49% for the 4th order Daubechis filter and
best accuracy of 98.51% is achieved in case of 4th order Symlet.

The computation time for classification of all the 875 test samples is also
calculated. From Table 4, we observe that the computation time in soft-set based
classification method is nearly the same as that in case of minimum distance
classifier using Euclidean distance. But, when compared with Bayes classifier,
the soft-set method is almost 7 times as fast as the Bayes classifier. Thus, we
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Table 2. Different wavelet decomposition filters used in the experiment

4th order Daubechis -0.0106 0.0329 0.0308 -0.1870 -0.0280 0.6309 0.7148
0.2304

Daubechis 16-tap 0.0544 0.3129 0.6756 0.5854 -0.0158 -0.2840 0.0005
0.1287 0.0544 0.3129 0.6756 0.5854 -0.0158 -0.2840
0.0005 0.1287

4th order Symlet -0.0758 -0.0296 0.4976 0.8037 0.2979 -0.0992 -0.0126
0.0322

Haar 0.7071 0.7071

Table 3. Classification accuracy for minimum distance classifier using Euclidean dis-
tance, Bayes classifier and Soft-set based classifier and different wavelet bases

Wavelet basis Minimum distance Bayes classifier Soft-set
classifier using based classifier

Euclidean distance

4th order Daubechis 51.43% 96.46% 97.49%

Daubechis 16-tap 76.57% 88.80% 98.06%

4th order Symlet 68.00% 94.97% 98.51%

Haar 83.54% 94.97% 98.40%

Table 4. Classification time for minimum distance classifier using Euclidean distance,
Bayes classifier and Soft-set based classifier and different wavelet bases

Wavelet basis Minimum distance Bayes classifier Soft-set
classifier using based classifier

Euclidean distance

4th order Daubechis 0.19 sec 1.49 sec 0.17 sec

Daubechis 16-tap 0.19 sec 1.72 sec 0.24 sec

4th order Symlet 0.20 sec 1.58 sec 0.19 sec

Haar 0.20 sec 1.52 sec 0.19 sec

have shown that the soft-set theory based classification algorithm yields best
results in terms of classification accuracy and the computation time.
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6 Conclusions

We have presented a novel method for classification of natural textures using
the notions of soft set theory. Feature vectors of the length 10 of energy fea-
tures extracted from 3 -level decomposition of textures from 25 different texture
classes were used for training and testing. It is experimentally demonstrated
that this method yields very high accuracy when compared with conventional
classification methods such as Bayes classifier and a minimum distance classifier
based on Euclidean distance. We have also proved that the computation time for
classification is much less in case of soft set method in comparison with Bayes
classification method.

References

1. Chen, C.H., Pau, L.F., Eds: The Handbook of Pattern Recognition and Computer
Vision. World Scientific (1998)

2. Fan, G., Xia, X.G.: Wavelet-based texture analysis and synthesis using hidden
morkov models. IEEE Transactions on Circuits and Systems-I Fundamental Theory
and Applications 50 (2003) 106–120

3. Unser, M.: Texture classification and segmentation using wavelet frames, ieee trans-
actions on image processing. IEEE Transactions on Image Processing 4 (1995)
1549–1560

4. Arivazhagan, S., Ganesan, L.: Texture classification using wavelet transform. Pat-
tern Recognition Letters 24 (2003) 1513–1521

5. T. Chang, T., Kuo, C.: Texture analysis and classification with tree structured
wavelet transform. IEEE Transactions on Image Processing 2 (1993) 42–44

6. Chitre, Y., Dhawan, A.P.: M-band wavelet discrimination of natural textures. Pat-
tern Recognition 32 (1999) 773–789

7. Molodtsov, D.: Soft set theory - first results. Computers and mathematics with
applications 37 (1999) 19–31

8. Maji, P.K., Roy, A.R., Biswas, R.: An application of soft sets in a decision making
problem. Computers and mathematics with applications 44 (2002) 1077–1083

9. Brodatz, P.: Texture: A Photographic Album for Artists and Designers, New York:
Dover (1966)



Learning Multi-category Classification in
Bayesian Framework

Atul Kanaujia and Dimitris Metaxas

CBIM, Rutgers University
{kanaujia, dnm}@cs.rutgers.edu

Abstract. We propose an algorithm for Sparse Bayesian Classifica-
tion for multi-class problems using Automatic Relevance Determina-
tion(ARD). Unlike other approaches which treat multiclass problem as
multiple independent binary classification problem, we propose a method
to learn the multiclass predictor directly. The usual approach of “one
against rest” and “pairwise coupling” are not only computationally de-
manding during training stage but also generates dense classifiers which
have greater tendency to overfit and have higher classification cost. In
this paper we discuss the algorithmic implementation of Multiclass Clas-
sification model and compare it with other multi-class classifiers. We also
empirically evaluate the classifier on viewpoint learning problem using
features extracted from human silhouettes. Our experiments show that
our algorithm generates sparser classifiers, with performance comparable
to state-of-the-art multi-class classifier.

1 Motivation and Related Work

Classification is a task of inferring a set of known or unknown classes based on
some similarity measure, to explain an observed set of data points. Many super-
vised algorithms exist for classification ranging from simplest Nearest Neighbor,
pairwise linear classifiers to complex RBF Networks, MLP, Tangent Distance
Classifier(TDC) and Optimal Margin classifiers. However most of the classifica-
tion algorithms are designed for binary classification problems. The multiclass
classification can be decomposed into several independent binary classification
problems. Classical approach for this decomposition had been one against rest
and pairwise coupling proposed by Hastie et. al.[1]. Dietterich [2] suggested a
more general approach to multi-category classification using a coding matrix
that associates each row of l columns to a class label yεY , where Y is set of
lables and l are set of hypothesis. A binary classifier is run on each column and
the prediction is made based on which row of the coding matrix is closest to
l hypothesis. This approach is called error correcting output codes. Allwein et
al.[3] discusses a unifying approach for reducing multiclass to binary problems for
margin classifiers. Other extensions to multi-class problems have been applied by
Breiman et al. [5] using decision tree learning and by Schapire and Freund, [16]
as an extension for AdaBoost classification. These approaches although powerful
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and accurate, however, fail to capture relationship between different classes. The
generated classifier is denser and has more tendency to overfit the training data.

A number of attempts have been made to directly approach the multi-class clas-
sification problem for optimal margin classifiers(SVM). These approaches extends
the quadratic optimization for two classes to muliple classes by adding constraints
for each class. The number of constraints grows exponentially with the number of
classes. Bredensteiner et al.[6] and Weston [18] were among the first works on re-
ducing multi-class learning problem to single large optimization problem.

There have been many works recently that attempt to solve this optimization
in lesser time by breaking them into subproblems [4]. Tsochantaridis et al.[7]
generalized the large margin method proposed by Weston et al.[18], to learning
of structured response. Their algorithm is tunable to specific loss function and
uses working set of active constraints that ensures sufficiently accurate solution.

However max-margin classifiers do not provide probabilistic measure for the
predictions. Margin classifiers, although sparse, needs post-processing to get rid
of unnecessary support vectors [17]. The smootheness parameters of margin clas-
sifiers have to be set by cross-validation.

Bayesian methods [10] do not possess above drawbacks. Sparse bayesian
learning automatically embodies Occam’s razor that penalizes complex mod-
els thereby smoothing the model. In this paper we propose an algorithm for
learning sparse multi-category classifier in Bayesian framework as proposed by
Mackay[10]. The algorithm uses multinomial distributions for multiple variables
with one-of-all encoding for each class. The multiple outputs of the model is
learnt as a kernel basis function with softmax as the canonical link function.
The parameters are learnt using Automatic Relevance Determination(ARD).
ARD is a model selection mechanism that ensures sparsity and smoothness.

To the best of our knowledge, this has not been attempted in past and our
work provides complete algorithm to learn multiple class posterior probabili-
ties directly in bayesian framework. Our work has three contributions: (1) We
propose sparse bayesian classifiers for multi-class problems; (2) We empirically
compare performance of our classifier with other algorithms for handling multi-
class problems; (3) We use multi-class classifiers to infer viewing angle from
features extracted from Human silhouettes. Section 2 gives a brief overview of
the bayesian framework. In Section 3 we discuss the formulation of classification
problem and our algorithm in detail. Section 4 discusses the experimental results.
Theoretical proofs for convergence has been omitted from current discussion.

2 Bayesian Learning Framework

Bayesian learning intrinsically embodies regularization and model selection using
Occam’s razor[10] [8]. Bayesian learning is a three stage process. In the first stage
the model is fit to the observed data by maximizing posterior distribution over
the model parameters θ.

P (θ|D,α, β,M) =
P (D|θ, β,M)P (θ|α,M)

P (D|M)
(1)
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The normalizing constant is called the evidence of the model M and is not
required for fitting a given model M to the data set D. The first term on right
hand side(likelihood) is the loss function and second term(prior distribution) is
the smoothing factor. α and β are the scale parameters of these distributions.
Taking the distributions as gaussians with appropriate normalization factor:

P (D|θ, β,M) =
e−βLθ(D)

(2π/β)N/2 (2)

P (θ|α,M) =
e−αP (θ)∫
e−αP (θ)dθ

(3)

where Lθ is the loss function to be minimized and P (θ) is the penality term for
penalizing complex models with larger |θ| (smoothing). The posterior obtained is
a joint function of scale parameters α, β for the loss function and smoothing prior
respectively. Given α and β, most probable θMP can be obtained by maximizing
the posterior distribution (1). For maximum margin classifiers these parameters
corresponds to error/margin tradeoff parameter ’C’ and insensitivity parameter
ε [7] that have to be learnt using cross-validation. This is wasteful both for the
data and computation.

Second stage of bayesian learning involves model selection by estimating the
most probable scale parameters αMP and βMP by maximizing the posterior
distribution:

P (α, β|D,M) ∝ P (D|α, β,M)P (α|M)P (β|M) (4)

For a given prior distributions of α and β, maximizing (4) is equivalent to
maximizing the evidence P (D|α, β,M). This evidence maximization procedure
is called Type II Maximum Likelihood maximization and yields the equations for
computing most probable αMP and βMP .

The posterior of parameters θ is approximated as

P (θ|D,α, β,M) ≈ P (θ|D,αMP , βMP ,M) (5)

(5) and (1) can be used to estimate most probable θ = θMP (mode of the
posterior distribution(1)) by substituting values for αMP and βMP . The update
equations for θMP , αMP and βMP can be used iteratively to estimate the model
with maximum evidence.

The third stage of Bayesian Framework allows us to quatitatively rank dif-
ferent basis functions and the prior distributions of the scale parameters α and
β. Different priors corresponds to different hypothesis about the unknown data
generation process and can be compared by evaluating evidence. [10] [19] [20]
proposed Gamma distribution for the prior for scale parameters α and β. Using
gamma priors causes posterior distribution of scale parameters to concentrate
at large values for inputs which contribute little towards the data interpolant to
be predicted. The θ parameters corresponding to these low relevance inputs can
be pruned. The parameter set θ so obtained is much sparser compared to those
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obtained by Maximum Margin approches. This formulation is a form of Auto-
matic Relevance Determination and has been applied in different optimization
methods in the past.

3 Sparse Bayesian Multi-category Classification

Bayesian learning framework can be used to learn multi-class classifier which
are much sparser and have low classification cost. For K classes and N observed
data pairs (yi, xi) we use the conventional classification framework to learn the
class posterior distribution as kernel basis function with canonical link function
as σj{f} = e−fj(x)/

∑K
i e

−fi(x) where fi(x) =
∑N

m θm,iΦm(x), is the kernel basis
functions at N training points. The likelihood can be expressed as:

P (D|Θ,M) =
K∏

k=1

N∏
n=1

σk {f(xn)}ynk (6)

In the classification formulation, β parameter has no significance as the likelihood
(6) has no noise variance.

Θ = {θ1, θ2, · · · , θK} are the weight parameters for each class and
A = {α1, α2, · · · , αK} are the scale parameters for the weight priors. We assume
independent weight priors for each class,

P (Θ|A) =
K∏

k=1

P (θk|αk) (7)

In the following subsections, we discuss our algorithm for estimating model pa-
rameters Θ and A in bayesian framework.

3.1 Approximating Posterior Distribution for Θ

The posterior distribution can be conveniently formulated as log:

log{P (Θ|D,A)} =
K∑

k=1

N∑
n=1

cnklog{σk{f(xn)}} − (
K∑

k=1

θkαkθ
T
k ) (8)

The αk = diag(αk1, αk2, · · · , αkN ) are the individual prior scale parameters for
each class k and N training data points. The Posterior distribution has complex
non-gaussian form and cannot be estimated in usual way using (1). We use
Laplace’s approximation [14] to estimate the posterior distribution as a gaussian
distribution

P (Θ|D,A) � P (ΘMP|D,A) ∗ exp
{
− 1

2 (Θ−ΘMP)C−1(Θ−ΘMP)T
}

(9)

Laplace’s approximation assumes that the posterior distribution of Θ has a
strong peak at most probable parameters ΘMP. Training the multi-class classi-
fier essentially becomes learning the most probable model parameters ΘMP, as
the modes of approximate posterior distribution (9).

Assuming block diagonal covariance matrix C = diag{C1,C2, · · · ,CK} for
K classes we can factorize (9) as:
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P (Θ|D,A) �
K

k=1

P (θk,MP|D, αk) exp
K

k=1

−1
2
(θk − θk,MP)C−1

k (θk − θk,MP)T

(10)

ΘMP can be obtained by finding θk,MP for each class k independently, using
gradient based optimization methods. The covariance matrices Ck are evaluated
as hessian of log-posterior of class k[14].

3.2 Estimating Most Probable Parameters θk,MP

For each class k we estimate θk,MP as modes of the posterior distribution of θk.
We use iterative Newton’s method to estimate θk,MP that maximizes posterior
(8). The gradient updates for the weights are:

θt+1
k = θtk −

∂log {P (Θ|D,A)}
∂θk

[
∂2log {P (Θ|D,A)}

∂θ2k

]−1

(11)

The gradient and hessian can be evaluated as:

∇θk(log{P(Θ|D,A)}) = −
N∑

n=1

Φk(xn)(cnk − σk{f(xn)})− θkαk (12)

∇θk∇θk(log{P(Θ|D,A)}) = −((ΦT
k BkΦk) + αk) (13)

where Bk = diag(βk1, βk2, · · · , βkN ), Φk is the kernel basis function and βkn =
σk{f(xn)}[1 − σk{f(xn)}]. The hessian computed in (13) is used as covariance
inverse C−1

k of the approximated posterior (10) for class k. The exact Newton’s
updates are expensive due to computation of hessian(13). We use quasi-newton
method, limited memory BFGS [21], for approximating hessian at each iteration
using M vectors θk obtained from previous iterations.

3.3 Estimating Most Probable Regularization Scale Parameters
αk,MP

The regularization scale parameter αk,MP for each class k is obtained by maxi-
mizing the marginal evidence with respect to αk. The marginal evidence is ob-
tained by marginalising evidence over the parameter θk for class k. For quadratic
regularizing term P (θk)(3), we can approximate the marginal evidence as (10)
[14]. For some initial value of αk,i and θk, the αk,MP is obtained as an update
equation:

αk,MP =
1− αk,iTrace{C−1

k }
θ2k

(14)

αk,MP are computed for all the classes by substituting θk,MP (as obtained in
Section 3.2) in (14). The updated αk values are used to re-estimate classifier pa-
rameters θk for each class. The iterative procedure is run till αk for all the classes
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Fig. 1. (Left) Classification results for 5 class synthetic dataset, using “one against
rest” classifier constructed using 5 RVM classifiers [8]. The contours are 0.5 probability
points. The boundaries are not separated well and data points lying near boundaries
are ambiguously classified. (Middle) Sparse Bayesian Multiclass Classifier for 5 clases.
The boundaries are well demarcated as the normalization constraint is maintained
throughtout optimization procedure. (Right) Bayesian Multiclass Classifier obtained
from smoother radial bases functions obtained by varying the scale parameter.
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Fig. 2. (Left)Marginal Evidence for scale parameters of each class αk on log-scale
for the artificial data in fig. 1. Notice that the marginal evidence increases with it-
erations for every class simultaneously.(Middle)Left scale Corresponding change of
Posterior and Likelhood values with iterations. Right Scale Corresponding non-zero
weights(model complexity) with no. of iterations. Note here that most of the change
occurs in first 50 iterations only. This can be used make training faster.(Right) Number
of support vectors for 3 multi-class classifier obtained for the Synth. dataset in Fig. 3.

do not change more than prespecified threshold. At every iteration step, αk val-
ues more than some maximum threshold can be pruned and the corresponding
θk values are made zero.

The critical assumption of this algorithm is the block diagonal covariance
matrix in (10) which enables us to treat posterior distribution of θk for each
class independently. The θk updates for all the classes at every iteration en-
sures simultaneous increase of marginal evidence at each iteration as shown in
Fig. 2(Left).

4 Experiments

We conducted experiments to empirically evaluate and compare performance of
the proposed classifier with other approaches for multi-class classification. The
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more classical approach is to combine several binary classifiers in probablistic
framework to obtain multi-class classification. Classifiers obtained in this way are
usually dense(due to modelling many class boundaries), have high classification
cost or do not model class boundaries correctly.

The two generic approaches are, “One-against-Rest” and “Pairwise Coupling”
[12],[1]. For comparison we use RVM classifier,[8] to learn “One-against-Rest” (1-
REST) with logistic link function. We use RVM in “Pairwise Coupling” (PAIR)
framework as proposed in [12]. We also compare the results with max margin
classifier [7](MM) and generalized linear model (GLM) learnt using Iterative
Reweighted Least Square (IRLS). Fig. 1 compares the classification boundaries
obtained using 1-ALL classifier and Bayesian Multiclass Classifier, on 5-class
synthetic dataset generated by sampling GMM. In all the experiments we used
gaussian RBF kernel. For the comparisons, the global parameters of the classifiers
were appropriately tuned to give best results.

4.1 Benchmark Comparison Results

We performed experiments on classification benchmarks from UCI Machine
Learning database. Fig. 2(Right) compares bayesian multi-class classifier with
max margin multi-class classifier[7] and 1-REST classifier in terms of complexity.
The histogram represents the number of support vectors(non-zero parameters in
the semi-parametric class boundary interpolant) in the multi-class classifier. The
number of support vectors for bayesian classifier is much lower compared to other
2 classifiers.

Fig. 3(left) compares prediction rates of Bayesian multiclass classifiers(SBC)
with other classifiers. The training datasets used were of varying size and ranged
from 150 to 2000. The table shows consistent good performance of SBC compared

Fig. 3. (left)Comparison of prediction rates for different multi-class classifiers. The
value in the brackets shows (training dataset size/Classes). All the recognition rates
are in (%). Notice that SBC consistently performs good (center)Row-wise ordered, 8
classes of viewpoints at rotation angles of 0o, 45o, 90o, 135o, 180o, 225o, 270o and 315o

around Z-axis, (right) Class 1,Class 3, Class 4 and Class 5 Real motion sequences.
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to other classifiers. Max Margin classifier performs good for some datasets but
worse for others. Prediction rate of SBC is always slightly more than 1-REST
due to inaccurate boundary modeling in 1-REST.

We also compare the classification time of different classifiers for OPT Dig-
its recognition dataset. Classification of 2000 points for bayesian multi-class
classifier was 6 times faster than pairwise classifier and 100 times faster than
max-margin classifier. This is due to very sparse model obtained for SBC with
typically less than 1% − 2% of number of training points. The ”One-against-
Rest” classifier was denser as the number of support vectors were more com-
pared to SBC. The pairwise classifier obtained from multiple RVM classifiers,
although were sparser, required computing posterior classification probabilities
from K(K−1)

2 classifiers. This takes time which increase with the number of
classes quadratically. MM classification time largely depended on the constraints’
working set size, which was tuned to maximize the prediction rate.

4.2 Estimating Viewpoint from Human Silhouettes

We use Bayesian multi-class classifier to learn viewing angle from the human
silhouettes. Estimating viewpoint directly has direct application in the context
of human body tracking and 3D pose reconstruction. Several human motions are
difficult to track from a viewpoint but are easier to track from other. Knowledge
of viewpoint can be used to dynamically modify the tracker parameters and
adjust to current viewing conditions.

We formulate the problem in classification framework by defining 8 classes
based on viewing angles around vertical Z axis(at regular rotation angles of
45o). The framework can be extended to consider rotation around X and Y
axes. However these variations are not relevant in the context of tracking human
motion which seldom involves rotation around X and Y axes.

We train the SBC on 2D images rendered using MAYA. The motion cap-
ture data for generic motion[13] is imported to MAYA model constructed using
standard human specification for joints and segments. The silhouettes extracted
from the rendered images(Fig. 3(Right)) are used to generate shape context
histogram[15](12 angular bins, 5 radial bins). The overall dimension is reduced
to 60 by clustering to few bases means.

We train our classifier on 4 different activities’ images rendered from 8 or
4 different viewpoints. We tested the classifier on both artificial and real mo-
tion sequences. For artificial test sequence, we rendered images from similar but
unseen sequences at angles ±15o of the 8 class viewing angles. Table 1 gives
the details of each sequence and the confusion matrix obtained from predictions
using bayesian multi-class classifier.

We also tested on a real sequence captured from 8 different viewpoints.
Fig. 3(right) shows 4 of these viewpoints. The viewing angle of the motion cap-
ture was changed by performing the motion at different angles with respect to
camera plane. For extracting silhouettes from real images, we use non-parametric
background subtraction and assumed stationary background with single fore-
ground object.
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Notice that training silhouettes are quite different from the testing silhouettes
and also contained variations due to multiple subjects. The class boundaries
are also not very well defined as the shape contexts[15] are invariant to small
rotations. We used the artificial walking sequence in Table 1 for training. The
test sequences contained varying number of frames for 8 classes of viewpoints.
Table 1(e) shows the classification rate of real data set for 8 classes of viewpoint
using sparse multi-class classifier. The classification rate is not encouraging due
to forward backward ambiguities and the invariability of the shape context to
small rotations.

Table 1. Confusion Matrix for the artificial test. Notice the bright tridiagonal band
due to inaccuracy in classifying bordering points of adjoining classes. Also class 1 and
class 5 have larger inaccuracies due to forward backward ambiguities. (a) Walking -
1000 training, 125 samples for each class. Recognition rate - 70% (b) Running - 1000
training points, 125 samples for each class. Recognition rate - 73.67% (c) Jumping -
1000 training points, 125 samples for each class, Recognition rate - 61.25% (d) Bending
- 4 Classes at viewing angles 0o, 90o, 180o and 270o, 1000 training samples, 250 samples
for each class, recognition rate - 92.5%, Notice the bright cell in row 1,column 3 due to
misclassification of forward facing pose as backward facing pose. (e)Recognition Rates
for Classes on Real Walking sequence. Notice the very low recognition rates for class 1
(person facing the camera) due to forward-backward ambiguities. Overall recognition
rate was 51.3%.

(a) (b) (c) (d) (e)

Nevertheless, the proposed bayesian classifier, in general, gives consistently
good performance compared to other approaches for multi-class classification
and can be used effectively for other machine learning problems. Although the
training time for the classifier is more, the classification time is extremely low
compared to other multi-class classifers.

5 Conclusions and Future Work

In this paper we propose an extension for bayesian classification [10] to multi-
class problems which gives improvement both in classification accuracy and time.
The improvement occurs essentially due to sparse non-linear modeling of the
class boundaries and maintaining the normalization constraint during the opti-
mization procedure. The future work would involve making the training algo-
rithm faster. The training time for bayesian multi-class classifier is comparable
to max margin classifier and GLM but more than “pairwise coupling” and “One-
against-Rest” implementation.
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Abstract. We address the problem of formulating a measure of image
information content that is consistent with human perception of infor-
mation present in a given image. When presented with an image, humans
can assess the amount of interesting structural details present as well as
the quality of an image in terms of sharpness and noise level. This as-
sessment can be performed independent of any reference image or prior
knowledge of ground truth. The challeng is to formulate measures that
are sensitive to structurally significant intensity variations in images but
which can also reject noise and clutter in a way similar to humans. It is
shown that conventional measures known in literature for evaluating sin-
gle images (no ground truth) fail to reject noisy images. The limitations
of the published methods based on statistics, edges and entropy lead us
to define a new technique based on an extension of Shannon’s entropy
measure and multiresolution representations. This implicitly postulates
a model of perceived structures that is able to reject noise while giving
high scores for sharp, clean natural images.

Index terms: Perceptual quality, information, entropy, multiresolution,
image model.

1 Introduction

Humans are capable of evaluating images independent of context for their con-
tent richness, level of detail and over-all quality. This (subjective) evaluation
does correlate well across individuals. This is what we refer to as the structural
information content in images: a sense of content quantity and quality indepen-
dent of object recognition. If this can be formulated as a computable function,
then one can have an automated (numerical) evaluation of images that can be
used to assess various other image processing algorithms.

The difference between image information and image quality needs to be
emphasized. Measures of quality compare images with identical contents for their
appearance. A measure of information must evaluate the different amount of
structural details present (edges, textures, shading) as well as their degradation
due to any noise that may be present. There exist many published methods for
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evaluating image quality and changes in images as listed in [1]. In situations
where there exists a desired or target image, the use of error and correlation
based measures are possible [2]. In practise, one often has only a noisy image
that needs to be denoised. Images generated synthetically using image fusion
also have no ground truth. For such cases, it is necessary to have a method of
evaluating an image without recourse to comparison with a ‘true’ image. For the
rest of this paper, we only consider measures of quality and content that can be
applied to single images.

This paper is organized as follows. Some existing methods are examined first
and their limitations are shown. One of these methods, computation of Shannon
entropy, is extended to define a second order measure. In combination with
multiresolution representations, it is used to define a new family of measures.
Finally, results are presented for caliberation of images, evaluation of image
enhancement approaches and quantitative evaluation of perceptual significance
of noise patterns.

2 Single Image Measures

The challenge in defining single image measures is to able to codify the ability of
the HVS to assess structural information. The two image version of the problem,
where one wants to asses the relative change, has been studied in [2]. It is far
harder to estimate information for single images (no ground truth) and indirect
methods are often invoked. For example, Narayanan et. al. in [3] have used
the performance of a classifier on given image sets to infer information content.
These measures are problem specific and say as much about the application
domain as about the image. For single image information content, one must
be able to model the prior knowledge of the world used by the HVS as well:
there is a sense of what is to be expected and, consequently, the unexpected.
This brings into question the model order that one should use. A first order
model would declare any change as unxpected, a second order would declare
any change in the expectation of change as unexpected etc. The first order is
obviously inappropriate as it would make noise very interesting. In this work we
develop a measure based on a second order approach.

2.1 Desired Properties

The evaluation of the information estimate itself can only be made in terms of
its qualitative behaviour in certain situations. The list below serves to set these
conditions and limit the scope of our proposed measures.

1. It should only depend on pixel values of that image.[No reference, context or
IU]
2. Blank (constant) images should get a score of 0.[No structures present]
3. White noise should also score (close to) 0.[No structure seen by HVS]
4. Textures should score higher than noise.[Some structure seen by HVS]
5. Images with plenty of well defined objects should score highest.
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6. The measure should be sensitive to the spatial distribution of pixel values.
Scrambling an image should not leave the measure unchanged.[Undesirable in-
variance]
7. The evaluated score should be attributable to contributions from each pixel,
i.e., it should be localizable.

The first condition defines the scope to context independent single image
measures. The second and third can be considered as boundary conditions on
image variance. The next three (4,5,6) are an attempt to capture characteristics
of human evaluation of an image. The localization property (7) is desirable for
any image measure in terms of utility. Knowing which parts of an image are
contributing to its measure of information can facilitate further processing such
as image fusion [4].

2.2 Existing Measures

Among the existing choices for characterizing single images, one may consider
three basic approaches:

– Statistical measures: These include range, variance, energy and correlation.
The ‘Universal Image Quality Index’ of Wang [5] as extended for single
images by Piella [4] is an example.

– Entropy: Shannon entropy of intensity histogram, expressed as bits/pix.
Variations such as mutual information and other definitions of entropy for
defining image quality use two images as in [1], [6].

– Image Processing primitives: Measures based on detection of various edges
and textures. Though we have not seen such measures defined explicitly, the
present art would certainly allow for such measures to be defined for specific
situations.

Each of these measures have some merit and can be used in certain situations.
The principal drawback is that all these measures keep increasing the score as
intensity variations keep increasing, even when such variations begin to consti-
tute clutter and noise. For humans, a sense of ‘background’ is essential to the
appreciation of a ‘foreground’ object1 In addition, the statistical and entropy
based measures are invariant to the spatial distribution of pixels in images. The
scores from these measures remain unchanged even when the picture is scram-
bled by interchanging various pixels within an image. Last, but not least, one
would like to have a measure that does not get influenced by just a minority of
pixels as is the case for dynamic range and, to a lesser extent, for variance and
energy.

In this work, we formulate a measure based on an extension of Shannon
entropy that is specifically designed to discount noise. Multiresolution represen-
tation is used to induce sensitivity to spatial distribution of pixels. The issue of
localization is explicitly addressed to enable location specific processing using
the measures developed.
1 In audio, the removal of silence periods renders speech incoherent.



268 S. Rakshit and A. Mishra

2.3 A New Measure of Image Information

In his seminal paper, C.E. Shannon focussed his attention on the problem of
communicating the value of a (random) variable across a communication chan-
nel. That approach, based on probability and entropy, has since blossomed into
Information Theory. It should be noted that the ‘information’ refered to in In-
formation Theory relates to the amount of information required to be conveyed
about a variable. It does not indicate the information being conveyed by the vari-
able. As a perfectly random variable is the hardest to communicate, the entropy
of such a variable is maximum (for a given number of discrete states). As a
signal from a measurement process, however, such an output would be unequiv-
ocally termed ‘noise’. The formulation of a measure of information conveyed by
a variable necessiates a modification to Shannon’s measure of entropy.

2.4 Second Order Entropy

We begin by considering the definition for the entropy of a discrete variable. If
the variable x can assume values xi, i = 1..N with probabilities pi, i = 1..N , the
entropy of x, denoted by H(x) is defined as

H(x) =
∑

i

−pi · log pi (1)

This definition of entropy is maximized when each state becomes equally prob-
able. The drawback is that the equiprobable distribution that maximizes this
measure does not correspond to our human perception of ‘structure’ or ‘infor-
mation’ in a signal.

To address the above drawback in H(X), we propose to extend the classical
definition of entropy as given by Eqn 1. The basic idea is this: just as H(x)
goes to 0 when the variable is present in only one state, one would like the new
measure to go to zero when pi = const for all i. This can be done by computing
H(pi), which can be seen as a second order entropy (SOE) of the original variable
x, denoted as H2(x). Irrespective of the dynamic range of x, the dynamic range
of pi is 0...1 and there will be exactly N samples (N = number of states of x).
This, in practise, limits the quantization that one can perform for pi. Assuming
that one has quantized the [0..1] interval into M segments and computed the
probability distribution of pi as qj , j = 1..M , then

H2(x) =
∑

j

−qj · log qj = H(p(x)) (2)

There exists a degree of freedom in going from pi to its probability distribution
qj , so long as noise rejection is the sole criterion. One could have used any
monotonic function of pi, f(pi), to compute the distribution qi. This choice of
a monotonic function determines the type of input distribution, p(x), that will
maximize H2(x). If f is the identity function, p(x) = x maximizes H2(x). This
p(x) forces some values to be much more likely than others, in effect forcing
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a background-foreground distribution. The choice of f(p) = − log pi maximizes
H2(x) for p(x) = ex. This forces an even sharper separation of probabilities
between the more probable (background) values and the rare (foreground) values.
The exploration of higher orders and various nonlinear functions is beyond the
scope of this work. They do constitute two ways in which the framework can be
tuned towards specific models of the HVS.

2.5 Localization of Entropy

As stated in Sec 2.1, one desirable property is localization. The property of
entropy is inherently a global one belonging to the distribution as a whole.
However, it is possible to come up with an ‘entropy map’ for an image that is
consistent with Eqn 1. Note that Eqn 1 involves a sum over the index i of terms
of type pi · − log pi. For images, i would range over possible pixel values and
pi would be equal to Ni/Ntot where Ni is the number of pixels with intensity
i and Ntot is the total number of pixels in the image. Thus the summation
can be changed to a summation over all pixels, with each pixel contributing
(− log pi)/Ntot to H(x), where the pixel intensity is i and pi is the corresponding
probability. Then the entropy H(x) for an image can be seen as a summation of
specific contributions from individual pixels. As the denominator is constant for
all pixels, it can be disregarded as a scaling constant. Thus for each image, one
can define an entropy map where each pixel of value i is replaced by α · (− log pi)
with α being a fixed scaling term meant to ensure that the computed values are
in some desired dynamic range.

Having achieved the localization of H(x), one can iterate the process to
achieve both computation and localization of H2(x). Given an image, one com-
putes its entropy map as mentioned above. By a suitable choice of α, this can
also be made into an image within an identical dynamic range. The entropy of
this image givesH2(x) for the original image and the entropy map of this derived
image gives the second order entropy map for the original image. Note that this
iterative method is simplest for the choice of − log p for the monotonic function.

2.6 Inducing Spatial Dependency Using Multiresolution

Both forms of entropy discussed so far depend only on the intensity histograms
of images. The spatial arrangement of the pixels is not taken into account in the
evaluation of these measures. Entropy characterizes a random variable based on
a collection of samples, where ordering is irrelevant. For a signal, where sampled
values are generated by sampling a physical dimension such as time or space,
the ordering cannot be ignored. Thus direct evaluation of entropy on sampled
values fails to take cognizance of an essential aspect of signals. The ordering can
be made relevant by considering deviations of a sampled value from its local
average and computing the entropy of these derived values. The multiresolution
representations of signals like wavelets and Laplacian pyramids capture such
deviations. The bandpass subbands measure deviations from local means at var-
ious scales. The Laplacian pyramid [7] is easier to use in this context as it does
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not decompose each level into oriented components. The results in this paper are
quoted for Laplacian pyramid decompositions. However, wavelet decompositions
can also be used. Evaluating SOE (H2(.)) for images by evaluating the SOE of
its multiresolution subbands gives a measure that takes cognizance of the spatial
ordering of pixels with respect to each other.

The use of multiresolution for image information does more than just take
into account the spatial ordering of pixel values. Evaluation of H2 for each sub-
band enables us to tailor the measure to HVS models. The use of multi-scale
representations has been advocated for image quality assessment by Wang, Si-
moncelli and Bovik [8] as it enables one to model the scale-space dependency of
the contrast sensitivity function (CSF) of the HVS. One could also build in a bias
towards sharp edges (as those produced by occlusion) by requiring consistency
across scales for the entropy maps of each subband. Last, but not least, one can
use the Shannon entropy of the first subband (L0 for Laplacians) to normalize
the over all measure for input contrast and sensor dynamic range. These issues
are brought out next during the formulation of the proposed measures of image
information.

2.7 Algorithm for Estimating Information

The composite method for computing image information involving H2(x) and
pyramid (multiresolution) for an image I is as follows:

1. Given I, compute multiresolution subbands
M(I) = L0, L1, L2, ..., Ln−1, Gn

2. For each subband, compute the corresponding H2(Lk)
3. Compute H2(M(I)) as a function F of the subband SOE’s

H2(M(I)) = F(H2(L0),H2(L1), ...H2(Gn)) (3)

4. Normalize the measure using entropy of L0

H∗
2 (M(I)) = H2(M(I))/(H(L0))γ (4)

5. Consider the subband entropy maps as a pyramid and reconstruct it, con-
sistent with F, to generate the entropy map of I.

The H2(M(I)) computed above is the multiscale second order entropy (MSOE)
of the image I. The H∗

2 (M(I)) is the normalized multiscale second order entropy
(NMSOE). The NMSOE is useful when comparing images acquired with sensors
having different dynamic ranges or ignoring the effect of contrast.

The choice of the combination function F in Eqn 3 plays an important role in
selecting models of the HVS. The simple summation would give equal weightage
to all scales while a weighted summation would prefer some scales over others.
It could also be based on a projection operation that would favour consistency
of edges across scales. We report results based on the following implementations
of F. Let u1(i, j) and u2(i, j) be the entropy maps of two neighboring subbands
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interpolated to the resolution of the larger of the two. They can be combined to
define the resultant entropy map ur(i, j) as

ur(i, j) = {u1(i, j) + u2(i, j)}/2 (5)

for the simple averaging case. For the consistency across scales model, we use

ur(i, j) =
u1.u2

‖u1‖.‖u2‖
.{u1(i, j) + u2(i, j)}/2. (6)

Such a model would favour occlusion induced sharp edges while ignoring shading
and textures. The choice of γ in Eqn 4 decides the importance of contrast in I. It
also determines the trade-off between discounting distributed high frequencies as
sensor noise or attributing them to texture. The proposed framework for defining
measures of image information is thus versatile enough to incorporate various
HVS models and application specific priors.

3 Results

The results reported here are based on the Laplacian pyramid as the multireso-
lution representation. Four different choices of models were used. For brevity of
notation we define them as
(i) HA : F is an averaging and γ = 0,[ Weak noise rejection, no edge model]
(ii) HA∗ : F is an averaging and γ = 0.5,[Stronger noise rejection]
(iii) HP : F is a projection and γ = 0, [Edge model favoring sharp edges]
(iv) HP ∗ : F is a projection and γ = 0.5.[Sharp edges, strong noise rejection]
where the projection operation is implemented as previously defined.

3.1 Ranking of Assorted Images

The ability of the proposed measures to quantify human perception of image
content and quality is tested by a ranking task. A set of eight images, as shown
in Figure 1, is to be ranked. The images range from a simple square (T ), white
noise (N ), textures (P ,S), natural images (L,B,M) and a black/white diagram
(D). Besides the four MSOE based measures defined above, we also report results
based on variance (V), the standard entropy (H), energy in output of Sobel
operator (SB) and Canny edges (CE). Each measure assigns a numerical score
to each image and the images are sorted in decreasing order to produce the
ranking indiced by that measure. The result is shown in Table 1.

The key ability to reject noise is demonstrated by the proposed methods. The
Canny edge detector was implemented with an adaptive method of selecting the
threshold. Thus is was the only non-MSOE method capable of ignoring noise. It is
also seen that large values of γ penalise textures and the use of projections favour
images with well defined edges. To get more insight into the scoring process, we
need to look at the relative scores given to the images. As each measure uses a
different dynamic range, we facilitate comparison by normalising the scores for
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Fig. 1. Set of four images used for ranking test. Top row, left to right: T , N , P ,S .
Bottom row, left to right: L, M, B, D.

Table 1. Ranking of the eight images in decreasing order of information content by four
proposed measures and four prior methods. Discounting noise and textures (N , P , S)
and differentiating between the binary images (D, T ) are the key challenges.

V S P N D T L B M
H N L P M B S D T
SB S N P D M L B T
CE M B L S P N D T
HA B M L S P N D T
HA∗ D L B M T S P N
HP L D B M T S P N
HP ∗ D L B M T S P N

each method by the maximum score assigned by it to any of the eight images.
These normalised scores are shown in Table 2.

The ability of the proposed metrhods to localize the measured information is
shown in Figure 2. The information maps for images S,L,B are shown for the
method HP . Note that the sparse sharp edges of L score high, but the excessive

Table 2. Relative numerical scores assigned to the eight images by five selected meth-
ods. The scores for each measure are normalised by the maximum assigned by it to
any of the eight images.

H CE HA HA∗ HP

N 1.00 0.24 0.91 0.59 0.04
P 0.92 0.38 0.95 0.62 0.09
S 0.70 0.39 0.97 0.62 0.21
T 0.05 0.04 0.36 0.66 0.22
D 0.05 0.15 0.68 1.00 0.74
L 0.94 0.57 0.98 0.79 1.00
B 0.89 0.80 1.00 0.78 0.65
M 0.91 1.00 0.99 0.75 0.44
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Fig. 2. The information maps of S ,L, B for HP . The brighter regions indicate regions
of the image that contributed more to the overall score for that image. The image
model underlying HP emphasizes sparse sharp edges.

amount of edges present in S lead to them being discounted. This ability to
evaluate discontuities in the overall context of their abundance in an image is a
key feature of MSOE measures.

3.2 Ranking of Enhancements

Noise removal for image enhancement does not have a unique solution. Vari-
ous techniques are employed based on the nature of noise. When faced with a
variety of images coming from unknown or uncaliberated sources, an ability to
numerically evaluate each enhancement method is essential for automating the
noise removal process. In such situations, one never has the noise free ground
truth. Thus the reference image based structural information techniques and the

1.500, 0.010 1.867, 0.058 1.850, 0.014

1.905, 0.054 2.026, 0.087 2.054, 0.098

Fig. 3. The scores assigned by HA∗ and HP ∗ are shown for each processed image.
The left column shows two noisy images. The middle column shows the output of LPF
while the right column shows the output of median filtering. The scores can be used to
pick the better method/output for each case, without reference to the original image.
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RMS based SNR methods cannot be applied. The proposed MSOE based mea-
sures can be used in such situations as shown in Figure 3. There are two noisy
images (Fig 3 left column), one with white noise and the other with salt and
pepper noise. Two noise removal techniques are employed - low pass filtering
(Fig 3 center column) and median filtering (Fig 3 right column). The relative
scores assigned by HA∗, HP ∗ both indicate that the LPF has done better for
white noise and median filter has done better for salt and pepper noise. Thus the
measures can be used to adaptively select best enhancement methods without
ground truths and human judgement.

3.3 Noise Pattern Evaluation

Another class of problems often encountered is one where the noise in a noisy
image can be accurately isolated because of the avalibility of a perfect reference
image. A key problem then is in evaluating the significance of the error or noise.
SNR based on RMSE does not correlate well with human perception of interfer-
ence or degradation. Since the proposed measures provide a model for what is
perceived by the HVS, it can be used to predict the visual impact of any noise
pattern. In Figure 4 we consider four bipolar noise patterns that have identical
energy (RMSE wrt 0). They however get different scores as per HA. The visual
effect of the noise patterns can be appreciated when they are added to an image
(Figure 4 bottom row). The ranking induced by HA seems to match human
percetion of visually disruptive interference, while the ground truth based SNR
would have scored all the four noisy images as of equal quality.

3.191 3.933 4.237 4.312

Fig. 4. The scores assigned by HA to the four noise patterns are used to rank them in
increasing order of expected disruption (top row). The effect of these patterns on an
image is shown (bottom row). As the noise patterns have identical energy, the noisy
images have identical SNR.

4 Conclusion and Future Work

The present work proposes a framework based on multiresolution and second
order entropy to define measures that can model the ability of the HVS to assess
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the presence of information in images. It has been shown that Shannon’s measure
of entropy does not model our ability to reject clutter. A second order exten-
sion has been formulated that is better able to model the HVS by requiring a
certain amount of sparseness. The multiresolution representation is necessary to
capture spatial relationships that are relevant for images. The framework allows
for a series of measures to be defined. Results have been presented for ranking
diverse images, adaptive selection of enhancement methods, noise rejection and
noise evaluation. Future work will try to optimise the measures for specific HVS
models and exploit the information maps for image fusion, lossy compression
and steganography.
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Abstract. This paper presents a layer-model based method to segment
moving objects from image sequence with accurate boundaries. The seg-
mentation framework involves three stages: Motion seed detection, Mo-
tion layer expansion and Motion boundary refinement. In the first stage,
motion seeds, which determine the amount and initial position of motion
layers, are detected by corner matching between consecutive frames, and
classified by global motion analysis. In the second stage, the detected
motion seeds are expanded into motion layers. To preserve the spatial
continuity, an energy function is defined to evaluate the spatial smooth-
ness and accuracy of the layers. Then, Graph Cuts technique is used
to solve the energy minimization problem and extract motion layers. In
the last stage, the extracted layers are combined with edge information
to find accurate boundaries of moving objects. The proposed method is
tested on several image sequences and the experimental results illustrate
its promising performance.

1 Introduction

Moving object segmentation is very important for many video processing ap-
plications, such as video representation, analysis, compression and synthesis. In
the past, a number of algorithms have been proposed, each of which has its
particular features and applications.

Arch and Kaup [1] proposed a segmentation technique using a statistical
approach. They model the difference of pixels in background as a gaussian dis-
tribution and change detection mask (CDM) is yielded by finding the frame
difference. Since this technique relies on the intensity information, there are
always hollows within the detected motion regions when there is no plenty of
textures. This shortcoming is partly overcome by Mech and Wollborn in [2] using
morphological closing operation.

Meier and Ngan proposed an automatic segmentation technique for moving
objects using a binary image model [3]. The binary model is derived from an
edge image and is updated every frame to keep the changes in location and
shape. The detection of a moving object is based on the binary model matching
between two consecutive frames using Hausdoff distance. The advantage of this
technique lies in its capable of tracking an object that stops moving for a certain
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period of time. However, the segmentation results depend on the success of the
initial segmentation at the first frame.

In [4], Nicolescu and Medioni have employed a tensor voting procedure to
obtain piecewise smooth motion region. They used two successive frames as
input. For every pixel in the first frame, a normalized cross- correlation procedure
is used to produce candidate matches for the second image. Then, 4-D tensor
voting is performed to find the best match motion vector. After that, another
2-D tensor voting is used to obtain the motion boundary. While in some cases
this method gives fairly nice results, its accuracy is influenced by the initial
computation of candidate matches. Furthermore, it has the same problem as [1]
that the spatial continuity of motion regions also depends on the abundance of
textures.

In this paper, a new algorithm is proposed for automatic moving object seg-
mentation, which can solve the above problems. The segmentation scheme con-
sists of three steps: Motion seed detection, Motion layer expansion and Mo-
tion boundary refinement. In the first stage, motion seeds, which determine the
amount and initial position of motion layers, are detected by corner matching
between consecutive frames, and classified by global motion analysis. In the
second stage, the detected motion seeds are expanded into motion layers. Dur-
ing the expansion process, an energy function is defined to evaluate the spatial
smoothness and accuracy of the motion layers, by means of what the layer can
keep its spatial continuity even when there is no plenty of textures. Then, Graph
Cuts technique is used to settle the energy minimization problem and expand
the motion layers. In the last stage, the extracted layers are combined with edge
information to find the accurate boundaries of moving objects.

2 Motion Seed Detection

Layered models [5][6][7][8] provide a natural way to detect motion areas with
different velocities. Computationally, the problem is addressed by first estimating
motion vectors for all the pixels, then pixels are grouped into different layers
based on their motion cues. Thus, to extract motion layers, it is necessary to
first find out how many motions are there in the video and where they are. In
this paper, such motions are regarded as seeds for the further extracted motion
layers.

In this section, we extract the motion seeds by tracking corners between con-
secutive frames.

First, Harris detector is performed to detect corners in the current frame. The
detected corners are tracked back to the previous frame to find their correspon-
dences. Based on the coordinate difference between corresponding corners, the
motion vectors between them are achieved. Then, the extracted corners together
with their motion vectors are regarded as motion seeds.

Since the extracted motion seeds are disordered, to distinguish those belonging
to moving objects, global motion analysis is used to cluster them into global
motion seeds and local motion seedsbased on their motion vectors, where global
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motion seeds have motion vectors consistent with global motion caused by the
motion of camera, and local motion seeds have motion vectors corresponding to
local motions caused by the moving objects.

For global motion analysis, a 3-parameter model is proposed to describe global
motion, which can be expressed as[

vx

vy

]
= a1

[
x
y

]
+
[
a2
a3

]
(1)

In the above model, (x, y) is a pixel’s coordinates with respect to the center of
the image, and (vx, vy) is the motion vector of the pixel. The three parameters
are

a1 = zxy, a2 = f1(px, zxy), a3 = f2(py, zxy) (2)

where zxy is the zoom factor of the moving camera and (px, py) is the pan vector.
Based on the 3-parameter model, all the candidate motion seeds are compared

with the global motion to find out whether they belong to the global motion or
not. Such process is performed as follows:

STEP 1. The 3 parameters in formula (1) are estimated based on potential
global motion seeds. (Note that for the first iteration, all the seeds are regarded
as potential global motion seeds.)

Suppose there are N potential global motion seeds. Let (vk
x, v

k
y ) be the motion

vector of a seed k(k = 0, 1, · · · , N − 1), whose coordinate is (skx, s
k
y) with respect

to the center of the frame. The parameters (a1, a2, a3) are estimated using the
following criteria:

(a1, a2, a3) = arg min
N−1∑
k=0

[(vk
x − a1s

k
x − a2)2 + (vk

y − a1s
k
y − a3)2] (3)

Differentiating (3) with respect to the parameters and setting the derivatives to
zero, the following solution can be achieved as:

a1 =
NΨ1 − Ψ2

NΨ3 − Ψ4
(4)

a2 = Ψ3

∑
vk

x − Ψ1

∑
skx +

Ψ5

N

∑
sky (5)

a3 = Ψ3

∑
vk

y − Ψ1

∑
sky −

Ψ5

N

∑
skx (6)

where
Ψ1 =

∑
vk

xs
k
x +

∑
vk

ys
k
y, Ψ2 =

∑
vk

x

∑
skx +

∑
vk

y

∑
sky ,

Ψ3 =
∑

(skx)2 +
∑

(sky)2, Ψ4 = (
∑
skx)2 + (

∑
sky)2,

Ψ5 =
∑
vk

y

∑
skx +

∑
vk

x

∑
sky .

STEP 2. Based on the estimated parameters (a1, a2, a3) by STEP 1, each
potential global motion seed k is checked by

Δk = (vk
x − a1s

k
x − a2)2 + (vk

y − a1s
k
y − a3)2 (7)
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If Δk lies within a predefined threshold, seed k will be maintained as a potential
global motion seed. Otherwise, it will be regarded as a local motion seed.

STEP 3. Return to STEP 1 and re-estimate (a1, a2, a3) based on the re-
maining potential global motion seeds.

The detected motion seeds will be used as the initial state of motion layer
expansion in the following section, where the local motion seeds will be expanded
into motion layers corresponding to moving objects and global motion seeds to
layers corresponding to background. Fig. 1 shows an example of detected motion
seeds on Hall-monitor.

Fig. 1. Motion seed detection: the white squares illustrate the detected global motion
seeds, and the black squares are the local motion seeds

3 Motion Layer Expansion

In this section, Graph cuts technique [9][10] is used to expand the motion layers
from the detected motion seeds. Based on Graph cuts theory, motion layer ex-
pansion is regarded as an image-labelling process, where the labels correspond to
motion vectors. During the labelling process, pixels belonging to different motion
layers will have different labels.

3.1 Energy Function Definition

According to [8], many layer models have a weakness that each pixel is assigned
to a layer independently of its neighbor pixels. As the result, the extracted layers
always don’t manifest the constraint that most physical objects are spatially
coherent. In this paper, this spatial coherency constraint is formulated into an
energy minimization problem, and then settled by graph cuts technique.

For the image-labelling process, the assigned labels should be consistent with
the image data and be piecewise smooth, viz. they should remain unchanged or
vary smoothly on the surface of an object, but change dramatically at object
boundaries. Such problem can be described as: Finding a labelling f that assigns
each pixel p ∈ P a label fp ∈ L, where f is both piecewise smooth and consistent
with the observed data.In this paper, the above problem is formulated into an
energy minimization problem with the energy function
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E(f) = Edata(f) +Esmooth(f) (8)

Here Esmooth evaluates the extent of how f is piecewise smooth, while Edata

evaluates the disagreement between f and the observed data. The form of Edata

is typically
Edata(f) =

∑
p∈P Dp(fp)

Dp(fp) = |Icurrent(p)− Iprevious(q)|
(9)

where Icurrent(p) is the intensity of p in the current frame. And q is the corre-
sponding pixel of p in the next frame. The Esmooth is defined as

Esmooth(f) =
∑

{p,q}∈P Vp,q(fp, fq)

Vp,q(fp, fq) =
{

0 if fp = fq

const if fp �= fq

(10)

where N is the set of interacting pairs of pixels. const is the energy evaluating
the smoothness of adjacent labels.

3.2 Motion Layer Expansion

Graph cuts technique [9] is used to minimize the energy defined in (8). The
construction of the graph is the same as that used in [10]. This section illustrates
how to achieve motion layers from motion seeds using such method.

First, some of the graph nodes are labelled initially according to the different
type of the motion seeds. All nodes corresponding to the global motion seeds will
be assigned a uniform label l0. Nodes corresponding to local motion seeds will be
labelled independently: For to a local motion seeds k, with coordinates (skx, s

k
y)

and motion vector (vk
x , v

k
y ), its graph node will be assigned an special label lk.

Based on the labelled graph, the nodes assigned l0 will be regarded as belonging
to background, and nodes assigned other labels will be regarded as belonging
to moving objects, whose motion is described by (vk

x, v
k
y ). Then, the process of

motion layer expansion from motion seeds can be summarized as:

STEP 1. Start with initial labelling f , where only the nodes corresponding
to motion seeds are labelled;

STEP 2. Compute the E(f) of (8);
STEP 3. Set success := 0;
STEP 4. For each label l ∈ L:
4.1. Find f̂ = arg minE(f c) using Graph cuts technique;
4.2. If E(f̂) < E(f), set f := f̂ and success := 1;
STEP 5. If success = 1 goto STEP 2; else, goto STEP 6;
STEP 6. Output the final f .

In the final f , each node in the graph is assigned a label corresponding to its
motion, based on what motion layers are naturally extracted. Pixels who were
assigned label l0 are segmented as background. Then, the rest pixels with other
labels can be regarded as the moving objects. The motion layers extracted for
Fig. 1 are shown in Fig. 2. it can be seen that the spatial continuity of layers is
well preserved by graph cuts technique. According to Fig. 2, it is clear that
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Fig. 2. Motion layers: (a) shows the extracted motion layers in 3-D space, where the
horizontal dimensions correspond to (x, y) coordinates in image plane and vertical
dimension v correspond to v = (v2

x +v2
y)1/2. The extracted layers can also be described

by velocity map as shown in (b), where a higher velocity v has a higher intensity.

4 Motion Boundary Refinement

When the motion layers are extracted, the objects can be roughly identified
by their motion, but the extracted motion layers may still be inaccurate along
the motion boundaries. This section will combine edge information to refine the
motion boundaries.

In this paper, morphological watershed transform [11] is used to detect inten-
sity edges, which can produce an image partition with regions enclosed by one-
pixel-wide contours. To deal with the over-segmentation problem of watershed
segmentation, a region merging method presented in [12] is used to post-process
the image.

Suppose the current image is partitioned into n regions � = {R1, R2, · · · , Rn},
and every region Ri is enclosed by a one-pixel-wide edge Ei. Based on the seg-
mented edge map, following information are calculated: ||Ri||, area of region
Ri; ||Ei||, length of edge Ei. On the other hand, velocity map provides us an
initial Object Mask (OM), regions not labeled by l0, with rough boundaries.
Fig. 3(a) shows the initial OM by white regions. Then, considering the edge
map together with the initial OM, object segmentation is regarded as a re-
gion classification process, in which all the regions will be classified into two
groups: object regions and background regions. The classification is based on

Fig. 3. Moving object extraction: (a) shows the initial OM and the edge map; (b) is
the refined OM; the extracted object is shown in (c)
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the motion analysis from both the regions and the edges. Two criteria are de-
fined: RPi = ||R∗

i ||/||Ri||, whereR∗
i = {p|p ∈ OM, p ∈ Ri}; EPi = ||E∗

i ||/||Ei||,
whereE∗

i = {p|p ∈ OM, p ∈ Ei}. Considering the possible inaccuracy of initial
OM at boundaries, regions are classified as:

A region Ri is determined to be a object region, if, and only if, RPi >
thresholdR & EPi > thresholdE .

In our experiments, the thresholds are simply selected as thresholdR =
thresholdE = 0.7. Based on the above criterion, all the regions in the image
are analyzed and classified. Finally, the refined OM with accurate boundaries is
used to extract the moving object. Fig. 3 shows an example of moving object
extraction. From the segmentation result in Fig. 3(c), we can see the boundaries
are very close to the real edge of moving object.

5 Experiments

The proposed method is tested on a number of video sequences. In this section,
experimental results on Mom-daughter and Table-tennis are presented.

To further evaluate the performance of the proposed method we manually
extract the objects in the video sequences as the ground truth or actual objects,
and we evaluate the results obtained by the proposed method with the ground
truth as follows:

SA =
Pe

Pa
(11)

where SA is the spatial accuracy of extracted object. pe is the number of error
pixels belonging to the grey regions in Fig. 6(b). pa is the total number of actual
object pixels belonging to the grey region in Fig. 6(a).

Fig. 4. Experiment on Mom-daughter : (a) is the original image; (b) gives the extracted
motion layers (because the motion of a human body is non-rigid, the motion layers are
fluctuant correspondingly, which can also be seen in velocity map (c)); By combining
the edge information in (d) with the initial OM, the final results are shown in (e) and (f)
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Fig. 5. Experiment on Table-tennis

Fig. 6. Spatial accuracy definition
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Using such objective performance evaluation criteria, we compare the pro-
posed method with the techniques in [2] and [4]. Fig. 7 shows the evaluation
results using Table-tennis sequence. From Fig. 7, we can see that, in many cases,
the presented method can produce more accurate segmentation results than the
other two. This partly comes from that graph cuts technique can preserve spatial
coherency in motion layers, even when there is no manifest texture information.
Besides, watershed segmentation together with WCA region merging algorithm
also provide satisfying edge information for the extraction of moving objects.

One remaining problem for the proposed method is that only the motion
cue between two frames is used to extract motion layer, which is not enough
to extract meaningful objects in many cases. We will intend to embed tracking
technique into the segmentation system in our future work. Another problem
lies in the stage of motion boundary refinement, where the accuracy of object
boundaries depends on the edge information too much. If edge map fails to
describe the actual boundary information precisely, the extracted object will
lose its accuracy.

6 Conclusion

This paper presented an approach to automatically segment moving objects from
image sequences with accurate boundaries. The contribution of the presented
method can be summarized as follows: Motion seed detection, which finds out
how many motions are there in the video and where they are, provides a reason-
able initial state for Motion layer expansion. Then during the expansion process,
energy function and graph cuts technique preserve the spatial coherency of mo-
tion layers. Such layers, combined with edge information, produce the segmented
moving objects with accurate boundaries. Several experimental results are shown
in the paper, which illustrate the promising performance of the proposed method.
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Abstract. We present a bottom up algebraic approach for segmenting multiple
2D motion models directly from the partial derivatives of an image sequence. Our
method fits a polynomial called the multibody brightness constancy constraint
(MBCC) to a window around each pixel of the scene and obtains a local motion
model from the derivatives of the MBCC. These local models are then clustered
to obtain the parameters of the motion models for the entire scene. Motion seg-
mentation is obtained by assigning to each pixel the dominant motion model in
a window around it. Our approach requires no initialization, can handle multiple
motions in a window (thus dealing with the aperture problem) and automatically
incorporates spatial regularization. Therefore, it naturally combines the advan-
tages of both local and global approaches to motion segmentation. Experiments
on real data compare our method with previous local and global approaches.

1 Introduction

Motion segmentation is a fundamental problem in many applications in computer vi-
sion, such as traffic surveillance, recognition of human gaits, etc. This has motivated
the recent development of various local and global approaches to motion segmentation.

Local methods such as Wang and Adelson [1] divide the image in small patches and
estimate an affine motion model for each patch. The parameters of the affine models are
then clustered using the K-means algorithm and the regions of support of each motion
model are computed by comparing the optical flow at each pixel with that generated
by the “clustered” affine motion models. The drawback of such local approaches is that
they are based on a local computation of 2-D motion, which is subject to the aperture
problem and to the estimation of a single model across motion boundaries.

Global methods deal with such problems by fitting a mixture of motion models to the
entire scene. [2] fits a mixture of parametric models by minimizing a Mumford-Shah-like
cost functional. [3, 4, 5, 6, 7, 8] fit a mixture of probabilistic models iteratively using the
Expectation Maximization algorithm (EM). The drawback of such iterative approaches
is that they are very sensitive to correct initialization and are computationally expensive.

To overcome these difficulties, more recent work [9, 10, 11, 12] proposes to solve
the problem by globally fitting a polynomial to all the image measurements and then
factorizing this polynomial to obtain the parameters of each 2-D motion model. These
algebraic approaches do not require initialization, can deal with multiple motion mod-
els across motion boundaries and do not suffer from the aperture problem. However,
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these algebraic techniques are sensitive to outliers in the data and fail to incorporate
spatial regularization, hence one needs to resort to some ad-hoc smoothing scheme for
improving the segmentation results.

1.1 Paper Contributions

In this paper, we present a bottom up approach to direct motion segmentation, that
integrates the advantages of the algebraic method of [12], and the non-algebraic method
of [1], and at the same time reduces the effect of their individual drawbacks.

Our approach proceeds as follows. We first consider a window around each pixel
of the scene and fit a polynomial called the multibody brightness constancy constraint
(MBCC) [12] to the image measurements of that window. By exploiting the properties
of the MBCC, we can find the parameters of the multiple motion models describing the
motion of that window. After choosing a dominant local motion model for each window
in the scene, we cluster these models using K-means to obtain the parameters describing
the motion of the entire scene [1]. Given such global models, we segment the scene by
allotting to every pixel the dominant global motion model in a window around it.

This new approach to motion segmentation offers various important advantages.

1. With respect to local methods, our approach can handle more than one motion
model per window, hence it is less subject to the aperture problem or to the estima-
tion of a single motion model across motion boundaries.

2. With respect to global iterative methods, our approach has the advantage of not
requiring initialization.

3. With respect to global algebraic methods, our approach implicitly incorporates spa-
tial regularization by assigning to a pixel the dominant motion model in a window
around it. This also allows our method to deal with a moderate level of outliers.

2 Problem Statement

Consider a motion sequence taken by a moving camera observing an unknown number
of independently and rigidly moving objects. Assume that each one of the surfaces
in the scene is Lambertian, so that the optical flow u(x) = [u, v, 1]� ∈ P2 of pixel
x = [x, y, 1]� ∈ P2 is related to the spatial-temporal image derivatives at pixel x,
y(x) = [Ix, Iy , It]� ∈ R3, by the well-known brightness constancy constraint (BCC)

y�u = Ixu + Iyv + It = 0. (1)

We assume that the optical flow in the scene is generated by nt 2-D translational
motion models {ui ∈ P2}nt

i=1 or by na 2-D affine motion models {Ai ∈ R3×3}na

i=1

u = ui i = 1, . . . nt or u = Aix =

⎡⎣ a�
i1

a�
i2

0, 0, 1

⎤⎦x i = 1, . . . , na, (2)

respectively. Under these models, the BCC (1) reduces to

y�ui = 0 and y�Aix = 0 (3)
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for the 2-D translational and 2-D affine motion models, respectively.
In this paper, we consider the following problem.

Problem 1 (Direct 2-D motion segmentation). Given the spatial-temporal derivatives
{(Ixj , Iyj , Itj))}Nj=1 of a motion sequence generated by a known number of n = nt

translational or n = na affine motion models, estimate the optical flow u(x), the mo-
tion model at each pixel {xj}Nj=1 and the segmentation of the image measurements,
without knowing which measurements correspond to which motion model.

3 Global Algebraic Motion Segmentation from the Multibody
Brightness Constancy Constraint

In this section, we review the global algebraic approach to direct motion segmentation
introduced in [12], which is based on a generalization of the BCC to multiple motions.

Let (x,y) be an image measurement associated with any of the motion models. Ac-
cording to the BCC (1) there exists a 2-D motion model, say the kth model, whose
optical flow uk(x) satisfies y�uk(x) = 0. Therefore, the following multibody bright-
ness constancy constraint (MBCC) must be satisfied by every pixel in the image

MBCC(x,y) =
n∏

i=1

(y�ui(x)) = 0. (4)

From equation (4) we can see that in the purely translational case, the MBCC is a
homogeneous polynomial of degree nt which can be written as a linear combination
of the monomials yl1

1 y
l2
2 y

l3
3 with coefficients Ul1,l2,l3 . By stacking all the monomials

in a vector νnt(y) ∈ RMnt and the coefficients in a multibody optical flow vector
U ∈ RMnt , whereMnt = (nt+1)(nt+2)

2 , we can express the MBCC as

MBCC(x,y) = νnt(y)�U =
nt∏
i=1

(y�ui). (5)

The vector νnt(y) ∈ RMnt is known as the Veronese map of y of degree nt.
Similarly, if the entire scene can be modeled by affine motion models only, the

MBCC is a bi-homogeneous polynomial of degree na in (x,y). The coefficients of
this polynomial can be stacked into a multibody affine matrix A ∈ RMna×Mna , so that
the MBCC can be written as

MBCC(x,y) = νna(y)�Aνna(x) =
na∏
j=1

(y�Ajx). (6)

3.1 Computing the Multibody Motion Model

As the MBCC holds at every image measurement {(xj ,yj)}Nj=1, we can compute the
multibody motion modelM = U or A by solving the linear system

Lnm = 0, (7)
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where m is the stack of the columns ofM. In the case of translational models, the jth
row of Lnt ∈ RN×Mnt is given by νnt(yj)�. In the case of affine models, the jth row

of Lna ∈ RN×(M2
na

−Zna ) is given by a subset of the entries of (νna(yj)⊗ νna(xj))�.
The dimension ofLna isN×(M2

na
−Zna) rather thanN×M2

na
, becauseZna elements

of A are zero, as the (3, 1) and (3, 2) elements of every affine motion model {Ai}na

i=1
are zero. The enforcement of this constraint leads to a more robust calculation ofA.

With noisy data the equation MBCC(x,y) = 0, becomes MBCC(x,y) ≈ 0. Never-
theless, since the MBCC is linear in the multibody motion parameters U or A, we can
solve a linear inhomogeneous system by enforcing the last entry of m to be 1. It is easy
to prove, that when nt = 1 or na = 1, this method of solving the linear system, reduces
to the standard local approaches of fitting a single motion model to a given window.

3.2 Motion Segmentation Using the MBCC

In this subsection, we demonstrate how one can calculate the parameters of the multiple
motion models associated with the entire scene from its MBCC.

A very important and powerful property of the MBCC is that one can compute the
optical flow u(x) at each pixel in closed form, without knowing which motion model
is associated with each pixel. Since each pixel x is associated with one of the n motion
models, there is a k = 1, . . . , n such that y�uk(x) = 0, so

∏
� �=i(y

�u�(x)) = 0 for
all i �= k. Therefore, the optical flow at a pixel obeying model k can be obtained as

∂MBCC(x,y)
∂y

=
n∑

i=1

ui(x)
∏
� �=i

(y�u�(x)) ∼ uk(x). (8)

For 2-D translational motions, the motion model is the optical flow at each pixel.
Hence, we can take the optical flow at all the pixels in the scene and obtain the nt

different values {ui}nt

i=1 using any clustering algorithm in R2. Alternatively, one can
choose nt pixels {xi}nt

i=1 with reliable optical flow and then obtain ui = u(xi). As
shown in [12], under the assumption of zero-mean Gaussian noise in y with covariance
Λ ∈ R3×3, one can choose a measurement (xnt ,ynt

) that minimizes

d2nt
(x,y) =

|MBCC(x,y)|2

‖Λ∂MBCC(x,y)
∂y ‖2

. (9)

The remaining measurements (xi−1,yi−1) for i = nt, nt − 1, . . . , 2 are chosen as the
ones that minimize

d2i−1(x,y) =
d2i (x,y)
|y�ui|2
‖Λui‖2

. (10)

Notice that in choosing the points there is no optimization involved. We just evaluate
the distance functions di at each point and choose the one giving the minimum distance.

In the case of 2-D affine motion models, one can obtain the affine motion model
associated with an image measurement (x,y) from the cross products of the derivatives
of the MBCC. More specifically, note that if (x,y) comes from the ith motion model,
i.e. if y�Aix = 0, then
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∂MBCC(x,y)
∂x

∼ y�Ai. (11)

Thus, the partials of the MBCC with respect to x give linear combinations of the rows of
the affine model at x. Now, since the optical flow u = [u, v, 1]� at pixel x is known, we
can evaluate the partials of the MBCC at (x,y1), with y1 = [1, 0,−u]�, and (x,y2),
with y2 = [0, 1,−v]�, to obtain the following linear combination of the rows of Ai

gi1 ∼ ai1 − ue3 and gi2 ∼ ai2 − ve3, (12)

where ei is given by the ith column of the 3 × 3 identity matrix. Let bi1 = gi1 ×
e3 ∼ ai1 × e3 and bi2 = gi2 × e3 ∼ ai2 × e3. Although the pairs (bi1, e1) and
(bi2, e2) are not actual image measurements, they satisfy e�1 Aibi1 = a�

i1bi1 = 0 and
e�2 Aibi2 = a�

i2bi2 = 0. Therefore, we can immediately compute the rows of Ai up to
scale factors λi1 and λi2 as

ã�
i1 =λ−1

i1 a�
i1 =

∂MBCC(x,y)
∂x

∣∣∣∣
(bi1,e1)

, ã�
i2 =λ−1

i2 a�
i2 =

∂MBCC(x,y)
∂x

∣∣∣∣
(bi2,e2)

. (13)

Finally, from the optical flow equations u = Aix we have that u = λi1ã
�
i1x and

v = λi2ã
�
i2x, hence the unknown scales are automatically given by

λi1 =
u

ã�
i1x

and λi2 =
v

ã�
i2x
. (14)

In order to obtain the na different affine matrices, we only need to apply the method
to na pixels corresponding to each one of the na models. We can automatically choose
the na pixels at which to perform the computation using the same methodology pro-
posed for 2-D translational motions, i.e. by choosing points that minimize (9) and a
modification of (10). For the 2-D affine models, (10) is modified as

d2i−1(x,y) =
d2i (x,y)
|y�Aix|2
‖Λ(Aix)‖2

. (15)

Once the n models have been computed, the scene is segmented using the following
scheme: assign (xj ,yj) to group i if

i = arg min
�=1,...,n

|y�
j u�|2

‖Λu�‖2
for the translational case, (16)

i = arg min
�=1,...,n

|y�
j A�xj |2

‖Λ(A�xj)‖2
for the affine case. (17)

4 A Bottom Up Approach to Direct 2-D Motion Segmentation

The local method of [1] considers a window around every pixel, fits a single motion
model to each window, and then clusters the locally estimated motion models. As ear-
lier pointed out, this method can suffer from the aperture problem and hence, one would
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be required to take a large window to avoid it. However, using a large window can lead
to the estimation of a single motion model across motion boundaries. The global method
of [12] helps in overcoming these two problems by globally fitting a MBCC to the entire
scene. However, this purely algebraic method does not incorporate spatial regulariza-
tion, because the segmentation is point-based rather than patch-based, as suggested by
equations (16) and (17). This results in noisy segmentations, which need to be post-
processed using ad-hoc techniques for spatial smoothing. In addition, the method does
not deal with outliers in the image measurements.

In this section, we propose a bottom up approach to motion segmentation which
integrates the local and algebraic approaches by exploiting their individual advantages.
We propose to fit multiple motion models to a possibly large window around each pixel
using the algebraic method, to then cluster these locally estimated models. The details
of our approach are given in the following subsections.

4.1 Local Computation of Multiple Motion Models

We consider a windowW(x) around a pixel x and fit a MBCC to the measurements in
that window. In doing so, we use a variable number of models n = 1, . . . , nmax, where
nmax is the maximum number of motion models in the scene. For every n, we use the
method described in Section 3 to calculate n motion models M1

n . . .M
n
n for that win-

dow. As n varies, this gives a total of nmax(nmax+1)
2 motion models for every window.

From these candidate local models, we choose the dominant local motion model for that
window as the one that minimizes the sum of the squares of the brightness constancy
constraint evaluated at every pixel in the window. That is, we assign to xj the model

M(xj) = min
n=1...nmax

l=1...n

{M l
n :

∑
xk∈W(xj)

(y�
k ul

n(xk))2}, (18)

where ul
n(xk) is the optical flow evaluated at xk according to M l

n, i.e. the lth motion
model estimated assuming n motion models in the window. This is equivalent to as-
signing to a window the motion model that gives the least residual with respect to the
BCC for that window. By applying this procedure to all pixels in the image, {xj}Nj=1,
we estimate a collection of N local motion models for the entire scene.

Note that, in comparison with the local approach of [1], our method can account for
more than one motion model in a window. In addition, the structure of the MBCC lets
us choose the size of the window as large as necessary without having to worry about
the motion boundary problem. In fact [12] deals with the case where the window size
is the size of the entire image and hence fits the motion models to the entire scene.

An additional feature of our method is that equation (18) can also be used to esti-
mate the number of motion models in a window. However, an accurate estimation of
the number of models is not critical, as long as nmax is larger than or equal to the true
number of models in the window. This is because if the true number of motion models
is over estimated, then the estimated MBCC in (4) has additional factors apart from
the true factors. Once can show that these additional factors do not affect the calcula-
tions described in equations (8) - (15). We omit the details of the proof due to space
limitations.
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4.2 Clustering the Model Parameters

Ideally, pixels corresponding to the same motion should have the same motion parame-
ters. However, due to noise and outliers, the locally estimated motion model parameters
may not be the same for pixels corresponding to the same motion.

In order to obtain a set of reliable motion model parameters that define the motion
of the entire scene, we apply the K-means algorithm in the space of model parameters.
Note that if we were to apply [12] to the entire scene followed by the K-means algo-
rithm, we would have had problems due to outliers. However, in our approach, even for
windows centered at outliers, we choose the pixels with most reliable motion model pa-
rameters in the window, thus providing better estimates of the local motion model at a
pixel than [12]. We also provide better estimates than [1] that evaluates just one motion
model per pixel, because we can evaluate multiple motion models at motion boundaries.
Though we finally consider only one motion model per pixel on motion boundaries also,
we claim that this motion model is more accurate than the motion model given by [1],
because we choose the best among multiple local models.

4.3 Segmentation of the Motion Models

Once the motion model parameters describing the motion of the entire scene are cal-
culated, it remains to be decided as to how one should segment the scene. While [12]
performs well to a great extent, it does not incorporate spatial regularization. As a re-
sult the segmentation has a lot of holes and one has to use some ad-hoc method for
smoothing the results.

We would like to design a segmentation scheme which incorporates spatial regular-
ization, because it is expected that points that are spatially near by will obey the same
motion model. Hence, we consider a windowW(xj) around every pixel {xj}Nj=1 and
assign to it the dominant global motion model for that window, that is, the global model
that minimizes the residual with respect to the BCC for the entire window. In the case
of translational models, this can be expressed mathematically as follows

u(xj) = min
i=1...nt

{ui :
∑

xk∈W(xj)

(y�
k ui)2}. (19)

In the case of affine motion models, the segmentation of the scene is obtained as follows

A(xj ,yj) = min
i=1...na

{Ai :
∑

xk∈W(xj)

(y�
k Aixk)2}. (20)

5 Results

In this section, we test our algorithm on real world data and compare its performance
with that of the algorithms in [1] and [12]. For all methods, we model the scene as a
mixture of 2-D translational motion models. For the method in [12], we post process
the segmentation results by spatially smoothing them with a median filter in a window
of size 10× 10.
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Method in [1] Method in [12] Our method

Fig. 1. Segmenting 3 frames from the car-parking lot sequence
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Method in [1] Method in [12] Our method

Fig. 2. Segmenting 3 frames from the head-lab sequence
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Figure 1 shows an example of segmentation of a 240×320 sequence of a car leaving a
parking lot. The scene has 2 motions, the camera’s downward motion and the car’s right-
downward motion. We use a window size of 10× 10 to define the local neighborhoods
for the method in [1] and for our method. The first and second columns of Figure 1
show the segmentation obtained using the methods in [1] and [12], respectively. The
final column shows the results obtained using our method. In each image, the pixels
that do not correspond to the group are colored black. Note that the best segmentation
results are obtained using our approach. Although the improvement with respect to the
method in [1] is not significant, the segmentation of the car is very good as compared
to the method in [12] in the sense that very less amount of the parking lot is segmented
along with the car.

Figure 2 shows an example of segmentation of a 240× 320 sequence of a person’s
head rotating from right to left in front of a lab background. The scene has 2 motions,
the camera’s fronto-parallel motion and the head’s motion. We use a window size of
20 × 20 to define the local neighborhoods for the method in [1] and for our method.
The first and second columns of Figure 2 show the segmentation obtained using the
methods in [1] and [12], respectively. The final column shows the results obtained using
our method. In each image, pixels that do not correspond to the group are colored red.
Notice that we cannot draw any conclusion for this sequence as to which algorithm
performs better, because essentially all the methods misclassify the regions that have
low texture. However, our method does perform better than [12] in terms of spatial
regularization of the segmentation.

6 Conclusions and Future Work

We have presented a bottom up approach to 2-D motion segmentation that integrates the
advantages of both local as well as global approaches to motion segmentation. An im-
portant advantage of our method over previous local approaches is that we can account
for more than one motion model in every window. This helps us choose a big window
without worrying about any aperture problem or motion boundary issues, and also re-
duces the need for iteratively refining the motion parameters across motion boundaries.
An important advantage of our method over global algebraic approaches is that we
incorporate spatial regularization into our segmentation scheme and hence we do not
need to apply any ad-hoc smoothing to the segmentation results. Future work entails
developing a robust algorithm for determining the number of motions in a window.
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Abstract. Background subtraction is an essential task in several static
camera based computer vision systems. Background modeling is often
challenged by spatio-temporal changes occurring due to local motion
and/or variations in illumination conditions. The background model is
learned from an image sequence in a number of stages, viz. preprocessing,
pixel/region feature extraction and statistical modeling of feature distri-
bution. A number of algorithms, mainly focusing on feature extraction
and statistical modeling have been proposed to handle the problems and
comparatively little exploration has occurred at the preprocessing stage.
Motivated by the fact that disturbances caused by local motions disap-
pear at lower resolutions, we propose to represent the images at multiple
scales in the preprocessing stage to learn a pyramid of background models
at different resolutions. During operation, foreground pixels are detected
first only at the lowest resolution, and only these pixels are further an-
alyzed at higher resolutions to obtain a precise silhouette of the entire
foreground blob. Such a scheme is also found to yield a significant reduc-
tion in computation. The second contribution in this paper involves the
use of the co-linearity statistic (introduced by Mester et al. for the pur-
pose of illumination independent change detection in consecutive frames)
as a pixel neighborhood feature by assuming a linear model with a signal
modulation factor and additive noise. The use of co-linearity statistic as
a feature has shown significant performance improvement over intensity
or combined intensity-gradient features. Experimental results and perfor-
mance comparisons (ROC curves) for the proposed approach with other
algorithms show significant improvements for several test sequences.

1 Introduction

Extracting foreground regions through background subtraction is a primary task
in (quasi) static camera based computer vision systems spanning the application
domains of automated video surveillance, activity analysis, smart rooms, human
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computer interfaces etc. The process of background subtraction is performed in
two phases, viz. learning (background modeling) and classification (foreground
extraction). In the learning phase, the background images are pre-processed and
transformed to suitable color spaces (RGB, nRGB, HSI etc.) and are subjected to
pixel (neighborhood) feature extraction. Finally statistical modeling is performed
to approximate the distribution of extracted features. During operation (clas-
sification phase), each new image undergoes similar pre-processing, color space
conversion and feature extraction operations and any foreground pixels present
are detected by computing the belongingness of their extracted features to the
learned statistical background model. Finally, at the post-processing stage, the
occurrences of misclassified pixels are removed through morphological or spatial
voting operations. Figure 1 shows a block diagram depicting the several stages
of background subtraction.

Fig. 1. Block diagram of the background subtraction procedure

The naive approach to background modeling assumes a temporal constancy
of a pixel (or neighborhood) feature with very little variations caused by image
noise leading to the modeling of feature distribution with a single Gaussian [1].
However, in most practical cases, spatio-temporal changes do occur due to dis-
turbances caused by motion (swaying trees, sea waves etc) and/or variations in
illumination conditions (cast shadows, changing ambient illumination over the
day etc.). The computer vision community has proposed a number of algorithms
to overcome the difficulties caused by such spatio-temporal changes. Koller et
al. [2] have suggested Gaussian pre-filtering of the training sequences (with a
filter bank) prior to further modeling, which is so far the only contribution in
the pre-processing stage. A judicious selection of an operating color space also
led to some success in handling illumination changes. Apart from using the naive
RGB intensity values [3, 4], researchers have experimented with normalized RGB
[5, 6, 7] and HSI [8] to deal with cast shadows and illumination fluctuations. Most
of the works have adopted the pixel intensity value in a particular color space
as a suitable feature [5, 9, 4, 7]. Performance improvements are witnessed while
using the image gradients [3] or optical flow [6] features along with the pixel
intensity values leading to an invariance toward illumination variations and mo-
tion disturbances. Contributions are also observed in the statistical modeling of
the feature distributions. Grimson-Stauffer [4] have introduced the use of the
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mixture of Gaussians (MOG) to model the inherent multi-modality in the fea-
ture space caused by motion disturbances. This approach has shown significant
improvement in dealing with persistent background motion. Elgammal et al. [9]
have proposed a non-parametric approach based on Gaussian kernel functions.
Apart from these, researchers have also proposed the applications of several other
distribution generators like Markov random fields [5] or hidden Markov models
[10].

The present work makes two distinct contributions. The first contribution in
this paper is in the pre-processing stage, where an image pyramid is formed at
multiple resolutions prior to background modeling. Such a representation grad-
ually suppresses local motion disturbances in the background regions at lower
resolutions. Thus, the background is learned at multiple scales and the combined
model is used for the purpose of foreground extraction. During operation, the
foreground pixels are first detected only at the lowest resolution and only the
local neighborhood of the detected pixels are processed further at higher resolu-
tions to acquire a more precise silhouette of the foreground region. This approach,
on the one hand, takes care of small localized disturbances in the background
and on the other hand, reduces the overall computations. The performances of
the multiscale background models are studied against the corresponding single
scale ones which shows significant improvements in the receiver operating char-
acteristic (ROC, henceforth) curves irrespective of the feature chosen. Thus,
using a multiscale representation for any existing background subtraction algo-
rithm improves its performance as well as reduces computations. The second
contribution deals with the use of the co-linearity statistic as an image feature,
which assumes a linear model considering a signal modulation factor and an
additive noise component in the observed signal. Mester et al. [11] have intro-
duced the co-linearity statistic for the purpose of illumination invariant change
detection in consecutive frames. In this paper we discuss the application of the
co-linearity statistic in the domain of background subtraction. ROC curves are
plotted comparing the performances of the co-linearity statistic with respect to
the algorithms using intensity or intensity-gradient features and they reveal the
significant superiority of this statistic as a feature for background subtraction.

This paper presents our work in the following manner. Section 2 discusses
the proposed multiscale background model along with its advantages and per-
formance evaluation. The application of co-linearity statistic in the domain of
background subtraction is described in section 3. The experimental results and
performance curves for the combined multiscale co-linearity statistic based back-
ground modeling algorithm are presented in section 4. Finally, we conclude in
section 5 and discuss further extensions to the present contributions.

2 Multiscale Background Modeling

Spatio-temporal changes due to motion disturbances restricted to a local neigh-
borhood are found to disappear at lower resolutions, when the lower resolutions
are generated by averaging over contiguous, disjoint, blocks of pixels of size
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Sx × Sy taken from the next higher resolution. Motivated by this observation,
we propose to form an image pyramid by scaling down the original image at the
pre-processing stage and learn background models at every scale of the pyra-
mid. During the operating phase, foreground extraction in a new image is first
performed at the lowest resolution. The detected foreground pixels and their
immediate neighbors alone are zoomed in to the next higher resolution for fur-
ther analysis. The zoomed-in foreground region thus formed is subjected to a
morphological dilation with a 3× 3 square structuring element so as to grow a
single pixel boundary layer around it. The zoomed-in region along with the new
grown boundary pixels are further subjected to background subtraction with
the model learned at that resolution. Including the grown boundary layer pixels
ensures a more precise detection of the foreground silhouette with a smooth con-
tour. This process is repeated as we move further to higher resolutions. Figure 2
shows the improvements in the ROC curves as the depth of the image pyramid
increases for a simple background subtraction algorithm with intensity feature
distribution modeled as a single Gaussian.

(a) (b)

Fig. 2. ROC curves for varying pyramid depth at the pre-processing stage for a simple
background subtraction algorithm with pixel intensity feature distribution modeled as
a single Gaussian. (a) The comparison of the ROC curves. (b) Bar chart showing the
area under the different ROC Curves.

Consider an image with N0 pixels from which we make an image pyramid
of depth R by scaling down with factors Sx and Sy along the width and height
respectively. Let the size of the image at the rth depth (r = 0, . . . , R) of the pyra-
mid be given by Nr = N0

(SxSy)r . Let the total number of pixels processed by a
pyramidal background model of depth R for a particular background subtraction
algorithm be CR. Now, the same algorithm, without taking recourse to such a
multiscale pre-processing stage will process C0 = N0 pixels. Let, Pr be the num-
ber of pixels processed at the rth depth. According to the proposed (multiscale
modeling) scheme, background subtraction for a new image is first performed
at the lowest resolution. Thus, at the Rth depth, we process PR = NR pixels,
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of which, say, a fraction (equal to α) of pixels are declared as foreground. The
detected foreground region(s) is (are) zoomed in to the next higher resolution
to αNRSxSy pixels. A morphological dilation with a 3 × 3 square structuring
element is performed at this level to incorporate the pixels connected to the
perimeter of the foreground region at the (R− 1)th depth. Thus, the number of
pixels processed at this depth is given by,

PR−1 = αNRSxSy + βαNRSxSy = α(1 + β)NRSxSy (1)

where β is the fractional gain in the number of foreground pixels owing to the
process of dilation and hence is approximately equal to the perimeter to area
ratio of the foreground region. If we consider the worst case, where all the pixels
visited in the (R−1)th scale are selected as foreground candidates, then, following
a similar procedure again, the number of pixels processed at the (R−2)th depth
is given by PR−2 = PR−1(SxSy) + β

SPR−1(SxSy).
We point out that as the detected foreground region inflates in higher resolu-

tions, the perimeter to area ratio decreases by a factor of S, which is a function
of Sx, Sy and the shape of the region. The effect of shape on the value of S is
highest for a circular shape, and is the least for a highly elongated shape, whose
perimeter to area ratio is largest. We can categorically state that S always ex-
ceeds unity even in the latter case, and is greatest for a circular shape. Using
S = 1 as a loose lower bound on its value, a loose upper bound on PR−2 can
be deduced as (1 + β)PR−1(SxSy) = αNR[SxSy(1 + β)]2. Thus, by induction we
can write the loose upper bound on the number of pixels processed at (R− r)th

depth as PR−r < αNR[SxSy(1+β)]r. Hence, the loose upper bound on the total
number of pixels processed CR for a pyramidal background model of depth R is
given by,

CR = PR +
R∑

r=1

PR−r < NR + αNR

R∑
r=1

[SxSy(1 + β)]r

=
N0

(SxSy)R

[
1 + α(1 + β)SxSy

{SxSy(1 + β)}R − 1
{SxSy(1 + β)} − 1

]
(2)

Define the quantity γR as the ratio of the number of pixels processed by a
background subtraction algorithm with a pyramidal model to the one without
it. Thus, from equation 2, we can deduce the loose upper bound on γR as,

γR =
CR

C0
<

1
(SxSy)R

[
1 + α(1 + β)SxSy

{SxSy(1 + β)}R − 1
{SxSy(1 + β)} − 1

]
(3)

Evidently, we save on computations if γR < 1.0. Figure 3 shows the depen-
dence of γR on α, β and R. In these simulation plots (and our experiments as
well), we have chosen the scale factors to be Sx = Sy = 2.0.

It can be observed from figure 3(a) that the region of reduced computation
in the (α, β) plane shrinks as R is increased. Also, from figure 3(b), it can be
observed that choosing a value of R = 3 is good enough for all practical purposes.
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(a) (b)

Fig. 3. Dependence of γR on α, β and R for scaling factors of Sx = Sy = 2.0. (a)
Shrinking of reduced computations region in (α, β) ∈ [0, 1] plane as R varies from 1 to
5; (b) γR vs. R for different values of α and β = 0.1.

More so, we can see from figure 2 that the performance improvement in the ROC
curves gradually saturates with increasing R. Hence, going for R > 3 does not
yield significantly higher performance or reduced computations.

The pre-filtering technique proposed by Koller et al. [2] learns background
models on the outputs of different filters. Thus for an image size of N0 pix-
els and filter-bank size R, the memory requirement for the background model
will be proportional to RN0 pixels. However, in our case, if the background is
learned over an image pyramid up to a depth of R, the total memory require-
ment will be proportional to

∑R
r=0

N0
(SxSy)r = N0{(SxSy)R+1−1}

(SxSy)R(SxSy−1) . Further still, the
number of pixels processed will also be increased by a factor of R to RN0 for
the pre-filtering approach, whereas the proposed algorithm will definitely reduce
computations under most practical conditions. Hence, our method is superior to
the one proposed by Koller et al. from both the view point of memory usage and
computational cost.

3 The Co-linearity Statistic

Change detection in consecutive frames is often challenged by sudden illumina-
tion fluctuations. Recently, Mester et al. [11] have introduced the co-linearity
statistic to handle the problems caused by illumination changes. The proposed
approach assumes a linear model, where the observed data is represented as a
sum of a modulated signal (modulation accounting for illumination change) and
superimposed image noise. In this section, we discuss the use of co-linearity sta-
tistic as a pixel neighborhood feature for the purpose of background subtraction.
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The background classification system initializes by computing the reference
image Ω = 1

T

∑T
t=1Ωt from the first T frames Ωt (t = 1, . . . , T ), which are as-

sumed to be unintruded by any foreground object(s) (training conditions). Let
the rectangular neighborhood regions of the (x, y)th pixel position in Ω and Ωt

be ω(x, y) and ωt(x, y) respectively. Let, vxy and vxyt be the respective column
vectors obtained by stacking the rows of ω(x, y) and ωt(x, y). Now, if no struc-
tural changes occur in the image within these rectangular windows, deviations
from the reference vector can only happen due to multiplicative change in illumi-
nation (assumed to be uniform over the local neighborhood) and additive noise.
However, neither the observed images nor the reference image Ω provide us with
the pure signal. Hence, both of them can be treated as an additive composition
of the scalar modulation of the unknown pure signal unit vector uxy and white
noise.

vxy = κxyuxy + ξxy (4)

vxyt = κxytuxy + ξxyt (5)

where κxy, κxyt and ξxy, ξxyt are the modulation and white noise components
for vxy and vxyt respectively. Let us define the quantity dxyt as the norm squared
sum of the white noise components ξxy, ξxyt and is given by,

dxyt
def
= ‖ξxy‖2 + ‖ξxyt‖2 (6)

The co-linearity statistic cxyt is obtained by minimizing dxyt with respect to
uxy, and can be proved [11] to be the minimum eigen value λ(min)

xyt of the matrix
VxytVT

xyt, where Vxyt = (vxyvxyt)
T .

The background model at the (x, y)th pixel position is thus learned by com-
puting the mean μc(x, y) and the standard deviation σc(x, y) of the co-linearity
statistic cxyt from the T training frames. The Chebyshev inequality [12] en-
sures that (1 − 1

k2 ) fraction of the random variable sample values lie within
(μc(x, y)±kσc(x, y)) irrespective of the distribution. However, in our case, higher
disparity from the model implies a higher value of the co-linearity statistic.
Hence, we define the set of foreground pixels Ft for a new image Ωt (t > T ) as,

Ft = {Ωt(x, y) : cxyt ≥ μxy + kσxy} (7)

The processing time per pixel increases with larger pixel neighborhood size.
When speed is preferred over spatial accuracy, the processing can be performed
on a block raster instead of a pixel-wise classification. In all our experiments,
however, a 3× 3 neighborhood is chosen with pixel-wise classification. Figure 4
shows the comparison of the ROC curves of background subtraction algorithms
using co-linearity statistic, intensity (single Gaussian and GMM) and combined
intensity-gradient features. It is evident from the figure that the co-linearity
statistic based feature extraction scheme provides significant improvement in
performance as compared to the others.
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(a) (b)

Fig. 4. Performance analysis. (a) ROC curve of co-linearity statistic based approach
compared to standard algorithms; (b) Bar chart showing the area under the ROC
curves of (a).

4 Results

The experiments are performed on a number of test sequences comprising of both
mild and violent motions in the background regions. In this section, we compare
the performance of proposed multiscale co-linearity statistic based approach with
the standard algorithms (intensity/intensity-gradient features with single (mix-
ture of) Gaussian(s)) using pyramidal background models. In all these cases, a
scaling factor of Sx = Sy = 2.0 is assumed with R = 3. Figure 5 shows the
performance comparisons by the ROC curves of the corresponding algorithms.

The results of background subtraction using the proposed approach along
with the comparisons with that of other algorithms are shown in figure 6. Sig-

(a) (b)

Fig. 5. Performance analysis. (a) ROC curve of proposed multiscale co-linearity statis-
tic compared to standard algorithms. (d) Bar chart showing the area under the ROC
curves of (c).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 6. Results of fountain sequence with mild background motion. (a) foreground
image; results using (b) multiscale-intensity-single Gaussian; (c) multiscale-intensity
GMM; (d) multiscale-intensity-gradient-GMM; (e) proposed multiscale and co-linearity
statistic based approach. Results of forest sequence with violent background motion. (f)
foreground image; results using (g) multiscale-intensity-single Gaussian; (h) multiscale-
intensity GMM; (i) multiscale-intensity-gradient-GMM; (j) proposed multiscale-co-
linearity statistic based approach.

nificant improvements are witnessed in both the sequences (forest sequence with
violent background motion and the fountain sequence with mild disturbances)
while employing the proposed approach. The current implementation (with un-
optimized coding) of the proposed algorithm operates at 7.0Hz while executing
on 320× 240 images on a 2.8GHz Pentium-IV PC with 1GB RAM.

5 Conclusion

The process of background subtraction is composed of the several stages of im-
age pre-processing, pixel/region feature extraction and statistical modeling of the
same in the feature space. Afterwards, a post-processing stage is often involved
for the purposes of shadow removal and suppression of classification noises by
voting or morphological operations. This paper presents two significant contri-
butions at the pre-processing and feature extraction stages. First, the multiscale
approach to background modeling that improves the performance of any existing
algorithm and reduces computations in most practical cases is discussed. Sec-
ondly, we introduce the use of a co-linearity statistic based feature extraction
scheme that is shown to outperform intensity and combined intensity-gradient
based approaches. The paper proposes the combination of the multiscale and
the co-linearity statistic based approach which gives superior results compared
to other algorithms. Experimental results have been presented while the com-
parison is performed by ROC curves and visual results are also outlined.

The current work assumes the availability of a few unintruded frames for the
purpose of background model learning. Thus, a natural extension is the formu-
lation of an automatic multi-scale co-linearity statistic based background model
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initialization algorithm. More so, we adopt another assumption regarding the
structure of the background, primarily that it consists exclusively of objects lo-
cated at infinite depth. Hence, a further improvement could involve the evolution
of a multi-layered model. This would lead to a 2.5D modeling of the scene where
the background model would segment the scene into a portion at infinity and
yet include objects at finite distances.
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Abstract. Motion detection in driving environment, which aims to de-
tect REAL moving objects from continuously changing background, is vi-
tal for Adaptive Cruise Control (ACC) applications. This paper presents
an efficient solution for such problem using a stereovision based method.
First, a comprehensive analysis about 3D global motion is given based
on ”U-V-disparity” concept, in which a 5-parameter model is deduced
to describe global motion within U-V-disparity domain and an iterative
Least Square Estimation method is proposed to estimate the parameters.
Then, in order to identify separate objects, geometric analysis segments
the road scene into 3D object-surfaces based on U-V-disparity features of
road surfaces, roadside structures and obstacles. Finally, the motions of
the segmented object-surfaces are compared with the estimated global
motion to find REAL moving surfaces, which correspond to the real
moving objects. The proposed algorithm has been tested on real road
sequences and experimental results verified its efficiency.

1 Introduction

Motion detection in driving environment, which aims to detect REAL moving
objects from continuously changing background, is vital for Adaptive Cruise
Control (ACC) applications.

Conventionally, optical flow forms the basis of vision-based motion analysis
and obstacle detection [1][2][3], which detect moving objects by measuring the
flow vectors difference between the objects and background. Yet most optical
flow algorithms assume that the only motion between the camera and the envi-
ronment is translation, which may not be true in most driving situations.

Recent researches have paid more attention to road scene analysis based on
stereovision [4][5][6][7][8][9]. Stereo analysis is the process of measuring range
to an object by comparing the object projection on two or more images [9].
Based on stereo information, obstacles can be segmented by distinguishing the
features belonging to them from those belonging to road surface. However, most

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 307–316, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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stereovision based method analyzes the road scene without considering the mo-
tion of cameras (Global motion), as well as the influence of such motion to the
stereovision analysis.

In this paper, a comprehensive analysis about 3D global motion in stereovi-
sion is given based on ”U-V-disparity” concept, in which a 5-parameter model
is deduced to describe global motion within U-V-disparity domain and an iter-
ative Least Square Estimation method is proposed to estimate the parameters.
In order to identify separate objects, geometric analysis segments the road scene
into 3D object-surfaces based on U-V-disparity features of road surfaces, road-
side structures and obstacles. After that, the motions of the segmented object-
surfaces are compared with the estimated global motion to find REAL moving
surfaces, which correspond to the real moving objects.

2 Motion Detection Using U-V-Disparity

2.1 Stereovision

We have implemented a fast stereo module based on SSDA block matching
algorithm. By careful management of cache memory and SSE technology on
Pentium processor, our module can achieve real-time processing speed for dense
disparity computation on a 320 by 240 image with the maximum disparity of 32
pixels. Fig. 1 shows a example of calculated disparity map.

Fig. 1. Disparity map: the right figure shows the disparity map of the left image, which
following a pseudo color LUT (warmer color shows a bigger value of disparity, which
means closer to the observer). The grey mask area indicate “don’t care” region.

2.2 Global Motion Analysis Based on U-V-Disparity

Motion detection in driving environment always involves continuously changing
background caused by the motion of observer or camera itself. Such problem is
called global motion in the literature.

To analyze global motion within U-V-disparity domain, we approximately
assume that the stereo rig mounted on the vehicle has two coplanar cameras
with the same intrinsic parameters and their horizontal co-axis is parallel to
the road surface (see Fig. 2), where the pitch angle to the ground plane is θ. By
putting the origin of World Coordinate System WCS (Xw, Yw, Zw) to the centre
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Fig. 2. Coordinate systems: The optical axis of the WCS is parallel to the ground plane
and indicates the vehicle’s direction of motion. The origin of camera coordinate system
CCS (U , V ) is put to the center of the image.

of the two stereo camera planes: Ow (as shown in Fig. 2), the transformation
from WCS to CCS is achieved by:{

Ul,r = f Xw±b/2
Yw sin θ+Zw cos θ

Vl,r = f Yw cos θ−Zw sin θ
Yw sin θ+Zw cos θ

(1)

Then, disparity Δ can be deducted as:

Δ = Ul − Ur = f
b

Yw sin θ + Zw cos θ
(2)

Generally, global motion with respect to WCS can be described by⎡⎣xy
z

⎤⎦ =

⎡⎣ r11 r12 r13r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣x′y′
z′

⎤⎦+

⎡⎣ t1t2
t3

⎤⎦ (3)

which consists of translations along X, Y, Z axis and rotations about them. In the
following, global motion will analyzed within U-V-disparity domain, using the
basic relationship between WCS and U-V-disparity. Note that the pitch angle
θ usually remains unchanged during the vehicles/cameras are moving, which
means it doesn’t influence the analysis. Only concerning about the left image,
We can simplify formula (1) and (2) by making θ =0 as

Xw = U
b

Δ
− b

2
, Yw = V

b

Δ
,Zw = f

b

Δ
(4)

Based on equation (3) and (4), different global motions are analyzed sepa-
rately.

1) Translation along X axis
Using WCS, translation along X axis is described by⎡⎣xy

z

⎤⎦ =

⎡⎣x′y′
z′

⎤⎦+

⎡⎣ t10
0

⎤⎦ (5)
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Accordingly in U-V-disparity domain, such motion, combining (5) with (4),
is described by ⎧⎨⎩

u = u′ +Δ′ · t1/b
v = v′

Δ = Δ′
(6)

2) Translation along Y axis
Similarly, translation along Y axis is described by⎡⎣xy

z

⎤⎦ =

⎡⎣x′y′
z′

⎤⎦+

⎡⎣0
t2
0

⎤⎦⇒
⎧⎨⎩

u = u′

v = v′ +Δ′ · t2/b
Δ = Δ′

(7)

3) Translation along Z axis
Translation along Z axis is described by⎡⎣xy

z

⎤⎦ =

⎡⎣x′y′
z′

⎤⎦+

⎡⎣0
0
t3

⎤⎦⇒
⎧⎨⎩

u = u′/(1 +Δ′ · t3/fb)
v = v′/(1 +Δ′ · t3/fb)
Δ = Δ′/(1 +Δ′ · t3/fb)

(8)

4) Rotation about X axis
Using WCS, rotation about X axis can be described by⎡⎣xy

z

⎤⎦ =

⎡⎣1 0 0
0 cosα sinα
0 − sinα cosα

⎤⎦⎡⎣x′y′
z′

⎤⎦ (9)

Mapping into U-V-disparity domain, there is:⎧⎨⎩ u = u′/(cosα− sinα · v′/f)
v = (cosα · v′ + f sinα)/(cosα− sinα · v′/f)

Δ = Δ′/(cosα− sinα · v′/f)
(10)

If the rotation angle α is small, there is⎧⎨⎩
u ≈ u′

v ≈ v′ + f sinα
Δ ≈ Δ′

(11)

5) Rotation about Y axis
Similarly, rotation around Y axis is described by⎧⎪⎪⎪⎨⎪⎪⎪⎩

u = cos β·u′−f sin β
cos β+sin β·(u′−Δ′/2)/f

β→0
≈ u′ − f sinβ

v = v′
cos β+sin β·(u′−Δ′/2)/f

β→0
≈ v′

Δ = Δ′
cos β+sin β·(u′−Δ′/2)/f

β→0
≈ Δ′

(12)
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6) Rotation about Z axis
Rotation around Z axis is described by⎧⎨⎩ u = (u′ −Δ′/2) cosγ + v′ sinγ +Δ′/2

v = −(u′ −Δ′/2) sinγ + v′ cos γ
Δ = Δ′

(13)

Based on the above analysis of separate motions, complex global motion
within U-V-disparity domain can be modeled by the combination of them.

In order to find a simple expression of global motion, we only concern about
the special cases when the cameras are firmly mounted on the vehicle and share
the same motion with it. In this case, the most frequent and notable global
motion is translation along Z axis (when the car is running forward/backward).
Global motion will also include slight translation along X axis and rotation about
Y axis when the car is wheeling. If the car is running on a slope, there will be
slight translation along Y axis and rotation about X axis. Rotation about Z axis
is the most infrequent motion and will not be considered in the estimation.

Therefore, we use such a simple combination of separate motions to model
the complex global motion within U-V-disparity domain as⎧⎨⎩

u = 1
1+Δ′·TZ

u′ +Δ′ · TX +RY

v = 1
1+Δ′·TZ

v′ +Δ′ · TY +RX

Δ = 1
1+Δ′·TZ

Δ′
(14)

There are 5 parameters in the model. TX , TY and TZ characterized the trans-
lation motions along X, Y and Z axis. RX , RY correspond to the rotation about
X, Y axis.

2.3 Object-Surface Segmentation

To extract moving objects, an initial segmentation of the road scene is necessary.
In this paper, the U-V-disparity method in [9] is improved for the segmentation.

ROI Extraction. From Fig. 1, it can be seen that objects appear as surfaces in
the 3D disparity map. In addition, moving objects generally appear as Vertical
surfaces (defined by Fig. 2), and exist in the region between the Ground surfaces
and sky. We name such regions as the Regions of Interest(ROI). In this paper,
ROI is extracted by checking the Y coordinate in WCS, by means of which
regions near (¿h2) or far from (¡h1) the ground are removed.

h1 ≤ Yw ≤ h2 ⇔
h1

b
≤ V
Δ
≤ h2

b
(15)

Fig. 3(c) illustrates the ROI extraction, where pixels not satisfying equation
(15) are masked by the grey, and only Vertical surfaces within a certain range
of altitude from the ground are remained for further analysis.
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Fig. 3. ROI and object-surface segmentation: (a) U-disparity image; (b) Detected “U”
curves; (c) ROI; (d) Object-surface segmentation

Object-Surface Segmentation. Following the U-V-disparity concept in [9],
disparity map can be projected into U-disparity image and V-disparity image for
analysis. Fig. 3(a) shows the U-disparity image of Fig. 1, in which regions with
low intensity correspond to the projections of vertical surfaces. To segment the
surfaces corresponding to different objects, their projections can be clustered
separately by the spatial discontinuity and shape features within U-disparity
image.

Since objects generally have higher disparities (closer to the observer) than
the background, they always project as convex surfaces in 3D disparity maps.
As the result, the convex surfaces will be projected as 2D convex curves (shapes
similar to letter “U”) in U-disparity iamge. An example is shown in Fig. 3(a),
where the vehicles are projected as convex curves like “U” within the blue rec-
tangles.

Based on the above analysis, we segment the surface-projections in U-disparity
image as follows:

Step 1: Scanning U-Δ domain along Δ axis from Δmax to 0. For each Δ,
search U axis to find a seed pixel whose projection density is larger than a
predefined threshold.

Step 2: The seed is expanded into a region based on the directions shown in
Fig. 4. Such expanding process stops when all the candidate pixels’ densities are
smaller than a predefined threshold.

Step 3: Return to Step1 to find a new seed.
Step 4: When the entire domain was scanned, several regions are clustered sep-

arately by the seeds and the expanding process. After a post-process of merging
small regions to their adjacent large regions, the resultant regions in U-disparity
map will be regarded as the separate projections of object-surfaces.
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Fig. 4. Region expanding

The clustered regions are shown in Fig. 3(b). Each region is characterized by
the disparity of seed following the pseudo color LUT. When such regions are
mapped back into 3D disparity map, the segmentation result of object-surfaces
is shown in Fig. 3(d).

2.4 Moving Object Detection

Iterative Least-square Estimation (ILSE) method is used to estimate the global
motion parameters: First, corners are tracked through successive frames to find
their correspondences. Suppose there are N corners, let (uk, vk, Δk) be the U-
V-disparity coordinates for a corner k in the current frame. Its correspondence
in the previous frame is (u′k, v′k, Δ′

k). Then, based on the N corner-pairs, ILSE
method can compute the parameters as follows

TZ =
∑
Δ′ −

∑
Δ∑

ΔΔ′ (16)

TX =
N
∑
uΔ′ +

∑
Zu′

∑
Δ′ −N

∑
Zu′Δ′ −

∑
u
∑
Δ′

N
∑

(Δ′)2 − (
∑
Δ′)2

(17)

RY =
(
∑
u−

∑
Zu′)

∑
(Δ′)2 + (

∑
Zu′Δ′ −

∑
uΔ′)

∑
Δ′

N
∑

(Δ′)2 − (
∑
Δ′)2

(18)

TY =
N
∑
vΔ′ +

∑
Zv′

∑
Δ′ −N

∑
Zv′Δ′ −

∑
v
∑
Δ′

N
∑

(Δ′)2 − (
∑
Δ′)2

(19)

RX =
(
∑
v −

∑
Zv′)

∑
(Δ′)2 + (

∑
Zv′Δ′ −

∑
vΔ′)

∑
Δ′

N
∑

(Δ′)2 − (
∑
Δ′)2

(20)

where

Z = 1/(1 +Δ′TZ) (21)

Note that in the above equations, the subscript k is omitted for simplification
purpose.
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Fig. 5. Moving objects detection: (a) Detected corners and their 2D motion vectors,
where corners matching the estimated global motion field are colored as green, and
those who don’t match are colored as red; (b) Detected moving objects; (c) The color
of the rectangles indicates the distance between observer and detected objects, where
red, yellow and green correspond to close, middle and far

To eliminate the influence of moving objects, the estimation procedure is
performed iteratively. During each iteration, the estimated (TZ , TX , TY , RX ,
RY ) are used to construct a global motion field. Such field will be compared
with the U-V-disparity of each corner-correspondence, and those who do not
match with the current field will be discarded. Here “match” means that U-V-
disparity lies within a threshold distance from the corresponding global motion
field. After that, the remaining corners are used to re-estimate (TZ , TX , TY , RX ,
RY ) and enter a new iteration. Using such iterative scheme, those corners who
don’t follow global motion will be removed gradually, and after several iterations,
the estimated parameters will converge to the final results.

Based on the segmented object-surfaces and estimated global motion para-
meters, moving objects (surfaces) are detected as follows: An object-surface, if

Fig. 6. Experimental results on traffic image: a road sequence involving slight rotation
angles and translations about X and Y axis in global motion when the vehicle is uprising
and turning left.
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most of its including pixels follow the global motion in equation (14) with the
estimated parameters, will be regarded as background. Otherwise, it will be re-
garded as having local motions and be extracted as real moving objects. Fig. 5
shows the detected moving objects of Fig. 1.

3 Experiments

The presented method has been tested on various road sequences. This section
gives another two experimental results in Fig. 6 and Fig. 7. Segmentation result
in Fig. 6 verifies that presented algorithm can properly handle slight rotations
and translations to detect the real moving objects. In Fig. 7, the proposed algo-
rithm makes use of equation (15) to successfully eliminate the bridge and extract
the on-road objects.

Fig. 7. Experimental results on traffic image: a road scene including an over-pass
bridge, which may be easily confused as obstacles and disturb the real objects de-
tection

4 Conclusion

Detecting REAL moving objects from moving camera is a difficult task, es-
pecially for the applications in driving environment. This paper presents an
efficient algorithm for motion detection in driving environment based on stereo-
vision analysis. On the one hand, a 5-parameter model is deduced to describe 3D
global motion in stereovision using “U-V-disparity” concept, based on what an
iterative Least Square Estimation method is proposed to estimate the parame-
ters. Then, the road scene is segmented into 3D object-surfaces corresponding to
separate objects based on geometric features in U-V-disparity domain. Finally,
the motions of the segmented object-surfaces are compared with the estimated
global motion to find REAL moving object-surfaces, which correspond to the real
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moving objects. The proposed algorithm has been tested on real road sequences
and experimental results verified its efficiency.
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Abstract. With a large number of surveillance cameras, it is not an easy
task to determine which camera should be monitored and which region
of the camera images should be checked so that all the activities and/or
events in a scene are examined. We present a new method to realize effec-
tive visual surveillance under an environment in which a number of non-
calibrated fixed surveillance cameras are being operated. We also show two
applications that are useful for surveillance tasks based on our proposed
method. One is “suggestion of associative blocks”, and the other is “domi-
nant camera selection”. Our approach exploits co-occurrence between two
regions of interest (ROIs) over the surveillance cameras, and it needs nei-
ther calibration nor supervised training. We have conducted preliminary
testswith forty cameras installed in a room and a corridor next to the room,
and some promising results of the two applications are shown in this paper.

1 Introduction

Recently, there are increasing social demands to observe and detect usual and/or
unusual events by exploiting cameras in various environments. Such a surveil-
lance camera system is thought to be useful for security in public areas, road
traffic monitoring, and so on. As surveillance cameras are being more and more
installed and utilized in a scene for surveillance task, sometimes it becomes im-
practical and cumbersome to remember their locations and their visible areas.
In addition, since surveillance cameras cannot always be set perpendicular to
the ground/floor, images from surveillance cameras may not be comfortable to
recognize instantly. Therefore, with a large number of surveillance cameras, it is
not an easy task for people to recognize which camera should be monitored and
which region of the camera images should be checked so that all the activities
and/or events in a scene can be examined. This problem becomes prominent es-
pecially when a number of cameras are widely scattered because it is impractical
to calibrate them consistently.

Fig. 1 shows snapshots of 36 cameras taken simultaneously. The cameras
are installed in a room and a corridor adjacent to the room. It is apparently
difficult to locate a person in the images. As the number of the surveillance
cameras increases, maintaining the consistency of their geometric information
(their locations and directions) is cumbersome. Therefore, there is a demand
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Fig. 1. An Example of Multi-view Videos (36 cameras)

to a sophisticated visual assistance method that can support visual surveillance
tasks against a large number of cameras, which are not geometrically calibrated
precisely.

We present a new method to realize effective visual surveillance under an en-
vironment in which a number of non-calibrated fixed surveillance cameras are
being operated. We also show two applications that are useful for surveillance
task based on our proposed method. One application of the method is “sugges-
tion of associative blocks”. If there is an event that an user should check and
he/she has noticed it by checking one region on a surveillance camera on the
system, the system can point out regions of different cameras that are helpful
to examine the event. The other application is “dominant camera selection”.
Out of many surveillance cameras, our method can tell which cameras are worth
watching in general case.

Our approach exploits co-occurrence between two regions of interest (ROIs)
over the surveillance cameras, and it needs neither calibration nor supervised
training. We divide camera images into small blocks. Each small block has fore-
ground regions when it captures motions in a scene. Our system first elimi-
nates redundant blocks that apparently do not contribute to event recognition.
The elimination algorithm consists of two stages. In the first stage, the blocks
that never detect motions are eliminated. Then, in the second stage, we exploit
PCA to sweep out the blocks that do not contribute to describe events. We
call the remaining blocks regions of interest (ROIs). The system then calculates
co-occurrence of any pair of ROIs in which foreground regions related with an
event are found simultaneously. Once the co-occurrence matrix is obtained, it
can determine a set of ROIs that should be taken care of when an event in fo-
cus is found in a certain ROI. In other words, the ROIs are associative to the
specified ROI. In addition, dominant camera selection can be conducted based
on the co-occurrence matrix.
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The rest of the paper is formed as follows. In section 2, recent reseaches related
with our research are mentioned. Section 3 explains our surveillance system.
Section4 describes the elimination algorithm of (small) blocks in surveillance
camera images. In section 5, we show two applications, “suggestion of associative
blocks” and “dominant camera selection”. The concluding remarks are shown in
section 6.

2 Related Works

There are many visual surveillance systems for human tracking, traffic monitor-
ing, and detection of unusual objects. In order to cover large area and/or to track
objects in complex motion, surveillance systems uses multiple cameras. As shown
in previous works, the multi-camera surveillance systems usually rely on manual
camera calibration [1][2][3][4] or complex automated calibration method[5]. The
surveillance systems with calibrated cameras can surely provide accurate geom-
etry of objects in an environment. However, manual camera calibration is too
cumbersome to cope with large-scale surveillance systems, and it is impractical
to apply fragile automated calibration methods to such systems. Therefore, there
are many demands for surveillance methods that only assume rough geometry
information of cameras.

In order to track moving objects on surveillance videos, and to know where
to see in videos for surveillance tasks, correspondences in videos captured by
cameras are thought to be useful. Therefore, many methods that have corre-
spondence models and estimate correspondences of locations or trajectories of
moving objects have been proposed [6][7][8][9]. We also use the correspondences
to calculate co-occurrence of objects observed in multiple cameras. Our proposed
method is different on the point that it is a monitoring support method and can
be applied to a large-scale camera system easily.

3 Surveillance System

In this section, we present a framework of our multi-camera surveillance system,
and discuss image features to be used for estimating correspondence.

3.1 Camera Network System

Fig. 2 shows a framework of our system and Fig. 1 shows an example of multi-
view videos captured by the system. The system consists of multiple network-
cameras(web-cameras) and multiple PCs for image processing. We employed the
off-the-shelf web cameras because of the following advantages.
– Installation flexibility: One camera only requires one LAN cable (that also

provides power to each camera) at its mounting point.
– Process scalability: We can change the number of cameras assigned to one

PC easily.
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Fig. 2. A Framework of Our Surveillance System

On the other hand, they have following problems.
– It is difficult to synchronize videos.
– Frame rate of captured videos is unstable because it may be affected by

network congestion.
To estimate co-occurrence matrix and apply it for the surveillance, we must take
care of these factors. In our current implementation, however, synchronization of
cameras does not matter because the cameras can output 10.0 to 30.0 fps and the
motions in a scene are not so fast compared with the frame rate. Network conges-
tion can also be avoided if network hubs are properly connected so as not to exceed
the maximum bandwidth for each connection. Our system consists of 45 cameras
and 22 PCs currently. We are planning to extend the system to 80 cameras.

3.2 Image Feature

We consider only basic image features so that our method can cover any kinds
of events. Cameras capture images in RGB format and the system divides them
into small rectangular blocks. An image is divided into R small blocks (currently,
R = 64).

Fig. 3. Image Feature of One Captured Image. The left image is an input image and
the right image is a display of its saved data.
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In our research, the system extracts foreground regions by calculating back-
ground subtraction for input images. It calculates the mean intensity value of
the foreground regions in each small block, and stores it in INT-type 32 bit data
format. Fig. 3 shows an image of one saved data. The data is saved in compressed
format. The data size depends on situations. For example, we captured a scene
for about 290 hours by 4 cameras, and the compressed data size was about 1.3
GBytes.

4 ROI Selection

In this section, we present a method to select ROIs from the small blocks.

4.1 Data Structure

We define an event vector x(t) at time t (1 ≤ t ≤ T ), where T is a number of
observed event vectors.

x(t) = { x1(t), · · · , xi(t), · · · , xN (t) } (1)

The size(number of dimensions) of the vector is N = C×R, where C is a number
of cameras and R is a number of small blocks in an image. Each event vector
represents which camera and where in the captured image objects are observed.
Each element xi(t) denotes a feature of an object detected in a region i at time t,
and represents what object is observed there. We use the mean intensity values
of the small blocks in an image as image features. Note that other features can
also be applied in our method.

We call the small blocks that can contribute to event recognition “regions
of interest (ROIs)”. ROIs are obtained by eliminating redundant blocks among
all the N blocks, and the elimination algorithm consists of two stages. In the
first stage, the blocks that never detect foreground regions are eliminated. In the
second stage, we exploit principal component analysis (PCA) to sweep out the
blocks that do not contribute to describe events.

4.2 Block Elimination Based on Foreground Region Detection

First, a mean vector M is calculated for the input N dimensional event vector
x(t) for 1 ≤ t ≤ T before the block elimination process starts. If Mi that is a
mean of features observed in a small block i is zero, the block i is eliminated
because it means the region i never detects any motions for all the T frames.
Then, we get N ′ (N ′ ≤ N) dimensional vector x′(t) by eliminating the blocks
that are useless to detect foreground regions.

4.3 Block Elimination by PCA

After the first stage, we apply principal component analysis (PCA) to x′ by using
the variance-covariance matrix V′. PCA is a multivariate procedure that rotates
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the data in a multi-dimensional space so that variances projected onto the new
axes have large variability. It is mainly used for dimensionality reduction. The
resultant new rotated axes are called principal axes of x′, and after applying the
PCA, principal axes zk(1 ≤ k ≤ N ′) are given by linear combinations of the
original variables as shown in the following equations.

z = A x′ (2)

zk = a1kx
′
1 + a2kx

′
2 + · · · , aN ′kx

′
N ′ (3)

We select a set of variables {x′j} that have larger weight {ajk} for more significant
principal axes {zk}. The principal axes {zk} that have higher contribution ratio
are thought to be useful both to recognize and to classify the original data. The
followings are the detailed description of block elimination algorithm using PCA.
Step 1: Sorts the principal axes zk by contribution ratios pk. A contribution

ratio pk indicates how the principal component zk represents data better,
and it is represented by a variance λk of zk.

pk =
λk∑N ′
l=1 λl

(4)

Step 2: Calculates accumulated contribution ratio by

ck =
k∑

l=1

pl (5)

and selects the principal components zk whose accumulated contribution
ratios are larger than a threshold cth. Currently, cth is set to 0.9. We denote
the selected principal axes by {z′k}.

Step 3: Given a principal axis z′k, the method calculates the mean value āk of
{ajk} that are coefficients of {x′j}. A score sj of the variable x′j obtains the
contribution ratio p′k of z′k when the coefficient akj is larger than āk.

Step 4: Apply Step 3 to all the principal components {z′k}. Calculate the mean
value s̄ of the scores {sj}. Then, select the variables x′j whose score sj are
higher than s̄. Finally, block j corresponding to x′j is regarded as a ROI.

4.4 Experimental Results of ROI Selection

Fig. 4 shows a layout of cameras in an experiment environment, and Fig. 5,6
show resultant ROIs. In the figures, the small blocks marked in a bright color
are ROIs, where people walking around in a room were observed frequently.
In the case of 12 cameras(Fig. 6), 525 blocks were selected from 768 blocks in
the elimination process of the first stage, and 253 blocks were selected in the
elimination process of the second stage. Some ROIs extracted in the case of 4
cameras(Fig. 5) were eliminated in the case of 12 cameras(Fig. 6) because they
became less important than the other ROIs in the case of 12 cameras.

In the experiments, Calculation of ROI extraction was conducted on a PC
of Pentium4 2.80 GHz, and its memory size is 1.0 GByte. We applied the ROI
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Fig. 4. Camera Layout. Alphabets indicate camera names and arrows show their di-
rections.

Fig. 5. Resultant ROIs (4 cameras)

extraction method to a scene of two hour length. In the case of 4 cameras, the
calculation needed 181.70 seconds; 48.27 seconds to calculate a mean vector M,
133.30 seconds to calculate a variance-covariance matrix V′, and 0.13 seconds
to eliminate redundant blocks. In the case of 12 cameras, the calculation spent
1347.19 seconds; 147.7 seconds to calculate a mean vector, 1190.6 seconds to
calculate a variance-covariance matrix, and 8.89 seconds to eliminate redundant
blocks.

Currently, we are exploring an on-line clustering method for event vectors
using extracted ROIs. We expect that the clustering method can be applied
to a large-scale camera network because our redundancy elimination algorithm
reduces the data size to be processed to a great extent.
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Fig. 6. Resultant ROIs (12 cameras)

5 Visual Surveillance Support Applications

Once the ROIs are calculated, the system can provide various support functions
for visual surveillance. Two useful applications are introduced in this section.

5.1 Suggestion of Associative Blocks

One application of the method is suggestion of associative blocks. If there is
an event that a user should examine and he/she notice it by having checked a
certain region on one surveillance camera, the system can select associative ROIs
that are helpful to examine the event.

To select the associative ROIs, we calculate the co-occurrence between two
ROIs m,n. A feature value observed in a ROI m is shown as ym(t) (1 ≤ t ≤ T ),
and a set of ym is shown as a following vector.

ym = { ym(1), · · · , ym(t), · · · , ym(T ) } (6)

We calculate a correlation value cmn (0 ≤ cmn ≤ 1) by the following equations,
and use it as a measure of the co-occurrence between two ROIs.

c1mn =
ym · yn

|ym||yn|
=

∑T
ym(t)yn(t)
|ym||yn|

(7)

c2mn =

{ |ym|
|yn| if |ym| < |yn|
|yn|
|ym| otherwise

(8)

cmn = c1mn c2mn (9)
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Fig. 7. Associative ROIs (1). The regions with bright frames have high co-occurrences
with a white region.

Fig. 8. Associative ROIs (2). The regions with bright frames have high co-occurrences
with a white region.

We calculated the co-occurrence matrix of the 12 cameras shown in section 4.4.
In Fig. 7 and Fig. 8, the regions with bright frames have high co-occurrences with
the white region shown in Camera K and F respectively. The result means that
if a user is interested in some motions in white block, the system suggests the
user to check the brightly framed blocks too because it is likely to find something
in them when some motions are found in the white block.

5.2 Dominant Camera Selection

The other application is dominant camera selection, which means the system
can tell which cameras are worth watching in general case. It is useful as the
number of cameras C becomes larger.

First, the system sorts all the pairs of any ROIs by their co-occurrences. Then,
it selects the upper pairs that have higher co-occurrences, and increments the
score uc of the camera c (1 ≤ c ≤ C) when the camera c has a block in the pairs.
The system selects cameras whose scores are higher than the mean score ū. The
selected cameras will be dominant for recognition purpose.

Fig. 9. Dominant Cameras (2 cameras were selected from 4 cameras)
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Fig. 10. Dominant Cameras (5 cameras were selected from 12 cameras)

Fig. 9 and Fig. 10 are the experimental results of the dominant camera selec-
tion. In the case where there are only 4 cameras (A, B, C, and D), the 2 cameras
(B and D) are suggested to be checked for coming events (Fig. 9). On the other
hand, if the system has 12 cameras, the system then suggests to check the 5
cameras (F, G, J, K, and L) (Fig. 10).

6 Conclusion

We presented a method to realize effective visual surveillance support under
an environment in which a number of non-calibrated fixed surveillance cameras
are being operated. Our method divides all camera images into small blocks
and selects some blocks that can capture what kind of event is going on. We ex-
ploited PCA-based region selection algorithm, and succeeded in presenting useful
data expression that can result in achieving two promising visual surveillance
support applications; “suggestion of associative blocks” and “dominant camera
selection”.

As future works, we should examine the relevance of the ROI selection algo-
rithm and the co-occurrence calculation method. In addition, we need to verify
the proposed methods with large-scale camera network for very long time period.
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Abstract. In many visual tracking and surveillance systems, it is important to ini-
tialize a background model using a training video sequence which may include 
foreground objects. In such a case, robust statistical methods are required to han-
dle random occurrences of foreground objects (i.e., outliers), as well as general 
image noise. The robust statistical method Median has been employed for initial-
izing the background model. However, the Median can tolerate up to only 50% 
outliers, which cannot satisfy the requirements of some complicated environ-
ments. In this paper, we propose a novel robust method for the background ini-
tialization. The proposed method can tolerate more than 50% of foreground pixels 
and noise. We give quantitative evaluations on a number of video sequences and 
compare our proposed method with five other methods. Experiments show that 
our method can achieve very promising results in background initialization: in-
cluding applications in video segmentation, visual tracking and surveillance. 

1   Introduction 

Visual tracking and surveillance has gained a wide range of applications including 
monitoring freeways [1], recognizing human action [2, 3], motion segmentation [4], 
etc. Background subtraction, which detects changes from a background model, is a 
crucial step in these applications. To extract foreground objects, one usually needs to 
model the background scene using a short training video sequence.  

There are a number of methods (for example, [2, 3, 5-8]) that have been proposed 
for modeling background scene in recent years. Simple methods represent background 
features by an average of either grey-level or color samples at each pixel over a train-
ing time. Pfinder [3] is one of the examples. It assumes that the values of the pixels, 
over a time window at a particular image location, are Gaussian distributed. Such kind 
of methods does not address scenes with dynamic backgrounds, or where foreground 
objects are present in the training stage. Some methods have been proposed to model 
dynamic background scenes,: for example, Mixture of Gaussians (MOG) [5, 8, 9]. In 
MOG, the background features are characterized by a mixture of several Gaussians. 
Each Gaussian represents a distribution per pixel. Thus, MOG can efficiently model 
dynamic background scenes. However, when the background involves a wide distri-
bution in color/intensity, modeling the background with a mixture of a small number 
of Gaussian distributions is not efficient, when foreground objects are included in the 
training frames, MOG does not work well and it will misclassify [6].  
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Among the above-mentioned methods, almost all of the methods require that the 
training sequence is free of any foreground objects.  In practical cases, for example, in 
a busy road or in a public area, it is hard to control the environments. Such a require-
ment can not be always satisfied. We must initialize the background model in a way 
that is robust to the presence of foreground objects in the background training data. In 
contrast to background model representation and model maintenance, only a few 
studies of  background model initialization have been made (e.g., [1, 4, 10, 11]).  

For example, the authors of [11] proposed a Smoothness Detector (SD) Method. 
They assumed that a background value always has the longest stable value. They 
employed a moving window along time at each pixel to search for the stable intervals. 
However, we find one problem of the method is that when the data include multi-
modal distributions (i.e., some modes from foreground objects and some modes from 
background as shown in Fig. 2 and Fig. 3), and when the modes from foreground 
objects tend to be relatively stable, this method can not differentiate these modes from 
those from the background.  

In order to decide the window length (L) and the intensity flicker of the window 
(Tf) for each pixel, the authors of [11] also proposed an Adaptive Smoothness Detec-
tor (ASD) method. Because the ASD method tries different L and Tf at each iteration 
until the solution is found, the computational cost of the ASD method is greatly increased.  
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Fig. 1. Two examples that background is visible less than 50 percent of the training time: (a1) 
and (b1) show one frame of each training sequence; (a2) and (b2) show the intensity distribu-
tions over time at one pixel (marked by red star) of the sequence 

Motivated by [11], a Local Image Flow (LIF) algorithm [10] was proposed.  Two 
steps are used: in the first step, all stable sub-intervals in a training sequence are lo-
cated for each pixel. In the second step, the method locates the sub-interval with the 
greatest average likelihood using local motion information, and produces background 
value by computing the mean value over the chosen sub-interval. Optical flow is 
computed for each consecutive pair of images and used to estimate the likelihood. 
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While this potentially adds valuable information, most optical flow computation 
methods themselves are computationally complex and very sensitive to noise. 

In [1], the authors used the Median intensity value over observations at each pixel, 
to initialize the background for a traffic monitoring system. The underlying assump-
tion is that the background at each pixel can be seen for more than 50 percent of time 
in the training sequence. However, the requirement that background appear more than 
50% of time in a video sequence may not be always satisfied. Fig. 1 illustrates two 
such examples. In Fig. 1, we can see that the background value at the marked pixel 
(with red star) is visible less than 50 percent of the training time.  The noise is either 
from the moving foreground objects or the shadows of the foreground objects.  

A robust method which can tolerate more than 50% of noise is possible [12].  
Examples include RANdom Sample Consensus (RANSAC) [13], Adaptive-Scale 
Sample Consensus (ASSC) [14], etc. To overcome the problems inherent in methods 
based on the Median, we propose a new robust method for background initialization. 
The major advantage of the proposed method is that it can tolerate over 50% of noise 
(including foreground pixels) in the data. The essential idea of the proposed method 
has been previously published in [15] which was restricted to only the background 
initialization problem. This paper also provides applications of the proposed method 
to video segmentation, visual tracking and surveillance. 

This paper is organized as follows: in Sect. 2, we propose a new robust method for 
background initialization. In Sect. 3, experiments showing the advantages of, and 
applications of, our method are provided. We conclude in Sect. 4. 

2   The Proposed Method for Background Initialization 

2.1   Assumptions 

In our method, we make some assumptions which are similar to those in [10, 11]:  

1. The background at each pixel should be revealed at least for a short interval during 
the training period.  

2. A background value tends to be relatively stable and constant.  
3. A foreground object can remain stationary for a short interval in the training se-

quence. However, the interval should be no longer than the interval from the re-
vealed static background.  

4. The background scene remains relatively stable.  

Stability is one characteristic of essentially stationary backgrounds. The fore-
ground value at a pixel is assumed to have no less variance in grey-level intensity than 
a background value.  

2.2   The Proposed Method 

We employ a two-step framework:  

(1) locate all non-overlapping stable subsequences of pixel values; (2) choose the 
most reliable subsequence (from which we use the mean value of either the grey-level 
intensities or the color intensities over that subsequence as the model background value). 
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In the first step, we use a sliding window with a minimum length Lw to locate all 
stable sub-intervals {lk} (similar to [10, 11]).  For a test sequence of N frames, we 
have N observations at each pixel{ | 1,..., }ix i N= . Let 

( )kl tx be a pixel value of the kth 

subsequence lk at time t. The kth stable subsequence candidate should satisfy: 

( ) ( 1)

( ) ( 1)
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                              (1) 

where 
( 1)kl tx − is the mean value from the beginning of the subsequence lk  to time t-1.  

If we cannot find any candidate subsequence with a minimum length Lw we use the 
longest stable candidate subsequence. We experimentally set Lw to 5 and Tf to 10, for 
all test sequences. Note: even after this step, the chosen subsequences can contain 
pixels from foreground, background, shadows, highlights, etc. (e.g., see Fig. 1 b).  

The second step is a crucial step, because in this step, a reliable subsequence, 
which is most likely to arise from the background, will be chosen. Our definition of 
reliability is motivated by RANSAC [13]. We build in to our objective function the 
notions of consensus and of scale estimation. We consider both the number (n) of data 
points “agreeing” with a model (contained in the candidate interval), and the distribu-
tion of these data (e.g. standard variance S):  n should be large, and S should be small. 
We define our objective function as finding the most stable interval from the non-
overlapping sub-intervals {lk} by: 

arg max( / )
k kk l l

k
l n S=
)

                                            (2) 

where 
kl

n and 
kl

S are respectively the number of values (length) of, and the standard 

variance of, the observations in the kth subsequence lk. 

 
   (a)                 (b)                 (c) 

Fig. 2. Estimating background value from noisy data: (a) and (b) illustrate two cases of the 
distributions of the simulated data; (c) the results obtained by the three methods 

To illustrate the robustness of the proposed method we generate synthetic data to 
simulate the observations over time at a pixel. One hundred data values (i.e., 100 
frames) were generated. The first fifteen data values (i.e., a relatively stationary fore-
ground object pixel) have intensity value of 200 and standard variance of 2. From the 
sixteenth to the i'th data, we simulate random noise (such as foreground objects in 
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transit at that pixel) with intensity values ranging from 50 to 250. We simulate a back-
ground value in the sub-interval from the (i+1)’th data to the 100th data, with unit 
variance. We increase i value from 16 to 90 with step 1 each time. We repeat the 
experiment ten times and output the average value.  

Fig. 2 (c) shows the results of finding backgrounds by three statistics: Mean, Me-
dian, and the proposed method. We see that the Mean is not robust to noise at all. The 
Median can only tolerate noise occupying less than 50 percent of the data. In contrast, 
the proposed method is much more robust.     

However, we note that equation (2) might be erroneous when 
kl

S is very small. This 

can happen when some pixels of a short subinterval have saturated colors. The satu-
rated pixel values are clipped within the range from 0 to 255 and sequences contain-
ing these saturated pixels have a very small (or zero) standard variance [16]. For this 
case, the assumption (1) in Sect. 2.1 is violated. When we detect such a case happens, 
we use the following equation instead of equation (2): 

arg max( )
kk l

k
l n=
)

                                               (3) 

 
                   (a)            (b)            (c) 

Fig. 3. One example showing that the intensities of the saturated pixels are clipped: (a) one 
frame of the test sequence. We investigate the grey-level intensity distribution of the observa-
tions at one pixel, which was marked with a red star. In (b), we can see that there are some 
saturated pixels corresponding to white colored cars. The sub-interval candidates obtained in 
the first step are shown in (c). The two candidates corresponding to saturated pixels have a 
standard variance of zero. In such case, we should use equation (3) instead of equation (2). 

3   Experiments 

3.1   Background Model Construction Test 

The test sequences are recorded by a Canon MV750i digital video camera. We stored 
the sequences at a resolution of 160x120, and a sample rate of five frames per second. 
We have deliberately chosen different background including both indoor and outdoor 
scenes (including within these scenes, foreground objects, shadows, highlights, and 
illumination changes to simulate true situations that a visual surveillance system may 
meet in practice).  
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Fig.3 shows an example where the intensities of some saturated pixels are clipped.  
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Fig. 4. Ten video sub-sequences of five test videos. The third column shows one frame of each 
training subsequence; the remaining columns show the difference between the background and 
the background estimate obtained by the competing methods. The results obtained by the pro-
posed method are shown in the last column. 

Road1 (R1): Heavy traffic in daytime (some shadows on the road). 
Road2 (R2): Vehicles passed by a crossing road in the evening. Some parts of the 

road were highlighted when vehicles (with lights on) got close to those parts.   
Train Station (TS): A gate of a train station. Many people exited or entered the 

station through that gate.  
Sport Center (SC): In an indoor sport center, people walked through a corridor. 

Shadows of people were cast on the glass wall and the floor of the corridor. Also 
some illumination changes happened when people exited the back door and covered 
the light outside.  

Pharmore Shop (PS): A pharmacy shop, which is located inside a big shopping 
center. People walked in front of the shop. The illumination of the background scene 
sometimes changed because of the reflected sunlight outside the shopping center. 
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We compare the proposed method with five other methods. All of the methods per-
form at pixel-level for background initialization (in contrast to methods that use re-
gion level analysis). To test each method, we choose two sub-sequences (S1 and S2) 
which include a number of frames ranging from 30 to 100 in each sub-sequence, from 
each test sequence. To evaluate the performance of each method, we employ three 
criteria, similar to those used in [10]: a) the Average gray-level Error (AE); b) the 
Number of Error pixels (NE); and c) the Number of Clustered error pixels (NC). We 
use the Mean value of Total error (MT) of the ten sub-sequences over each criterion 
as the overall measurement for each method.  

We generate a Reference Frame (RF) for each test sequence by using the mean 
value of selected frames that are free of foreground objects. An error pixel is one 
whose grey-level value differs from the value of the reference pixel by a threshold 20. 
We define a clustered error pixel when the 4-connected neighbors of that error pixel 
consist of more than 4 error pixels. 

Fig. 4 shows one frame of each test subsequences and the resulting error pixels 
(corresponding to the white color pixels), obtained by the five other methods and the 
proposed method. A quantitative comparison is given in Table 1. From these results, 
we can see that the Mean and the Pfinder methods are the most inaccurate in back-
ground initialization. The Mean takes all observations at each pixel in the test subse-
quence into account. The Pfinder, using a temporal smoothing technique, gives larger 
weight value to recent observations. When the observations contain pixels from other 
than background, these two methods break down. 

Table 1. Experimental results by different methods on test sequences 

R1 R2 TS SC PS  

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 
MT 

AE 9.61 10.27 5.79 9.10 5.81 14.1211.69 8.75 26.48 25.12 12.67 
NE 2994 2369 1630 1320 1323 4992 3537 3102 10253 9799 4132 Mean 
NC 2965 2273 1571 1231 1211 4811 3436 3023 10031 9677 4023 
AE 9.14 9.17 6.25 6.01 5.50 20.8910.08 9.92 12.99 38.82 12.88 
NE 2790 2127 1917 411 1125 7805 3402 1822 3969 12690 3806 Pfinder 
NC 2752 2016 1866 312 1042 7605 3347 1699 3746 12573 3696 
AE 5.14 4.58 2.69 3.45 2.89 4.15 6.63 3.14 9.51 8.49 5.07 
NE 352 159 276 142 40 353 1349 271 2559 2092 759 Median 
NC 282 127 239 114 28 296 1301 247 2347 1947 693 
AE 7.99 5.94 2.83 5.58 2.96 3.50 6.10 2.77 7.85 5.43 5.10 
NE 2097 976 515 872 226 399 1304 217 1400 921 893 SD 
NC 2018 840 487 741 153 228 1195 181 961 603 741 
AE 5.59 6.01 2.43 3.58 2.66 2.81 7.62 2.94 6.47 4.64 4.48 
NE 588 252 114 55 44 56 892 123 598 559 328 ASD 
NC 443 152 82 11 22 0 819 15 420 306 227 
AE 4.33 4.32 2.05 3.00 2.54 2.77 2.81 2.46 6.27 4.36 3.49 
NE 70 10 57 37 21 63 76 51 541 484 141 

The 
proposed 
method NC 23 0 23 4 7 5 28 15 296 238 64 
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Compared with the Mean and the Pfinder, the Median method achieves a much 
better result because of its robustness to noise (from foreground objects, shadows, 
etc.). However, when the test subsequence includes too many foreground objects, or if 
the background value is visible for less than 50 percent of the test subsequence (more 
noticeable, in the S1 of Sport Center sequence, and in the S1 and S2 of the Pharmore 
Shop sequence), the Median method fails to estimate the background.

SD obtained more accurate results than the Median in the SC and PS sequences, 
but less accurate results in the R1, R2, and TS sequences. ASD achieves better results 
than the SD method in all test sequences because it uses different window length L 
and Tf at each pixel location. However, the cost is about 30-50 times slower than SD 
in computational time.  

Among the six methods, the proposed method achieves the most accurate results 
and it also is about three times faster than SD, and about 100 times faster than ASD.  

3.2   Applications 

The proposed method can be applied in a wide range of practical computer vision 
tasks such as video segmentation, vehicle surveillance, tracking, etc. Fig. 5 and Fig. 6 
show the application to segmentation and tracking.  

In Fig. 5, we use an image sequence from http://www.ecse.rpi.edu/~cvrl/humanbody/. 
The sequence shows an office with several people walking around. Almost every 
frame of the sequence includes people. The ground truth background image is not 
available. We use frames 310 to 359 as training images, which include two people 
walking around (Fig. 5 (a) and (b) show frame 310 and frame 359 of the image se-
quence). We initialize the background using the six methods. Because the MOG 
method is frequently used in many vision tasks, in this experiment, we also include MOG. 

 

Fig. 5. (a) and (b) are frames 310 and 359. (c) The initialized background image by the  
proposed method; (d) The detected foreground pixels by the proposed method; (f) to (j) are 
respectively the foregrounds obtained by Mean, Pfinder, Median, SD, ASD,  and MOG. 

From Fig. 5, we can see that the proposed method outputs an accurate initialized 
background, and thus, it effectively extracts foreground objects (i.e., in this case, the 
two people). Because the Mean and Pfinder methods can not tolerate outliers at all, 
they totally broke down when the training frames include foreground objects. Al-
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though the Median method is robust to noise and outliers, it breaks down when data 
involves more than 50 percent. Thus, we can clearly see there is a ghost in the de-
tected foreground. SD and ASD work better than the Mean, Pfinder, and Median. 
However, we can still see a ghost in the detected foreground in the result of SD. Al-
though ASD produced a result close to that of the proposed method, the result of ASD 
is less accurate and the computational time is much higher. The result of MOG tends 
to give less false positive but more false negative pixels. This is because MOG blindly 
treats the pixels of the persons as background modes in the training stage.  

  

  
377 383 390 

Fig. 6. Segmentation and tracking results (sample frames 377, 383 and 390) 

In Fig. 6, we use the background initialized by the proposed method as the back-
ground model to segment/track people inside the office. The segmentation and tracking 
results (on frames 377, 383, 390) are shown in Fig. 6.  We see the proposed method 
provides a good background initialization image for the tracking/segmentation system 
even when every frame in the training stage contains foreground objects. 

4   Conclusion 

In this paper, a new robust method is proposed for the task of background initializa-
tion. The proposed method is very robust to outliers and can be used in many places 
where foreground objects can not be avoided in the training stage. One of the main 
strength of the proposed method is that it is highly robust to noise and outliers in data. 
The method is a great improvement over the traditional Median method.  

We have evaluated our method on various environments including outdoor and in-
door, daytime and nighttime, different illumination conditions. Comparisons with 
several other methods on background initialization show that our method can achieve 
very promising results even when the background is revealed much less than half of 
time in the training sequences.  Furthermore, we show the method can be successfully 
used in video segmentation, tracking and surveillance. 
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Abstract. We propose an exemplar-based tracking framework for hu-
man contour tracking. The exemplars, i.e. the contour representatives,
are used to construct a contour ensemble. The main task of contour en-
semble is to generate contours to fill in the gaps in-between in the test
sequences, and to supply the dynamics for updating the target contour
by fast contour query. As a result, a normal dynamic Bayesian network
is only used to infer the location and the size of the target contour. The
effectiveness of the proposed method is tested by many human motion
sequences.

1 Introduction

Vision based deformable contour tracking is a tough problem, due to non-rigidity
of human body, complex dynamical system, occlusions and cluttered environ-
ments. Sequential Monte Carlo (SMC) estimation based on Dynamic Bayesian
Network (DBN) is a popular approach for this problem [1, 2]. In SMC framework,
tracking can be interpreted as a process of density propagation governed by the
dynamic model and the observation model, which are both tightly associated
with target state representation.

The state of the target contour consists of two parts: location and size and
contour curve. Location and size can be stipulated by a geometrical transforma-
tion, while contour curve is related to geometrical representation.

However, representing the deformable contour may be a dilemma. The rep-
resentations with high dimensionality can describe the local details. But the
density function would be propagated in a high dimensional space. Accordingly,
the tracker needs to employ more particles to keep a good adaptability. However,
simple representations may lead the tracker to lose the target to be tracked, due
to inaccurate measurements in cluttered environments. Crucially, compact and
powerful representations are needed.

To avoid parameterizing the contour curves, exemplars of contours can be used
to implicitly describe the target. Exemplars provide us with rich information
[3, 4, 5]. But in real applications of contour tracking, there lacks of an explicit
mechanism to generate in-between ones to fill in the gaps in the test sequences.
To this end in this paper, a contour ensemble is constructed from the exemplars
and in turn used to explain them and generate new contours.

Theoretically, the contour ensemble contains all the possible contours which
are associated with a kind of human motion. To update the target contour, a

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 338–347, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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neighbor search mechanism is introduced to find the appropriate candidates from
this contour ensemble. This can be achieved for the contour at the next frame
is definitely similar to those of the neighbors of the current one. As a result, we
need not use the exemplars to learn the probabilistic metric mixture parameters
and the dynamic model [5]. The SMC estimation is only used to estimate the
location and size parameters.

The location and size and contour curve are separately treated and then inte-
grated together to use the observation model. Therefore, we solve the dilemma
of state representation.

2 Related Work

In SMC framework, one needs to deal with the following three aspects: contour
representation, dynamic model and observation model. Typical contour repre-
sentation includes parameterized shapes [1, 6, 7], exemplar-based models [5], and
intrinsic representation in manifold space [8], and etc. All these representations
are either suitable for the simple appearance models [1, 7] or need to learn com-
plex probabilistic models [5, 8].

Linear dynamic model is usually used in real applications. To improve the
adaptability, mixture models are developed via learning approaches [9]. Tracking
can be implemented by switching among different models [10].

For observation model, the computation is tightly connected to image mea-
surement [1, 11, 12]. In [13], joint probability data association filter is used to
incorporate multiple cues. Shen et al. use color and edge feature to measure the
observation data [14]. In addition, automatic switching model is proposed in [7].

Exemplar-based approach is used in [3, 4, 5, 15]. In [3], exemplars are used,
non-probabilistically, to match the image features by distance transformation.
Tomasi et al. propose a tracking paradigm where the tracker relies on the recog-
nition of familiar exemplars [15]. On the contrary in [4] and [5], exemplars
are considered into a probabilistic framework. Thus, it is necessary to perform
exemplar-based learning. Furthermore, there lacks of a mechanism to deal with
the in-between objects, which are not in the exemplar set, and may not be
learned directly from the training data.

3 Contour Generation

3.1 Contour Ensemble

The methodology about ensemble is originated from statistical physics in 1930’s,
which is successfully applied to texture synthesis [16] during the past few years.
Here we use the idea to describe contour ensemble.

Definition. Contour ensemble is a sextuple Γ Δ=< E, Ẽ,G, T, ε,D >:

(1) E is a finite set of contours, which are chosen as representatives to specify
some type of human motion;

(2) Ẽ is an infinite set deduced from E, which contains all the possible mean-
ingful contours similar to those in E. E ⊂ Ẽ;
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(3) G is a generative operator. ∀e1, e2 ∈ E, G(e1, e2) ∈ Ẽ produces a new
contour. G is anti-symmetrical, i.e. G(e1, e2) �= G(e2, e1);

(4) T is a transformation. Given T , ∀e ∈ E, T (e) ∈ Ẽ;
(5) ε is a random vector. ∀e ∈ Ẽ, e + ε ∈ Ẽ;
(6) D is an operator of Euclidean distance measure in contour feature space.
Actually, contour ensemble Γ uses the finite to describe the infinite to model

the continuous changes in real situations. Given e1, e2 ∈ E, we can generate
new contours as follows:

e = G(T (e1), T (e2)) + ε (1)

3.2 Generate New Contour in Geometric Space

Given e1, e2 ∈ E, the task of G is to produce a new contour to fill in the gaps
where a contour in a test sequence may not be equal to anyone in E.

Geometrically, in-between contours can be generated by interpolation based
on the results of contour matching. Typically, Chui et al. introduce an accurate
matching algorithm by minimizing bending energy [18]. Although a point-to-
point mapping can not be directly obtained, we can achieve this by 1-NN map-
ping. For order preserving, we use linear regression to correct the possible cross
matching pairs. The steps are summarized as follows:

(1) Use Chui’s shape matching algorithm and 1-NN mapping to construct a
point-to-point mapping between e1 and e2; (2) Use linear regression to make
the mapping orderly; (3) Give a step ratio r, each point on new contour can be
generated as follows:

PN = PS + r · (PD − PS) (2)

where PS ∈ e1 and PD ∈ e2. Figure 1(a) and 1(b) give an example.
However, Chui’s approach is not rotation invariant since it is essentially based

on Euclidean distance between contour points. This may produce wrong match-
ing results. To achieve rotation invariance, we treat the unsigned distance maps
[17] of e1 and e2 as normal images and registrate e2 to e1 by minimizing the sum
of squared differences. After rotating e2 and matching it to e1, we can directly
get the point-to-point correspondences (see Figure 1(c) and 1(d)).
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Fig. 1. (a): Corresponds; (b): The generated contour according to the corresponds in
(a), where the step ratio is 0.5; (c): Corresponds under rotation invariance; (d): The
generated contour according to the corresponds in (c), where the step ratio is 0.5
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Finally, we note that matching the contours in E can be done off-line among
the neighbors. Matching those being non-neighbors is no meaningful in the con-
text of contour tracking.

3.3 Contour Recognition

The elements in E should be preprocessed for contour recognition since in-
between contours are generated from two neighbors. To this end, for each contour
in E the indices of its neighbors are stored to build a lookup table. We use Hu
moments as well as Euclidean distance measure (D opterator in Γ ) to construct
the feature space for fast query. Query can then be performed in a k-NN way.

3.4 Probabilistic Interpretation

E can be regarded as an optimal set of cluster centers, which can be learned
from training contours, either supervised or semi-supervised or even manually
defined by users. Taking the elements in E as clusters, the contours in Ẽ can be
globally modelled as some mixture model, for example, Gaussian mixture model.
Human motion can then be interpreted as a process of model switching.

By dealing with each contour in E as a node, we can also construct a graphical
model via k-NN method. The 2D contour sequence in a video sequence to be
tracked can be viewed as an instance of a random walk on this graph. Being
walking along the edge, new contours can be generated and used to fit the test
data. In this way, the construction of the probabilistic model [5] is replaced by
near-neighbor search, which is more effective in practical applications, as proven
in texture synthesis [16].

4 Tracking Algorithm

4.1 Overview of Tracking Framework

Figure 2(a) illustrates our tracking framework. The sub-graph connected by
solid-line arrows is a normal DNB structure, which is used to infer the location
and size parameters by Monte Carlo sampling. The sub-graph connected by
dashed-line arrows is introduced to provide the dynamics for contour update.
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Fig. 2. (a): Exemplar-based contour tracking framework; (b): Contour generation
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During tracking, each particle is associated with a contour, which is generated
via operator G. Observation measurement will be finally performed on each
particle and its associated contour.

4.2 Generating Contours Dynamically

In the tracking context, generating in-between contours should be implemented
according to the following equation:

e = G(e1, e2) + ε (3)

Here e1(∈ Ẽ) is the currently estimated contour of a particle, and e2 ∈ E.
However, if contour matching is done during tracking, the computation cost
is expensive because there may be hundreds of thousands of particles. To fast
produce a new contour, we record its parents from which e is generated. Since
the parents are well matched in advance, generating new contour is a simple
interpolation according to (2). Figure 2(b) shows the process.

Suppose e3 is generated by e1 and e2 at time t and its two parents are e0
and e2. To generate a new contour, we first search in E to obtain the neighbors
of e3, and denote the set by N(e3). Then, partition N(e3) such that N(e3) =
N(e0)∪N(e2)∪N0. The elements in N0, shown as shadow nodes in Figure 2(b),
will not be accounted for any more. Take each one in N(e0)∪N(e2), for example
e4 ∈ N(e2), as a destination contour. Now, we define the distance between e3
and e4 as 2− r. Given a new step ratio r1 ∈ [0, 1], if r1 > (1 − r)/(2 − r), a new
contour e5 is generated by e2 and e4. Thus, the parents of e5 are e2 and e4.
Otherwise, e5 is generated from e0 and e2.

The step ratio r can be treated as a latent random variable. This will increase
the complexity of probabilistic inference. We descretize it in experiments.

Note that generating contour according to ε requires to know parameters
of the probabilistic mixture model and requires us to smooth the generated
contours. Thus we omit this term in computation.

4.3 Tracking with Exemplars

We use the SMC framework to track the state w.r.t. location and size parameters,
which are the centroid coordinate (xc, yc) of the associated contour and the
scaling parameter s. Note that here we need not deal with the rotation angle as
it is implicitly considered in contour generation (Subsection 3.2). Thus a state
vector can be formulated as x = (xc, yc, s)T . The system dynamic equation we
use is as follows:

xt = Axt−1 + BNt (4)

where A and B are matrices representing the deterministic and stochastic com-
ponents of the dynamic model respectively and Nt is a Gaussian noise vector.

To calculate the likelihood value p(zt|xt), we must combine xt with the candi-
date contour {ek}. Namely, we should compute p(zt|xt, ek), where zt is treated
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as image feature. For deformable object tracking, color information is an ap-
pealing feature due to its robustness to spatial rotation, non-rigidity and partial
occlusion [14]. But color does not contain any information about the spatial ad-
jacency of pixels corresponding to the object. In contrast, edge feature can be
used to describe the shape information. Thus, we use the following multi-cue
likelihood model [14]:

p(zt|xt, ek) = [pe(zt|ek(xt))]αe · [pc(zt|ek(xt))]αc (5)

where ek(xt) is the contour ek scaled and translated according to xt, αc and αe

are edge and color reliability factors. pe(zt|ek(xt)) can be calculated as [1]:

pe(zt|ek(xt)) ∝
M∏
i=1

[1 +
1√

2πσqλ

ni∑
j=1

exp(− vj
i

2σ2 )] (6)

where λ is the mean of the Poisson distribution, σ is the standard deviation of
the normal distribution, q is the non-detection probability, M is the number of
measured lines in the clutter, ni is the number of detected feature points along
the ith measurement line, and vj

i = zj − xi, here xi ∈ ek(xt). Finally, we scale
pe(zt|ek(xt)) to [0,1], and still denote the result by pe(zt|ek(xt)).

To be robust to illumination changes, we consider the normalized HS his-
togram in HSV color space , b(ek(xt)). Let b(ek(xt)) = (bj(ek(xt)))j=1,···,N ,
which is computed from the region of ek(xt). Then we obtain [19]

pc(zt|ek(xt)) =
1√
2πσ

exp(−ρ(k, t)
2σ2 ) (7)

where ρ(k, t) = 1 −
N∑

j=1
bj(ek(xt)) · bj, (bj)j=1,···,N is the HS histogram of a

reference color model and σ is the variance calculated from {ρ(k, t)} .
Suppose the associated contour of xt−1 be et−1. We first generate a set of

candidate contours for xt and denote it as Et(et−1). Then, each contour is scaled
according to the predicted xt. Now we have:

p(zt|xt) =
∑

ek∈Ẽ

p(zt|xt, ek)P (ek) ≈
∑

ek∈Et(et−1)
p(zt|xt, ek)P (ek)

≈ 1
N

∑
ek∈Et(et−1)

p(zt|xt, ek)

Here, we simply abandon the contributions of the contours in Ẽ far from et−1
according to k-NN criterion and assume that {P (ek)} bear an uniform distrib-
ution. Finally, a contour for xt can be obtained by maximum a posterior:

et = ek∗ = argmax
ek

{p(zt|xt, ek)} (8)

The steps of generating {x(n)
t , e(n)

t , w
(n)
t } from {x(n)

t−1, e(n)
t−1, w

(n)
t−1} based on

SMC estimation are as follows:
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Step1: Re-sampling. Generate {x′(n)
t−1} from {x(n)

t−1} according to the weights
{w(n)

t−1}, then copy the corresponding contour e(n)
t−1 to construct {x′(n)

t−1, e
′(n)
t−1}

Step2: Prediction. For each (x′(n)
t−1, e

′(n)
t−1)

(1) Generate x(n)
t from x′(n)

t according to p(xt|xt−1).
(2) Query with e′(n)

t−1 in E and then generate a candidate set Et(e′
(n)
t−1)

Step3: Correction. Select a contour for x(n)
t by (8). Accordingly, w(n)

t can be
calculated based on p(zt|xt). All the weights are normalized finally.

For initialization, we use the feature matching algorithm [20] to select the
associated contours of particles from E.

5 Experimental Evaluation

The proposed tracking framework has been tested by several types of human
motions. Here we report three experiments. The backgrounds in the first two
experiments are static, while in the third it is non-static.

5.1 Tracking Squatting Action

The first experiment is to track a kind of squatting action. The seven elements
in E are manually selected from the video to be analyzed and demonstrated in
Figure 3(a).

To calculate p(zt|xt), we take k = 4 when perform k-NN search for contour
generation. When generating new contours, we descretize the step ratio r as
0, 1/8, 2/8, · · ·, 1.0. Thus we can produce at most 36 candidate contours for
each particle to choose its associated contour by MAP. In (4), A and B are both

 

(a)

 

(b)

Fig. 3. (a) and (b): The exemplars used in the first and second experiments. The
contours are filled for print.

Fig. 4. Some tracking results in the first experiment. The video includes 110 frames.
The frame numbers of the bigger sub-images are 10, 16, 36, 56, 76, 96.



Exemplar-Based Human Contour Tracking 345

identical matrices. Nt = (x, y, s)T ; x ∼ N(0, σx), y ∼ N(0, σy) and s ∼ N(1, σs).
Here, σx = 4, σy = 10, σs = 0.0. Thus only x and y are inferred. The particle
number is 600. In (5), αe = 0.3 and αc = 0.7. In (6), M=20, ni = 15, σ = 3,
q = 0.6, and λ = 0.8. The reason that we take larger λ and q is that the frame
images are smoothed before edge detection. The reference color used in (7) is
manually obtained from the clothing and facial skin. Figure 4 shows some results.

5.2 Tracking Human Body and Barbell

The second experiment is to track the whole contour shaped by a human body
and a barbell in weight-lifting exercise. The sixteen elements in E are manually
obtained from the video to be analyzed (Figure 3(b)).

Fig. 5. Some tracking results in the second experiment. The video includes 98 frames.
The frame numbers of the bigger sub-images are 10, 25, 40, 55, 70, 85.

Here, we take k = 4 when perform k-NN search. The step ratio r is descretized
as 0, 1/6, 2/6, · · ·, 1.0. In (4), σx = 4, σy = 12 and σs = 0.0. The particle number
is 600. All the other parameters are the same as those used in the first example.
Figure 5 shows some results. We effectively treat the occlusions.

5.3 Tracking Human Body in Diving

The third experiment is to track human body in diving. The set E includes
96 different contours obtained by a hierarchical cluster [3] from 540 training
contours, which are drawn by hand according to nine groups of standard training
sequences. Due to space limited, we do not demonstrate them in a figure.

We take k = 8 for contour search. The step ratio r is descretized as 0, 0.25,
0.5, 0.75, 1.0. In (4), σs = 0.05, σy = 2σx and σx = 8. The reasons that we take
these values are: (1) the motion of the centriod of the body is roughly controlled
by gravity and the motion in the horizontal direct is limited; (2) The motion
of the camera leads the pictures translated. The particle number is 4000. The
color reference model is built only based on the skin color of the divers since the
clothing colors of the divers are different from each other. Figure 6 shows some
extracted results of three dives.

The size of image frame in the first two experiments is 720× 576, while the
third is 352 × 288. The CPU of the PC computer is 2.4GHz and the RAM is
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(a) (b) (c) (d)

Fig. 6. (a), (b), (c) and (d): Some tracking results from three diving sequences. The
number of frames in each video is about 60.

512M. The tracking speed in these three experiments is about 2-4 frames per
second. Most time is spent on color computation in (7).

Note that, besides the factors of image quality, the tracking accuracy is tightly
related to the exemplars. When the motion is slow, the change of the target con-
tour is smooth. Thus a small quantity of exemplars may be enough to obtain
good results. When the motion is fast, more exemplars are required. Simultane-
ously, when performing k-NN search, a larger k should be taken for fast motions
such that the candidates of the target contour for the next time can be included
into some neighboring subsets.

6 Conclusion

This paper proposes an exemplar-based human contour tracking approach. The
examples are managed by a contour ensemble and not prepared to develop the
probabilistic mixture model [5]. Distinctly, we use shape matching method to
generate in-between contours to improve the tracker’s adaptability. During track-
ing, the near-neighbor search mechanism provides the tracker with the dynamics
for updating the target contours. Consequently, we can effectively use SMC es-
timation in a low dimensional state space, since the degree of freedom of state
parameters is reduced to 3.

Although the work of this paper aims to track human contours, the proposed
framework can be applied to other deformable contour tracking tasks. It is easy
to use since one only needs to construct a set of contour exemplars.
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Tracking Targets Via Particle Based Belief
Propagation
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Abstract. We first formulate multiple targets tracking problem in a
dynamic Markov network(DMN)which is derived from a MRFs for joint
target state and a binary process for occlusion of dual adjacent targets.
We then propose to embed a novel Particle based Belief Propagation
algorithm into Markov Chain Monte Carlo approach (MCMC) to ob-
tain the maximum a posteriori (MAP) estimation in the DMN. In the
message propagation,a stratified sampler incorporates information both
from a learned bottom-up detector (e.g. SVM classifier) and a top-down
dynamic behavior model. Experimental results show that the proposed
method is able to track varying number of targets and handle their in-
teractions.

1 Introduction

Multiple targets tracking (MTT) in video remains a challenging research problem
because of difficult issues such as cluttered background, varying number, and
interactions amongst targets. To adequately capture the uncertainty due to these
issues, a probabilistic framework is required.

Sequential Bayesian estimation provides a promising framework for MTT,
much work has been done on MTT in video within this framework [1, 2, 3, 4, 5,
6, 7, 11, 13]. These works broadly fall into two categories:centralized approaches
and distributed approaches. The first solves MTT by extending the state-space
to include components for all the targets of interest, e.g.[2, 3, 11]. It allows the re-
duction of the multi-target case to less difficult single-target case, and overcomes
multi-modality in filtering distribution. A variable number of targets are accom-
modated by either dynamic changing the dimension of the joint state space,
or by a corresponding set of indicator variables signifying whether an target
is present or not.The second category, e.g[4, 7, 10], in contrast, abstains from
concatenating targets and proposes single target tracking algorithm that tracks
object individually but still simultaneously. They build multi-target trackers by
multiple instantiations of single target tracking algorithms. Strategies with var-
ious levels of sophistication have been developed to interpret the output of each
tracker.

Recently,Okuma et.al [6] propose a boosted particle filter based on the mixture
particle filter[5] to track a varying number of hockey players. Both [6] and [5]

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 348–358, 2006.
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are actually single particle filter tracking framework to address MTT with the
help of mixture density model. Zhao et.al[13] propose a method of detection
and tracking of multiple humans in the context of surveillance.These methods
alleviate ambiguities due to varying number and interactions in MTT somewhat,
how to handle these problems still remains an open problem.

In this paper, we formulate MTT in a dynamic Markov network. Two major
contributions are made in this paper. First, we model targets’ state and their
interaction explicitly by using two MRFs and subsequently approximate it to
an ad hoc DMN. Second, we embed a novel particle based belief propagation
algorithm in the MCMC framework to obtain the MAP estimation in the DMN.

2 Problem Formation and Basic Model

At each time step t, Let mt be the unknown number of targets to be tracked,
the state of each target is parameterized as xi,t = (pi,t, vi,t, ai,t, si,t), i = 1, ...,m,
where pi,t, vi,t, ai,t, si,t is its image location,2D velocity, appearance and scale, re-
spectively. Denote the joint state by Xt = {x1,t, ..., xm,t}, the image observation
of xi,t by yi,t , and the joint observation by Yt. Given image observation Yt at
time t and Y1:t through t, MTT problem is to obtain the maximum a posterior
probability of the joint state P (Xt|Y1:t), e.g. the filtering distribution(1)

P (Xt|Y1:t) ∝ P (Yt|Xt)
∫
P (Xt|Xt−1)P (Xt−1|Y1:t−1)dXt−1 (1)

To estimate P (xi,t|Y1:t), the joint dynamics P (Xt|Xt−1) and the joint likeli-
hood P (Yt|Xt) need to be factorized, and then can P (xi,t|Y1:t) be obtained by
marginalizing P (Xt|Y1:t).

It is generally assumed that targets are moving according to independent
Markov dynamics. However, it is generally difficult to distinguish and segment
these spatially adjacent targets from image observation, thus we can’t simply
factorized P (Yt|Xt), and P (Xt|Y1:t) still couple through the observation when
targets move close or present occlusion. To overcome this problem, we present
in this section a novel distributed MTT model.

At each time step t, we model X by a MRFs with an auxiliary spatial binary
process O. Each node in MRFs represents a target and each node in O is located
on the dual targets node to indicate their occlusion( Oi,j = 0 for occlusion and
Oi,j = 1 for no occlusion). Using Bayes’ rule, the joint posterior probability over
X andO given image observation Y is:

P (X,O|Y) = P (Y|X,O)P (X,O)/P (Y) (2)

2.1 Prior Model

Assume X and O follow the Markov property, by specifying the first order neigh-
borhood Γ (i) = {j|d(xi, xj) < δ, xj ∈ X} of target i , where d(xi, xj) is the
distance of targets i, j in the state space, δ is the threshold to determine the
neighborhood, the prior can be expanded as:
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P (X,O) =
∏

i

∏
j∈Γ (i)

exp(−ϕc(xi, xj , Oi,j))×
∏

i

exp(−ϕ1(xi)) (3)

where ϕc(xi, xj , Oi,j) and ϕ1(xi) are clique potential functions for single site
xi and neighboring sites xi, xj and Oi,j ,respectively. Oi,j is a binary variable
between xi and xj . ϕc(xi, xj , Oi,j) and ϕ1(xi) are user-customized functions to
enforce the contextual constraints for enforcing spatial interaction and potential
of single site, we define ϕc(xi, xj , Oi,j) as:

ϕc(xi, xj , Oi,j) = ϕ(xi, xj)(1 −Oi,j) + γ(Oi,j) (4)

where ϕ(xi, xj) penalizes sharing one common measurement with neighboring
sites and γ(Oi,j) penalizes the occurrence of an occlusion between neighbor-
ing sites i and j. Typically, γ(0) = 0 . Further, we define ϕ1(xi) as the prior
probability on the image size A(xi) of target i

ϕ1(xi) = (1− exp(−λ1A(xi))) (5)

It penalizes very small target size since it is more likely to be noise. In the
experiment in section 5, we set λ1 = 2.6.

2.2 Observation Likelihood

Likelihood P (Y|X,O) describes how the underline state X,O of the system fits
the observation Y and it is a very complicated distribution. Roughly speaking,
image-based [3, 13]and target-based[4, 5, 6, 7, 10] are two widely used approaches
in decomposing observation likelihood. One advantage of image based likelihood
is that raw image contains almost all necessary information for targets detec-
tion and tracking. However, extracting target-like features needs complicated
processing such as background modelling. For simplicity, we adopt target-based
likelihood, it is often computed as a matching score of the target model with its
estimated image projection in the image.

Since observation Y is the target-based ,given xi,yi can be decomposed from
Y. We addressed mutual occlusion of tracked targets by sampling the prior in
the joint state space. We have modelled the occlusion explicitly in the prior, so
we can build up a joint measurement, and directly assess its likelihood without
incurring the combinational penalty associated with the JPDAF[1]. Assume the
observation noise follows an independent identical distribution (i.i.d), we can
define the target-based likelihood as

P (Y|X,O) ∝
∏
Li(xi, yi) (6)

As to Li(xi, yi), we get the object size and appearance from the original image
according to pi,t and si,t, and use color histogram to represent the target appear-
ance. Similar to[16], we apply the Bhattacharyya similarity coefficient to define
a distance on HSV histogram, and adopt the similar likelihood distribution.
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Substitute(6), (3), (4),(5) into(1), we get

P (X,O|Y) ∝
∏

i

exp(−Li(xi, yi))(1 − exp(−λ1A(xi)))

×
∏

i

∏
j∈Γ (i)

exp(−ϕ(xi, xj)(1 −Oi,j) + γ(Oi,j)) (7)

3 Approximate Inference

3.1 Model Approximation

Maximization of the posterior (7) can be written as

max
X,O

P (X,O|Y) = max
X
{
∏

i

exp(−(Li(xi, yi))(1 − exp(−λ1A(xi)))

×max
O

∏
i

∏
j∈Γ (i)

exp(−(ϕ(xi, xj)(1 −Oi,j) + γ(Oi,j))} (8)

Now we relax the binary process Oi,j to analog process O
′
i,j by allowing 0 ≤

O
′
i,j ≤ 1. Since

maxO
∏

i

∏
j∈Γ (i) exp(−(ϕ(xi, xj)(1 −Oi,j) + γ(Oi,j)))

= exp(−minO′
∑

i (ϕ(xi, xj)(1−O
′
i,j) + γ(O

′
i,j))) (9)

the right hand side of (9) is just the objective function of a robust estimator
according to [12], we can define the robust function as:

ψp(xi, xj) = min
O

′
i,j

(ϕ(xi, xj)(1−O
′
i,j) + γ(O

′
i,j)), (10)

so we get the posterior probability over X defined by ψp(xi, xj):

P (X|Y) ∝
∏

i

exp(−Li(xi, yi))(1 − exp(−λ1A(xi)))

×
∏

i

∏
j∈Γ (i)

exp(−ψp(xi, xj)) (11)

Thus far, we eliminate the analog processes and convert the task of modelling
the prior terms {ϕ(xi, xj),γ(Oi,j)} explicitly into defining the robust function
ψp(xi, xj) which models occlusion implicitly. We derive ψp(xi, xj) from the Total
Variance (TV) model[15] with a potential function ρ(z) = |z| because of its
discontinuity preserving property:

ψp(xi, xj) = − ln((1− ep) exp(−|A(xi, xj)|
σp

) + ep) (12)

where A(xi, xj) depends on the number of overlapping pixels of two adjacent
targets. It is maximal when two targets coincide and gradually falls off as tar-
gets move apart. Unlike Yu’s upside-down Gaussian[7], our robust function has
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the property in maintaining discontinuity, this is very important in preventing
particles of occluded targets from fast depletion because of temporal lacking of
image evidence. By varying parameters ep and σp , we can control the shape
of the robust function and, therefore, the posterior probability. Also,the elimi-
nated occlusion process can be recovered from through the robust function by
identifying when the robust function reaches its upper bound.

3.2 Algorithm Approximation

Consider a Markov networkG = (V,E), where V denotes node set and E denotes
edge set. Nodes {xi, i ∈ V } are hidden variables and nodes {yi, i ∈ V } are
observed variables. By denoting X = {xi} and Y = {yi} , the posterior P (X|Y)
can be factorized as

P (X|Y) ∝
∏

i

ρi(xi, yi)
∏

i

∏
j∈Γ (i)

ρi,j(xi, xj) (13)

where ρi,j(xi, xj) is the compatibility function between nodes xi and xj , and
ρi(xi, yi) is the local evidence for node xi . It can be observed that the form of
our posterior (11) is the same form of (13), if we define

ρi,j(xi, xj) = exp(−ψp(xi, xj)) (14)

ρi(xi, yi) = exp(−Li(xi, yi))(1 − exp(−λ1A(xi))) (15)

Thus inferring states of targets can be defined as estimating believes in the
Markov network.

Loopy Belief propagation (LBP)[14] is an iterative inference algorithm that
propagates messages in the network with loops. At iteration n of the BP algo-
rithm, each node i ∈ V calculates a message mn

ij(xj) to be sent to each neigh-
boring nodes j ∈ Γ (i) , Γ (i) ≡ {j|(i, j) ∈ E} is the set of all nodes that are
directly connected to i.

mn
ij(xj) = κ

∫
xi

ρi,j(xi, xj)ρi(xi, yi)
∏

u∈Γ (i)\j

mn−1
ui (xi)dxi (16)

where κ is a normalization constant. At each iteration, each node can produce
an approximation p̂n(xi|Y) to the marginal distributions p(xi|Y) by combining
the incoming messages with the local observation potential.

p̂n(xi|Y) = κ1ρi(xi, yi)
∏

j∈Γ (i)

mn
ji(xi) (17)

where κ1 is a normalization constant.
We use a MC approximation to the integral in (16). Each message is repre-

sented by a set of weighted particles, i.e., mji(xj) ∼ {s(n)
j , w

(i,n)
j }Nn=1, i ∈ Γ (j) ,

where s(n)
j and w(i,n)

j denote the sample and its weight of the message passing
from xi to xj , respectively. The marginal posterior probability in each node is
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Table 1. Algorithm 1-Stratified Sampling message updating and belief computing

Generate {s
(n)
j,t,k+1, w

(i,n)
j,t,k+1}N

n=1 and {s
(n)
j,t,k+1, π

(n)
j,t,k+1}N

n=1 from

{s
(n)
j,t,k, w

(i,n)
j,t,k }N

n=1, and {s
(n)
j,t,k, π

(n)
j,t,k}N

n=1

1. Stratified Sampling
(a) For 1 ≤ n < νN , sample s

(n)
j,t,k+1 from a suitable proposal function

H(xj,t),set weight w̃
(i,n)
j,t,k+1 = 1/H(s(n)

j,t,k+1)

(b) For νN ≤ n ≤ N ,sample s
(n)
j,t,k+1 from P (xj,t|Yt), set ξ

(i,n)
j,k+1 = 1/π

(n)
j,t,k

(c) For νN ≤ n ≤ N

ξ̃
(i,n)
j,,t,k+1 = (1 − v)ξ(i,n)

j,t,k+1/(
N

l=vN
ξ
(i,l)
j,t,k+1)

(d) for νN ≤ n ≤ N ,w(i,n)
j,t,k+1 = w̃

(i,n)
j,t,k+1.

(e) for νN ≤ n ≤ N ,w̃(i,n)
j,t,k+1 = w

(i,n)
j,t,k+1 × ξ̃

(i,n)
j,t,k+1

2. Importance correction: for 1 ≤ n ≤ N , w
(i,n)
j,t,k+1 = w̃

(i,n)
j,t,k+1 × mij(s

(n)
j,t,k+1)

where mij(·) is defined in (20)
3. Normalize {w

(i,n)
j,t,k+1, i ∈ Γ (j)},set π

(n)
j,t,k+1 according to (21) and normal-

ize,then get {s
(n)
j,t,k+1, w

(i,n)
j,t,k+1}N

n=1, {s
(n)
j,t,k+1, π

(n)
j,t,k+1}N

n=1.

4. k ← k + 1,iterate 1→4 until convergence.

also represented by a set of weighted samples, i.e. P (xj |Y) ∼ {s(n)
j , π

(n)
j }Nn=1.

Then the message updating process is based on these set of weighted samples.
Both PAMAPS [8] and NBP [9] approximate messages with Gaussian Mix-

ture, and result in sampling from product of Gaussian Mixture. Different from
using Gaussian Mixture model, we use importance sampling with a stratifier
sampler to approximate messages, the proposal H(x) is built based on the prior
of target state. To make use of as much information as possible, we adopt a
stratified sampler to sample (1 − v)N particles (0 ≤ v ≤ 1 ) from the current
belief estimate, and vN particles from the proposal distribution for message. The
resulting belief propagation is described in Table 1, where step 1(a)performs sam-
pling from H(x), and steps 1(b),1(c),1(d) and 1(e)perform sampling from belief
node. Details of computing mij(s

(n)
j,t,k+1) and π(n)

j,t,k+1 are given in section 4. Al-
though we have not obtained the rigorous results on the convergence rate, we
always observe the convergence in less than 5 iterations in our experiments.

4 Information Fusion

The joint state at time t and t− 1 are described by two Markov network Gt and
Gt−1, where Gt = (Vt, Et),Vt be the set of nodes of active targets, i.e. the targets
appear in the view, andEt be the possible occlusions. DMN shown in Fig.1 shows
the evolution of Gt, it reflects the motion correlation among targets, due to the
change of their spatial relation, occurrence of new targets and disappearance of
tracked targets.
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Fig. 1. DMN for MTT, the link between each paired hidden nodes indicates occurrence
of occlusion. Graph Gt−1 and Gt describe joint target state at two consecutive time
instants. Link and node in red indicates new occlusions and the addition of new target,
respectively.

By assuming independent dynamics,P (Xt|Xt−1) can be factorized as:

P (Xt|Xt−1) ∝
∏

i∈Vt∩Vt−1

P (xi,t|xi,t−1)
∏

j∈Vt\Vt−1

Pa(pj,t)
∏

k∈Vt−1\Vt

Pd(pk,t)(18)

where P (xi,t|xi,t−1) represents target dynamics,Pa(pi,t) and Pd(pi,t) are proba-
bilities for occurrence of new targets and disappearance of old targets, they are
set empirically according to the distance of (pi,t) to the boundaries of the image.

With Gt evolving, dimension of Xt is varying , corresponding to different num-
ber of targets. To inferring P (xi,t|Y1:t) , we embed algorithm 1 into a MCMC
framework using a Metropolis sampler. The key to the efficiency of this sam-
pler rests on the informed proposal. We build three proposal using (18)and a
learned SVM detector[17] for existed tracks, a new initialized tracks and ter-
minated tracks, respectively. At each sampling step, we switch Gt to G

′
t by

changing one target state, the acceptance probability for each transition is set

to min{1, P (X
′
t)|Y1:t

P (Xt)|Y1:t
}.

The proposal for targets existed from time t−1 to t is p(xi,t|xi,t−1). For vary-
ing number case, proposals are based on a learned SVM detector,other detectors
can also be adopted in the same way. One expects detector to be noisy in that
they sometimes may fail, even these noisy information proves to be valuable
in improving tracker’s reliability[6]. Our proposals for adding new target and
deleting old target have the similar form as follows:

P (Xt|X0:t−1,Y1:t) = R(Qs(Yt), P (Xt|Xt−1)), (19)

where Qs is a Gaussian distribution center around the detected targets by the
SVM detector. R(·) is a similarity function which compute the distance between
a sample cluster in Qs and that in P (Xt|Xt−1). The proposal for adding new
target is Ra(·), which is a Gaussian mixture of the clusters in Qs excluding those
in P (Xt|Xt−1), the weight of each Gaussian component is in proportion to the
distance of centroid of the cluster to the boundaries of the image. Similarly, the
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Table 2. Algorithm 2-Particle based Belief Propagation

Generate {s
(n)
j,t , π

(n)
j,t }N

n=1 from {s
(n)
j,t−1, π

(n)
j,t−1}N

n=1

1. Initialization:
(a) Re-sampling: for each j ∈ V, i ∈ Γ (j), sample {s

(n)
j,t−1}N

n=1 according to the

weights π
(n)
j,t−1 to obtain {s

(n)
j,t−1, 1/N}N

n=1.
(b) Prediction: for each j, for each sample in {s

(n)
j,t−1, 1/N}N

n=1, sample {s
(n)
j,t }N

n=1

from p(xj,t|xj,t−1).
(c) Initialize Belief and message: for each j = 1, .., M , assign weight w

(i,n)
j,t,k =

1/N, π
(n)
j,t,k = pj(y

(n)
j,t,k|s(n)

j,t,k) and normalize, where i ∈ Γ (j).
2. Iterate L times: choose following(a),(b)and(c)randomly with probabilities 0.8,0.1

and 0.1 to obtain a new graph G
′

(a) Randomly select a target j ∈ V to move, obtain G
′

(b) Sample from Ra(·), delete the corresponding node from V to obtain G
′

(c) Sample from Rd(·),add the corresponding node into V to obtain G
′

3. Do algorithm 1 on G
′
with proposal function p(xi,t|xi,t−1), i ∈ G

′

4. Inference result p(xj,t|Yt) ∼ {s
(n)
j,t , π

(n)
j,t }M

n=1, where s
(n)
j,t = s

(n)
j,t,k+1 and πi,n

j,t =

π
(i,n)
j,t,k+1

proposal Rd(·)for deleting an target is built from the clusters in P (Xt|Xt−1)
excluding those in Qs, the weight is set in the same way as that in adding a new
target proposal.

The detailed steps of the sequential stratified sampler are presented in algo-
rithm 2 in Table 2, and mij(s

(n)
j,t,k+1) and π(n)

j,t,k+1 in algorithm 1 is computed as

mij(s
(n)
j,t,k+1) =

N∑
m=1

{π(m)
i,t,kρi(y

(m)
i,t,k, s

(m)
i,t,k)

∏
l∈Γ (i)\j

w
(l,m)
i,t,k

×[
N∑

r=1

p(s(m)
i,t,k|s

(r)
i,t−1)]ρij(s

(m)
i,t,k, s

(n)
j,t,k+1)} (20)

π
(n)
j,t,k+1 = ρj(y

(n)
j,t,k+1, s

(n)
j,t,k+1)

∏
u∈Γ (j)

w
(u,n)
j,k+1 ×

∑
r

p(s(n)
j,t,k+1|s

(r)
j,t−1) (21)

5 Experiments

We test our algorithm with two video sequences. The first is a synthetic example,
in which we didn’t use stratified sampler, parameters in our algorithm were set
as ν = 1. The second is a real video sequence of hockey game, in which stratified
sampler is used, the parameters are ν = 0.8.

In the synthesized video, there are five identical and moving balls in a noisy
background. Each ball presents an independent constant velocity motion and
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#44 #53 #57 #58 #59

#44 #53 #57 #58 #59

Fig. 2. Tracking balls by M.I.T and our algorithm. The result of MIT is Shown on the
top with the result of our algorithm at the bottom.

is bounded by the image borders. The synthesized sequence challenges many
existing methods due to the frequent presence of occlusion. We compare our
results with those obtained by a multiple independent trackers(M.I.Tracker),
which we implemented using color model[16]. Fig.2 shows some samples, the
results of M.I.Tracker are on the top and ours at the bottom. we used 20 particles
for each ball in both M.I.Tracker and our algorithm. The red lines in Fig.2 that
link balls are the visual illustration of the structure of the Markov network. We
find out that our approach can handle 98.6% of the 234 occlusions occurring in
the 634 frames synthesized video, while M.I.Tracker can’t produce satisfactory
results.

Our algorithm has also been tested on a real video sequence of hockey game.
We have trained a SVM classifier to detect hockey players, we got 34 SVs from
a total of 1300 figures of hockey players finally. Fig.3 shows M.I.Tracker results
on the top, and our algorithm tracking results on the bottom. As expected,
our approach provides robust and stable results, while M.I.Tracker can’t. Note
that a fixed set of parameters ep = 0.05, σp = 1 is used in both synthesized
and real video. Obviously, this set of parameters is not the optimal for both
video sequence, because their occlusion situation are quite different. Finally,
we compare our algorithm with the latest multiple targets tracking algorithm,
boosted particle filter[6]. Both the performance are almost the same, however, for

#01 #55 #70 #80 #90

#01 #55 #70 #80 #90

Fig. 3. Hockey players tracking result: the top is the result of M.I.T, and the bottom
is the final result of our algorithm
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each tracked player,boosted particle filter use multiple sub-region color model,
while our algorithm uses a single region color model. It seems that in occlusion
handling, boosted particle filter depends heavily on the discriminability of its
likelihood function, while ours can handle occlusion mainly due to the better
modelling of interactions among multiple targets.

6 Summary and Conclusions

This paper proposed to model multiple targets tracking problem in a dynamic
Markov network which is derived from two MRFs:a MRFs for joint target state
and a binary process for occlusion of dual adjacent targets. We then propose to
embed a novel Particle based Belief Propagation algorithm into Markov Chain
Monte Carlo approach (MCMC) to obtain the maximum a posteriori (MAP)
estimation in the DMN. In the message propagation,a stratified sampler in-
corporates information both from a learned detector (e.g. SVM classifier) and
dynamic behavior model. The proposed method is able to track varying number
of targets and handle their interactions, and it was illustrated on a synthetic and
a real world tracking problem.
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Abstract. In this paper we describe a new method for detecting and
tracking multiple persons with a stereo camera. The method is based on
the idea of the plan-view map, i.e., the 2D histogram of projected 3D
measurements from the camera. It estimates the statistical feature in an
optimal window, e.g., a rectangular region, on the histogram, considering
stereo measurement error, human breadth, and height. Then, it measures
the actual statistical feature in the same window on the input histogram
and compares estimated feature with measured one to detect and track
persons. Experimental results show that our method can achieve higher
performance than a normal plan-view map.

1 Introduction

Person tracking systems by vision are useful for many applications, including
human-computer interaction, traffic counters, and surveillance systems. In this
paper, we mainly consider surveillance systems.

In many surveillance systems, a camera may be installed in a limited space.
Especially in a building, space is limited by its ceiling. Therefore, the camera
should be located at a low height. In this situation, human silhouette is strongly
effected by projection, and half-occlusion frequently occurs. 3D information, such
as depth from a stereo camera, enables us to easily handle these issues.

However, a lot of past methods [1–5] assume that the camera position is low
and faces a horizontal direction. These methods do not deal with long-term
half-occlusion.

Beymer has proposed a person counting method using a stereo camera[6].
Although this method assumes that the stereo camera is above the path of a
person and looking downward, it can deal with great changes in the viewing
direction by a simple way using a plan-view map. The plan-view map is a 2D
rectangular histogram that counts the number of 3D measurements in the ver-
tical square pole on each bin(histogram component). Stereo measurements are
distributed vertically on a standing person, so it can be assumed that the value
of the bin under the person is higher than the others. Several papers[7, 8] have

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 359–368, 2006.
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improved this basic idea. For instance, Harville[8] introduced a novel idea “plan-
view height map” that applies object’s height to the plan-view map. However,
he did not clearly deal with the measurement error of a stereo camera.

Generally speaking, stereo measurement error grows as depth increases.
Therefore, detection and tracking performance degenerates in areas far from the
camera. This motivates us to take measurement error in account. In this paper
we propose a new method, that analyzes the measurement error of depth from a
stereo camera and reduces the effect of measurement error. This method is gen-
eral enough to collaborate with another methods, such as Harville’s plan-view
height map.

First we derive the simplified formula of stereo measurement error and analyze
the error of voting to 2D histogram, i.e., the plan-view map. Next we calculate
an adaptive window at a position on the histogram using both the nature of
the error and the breadth and the height of a person. The larger the window,
the more reliable detection and tracking of people. However, too large window
decreases the precision of the position. Therefore, we calculate the optimal win-
dow size. Lastly, we estimate the statistical feature, e.g., the average of values
in the window and measure the same feature of the input histogram in the same
window. We compare the estimated feature with the measured one to detect a
person candidate at each position on the histogram. If these features are similar,
the person exists at that position. Experimental results show that our method
has higher performance than a normal plan-view map.

2 Problem Definition

2.1 Camera Configuration

Figure 1 shows the configuration of a stereo camera, its right image plane, a
world coordinate system, persons, and a 2D histogram. The camera modules are

Fig. 1. Configuration of stereo camera, image plane, and world coordinate system
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placed parallel at distance B, at height D from the ground, and those slanting
angles are θ. These cameras have wide-angle lenses of horizontal angle α. We
calculate a disparity d based on the image right image, whose coordinate system
is represented by u − v. The width and height of the right image are au and
av respectively. The stereo camera observes 3D point p on an object that exists
in the world coordinate system X − Y − Z. For simplification, we set axis Y
to be parallel to the axis u and fix the origin O to the ground plane. The 2D
histogram is attached to the X − Y plane, and its bins are arranged in a lattice
shape parallel to the X and Y axes. The origin of the histogram is (Xij0, Yij0).
The size of the bin is ξX × ξY . H can be calculated from observations, or we can
fix H to an average human height. We assume another person is outside of the
circle whose center and radius are p and G, respectively. When G is large enough,
e.g., 1m, we can ignore heavy occlusion. Our method outputs 2D positions of
standing and/or walking persons from the input images.

2.2 Stereo Measurement Error Model

First, we correct the input images undistorted, smooth the images by Gaussian
filter, calculate a dense disparity map by a block matching algorithm[9], and
subtract the background depth map from the input depth map by a conventional
background subtraction method such as [10]. We start from this depth map.

Rodriguez et.al.[11] analyzed stereo depth errors with respect to d. In this
paper we first derive simpler formula so as to focus on the errors on the 2D
histogram.

Suppose a 3D point pc, which is on the camera coordinate system, is observed
at (u, v) on the right image plane and at (u+ d, v) on the left. pc is presented as

pc = [(u − u0)B/d (v − v0)B/d ζ/d]t

= (1/d)pc
m (1)

ζ =
auB

2 tan(α/2)
, (2)

where xt means the transpose of x. We can translate pc into p on the world
coordinate system using appropriate matrix M and vector C as

p = Mpc + C. (3)

Let d be the true value of disparity at pc. We assume that d has a noise
that has a Gaussian distribution, whose expectation and variation are 0 and σ2

d

respectively, that is,
d = d+ δd. (4)

The expectation μpc of pc at d = d is

μpc = pc |d=d . (5)

Applying 1-dimensional Taylor expansion to pc, we can obtain

pc � ṗc |d=d (d− d) + pc |d=d . (6)
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ṗc is the differential of pc. Subtracting expectation μpc and substituting d∗ =
(d− d)/σd into the right term, it is simplified as

σdṗ
c |d=d d

∗. (7)

Expectation of d∗ is 0, and its variance is 1. Assuming that each component of
ṗc is independent, the standard deviation σpc of pc is obtained from equations
1 and 7,

σpc =
σd

d2
diag(pc

m), (8)

where diag(p) is a matrix whose diagonals are the components of p. Expectation
μp and standard deviation σp on the world coordinate system are obtained by
applying equation 3,

μp = Mpc |d=d +C (9)

σp =
σd

d2
Mdiag(pc

m)Mt. (10)

3 Detecting and Tracking Method

As described in section 1, a simple and effective way for detecting a stand-
ing/walking person is to use a 2D histogram. We improve the performance of
this basic idea by considering measurement error.

3.1 Generating 2D Histogram

First we describe how to generate a 2D histogram. A 3D point p = [pX pY pZ ]t

is projected on the bin at

(i, j) = (�(pX −Xij0)/ξX�, �(pY − Yij0)/ξY �). (11)

�x� is a maximum integer less than x. The value of the bin at (i, j) is increased
by the projection. After all 3D points are projected on appropriate bins, it is
expected that the bin under a person has higher value than the others. We denote
bin value at (i, j) by h(i, j).

3.2 Analyzing 2D Histogram

A 3D point p includes measurement error, which increases along with the dis-
tance from the camera. Therefore, in general, the histogram generated by equa-
tion 11 has a broad and low peak underneath a person. Additional measurement
error, such as extra depth attached to a person, decreases signal-noise ratio.

We propose a new method considering the measurement error that is
processed as follows:

1. Calculate a window on the histogram from the variance of noises and human
breadth. The window size varies along with distance from the camera.
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2. Estimate statistical feature(s) in the window that can be an average, a vari-
ance, and/or, and so on. Since features are independent of the actual mea-
surements, we can estimate all of them on the histogram in advance. In this
paper we adopt an average as the feature.

3. Calculate the same feature in the same window on the measured histogram.
4. Compare estimated features with measured features at the same position. If

they are similar, the probability of the person will be high at the position.
We get this probability map by comparing features at each position of the
histogram.

5. Detect and track peaks on the probability map.

The detailed algorithm is explained in the following subsections.

3.3 Calculating Optimal Window Size

We assume a rectangular window on the histogram. We calculate a minimum
window that contains most of the measurement points on one person. For sim-
plification, we consider the diagonals of σp, [σX σY σZ ]t. Let W denote the
average human breadth, andWD(< W ) denote the depth. Window size (ww, hw)
is expressed as

ww = FqσX (12)
FqσY +WD ≤ hw ≤ FqσY +W, (13)

using a constant Fq. Figure 2 shows these relations.

Fig. 2. Relation between standard deviation σX , σY and window size

If most persons move along the lines with depth direction, hw can be approx-
imated as hw = W .

3.4 Estimating Statistical Feature(s) in the Window

We describe how to calculate an average in the window. We use a simple human
model, which is a plane vertical to the ground and its normal direction is facing to
the camera. The model plane size is W ×H . Imagine that the plane is projected
to the image, the distance from the bottom to the top of the plane is n pixels
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in the image coordinates, and bin width ξY is m pixels. All n ·m measurement
points are projected into the same bin of the histogram if we ignore noises and
measurement errors. Therefore, the true bin value k is k = n ·m.

Let ρr be the probability of acquiring measurements on the human model
plane and νk be the variance of the bin value caused by random noises on the
image. kρr+νk measurement points are distributed in window width ww because
of the noise on the depth. Therefore, an average μk is

μk = (kρr + νk)/ww. (14)

νk can be calculated as follows. Let ρd be the occurrence probability of a
uniform disparity in a pixel. Randomly generated disparity d′ is projected to the
bin if d′ − δd/2 < d′ < d′ + δd/2 and its pixel is on the vertical line through
the bin. Using the distance from the ground to the image boundary along the
vertical line and maximal disparity dmax,

νk = hmaxmρd(δd/dmax). (15)

If ρd is small enough, νk is also small.
We can estimate other statistical features such as standard deviation. Since we

are focusing on the effectiveness of our general framework, the simplest feature,
i.e., the average, is sufficient for evaluating our method.

3.5 Measuring Statistical Feature(s) in the Window

An average Ak(p) in the window on the input histogram is

Ak(p) =
(∑

(i,j)∈W(p) h(i, j)
)
/(wwwh). (16)

Here W(p) is the window on the histogram corresponding to p.
To calculate all averages on the histogram, we use a fast algorithm developed

by Viola et.al.[12], i.e., the integral image. Let M2 be the average area of a
window, and N2 the area of the histogram. A computational order of Ak by a
brute-force method is O(M2N2), which we can be reduced this into O(N2) using
the integral image.

3.6 Detecting and Tracking Persons

From equations 14 and 16, we obtain μk and Ak at each point of the histogram.
Although Ak will vary because of occlusion and other ignored noises, the high
probability that a person is at the point may be expected when these are similar.
Their similarity can be evaluated in a number of ways. For example,

h′ = 1− |Ak − μk|/μk. (17)

If Ak ≤ μk, this can be simplified to h′ = Ak/μk.
We can detect the candidate of a person at a point when h′ ≥ Tμ. After

detection, we can track the peak near the previous peak by such filtering methods
as Kalman filter, condensation method[13], or dynamic-programming[7]. We take
map h′ as a probability map and adopt a condensation method to track each
peak on it.
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4 Experiments

4.1 Simulating μk and Ak

The objective of the simulation is: (a) to check the correctness of the statistical
feature estimates by comparing estimated features and simulated ones, and (b)
to find appropriate thresholds that will work in actual situation.

We simulate μk and Ak as follows. (1) Locate a vertical plane whose size
is W × H at position p. (2) Scan all optical rays that go through both the
image and the plane. (3) Calculate the disparity of each ray and add Gaussian
noise to the disparity. (4) Count all 3D points calculated from the disparity
map to the histogram. (5) Move p in the range of −1500 ≤ pY ≤ 1500 and
2000 ≤ pX ≤ 5500, and calculate μk and Ak at each position of p.
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(a) Simulated μk at each point p (b) Simulated Ak/μk at each point p

Fig. 3. Simulated results

Figure 3(a) shows μk at each point p. μk decreases nonlinearly as the distance
from the camera increases because window size increases and the number of
measurement points decreases along with the distance. Ak behaves similar to
μk. Most methods in the past approximated this behavior as linear. Therefore,
it was difficult to maintain detection and tracking performance at all points.

We analyze the behavior of Ak more precisely. Figure 3(b) shows the Ak, μk

ratio, i.e., Ak/μk. From this simulation, when pY is near 0, Ak/μk is close to 1.
However, as |pY | increases, Ak/μk also decreases. The reason for this phenom-
enon is that the window shape and the actual peak shape is different, especially
when |pY | is large. Nevertheless, we can detect persons at most positions, for
instance, by setting Tμ = 0.8.

4.2 Detecting and Tracking Actual Images

We consider Beymer’s method as a baseline because his idea is so basic that
everyone can comprehend it. Therefore, we compare the two methods. We de-
veloped a person tracking system using our method and also his method on a
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Fig. 4. Specifications of camera locations in our experimental setup

standard PC. Many performance evaluation methods have been proposed, in this
paper we use Pingali’s method[14], which investigates success and false alarm
duration rates of total tracking.

Pingali defines one track from the appearance to the disappearance of the
person in the field of view. A video sequence contains multiple tracks. Let A
be the true number of tracks in a sequence, A′ the number of true tracks that
correspond to detected tracks, R′ the number of detected tracks that correspond
to true tracks, and R′′ the number of detected tracks that do not correspond to
the true tracks. T (X) is the total duration ofX tracks. Durational miss detection
rate md and durational false alarm rate fd are represented as

md = 1− T (A′)/T (A) (18)
fd = T (R′′)/T (A). (19)

md = 0, fd = 0 denotes ideal tracking.
We located the stereo camera 2m high at a 40 degree slanting angle. The

field of view angle was 109deg, and the base line length was 150mm. While
multiple persons walked freely in the open space shown in figure 4, we captured
video from the stereo camera about 73sec; the multiple persons were walking or
running in the open space. The video contained 44 true tracks that were detected
and tracked by a human operator, Beymer’s method, and our method. We set
parameters σd = 0.1, Fq = 6, which means ±3σ. We used the tracks picked by
the operator as true tracks, and calculated md and fd by comparing them with
Beymer’s tracks and our method’s tracks.

Figure 5 shows the relationship between md and fd calculated from the above
experiment. Triangles(Beymer’s method) were calculated using true tracks and
his tracks of several different threshold values. Circles(proposed method) were
calculated using true tracks and our proposed method’s tracks of them. The
solid line in the figure means the envelope of Beymer’s, which is the boundary
of its best performance. The dashed line denotes the same envelope of ours. One
point dashed line stands for the equal error rate(EER). Obviously, our method
shows higher performance than Beymer’s. Table 1 shows the EERs of Beymer’s
and ours.

We show an example of the tracking process by our system in figure 6. The
figure shows the moment when the system is tracking four persons. The top
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Fig. 5. Relation between miss detection(md) and false alarm detection(fd)

Table 1. Equal error rate(EER) of Beymer’s and our proposed methods

Beymer proposed
EER(%) 8.5 5.5

Fig. 6. Example of tracking results. Top left shows original image, bottom left shows
disparities overlaid on the original, bottom right shows the map of h′, tracking tra-
jectories, and the world coordinate system, and top right shows rectangular person
regions projected from tracking results.

left corner shows the original image, the bottom left shows disparities overlaid
on the original, the bottom right shows the map of h′, tracking trajectories,
and the world coordinate system, and the top right shows rectangular person
regions which are projected from the tracking results. Although the farthest
person is heavily occluded by another person, the system can continue to track
him because the occlusion duration is short.
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5 Conclusions

We described a new method for detecting and tracking multiple persons with a
stereo camera, that estimated statistical feature(s) in the optimal-sized window
on the histogram, considering stereo measurement error and human breadth.
Then the method measured the feature(s) in the same window on the input
histogram and compared estimated feature with measured one. The experimental
results showed that our method reduced both miss detection and false alarms
more than the normal plan-view map.
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Abstract. This paper describes a novel method for estimating extrin-
sic camera parameters using both feature points on an image sequence
and sparse position data acquired by GPS. Our method is based on a
structure-from-motion technique but is enhanced by using GPS data so
as to minimize accumulative estimation errors. Moreover, the position
data are also used to remove mis-tracked features. The proposed method
allows us to estimate extrinsic parameters without accumulative errors
even from an extremely long image sequence. The validity of the method
is demonstrated through experiments of estimating extrinsic parameters
for both synthetic and real outdoor scenes.

1 Introduction

Extrinsic camera parameter estimation from an image sequence is one of impor-
tant problems in computer vision, and accurate extrinsic camera parameters are
often required for a widely moving camera in an outdoor environment to realize
outdoor 3D reconstruction and new view synthesis [1, 2]. In this field, accumu-
lative errors in estimated camera parameters often cause un-desired effects for
each application. This problem is unavoidable as long as we use only relative
constraints among multiple frames [3, 4].

To avoid the accumulative error problem, some kinds of prior knowledge about
surroundings and external position and posture sensors have been often used in
the literatures [5–9]. As prior knowledge about surroundings, known 3D-positions
[5, 6] (called feature landmarks) and wire frame of CAD models [7, 8] are used.
The method using feature landmarks [5, 6] is based on the feature tracking ap-
proach. Extrinsic camera parameters and 3D positions of feature points are es-
timated by minimizing the re-projection error of feature landmarks and image
feature points tracked in each frame. The method described in [7, 8] is based
on matching silhouettes of CAD models with edges in input images. Such im-
age based methods do not require any other sensors. However, the acquisition of
these kinds of prior knowledge requires much human cost in a large scale outdoor
environment. On the other hand, in the method using a sensor combination [9],
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an RTK-GPS (Real Time Kinematic GPS), a magnetometer and a gyro sensor
are sometimes integrated to obtain position and posture data without accumu-
lative errors. However, it is difficult to reconstruct high frequency component in
motion by only these sensors because the acquisition rate of position informa-
tion from a general GPS receiver is 1Hz and is significantly lower than video
rate. Moreover, highly accurate calibration and synchronization among sensors
is needed but this problem has hardly been treated in the literature.

The most hopeful solution for the accumulative error problem is combination
of camera and GPS [10, 11]. In this paper, we propose a method to estimate
extrinsic parameters for a widely moving camera using both video sequence and
GPS position data. To estimate accurate parameters, our method is based on
structure-from-motion with extrinsic parameter optimization using the whole of
GPS positions and video frames as an offline process; this is the main difference
from the conventional methods described in [10, 11]. In the proposed method,
tentative extrinsic parameters are estimated from GPS position data and are
used to avoid mismatching in feature tracking. In the optimization process, a
new error function defined by using GPS position data and re-projection error
is minimized to determine some calibration parameters between camera and
sensor. In our method, the following conditions are assumed. (i) Camera and
GPS have been already synchronized. (ii) Position relation between camera and
GPS receiver is always fixed. (iii) Distance between camera and GPS receiver is
known, and direction of GPS receiver in camera coordinate system is unknown.
In this paper, it is also assumed that cameras have been calibrated in advance
and the intrinsic camera parameters (including lens distortion, focal length and
aspect ratio) are known.

In the remainder of this paper, we firstly describe the proposed method that
handle GPS position data for estimation of extrinsic parameters in Section 2. In
Section 3, the validity of the proposed method is demonstrated through exper-
iments of estimating extrinsic parameters for both synthetic and real outdoor
scenes. Finally, we present conclusion and future work in Section 4.

2 Extrinsic Camera Parameter Estimation Using
Features and GPS

The goal of this research is to obtain extrinsic camera parameters and a direction
of GPS receiver from camera when multiple video frames and GPS positions are
given. The main topic described in this section is how to integrate GPS position
data to the structure-from-motion problem. In the proposed method, the general
structure-from-motion algorithm is enhanced to treat GPS position information.

This method basically consists of feature tracking and optimization of camera
parameters as shown in Figure 1. Tow process of (A) feature tracking and (B)
initial parameter estimation are performed in order. At constant frame intervals,
the local optimization process (C) is done to reduce accumulative errors. Finally,
estimated parameters are refined using the tracked feature points and feature
landmarks in the global optimization process (D). In the processes (C) and (D), a
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(C) Local optimization using GPS positions

(D) Global optimization using GPS positions

(B) Initial parameter estimation

i mod k = 0

Y

(a) Feature point detection

(b) Feature point match

(c) Tentative parameter estimation

(d) Feature point match

(A) Feature tracking

Fig. 1. Procedure of the proposed algorithm

common optimization is performed. The difference in both processes is the range
of optimized frames. In the process (C), the range of optimization is limited in
a part of the input image sequence because future data cannot be treated in
sequential process. On the other hand, in the process (D), all the frames are
simply optimized and updated.

In the following sections, we firstly define a new error function that treats
both re-projection errors and GPS position errors. After that, each process is
also detailed.

2.1 Formulation of Error Function with GPS Position

In this section, we define a new error function E which is combination of the
error function concerning GPS and the re-projection error. The way of error min-
imization will be also mentioned. First, re-projection error is briefly explained as
an error function of general structure-from-motion problem. Then, error function
concerning GPS is also defined by modeling geometric relation between camera
and GPS. Finally, we describe a new error function combining re-projection error
and the error function concerning GPS.

Re-projection Error: Re-projection error is generally used for extrinsic cam-
era parameter estimation based on feature tracking. The method minimizing the
sum of squared re-projection error is called bundle adjustment. This error Φij

is defined as |qij − q̂ij | for feature j in the i-th frame, where q̂ represents the
2D projected position of the feature’s 3D position and q represents the detected
position of the feature in the image.

Error of GPS: Generally, if GPS positions and estimated extrinsic parameters
do not contain any errors, the following equation is satisfied in the i-th frame
among the extrinsic camera parameters (position ti, posture Ri), GPS position
gi and the position of GPS receiver d in the camera coordinate system.

Rigi + ti = d (i ∈ F), (1)
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where F denotes a set of frames in which GPS position is obtained. However,
if GPS position gi and extrinsic parameters Ri and ti contain some errors, we
must introduce an error vector ni.

Rigi + ti = d + ni. (2)

In this paper, we introduce an error function Ψi related to GPS receiver by
using the length of the error vector n: Ψi = |ni|. This function means the distance
between the measured position of the GPS receiver and the predicted position
of the receiver using the extrinsic parameters Ri and ti and GPS position. Next,
we describe a new error function E which is a combination of the error function
Ψij related to GPS receiver and the re-projection error Φ.

Error Function Concerning Feature and GPS: The new error function E
is defined as follows:

E =
ω

|F|
∑
i∈F

Ψ2
i +

1∑
i |Si|

∑
i

μi

∑
j∈Si

wjΦ
2
ij , (3)

where ω means a weight for Ψi, and Si denotes a set of feature points detected
in the i-th frame. The coefficients μi and wj mean the confidences for frame and
feature, respectively. wj represents the confidence coefficient of feature point j,
which is computed as an inverse variance of re-projection error Φij . The coeffi-
cient μi denotes the confidence of the i-th frame. Two terms in the right-hand
side in Eq. (3) is normalized by |F| and

∑
i |Si| each other so as to set ω as a

constant value independent of the number of feature and GPS positioning points.
Note that it is difficult to obtain a global minimum solution because there are

a large number of local minima in the error function E. In order to avoid this
problem, we currently adopt a method to change the weight μi in the iteration of
the optimization, which is experimentally derived from computer simulations. In
this method, the weight is changed whenever optimization process is converged.
We expect that local minima can be avoided because the global minimum does
not move largely even if local minima move by changing the weight μi.

2.2 Implementation of Each Process

(A) Feature Tracking: The purpose of this process is to determine corre-
sponding points between the current frame i and the previous frame (i−1). The
main strategy to avoid mismatching in this process is that feature points are
detected at corners of edges by Harris operator [12] and detected feature points
are tracked robustly with RANSAC approach. In the first process (a), natural
feature points are automatically detected by using the Harris operator for lim-
iting feature position candidates on the images. In the next process (b), every
feature in the (i− 1)-th frame is tentatively matched with the candidate feature
points in the i-th frame by using a standard template matching. Then, in the
third process (c) Tentative extrinsic parameters are then estimated by selecting
correct matches using RANSAC approach [13]. In the final process (d), every
feature is re-tracked within a limited searching area that can be computed by
the tentative extrinsic parameters and 3D positions of the features.
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Fig. 2. Optimization frames in the process (C)

(B) Initial Parameter Estimation: This procedure computes 3D position
of feature points and extrinsic parameters which minimize the sum of squared
re-projection errors. In this process, extrinsic parameters of all the frames are
refined to reduce the accumulated errors by the bundle adjustment using feature
points. The error function Einit defined by Eq. (4) is minimized to optimize both
extrinsic camera parameters of all the frames and 3D positions of all the feature
points.

Einit =
i∑

h=1

μh

∑
j

wjΦ
2
hj . (4)

(C) Local Optimization: In this process, the frames from the (i−(k+2l)+1)-
th to the current frame are used to refine the camera parameters from (i− (k+
2l) + 1) to (i − l)-th frame, as illustrated in Figure 2. This process is designed
to use feature points and GPS positions obtained in the frames around the
updated frames. To reduce computational cost, this process is performed every
k frames. Note that the estimation result is insensitive to the value of l if it is
large enough. The constant l is set as tens of frames to use a sufficient number of
feature points reconstructed in the process (B). The constant k is set as several
frames, which is empirically given so as not to accumulate errors in the initial
extrinsic parameters estimated in the process (B).

(D) Global Optimization: The optimization in the process (C) dose not
provide enough accuracy as the final output because it is performed for a part of
whole of frames and GPS positions for feedback to feature tracking process (A).
The purpose of this process is to refine extrinsic camera parameters by using
whole of tracked features and GPS positions. The algorithm of this process is
the same as the local optimization process (C) when l is set as zero and k is set
as the total number of frames.

3 Experiment

In this section, we demonstrate experiments for both synthetic and real outdoor
scenes. First, the experiment for synthetic data is carried out to evaluate the
accuracy of extrinsic parameters estimated by the proposed method when the
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correspondences of feature points are given. The experiment for real data is then
demonstrated to confirm the validity of the whole proposed method.

Note that some parameters used in the optimization process (C) and (D) are
set as follows. The weight coefficient ω in the error function E defined by Eq.
(3) was set as 10−9. When a GPS position was obtained, the weight μi of the
corresponding frame is always set as 1.0. When it was not obtained, 1.0 and
2.0 were alternately set as the weight μi whenever the optimization step was
converged. In the local optimization process (C), we set the number of updated
frames k = 5 and the number of optimized frames 49 (l = 22). The positions
of the first and 15th frames were set as GPS positions. The postures of these
frames were set as the true value for synthetic scene, and as the design value of
the car system for real scene.

3.1 Synthetic Data

The purpose of this simulation is to evaluate extrinsic parameters estimated
in the global optimization process (D). In addition, the validity of the proposed
method is confirmed by comparison with the conventional method [6]. We gave a
point set as a virtual environment that was used to generate 2D feature positions
in synthetic input images. The virtual camera takes 990 images by moving in
the virtual environment. The intrinsic parameters of the virtual camera are set
the same as the real camera described in the next section. The position of GPS
receiver in the camera coordinate system is set as (600,600,600)[mm]. We added
errors to input data as follows. The GPS positions with Gaussian noise (σ =30
mm) are given every 15 frames. The feature points are projected to the virtual
camera, and detected with Gaussian noise (σ =0.6 pixel) and quantization error.
The initial extrinsic parameters Ri and ti are generated by adding Gaussian
noise (position: σ = 500 mm, posture: σ = 0.020 rad) to the ground truth.
In the compared method, all the frames is set as key frames in which more
than 15 feature landmarks appear. The landmarks are given as feature points
whose confidence coefficient is set as large enough, and the 2D positions of the
landmarks in each frame are given without any errors. In this simulation, 200
feature points are observed on average in each frame.

Position and posture errors in the simulation result for the synthetic data
are shown in Figure 3. In the compared method, the position error is 39.8 mm,
and the postures error is 0.0019 rad on average. In the proposed method, the
position error is 32.9 mm, and the posture error is 0.0036 rad on average. We
have also confirmed this extrinsic parameters obtained in this experiment are
not converged to local minima in this simulation.

These results indicate that the proposed method enable us to obtain extrin-
sic parameters in the same order precision as the conventional method without
any manual acquisitions of surrounding information. The difference of the accu-
racy between the proposed method and the compared one can be caused by the
difference of behavior of the given absolute position information such as GPS
positions and landmarks. Concretely, we consider that posture errors of the com-
pared method becomes smaller than the proposed one because landmark position
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Fig. 3. Position and posture errors of estimated extrinsic parameters

information obtained from images is more sensitive to postures of camera than
GPS position information.

3.2 Real Scene

The purpose of this experiment using real data is to confirm the validity of the
proposed method which includes the feature tracking and the error models of
feature point detection. In this section, first, we describe the condition of this
experiment. After that, two kinds of experimental results are shown.

In the first experiment, we used a video camera (Sony DSR-PD-150, 720x480
pixel, 14.985fps, progressive scan)with a wide conversion lens (Sony DSR-PD-150)
and a GPS receiver (Nikon LogPakII, accuracy±3.0 cm) that were mounted on a
car. We acquired 3600 frames and GPS positions while the car was moving 1.1km
distance at 16.5km/h. The acquired frames and GPS positions were manually syn-
chronized. Intrinsic parameters are estimated by Tsai’s method [14]. The distance
between camera and GPS receiver is 1020 mm which is manually measured.

First, to confirm the effect to the process (C), we compared the result of the se-
quential process of camera parameter estimationusing the fully activatedproposed
method and the proposed method without the process (C). In both methods, the
same extrinsic parameters of the first frame and the 15th frame are manually given.

The two comparison of the result of both methods are shown in Figure 4.
In the method not using GPS position, the process has been terminated at the
1409th frame because tracked feature points decrease. On the other hand, 300 of
feature points on average are tracked at all the frames in the method using GPS
positions. This result indicates that the performance of the feature tracking is
improved by using GPS positions.

Figure 8 shows the result of extrinsic parameters estimation after the global
optimization process (D). In this figure, the camera path is smoothly recovered
even at the frames where GPS positions are not obtained. The match move using
the estimated extrinsic parameters is also demonstrated in Figure 6. The virtual
objects were inserted to the input images. We have confirmed that estimated ex-
trinsic parameters do not contain fatal errors because the virtual objects seem to
be located at the same position in the real environment in most part of the input
sequence (http://yokoya.naist.jp/pub/movie/yokochi/match move.mpg).
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camera

camera + GPS

first frame

Fig. 4. Accumulative errors of extrinsic
parameters

GPS position

camera

Fig. 5. Result of estimated extrinsic
parameters

100th frame 105th frame 110th frame 115th frame

3000th frame 3005th frame 3010th frame 3015th frame

Fig. 6. Match move using estimated extrinsic parameters

995th frame 1000th frame 1005th frame 1010th frame

1015th frame 1020th frame 1025th frame 1030th frame

Fig. 7. Examples of incorrect match move

However, the virtual objects are drifted from the 995th to the 1030th frames
as shown in Figure 7. This position drift is due to the multi-path effect of GPS,
which is the corruption of the direct GPS signal by one or more signals reflected
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Fig. 8. Standard deviations in GPS data

from the local surroundings. The standard deviation as a degree of confidence of
GPS positioning are also obtained from our RTK-GPS receiver. It increases from
the 995th to the 1030th frames as shown in Figure 8. To detect the occurrence
of the multipath effect, we will explore to design an estimation method using a
degree of confidence of GPS positioning.

4 Conclusion

In this paper, we have proposed a method to estimate extrinsic camera para-
meters of a video sequence without accumulative errors by integrating feature
tracking with GPS positions. In the proposed method, GPS position information
is used for both feature tracking and optimization of extrinsic parameters.

We have confirmed that the proposed method allows us to obtain extrinsic
parameters in the same order precision as the conventional shape-from-motion
method using a large number of landmarks in every frame through experiments
using both synthetic and real outdoor data. However, the multipath error of
GPS is not acceptable for the proposed method. To detect the occurrence of the
multipath effect, we will explore to design an estimation method using a degree
of confidence of GPS positioning.
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Abstract. Object Movies (OMs) have been successfully used in many applica-
tions. However, the techniques for acquiring OMs still need to be improved if 
high-quality and efficient OMs are desired. In this paper, we present a method 
for calibrating a motorized object rig to facilitate the acquisition of OMs. We 
first apply the CPC kinematic model to formulate the 3D configuration of the 
device, and then propose a method to estimate the parameters of the CPC model 
of the device. Furthermore, a visual tool is provided for users to adjust the con-
trollable axes of the rig according to the estimated results. After this calibration, 
more accurate camera parameters can be obtained and then be used for different 
purposes. In this work, we use the parameters to reconstruct, from an OM, the 
3D model of the object, and then adjust the OM according to the center of the 
3D model so that a high-quality OM can be obtained for rendering. 

1   Introduction 

Recently, image-based techniques for modeling and rendering high-quality and photo-
realistic 3D objects have become a popular research topic. Having the advantage of 
being photo-realistic, object movie is especially suitable for delicate artifacts and thus 
has been widely applied to many areas, e.g., e-commerce, digital archive, digital mu-
seum, etc. This technique was first proposed in Apple QuickTime VR [4]. An object 
movie is a set of images taken from different perspectives around a 3D object; when 
the images are played sequentially, the object seems to be rotating around itself. Each 
image in an OM is associated with a pair of distinctive pan and tilt angles of the view-
ing direction, and thus a particular image can be chosen and shown on screen accord-
ing to mouse motion of the user. In this way, users can interactively rotate the virtual 
artifacts arbitrarily and enjoy freely manipulating the object. 

To acquire object movies (OMs), we use the motorized object rig, AutoQTVR, de-
veloped by Texnai Inc. The motorized object rig is a computer-controlled 2-axis om-
niview shooting system, as shown in Fig. 1. It has two rotary axes: the pan-direction 
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object rotator and the tilt-direction camera arm rotator. For convenience, we will refer 
to the rotation axes of the both rotators by the tilt and the pan axes, respectively. 

In order to acquire high quality OMs that rotate smoothly, one should manage to 
make the three axes intersect at a common point first. However, since the optical axis 
of the camera is invisible, aligning these three axes is inherently a difficult problem. 
To our knowledge, there is no simple and efficient method for solving this three-axis 
alignment problem. In this paper, we propose a method to calibrate the motorized 
object rig to make the three axes as close as possible. With our calibration method, 
accurate camera parameters can be easily estimated and consequently the quality of 
the acquired OMs can be remarkably improved.  

To calibrate the motorized object rig, we first develop a method to estimate the 
three axes of it. We then provide a visual tool for users to adjust the motorized object 
rig according to the estimated results. After the adjustment, the three axes will inter-
sect at a common point CS, as shown in Fig. 1. The details of the calibration process 
will be described in Section 2. The experimental results and conclusions will then be 
described in Section 3 and Section 4, respectively. 

 

Fig. 1. Motorized object rig – AutoQTVR 

2   Calibration of Motorized Object Rig 

To calibrate the motorized object rig, we first use the camera mounted on the 
AutoQTVR to capture some feature points, whose 3D positions are known before-
hand. The 2D and 3D positions of the feature points are used to estimate the intrinsic 
and extrinsic camera parameters. With the estimated extrinsic camera parameters, we 
can reconstruct the kinematic model of the rig. Then, we apply a simple and practical 
model, completely and parameter continuous (CPC) model [1][11], to formulate the 
relation among the three axes. Finally, we provide a visual tool showing the axes for 
users to adjust the motorized object rig. If the intersections of the rays are not close 
enough, the user can adjust the motorized object rig according to the estimated result, 
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and then the axes will be estimated again. The whole process will be repeated until 
the intersections of the rays are close enough. After calibration, reliable extrinsic 
parameters of the camera will be available with the kinematic model. 

2.1   Estimation of Camera Parameters  

We adopt the method proposed by Zhang [10] to estimate the intrinsic camera pa-
rameters. The method performs camera calibration with at least two images of a 
known planar pattern captured at different orientations. 

On the other hand, we adopt the method presented in [2] and [5] to estimate the ex-
trinsic camera parameters, by first using the method proposed by Kato et al. [7] to 
obtain a set of initial extrinsic parameters, and then applying Iterative Closest Point 
(ICP) principle [2] to refine them. 

2.2   CPC Model 

A CPC model stands for the completely and parameter continuous kinematic model 
[11]. A complete model means the model provides enough parameters to express any 
variation of the actual robot structure, and parameter continuity implies no model 
singularity by adopting a singularity-free line representation [8]. 

This model was motivated by the special needs of robot calibration. It is assumed 
that the robot links are rigid. A CPC kinematic model for a revolution/prismatic joint 
can be represented as follows (we refer the reader to [11] for detail descriptions): 

iii
i VQT =+1

(1)

where iTi+1 denotes the transformation matrix between any two consecutive joint 
frames, i.e., the (i+1)-th reference frame to the i-th reference frame. Qi is the motion 
matrix defined as follows: 
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qi’ denotes joint value, which means the rotation angle for a revolution joint, or the 
amount of displacement for a prismatic joint, and Vi denotes the constant shape ma-
trix. The shape matrix is a general transformation matrix given by 
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The rotation matrix Ri is used to describe the relative orientation of the two consecu-
tive joint axes, Rotz( ) is used to align the x- and the y-axes. Notice that the CPC con-
vention requires that any two consecutive joint axes have a nonnegative inner product, 
i.e., 0, ≥zib . In general, this requirement can be achieved by changing the sign of one 

of the joint values of consecutive joints. This is because changing the sign of the joint 
value is equivalent to reversing the joint axis for both revolution and prismatic joints 
[9]. 

With the CPC kinematic model [11], the kinematic parameter identification prob-
lem can be decomposed into many kinematic parameter calibration sub-problems for 
each prismatic or revolute joint. Suppose we have a robot with n joints. The transfor-
mation matrix from world reference frame, w, to end-effector reference frame, n, can 
be expressed as follows: 
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2.3   Kinematic Calibration Using the CPC Model 

In this section, we will introduce how to apply the CPC model to estimate the trans-
formation matrices among the coordinate systems defined on the motorized object rig. 
As shown in Fig. 2, we define three axes of three different reference frames on the rig. 
Let zc, zt, and zp detnoe the z-axes of the camera coordinate system (CCS), the tilt-axis 
coordinate system (TCS), and the pan-axis coordinate system (PCS), respectively. 

 

Fig. 2. The schema of motorized object rig 
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For convenience, let the camera be the “end-effector” of the motorized object rig. 
Thus, we can obtain the corresponding robot pose with the method described in Sec-
tion 2.1. In general, the orientations of the x- and the y-axes of the coordinate systems 
need not to be specified in formulating the kinematics of the motorized object rig 
[9][11]. Therefore, the redundant parameter i can be set to zero, and the transforma-
tion matrix from object coordinate system (OCS) to camera coordinate system (CCS) 
can be simplified as follows: 
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where bTa denotes the transformation matrix from coordinate system a to coordinate 
system b.

Since the motorized object rig is composed of two revolution joints, the motion 
matrix Q0 is a constant matrix which can be set to identity, whereas Q1 and Q2 are the 
rotation matrices about the zt- and the zp-axes, respectively. The equations of Q0, Q1

and Q2 are given by 
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where signt and signp are either +1 or -1, and qt’ and qp’ are the rotation angle about 
the tilt and the pan axes, respectively. Substituting (8) into (7), we have 
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where cro and cto are the rotation matrix and the translation vector of the transforma-
tion matrix cTo. From (9), we have 
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In the following subsections, we will show how to solve the parameters, R0, l0, R1, l1,
R2, l2 in (10) and (11). 

2.3.1   Rotation Parts 
In order to simplify the calibration process, we calibrate one axis at a time. Therefore, 
when calibrating the tilt-axis, the pan-axis is held still, i.e., p can be regarded as a 

constant, and thus 21 )( RRotR pz ×× φ becomes a constant term denoted by X. By 

substituting X into (10), we have 
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Equation (12) can be rewritten in the following form 
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By maneuver the tilt axis to two different joint values, i and j, from (12) and (13), 
we have 
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determined such that its z-component is positive. By substituting the estimated 0b
r

into (4), we have the orientation matrix R0.
Once R0 is available, (14) can be rewritten as follows 
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The sign parameter signt can be determined by minimizing the following function 
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Our next step is to solve the rotation matrix R1 of tTp also using (10).  Now that R0 is 
calibrated, the tilt axis can be moved when calibrating R1.  For convenience, let us 
define 
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By maneuvering the pan axis to two joint angles, say iφ  and jφ , from (10) and (17), 

we have 
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Multiplying [0 0 1]t on both sides of (19), we have 
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Again, by solving an eigenvalue problem, we obtain 1b
r

 which leads to the rotation 

matrix R1. The sign parameter signp for p, and also be determined by minimizing an 
objective function similar to (16). 

The final orientation parameter R2 can be computed with the following objective 
function derived from (10). 
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subject to IRRt =22  and 1det 2 =R . This constrained optimization problem can be 

solved with a method similar to the one proposed in [2]. 

2.3.2   Translation Parts 
By substituting the estimated rotation matrices into (11), we have the following linear 
equations for the translation parameters:
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where ( ) ( ) ( )3 9 0 0 1 1 0 1 1 2 2z z zM R R Rot R R Rot R Rot Rθ θ φ× = × × × × × × . By moving the 

pan and the tilt joints to different positions, we have an over-determined system of the 
translation parameters which can be solved using the least square method. 

2.3.3 Axes Adjustment 
After solving the kinematic parameters of the motorized object rig, we can compute 
its forward kinematic model as (9). Given the tilt angle, t, and the pan angle, p, we 
can use (9) to determine the pose of the camera.  Also, the forward kinematic model 
can be used to find the representations of zc, zt and zp axes, i.e., the orientation and 
position of these three axes. First, the transformation matrix from the reference frame 

of the tilt axis to the CCS can be determined as 0VTt
c = .  Thus, the unit direction 

vector of the tilt axis zt, denoted by oritilt, can be derived as follows 

[ ] [ ] tt
t

c
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The position of the tilt axis, denoted by postilt, is given by 
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t

c
tilt VTpos 0 10001000 ×=×= (22)

Similarly, the orientation and position of the pan axis zp, denoted by oripan and pospan,
can be found to be  

[ ] t
tzpan VRotVori 10 0100)( ×××= θ (23)
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[ ] t
tzpan VRotVpos  

10 1000)( ×××= θ  (24) 

By using equations (21)-(24), the positions and orientations of the three axes of zc, zt 
and zp can be evaluated and then can be illustrated as shown in Fig. 4(a). The posi-
tions of these three axes can be adjusted to minimize the distance among them. Ac-
cording to our experiences, when the maximum distance among these three axes is 
smaller than a threshold value of 15 mm, the effect of the miss-alignment of these 
three axes is negligible.  

3   Experimental Results 

Fig. 3(a)-(b) shows the result before aligning the three axes of the rig where the esti-
mates of the three axes are shown in Fig. 3(a), and the acquired OM of a toy shark is 
shown in Fig. 3(b). The estimation and adjustment process is repeated five times to 
align the three axes of the rig and the result is shown in Fig. 3(c)-(f). From the frontal 
view of Fig. 3(f), we show that the tilt axis can be effectively adjusted to be perpen-
dicular to the pan axis and optical axis of camera with our method. Moreover, from 
the top view of Fig. 3(f), the intersections of the three axes are close enough. Some 
images of the OM of the toy shark are shown in Fig. 3(c). After the visual hull of the 
toy shark is constructed, shown in Fig. 3(e), the centralization process can be per-
formed, and the resulted OM is shown in Fig. 3(d).  

 

 
Fig. 3. The OM of the toy shark before/after the calibration. (a) shows the estimated relation 
among 3 axes, and (b) shows the OM of the toy shark. The cross markers indicate the center of 
images. (c) shows some images of the OM of the toy shark after calibration, while (d) shows 
that after centralization. (e) shows the Visual Hull of the toy shark, and (f) shows the estimated 
axes after calibration. 
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The process time (including capturing and computing) of the calibration process 
highly relies on the amounts of the photographs used. In order to find out the minimal 
number of photographs needed, we then did the following experiment: first, we re-
constructed the 3D configurations of the rig, and generated the transformation matrix 
with different numbers of images (48, 24 and 12 images, respectively), where 48 
images are taken from 4 different tilt angles (90, 60, 30, 0) and 12 different pan an-
gles, 24 images are taken from 3 different tilt angles (90, 60, 30) and 8 different pan 
angles, and 12 images are taken in 3 different tilt angles (90, 60, 30) and 4 different 
pan angles. For each set with different number of images, we can obtain transforma-
tion matrices of 48 views based on the result of CPC estimation, and then can calcu-
late the errors by comparing these matrices to those estimated using 48 images with 
the use of Frobenius Norm. According to the experiment results, it can be shown that 
12 images are enough to obtain high accurate camera parameters, and the process 
time is about only 7 minutes. For detail experimental details, please refer to [6]. 

4   Conclusion 

In this paper, we presented a method for calibrating the motorized object rig, and 
introduced a visual tool for users to adjust the axes of the motorized object rig. After 
adjustment, the distances among all the three axes of the motorized object rig can be 
minimized, and more reliable camera parameters could be obtained after the calibra-
tion process. Furthermore, by utilizing the obtained camera parameters, we proposed 
a software method for automatically adjusting the acquired OM to improve its quality. 
This work should be useful for promoting future adoption of OMs. 

Acknowledgements 

This work is supported in part by National Science Council, Taiwan, under the grants 
of NSC- 93-2422-H-002-022 and NSC 93-2422-H-001-0004. 

References 

[1] M. Agrawal and L. S. Davis, “Complete Camera Calibration Using Spheres : A Dual-
Space Approach,” IEEE International Conference on Computer Vision, vol. 2, 2003. 

[2] K. S. Arun, T. S. Huang and S. D. Blostein, “Least-Squares Fitting of Two 3-D Point 
Sets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9, no. 5, pp. 
698-700, 1987. 

[3] C.-S. Chen and W.-Y. Chang, “On Pose Recovery for Generalized Visual Sensors,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 7, pp. 848-861, 
July 2004. 

[4] S. E. Chen, “QuickTime VR – An Image-Based Approach to Virtual Environment Navi-
gation,” Proceedings of the 22nd annual conference on Computer graphics and interac-
tive techniques, SIGGRAPH '95, pp. 29–38, 1995. 

[5] C. R. Huang, C. S. Chen and P. C. Chung, “Tangible Photo-Realistic Virtual Museum,” 
IEEE Computer Graphics and Applications, vol. 25, no.1, pp. 15-17, 2005. 



388 P.-H. Huang et al. 

[6] Pan-Hung Huang, Calibration of Motorized Object Rig and Its Applications, Master The-
sis 2005 

[7] H. Kato and M. Billinghurst, “Marker Tracking and HMD Calibration for a Video-based 
Augmented Reality Conferenciing”, Proceedings of the 2nd IEEE and ACM International 
Workshop on Augmented Reality, IWAR, 1999. 

[8] K. S. Roberts, “A New Representation for a Line”, Proceedings of Computer Vision and 
Pattern Recognition, pp. 635-640, June 1988. 

[9] S. W. Shih, Kinematic and Camera Calibration of Reconfigurable Binocular Vision Sys-
tems, Ph.D. thesis, National Taiwan University, 1995. 

[10] Z. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330-1334, Nov  2000. 

[11] H. Zhuang, Z. S. Roth and F. Hamano, “A Complete and Parametrically Continuous Ki-
nematic Model for Robot Manipulators,” IEEE Transactions on Robotics and Automa-
tion, vol. 8, no. 4, pp.451-463, Aug 1992. 



Calibration of Rotating Line Camera for
Spherical Imaging

Tomoyuki Hirota, Hajime Nagahara, and Masahiko Yachida

Osaka University, 1-3, Machikaneyama-cho, Toyonaka, Osaka, Japan
{t-hirota, nagahara, yachida}@yachi-lab.sys.es.osaka-u.ac.jp

Abstract. A number of applications in many fields, including virtual
reality, digital archiving, etc., now require the capturing of large fields
of view (FOV) and high-resolution images. Recently, rotating line cam-
eras have been used for high-resolution and wide field of view panorama
imaging. Some are equipped with a fish-eye lens and can observe a full
spherical panorama image. We proposed a calibration method for rotat-
ing line cameras, using a spherical imaging model for the application of a
full spherical panorama image. For the calibration, the proposed method
uses 3D line segments that variously exist in man-made environments.

1 Introduction

There are a lot of requirements for taking a wide field of view (FOV) image in
applications used in the fields of digital archiving, virtual reality, and the like.
For example, Quicktime VR requires a wide FOV panoramic image to show free
fields of view. Moreover, recently high-resolution images have also been required
for wide FOV imaging in such applications. Many panoramic image sensors and
imaging methods have been proposed previously [1], with the main two ways
proposed for panorama imaging methods being those using catadioptric cameras
and rotating cameras With the rotating-type camera it is easy to capture a
panorama images with higher resolution and wider vertical FOV. Much research
and many products have proposed high-resolution panorama cameras with high-
resolution line cameras [2][3][4]. Some of them are equipped with fish-eye lens
and can observe a full spherical panorama image. We also have constructed a
prototype rotating line camera that can capture high-resolution full spherical
panorama images (see the specifications in Table 1).

Generally speaking, it is first necessary to model the imaging of the cam-
era and calibrate the parameters for rectifying image distortion or restoring the
3D geometry from an image. Tsai’s method [5] has long been used for common
camera calibration. However, this method cannot be applied in the case of a
rotating line camera because it deals with only the perspective projection of
common cameras. Moreover, such methods, which require a known calibration
pattern, are difficult to apply to rotating cameras because a large calibration
pattern must be prepared which covers the large FOV of the panorama cam-
era. For this reason, some researchers have investigated calibration methods for
rotating line cameras. Huang et al. [6] have proposed three calibration meth-
ods: point-based, image correspondence, and parallel-line-based for cylindrical

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 389–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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panorama sensors. The point-based approach minimizes the difference between
ideal projections and the actual projections of known 3D points, such as those of
calibration objects or localized 3D scene points. A large set of 3D points is needed
for accurate estimation. The image correspondence approach recovers epipolar
geometry from a panoramic pair for estimating the camera parameters. The ex-
trinsic parameters, namely that are camera rotation and translation, cannot be
estimated in this approach. The parallel-line-based approach uses the related
geometric properties such as the distances, lengths, and orthogonalities of a few
straight lines for estimating the parameters. In this approach, it is difficult to
set the environment for calibration because we need to know a lot of the geo-
metric information of the 3D objects. Smadja et al. [7] have proposed a method
for cylindrical sensor calibration using 3D line segments. This approach uses the
lines that variously exist in the environment, and therefore the environment for
calibration does not need to be set. However, this method assumes an image
as a cylindrical projection, and therefore it cannot be applied to rotating line
cameras that can capture a full spherical image. Against this problem, Pajdla et
al. [8] proposed a spherical camera model, and estimated the camera parameters
by using a known calibration chart.

In this paper, we propose a calibration method for rotating line cameras
for spherical imaging. Our proposed method uses spherical projection for the
application of full spherical images (360 × 180 degree FOV). A large known
calibration chart for calibration is not needed because the method uses 3D line
segments that variously exist in the man-made environment.

2 Spherical Imaging Model

2.1 Prototype Rotating Line Camera

We constructed a prototype rotating line camera system for spherical imaging.
The prototype system consists of a color tri-linear CCD camera (NUCL7500D:

Liniscan image sensor

Fish eye lens

Turning table

Fig. 1. Prototype rotating line camera Fig. 2. Spherical image
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Table 1. Specifications of the prototype system

Angular resolution Image size Image aquisition time Field of view
(degree/pixel) (pixel) (sec) (degree)
0.024×0.024 7500×15000 11.25 180×360

NED), a fish eye lens (smc PENTAX67 Fish-eye 35mm F4: PENTAX), and
a rotating stage (KSA-120: SIGMA KOKI). The principal point of the lens is
aligned at the rotation axis for taking the single viewpoint image. Figure 1 shows
a photo of the prototype. Figure 2 shows an image captured by the prototype.
The prototype can capture full spherical images with high-resolution. Table 1
shows the specifications of the prototype.

2.2 Imaging Model

A projection model of a common camera is assumed as a perspective projection.
Figure 3 and Equation (1) indicate the relation of perspective projection, where
y is the image coordinates, f is the focal length, and φ is the incidence angle.
On the other hand, a projection of a camera with a fish-eye lens can be modeled
as an equidistance projection. Image point y is proportional to the incidence
angle φ on the equidistance projection, as shown in Figure 4 and Equation (2).
The relation indicates that the line camera with the fish-eye lens captures one
slice of a spherical image. Hence, the rotating line camera can capture a full
spherical image by rotating around the principal point of the lens. We modeled
the imaging of the camera as the projection, the lens distortion, and the line
scanning models separately. Figure 5 shows the projection model of the rotating
line camera.

v = f tanφ (1)
v = fφ (2)

O−X−Y −Z indicates the camera coordinates in Figure 5. The lens center O
must be aligned with the center of the camera rotation in order to have a single
viewpoint. The rotating speed is ω. Hence, the projection model can be modeled
as a spherical projection centered on the originO. The radius of the image sphere
f is the focal length of the camera. An arbitrary point P = (X,Y, Z)T in the

Fig. 3. Perspective projection Fig. 4. Equidistance projection
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Fig. 5. Projection model Fig. 6. Relationship between im-
age coordinates and scanning

environment is projected on a point p = (x, y, z)T on the image sphere, as given
by:

p =

⎡⎣xy
z

⎤⎦ =

⎡⎣f sin θ cosφ
f cos θ cosφ
f sinφ

⎤⎦ =

⎡⎣f X
Z cos(arctan(Z

r ))
f Y

Z cos(arctan(Z
r ))

f arctan(Z
r )

⎤⎦ , (3)

where θ and φ are the longitude and latitude of the incident ray, respectively,
and r =

√
X2 + Y 2.

The image point i = (u, v)T , which is point p on the image coordinates, is
directly expressed from (r, θ, Z) by the relation:

i =
[
u
v

]
=
[

fuθ
v0 − fvφ

]
=
[
fu arctan( Y

X )
v0 − fv arctan(Z

r )

]
, (4)

where fu and fv are the focal lengths along the longitude and latitude, respec-
tively. fu is the scanning angular step calculated by the rotating speed ω and
the scanning speed of the line image, and fv is the focal length of the camera f .
vo is the principal point of the image (i.e., an equator of the acquired image).

The image point is practically dislocated by the lens distortion. The rotat-
ing line camera has only vertical lens distortion. Hence, we can model the lens
distortion by a five-dimensional polynomial equation:

v′ = v + k1v3 + k2v5, (5)

where v′ is the image coordinates included in the lens distortion and κ1, κ2 are
coefficients of the lens distortion.

Finally, here we describe the scanning model. Figure 6 shows the relation of
the image plane and scanning lines. Solid lines indicate scanning lines, and the
image sphere is described as a Mercator projection in this figure. The line camera
repeatedly scans L pixels corresponding to the line image by the cycle of S from
the top to the bottom of the image. The scanning lines slant corresponding to the
camera rotating speed ω, as shown in Figure 6. We can obtain the sequential one-
dimensional image data by the speed of V [pixel/sec.]. The relationship between
the acquired one-dimensional image and the point on the image sphere can be
defined as:
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u = fuωT (6)
v′ = V t (7)

V =
L

S
(8)

T = t+ nS, (9)

where T is the time from the start of scanning, t is the time of the scanning cycle,
and n is the number of scanning. Equation (9) shows the relationship between
T, t, and n.

3 Calibration

We propose a calibration method for rotating line cameras that can capture a full
spherical image. The proposed method uses 3D line segments in the environment
for calibration. Hence, the method does not need a known calibration chart. We
estimate the rotation matrix R and translation vector T as extrinsic parameters
and the focal length fv, principal point of the image v0, and the coefficients
of lens distortion κ1, κ2 as intrinsic parameters. We describe the methods for
estimating these intrinsic and extrinsic parameters in the following this sections.

3.1 Estimation of Intrinsic Parameters

Let us consider a point P = (X,Y, Z)T lying on a 3D line segment in the envi-
ronment, as shown in Figure 7. We define the line as a plane with the viewpoint
O. The equation of the plane, called the view plane, is given by:

N1X +N2Y +N3Z = 0, (10)

where N = (N1, N2, N3)T is the normal vector of the view plane. Equation (10)
can be expressed by:

Z
r = −N1

N3

X
r −

N2
N3

Y
r . (11)

Combining Equation (4), (11), X/r = cos θ, and Y/r = sin θ leads to:

i =
[
u
v

]
=
[

fuθ

v0 − fv arctan(−N1
N3

cos( u
fu

)− N2
N3

sin( u
fu

)

]
. (12)

Hence, the condition that an image point belongs to a line segment can be
expressed by:

v = v0 − fv arctan(A cos(
u

fu
) +B sin(

u

fu
)), (13)

where
A = −N1

N3
, B = −N2

N3
.

fu is a known parameter because we assume that the camera rotating speed is
controlled.
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Fig. 7. Normal of a view plane Fig. 8. Line vector and a normal of a
view plane

Next, we explain the process for estimating the intrinsic parameters (fv, v0,
κ1, κ2) and the normals of the view planes (Ak, Bk) through the line segments.
We use the J points on each of the K line segments in the environments. There-
fore, we use J × K points ij,k = (uj,k, v

′
j,k)T , {j = 0, 1, , J , k = 0, 1, ,K} to

estimate the parameters. We calculate the parameters (v0, fv) and the coeffi-
cients of the lens distortion parameters (κ1, κ2) separately in order to estimate
them stably. Equation (13) shows a relationship between the view plane and the
intrinsic parameters (v0, fv). We estimate v0, fv, Ak, and Bk by using nonlinear
estimation. First, we derive initial values of Ak and Bk. If v0 and fv are fixed
as arbitrary initial values, Equation (13) can be regarded as a linear equation.
Therefore, initial values of Ak and Bk are calculated by least square estimation
from the image points ij,k of each line. Next, we estimate the optimal values v0,
fv, Ak, and Bk by using the Levenberg-Marquart Method [9] to minimize the
function:

f(v0, fv, Ak, Bk) = tan(v′
j,k−v0

fv
) +An cos(uj,k

fu
) +Bn sin(uj,k

fu
), (14)

which is transformed from Equation (13).
Next, we estimate the lens distortion parameters κ1 and κ2 using the es-

timated parameters v0, fv, Ak, and Bk. κ1 and κ2 can be estimated by using
nonlinear estimation to minimize the function:

g(κ1, κ2) = v′n,i − (vn,i + κ1v
3
n,i + κ2v

5
n,i),

vn,i = v0 − fv arctan(Ai cos(
un,i

fu
) +Bi sin(

un,i

fu
)),

(15)

which is transformed from the lens distortion model of Equation (5).
Finally, we estimate v0, fv and κ1, κ2 iteratively to reduce the estimation

error. The intrinsic parameters v0, fv, κ1, and κ2 can be estimated through
these processes.

3.2 Estimation of Extrinsic Parameters

Here we describe a method for estimating the extrinsic parameters R and T.
We define a line vector LW by Plucker coordinates [10]. Plucker coordinates
constitute a simple representation of the 3D lines. Let us consider two arbitrary
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points P = (Xw, YW , Zw)T and Q= (X ′
W , Y

′
w, Z

′
w)T lying on the line segment in

the world coordinates OW −XW −YW −ZW . The line vector LW is defined by:

LW =
[
P−Q,P×Q

]T
. (16)

We express LW = [m,n]T here. m is clearly the line direction vector, whereas n
corresponds to the normal vector of the plane formed by the line and the origin of
the world coordinate system. Figure 8 shows the relation of m and n. The world
coordinate system OW −XW − YW − ZW can transform the camera coordinate
system O − X − Y − Z by using rotation vector R and translation vector T.
Therefore the line vector on the camera coordinates LC can be expressed by:

LC =
[
Rm,−R(T×m + n).

]T (17)

We also express LC = [m′,n′]T here, where n′ is the normal vector N of the view.
Therefore, the 3D line segment in the world coordinates LW can be associated
with N:

N =

⎛⎝N1
N2
N3

⎞⎠ = −
[
RT×|R

] [m
n

]
OW

. (18)

Combining Equations (13) and (18), the model for estimating the extrinsic pa-
rameters is given by:

N3

⎛⎝AB
1

⎞⎠ =
[
RT×|R

] [m
n

]
OW

. (19)

We can estimate R and T from LW, A, and B from Equation (19). We need
more than three independent lines to estimate the parameters because there
are 5 unknown parameters (Rotation 3 + Translation 3-Scaling 1) in

[
RT×|R

]
.

However, if we estimate the parameters from only 3 lines, we have to solve the
nonlinear equation as Equation (19). In this paper, we describe the linearized
solution for a stable estimation. Equation (19) can be expressed by using the 18
parameters c11-c36 as:

N3

⎛⎝AB
1

⎞⎠ =

⎡⎣c11 c12 c13 c14 c15 c16c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36

⎤⎦[m
n

]
OW

(20)

We can get two equations from Equation (20) as follows:

c11m1 + c12m2 + c13m3 + c14n1 + c15n2 + c16n3 − c31m1A

− c32m2A− c33m3A− c34n1A− c35n2A− c36n3A = 0,
(21)

c21m1 + c22m2 + c23m3 + c24n1 + c25n2 + c26n3 − c31m1B

− c32m2B − c33m3B − c34n1B − c35n2B − c36n3B = 0,
(22)

where
m = [m1,m2,m3]T ,n = [n1, n2, n3]T .
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If 9 or more lines of LWk are known and the corresponding Ak and Bk have
been estimated as described in section 3.1, the matrix elements c11-c36 can then
be estimated to solve:⎡⎢⎢⎢⎢⎢⎣

mT
1 ,n

T
1 0 . . . 0 A1mT

1 , A1nT
1

0 . . . 0 mT
1 ,n

T
1 B1mT

1 , B1nT
1

...
...

...
mT

K,n
T
K 0 . . . 0 AKmT

K, AKnT
K

0 . . . 0 mT
K,n

T
K BKmT

K, BKnT
K

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣c11...
c36

⎤⎥⎦ =

⎡⎢⎣0
...
0

⎤⎥⎦ (23)

where kth line vector is:
LWk = [mk,nk]T . (24)

Equation (23) can be replaced by Mc = 0. c can be solved as an eigenvec-
tor corresponding to an eigenvalue of MTM. The extrinsic parameters can be
estimated from the matrix elements of c through these processes.

In this paper, we describe a method for estimating the extrinsic parameters by
linear estimation, and this requires at least more than 9 known 3D line segments.
If it is difficult to obtain at least 9 known lines of information, then a nonlinear
estimation method can be used for calibration withby at least 4 known lines.

4 Experiment

4.1 Simulation

Simulations were carried out for evaluating the proposed calibration method.
We simulated the sensor assumed as our prototype. Table 2 shows the setting
parameters of the simulated camera, where ξx, ξy , and ξz are the elements of R,
and tx, ty, and tz are the elements of T. We estimated the intrinsic parameters
v0, fv, κ1, and κ2 and the extrinsic parameters R and T. fu was given by the scan
speed and the rotation speed as a known parameter. The prototype camera scans
15000 lines during a rotation of 360 degrees. Therefore fu was given by 2π

15000 .
We used 10 random line segments in the environment, and 100 image points

lying on each line were used, for a total of 1000 observation points for the sim-
ulation. We also added sampling noise to the image points as assumed at the
resolution 0.024[degree/pixel] of the prototype camera.

Next it was necessary to set the initial values for estimating the intrinsic
parameters. v0 and fv were given by adding the 0-200% errors of the true value.
The orders of κ1 and κ2 are very small, and therefore the initial values of κ1 and
κ2 were given by 0.

Table 3 shows the maximum errors of estimated intrinsic parameters. In total,
300 trials were carried out for deriving the result. The maximum errors of v0 and
fv were small because the error values were 0.6367[pixel] and 0.4329[pixel/rad],
respectively. The errors of κ1 and κ2 were 8.72e − 12 and 6.45e − 18, and the
line vectors Ak and Bk were also small, even if the initial values of v0 and fv

were added as 200% error. Hence, the method is stable for the estimation of
the parameters independent of the initial values. The average geometric error
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Table 2. The setting of camera pa-
rameters

v0 3750 [pixel]
fv 7500/π [pixel/rad]
κ1 2.3e-9
κ2 -2.7e-16

ξx, ξy , ξz 40 [degree]
tx, ty , tz 4 [m]

Table 3. Maximum errors of the es-
timated intrinsic parameters

v0 0.6367 [pixel]
fv 0.4329 [pixel/rad]
κ1 8.72e-12
κ2 6.45e-18

Table 4. Maximum errors of estimated
extrinsic paremeters R and T

ξx 2.0e-8 [degree]
ξy 1.0e-8 [degree]
ξz 2.0e-8[degree]
tx 2.2e-7[m]
ty 4.5e-7[m]
tz 3.4e-7[m]

Table 5. Initial values and the esti-
mated values

initial value estimated value
v0(pixel) 3750.0 3659.5

fv(degree/pixel) 2384.0 2647.5
κ1 0.0 3.6e-9
κ2 0.0 -3.1e-16

of the points between the true image and the calibrated image was 0.73 [pixel]
when the estimated intrinsic parameters were used for rectifying the simulated
image distortion. Therefore we could confirm that all intrinsic parameters were
sufficient to converge because the error was less than 1.0 [pixel].

Next we evaluated the estimation of the extrinsic parameters. We used the es-
timated intrinsic parameters, the estimated line parameters Ak and Bk k=1,2,
. . . ,10, and the corresponding 10 known line vectors Lwk. Table 4 shows the max-
imum errors of the estimated parameters. Equation (19) shows that the estimated
extrinsic parameters R and T were affected by the estimated errors ofAk andBk.
However, these errors were not large enough for practical use. Thus we could con-
firm that the proposed calibration method worked in the simulation experiments.

4.2 Experiment of the Proposed Calibration Method Using a Real
Image

We applied the proposed calibration method to a real input image captured
by the prototype system. We estimated the intrinsic parameters v0, fv, κ1, and
κ2 in order to rectify the image distortion. Nine random lines and 30 points
lying on each line were used, for a total of 270 points used for the calibration
in this experiment. We manually took the points on the line segments by mouse
pointing. Table 5 shows the initial values and estimated values of v0, fv, κ1, and
κ2. The estimated parameters were converged even if the initial values were set
on arbitrary values such as the simulation settings. Figures 9 and 10 show the
raw input image and the rectified image using the estimated intrinsic parameters.
These images represent the perspective projection image that shows the around
zenith of the full spherical input image, and this is the most distorted part, so it
is easy to identify the image distiortion. Figure 9 shows the barrel-like distortion,
whereas the distortion has been rectified in Figure 10. From these results, we
could confirm the effectiveness of the proposed calibration method.
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Fig. 9. Raw input image Fig. 10. Rectified image

5 Conclusion

Rotating line cameras have been used recently for virtual reality and digital
archiving applications because it is easy to take high-resolution and wide field
of view panorama images with such cameras. In this paper we proposed a cal-
ibration method for rotating line cameras for taking a full spherical panorama
image. Though previous methods have used cylindrical imaging models, we used
a spherical imaging model and applied it to a full spherical panorama image.
For the calibration, the proposed method uses 3D line segments that variously
exist in the man-made environment. We carried out both simulation and real
experiments in order to evaluate the proposed calibration method. We confirmed
that the calibration method worked in the experiments.
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Abstract. We address the problem of, given an image, determining the
viewpoint from which the image was taken, and that is to be achieved
without referencing to or estimating any explicit 3-D structure of the
imaged scene. Used for reference are a small number of sample snapshots
of the scene, each of which having the associated viewpoint supplied
with it. By viewing image and its associated viewpoint as the input
and output of a function, and the given snapshot-viewpoint pairs as
samples of that function, we have a natural formulation of the problem
as an interpolation or learning one. The interpolation formulation has
at least two advantages: it allows imaging details like camera intrinsic
parameters to be unknown, and the viewpoint specification to be not
necessarily physical, i.e., the specification could consist of any set of
values that adequately describe the viewpoint space and need not be
measured in metric units. We describe an interpolation-based solution
that guarantees that all given sample data are satisfied exactly with
the least complexity in the interpolated function. Experimental results
on benchmarking image dataset show that the solution is effective in
arriving at good solution even with sparse input samples.

1 Introduction

Given an image of a scene, how can we tell from which viewpoint the image was
taken? The problem, which we refer to as the viewpoint determination prob-
lem, is a central one in a variety of tasks including robot self-localization [1],
robot navigation [2], human pose estimation, image-based rendering [3], and
augmented reality [4].

We address the problem in the following light. There is no requirement of
referencing to or estimating any explicit 3-D structure of the imaged scene.
Used for reference are instead a number of sample snapshots of the scene, each
of which having the associated viewpoint supplied with it.

The problem is related to the camera pose estimation problem formally de-
fined in [5], [6]. Solutions proposed in the literature to camera pose estimation
include [7], [4], in which closed-form solution was acquired under the assumption
of calibrated cameras, and [8], [9], in which iterative methods were used to relax
the requirement of prior calibration.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 399–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Here we term our problem differently – viewpoint determination as opposed
to camera pose estimation – because we allow the viewpoints to be specified in
terms of any value set that is sufficient for the description, not necessarily in
metric coordinates. For example, if the camera would only travel approximately
along a line or curve, the user could just name the viewpoints of the sample
images as 1, 2, 3 and so on in the order of their viewpoints along that line or
curve. The viewpoints of all possible images would then be indexed linearly in
accordance with their resemblance in the image space with those of the sample
images; for instance, the image mid-way between sample image 1 and sample
image 2 will then be of viewpoint 1.5. In a way, viewpoint determination is a
relaxed form of camera pose estimation. It is particularly useful for tasks in
which viewpoints are required to be indexed and ordered but not necessarily
expressed in physical position coordinates.

By viewing image and the associated viewpoint (here by associated viewpoint
we mean viewpoint expressed in terms of any convenient indexed terms, not
necessarily in positional metric units) as the input and output of a function, and
the supplied image-viewpoint pairs as samples of that function, we have a natural
formulation of the problem: an interpolation or learning one. The formulation
regards the mapping from an image to the associated viewpoint as a black box,
and seeks to find a mapping surface that adequately describes it at least over the
sample images. Compared to the closed-form solutions like [7], [4] and iteration
solutions like [8], [9], the interpolation-based formulation has the advantage that
it allows the explicit addressing of perspective projection and other complexities
in the original mapping to be bypassed. It also allows imaging details like the
focal length, pixel size, lens distortion etc. of the camera to be unknown.

The interpolation method we used is so-called Example-Based Interpolation
(EBI) [10], which is a mechanism that learns or interpolates, from examples, a
function that crosses all the input examples with minimal oscillations between
the examples. It has promising results, even with very sparse examples given, in
a number of applications including object detection and character recognition
[11], computer animation and graphics [12], image synthesis [3], and others.

There has not been much previous work on camera pose or related problems
that adopts the interpolation and learning approach. Beymer and Poggio’s work
[13] is the only one, but their approach need compute optical flow to establish
dense correspondences over sample images. Since EBI scheme can ensure that
the interpolated function always passes through all the examples exactly and
smoothly, our EBI-based method can tackle the camera viewpoint transition as
a continuous and smooth transition between the viewpoints of all sample images,
even with sparse correspondences across sparse input sample images given.

2 Review of EBI

The interpolation problem could be stated as this: given S input-output pairs
{(Vs, fVs)} : s = 1, 2, · · · , S} as examples of a function f : IRD → IR, construct
the scalar function value fV = f(V) for any arbitrary input V in IRD such that
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it satisfies fVs = f(Vs) for all the S given examples. We shall refer to each Vs

(s ∈ {1, 2, · · · , S}) as the sth example point, and fVs the sth example value.
A natural inference of fV for any V is a weighted sum of the example values:

fV =
[
fV1 , fV2 , · · · , fVS

]
WV , (1)

where weight matrix WV = [w1,V, w2,V, · · · , wS,V]T represents, for computing
fV at any arbitrary input V, the respective weights given to the S example
values. The problem thus boils down to the design of the weight matrix WV.

WV, in which the sum of all S weights is equal to 1 for any particular V, is
a function of V since naturally it varies with V in this way: the contributions of
the various example values fV1 , fV2 , · · · , fVS are in accordance with the relative
proximity of their examples points V1,V2, · · · ,VS to V. This implies:[

1
V

]
=
[

1 1 · · · 1
V1 V2 · · · VS

]
WV . (2)

To allow the interpolated function to satisfy the given input-output pairs
exactly, if V happens to be one of the example points Vs, where s = 1, 2, · · · , S,
the sth entry of WV is 1 while all the other entries are 0, i.e., for all s and Vα,
where s, α ∈ {1, 2, · · · , S},

ws,Vα =
{

1 if s = α ,
0 otherwise . (3)

With a minimum of only (D + 1) examples that do not lie in a same hyper-
plane in IRD, a nonlinear design of WV [12], [14] could be determined by radial
basis functions. This solution could ensure that the interpolated function fV
satisfies (2), (3) and passes through the input examples exactly and smoothly.
We shall utilize this solution in this paper but do not list it here for lack of space.

3 EBI-Based Viewpoint Determination

3.1 Problem Statement and Overview to Approach

In its simplest form, the viewpoint determination problem could be stated as
this: suppose we have S sample images IVs ’s (s = 1, 2, · · · , S) of a scene that
are captured at S known viewpoints Vs’s in a particular viewpoint space (which
could be a subset of the 3-D space) under unknown imaging settings, for any
given input image IV captured about the same scene in the viewpoint space,
estimate the associated viewpoint V.

To have a solvable problem, naturally we assume that the sample images
cover all dimensions of the target viewpoint space, and the user shall index the
viewpoint space with adequate number of dimensions and supply index values
of the sample images in an orderly fashion, i.e., in accordance with their order
in space along each of the above dimensions.
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Our interpolation solution could be outlined as the following. From the given
sample images we first extract distinct features and match such features across
the samples. We keep only the set of features in each sample image that find
correspondences in other samples, and we call such features the seed features.
Suppose the total number of seed features in each sample image is C, and let
us refer to such C seed features for each sample image IVs ’s (s = 1, 2, · · · , S) as
xc,Vs ’s (c = 1, 2, · · · , C), or together as:

XVs =
[
x1,Vs

T,x2,Vs

T, · · · ,xC,Vs

T
]T
,

where xc,Vs = [uc,Vs , vc,Vs ]
T stands for the image position of the cth seed feature

in the sth example (with viewpoint at Vs).
Each sample image IVs is therefore identified by the image positions of the

seed feature set XVs in it. The mapping function we interpolate from the sample
data is therefore transformed from the original IVs → Vs to XVs → Vs, i.e.,
one that maps a set of image positions (of the seed features in the image) to a
viewpoint. We use EBI to interpolate that function from the pairings of feature
positions versus viewpoint in the sample data.

For any input image IV whose viewpoint V is to be determined, we must also
extract the same C seed features’ image positions xc,V’s (c = 1, 2, · · · , C):

XV =
[
x1,V

T,x2,V
T, · · · ,xC,V

T
]T
.

Thus the mapping function will map such features XV to the viewpoint V we
desire. In the process we also make use of robust estimation to pick out the most
consistent subset of xc,V’s for determining viewpoint V, thus allowing certain
tolerance to positioning error on the seed feature set xc,V’s.

3.2 Initial Correspondences Establishment

The interpolation process requires correspondence establishment – the determi-
nation of image locations in all sample images that are projected by the same
3-D feature of the imaged scene. The problem is a well studied one [15] and high
quality toolkits are available. In our system, we use the IMAGE-MATCHING
system developed by Zhang et al. [16] that exploits constraints like the epipolar
constraint and other quasi-invariant properties of the features. However, other
correspondence systems could serve the purpose just as well, since all needed is a
small set of distinct features that find correspondences over the sample images.

3.3 Interpolation Process

With the above, for any given image IV, we could proceed with the EBI scheme
to estimate the viewpoint V.

The determination of viewpoint V for image IV hinges at how seed feature
xc,V is positioned relative to all xc,Vs ’s in the viewpoint space, for every seed
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feature. We could use solution of EBI in Sect. 2 to learn a S × 1 weight matrix
WC

V from XV and XVs ’s such that[
1

XV

]
=
[

1 1 · · · 1
XV1 XV2 · · · XVS

]
WC

V .

We then could use (1) in Sect. 2 to determine the viewpoint V as following:

V =
[
V1,V2, · · · ,VS

]
WC

V .

However, since each image position x = [u, v]T has two parameters and there
are total C seed features, the dimension D of EBI we just applied is equal to 2C,
which is generally larger than the number of image samples, i.e., D = 2C > S, if
we take it that the sample size could be sparse. We know there exist solutions for
EBI in Sect. 2 only when S ≥ (D+1). Now that we generally have S < (2C+1),
we must choose less seed features than what we have on image IV to use as
examples to the EBI mechanism.

We should first decide the size N of the needed subset of seed features. We
determine N from the constraints that S ≥ (2N+1) and S < [2(N + 1) + 1], then
adopt robust estimation method (e.g. RANSAC [5], Least Median of Squares
(LMedS) [17] etc.) to choose the most consistent N features of subset from the
total C seed features for interpolating the viewpoint V. That way we also allow
certain tolerance to positioning error in the seed features of image IV. In our
implementation, we first choose the N-set from the C seed features and then
apply the LMedS method to get the robust result.

Outliers Detection. More precisely, our first step is to detect the outliers
from the whole C seed features. Using the Russian Roulette Wheel Selection or
Monte Carlo method, we draw M (please refer to [17] and [16] for the process
of determining M) random subsamples of the N features. For the mth drawing
(m = 1, 2, · · · ,M), the N seed features are:

mXN
V =

[
xP1,V

T,xP2,V
T, · · · ,xPN ,V

T
]T
,

mXN
Vs

=
[
xP1,Vs

T,xP2,Vs

T, · · · ,xPN ,Vs

T
]T
,

where Pn ∈ {1, 2, · · · , C}, n = 1, 2, · · · , N , and Pi �= Pj if i �= j.
Then we could apply EBI to determine mWN

V such that[
1

mXN
V

]
=
[

1 1 · · · 1
mXN

V1 mXN
V2
· · · mXN

VS

]
mWN

V . (4)

For any cth seed feature (c = 1, 2, · · · , C), we could predict, from its image
positions xc,Vs ’s (s = 1, 2, · · · , S) at the sample images, its image position mxN

c,V
at the unknown viewpoint V as below:

mxN
c,V =

[
xc,V1 ,xc,V2 , · · · ,xc,VS

]
mWN

V . (5)
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Then the squared error for each feature (c = 1, 2, · · · , C) is:

mSErrN
c,V =

√
(mxN

c,V − xc,V)T (mxN
c,V − xc,V) . (6)

So the median of squared error is:

mMedSErrN
V = median

{
mSErrN1,V, mSErrN2,V, · · · , mSErrN

C,V

}
.

For each mWN
V , we can determine the median of squared error mMedSErrN

V
with respect to the whole C seed features. By adopting LMedS method [17], the
outliers can be estimated and discarded at JMedSErrNV (J ∈ {1, 2, · · · ,M}) is
minimum among all mMedSErrN

V’s (m = 1, 2, · · · ,M), i.e.:

JMedSErrNV = min
{

1MedSErrN
V, 2MedSErrN

V, · · · , MMedSErrN
V

}
.

Suppose the number of seed features without outliers in each sample image
is CR, where CR ≤ C.

Interpolation Without Outliers. The next step is to obtain the S×1 weight
matrix from the CR seed features without outliers. Same as above, we draw M
subsamples of N seed features from the CR seed features. For the mth (m =
1, 2, · · · ,M) drawing, the N seed features are:

R
mXN

V =
[
xP1,V

T,xP2,V
T, · · · ,xPN ,V

T
]T
,

R
mXN

Vs
=
[
xP1,Vs

T,xP2,Vs

T, · · · ,xPN ,Vs

T
]T
,

where Pn ∈ {1, 2, · · · , CR}, n = 1, 2, · · · , N , and Pi �= Pj if i �= j.
With R

mXN
V and R

mXN
Vs

’s (s = 1, 2, · · · , S) defined above, we can get the weight
matrix R

mWN
V , the seed feature’s image positions R

mxN
c,V’s and the squared errors

R
mSErrN

c,V’s (c = 1, 2, · · · , CR) from a same flow described in (4), (5) and (6)
respectively.

Thus the mean of squared error for whole CR seed features is:

R
mMeanSErrNV =

∑CR

c=1
R
mSErrN

c,V

CR .

For each R
mWN

V , we can determine the mean of squared error R
mMeanSErrN

V
with respect to the CR seed features. Finally we retain the R

J WN
V for which

R
J MeanSErrN

V, where J ∈ {1, 2, · · · ,M}, is minimum among all R
mMeanSErrNV’s

(m = 1, 2, · · · ,M), i.e.:

R
J MeanSErrN

V = min
{

R
1 MeanSErrNV,

R
2 MeanSErrNV, · · · , R

MMeanSErrNV
}
.
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With the R
J WN

V robustly estimated as above described, we then use (1) in
Sect. 2 to determine the viewpoint V as below:

V =
[
V1,V2, · · · ,VS

] R
J WN

V .

The above is the ultimate interpolation we desire: the function value V for
any given image IV.

4 Experimental Results

We present here experimental results on image data of the Castle scene, a widely
used benchmarking image dataset available at Calibrated Imaging Laboratory
(CIL) of CMU (http://www-2.cs.cmu.edu/~cil/cil-ster.html).

In the original dataset provided by CIL, there are a total of 11 calibrated
images with 28 feature points matched across them. In this dataset, the camera’s
orientation is made fixed relative to the scene; there is only translation between
the camera and the scene in the 3-D space. To test the performance of the
proposed algorithm under a sparse input, we picked only 7 images (out of the
original 11) as our image examples, whose viewpoints (indexed in topological
order not in metric units) are located at 3-D positions of (2,0,0), (1,0,0), (–
1,0,0), (0,1,0), (–1,1,0), (0,0,1), and (0,1,2) respectively. The images we used
were of resolution 500× 374 pixels.

Fig. 1(a) shows one of the 7 sample images. Fig. 1(b) shows another sample
image on which we overlay the 28 feature points that were matched across all
the sample images for initiation of the interpolation process. The sample images
appear alike, but in fact the disparity of the corresponding image positions in
the dataset could be as large as 85 pixels in the image space. Notice that in
the whole process we did not make use of the image-set calibration information
provided by CIL. The only two pieces of information we used are: (1) the asso-
ciated viewpoints in the 3-D space of the 7 sample images; and (2) the 28 point
correspondences across all the 7 sample images.

Fig. 1(c)–(d) are two original real images provided by CIL (but not among
the sample images to the interpolation process) with associated viewpoints at
(0,1,1) and (–2,0,0). For visual evaluation, two images shown in Fig. 1(e)–(f)
are synthesized by applying the image synthesis method detailed in [3] at the
viewpoints that are same as those in Fig. 1(c)–(d). We then apply the EBI-
based viewpoint determination presented above to determine the viewpoints of
images shown in Fig. 1(c) and Fig. 1(d); the results are (–0.0013, 0.9981, 0.9915)
and (–2.0015, 0.0031, 0.2295) respectively. Putting these two viewpoints into
the same synthesis module of [3], we could synthesize two new images, which
are shown in Fig. 1(g)–(h). Each image in the two image-sets of Fig. 1(c)-(e)-(g)
and Fig. 1(d)-(f)-(h) resembles others in the same set closely.

Remember that in viewpoint determination problem, only image positions
in real (input) images of Fig. 1(c)–(d) are ground truth, the two viewpoints of
(0,1,1) and (–2,0,0) for them are only for reference and need to be confirmed. The
more accurate determined viewpoint is, the more close to zero difference between
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(a) V = (2, 0, 0) (b) V = (−1, 0, 0)

(c) V = (0, 1, 1) (d) V = (−2, 0, 0)

(e) V = (0, 1, 1) (f) V = (−2, 0, 0)

(g) V = (−0.0013, 0.9981, 0.9915) (h) V = (−2.0015, 0.0031, 0.2295)

Fig. 1. Experiment on the Castle scene. (a) One of the 7 input image samples; (b) 28
feature points matched across the input image samples; (c)–(d) Two original images
captured by real camera but not among the input image samples. The two viewpoints,
provided by dataset for reference, are not ground truth and need to be confirmed;
(e)–(f) Two synthesized images at the same viewpoints as those to be confirmed of the
images in (c) and (d); (g)–(h) Two synthesized images at the viewpoints determined
from the EBI-based viewpoint determination for the input images of (c) and (d).
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Table 1. Image positions of the first 5 of the 28 corresponding points in the images
shown in Fig. 1(c)–(h)

Ground truth Synthesized Synthesized
Point No. in Fig. 1(c) in Fig. 1(e) in Fig. 1(g)

u v u v u v

1 78.87 106.43 78.82 106.48 78.87 106.44
2 56.49 138.09 56.44 138.13 56.49 138.09
3 96.21 137.35 96.17 137.39 96.21 137.35
4 40.52 150.38 40.47 150.42 40.52 150.38
5 109.34 149.62 109.29 149.66 109.33 149.62

Mean of squared
error for total 0 0.07 0.01

28 points

Ground truth Synthesized Synthesized
Point No. in Fig. 1(d) in Fig. 1(f) in Fig. 1(h)

u v u v u v

1 128.97 82.78 129.29 82.74 128.96 82.66
2 107.40 113.94 107.79 113.88 107.41 113.87
3 146.36 113.18 146.63 113.12 146.33 113.10
4 92.08 125.94 92.52 125.87 92.10 125.89
5 159.56 125.16 159.82 125.09 159.54 125.10

Mean of squared
error for total 0 0.30 0.08

28 points

real image and synthesized image at the determined viewpoint should be. To
evaluate the quality of the EBI-based viewpoint determination, we compare the
image positions of the 28 feature points in Fig. 1(g)–(h) and Fig. 1(e)–(f) with
those in Fig. 1(c)–(d). The comparison results, partially tabulated in Table 1,
show that not only are all 28 points positioned in the image space by the EBI-
based solution with error no more than one pixel, but that the image positions in
Fig. 1(g)–(h) created at the estimated viewpoints are more closely located around
the true positions in image space. Because the same image synthesis method is
used for creating Fig. 1(g)–(h) and Fig. 1(e)–(f), we believe that Fig. 1(c) is
more accurately located at determined (–0.0013, 0.9981, 0.9915) than at original
(0,1,1) in 3-D space, and Fig. 1(d) at (–2.0015, 0.0031, 0.2295) than at (–2,0,0).

5 Conclusion and Future Work

We have described an interpolation mechanism that could determine the view-
point of any given input image based upon some example data. It turns out
the mechanism could, by using the positions of a number of image features to
represent an image, interpolate from the example data the mapping from image
to viewpoint and determine viewpoint robustly. Experimental results show that,
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even with few example images and sparse distinct features on the image data
and no knowledge of the imaging parameters, the mechanism gives satisfactory
solution.

Heavy occlusions, depth discontinuities, and other types of distortion in the
example data could compromise the accuracy of the interpolation process. Future
work will address such issues.
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Abstract. This paper presents a method of image-based 3D modeling for
intricately-shaped objects, such as a fur, tree leaves and human hair. We formu-
late the imaging process of these small geometric structures as volume rendering
followed by image matting, and prove that the inverse problem can be solved by
reducing the nonlinear equations to a large linear system. This estimation, which
we call inverse volume rendering, can be performed efficiently through expec-
tation maximization method, even when the linear system is under-constrained
owing to data sparseness. We reconstruct object shape by a set of coarse vox-
els that can model the spatial occupancy inside each voxel. Experimental results
show that intricately-shaped objects can successfully be modeled by our proposed
method, and the original and other novel view-images of the objects can be syn-
thesized by forward volume rendering.

1 Introduction

Reconstruction of 3D scene information from multiple view-images is a major research
topic in computer vision. Most of the existing methods of scene reconstruction attempt
to create a model of the object as a solid, using boundary representation. Many real
objects, however, have extremely intricate shapes, such as human hair and fur, on the
surface. It is therefore difficult to represent their geometry using boundary-based repre-
sentation.

It is difficult to model intricately-shaped objects for two reasons. Firstly, the
boundary-based shape representation is not suitable for such objects as human hair.
Secondly, the resolution of optical sensors, such as Charge-Coupled Devices (CCD), is
usually much lower than that of object geometry. Hence, it is inherently impossible to
reconstruct complete geometry from given images.

Although it is difficult to capture and reconstruct intricate shape on the object sur-
face, the captured image can preserve the appearance of these objects in sufficient qual-
ity. This fact implies that photorealistic view can be synthesized from a reconstructed
model even if the resolution of the model is not as high as that of object shape.

In this paper, we propose a method of volumetric scene reconstruction using the
voxels that model the spatial occupancy and color of the object. In practice, the spatial
occupancy is stored in the voxel as α value (opacity), and the synthetic view images are
generated through conventional volume rendering techniques.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 409–418, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



410 S. Yamazaki, M. Mochimaru, and T. Kanade

2 Related Work

2.1 Multi-view Reconstruction

The research on the method of 3D scene reconstruction from multiple view-images has
a rich history. Here we briefly describe the related work.

One of the first attempts for image-based modeling of 3D scene in computer vi-
sion is two-view stereo reconstruction [1]. Okutomi et al. [2] extended the conventional
two-view stereo reconstruction into the multiple-view problem and achieved convinc-
ing results. Kang et al. [3] discussed a method of multi-view stereo reconstruction from
images with large occlusions. These methods are designed to reconstruct depth maps
from particular viewpoints. Hence, they are not suitable for full 3D scene reconstruction
from images obtained from multiple surrounding cameras.

Visual hull reconstruction [4] is another approach to 3D scene reconstruction from
multiple view-images. The algorithm does not need to solve the correspondence prob-
lem. Instead, it simply calculates the convex hull of silhouettes in all view images.
While the visual hull method works robustly when cameras surround the object, a con-
cave object cannot be reconstructed using silhouettes alone. This problem was solved
by Seitz et al. [5] in the voxel coloring method. The original voxel coloring has a lim-
itation on the location of input view images, which is overcome in the space carving
method proposed by Kutulakos et al. [6] The opacity hull [7] method proposed by Ma-
tusik et al. is another approach to this problem. They simply use a visual hull model
as an rough geometric proxy, and map opacity images using view-dependent texture
mapping. This method avoids the difficulty in geometric reconstruction, but requires a
lot of input images to achieve photorealistic rendering.

Our proposed method is inspired by the space carving method, but has been extended
so that it can deal with intricate shape within a framework of voxel modeling. Specif-
ically, the geometrical structure within a voxel is represented as its spatial occupancy.
Our method is similar to Roxels method [8] in that both can reconstruct spatial occu-
pancy/opacity of voxels from images. The convergence of the Roxels method, however,
is not proven, and the method cannot reconstruct the voxels in high resolution owing to
the high computational cost.

2.2 Alpha Estimation

When a scene is captured by the digital optical sensors, such as CCD, what the de-
vice can record is not the light energy of a single light ray, but the averaged radiance
incoming from a finite space in the scene. If a part of an object is observable from a
single device cell, the recorded radiance is the combination of radiance coming from
the corresponding foreground and background.

Alpha estimation is the process that decomposes an RGB color Cp of each image
pixel into three components: foreground color Fp, background color Bp, and foreground
opacity Ap. The relationship between the variables can be described by matting equa-
tion.

Cp = Fp + (1 − Ap)Bp. (1)
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The foreground opacity, or simply, opacity Ap ∈ [0, 1] represents the contribution of
the foreground object color to the pixel. When the background color in the images is
controllable, we can separate these three components perfectly by capturing two images
with different background colors and computing Fp and Ap which are common in the
images [9]. The natural image matting methods [10, 11, 12] can solve this problem even
when the background cannot be controlled and only one image is available.

3 Inverse Volume Rendering

3.1 Assumption and Preprocess

In this paper, the scene is assumed to be static and the surface reflection follows the
Lambertian law. Under this assumption, the radiance emanating from the scene can be
observed as a single color. Our proposed method deals with the scene composed of
foreground object O, which we are interested in, and background B, which should be
removed in the modeling process. The background component is removed beforehand
by an appropriate method of alpha estimation described in Section 2.2.

The input to our modeling algorithm is a set of color images taken at Nview different
viewpoints. The accuracy of reconstruction and robustness to noise and other factors
not modeled in our assumption can be increased by using as many images as possible.
About 30 images uniformly distributed on the upper hemisphere surrounding O could
achieve good reconstruction in our experiments. Both intrinsic and extrinsic camera
parameters are supposed to be known. The output from our algorithm is a set of voxels
vi which has both RGB color ci and occupancy αi.

3.2 Volume Rendering Equation

When the interest object O is captured and digitized into images by CCD, the intensity
of pixel color Cp is in proportion to the sum of radiance emanating from the surfaces
within a frustum spanning between the scene and the device cell. At each depth along
viewing rays in the frustum, the transferred radiance is the sum of those emanating at
the point (S f ) and those coming from the behind (Sb). Hence, the pixel colors in input
images can be described by the following volume rendering equation [13].

Cp =
∑

i∈{along a viewing ray}
ciαi

i∏

j=0

(1 − α j), (2)

ci represents the radiance coming from light sources and reflected on the scene object
at the depth i along viewing rays. αi ∈ [0, 1] is the ratio by which the object located
at i occludes others behind it. Thus, this ratio α can be regarded as equivalent to the
spatial occupancy of the foreground object at the location. Supposing that ci and αi are
view-independent, they can be parameterized by the location in 3D space. We voxelize
the 3D space and assign ci and αi to each voxel.

3.3 Matting Equation

First the background components observed in input images are removed from each im-
age pixel Cp, which is combination of radiance transferred from the foreground object
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and the background scene. This process is essential in order to associate each voxel’s
values ci and αi with pixel intensity Cp to create a 3D model of the object from the
observed images.

Suppose that a voxel grid spreads infinitely in 3D space. Then, we can define the
mapping between the voxel coordinate (x, y, z) and the 1D coordinate s along viewing
rays. For each viewing ray that goes through the foreground objectO, there is a position
that separates O and background B. Dividing the 1D ray coordinate into the front and
back parts, equation (2) is rewritten in

Cp = Fp + (1 − Ap)Bp, (3)

where

Ap = 1 −
∏

k∈ f ront

(1 − αk) (4)

Fp =
∑

i∈ f ront

ciαi

i∏

j=0

(1 − α j) (5)

Bp =
∑

i∈back

ciαi

i∏

j∈back

(1 − α j). (6)

Intuitively, Ap is the contribution of the spatial occupancy of voxels along a viewing ray
to an image pixel, Fp is the contribution of accumulated colors of the voxels, and Bp is
the background color.

Compared with equation (1), it turns out that equation (3) is equivalent to the matting
equation. The values Ap and Fp can be estimated from Cp before modeling voxels, by
one of several methods of alpha estimation introduced in Section 2.2. Once the fore-
ground components Ap and Fp in input images is associated with the voxel values ci

and αi, we can estimate voxel values using equation (4) and equation (5) as constraints.
We refer to the estimation of 3D voxel values from 3D pixels values composed of fore-
ground components as inverse volume rendering.

3.4 Derivation of Constraints

We reconstruct the color ci and spatial occupancy αi of voxels from the accumulated
color Fp and occupancy Ap of image pixels in the following two-step procedure.

In the first step, we reconstruct only the voxel occupancyαi using foreground opacity
Ap. Taking the logarithm of equation (4) for each Ap � 1 and replacing opacity with
transparency as Tp = 1 − Ap and ti = 1 − αi, we obtain the following equation.

log(Tp) =
∑

i

log(ti) (7)

Since log(Tp) have already been estimated in preprocess, and therefore are regarded
as constants, equation (7) comes down to a simple linear system in which log(ti) are
unknowns.
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In the second step, we then reconstruct voxel color ci from foreground color Fp. Now,
the spatial occupancy αi has been reconstructed in the first step. Thus, equation (4) can
be reduced again into a linear system

Fp =
∑

i∈ f ront

[
αi

i∏

j=0

(1 − α j)
]
ci (8)

where
[
. . .
]

and Fp are constants, and ci are the unknowns that we want to estimate.

4 Implementation

4.1 Iterative Back-Projection Based on EM

Various methods of solving linear systems have been proposed. When the coefficient
matrix of the linear system is full-rank, we can solve the system either by using a direct
method such as the Gauss-Jordan elimination, or an iterative method such as the con-
jugate gradient method. If the system is either under- or over-constrained, the solution
that maximizes the certain likelihood measure is estimated, for instance, by singular
value decomposition.

Our linear system, however, cannot be solved directly by these conventional methods
owing to the gigantic size of the system. The number of unknowns in equation (7) and
equation (8) is equivalent to the number of voxels that increases in a cubic order. On the
other hand, the number of equations in the linear system is roughly equal to the number
of image pixels. Thus, the computational cost of our problem can be extremely high.
It is also the case that the coefficient matrix cannot be stored in the limited working
memory of a standard computer.

In order to overcome these difficulties, we propose an algorithm that can solve such
a gigantic linear system within a framework of the EM (Expectation Maximization)
method [14]. This algorithm starts with an initial estimation of the solution, and iter-
atively improves the solution through the maximization of an objective function. The
algorithm can improve the solution monotonically, and can reach the global optimum.

The EM estimation is composed of two steps, namely, E-step and M-step. In the
E-step, the expectation of certain probabilistic phenomena is calculated using the cur-
rent estimation of parameters. In the M-step, the parameters are modified so that the
expectation is maximized. Repeating E-step and M-step alternatively can maximize the
expectation function even when some parameters cannot be measured directly.

The parameters that we want to estimate are the color ci and occupancy αi of voxels.
The observed data that we have is Fp and Ap. In the E-step of the inverse volume
rendering, we simply perform forward projection of voxel values. This is equivalent
to the volume rendering according to equation (2). In the M-step of the inverse volume
rendering, we improve either the color or the occupancy of voxels using back-projection
for each viewing ray. The expectation can be calculated as a linear combination of
unknowns. Hence, the function is concave and has a single global optimum.

Let the n-th estimations of unknowns in a linear system be {x(n)
j }, the coefficients of

the system be {ri, j}, the constants of the system be {ci}, then the n + 1-th estimation of
unknowns can be obtained by
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x(n+1)
j =

x(n)
j∑

i ri, j

∑

i

ri, jci∑
j ri, jx

(n)
j

(9)

where
∑

j ri, jx
(n)
j is the result of forward projection in the E-step, and the summation

of projections with regard to ri, jci corresponds to the result of back projection. This
relationship is illustrated in Fig. 1. It is worth noting that this EM estimation is a generic
framework for solving linear systems.

Fig. 1. Interpretation of the update law
in EM

The EM algorithm in our estimation can be
accelerated by dividing the problem into several
subsets. First, we divide the set of input images
into several subsets. Then, the linear system is
solved using one of the subsets. Once the algo-
rithm has been converged, the linear system is
solved using another subset using the previous
solution as an initial estimation. This scheme is
called OSEM (Ordered Subset EM) [15]. In our
experiments, we made subsets by choosing four images such that the distances between
their viewpoints are as large as possible.

4.2 Shell Voxels

The voxels in which no foreground object exists (αi = 0) do not affect the estimation
of other voxels along the viewing rays that pass through the empty voxel. Similarly,
the voxels that are completely occupied by foreground object (α = 1) neither affect the
estimation of the voxels along the viewing rays. We can reduce computational cost by
just omitting the computation for these rays.

After the alpha estimation for each input image has been completed, the voxels are
classified into three types according to the opacities of corresponding image pixels.

1. background voxel: Ap = 0 in at least one image
2. internal voxel: Ap = 1 in all images
3. shell voxel: otherwise

The classification of voxels is performed as follows. Firstly, we classify as background
the voxels whose projection is completely transparent (the corresponding pixels are all
Ap = 0) at least in one of input images. Secondly, we construct the visual hull [4] of
completely opaque pixels (Ap = 1), and classify the voxels enclosed by the hull as
internal. The rest are shell voxels.

4.3 Optimization of Voxel Traversal

In each EM estimation, a set of coefficients in the left hand of equation (7) has to be
prepared. This calculation requires the voxel traversal along arbitrary viewing rays and
therefore is computationally expensive. Therefore, we precompute the set of voxels
along every viewing ray beforehand, and store the result into LDI structures [16] for
each input pixel. We can omit the LDI entry for the pixels where Ap = 0 and Ap = 1.



Inverse Volume Rendering Approach to 3D Reconstruction from Multiple Images 415

Fig. 2. Example of voxel reconstruction. (left) shell voxels in green and internal voxels in red,
(center) reconstructed spatial occupancy, and (right) reconstructed color distribution.

5 Experimental Results

We have implemented the proposed method of inverse volume rendering and conducted
some experiments on a standard PC with Pentium4 3.4GHz CPU and 2G byte main
memory. Input images are captured from 36 viewpoints around the object that we want
to model. The size of input images are 320 × 240, and the voxel resolution is set to 643

and 1283.

5.1 Alpha Estimation

We adopted the multi-background scheme proposed by Smith et al.[9] for alpha estima-
tion from input images. The background color of images is controlled by a liquid crystal
projector. For each viewpoint, two images with different background color, Ck1 and Ck2

in RGB color space, were taken. Let the observed image color at the same pixel be Cm1

and Cm2 respectively, then the foreground opacity Ap of the pixel can be estimated by
the following equation.

Ap = 1 − (Cm1 −Cm2) • (Ck1 −Ck2)
(Ck1 −Ck2) • (Ck1 −Ck2)

(10)

(a) object (b) green back (c) blue back (d) estimated α image

Fig. 3. Multi-background matting



416 S. Yamazaki, M. Mochimaru, and T. Kanade

(a) input image (b) rendered voxel model

Fig. 4. Results of volume rendering

where an operator (•) represents dot-product of RGB vectors. The foreground color Fp

of the pixel is calculated as follows.

Fp =
(
Cm1 +Cm2 − (1 − Ap)(Ck1 +Ck2)

)
/2 (11)

An example of input images in alpha estimation and obtained alpha image is shown
in Fig. 3.

5.2 Results of Volume Rendering

The reconstructed voxel model is rendered in Fig. 4. The voxels are rendered using the
volume rendering equation (equation (2)) with the viewpoints not included in the input
images.

5.3 Convergence
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Fig. 5. Convergence

In Fig. 6, the convergence of our proposed
method is illustrated. The upper and lower
rows show the process of estimating αi and ci

respectively. The resolution of reconstructed
voxels is 1283. The figure indicates that the
visually sufficient result can be obtained in 10
iterations.

Fig. 5 is the plot of reprojection error in the
EM estimation for the data shown in Fig. 6.
The lines indicate the decreases in error for
two different voxel resolutions. The error de-
creases rapidly within 5 iterations, and then
gradually converges into the minimum value.
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Fig. 6. Iterative optimization

5.4 Computational Cost

Table 1 shows the figures of memory usage and computational time. We have recorded
these figures in the experiments using voxel resolutions of 643 and 1283. Owing to
the limitation of computer hardware, we could not conduct experiments with larger
resolution. For example, reconstruction of a mannequin object with the resolution of
1283 failed because of limited memory space on 32 bit computer.

Table 1. Performance

object #shell vxl memory(byte) time(min)
#voxels 643 1283 643 1283 643 1283

cow 23379 185013 ∼256M ∼2.1G ∼30 ∼186
mannequin 32531 254123 ∼510M — ∼45 —

6 Discussion and Future Work

In this paper we proposed a novel method of voxel reconstruction that can deal with
an object with intricate shapes such as a fur and hairs. We formulate our reconstruc-
tion process as the inverse volume rendering problem, and show how to solve it. We
also present an effective implementation and conduct experiments on real objects to
demonstrate the usefulness of the proposed method.

In Fig. 4, we see artifacts in the fur where the spatial occupancy seems higher than
the real value. The reason for this is that computing log(1− Ap) and log(1−αi) become
erroneous when αi and Ap is close to 1, and therefore the small errors in alpha estimation
for input image drastically affect the estimation of voxel occupancy.

We implemented some measures to reduce the computational costs in the inverse
volume rendering. However, the cost is still high, and therefore we cannot reconstruct
the object in a proper spatial resolution. We are planning to adopt adaptive voxel struc-
tures, such as octree and k-d tree, and to extend our algorithm so that it can be executed
on parallel computers.
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Abstract. We propose a method to estimate gaze direction in real time
with a single camera based on four reference points and three calibration
images. First, the position at which the eyeball center is projected is
calculated as a linear combination of those of the reference points. Then,
the gaze direction is estimated as a vector connecting the calculated
eyeball center and the detected iris center. The algorithm is head pose
free. We implemented the algorithm on a PC with a Xeon 2.2-GHz CPU,
which works at a rate of 30 fps.

1 Introduction

Gaze estimation is one of the key technologies for human-computer interaction
systems. A good review of recent advancements on this topic is presented in [1].
In this paper, we will propose a vision-based practical method for gaze estimation
that uses a single camera.

Among various gaze tracking systems, intrusive methods, including head-
mounted types, are in general more accurate than remote ones[1]. However, they
are troublesome and impose a burden on users; therefore, non-intrusive methods
are preferable.

Non-intrusive methods are classified into two categories: active and passive.
Active methods use controlled lighting, usually infrared (IR) LEDs, for two dif-
ferent purposes. One is to detect pupils robustly. On-axis and off-axis lighting
respectively produce bright-pupil and dark-pupil images[1], and the difference
between the images enables robust pupil detection. The other is to make a glint
or reflection of the LED on the cornea. The gaze can then be estimated based
on the glint position and the center of the pupil.

The glint, however, is a very small spot, and thus an image of high resolution
is required to detect it. This means the eye almost fills the screen. Consequently,
not only does the focusing depth of field become very shallow, but also a slight
movement of the head causes a large displacement in the image. This means the
eye can easily fall out of the field of view, thus making it difficult to track. Some
systems incorporate an extra wide-angle camera to track the eye and control the

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 419–428, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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pan and tilt angle of the gaze camera [2][3], though this makes such systems very
complicated.

One of the constraints present when using this type of system is that the
distance between the user and the camera (and the LEDs) should be very short
because of the limited LED power. Usually, users are supposed to be sitting in
front of the system within one meter from it.

Among passive methods, systems featuring binocular stereo architectures have
a similar constraint. A system described in [4] tracks not only irises but also other
predefined feature points such as eye corners and mouth corners. Furthermore,
the location of eyeball centers in 3D space are calculated from these feature
points calibrated in advance. The gaze direction then is estimated as a line in
3D space connecting an eyeball center and the center of an iris. It works very
well. However, in a binocular stereo system, a face should be within a region
visible from both cameras. Therefore, the distance from the cameras to the user
is very limited with respect to an appropriate image resolution and a base line.
A similar system is reported in [5] that uses artificial marks as tracking features
and a bright/dark pupil imaging technique.

Here, we propose a single-camera method that allows the use of long shot
images after appropriate zooming-up if necessary.

As for single-camera methods, some neural network approaches have been
proposed[6][7] that results in very fast calculation. However, it is pointed out
that the trained neural network is too sensitive to changes in users, lighting
conditions, and even changes within the user[8].

Another single-camera approach is the so-called “circle algorithm.” If two
circles on parallel planes are observed as ellipses, the normal direction of the
support planes can be determined uniquely (two-circle algorithm)[9][10]. There-
fore, if the irises are assumed to be circles and both of their images are extracted
as ellipses, the gaze direction can be calculated. If we have only one iris image
or one ellipse, there will be two possible solutions for the normal direction. Even
in such a case, the true solution can also be selected using other cues (one-circle
algorithm)[11].

The circle-algorithm approach is very attractive because no calibration is
required beforehand. However, it is very difficult to develop a system with current
video rate imaging techniques in terms of image resolution. Consider a case when
an iris gazing at the camera is a circle in the image with a diameter of 100 pixels.
When the eyeball turns ten degrees, the circle changes to an ellipse with the
minor axis of 98.5 pixels (see cos 10◦ = 0.9848) while the major axis remains at
100 pixels. It is quite difficult to detect such small changes stably and accurately.

On the other hand, iris displacement is much greater in the same situation.
An eye model used in the simulation in [11] is such that the ratio of the radius
of the eyeball to the radius of the iris is 2. According to this model, when the
diameter of the iris is 100 pixels, the radius of the eyeball is also 100 pixels.
Then, 10-degree rotation of the eyeball results in iris displacement of about 17
pixels (see sin 10◦ = 0.1736), which seems to be easier to detect than a 1.5-pixel
change.
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In [8], iris displacement from the inner eye corner is measured to estimate the
gaze direction. However, when the face rotates, while the gaze direction is fixed,
the iris position relative to the eye corner changes. Therefore, the face direction
should be fixed as it is in the calibration processes.

To overcome this problem a special reference point has been proposed in [12].
It is the middle point between the centers of the right and left eyeballs, called the
virtual eyeball center. Cleverly, Miyake et al. put two marks on the face where
the line connecting two eyeball centers intersects with the surface of the face, and
assumed that the middle point of them in the image is the virtual eyeball center.
They also detected both of the irises and calculated their middle point. This is
called the virtual iris center. The line connecting the virtual eyeball center and
the virtual iris center determines the gaze direction.

This idea makes the system head pose free, because the relative position of the
virtual eyeball center and the virtual iris center does not change while the gaze
is fixed, even when the face rotates. However, one of the marks placed on both
sides of the face is likely to be occluded by the face itself when the face turns
about twenty degrees or so. Consequently, the system cannot take full advantage
of the head pose free algorithm.

Here, we propose another head pose free algorithm in which we use four
marks instead of two. However, the constraint on the positions of them is far
less restrictive than that used in [12]. Therefore, not only we can place them to
be visible for a wide range of head poses, but also we have the scope to replace
them with natural image feature points on faces in the future.

We calculate the position of the eyeball center by a linear combination of the
positions of the four marks, detect the iris center, and estimate the gaze direction
as a line connecting the calculated eyeball center and the detected iris center.

In the next section, we explain the principle of calculating of the fifth point
position from the four reference points, and in Section 3, how the principle
can be applied to gaze estimation. In Section 4, we briefly describe the image
processing technique used in the experiment, and present some experimental
results in Section 5. Section 6 concludes the paper.

2 Estimation of the Fifth Point Position

We express a point in 3D space as a vector Xi = (xi, yi, zi)T . When we select
four points X0, X1, X2, and X3 on a 3D object such that not all of them are
on a plane, the vectors (X1 −X0), (X2 −X0), and (X3 −X0) are linearly
independent. Then, for any arbitrary point Xc on the object, there exist α, β,
and γ such that

(Xc −X0) = α(X1 −X0) + β(X2 −X0) + γ(X3 −X0). (1)

Because only relative vectors from X0 appear in Eq. (1), selecting the origin of
the coordinate as well as its pose makes no difference. For convenience, hereafter,
we assume the origin is at the center of gravity, and consider only the rotation
of the object.
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Our camera model here is the orthogonal projection model. It means that a
point (x, y, z)T in 3D space is projected to (x, y)T on the image plane. It is known
that the modeling error is small when the depth of the object is sufficiently small
compared to the distance between the camera and the object.

From Eq. (1), for the image of the object in arbitrary pose,(
xc − x0
yc − y0

)
= α

(
x1 − x0
y1 − y0

)
+ β

(
x2 − x0
y2 − y0

)
+ γ

(
x3 − x0
y3 − y0

)
(2)

is always satisfied.
When a rotation, expressed by a rotation matrix Rk, is applied to the object,

a pointXi moves to (xk
i , y

k
i , z

k
i )T = Rk(xi, yi, zi)T . Then, from Eq. (2), observed

points on the image after rotations R0, R1, and R2 satisfy the following equa-
tion. ⎛⎜⎜⎜⎜⎜⎜⎝
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First, we solve Eq. (3) and obtain the values of α, β, and γ. Then, for an
arbitrary rotation of the object even if the point Xc is not observed in the
image, its projection point can be calculated from the coordinates (xk

0 , y
k
0 )T ,

(xk
1 , y

k
1 )T , (xk

2 , y
k
2 )T , and (xk

3 , y
k
3 )T of observed points X0, X1, X2, and X3

using Eq. (2) as follows,:(
xk

c

yk
c

)
= α

(
xk

1 − xk
0

yk
1 − yk

0

)
+ β

(
xk

2 − xk
0

yk
2 − yk

0

)
+ γ

(
xk

3 − xk
0

yk
3 − yk

0

)
+
(
xk

0
yk
0

)
. (4)

For Eq. (3) to be solvable, not all the axes of rotations R0, R1, and R2 should
be parallel. Since Eq. (3) is over-constrained, we can solve it by the least-squares
method.

3 Gaze Estimation

We assume the gaze direction is a vector from the eyeball center to the iris
center. Since the iris is observable, we can calculate its center on the image; on
the other hand, the eyeball center is not observable. Therefore, we calculate its
position from the observable reference points X0, X1, X2, and X3 as a linear
combination of them as mentioned in the previous section.

The gaze direction in the image plane is a vector from the calculated eyeball
center to the detected iris center. The angle θ between the gaze direction and
the normal of the image plane is calculated as follows, where r is the radius of
the eyeball and d is the distance between the calculated eyeball center and the
detected iris center in the image (Fig.1).
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Fig. 1. Gaze direction model

θ = sin−1(
d

r
) (5)

As for the value of r, an anatomical model can be used like in [11], or we can
acquire it from other calibration mean.

The eyeball center corresponds to Xc in the previous section. Although of
course it is not observable, in order to calculate α, β, and γ, its projection point
should be known in the face images with rotations of R0, R1, and R2. But how?
Well, we consider a special case in which we can observe the eyeball center in
the image.

In our gaze model, the gaze line is a line in 3D space connecting an eyeball
center and the center of an iris. When we gaze at the camera lens, the three points
of the center of the lens, the center of the iris, and the eyeball center align. Then,
on the image, the center of the iris and the eyeball center are projected at the
same point. In other words, in such a special case, the eyeball center is observed
as the center of the iris.

In summary, the gaze estimation process is as follows.
(1) Place four reference marks around an eye as X0, X1, X2, and X3. They
should not be on the same plane.
(2) Take three images, including the eye and four marks with different head
poses while looking at the camera. (Calibration images)
(3) Extract the positions of X0, X1, X2, X3, and the center of the iris as Xc.
Now, we have Eq. (3).
(4) Solve Eq. (3) to acquire α, β, and γ.
(5) For an arbitrary gaze and head pose image, extract the positions of X0, X1,
X2, X3, and the center of the iris.
(6) Calculate the projection point of the eyeball center using Eq. (4).
(7) The gaze direction is estimated as a line connecting the calculated eyeball
center and the extracted iris center. The angle of the gaze line from the normal
of the image plane is calculated by Eq. (5).

4 Experimental System

We developed a simple experimental system to examine the validity of our al-
gorithm. For eye detection and tracking, we use a commercial software[13]. This
software library returns locations of both eyes. However, this does not mean the
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Fig. 2. Camera setup

iris locations, just dark regions. Therefore, we have to develop an iris detection
process. This commercial software detects and tracks eyes under the condition
that both are visible. Thus, we take the same approach as in [12], i.e. instead
of using a single iris, we use the virtual iris center, which is the middle point of
the centers of the right and left irises. Equation (4) then calculates the virtual
eyeball center’s location..

The camera is of IEEE 1394 interface with an image resolution of 640× 480
pixels. The focal length of the lens is f = 16mm. The camera is placed on top
of the display monitor, with the subject sitting about 90 cm from it. Figure 2
shows the camera setup and the relative face scale in the image.

Figure 3 shows a frame of reference marks. The one and only constraint on
the alignment of marks is that not all of them can be on a same plane. The mark
is designed for easy detection: it is a white disc 6 mm in diameter with a black
circle 3 mm in diameter at the center. The size of the frame is about the distance
between the eyes, and it is attachable to the nose part of the glasses so as not
to distract the eyes. The mark in the upper-left of the figure is about 17 mm
above the plane defined by the other three marks. Figure 4 shows a view of the
marks attached to the face. When eye locations are extracted, the region where
each mark can exist becomes predictable (see Fig. 4). Each mark is searched in
such a region with a simple template matching technique.

The software library we used for eye detection and tracking returns position
data where the average gray level of a certain square is lowest in the eye regions.

Fig. 3. A frame of reference marks Fig. 4. Reference marks attached to
the face
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Fig. 5. Example of iris extraction

If the eyes are open, we can expect those positions to be on the irises. However,
they are not the center of the irises. Therefore, the center of irises should be
searched in a more precise manner.

In many previous works[9][12][10][11], the iris image is binarized, and regions
not likely to be iris are eliminated by some means, and then an ellipse is fitted to
the edges of the remaining region to extract the center of the iris. However, when
binarizing an image, determining an appropriate threshold is almost always a
difficult problem. We, therefore, take a different approach. We apply a Laplacian
filter and extract zero-cross points as edges in a small region where an iris is likely
to exist. We then apply a Hough transform technique for circles for those very
many iris edge candidates in order to extract an iris as a circle.

Because the upper and lower parts of the iris are likely to be hidden by
the eyelids, only vertical edges are extracted. Consequently, a one-dimensional
(horizontal) Laplacian filter is applicable. We can expect that the center of the
iris search region is on the iris. Thus, at a zero-cross point, the gradient direction
is also taken into account so that the inside is the dark side. In applying the
Hough transform for circles, voting to the upper part and lower part (over 60
degrees from the horizontal line ) of a circle is suppressed, because that part of
the iris is likely to be hidden by the eyelids.

Figure 5 shows an example of iris detection. The two circles are iris locations
determined by the Hough transform, while the noisy dots are edge pixels ex-
tracted as Laplacian zero-crosses. There are many edges even in the iris region
because of reflections of white papers, windows, light sources, etc.

5 Experiment

5.1 Calibration

For Eq. (3), we require three calibration images. The head poses in the calibration
images should be different from each other, and the gaze should be directed to
the camera. To satisfy these conditions with simple instructions, we showed a
target mark at the center of the screen, and asked the subject: for each reference
mark except the top one, (1) fit the mark on the target mark by adjusting the
head pose; and (2) look at the camera; then (3) press the button. Image of the
subject on the screen was flipped horizontally, so that the subject felt it was a
mirror. This made it easier for the subject to feed back the image as a head pose
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Fig. 6. A set of calibration images. (peripherally clipped)

adjustment, because people are familiar to their own mirror images. Figure 6
shows an example of a set of calibration images.

5.2 Head Pose Independency

Figure 7 shows gaze vectors in different head poses while the subject is gazing
at the center of the monitor display. The monitor screen has a 5x5 grid, and the
image in Fig. 7 is its 3x3 middle component. The two “+” marks are the calcu-
lated virtual eyeball center and the detected virtual iris center. The direction of
the gaze vector is from the former to the latter, and its magnitude shown here is
a summation of the results for the last 15 frames (0.5 seconds). Actual numbers
of them in pixels are shown below each. Notice the origin of the coordinate is in
the upper-left corner of the input image. Since the camera is set up on top of
the monitor display, the estimated gaze direction is downward when the subject

(a) (0, 51) (b) (-12, 66) (c) (5, 54)

Fig. 7. Estimated gaze directions with different head poses while looking at the center
of the monitor

(a) (72, -15) (b) (62, -26) (c) (73, -9)

Fig. 8. Estimated gaze directions with different head poses while looking at the upper-
right corner of the bezel
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is looking at the center of the monitor. The faces in Fig. 7(b) and (c) turn right
and left so much that one of the marks used in [12] will be hidden. Nevertheless,
the estimated gaze vectors in the three cases are very similar. Actually, figures
of gaze directions show that the differences between each of them in both the
x-direction and the y-direction are within ±15 pixels (±1 pixel when averaging
frames).

Figure 8 shows the cases when the subject is looking at the upper right corner
of the bezel. Even in these cases, the results show the head pose independency
of our method; figures of gaze directions show that the differences between each
of them in both x-direction and y-direction is within ±15 pixels.

5.3 Discussion

Although we cannot observe the location of the eyeball center, the results shown
in Figs. 7 and 8 demonstrate that our algorithm to calculate its projected points
from the four reference points as described in Section 2 works well.

The estimated gaze directions in Fig. 7(b) and (c) are slightly different. We
noticed in experiments that there was a tendency in the drift of estimated gaze
direction according to face orientation, and we think this comes from the camera
modeling error. However, we employed the orthogonal projection model instead
of the perspective model, which made our algorithm simple and robust.

The image resolution we used was rather coarse: the diameter of an iris was
about 27 pixels, leading to the distance between the projected points of the
eyeball center and the iris center being very short. Consequently, mainly due to
fluctuations of the video signal, the estimated gaze direction fluctuates frame
by frame. Therefore, in our experiment, we had to employ time averaging (0.5
seconds or 15 frames) to attain stable results. Consequently, the system contained
a time delay, even though it processed 30 frames per second.

6 Conclusions

We proposed a method to estimate the gaze direction using a single camera. The
position of the eyeball center is calculated by a linear combination of four ref-
erence points. To determine the coefficients of the linear combination, we need
three calibration images with different head poses. The gaze direction is esti-
mated as a vector from the calculated eyeball center to the detected iris center.
We demonstrated the validity of the algorithm in experiments. The algorithm is
head pose independent; or in other words, head pose is determined with respect
to four reference points. The system, implemented on a PC with Xeon 2.2-GHz
processor, could process 30 frames per second. A demonstration video clip can
be opened at the author’s home page. (http://www.mis.atr.jp/˜skawato)

In the prototype system, locations of reference marks and irises are detected
with pixel accuracy. However, because the eyeball center and the iris center are
very close, one pixel error causes a relatively large direction error. Therefore,
detecting their locations at sub-pixel accuracy remains as future work. In the
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future, we plan to apply natural feature points extracted on the face, instead of
artificial reference marks, to calculate the location of the eyeball center.

This research was supported in part by the National Institute of Information
and Communications Technology.
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Abstract. We present a new method for recovering the 3D shape of
a featureless smooth surface from three or more calibrated images. The
main contribution of this paper is the ability to handle general images
which are taken from unconstrained viewpoints and unconstrained illu-
mination directions. To the best of our knowledge, no other method is
currently capable of handling such images, since correspondence between
such images is hard to compute. Our method combines geometric and
photometric information in order to recover a dense correspondence be-
tween the images and successfully computes an accurate 3D shape of the
surface. The method is based on a single pass and local computation and
does not make use of global optimization over the whole surface. While
we assume a Lambertian reflectance function, our method can be easily
modified to handle more general reflectance models as long as it is possi-
ble to recover local normals from photometric information. Experimental
results are presented for simulated and real images.

1 Introduction

We present a method for recovering the 3D shape of a smooth featureless sur-
face. Our system accepts inputs consisting of three or more calibrated images of
the surface, taken from different viewpoints (can be wide-baseline) and illumi-
nated by different known distant point light sources. The surface is assumed to
be Lambertian, and the perspective projection model is assumed. This is a chal-
lenging problem for which classical methods for shape recovery, both geometric
or photometric, are inadequate, since correspondence between such images is
hard to compute. Geometric methods, such as stereo or structure from motion,
are based on the recovery of corresponding points in different images. Deter-
mining correspondence for images of the type considered in this paper is hard
since the surface is assumed to be featureless and the grey-level values of corre-
sponding points can vary considerably between images due to the change in light
source direction. In photometric stereo [16, 9] the input images are taken with
different lighting directions but from the same viewpoint. The fixed viewpoint
assumption provides the correspondence for such methods, but since it does not
hold in our case these methods cannot be directly used on our images.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 429–438, 2006.
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Our method computes an accurate 3D shape of the surface by combining geo-
metric and photometric information to recover a dense correspondence between
the set of input images. The general idea is to propagate correspondence over
the surface and simultaneously recover the 3D shape of the surface. Given a
set of corresponding points, we can compute the 3D location using geometric
stereo triangulation. We can also compute the normal to the point using lo-
cal photometric information (e.g., photometric stereo [16, 9]). The recovered 3D
point and surface normal define the local shape of the surface, which is then
used to propagate the correspondence in a more accurate manner than in SFS
algorithms [4], and by relaxing the assumptions made by SFS (e.g., the albedo
is not necessarily fixed). This process is repeated to recover the full 3D shape.
In contrast to methods that are based on global optimization (e.g. [5, 11]), our
method performs the shape recovery in a single pass, similar to [2, 7].

The combination of geometric and photometric information draws on the
strengths of the geometric and photometric methods and overcomes their weak-
nesses. Unlike photometric stereo, we also deal with a perspective projection
model, similar to the new SFS algorithms [10, 14]. We can overcome the weak-
nesses of SFS since the shape information in our method is based on three or
more images compared with a single image in the SFS approach. As a result, we
can relax the assumption of fixed albedo and obtain more accurate results. We
overcome the weakness of photometric stereo, since we drop the fixed viewpoint
assumption, and we use additional geometric information. Finally we overcome
the weaknesses of geometric stereo since we can handle images of featureless
smooth surface illuminated by different light sources, and obtain the support for
the reconstructed 3D shape by photometric information.

The results of running our algorithm on synthetic and real data show that
combining the photometric and geometric constraints is a powerful tool for han-
dling general (unconstrained viewpoint and illumination) images of smooth sur-
faces. Our one-pass results can be used as a starting point for higher level itera-
tive methods for shape recovery [11, 4]. Moreover, since the surface shape is over
determined when both photometric and geometric information are used, we ex-
pect that in future work the camera and light parameters will also be obtainable
directly from the images.

Recent studies address the problem of shape recovery of smooth surfaces un-
der non-fixed viewpoint but under limited illumination variations. In [13, 8], the
shape of a moving object is recovered. The consistency of the changes of the
lighting and viewing conditions on the object is exploited to yield a modified
stereo algorithm. In [17], an iterative scheme is introduced which is able to
recover the 3D structure and the camera motion under the same settings. A
work that uses a similar experimental setup as ours was presented in [15]. There
however, the photometric constraints are used only to verify the 3D structure
that was computed based on a space carving approach. This method requires
many more images to determine the 3D shape. In [6], a setting of constant light-
ing and a moving camera is used. This is a less general setting than ours. In
our previous work [12] we addressed the problem of recovering the shape of a
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smooth bilaterally symmetric surface from a single image by integrating geomet-
ric and photometric constraints. In that study the geometric and photometric
constraints were integrated to compute correspondence between the two halves
of the symmetric surface and hence to compute the 3D shape of the surface. To
the best of our knowledge, our method is the only method that can recover the
3D shape of a smooth textureless object from a set of images that were taken
under uncontrolled light source and viewpoint directions.

2 The Basic Approach

Consider n calibrated images of a featureless surface taken from different known
camera positions under different lighting conditions which are also known. The
number n must be sufficient for local normal recovery from photometric informa-
tion when correspondence is known. Here we consider n ≥ 3 images, perspective
projection and a Lambertian surface. Photometric stereo is used to recover the
local normal. When constant albedo is assumed two images suffice, otherwise at
least three images are required.

In this section we show that a single set of corresponding points is sufficient
for propagating the correspondence over the entire image and to compute the 3D
shape. We first introduce some known notations of geometry and photometry
image analysis which are used in existing geometric and photometric methods
to recover the 3D structure.

Geometry: Let Mi, 1 ≤ i ≤ n, be the known calibrated perspective projection
matrices of the n images. Given a 3D surface point P (0), the projection of the
point to the n images is given by:

p
(0)
i
∼= MiP

(0), 1 ≤ i ≤ n.

The inverse problem is to recover P (0) given its projections to the images
p
(0)
1 , p

(0)
2 , · · · , p(0)n using geometric stereo. In this case, each instance of Eq. 2 can

be converted into two linear equations in the coordinates of P (0). Thus, when
given two or more projections of a point its 3D position can be recovered [3].

Photometry: Let li, 1 ≤ i ≤ n, be the known lighting vectors, where the
direction of each li is pointing to the light source and its magnitude is the light
source intensity. Denote by L = [l1, · · · , ln]T the matrix of all light vectors.

Let P (0) be a surface point whose normal and albedo are given by the vector
N (0). The direction of N (0) is the normal direction at the point P (0) and its
magnitude is the albedo at that point. Denote by I(0)i the intensities at p(0)i

for 1 ≤ i ≤ n. The vector I(0) =
[
I
(0)
1 , · · · , I(0)n

]T
is the intensity vector of

the corresponding points. Under the Lambertian model where I(0)i = �iN
(0) we

obtain: I(0) = LN (0). Thus, when L and I(0) are given, N (0) is recovered by

N (0) = L+I(0),

where L+ is the pseudo inverse of L.



432 Y. Moses and I. Shimshoni

We next turn to propose our new method for combining photometry and
geometry constraints.

Combining Photometry and Geometry: Given a corresponding set of
points, p(0)i , 1 ≤ i ≤ n, we can compute the surface point P (0) (by geomet-
ric stereo, based on Eq. 2) and its normal to the surface N (0) (by photometric
stereo, Eq. 2). The task then is to compute a new point on the surface based
on P (0) and N (0). Consider a small step, δ, on the first image to a neighboring
point p(1)1 = p

(0)
1 + δ. This point is the projection of the ray

P (α) = (1− α)O1 + αPδ, (1)

where O1 is the known center of projection of the first camera and [Pδ, 1] ∼=
M+

1 p
(1)
1 is a specific point on the ray. The value of α uniquely determines the

location of the new point on the recovered surface.
As a first order approximation we require that P (α) lie on the tangent plane

at P (0) which is given by the computed normal N (0). Thus, P (α) satisfies:

N (0)(P (α) − P (0)) = 0.

This constraint together with Eq. 1 yields a unique value for α

α =
(P (0) −O1)TN (0)

(Pδ −O1)TN (0) . (2)

Once P (1) = P (α) has been estimated its projection to all the images p(1)i , 1 ≤
i ≤ n is computed, yielding a new set of corresponding points. The surface normal
to this point, N (1), can now be computed.

In the first order approximation, the surface was assumed to be locally planar.
Clearly for highly curved regions, first order approximations might be insuffi-
cient. A more general second order estimate to the surface can also be consid-
ered. In this case, α can be determined by solving a quadratic equation, as is
described in the full version of this paper.

Surface Propagation: Given a point in the first image for which the corre-
spondence is known, it is possible to propagate the correspondence to any of
its neighboring pixels. In order to reduce error accumulation, we propagate the
correspondence such that the length of the path between the original pixel and
the target pixel is minimal. This is done by propagating the correspondence in
all directions from the given pixel. To this end we use a queue data structure
in which the candidate propagation target pixels are kept, yielding a Breadth
First Search (BFS) traversal of the image. This traversal circumvents regions for
which the propagation cannot be computed (e.g., shadowed pixels).

3 Extensions

The basic approach can be extended to improve the quality of the reconstruc-
tion and reduce the negative impact of noise. In this section we present several
extensions of the basic method.
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Approximation based on multi-neighbors: When estimating the corre-
spondence for a given target pixel, the 3D location and normal were already
computed for at least one of its neighboring pixels. The basic approach uses this
neighbor to compute the new point location. As a result, it is sensitive to errors
since a single error can affect the rest of the reconstruction. To reduce the errors
caused by noise and improve the reconstruction, we suggest using multi-neighbor
propagation exploiting the information from all the neighbors of the target pixel
that have already been computed. Thus, we compute the location of the new
point as an average of the locations computed based on each of its neighbors.
In addition, the neighbors can be used to choose a subset of good neighbors. As
shown in the real experiments (Figure 4 Run A5 compared to Run B5), multi-
neighbor propagation improves the reconstruction in problematic regions and
reduces the effects of propagation errors.

Error correction based on local continuity: Local continuity of the object
shape and albedo can be used to improve the reconstruction. A computed target
point is evaluated based on local continuity which is defined by a continuity score
function. Then the 3D location of the target point which minimizes this score is
found.

Here we use the 3D location, the normal direction and the albedo of the
already computed neighbors of a target point. The 3D location, the normal and
the albedo of the target point are first computed using the basic method. The
continuity score reflects their local continuity. Clearly, more complex measures
of continuity can be applied under this framework. A threshold on this score can
also be used to detect bad pixels. We then avoid computing their 3D position
and refrain from using them for propagation. As shown in the real experiments
(Figure 4 Run B5 compared to Run C5) error correction based on local continuity
also improves the reconstruction in problematic regions and reduces the effects
of propagation errors.

Using more than three images: Clearly, more images contain more informa-
tion. Hence, by using more than three images we improve the reconstruction.
Our basic propagation scheme uses three or more images in a straightforward
manner. When more than three images are available, the least squares solution
clearly reduces the sensitivity to image noise.

The additional images can also be used to detect and avoid bad pixels which
exist in some of the images. A shadowed pixel or an occluded pixel can be
avoided by ignoring its value when the normal is computed. This is done in the
following way. For each set of intensities of corresponding points, we evaluate
the consistency of these values with a single normal:

s(0) = I(0) − LL+I(0).

This score is used to detect when a bad pixel exists and disregard it. Results
in Section 4 (Figure 4 Run C5 compared to Run C3) show that more images
improve the quality of the reconstruction.
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4 Experimental Results

We have implemented our algorithm and tested it on simulated and real image
sets. Simulated image sets enable us to compare the results with the ground truth.
Running the algorithm on real image sets is more challenging because we have to
supply the algorithm with projection matrices and lighting information which also
have to be recovered from the images, and thus the algorithm has to be able to deal
with these parameters which are inherently noisy. In addition the algorithm has
to deal with image noise and the inaccuracies of the Lambertian model.

Simulated images: We generated three simulated images (see first row Fig. 1)
of a bust of Mozart’s head from 3D range data used also in [10]. The algorithm
is given the parameters of the images (cameras and lightening) that were used
to generate the images and an initial known 3D-point to start the propagation.

We present here a comparison between the ground truth 3D surface and three
variants of our algorithm: the basic scheme (Run A), multi-neighbors approxi-
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Fig. 1. Simulated images experiments. The first row consists of the three input images
and an image with four cross sections. Comparison between the real and the recovered
3D shape from synthetic images are shown in the second row. Graphs (a-d) correspond
to the depth values along the lines marked on the image termed Sections. The red, blue,
green and black lines correspond to the ground truth and runs A, B and C respectively.
The reconstructed surfaces of the three variants of the algorithm, Run A, Run B and
Run C, and the original surface are shown on the third row.
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mation (Run B), and multi-neighbors approximation and local continuity error
correction (Run C). To evaluate the performance of the method the cross sec-
tions of the ground truth and the recovered 3D structures are compared (second
row of Figure 1). The graphs, show that the reconstruction of the surfaces is very
accurate in all the three runs for most of the face. The reconstruction starts to
drift in dark image regions, which are less reliable. This is compensated for in
Run C (Black graph), when multi-neighbors approximation and local continuity
error correction are applied.

To visualize the performance of the three runs we present the reconstructed
surfaces in the last row of Figure 1. The surface reconstructed by the basic
scheme (Figure 1 Run A) is relatively good, however, using multi-neighbors
(Run B) improves it. The reconstructed surface when both multi-neighbors and
the local continuity error correction are applied (Run C) is very similar to the
original one, except that some regions are not recovered at all. This is because the
algorithm detects that there is not enough information for reliable recovery using
local continuity. However, as can be seen from the graphs, the reconstruction is
more accurate in this run.
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Fig. 2. (a) The real images experimental setup. A calibration paper in the background
was used to calibrate the camera location, a subset of the nail shadows which are clearly
visible were marked by hand to compute the light source direction. The projection of
the head of the nails and their shadows are marked in blue and red respectively based on
their computed 3D location. The yellow line is the projection of the light source position
to the image plane. (b-c) Two additional original images used in the experiment.

Real images: We ran our algorithm on real images taken by a standard CCD
camera calibrated by the geometric calibration toolbox [1]. An image of the
setup is shown in Figure 2(a). The light source direction was estimated us-
ing a set of nails and their shadows whose 3D positions are estimated from
the images. Vectors connecting nail tips to their shadows intersect at the light
source position. The ambient light was determined to be the intensity value
in the shadow of the mannequin and the light source intensity was chosen to
be the maximal intensity value on the mannequin after reducing the ambient
value.
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Fig. 3. Three of the five cropped images used in the experiment. Note that each of them
was taken from a different viewpoint and with a different light source direction. The
black star is the corresponding point given to the algorithm. A grid of automatically
computed corresponding points in the images are marked such that corresponding
points have the same color in the different images. Six cross sections of Image 1 are
presented. The Red, Black, Blue Green lines represent results obtained for Runs C5,
B5, D5 and A3, respectively.

Two of the original images are shown in Figure 2(b-c) and three of the five
cropped images that were used in the experiment are shown in the first row
of Figure 3. The initial corresponding points, marked on the images in black,
were chosen by hand and then fine tuned to minimize the cost function in Eq. 3.
The basic scheme (Run A), its multi-neighbors approximation extension (Run
B), and multi-neighbors approximation and local continuity error correction
extension (Run C) were implemented in Matlab on three and five images. We
denote by Run A3, A5, B3, B5, C3, C5 the method used and the number
of images used. In addition we denote by Run D5 the basic scheme without
multi-neighbors approximation but with error correction applied to five images.

To illustrate the quality of the results, we present the performance of the
algorithm in the following figures: The correspondence of several image points as
computed by the algorithm are shown in the first row of Figure 3. Figure 4 shows
the reconstructed surfaces obtained by five variants of the algorithm: Runs C5,
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Surface C5 Surface C3 Surface B5 Surface A5 Surface A3

Fig. 4. 3D surfaces obtained by several variants of our method, as explained in the text.
The best reconstruction is Surface C5, where both multi-neighbors and error-correction
are applied.

C3, B5, A5, and A3. Finally, several cross sections of the surfaces recovered
by the algorithms are displayed in the second and third rows of Figure 3.

The results show that the correspondence and the reconstruction is fairly
good on most of the mannequin. This happens even in regions that are far
from the starting point (marked by a black star). When only the basic scheme
is performed, the results are noisy, but the rough shape of the mannequin is
perceived. Using the multi-neighbor approximation improves the performance
considerably (compare Surface A5 to B5), so does the error correction which
is based on local continuity (compare Surface B5 to C5). Using more images
improves the results (compare Surface C3 to C5 and Surface A3 to A5), however
the improvement is not dramatic and it mainly helps in filling in the gaps. Using
both extensions, averaging over the neighbors of the pixel and error correction
yields the best results for three and five images (Surfaces C3 and C5).

5 Summary and Conclusions

In this paper we introduced a new shape reconstruction algorithm for smooth
featureless surfaces under the perspective projection model. By enabling inde-
pendent motion of the camera and the light source an accurate reconstruction
algorithm is created. It builds on the strengths of photometric stereo, geometric
stereo and shape from shading while avoiding their weaknesses.

The algorithm has been tested in realistic settings using an experimental
setup that enables us to recover the input parameters to the algorithm from
images. Even though these parameters were estimated from the images, the
resulting recovered surfaces were quite accurate. These results can be improved
by modifying the reflectance model to deal with specularities and non-distant
light sources, which is relatively straightforward in our setup.

Future research will focus on methods to use more than the minimal number
of images to better detect and deal with bad pixels. Moreover, they can be used
to detect the initial set of corresponding points used to start the algorithm and
even to detect automatically the camera positions and light source directions
from the images.
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Abstract. Stereo vision is a long-studied problem in computer vision.
Yet, few have approached it from the angle of interpolation. In this pa-
per, we present an approach, Interpolation-based Iterative Stereo Match-
ing (IISM), that regards stereo matching as a mapping that maps image
position from one view to the corresponding position in the other view,
and the mapping is to be learned or interpolated from some samples
that could be just some initial correspondences over some distinct image
features that are easy to match. Once the mapping is interpolated, it
could be used to predict correspondences beyond the samples, and once
such predicted correspondences are corrected and confirmed through lo-
cal search around the predicted positions in the image data, they could
be used together with the original samples as a new and larger sam-
ple for another round of interpolation. In other words, interpolation for
the mapping is not one-time, but about a number of rounds of inter-
polation, correspondence prediction, prediction correction, sample set
enlargement, and so on, each round producing a more accurate stereo
correspondence mapping. IISM utilizes the Example-Based Interpolation
(EBI) scheme, but in IISM the existing EBI is adapted to ensure the es-
tablished correspondences satisfy exactly the epipolar constraint of the
image pair, and to a certain extent preserve discontinuities in the stereo
disparity space of the imaged scene. Experimental results on a number
of real image datasets show that the proposed solution has promising
performance even when the initial correspondence samples are sparse.

1 Introduction

Stereo matching is about pairing image positions across two images, that are pro-
jected by the same 3D features of the imaged scene. It is one of the most active
research areas in computer vision. Many stereo algorithms have been published
in the literature. Survey papers like [1], [2], [3], [4] reviewed the major techniques
and methods proposed in the period from mid 1970’s to early 1990’s. Recently,
Scharstein and Szeliski [5] provided a comprehensive discussion on stereo imple-
mentations, taxonomy, test data and results, as well as a test platform for the
stereo algorithms.

Existing stereo algorithms can be classified into two classes: window-based
algorithms and feature-based algorithms. In the window-based methods, dispar-
ity is computed by matching intensity windows cut out from each image about
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almost every image position. It has the advantage that a dense disparity map
could be attained, but then it suffers from the problem that not all intensity
windows are distinct enough to be matched with accuracy. In contrast, in the
feature-based algorithms, each image is first converted into a sparse set of dis-
tinct features that are to be matched across the images, and the matching is often
formulated as an optimization problem that makes use of the scene-smoothness
assumption. The established correspondences are often more reliable since they
are about distinct features, but then the dense disparity map is often available
only with some post-processings.

Our approach belongs to the latter class. We match distinct features only, but
then we formulate the matching problem not as an optimization problem but an
interpolation one, allowing correspondence establishment and interpolation to be
interplayed in alternative phases so as to result in having (1) correspondences
over only the distinct features in the image data, and (2) a dense disparity map
at the end. In the literature few have approached stereo vision in this direction,
for example, the process in [6] was cast within a Bayesian inference framework.

The interpolation tool we adopt is the so-called Example-Based Interpolation
(EBI) [7], [8], which is a mechanism that learns or interpolates, from examples,
a function that passes all the input examples with minimal oscillations between
the examples. It has promising results, even with very sparse given example, in a
number of applications including object detection and recognition [9], computer
animation and graphics [10], image processing [11], and others.

We refer to our approach as Interpolation-based Iterative Stereo Matching
(IISM), in which we first extract initial correspondences over very distinct fea-
tures that are easy to match across the input images. By applying EBI, we then
treat stereo matching as a mapping that maps image position in one view to the
corresponding position in another view, and interpolate the mapping from the
existing examples of correspondences – the initial correspondences we extracted
earlier. Here, the EBI mechanism is adapted so that the mapping result satisfies
exactly the epipolar geometry that is estimated robustly from the given exam-
ples of correspondences. Once the mapping is interpolated, it could be used to
predict more correspondences than the initial samples, and once such predicted
correspondences are corrected and confirmed through local search around the
predicted positions in the image data, they could be used together with the
original samples as a new and larger sample for another round of interpolation.
In other words, interpolation for the mapping of stereo matching is not one-time,
but about a number of rounds of interpolation, correspondence prediction, pre-
diction correction, sample set enlargement, and so on, each round producing a
more accurate stereo correspondence mapping.

With IISM, even though correspondences are to be established over only dis-
tinct features in the image data so as to boost the correspondence accuracy, a
dense disparity map could still be resulted at the end. Furthermore, correspon-
dence establishment and interpolation are not separate but go hand-in-hand.

In essence, our approach views disparity map as a distribution of continuous
and smooth transitions over the initially obtained sparse correspondences. It has
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the scene-smoothness assumption implicitly embedded in the formulation and
would handle well those parts of the scene that are without occlusions. However,
it wouldn’t be adequate for the occlusion boundaries in the image scene.

In the interpolation formulation, the key to occlusion handling is that the
disparity value at an image position is interpolated from not necessarily the
disparities of its entire neighborhood. If the image position is about a point over
a smooth surface in 3D, the disparities of the entire neighborhood of the image
position will be used. However, if it is about a point over an occlusion boundary,
only part of the neighborhood should be involved in the interpolation process.

Based upon the above analysis, we propose a way to adapt the EBI-based
solution so that occlusions could be better handled. The idea is that the neigh-
borhood of an image position that is involved in interpolation is automatically
adjusted, which does not have to the entire neighborhood, so as to avoid over-
smoothing.

2 Review of EBI

The interpolation problem could be stated as this: given S input-output pairs
{(Vs, fVs)} : s = 1, 2, · · · , S} as examples of a function f : IRD → IR, construct
the scalar function value fV = f(V) for any arbitrary input V in IRD such that
it satisfies fVs = f(Vs) for all the S given examples. We shall refer to each Vs

(s ∈ {1, 2, · · · , S}) as the sth example point, and fVs the sth example value.
A natural inference of fV for any V is a weighted sum of the example values:

fV =
[
fV1 , fV2 , · · · , fVS

]
WV . (1)

where S×1 weight matrix WV = [w1,V, w2,V, · · · , wS,V]T represents, for comput-
ing fV at any arbitrary input V, the respective weights given to the S example
values. The problem thus boils down to the design of the weight matrix WV.

WV, in which the sum of all S weights is equal to 1 for any particular V, is
a function of V since naturally it varies with V in this way: the contributions of
the various example values fV1 , fV2 , · · · , fVS are in accordance with the relative
proximity of their examples points V1,V2, · · · ,VS to V. This implies:[

1
V

]
=
[

1 1 · · · 1
V1 V2 · · · VS

]
WV . (2)

To allow the interpolated function to satisfy the given input-output pairs
exactly, if V happens to be one of the example points Vs, where s = 1, 2, · · · , S,
the sth entry of WV is 1 while all the other entries are 0, i.e., for all s and Vα,
where s, α ∈ {1, 2, · · · , S},

ws,Vα =
{

1 if s = α ,
0 otherwise . (3)

One nonlinear design of WV determined by radial basis functions (RBFs),
as outlined in [10], [12], could ensure that the interpolated function fV satisfies
(2), (3) and passes through the input examples exactly and smoothly. We shall
make use of this solution in this paper but do not list it here for lack of space.
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3 Applying EBI to Stereo Matching Problem

Suppose in image pair of I and I ′, we have C initial corresponding points
(m1,m1

′), (m2,m2
′), · · · , (mC ,mC

′), where mc = [uc, vc]T in image I and
mc

′ = [uc
′, vc

′]T in image I ′, c = 1, 2, · · · , C. The 3 × 3 fundamental matrix F
and epipoles, e = [ue, ve]T in image I and e′ = [ue

′, ve
′]T in image I′, are known.

Given any point m = [u, v]T in image I, then determine its corresponding point
m′ = [u′, v ′]T in image I ′ such that m and m′ satisfy the epipolar constraint.

We apply EBI scheme to the stereo matching problem here and treat the given
image point m and its matching point m′ as the input and output of a function,
the given C corresponding points, (m1,m1

′), (m2,m2
′), · · · , (mC ,mC

′), as exam-
ples of that function, and regard stereo matching as a problem of interpolating
the function from the examples.

3.1 Applying EBI Without Epipolar Constraint

For any general feature whose image position in image I is m, we are to predict
its corresponding image position m′ in image I ′. The prediction is derived from
how m is positioned relative to all mc’s (c = 1, 2, · · · , C) in image space. We
could use the solution of EBI in Sect. 2 to learn a C×1 weight matrix Wm from
m and mc’s such that[

1
m

]
=
[

1 1 · · · 1
m1 m2 · · · mC

]
Wm .

With Wm, we could use (1) in Sect. 2 to determine the image position m′ of
the same feature in image I ′ as following:

m′ =
[
m1

′,m2
′, · · · ,mC

′]Wm .

Note that the above method does not consider the epipolar constraint, so the
results might not satisfy the epipolar geometry [13] listed in the following:[

m′T, 1
]
F
[
mT, 1

]T = 0 . (4)

3.2 Bundling EBI with Epipolar Geometry

Since the fundamental matrix and epipoles are known, given any point in one
image, its corresponding point in another image must locate on the epipolar
line, the search problem decreases to one dimension. To incorporate the epipolar
constraint, we show all image points in both images I and I′ are represented by
polar coordinate instead of Cartesian coordinate as illustrated in Fig. 1, i.e.,

mc =
[
uc, vc

]T ≡ [θc, rc]T and mc
′ =

[
uc

′, vc
′]T ≡ [θc ′, rc ′]T ,

where c = 1, 2, · · · , C. rc (rc ′) is the Euclidean distance between mc (mc
′) and

e (e′), θc (θc ′) is the epipolar line given by the image point mc
′ (mc) such that

θc ≡ FT [mc
′T, 1

]T and θc
′ ≡ F

[
mc

T, 1
]T
.
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Fig. 1. Cartesian coordinate and polar coordinate for image point in image

For the matching problem, given any point m = [u, v]T ≡ [θ, r]T, we firstly
calculate its corresponding point m ′’s polar coordinate and then determine its
Cartesian coordinate, the detail steps are:

Step 1: According to epipolar geometry, m′ must locate on the epipolar line

θ ′ ≡ F
[
mT, 1

]T
.

Like above, using EBI to compute the C × 1 weight matrix Wm such that⎡⎢⎢⎣
1
θ
r
θ ′

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 1 · · · 1
θ1 θ2 · · · θC
r1 r2 · · · rC
θ1

′ θ2
′ · · · θC ′

⎤⎥⎥⎦Wm .

Wm so determined must satisfy the epipolar geometry.
Step 2: In image I ′, computing the distance r ′ between m′ and e′:

r ′ =
[
r1

′, r2
′, · · · , rC ′]Wm .

Step 3: Determining the Cartesian location of m′ in image I ′:

m′ =
[
θ ′, r ′

]T ≡ [u′, v ′
]T
.

The above is the ultimate mapping we desire: for any arbitrary point m in
image I, map it to its matching point m′ in image I′, which satisfies the epipolar
constraint defined in (4) exactly.

4 Matching from Sparse to Dense with IISM

In our approach referred to as Interpolation-based Iterative Stereo Matching
(IISM), we firstly extract initial correspondences, estimate initial epipolar geom-
etry robustly and then apply the EBI to have an interpolation to map the initial
correspondences. Such EBI applied is improved to have each mapping satisfied
exactly the epipolar constraint. Once the mapping is interpolated, it could be
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used to predict more correspondences than the initials, and once such predicted
correspondences are corrected and confirmed through local search around the
predicted positions in the image data, they could be used together with the
original samples as a new and larger sample for another round of interpolation.
In other words, the interpolation for the mapping of stereo matching is not one-
time, but about a number of rounds of interpolation, correspondence prediction,
prediction correction, sample set enlargement, and so on, each round producing
a more accurate and dense stereo correspondence mapping than previous. The
following are detail descriptions to the procedures of IISM:

Step 1: Extracting initial sparse correspondences at distinct features from the
given stereo image pair. We utilize the software of IMAGE-MATCHING,
developed by Zhang et al. [14], to create the initial corresponding points.

Step 2: Discarding the outliers. We could apply some robust estimation meth-
ods such as RANSAC [15] and Least Median of Squares (LMedS) [14], [16]
to detect the outliers in the initial matches. Our purpose is to estimate
the 3 × 3 fundamental matrix F, which has only 7 degrees of freedom, so
only 7 matches can give at least one solution of fundamental matrix. In our
procedure, we firstly choose 7 point matches from the whole given corre-
spondences with the techniques so-called Russian Roulette Wheel Selection
or Monte Carlo method, and then apply the LMedS method to get the robust
matches without outliers.

Step 3: Estimating the epipolar geometry from the matches determined by
LMedS. With these matches, we firstly run the 8-point algorithm [17], [18]
to obtain an initial estimation of fundamental matrix, and then use the non-
linear method discussed in [16] to robustly estimate the epipolar geometry
(including fundamental matrix and epipoles in two images).

Step 4: Matching from sparse to dense by applying EBI scheme. So far, we have
the epipolar geometry and the correspondences, both are robustly estimated,
in hand. As described in Sect. 3.2, for any general image position in one
image, we can apply EBI to predict its corresponding point, under condition
of satisfying the epipolar constraint, in another image. In this step, we can
get dense matching and produce a dense disparity map between the images.

Step 5: Adjusting the dense matching with image local information. In dense
matching established in Step 4, only geometric constraint, i.e., the epipolar
geometry and geometric relation among the input image point and all given
correspondences, has been used. The local information, such as texture, cor-
relation, intensity ordering etc., is not yet utilized, thus many matches are
possibly false. Here, we tune each pair of matches with normalized cross-
correlation and then double-check the adjusted matches with epipolar con-
straint. Those adjusted matches not satisfying the epipolar geometry are
discarded. Lastly, we get a new set of correspondences which satisfy not
only the global constraint, but also the local information. They will be used
as a new and larger sample for another round of interpolation.

Step 6: Running iteratively to get more promising results. Here our procedure
goes back to Step 2 and run from there once again.
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Fig. 2. For preserving the discontinuity of disparity, only those correspondences locat-
ing on shadow half-plane, anti-pointing to disparity gradient, are chosen as examples
to apply the next iterative EBI

IISM can be considered as the combination of global method and local method.
In fact we also incorporate the coarse-to-fine technique [19] in our approach to get
more fast and accurate dense matching. In our real process, we use 3 different
resolution levels and run 4 times of IISM in each level to get our experimental
results.

5 Preserving Discontinuity

EBI is a powerful method for constructing function from examples with minimal
oscillations between the example points. Thus at occlusion areas in image, the
discontinuity of disparity is generally smoothed by interpolation process, we need
develop the EBI to preserve the discontinuity.

Thanks to our iterative approach, we have last iterative result of disparity in
hand. In general, the magnitude of disparity gradient has large value at occlusion
areas. Along the tangent direction of disparity gradient with large magnitude
value is the discontinuity boundary. If we only choose the example points on one
side of the discontinuity boundary as final examples to apply EBI, the disparity
discontinuity could be preserved.

While given one image point, the disparity gradient and its magnitude are
calculated firstly. If the magnitude of disparity gradient on this point is larger
than threshold value, this point could be located in occlusion areas. We pay
more attentions to this situation and separate the image window to two half-
planes along the disparity gradient’s tangent direction, then we only choose those
corresponding points on the half-plan of anti-pointing the direction of disparity
gradient, the shadow area in Fig. 2, as the examples to apply IISM and find the
matching point in next round.

6 Experimental Results

We have implemented the proposed algorithm. In this section we present two
sets of experimental results on stereo image pairs of Rocks and Map to illustrate
the performance of the EBI-based solution to stereo matching.
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(a) (b)

(c)

(d)

(e)

Fig. 3. Experiment on stereo image of Rocks. (a) left image. (b) right image; (c) dispar-
ity map produced by IISM in smallest resolution; (d) dense disparity map produced by
IISM in smaller resolution; (e) dense disparity map produced by IISM in full resolution.
The 4 disparity maps from left to right in (c)–(e) are 4 iterative results respectively.

Fig. 3(a)–(b) are the original left and right images of stereo image pair of
Rocks, which are available at http://vasc.ri.cmu.edu/idb/html/stereo/ .
No considering the discontinuity smoothing problem, here we only use the IISM
detailed in Sect. 4 and the algorithm of coarse-to-fine. In coarse-to-fine process-
ing, we use 3 different resolution levels and run 4 iterations in each level. All
produced dense disparity maps are shown in Fig. 3(c)–(e). The 4 disparity maps
from left to right in Fig. 3(c) are 4 iterative results with 2nd subsampling res-
olution. Similarly, the 4 ones, from left to right, in Fig. 3(d) and 3(e) are 4
iterative results of dense disparity map with 1st subsampling and full resolution,
respectively.

The stereo image pair of Map, shown in Fig. 4 (a)–(b), is a widely used bench-
marking dataset available at http://www.middlebury.edu/stereo/ . Fig. 4(c)
is the disparity ground truth for the left image. In this experiment, we apply
the IISM method plus preserving discontinuity method to produce the dense
disparity map.

There are 2 objects in stereo image of Map, one is so-called front object and
another back object. Seeing from viewpoint at left view of Fig. 4(a), some areas
in back object just locating at right side of front object is occluded, but which
can be seen from the right view of Fig. 4(b). On the other hand, some areas in
back object just locating at left side of front object cannot be seen from right
view. Since we are considering the disparity for left image, the dense matching
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 4. Experiment on stereo image of Map. (a) left image; (b) right image; (c) dis-
parity ground truth for left image; (d) dense disparity map produced by IISM; (e)
dense disparity map produced by IISM with preserving discontinuity method; (f) while
processing by IISM, side view of symmetrical radial basis function centered on the point
marked with a plus in (d) and (e); (g) while processing by IISM with preserving discon-
tinuity method, side view of radial basis function centered on the point marked with a
plus in (d) and (e), the function is not symmetrical.

cannot be found correctly in the area where cannot be seen from right view, but
can be constructed in the occlusion area in right side of front object, so we can
only improve the results at occlusion area in this case.

To applying the method discussed in Sect. 5, we adjust our RBFs in EBI
algorithm and have the example points only in back object to affect the inter-
polation results in this discontinuity area. The RBFs are then not symmetrical
(see Fig. 4(g)). The produced dense disparity map is shown in Fig. 4(e). Com-
paring it to the result (see Fig. 4(d)) without using the method of preserving
discontinuity, we can see that the occlusion area shrinks very clearly.

7 Conclusion and Future Work

We have described a new interpolation mechanism IISM that could construct
dense correspondences in stereo image from sparse initial correspondences. IISM
utilizes the refinement technique of coarse-to-fine, iteratively applies the im-
proved EBI algorithm, satisfies the robustly estimated epipolar geometry,
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preserves to a large extent the discontinuities in the imaged scene, and produces
the dense disparity map for stereo image pair. Experimental results show that
IISM is effective in producing, even from sparse correspondences, dense dispar-
ity. Experimental results also show that the approach could achieve reasonable
results for scenes without heavy occlusions.

Future work includes how the approach could be further adapted to address
discontinuities explicitly, so as to handle heavy occlusions in the scenes better.
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Abstract. In this paper we attempt to solve the problem of synthesizing
a novel view corresponding to a virtual camera given the scene descrip-
tion in the form of images captured from other view points. We project
each line of sight emerging from the virtual camera on each of the given
views, align them geometrically and assign a color that is photo con-
sistent as per the radiance model. This being ill-conditioned, a smooth
variation of depth in the scene is utilized as the regularizing constraint.
It leads to development of an algorithm which is computationally fast
and generates visually realistic images with negligible artifacts even with
a limited number of input views. The proposed approach puts no restric-
tion on the view points from which the input images are captured.

1 Introduction

In past decade there has been a major research interest in developing methods
that will allow three-dimensional graphical interaction with objects and scenes
whose original specification began as images or photographs, unlike traditional
polygonal models. Novel view synthesis describes this class of techniques. Such
methods would lend themselves readily to applications like virtual reality, scien-
tific visualization, computer games and special effects for films.

Present novel view synthesis techniques can be classified into three categories
[1] according to their dependence on amount of geometric information used.

– Rendering with explicit geometry: Bill boards, view-dependent texture
mapping [2], 3D warping, layered depth image, etc.

– Rendering with implicit geometry: View interpolation, view morphing
[3], etc.

– Rendering with no geometry: Plenoptic modeling [4], light field [5], lu-
migraph [6], concentric mosaics [7], image mosaics [8], etc.

Most of the techniques in the last category are based on sampling and re-
construction of the plenoptic function [9]. Performance of these techniques, in
general, is limited by the fact that they fail to exploit the inherent structure of
the scene as they view it purely as a function reconstruction problem. On the
� Funded under the Swarnajayanti Project of DST.
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other hand rendering with explicit geometry requires extraction of the geome-
try of the scene which is still a challenging research problem. The use of scene
geometry implicitly tries to combine the advantages of both of these techniques,
albeit it invites additional problems like incompatibility with currently available
graphics processing hardware making it computationally demanding.

Our approach can be put in the category of rendering with implicit geometry.
The precursor to it are Irani et al.[10] and Fitzgibbon et al.[11]. Fitzgibbon et al.
use local texture statistic to regularize the solution. This requires performing a
combinatorial optimization for solving the labeling problem which makes their
approach computationally expensive. We utilize the concept of smooth variation
in depth in a small neighborhood of the scene to regularize the solution. Use of
this locally adaptive depth regularization helps in limiting the search space which
leads to reduction in the rendering time, making our approach very efficient
compared to that of Fitzgibbon et al. Our approach generates comparable result
with a fewer number of input images. It can be adapted for different radiance
models allowing it to target a wide variety of scenes. Proposed approach does
have some resemblance with that of ray tracing in computer graphics making
it possible to utilize the current graphics processing hardware to improve the
performance.

2 Problem Formulation and Assumptions

A set of n 2D images I1, ..., In are given along with the corresponding 3x4 projec-
tion matrix P1, ..., Pn [12]. The internal and external camera parameters which
characterize the novel view to be rendered are provided by specifying the projec-
tion matrix Pnv for it. The minimum and the maximum depth, Zmin and Zmax,
of the scene with respect to the image plane of the novel view are approximately
known. Currently a scene with diffuse and opaque objects is addressed.

The input requirement of the projection matrix, maximum and minimum
depth are not very restrictive. Recent advances in computer vision have made it
possible to estimate various camera parameters from the images themselves [12].
Moreover, only rough estimates for Zmin and Zmax are needed as we use them
primarily only to cut down the initial search space. As the rendering process
progresses they are adaptively adjusted by the algorithm.

3 Proposed Approach

The motivation for the present approach lies in the fact that the color visible at
a particular image point is the color of the first physical point in the scene which
is on the line of sight emerging from the camera center through the image point.
Figure 1(a) illustrates a typical scene, input views, a novel view and the line of
sight. To decide on the color at the point x in the novel view we back project it
to obtain line of sight in the scene. Projections of this line of sight on given input
images are extracted, geometrically aligned and stacked such that the projections
of a given point on the line of sight are all in the same column as shown in figure
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Fig. 1. Overview of the proposed approach. (a) Illustrative example of a scene. (b) Pi

is geometrically aligned projection of the line of sight from image Ii.

1(b). Columns corresponding to the physical points, which are not obstructed in
any of the input views, on the line of sight will satisfy the radiance model. The
first such column that is encountered as we move away from the virtual camera
center is used to calculate the new color using the radiance model.

Given an image I and its projection matrix P , a homogeneous 3D point X in
the space can be projected on the image point x, where x = PX. I(x) denotes
the pixel in the image to which the world point X projects.

I(x) = I(π(PX)), π(x, y, ω) = (x/ω, y/ω). (1)

Let Inv denotes the novel image to be synthesized and Pnv is its projection
matrix. To decide on the color of Inv(x) we need to determine the set of all
points in the space that map to this point. This set will constitute a ray in the
space passing through the camera center and the pixel location on the image
plane. To obtain this ray we split up the projection matrix as Pnv = [M |p4],
where M is a 3x3 matrix containing the first 3 columns of the Pnv and p4 is the
last column of it. Two end points of this ray, the camera center, are given by
−M−1p4 and, the point of intersection of the back projected ray and the plane
at infinity, by the point ((M−1x)T , 0)T . Hence the points along this ray are given
by X(z), where z varies such that the points are confined from Zmin to Zmax.

X(z) = z

(
M−1x

0

)
+
(
−M−1p4

1

)
. (2)

To decide on which color to select we need to find a point on this ray that satisfies
the radiance model. For this we define photo consistency and its measure at a
point.

Photo consistent point: A point P is photo consistent if the color set ob-
tained by projecting the point on each of the available images is consistent
with the radiance model for the surface on which P occurs.
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Error measure for photo consistency at a point: It is an increasing, non-
negative function which is representative of deviation of the point from being
photo consistent for a given radiance model. A smaller value reflects a better
match between the observed color set and the predicted color set using the
radiance model.

Let X(z) be a point on the line of sight at a depth z as obtained by equation
(2). The color of pixel in the ith image where this point projects is

C(i, z) = Ii(π(PiX(z))). (3)

The set of colors of pixels on which the point X(z) projects is given as

C(:, z) = {C(i, z)}ni=0. (4)

We calculate this set at a regular interval between Zmin and Zmax. Let C denote
the collection of all such sets for a given point x in the Inv

C = {C(i, z)|1 ≤ i ≤ n,Zmin < z < Zmax}. (5)

This collection C is now analyzed to locate the photo consistent point. For each
depth z we take the color set and evaluate the error measure of photo consistency

Err[z] = PhotoConsistencyErr(C(:, z)). (6)

The points where such an error measure is below a threshold Θ form a set S of
feasible points that are likely to be the physical points on the line of sight.

S = {X(z)|Err[z] ≤ Θ,Zmin < z < Zmax}. (7)

This set of points S will contain possibly a few points corresponding to the
actual physical points on the line of sight and a few others on account of noise
and occlusion in input images, and errors in the projection matrix. We need to
select a point which is most likely to be the first physical point on the line of
sight from the set S.

Novel view synthesis is a poorly conditioned problem and to obtain a fairly
good solution we need to regularize it. We use a smooth variation in depth
as the regularizing constraint. A point, Pphy , from S which satisfies the above
constraint is selected to calculate the color for the point in novel view. To prevent
over smoothening due the above constraint, a check that the error measure at
Pphy is in a small neighborhood of the error measure at the neighboring points
is also done. Thus we have

Pphy = X(z∗). (8)

such that z∗ satisfies following constraints.

(znb −Δz ≤ z∗ ≤ znb +Δz)&(Err[znb]−ΔE ≤ Err[z∗] ≤ Err[znb] +ΔE)(9)
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where znb is the depth value where the photo consistent point for neighbor of x
was obtained and Err[znb] is the measure of error in the photo consistency at
this point. If there is no point in S that satisfy both the constraints then point
which is nearest to the image plane from it is selected as Pphy .

After Pphy is calculated we need to decide on the color to be filled at the pixel.
For this we use the color set C(:, z∗) and the radiance model to predict the color
that is visible along the direction of the line of sight. This color is assigned to
the point x in the Inv. The above procedure is repeated for each image location
in Inv to generate the entire image. But the search space in the depth is reduced
by constraining the search to lie within the range [z∗ − Δz, z∗ + Δz] where
z∗ is the depth at the previously rendered point and Δz is a suitably chosen
measure of possible local variation in depth. In case equation (9) is not satisfied
for the chosen range due to occlusion or disocclusion, the range is relaxed to
[Zmin, Zmax] to prevent any possible propagation of error, still maintaining the
advantages of an adaptive search.

4 Implementation

The implementation of the algorithm is as given below.

INPUT:
Input Images Ii, where i = 1, ..., n.
Projection matrices Pi, where i = 1, ..., n.
Projection matrix of the novel view Pnv .
Minimum and maximum depths: Zmax and Zmin.

OUTPUT:
Image as seen from the novel view Inv.

BEGIN:
minz = Zmin; maxz = Zmax; numofstep = Fullstep;
For all pixel x in the image Inv

Calculate the set of points in space that project to P,
between minz and maxz as per numofstep

For all Point X(z) in the set
C(i, z) = Ii(π(PiX(z))); Project point on each image
C(:, z) = {C(i, z)}n

i=0; Calculate the set of color
Calculate the error in photo consistency
Err[z] = PhotoConsistencyErr(C(:, z))

End For
minErr = minimum(Err[:])
Set threshold
Θ = Fraction ∗ minErr

Calculate set of plausible points
S = {X(z)|Err[z] ≤ Θ, Zmin < z < Zmax}
Calculate z∗ satisfying the constraint (9)
Estimate color for current pixel
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Inv(x) = filter(C(:, z∗))
Readjust parameters minz & maxz

minz = z∗ − Δz

maxz = z∗ + Δz

numofstep = Reducestep

End For

For the current implementation we have addressed a scene having diffuse and
opaque objects. Hence a point on surface of any object will have the same color
in each of the image, where it is visible. So we have used variance of the color set
C(:, z) as the error measure for photo consistency. The threshold Θ is obtained
by scaling the minimum value of error measure by a fraction greater than unity.
In our case we found the value of 1.6 for the fraction to give good result.

Ideally, all colors in the set C(:, z∗) should be same but due to noise and
round off errors during quantization both in intensity domain and spatial domain
while digitizing the images, this may not hold true. Function filter( ) is used to
estimate the most likely color from the color set. We have tested mean filtering,
mode filtering, median filtering for this. Visual quality of the result obtained
using median filtering surpasses that of the others.

At each pixel location initially the search for the photo consistent point is
restricted to the small length of the line of sight around which the neighboring
pixels photo consistent point was found. This small length is divided into less
number of steps Reducestep. Only when the search fails to find a plausible point
in this small length then exhaustive search for such a point is carried out along
the entire length of line of sight with more number of steps Fullstep. This
strategy helps in reducing the computation as for most of the pixel the photo
consistent point is obtained in the initial restricted search itself.

5 Experimental Results

The image sequence and the camera projection matrices used to test the algo-
rithm were the same as used by [11] and were downloaded from http://www.
robots.ox.ac.uk/∼awf/ibr. They have been captured using a hand held camera
and calibrated using a commercially available camera tracking software devel-
oped by 2d3 Ltd. The images were converted to 8-bit monochrome images for
testing. A few of the images from the sequence are shown in figure 2.

For testing we select a sample of 8 images and render an image (serves as a
ground truth) from it using other 7 images. The results of the test are shown
in figure 3 and figure 4. Figure 3(a) shows the ground truth and figure 3(b)
shows the corresponding rendered image using the proposed approach. Visually,
the rendered image is a good reproduction of the ground truth. The difference
between the ground truth and the rendered image is shown in the figure 3(c).
The errors are quite insignificant and, as expected, are concentrated near the
depth discontinuities. The white areas in figure 3(d) show where the search
in the neighborhood of the previous pixel’s location has sufficed to obtain the
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Fig. 2. Examples of some of the input images taken from [11]

photo consistent point. It can be seen from the image that the exhaustive search
is required only in a few cases (dark points) where there is a discontinuity in
depth. Since most of the pixels need only a local search, the performance of the

(a) Ground truth (b) Rendered image

(c) Difference image (d) Locality of computation

Fig. 3. Results of an experimentation
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(a) Ground truth (b) Rendered image (c) Ground truth (d) Rendered image

Fig. 4. Results of experiments for two other views

algorithm is improved. Figure 4 displays the ground truths and the rendered
images for a couple of other views.

Figure 5(b) shows the error in photo consistency as a function of varying
depth for three neighboring pixel in the rendered image shown in figure 5(a).
Observe that error functions exhibit very similar behavior in all the three cases.
The surface is almost smooth and equidistant from the camera center hence the
minima in each case occur in the same neighborhood of depth. This supports
our contention that depth can be used locally as the regularization parameter.

The piecewise smooth nature of the functions shown in figure 5(b) is at-
tributed to the fact that the line of sight is over sampled by taking Fullstep =
2000. This brings to notice that for large, fixed number of sampling of the line of
sight there will be a lot of redundant computation as many of the adjacent points
on the line of sight will project onto the same pixels in each of the images. Such
a redundancy will lead to a computationally expensive implementation. The
maximum number of steps for any line of sight can be bounded by the maxi-
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Fig. 5. Illustration of the usefulness of local depth constraint. (a) Selection of three
neighboring pixels. (b) Error in photo consistency of the points on the line of sight, of
the pixels shown at the highlighted region in (a).
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Fig. 6. PSNR as a function of number of input images while rendering

mum number of pixel along the diagonal in the input images, assuming same
magnification in all input images. But this bound will be a very loose one for
majority of line of sights as it accounts for the case in which the projection of
line of sight will extend to the entire diagonal of one of the input images. This
is very unlikely to occur. A better strategy would be to calculate the number of
steps for each pixel by projecting the end points of the part of line of sight to
be searched in each of the image. The optimal number of step will be given by
the maximum number of pixels occurring on the line joining the two projected
endpoints, among all input images. Such an adaptive approach to determine the
number of steps leads to a computationally fast implementation.

The algorithm was implemented in C and tested on Fedora core 3 release 2.6.9
system having a Intel Pentium IV 3.00 GHz CPU and 256 MB RAM. Rendering
of the image in figure 3(b) of the size 490 x 490 pixels was done with Fullstep
= 75 and Reducestep = 10 in 10.132 sec.

Figure 6 shows the peak signal to noise ratio (PSNR) in the rendered im-
age as a function of number of input images and figure 7 shows a few rendered
images with different number of input images. Observe, performance of the al-
gorithm degrades gracefully as the number of available images decreases. This
is an important merit for practical systems. It can be ascertained visually from
figure 7(b) that even with 7 images the algorithm performs well. The decrease
in the PSNR as the number of images increases beyond 12 is because the new

(a) 4 input views (b) 7 input views (c) 12 input views (d) 17 input views

Fig. 7. Rendering results with varying number of input views
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views added had relatively large deviations in camera directions and the distance
between camera center with that of the novel view, thus increasing the occlusion.

In the presented approach when the input images are constrained to have an
identical focal length and co-planar image planes, a scenario similar to that of
light field [5] occurs. Conventional light field rendering assumes a constant depth
for the entire scene. This leads to aliasing for the large depth of scene [13]. In
the above approach constant depth assumption is not made for rendering. In
fact the depth information is estimated implicitly and used for rendering thus
counteracting the aliasing artifact. Lumigraph [6] performs depth correction of
rays to reduce the effect of aliasing. For this it requires a rough geometric model
of the object. In the present approach no such geometric model is needed.

6 Conclusion

We have proposed a computationally fast and accurate novel view synthesis
technique. Our approach utilizes the constraint of smooth variation in depth for
regularization. This also helps in limiting the search space, thus improving the
performance. Such a locally adaptive search has the possibility of error propa-
gation. But in our case, as exhaustive search was done initially and the photo
consistency measure in the locality was also considered, such error propagation
was not experienced in the results. Even though in this paper a Lambertian radi-
ance model is considered for the objects in the scene during the development of
the algorithm it is possible to extend our approach to other radiance model. We
have applied our algorithm to the set of real-life images and the visual fidelity
of the synthesized novel views is satisfactory.
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Abstract. We propose a technique for view synthesis of scenes with
static objects as well as objects that translate independent of the camera
motion. Assuming the availability of three vanishing points in general
position in the given views, we set up an affine coordinate system in which
the static and moving points are reconstructed and the translations of the
dynamic objects are recovered. We then describe how to synthesize new
views corresponding to a completely new camera specified in the affine
space with new translations for the dynamic objects. As the extent of
the synthesized scene is restricted by the availability of corresponding
points, we use a voxel-based volumetric scene reconstruction scheme to
obtain a scene model and synthesize views of the entire scene. We present
experimental results to validate our technique.

1 Introduction

In this work we have addressed the problem of view synthesis of a scene contain-
ing multiple independently translating objects from views taken by arbitrary
and uncalibrated cameras. This problem is different from the well researched
structure from motion problem in that the camera as well as some objects in
the scene are in motion. The motion of the objects is independent of that of the
camera and we assume, in particular, that while the camera can undergo rota-
tion as well as translation, the objects undergo translational motion only. Our
technique does not require that the internal parameters of the camera remain
fixed. We also describe a method to synthesize new views corresponding to a
completely new camera with novel translations for the dynamic objects.

We require that there be some static objects in the scene which provide three
vanishing points in general position. The vanishing points along with a static
scene point are used to set up a world coordinate system. Assuming the corre-
spondence of points on the static objects and the translating objects, we provide
a technique for recovering the affine structure of static points as well as points
on moving objects and their translations in this coordinate system. We also de-
scribe a technique to specify a new camera in the affine space different from

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 460–469, 2006.
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Fig. 1. The two instances of an object translating in time may be considered as two
separate objects in a static scene

those of the given views and a method to synthesize new views of the scene
with interactively chosen translations for the dynamic objects. Our technique
also works with multiple views of the scene in which the motion of the dynamic
objects need not be uniform.

As only points with known correspondence can be reconstructed, only the
images of such points can be computed in the new views. While triangulation
followed by texture mapping may be used to synthesize a large part of the
scene, the given images contain more information about the scene which is left
unexploited because of the lack of correspondences. To overcome this problem,
we propose using a volumetric scene reconstruction algorithm to obtain a voxel-
based model of the scene. Our approach is based upon the technique proposed
in [1]. Although this technique requires calibrated cameras, we show that it can
be used with an affine reconstruction without fully calibrating the camera. We
also propose a new geometry-based photo-consistency computation technique.

For reconstructing dynamic objects we consider the two instances of a moving
object in time as two different static objects in the scene. As shown in figure 1,
the two objects have two projections in the given images - a true projection of
the object in its actual position and a virtual projection of the object in its other
position. Since all objects are now static, a single fundamental matrix suffices,
contrary to the treatment in [2]. The epipolar constraints involving the true and
the virtual projections act as additional constraints, linear in the structure and
motion of the objects.

In [3] and [4] Homography Tensors are used for view synthesis of dynamic
points. However, the motion of dynamic points is confined to the same planar
straight line path across all given views, while our scheme can handle a change in
the direction of translation in 3D space. In [5], the problem of reconstruction of
a point moving on a straight line or conic-shaped path has been addressed. They
assume the camera matrices to be known and require at least five views of points
with straight line trajectories and nine views of points with conic-shaped trajec-
tories. We do not assume knowledge of the camera matrices and can reconstruct
the points even with two views. In [6], an analysis of the constraints imposed by
moving objects on the calibration parameters of the camera is presented. While
their aim is obtain a metric reconstruction, most of the constraints are nonlin-
ear and require nonlinear optimization techniques to be solved. In [7], a method
for reconstruction of scenes with multiple objects moving linearly with constant
velocities. While knowledge of internal camera parameters is not required, the
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work focuses on varying focal lengths with all other internal parameters known.
Although we work with an affine reconstruction, the motion need not be constant
and linear. Work on view synthesis of static scenes includes [8] and [9].

The paper is organised as follows. In section 2 we describe the affine re-
construction, view-synthesis scheme and experimental results in section 3. The
volumetric reconstruction technique is described in section 4. We conclude in
section 5.

2 Synthesis from Two Views

We start with two views I1 and I2 of a scene containing some static objects
and a single object in translational motion. The case for multiple translating
objects will be discussed later. We assume that correspondences on the static
and moving objects can be obtained from the two images.

2.1 Relating the Two Views

Without any loss of generality, we may choose one of the static scene points
with known correspondence, p1

0 and p2
0, in I1 and I2 , respectively, as the world

origin. Let v1
1,v

1
2 and v1

3 be three vanishing points in I1 obtained by intersecting
parallel lines in the static part of the world. Then, we may choose the directions
of the world axes in the scene directions corresponding to v1

1,v
1
2 and v1

3.
With this choice of coordinate system, the camera matrix for I1 becomes

M1 = [αv1
1 βv

1
2 γv

1
3 p1

0], where α, β and γ are unknown scale factors. If v2
1,v

2
2

and v2
3 are the corresponding vanishing points in I2 , the second camera matrix

may be written as M2 = [α′v2
1 β′v2

2 γ′v2
3 δ′p2

0]. Next we derive a relation
between the parameters α, α′ and δ′, β, β′ and δ′ and γ, γ′ and δ′.

Let X = (X, 0, 0, 1)T be a point on the world X axis. Let x1 and x2 be the
images of X in the two images respectively. Then,

λ1x1 = αv1
1X + p1

0

⇒ (λ1x1)× x1 = αX(v1
1 × x1) + (p1

0 × x1) = 0

⇒ αX = −||p
1
0 × x1||

||v1
1 × x1|| (1)

Similarly, from the second view,

α′

δ′
X = −||p

2
0 × x2||

||v2
1 × x2|| (2)

Dividing (2) by (1), we get,

α′

αδ′
=
||p2

0 × x2|| ||v1
1 × x1||

||p1
0 × x1|| ||v2

1 × x2|| ⇒ α′ = C1αδ
′
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where C1 = ||p2
0×x2|| ||v1

1×x1||
||p1

0×x1|| ||v2
1×x2|| . Similarly, choosing Y = (0, Y, 0, 1)T on the world

Y axis and Z = (0, 0, Z, 1) on the world Z axis, we get β′ = C2βδ
′, γ′ = C3γδ

′

where, C2 = ||p2
0×y2|| ||v1

2×y1||
||p1

0×y1|| ||v2
2×y2|| and C3 = ||p2

0×z2|| ||v1
3×z1||

||p1
0×z1|| ||v2

3×z2|| .
To be able to compute the constants Ci, i = 1, 2, 3, we need the correspon-

dences of the points X, Y and Z. We describe here how to compute x1 and x2;
correspondences y1, y2 and z1, z2 can be computed in a similar manner. The
image of the worldX axis in the first view is the line through p1

0, the image of the
origin and v1

1, the vanishing point in the X direction. So, x1 may be chosen to be
any point on this line. The corresponding point x2 will lie on the epipolar line,
l2x, of x1. l2x can be computed from the fundamental matrix, F12, from the first
to the second view. Also, x2 must lie on the image of the X axis in the second
view, which is the line through p2

0 and v2
1. Thus, x2 is the intersection of l2x and

the image of the X axis in the second view. So, the required correspondences can
be computed and the constants Ci, i = 1, 2, 3 can be determined. The camera
matrix M2 may then be parametrised as M2 = δ′[C1αv2

1 C2βv2
2 C3γv2

3 p2
0].

2.2 Obtaining Structure

We now describe how to obtain the structure of the static and dynamic points
in the scene and the translation of the dynamic points.

Let P be a point on the translating object. Assume that P = (X,Y, Z)T

when the first image is taken, and moves to Q = P + t, t = (tx, ty, tz)T when
the second image is taken. Let p1 be the image of P in the first view I1 and q2

be the image of Q in the second view I2 . Then, projecting P to I1 using M1
and Q to I2 using M2, we get

λ1p1 = v1
1(αX) + v1

2(βY ) + v1
3(γZ) + p1

0 (3)
μ2

δ′
q2 = C1v2

1(αX + αtx) + C2v2
2(βY + βty) + C3v2

3(γZ + γtz) + p2
0 (4)

where, λ1 and μ2 are scale factors required to have equality instead of projective
equivalence in equations (3) and (4). Let p2 be the virtual image of the point P
in I2 . Then,

λ2

δ′
p2 = C1v2

1(αX) + C2v2
2(βY ) + C3v2

3(γZ) + p2
0

Also, since p1 and p2 are corresponding points, p2 must lie on the epipolar line
l2 = (l2x, l2y, l2z) of p1 in I2 . So, we must have l2T p2 = 0, which implies

l2
T {C1v2

1(αX) + C2v2
2(βY ) + C3v2

3(γZ) + δp2
0} = 0 (5)

Similarly, if q1 is the virtual image of the point Q in I1 and l1 is the epipolar
line in I1 corresponding to q2, then l1T q1 = 0 and

μ1q1 = v1
1α(X + tx) + v1

2β(Y + ty) + v1
3γ(Z + tz) + p1

0

⇒ l1
T {v1

1α(X + tx) + v1
2β(Y + ty) + v1

3γ(Z + tz) + p1
0} = 0 (6)
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a), (b) and (c) are three input images of an indoor scene with a single trans-
lating object. (d)-(f) are the synthesized views.

Once l1 and l2 are obtained from the fundamental matrix between the two
views, we get additional constraints on the structure. Equations (3), (4), (5) and
(6) provide 8 linear equations in the unknowns αX, βY, γZ, λ1, λ2

δ′ , αtx, βty
and γtz of which αtx, βty and γtz are the constant for all points on the moving
object. Thus, given m points on the moving object, we have 8m equations and
5m+ 3 unknowns, forming an overdetermined linear system that can be solved
using SVD.

If there are two or more translating objects in the scene, with known point
correspondences, we can set up equations (3), (4), (5) and (6) for each additional
object and solve for the structure and translation. Thus, our scheme can han-
dle multiple dynamic objects with different translations. The structure of the
static points can also be obtained from the equations derived. We only require
equations (3) and (4) to solve for the unknown structure using SVD.

Our method can be extended to handle three or more input views. We only
require that the correspondence of the three vanishing points in different direc-
tions be available in all the given views and that the origin be visible in all the
views. The constants Ci relating the parameters α, β, γ of the first camera with
those of other cameras may be computed as before. Structure and translation
of points may be obtained by setting up equations (3), (4), (5) and (6), for all
views that the point is visible in. Thus, our scheme recovers the structure of
static points, the structure and translation of moving objects and the cameras
of the given views in an affine coordinate system.

3 Synthesis with a New Camera

The reconstruction scheme described above can be used to synthesize views in
which the camera undergoes rotation as well as translation. However, since the
reconstruction is in an affine space, we cannot directly specify a rotation and
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Fig. 3. Selecting a New Image Plane

translation for the virtual camera. We now describe a method for specifying a
new image plane and centre of projection (COP) for the virtual camera.

We first describe how to specify the COP, Cs, for the virtual view. It is well
known that if the camera matrix is given by Ms = [M ps

0], where, M is a 3× 3
non-singular matrix and ps

0 is a 3 × 1 vector, then the COP is Cs = −M−1ps
0.

Also, ps
0 is the image of the world origin in the virtual view. The virtual COP

may be specified in two ways- either directly by choosing suitable coordinates
for Cs, or by choosing the image, ps

0, of the origin in the virtual view and
computing Cs by the above formula. In our implementation, we have chosen the
second method. The camera matrix for a view with this COP and image plane
parallel to the image plane I1 is then given by Mtrans = [αv1

1 βv
1
2 γv

1
3 ps

0]. If a
view of the scene with only translational motion of the camera is required, we
can use Mtrans to obtain the projections of the reconstructed scene points. The
new view is then triangulated using the projections of the reconstructed points
and texture mapped from the given views.

If a view with a general motion of the camera is required, we need to specify
a new image plane. We select three points in the first image with known corre-
spondences to act as look at points for the new camera. The new image plane is
chosen so that it intersects the rays from the new COP to the reconstructions
of these points. Let the reconstructions of the chosen image points be P1,P2

and P3. We obtain the equations of the rays CsP1,CsP2 and CsP3. As shown
in Figure 3, we choose a point, Qi, i = 1, 2, 3, on each of the three chosen back
projected rays and the new image plane is taken to be the plane passing through
these points.

Next, we need to setup a coordinate system on the image plane to express
the coordinates of the projections of the scene points. For this we make use of
the camera matrix Mtrans. We have

Mtrans = [αv1
1 βv

1
2 γv

1
3 ps

0] =

⎡⎣πyT

πx
T

πT

⎤⎦
It is well known ([10]) that the the first row of a camera matrix represents

a plane πy through the COP and the y axis of the image plane, the second
row represents a plane πx through the COP and the x axis and the third row
represents a plane π through the COP parallel to the image plane. We take the
intersections of πx and πy with the new image plane. This gives two lines, lx and
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Fig. 4. (a) and (b) are input images of an indoor scene with a single translating
object.(c)-(d) are synthesized views with a user chosen translation of the moving object.

ly, on the new image plane and although πx and πy are orthogonal, lx and ly
need not be. However, we may choose one the lines, say ly, as the y axis and the
point of intersection of lx and ly as the origin of the image coordinate system.
The x axis is then a line passing through the origin and perpendicular to the y
axis. Once the coordinate axes have been computed, we may obtain the camera
matrix, Marb, as follows. The first row of Marb is the plane through Cs and the
new y axis and the second row is the plane through the new x axis. The third
row is a plane through Cs parallel to the image plane. Since the equation of the
image plane is known, the equation of this plane can also be obtained. Thus, we
can compute all the three rows of the camera matrix Marb. The images of all
scene points can be obtained by projecting them using Marb. Next, a window is
chosen on the image plane which defines the finite portion of the image plane
to which the scene projects. The window is scaled to the desired image size
using a transformation similar to the window to view-port transformation of
the graphics pipeline. Finally, the new image is rendered by triangulation and
texturing mapping from the given images. Although the choice of the points,
Q1,Q2 and Q3, defining the image plane is arbitrary, in practice it is beneficial

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) and (b) are input images of an indoor scene with two translating objects.(c)
-(f) are synthesized views.
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to restrict the set of possible image planes by imposing additional constraints
like fixing the distance of Qi, i = 1, 2, 3 from the principle plane.

Figure 4 shows two views (a) and (b) of an indoor scene with a translating
object with synthesized views (c)-(d). In (c), the dynamic object undergoes dif-
ferent translations, while in (d) the translation of the dynamic object is fixed
and the camera changes. Three vanishing points in general position were made
available by requiring that the scene contain man-made objects. In figure 5, we
have taken two images (a) and (b) of a scene with two translating objects. (c)-(d)
are synthesized views with different translations for the two objects and a new
camera. Note that there is a scale distortion in the synthesized views because the
reconstruction is up to the three unknown scale factors. Views (e)-(f) have the
same camera as the first view, while the dynamic objects undergo user chosen
translations. Figure 2 shows three images, (a)-(c), of a scene with a translat-
ing object. Note that in the three views the object does not move on the same
straight-line path and translates in different directions. In (d) the translation of
the object is interpolated between (a) and (b), while in (e) and (f) it is between
(a) and (c).

4 Voxel-Based Scene Reconstruction

In this section we present the voxel-based scene reconstruction algorithm we have
used to obtain a model of the scene. We have adapted the technique proposed
in [1] to work with our affine reconstruction scheme as follows.

The reconstructed points are used to define a bounding volume containing the
scene in the chosen affine coordinate system. A list of surface voxels is intialized
and copied to another list of voxels to be checked for photo-consistency. Since
the cameras are known in the affine space, each surface voxel can be projected
into the given images and the set of pixels in its projection is determined. The
set of pixels to which the voxel projects to in each image is used to decide the
photo-consistency of the voxel. If the voxel is photo-consistent, it is retained
otherwise it is carved out. Voxels that become visible as a result of a voxel being
carved out are added to the list of voxels to be checked for photo-consistency.
The algorithm terminates when this list becomes empty.

Since the scene may contain surfaces with considerable amount of texture as
well as surfaces of uniform colour, the photo-consistency test should be able to
make correct decisions in both cases. While [1] proposes a number of photo-
consistency tests, most of them are based on statistical quantities like standard
deviation and colour histograms. We propose a consistency test that computes
a correspondence between the sets of pixels that a voxel projects to in the given
images. The idea is to compute the homography between the images with respect
to the front face of the voxel. This homography can be easily computed as the
world coordinates of the four corners of the front face and their projections in
the images are known. Once the homography is computed, for each pixel in the
voxel’s projection in the first image, we can find a corresponding pixel in the
voxel’s projection in the second image. We define the difference between the two
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) and (b) are input images of a static indoor scene. (e) and (f) are new
views synthesized using the voxel model while (c) and (d) are views synthesized using
corresponding points alone. (c) and (e) correspond to the same camera as do (d) and (f).

sets as the sum of the absolute differences in the intensities of corresponding
pixels. If this quantity is below a certain threshold, the voxel is declared to
be consistent and retained in the model, else it is carved out. Note that this
consistency test can make correct decisions about both textured regions as well
as regions of uniform colour.

Fig 6 shows two images (a) and (b) of an indoor scene with a considerable
amount of texture and colour variations. (e) and (f) are synthesized views cor-
responding to new camera locations and orientations. (c) and (d) are views syn-
thesized corresponding to the same cameras as (e) and (f), respectively, without
using the voxel model. Since no correspondences were available on the mug and
the background, they could not be synthesized in (c) and (d). Also, even if
correspondences on the mug were available, its shape would not be sufficiently
approximated by the triangles used for texture mapping. Fig 7 shows two images
(a) and (b) of an indoor scene with relatively less textured objects and (c) and
(d) are the synthesized views. In both cases, our algorithm is able to construct a
model with sufficient amount of detail. The quality of the synthesized images can
be further improved by texture mapping the areas which are covered by the tri-
angulation of the corresponding points and using the model for the other parts.
The quality of the model improves if the number of input images is increased.

(a) (b) (c) (d)

Fig. 7. (a) and (b) are input images of a static indoor scene. (c) and (d) are new views
synthesized using the voxel model.
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5 Conclusion

We have proposed a technique for view synthesis of scenes with independently
translating objects using the correspondence of three vanishing points in general
position. The static and moving objects are reconstructed in an affine coordinate
system and the translations of the objects are also recovered. We also provide a
technique to synthesize new views with a user chosen translation for the moving
object and a completely new camera specified in the affine space. We have used a
voxel-based volumetric reconstruction algorithm to obtain a model of the scene.
This removes the dependence on corresponding points and allows for a larger
portion of the scene to be synthesized in the new views. We have experimented
the scheme on a number of scenes and while it produces good results in most
cases, there was an affine distortion in some cases due to unknown scale factors.
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Abstract. In augmented reality, accurate geometric adjustment of real
scene and virtual 3D models is important. In this paper, we propose
a new method for generating arbitrary views of 3D motion events ac-
curately by using the mutual projections between user’s cameras and
cameras around the user. In particular, we show that the trifocal tensors
computed from the mutual camera projections can be used efficiently
for generating accurate user’s views of 3D motion events from multiple
camera images. We also show a method for identifying cameras projected
in other cameras by using the invariance in multiple view geometry. The
proposed method is implemented and tested in the real scene.

1 Introduction

In this paper, we propose a method for generating images viewed from arbi-
trary viewpoints very reliably in augmented reality systems. Recent progress in
computer vision research enables us to generate realtime images viewed from
arbitrary viewpoints. Kanade et al. showed that it is possible to reconstruct 3D
objects from a large amount of cameras and show motion pictures viewed from
arbitrary viewpoints [1]. It was also shown that by assuming the planarity of
objects, we can efficiently generate arbitrary views of non-rigid objects in the
scene[2].

Unfortunately these methods do not count the difficulty of adjusting gen-
erated virtual scenes with real scenes. For generating high quality images in
augmented reality systems, it is very important to keep the consistency between
the viewer’s motions and image motions viewed from the viewer. Even if we can
generate smooth and high quality images at given positions and orientations,
the actual quality of images viewed from the viewer is bad, if the measurement
of the positions and orientations of the viewer is bad. Thus, in augmented re-
ality systems, we cannot separate the generation of arbitrary views from the
computation of viewer’s positions and orientations.

On the other hand, the research on multiple view geometry showed that mul-
tifocal tensors can be used efficiently for generating arbitrary views from mul-
tiple images without reconstructing the 3D structure of the scene [3, 4, 5]. Since
the multiple view geometry is computed from images used for generating user’s
views, the adjustment of virtual models to the user’s views is quite good if the
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computation of multifocal tensors is accurate. Unfortunately, the computation of
multifocal tensors is unstable, if the configurations of 3D points and cameras are
close to the so called critical configuration[5]. For example, if 3D points in the
scene are close to coplanar, the multifocal tensors computed from these points
are very sensitive to image noises. As a result, the augmented reality images
generated from the multifocal tensors are also unstable under such cases. Since,
in general, planes such as floors and walls are dominant in the augmented reality
scene, this is a very big disadvantage of the method.

On the other hand, it has recently been shown that if the cameras are pro-
jected each other, we can extract strong constraints on the multifocal tensors
from camera images, and thus we can compute multifocal tensors very accurately
from less image correspondences[6]. Moreover, it is known that the multifocal
tensors can be computed even if the 3D points are completely coplanar. In this
paper, we apply the method for generating augmented reality images, and show
that by using the mutual projections between user’s cameras and the cameras
surrounding the user, we can generate augmented reality images very reliably,
even from planar scenes. Unfortunately, however, the use of mutual projections
cause a problem, that is if we have many cameras in the scene, we have to iden-
tify which cameras are projected each other. In this paper, we also propose a
method for identifying surrounding cameras projected to user’s cameras by using
the invariance in multiple view geometry.

2 Mutual Projection of Multiple Cameras

Let us consider M surrounding cameras, Ci (i = 1, · · · ,M), around the field.
The motion events occurred in the field are recorded in these M surrounding
cameras as shown in Fig. 1 (a). After recording the motion events, the user goes
into the field as shown in Fig. 1 (b). The user wears a HMD with a camera, CU .
Then, our task is to show the replay of the 3D motion events to the user, so that
the user can see the events at his viewpoints. For generating high quality views

(a) recording motion events (b) replaying motion events

Fig. 1. Recording and Replaying the motion events. First, the motion events in the
field are recorded in M surrounding cameras, Ci (i = 1, · · · , M) as shown in (a). After
recording the motion events, the user’s camera CU goes into the field as shown in (b).
Then, the image of CU is generated from the images of Ci (i = 1, · · · , M).
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(a) image of Ci (b) image of Cj (c) image of CU

Fig. 2. Mutual projections between a user’s camera and two surrounding cameras. The
projection of cameras in other camera images can be considered as epipoles.

of users from surrounding cameras, we propose a method for generating user’s
views by using the projection of cameras in other cameras.

Let us consider user’s camera, CU , and M surrounding cameras, Ci (i =
1, · · · ,M), around the user. We assume that the user’s camera CU is at around
the center of the surrounding cameras Ci, so that CU is projected to Ci (i =
1, · · · ,M). We also assume that at least 2 surrounding cameras are projected
to the user’s camera CU . If we have many surrounding cameras, such situations
occur in general.

Let us consider a 3D point, X, and let X be projected to mU = [m1
U ,m

2
U ,m

3
U ]�

in the user’s camera, and mi = [m1
i ,m

2
i ,m

3
i ]

� and mj = [m1
j ,m

2
j ,m

3
j ]

� in the i th
and j th surrounding cameras respectively (i, j = 1, · · · ,M). Then, we have the
following trilinear relationship on these image points:

ma
Um

b
im

c
jεbquεcrvT qr

a = 0uv (1)

where, T qr
a denotes a trifocal tensor, and εijk(i, j, k = 1, 2, 3) denotes a tensor

whose value is 1 if {i, j, k} is even permutation to {1, 2, 3}, and −1 if {i, j, k} is
odd permutation to {1, 2, 3}.

Let t be a vector which consists of the components of T qr
a , that is t =

[T 11
1 , · · · , T 33

3 ]� . If we have N corresponding points in three views, we have
a system of linear equations on t from (1) as follows:

Mt = 0 (2)

where, M is a 9N × 27 matrix and consists of the coordinates of corresponding
points.

The linear method for computing the components of trifocal tensors is to find
linear solutions, t, in (2). If we have N corresponding points, we have 4N inde-
pendent equations in (2), and thus minimum of 7 corresponding points provide
us solutions t.

Unfortunately, the linear solutions of (2) do not satisfy the geometric con-
straints of multiple views, since geometrically the DOF of the trifocal tensor is
18, while the rank of linear systems is 26 for unique solutions, t, up to a scale.
As a result, trifocal tensors computed from linear methods is sensitive to image
noises, if the number of corresponding points is small or the configuration of 3D
points and cameras is close to the critical configuration.
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To cope with this problem, a method for computing multifocal tensors by
using the mutual projection of multiple cameras has been proposed [6]. This
method enables us to compute multifocal tensors which fully satisfy geometric
constraints of multiple views, although it is a linear method. Since we apply the
mutual projection method for generating arbitrary views, we quickly review the
method.

Suppose a user’s camera, CU , is projected to two surrounding cameras, Ci

and Cj . These projections can be considered as epipoles, eiU and ejU in the
images of two surrounding cameras as shown in Fig. 2. If these surrounding
cameras are projected to the user’s camera, we also have two epipoles, eUi and
eUj , in a user’s image. Then, we have the following relationships between trifocal
tensors and epipoles [6]:

eb
iUec

jU εbquεcrvT qr
a = 0uva (3)

ea
Uie

c
jiεcrvT qr

a = 0q
v (4)

ea
Uje

b
ijεbquT qr

a = 0r
u (5)

Similar relationships between multilinear tensors were also studied in [10]. Thus,
if one camera is projected to other two cameras, we have 12 independent equa-
tions on T qr

a from (3). If two cameras are projected to other cameras, (3) and
(4) provide us 16 independent equations. If all three cameras are projected each
other, (3), (4) and (5) provide us 20 independent equations on T qr

a . Since a set of
corresponding points provides us 4 linear equations on T qr

a from (1), the number
of corresponding points required for computing T qr

a is 5 for mutual projection of
one camera, 4 for mutual projection of two cameras, and 2 for mutual projection
of three cameras respectively [6].

If we have the mutual projection of L cameras in three cameras, 2L epipoles
are available, and the remaining DOF in the three view geometry is 18−4L. On
the other hand, the mutual projections of one, two and three cameras provide us
12, 16 and 20 linearly independent equations. Thus the remaining DOF in the
linear system (2) is 14, 10 and 6 respectively, and these numbers coincide with
the remaining DOF in the three view geometry. Thus, if we have the mutual
projection of one, two or three cameras, we can linearly compute trifocal tensors
which fully satisfy the geometric constraints of three views.

3 Generating Users’ Views from Mutual Projection of
Cameras

By computing the trifocal tensors T qr
a between the user’s camera and 2 sur-

rounding cameras from mutual projections in realtime, we can generate images
in the user’s camera, mU , from images in 2 surrounding cameras, m1 and m2,
from the trilinear relationship (1).

The number of corresponding points required for computing T qr
a is depend

on the situations. If the surrounding cameras are not calibrated, we can only
use the mutual projection of one camera, that is e1U and e2U , and thus we need
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5 corresponding points in three views for computing T qr
a and generating new

views. If the surrounding cameras are projectively calibrated, that is if we know
the fundamental matrix, Fij , between ith and jth surrounding cameras, then we
need just 2 corresponding points for computing T qr

a and generating new views.
This is because eij and eji are available from Fij , and eiU , eUi, ejU and eUj

are given from the mutual projection of cameras, and as a result (3), (4) and (5)
can be used for computing T qr

a .
As we will show in the experimental section, user’s views generated by using

the proposed method is very stable comparing with the views generated from
the standard linear method [7].

4 Identifying Cameras from Invariance in Multiple View
Geometry

Up to now, we showed an efficient method for generating user’s views from
surrounding cameras by using the mutual projection of multiple cameras. In this
method, however, we have to identify which surrounding cameras are projected
to the user’s camera mutually. That is given two projections of cameras in a
user’s image, what is the serial number of these two cameras. Unless we have
the identification of the projected surrounding cameras, we cannot use mutual
projection of cameras for computing T qr

a and for generating images. In this
section, we describe a method for identifying surrounding cameras projected in
user’s cameras by using the invariance in multifocal tensors.

If the user’s camera moves in the field, the trifocal tensor, T qr
a , between the

user’s camera and two surrounding cameras changes. However, since the sur-
rounding cameras are stationary, the fundamental matrix, F, between these two
surrounding cameras does not change, even if the user’s camera moves. Thus,
if we extract a fundamental matrix between two surrounding cameras from the
trifocal tensor, T qr

a , it is invariant. Thus, we can use the invariance of F for
identifying cameras observed in the user’s camera.

SupposeM surrounding cameras are calibrated projectively, that is Fij (i, j =
1, · · · ,M) are known. Since the surrounding cameras are stationary, we can cal-
ibrate these cameras projectively in advance by using the bundle adjustment
based method [8]. Now, let us consider user’s camera in the field, in which 2
surrounding cameras are projected. Then, we can compute trifocal tensor T qr

a

between the user’s camera and 2 surrounding cameras. Then, by using the rela-
tionship between trifocal tensors and fundamental matrices [9], we can compute
the fundamental matrix F between these 2 surrounding cameras. Since we know
Fij for any pair of surrounding cameras, the surrounding cameras projected in
a user’s camera can be identified by finding i and j which minimize the square
distance between F and Fij as follows:

{i, j} = arg min(f − fij)�(f − fij) (6)

where, f denotes a 9 vector which consists of the components of F, and fij denotes
that of Fij . Both f and fij are normalized so that they have a unit length.
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Once the surrounding cameras observed in the user’s camera are identified, we
can compute trifocal tensors T qr

a accurately from just 2 corresponding points,
and can generate user’s views from the surrounding cameras as described in
section 3.

5 Experiments

5.1 Generating User’s Views

We first show some experimental results on generating arbitrary user’s views of
3D motion events from surrounding cameras. In this experiment, we used two
surrounding cameras, C1 and C2, and a user’s camera, CU . Fig. 3 (a) and (b)
show images viewed from two surrounding cameras. The fundamental matrix
between these two cameras is computed from many corresponding points in
advance. Then, we put a ball which is bounding in the scene. The image motions
of the bounding ball viewed from two surrounding cameras are recorded. We next

(a) (b) (c) (d)

Fig. 3. User’s view of motion events generated from two surrounding cameras by using
the mutual projection method. (a) and (b) show images viewed from two surround-
ing cameras, and (c) and (d) show user’s images viewed at two different viewpoints.
The blue points in these images show camera centers extracted and tracked by using
color information. The two red points in each image show corresponding points used
for computing trifocal tensors from the mutual projection method. The motion of a
bounding ball is recorded to the surrounding cameras and is projected to the user’s
views as shown in (c) and (d).

(a) (b) (c) (d)

Fig. 4. User’s view of motion events generated from two surrounding cameras by using
the normalized linear method. The red points show 7 corresponding points used for
computing trifocal tensors from the normalized linear method. See the caption of Fig. 3
for the explanation.
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generated user’s views of the bounding ball from the recorded images by using
the proposed method. Fig. 3 (c) shows motions of the ball viewed from the user’s
camera, which are generated from the proposed method. The blue points in (a)
and (b) show the user’s camera projected in two surrounding cameras, and two
blue points in (c) show two surrounding cameras projected in a user’s camera.
These points are extracted and tracked in realtime by using the color markers
attached on the cameras, and are used as epipoles in three view geometry. Two
red points in (a), (b) and (c) show corresponding points used for computing
trifocal tensors and for generating arbitrary views. As shown in Fig. 3 (c), the
bounding motions of a ball in the user’s view generated by using the proposed
method is very smooth and reasonable. Fig. 3 (d) shows the image motions of the
same bounding motions viewed from a different viewpoint. As shown in these
figures, we can generate very stable arbitrary views of the user by using the
proposed method.

We next generated the user’s views of the same bounding motions by using
trifocal tensors computed from the normalized linear method [7]. Fig. 4 (a) and
(b) show images of two surrounding cameras, and (c) and (d) show images of
a user’s camera at two different viewpoints. The red points in Fig. 4 (a), (b),
(c) and (d) show 7 corresponding points used for computing trifocal tensors in
the normalized linear method. 2 of these 7 points coincide with 2 points used in
the proposed method for a fair comparison. As shown in (c) and (d), the image
motions of a ball generated from the normalized linear method is not so stable.
From these results, we can see that the proposed method can generate much
more stable views of users from smaller number of corresponding points.

5.2 Accuracy and Stability Evaluation

We next evaluate the stability of the proposed method numerically by using
synthetic images. Fig. 5 shows a synthetic scene of a tower used in our experi-
ment. red point shows user’s camera and green and blue points show two of M
surrounding cameras. The synthetic images of these two surrounding cameras
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Fig. 5. Cameras and objects used for stability evaluations. The red point shows a user’s
camera, and the green and blue points show two surrounding cameras. The images of
the tower are taken from the two surrounding cameras and are used for generating the
image of user’s camera.
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Fig. 6. Stability of user’s images generated from two surrounding cameras. (a1), (a2)
and (a3) show example images generated from the proposed method, and (b1), (b2) and
(b3) show those from the normalized linear method. The red points show corresponding
points used for computing trifocal tensors in each method.
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Fig. 7. Stability of user’s images generated from two surrounding cameras. The green
ellipses in (a) and (b) show the uncertainty bounds of image points generated from the
proposed method and the normalized linear method respectively.

are used for generating user’s images. We generated user’s images 100 times by
adding random Gaussian noises with the standard deviation of 1 pixel to all
image features including epipoles given as the projection of cameras. Fig. 6 (a1),
(a2) and (a3) show 3 example images generated from the proposed method, and
(b1), (b2) and (b3) show example images generated by using the normalized lin-
ear method. The red points in these figures show corresponding points used for
computing trifocal tensors between the user’s camera and two surrounding cam-
eras. Note, 2 corresponding points used for the proposed method are the subset
of 7 corresponding points used for the normalized linear method. The green el-
lipses in Fig. 7 show the uncertainty bounds of generated points in user’s images.
Fig. 7 (a) shows the result from the proposed method and (b) shows that from
the normalized linear method. As shown in Fig. 6 and Fig. 7, images generated
from the proposed method is much more stable than those from the normalized
linear method, although the proposed method is also a linear method.
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Fig. 8. The number of corresponding points and the errors of generated image points
in the user’s view
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Fig. 9. Identification of cameras in user’s images. (a) and (b) show two synthetic con-
figurations of a user’s camera and surrounding cameras. The green arrows show the
directions of a user’s camera, and the large red points show surrounding cameras iden-
tified as mutual projection cameras by using the proposed method.

We next show the relationship between the number of corresponding points and
the errors of user’s images generated from two surrounding cameras. The number
of corresponding points is changed from 2 to 16, and the mean square errors of
generated image points are computed in the proposed method and the normal-
ized linear method. The red and blue lines in Fig. 8 show the mean square errors
computed from the proposed method and the normalized linear method respec-
tively. As shown in this figure, both methods provide us good accuracy if we have
enough number of corresponding points. However, if the number of corresponding
points is small, the proposed method provides us much better accuracy.

5.3 Identification of Cameras in Images

We next show the results on the identification of surrounding cameras which
are visible from user’s cameras. Fig. 9 (a) shows a 3D configuration of a user’s
camera, CU , and 5 surrounding cameras, Ci (i = 1, · · · , 5). The green arrow in
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the figure shows the direction of the user’s camera. The synthetic images of these
cameras are generated and used for identifying surrounding cameras observed
in the user’s camera. The Gaussian noises with the standard deviation of 1
pixel are added to all the image points including visible epipoles in each image.
The fundamental matrix, F between two surrounding cameras observed in a
user’s image is computed from a trifocal tensor and used for identifying cameras
observed in the user’s image by using the proposed method. The red points
in Fig. 9 (a) show two surrounding cameras identified as the mutual projection
cameras observed in the user’s camera. From the red points and the green arrow,
we find that a correct pair of surrounding cameras is selected. Fig. 9 (b) shows
another 3D configuration of cameras and identified surrounding cameras. As
shown in these figures, correct pairs of surrounding cameras can be identified.

6 Conclusion

In this paper, we proposed a method for generating arbitrary user’s views of 3D
motion events from multiple camera images by using the mutual projection of
these cameras. In particular, we showed that the trifocal tensors computed from
the mutual camera projections can be used efficiently for generating accurate
user’s views of 3D motion events from multiple surrounding cameras. We also
proposed a method for identifying surrounding cameras projected into user’s
cameras by using the invariance in multifocal tensors. The proposed method is
implemented and tested for generating realtime motion images of 3D motion
events viewed from arbitrary viewpoints.
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Abstract. This paper presents a novel algorithm for obtaining a high
spatio-temporal resolution video from two video sequences. These se-
quences are high resolution with low frame rate and low resolution with
high frame rate. To this end, we introduce a dual sensor camera that can
capture these sequences with the same field of view simultaneously. The
proposed method observes motion information through the video with
high frame rate. Moreover, the method conducts both motion compen-
sation for the high resolution sequence and image fusion in the wavelet
domain. We confirmed that the proposed method improves the resolution
and frame rate of the synthesized video.

1 Introduction

In recent years, charge coupled devices (CCD) and CMOS image sensors have
been widely used to capture digital images. With the development of sensor
manufacturing techniques, the spatial resolution of these sensors has been in-
creased. As the resolution increases, however, the frame rate generally decreases
because the sweep time is limited. Hence, high resolution is incompatible with
high frame rate. There are some high resolution cameras available for special use,
such as a digital cinema. However, these are very expensive and thus unsuitable
for general purpose use.

Various methods have been proposed to obtain high resolution images from
low resolution images by utilizing image processing techniques. One of the meth-
ods to enhance spatial resolution is known as super resolution, which have been
actively studied for a long time. Conventional techniques of obtaining super res-
olution images from still images have been summarized in the literature [1], and
several methods for obtaining a high resolution image from a video sequence
have also been proposed [2, 3].

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 480–489, 2006.
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Frame rate conversion algorithms have also been investigated in order to con-
vert the frame rate of videos or to increase the number of video frames. Frame
repetition and temporal linear interpolation are straightforward solutions for the
conversion of the frame rate of video sequences, but they also produce jerkiness
and blurring at moving object boundaries, respectively. It has been shown that
frame rate conversion with motion compensation provides the best solution in
temporal up-sampling applications [4, 5].

Conventinal techniques mentioned above enhance either spatial or tempo-
ral resolution. We adopt a novel stragety to synthesize a high spatio-temporal
resolution video (i.e., high spatial resolution video with high frame rate). Our
approach synthesizes the video from two video sequences. These sequences are
high resolution with low frame rate and low resolution with high frame rate. To
this end, we introduce a dual sensor camera [6, 7] that can capture two video
sequences with the same field of view simultaneously. The dual sensor camera
consists of conventional image sensors, allowing for inexpensive construction of
the camera. Moreover, another advantage of this approach is that the amount
of video data obtained from the dual sensor camera can be small.

Several works that are related to our approach have been conducted. Shecht-
man et al. have proposed a method [8, 9] for increasing the resolution both in
time and in space. Matsunobu et al. have proposed a method to solve the same
problem covered in this paper using image morphing [10]. In their methods,
all processes are conducted in the image domain. However, it is difficult to ex-
tract and track the feature points in that approach, so there exist several cases
where resolution enhancement of the video cannot be achieved. Another algo-
rithm proposed by Watanabe et al. [11] conducts motion compensation for the
high resolution images in the image domain, and fuses the spectrum of the com-
pensated image with that of the temporally corresponding low resolution image
in the DCT domain. That is, motion compensation and spectral fusion are done
in distinct domains, so the algorithm can be complicated.

To solve these issues, this paper presents a novel method for synthesizing a
high spatio-temporal resolution video using wavelet transform. The proposed
method conducts both motion compensation and fusion of two video sequences
in the wavelet domain, and thus can be uncomplicated. In our method, we use
redundant discrete wavelet transform (RDWT) [12], which is an extension of tra-
ditional discrete wavelet transform (DWT). Shift-invariant property of RDWT

Scene

Low resolution
high frame rate
camera

Beam splitter

Pulse
generator

High resolution
low frame rate
camera

Fig. 1. Concept of dual sensor camera
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allows motion compensation in the wavelet domain. In addition, our method
conducts motion compensation for all pixels in the image, i.e., it doesn’t contain
difficult problems such as feature extraction and tracking.

The rest of the paper is organized as follows. We present the dual sensor
camera in the following section. Next, we describe DWT and its property, and
then introduce RDWT in Sect. 3. Section 4 demonstrates the proposed algorithm
for synthesizing a high spatio-temporal resolution video. Section 5 shows some
experimental results. Finally, we conclude this paper in Sect. 6.

2 Dual Sensor Camera

The concept of the dual sensor camera used in our method is shown in Fig. 1. The
camera has a beam splitter and two CCD sensors. The beam splitter divides an
incident ray into the two CCDs. The camera can capture two video sequences si-
multaneously, using two different CCDs which can capture high resolution video
with low frame rate and low resolution video with high frame rate. Synchronized
frames between low resolution and high resolution sequences can be obtained by
means of the input of synchronization pulse. We call the synchronized frames
“key frames” in this paper.

We define the resolution ratio between the high resolution and low resolution
sensors as 2α : 1 (α ∈ N) and the frame rate ratio as 1 : ρ (ρ ∈ N). Moreover,
we assume σ = 2α. Two video sequences satisfying α = 2 (i.e., σ = 4) and ρ = 7
are obtained from the two video sequences captured through the dual sensor
camera [6, 7].

3 Discrete Wavelet Transform

DWT is one of the frequency transforms. In contrast to some frequency trans-
forms such as DFT, DCT, etc., DWT preserves the spatial information in the
frequency domain. We employ this property for motion compensation and image
fusion in order to conduct both operations in the wavelet domain.

It is known that the traditional DWT is shift-variant [13]. Hence, DWT co-
efficients of the image I(x, y) is generally very different from that of one-pixel
shifted image Is(x, y) = I(x − 1, y), so motion compensation of the wavelet
coefficients causes large error.

Shift-variance of DWT arises from the downsampling operation in the DWT
decomposition. To overcome this property, we introduce RDWT [12]. RDWT
removes the downsampling operation from the traditional DWT to ensure shift-
invariance at the cost of a redundant representation. Because of the shift-invari-
ant property of RDWT, the shift in the image domain is just the same as in
the wavelet domain. Therefore, motion compensation for each subband in the
RDWT domain can be performed essentially in the same manner as in the image
domain. The proposed method conducts both motion compensation and image
fusion in the wavelet domain, and thus can be simplified.
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Let Lf (j) and Hf (j) be the j-th level low-band and high-band DWT coeffi-
cients of f , respectively. Moreover, we denote L̂f (j) and Ĥf (j) as the j-th level
low-band and high-band RDWT coefficients of f , respectively, wherê represents
the RDWT coefficients.

DWT coefficients are correlated to RDWT coefficients as the following for-
mulae;

Lf (j) = L̂f (j) ↓ 2j, Hf (j) = Ĥf (j) ↓ 2j, (1)

where ↓ α denotes downsampling by a factor of α. That is, if y(n) = x(n) ↓ α,
then y(n) = x(αn). Therefore, RDWT reconstruction can be done as DWT
reconstruction (inverse DWT) by using the formulae.

4 Video Synthesis in Wavelet Domain

Figure 2 shows the outline of the proposed algorithm that synthesizes high res-
olution images. The method estimates motion information in the low resolution
video with high frame rate. Each frame of the high resolution video is decom-
posed by using RDWT. High frequency components of the RDWT coefficients
are motion-compensated, based on the estimated motion information, and then
downsampling is done for these components. Downsampled coeffficients are fused
with low resolution video frames. Finally, by applying inverse DWT, we obtain
a high resolution video with high frame rate.

In cases of streaming the video, RDWT and motion estimation are processed
on the server side, while the other processes are processed on the client side.

4.1 Terminology of Motion Estimation

The computation of the motion information is referred to as motion estimation
(ME). As shown in Fig. 3, if the motion from the frame at t to t + Δt is esti-
mated, then the frame at t and t+Δt are called the “anchor frame” and “target
frame” respectively. We distinctly call the estimation process “forward motion
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Fig. 4. Initial settings of proposed method

estimation” if Δt > 0 and “backward motion estimation” if Δt < 0. A motion
vector is assigned for every pixel of the frame at t in this case.

4.2 Process for Synthesizing High Resolution Video

We assume, as shown in Fig. 4, that there exist two pairs of key frames, (I0, Ĩ0)
and (Iρ, Ĩρ). We also suppose that the intermediate frames of these key frames,
I1, I2, · · · , Iρ−1, are obtained. Under the assumptions mentioned above, the
proposed algorithm synthesizes high resolution images Ĩ1, · · · , Ĩρ−1 in accordance
with the following process. The order of the synthesis of each frame is Ĩ1, Ĩρ−1,
Ĩ2, Ĩρ−2, · · · in this instance.

Step 1. (Initial Settings) Set bk = 1 and fw = ρ− 1, as shown in Fig. 4.
Step 2. Set s = bk , r = bk − 1 and c = fw + 1.
Step 3. (RDWT Decomposition) Calculate the following high frequency com-

ponents
L̂HĨr

(j), ĤLĨr
(j), ĤHĨr

(j) (j = 1, 2, · · · , α) (2)

by means of the RDWT decomposition for the high resolution image Ĩr ,
which has already been obtained. If the standard RDWT is used, then the
low frequency component L̂HĨr(α) can be obtained. However, L̂HĨr(α) is
not used in our method, so we do not need to calculate this.

Step 4. (Motion Estimation) Estimate the motion vector for each pixel of low
resolution image Is by the phase correlation method [14] where the anchor
frame and target frame are the low resolution images Is and Ir , respectively.
The motion vector is measured to an accuracy of 1/σ pixel.

Step 5. (Motion Compensation) Estimate each subband of Ĩs by conducting
motion compensation for corresponding subbands of Ĩr. Motion compensa-
tion for each subband is conducted according to the following equations;

L̂HĨs
(j)(xs, ys) = L̂HĨr

(j)(xr, yr) (3)

ĤLĨs
(j)(xs, ys) = ĤLĨr

(j)(xr, yr) (4)

ĤHĨs
(j)(xs, ys) = ĤHĨr

(j)(xr , yr), (5)



Video Synthesis with High Spatio-Temporal Resolution 485

where

xs = 2αx+Δx, ys = 2αy +Δy

xr = 2α(x+ vx
(x,y)) +Δx, yr = 2α(y + vy

(x,y)) +Δy,

for 0 ≤ Δx, Δy ≤ 2α − 1.
The failure to estimate a motion vector may occur when there is no

candidate of motion vector for which MSE is lower than certain threshold in
phase correlation method. If there exist positions where the method fails to
assign motion vectors, the motion estimation is conducted differently from
the method mentioned above. In this case, Is and Ic are used as the anchor
frame and target frame respectively, and each subband of Ĩs are estimated
by conducting motion compensation for respective subbands of Ĩc.

If the method fails to assign motion vectors to the coordinate (x, y) with
either procedure described above, zeros are substituted for each subband as
shown below.

L̂HĨs
(j)(x′s, y

′
s) = 0, ĤLĨs(j)(x′s, y

′
s) = 0, ĤHĨs(j)(x′s, y

′
s) = 0

(j = 1, 2, · · · , α) (6)

where

x′s = 2αx′ +Δx, y
′
s = 2αy′ +Δy, for 0 ≤ Δx, Δy ≤ 2α − 1. (7)

Step 6. (Downsampling) Conduct downsampling operation for each subband of
Ĩs in accordance with (1), i.e., calculate the following DWT coeffients from
RDWT coeffients.

LHĨs
(j), HLĨs

(j), HHĨs
(j) (j = 1, 2, · · · , α)

Step 7. (Image Fusion) Replace the low frequency component of Ĩs,LLĨ
(α)
s , with

temporally corresponding low resolution image Is. That is, let LLĨ(α)
s = Is.

Step 8. (IDWT) Conduct IDWT for each subband of Ĩs. As a result, we will
obtain a high resolution image Ĩs.

Step 9. Add 1 to bk .
Step 10. If bk = fw , then terminate this algorithm. Otherwise proceed to

Step 11.
Step 11. Set s = fw , r = fw + 1, and c = fw + 1, and then execute Steps 3 to 8.
Step 12. Subtract 1 from fw .
Step 13. Repeat from Step 2 to Step 12 until bk = fw .

5 Experiments

5.1 Simulation Experiments

We conducted simulation experiments to confirm that the proposed method syn-
thesizes high resolution video. We used simulation input image sequences from
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Table 1. Description of test sequences

Sequence Name Spatial Resolution Frame
Coast guard 352 × 288 1–295

Football 352 × 240 1–120
Foreman 352 × 288 1–295

Hall monitor 352 × 288 1–295

(a) Original frame (b) Close-up of (a) (g) Haar (h) Close-up of(g)

(c) Nearest neighbor (d) Close-up of (c) (i) Integer 2/6 (j) Close-up of (i)

(e) DCT fusion[11] (f) Close-up of (e) (k) Daubechies 4-tap (l) Close-up of (k)

Fig. 5. Test sequence “Foreman” 46th frame

the dual sensor camera. The simulated input images were made from MPEG test
sequences as described below. The low resolution image sequence (M/4 × N/4
[pixels], 30 [fps]) was obtained by a 25 % scaling down of the original MPEG se-
quence (M ×N [pixels], 30 [fps]), i.e., σ = 4. The high resolution image sequence
(M ×N [pixels], 4.29 [fps]) was obtained by picking up every seven frames of the
original sequence, i.e., ρ = 7. The proposed method synthesizedM×N pixel video
with 30 [fps] as the synthesized high resolution video with high frame rate. Table
1 shows the original MPEG sequences used in these experiments.

In these experiments, we used three wavelet functions for the image fusion;
Haar wavelet, Daubechies 4-tap filter [15], and integer 2/6 wavelet [16]. We
investigated the difference in the quality of the synthesized images between these
functions.

Figure 5 shows the original frame (a)(b) and an upsampled low resolution
frame using nearest neighbor method(c)(d). Figure 5 (e)(f) shows a synthesized
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Table 2. PSNR results

Sequence Haar Integer 2/6 Daubechies DCT spectral Nearest
Name Wavelet Wavelet 4-tap filter fusion[11] Neighbor

Coast guard 23.59 23.65 22.47 23.38 21.28
Foreman 26.08 26.27 24.29 25.88 23.67
Football 20.06 20.52 19.78 20.15 19.88

Hall monitor 31.90 32.08 25.44 30.81 21.78

frame by means of DCT spectral fusion method [11]. In Fig. 5, (g)(h), (i)(j)
and (k)(l) are synthesized frames using Haar wavelet, integer 2/6 wavelet and
Daubechies 4-tap filter, respectively.

Blocking artifacts are produced in the synthesized image using Haar wavelet
(Fig. 5(g)(h)), e.g., near the brim of the helmet. At these areas high frequency
coefficients of RDWT are replaced with zero because the motion vector is not
estimated. Haar wavelet is discontinuous, and thus the interpolation is conducted
roughly at these areas. This nature causes blocking artifacts. On the other hand,
these artifacts are reduced in the synthesized images using integer 2/6 wavelet
and Daubechies 4-tap filter (see Fig. 5(i)-(l)). This results from the smoothness
of these wavelet functions against Haar wavelet, so the smooth interpolation is
carried out.

Table 2 shows the simulation results of each test sequence. We compared the
peak signal to noise ratio (PSNR) between the synthesized and original images.
The obtained results using integer 2/6 wavelet are better in PSNR than the
results by means of up-sampling of the low resolution video (nearest neighbor)
and DCT spectral fusion method for all the four test sequences. This result shows
that the proposed method improved the resolution and frame rate.

PSNR results for the “Football” and “Foreman” sequences are relatively
worse. These sequences contain large amount of dynamic region. Hence there
are some regions where the motion information cannot be estimated, and thus
the PSNR results decreased. On the other hand, static region and pure trans-
lation mainly dominate in the “Coastguard” and “Hall monitor” sequences. So
the accurate motion estimation and compensation could be achieved and better
PSNR results were obtained.

5.2 Synthesis from Real Video Sequences

By calibrating two video sequences captured through the prototype dual sensor
camera [6, 7], two sequences were made;

– Size: 4000× 2600 [pixels], Frame rate: 4.29 [fps]
– Size: 1000× 650 [pixels], Frame rate: 30 [fps]

High resolution (4000 × 2600 [pixels]) video with high frame rate (30 [fps]) is
synthesized from two video sequences mentioned above using our algorithm.

Figure 6(a) shows an example of the synthesized frames. Enlarged image of
Fig. 6(a) is shown in Fig. 6(b). Figure 6(c) shows the low resolution image which
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(a)

(b) (c)

Fig. 6. Synthesized high resolution image from real images. (a) Synthesized frame, (b)
Close-up of (a), and (c) Corresponding low resolution image.

temporally corresponds to Fig. 6(a)(b). We can observe sharper edges in Fig.
6(b), while the edges in Fig. 6(c) are blurred. This result shows that our method
can also synthesize a high resolution video with high frame rate from the video
sequences captured through the dual sensor camera.

6 Conclusion

In this paper we have proposed a novel algorithm for obtaining a high resolu-
tion video with high frame rate from two video sequences with different spatio-
temporal resolution. The proposed algorithm synthesizes a high spatio-temporal
resolution video using motion compensation and image fusion in the wavelet
domain. We confirmed through the experiments that the proposed method im-
proves the resolution and frame rate of video sequences.
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Abstract. A novel algorithm is presented in this paper for estimating the direc-
tion and strength of point light with the strength of ambient illumination. Exist-
ing approaches estimate these illumination parameters directly in the high  
dimensional image space, while we estimate the parameters in two steps: first to 
project the image to an orthogonal linear subspace based on spherical harmonic 
basis functions; then to calculate the parameters in the low dimensional  
subspace. The experimental results on CMU PIE database and Yale Database B 
showed the stability and effectiveness of this method. The resulting illumination 
information can help to synthesize more realistic relighting images and recog-
nize object under variable illumination. 

1   Introduction 

Illumination condition is a fundamental problem in both computer vision and graph-
ics. In computer vision, we frequently need to undo the effects of the reflection opera-
tor: to invert the interaction between the bidirectional reflectance distribution function 
(BRDF) and lighting. In computer graphics, the interaction between the incident illu-
mination and the BRDF is a basic building block in most rendering algorithms. For 
instance, the estimation of lighting condition is important in face relighting and rec-
ognition, since synthesized realistic images can alleviate the small sample problem in 
face recognition applications. 

Many algorithms [1-6] have been proposed to estimate the illumination parameters 
directly in the image space. Some of these algorithms [3-5] use a calibration sphere to 
estimate illumination condition which is impracticable under some circumstance. Y. 
Zhang [6] and W. Yang [1] introduce a novel algorithm to find the critical points from 
which the illumination parameters could be determined. But for complex surface such 
as human face, it’s very hard to determine the critical points. D. Samaras [2] gives an 
iterative process to estimation of lighting direction and shape from shading but the 
computational cost is very heavy. 

Recently Basri [7, 8] and Ramamoorthi [9, 10] independently apply the spherical 
harmonics techniques to explain the low dimensionality of differently illuminated 
images for convex Lambertian object. Ramamoorthi even derives analytically the 
principal components of this low dimensional image subspace. The incident illumina-
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tion is described as a set of coefficients in the frequency space. This method have 
already been widely applied to the areas of inverse rendering [11], image relighting 
[12], face recognition [13, 14], etc. 

One of the limitations of this method is that the cast shadows are ignored. In the 
experiment results of [15], the cast shadows improve the face recognition result on the 
most extreme light directions. How to overcome this limitation is one of the motiva-
tions of our work. Another reason is that if we want to render a realistic image, usu-
ally we need the real light direction. Although the spherical harmonics coefficient of 
illumination could be easily estimated, how to recover the real light direction from 
these coefficients is still a problem. 

In this paper we consider an illumination model consisting of one point light 
source and ambient illumination. We propose a novel algorithm for estimating the 
illumination parameters including the direction and strength of point light with the 
strength of ambient illumination. Images are projected into the analytical subspace 
derived in [10] according to a known 3D geometry, then the illumination parameters 
are estimated from these projected coefficients. Our primary experiments proved the 
stability and effectiveness of this method. 

The rest of this paper is organized as follows. In section 2 we describe the illumi-
nation parameters estimation algorithm in detail. Experimental results on synthesized 
sphere images and real face images, and stability analysis of nonlinear least-square 
method are demonstrated in section 3. In section 4 we show our image relighting 
result and compared with the result of other image relighting algorithm. Finally, we 
conclude in section 5 with discussions and future work. 

2   Estimation of Illumination Parameters 

Consider a convex Lambertian object of known geometry with uniform albedo illu-
minated by distant isotropic light sources, the irradiance could be expressed as a lin-
ear combination of the spherical harmonic basis functions [9, 10]: 
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 is the spherical harmonics basis function, and 

ˆ
lA  is a constant which vanishes for odd 1l >  and decays rapidly. So we can obtain 

good approximation by limiting 2l ≤ . In fact, 99% of the energy of the Lambertian 
BRDF filter is constrained by 2l ≤  [10]. 

In this paper we consider a simple illumination model consisting of one distant di-
rectional point light source and ambient illumination. As mentioned in [8,10], the 
point light  source acts as a delta function, so its spherical  harmonics coefficients 

,m=Yl, m. The ambient illumination only contributes to L0, 0 [16].  So the illumination 
coefficients could be expressed as: 
L l 
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where ( , ) is the direction of point light, and Sa and Sp is the strength of ambient 
illumination and point light respectively. Altogether there are nine coefficients and 
four parameters, so it could be solved by nonlinear least-square method. 

One problem is that, although the spherical harmonic basis functions are orthogo-
nal in the sphere coordinates, they are not orthogonal in the image space. This prop-
erty causes the algorithm unstable in some case. This problem can be solved by means 
of projecting the image to an orthogonal linear subspace. One approach is to use PCA 
[17] on large number of images under different lighting condition to estimate the 
subspace, but it requires a lot of training data. Alternatively, we choose the analytical 
subspace constructed in [10], which requires no training data. 

We project the image to the subspace, get the coefficients γ : 
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is the eigenvectors of analytical PCA subspace in [10] and could be computed before-
hand. 

Defining 

, , , ,
,

ˆ ( ) ( ),l m l l m p q p q
p q

R AY n c Y n= r r
 (5) 

where R is constant matrix, and plugging into (4), we obtain 

, ,
,

.i l m l m
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R Lγ =  (6) 

Then we apply nonlinear least-square method to estimate the four unknown pa-
rameters , , Sa and Sp from the coefficients : 

, , ,
arg min .

a pS S

R L
α β

γ − ⋅  (7) 
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Finding a global extreme of nonlinear problem is very difficult. We choose the 
popular Gauss-Newton method to solve this minimal problem, which might stay on 
local minima.  

But the experimental results in section 3.3 show that if we choose enough coeffi-
cients, the energy surface guarantee the local minima is same as the global minima. 
(Note that we can use only a part of the PCA coefficients to solve this nonlinear 
minimal problem.) Actually the first five coefficients are enough for estimate these 
parameters stably.  

3   Illumination Estimating Result 

We experimented on both synthesized sphere images and real face images in CMU 
PIE database [18] and Yale Database B [15]. 

3.1   Synthesized Sphere Images Result 

First, we randomly select the four illumination parameters and synthesize 600 sphere 
images under the different illumination, in which the incident directions are limited to 
the upper hemisphere and the light strength parameters are normalized to satisfy Sa + 
Sp = 1. Then we test our algorithm on these synthesized sphere images. Similar to the 
Yale Database B, we divide the images into 5 subsets (12°, 25°, 55°, 77°, 90°) accord-
ing to the angle which the light source direction makes with the camera's axis. Fig. 1 
shows five synthesized images and first five principal components computed analyti-
cally, in which the positive values of principal components are shown in green and the 
negative values are shown in red. The average estimation errors of illumination pa-
rameters on each subset are shown in Fig. 2 separatively. 

From Fig. 2 we could see that the estimated light direction is accurate except on the 
extreme illumination direction. The average error of lighting direction on all images is 
not beyond 1 degree. For lighting strength the estimation error decreased when the 
angel light source direction makes with the camera's axis increase. Since the strength 
is normalized, the intensity level of 0.03 means about 7 grey levels in the image. 

In the above experiment, we use only 9 harmonics (Order 2) to calculate the eigen-
vectors in (4). We use high order harmonics Order 8 instead of Order 2, to repeat the  
 

 

Fig. 1. (a) First row shows five synthesized sphere images; (b) second row shows first five 
principal components of sphere images 
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Fig. 2. The estimation errors of illumination parameters on synthesized sphere image set, using 
Order 2 harmonics 

experiment. The result is more accurate, the average error of direction is within 0.01 
degree and the average error of strength is within 0.001. For limited length of this 
paper, the figure of the result is omitted. 

3.2   Real Images Database Result 

Then we apply this method on real images in CMU PIE database [18] and Yale Data-
base B [15]. One problem is that for real object the uniform albedo assumption is 
seldom satisfied. The work of [12] proves that when the albedo contains no first four 
order components (except the constant component), the approximation in (1) is still 
exact. For the albedo map of human face, [12] gives the conclusion that the coeffi-
cients of order 1,2,3,4 is very small, hence we could directly apply this algorithm on 
face images as [12, 14] did. 

We applied a generic 3D face model (shown in Fig. 3(a)) to approximate the 3D 
shape of faces for the fact that human faces have similar shape. Given a 2D image, to 
create the correspondence between the vertices of the mesh and the 2D image, we first 
create the correspondence between the feature points on the mesh and the 2D image. 
The feature points on the 2D image are marked manually as shown in Fig. 3(b). Then 
the rest of the vertices on the mesh and the 2D image are aligned with image warping 
technique. 

 
(a)                                         (b) 

Fig. 3. (a) generic 3D face model; (b) feature points 
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Fig. 4. The estimation result of illumination parameters on CMU-PIE database 
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Fig. 5. The estimation result on Yale Database B 

There are 68 persons in CMU PIE database. For frontal pose, each person has 22 
images with different light point source plus ambient lights on and off. We apply our 
method on the selected 15 peoples images and the result is shown in Fig. 4. Similar to 
the Yale Database B, we divide the images into 4 subsets (12°, 25°, 55°, 77°) accord-
ing to the angles the light source direction make with the camera's axis. 

We could see that the estimated strength is stable whether the ambient lights on or 
off, but the estimated error of light direction increases when the ambient light is on. 
The reason of estimation error lies in three aspect: the face skin is not perfect Lamber-
tian surface, the albedo is not constant, and the 3D shape is not accurate since we only 
use a generic face model. Considering these reasons, the estimated result is reasona-
bly acceptable. 

The Yale B database used above contains 5760 single light source images of 10 
subjects, in which each was seen under 576 viewing conditions. Because our focus is 
illumination problem, only 640 images of frontal pose is considered and the result is 
shown in Fig. 5. 

Fig.5 shows that the estimated strength is stable except on the most extreme light 
condition. With the extreme light condition the specular component of face skin be-
come important in the image, but the model couldn’t handle it. So the estimated Sa on 
subset 5 is quite bigger than normal value. The estimated error of direction also in-
creases when the light direction is far from camera’s axis. 

3.3   Stability of Nonlinear Least-Square Method 

In this section we discuss the stability of nonlinear least-square method since we 
choose the Gauss-Newton method to solve this minimal problem. If the iteration proc-
ess stops on the undesired local minima, it will give the wrong result. 

For simplicity, we restrict the minimal problem on two unknown parameters ( , ), 
and define the energy function: 
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LRF ⋅−= γ  (8) 

Now we could compute the value of energy function on all possible values of ( , 
). Choosing different number of coefficients derive different energy function. Fig. 6 

shows four different energy function, using 2, 3, 5, 9 coefficients respectively (x-y 
plane is the domain of ( , ), while the z-axis is the value of energy function F). 

 
(a)                                             (b) 

 
(c)                                             (d) 

Fig. 6. Energy function over ,  plane. (a) use 2 coefficients; (b) use 3 coefficients; (c) use 5 
coefficients; (d) use 9 coefficients. 

From Fig. 6 we could see that when we use only 2 or 3 coefficients, the Gauss-
Newton method might stay on the wrong local minima and give the wrong result, but 
if we use 5 or more coefficients, the Gauss-Newton method will always give the cor-
rect answer since the global minima is the only one local minima. 

For four unknown parameters , , Sa and Sp, the experimental results yield similar 
result. So the first five coefficients are enough for estimate these parameters stably. 

4   Image Relighting Result 

Generating photo-realistic images under different lighting conditions is a challenging 
problem. Ratio image technique [12, 19, 20] has been used widely in this field.  

But one problem of ratio image technique is that it could not handle the cast 
shadow. If there is no cast shadow in the original image, it won’t generate cast 
shadow in the re-rendered image though cast shadow exists in the reference image 
and vice versa.  

We could compute the cast shadow in the re-rendered images according the estima-
tion of the light direction in the reference image. Then we apply this cast shadow 
mask on the re-rendered image derived by ratio image technique to generate more 
realistic images. Fig. 7 shows the image relighting result.  
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(a)                                          (b)                                          (c) 

 
(d)                                          (e)                                          (f) 

Fig. 7. Image relighting results. (a) original image; (b) reference image; (c) ground truth; (d) 
relighting image by ratio image technique; (e) generated cast shadow mask; (f) (c)*(e) yield the 
final relighting result. 

From Fig. 7 we could see that there is no cast shadow in the original image, but it 
appears in the relighting images (f)(mainly the cast shadow of the nose). Since we 
only use a generic 3D model, the position of generated cast shadow is not very accu-
rate. If we could get the accurate 3D model of the specified person, the result will be 
better but it needs more training images. 

5   Conclusion and Future Works 

This paper presents an algorithm for estimating the parameters of single point light 
source plus ambient light from spherical harmonics coefficients in frequency space by 
a known 3D geometry. This algorithm project the image to a low dimensional or-
thogonal linear subspace, then estimate the illumination parameters in this subspace 
via nonlinear optimization method. So the speed of this algorithm is very fast, the 
time cost for a 276*225 image is only 0.27s on AMD 2.2G CPU. The experimental 
results on synthesized images and real face databases show the effectiveness of the 
algorithm on first 3 subsets (<55°). When the light direction is far from camera’s axis, 
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there are some cast shadows in the image since human face is not totally convex 
which cause the estimation result deteriorate. 

To solve this problem, we plan to iteratively calculate the cast shadow region on 
face model and remove it from the template according the result of the last step, 
henceforth estimate the new lighting direction parameters and update the cast shadow 
region. 

The estimated lighting direction could be used to generating more realistic image 
than popular methods based on ratio image technique, since we could calculate the 
cast shadow regions by ray-casting techniques. Furthermore it could be used in face 
recognition application to improve the recognition rate as in [15]. 
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Abstract. The implementation of a codec for real time applications such as 
video-conferencing at low bit rates is discussed. The discrete cosine transform 
has been used for compression, both in two spatial axes as well as in the time 
axis of the video sequence. A new method of frame by frame processing is pro-
posed which reduces the real time delay associated with processing and trans-
mission of successive video frames, with minimal memory and processing 
overhead. This implementation is inherently simple and also provides improved 
performance compared to other popular codecs 

1   Introduction 

The need for compression is constantly increasing due to the multimedia nature of 
mobile data. Video compression helps overcome this problem and is a necessary step 
for widespread introduction of applications of video based mobile phones like tele-
conferencing and video broadcasting. A satisfactory video compression technique 
must have the following characteristics: 

• It should produce levels of compression comparable to MPEG based and 
other standards without objectionable artifacts. 

• It should be able to compress as well as play back in real time with inexpen-
sive hardware support. 

• It should incorporate minimal delay, memory and computational complexity. 
• It should not degrade much under network overload or on a slow platform 
• It should be resilient to expected types of errors like packet loss during 

transmission. 

The proposed scheme aims at satisfying almost all the above mentioned criteria. A 
simplified scheme of the compressor with various components is given Fig.1. 

In the next section, the scheme, which implements the DCT in the third dimension 
or time axis, is discussed. In the sections that follow, the mathematical analysis of the 
proposed algorithm is explained, where a formula for error function has been derived 
and a method to minimize the cumulative error has been proposed. This is followed 
by a discussion of the actual results obtained. Other components are based on stan-
dard methods [1,3,5]. 
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Fig. 1. The Proposed Encoded Structure 

2   The 3-D DCT and the Proposed Algorithm 

The DCT is popular for its property of compact energy redistribution among fewer 
components in the transform domain compared to the original image. The formula for 
the three dimensional DCT (size 8X8X8) is :   
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where x,y,z are pixel indices in pixel space; f(x,y,z) is the value of a pixel in pixel 
space; u,v,w are pixel indices in DCT space; F(u,v,w)is a translated pixel value in 
DCT space; C(i)=1/ 2 for i=0 and C(i)=1 for i>0. 

Although standards like MPEG use different methods like motion compensation, to 
take advantage of correlation among successive frames, it has been found that such 
methods are computationally very complex and are therefore not well suited for 
transmission at low bit rates whenever computational simplicity is desired. Hence, of 
late, some research has been directed towards pure transform based techniques, which 
are simpler to implement, the 3-D DCT being one among them. Since an efficient real 
time fast algorithm for a “true” 3-D DCT has not been found yet, Eq(1) is imple-
mented by running the one dimensional transform once in all three axes: namely the 
X-Y spatial axes and the temporal axis T. DCT is found to perform optimally for all 
the three axes if the number of elements is 8[2]. Detailed structure of this algorithm is 
given in [7]. However, research has also been conducted on adaptive block size based 
on the estimation of the amount of motion present in the sequence. [6]  

In the conventional method using 3-D DCT [1], for every raw uncompressed video 
frame arriving at the coder, the DCT is first run in the X and Y directions for every 
8X8 block in the frame. Then, the temporal DCT is run on each row in the time axis, 
for 8 such successive frames collected.  For example, one of these temporal rows on 
which the time axis DCT acts is a set of pixels in positions (X=2,Y=3) in frames 
1,2,3,4,5,6,7and 8, which means a pixel in the same spatial location is taken from 8 
successive frames and the DCT is run on the row of 8 pixels thus formed along the 
temporal axis. This is repeated for all such possible rows along time axis. This is 
equivalent to splitting the whole video sequence of frames into 3 dimensional cubes 
of size 8X8X8 and running 3-D DCT on all such 3-D cubes formed. However, this 
conventional method presently used for 3-D DCT implementation [1] that has proved 
to be much simpler to implement compared to MPEG and motion based techniques, 
has the following drawbacks: 
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• The transform in time axis runs on 8 frames at a time, therefore each time it 
has to wait for 8 frames to accumulate before it can be run. This would lead 
to considerable time delay at the encoder as well as at the decoder. 

• This algorithm requires storage of 8 frames at any instance of time, thus re-
quiring considerable memory space. 

• Accumulation of 8 frames and their simultaneous transmission after process-
ing requires large bandwidth. 

Our proposed algorithm, given below, eliminates these drawbacks and also maintains 
the simplicity in computation: 

Step 1: We are required to wait only for the first frame to accumulate and initialize 
the sum buffer Bsum to 0.  
Step 2: Then the intraframe 2-D DCT is run on all 8X8 blocks of the first frame and 
transmit the data (after quantization and entropy coding).  
Step 3: This is repeated for the next 6 frames and the buffer Bsum is kept updated, by 
adding the pixel values of each new frame to  Bsum. It is to be noted that only the 
buffer Bsum is stored (which is of the size of a single frame) and not the frames them-
selves, thus saving on memory space. 
Step 4: The buffer Bsum is stored, which corresponds to the first 7 frames that have 
been coded. This frame consists of the sum of the values of those pixels that occupy 
the same spatial position in successive frames. Eg: Sum of pixels in position (1,1) in 
frames 0 to 6. 
Step 5: From frame 7 onwards, for every new frame coming in, the intraframe 2-D 
DCT is performed on that frame. Then, the temporal axis DCT is run for a group of 2 
frames: the most recent frame and the other stored frame (Bsum). This is run starting 
from the most recent frame moving towards the other stored frame (Bsum).  After this, 
Bsum is updated based on the modified algorithm explained in the next section. 

 

Fig. 2. Flowchart for the proposed algorithm 
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Step 6: Unlike the conventional 3-D DCT algorithm, which requires storing of 7 pre-
vious frames at any time, the proposed algorithm makes use of a single frame storage 
approach. This frame stored is the buffer Bsum. 
Step 7: Thus for each new frame N (N>6) which comes in now, use the frame N and 
buffer Bsum to encode this frame N using the 3-D DCT (followed by the standard 
quantization and entropy coding). This requires a modification of the 3-D DCT, 
which is explained in the next section. 

The flowchart for the proposed algorithm is given in Fig. 2. 

3   Modification of the 3-D DCT 

The 3-D DCT for each new frame N coming into the encoder (frame 8 onwards) can 
be expressed in terms of the 2-D intraframe DCT applied on the frame N as well as 
the temporal axis DCT applied on the Frame N along with 7 other previous frames. 

An important difference from the conventional method is that the temporal DCT is 
applied here in the reverse direction to that of the order of frame arrival, i.e. for 
frames N to N-7, by considering the most recent frame (frame N) as the first frame 
(frame ‘0’) for the temporal DCT. Since these previous frames are not stored, let only 
one “Sum” frame S be desired to be stored due to memory constraints, we adapt and 
modify the 3-D DCT to be applied on these 2 frames S and N only. Note that this 
frame S, which should contain the sum of pixels from frames N to N-7, is different 
from the actually stored buffer B mentioned earlier. The reason why this difference 
arises as well as the relation between S and B is derived later in this section. It will be 
shown that DCT frame ‘0’ (frame N in this case, since we are running the DCT in the 
reverse direction, from frame N moving towards frames N-1, N-2 and so on up to 
frame N-7) can be thought of as the DC frame, conveying the information common to 
each of the image frames. The other DCT frames all convey AC information, which 
corresponds to motion in the original image sequence. frame ‘0’ (frame N here) is 2-
D-Discrete-Cosine-Transformed to produce one frame F(0), with 2-D-DCT coeffi-
cients. Next, let all 8 frames (i.e. frame N to frame N-7) be 3-D-Discrete-Cosine-
Tansformed to produce a set of cubes (8X8X8 sized) of 8 frames with 3-D-DCT coef-
ficients F(u,v,w). The coefficients F(0,v,u), which correspond to frame ‘0’ (frame N 
in this case) can be calculated using Eq(1) by setting w=0 and rearranging w, y and x 
axes coefficients. 
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The rearrangement is done as it enables the use of the proposed algorithm along the 
temporal axis. Then, letting original image sequence F(z,y,x) = F(0,y,x) + (z,y,x), the 
operations on F(0,y,x) and (z,y,x) can be considered separately [2,4]. Here, F(0,y,x) 
is frame ‘0’ which when transformed, gives the ‘DC’ coefficient frame F(0,v,u) con-
taining the average pixel values for the 8 frame sequence considered. (z,y,x) is the 
term proportional to the amount of motion present in the frame sequence. We are 
interested in the transform coefficient set of frame ‘0’ (which is frame N in our frame 
sequence) F(0,y,x) which is F(0,v,u) and it is explored further below. 
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F(0,v,u), which is the 3-D DCT coefficient set  for frame ‘0’ (frame N) can be de-
composed into two components: these components are: 1) a term proportional to F(0) 
which contains the 2-D DCT coefficients; and 2) a term proportional to the amount of 
motion present in the 8 image frames (frames N-1 to N-7), relative to the first 
frame.(frame N).Thus, this  gives:  
F(0,v,u) = 8 * F(0) + S  (v,u); Where, the relative motion term, 
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Here, (x,y,z) is a pixel value relative to the corresponding pixel in the first frame 
(frame ‘0’) of the 8 frame sequence, with the same spatial location (x,y). Thus, the 
values in S  (v,u) depends on (x,y,z) for a given X and Y coordinate. Thus, S  (v,u) 
is directly dependent on the relative values of pixels in frames 1 to 7 (N-1 to N-7) 
with respect to the pixels (with same spatial coordinates) in frame ‘0’ (frame N). Thus 
for a particular spatial location (x=X,y=Y) and corresponding transform domain loca-
tion (u=U,v=V), 
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D(X,Y) can be re-written as, 
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Thus, for each frame, we require the sum of the 7 previous frames. For the first frame 
coded in this manner (frame 7), the sum frame S(x=X,y=Y) for a particular spatial 
location (X,Y) is given by, 

=

−=
6

0
1 )]7,,(*7[),,(),(

z

YXfzYXfYXS  (6) 

Note that frame ‘0’ for this case is frame 7, which depends on pixel values of previous 
frame numbers 6, 5, 4, 3, 2, 1 and 0. Similarly, for the second frame encoded in this 
manner (frame 8), 
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Extending this idea to any frame N, let f(X,Y,z) be denoted by f(z) and SN(X,Y) by 
SN.. Then, from Eq(7), the desired frame sum S2 requires the sum f1 +f2 +f3 +f4 +f5 +f6 
+f7. However, the sum buffer Bsum, which has been maintained in the encoder as stated 
earlier, actually has the value of buffer sum equal to Bsum= f0 +f1 +f2 +f3 +f4 +f5 +f6 
+f7. It is clearly seen that the buffer Bsum contains an extra term f0 (an unwanted con-
tribution from frame 0) that should be removed. However, the problem is that we no 
longer have the values of pixels from frame 0. To overcome this problem and still 



 An Efficient Real Time Low Bit Rate Video Codec 505 

minimize the effect of the pixels from frame 0 as desired (which is what would have 
happened had we been able to directly remove the extra term f0 from Bsum), the fol-
lowing procedure is followed: 

Subtract the mean M of pixel values f0 to f6 from the buffer Bsum and store it as B′ , 
instead of storing Bsum.  

MBB sum −=′  (8) 

where M = (f0 +f1 +f2 +f3 +f4 +f5 +f6)/7 
This results in an error due to the approximation of desired frame sum S(X,Y) by the 
actually stored sum buffer value B′ , which is: 
Error, 
E2 = EN = S(X,Y) – B′   = (f1 +f2 +f3 +f4 +f5 +f6 +f7 )–[ (f0 +f1 +f2 +f3 +f4 +f5 +f6 )- ( f0 

+f1 +f2 +f3 +f4 +f5 +f6  )/7]-f7. On simplification, 

E2 = (f0 +f1 +f2 +f3 +f4 +f5 +f6)/7 - f0 (9) 

Since for a slowly moving video, the changes in the pixel values are gradual, expected 
value of mean M is f0, hence error E 0, thus this method is proved to be convergent, 
which has also been validated with experimental results. Therefore, the approach we 
follow is to find the Error for frame N, EN = SN(X,Y) – B′  and try to minimize it. For 
a frame N+6 (run N of this motion based approach after the first 7 frames have been 
intraframe coded), EN+6 can be minimized by considering another related value C, 
which is defined as the error due to the unwanted contribution of a frame L (L<N+6). 
As an example, CN+6(0), which is the error due to the unwanted contribution of first 
frame, frame 0 to the above described processing of frame N+6, expressed as a per-
centage of the pixel values in frame 0 is obtained by extending Eq(8) and Eq(9) for 
any value N, and is given by, 
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Similarly, percent error due to contribution of pixels of frame 1 in the processing of 
frame N+6 is, 
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and so on. We design the receiver structure in order to minimize this cumulative error. 
Extending Eq(10) and Eq(11) for any general frame value L (L<N+6), the total cumu-
lative error sum due to C(0), C(1) etc. totally affecting a transmitted (and hence re-
ceived frame) N+6, is given by a recursive relation,  
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Thus, at the receiver, we need to have a Q buffer, which we keep on updating by 
adding Q N whenever a new frame received is decoded. This buffer Q thus contains 
the cumulative error history which takes care of the (recursive) first term in the right 
hand side of Eq(12).This value can be subtracted from the received coefficient values 
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to remove first error term. Also, similar to the transmitter, we also have a received 
frames sum buffer R, which is constantly updated by adding the scaled values (i.e. 
multiplied by N+5) of the pixels in the latest frames decoded. This removes the sec-
ond error term in the right hand side of Eq(12). The last term is of concern since this 
requires the storage of a frame that has been decoded 8 frames before the present 
frame. This requires a buffer H of the most recent 8 frames at the receiver, which is 
updated constantly, which is the main memory requirement for the decoder, similar to 
the 3-D DCT decoder. If this is done, the third term in the right hand side of Eq(12) is 
also eliminated thus removing all error terms. 

4   Results 

The encoder and decoder were simulated using MATLAB 6.1. The simulation was 
carried out for the conventional 3-D DCT, the proposed codec, and also the intraframe 
2-D DCT based codec. The original and encoded/decoded frames from a real time 
captured video are shown in Fig. 3. and Fig. 4. The calculation of the PSNR is in 
Table. 1. 

Although not evident here, there is a fair degradation of quality in this case, unlike 
the next sequence “Seaplane” where the quality is not lost much. This is because the 
original “Seaplane” sequence is of medium quality. 

Also, Table. 1 indicates that even before quantization and entropy coding, the bits 
per pixel value of 0.7 gives a PSNR of 15 to 24 dB that is acceptable for real time 
streaming. Further, in Table. 2, the comparison of the proposed method with the con-
ventional 3-D DCT is given. 

 
(a) 

 
(b) 

Fig. 3. (a) “Girl”-Original sequence (noisy in nature, typical of low quality streaming video)at 8 
bits/pixel. (b) “Girl” sequence passed through the codec at 0.7 bits/pixel. 
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(a) 

 
(b) 

Fig. 4. (a) “Seaplane” at 8 bits/pixel (A medium quality video). (b) “Seaplane” after compres-
sion to 0.7 bits/pixel. The medium video quality is maintained even after compression in this 
case. 

Table 1. Statistics of the 2 video sequences 

Sequence Bits 
per pixel 
(b.p.p) 

PSNR(dB) 
(proposed 
method) 

PSNR(dB) 
(conven-

tional method) 
1.Girl (noisy/streaming quality) 0.7 15.10 15.94 

2.Seaplane (medium quality) 0.7 23.66 24.49 

Table 2. Comparison between conventional 3-D DCT, simple intraframe 2-D DCT & proposed 
method for various test video sequences 

Method of compres-
sion used 

Time De-
lay in frame 
accumula-

tion (in 
seconds) 

Encoder Mem-
ory requirement 
(for a 340*240 
sized video se-
quence) in kilo-

bytes 

Bits per pixel 
(b.p.p) (before 

quantization and 
entropy coding) 

Conventional 3-D 
DCT 

0.25 614.4 0.7 

Proposed algorithm 0.03 153.6 0.7 

Intraframe 2-D DCT 
only (for each frame) 

 
0.03 

 
76.8 

 
1.875 
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For completeness, simple intraframe 2-D DCT has also been considered (which is 
similar to motion JPEG and does not take advantage of the temporal correlation 
among frames). It is clear from Table. 2 that the proposed algorithm retains the higher 
compression property of 3-D DCT. However, at the same time it does away with the 
time delay by reducing it to nearly (1/8)th of the delay in the 3-D DCT method. Addi-
tionally, the proposed method has the advantage of requiring lesser memory, which is 
(1/4)th that of 3-D DCT and is almost comparable to the minimal memory require-
ments of the basic 2-D DCT method. 

5   Conclusion 

The proposed algorithm has a performance, which is considerably superior to the 
conventional algorithm. In terms of time, the improvement is almost of an order of 
magnitude and requirement of memory is only about 25% of that required for the 
conventional method. These advantages are achieved while still retaining almost the 
same video quality as that obtained by the conventional 3-D DCT. As shown in the 
mathematical analysis in section-4, this method is convergent leading to zero error. 
However, there is scope for further improvement in finding the function, which 
minimizes the buffer H memory requirement at the decoder further over a large range 
of frame number N. 

References 

1. R. Westwater, B. Furht.: Real-Time Video Compression. Techniques and Algorithms. Klu-
wer Academic Publishers. Boston (1997) 

2. M Servais, G Jager.: Video Compression using the 3 dimensional Discrete Cosine Trans-
form. Proceedings of IEEE, COMSIG ’97 (1997) 27-32. 

3. Video Coding for Low Bit Rate Communication, H.263 Standard, ITU-T Recommendation 
H.263, February (1998) 

4. B.P.Lathi.: Signal Processing and Linear Systems. Oxford University Press (1998) 
5. P. Clarkson, H. Stark(Ed).: Signal Processing Applications for Audio, Images and Tele-

communications. 2nd Edition. Academic Press (1995) 
6. Furht, B., Gustafson, K., Huang, H., and Marques, O.:  An adaptive three-dimensional DCT 

compression based on motion analysis. In Proceedings of the 2003 ACM Symposium on 
Applied Computing. ACM Press, New York. (2003) 765-768 

7. Xiuqi Li and Borko Furht.: An Approach to Image Compression Using Three-Dimensional 
DCT. Proceedings of the Visual 2003 Conference. Miami, Florida. (2003) 



P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 509 – 518, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Employing a Fish-Eye for Scene Tunnel Scanning 

Jiang Yu Zheng1 and Shigang Li2

1 Dept. of Computer Science, Indiana University Purdue University Indianapolis, 
723 W. Michigan St. Indianapolis, IN46202, USA 

jzheng@cs.iupui.edu
http://www.cs.iupui.edu/~jzheng

2 Dept. of Computer and Information Science, Iwate University, 
4-3-5 Ueda, Morioka, Iwate 020-8551, Japan 

li@cis.iwate-u.ac.jp
http://cv.lk.cis.iwate-u.ac.jp

Abstract. This work employs a fish-eye to scan cityscapes along a street and 
register scenes in a compact scene tunnel image. A fish-eye has complete field 
of view along a route. We mount the fish-eye camera on a vehicle and estimate 
its pose initially with respect to the vehicle by referring to 3D structure lines of 
such as roads and buildings on a street. Sampling curves are then allocated in 
the image frame for dynamic scanning route scenes as the vehicle moves for-
ward. The accurate alignment of the curves ensures less distortion of shapes in 
the scene tunnel image. We also analyze the scanned results and evaluate align-
ments of the sampling curves to improve the scanning. The resulting scene tun-
nel is a continuous archive of the entire route in a city, which can be used for 
environment visualization and assessment, Internet based virtual navigation, 
city information indexing, etc. 

1   Introduction 

To register cityscapes for a visual map, the route panorama has been proposed to 
archive street scenes [1][2], which is a continuous image different from local pano-
ramic views at static positions. A video camera moves along a smooth path and a long 
image of the path is generated with the slit scanning mechanism [3][4][5][6][10][17]. 
The slit scanning differs from most of the image patch stitching [12] or video mo-
saicing, since only a pixel line is collected at an instance when the camera undertakes 
translation. The slit scanning requires no inter-frame matching and morphing in creat-
ing the image so that it is suitable for transiting cameras viewing scenes even with 
complex occlusions, and real time route scene archiving. In order to capture both 
sides of a street, multiple cameras have been stacked to scan a scene tunnel that con-
tains complete heights, three distinct aspects, and a long image length [6]. The com-
pact data size and complete coverage of scenes benefit scene visualization, texture 
mapping on urban models, image transmission for navigation, virtual tour, etc. 

In this paper, we explore the use of a fish-eye camera to achieve the scene tunnel 
acquisition. A fish-eye camera can capture half space scenes in an image, and thus is 
efficient to scan entire scene around the camera trajectory. It avoids many issues so 
far such as calibrating and synchronizing multiple cameras, integrating scenes at  
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different heights and sides, and normalizing photometric properties in the connected 
images for generating the scene tunnel. In this paper, we explore the following issues. 

(1) How to mount a fish-eye camera properly on a vehicle for route scenes? 
(2) How to align sampling pixels (lines/curves) in the image frame to scan a scene 
tunnel so that the shapes of typical structures on the street can be preserved? 
(3) How to calibrate the camera external parameter with respect to the street structure 
for localizing the sampling curves, if the camera is not set ideally on the vehicle? 
(4) How the shapes are distorted due to an imprecise setting of a sampling curve, and 
how it can be improved? 

Many works on the fish-eye camera calibration have been reported for 360 degree 
local panoramic view acquisition [7][8][9][13][14][15]. We will use these results for 
the calculation of the camera pose in an outdoor environment, in order to locate sam-
pling curves and implement scene tunnel scanning for long distances. 

In the following, we introduce the plane of scanning to acquire a scene tunnel, and 
the setting of a fish-eye camera in section 2. The selection of the sampling curves and 
their initial calibration in the image frame are discussed in section 3. The scanned 
results are analyzed and the refinement is given in section 4. 

2   Acquiring Scene Tunnel Along a Camera Path 

There is an expectation to project long route scenes to a single image, which can be 
simply retrieved with maps in GIS and many other applications. To capture complete 
views, a spherical retina is located on a vehicle O-X’Y’Z’ moving along a smooth path 
on a horizontal roadway. The ideal vehicle motion has a translation V in the heading 
direction and a rotation Ry around the vertical axis, realized by a four-wheeled vehicle 
with a good suspension system. 

2.1   Scene Tunnel Scanning Under Ideal Camera Setting 

To capture non-redundant scenes for a compact representation, a plane of scanning 
(PoS) is set from the retina center to scan scenes along its trajectory [5]. As the vehi-
cle moves forward, the temporal data on the PoS are projected towards the retina 
center and are imaged at a pixel curve C(θ) that is the intersection of the PoS and the 
retina surface. Here θ is azimuth angle of a line of sight in the PoS (correspond to 
latitude on the sphere). If we copy the temporal data from the sampling curve C(θ)
and list them along the time axis, a scene tunnel T(t,θ) is obtained. The reason to 
select a 3D plane for scanning is that many structure lines such as building rims and 
road edges exist in urban environments. A plane can scan them instantaneously to 
obtain straight shapes in the resulting scene tunnel.  

A PoS is desired to be set vertically in the 3D space when the vehicle is moving on 
a horizontal road; all architectures projected in the scene tunnel thus keep vertical for 
visualization and texture mapping [1][2]. The scene tunnel is the generalization of the 
route panorama that extends a pixel line to a sampling ring for the complete heights 
and sides [6]. To achieve this goal, multiple cameras are directed to different heights, 
which increases the system complexity.  
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Denote the angle between the vertical PoS and heading direction V by α. If a PoS
is non-orthogonal to V (α≠π/2), the scanned scene tunnel includes not only building 
fronts but also partial side façades on the street. If three PoS (α<π/2, α=π/2, α>π/2) 
are set for fore-side, side, and rear-side scenes along a street, scene tunnels can cover 
all the visible route scenes. 

Because the scene tunnel image is composed of consecutive 1D views, it has spe-
cial object shape distortion under the parallel-central projection [1][2]. We focus on 
three types of lines in the analysis. In a street space, there are vertical lines, horizontal 
lines orthogonal to the roadway, and lines along the roadway on the street structures 
(Fig. 1). These lines, denoted as line sets L, M, and N, are orthogonal to each other, 
and the remaining lines can be expressed as the linear combinations of them. The 
projections of L, M, and N sets in the image are denoted by l, m, and n, respectively. 
Considering the camera motion along N, PoS are set parallel to L and M for scanning 
architectures and ground. 

Fig. 1. Scanning a scene tunnel by a spherical retina along a path with typical structure lines 

2.2   Scene Scanning with a Fish-Eye Camera 

A fish-eye camera O-XYZ maps half-space scenes onto a circular image I(x,y). Ac-
cording to the equidistance projection model of the fish-eye lens [8], point P(X,Y,Z) in 
the space is projected to p(x,y) in the image and is represented in a polar coordinates 
system p(ϕ, γ) as 

ρ = (x2+y2)1/2 tanϕ = y/x              γ =ρ /f (1)

where γ is the angle between the line of sight OP and the optical axis OZ, and f is the 
camera focal length. The line of sight can also be represented by a vector in the O-
XYZ as  

(X,Y,Z) = v(ϕ,γ) = (sinγcosϕ, sinγsinϕ,  cosγ) (2)

We use a fish-eye lens (Olympus FCON-w2) in front of a video camera to capture 
image I’(x’,y’). By calibrating the internal parameters of the lens [15] such as optical 
center o(x0,y0), focal length f, and radial distortion, the coordinates of a point in 
I’(x’,y’) can be converted to that in I(x,y) that obeys the equidistance model. 

There are several ways to set the fish-eye camera for street scanning as depicted in 
Fig. 2. The camera can be mounted at front, side, top of the vehicle to face forward, 
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side, up, or fore-up directions, respectively. The sampling curves allocated must scan 
optical flows in the fish-eye image, in order to generate the scene tunnel image. 

(1) The forward setting obtains both building fronts and the ground. Two curves 
aligned with l and another curve on m can be set for scanning. The drawback is 
incapable of taking rear-side views. Moreover, angle α cannot be close to π/2. 
Otherwise, the image perimeter is sampled and the image quality is low. The 
same defect appears at the top. A large FOV is assigned to the ground that is not 
considered as important as the side scenes.  

(2) The camera set at the vehicle top can scan fore-side, side and rear-side scene 
tunnels with three sampling curves. Scenes lower than the camera position are 
not included in the scene tunnel. It wastes a large FOV on sky area if most scenes 
along a street are low.  

(3) Placing a fish-eye camera sideways covers entire side scenes and the camera is 
easy to mount. Three curves can be set for fore-side, side, and rear-side scene 
tunnels. However, two fish-eye cameras are needed for both-side scenes.  

(4) Directing the camera forward-up to include full building heights and partial road 
surface. It is an ideal setting we employ for our street scanning. 

For all the camera settings, the angular resolutions assigned to a high-rise are the 
same; directing the camera upward does not increase the building size in the image. 
The sampling curves are set according to the distinct PoS to scan L and M lines in O-
X’Y’Z’. As the vehicle traverses a street, a video is taken and the 1D data on the sam-
pling curves is copied to the scene tunnel at a fixed rate (30~60Hz). 

       (a) Locating fish-eye cameras on a vehicle            (b) Forward: curves scanning  lleft, lright, m 

(c) Upward: lrear lside, lfore,       (d) Sideways: lrear, lside, lfore,      (e) Forward-up: lleft, lright, m.

Fig. 2. Different settings of a fish-eye camera and their images with designed sampling curves 

V Sampling curve 

Fish-eye camera 

c

d

e

b
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3   Calibration of Sampling Curves for Scene Scanning 

After the fish-eye camera is mounted, there is no guarantee that the camera axis is 
exactly aligned with the V direction. We have to calibrate the orientation of the cam-
era system O-XYZ with respect to the vehicle system O-X’Y’Z’. This ensures a correct 
allocation of sampling curves for the designed PoS. We park the vehicle on a straight 
road with high buildings around. The road surface is measured to be horizontal and 
the mounted camera takes a sample image with many straight lines. Different from 
the fish-eye lens calibration focusing on the internal parameters, we use parallel struc-
ture lines in the real scene to locate their vanishing points, which characterize the 
camera pose. Then the sampling curves are computed accordingly for vertical PoS.
Although the located PoS may change instantly in the route scanning afterwards due 
to vehicle bumping on uneven roads, the major road sections will yield reasonably 
good results. 

3.1   Calibrating Camera Pose Using Structure Lines in Sample Images 

Let us examine the shapes of structure lines L, M, and N in the fish-eye images  
(Fig. 3). In general, the projection of a line in the fish-eye image is a curve. A line in 
the space determines its plane of sight Γ with O. The plane Γ intersects the spherical 
retina at a great circle C. A 3D line segment P1P2 determines the normal of Γ from 
OP1×OP2. Further, parallel lines in the space determine planes of sight Γj, j=1,2,3,…. 
These planes intersect each other at a vector Q through O, which is parallel to the line 
set. Its projection to the spherical retina is the penetrating point at q as Fig. 3(c) de-
picted. A Γj is projected to a great circle Cj on the retina. Since Q is the intersection of 
all Γj, q is the crossing point of all Cj. Therefore, q is the vanishing point of the line 
set. Detecting the position of the vanishing point in the image tells the camera orienta-
tion with respect to the line set. Fig. 3 shows a forward and a slanted setting of a fish-
eye camera and their images. We can find structure lines L, M. and N projected as 
curves l, m, and n in Fig. 4. These lines can be characterized by three pairs of vanish-
ing points qL, qM, and qN, respectively. Some points are not in the image (on the other 
half of the spherical retina).  

We first extract line segments on buildings in the sample image I’(x’,y’) by edge de-
tector and tracking algorithm, and convert the coordinates to that in the non-distorted 
image I(x,y). Denoting the ith point on jth curve by xij=(xij,yij), i, j=1,2,3… in I(x,y), we 
calculate the line of sight through xij is (Xij,Yij,Zij) according to (2). Manually selecting 
an extracted line lj, all its points are filled into a total least squared error method for the 
normal nj=(aj, bj, cj) of Γj in the O-XYZ, where aj

2+bj
 2+cj

2=1. It minimizes 

Σi[(Xij, Yij, Zij)•( aj, bj, cj)]
2  min (3)

Denote the coordinates of vanishing point by Q(XL,YL,ZL) in O-XYZ, it can be obtained 
through the second least squared error estimation from multiple normal nj, by 

Σj[(XL, YL, ZL)•( aj, bj, cj)]
2  min (4)

By tracking edge points on n and m curves, we calculate the vanishing points qN and 
qM in the same way as for qL.
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(a)                                                (b)                                         (c) 

Fig. 3. Different fish-eye camera poses and their captured images. (a) An ideal forward setting 
of fish-eye camera. (b) An inclining camera setting by changing camera yaw, pitch and roll. (c) 
Vanishing point on spherical retina surface. 

Fig. 4. Projected structure lines and the corresponding vanishing points in the fish-eye image. 
(a) Ideal camera setting in Fig. 3(a). (b) Projected curves l, m, n converge to their vanishing 
points in Fig. 3(b). (c) Vanishing point and pin point for setting PoS. 

3.2   Initial Setting of Sampling Curves in Fish-Eye Image Frame 

Because the fish-eye camera O-XYZ captures a half space, at least one quadrant of the 
O-X’Y’Z’ system is covered. Among six vanishing points of three orthogonal line sets 
L, M, and N in O-X’Y’Z’, at least one set qL, qM, and qN can be found within the fish-
eye image. After detecting their positions from tracked curve sets l, m, and n, we 
generate sampling curves for scene tunnel scanning.  

For the calculated vanishing point qL, we select a pin point pL in the image (Fig. 
4(c)), considering the orientation of PoS(α). The lines of sight v(qL) and v(pL) through 
the two points can form a PoS parallel to line set L, with the normal 

nL = v(qL) × v(pL) (5)

A line of sight v(ϕ, γ) on such a PoS must satisfy 

nL • v(ϕ, γ) = 0 (6)
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(a) Two sides only. (b) Stationary blurred. (c) Sampling curve inaccurate. (d) Refined tunnel 

Fig. 5. Fish-eye camera scanned scene tunnels T(θ, t), θ∈[0,800] pixels along urban and subur-
ban streets 
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Given ϕ∈[0,2π] with a fine interval, we can obtain corresponding γ for the sampling 
curve. It is further converted to (x,y) by using (2) and then to (x’,y’) in the fish-eye 
image frame. The distinct pixels on the curve are accumulated as a continuous C for 
sampling. Figure 5(a) displays a scene tunnel T(t,θ) copied from CLleft and CLright

curves aligned with l lines in the image of 640×480 pixels. 
For line set M, the process to locate a curve for scanning the ground is similar. The 

resulting ground part thus has all the crossing pedestrians appearing straight in the 
scene tunnel from a linear vehicle path. Lines N appear straight and parallel to the t
axis in the scene tunnel, and are disturbed if the vehicle deviates from a straight path.  

4   Result Analysis and Refinement 

4.1   Scene Tunnel Affected by Feature Distance 

How important the alignment of sampling curves is and what happens if they are not 
precisely located? An immediate result one can imaging is that buildings are all 
slanted. However, some more serious defect is caused from an imperfect alignment. 
Fig. 6 shows a section of a scene tunnel where vertical lines at distance are more 
slanted than close ones. Because the scene tunnel at two sides contains scenes with 
different depth, a 2D skew transform is unable to rectify the image. This additional 
effect happens because the physical width of the sampling curve (one pixel) is not 
infinitely thin. The fish-eye video camera has a low-resolution image in over a half 
space. A pixel has a large angular coverage in the space. Through a pixel, the Point 
Spread Function (PSF) gets wide as the distance increases.  

When the PSF moves across features at speed V (Fig. 7), a distant feature has 
longer response duration than a close feature because a wider PSF covers on it. This 
causes the distant edge blurred in the scene tunnel, which is named stationary blur in 
[11]. The degree of blur is more significant as the depth increases. Fig. 5(b) shows a 
scene tunnel from two side sampling curves. Stationary blur is obvious on the houses 
and trees because of their far distances from the roadsides. The close parts are sharp; 
it even has no motion blur on the vehicle shadow on the road surface. If the sampling 
line is non-parallel to the vertical edges as shown in Fig. 7, the responses at different 
heights are more sheared for a large PSF than a small PSF, even if the PSF regions 
are slanted in the same degree. This difference makes the edges incline differently.  

Fig. 6. Slanted vertical rims in the scene tunnel if the sampling line is not precisely aligned with 
the projection of a vertical line. (a) Declined edges due to imperfect alignment of the pixel line. 
(b) A precisely set sampling line generates a good shape of vertical lines. 
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Fig. 7. Different sizes of the Point Spread Function of a sampling line at different distances, 
and the scanned edges in the scene tunnel. Edges at different depths have different slanting 
angles. 

Based on above analysis, close features are less influenced from slanted sampling 
curves than distance features. If a street has close building fronts, the error caused 
from the calibration of the sampling lines is not significant. For distance features, we 
can observe large, coarse edges slanted in the background. If a sampling line is lo-
cated imperfectly, a common slanting direction and bending can be observed in the 
resulting scene tunnel (Fig. 5(c)).  

4.2   Scanning Refinement of Scene Tunnel 

From a limited number of sample images in a long video sequence, it is difficult to 
obtain an accurate camera pose for scanning all the routes. Based on the scanned 
result of a scene tunnel, we can refine the position and shape of the sampling curves 
for the second scanning of the recorded video.  

Because the setting of sampling curves has position error, we have to assess the 
calibration based on the scanned scene tunnel. On the time axis of the scene tunnel, 
we locate long periods without shaking, verified by consistent orientations (or slant-
ing directions) of the projected building rims. From these periods, we pick up some 
time instances when a high building (or a high rim) is imaged. The video frames at 
such moments are loaded again for the refinement of the sampling curves. A curve 
segment is adjusted precisely on a projection of the long rim in the image. The re-
corded video is scanned again with the updated sampling curve. This refinement 
guarantees that most parts of a route are scanned in good shape (except the shaking 
road segments). If no structure line can be found in the entire scanned scene tunnel, 
no sample image will be retaken from the video sequence for further refinement. The 
deformed shapes in the remaining nature scenes are not critical to the visualization. 
Fig. 5(c) shows such an initial scanning with bended structure lines on the ground and 
slightly on buildings. Some shaking road segments are at the street crossings. Such 
defects are reduced after the refinement in Fig. 5(d). 
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5   Conclusion 

This work explores the using of a fish-eye camera, localization and calibration of 
sampling curves for scanning scene tunnels from a moving vehicle. It avoids many 
system issues with multiple cameras in the scene scanning. We located multiple sam-
pling curves on the projection of structure lines in order to generate the scene tunnel 
with preserved shapes. We calculated the camera pose from the structure lines, and 
scanned long scene tunnels successfully. We further analyzed the influences on 
shapes from an inaccurate setting of the sampling line. The future work will be the 
scene tunnel scanning with a high-definition TV camcorder, in order to obtain high-
resolution scene tunnel with less stationary blurs. The scene tunnel is then a digest of 
street views for VR visualization, information indexing, and environment assessment. 
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Abstract. Image segmentation is very important in computer based
image interpretation and it involves the labeling of the image so that the
labels correspond to real world objects. In this study, we utilise a novel
approach to automatically segment out the ventricular system from a
series of MR brain images and to recover the shape of hand outlines
from a series of 2D training images. Automated landmark extraction is
accomplished through the use of the self-organising model the growing
neural gas (GNG) network which is able to learn and preserve the topo-
logical relations of a given set of input patterns without requiring a priori
knowledge of the structure of the input space. The GNG based method is
compared to other self-organising networks such as Kohonen and Neural
Gas (NG) maps and results are given showing that the proposed method
preserves accurate models.

1 Introduction

Modelling the shape of a class of non-rigid objects in two-dimensions requires the
recovery of their structure from a set of images. A common modelling approach
is the observation and analysis of a set of examples of the object or class of
objects using standard statistical methods such as principal component analysis
(PCA). This approach has turned out to be very effective in image segmentation
and interpretation. The basic idea of statistical shape modelling is to establish
new unseen legal instances of shapes taken from a given set of training examples,
using as few parameters as possible. Shape training sets usually come from man-
ually annotated boundaries. The difficulty arises over the need to automate the
process. For example, in a clinical setting the first stage in the post-processing
step of a T1-weighted MRI technique is to segment out the ventricles, which
can be difficult in many cases if the patient is not properly aligned in the scan-
ner. These post-processing step is laborious and must be very accurate if the
purpose of the scan is to help determine the extent of disease progression. In
very overburdened medical facilities, performing this task manually may not be
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feasible. An automated procedure may provide the means of yielding objective
and consistent results across various institutions. It is imperative therefore that
an accurate, rapid and automated algorithm be developed and deployed. That
is the subject of the rest of this paper.

In literature, various attempts have been made to automate the process of
landmark based image registration and correct correspondences among a set of
shapes. Baumberg’s et al. [1] method, which generates flexible shapes models
by using equally spaced spline control points around the boundaries of walk-
ing pedestrians, is an example of arbitrary parameterisation. The process is
automatic, but it is arbitrary since it uses properties of the specific shape be-
ing modelled (each shape has a principal axis) thus, not generally applicable.
Davies et al. [2] method of automatically building statistical shape models by
re-paremeterising each shape from the training set and optimising an informa-
tion theoretic function to assess the quality of the model has received a lot of
attention recently. The quality of the model is assessed by adopting a minimum
description length (MDL) criterion to the training set. The MDL is obtained
from information theoretic considerations and has been used quite extensively
by a number of researchers due to its ability to locate dense correspondence
between the boundaries [3, 2, 4]. This is a very promising method and the mod-
els that are produced are comparable to and often better than the manual built
models. However, due to very large number of function evaluations and nonlinear
optimisation the method is computationally expensive. Recently, Fatemizadeh
et al. [5] have used modified growing neural gas to automatically correspond im-
portant landmark points from two related shapes by adding a third dimension
to the data points and by treating the problem of correspondence as a cluster-
seeking method by adjusting the centers of points from the two corresponding
shapes. This is a promising method and has been tested to both synthetic and
real data, but the method has not been tested on a large scale for stability and
accuracy of building statistical shape models.

In this work, we introduce a new and computationally inexpensive method
for the automatic selection of landmarks along the contours of 2D MRI slices of
human brain and hand outlines. The incremental Neural Network, the growing
neural gas (GNG) is used to automatically annotate the training set without
using a priori knowledge of the structure of the input patterns. Unlike other
methods, the incremental character of the model avoids the necessity to previ-
ously specify a reference shape. The method is used for the representation of
2D ventricles and hand shapes, which can be extended to 3D. To evaluate the
accuracy of the method we have tested it with other self-organising models such
as Kohonen maps and Neural Gas (NG) maps and global distance error [6] have
been applied to measure the quality of the adaptation of the network.

The remaining of the paper is organised as follows. Section 2 introduces the
statistical shape models. Section 3 provides a detailed description of the topology
learning algorithm GNG. A set of experimental results along with qualitative
analysis is presented in Section 4, before we conclude in Section 5.
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2 Statistical Shape Models

Statistical shape models are flexible models that have been used to capture the
variability of a class of objects using a set of examples. The most well known sta-
tistical shape models are Cootes et al. [7] ”Point Distribution Models” (PDMs)
that models the shape of an object and its variation by using a set of np land-
mark points from a training set of Si shapes. In this work, PDM represents the
shape of an object as a set of np automatically extracted landmarks in a vector
x = [xi0, xi1, ...., xinp−1 , yi0, yi1, ..., yinp−1 ]

T . In order to generate flexible shape
models the Si shapes are aligned (translated, rotated, scaled) and normalised
(removing the centre-of-gravity and placing it at the origin) to a common set
of axes. The modes of variations of the hand are captured by applying prin-
cipal component analysis (PCA). Using PCA, valid shapes can be represented
by allowing the landmark points to undergo displacements relative to the mean
shape and in directions defined by the eigenvectors of the covariance matrix
Σ. The K most significant eigenvectors are ordered according to the magni-
tudes of their corresponding eigenvalues to form the matrix of column vectors
Φ = (φ1 | φ2 | φ3 | ..... | φk) where λ1, λ2, λ3, ....λk, is the order of the magnitude
of the eigenvectors [8]. By retaining only the modes of variation with the high-
est variance plausible and compact shapes can be generated. Any shape can be
back-projected to the input space by a linear model of the form:

x = x + Φβi (1)

where x is the mean shape, Φ describes a set of orthogonal modes of shape
variations, and βi is a vector of weights for the ith shape. To ensure that the
above weight changes describe reasonable variations we restrict the weight βi to
the range −3

√
λ ≤ βi ≤ 3

√
λ. PCA works well as long as good correspondences

exist. To obtain the correspondences and represent the contour of the hands and
the ventricles the self-organising network GNG was used.

3 Topology Learning

One way of selecting points of interest along the contour of 2D shapes is to use a
topographic mapping where a low dimensional map is fitted to the high dimen-
sional manifold of the contour, whilst preserving the topographic structure of the
data. A common way to achieve this is by using self-organising neural networks
where input patterns are projected onto a network of neural units such that
similar patterns are projected onto units adjacent in the network and vice versa.
As a result of this mapping a representation of the input patterns is achieved
that in postprocessing stages allows one to exploit the similarity relations of the
input patterns. Such models have been successfully used in applications such as
speech processing [9], robotics [10, 11] and image processing [12]. However, most
common approaches are not able to provide good neighborhood and topology
preservation if the logical structure of the input patten is not known a priori. In
fact, the most common approaches specify in advance the number of neurons in
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the network and a graph that represents topological relationships between them,
for example, a two-dimensional grid, and seek the best match to the given input
pattern manifold. When this is not the case the networks fail to provide good
topology preserving as for example in the case of Kohonen’s algorithm.

The approach presented in this paper is based on self-organising networks
trained using the Growing Neural Gas learning method [13]. This is an incremen-
tal training algorithm where the number of units in the network are determined
by the unifying measure for neighborhood preservation [14], the topographic
product. The links between the units in the network are established through
competitive hebbian learning [15]. As a result the algorithm can be used in
cases where the topological structure of the input pattern is not known a priori
and yields topology preserving maps of feature manifold [16].

3.1 Growing Neural Gas

In this Section we describe the complete growing neural gas algorithm and ending
condition as used in this work. The network is specified as:

– A set N of nodes (neurons). Each neuron c ∈ N has its associated reference
vector wc ∈ Rd. The reference vectors can be regarded as positions in the
input space of their corresponding neurons.

– A set of edges (connections) between pairs of neurons. These connections
are not weighted and its purpose is to define the topological structure. An
edge aging scheme is used to remove connections that are invalid due to the
motion of the neuron during the adaptation process.

The GNG learning algorithm to approach the network to the input manifold
is as follows:

1. Start with two neurons a and b at random positions wa and wb in Rd.
2. Generate at random an input pattern ξ according to the data distribution
P (ξ) of each input pattern. In our case since the input space is the contour,
the input pattern is the (x, y) coordinate of the edges. Typically, for the
training of the network we generated 1000 to 10000 input patterns depending
on the complexity of the input space.

3. Find the nearest neuron (winner neuron) s1 and the second nearest s2 by:

s1 = argmin c∈A ‖ ξ − wc ‖ (2)

and
s2 = arg min c∈A{s1} ‖ ξ − wc ‖ (3)

4. Increase the age of all the edges emanating from s1:

age(s1,i) = age(s1,i) + 1 (∀i ∈ Ns1) (4)

5. Add the squared distance between the input signal and the winner neuron
to a counter error of s1 such as:

Δerror(s1) = ‖ws1 − ξ‖2 (5)
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6. Move the winner neuron s1 and its topological neighbours (neurons con-
nected to s1 ) towards ξ by a learning step εw and εn, respectively, of the
total distance:

Δws1 = εw(ξ − ws1) (6)

Δwsn = εw(ξ − wsn) (7)

for all direct neighbours n of s1.
7. If s1 and s2 are connected by an edge, set the age of this edge to 0.

age(s1,s2) = 0 (8)

If it does not exist, create it.
8. Remove the edges larger than amax. If this results in isolated neurons (with-

out emanating edges), remove them as well.
9. Every certain number λ of input patterns insert a new neuron as follows:

– Determine the neuron q with the maximum accumulated error:

q = argmax c∈AEc (9)

– Determine among the neighbours of q the neuron f with the maximum
accumulated error:

f = argmax c∈NqEc (10)

– Insert a new neuron r between q and its further neighbour f :

wr = 0.5(wq + wf ) (11)

– Insert new edges connecting the neuron r with neurons q and f , removing
the old edge between q and f .

10. Decrease the error variables of neurons q and f multiplying them by a
fraction α:

Δerror(q) = −αEq (12)

Δerror(f) = −αEf (13)

11. Initialize the error variable of r with the new value of the error variable of q
and f .

Er =
(Eq + Ef )

2
(14)

12. Decrease all error variables by multiplying them with a constant γ.
13. If the stopping criterion is not yet achieved (in our case 144 neurons), go to

step 2.

The parameters used in all simulations were: λ = 1000, εw = 0.1, εn = 0.001,
α = 0.5, γ = 0.95, αmax = 250. The testing involved two cases were the number
of neurons were too few or too excessive for the training set of the images. In the
former the topological map is lost, not enough neurons to represent the contour
of the ventricles and the hands and in the later an overfit is performed.
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4 Experiments

4.1 Hands

The hand database, was composed of images of four individuals who contributed
with four images of their right hand and at different poses. We used 16 hand
shapes which were extracted from the training set by thresholding. All images
were of same size 395x500 pixels. In Figure 1 the modes are displayed by varying
the first three shape parameters βi{±3σ} over the training set. The first mode

Fig. 1. The first three modes (m = 1, 2, 3) of variation of the automatically hand built
model. Range of variation −3

√
λ ≤ βi ≤ 3

√
λ.

β1 varies the shape of the thumb and increases the distance between the middle
and the index finger. The second mode β2 varies the distance between the thumb
and the index finger, and bends the middle finger. The third mode β3 varies the
shape of the middle finger and the thumb. In Figure 2 two shape variations
from the automatically generated landmarks were superimposed to the training
set and the in between shape instances are drawn which shows the flexing of
middle finger and hand rotation. These modes effectively capture the variability
of the training set and present only valid shape instances. Table 1 shows the

Fig. 2. Superimpose shape instances to the training set and taking the in between
steps
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Table 1. A quantitative comparison of various neurons adapted to the hand model
with variances for the first six modes and the total variance

Mode 25 neurons 61 neurons 100 neurons 144 neurons 169 neurons
1 2.1819 4.2541 3.2693 1.5253 2.5625
2 1.2758 2.2512 1.4869 1.1518 0.9266
3 0.6706 0.5681 0.6154 0.9808 0.5734
4 0.4317 0.4645 0.4977 0.3968 0.3101
5 0.3099 0.2844 0.3532 0.3716 0.2491
6 0.2305 0.2489 0.1292 0.1980 0.1927

VT 5.7486 8.6170 6.4108 5.1783 5.2470

Fig. 3. Adaptation to an object with network of 25 (Image A), 61 (Image B), 100
(Image C), 144 (Image D), and 169 (Image E), neurons

total variance achieved by maps containing varying number of neurons (25, 61,
100, 144, 169) used for the automatic annotation (Figure 3). The map of 144
neurons is the most compact since it achieves the least variance. It is interesting
to note that whilst there is significant difference between 25, 61 and 100 neurons
the mapping with 169 is good and has no significant difference with the mapping
of 144 neurons. The reason is that for the current size of the images the distance
between the neurons is short enough so adding extra neurons does not give
more accuracy in placement. The introduction of extra neurons slows down the
adaptation process.

4.2 Ventricles

The data that we used in this study was obtained from the MNI BIC Centre for
Imaging at McGill University, Canada. These images are 1 mm thick, 181x217
pixels per slice, 3% noise and 20% INU. These images are used as our gold
standard for segmentation, as every voxel in the entire volume has been cor-
rectly labeled to a tissue class by the McGill Institute. The entire brain volume
consisted of 181 slices, from which we extracted those that contained ventricles
(slices 49-91). Since most typical clinical MRI volumes are on average 5 mm
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Fig. 4. The first mode (m = 1) of variation for the four groups of 5 contiguous slices
taken from MR brain data. Range of variation −3

√
λ ≤ βi ≤ 3

√
λ.

Fig. 5. Superimpose shape instances to the training set

Table 2. A quantitative comparison of various neurons adapted to the ventricle model
with total variance per group

Groups 64 neurons 100 neurons 144 neurons 169 neurons
VT1 9.8340 1.9385 3.9668 3.9235
VT2 13.1873 1.7284 4.3672 3.1617
VT3 6.7822 2.0109 3.2260 4.0057
VT4 2.2567 1.6198 2.8398 3.5861

thick, we selected 4 groups of 5 contiguous slices to produce our point distribu-
tion model. In Figure 4 the modes of variation for all four groups are displayed
by varying the first shape parameter βi{±3σ} over the training set. The quali-
tatively results show that GNG leads to correct extraction of corners (sharp and
smooth) of anatomical shapes and are compact when the topology preservation
of the network is achieved.

In Figure 5 two shape variations from the automatically generated landmarks
were superimposed to groups 4 and 3 from the training set. These modes effec-
tively capture the variability of the training set and present only valid shape
instances. Table 2 shows the total variance achieved by maps containing varying
number of neurons used for the automatic annotation. The map of 100 neurons
is the most compact since it achieves the least variance compared to 64, 144 and
169 neurons among the four groups. We have tested and compared our method
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with two other self-organising maps, the Kohonen and the NG map. The quan-
titative results show that GNG is significantly faster compared to Kohonen and
NG, and the learning time is not so significant in GNG with the insertion of
neurons compared to the other two where the adaptation process slows dramati-
cally as the number of neurons increases. Figure 6 shows a comparative diagram
of the learning time of various SOMs and at different number of neurons. The
adaptation with 64 neurons is only 3 sec with GNG compared to the 57 sec and
52 sec with Kohonen and NG, but with 64 neurons the topology preservation
in most of the shapes is lost independent of the selection of the SOM. A good
adaptation with 100 and 144 neurons takes 6 and 11 seconds respectively at 1000
patterns to adapt to the contour of the ventricles.

Fig. 6. Learning time for various SOMs and at various neurons

5 Conclusions

In this paper, we have used an incremental self-organising neural network to
automatically annotate landmark points on a training set of hand and ventri-
cle outlines. We have shown that the low dimensional incremental neural model
(GNG) adapts successfully to the high dimensional manifold of the contour of
the hands and the ventricles, allowing good eigenshape models to be generated
completely automatically. The accuracy of our automated segmentation algo-
rithm is comparable to other related SOMs and has better execution time. In
future work, we could extend this technology so that it will generate 3D models
directly. In addition, the generalisability of this model needs to be determined
by applying it to various phantoms and other MRI standards. In addition, we
will investigate what is the most suitable number of neurons for classifying ven-
tricles. Lastly, we will investigate applying this technology to other brain tissue
components in an effort to generate a complete MRI segmentation utility.
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4. Ericsson, A., Åstróm, K.: Minimizing the description length using steepest descent.
In 14th British Machine Vision Conference 2 (2003)

5. Fatemizadeh, E., Lucas, C., Soltania-Zadeh, H.: Automatic landmark extraction
from image data using modified growing neural gas network. IEEE Transactions
on Information Technology in Biomedicine 7 (2003) 77–85
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Abstract. We propose a new method to recover 3D structures of ar-
tificial objects from scene pictures using orthogonality and parallelism.
A new transformation group, “semi-metric space,” is defined to describe
the scenes of artificial objects consisting of orthogonal and parallel line
features. A metric invariant called conic dual to the circular points has
a simple diagonal form in the semi-metric space. Furthermore, under
some assumptions, the metric reconstruction is possible using some affine
properties. The algorithms are verified with real images captured with a
camera in a commercial mobile phone.

1 Introduction

In the real world, there are many artificial objects. One of the most important
properties of artificial objects is that they generally have many orthogonal and
parallel structures. Orthogonality and parallelism are very useful cues to find
structures of artificial objects, and there have been many approaches making
use of them [1,2,3,4,5,6,7]. However, most methods have suggested using some
independent information of the scenes or one of the cameras, in addition to
orthogonality and parallelism [8].

Unfortunately there are few cases where the suggested independent informa-
tion of the scene is obtained, if we want to work with unknown scenes. People
can detect parallelism of line sets, and furthermore, orthogonality very easily.
In fact, most of visual illusions are based on the properties of the human visual
system. It means that human visual systems have been well-trained to detect
parallelism and orthogonality. But it is quite difficult to find the suggested infor-
mation, such as an exact aspect ratio of rectangles in three-dimensional space.
As pointed out in [8, 5], this kind of information is critical to reveal the metric
structures of the captured scenes.

In some instances, we cannot measure the scene physically and we do not have
enough information about the cameras that are used to capture the scene. For
example, there are many cases that we have some rectangles whose aspect ratios
are unknown, if we are dealing with artificial objects. These cases occur when
we want to use snapshot images captured in travel, or captured images from a
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television. What we are able to use is just information from the parallelism and
the orthogonality.

In this paper, we study possibilities to use only parallelism and orthogonality
with one or a few images in reconstructing artificial objects. First, we propose
new transformation space called semi-metric space and study the properties
of semi-metric space including conic dual to the circular points(CDCP) in the
space, which plays an important role in reconstructing metric scene structures.

We extract the structures of the scenes from a single view and multiple ones
using the proposed framework with images captured from a camera in a mobile
phone.

2 Semi-metric Space

First, we define the new transformation space that deals with orthogonality and
parallelism, called semi-metric space.

Semi-metric space is represented by a semi-metric transformation. A two-
dimensional semi-metric transformation is expressed as

x′ = HSMx =

⎡⎣s1 s2
1

⎤⎦[ R t
0� 1

]
x (1)

where R is a rotation matrix such that R�R = RR� = I and t is a translation
vector. s1 and s2 are scale factors that are independent along the orthogonal
axis.

Note that (1) is a kind of affine transformation and looks similar to the metric
transformation with the exception of the diagonal scale matrix. In the semi-
metric space, the metric properties along the parallel lines that are aligned to
the X ,Y axis in the warped plane are all preserved, but the ones not aligned to
the axis are not preserved. Of course, affine properties are all preserved in the
warped plane, because it is one of affine transformations.

Strictly speaking, the semi-metric transformation cannot be a general stratifi-
cation of projective transformations because of these properties. However, semi-
metric space provides a useful tool to analyze scenes that only contain informa-
tion about the parallelism and orthogonality of certain planes.

2.1 Warping to the Semi-metric Space

For metric rectification of a projective distorted plane, there are several ways
to find the rectifying homographies [7,5]. Generally it is possible with five inde-
pendent orthogonal line sets, or with a rectangle whose aspect ratio is known,
or with a line at infinity and an orthogonal line pair. Essentially, these three
conditions are all equivalent [5] to the case of a rectangle whose aspect ratio is
known.

There are two ways to warp a projectively transformed image to semi-metric
space. First one uses orthogonal vanishing points, and the other a standard
rectangle.
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Using Orthogonal Vanishing Points. We start from the general pinhole
projection model as

x ∼ K
[
r1 r2 r3 t

] ⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ (2)

where K denotes a camera matrix describing internal parameters of the camera,
and r1, r2, r3, and t are column vectors of a rotation matrix and a translation
vector. Without loss of generality, we set the reference plane as Z = 0. The
vanishing points that correspond to the direction of r1, r2, and r3 are v1, v2,
and v3. We assume that a circle is on the reference plane, and as derived in [9],
the projected dual circle is expressed as

A−1 = s1v1v�
1 + s2v2v�

2 + s3xcx�
c

=
[
v1 v2 xc

]
diag (s1, s2, s3)

[
v1 v2 xc

]�
� VDV�

where D is a diagonal scale matrix and V is a matrix that contains orthogonal
vanishing points v1, v2 and an origin of the target plane xc. Assume that the
plane homography is P ∼ K

[
r1 r2 t

]
. As a consequence, the matrix V is expressed

as
V = Pdiag (a, b, c) (3)

where a, b and c are proper scale factors that are needed to correct the scales.
This means that warping with matrix V−1 makes planes independently scaled
along to orthogonal axis, and this is a semi-metric image. The resulting warping
matrix is V−1.

Using a Standard Rectangle. On the other hand, a warping from the pro-
jected rectangle to a standard rectangle is sufficient to build semi-metric space. A
standard rectangle is a predefined rectangle whose aspect ratio is known. Fig. 1
shows the concept of the warping method using a standard rectangle.

(-1,1) (1,1)

(-1,-1) (1,-1)
Psm

Fig. 1. Semi-metric warping using a standard rectangle

The warping matrix Psm is computed by a conventional plane homography
estimation algorithm using four points [7]. The matrix Psm is equivalent to a
warping matrix V−1 using vanishing points, because the resulting warped images
using Psm and one using V−1 can be transferred to each other by semi-metric
transformations.
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2.2 ICDCP in the Semi-metric Space

The conic dual to the circular points(CDCP) is the most important invariant
feature to reconstruct the captured scene in metric space [7]. In semi-metric 2D
space, the imaged CDCP(ICDCP) has a simple form. In this section, we derive
the ICDCP in semi-metric space and the physical meanings of the parameters.

Theorem 1. In semi-metric space, the ICDCP is given as diag
(
R2

m, R
2
sm, 0

)
where Rm is an aspect ratio of the model rectangle, and Rsm is an aspect ratio
of a semi-metric warped rectangle.

Proof. Let’s assume that a projection process of a plane is described as P. The
inverse of semi-metric warping matrix V is represented as (3).

In model plane(Euclidean world), assume that there is a circle whose radius
is r. Projection makes the circle into

A = P−�diag(1, 1,−r2)P−1.

The circle A′ in semi-metric space is calculated as

A′ = V−�P−�diag(1, 1,−r2)P−1V−1

= diag
(
1/a2, 1/b2,−r2/c2

)
∼ diag

(
a′

2
, b′

2
,−1

)
.

(4)

Assume that there is a transformation T which maps a semi-metric space to
a metric space. T is given as

T = diag (t1, t2, 1) .

So, the circle A′′ in a metric space is described as

A′′ = diag
(
a′

2
/t1

2, b′
2
/t2

2,−1
)
.

Because the circle in a metric space is also a circle, there has to be a relation as

a′
2

t1
2 =

b′
2

t2
2 . (5)

If there is a point on the circle whose coordinate is (X,Y ) and its correspond-
ing point in semi-metric space is (x0, y0), the point in metric space is expressed
as (t1x0, t2y0). Also, the aspect ratio of metric space has to be equal to the
Euclidean space, the relation

Rm � Y

X
=
t2y0
t1x0

=
t2
t1
Rsm (6)

is preserved.
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From (5) and (6), we can find the relation

a′

b′
=
Rsm

Rm
. (7)

The CDCP is a dual circle whose radius is infinity, so ICDCP in semi-metric
space is given as

diag
(
1/a′2, 1/b′2, 0

)
∼ diag

(
R2

m, R
2
sm, 0

)
from (4).

Corollary 1. In projective space P2, the ICDCP is expressed as

R2
mv1v�

1 +R2
smv2v�

2 .

This is obvious from Theorem 1. Note that the aspect ratio Rsm in the semi-
metric space can be measured without any metric knowledge of the world plane.
Rsm is set to one if we choose a standard rectangle whose aspect ratio is one,
like in Fig. 1.

2.3 About Off-the-Plane Features

When we warp a projectively distorted plane to a semi-metric space, there also
are some interesting properties regarding the off-the-plane features. Since the
original image is fully transformed projectively, there are a lot of feature points
that are not on the reference plane. Although the semi-metric warping in two
dimension is achieved, a projective distortion along the third orthogonal direction
remains.

In this section, we investigate the position of the off-the-plane points after the
semi-metric warping.

Points Off the Reference Plane in Semi-metric Space. Without loss of
generality, we use a matrix V−1 as a semi-metric warping transformation. By
warping x in (2) with V−1 in (3) to the semi-metric space, the warped point x′

is
x′ ∼ V−1x. (8)

(8) is rewritten as

x′ = diag(c/a, c/b, 1)
[
X + Zm1 Y + Zm2 1 + Zm3

]�
, (9)

where m is defined as

m �
[
r1 r2 t

]−1
r3 =

[
m1 m2 m3

]�
.

Using inhomogeneous coordinates, the position of points in the semi-metric space
is expressed as (

c

a

X + Zm1

1 + Zm3
,
c

b

Y + Zm2

1 + Zm3

)
. (10)
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Relative-Z Estimation. Based on (10), we can extract some useful information
about the scene, which are distance ratios from the reference plane.

Assume that there are two points (X0, Y0, 0) and (−X0, −Y0, 0) on the refer-
ence plane. A length between the two points on the semi-metric space is calcu-
lated from (10) as

l0 =
c

a
2X0. (11)

In the same semi-metric image, a difference of X in the semi-metric space be-
tween two equal-Z points (X1, Y1, Z) and (X2, Y2, Z) is given by

l =
c

a

X1 −X2

1 + Zm3
. (12)

From (11) and (12), the length ratio is given as

l

l0
=

1
1 + Zm3

L

L0

where L � X1 −X2 and L0 � 2X .
So the relative Z, that is Zm3, is calculated easily as

Zm3 =
(
L

L0

/ l

l0

)
− 1. (13)

It is not necessary to know m3, because this equation gives us only relative-Z
coordinates, if we know the ratio of differences between the X or Y coordinates
of the two line segments in metric or Euclidean space. (13) shows that the value
of m3 determines the scales of the relative-Z.

3 Metric Upgrade from Semi-metric Space with a Static
Camera

Under some assumptions, it is possible to upgrade semi-metric structures to met-
ric space without any kind of metric knowledge. The metric upgrade is achieved
by finding an aspect ratio Rm in the model plane.

ICDCP and Its Orthogonal Vanishing Point. Assume that we use a static
camera. A static camera is a camera whose intrinsic parameters are constant. For
static cameras, the following theorem is derived [10]. Due to the lack of space,
the proof is omitted.

Theorem 2. Let’s assume that there are two ICDCPs Δ2i and Δ2k from planes
i and k that are not parallel from images captured with a static camera. There
is a non-zero and non-infinite scale ρ that satisfies

Rank(Δ2i − ρΔ2k) = 2.
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To find ρ from two ICDCP matrices, we can see the problem as a generalized
eigenvalue problem. The problem has two trivial solutions, zero and infinity,
because the ranks of two ICDCPs are all two. We can mention the following
corollary about the last nontrivial solution.

Corollary 2. One of the generalized eigenvectors of the two ICDCP matrices
appears as a line through the orthogonal vanishing points v3i and v3k with respect
to the reference planes, physically.

Physical Meaning of Rank(Δ2i − ρΔ2k) = 2. First, we investigate the
physical meaning of Theorem 2. It can be formulated with the generalized eigen-
value problem, and the eigenvalue is ρ and its corresponding eigenvector is lik.
The problem is expressed as

Δ2ilik = ρΔ2klik.

As we studied in Sect. 3, lik is a line through two orthogonal vanishing points
v3i and v3k. Since Δ2i and Δ2k are dual conics, Δ2ilik and Δ2klik are defined
as a point in an image plane, by pole-polar relationships.

Regarding the theorem 2, we can prove the following lemma.

Lemma 1. Δ2ilik = ρΔ2klik ∼ pik is an intersection point of vanishing lines
l∞i and l∞k which are defined by the reference planes, as shown in Fig. 2.

i k

v1i

v2i

v3i

v1k

v2k

v3k

lilk

lik

pik

Fig. 2. Geometric meaning of rank(Δ2i − ρΔ2k) = 2

Proof. Let’s assume that li and lk are vanishing lines of the reference planes. So
the relation with ICDCPs Δ2i and Δ2k are

Δ2ili = Δ2ilk = 0.

In other words, li and lk are null space of ICDCPs Δ2i and Δ2k, algebraically.
Therefore, the following relation is preserved.

(Δ2iw)� li = (Δ2kw)� lk = 0

for all w.
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Δ2ilik, denoted as xi have following relation.

x�
i li = 0.

Similarly xk is also defined.
Since we deal with the features in homogeneous coordinate, physically xi ∼ xk

from the Theorem 2. We denote the point as pik. Then

p�
ikli = 0

and
p�

iklk = 0.

∴ pik = li × lk.

The plane vanishing lines li and lk are obtained directly from semi-metric
transformation matrices, because the semi-metric space is a kind of affine space.
Practically, if the semi-metric transformation matrix Psm is denoted as Psm =[
p1 p2 p3

]
, the plane vanishing line is l∞ = p1 × p2.

Linear Algorithm for Extracting the Model Aspect Ratio Rm with
Two Views. Based on the previous study, we can determine the pole point
pik with respect to the ICDCP and an orthogonal vanishing point of a plane,
independent of the ICDCP, if we have sufficient information about the position of
orthogonal vanishing points. In that case, we can extract the metric information
from uncalibrated projective images. As we mentioned before, finding the model
aspect ratio Rm is sufficient to obtain metric information of that plane using
parameterization of semi-metric space.

Since the ICDCP of a plane can be expressed as like in Corollary 1, the
equation presented in Lemma 1 can be formulated as

R2
mp1p1lik +R2

smp2p2lik = γpik

where the plane homography Psm =
[
p1 p2 p3

]
and γ is a scale factor. This

equation has two unknowns R2
m and γ, and there are three equations. So we can

linearly find the unknowns very easily.
Note that we do not assume that all views have the common aspect ratio Rm.

That means we do not need to use the physically same plane for all images. Also
we can find metric information from some affine properties like vanishing points
and lines without any camera assumptions.

4 Experiments

In this section, we show an example of a reconstruction of semi-metric 3D with
a real image. The left image of Fig. 3 shows an input image of a building scene.
The image is captured using a camera module attached in a mobile phone, whose
intrinsic parameters cannot be adjusted. There are several artificial planes, and
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Fig. 3. Input images for verification of proposed algorithm

we can easily detect parallel line segments in the image. We selected three planes
in the image to be reconstructed.

Fig. 4 shows a reconstructed 3D structure in semi-metric 3D space using the
method in Sect. 2.3. Note that the lines along to the orthogonal axis are all
orthogonal to each other, although we did not apply any kind of robust methods
for estimating semi-metric 3D reconstruction. We used only easily obtainable
information of the scene, for example, a rectangle, parallel lines to find the
orthogonal vanishing points, and constraints for line segments whose length are
all equal. Note that there were no extrinsic measurements in the process.

To reconstruct the structure in metric space, we need one more image of
plane and its orthogonal vanishing points. The right image of Fig. 3 was used
as the second image. In this image, we used the right plane of the building
as the second reference plane to estimate the orthogonal vanishing points
easily.

The resulting metric 3D is shown in the right image of Fig. 4. As shown in
the right image of Fig. 4, the length ratios between the orthogonal axes are
estimated well, although a semi-metric 3D structure does not have the sufficient
information like in the left image of Fig. 4.

Fig. 4. Reconstructed semi-metric(left) and metric(right) 3D structure (VRML) model
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5 Conclusion

In this paper, we propose a new method to reconstruct 3D structures of captured
scenes using parallelism and orthogonality. First, we propose a new transforma-
tion group defined as semi-metric space and we reveal the properties of the space
and its benefits. In semi-metric space, the metric properties aligned to each pre-
defined orthogonal axis are preserved, but ones not aligned to predefined axis
are not. From the semi-metric space, the partial structure of the scene can be
retrieved from a single image and its easily obtainable scene features. The re-
sulting 3D structure is called a semi-metric 3D structure, and we can find the
scene structure up to semi-metric transformation even if we have only one image
and no external measurements. Furthermore, we show that the metric invariants
CDCPs in the semi-metric space have simple diagonal forms, and it can be used
to make a much simpler algorithm to estimate the metric structure of the scene
using two or more uncalibrated views. It gives a simple and useful parameteriza-
tion of the CDCP. The CDCPs of the different planes have a rank constraint if
we assume a static camera. The metric properties can be retrieved linearly from
the two or more vanishing points and vanishing line sets.
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00-0064) and by Microsoft research Asia.
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Abstract. In this paper, we propose a new scheme of Gabor-based face
recognition. Based on the fact that different Gabor filters have differ-
ent properties, we first learn discriminating subspace for each kind of
Gabor images respectively. Then the boosting learning is performed to
fuse all the Gabor discriminating subspaces for recognition. Compared
with previous work, the proposed method has three contributions: (1).
We make sufficiently use of the respective properties of the Gabor filters,
and learn different discriminant subspaces for different Gabor images re-
spectively; (2). Boosting based fusing method adaptively determines the
discriminating vectors and dimensionality of each subspace according to
its discriminating capacity, so as to further improve the recognition per-
formance; (3). The problem of computational complexity is well handled
by subspace analysis and boosting based fusion. Extensive experiments
show its encouraging performance.

1 Introduction

Appearance representation is a popular feature representation method for face
recognition [1]. A basic characteristic of appearance representation is that it di-
rectly takes pixel intensity values as features. Because the dimensionality of the
space constructed by pixel intensity values is very high, in most cases, subspace
methods, such as, Principal Component Analysis (PCA) [2] and Linear Discrimi-
nant Analysis (LDA) [3], are performed to compress this high-dimensional image
space into a compact low-dimensional intrinsic subspace of object. PCA tries to
generate a set of orthonormal basis vectors aiming at maximizing variance over
samples, but not at discriminating one class from others. LDA seeks to find a lin-
ear transformation that maximizes the between class scatter and minimizes the
within class scatter, in order to generate discriminating features for recognition.

It is known that intensity value is sensitive to noises, especially illumination
variation, so the performance of appearance-based recognition will collapse in
some practical environments. Recently, Gabor representation has attracted much
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attention and is widely used in face recognition, because it can capture salient
visual properties, such as spatial localization, spatial frequency characteristic,
and orientation selectivity. In this paper, our work focuses on Gabor based face
recognition.

The Gabor representation of an image is the convolution of the image with
a family of Gabor filters with different scales and orientations. We denote the
results of the convolution as Gabor images in the paper. Gabor features of an
image are often composed of multiple Gabor images with different scales and ori-
entations, so Gabor based face recognition demands higher computational power
than appearance representation. In order to reduce the computational complex-
ity, Liu, et al, down-sample the Gabor images to reduce the dimension of Gabor
images [4]. In [5], the Gabor features are extracted around some fiducial points.
Yang, et al, propose to select some Gabor features of discriminating points with
Adaboost method [6]. Thus, these methods have two main problems. First, ac-
tually they are at the cost of losing information for computation reduction, for
they do not use the Gabor features of all the pixels. Second, they all ignore the
fact that different Gabor filters should have different properties. They put all
the Gabor images with different scales and orientations together and treat them
equally.

In this paper, we propose a new scheme of Gabor based face recognition. The
flowchart of the training system is shown in Figure 1 . The input images are
first filtered by 40 Gabor filters (5 scales and 8 orientations), and 40 kinds of
Gabor images are produced. Then discriminant subspace analysis is performed

Fig. 1. The flowchart of the proposed method (Gf 00: Gabor filter with scale = 0 and
orientation = 0, GImgs: Gabor images, GSub: Gabor subspace, Intra: Intra personal,
and Inter: Interpersonal)
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respectively on each kind of Gabor images. Finally the boosting learning is used
to fuse all the Gabor subspaces, and a small set of optimal discriminating fea-
tures is selected for recognition. Because the boosting learner often deals with
two classes problem, we need to convert the multi-classes face recognition prob-
lem into a two-classes problem. We adopt the strategy in [6][7] to transfer the
face classes into intra-personal (positive samples) and inter-personal (negative
samples) classes.

Compared with previous work, the proposed method has three main contri-
butions. (1) We first employ subspace analysis on each kind of Gabor images
respectively, so the respective properties of different Gabor filters are considered
and the Gabor features of all the pixels are used. (2) The boosting learning is
performed to fuse all the Gabor subspaces for further improving the recognition
performance. This fusion method can adaptively determines the discriminating
vectors and dimensionality of each subspace based on its discriminating capacity.
(3) The computational complexity is rapidly reduced by the subspace analysis
and boosting based fusion. In our experiments, we test the proposed method
on two benchmarks, i.e., the FERET database [8] and CAS-PEAL database [9],
and we compare the proposed method with some related face methods [2][3][4][6],
and two popular fusion strategies, i.e., PCA based fusion same as [10] and voting
based decision.

2 Multi-gabor Subspaces

In this paper, we use Gabor representations for face recognition due to its advan-
tages of capturing salient visual properties. Different from previous work, we first
consider the fact that different Gabor filter has different properties, and learn a
discriminating Gabor subspace for each kind of Gabor image respectively.

2.1 Gabor Images

Gabor filters attract much attention in face recognition [4][5][6], since they can
capture salient visual properties, such as spatial localization, spatial frequency
characteristic, and orientation selectivity. The Gabor filters can be defined as
equation 1:

ψ−→
k

(−→z ) =
‖−→k ‖2
δ2

exp(−‖
−→
k ‖2 · ‖−→z ‖2

2δ2
)[exp(i−→k · −→z )− exp(−δ2/2)] (1)

where −→z = (x, y) is the variable in spatial domain, ‖ · ‖ denotes the norm oper-
ator. −→k is the frequency vector, which determines the scale and the orientation
of Gabor filters, and is defined as −→k = kse

iφd , where ks = kmax

fs and φd = π·d
8 .

kmax is the maximum frequency, and f is the spacing factor between Gabor
filters in the frequency domain. s and d define the scale and orientation of the
Gabor filters.

The Gabor images of an image are the convolutions of the image with a
family of Gabor filters with different scales and orientations. Same as most cases
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Fig. 2. The real part of 40 Gabor filters

 

 

Fig. 3. Gabor images of an image

[4][6][11], we use Gabor filters of five different scales, s ∈ 0, ...4 , and eight
different directions, d ∈ 0, ...7 in this paper, and set kmax = π/2,f =

√
2. Then

we get 40 different Gabor images of an image. Figure 2 gives an illustration of
these 40 Gabor filters, and an example of their corresponding Gabor images is
shown in Figure 3.

2.2 Gabor Subspaces

From Figure 2 and 3, we can see that different Gabor filters have different prop-
erties, so that each Gabor image has respective characteristic to enhance some
different local features of face images. Thus, these different Gabor images should
have different contribution for recognition. In previous work, few methods con-
sider the different properties of Gabor filters. They put all the Gabor images
together and treat them equally [4][5][6].

In this paper, we first learn 40 Gabor subspaces respectively according to
40 kinds of Gabor images. Comparing with previous work [4][5][6], we not only
consider the properties of different Gabor filters, but also we use all the Gabor
features. We deal with the problem of computation complexity with subspace
analysis and the boosting based fusion. LDA based subspace learning is first
performed on each kind of Gabor images, for LDA can extract the discrimi-
nating features of Gabor images. The idea of LDA is to maximize the between
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class scatter SB and minimize the within class scatter SW . Mathematically,
it is equivalent to maximize the following Fisher rule: J(w) = wT SBw

wT SW w
, and its

solution is the leading eigenvectors of the matrix S−1
W SB . Often, there are not

enough training samples to guarantee non-singularity of SW , so some techniques
are needed to deal with this numerical computation problem. Here, the strat-
egy of unified subspace is used to overcome this problem because of its good
performance [12]. The algorithm can be summarized as follows:

1. Perform PCA first, and adjust the PCA dimension to reduce noise.
2. Compute the between class scatter SB and within class scatter SW in the

PCA subspace.
3. Compute the whiting transformation of SW based on PCA, and reduce its

dimension too.
4. Transfer with SB the whiting transformation of SW , and then apply PCA

to compute the final discriminating features.

3 Boosting Based Fusion

Now we get 40 different Gabor subspaces. But there still exist two problems.
(1) Though subspace analysis can lower computational complexity, the whole
dimension size of all the 40 Gabor subspaces is still very high for classification.
For example, if the dimension size of each subspace is only kept with 100, then
the whole dimension size is up to 40∗100 = 4000 . (2) It is obvious that different
Gabor subspaces should have different discriminating abilities, so they should
have different contributions to recognition. Thus, how to efficiently fuse them is
still a key issue. A popular method is majority voting based decision. In [10],
Tang and Li use PCA to fuse multi-subspaces for video based face recognition.
However, these two fusion methods cannot well deal with above two problems.

In this paper, we present a boosting based fusion strategy to overcome the
above two problems. Boosting is a method to combine a collection of weak learner
to achieve a stronger classification function. AdaBoost is a popular boosting
method, which can adaptively update the weights of samples according to the
errors in previous learning [13]. Tieu and Viola [14] first employ the Adaboost
for feature selection and enhancing classification in natural image retrieval. Here,
we use the Adaboost to fuse multi-Gabor subspaces, i.e., selecting a small set of
optimal discriminating vectors from all the Gabor subspaces. Because the Ad-
aboost can only handle two classes problem, we need to convert the multi-classes
face recognition problem into a two-classes problem. We adopt the strategy in
[6][7] to transfer the face samples into intra-personal (positive samples) and inter
-personal (negative samples) samples. Although we use LDA to discriminating
features of Gabor images, the capacity of each discriminating vectors is still
limited, especially for classifying inter-personal and intra- personal classes, so it
is reasonable to use the Adaboost for discriminating vector selection here. The
Adaboost algorithm can be summarized as follows:
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– Input the training samples(x1,y1),...,(xn,yn) where the labels yi=0,1 for negative
and positive examples respectively.

– Initialize weights D1,i = 1
2m

, 1
2k

yi = 0, 1 where m and k are the number of
negatives and positives respectively.

– Do for t = 1, ..., T ,
• Normalize the weights to make D1,i = 1

2m
, 1

2k
yi = 0, 1 respectively;

• Train one hypothesis hj for each feature with j with Dj , and calculate error
εj = i Di|hj(xi) − yi|;

• Choose the classifier ht with the lowest error;
• Update the weights: Dt+1,i = Dt,iβ

1−ei
t where ei = 0 if xi is classified correctly,

ei = 1 otherwise; and βt = εt
1−εt

, αt = log(1/βt);
– Output the final classifier:

h(x) = 1, if T
t=1 αtht(x) ≥ 1

2
T
t=1 αt

0, otherwise,

Fig. 4. Adaboost

Here, we modify the weights normalization to keep the sum weights of both
positive and negative samples with 0.5 during iterations for the imbalance be-
tween positive and negative samples in our experiments. Because the number of
negative samples is grossly larger than that of the positive samples, in order to
use almost all the negative samples, we adopt the re-sampling strategy same as
[6]. In each training stage, we use all the positive samples and keep the ratio of
positive samples to negative sample at 1:8 in the training set. The weak learner
hj is a threshold function as: hj(x) = 1 if |x−mean(P )|<β ∗ std(P ) , otherwise,
hj(x) = 0 , where mean(P ) and std(P ) are the mean and standard variation of
positive samples. β is set to 1.625 in our experiments.

According to above description, we can see that the boosting based fusion has
two advantages: (1) it can adaptively a small set of optimal discriminating vectors
from all the Gabor subspaces to further improve the recognition performance.
(2) The dimensionality of each subspace is adaptively determined according to
its discriminating capacity, and the computational cost is reduced rapidly.

4 Experiments

We test the proposed method on two benchmarks, i.e., the FERET database [8]
and CAS-PEAL database [9], and we compare the proposed method with three
related face recognition methods, i.e., Gabor + ELDA [4], PCA [2], LDA [3]. In
the experiments, we set the down-sampling factor ρ = 4 for Gabor + ELDA. In
addition, in order to evaluate the performance of the boosting based fusion, two
popular fusion methods are compared too, i.e., PCA based fusion same as [10]
and majority voting based decision.
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4.1 On the FERET Database

The FERET database has been widely used to evaluate face recognition methods.
Our experimental data include FA and FB images of 1195 persons, and 1002 front
view face images of 429 subjects in the training CD of the FERET database,
which is independent of FA and FB images. There is only one image per person in
FA and FB respectively. All the images are normalized to 48*54 by eye locations.
Some samples are shown in Figure 5. No other pre-processing except histogram
equalization is performed. We take all the 1002 images from training CD as
training set. FA images are used for gallery images, and FB images are for probe
images.

Fig. 5. Some samples on the FERET data-
base

Fig. 6. Some Samples on the CAS-PEAL
database

First, we compare the proposed method with some popular face recognition
methods, i.e., Gabor + ELDA [4], PCA [2], LDA [3]. Figure 7 gives the compari-
son results, where the Gabor + ELDA and LDA at most can reach 428 features,
because the number of training subjects are 429. We see that both Gabor based
methods outperform two appearance based methods, i.e., PCA and LDA. The
proposed method gives a higher recognition rate than Gabor + ELDA. The pro-
posed method can achieve the recognition rate of 96.7% with 320 features, while
the recognition rate of [4] is always below 93%. Because much information is
lost during down-sampling in [4], and the properties of different Gabor filters

 

Fig. 7. Compare with Gabor + ELDA,
LDA, and PCA

 

Fig. 8. Compare with PCA based fusion
and Voting based fusion
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Fig. 9. The dimension size of each subspace

are not considered respectively. Since it is hard to repeat the experiments of [6],
we do not implement it, but from the results report in [6], our results are also
comparable with the best results on this set. They reported they got the best
recognition rate of 95.2% with 700 features, because it directly constructs the
weak learner with the original Gabor features, while we use the Adaboost to
select the discriminating vectors from all the Gabor subspaces obtain by LDA.

In order to evaluate the performance of the boosting based fusion strategy,
we compare it with PCA based fusion and voting based fusion. Figure 8 shows
the comparison results of three fusion methods, and it is obvious to see the
advantage of the proposed method. Because boosting can select a small set of
optimal discriminating vectors for recognition, and treat each subspace according
its importance, while actually PCA and voting rule treat 40 Gabor subspaces
equally. Moreover, the proposed method not only gives a higher recognition rate,
but also its computation complexity is low, because the dimension size of each
subspace is adaptively determined according to its importance. Figure 9 reports
the dimension size of each Gabor subspace, if 600 discriminating vectors are
selected by boosting for recognition, where the x-axis is the subspace No. We
denote No.1 for s = 0, d = 0 , No.2 for s = 0, d = 1, and No.40 for s = 4, d = 7
by analogy. We can see that the dimension size of most subspaces is below 20.

4.2 On the CAS-PEAL Database

The CAS-PEAL database contains 99,594 images of 1,040 subjects, and unlike
the above FERET database, all the people in this database are Asians. We
take 376 subjects and each subject has 6 different front view images for the
experiments, where each person has one image with normal expression. We crop
the images to 48*54 by fixing eye locations too. Figure 6 shows some sample
images. We randomly select 100 subjects for training. For the rest of the 276
subjects, we take the normal image of each person as gallery image, and the other
5 images as probe images. Histogram equalization is performed as pre-processing.
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Fig. 10. Compare with Gabor + ELDA,
LDA, and PCA

Fig. 11. Compare with PCA based fusion
and Voting based fusion

Figure 10 reports the experimental results of the proposed method, Gabor +
ELDA [4], PCA [2], LDA [3]. Because the number of training subjects are 100,
the feature number of Gabor + ELDA and LDA can only reach 99. From Figure
6, it can be seen that the experimental results are similar to the results on the
FERET database. The proposed method outperforms the other three methods,
and the Gabor + ELDA is better than LDA and PCA. We also do an evaluation
of the boosting based fusion method on this database. Figure 11 shows the
comparison results of the boosting based fusion, PCA based fusion, and majority
voting based fusion methods. Similarly, the proposed method achieves a better
performance than PCA based fusion and majority based fusion methods.

5 Conclusions

In this paper, we propose a new scheme of Gabor based face recognition. Com-
paring with previous work, we make use of the respective properties of Gabor
filters, and the problem of computational complexity is well handled without los-
ing information by subspace dimension reduction and boosting based fusion. We
first learn discriminating subspaces for each kind of Gabor images respectively,
and then the boosting based fusion method is presented to fuse all the subspaces.
This fusion strategy can adaptively determine the discriminating vectors and di-
mension size of each subspace. Moreover, it further improves the recognition
performance. Experiments on the FERET and CAS -PEAL databases show its
encouraging performance.
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Abstract. A major face recognition paradigm involves recognizing a person
from a set of images instead of from a single image. Often, the image sets are ac-
quired from a video stream by a camera surveillance system, or a combination of
images which can be non-contiguous and unordered. An effective algorithm that
tackles this problem involves fitting low-dimensional linear subspaces across the
image sets and using a linear subspace as an approximation for the particular face
identity. Unavoidably, the individual frames in the image set will be corrupted by
noise and there is a degree of uncertainty on how accurate the resultant subspace
approximates the set. Furthermore, when we compare two linear subspaces, how
much of the distance between them is due to inter-personal differences and how
much is due to intra-personal variations contributed by noise? Here, we propose
a new distance criterion, developed based on a matrix perturbation theorem, for
comparing two image sets that takes into account the uncertainty of estimating a
linear subspace from noise affected image sets.

1 Introduction

There are many merits to face recognition using image sets. It is conjectured that many
still-image face recognition algorithms fail in practice because they were developed
based in controlled environments which are hard to satisfy in the real world. Herein lies
the strength of recognition using image sets– a set of images of a person under vary-
ing conditions contains more information than a single image, and possible variations
and appearance of the person would have been encoded in the set. For algorithms that
restrict the images in the set to be contiguous frames, temporal coherence between the
images can be exploited to aid in recognizing a face [1]. For algorithms with no such
restrictions, recognizing from image sets allows a convenient combination of long term
observations captured at sequestered intervals [2].

Furthermore, many existing surveillance systems capture video sequences of their
environment inconspicuously rather than a still image in a controlled setting which re-
quires a high degree of cooperation from the subjects. Thus, a system based on match-
ing image sets would be more natural and accommodating. The rapid advancement of
face detection algorithms contributes immensely to face recognition using image sets.
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ferred by the Department of Education, Science and Training of the Australian Government.
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In particular, algorithms such as [3] can perform multipose rotated face detection at
high speed. Face recognition algorithms using image sets allow a seamless integration
between face detection and face recognition, as the results from face detection can be
used directly for recognition without much preprocessing.

In this paper, we focus on a class of face recognition algorithms that involves rep-
resenting a face class by a single linear subspace [4, 5, 2, 6]. This model of a face is
obtained via fitting low-dimensional linear subspaces across a set of images obtained
under varying imaging conditions. Face recognition is performed on the premise that
different faces generate different linear subspaces, and the distance or angles between
the linear subspaces is used as a similarity measure. However, images will inevitably
be corrupted by noise, and there is a certain degree of uncertainty in estimating linear
subspaces from noisy samples. For a certain amount of noise, how far is our estimated
subspace biased from the optimal one? Or equivalently, when we compare distance of
subspaces, how much of the distance is contributed by inter-personal differences and
how much is due to noise effects? We attempt to answer these questions by using a ma-
trix perturbation theorem and propose a new distance criterion that takes into account
the uncertainty of estimating linear subspaces.

Compared to more probabilistic approaches, linear subspace methods appear rather
simplistic. For example, a recent method reported in [7] involves modeling the densi-
ties generated by image sets as Gaussian Mixture Models and evaluating the similarity
between the sets via the Kullback-Leibler divergence. In [8], face appearances are mod-
eled as a joint probability distribution of identity and motion using sequential impor-
tance sampling and the recognition decision is obtained via marginalization. Nonethe-
less, despite their straightforwardness, linear subspace methods are surprisingly rather
effective, as reported in [7]. In particular, the CMSM method [6] accomplished an av-
erage accuracy of only 2% less than a more complex method proposed in [7]. Linear
subspace methods are certainty very attractive and promising.

Linear methods do not provide theoretical justifications for using linear models to
represent image sets of faces. Furthermore, it is conjectured that the manifold of faces
within the image space is highly complex and non-linear [9], and hence linear methods
will always suffer from model deficiencies. In other words, there is no such thing as an
unbiased linear subspace for a particular image set. At most, we can estimate a linear
subspace that best approximates an image set, and vestiges of the set not conforming
to the linear model will introduce more within-class variations alongside other noise.
Hence, it is desirable to have a qualified measurement of the uncertainty in subspace
estimation over a noise affected image set and a distance criterion that isolates intra-
personal variabilities from inter-personal differences.

2 Previous Work

One of the earliest algorithms for face recognition from image sets using linear sub-
spaces was reported in [4]. The so-called modified CLAFIC method proposed is essen-
tially about estimating low-dimensional linear subspaces across mean-adjusted image
sets. This method is not entirely in the mould of the algorithms we consider here, since
test samples used are single images rather than image sets. In this case, the projection
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distances of an image onto different subspaces are compared. A high accuracy of about
92% was reported. It should be noted that for this result, both training and test images
were acquired under relatively well-controlled environments.

The Mutual Subspace Method (MSM) for face recognition was reported in [5]. Faces
were first tracked using a face detection module and accumulated to form image sets.
The distance measure was determined by comparing the smallest principal angles be-
tween subspaces generated by the image sets. A recent implementation [7] shows that
the MSM yielded an accuracy of about 83%. A problem with the MSM is that the
subspace estimation might be affected by noise or intra-class variabilities and these en-
tities could contribute to the distance measure between subspaces, thus influencing the
classification decision.

An extension of MSM is the Constrained Mutual Subspace Method (CMSM) [6],
which is essentially an MSM performed on the projection of the original subspaces
onto a constrained subspace. The constrained subspace contains the intra-class variabil-
ities of the training images, and is constructed by the difference vectors within a face
class. The similarity measures on this subspace should be robust against such variabili-
ties present in the training images. A recent implementation [7] shows that the CMSM
yielded an accuracy of about 92%, almost on par with a more sophisticated method
proposed in [7]. A problem with CMSM is that if the constrained subspace does not
contain all possible variations, the distance measure will still be influenced by some
intra-class variabilities.

3 Angles Between Subspaces and Distance Metrics

The notion of angles between two subspaces, called principal angles, plays an in-
tegral part in quantifying the distance between two subspaces. The principal angles
θ1,θ2, · · · ,θn ∈ [0,π/2] between two n-dimensional subspaces P and Q, following the
definition of [10], are defined by

cosθi = max
μ∈P

max
ν∈Q

μ ·ν = μi ·νi , (1)

for i = 1, ...,n, subject to μ · μ = ν ·ν = 1, μ · μ j = 0, ν ·ν j = 0(1 ≤ j ≤ i− 1). The
vectors {μi} and {ν j} are principal vectors corresponding to the pair P and Q.

A type of distance metric between subspaces P and Q is the gap distance, defined by

ds (P, Q) = sinθ1 , (2)

with θ1,θ2, · · · ,θn being the principal angles between P and Q and θ1 ≥ θ2 ≥ ·· · ≥ θn.
Another widely used distance metric is the chordal distance, defined by

dc (P, Q) =

√
n

∑
i=1

sin2 θi , (3)

with all the variables as defined previously. It can be seen that the chordal distance
reduces to the gap distance for n = 1. Both distance measures have the necessary prop-
erties of metrics (e.g. non-negativity, symmetry, triangle inequality). Furthermore, they
are essentially equivalent in the sense that they generate the same topology [11].
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Let matrices P and Q be orthonormal bases for subspaces P and Q respectively. The
projection matrices of P and Q are respectively

P = PPT and Q = QQT . (4)

Unlike orthonormal bases, the projection matrices define their corresponding subspaces
uniquely. The distance metrics defined above can be computed from projection matri-
ces:

ds (P, Q) = ‖P−Q‖2 , (5)

dc (P, Q) =
1√
2
‖P−Q‖F , (6)

with ‖ · ‖2 and ‖ · ‖F representing the matrix 2-norm and the matrix Frobenius norm
respectively. For a proof of the above, see [10, 11] for example.

4 The Effects of Noise on Subspace Distance Measure

All images are raster-scanned to form m-dimensional vectors. If no noise is present and
n observations are recorded, we obtain a matrix A ∈ Rm×n. If noise is present, matrix A
is perturbed by N and we observe matrix Ã, i.e.

Ã = A + N. (7)

If the rank of A is r and r < n, we would like to find the r-dimensional linear subspace
that spans the columns of A. An orthonormal basis of this subspace can be obtained by
performing an SVD on A and retaining the first r left singular vectors. If our observa-
tions are affected by noise, A almost always becomes full rank. If we retain the first
r left singular vectors of Ã to form an orthonormal basis, how far potentially can this
subspace differ from the uncorrupted subspace?

Let A = UΣV T and Ã = ŨΣ̃Ṽ T with the singular values ordered decreasingly. Take
note that if we subtract the mean from A before invoking an SVD, we would be per-
forming a PCA– that is not the case here. Let the matrices Ur and Ũr contain the first r
left singular vectors of A and Ã respectively, i.e.

Ur = UE and Ũr = ŨE , (8)

with E =
[

Ir

0(m−r)×r

]
, Ir being the identity matrix of dimension r× r and 0a×b being

a zero matrix of dimension a× b. By definition of the SVD, U and Ũ are orthogonal
matrices, hence Ur and Ũr are sets of orthonormal vectors. The objective is to find an
upper bound of the following:

‖Ur(Ur)T −Ũr(Ũr)T‖a , (9)

where a defines the type of norm. We will work exclusively with a = F , which effec-
tively means that “how far?” in the question above is posed in terms of the chordal
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distance metric, and (9) is the difference in chordal distance between the column space
of Ur and the column space of Ũr.

Suppose the matrix A ∈ Rm×n is perturbed by N and we observe Ã, i.e. Ã = A + N.
Without loss of generality, we assume m > n. The matrix A can be decomposed via
SVD into A = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and

Σ =
[

S
0(m−n)×n

]
with S = diag{κ1, κ2, · · · , κn}. Define C = UT NV . Theorem 1 [11]:

Suppose κi is a simple non-zero singular value of A, then the first order perturbations
of the singular values λi, the right singular vector xi, and the left singular vector yi, of
Ã are respectively

λi = κi +Ci, i , (10)

xi = Vi + ∑
j �=i

κ j Cj, i + κiCi, j

κ2
i −κ2

j

Vj , (11)

yi = Ui + ∑
j �=i

κiCj, i + κ j Ci, j

κ2
i −κ2

j

Uj , (12)

with Cj, i representing the element of C at row j and column i, and Ui and Vi representing
the i-th column of U and V respectively.

If A is of rank r, we can expect that only the first r singular values of A are non-zero.
From Theorem 1, we can see that Ũr = UH, with

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 P(1, 2) · · · P(1, r)

P(2, 1) 1
...

...
... · · · . . . P(r-1, r)

P(r, 1) · · · P(r, r-1) 1
Q(r+1, 1) Q(r+1, 2) · · · Q(r+1, r)

...
...

. . .
...

Q(m, 1) Q(m, 2) · · · Q(m, r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

with P( j, i) = κi Cj, i+κ j Ci, j

κ2
i −κ2

j
and Q( j, i) = Cj, i

κi
. H can be decomposed as such:

H = E + F + G, with F =
[

H1:r,1:r− Ir

0(m−r)×r

]
and G =

[
0r×r

H(r+1):m,1:r

]
(14)

by borrowing a Matlab notation.
With the established results above, we can start to find the upper bound for (9). Triv-

ially, by exploiting unitary invariance of the Frobenius norm, we can see the following:

‖Ũr(Ũr)T −Ur(Ur)T‖F = ‖HHT −EET‖F . (15)

We make the assumption that m r such that the contribution of matrices with nearly
m×m non-zero elements dominates over other sparse matrices. This assumption is
valid for most computer vision applications where m is the number of pixels in an image
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with typical values anywhere from 400 to 10,000 and r range from 5 to 25 depending on
specific methods. By using the decomposition of H above and dropping sparse matrices,

‖Ũr(Ũr)T −Ur(Ur)T‖F = ‖(E + F)
(
FT + GT)+ GFT

+ (F + G)ET + GGT‖F
∼= ‖GGT‖F .

The matrix G can be decomposed further into G = D ·S−r, with D =
[

0r×r

C(r+1):m,1:r

]
by

using the Matlab notation again and S−r = diag{1/κ1, 1/κ2, · · · , 1/κr}. Hence,

‖Ũr(Ũr)T −Ur(Ur)T ‖F
∼= ‖D

(
S−r)2

DT‖F ≤ ‖D‖2
F · ‖

(
S−r)2 ‖F (16)

Suppose that each entry of A is corrupted with i.i.d. Gaussian noise with energy of σ2
n ,

then each entry of C is drawn from the normal distribution N
(
0,σ2

n

)
. We then make the

following approximation:

‖D‖2
F =

m

∑
j=r+1

r

∑
i=1

C2
j, i
∼= (m− r)rσ2

n . (17)

Following [12], the maximal likelihood estimate of the noise level in an r-dimensional
subspace estimated from a noise affected matrix Ã ∈ Rm×n using SVD is√

1
(m− r)

m

∑
i=r+1

κ̃2
i , (18)

with {κ̃i | i = 1, 2, · · · , n} being the singular values of Ã. By substituting the relevant
equations, we arrive at the following upper bound:

‖Ũ r(Ũr)T −Ur(Ur)T‖F ≤ r

(
m

∑
i=r+1

κ̃2
i

)√
r

∑
i=1

1

κ4
i

. (19)

Of course, in realistic situations, A is never attainable, only Ã is observed. We make
the approximation of κi ≈ κ̃i for i = 1, 2, · · · , r. Secondly, usually only n samples are
observed, so κi can be summed up to the n-th term only. This will not be invalid since
κi for i r will be insignificant. Thirdly, our empirical results show that the upper
bound given by (19) consistently overestimates the ground truth by a factor of at least
r. Consequently, we drop the r term to arrive at the following result:

‖Ũr(Ũr)T −Ur(Ur)T‖F ≤
(

n

∑
i=r+1

κ̃2
i

)√
r

∑
i=1

1

κ̃4
i

. (20)

It should be noted that the value given by (20) is not equivalent to the optimal threshold
for classification purposes. In essence, it is a mathematically qualified way of quantify-
ing how far potentially our estimated subspace can be biased by noise, and is an indica-
tion of the quality of the estimation. Specifically, when the uncertainty of one subspace



A New Distance Criterion for Face Recognition Using Image Sets 555

is larger than the distance from another subspace, these subspaces are practically indis-
tinguishable despite their distance apart. A remedy would be to acquire cleaner samples
for a re-estimation of the subspaces.

From (20), we can quantify the noise contribution to the distance between two sub-
spaces learnt from noisy image sets. It can be considered intra-class variations that
should be isolated from distance comparisons between subspaces of possibly distinct
classes. For face recognition purposes, we propose the following distance criterion: sup-
pose we have a test subspace T and a set of subspaces L learnt from noisy image sets,
and all are r-dimensional. For nearest neighbour classification, the following distance
criterion

max( dc (T, P)−NP, 0 ) , (21)

with NP =
1√
2

(
n

∑
i=r+1

κ2
P, i

)√
r

∑
i=1

1

κ4
P, i

, (22)

should be used, where P ∈ L, P is the matrix from which we estimate P and κP, i is the
i-th singular value of P. Thresholds can then be applied onto the resultant distances as
a closeness criterion.

As an afterthought, (20) is a manifestation of what we already know about the SVD:
the quality of our basis in spanning the column space of a matrix is reflected by the
singular values of the estimation. However, (20) not only provides a value of the es-
timation quality, but allows us to quantify by how far our subspace can potentially be
biased by the uncertainty. Furthermore, it is mathematically justified.

5 Experimental Results

Experiments on synthetic data were performed to show the validity of (20). In the first
experiment, a data matrix A ∈Rm×n of rank 15, with 100≤ m≤ 3000, n = 65 and 0≤
A j, i ≤ 255 was randomly created. A was perturbed to become Ã with additive random
Gaussian noise of zero mean and σ = 5. The uncertainty in the subspace estimation
and the ground truth (9) were computed for each iteration of m (50 sub-iterations were
performed for each m with the results averaged). Figure 1(a) shows that for a large
range of m, our upper bound of the uncertainty consistently overestimates the ground
truth by a factor of about 1.3. The design of experiment 2 remained the same, albeit
with different parameters: m was fixed at 1000, 5≤ r ≤ 25 and n = r + 50. Figure 1(b)
shows that the overestimation over the ground truth increases to a factor of about 1.5
when r = 25. For experiment 3, the parameters are as follows: m = 1000, n = 65, r = 15
and 5 ≤ σ ≤ 10. For this case, the overestimation over the ground truth increases to a
factor of about 2.6 when σ = 10, as shown by Figure 1(c).

We implemented the MSM method to evaluate our results. A small face video
database comprising 14 individuals from our department was constructed. The subjects
were requested to sit on an office chair while looking straight at a webcam capturing
at 10 fps with 320× 240 pixel resolution. A face detector implementation of [13] was
executed simultaneously at frame rate. To mimic real life scenarios, the recordings were
done as candidly as possible, and the subjects were encouraged to perform some minor
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Fig. 1. (a)(b)(c) Experimental results with synthetic data. y-axis represents chordal distance. Lines
with ‘+’ depict chordal distance values estimated using (20), and lines with ‘x’ depict ground truth
chordal distance values given by (9). Dashed lines encapsulating ‘+’ and ‘x’ lines show standard
deviation of chordal distance values for 50 iterations per changing parameter.

arbitrary movements like fidgeting, swiveling on the chair, translation, head rotation
and talking. We do not consider illumination variations here, as the recordings were
all done in an office environment with stable lighting conditions. Six recording ses-
sions of 5s each were captured in this manner for each subject. The output of the face
detector were resized to 32× 32 pixels and used unaltered thereafter for face recogni-
tion. No background removal, false positive rejection or illumination normalization was
performed.

To reduce computational requirements, only the first 10 face detector outputs of each
sequence were used for training. Furthermore, we do not consciously filter out false
positives and allow them to remain as noisy samples in the sequences. Examples of
the actual images used are depicted in Figure 2(a). The optimal subspace dimension
was empirically determined to be 5. Figure 3(a) depicts a comparison of the chordal
distance of all subspaces against the subspace generated by Subject 1 Session 1. The
estimation uncertainty of the reference subspace was computed using (20). It can be

Fig. 2. (a) Examples of intra-class variations in the database. (b) Row 1–4: Examples of the ex-
treme variations produced. Row 5: The control sequence.
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Fig. 3. Distance comparisons against Subject 1 Session 1, (a) using our face database. (b) with
Sessions 2–6 of Subject 1 substituted with the sequences exemplified by Figure 2(b). ‘x’s denote
chordal distances of Subjects 2–14, while ‘◦’s denote chordal distances of Subject 1. Dotted lines
show the estimation uncertainty.

seen that the subspaces of Subject 1 are noticeably closer to the reference subspace,
some even dipping below the amount of uncertainty in the estimation, while subspaces
of the other subjects are discernibly further away. Using the distance criterion (21) and a
threshold level of zero, we were able to achieve an accuracy of 91% with our minimalist
face recognition system.

To illustrate the ability of (20) in evaluating the quality of subspace estimation, Sub-
ject 1 was requested to intentionally produce several types of extreme variations while
being recorded by our system above. Figure 2(b) depicts the types of variations pro-
duced: (according to the row order) deliberate occlusions, sudden/jerky movements,
extreme facial variations and severe off-axis rotations. A control sequence captured un-
der mild variations was included. Subspaces of dimension 5 were estimated for these
sequences, and the amount of uncertainty computed using (20) are 3.6758, 2.8616,
2.9349, 3.2149 and 1.2970 respectively according to the order in Figure 2(b). We sub-
stituted these sequences into Sessions 2–6 of Subject 1 and reran our face recognition
system. It is evident from Figure 3(b) that the extreme variations have biased the sub-
spaces away from their true positions, while the control sequence remains close to Sub-
ject 1. Therefore, judging from the uncertainty values alone, we could have declined
classification for these noisy test subspaces to prevent erroneous decisions and called
for re-estimations using cleaner samples.

6 Conclusion

Face recognition using image sets has many merits compared to still image face recog-
nition paradigms. An effective approach to tackle this problem involves fitting linear
subspaces across the image sets and performing classification by comparing distances
of subspaces. Based on a matrix perturbation theorem, we established the mathematical
formulation of (20), which is the major contribution of this paper, to quantify the un-
certainty of estimating a linear subspace to approximate a noise affected image set. An
immediate application is the evaluation of the quality of subspace estimation over noisy
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image sets, which we demonstrated with real life data. We performed experiments using
artificial data to confirm the validity of our main result. Based on the established for-
mulation, we proposed a more accurate distance criterion between subspaces, given by
(21), that allows distance due to within-class variations be detached from distance com-
parisons between subspaces. A practical application of this was demonstrated through
an MSM-based face recognition system using a small database of video sequences of
faces which achieved comparable results with previous reported implementations.
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Abstract. In this paper we propose fusion of shape and texture information 
from 3D face models of persons with the acoustic features extracted from spo-
ken utterances, to improve the performance against imposter and replay attacks. 
Experiments conducted on two multimodal speaking face corpora, VidTIMIT 
and AVOZES, allowed less than 2 % EERs to be achieved  for  imposter at-
tacks, and less than 1% for type-1 replay attacks for multimodal feature fusion 
of acoustic, shape and texture features.  For type-2 replay attacks, more difficult 
type of spoof attacks, less than 7% EER was achieved. 

1   Introduction 

Person authentication systems based on video sequences of speaking faces, are less 
vulnerable to imposter and replay attacks because of their ability to process the infor-
mation from both the face and voice of a person, [1]. The video containing temporal 
information, multiple instances of a speaking face, as well as a synchronous acoustic 
information makes imposter and spoof attacks less likely, as it is very difficult to 
spoof both the person’s voice in synchronism with image of the person’s speaking 
face. However, with recent advances in computer graphics(CG),  and availability of 
inexpensive CG animation software tools , it is significantly easier to create photore-
alistic synthetic or fake 2D talking faces from a single image and pre-recorded audio, 
thus weakening anti-imposture and anti-spoof abilities of systems proposed in [2,3]. 
Moreover, since the systems proposed in [1,2,3] are based on two dimensional face 
models, they are more sensitive to pose, illumination and appearance variations in 
faces, imposing stringent pose and illumination normalization requirements on the 
biometric data presented to the system.  Use of 3D face models will allow better han-
dling of the pose and lighting variations, and can thwart  most of  the imposter/reply 
attacks at the same time,[4]. The 3D shape of a face does not change due to changes 
in head pose and illumination, and it possible to accurately model a normal talking 
face with rigid head movements, such as head turning right, left, back and forth while 
speaking using 3D models. There is an inherent synchrony between acoustic and vis-
ual signals for speaking faces. In addition, facial and head motion during speech is a 
direct consequence of vocal-tract motion which shapes the acoustics of the speech 
[5,6]. We propose feature fusion of 3D shape and texture features extracted from face 
images of the person, with acoustic features extracted from spoken utterances, for 
achieving invariance against pose and illumination variations, and enhance the per-
formance against imposter and replay attacks. The feature fusion allows synchrony 
between audiovisual data to be preserved during the entire utterance, as opposed to 
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independent processing of features in late fusion, [1]. Experiments with VidTIMIT 
and AVOZES, the two audiovisual speaking face corpora, allowed less than 2 % error 
rates (EERs) to be achieved  for  imposter attacks and less than 1% for type-1 replay 
attacks (pre-recorded audio with still photos) , and 4 – 6 % for type-I1 replay attacks( 
CG animated fake video from a still photo and pre-recorded audio).   

Next section describes the speaking face data used for evaluating the potential of 
proposed 3D multimodal feature fusion, followed by face modeling technique in sec-
tion 3. The details of the features extracted and the experiments carried out, is de-
scribed in section 4 and 5, followed by conclusions in section 6. 

2   Speaking Face Corpus 

The speaking face data from two different databases, VidTIMIT and AVOZES were 
used for conducting imposter and spoof attack experiments. The VidTIMIT multimo-
dal person authentication database [7] consists of video and corresponding audio re-
cordings of 43 people (19 female and 24 male). The mean duration of each sentence is 
around 4 seconds, or approximately 100 video frames. A broadcast-quality digital 
video camera in a noisy office environment was used to record the data. The video of 
each person is stored as a sequence of JPEG images with a resolution of 512�384 
pixels with corresponding audio provided as a 16-bit 32-kHz mono PCM file.  

Fig. 1. Faces from (a) VidTIMIT above, (b) AVOZES 

The second database used is the AVOZES database, an audiovisual corpus devel-
oped for automatic speech recognition research [8]. The corpus consists of 20 native 
speakers of Australian English (10 female and 10 male speakers), and the audiovisual 
data was recorded with a stereo camera system to achieve more accurate 3D meas-
urements on the face. The recordings were made at 30 Hz video frame rate, and at 
16bit, 48 kHz mono audio rate in a controlled acoustic environment with no external 
noise, and some background computer and air-conditioning noise. For each speaker 
there ware 3 continuous spoken utterances, 10 digit sequences, 18 phoneme se-
quences(CVC words in a carrier phrase) and 22 VCV phoneme sequences(VCV 
words in a carrier phrase. Figure 1a and Figure 1b show sample speaking-face data in 
different views available from VidTIMIT and AVOZES. The 3D face modeling tech-
nique used is described in next section, with VidTIMIT face data as an example. 
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3   3D Face Modeling 

The VidTIMIT data base  consists of frontal and profile view images of the faces, and 
AVOZES data comprises left(top) and right(bottom) images of the faces, as shown in 
Figure 1(a) and (b). We used a unified approach for 3D face modeling of faces from 
the databases, [4, 9]. The algorithm start by computing 3D coordinates of automati-
cally extracted facial feature points. Correspondence between feature points in both 
images is established using epipolar constraints, and then depth information from 
front and profile views for VidTIMIT faces, and, left and right views for AVOZES 
faces, is computed using perspective projection.  The 3D coordinates of the selected 
feature points are then used to deform a 3D generic face model to obtain a person 
specific 3D face model.  

The generic model then undergoes global alignment and local refinement. The 
global alignment stage brings the generic model and facial measurements into same 
coordinate system. Then, local refinement is performed by generating 3D spline 
curves for each facial component and adjusting corresponding vertices of the 3D 
model accordingly.   

The automatic facial feature extraction algorithm extracts 15 2D corresponding fa-
cial features from two views, based on skin color modeling, and morphogical segmen-
tation in red-blue chrominance space, and then followed by pseudo-hue edge detec-
tion and matching with deformable templates corresponding to eyes, nose and mouth 
features, and [10]. The technique used allows automatic facial feature extraction with 
about 96% accuracy. These features are anchor points chosen because of their impor-
tance in representing a face. Figure 2 show some of the steps used in extracting the 
anchor points in front and profile views for VidTIMIT faces. 

Fig. 2. Facial feature extraction from Front and Profile views for VidTIMIT faces 

The global alignment of generic head model for each person’s head shape involves 
deformation of 15 vertices (anchor points). The entire 3D generic model is brought as 
close as possible to the corresponding 3D coordinates of anchor points calculated 
from the images of the person’s face. This is done by rotating, translating and scaling 
to match the calculated 3D points by minimizing the sum squared error criteria.  
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Given two sets of 3D points, namely 15 calculated    anchor points, and 15 corre-
sponding model points, global alignment algorithm finds the translation and rotation 
matrices that best match the corresponding data points. That is, it calculates the best 
fit of two similar sets of 3D data points; the global rigid alignment deforms success-
fully scales and aligns the generic model to the 3D feature points calculated from the 
face images. 

Local refinement is then implemented by treating each of the facial features as 
separate non-rigid components, and the vertices of the generic model are brought 
closer to the calculated 3D anchor points of the person’s face. Facial texture for all the 
vertices is computed by blending the R, G, B color components of two views of the 
face. Figure 3 shows the textured 3D face model for a male subject in VidTIMIT cor-
pus by global and local alignment of generic face model. 

Fig. 3. 3D face model of VidTimit face by global and local alignment of generic face model 
shown in Figure 2 

4   Shape and Texture Fusion 

The techniques proposed till date for processing and integration of shape and texture 
features are in 3D face recognition domain, and have evolved based on the assumption 
that there is no correlation between shape and texture features of a 3D face. This might 
be true for static 3D faces, and most of research efforts so far have mainly addressed 
recognition of still 3D faces, [4, 9]. But a speaking face is a kinematic-acoustic system 
in motion, and the shape, texture and acoustic features during speech production must 
be correlated in some way or other. A number of studies carried out by Yehia et. al. 
[5,6] have established this correlation based on the anatomical facts, and shown that a 
single neuromotor source controlling the vocal tract behavior is responsible for both the 
acoustic and the visible attributes of speech production. Hence, for a speaking face not 
only the facial motion and speech acoustics is correlated, but the head motion and fun-
damental frequency (F0) produced during speech is also related.  

Though there is no clear and distinct neuromotor coupling between head motion 
and speech acoustics, there is an indirect anatomical coupling created by the complex 
of strap muscles running between the floor of the mouth, through thyroid bone, and 
attaching to the outer edge of the cricothyroid cartilage. Due to this indirect coupling, 
speaker tends to raise the pitch when head goes up while talking. The head motion 
can modeled by tracking 3D face shapes with complementary and synchronous 2D 
facial feature variation, and 1D acoustic variation. 
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This unique and rich information is normally person-specific and cannot be easily 
spoofed either by a real imposter, or CG animated speaking faces. Hence a multimo-
dal fusion of shape, texture and acoustic features at the feature-level as opposed to 
late fusion (where the features are independently processed) can enhance the perform-
ance of face-voice authentication systems against imposter and replay attacks.  

The major deformations for speaking faces are in the lower part of the face com-
pared to rest of the face. Hence the lower half  of the face was used for extracting the 
shape and texture features and subsequent multimodal fusion. An alignment was done 
to account for variations in head orientation. The 3D model of lower part of the face 
consists of about 128 vertices and 200 surfaces. This means a fusion of acoustic vec-
tor with 128 dimensional shape (X, Y, Z) vector and similar size for texture feature 
vector values. This is too large a dimension for a reasonable performance to be 
achieved. However, after principal component analysis(PCA) of shape and texture 
vector separately, we learnt that about 6-8 principal components of  shape vector and 
3-4 components of  texture vector explains more than 95% of variations in lip shapes 
and appearances during  spoken utterances of most of the English language sentences.  

The 8 eigen-values for shape vector correspond to jaw opening/closing, lip protru-
sion/retraction, lip opening/closing, and jaw protrusion/retraction as shown in  
Figure 4. Similarly, the 3-4 eigen values of texture vector describe most of the ap-
pearance variations mainly those corresponding to one rounded viseme with closed 
lips, (e.g. [‘u’]), one rounded viseme with open lips, and one spread viseme with 
spread lips, (e.g. [‘i’]).   

Fig. 4. Principal visemes during English speaking 

For acoustic features, the Mel frequency cepstral coefficients (MFCC) as derived 
from the cepstrum information were used. The MFCC features were obtained by pre-
emphasizing the audio signal first, and then processed with a 30ms Hamming window 
with one third overlap, yielding a frame rate of 50 Hz. An acoustic feature vector was 
determined for each frame by warping 512 spectral bands into 30 melspaced bands, 
and computing the 8 MFCCs. Cepstral mean normalization was performed on all 
MFCCs before they were used for training, testing and evaluation. In addition, fun-
damental frequency F0 computed by autocorrelation method was used.  

5   Authentication Experiments 

To investigate the potential of three dimensional face models against impostor attacks 
and spoof protection, different sets of experiments were conducted using 18  dimen-
sional multimodal audio-visual feature vector(8 MFCCs + 1 F0 features, 6 Eigen-
shape and 3 Eigen-texture features).  
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Table 1. Notation for different experimental modes 

Notation True Description 

EER Equal Error Rate 
DB1 VidTIMIT corpus 
DB2 AVOZES corpus 

TDMO Text dependent male only cohort 
TDFO Text dependent female only cohort 
TIMO Text independent male only cohort 

TIFO Text independent female only cohort 

In the training phase, a 10-Gaussian mixture model of each client’s feature vectors 
in the three dimensional space was built by constructing a gender-specific universal 
background model (UBM) and then adapting each UBM by MAP adaptation. Both 
text-dependent and text-independent experiments were conducted with VidTIMIT 
corpus and text-dependent experiments with AVOZES data. Table 1 shows the nota-
tion used for different experimental modes. 

In the test phase, clients’ live test recordings were evaluated against a client’s 
model by determining the log likelihoods log p(X| ) of the time sequences X of 
audiovisual feature vectors.  

For testing replay attacks, two types of replay-attack experiments were conducted. 
For Type-1 replay attacks, a number of “fake” recordings were constructed by com-
bining the sequence of audio feature vectors from each test utterance with ONE visual 
feature vector chosen from the sequence of visual feature vectors. Such a fake se-
quence represents an attack on the authentication system, which is carried out by re-
playing an audio recording of the client’s utterance while presenting a still photograph 
to the camera. Four such fake audiovisual sequences were constructed from different 
still frames of each client test recording. Log-likelihoods log p(X’| ) were computed 
for the fake sequences X’ of audiovisual feature vectors against the client model .

For Type-2 replay attacks, a video clip was constructed from a still photo of each 
speaker. This represents a scenario of a replay attack with an impostor presenting a 
fake video clip constructed from pre-recorded audio and a still photo of the client 
animated with facial movements and voice-synchronous lip movements. The still 
photo of each client was voice-synched with the speech signal of each speaker, using 
a set of commercial software tools (Adobe Photoshop Elements, Discreet 3DSMax, 
and Adobe After Effects). We constructed several fake video clips by extracting ONE 
face (the first face) from the video sequence, which acts as a key frame, animated the 
lip region of the key frame by phoneme-to-viseme mapping, and then added random 
deformations and movements in the face and finally rendered lip and face movements 
with speech, all together as a new video clip. Such a fake clip emulates a normal talk-
ing head with certain facial and head movements in three dimensional space in syn-
chronism with spoken utterance. 

Different sets of experiments were conducted to evaluate the performance of the 
system in terms of DET curves and equal error rates. The results for only two types of  
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Table 2. Number of Client, Imposter and Replay attack (RA) trials 

Corpus DB1TIMO DB2TDFO 
Client Trials 144 (24 clients × 6 

Utterances per client) 
530  trials 
(10×53) 

Impostor Trials 3312  trials 
(24×23 ×6)

4770 trials 
(10×9×53) 

type-1 Replay-attack 
Trials 

576 trials 
(24×6×4)

2120 trials 
(10×53×4) 

type-2 attack
Trials 

144 trials 530  trials 

data, that is DB1TIMO (VidTIMIT database text-independent male-only cohort) and 
DB2TDFO(AVOZES database text dependent female-only cohort) are reported here 
due to space limitations. For both types of data, both late-fusion and feature-level fu-
sion of shape and texture features were examined. For late-fusion equal weights for 
shape and feature fusion was used.  

For VidTimit corpus in text-independent mode there were 144 client trials (24×6) 
and 3312 impostor trials (24×23×6) for male subjects. For AVOZES there were 53 
client trials and 4770(10×9×53) impostor trials. Next set of experiments were for test-
ing the Type-1 replay attacks. For the VidTimit database in text-independent mode, 
there were 144 client trials (24×6) and 576(24×6×4) replay attacks for male subjects. 
For AVOZES data, there were 53 client and 2120 (10×53×4) replay attack trials for 
both female subjects in text dependent mode. The third set of experiments is to test 
Type-2 replay attacks, where the number of client and spoof attack trials were same as 
client trials. Table 2 shows the number of client, impostor and replay attack trials for 
each set. 

Table 3. EERs for impostor and Replay attacks(RA) 

% EER  
achieved 

VidTIMIT 
TIMO 

VidTIMIT 
TIMO   

AVOZES 
TDFO  

AVOZES 
TDFO 

Fusion Type Late  
Fusion 

Feature 
Fusion 

Late Fusion Feature Fu-
sion 

Impostor  
Attacks 

0.92 0.64 1.53 1.24 

Type-1 RA 0.44 0.23 0.95 0.59 

Type-2 RA 3.4 1.9 6.45 4.3 
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Fig. 5. DET curves for (a) impostor, (b) type-1 Replay, (c) type-2 Replay attacks 

Figure 5(a) 

Figure 5(c) 

Figure 5(b) 
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The DET curve and EER results  in Table 3 and Figures 5 , show the potential of 
the proposed fusion of eigen-shape and eigen texture  features with acoustic features 
(MFCC+f0) to thwart imposter and replay attacks for VidTIMIT data and AVOZES 
data. For VidTIMIT corpus, less than 1% EER achieved,  with 0.92% for late fusion 
and 0.64% for feature fusion. Feature fusion performs better, a 30% improvement  as 
compared to late fusion, due to synchronous processing of eigen-shape, eigen-texture 
and acoustic features. For AVOZES corpus, EER achieved is 1.24% with  feature 
fusion as compared to 1.53 %,  about 20% EER improvement. For type-1 replay 
attacks, less than 1 % EER is achieved for VidTIMIT and AVOZES, with feature-
fusion performing better than late fusion ( 48% improvement for VidTIMIT data vs. 
38% for AVOZES data).  Less than 7% EER is achieved for type-2 replay attacks for 
both VidTIMIT and AVOZES data, with  best EER equal to 1.9%  for VidTIMIT 
TIMO data and worst EER of 6.45% for AVOZES TDFO data. The fusion of acoustic 
features with three dimensional shape and texture features allowed a significantly 
better performance, though type-2 replay attacks are  more complex replay attacks to 
detect.

6   Conclusions 

The potential of three-dimensional face models for thwarting imposter and still-
photo/video-replay replay attacks for face-voice authentication has been shown in this 
study. The multimodal feature fusion of acoustic, shape and texture features allowed 
less than 2 % EERs to be achieved for imposter attacks, and less than 1% for type-1
replay attacks. With less than 7% EER, significantly better performance has been 
achieved for more difficult type-2 replay attacks. Currently, experiments to examine 
the improvements achieved when leaving out certain features, such as shape, texture 
or voice are in progress. Further work will involve investigations into more discrimi-
native 3D features for improving type-2 replay attacks. 
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Abstract. In this paper, we propose a new method for face recognition
under varying illumination conditions using a single input image. Our
method is based on a statistical shape-from-shading method which com-
bines the strengths of the Lambertian model and statistical information
obtained from a large number of images of different people under vary-
ing illumination. The main advantage of our method over the previous
methods is that our method explicitly incorporates a correlation between
surface points on a face in the MAP estimation of surface normals and
albedos, so that a new image of the same face under novel illumination
can be synthesized correctly even when the face is partially shadowed.
Furthermore, our method introduces pixel grouping and reliability mea-
sure in the MAP estimation in order to reduce computational cost while
maintaining accuracy. We demonstrate the effectiveness of our proposed
method via experiments with real images.

1 Introduction

Face recognition has become one of the most actively studied areas in computer
vision, and a number of methods have been proposed to recognize a person’s
face from input images [6, 21]. This is because face recognition technologies can
be effectively used for a wide range of applications. One such application is the
identification of a person with face recognition when only one image of the person
is available beforehand, e.g., a picture on a driver’s license or a passport. We
believe this example is important because it is not always possible to provide a
large number of training images for each person in real applications.

The appearance of a human face is highly dependent on many factors in-
cluding the pose of a face, illumination conditions, and facial expression. In this

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 569–580, 2006.
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work, we deal with the problem of recognizing a person’s face under varying
illumination conditions when only one training image is available for the person.
Therefore, we do not consider appearance variations due to other factors such
as poses or facial expression.

The task of face recognition becomes easier and robuster if a sufficient num-
ber of training images taken under different conditions are available for each
person, so that we can model appearance variation for the person accurately.
For instance, it is known that appearance variation of a human face due to il-
lumination change is represented approximately with a low-dimensional linear
subspace [4, 7, 2], and, as a result, existing methods for face recognition under
varying illumination work fairly well as long as we have enough training images
taken under different lighting conditions (for instance, [13, 11, 3, 7, 12, 17, 14, 15]).

On the other hand, face recognition under varying illumination becomes a
challenging task when only one training image is available for each person. It is
not trivial, and even may be impossible, to predict how the appearance of a per-
son’s face varies with different lighting conditions if we are given no information
other than a single input image.

Several methods proposed recently [1, 18, 16, 5, 22, 10] can be used for solving
this challenging problem. They are based on the idea of using a statistical model
obtained from a set of images or laser-scanned images of different persons. With
these methods, the shape and reflectance properties of a face are estimated from
a single input image by using a statistical model of human faces. This is the
key difference from conventional shape-from-shading techniques which estimate
the shape of an object with more explicit assumptions such as the integrability
constraint [8] and the assumption of face symmetry [20].

Although these methods have been used successfully to predict appearance
variations in human faces for different lighting conditions, they share a common
difficulty with the exception of Sim and Kanade’s method [18]. That is, reflection
components other than those represented by a simple reflection model such as
the Lambertian model or the Phong model cannot be reproduced accurately with
these methods. For instance, both Atick et al. [1] and Zhou et al.[22] assume that
reflection on a human face can be represented with the Lambertian model. Blanz
and Vetter [5] describe the shading observed on faces by using the Lambertian
model and the Phong model. Matthews and Baker [10] represent appearance
variations due to lighting as a linear combination of basis images. However, it is
reported that reflections on human faces often deviate significantly from simple
reflection models such as the Lambertian model and the Phong model [9].

Our method is most closely related to the method by Sim and Kanade [18], in
that both methods estimate surface normals and albedos of surface points on a
face from a given single input image via Maximum A Posteriori (MAP) estima-
tion based on statistical information obtained from a set of images of different
persons. Because reflection components other than those representable with the
Lambertian model can also be estimated via MAP estimation, both methods
have strengths in comparison with other statistical shape-from-shading methods
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in that subtle reflection components such as highlights and interreflections can
be reproduced for novel lighting conditions.

The key difference between our method and Sim and Kanade’s method is
that our method explicitly incorporates the correlation between surface points
on a face in MAP estimation of surface normals and albedos. This contributes
to the distinct advantages of our method. For instance, a new image of the same
face under novel illumination can be synthesized correctly with our method even
when the face is partially shadowed, while Sim and Kanade’s method fails to do
so since each pixel is treated independently. In addition, we introduce the idea of
pixel grouping and reliability measure in the MAP estimation in order to reduce
computational cost while maintaining accuracy.

2 Our Proposed Method

Our method consists of three steps: i) learning step and ii) modeling step and
iii) rendering step. In the learning step, our method computes statistics about
human faces, i.e., the surface normal including albedo and an error term corre-
sponding to reflection components other than the diffuse component, from a set
of images of multiple people taken under varying illumination conditions. The
set of images used for learning the statistics are referred to as bootstrap images.
In the modeling step, a single image of a novel face, e.g., a picture on a driver’s
license or a passport, is used for predicting appearance variations for this per-
son based on the statistics obtained in the learning step. We refer to this single
image as a training image. Using this training image, our method first estimates
the light source direction under which this training image was taken. Then, our
method estimates the surface normal of the face via MAP estimation by using
both the estimated light source direction and the learned statistics. Finally, in
the rendering step, the error term for a novel illumination condition is computed
by MAP estimation, and added to the diffuse reflection component to render the
image of the face under the novel lighting. Images rendered this way are then
used for face recognition under varying lightings. We will explain each of these
steps in details.

2.1 Reflectance Equation

Our method assumes that a set of bootstrap images for the learning step and a
single training image for the modeling step are taken under point light sources at
infinity, that is, directional light sources. Then, the intensity ip at the p-th pixel
is represented as the sum of the diffuse component and the remaining component
like in Sim and Kanade’s method [18]

ip = nT
p s + ep(s), (1)

where np = (npx, npy, npz)T is a product of the albedo and surface normal at
the p-th pixel, and s = (sx, sy, sz)T is a product of the intensity and direction of
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a directional light source. The error term ep(s) describes reflection components
other than diffuse reflection such as highlights, interreflections, and shadows.

To take into account the correlation between surface points explicitly, we
represent the intensities of P pixels in each image as

i = ST b + e(s), (2)⎛⎜⎜⎜⎝
i1
i2
...
iP

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎝
sT 0 . . . 0

0 sT
...

...
. . . 0

0 . . . 0 sT

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

n1
n2
...

nP

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
e1(s)
e2(s)

...
eP (s)

⎞⎟⎟⎟⎠ .
Thus, i, S, b, and e are a P -dimensional vector, a 3P × P matrix, a 3P -
dimensional vector, and a P -dimensional vector respectively.

2.2 Computing Statistics

Let us assume that a set of bootstrap images consists of images of L people
taken under J known directional light sources sj (j = 1, 2, ..., J). For the l-th
person, a set of images I(l) taken under J light sources are represented by

I(l) = B(l)TS′ + E(l). (3)

Here, I(l) = (i(l)1 , i
(l)
2 , . . . , i

(l)
J ), B(l) = (n(l)

1 ,n
(l)
2 , . . . ,n

(l)
P ), S′ = (s1, s2, . . . , sJ),

and E(l) = (e(l)(s1), e(l)(s2), . . . ,e(l)(sJ )) respectively. We assume that the il-
lumination intensity |sj | of the bootstrap images are same (We describe |sj | as
1 in the rest of this paper.).

Then, we consider E(l) as Gaussian noise1, and compute the least-squares
solution of B(l) as

B(l) = (S′S′T )−1S′I(l), (4)

and the residuals, that is, the error E(l) as

E(l) = I(l) −B(l)TS′. (5)

Finally, we compute the statistics of the surface normal and the error term
from the estimated surface normals and error terms for all people in the boot-
strap images. With regard to the surface normals b, all matrices B(l) for L people
are converted into 3P -dimensional vectors in a raster-scan manner, and then the
mean vector μb (3P -dimensional vector) and the covariance matrix Cb (3P ×3P
matrix) are computed. For the statistics of the error term e(s), the mean vec-
tor μe(sj) is computed from L error vectors e(l)(sj) for each light source sj .
The PJ × PJ covariance matrix Ce is computed from L error matrices E(l) in
the same way as Cb is computed from B(l).Note that the difference between our
1 In order to carefully recover B(l), we removed outliers such as highlights and shadows

contained in bootstrap images.
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proposed method and the previous method is that we incorporate the correlation
between surface points rather than treating each point independently.

2.3 Modeling from a Single Image

The modelling step consists of two sub-steps; estimation of the light source
direction under which a single training image of a subject was taken, and the
estimation of the surface normals of the subject. We explain these sub-steps in
detail.

Estimating Illumination
We estimate the illumination intensity and direction under which a single train-
ing image i was taken. Our method assumes that the subject has the average
face shape and albedos which are represented by the Lambertian model, and
computes the least-squares solution of the illumination2. We extended the illu-
mination estimation method proposed by Sim and Kanade [18] so that we are
able to take variations in intensity of illumination into consideration. Although
it is assumed that the illumination intensities of the training image and the boot-
strap images are same in Sim and Kanade’s method [18], it is often the case that
intensity of illumination changes between the bootstrap images and the training
image.

The illumination intensity and direction of a single training image is estimated
by using the average Bavr of the computed matrices B(l) for all people in the
bootstrap images i

(l)
j

s = BT+
avri = (BavrB

T
avr)

−1Bavri. (6)

Then the ratio α of the estimated illumination intensity to that of the bootstrap
images is computed as α = |s|.

Estimating Surface Normals and Albedos
Taking into account the correlation between surface points, we recover surface
normals and albedos by MAP estimate as bMAP = arg maxb P (b|i). According
to the Bayes’ rule,

bMAP = arg max
b
P (i|b)P (b). (7)

Because we assume that the probability density functions (PDFs) of b and e are
Gaussian distributions, P (b) is described by μb and Cb, and P (i|b) is described
by the mean ST b + μe(s) and the covariance Σe. Here, we calculate the mean
μe(s) based on kernel regression method by using the known illumination sj ,
and the elements of Σe are also interpolated from the computed Ce as

μe(s) = αβ

∑J
j=1 wjμe(sj)∑J

j=1 wj

, σe(s)2 = α2β2

∑J
j=1 wjσe(sj)2∑J

j=1 wj

, (8)

2 In order to carefully recover the illumination, we removed outliers such as highlights
and shadows contained in a training image.
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where wj = exp(−(D(s, sj)/σj)2/2), D(s, sj) = |s/α−sj |, and β is a coefficient
which sets the norm of the estimated illumination vector to 1. The coefficient
β is defined by s/α = β(

∑J
j=1 wjsj)/

∑J
j=1 wj . Substituting the above vectors

and matrices into equation (7), bMAP is given by

bMAP =(SΣe
−1ST + Cb

−1)−1(SΣe
−1(i− μe)+ Cb

−1μb). (9)

2.4 Rendering for Novel Lightings

In order to synthesize an image under a novel illumination condition, we estimate
the error terms under the illumination condition, considering both the correlation
between surface points and between illumination directions. Because we assume
a jointly Gaussian distribution for the PDF of the error terms, by using the
actual error e = i − ST bMAP, the MAP estimate of the error terms under a
novel illumination condition Snew is given by

eMAP = μenew +RTΣ−1
e (e− μe), (10)

where μenew and R is the mean error under the novel lighting and the covariance
of the error terms between the lighting of the training image and the novel
lighting respectively. These quantities are also interpolated from μe and Σe.

Thus, a new image under a novel lighting condition is synthesized as

inew = ST
newbMAP + eMAP (11)

by using the estimated surface normals and error terms.

3 Reduction of Computational Cost

In addition to the correlation between surface points, we introduce two important
improvements for reducing computational cost of our method while maintaining
accuracy.

3.1 Grouping Pixels

The computational cost of our method increases approximately at O(P 3) for the
number of pixels since our method incorporates correlation between pixels rather
than treating them independently. Thus, in order to reduce the calculation cost
and make our method more tractable, we divide an image into subareas and
consider the correlation between pixels in each area.

It is worth noting that the grouping used for estimating surface normals and
that used for estimating error terms are not necessarily the same. In our exper-
iments, surface normals and albedos were estimated by incorporating the cor-
relation between surface points as we described above. On the other hand, the
error terms were treated independently with respect to surface points, and only
the correlation between illumination conditions is taken into account, because
the PJ × PJ covariance matrix requires a large amount of computational cost.
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3.2 Considering Reliability

In order to correctly recover surface normals, we further introduce a reliabil-
ity measure representing how reliable each pixel value. Based on the reliability
measure, the surface normals at shadowed regions or at pixels with noise are
estimated from reliable pixels rather than other unreliable pixels in the training
image. In practice, the value of the error variance Σe are used as this reliable
measure; if the variance of the error term at a pixel is high, the contribution of
the pixel is decreased for calculation of the correlation Cb.

The threshold for this reliable pixel selection can be determined by prelim-
inary experiments. In addition, this reliable pixel selection results in reducing
the computational cost of our method.

4 Experiments

In order to evaluate the performance of our proposed method, we conducted
experiments on face recognition. We used the same statistical model for all of
our experiments, and the model was obtained by using the Yale database B [3]
which contains 640 images of 10 individuals (each person has 64 different images)
under various lighting conditions per pose. Among 640 images in a frontal pose,
we omitted 24 images for each of 10 people which contain an excessive amount
of shadows due to extreme lighting conditions and used the other 40 images for
each person for computing statistics about human faces (400 images in total).
Each image was manually cropped and resized to 40 × 30 pixels with aligned
eye positions. We used two different segmentations for grouping pixels in our
experiments on face recognition as shown in Figure 1.

(a) (b)

Fig. 1. Segmentations used for grouping pixels in our experiments: (a) 6 regions and
(b) 3 regions. Note that left and right cheeks compose one region although they are
not adjacent in (a).

4.1 Image Synthesis

Figure 2 shows one example of synthesized images by using our proposed method.
The training image of a face illuminated from right (Figure 2 (a)) was used for
synthesizing images under different lightings. As a ground truth, a real image of
the same face taken under frontal illumination is shown in Figure 2 (d). Figure 2
(b) shows the image synthesized by our proposed method for frontal illumination
with the grouping shown in Figure 1 (b). We can see both the diffuse reflection
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(a) (b) (c) (d)

Fig. 2. Example of synthesized images with our method: (a) training image of a face
illuminated from right, (b) synthesized image taken under frontal illumination with our
method incorporating correlation between surface pixels, (c) synthesized image taken
under frontal illumination without correlation , (d) real image taken under frontal
illumination.

component and highlights are correctly synthesized even at surface points in
shadows, e.g., the shadow cast by the nose and the attached shadow on the
cheek. In contrast, it can be clearly seen that the image synthesized by using
Sim and Kanade’s method in Figure 2 (c) has problems for dealing with surface
points in shadows.

4.2 Face Recognition

Two databases of face images taken under different illumination were used for
our tests: our own database which contains frontal face images of 12 individuals
illuminated from 11 different lighting directions and CMU-PIE database [19]
which contains frontal images of 68 individuals illuminated from 21 different
lighting directions.

All of the tests were conducted as follows. First, one image for each individual
was used as a training image, and 40 images under different illumination (5
images only in the first experiment) were synthesized by using the training image
and the statistical model learned from the Yale database B. Those 41 images
were then used to generate the subspace for each individual. The rest of the
images in the database were used as a test image and classified by searching for
the subspace with the closest Euclidean distance to the test image.

In the first experiment, we compared the performance of our method with the
most closely related method by Sim and Kanade [18] by using our own database.
An image taken under frontal lighting was used as the single training image for
each person for generating the person’s subspace by Sim and Kanade’s method
and our proposed method. Table 1 shows recognition rates achieved by these
two methods, and it shows significant improvement in recognition accuracy by
incorporating correlations between surface points in MAP estimation as in our
method.

In the second experiment, we used the CMU-PIE database, and the image of
each person illuminated from the side was used as a training image. The result
is shown in Table 2. As in the first experiment, recognition accuracy was signifi-
cantly improved from 68% to 86% by incorporating correlations between surface
points. Our method works well because both the diffuse reflection component
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Table 1. Performance comparison of Sim and Kanade’s method and our proposed
method by using our face image database of 12 individuals

Methods Recognition rate [%]
Sim and Kanade’s method (without correlation) 88

Our method (with correlation in a group) 94

Table 2. Performance comparison of Sim and Kande’s method and our proposed
method by using CMU-PIE database

Methods Recognition rate [%]
Sim and Kanade’s method (without correlation) 68

Our method (with correlation in a group) 86

Table 3. Performance improvement by grouping pixels (3 areas) and the use of relia-
bility measure in our method

Methods Recognition rate [%]
Sim and Kanade’s method (without correlation) 74

Our method (with correlation in a group without reliability) 81
Our method (with correlation in a group with reliability) 83

and highlights are correctly synthesized even at surface points in shadows as
shown in Figure 2.

In the third experiment, we evaluated the effectiveness of pixel grouping and
the reliability measure introduced in Section 3. The result is shown in Ta-
ble 3. This experiment was done by using our database as in the first exper-
iment except that face images illuminated from the side were used as a train-
ing image this time. First, we can see that the recognition rate was improved
by almost 10% from 74% (without correlation) to 83% by incorporating corre-
lations in MAP estimation. This also demonstrates that face recognition can
be performed efficiently by using pixel grouping together with the reliability
measure.

In the fourth experiment, we compared our method with Zhou et al.’s method
[22] which is one of the most recently proposed methods for the same problem
setting, i.e., face recognition under varying lightings by using a single training
image. In order to compare the performance of our method with that of Zhou et
al.’s method, we conducted experiments under the same condition as reported
in [22]. The results of Zhou et al.’s method were taken from [22]. As we can
see in Table 4, our method outperformed Zhou et al.’s method significantly. The
recognition rate of our method (100%) is higher than that of Zhou et al’s method
(59%), when we used ”f13” as a training set and ”f16” as a test set, that is, both
the training set and the test set contain face images illuminated from the same
side. When we used ”f08” under frontal illumination as a training set and ”f15”
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Table 4. Performance comparison of Zhou’s method and our method by using CMU-
PIE database

Methods Recognition rate [%]
f13/f16(training/test) f08/f15

Zhou et al.’s method 59 33
Our method 100 99

illuminated sideways as a test set, our method achieved high recognition rate
(99%) in contrast with that of Zhou et al.’s method (33%).

The reason for our method’s outperforming Zhou et al.’s method is attributed
to the following two points. First, our method statistically models reflection
components other than the diffuse component such as specular highlights and
shadows, while Zhou et al.’s method assumes the Lambertian model. Second,
our method takes into account correlations among surface points on a face so
that a new image of the same face under novel illumination can be synthesized
even when a single training image is partially shadowed.

5 Conclusions

In this work, we proposed a new method based on statistical shape from shading
for face recognition under varying lighting conditions using a single training
image for each person. Our method first learns a statistical model about human
faces by using a set of training images of multiple people taken under varying
illumination conditions. Then, the shape and albedo of a novel face are estimated
via MAP estimation using the obtained statistical model and a single training
image of the novel face. Finally, images of the face under novel lighting conditions
are generated by using the obtained shape and albedo together with the error
term estimated via MAP estimation.

The main advantage of our method over the previous methods is that our
method explicitly incorporates a correlation between surface points on a face
in the MAP estimation of surface normals and albedos, so that a new image
of the same face under novel illumination can be synthesized correctly even
when the face is partially shadowed. Furthermore, our method introduces pixel
grouping and reliability measure in the MAP estimation in order to reduce com-
putational cost while maintaining accuracy. The performance of our proposed
method was demonstrated via experiments on face recognition by using real
images.

We manually specified areas grouping pixels in this work, and automatic seg-
mentation remains as a part of our future work. And we will further investigate
the treatment of the error term. For instance, one possibility is to decompose
the error term into different components such as specular highlights and shad-
ows, and then treat them independently. We are also interested in extending our
method for modeling the variations due to other factors such as poses.
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Abstract. This paper investigates facial expression effects in face recog-
nition from 3D shape using partial ICP. The partial ICP method could
implicitly and dynamically extract the rigid parts of facial surface by
selecting a part of nearest points pairs to calculate dissimilarity mea-
sure during registration of facial surfaces. The method is expected to
be able to get much better performance than other methods in 3D face
recognition under expression variation for its dynamic extraction of rigid
parts of facial surface at the same time of matching. We also present an
effective method for coarse alignment of facial shape, which is fully auto-
matic. Experiments on 3D face database of 360 models with 40 subjects,
9 scans with four different kinds of expression for each subject, show
partial ICP is very promising, compared with PCA baseline.

1 Introduction

Automatic face recognition has been studied extensively over the past decade.
Most efforts have been made for face recognition from 2D images[1] and a few
approaches exploited 3D information [2, 3, 5, 6, 7, 8, 9, 10]. Although the 2D face
recognition system has good performance under constrained conditions, since the
2D image essentially is a projection of the 3D human face, it is still challenged
by changes in illumination, pose and expression [1, 17]. Utilizing 3D information
can improve the system performance[17, 7] due to its explicit representation of
facial surface. However, facial expression is still a big challenge even using 3D
data in face recognition because in fact facial surface is a non-rigid object. Some
efforts have been made to conquer the problem.

C.S.Chua et.al [5] extracted rigid parts of facial surface by a Gaussian model
after registering the face range data with varying expression. These rigid parts
were used to create a model library for indexing. After enrolling four scans for
each subject, voting based on point signature was employed for recognition. It
was reported that 100% recognition rate was obtained for total six persons. How-
ever, the model database is too small.. Furthermore, by Gaussian Distribution,
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China (60503019, 60533040) and Program for New Century Excellent Talents in
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almost all extracted rigid parts of models only discarded mouth from full facial
surface. Some expression may deform other areas of facial surface such as cheek.

K.Chang et.al [11] proposed a local region approach to coping with expression
variation in 3D face recognition. The algorithm is based on traditional ICP after
finding nose area of facial surface. On a database with about 355 subjects and
3205 3D models with seven different expressions, an average rank-1 rate 77.1%
was obtained. The algorithm improved the recognition performance, compared
with ICP-baseline method using complete facial shape. Their work treated nose
area as the rigid region under varying expressions. But under certain expressions,
parts of the nose still show some deformations.

A.M.Bronstein et.al [12] reported a 3D face recognition approach based on
a representation of the facial surface that was invariant to isometric deforma-
tions resulting from expression variation. However, geodesic distance is definitely
variant when facial surface with a ”mouth open” expression.

There is a common assumption that though the face shape of the same person
may change, sometimes greatly, due to various facial expressions, still there are
regions which will keep their shape and position or be subjected to much less
deformation among different expressions. If these regions can be identified, the
3D non-rigid face recognition problem can be reduced to the rigid case[5, 11].

However, there may be no large uniform subset of the face that is perfectly
shape invariant across a broad range of normal expressions, and the deformation
of facial surface of a certain person may be not as same as others with the similar
expressions at all time. Figure 1(a) shows some deformation images of facial
surface with three different expressions, smile, surprise and sad. The deformation
image is obtained as follows. Registering neutral expression face with non-neutral
face of same subject by nose area and subtracting the former from the latter
along the depth value, we call the difference map deformation image, which
indicates the deformation extent of surface region with certain expression relative
to neutral facial surface. And the darker in the figure indicates more deformation
and the lighter means less deformation. From the deformation images, it can be
seen that:

(1) For a subject, almost no fixed large parts of facial surface are invariant
along three expressions. Shown in left four columns in Fig.1(a), smile expression
leads to shape deformation of mouth and cheek, surprise affects mouth and sad
even changes the shape of nose and forehead area slightly.

(2) Comparing two subjects in Fig.1(a), the same expression of different sub-
ject affects different regions. Sad in left person changes shape of forehead, while
affects mainly eyebrow in right person.

Thus, just extracting and matching the same relatively rigid parts for all facial
surfaces is only a choice to solve the expression problem and may not be perfect.
In this paper, after analysis of iterative closest point(ICP), we give the partial
ICP for 3D facial shape recognition which can implicitly extract variant rigid
regions of the face according to deformation extent under different expression
during matching. The method does a proper selection of nearest points pairs
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(a)

(b)

Fig. 1. (a) Deformation images for two subjects. The darker indicates the more
deformation. (b) Discarded area in facial surface with different p-rate=0.9,0.7,0.2
(5th,6th,7th columns respectively). Regions in red indicate the removed parts. Re-
moved areas are not fixed between facial surfaces under different expressions.

to calculate RMS when using ICP to match two surfaces. When applied the
method to three expressions, smile, surprise and sad in our experiments, 96.88%
rank-one matching rate is obtained. We also implement the PCA-based 3D face
recognition as a baseline algorithm.

This paper is organized as follows: Sec. 2 analyzes the ICP algorithm and
presents our method of implicitly extracting rigid parts of facial surface. Sec. 3
describes the data preparing. The experimental results and conclusions are in
Sec. 4 and Sec. 5 respectively.

2 Analysis of Iterative Closest Point (ICP)

The ICP algorithm, developed by Besl and Mckay [16], is used to register the
point sets by an iterative procedure which is widely used in field of 3D rigid
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object registration. Let point set P1 = {p11, · · · , p1M} and point set P2 =
{p21, · · · , p2N}. The ICP algorithm is summarized as:

1. P2(0) = P2, l=0
2. Do
3. For each point p2i in P2(l)
4. Find the closest point yi in P1
5. End For
6. The closest points yi form a new point set Y(l) where
7. the pairs of points {(p21, y1), · · · , (p2N , yN)}
8. describe the correspondences between P1 and P2(l).
9. If registration error E between P1 and
10. P2(l) is too large
11. Compute transformation T(l) between (P2(l), Y(l)),
12. including translation and rotation.
13. Apply transformation P2(l + 1) = T (l) • P2(l),l=l+1
14. Else
15. Stop
16. End If
17. While ‖P2(l + 1)− P2(l)‖ >threshold

where point yk in set Y(l) denotes the closest point in P1 to the point p2k(l) in
P2(l) and the registration error between P1 and P2(l) is

E =
1
N

N∑
k

‖yk − p2k(l)‖2 (1)

For convergence of ICP, a coarse registration step usually is carried out before
the iterative process. Generally, in ICP-based 3D face recognition, two facial
surfaces are registered by the above method, then the value of E computed in
the last time of iterative steps is treated as dissimilarity measure of two faces.

When matching two facial surfaces with different expressions, the difference
between the pairs of nearest points may become large due to shape deformation
which may have a large effect when performing least-squares minimization and
E is no longer accurate as a dissimilarity metric. Thus, there is a significant
performance drop by ICP-Based method in 3D face recognition when expression
varies between gallery and probe, from average 93.6% to 61.1%, as reported by
K.Chang [11]. If only those pairs of points with relatively less deformation can
be selected as input of calculation of E, the registration error E may be still
able to distinguish different subjects while remain small when matching models
of same subjects with different expression.

While the traditional ICP-based method uses all point pairs in computing
transformation T (l) and E [11], we do it by selecting parts of the point pairs.
After sorting the distances of pairs of points in increasing order, we reject the
worst n% of pairs based on distance in each pair. That is, only first (1-n%)
part of distances and corresponding point pairs from sorted distances are chosen
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to compute transformation E and T (l). Considering the last E that is used as
dissimilarity measure of matching, discarding n% of pairs means removing those
points in non-rigid region of facial surface. Thus, it is a implicit method to extract
points in rigid parts of facial surface to register and match and the rigid parts
extracted are varied according to deformation of facial surface among different
matching models. We denote it partial ICP for 3D face recognition approach
and call (1-n%) p-rate.

Figue 1(b) shows some deformation images in which the areas in red indicate
those removed by setting different p-rate. From the removed area, it could be
seen that red regions completely come from darker area in deformation images.
When p-rate equals 0.7, 70 percent of face area is kept to match and most non-
rigid parts are discarded. Thus, the method is expected to be able to get much
better performance in 3D face recognition with expressions than other rigid-
parts-based methods for its dynamically extracting rigid areas of facial surface
at the same time of matching.

3 Data Preparing

Considering the convergence problem of partial ICP, we firstly transform all
models into a canonical coordinate system by finding the symmetric plane of
facial surface and detecting two fiducial points, nose tip and nose base. Then,
facial regions for all models are well extracted by trimming face mesh models with
a elliptical cylinder which coarsely extracts same facial regions for all models, as
shown in Fig.1. After trimming face models, following two strategies are applied:

(1) To compensate for the effect of resolution,we simplify trimmed models us-
ing mesh optimization [15]. Then, all facial surface meshes put into experiments
have about 2000 vertices.

(2) When finding nearest point pairs between two point face meshes in partial
ICP, the nearest distance from point to surface is computed instead of nearest
distance between vertices of meshes.

The details of alignment and trimming are described as follows.

3.1 Transforming to the Canonical Coordinate System

Suppose central profile passes through nose tip, nose base and is in the symmetric
plane of the facial surface. From profile, we identify following information: nose
tip pnt, nose base pnb and direction of symmetric plane ds. Obviously, six degrees
of freedom of facial surface can be fixed by pnt, pnb and ds. After detecting these
information for each facial surface, all models can be coarsely registered in a
canonical coordinate frame.

Finding Facial Central Profile. We apply our early work [13, 14] to detect
the curve of the central profile of facial surface, as reviewed briefly as follows.

Let S(pi) denotes a point set of facial surface, where pi is a point in the set
and Sm(pm

i ) denotes its mirror to some certain plane, where pm
i is corresponding
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mirrored point of pi. When Sm(pm
i ) has been registered to S(pi), Sm(pm

i ) is
transformed into Sm′(pm′

i). From Sm′(pm′
i) and S(pi), we can fit symmetric

plane of facial surface from point set A(xi), where each point xi obtained by:

xi = (pi + pm′
i)/2 (2)

We use the basic idea of the ICP to get a registration between facial surface
and its mirror and find the symmetric plane by equation 2. Finally, we calculate
the intersection of symmetric plane and the triangulated surface of S(pi) to get
the central profile, shown in Fig.2.

z

y

x

(a) (b) (c) (d) (e) (f)

Fig. 2. Symmetric plane detection and profile finding using ICP. (a) original model,
(b) mirrored model, (c) detected symmetric plane, (e) profile and symmetric plane seen
from another view, (f) determination of nose tip and nose base in profile.

Locating Nose Tip and Nose Base. Since central profile curve passes through
nose tip and nose base , we locate their positions based on the curve. Let C
denotes the central profile curve extracted, le denotes the line through both end
points of the curve C , pnt and pnb denote nose tip point and nose base point
respectively. Before location, we suppose following assumption hold up.

(1) The nose tip pnt is a point on the curve C, with the maximum distance to
the line le.
(2) The nose base pnb is a point on the profile curve C, and is the first distance
extremum point to the line le from pnt to forehead, as shown in Fig. 2(f).

It can be formalized as:

pnt = argmaxp∈Cdist(p, le) (3)

L = {p|p ∈ C, yp > ypnt , dist
′(p, le) = 0} (4)

pnb = argminp∈L(yp) (5)

where dist(·, ·) is the Euclidean distance function from a point to a line segment,
yp is y-axis coordinate of point p, dist′(·, ·) denotes first derivative of Euclidean
distance to the point position at line le extend to forehead.

If facial surface is sampled only frontal view discarding hair and neck area,
our assumption is appropriate so that pnb and pnt can be located accurately.
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However, some certain samples of facial surface may be grotesque in shape which
doesn’t keep the assumption. To date we have never encountered a model on
which failure happen in our experimental data set.

Aligning Model. Given nose tip pnt, nose base pnb and normal direction vsp of
symmetric plane for each model, a canonical coordinate system of all models can
be determined. Subtracting pnb from pnt, we get unit vector vy after normalized.
Taking pnt as the origin, vsp as x-axis, vy as y-axis, a new right-hand coordinate
system is defined. Then all models are registeredby transforming facial surface into
the new coordinate system. Furthermore, we rotate the model 20 degree around
x-axis counterclockwise in the new coordinate system for non-duplicate happened
in projecting depth to x-y plane used in PCA-based face recognition. Some results
are shown in Fig.3 (a). All our experiments are based on the aligned models.

(a) (b)

Fig. 3. (a) The canonical coordinate system for aligned models. Axis in red is z-axis,
blue is y-axis, green is x-axis. (b) Face models acquired by InSpeck 3D MEGA Capturor
DF. Each row shows 9 scans of one subject. The models in first row are rendering with
texture.

3.2 Trimming Models

Given aligned model mesh, facial regions can be extracted by removing those
points and triangles of facial surfaces in the outer of following elliptical cylinder:

(x− x1)2

a2 +
(y − y1)2
b2

= 1 (6)

Since all models are in a canonical coordinate, the facial regions of all models
produced by above equation are not only full frontal area, but also roughly same
between models which is an important condition for our partial ICP method.
For consistency, we set parameters as x1=0, y1=20, a=60 and b=80 which works
well for all 360 models in our experiments.

4 Experiments

4.1 Data Acquisition

Experiments use the 3D facial expression database ZJU-3DFED, collected by
the authors. In ZJU-3DFED database, there are 40 different subjects, nine scans
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for each, and total 360 scans. Each subject has two scans with smile expression,
two scans with surprise expression, 2 scans with sad expression and 3 scans with
neutral expression. Facial surfaces of same subject with same expression are
slightly different in extent. All face models are acquired by InSpeck 3D MEGA
Capturor DF[18]. The facial models are in triangular mesh.

We manually cut out the parts out of the face regions from the original model
data and this is the only manual work in our whole works. Each facial mesh
then have about 25000 points and 50000 triangles and the resolution is 0.04
mm. After mesh simplification [15], each scan has about 2000 points and about
4000 triangles. Figure 3(b) shows 3 subjects and 27 scans of face models. The face
models have both shape and texture information, we only use shape information
in the experiments.

We put one neutral expression face model for each subject into gallery and the
other 320 scans are classified into 4 probe sets. All 80 smile scans form smile-set,
so do surprise scans, sad scans and neutral scans. A special probe set composed
of the 320 scans is made for whole recognition results, called whole-set.

4.2 Results by Partial ICP with Different p-Rate

Twelve different values of p-rate { 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,0.6, 0.7, 0.8, 0.9,
0.95, 1} are tested in our experiments. Additionally, we also consider a extreme
instance that only a pair of nearest points is input into calculation of dissimilarity
measure E after ICP process which use all points pair in iterative. The results
are in Fig. 4.
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Fig. 4. (a) Rank-1 recognition rate of different p-rate with partial ICP method on five
probe sets. (b) zooming out part of (a).

From Fig.4, it can be seen that:

(1) For three non-neutral probe sets, none of them has a rank-1 rate larger
than 90% when p-rate equals 1(that is same as the traditional ICP-based match-
ing method). But when setting p-rate value between 0.1 and 0.95, none of them
has a rank-1 rate smaller than 90%. The largest improvements of rank-1 rate of
three non-neutral sets are 7.5% for smile-set, 11.25% for surprise-set, 10% for
sad set.



Exploring Facial Expression Effects in 3D Face Recognition 589

(2) Both highest rank-1 rates of smile-set and sad-set are 96.25% and obtained
at p-rate =0.8 while that of surprise-set are 97.5% and obtained at p-rate= 0.1
or p-rate= 0.2. It is partly due to facial surface with surprise expression has a
larger deformation area than the other expressions.

(3) When setting p-rate as 0.1 which means 90% of facial surface is removed
before matching using partial ICP method, an average rank-1 rate 94.17% is
still reached on non-neutral probe sets. It is a cue indicating that small parts of
facial surface still have enough information for recognition if nice extraction is
performed.

(4) As a whole, our method get an average rank-1 rate 95% on three non-
neutral probe sets when p-rate=0.2 and 96.88% on whole-set.

4.3 PCA v.s. Partial ICP

PCA-based method is implemented in our experiments for comparison. After
models are trimmed, PCA-based method can easy be applied to 3D face recog-
nition by projecting the trimmed models to x-y plane. We use the first 40 eigen-
vectors when test PCA-based method which hold 96.46% energy. We compare
the performance between PCA-based method and partial ICP method on all five
probe sets. The results are shown in Fig.5.

Fig. 5. Rank-1 rate: PCA v.s. partial ICP

The partial ICP method outperforms PCA-based-method on rank-1 perfor-
mance among all probe sets. PCA-based-method is well known that is sensitive
to noise. On all non-neutral expression probe set, PCA-based-method get aver-
age rank-1 rate 75.41% and the worst rank-1 rate 65% on surprise-set because
shape deformation with different expressions act as a role of noise in a way. Be-
tween neutral and non-neutral expression probe sets, the rank-1 rate drop from
92.5% to an average 75.41% with PCA-Base method in recognition. The partial
ICP with p-rate=1 gets a whole rank-1 recognition rate 89.69%. The partial ICP
with best p-rate obtains an average rank-1 rate 96.88% on all probe sets. By well
selecting the p-rate, partial ICP method is insensitive to expression variant in
3D face recognition.
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5 Conclusion

We propose a method, partial ICP method, which is capable of dynamically ex-
tracting rigid parts of facial surface. The extraction is completely dependent on
the deformation extent of facial surface and extracted areas are varied between
different expressions. Based on partial ICP, we perform several experiments for
3D face recognition on a database with 360 models. A rank-1 rate 96.88% demon-
strate the high performance of our method in 3D face recognition with different
expressions. The experimental results also show that our method significantly
outperforms PCA-based method.

References

1. W.Zhao, R.Chellappa, P.J.Phillips, A.Rosenfeld. Face recognition: a literature sur-
vey. ACM Computing Surveys, 35(4):399-458, 2003

2. J.C.Lee, E.Milios. Matching range images of human faces. Proc. IEEE ICCV,
p.722-726, 1990.

3. G.G.Gordon. Face recognition from depth maps and surface curvature . SPIE Conf.
on Geometric Methods in Computer Vision, 1570:234-247, 1991.

4. C.S.Chua, R.Jarvis. Point signatures: A new representation for 3D object recogni-
tion. IJCV, 25(1):63-85, 1997.

5. C.S.Chua, F.Han, Y.K.Ho. 3D Human Face Recognition Using Point Signature.
IEEE FG’00, pp.233-238, 2000.

6. M.W.Lee, S.Ranganath. Pose-invariant face recognition using a 3D deformable
model. Pattern Recognition, 36(8):1835-1846, 2003.

7. V.Blanz, S.Romdhani, T.Vetter. Face identification across different poses and illu-
mination with a 3D morphable model. Int’l Conf. on FG, p.202-207, 2002.

8. C.Beumier, M.Acheroy. Automatic 3D face authentication. Image Vision Comput-
ing, 18(4):315-321, 2000

9. W. Zhao, R. Chellappa. Illumination-insensitive face recognition using symmetric
shape-form-shading. Proc. IEEE ICCV, 1:286-293, 2000.

10. G. Pan, Z. Wu, and Y. Pan, Automatic 3D face verification from range data, in
Proc. IEEE ICASSP, vol.3, pp.193-196, 2003.

11. K.Chang, K.Bowyer, P.Flynn. Effects on Facial Expression in 3D Face Recognition,
Proc. of the SPIE, Volume 5779, pp. 132-143,2005.

12. A.M.Bronstein, M.M.Bronstein, R.Kimmel. Expression-invariant 3D face recogni-
tion. Proc. AVBPA’03, LNCS, vol.2688, 62-70, 2003.

13. Yijun Wu, Gang Pan, Zhaohui Wu. Face Authentication based on Multiple Profiles
Extracted from Range Data. Proc. AVBPA’03, LNCS, vol.2688, pp.515-522, 2003.

14. Gang Pan, Zhaohui Wu, ”3D Face Recognition from Range Data,” Int’l Journal of
Image and Graphics, 5(3):573-593, 2005.

15. H.Hoppe, T.DeRose, T.Duchamp, J.McDonald and W. Stuetzle, Mesh optimiza-
tion, Computer Graphics(SIGGRAPH’93 Proceedings), 27:19-26, Auguest, 1993.

16. P.J.Besl, N.D.McKay, A method for registration of 3-D shapes, IEEE Trans.Pattern
Anal.Mach.Intell. 14:239-256, 1992.

17. Face Recognition Vendor Test 2002, http://www.frvt.org/.
18. InSpeck Inc., http://www.inspeck.com/.



Vision Based Speech Animation Transferring
with Underlying Anatomical Structure

Yuru Pei and Hongbin Zha

National Laboratory on Machine Perception,
Peking University, Beijing, P.R. China

{peiyuru, zha}@cis.pku.edu.cn

Abstract. We present a novel method to transfer speech animation
recorded in low resolution videos onto realistic 3D facial models. Unsu-
pervised learning is utilized on a speech video corpus to find underlying
manifold of facial configurations. K-means clustering is applied on the
low dimensional space to find key speaking-related facial shapes. With
a small set of laser scanner captured 3D models related to the cluster-
ing centroid, the facial animation in 2D videos is transferred onto 3D
shapes. Especially by virtue of a weak perspective projection model, the
underlying mandible rotation is recovered from videos and is utilized to
drive 3D skull movements. The adaption of a generic skull onto facial
models is guided by a 2D image, Tissue Map. With parsimonious data
requirements, our system realizes the animation transferring and gains a
realistic rendering effect with the underlying anatomical structure.

1 Introduction

Vision based speech animation transferring is to capture speaking motions re-
corded in low resolution video clips and retarget them onto a high resolution
3D model. The goal is to acquire moving vectors of dense point clouds on fa-
cial geometry at video-speed. Animation transferring is famed for the personal
performance transmission at low cost in human-machine interaction, games, etc.

Drawing inspiration from Ezzat’s speech animation system on multidimen-
sional morphable model (MMM) [1], we employ the Isomap to reduce dimen-
sionality of facial configurations to discover the intrinsic speech structure. K-
means clustering is applied on the low dimensional manifold to find key viseme
definitions corresponding to a training corpus, which is selected to cover all
vowels and consonants in Mandarin. Obviously, all the possible occurrence of
co-articulation could not be covered. Especially in Mandarin there is a large set
of compound vowels, fixed composition of vowels and nasal consonants, which
makes the Mandarin’s phoneme framework more perplexing. Our vision-based
method skips such an intricate phoneme frame, and instead uses an example
based blending technique.

Compared with the vision-based animation system described in [2], we do
not need the large database from motion capturing, and just utilize a small
set of key shapes obtained with a laser scanner. The key shape is defined by the
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c© Springer-Verlag Berlin Heidelberg 2006



592 Y. Pei and H. Zha

Fig. 1. Flow chart of transferring system

unsupervised learning of the video corpus. As to dense per vertex correspondence
between different scans, a non-rigid registration algorithm similar to Allen’s
[3] is developed. Semantic constraints on human faces are imposed during the
optimization process and deformation is restricted in a predefined speaking-
related region. With a weak perspective projection model, underlying mandible
rotation is recovered from videos. A generic textured skull model is driven to
move along with facial deformations. It solves the teeth appearance during the
speaking animation. A Tissue Map extracted from CT image is utilized to control
the generic skull fitting.

Our main contribution is to propose a novel mechanism for extracting intrinsic
geometry of speech video space with the Isomap and finding out key viseme defin-
itions. Moreover, we recover the underlying skull movement from videos automat-
ically and adapt the generic skull onto facial models based on a Tissue Map. With
underlying anatomical structure, a realistic animation transferring is achieved.

2 Related Work

Vision based speech animation systems generally utilize a large video database
[1, 4, 5, 6] and recently 3D motion capturing data [2] for training. The data analy-
sis may be based on machine learning [1, 2, 4, 6, 7] or probabilistic framework [5].
Ezzat et al. [1] employ a variant of MMM to synthesize mouth configurations
of a novel speech. Cao et al. [6] generate a data structure called Anime Graph
to encapsulate motion captured facial motion database along with speech infor-
mation. Voice Puppetry [5] utilizes a probabilistic framework to find an optimal
trajectory for the whole utterance based on facial gestures learned from videos.
Vlasic et al. [7] use a multilinear model to separate different attributes of facial
models, e.g. expression and visemes, and connect multilinear model directly to
videos for a time-series of poses and attribute parameters.

As to the generation of facial models with anatomical structure, multilayer
generic template is used [8, 9, 10, 11]. Skin, muscle layer and skull are represented
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as polygonal meshes [8, 9] or as volumetric elements [10, 11]. The dynamical mech-
anism is simulated by the mass-spring system or finite elements analysis [10, 11].
In our system, the anatomical structure includes triangle meshes of face and skull,
and the in-between space defined by the Tissue Map extracted from a CT image.

It is intuitive that the continuous movements can be embedded into a low
dimensional manifold. A common method for dimensionality reduction is Prin-
ciple Component Analysis (PCA) [12], which has been used in human figure and
face shape representations [3, 13, 14]. Multi-Dimensional Scaling (MDS) [15] is
another approach to finding an embedding that preserves the pairwise distances
of original data. Cao et al. [16] use ICA [17] to extract meaningful parameters
in speech motions without data annotation. Above methods are efficient to ob-
servations with linear intrinsic structure. Two main techniques, Isomap [18] and
Locally Linear Embedding (LLE) [19] have been used in nonlinear dimensional-
ity reduction. The global coordinates of Isomap provide a simple way to analyze
and manipulate high dimensional observations. Juan et al. [20] use a variant of
Isomap to discover a low dimensional structure of cartoon data. The LLE is an
unsupervised learning algorithm with the assumption that each point and its
neighbors lie on a locally linear patch of the manifold. LLE has been used in
facial expression analysis [21, 22].

3 Data Analysis

The goal of analysis module is to extract key speaking-related facial shapes from
video corpus and generate corresponding 3D viseme database. Firstly, feature
tracking is applied on training video corpus. Consequently facial configurations
are represented as a combination of feature curves. By virtue of the Isomap, the
manifold of facial configurations, especially the variations in mouth region are
embedded in a low dimensional space. The independent components related to
facial variations are decoupled. K-means clustering is to find key facial shapes
called pseudo visemes. With a laser scanner, the corresponding 3D viseme shapes
are captured from a subject. In order to define the trajectory among different
3D visemes, the correspondence between scans is established by a non-rigid reg-
istration algorithm.

3.1 Feature Tracking

The image (320 × 240) can be considered as a point in a k dimensional space
(k = 230, 400). It is formidable to operate data in such a high dimensional
space directly. To represent the facial configurations with the combination of
several feature curves is intuitive. Active Appearance Model (AAM) proposed
by Cootes et al. [23] is utilized for the feature tracking. Some 30 frames are
annotated manually as training data. The feature template has 73 points and
every frame is considered as a point in 146(2× 73) dimensional space.

The unavoidable subtle head movements have no apparent influence on the
feature tracing, whereas they will cause accumulated offset errors in mouth con-
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figuration analysis. Linear conformal transformation is applied to frame align-
ments in preprocessing.

3.2 Dimensionality Reduction with Isomap

Given the inherent continuous motions, the video data are assumed to have some
underlying surfaces in a low dimensional space. The Isomap [18] is employed
for its capability in discovering nonlinear degrees of freedom and finding the
globally optimal solution. Given high dimensional space X , the Isomap finds the
embedding in a low dimensional manifold Y with dimension d, which preserves
the manifold’s estimated intrinsic geometry.

The true dimension of data can be found out by the decrease of residual value
while increasing the dimension of embedded space. As shown in Fig. 2, when the
dimension of embedded space is 6, it can cover more than 97% variance of whole
facial features. In common sense the behavior of mouth motions represented by
feature curves can be simply classified into opening and extruding. The resam-
pling of mouth feature points along cubic Hermite curve is fed into the Isomap
training. The embedding results verify such classification, as two dimensions can
cover more than 95% variance of original data.

Isomap is suitable to the animation feature analysis because it can auto-
matically extract a few components and decouple the key features in speech
animations. Since the input of Isomap is graph distance, the distance met-
ric is crucial to the Isomap based dimensionality reduction. L2 distance is se-
lected. Given two frames Fi, Fj represented by 2D coordinate sequence as
Fi = (xi

1, y
i
1, ..., x

i
n, y

i
n)(n = 73), the distance is:

D(Fi, Fj) =
√
‖Fi − Fj‖2 =

√√√√ n∑
i=1

(xi
k − x

j
k)2 +

n∑
i=1

(yi
k − y

j
k)2 . (1)

Fig. 2. Dimensionality reduction. (A) L2 distance matrix. (B) Variance plot. (C) 2D
visualization on embedded space. The Upper row is on whole facial features; the bottom
row is on resampling data of mouth contours.
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3.3 K-Means Clustering and 3D Viseme Database

Once the low dimensional embedding of speech video corpus is obtained, K-
means clustering is employed to extract key mouth configurations, which are
called pseudo-visemes. They are just distinct mouth shapes and have no nec-
essary relations with the ordinary phoneme system. The MATLAB function
kmeans, a two phase iterative algorithm, is employed. Predefined cluster num-
ber and low dimensional data are fed into the procedure. The clustering returns
centroids. Moreover, the distance of every point to each centroid can be ob-
tained. The centroid is considered as pseudo viseme as shown in Fig. 3. The
cluster number is defined empirically, which is comparably less than that used
in MMM [1]. The reason is that in facial feature template, the teeth markers
are excluded as their appearance could not be traced robustly due to the low
quality of video clips. The concurrent teeth movement is realized by underlying
skull structure described in Sect. 4.

With the clustering, every image in the training video is mapped as a 12
dimensional vector. Generally speaking, the more clusters, the more realistic
synthesis result there will be. There should be reconciliation between the fi-
delity of facial animation and synthesis cost. With the observation of Mandarin
phoneme system, our cluster number is comparably small. This situation sounds
plausible in that the same lip shape can account for several phonemes and the
pronouncements are not related to mouth configurations exclusively.

With the instruction of video cluster centroid, the 3D static shapes of pseudo
visemes are captured with a laser scanner. With a non-rigid template fitting al-
gorithm under an energy minimization frame, the correspondence between scans
is established. The problem is formulated as morphing the base mesh B onto
the target T with energy

E(p) = wsEs + wdEd + wfEf . (2)

The distance term Ed is to measure the gap between the base variation and tar-
get mesh. Feature term Ef is to evaluate the feature matching by virtue of some

Fig. 3. K-means clustering in a low dimensional space
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20 points pairs selected manually and feature curves. Smoothness of base mesh
is preserved by virtue of 1-ring neighbors Ring(vB

i ) = {vB
j |(i, j) ∈ Edges(B)}.

The shape of 3D viseme can be represented as a vector of all vertices’ Euclidean
coordinate sequence. The base mesh is denoted as S0 = (x0

1, y
0
1 , z

0
1 , ..., x

0
n, y

0
n, z

0
n).

Once the optimization is applied onto the entire scans, a set of variations Svi =
(xvi

1 , y
vi
1 , z

vi
1 , ..., x

vi
n , y

vi
n , z

vi
n ) with close shapes to the captured visemes is ob-

tained. The shape of viseme is extracted as:

δ(Svi) = |Svi − S0| . (3)

4 Underlying Skull Movement

In this section the underlying skull movement is recovered from video clips by a
weak perspective projection model. As the teeth are fixed on mandible and max-
illa, the movement of teeth is consistent with skulls. Thus the teeth appearance
during speaking is solved simultaneously. Compared with general approaches to
teeth movement generation by defining mapping between phonemes and teeth
poses, our automatic method is easier.

4.1 Skull Alignment

From the CT image of a live person, 3D skull and facial models are recon-
structed. The in-between tissue layer is extracted and represented as a 2D image
called Tissue Map. Every pixel has a pseudo color related to depth residual of
corresponding sampling on face and skull models under cylindrical projection as
shown in Fig. 4. The skull and its related Tissue Map are looked as the reference.
The referent skull model has to adapt different faces. Firstly an affine transfor-
mation is used to achieve a coarse mapping, and then a small set of marker Ps

is selected manually on skull with tissue thickness Dep extracted automatically
from the Tissue Map. Their counterparts Pf on the facial surface are computed
by a cylindrical projection. The target poses of skull marker

P ′
s = Pf −Dep . (4)

Some parts Psi on the skull with no correspondence on the facial model are hold
still during the fitting. RBF is employed to realize the skull shape deformation.

Fig. 4. Tissue Map extraction
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Fig. 5. Skull alignment and mandible rotation recovering from video. (A) Skull align-
ment by virtue of Tissue Map. (B) Mandible rotation angle on 3D model. (C) Jaw
marker displacement vector on 2D image. (D) Recovering results.

ȳ = f(x̄) =
N∑

i=1

wih(‖c̄i − x̄‖) +
k∑

j=1

djpj(x̄) , (5)

where h(r) =
√
r2 + c2; ci is the fitting centers including ps and psi; pj(.) is the

polynomial to accommodate for the affine transform. The training data is of the
same size as the centers. Original and target poses of training data are [ps, psi]
and [p′s, psi]. To make the fitting process more editable, the thickness value can
be modified for idiosyncrasies as shown in Fig. 5.

It is obvious that the skull should underlie the facial surface. Therefore, after
every fitting cycle there should be a collision detection. If the collision occurs,
more centers are added and continue next cycle of iteration.

4.2 Mandible Movement

For simplicity, we put only one freedom on skull, that is, mandible rotation. The
angle θ is computed as θ = ÂB/rs, ÂB is the arc length on jaw’s trajectory. rs
is the radius. With an assumption that during speaking with a neutral expres-
sion there is no evident shape variation on jaw muscles, the facial jaw marker’s
movement is considered identical as that on the skull. Moreover, the rotation is
subtle and the arc length approximates to the vertical displacement. Thus

θ = Â′B′/rf ≈ |yA′ − yB′ |/rf . (6)

The problem is formulated as determining the Y-direction offset from the
video sequence. A bijection Δy = ψ(va, vb) has to be solved. With a weak per-
spective projection model, MDLT [24], the mapping of 3D coordinates and 2D
pixels is established. The marker pairs on salient facial feature are selected man-
ually for the MDLT parameter estimation.

d = A(P,L) , (7)
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where d(u, v) is 2D vector of pixel position, and p(x, y, z) is 3D coordinate of ver-
tex on facial surface. L = {l1, ..., l11} is MDLT parameters. Generally speaking,
3D position could not be obtained from a single image. However, the interested
points are constrained on facial center line. The related x and u can be mea-
sured from 3D models and video clips as x0 and u0. Thus y is determined as
y = ζ(v, L, x0, u0). The mandible rotation angle is recovered as

θ = Δ(y)/rf = |ζ(va, L, x0, u0)− ζ(vb, L, x0, u0)|/rf . (8)

5 3D Facial Shape Synthesis

During the synthesis, the distance of each frame to cluster centroid is computed
to obtain clustering index. Then the frame sequence is colored according to the
index assignment. The frames with the largest affiliation value and those adjacent
to silence segments are selected as the keyframes automatically. The geometry
of keyframes is generated by the convex linear interpolation of 3D key visemes
with the weight

wk
i =

D(Fk, Ci)−1∑
j(D(Fk, Cj))−1 , (9)

where D(Fk, Ci) is L2 distance of current frame Fk with clustering centroid Ci.
The geometry of the keyframes is

Sk = S0 + αδ(Svd
) + β

∑
i

wk
i δ(Svi) , (10)

where α and β are used to balance the influence of dominant cluster and neigh-
boring clusters. Poly-cosine function [25] is to simulate acceleration and decel-
eration during transition between keyframes. Then the geometry of in-between
frames can be obtained by linear interpolation along the transition curve.

6 Experiments

We use several video clips to test the transferring ability of our system. The
video used as the training data is collected with an ordinary digital camera. The
detailed video setting is as follows: the frame size is 320× 240; the sequence was
digitalized under 25 fps D1/DV PAL frame rate; the audio rate is 32 kHz. The
subject is instructed to read the predefined corpus with a neutral expression at
an ordinary speed and avoid dramatic head movements. There are some 10000
frames (approx. 6 minutes) in the video. The analysis of training data and clus-
tering is done in system initialization process just once. The underlying skull
movement is recovered concurrent with facial animation synthesis. Then the au-
dio track is resynchronized with 3D speech animation and played back. The
environment is rendered with the billboard technique, where one flat polygon is
mapped with a landscape image as shown in Fig. 6.
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Fig. 6. Transferring result of [pei], [tçi η], [dà], [çyε]. (A) Overlapping of facial and skull
model. (B) Facial model with billboard background. (C) Skull model. (D) Transferring
result (upper row is original video sequence; lower row is transferring results on 3D
model with underlying skull).

7 Conclusions

In this paper, we present a novel method to transfer speech animation in low
quality videos onto realistic 3D facial models. We embed the video corpus into
a low dimensional space with nonlinear dimensionality reduction, and obtain
pseudo viseme definition by applying clustering. With 3D static visemes, the
transferring is achieved based on shape blending along a poly-cosine curve. Un-
derlying skull movement is recovered from videos at the same time and aligned
onto the face with the help of a Tissue Map. With our system a realistic 3D
speech animation is generated with parsimonious data requirement.
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Abstract. In this paper, a geometric deformable model for shape re-
covery of open contours in noisy images is presented. We use two level
set functions to model the open contour and find the end points of the
open contour as the intersection of the two level set functions. The evo-
lutions of both level set functions do not depend on the gradient of the
images, as in the classical geometric deformable models, but are decided
by a region-based ”band velocity”. The ”band velocity” is different from
region information introduced by other deformable models which can
only be used to find the closed contours in images, it is designed for
evolutions of both closed and open contours and particularly unique for
contours which are open and do not enclose any region. Prior shape in-
formation is also integrated into the contour evolution process, which
prevents two level set functions from intersecting at other places than at
the contour end points. With the described method open contours can
be recovered from noisy images. Successful experiments on several data
sets are presented in this paper.

1 Introduction

Image segmentation or shape recovery in 2D/3D images is an important problem
in computer vision and medical imaging. The presence of noise, different arti-
facts, complex background and intensity inhomogeneities in images requires more
sophisticated algorithms rather than some low-level image processing methods
for recovering the objective shape from images. Deformable model based ap-
proach is such a popular technique. Deformable models are active curves or
surfaces that deform within 2D or 3D images. In general, deformable models can
be classified as either parametric deformable models or geometric deformable
models.

Compared with the parametric deformable model, the geometric deformable
model has some advantages such as the topology flexibility and the easy geometry
properties (normal, curvature) calculation. Since it was introduced by Caselles
� This work is partially done under National Institutes of Health, Grant No. R01

DC01758.
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et al. [1] and by Malladi et al. [2], significant effort [3][4][5][6] has been devoted to
geometric deformable models. However, all these existing geometric deformable
models are aimed at closed curves/surfaces. As pointed out by Osher and Fedkiw
[7], ” Level set methods are used to represent closed curves and surfaces that may
begin and end at the boundaries of the computational domain. However, it is not
clear how to devise methods for curves and surfaces that have ends or edges
(respectively) within the computational domain.”

A first step of using level set method for open curve evolution was carried
out by Smereka [8] in spiral crystal growth research. In [8], the end points of an
open curve (the step-line) are fixed during the curve evolution. Solem et al. [9]
developed a level set method to reconstruct open surfaces from unorganized data
points. This method allows the surface boundary to move during the surface evo-
lution. The key technique of these methods is that two curves/surfaces are used
to represent the open curve/surface and the boundary of the open curve/surface
is defined as the intersection of these two curves/surfaces. Similar technique has
also been used to track regions on surfaces [10]. But none of the above deals
with open contour recovery from images.

Finding open contours in images is necessary in many situations of speech
research [11], such as the ultrasound images of human tongue and MRI images
of vocal tract, where only part of the object surface is captured thus the object
shape is represented with a open contour. An example ultrasound image of hu-
man tongue is shown in Figure 1(a). In this image, the bright white band is the
air reflection at the upper surface of the tongue. The lower edge of the band is
the upper surface of the tongue, and the upper edge of the band is not related.

In this paper, we present a geometric deformable model to recover the shapes
of open contours from noisy images. The objective open contour and end points of
the open contour are modeled with two separate level set functions. To deal with
the noise, different artifacts and intensity inhomogeneities presented in images,
we introduce a region-based ”band velocity” which controls the evolutions of
both level set functions. Though region information has been extensively used in
many deformable models such as [5][12], none of these models can deal with open
contours since there is no region enclosed by a open contour. We also integrate

(a) (b)

Fig. 1. (a) An example of ultrasound images of the tongue. (b) The initial zero level
sets.



A Level Set Approach for Shape Recovery of Open Contours 603

prior shape information into the curve evolution process as Leventon et al. did in
[6]. The prior shape information prevents two level set function from intersecting
at other places than at the contour end points, which makes the shape recovery
of open contours possible.

2 Level Set Representation of the Open Contour

In the level set method, a closed contour Γ is implicitly represented as the zero
level set of a Lipschitz function φ as both Γ and φ being dependent on time t:

Γ (t) = {x;φ(x, t) = 0} (1)

where x ⊂ Ω and Ω is the image domain.
φ is usually defined as a signed distance function such that:

φ(x, t) =

⎧⎨⎩
< 0 inside Γ
= 0 on Γ
> 0 outside Γ

(2)

In case that Γ is open, the end points of Γ can be included into the definition
by using another level set function ψ [8]. The open contour with end points
inside the image domain is given by :

Γ (t) = {x;φ(x, t) = 0, ψ(x, t) > 0}. (3)

Figure 1(b) shows an initial configuration of level set functions φ and ψ for
detecting the lower (or upper) edge of a small elastic piece placed on complex
background. In this figure, the zero level set of φ, where φ = 0, is the horizontal
line and the two vertical lines, where ψ = 0, are the zero level set of ψ. The
set φ = 0 contains two parts: the ψ > 0 part defines the open contour we are
interested and the ψ < 0 part is the artificial contour. End points of the open
contour are defined as the intersections of the horizontal line and the vertical
lines, where φ = 0 and ψ = 0.

3 The Band Velocity

Starting from the initialization, contour evolves until the objective shape is re-
covered. Let’s first examine the evolution of φ, ψ evolves in the same fashion.

The evolution of the zero level contour of φ in the normal direction amounts
to solve a partial differential equation [7]:

φt = −vφ|∇φ|, φ(0) = φ0. (4)

Where vφ is the velocity in the normal direction and φ0 is the initial configuration
of φ.



604 M. Li, C. Kambhamettu, and M. Stone

In most geometric deformable models, vφ is the combination of the mean
curvature motion and a stop term coming from image gradient. For example, in
[13]:

vφ = vg(u0)(κ+ ν). (5)

Where u0 is the given image, ν is a constant. vg(u0) is a function of image
gradient:

vg(u0) =
1

1 + |∇Gσ(x) ∗ u0(x)|p , p ≥ 1. (6)

Where Gσ(x) ∗ u0(x) is the convolution of the image u0 with the Gaussian
Gσ(x) = σ−1/2e−|x|2/4σ.

With the velocity defined in Eq. 5, the zero level contour evolves in the normal
direction and stops at the desired boundary, where g vanishes.

The above evolution velocity depends on the image gradient. In reality, images
are generally noisy and there are always high-contrast unrelated edges which
make the gradient information insufficient. By constraining the homogeneity of
intensity (the image brightness) in a region, the edge of a region in a noisy image
can be successfully extracted [5].

For open contours, the region homogeneity is not applicable since there is
no inside and outside regions defined. To solve this problem, we compare the
statistics of two regions R(Γ ) and R′(Γ ) which are locally around the evolving
contour Γ but reside in different sides of Γ (see Figure 2), instead of considering
the statistics of two regions which form the whole image domain. R(Γ ) and
R′(Γ ) form a narrow band around the evolving contour Γ .

R

R’

Fig. 2. R and R′ around the contour

Recall that the lower edge of the bright band is the contour of interest (the
real tongue surface) in the ultrasound tongue image (Figure 1(a)). If we define R
as the local region on the side of normal direction (upward normal for the contour
of tongue ), R′ as the local region on the opposite side, S(R) as some statistics
of R (e.g. the mean intensity of R), the observation is that S(R)− S(R′) is the
maximum when Γ is located to the contour of interest. The only requirement of
the above statement is that the depth of R and R′, β, is small enough so that
R is inside the white band in the ultrasound image.

The contour of interest can be located by minimizing a ”band energy”:

F (Γ ) = 1− (S(R)− S(R′))/N (7)

where N is a normalization constant.
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For the level set approach, we replace the unknown Γ by the unknown signed
distance function φ:

F (φ) = 1− ( 1
Nn

∫
0<φ≤β u0(x, y)dxdy − 1

Nn′
∫
−β≤φ<0 u0(x, y)dxdy) (8)

where u0 is the given image, (x, y) = x,x ⊂ Ω, n and n′ are the numbers of
pixels inside R and R′, respectively. We then have:

S(R) = 1
n

∫
0<φ≤β u0(x, y)dxdy S(R′) = 1

n′
∫
−β≤φ<0 u0(x, y)dxdy (9)

Having defined the ”band energy” F (φ), we can define a corresponding ”band
velocity” for the evolving contour φ = 0 as:

vb(φ = 0) =
{

0 F (φ) < ρ
τF (φ) F (φ) ≥ ρ (10)

where ρ is a constant threshold and τ > 0 is a constant. In the ultrasound image,
the speckle noises which have high gradient values can not stop the contour evo-
lution since vb is estimated over regions around Γ (t). To give different evolution
velocities to different parts on Γ , vb of a specific part can also be calculated
using informations from local regions around this part instead of the whole R
and R′.

4 The Evolution Equations

Denote the normal velocities of φ and ψ with vφ and vψ , respectively, we write
the evolution equations of φ and ψ as:

φt = −vφ|∇φ| ψt = −vψ|∇ψ| (11)

vφ now includes the ”band velocity” introduced in the last section:

vφ = (λgvg + λbvb)(κφ + ν) (12)

where λg and λb decide the relative importance of vg and vb.
vψ is defined as vψ = vφ but is in the normal direction of ψ. Note the value

of vψ is not decided by ψ, ψ stops evolution when vφ vanishes. See details in the
next section.

5 Integrating Prior Shape Models

Prior shape information integrated into the deformable model can significantly
help the shape recovery process. Leventon et al. [6] first combined the statistical
shape model into the level set approach. In [6], the shape model is computed
by principal component analysis over the signed distance function of the object
shape to be recovered. An estimation of a novel shape (a signed distance func-
tion) φ∗ can be represented by the parameters α of the projection of φ∗ onto the
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(a) (b) (c)

Fig. 3. An instance from a training set. (a) The training contour. (b) The kriged
contour. (c) The distance map with the kriged contour overlapped.

relevant eigenvectors. The advantage of using signed distance function to repre-
sent shape is that slightly misaligned pixels in the distance map are generally
highly correlated. Thus the correspondence problem during training process can
be avoided.

Rousson and Paragios [14] have also proposed a level set approach using shape
prior for 2D closed contour recovery. We follow the method of [6] but aim at open
contour recovery using the statistical shape model. During the training process,
a training open contour is first extended using a kriging[15] technique, then the
signed distance map of the kriged contour is constructed. Prior shape model
is acquired from constructed distance maps. In Figure 3, one instance from a
training set for human tongue is shown.

At a given time t, a novel shape φ∗(t) is estimated using the maximum a
posteriori (MAP) approach.

φ∗MAP = argmaxφ∗P (φ∗|φ, u0) (13)

φ∗ is represented by the parameters α of the projection of φ∗ onto the relevant
eigenvectors and its location in image is decided by its pose M . So the MAP of
φ∗ can be estimated by maximizing the following posterior probability:

P (α,M |φ, u0) = P (φ,u0|α,M)P (α,M)
P (φ,u0) = P (φ|α,M)P (u0|α,M,φ)P (α)P (M)

P (φ,u0) (14)

The first term in Eq. 14 computes the probability of a certain evolving contour,
φ, given φ∗ (or α,M). In our approach, we do not constrain the relative positions
of φ and φ∗. P (φ, u0|α,M) = μ(−∞,∞). The second term which comes from
the image information is estimated by minimizing the ”band energy” F defined
in Eq. 7. P (u0|φ∗) = exp(−F ). The shape prior P (α) is a Gaussian model, as
defined in [6]. P (α) = 1

((2π)k|Σk|)1/2 exp(− 1
2α

TΣ−1
k α). where Σk contains the first

k columns of the singular value matrix which is obtained after a Singular Value
Decomposition of the covariance matrix of the training set. Similar to [6], the
pose is not constrained in our approach. It could be any possible rotation and
translation. P (M) = μ(−∞,∞).

The estimated φ∗(t) at each time step t guides a global evolution of φ(t)
towards φ∗(t). At time t+ 1, φ(t+ 1) can be estimated as:

φ(t+ 1) = λ1φ
′
(t+ 1) + λ2(φ∗ − φ(t)) (15)
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(a) (b)

Fig. 4. Shape model

where φ
′
(t + 1) is estimated from the local evolution defined in Eq. 11. λ1 and

λ2 are the weighting parameters.
The integration of prior shape model is not only useful for the evolution of

φ, it is also helpful for deciding the boundary of open contours. In the level
set approaches for open curve/surface, it is important that the two level set
functions, φ and ψ, never intersect at places other than the boundary of the
open curve/surface since this would create some new boundaries. The approach
in [8] moves the contour of interest (where φ = 0, ψ > 0) in one direction
but the artificial contour (where φ = 0, ψ < 0) in the opposite direction. The
problem with this approach is that the end points are fixed. [9] allows the surface
boundary to move but requires good initializations of φ and ψ. In our approach,
we do not distinguish the contour of interest and the artificial contour during
the evolution of φ. The shape of φ is constrained by the prior shape information,
which prevents the unnecessary intersections between φ and ψ. Figure 4(a) shows
the final zero level set of φ, which is obtained by adding the global evolution
from prior shape model to the local evolution. This contour is in the same class
as contours in the training set and it is possible to evolve ψ to decide end points
of this contour. But without the prior shape information, evolution of left part of
this contour can not be stopped since the ”band energy” at that part is high (no
tongue surface there). Figure 4(b) shows the zero level set of φ which continues
to evolve without the global evolution constraint from the prior shape model.
It is impossible to decide the left end point of the tongue from this zero level
set contour since there will be more than one intersection between φ and ψ
sometimes when ψ is evolved over the left part of φ.

6 Experiments

Our method is quantitatively evaluated on both noisy synthetic and real images.
The difference between the automatically detected contour, U , and the ground
truth contour, V , is calculated using a Mean Sum of Distances(MSD) which
measures the distances between the closest contour elements of each contour.
Suppose the elements U and V are U = [u1, u2, ..., un] and V = [v1, v2, ..., vn] for
U and V respectively, The MSD between U and V is defined as: MSD(U, V ) =
1
2n (
∑n

i=1 minj |vi−uj|+
∑n

i=1 minj |ui− vj |). The error of end point recovery is
computed as the distance between the automatically detected end points and the
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ground truth end points along the recovered contour. For real images, ground
truth is obtained by manually detecting the shape and end points.

6.1 Synthetic Images

The synthetic experiments are performed on images as shown in Figure 5(a) to
recover the lower edge of a bright band as seen in each image. The target shape
is created manually. It belongs to a training set of a tongue contour sequence,
but is not among the training set. Shape model obtained from this training set
is used as the prior shape information to guide the level set evolution during the
contour recovery process.

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

standard deviation 

Contour MSD error
End points Error

(a) (b)

Fig. 5. (a) Synthetic images with normally distributed noise added with the standard
deviation of 40, 60, 100. Each shown with final contour and end points. (b) Errors of
the synthetic image experiments (in pixels).

The synthetic experiment demonstrates the effect of noise on our method,
by adding normally distributed noise with zero mean and different standard
deviations, to the created synthetic image. The result is shown in Figure 5(b).
The standard deviation of the added noise varies from 10 to 100. Note the errors
in different noise levels do not change dramatically.

6.2 Real Images

The experiments on real images were first performed on five sequences of ultra-
sound images of the human tongue. The training set for the shape model in each
experiment comes from few images at the beginning of the speech sequence to
be analyzed. However, this can come from other sequences also and thus not re-
stricted. In speech research, studies on comparing the same speech by different
subjects and multiple repetitions of the same speech by the same subject are
widely carried out. Principle tongue shape of the same speech can be captured
in one sequence and applied to other sequences as the shape model.

Some tested ultrasound images are shown in the first row of Figure 6(a). The
recovered tongue shapes and end points (cyan dots) for these images are shown in
the second row of Figure 6(a). Note in the first experiment, though there is still
part of bright band outside the detected left end point, it is the extension of the
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(a) (b)

Fig. 6. (a) Results of ultrasound tongue images. (b) MRI vocal tract images.

Fig. 7. An example of MRI vocal tract image

upper edge of the air reflection and proved to be noise produced by ultrasound
imaging.

For each image sequence, five images are tested. The averaged errors of shape
recovery and end point detection for each sequence are shown in Figure 8(a).
All errors are less than the typical measurement error (5 pixels, or 1.5mm, in
ultrasound images) [16].

We also tested our method on MRI images of the vocal tract. Sample MRI
vocal tract image is shown in Figure 7. The vocal tract shape is extracted from
the tongue tip to the glottis. Due to the MRI image quality that we currently
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Fig. 8. (a) Ultrasound Results. Errors are in pixels. (b) MRI Results. Errors are in
pixels.
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have, end points are only automatically recovered at the tongue tip. At the
glottis, the end point is decided as the position which has the same angle as the
mean glottis of the training set (A polar center is defined for MRI images to
calculate angles of points). Some tested vocal tract images are shown in the first
row of Figure 6(b). The recovered vocal tract shapes and end points for these
images are shown in the second row of Figure 6(b). Quantitative evaluation
on eleven MRI sequences was performed. For each sequence, five images were
tested. Averaged errors of shape recovery and end point detection are shown in
Figure 8(b).

7 Conclusion

Open contour recovery is an important problem in medical imaging such as the
heart and speech research [11]. We present a level set approach to automatically
recover the shape and detect the end points of open contours. We use two level
set functions to model the open contour and find the end points of open contour
as the intersection of the two level set functions. A novel ”band velocity” is
introduced to control the level set evolution, which makes our approach robust
to noise. We also integrate the prior shape information into the contour evolution
process, which prevents two level set functions from intersecting at other places
than at the contour end points. Experiments on noisy images are shown and the
results are verified by quantitative evaluations.
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Abstract. To develop statistical models for shapes, we utilize an elas-
tic string representation where curves (denoting shapes) can bend and
locally stretch (or compress) to optimally match each other, resulting in
geodesic paths on shape spaces. We develop statistical models for cap-
turing variability under the elastic-string representation. The basic idea
is to project observed shapes onto the tangent spaces at sample means,
and use finite-dimensional approximations of these projections to im-
pose probability models. We investigate the use of principal components
for dimension reduction, termed tangent PCA or TPCA, and study (i)
Gaussian, (ii) mixture of Gaussian, and (iii) non-parametric densities
to model the observed shapes. We validate these models using hypothe-
sis testing, statistics of likelihood functions, and random sampling. It is
demonstrated that a mixture of Gaussian model on TPCA captures best
the observed shapes.

1 Introduction

Analysis of shapes is emerging as an important tool in recognition of objects
from their images. As an example, one uses the contours formed by boundaries
of objects, as they appear in images, to characterize the objects themselves. Since
the objects can occur at arbitrary locations, scales, and planar rotations, without
changing their appearances, one is interested in the shapes of these contours,
rather than the contours themselves. This motivates the development of tools
for statistical analysis of shapes of simple, closed curves in R2. A statistical
analysis is beneficial in many situations. For instance, in cases where the observed
image is low quality due to clutter, low resolution, or obscuration, one can use
the contextual knowledge to impose prior models on expected shapes, and use a
Bayesian framework to improve shape extraction performance. Such applications
require a broad array of tools for analyzing shapes: geometric representations
of shapes, metrics for quantifying shape differences, algorithms for computing
shape statistics such as means and covariances, and tools for testing competing
hypotheses on given shapes.

Analysis of shapes of planar curves has been of a particular interest recently
in the literature. Klassen [1] have described a geometric technique to parame-
terize curves by their arc lengths, and to use their angle functions to represent
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and analyze shapes. Similar constructions for analysis of closed curves were also
studied in [2, 3]. Using the representations and metrics described in [1], [4] de-
scribe techniques for clustering, learning, and testing of planar shapes. One major
limitation of this approach is that all curves are parameterized by arc length,
and the resulting transformations from one shape into another are restricted to
bending only. Local stretching or compression of shapes is not allowed. Mio [5]
resolved this issue by introducing a representation that allows both bending and
stretching of shapes to match each other. The geodesic paths resulting from this
approach seem more natural as interesting features, such as corners, are better
preserved while constructing geodesics, in this approach. This representation of
planar shapes is called an elastic string model.

Our goal in this paper is to use elastic string model to study several prob-
ability models for capturing observed shape variability. Similar to approaches
presented in [6, 4], we project observed shapes onto the tangent spaces at sam-
ple means, and further reduce their dimensions using PCA. Thus, we obtain a
low-dimensional representations of shapes called TPCA. On tangent principal
components (TPCs) of observed shapes we study: (i) Gaussian, (ii) nonpara-
metric, and (iii) mixture of Gaussian models. The first two have been studied
earlier for non-elastic shapes in [4]. To study model performances, we: (i) syn-
thesize random shapes from these models, (ii) test amongst competing models
using likelihood ratio, and (iii) compare statistics of likelihood on training and
test data. This framework leads to stochastic shape models that can be used
as priors in future Bayesian extraction of shapes from low-quality images. To
illustrate these ideas we have used shapes from the ETH databases.

Rest of this paper is organized as follows. Section 2 summarizes elastic-string
models for shape representations. Section 3 proposes three candidate probabil-
ity models for capturing shape variability, while Sections 4 and 5 study these
probability models via synthesis and hypothesis testing.

2 Elastic Strings Representation

Here we summarize the main ideas behind elastic-string representations of planar
shapes, originally described in Mio et al [5].

2.1 Shape Representation

Let α : [0, 2π] → R2 be a smooth parametric curve such that α′(t) �= 0, ∀t ∈
[0, 2π]. The velocity vector is α′(t) = eφ(t)ejθ(t), where φ : [0, 2π] → R and
θ : [0, 2π] → R are smooth, and j =

√
−1. The function φ is the log-speed of

α and θ is the angle function. φ(t) measures the rate at which the interval [0, 2π]
is stretched or compressed at t to form the curve α; φ(t) > 0 indicates local
stretching near t, and φ(t) < 0 local compression. Curves parameterized by arc
length have φ ≡ 0. We will represent α via the pair (φ, θ) and denote by H the
collection of all such pairs.

Parametric curves that differ by rigid motions or uniform scalings of the plane,
or by re-parameterizations are treated as representing the same shape. The pair
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(φ, θ) is already invariant to translations of the curve. Rigid rotations and uni-
form scalings are removed by restricting to the space,

C = {(φ, θ) ∈ H :
2π

0
eφ(t)dt = 2π,

1
2π

2π

0
θ(t)eφ(t)dt = π,

2π

0
eφ(t)ejθ(t)dt = 0},

C is called the pre-shape spaces of planar elastic strings. There are two possible
ways of re-parameterizing a closed curve, without changing its shape: (i) One
is to change the placement of origin t = 0 on the curve. This change can be
represented as the action of a unit circle S1 on a shape (φ, θ), according to:
s · (φ(t), θ(t)) = (φ(t − s), θ(t − s) + s). (ii) Re-parameterizations of α that
preserve orientation and the property that α′(t) �= 0, ∀t, are those obtained by
composing α with an orientation-preserving diffeomorphism γ : [0, 2π]→ [0, 2π].
Let D be the group of all such mappings. These mappings define a right action
of D on H by

(φ, θ) · γ = (φ ◦ γ + log γ′ , θ ◦ γ). (1)

◦ denotes composition of functions. The space of all (shape-preserving) re-
parametrization of a shape in C is thus given by S1 × D. The resulting shape
space is the space of all equivalence classes induced by these shape preserving
transformations. It can be written as a quotient space S = (C/D)/S1.

What metric can used to compare shapes in this space? Mio [5] suggests that,
given (φ, θ) ∈ H, let hi and fi, i = 1, 2, represent infinitesimal deformations of
φ and θ, resp. , so that (h1, f1) and (h2, f2) are tangent vectors to H at (φ, θ).
For a, b > 0, define 〈(h1, f1), (h2, f2)〉(φ,θ) as

a

∫ 1

0
h1(t)h2(t) eφ(t) dt+ b

∫ 1

0
f1(t)f2(t) eφ(t) dt. (2)

It can be shown that re-parameterizations preserve the inner product, i.e., S1×D

acts on H by isometries. The elastic properties of the curves are built-in to
the model via the parameters a and b, which can be interpreted as tension
and rigidity coefficients, respectively. Large values of the ratio a/b indicate that
strings offer higher resistance to stretching and compression than to bending; the
opposite holds for a/b small. In this paper we fix a value of a/b that balances
between bending and stretching.

2.2 Geodesic Paths in Shape Spaces

An important tool in this shape analysis is to construct geodesic paths, i.e.
paths of smallest lengths, between arbitrary two shapes. Given the complicated
geometry of S, this task is not straightforward, at least not analytically. One
solution is to use a computational approach, where the search for geodesics
is treated as an optimization problem with iterative numerical updates. This
approach is called the shooting method. Given a pair of shapes α1 ≡ (φ1, θ1) and
α2 ≡ (φ2, θ2), one solves:

min
s∈S1,γ∈D,g∈Tα1(C)

‖Ψ1(α1; g)− (s · (α2)) · γ‖2 (3)
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where Ψt(α; g) denotes a geodesic path starting at a shape α in the direction g,
and parameterized by time t. Also, ‖·‖ is the L2 norm on H. Basically, one solves
for the shooting direction g∗ such that the geodesic from α1 in the direction g∗

gets as close to the orbit of α2 under shape preserving transformations [5]. Let
d(α1, α2) ≡ ‖g∗‖ denote the length of geodesics connecting the shapes α1 and
α2. This construction helps define the exponential map: expα(g) = Ψ1(α; g) and
its inverse exp−1

α (β) = g such that Ψ1(α; g) = β.

2.3 Sample Mean of Shapes

Since the shape space S is nonlinear, the definitions of sample statistics, such
as means and covariances, are not conventional. Earlier papers [7, 8] suggest the
use of Karcher mean to define mean shapes as follows. For α1, . . . , αn in S, and
d(αi, αj) the geodesic length between αi and αj , the Karcher mean is defined
as the element μ ∈ S that minimizes the quantity

∑n
i=1 d(μ, αi)2. A gradient-

based, iterative algorithm for computing the Karcher mean is presented in [8, 1].
Shown in Figure 1 are some examples of three classes of shapes – dogs, pears,
and mugs – used in the experiments here, and the Figure 2 shows Karcher means
of shapes in these three classes. Let μ be the mean shape and for any shape α,
let g ∈ Tμ(S) be such that Ψ1(μ; g) = α. Then, α called the exponential of g,
i.e. expμ(g), and conversely, g = exp−1

μ (α). As described next, statistics of α are
studied through statistics of its map onto the tangent space at the mean.

Fig. 1. Examples of three classes of shapes – dogs, pears, and mugs – from the ETH
database that are studied in this paper, with the numbers used in test and training

3 Statistical Shape Models

Our goal is to derive and analyze probability models for capturing observed
shapes. The task of learning probability models on spaces like S is difficult for two
main reasons. Firstly, they are nonlinear spaces and therefore classical statistical
approaches, associated with the vector spaces, do not apply directly. Secondly,
these are infinite-dimensional spaces and do not allow component-by-component
modeling that is traditionally followed in finite-dimensional vector spaces. The
solution involves making two approximations. First, we project elements of S
onto the tangent space Tμ(S), which is a vector space, and therefore, better suited
to statistical modeling. This is performed using the inverse exponential map
exp−1

μ . Second, we perform dimension reduction in Tμ(S) using PCA. Together,
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Fig. 2. In each case, left image shows the Karcher mean of shapes and right shows
plots of the singular values of sample covariance matrix

these two approximations given rise to TPCA representation. These ideas were
first proposed for landmark-based shape analysis in [6].

To start TPCA, we use the Gram-Schmidt algorithm to find an orthonormal
basis of the given vectors: Set i = 1 and r = 1.

1. Set Yi = gr −
∑i−1

j=1 〈Yj , gr〉Yj .
2. If 〈Yi, Yi〉 �= 0,

Set Yi = Yi/
√
〈Yi, Yi〉, i = i+ 1, r = r + 1, and go to Step 1.

Else
If r < k

Set r = r + 1 and go to Step 1.
Else Stop

Say the algorithm stops at some i = n ≤ k. So now we have an n-dimensional
subspace Y spanned by an orthonormal basis with elements {Y1, Y2, . . . , Yn}. The
next step is to project each of the observed vector into Y as follows. Let xij =
〈gi, Yj〉 and define a vector xi = [xi1, xi2, . . . , xin] ∈ Rn. Then, the projection of
gi into Y is given by

∑n
j=1 xijYj . Each gi ∈ Tμ(S) is now represented by a smaller

vector xi ∈ Rn. Next, we perform PCA in Rn using the projected observations
{x1,x2, . . . ,xk}. That is, from their sample covariance matrix C ∈ Rn×n, find
its singular value decomposition C = UΣUT , and use the first d-columns of U
to form a basis for the principal subspace of Rn, with d ≤ n. The vector x ∈ Rn

maps to a smaller vector a ∈ Rd such that x =
∑d

j=1 ajUj . The choice of d is
made using the singular values of C; shown in Figure 2 are the plots of singular
values of C for the three classes: dogs, pears, and mugs.

3.1 Probability Models on TPCs

We impose a probability model on α implicitly by imposing a probability model
on its tangent principal components (TPCs) a. What probability models can
be used in this situation? In this paper, we study the following three models:
nonparametric, Gaussian and mixtures of Gaussian. The first two models were
studied for non-elastic shapes in [4].

1. Nonparametric Model: Assuming that the TPCs, ajs, are statistically inde-
pendent of each other, one can estimate their probability densities directly from
the data using a kernel estimator. Let f (1)

j , j = 1, . . . , d be the kernel estimate
of the density function of aj , the jth TPC of the shape α. In the experiments
presented here we used a Gaussian Kernel. Then, assuming independence of
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TPCs, we obtain: f (1)(α) =
∏d

j=1 fj(aj). Shown in Figure 3 are some examples
of estimated f (1) for several js. For each shape class, we display three examples
of non-parametric density estimates for modeling TPCs.
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Fig. 3. We show three examples of modeling TPCs in each class. For each example, the
left figure shows nonparametric estimate f (1) while the right figure shows the mixture
of Gaussian f (3) (using cross-lines) drawn over observed densities (plain lines).

2. Gaussian Model: Let Σ ∈ Rd×d be the diagonal matrix in SVD of C, the
sample covariance of xis. Then, we can model the component aj as a Gaussian
random variable with mean zero and variance

√
Σjj . Denoting the Gaussian

density function as h(y; z, σ2) ≡ 1√
2πσ2 exp(−(y − z)2/(2σ2)), we obtain the

Gaussian shape model f (2)(α) =
∏d

j=1 h(aj ; 0, Σjj).

3. Mixture of Gaussian: Another candidate model is that aj follows the
density

f
(3)
j (α) =

d∏
j=1

(
K∑

k=1

pkh(aj ; zk, σ2
k)

)
,
∑

k

pk = 1,

a finite mixture of Gaussian. For a given K, EM algorithm can be used to
estimate the means and variances of components. Based on empirical evidence,
we have used K = 2 in this paper to estimate f (3) from observed data. Shown
in Figure 3 are some examples of estimated f (3) for some TPCs. In each panel,
the marked line shows the estimated mixture density and, for comparison, the
plane line shows the observed histograms.

4 Empirical Evaluations

We have analyzed and validated the proposed shape models using: (i) random
sampling, (ii) hypothesis testing, and (iii) statistics of log-likelihoods. We de-
scribe these results next.
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Fig. 4. Sample shapes synthesized from the nonparametric model (top) and the mixture
model (bottom)

Shape Sampling: As a first step, we have synthesized random shapes from
the three probability models f (i), i = 1, 2, 3. In each case the synthesis involves
generating a random TPC according to its probability model- kernel density,
Gaussian density or mixture of Gaussian- and then reconstructing the shape
represented by that set of TPCs. For the generated values of TPCs, we form the
vector x =

∑d
j=1 ajUj , and the tangent direction g =

∑n
i=1 xiYi, and eventually

the shape α = expμ(g). Shown in Figure 4 are examples of random shapes
generated from the models f (1) (top row) and f (3) (bottom row). We found that
all three models seem to perform reasonably well in synthesis, with f (1) and f (3)

being slightly better than f (2).

Testing Shape Models
In order to test proposed models for capturing observed shape variability, we
use the likelihood ratio test to select among the candidate models. For a shape
α ∈ S, the likelihood ratio under any two models is:

f (m)(α)
f (n)(α)

=
d∏

j=1

f
(m)
j (aj)

f
(n)
j (aj)

, m, n = 1, 2, 3 ,

and the log-likelihood ratio is

l(α;m,n) ≡
d∑

j=1

(
log(f (m)

j (aj))− log(f (n)
j (aj))

)
.

If l(α;m,n) is positive then the model m is selected, and vice-versa. Taking a
large set of test shapes, we have evaluated l(α;m,n) for each shape and have
counted the fraction for which l(α;m,n) is positive. We define:

P (m,n) =
|{i|l(αi;m,n) > 0}|

k
,

where k is the total number of shapes used in this test. This fraction is plotted
versus the component size d in Figure 5, for two pairs of shape models: P (1, 3) in
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Fig. 5. P (m,n) plotted versus vs d, for each of the three classes. Top row: m = 1,
n = 3, and bottom row: m = 3, n = 2.

the top row and P (3, 2) in the bottom row. P (m,n) > 0.5 implies that model m
outperforms n. Two sets of results are presented in each of these plots. The solid
line is for the test shapes that were not used in estimation of shape models, and
the broken line is for the training shapes that were used in model estimation.
Also, we draw a line at 0.5 to clarify which model is performing better. As these
indicate, the mixture model seems to perform the best in most situations. On
the training shapes, for pears and mugs, the nonparametric model is better than
the mixture model. This result in expected since nonparametric model is derived
from these training shapes themselves. However, on the test shapes, the mixture
model is either comparable or better than the other two models. We conclude
that for this data set, the mixture model is better for capturing variability in
both training and test shapes. Furthermore, it is efficient due to its parametric
nature.

Statistics of Model Likelihoods
Another technique for model validation is to study the variability of a model-
based “sufficient statistic” when evaluated on both training and test shapes. In
case the distributions of this statistic are similar on both training and test shapes,
this validates the underlying model. In this paper, we have chosen the sufficient
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Fig. 6. Histograms of ν(i)(α) for test (solid) and training shapes (broken). First three
are for nonparametric model, and the last three are for mixture of Gaussians.
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statistic to be proportional to negative log-likelihood of an observed shape. That
is, we define ν(i)(α) ∝ − log(f (i)(α)), where the proportionality implies that the
constants have been ignored. Shown in Figure 6 are some examples of this study
for the nonparametric (first three) and the mixture model (last three). These
plots shows histograms of ν(i)(α) values for both test and training shapes, for
each of the three shape classes. It is evident that the histograms for training and
test sets are quite similar in all these examples, and hence, validate the proposed
models.

Acceptance/Rejection Under Learned Models: In the final experiment,
we performed acceptance/rejection for each test shape under the mixture model,
f (3), for each shape class (dogs, pears, and mugs). Using threshold values esti-
mated using training data of each class, we compute the value of ν(3)(α) for each
test shape α; if it is below the threshold we accept it, otherwise we reject it. For
example, we have

ν(3)(α)
dog reject

>
<

dog accept
κdog.

This is done for each of the three classes – dogs, pears, and mugs, and the
results are summarized in the next table. This table lists the percentage of times
a shape from a given test class was accepted by each of the three shape classes.
For example, test shapes in dog class were accepted 96.67% times by shape model
for dog class, 1.67% by pear model, and 0.83% by cup model. Also, 1.67% of
test shapes in dog class were rejected by all three models. Since a shape can be
accepted by more than one model, the sum in each row can exceed 100%. Notice
that the test shapes also include other objects such as horses, cows, apples, cars,
and tomatoes. Some of the cows (35%) are accepted under dog model, but are
easily rejected under pear and mug models; most of the cows (64%) are rejected
under all three models. Tomatoes are mostly accepted by pear and mug models.
Overall, the mixture model f (3) demonstrates a significant success in capturing
shape variability and in discriminating between object classes. It also enjoys the
efficiency of being a parametric model.

Test class Dog Accepts (%) Pear Accepts (%) Cups Accepts (%) No Accepts (%)
Dogs 96.67 1.67 0.83 1.67
Pears 10.45 99.00 41.79 0.99
Cups 9.95 28.35 98.01 1.49
Horses 43.97 0.00 0.52 56.02
Apples 0 78.71 96.53 0.99
Cows 35.83 0.00 0.00 64.17
Cars 16.91 0.99 46.76 38.30

Tomatoes 0.99 67.66 72.13 19.90
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5 Conclusion

We have presented results from statistical analysis of planar shapes under elas-
tic string models. Using TPCA representation of shapes, three candidate models
were presented: nonparametric, Gaussian, and a mixture of Gaussian. We eval-
uated these models using (i) random sampling, (ii) likelihood ratio tests, (iii)
similarity of (distributions of) sufficient statistics on training and test shapes,
and (iv) acceptance/rejection of test shapes under the models estimated from
the corresponding training shapes. All three models do reasonably well in ran-
dom sampling and likelihood ratio test. However, the mixture model emerges as
the best model for capturing shape variability and efficiency. We therefore con-
jecture that mixture of Gaussians are sufficient for modeling TPCs of observed
shapes for use as prior shape models in future Bayesian inferences.
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Abstract. Performing segmentation of narrow, elongated structures
with low contrast boundaries is a challenging problem. Boundaries of
these structures are difficult to be located when noise exists or intensity
of objects and background is varying. Using the active contour methods,
this paper proposes a new vector field for detection of such structures.
In this paper, unlike other work, object boundaries are not defined by
intensity gradient but statistics obtained from a set of filters applied on
an image. The direction and magnitude of edges are estimated such that
the minimal weighted local variance condition is satisfied. This can effec-
tively prevent contour leakage and discontinuity by linking disconnected
boundaries with coherent orientation. It is experimentally shown that
our method is robust to intensity variation in the image, and very suit-
able to deal with images with narrow structures and blurry edges, such
as blood vessels.

1 Introduction

Active contour models are widely used in solving medical image segmentation
problems. For instance, blood vessel segmentation is one of the applications in
medical image segmentation. To separate vascular structures from the image
background, researchers consider utilizing image gradient as a criterion to la-
bel blood vessel boundaries. In the Gradient Vector Flow (GVF) method [1], a
moving parametric contour is driven by the minimization of energy E ,

E(C) =
∫ ∫

μ(u2
x + u2

y + v2x + v2y) + |∇f |2|v−∇f |2dxdy,

where f = |∇I(x, y)|2 represents the edge map of an image I, v(x, y) =
(u(x, y), v(x, y))T denotes the flow vector, which is obtained using two diffu-
sion based partial differential equations in the whole image domain, μ∇2u −
(u− fx)(f2

x + f2
y ) = 0 and μ∇2v − (v − fy)(f2

x + f2
y ) = 0. As such, the diffusion

process creates a competition of forces exerting from the image gradient at dif-
ferent locations. The GVF method outperforms the classical Snakes [2] because

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 622–632, 2006.
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the above diffusion processes enable GVF to have long range interaction between
boundaries and moving contours.

Apart from the parametric contours, Malladi et at. [3] have proposed to use the
level set framework [4] for modeling of moving curves. The level set formulation
can handle merging or splitting of contours naturally. One of the main ideas
in [3] is that there is an advection term, which keeps the front of the level set
function expanding (or contracting) with the speed controlled by a function,
namely edge detector, g(∇I(x, y)) = 1

1+|∇Gσ∗I(x,y)|p , p ≥ 1. This formulation
keeps the contours exploring the image and eventually halted on the object
boundaries, where the edge detector gives small value.

However, these methods are not suitable for elongated or low contrast objects
such as blood vessels in the brain. For example, for the GVF method, it favors the
conceptual edges and usually discards the narrow regions rather than including
them in the segmentation results. Also, the edge detector relies on high image
gradient magnitude to halt the moving contours, and can fail to detect low
contrast boundaries.

To deal with this problem, Vasilevskiy et al. proposed the use of flux max-
imizing geometric flows for image segmentation [5]. Different from the above
methods, object boundaries are detected by incorporating image gradient direc-
tion and magnitude. The contour motion is governed by

Ct = ∇(V(x, y))N , (1)

where V(x, y) is the gradient vector of an image and N is the normal direction on
the curve C. Contour evolution direction is guided by the direction perpendicular
to the image gradient. It does not fail in the situation where gradient magnitude
is small or object structures are elongated and thin.

Along the same line, Xiang et al. introduced an elastic model [6] for segmen-
tation of thin concave and convex structures. This method also integrates the
information of both the magnitude and direction of image gradient in the sim-
ilar fashion. In [6], the image gradient magnitude is extended to whole image
domain rather than locally defined, as in [5]. The dynamics of an active contour
is defined by minimizing the energy,

E(C) =
1
2

∫
w ·wdxdydz, (2)

subject to the constraint,
∇×w = δCt, (3)

where w is a three dimensional vector field, δC is Dirac delta-function which is
zero everywhere except on the curve C. δCt is approximated by δ(z)·(

∂(Gσ∗I)
∂y ,−∂(Gσ∗I)

∂x , 0
)T

such that C can be attracted towards the object bound-
aries by minimizing the energy above.

On the other hand, without considering image gradient, Chan and Vese sug-
gested to perform image segmentation by solving the minimal partition problem
in [7]. The segmentation result is the minimizer of an energy functional,
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F (c1, c2, C) = μCLength + νCArea + λ1

∫
Cin

|I − c1|2dxdy + λ2

∫
Cout

|I − c2|2dxdy,

where μ ≥ 0, ν ≥ 0, λ1 ≥ 0, λ2 ≥ 0 are fixed parameters, c1 and c2 are the
average intensity values of pixels inside and outside contour C respectively. This
approach is capable of dealing with low contrast objects, blurry edges or noisy
image that cause failure in many gradient based segmentation methods. Further-
more, choosing a large value for μ in the above formulation encourages linking
disconnected boundaries through conceptual edges. However, due to background
noise and overlapping of different structures which commonly exist in medical im-
ages, the intensity values of vascular structures and the background are varying
from regions to regions. Minimizing the energy functional can lead to a situation
that the bright regions of background and dark portions of vessels belong to the
same object.

Although approaches in [5] and [6] are robust to intensity variation of ob-
jects and background, they are confused by the fluctuating gradient of object
boundaries in such case. The locally defined flux cannot recover the weak edges
that are longer than the radius of the target object. Similarly, the elastic model
is insensitive to small gradient of weak edges. This can lead to contour leak-
age. Besides, noise also generates intensity gradient across thin objects. It cre-
ates small gaps (discontinuities) on those narrow structures. The approaches
above do not encode with the information about contour continuity. They tend
to regard those single objects with small gaps as separated and disconnected
structures.

In this paper, we propose a new vector field to incorporate with the active
contour models for image segmentation. Calculation of the vector field is based
on satisfying minimal weighted local variance calculated from the statistics after
applying a set of filters on the image. Under this formulation, the magnitude and
direction of an edge are not depending on its local gradient but the statistics
estimated from a local region. The advantage of our method is that edges are
extended along their direction so that the discontinued portion of the edges can
be recovered without blurring or shifting effect. It is essential to recover those
weak parts of edges in order to prevent contour leakage and discontinuity.

2 Methodology

2.1 The Proposed Model

Let g(x, y) be a spatial filter which has its peak value at the center and decays
gradually away from the center, for instance, Gaussian filter. We split the filter
g(x, y) into two filter sets according to a parameter θ, θ ∈ [0, π). Each filter
should be summed to one. Namely, g1(x, y, θ) and g2(x, y, θ) are defined as,

g1(x, y, θ) =
g′1(x, y, θ)∫

g′1(x′, y′, θ)dx′dy′
,
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g2(x, y, θ) =
g′2(x, y, θ)∫

g′2(x′, y′, θ)dx′dy′
,

g′1(x, y, θ) =
{
gθ(x, y) if (x, y)T · n̂θ < 0,

0 otherwise,

g′2(x, y, θ) =
{
gθ(x, y) if (x, y)T · n̂θ > 0,

0 otherwise, (4)

where n̂θ = (cos θ, sin θ)T , and gθ(x, y) = g(x cos(θ+ π
2 )− y sin(θ+ π

2 ), x sin(θ+
π
2 ) + y cos(θ + π

2 )) is the rotated version of g(x, y) (Fig.1a).

(a) (b)

Fig. 1. (a) Top: Gσ=4. Second row: Corresponding filter set g1. Third row: Corre-
sponding filter set g2. From left to right, θ = 0, π

8 , 2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8 . (b) First row:
Gσx=3,σy=1. Second row: Corresponding filter set g1. Third row: Corresponding filter
set g2. From left to right, θ = 0, π

8 , 2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8 .

We obtain θ′(x, y) satisfying the following condition,

θ′(x, y) = arg min
θ

{∫ {
g1(x′ − x, y′ − y, θ) · (I(x′, y′)− μ1(x, y, θ))2

+g2(x′ − x, y′ − y, θ) · (I(x′, y′)− μ2(x, y, θ))2 } dx′dy′
}
. (5)

Here μ1 =
∫
g1(x′ − x, y′ − y, θ)I(x′, y′)dx′dy′ and μ2 =

∫
g2(x′ − x, y′−

y, θ)I(x′, y′)dx′dy′. The terms μ1(x, y) and μ2(x, y) are the weighted averages
of the neighboring pixels of (x, y) in different sides split by the line n̂⊥θ(x,y) =
(cos(θ(x, y) + π

2 ), sin(θ(x, y) + π
2 ))T . Equation (5) is the weighted sum variance

of the neighboring pixels from the both sides of the line n̂⊥θ(x,y). We call this
condition, minimal weighted local variance.

Now we define the vector field, V , using the θ′(x, y) obtained from minimal
weighted local variance, V(x, y) is found as follows,

V(x, y) = {μ2(x, y, θ′(x, y)) − μ1(x, y, θ′(x, y))} · n̂θ′(x,y) (6)

By finding θ′(x, y) that satisfies the minimal weighted local variance condition,
the direction of V(x, y) is pointing from one region to another region such that
the weighted sum variance of these two regions is minimized. Its magnitude is
determined by the difference of weighted averages of these two regions.



626 W.K. Law and A.C.S. Chung

2.2 Properties

The main goal of defining θ′(x, y) is to find the direction pointed by the vector
n̂⊥θ′(x,y), that is the best choice to partition the neighborhood of the pixel (x, y)
into two regions. For an ideal sharp edge that separates two regions with distinct
constant intensity, V(x, y) gives similar results to the smoothed intensity gradient
vector of the edge.

The major difference of the above formulation and Chan’s [7] minimal par-
tition problem is that we localized the calculation of variance and the contour
evolution is guided by the direction of n̂⊥θ′(x,y) at every point. For medical im-
ages, intensity of an object such as blood vessel is largely varying from regions
to regions. Therefore, the sum variance of objects and background is not nec-
essary to be minimal for correct segmentation result in those situations. Since
the intensity variance of objects themselves is also large, minimizing the sum
variance of inside and outside contours causes oversensitivity on those objects
whose intensity is varying. In contrast, calculation of sum variance in a localized
manner avoids this problem.

The localized sum variance of every pixel does not depend on the topology
of contours. Instead, it depends only on the neighborhood of pixel. Obviously,
the calculation of localized sum variance should be more sensitive to those pixels
nearby and less sensitive to those pixels far away. The neighborhood is defined
by the filter g(x, y). A filter which has its peak value at the center and decays
gradually away from the center is a good choice of g(x, y), for example, Gaussian
function.

In Equation (6), |V(x, y)| is given by μ2(x, y, θ′(x, y)) − μ1(x, y, θ′(x, y)),
which is the difference of weighted intensity average of the regions separated
by n̂⊥θ′(x,y). Such difference reflects how well the direction n̂⊥θ′(x,y) partitions
the regions around (x, y).

Considering a vascular structure with fluctuating intensity value (Fig.2a,b),
the intensity of some segments of blood vessel is very similar to the background.
Distinguishing those regions from background is difficult without referring to the
neighbors. That’s the reason why leakage problem commonly exists in different
active contour models.

Those confusing regions can be recovered by referring to the intensity of pixel
neighbors. In our formulation, |V| depends on the weighted intensity average
difference of pixel neighbors. The filters g1(·, θ′(x, y)) and g2(·, θ′(x, y)) in (4)
are chosen to be split along direction of n̂⊥θ′(x,y), which is the tangent direction
of boundaries extracted from minimal weighted local variance condition. Thus,
|V(x, y)| are referring to two regions that are separated by a straight line along
the direction of n̂⊥θ′(x,y). It plays an important role in extending edges along
their direction and links the boundaries that have coherent orientation.

On the other hand, for those weak edges having no coherent orientation
to their neighbors, their field magnitude is suppressed by smoothing effect of
weighted average. Linking weak edges are only performed for those boundaries
with coherent edge direction. Thus, noise is suppressed which has weak interac-
tion with its neighbors.
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In addition, our formulation only recovers those low contrast boundaries with
high contrast edges along analogous direction in its neighborhood. Without con-
siderable prior knowledge on the shape of target regions, the information ex-
tracted in minimal weighted local variance is not going to reconstruct those
structures that are significantly confused with the background.

For vascular segmentation, target regions consist of elongated and thin struc-
tures. To make the field sensitive to these structures, we suggest to use a Gaussian
kernel with different standard deviation in x and y directions, Gσx,σy (x, y) =

1
2πσxσy

exp{− x2

2σ2
x
− y2

2σ2
y
}. The value of σx controls the strength to extend bound-

aries along their direction, and σy controls the width scale of the objects to be
detected which should be set roughly smaller than the width of target structure.
Large ratio of σx

σy
(Fig.1b) makes calculation of weighted average and weighted

variance consider less pixels along the direction of n̂θ′(x,y) than direction of edges,
n̂⊥θ′(x,y). As a result, the vector field V calculated by such filter favors elongated
objects such as blood vessels.

2.3 Implementation

The crucial step to estimate V(x, y) is to find θ′(x, y). It can be achieved by
defining a set of discrete values, θk, where k ∈ {0, . . . ,K − 1} and θk = kπ

K . The
θ′(x, y) is obtained in discrete fashion,

θ′(x, y) = argmin
θk

⎧⎨⎩∑
x′,y′

{
g1(x′ − x, y′ − y, θk) · (I(x′, y′)− μ1(x, y, θk))2

+g2(x′ − x, y′ − y, θk) · (I(x′, y′)− μ2(x, y, θk))2
} }

. (7)

In our experiments, we have used K = 36 for θk ∈ [0, π). Therefore, there are
totally 36 filters for both g1(x, y, θk) and g2(x, y, θk) to detect 72 distinct edge
orientations.

The vector field V(x, y) is then calculated by Equation (6). It is defined in the
whole image domain and is not affected by the dynamics of moving contours.
We utilize the elastic model proposed in [6] to model the interaction between
boundaries detected by the minimal weighted local variance. This model is used
because of its long range interaction ability and high sensitivity to both concave
and convex regions. Resulting contour is the minimizer of energy associated with
moving contours and a vector field, w, as stated in Equation (2) subject to the
constraint in Equation (3). Here we approximate δCt with δ(z) · (v2,−v1, 0)T

where V = (v1, v2)T and use zero level of level set surface to represent moving
contours [4], which is evolving according to the following equation,

φt = F |∇φ|, (8)

where F is the normal velocity that the curve evolves.
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We can solve F in frequency domain similar to [6]. m,n, l denote the fre-
quencies in x, y and z directions respectively and F̃ (m,n, l) is the frequency
component of F (x, y) · δ(z),

F̃ (m,n, l) = i
m · a1(m,n) + n · a2(m,n)

m2 + n2 + l2
, (9)

where a1(m,n) and a2(m,n) are frequency components of v1(x, y) and v2(x, y),
respectively. Assume that the 3D space is continuous and extending to infinity
in z direction, discrete and periodic in both x and y directions,

F (x, y) =
1
2π

∫ l=∞

l=−∞

{∑
m,n

i · (ma1(m,n) + na2(m,n)) · eimx+iny

m2 + n2 + l2

}
dl,

=
∑
m,n

i(ma1(m,n) + na2(m,n))
2
√
m2 + n2

eimx+iny. (10)

Note that we have added a very small constant into the variable m and n in
our implementation, which avoids singularity of the solution when m and n
are both zero. The above formulation find (v1x + v2y) and diffuses it to whole
image domain with inverse square decay rate. The opposite sign of (v1x + v2y)
on two different sides over an edge creates zero-crossing boundary that halts the
evolution of contour.

In [6], intensity gradient vector is used instead of V(x, y) in Equation (9). In
this case, a1 and a2 are replaced with the frequency components of −Ix and Iy
respectively. Finding the corresponding F̃ is equivalent to applying the Laplacian
filter on the image and diffusing it with inverse square decay rate. As a result,
[6] is similar to the work in [8] about edge integration by finding zero-crossing
after applying Laplacian filter on an image. It also has a close relationship with
[5] , where the Equation (1) is equivalent to Ct = (∇2 · I)N .

Neither the inverse square decay rate of [6] nor discrete summation of Equa-
tion (1) over circular disc proposed in [5] carries information about contour
continuity. In contrast, the minimal weighted local variance added those infor-
mation by extending edges along their direction which is useful for segmentation
of narrow and low contrast structures in noisy images.

Finally, to speed up evolution process, we replace F (x, y) in Equation (8)
with a sigmoid function 2

1−e−F (x,y)/σF
−1 in our implementation, where σF is the

standard deviation of F (x, y). This function has similar effect of sign(F ) when
magnitude of F is very large while keeping increasing linearly as magnitude of
F is small.

3 Experimental Results

This section presents results obtained from real images (Fig.2) consisting of
two digital subtraction angiography (DSA) obtained from the Department of
Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong Kong,
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(a) (b) (c)

Fig. 2. (a) 128 × 128 retinal angiography. The intensity variation of vessel and back-
ground causes the gradient of vessel boundaries varying in different regions (top and
bottom portion of the image). (b) 80 × 128 DSA. Intensity of the object is dropped at
the Y-shape and circular structure at the middle of the image. (c) 128 × 128 DSA. A
portion of the vessel has relatively lower intensity than the other parts.

(a) (b) (c)

Fig. 3. Left: Initial contours. Right: Final results. (a): FM with r = 1, 2, 3, image is
preprocessed with Gσ=0.8, initial contour obtained automatically from regions with the
highest 5% inward flux which is further smoothed under curvature flows for 200 steps.
(b): ACM-EI, the image is preprocessed with Gσ=0.8, manually selected initial contour.
(c): ACWE with μ = 0.000 01 · 2552, λ1 = λ2 = 1, ν = 0, h = 1, manually selected
initial contour.

and one retinal angiography [9]. Comparison is performed between the proposed
method with three different approaches including ”Flux Maximizing Geometric
Flows” (FM) [5], ”A New Active Contour Method based on Elastic Interaction”
(ACM-EI) [6] and ”Active Contours without Edges” (ACWE) [7].

The first example (Fig.2a) shows a retinal angiography. The background in-
tensity is generally lower in left-bottom, left-top and right-top regions. Since the
ACWE method partitions the image into high intensity group and low intensity

Fig. 4. Result of the proposed method using σx = 1.6 and σy = 0.8. Left: Initial
contour obtained automatically from regions with the highest 5% field value which
is further smoothed under curvature flows for 200 steps. Middle: Intermediate step.
Right: Final result.
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(a) (b) (c)

Fig. 5. Left: Initial contours. Right: Final results. (a): FM with r = 1, 2, 3, image
preprocessed with G0.8, initial contour obtained automatically from regions with the
highest 10% inward flux which is further smoothed under curvature flows for 200 steps.
(b): ACM-EI initial contour obtained automatically using the heuristic approach pre-
sented in [6] with σ1 = 0.8 and σ2 = 10. (c): ACWE with μ = 0.000 01 · 2552, λ1 =
λ2 = 1, ν = 0, h = 1, manually selected initial contour.

group, it cannot give a satisfactory result as the low intensity vessel is excluded
from the contour while high intensity background is included (Fig.3c).

On the other hand, ACM-EI tends to ignore weak edges when strong edges
are present. Therefore, the contour is guided by noise and leaks through blurred
boundaries at the bottom of the image (Fig.3b). We have manually placed the
initial contour of ACM-EI inside the blood vessel as the heuristic approach in
[6] cannot locate the vessel position in this low contrast situation. FM selects
initial contour correctly and indicates side vessel as well (Fig.3a). In contrast,
our method favors smooth contour and keeps branches be connected without
leakage. Fig.4 shows that our method locates the main vessel correctly, and can
handle intensity variation in the object and background regions because of the
calculation of minimal variance in a localized manner. It also avoids leakages in
the low contrast regions since edges are extended along its direction.

In Fig.2b, we have shown a DSA where the intensity of the object is dropped
significantly at two positions (the Y-shape structure and the circular structure
at the middle of the image). As shown in Fig.5c, similar to the results previously
shown, ACWE cannot capture objects in the dim regions. Besides, as shown

Fig. 6. Result of the proposed method using σx = 1.6 and σy = 0.8. Left: Initial
contour obtained automatically from regions with the highest 10% field value which is
further smoothed under curvature flows for 200 steps. Middle: Two intermediate steps,
the contour is propagating through the narrow and dim segments. Right: Final result.
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(a) (b) (c)

Fig. 7. Left: Initial contours. Right: Final results. (a): FM with r = 4, 5, 6, 7, image pre-
processed with Gσ=3, initial contour obtained automatically from regions with the high-
est 5% inward flux which is further smoothed under curvature flows for 200 steps. (b):
ACM-EI, initial contour obtained automatically using the heuristic approach presented
in [6] with σ1 = 3, σ2 = 10. (c): ACWE with μ = 0.4 · 2552, λ1 = λ2 = 1, ν = 0, h = 1,
manually selected initial contour.

in Fig.5a, the contour of FM is halted when the gradient along the vessel is
comparable to the gradient of object boundaries.

ACM-EI can capture the vessel but the result is noisy (Fig.5b), although it
is the best results obtained among different combinations of parameters. The
contour follows the noisy regions attached to the vessels rather than the weak
vessel boundaries. Increasing either the σ of the Gaussian filter or curvature term
as authors suggested in [6] dose not help and results in contour halted at dim or
narrow parts. In contrast, our method extends boundaries along their direction
to recover the discontinued boundaries over dim and tiny segments. Thus, the
contour can propagate through the dim and narrow regions (Fig.6).

The last example (Fig.2c) shows a vessel with a dim portion. It aims to
examine the ability of different approaches to connect a gap, which has size
comparable to the object width. FM, ACM-EI and ACWE cannot merge the
contours across the portion with low intensity value (Figs.7a, b and c). The
value of σ of the Gaussian filter being used in ACM-EI and FM cannot be too
large. Otherwise, they cannot handle the narrow branch at the right portion

Fig. 8. Results of the proposed method using σx = σy = 3 in the top row and σx =
1, σy = 3 in the bottom row. Left: Initial contour obtained automatically from regions
with the highest 5% field value which is further smoothed under curvature flows for
200 steps. Middle: Intermediate step. Right: Final result.
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of the image. ACWE fails to detect the narrow branch using different values
of μ because of the significant intensity variation. Therefore, we only show the
result with a large value of μ, in which contour is not halted far away from
vessel boundaries, as shown in Fig.7c. It shows that ACWE cannot recognize
the vessel as a single object. Here the proposed method is able to connect the
top and bottom portions of the vessel (Fig.8a). As mentioned in Section 2.2, a
small value of σx can be used to reduce the strength of boundary extension. We
have demonstrated to use a small value of σx for identifying the target region as
separated objects in (Fig.8b).

4 Conclusion

This paper proposed a new vector field for the detection of objects with narrow
and elongated structures. The field is incorporated in the active contour models.
The direction of boundaries is estimated based on the minimal weighted local
variance condition, which extrapolates edges along their direction so that dis-
connected boundaries can be linked. In the experiments, the proposed method
has been validated and compared to three different approaches. It is shown that
the proposed method can effectively prevent contour leakage or discontinuity,
which may happen in the segmentation of narrow structures with low contrast
boundaries. Finally, our method is robust to intensity variation inside objects
and background regions.

Acknowledgment. The authors would like to thank Dr. Yu of the Department
of Diagnostic Radiology and Organ Imaging, Prince of Wales Hospital, Hong
Kong, for providing the DSA images.
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Abstract. The paper presents a new external force field for active con-
tour model, which is called CGVF (Curvature Gradient Vector Flow).
CGVF improves on classical GVF by simplifying the formulas and in-
creasing the item of curvature, so that the edge information can be kept
well and diffused more quickly. Several standard images are used to seg-
menting experiments, and the results show that CGVF has obvious ad-
vantages compared with GVF in the iteration number of force field, the
evolvement number of curve and the accuracy of convergence. In particu-
lar, when the initial curve is far from the edge of object, the convergence
will be more superior.

1 Introduction

The variational method has been a research focus of image processing in recent
years [1,2,3,6,11,12,13,15]. Notably active contours, know as snakes, have been
widely studied and applied, their applications mainly include edge detection
[17], segmentation of objects [10,18], shape modeling [6] and motion tracking
[14]. Active contours were first introduced in 1988 by Kass et al[1]. They are
closed curves or surfaces expressed by parametric equation. An energy function
is associated with these curves, which convert the problem of finding objects into
the process of energy minimizing. Affected by both internal force and external
force, the parametric curves move to the direction of minimum energy. The inter-
nal force is decided by the curves themselves, and the external force is decided by
the image, so the external force is also called imageforce. The traditional force
field has small capture range, and is sensitive to the initial snake curve. In order
to enable the curves to converge the edge of objects rapidly, many improved
models of image force field were put forwarded. Cohen [4] presented the balloon
model in 1991, which enlarges the capture range of snakes, but could not enter
into the concavities of the objects’ edge. Additional, external forces defined as
the negative gradient of a Euclidean distance map were widely used [5].

Xu et a.l [7, 8] proposed a new external force model, known as GVF, which
uses a spatial diffusion of the gradient of an edge map of the image to create
a dynamic force field. It solves perfectly the flaw of small capture range of tra-
ditional snakes’ model, and can go into the concavities of the objects’ edge in

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 633–642, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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principle. And so far, GVF has been the most popular external force model.
However, sometimes GVF enter into the concavities with low speed, or even
could not do, which induced relatively poor efficiency of GVF.

This paper presents a new external force field for active contour model, which
is called CGVF (Curvature Gradient Vector Flow). CGVF improves on classical
GVF by simplifying the formulas and increasing the item of curvature, so that
the edge information can be kept well and diffused more quickly, which made
this force field could enter into the concavities of image edge with higher speed
and accuracy than GVF did.

2 Active Contour Model

2.1 Snakes

In 2D, snake is a curve c(s) = (x(s), y(s), s ∈ [0, 1]) that moves through the
spatial domain of an image to minimize the energy functional:

Esnakes =
∫ 1

0

1
2
(α|c′(s)|2 + β|c′′(s)|2) + Eext(c(s))ds (1)

where α and β are weighting parameters that control the snake’s tension and
rigidity, respectively, and c′(s) and c′′(s) denote the first and second derivatives
of c(s) with respect to s. The external energy function Eext is derived from
the image, and it takes on its smaller values at the features of interest, such as
boundaries. Given a gray-level image f0(x, y), viewed as a function of continuous
position variables (x, y), typical external energies designed to lead an active
contour toward step edges [1] are

E1
ext(x, y) = −|∇f0(x, y)|2 (2)

E2
ext(x, y) = −|∇[Gσ(x, y) ∗ f0(x, y)]|2 (3)

where Gσ(x, y) is a two-dimensional Gaussian function with standard σ and ∇
is the gradient operator.

In (3), large σ will increase snake’s capture range, but it will blur the image
edge at the same time, which causes inaccurate location of snakes. This is the
defect of traditional external energy.

In (1), A snake that minimizes E must satisfy the Euler equation:

αc′′(s)− βc′′′′(s)−∇Eext = 0 (4)

This can be viewed as a force balance equation

Fint + Fext = 0 (5)

where Fint = αc′′ − βc′′′′(s) and Fext = −∇Eext.
The traditional snakes are intrinsically weak in three main aspects:

(1) They are very sensitive to parameters.
(2) They have small capture range and the convergence of the algorithm is

mostly dependent of the initial position.
(3) The have difficulties in going into boundary concavities.
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2.2 GVF(Gradient Vector Flow)

Xu et al [7, 8] proposed famous external force field, known as GVF, which has
large capture range. GVF is the vector field V (x, y) = [u(x, y), v(x, y)], which
minimizes the energy functional:

Q =
∫ ∫

μ(u2
x + u2

y + v2x + v2y) + |∇f |2|V −∇f |2dxdy (6)

where f is the result of the original image processed by edge detect operator and
μ is weighting parameters.

Using the calculus of variations, it can be shown that the GVF field can be
found by solving the following Euler equations:

μ∇2u− (u− fx)(f2
x + f2

y ) = 0, μ∇2v − (v − fy)(f2
x + f2

y ) = 0 (7)

where ∇2 is the Laplacian operator.
GVF is a dynamic force field, which diffuses along the directions of x and y of

image gradient simultaneously, and could remain the image’s edge information
well after numerous iterations. GVF has favorable convergence and could enter
into the concavities of the objects’ edge in principle, so it has been one of the
models which are used most wildly. However, the diffusion speed of the edge
information of GVF is very low, consequently, only after a large number of
iterations can the force field go into the concavities of the objects’ edge, which
will lose some edge information and deduce the accuracy of segmentations and
performances of force field.

Xu et al[9] have improved the GVF and proposed GGVF in 1998. However,
there is no essential difference between GGVF and GVF. The force field of GGVF
still could be derived from two partial differential equations and enters into the
concavity of edge after substantial iteration numbers.

3 Proposed Model

3.1 Curvature Gradient Vector Flow

Because the concavities of the objects’ edge have large curvature, if taking into
account of edge curvature when generating force field, the edge information will
be remained and could diffuse with higher speed. Based on the above idea, CGVF
is proposed:

∇2I + w1k − w2f
2(I − f) = 0 (8)

k = ∇ · ∇I|∇I| = div(
∇I
|∇I| ) (9)

where k is the curvature of image edge map, andw1, w2 are weighting parameters.
In GVF, the concavity edge’s the same diffusion coefficient as other edge’s.

However, the additive curvature k in the CGVF force field equation (8) behaves
as increasing the weight of concavity edge, which makes edge map of concavity
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diffuse faster than that of other edge map. Minimal energy functional corre-
sponding to equation(8) is:

ECGV F =
∫ ∫
|∇I|2 + w1|∇I|+ w2f

2(I − f)2dxdy (10)

I0 = f(x, y) (11)

where I0 is are initial value of I, and f(x, y) is the edge information of original
image.

Equation (8) can be solved, then calculate the gradient of I, and the corre-
sponding CGVF field is obtained:

[CGV Fx, CGV Fy] = −∇I (12)

Contrast with two force fields by equation (7) and (8), we can see that the
classical GVF is generated by two partial differential equations, while there is
only one equation to generate CGVF, and CGVF still has favorable properties.

3.2 Numerical Implementation

Equations (8) can be solved by treating u as functions of time and solving:

It(x, y, t) = ∇2I(x, y, t) + w1∇ ·
∇I(x, y, t)
|∇I(x, y, t)| − w2f

2(I(x, y, t) − f) (13)

I(x, y, 0) = f(x, y) (14)

The steady-state solution of this linear parabolic equation is the desired so-
lution of the Euler equation (13).

The discrete process of (13) is:

It =
In+1
i,j − In

i,j

!t (15)

∇2I =
In
i+1,j + In

i,j+1 + In
i−1,j + In

i,j−1 − 4In
i,j

!x!y (16)

|∇I| =
√
I2x + I2y (17)

k = ∇ · ∇I|∇I| =
IxxI

2
y − 2IxIyIxy + IyyI

2
x

(I2x + I2y )
3
2

(18)

In+1
i,j = In

i,j +!t[
In
i+1,j + In

i,j+1 + In
i−1,j + In

i,j−1 − 4In
i,j

!x!y +w1k−w2f
2
i,j(I

n
i,j−fi,j)]

(19)
where indices i, j and n correspond to x, y and t, respectively, and let the spacing
between pixels be !x and !y, and time step for each iteration be !t. In the
image domain, !x = !y = 1. According to CFL condition, when !t < 1

4 ,
equation(19) will converge.
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I could be derived from equation (19), then calculate the gradient of I by
central difference, and the gradient is the CGVF:

CGV F i,j
x = −1

2
(Ii+1,j − Ii−1,j), CGV F i,j

y = −1
2
(Ii,j+1 − Ii,j−1) (20)

Now the equation(5) can be rewrote as :

Fint + FCGV F = 0 (21)

4 Experimental Results

We compare the force filed properties and the segmentation effects of GVF with
those of CGVF using Matlab6.5.

The parameters of the experiments as follows:

α = 0.05, β = 0, r = 1, k = 0.6, dmin = 0.5, dmax = 2, w1 = 0.05, w2 = 0.5

4.1 The Comparison of Performance

In this paper, we test fig1.a with the size of 64×64-pixel. The force fields of GVF
and CGVF after 30 iterations are showed respectively.

Fig.1b and Fig. 1c show that GVF and CGVF have similar properties. Both
of them are global force fields and can maintain the image’s edge map. However,
Fig.1 (b) implies that GVF force field is close to horizontal in the rectangle
on the image, which will not lead snake curve to convergence the concavity of
image unless increase the iteration number of GVF force field. Whereas Fig.1 (c)
suggests that CGVF field in the rectangle on the image points to the concavity of
edge, which induces snake curve can convergence more quickly to the concavity
of image.

4.2 Image Segmentation

Five typical images are selected to contrast the segmentation accuracy between
GVF and CGVF.

4.2.1 Image Without Noise
Fig.2 (a) is evolved by initial curve. The iteration numbers of two force fields
are 40 respectively. As for GVF, the curve will converge after 165 evolvements,
whereas, to CGVF, the curve only needs 100 evolvements. The processes of the
curve’s evolvements show that the convergence speeds of GVF and CGVF are
nearly same when the initial curves are far from the object’s edge, but as the
curves enter into the concavities of images edge, the speed of convergence of
CGVF is obviously faster than that of GVF, which also could be seen visually
from the force fields of Fig.1.

Therefore, in the following experiments, we will focus on comparing the seg-
mentation accuracy of CGVF with that of GVF.
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(a) (b) (c)

Fig. 1. GVF and CGVF force field; (a) Original image; (b) GVF field; (c) CGVF field

(a) (b) (c)

Fig. 2. (a) Initial curve; (b) Segmenting by GVF; (c) Segmenting by CGVF

(a) (b) (c)

Fig. 3. Image with speckle noise(σ=0); (a) Initial curve; (b) Segmenting by GVF; (c)
Segmenting by CGVF

(a) (b) (c)

Fig. 4. Image with speckle noise(σ=1.5); (a) Initial curve; (b) Segmenting by GVF;
(c) Segmenting by CGVF

4.2.2 Images with Noise
The paper contrasts the abilities of restraining different types of noise between
GVF and CGVF from two aspects: one is segmenting images directly without
preprocessing; the other is segmenting images after removing noise by Gaussian
function.
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The Gaussian function is:

f(x, y) = |Gσ(x, y) ∗ f0(x, y)| (22)

where f0 is orginal image.
In the following experiments, for compare, we let σ =1.5, !t=0.2.
Fig.3a is not preprocessed. We can see from Fig.3(b)-(c) that for the image

with speckle noise, both CGVF and GVF will have perfect segmentation results.
Fig.4a is filtered by Gaussian function. Although the noise is restrained in

some extent, it causes some losses in the edge maps of the images. The segmen-
tation results show that segmentation by CGVF is more accurate than segmen-
tation by GVF.

Fig.5a is not preprocessed. The segmentation results tell us that the salt noise
has different effects to GVF and CGVF. In the GVF force field, the curve will be
attracted by some isolated noise spots, so it won’t converge; while in the CGVF
force field, the curve is still able to converge to the concavities of the image.

(a) (b) (c)

Fig. 5. Image with salt noise(σ=0); (a) Initial curve; (b) Segmenting by GVF; (c)
Segmenting by CGVF

Fig. 6a suggests that after the image is filtered by Gaussian function, the salt
noise has little effects on the segmentation results. When the curve is relatively
far from the edge of the objects, both GVF and CGVF could converge, and the
segmentation result of CGVF is obviously more accurate that that of GVF.

(a) (b) (c)

Fig. 6. Image with salt noise(σ=1.5); (a) Initial curve; (b) Segmenting by GVF; (c)
Segmenting by CGVF
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Heart image; (a) initial curve1; (b) Segmenting by GVF; (c) Segmenting by
CGVF; (d) Initial curve2; (e) Segmenting by GVF; (f) Segmentation by CGVF

(a) (b) (c)

Fig. 8. Dog image; (a)initial curve; (b) Segmenting by GVF; (c) Segmenting by CGVF

4.2.3 Real Images
Fig.7 and Fig.8 are medical image and natural image. We get the edge map of
image by the (23) before segmenting:

f(x, y) = |∇[Gσ(x, y) ∗ f0(x, y)]| (23)

where let σ = 1.5 In the following experiment,we let !t = 0.1
Fig.7 shows that both GVF and CGVF are insensitive to the initial curves.

However, as for the weak edge, CGVF could also converge well, whereas the
convergence result of GVF is not very well. It suggests that CGVF can remain
the edge map of the image perfectly.

As for the image with complex background, due to the disturbance by noise, it
needs numerous iterations of force field when the initial curve is far from object,
so the generated force field will lose some edge map. While Fig.8 shows that
even after lots of force field iterations, CGVF could also remain the edge map
of objects well, and the GVF could not do this.
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5 Conclusions

CGVF, a new external force field for active contour model in our paper is pre-
sented. It deduces classical two GVF formulas to one and adds the item of
curvature in the new model. Compared with GVF, CGVF keep the advantages
of GVF and has more excellent properties. The edge map of image in the GVF
force filed is remained, and at the same time it can diffuse with high speed, which
makes the snake curve will converge to the concavities of image edge rapidly and
accurately. In general, CGVF has great capture range and strong restrain ability
to all kinds of noises, and is insensitive to the initial curve.
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Abstract. This paper describes a method for the estimation of a dy-
namic open contour by incorporating a modified particle swarm opti-
mization technique. This scheme has been applied to a “Particle Image
Velocimetry” experiment for the analysis of fluid turbulence during a hy-
draulic jump. Due to inter reflections within the medium and refractions
across different media interfaces, the imagery contains spurious regions,
which have to be eliminated prior to the estimation of turbulence sta-
tistics at the fluid surface. The PIV image sequences provide a strict
test bed for the performance analysis of this estimation mechanism due
to the occurrence of intense specularity and extreme non-rigid motion
dynamics.

1 Introduction

Edge detection and image segmentation is a crucial initial step in most computer
vision applications prior to performing high-level tasks such as object recogni-
tion and scene interpretation. The presence of noise and other non-linearities
imposes a strict restriction on this segmentation process. Since its formulation,
the active contour model [1] tries to combine low level image information with
high level structural information to provide a lucid description of the underly-
ing structure in the presence of non-linearities. Usually this balance is brought
about by two energy components, an internal energy component that charac-
terizes the contour smoothness making it possible to estimate contour elements
in places with incomplete image information and an external energy component
that incorporates the low level image characteristics.

Among the variants of the active contour, notable ones include the greedy
algorithm proposed by Williams and Shah [2], the balloon model by Cohen
[3], the region based model by Ronfard [4] and the gradient vector flow based
snake formulations by Xu and Prince [5]. Contour modeling via state space
estimation was performed by Isard et al. [6] where the contour was represented
as a state element and sequential importance sampling was used to track the
contour state over time. Pérez et al. [7] described a contour extraction procedure,

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 643–652, 2006.
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called Jetstream, that was also based on importance sampling with each contour
location being used to compute the position of next contour location. Most
active contour formulations depend on the availability of high image gradient for
efficient processing. In image sequences with weak gradient information, these
methods have difficulty in estimating the contour accurately. Statistical snakes
as proposed by Ivins et al. [8] and the discriminant snakes proposed by Pardo et
al. [9] tackle contour formulation by incorporating statistical information from
the image and thus have been shown to be robust under noise and low gradient
imagery.

In this paper, we attempt to extract a dynamic open contour that is built
along the lines of the statistical snakes with multiple candidate hypotheses ex-
tracted from the image via a modified swarm optimization model. The swarm
optimization scheme, “consume and move” has been developed to obtain multi-
ple candidates, which could subsequently be used in computing the contour. The
paper begins by giving a brief description of the interface extraction problem.
This is followed by the description of the Particle Swarm Optimization model.
The processing methodology that was developed for the minimization framework
is described subsequently along with the results obtained from the algorithm.
Finally, we present our conclusions and possible future directions.

2 Problem Description

In analyzing the salient structures in the velocity fields of incompressible tur-
bulent fluid flows, such as water in confined channels [11], insertion of probes
and measuring gauges into the fluid flow could create artificial turbulent defor-
mations. In a regular Particle Image Velocimetry (PIV) experiment, the flow
is seeded with suitable tracer particles, illuminated by a planar laser sheet and
time-lapsed images are recorded. The displacement of the particles in the im-
ages is measured in the plane of the image, and is used to determine the flow
(see [12] and the references therein). PIV has thus become an established non-

(a) (b)

Fig. 1. (a) Example of the interface extraction problem (b) Geometry of the problem
- Image taken from [10], Figure 4, page 432
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intrusive measurement technique to measure the kinematics of turbulent fluid
flow in controlled laboratory experiments.

It is often imperative to obtain detailed instantaneous flow velocities near
the air-water (2-phase) interface, which necessitates an accurate estimation of
the interface. This is inherently a difficult problem since most intensity based
edge detection methods fail due to the presence of interface reflections in a PIV
image [13]. Typically, the interface is concurrently visualized by a technique
called Laser Induced Fluorescence (LIF) in which a fluorescent dye is added to
one phase and excited to a particular wavelength by the laser thereby obtaining
the interface as a sharp gradient at the specific wavelength[14]. A simultaneous
PIV and LIF experiment therefore requires two separate imaging systems which
add both complexity and cost to the entire estimation process.

Given the characteristics of fluid flow, the main problem that arises in esti-
mating the interface from cross sectional images are the presence of badly defined
boundaries that occurs due to the translucency of the fluid. The other problem
that is often encountered is the presence of false regions of reflection (Fig. 1(a)).
These regions occur due to the imaging device, which captures light undergo-
ing total internal reflections from various sections in the fluid flow (Fig. 1(b)).
Manual calculation of the interfaces remains a daunting task due to the large
volume of data that is typically obtained in a regular PIV experiment. A robust,
objective and automated method, which would be able to tackle these problems
and calculate the interface solely based on the available image information, is
thus very essential.

3 Processing Methodology

3.1 Particle Swarm Optimization

“Particle Swarm Optimization (PSO) is a population-based stochastic optimiza-
tion technique for optimizing complex functions through the interaction of in-
dividuals in a population of particles.” ([15], pp 2). The original formulation
was proposed by Kennedy and Eberhart [16] and was based on the simulation
of social behavior among flocks of birds. Each particle in the population (also
called the swarm) adjusts its trajectory towards its own best position and to-
wards the best position attained by the whole group [17]. The system dynamics
are governed by the following equations.

v(t)
i = ωv(t−1)

i + c1χ1(p
(t−1)
i − x(t−1)

i ) + c2χ2(g(t−1) − x(t−1)
i ) (1)

x(t)
i = x(t−1)

i + v(t)
i (2)

where χ1, χ2 ∼ U [0, 1] are two Ns × Ns diagonal matrices of uniform random
numbers with Ns being the total number of particles in the swarm. ω is the
“inertia weight” that regulates the trade-off between the global (wide-ranging)
and the local (nearby) exploratory capabilities of the swarm [17]. x(t−1)

i is the
ith particle in the swarm at the (t−1)th iteration and v(t−1)

i is its corresponding
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“velocity” component. p(t−1)
i corresponds to the position of the best fitness value

for the ith particle while g(t−1) corresponds to the best fitness value for the entire
swarm.

 

( )1−txi ( )1−tx j

( )1−tpi ( )1−tg ( )1−tp j

( )tvi

( )tv j

Fig. 2. Particle system in the Particle Swarm Optimization model for a two particle
(x(t−1)

i and x(t−1)
j ) system

Among the three components of this dynamical equation, ωv(t−1)
i is the “in-

ertial component”, which constrains the velocity state estimate along the di-
rection of v(t−1)

i . The second component, the “cognitive term” for each par-
ticle, c1χ1(p

(t−1)
i − x(t−1)

i ) constrains the particle motion in the direction of
its previous best value while the third component, the “social component”,
c2χ2(g(t−1) − x(t−1)

i ), directs the particles towards the best among all the el-
ements in the swarm. The random variables χ1 and χ2 provide for the stochastic
parameters for the search with c1 and c2 as two positive weights that control
each of the components (Figure 2). An important aspect of PSO systems, for
performing functional optimizations, is that the entire dynamical update is per-
formed using additions and multiplications alone and is thus computationally
very efficient.

“Explorers and Settlers” Paradigm. One of the variants to the particle
swarm model was the “Explorers and Settlers” model as proposed by Kennedy
and Eberhart [16]. In this paradigm, the swarm is composed of having two kinds
of agents, the “explorers” and the “settlers”. The “settlers” provided for micro-
level function optimization of “known” regions of the problem domain while
the “explorers” searched for regions outside for better “solutions”. But as dis-
cussed by Kennedy and Eberhart [16] this scheme did not provide a significant
improvement in the tests that they conducted.

In contrast, tackling the interface problem requires estimating multiple can-
didate hypothesis from a given search space so that the final open contour is
drawn across the best possible candidates. To tackle this requirement we modi-
fied the “explorers and settlers” scheme to provide a mechanism for the swarm
to continue in the exploratory phase after a goal is reached. This model, called
the “consume and move”, can be described in terms of migratory systems where
the swarms continue moving in search for new pastures after the consumption
of one specific region.
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The essential principle of this model is to decrease the fitness metric of the
search space after the swarm has converged at a specific goal g(t). Depending on
ω, c1 and c2, a subset of particles x(t)

i , i = {1 . . .N1} (N1 ≤ Ns), would converge
to the best fitness value in the search space. For every particle xi in the swarm,
the fitness functional is cumulatively scaled down in proportion to the proximity
of the particle to the goal. This scaling could be accomplished using the affinity
function exp(−‖x(t)

i −g(t)‖2/2σ2) with the fitness at the position of the particles
that coincide with the goal node being scaled more than the others. This scaling
would thus “consume” the fitness functional to a greater extent at regions that
are at a closer proximity to point of convergence of the swarm particles. Thus,
iterating the search mechanism with this modified fitness space would constrain
the swarm to “move” out and look for other possible candidate positions.

3.2 Contour Estimation

Kass [1] defined an active contour as a parametric contour v(s) = (x(s), y(s)), s ∈
[0, 1] that balances the internal energies Eint and the external energies Eext

(Eq. 3)

E∗ =
∫ 1

0
[w1Eint(v(s)) + w2Eext(v(s))]ds (3)

where w1 and w2 are the weights that control the importance of one energy term
over the other. Assuming a discrete approximation of Eq. 3, we have

E =
N∑

i=1

[αEdist(vi) + βEsmo(vi) + γEext(vi)] (4)

where α, β, γ are the weighting parameters, N is the number of discrete contour
samples and

Edist(vi) = | (‖vi − vi−1‖+ ‖vi+1 − vi‖)
2

N−1Σ
N
j=2‖vj − vj−1‖

− 1|

Esmo(vi) = 1− cos(θi) = 1− (vi+1 − vi) · (vi − vi−1)
‖vi+1 − vi‖‖vi − vi−1‖

with θi being the smoothness term as defined in [18]. The external energy Eext

is derived from the image information and is usually the magnitude of the image
gradient information.

Pixel Likelihood Estimation. The external energy term (Eext) in a dynamic
contour transfers the low level image information to the high level structural
information. Most active contour methods are derived using the image gradient
as the external energy constraint, but in images where the gradient is hard to
estimate or the estimated gradient is inaccurate, the external energy functional
has to be modeled using other image characteristics.

In a PIV image, the tracer particles have a distinct signature [19] which
would enable a high-pass filter to approximately intensify the particle zones and
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(a) (b)

Fig. 3. (a) Input PIV image (b) PIV image after PCA over the feature space

suppress the other regions. Local image statistics such as entropy, mean and
standard deviation are extracted from the high-pass filtered image IH. Each of
these features would provide information regarding the local data variation in IH.
Principal Component Analysis (PCA) of this feature space is subsequently used
to transform this space so as to maximize the data variation along individual
eigen-directions. As shown in the figure 3(b), this PCA based transformation of
the local image statistics provide a more succinct description of the underlying
particle distribution.

In the PIV data, the likelihood that a pixel belongs to the surface was com-
puted as the difference between the average intensity on the top and bottom
of the pixel spatial position. Pixels very close to the actual surface, described
a higher value of the likelihood as against the pixels elsewhere. This likelihood
formed the fitness metric that was used in the “consume and move” swarm
optimization strategy (section 3.1) to obtain multiple snaxel candidates.

Contour Optimization. Given the candidate hypotheses, finding the contour
that minimizes the internal and external energy functional is performed using
the dynamic programming (DP) approach as described by Amini et al. [20]. De-
pending on the pixel likelihood, different snaxels would have different hypotheses
and thus energy minimization using DP is well-suited in tackling this contour
optimization problem. The overall energy minimization would be achieved by
minimizing the intermediate variables ξk such that

vk = min ξk, k = 1 . . .N (5)

under the constraint that

ξk = ξk−1 + min
zk∈Ck

{Eint(zk−1, zk, zk+1) +Eext(zk)} (6)

where zk are the candidate snaxels positions and Eint and Eext are the internal
and external energies computed at each of the candidate positions ∈ Ck. ξ1 is
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initialized as the minz1∈C1 Eext(z1). The completion of the entire forward and
reverse iterations of the DP presents the best possible positional estimates, vk.

4 Experimental Setup

The experiments were performed in a recirculating water tank that is sixteen feet
long and one foot wide, with glass side walls and a solid bottom. The water was
seeded with 14 μm silver coated hollow glass spheres and was pumped into the
upstream end of the channel. A 120 mJ/pulse Nd-Yag New Wave solo laser source
was mounted onto a custom-built submersible periscope which was lowered into
the water so that the laser beam emerged as a planar light sheet parallel to the
water tank wall. The flow was captured by a Kodak Megaplus 1.0 camera with
a 1016× 1008 pixel resolution (see [19] for details).

5 Results and Analysis

The algorithm that has been developed in the previous section has been tested
on 1020 Particle Image Velocimetry image pairs. As can be easily seen these
images are subject to extreme non rigid motion due to the fluid motion being
captured and would thus be ideal in testing out the efficiency of the algorithm.
The current implementation of the interface calculation is embedded in a hier-
archical framework with coarse initial contours being used to guide subsequent
finer contours. The entire process is iterated until the cumulative temporal vari-
ation of the contour elements, ‖v1:N(t− 1)− v1:N (t)‖ is ≤ 0.1N , which is used
as a metric to indicate the stabilization of the contour.

5.1 Quantitative Comparison

Due to the unavailability of ground truth, the result from the algorithm was
assessed with respect to human perception. 10 randomly sampled PIV images
were distributed among 4 participants with expertise in fluid dynamics. A short
problem description was provided and the subjects were asked to find out the
contour as they best perceived it. Since the inputs obtained from the subjects
were sparse, a least square B-spline was used to compute the contour for the
entire width of the image. In comparing the results of the algorithm with the
output from the human participants, it is essential that the contours computed
by the participants be considered as NOT significantly different from one an-
other. It is also necessary to statistically show that the estimated contour does
not significantly differ from those obtained from the participants. This analysis
was accomplished using an independent sample one-way ANOVA. Figure 4(a)
shows the box plots for the average contour variation across the 10 images for
each of the participants (S1, S2, S3, S4). Figure 4(b) shows the average contour
variation of the estimated contour in tandem with the output from the four
participants. Also indicated are the corresponding p-values to provide a quan-
titative metric of similarity between the contours across the image pairs. The
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Fig. 4. Results using the One-way ANOVA (a) Testing for inter subjects variability
(p-value = 0.5581) (b) Testing if the estimated contour differed significantly from the
“ground truth” contours (p-value = 0.5055)
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Fig. 5. (a) Estimated contour points plotted in comparison with the mean variation
of the “ground truth” contours (b) Mean and Median error deviation of the estimated
contour

large p-values indicate that the individual sample means are not significantly
different from one another or from the contour estimated by our algorithm.

Figure 5 is one of the test images (Contour 68) shown in conjunction with
the error between the estimated contour and the mean of the contours from
the 4 participants. The error bars show the maximum deviation from the mean
and it is evident that the estimated contour falls within the upper and lower
bounds of the contours obtained from the experts to a large extent. This method,
thus provides a good initial estimate so as to apply free-surface kinematics to
determine the exact position of the interface.

The algorithm was developed using MATLAB and has been tested with 1020
PIV images. Repeated trials indicate that the algorithm is stable and computa-
tionally efficient (The algorithm required ∼ 20 seconds to process a 128 × 960



Dynamic Open Contours Using Particle Swarm Optimization 651

Table 1. Error Analysis for 10 images, where the ground truth was extracted by
the 4 subjects with expertise in fluid dynamics. The plot indicates the error variation
( 1

N
N
i ‖ xi − μi ‖) between the contour estimated by the algorithm and the ground

truth.

Contour Subject1 Subject2 Subject3 Subject4

4 0.6527 0.6245 0.7504 0.7682
8 0.2791 0.2389 0.3310 0.3008
14 0.3493 0.3343 0.6700 0.6099
29 0.3550 0.5628 0.5312 0.5964
33 0.3687 0.2692 0.3573 0.4072
68 0.3998 0.2193 0.2364 0.2398
269 0.3503 0.4056 0.3093 0.3663
217 0.6549 0.3696 0.3262 0.3151
301 0.6733 0.2508 0.3732 0.4026
362 0.3813 0.3540 0.3454 0.3488

image, using ∼ 100 particles at each contour location). The average MSE, across
the 10 images, are shown in Table 1 to further clarify the accuracy of the algo-
rithm.

6 Conclusions

This paper describes a method to extract dynamic contours using particle swarm
optimization and dynamic programming. The algorithm is robust and compu-
tationally efficient. The algorithm developed was applied to the free surface
estimation in a 2-phase fluid flow using a PIV setup. Due to the lack of ground
truth, the estimated contours have been compared with the results obtained from
experts in the field of fluid dynamics. It has been observed that the estimated
contour is not statistically different from the expert estimation. The method
has now been tested over a sequence of 1020 PIV image pairs that have been
further processed to compute instantaneous and ensemble average velocities at
the interface.
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Abstract. We present a lip contour tracking algorithm using attractor-
guided particle filtering. Usually it is difficult to robustly track the lip
contour because the lip contour is highly deformable and the contrast
between skin and lip colors is very low. It makes the traditional blind
segmentation-based algorithms often fail to have robust and realistic re-
sults. But in fact, the lip contour is constrained by the facial muscles,
the tracking configuration space can then be represented by a lower di-
mensional manifold. With this observation, we take some representative
lip shapes as the attractors in the lower dimensional manifold. To resolve
the low contrast problem, we adopt a color feature selection algorithm to
maximize the separability between skin and lip colors. Then we integrate
the shape priors and the discriminative feature into the attractor-guided
particle filtering framework to track the lip contour. The experimental
result shows that we can track the lip contour robustly and efficiently.

1 Introduction

Lip contour is useful information for human-machine interface application such
as lipreading and facial expression analysis. However, there is a major problem
with regard to robust lip contour extraction in practical situations: the boundary
between the skin and the lip, particularly the lower lip, is often unclear. This
problem makes the edge-based information unreliable.

To extract the lip contour, there are three techniques which can work indepen-
dently or collaboratively. The first is blob-based approach which uses heuristic
color threshold and morphological operations to find out the location and rough
shape of the lip. However, the segmentation result is often very rough because
there is no shape or smoothness constraint. Oliver et al. [1] used normalized red
and green color to detect the blob of lip region. A sequence of the area and axis
ratio of the blob area is classified by hidden Markov model (HMM) to perform
facial expression recognition. Zhang et al. [2] used hue and edge information to
achieve mouth localization and segmentation. The second approach is based on
snake [3]. Although it takes smoothness and elasticity constraints into account,
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most of the time it is very difficult to tune the parameters of the snakes, and
the snakes often converge to wrong results. Chan [4] converted RGB values to a
single measurement with maximized discriminability between lip and skin color
with Linear Discriminant Analysis (LDA). Wakasugi et al. [5] extended Chan’s
idea to region separability to direct the snake evolution. The control point of
the snake searches the position with maximum region separability in the normal
direction of the contour. Eveno et al. [6] used ”jumping snakes” to detect several
predefined control points at the first frame and uses optical flow to track the
control points for the following frames. The third approach uses a priori shape
knowledge to make the segmentation more robust and realistic. By designing
a global shape model, the supplementary constraints ensure that the detected
boundary belongs to possible lip shape space. For example, Cootes et al. [7]
proposed the active shape models (ASMs) to model shapes with principal com-
ponent analysis. In this method, a large training set is needed to cover the lip
shape variability, and the images of this training set have to be cautiously cal-
ibrated. The tracking algorithm also uses edge-based information and iterative
optimization procedures to make the control points converge to the right places.
Matthews et al. [8] trained a 44-points ASM to track the visual features for
lipreading.

However, most of the existing methods treat this problem as a detection
framework without using temporal information. Instead of deterministic de-
tection, a probabilistic propagation framework is introduced in this paper for
lip contour extraction. In general, tracking the lip contour is difficult because
lip is highly deformable and the edge and corner information are often unre-
liable. Isard et al. [9] introduced the concepts of particle filters for real-time
tracking. But the required number of particles might grow exponentially due to
the curse of dimensionality [10]. To overcome this problem, Wu et al. [11] col-
lected some basis configurations to characterize the state subspace. The tracking
configuration space can then be represented by a lower dimensional manifold.
Chang et al. [12] introduced the concept of attractor to improve the track-
ing performance. For a visual tracking problem, attractors are some reference
states and serve as prior knowledge to guide the tracking in a high-dimensional
space.

In this paper, we introduce the concept of attractor-guided particle filtering
for lip contour tracking. First, we manually segment some representative lip
contours as the shape priors. We adopt the radial vector model [13] to represent
the lip contours which can avoid the effort of manually labeling the control
points as in the ASM method. Second, to boost the discriminability between
lip and skin colors, we use the feature selection method proposed in [14]. It
transforms the three dimensional RGB vector to an one dimensional feature
value. Finally, we use a modified attractor-guided particle filtering framework to
track lip contours. Kaucic et al. [15] shares the similar idea with this paper, but
their state transition model is more similar to [11] where the state space is fully
constrained by the training data.
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The rest of the paper is organized as follows. Section 2 describes the lip
contour model used in this paper. Section 3 introduces the attractor-guided
particle filtering method and presents the details of our lip tracking algorithm.
Experimental results are shown in Section 4 and we conclude this paper in
Section 5.

2 Lip Contour Model

A snake is an open or closed elastic curve represented by a set of control points [3].
The evolution of the snake is guided by iteratively searching for a nearby local
minimum of an energy function, which consists of the internal energy that im-
poses smoothness and continuity constraints on the snake curve and the external
energy that indicates the degree of matching for the target features.

In practice, the snake may collapse or be trapped by spurious local minima
because the edge information is often unreliable, that is, the boundary between
lip and skin is not clear. To resolve this problem, we adopt the radial vector
model [13] to generate some shape priors that serve as the prior knowledge to
guide the tracking. The radial vectors are uniformly spread in 360◦, and each
of them originates from the centroid of the snake contour and links to a snake
point. The shape of the contour is deformed by varying the lengths (l1, l2, . . . , ln)
of radial vectors and the centroid of the contour moves during the deformation.
The angular interval θ controls the smoothness and the number of control points
of the lip contour which equals to n = 360

θ . Figure 1 illustrates the radial vector
model. There are two main advantages of using this representation. First, we
can spare the labeling effort of control points as that in the ASM method which
is often time consuming and prone to have inaccurate results. Second, we can
easily control the dimension of state variables to compromise between tracking
time and visual results.

Fig. 1. Radial vector representation decomposes the lip contour into (n = 360/θ)
control points. c is the centroid of the lip contour and li is the length of the ith radial
vector.

3 Attractor-Guided Particle Filtering Framework

In this paper, the radial vector and the centroid of the lip contour serve as
the state variable for tracking. We also collect some lip contours in advance



656 Y.-D. Jian, W.-Y. Chang, and C.-S. Chen

Fig. 2. Lip shape priors. From left to right, they are closed, half-open and full-open
lip shapes respectively. Some of the shape priors will be dynamically selected as the
attractors.

and represent them with the radial vector model. In our tracking algorithms,
they will be regarded as the shape priors and we will dynamically select them
as the attractors. Some of the manually segmented lip contours are shown in
Figure 2.

3.1 Particle Filtering

Particle filtering is a successful technique in visual tracking. The idea of particle
filtering [9] is to infer the marginal posterior distribution of the state Xt given
the previous observation Z0:t. From the Bayes’ formula and first-order Markov
chain, a recursive form of the posterior probability can be derived as

p(Xt|Z0:t) ∝ p(Zt|Xt)
∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Z0:t−1) (1)

This recursive form allows us to use the posterior at time step t− 1 as the prior
for time step t. To compute the posterior probability, p(Xt|Z0:t), a Bayesian
optimal solution with an integral over all possible state values is formulated
in [9]. However, it is computationally intractable. Particle filtering is the tech-
nique to efficiently approximate the posterior p(Xt−1|Z0:t−1) by a finite set
{Xk

t−1}Kk=1 of K particles and each particle is associated with a weight πk
t−1

to form {Xk
t−1, π

k
t−1}Kk=1. To carry out the recursion of particle filtering, we still

need two probabilities, p(Zt|Xt) and p(Xt|Xt−1), which correspond to an obser-
vation model and a state transition model respectively.

3.2 Attractor-Guided Particle Filtering

The primary difficulty of the model-based tracking problem is because of the
high degree of freedom (DoF). Searching in a high dimensional state space is
highly inefficient due to the curse of dimensionality. Fortunately, the lip motion
is constrained by the facial muscles, and then the tracking configuration space
can be represented by a lower dimensional manifold. In the previous works of
articulated hand tracking [11, 12], they integrate the hand motion constraints
and appearance information to improve the tracking performance.
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(a) Wu et al. [11] (b) Chang et al. [12] (c) The proposed method

Fig. 3. Difference of the three particle generation mechanisms. The white circle is the
current state and the black circles are the predefined shape priors. The shaded area is
where the corresponding algorithm generates its particles. The first approach finds out
the linear manifold with minimum projection distance and generate particles around
the projection point. In the second and third approaches, for example, two shape priors
are selected as attractors. The second approach generates particles around the current
state and the attractors. In the proposed method, we generate particles between the
linear manifold spanned by the current state and the attractor.

In this paper, we apply this concept in lip contour tracking. Wu et al. [11]
assumes that any intermediate state can be approximated by the linear manifold
spanned by two nearest priors. The manifold with minimum Euclidean distance
to the previous state is selected as the nearest one. The particles are then gen-
erated around the nearest manifold. Chang et al. [12] incorporated appearance
information to find the possible attractors, and generate particles both around
the previous state and the attractors. The attractors are some state variables
whose appearance information are known in advance.

The algorithm presented in this paper combines the advantages of their meth-
ods. Let us note that, instead of using classical particle filtering (1) that allows
no prior appearance information being incorporated into the probability prop-
agation, we can formulate the attractor-guide particle filtering framework as
in [12]

p(Xt|Z0:t,A) ∝ p(Zt|Xt)
∫
Xt−1

p(Xt|Xt−1,A)p(Xt−1|Z0:t−1,A) (2)

where A is the set of attractors. Note that the collected shape priors serve
as the candidates for selecting the attractors in the state space. The proposed
method generates particles around the manifold spanned by the previous state
and the attractor. The first approach is constrained by the skeleton spanned
by the shape priors, it forbids any state far away from the skeleton. The sec-
ond approach retains the original formulation of particle filtering [9], but it
independently emphasizes the importance of the previous state and the attrac-
tors. Figure 3 illustrates the difference between the three particle generation
mechanisms.



658 Y.-D. Jian, W.-Y. Chang, and C.-S. Chen

3.3 Attractor-Guided Lip Contour Tracking Algorithm

The state variable is defined as Xt = (xt, ct), where (xt = {l1, l2, . . . , ln} ∈ �n)
represents the n radial vector defined in Section 2 and ct is the centroid of the
lip. The DoF of ct depends on the behavior of head movement. The lip contour
is piecewisely approximated by the cubic spline of any four consecutive control
points. We define a (m ∗m) window around the centroid of the contour as the
interested area. Therefore, we can define the interior region for lip and exterior
region for skin.

Since the colors of skin and lip are similar, we have to find out the most
discriminative feature to separate the skin and lip region. Collins et al. [14]
proposed a feature selection algorithm for tracking. We use their method to
train a linear color projection function w : I → F such that the feature value
F ≡ w(I) ≡ w(R,G,B) ≡ (w1R + w2G + w3B) has the most discriminability
between skin and lip colors. Given a (m ∗m) feature F image block, let hlip(i)
be a histogram of the feature’s value for pixels inside lip contour, and hbg(i)
be a histogram for pixels from outside, where index i ranges from 1 to 2b, the
number of histogram bins. We form an empirical discrete probability density
A(·) for the lip, and B(·) for the background, by normalizing each histogram by
the number of elements in them. Collins et al. [14] defines a variance ratio (VR)
to quantify the separability of A(·) and B(·) under feature F . Our observation
likelihood p(Zt|Xt) is defined as being proportional to the variance ratio between
the interior and exterior histogram.

p(Zt|Xt) ∝ V R(A,B) (3)

Figure 4 shows the comparison of gray level image and the proposed feature
image.

(a) gray level image (b) feature image

Fig. 4. Comparison of the gray level image and feature image

The state transition model is embedded in the manifold constructed by the
current state and neighborhood attractors. Here we define

S = {S1,S2, . . . ,SM}

as the collected shape prior set. At time t, first we have to select r most-likely
attractors from S according the previous state xt−1 and current observation Zt.
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To do this, we consider the probability p(Si|xt−1,Zt), i = 1, . . . ,M . Let βt be a
permutation sequence (βt,1, βt,2, . . . , βt,M) of (1, 2, . . . ,M) such that

p(Sβt,1 |xt−1,Zt) ≥ . . . ≥ p(Sβt,M |xt−1,Zt)

The definition of probability p(Sβt,i |xt−1,Zt) depends on the tracking target,
and it will reflect our knowledge of how to measure the similarity between shape
prior and observation. Here we define this similarity by using the absolute area
difference. Let Dt,i be the absolute difference between the area of Si and the
segmented region by using the general lip color model [16]. The probability
p(Si|xt−1,Zt) is defined as being proportional to

p(Si|xt−1,Zt) ∝ (
Dt,i∑r
i=1Dt,i

)−1

where r is the number of selected attractors from the shape prior set.
Then we can construct the attractor set At and its corresponding probability

αt as

At = {At,1, . . . ,At,r} = {Sβt,1 , . . . , Sβt,r} and (4)

αt = {αt,1, . . . , αt,r} =
1
γt
{p(Sβt,1 |xt−1,Zt), . . . , p(Sβt,r |xt−1,Zt)} (5)

where γt =
∑r

i=1 αt,i.
After constructing At and αt, the state transition model p(Xt|Xt−1,A) in (2)

is defined as

p(Xt|Xt−1,At) = p(xt, ct|xt−1, ct−1,At) = p(xt|xt−1,At)p(ct|ct−1,At) (6)

and here we assume that the global and local movement of lip contour are in-
dependent. The local movement transition model is defined as a mixture of r
component density functions, and each of them corresponds to one attractor as
shown in the following:

p(xt|xt−1,At) =
r∑

i=1

p(xt|xt−1,At,i) (7)

p(xt|xt−1,At,i) = αt,iU(xt−1,At,i)

where U(a,b) is a probability density function concentrated along the hyper line
segment ab. The selection of U(a,b) implies our confidence level in the current
state and the attractor. Here the state transition model U(a,b) is defined as a
uniform distribution between the current state and the attractor. In addition, the
global movement transition model is defined as a Gaussian distribution centered
on the previous state

p(ct|ct−1,At) = N(ct−1, Σc) (8)

where N(μ,Σ) is Gaussian distribution with mean μ and covariance matrix Σ.
Substituting (3) and (6) into (2) completes the proposed attractor-guided

particle filtering framework. Algorithm 1 summaries the iterative steps for the
attractor-guided lip contour tracking algorithm.
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Algorithm 1. Lip Contour Tracking Algorithm

Input: Image frames {It}T
t=0, initial configuration of the first frame, the angular

interval θ, the number of tracking particles K, shape prior set
S = {S1 · · · SM}, number of attractors r for local manifold, the color
projection function w, the gaussian covariance matrix Σc of centroid, the
length m of the local window surround lip

Initialization:
Generate the particle set P0 = {Xk

0 , πk
0}K

k=1 ;
Set t ← 1 ;

while t < T do
Acquire a new image frame It ;
Construct feature image Ft = w(It) ;
for k = 1 to K do

1. Sample a particle from Pt−1 ;
2. Construct attractor set At and probability αt by (4) and (5) ;
3. Estimate next particle state Xk

t by (6) ;
4. Compute particle weight πk

t by (3) ;

Normalize K
k=1 πk

t = 1 ;
t ← t + 1 ;

4 Experimental Results

In our experiments, we manually segment the lip contour in the first frame. The
images are of size 640*480 and stored as uncompressed format. The angular
interval θ is 20◦, therefore, we have (360

20 = 18) control points. We use (K = 50)
particles for tracking, (M = 6) shape priors and (r = 2) attractors. To generate
the discriminative feature image, we train the color projection axis with some
manually segmented images, and project every testing image on the axis. The
color projection function used in our experiment is F = (R − 2G + B), and
the number of bins for lip and background histogram is 32. The surrounding
window size is fixed to 251*251 in the experiment. The covariance matrix Σc of
the centroid is set to identity matrix.

In the first experiment, we use the snake algorithm to track the lip contour.
Because the contrast between the skin and the lip region is often reduced by
transformation from the RGB to the gray level intensity, the snake algorithm
either cross or stay away from the lip boundary. To track the lip contour by
snake algorithm is possible, but the parameter tuning process is time consum-
ing and often case by case. Figure 5a shows a common failure of the snake
algorithm.

In the second experiment, we use the classical particle filtering to track the
lip contour, and the tracking result is shown in Figure 5b. The contour drifts
quickly and becomes ragged in the images because there are no shape priors to
constrain the lip motion.

In the third and fourth experiments we use the proposed attractor-guided
particle filtering algorithm to track the same image sequence. In order to exam
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(a) (b) (c)

Fig. 5. Tracking results in the 25th frame: (a) snake algorithm (b) unconstrained par-
ticle filter (c) the proposed algorithm but with gray level feature

the effectiveness of the selected feature, we use the gray level feature and the
discriminative feature in the third and fourth experiments respectively. In the
third experiment, although the tracking results are perfect in some frames, most
of the time the tracked lip contours are unsatisfactory. It implies the gray level
intensity is not discriminative enough to separate the skin and lip color regions;
the tracking result is shown in Figure 5c.

In the fourth experiment, we use the proposed algorithm and the discrimina-
tive feature to track the same image sequence, and part of the tracking results
are shown in Figure 6. With the guide of shape priors and the discriminative
feature, our algorithm can recover rapid motions that are difficult to track by
traditional particle filtering. In addition, unlike edge-based approaches, the pro-
posed algorithm can handle the low contrast problem by taking advantage of the
motion transition model defined on the linear manifold.

(a) Frame 1 (b) Frame 35 (c) Frame 60 (d) Frame 95

(e) Frame 120 (f) Frame 160 (g) Frame 177 (h) Frame 195

Fig. 6. Tracking results of the proposed algorithm
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5 Conclusions

In this paper, we propose an attractor-guide particle filtering framework to
track the lip contour. Although the lip shape is very deformable, we use the
idea of shape priors with discriminative feature to guide the tracking process.
The experiment results show that the proposed algorithm can perform success-
ful tracking in the image sequence. In addition, the proposed algorithm can
also be generalized to track other deformable facial features such as eyes and
eyebrows.
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Abstract. This paper addresses the problem of articulated motion
tracking from image sequences. We describe a method that relies on an
explicit parameterization of the extremal contours in terms of the joint
parameters of an associated kinematic model. The latter allows us to
predict the extremal contours from the body-part primitives of an artic-
ulated model and to compare them with observed image contours. The
error function that measures the discrepancy between observed contours
and predicted contours is minimized using an analytical expression of the
Jacobian that maps joint velocities onto contour velocities. In practice
we model people both by their geometry (truncated elliptical cones) and
with their articulated structure – a kinematic model with 40 rotational
degrees of freedom. We observe image data gathered with several syn-
chronized cameras. The tracker has been successfully applied to image
sequences gathered at 30 frames/second.

1 Introduction and Background

In this paper we address the problem of tracking complex articulated motions,
such as human motion, from visual data. More precisely, we describe humans by
a set of kinematically-articulated body parts with smooth surfaces. These sur-
faces project onto images as extremal contours. We observe humans with several
cameras, we extract image contours and we estimate the motion parameters
by minimizing the discrepancy between predicted extremal contours and image
contours.

The problem of human motion recovery has been thoroughly studied in the
recent past using either one or several cameras and without artificial markers
[1]. Previous work may be classified into two main approaches.

One approach extracts image features that can be used in the same way
as markers, such as texture [2] or point features [3]. Those methods can be
implemented in a straightforward manner since they have an explicit differential
model of the kinematics, and the latter can be inverted using non-linear least
squares methods. The difficulty is then to relate the positions of the features
with a geometric model of the human body. In practice, this usually implies full
knowledge of both the geometry and the appearance of the human actor [4],
although recent advances in multi-body factorization may provide solutions for
simultaneously recovering the motion and the structure [5].
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Fig. 1. From left to right : The current model is matched against a new image. The
contours extracted from this image are compared with the extremal contours predicted
from the model using the chamfer-distance image. Finally, the newly estimated model
is consistent with this image.

Another approach relies on contours [6] or on silhouettes [7, 8, 9]. It is possible
to relate the deformation of a 2-D (image) silhouette to the geometry and the
motion of the articulated object which generated that silhouette. Methods based
on deformable silhouettes [10] can cope only with limited changes in viewpoint
and pose, and cannot deal with occlusions between primitives. Statistical meth-
ods in general and regressive models in particular are used to relate the shape of
a silhouette with three-dimensional motion in a lower-dimensional motion space,
learned from examples of a specific activity [11].

A slightly different approach was taken in [12], [13] for tracking mechanical
parts with sharp edges. By parameterizing the allowable contour deformations
with the actual degrees of freedom of the underlying rigid motions of the parts,
they demonstrated increased robustness and efficiency over fully deformable ac-
tive contours for tracking such objects. In the case of human motion tracking,
the task is made harder by the fact that the human body has fewer sharp edges
(if none), and its silhouette stems from the projection of smooth surfaces rather
than surfaces with sharp edges.

Problem Formulation and Originality. We model articulated objects such
as humans using truncated elliptical cones as basic primitives. These primitives
are joined together to form an articulated structure. Each joint has one to three
rotational degrees of freedom: let Φ be an n-dimensional vector whose compo-
nents are the motion parameters – the joint angles. The smooth surface of a
primitive projects onto an image as an extremal contour. The apparent motion
of this contour is a function of both the motion of the primitive and the motion of
the contour generator lying onto the smooth surface. An important contribution
of this work is to establish the relationship between the joint-angle velocities,
Φ̇ = ∂Φ/∂t, and the image velocity of a point lying onto an extremal contour, v:

v = JΦ̇ (1)

Matrix J will be referred to as the extremal contour Jacobian. The analytic ex-
pression of this Jacobian allows us to cast the tracking problem into a non-linear
optimization problem. Therefore, the problem of articulated-motion tracking
will be formulated as the problem of minimizing a distance function between



666 D. Knossow et al.

sets of image contours (gathered simultenously from several cameras) and sets
of extremal contours. This can be written as:

min
Φ
E(Y,X (Φ)) (2)

where E is an error or a distance function, Y is the set of observed image contours
and X (Φ) is the set of predicted extremal contours. There are several ways of
computing the distance between image and model contours, including the sum
over point-to-point distances, the Hausdorff distance, and so forth. We use the
chamfer distance and has several interesting features. It does not require model-
contour-to-image contour matches and its computation is fast. Moreover, we
treat the chamfer distance as a differentiable function. In practice, a chamfer-
distance image is computed from the data. It combines image edges with a binary
silhouette which acts both as a mask and as a way to suppress artifacts in the
chamfer-distance image.

Paper Organization. The remainder of this paper is organized as follows. In
section 2 we derive an analytical solution that relates the motion of an extremal
contour to joint parameters of an articulated object. In section 3 we provide
an explicit expression for measuring the distance between image contours and
extremal contours; Moreover, we explain the advantages of using both edges and
silhouettes. Finally, we present examples with complex and realistic motions that
require several cameras (section 4).

2 Kinematics of Extremal Contours

As we already explained above, we use truncated elliptical cones as our basic
primitives, i.e., Figure 2. These primitives are linked together with rotational
joints (with one, two, or three degrees of freedom) to form a kinematic chain.
Therefore, the motion of each such primitive is a constrained motion. Let R and
t denote the rotation and translation of a primitive-centered frame with respect
to a world-centered frame. Both R and t are therefore parameterized by the
joint angles Φ = (φ1, . . . , φn), i.e., we have R(Φ) and t(Φ).

Moreover we consider the smooth surface of the elliptical cone. This surface is
present in the image under the form of extremal contours. The image motion of
a point belonging to such an extremal contour should, therefore, depend on the
kinematic motion of the corresponding cone. One can further define a contour
generator onto the cones’s smooth surface – the locus of points where the surface
is tangent to lines of sight. When the cone moves, the contour generator moves
as well and is constrained both by the kinematic motion of the cone itself and
by the relative position of the cone with respect to the camera. Therefore, the
contour generator has two motion components and we must explicitly estimate
these components. First, we will develop an analytical solution for computing the
contour generator as a function of the motion parameters. The extremal contour
is simply the projection of the contour generator. Second, we will develop an
expression for the image Jacobian that maps joint-velocities onto image point-
velocities.
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Fig. 2. A truncated elliptical cone projects onto an image as a pair of extremal contours.
The 2-D motion of these extremal contours is a function of both the motion of the cone
and the sliding of the contour generator along the smooth surface of the cone.

The Kinematics of the Contour Generator. Let X be a 3-D point that
lies onto the smooth surface of a body part.

We derive now the constraint under which this surface point lies onto the
contour generator associated to a camera. This constraint simply states that
the line of sight associated with this point is tangent to the surface. Both the
line of sight and the surface normal should be expressed in a common reference
frame, and we choose to express these entities in the world reference frame:
(Rn)� (RX + t−C) = 0, where vector n = ∂X

∂z ×
∂X
∂θ = Xz ×Xθ is normal

to the surface at X, and C is the camera optical center in world coordinates.
The equation above becomes:

XT n + (t − C)T Rn = 0 (3)

For any rotation, translation, and camera position, equation (3) allows to esti-
mate X as a function of the surface parameters.

The surface of a truncated elliptical cone is parametrized by an angle θ and
a height z:

X (θ, z) =

⎛⎝a(1 + kz) cos(θ)
b(1 + kz) sin(θ)

z

⎞⎠ (4)

where a and b are the minor and major half-axes of the elliptical cross-section, k is
the tapering parameter of the cone, and z ∈ [z1, z2]. With this parameterization,
eq. (3) can be developed to obtain a trigonometric equation of the form F cos θ+
G sin θ+H = 0 where F , G and H depend on Φ and C but do not depend on z.
With the standard substitution t = tan θ

2 we obtain a second-degree polynomial:

(H − F )t2 + 2Gt+ (F +H) = 0 (5)
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This equation has two real solutions, t1 and t2, (or, equivalently, θ1 and θ2)
whenever the camera lies outside the cone that defines the body part. Note that
in the case of elliptical cones, θ1 and θ2 do not depend on z and the contour
generator is composed of two straight lines, X(θ1, z) and X(θ2, z). From now on
and without ambiguity, X denotes a point lying onto the contour generator.

The Motion of Extremal Contours. The extremal contour is the projection
of the contour generator. Without loss of generality, let the world frame be
aligned with the camera frame. A point x of the extremal contour is therefore
defined by its image coordinates: x1 = Xw

1 /X
w
3 and x2 = Xw

2 /X
w
3 , with

Xw = RX + t (6)

The velocity of x, v is computed with:

v = JI

(
ṘX + ṫ + RẊ

)
= JI(A + B)

(
Ω
V

)
(7)

where A and B are defined below and JI is the classical 2×3 matrix:

JI =
[

1/Xw
3 0 −Xw

1 /(X
w
3 )2

0 1/Xw
3 −Xw

2 /(Xw
3 )2

]
Eq. (7) reveals that the motion of extremal contours has two components:

a component due to the rigid motion of the smooth surface, and a component
due to the sliding of the contour generator onto the smooth surface. The first
component is:

ṘX + ṫ = ṘR�(Xw − t) + ṫ = A
(

Ω
V

)
(8)

where A = [−[Xw]× I] and (Ω,V ) is the kinematic screw. The notation [m]×
stands for the skew-symmetric matrix associated with a vector m.

The second component can be made explicit by taking the time derivative of
the contour generator constraint, i.e., eq. (3). After some algebraic manipula-
tions, we obtain:

RẊ = B
(

Ω
V

)
(9)

where B = b−1RXθ (Rn)� [[C − t]× − I] is a 3 × 6 matrix and b = (Xg +
RT (t− C))T nθ is a scalar.

The sliding of the contour generator infers an image velocity that is tangent to
the extremal contour. Approaches based on the estimation of the optical flow for
tracking [14] cannot take into account this tangential component of the velocity
field. Within our approach this term is important and it will be argued in the
experimental section below that it speeds up the convergence of the tracker by
a factor of 2.

Finally we notice that the kinematic screw of a body-part can be related to
the joint velocities associated with a kinematic chain [15], where JK is the chain’s
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Jacobian matrix: (Ω V )� = JKΦ̇. By combining this formula with eq. (7) we
obtain eq. (1):

v = JI(A + B)JKΦ̇ (10)

3 Fitting Extremal Contours to Images

We now go back to the error function introduced in eq. (2). A well known
difficulty is that one can only recover noisy and cluttered image contours and,
therefore, the error function should be able to cope with this problem. One
possible choice for the error funtion, that works well in practice, is the sum
of the distances to the nearest image contour over all the predicted extremal
contours points. Thus, the error function writes:

E(Y,X (Φ)) =
N∑

i=1

D2(Y,xi(Φ)), (11)

where N is the number of predicted extremal contour points and D is a scalar
function that returns the minimum distance to an observed contour in Y, eval-
uated at image location x.

The distance from a predicted extremal-contour point to the nearest image-
contour point can be computed as a chamfer distance performed after edge de-
tection. But in general one can only observe the silhouette of the actor, obtained
through background subtraction, and the edges of a small number of body parts
within that silhouette (figure 4). The distance we use in practice is the sum
of the minimum distances to both the silhouette and the edges observed by all
cameras. In the remainder of this section, we explain the advantages of using
this particular combination of silhouettes and edges.

For clarity of the presentation, we consider the case of a single body part
and we analyse the error function along an image row. Fig.3-(b) is a plot of
the error function when only the silhouette is used. The chamfer distance is
zero everywhere within the silhouette. Hence, the error function has a large and
flat minimum – or infinitely many local minima – thus ill-suited for numerical
optimization. Fig. 3-(c) is a plot of the error function when only the edges are
considered. As it can be noticed, the error function is flat near the edges and
the error function is also ill-suited. Eventually, Fig. 3-(d) is a plot of the error
function when using the sum of the two previously proposed distances. The error
function is never constant and there exists only one local minimum, where the
model contour coincides exactly with the observed contour.

Thus, the simulteneous use of the chamfer distances of both the edges and
the silhouette avoids such local minima. As explained above, minimizing the
silhouette distance pushes model contours inside the image silhouettes while
minimizing the edge distance attracts the model contours to high image gradients
within that silhouette, without explicitly representing the contour orientations.

Now that we have chosen the error function to be minimized, we can track
our model by iteratively minimizing the error in all views, using a non-linear
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Fig. 3. (a) Observed edges (left) and silhouette (right). (b) Chamfer distance on the
silhouette. (c) Chamfer distance on the edges. (d) Sum of both distances. The graphs
illustrate the distance (blue or thin curve) and the error (red or bold curve) along a
row (white lines).

least-squares optimization technique such as Levenberg-Marquardt. Using the
results from section 2 together with a bilinear interpolation of the chamfer dis-
tance images, we compute the Jacobian analytically, which results in an efficient
implementation, as described in the next section.

4 Experimental Results and Discussion

We performed experiments with realistic and complex human motions using a
setup composed of 6 cameras that operate at 30 frames/second. The cameras are

Fig. 4. From left to right: A raw image, the silhouette, the edges inside the silhouette,
and the chamfer-distance image associated with the silhouette
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Fig. 5. A set of six calibrated cameras provides six image sequences whose frames are
synchronized

Fig. 6. Tracking a ”taekwondo” sequence. From top to bottom: Extremal contours
predicted from the previously estimated pose; Silhouettes extracted with a background
subtraction algorithm; Edges inside the silhouettes, and the estimated pose of the
articulated model.

both finely synchronized (within 10−6s) and operate at the same shutter speed
(10−3s.) thus allowing us to cope with fast motions. The 3-D human model is
composed of 18 body parts with a total of 40 degrees of freedom1. We validated

1 2 degrees of freedom for the head, 3 for the torso, 3 for the abdomen, 6 for the two
clavicles, 6 for the two shoulders, 4 for the two elbows, 6 for the hips, and 4 at the
knees, keeping the feet and the hands rigidly attached to the ankles and forearms.
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our tracker using realistic data sets consisting of movements performed by pro-
fessionals (Fig. 1 and 6). Silhouettes and edges were extracted using standard
techniques (statistical background subtraction and edge detection). In the first
sequence (Figure 1) we tracked the motion over 700 frames, starting from a ref-
erence pose. In the second sequence (Figure 6), we tracked a very fast motion
over 100 frames. In both cases, the optimization always converged in less than
5 iterations per frame. The RMS error on both sequences is close to one pixel.
Given the roughness of the parameters modelling the person’s features (length
of arms, feet, thighs, etc.), this error is quite satisfactory and could probably be
improved further with better estimates of the anthropometric dimensions of the
human model.

We evaluated the importance of the sliding motion term in the minimization
process since it was asserted to be negligible in [14]. With both synthetic and
real data, we found that we could ignore the correction terms and still obtain
the same results, at the expense of doubling the number of iterations, on an
average. This gives experimental evidence that the correction introduced by the
sliding motion of the contour generators may be important, if not critical, for
real-time/best-effort implementations.

With our current algorithms we did not restrict the joint angles to bio-
mechanically feasible limits. As a result, most of our tracker failures occurred
because of incorrect assignments during matching, which resulted in collisions
between body parts. We believe we can solve this problem by implementing col-
lision detection and collision prevention more carefully. Another important issue
that should be addressed in future work, is the automatic calibration of the
parameters of our human-body model. Obtaining optimal values for all the con-
stant geometric and kinematic parameters in the anthropomorphic model will
be important for evaluating and improving further the quality, robustness, and
precision of our tracker.

5 Summary and Conclusion

We described a method for using image silhouettes and edges from several
cameres in order to estimate the articulated motion of a person. Our approach
works well with relatively difficult motions, using non-textured clothes with shad-
ows and folds. We presented a derivation of the image Jacobian for that case, and
demonstrated experimentally that the resulting tracker converges in fewer (typ-
ically less than five) iterations per frame, compared to the classical rigid-motion
approximation.

Future work will be devoted to extend the method to other body part
shapes such as the head, hands and feet, to combine information form the
contours with point features and textures, when they are available, to fit the
constant geometric and kinematic parameters of our models automatically, and
to feed the results into a Kalman or particle-filter representation of human
dynamics.
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Abstract. Tracking of regions and object boundaries in an image sequence is a
well studied problem in image processing and computer vision. So far, numerous
approaches tracking different features of the objects (contours, regions or points
of interest) have been presented. Most of these approaches have problems with ro-
bustness. Typical reasons are noisy images, objects with identical features or par-
tial occlusions of the tracked features. In this paper we propose a novel level set
based tracking approach, that allows robust tracking on noisy images. Our frame-
work is able to track multiple regions in an image sequence, where a level set
function is assigned to every region. For already known or learned objects, trans-
formation invariant shape priors can be added to ensure a robust tracking even
under partial occlusions. Furthermore, we introduce a simple decision function to
maintain the desired topology for multiple regions. Experimental results demon-
strate the method for arbitrary numbers of shape priors. The approach can even
handle full occlusions and objects which are temporarily hidden in containers.

1 Introduction

Tracking of regions and object boundaries in image sequences is an important problem
in computer vision (scene analysis and interpretation), video processing (video surveil-
lance, object based video database search) and human-computer interaction.

Numerous tracking approaches have been developed, including early tracking algo-
rithms to track feature points [1] and edge segments [2, 3], and several recent contri-
butions to track parametric contours [4, 5]. Most of them had difficulties in handling
topological changes such as the merging and splitting of overlapping object regions.
For this, the level set method [6, 7, 8] is a more powerful technique. In the last few
years various models have been proposed (see [9, 10, 11, 12, 13, 14, 15]). But there is
always a problem with tracking multiple regions and none of these approaches uses the
benefit of prior information to obtain a more robust tracking result. In this paper, we
propose a novel approach that extends the well known level set model, such that it can
simultaneously handle an arbitrary number of regions and competing shape priors.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 674–683, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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An early work on region based tracking proposed by Bertalmio et al. [9] is based on
morphing images. Paragios and Deriche [10] use a geodesic model that combines motion
and edge information. Using the difference between the current image and the reference
background, a region based model was proposed by Besson et al. [11]. In [12, 14] fea-
ture distributions of the object and the background were used for tracking. Freedman
and Zhang [13] track a predefined distribution for the object region by minimizing a
Kullback-Leibler or Bhattacharyya distance. All these approaches are restricted to one
level set function and can only track one region. Shi and Karl [15] propose a new fast level
set implementation that can handle multiple regions, but do not use prior information.

The integration of prior knowledge (in our case shape priors) into PDE based seg-
mentation methods has delivered promising results (see [16–22]). Usually, the knowl-
edge of one single shape prior is introduced into the contour evolution in a way that
corrupted versions of a familiar object are reconstructed and all unfamiliar image struc-
tures are suppressed and often the localization of the shape must be known. Leventon
et al. [18] use a Gaussian model to describe their shape priors. They assume a uniform
distribution over pose parameters, that model translation and rotation. Rousson and
Paragios [19] propose a transformation (scale, rotation and translation) for the shape
prior that allows to segment familiar objects with an unknown position in the image
scene. But like the approach of Leventon et al. they can handle only one shape prior
and unfamiliar image structures are ignored. Cremers et al. ([23], [21]) presented an ap-
proach with dynamic labeling, that allows to use more than one shape prior and does not
suppress unfamiliar image structures, but all shape priors are assigned to one level set
function. Raviv et al. [22] present a novel approach that allows a projective transforma-
tion of the shape prior, but their approach is also limited to one region, furthermore the
projective transformation needs too much calculation time for tracking applications. In
[24] we present a segmentation level set framework that can handle an arbitrary number
of regions with or without shape priors. Our segmentation algorithm in [24] is used in
the initialization step of the multiple object tracking approach with shape priors, which
we propose in this article.

The outline of the paper is as follows: Section 2 presents a level set formulation that
can easily be extended with a single pose invariant shape prior (section 3). In section 4, we
introduce our tracking algorithm. For the case of multiple object regions, we extend our
tracking algorithm and introduce a logic functionΨ to incorporate topology in subsection
4.1. Results are presented in section 5. Finally conclusions are drawn in section 6.

2 A Level Set Framework

In this section, we define a level set framework, that aims to maximize the color value
homogeneity of the different regions. We assume each image of a video sequence is
composed of a background regionΩ0 andN independent objects of interestΩ1, ..., ΩN .
Each of these n = 1..N objects of interest is described with a level set function Φn :
Ωn → R, with Φn(x) > 0, if x ∈ Ωn and Φn(x) < 0, if x ∈ Ω0.

There are different level set formulations, which could be possible choices [8, 25, 26,
27]. In this work, we use the level set formulation proposed by Paragios and Deriche
[27, 28] to minimize the energy for each object region:
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EDn(Φn, pn, p0) = −
∫

Ω

(H(Φn) log pn + (1−H(Φn)) log p0)dx

+ν
∫

Ω

|∇H(Φn)|dx. (1)

H denotes the regularized Heaviside function and p0 and pn are the probability den-
sities pi = p(x|Ωi) of the background regions Ω0 and the object region Ωn, which
cover the whole image domain Ω. For color images, we use the following multivariate
Gaussian density:

p(x|Ωi) =
1

(2π)d/2|Σi|
e−

1
2 (x−μi)T Σ−1

i (x−μi), (2)

with the mean μi and the covariance matrix Σi of the multivariate color distribution of
the region Ωi. The last term of equation 1 takes into account the length of the contour
weighted by the parameter ν. The minimization of the energy term in equation 1 can
now be estimated according to the gradient descent equation

∂Φn

∂t
= δ(Φn)

[
νdiv

( ∇Φn

|∇Φn|
)
− log pn

p0

]
, (3)

where δ(Φn) is the derivative ofH(Φn) with respect to its argument.

3 Adding a Shape Prior

To add a shape prior to the energy equation 1, we define a straight forward extension

En(Φn, Φ0, pn, p0) = EDn(Φn, pn, p0) + λESn(Φn, Φ0), (4)

with

ESn(Φn, Φ0) =
∫

Ω

δ(Φn)(Φn − Φ0n)2dx, (5)

where Φ0n is the level set of the given training shape or the mean of a set of training
shapes. λ ≥ 0 indicates the weight of the prior. This formulation is simplified and does
not consider invariance of the shape prior with respect to similarity transformations
of the level set function. Nevertheless, equation 5 can be extended in this direction
(cf. [18, 19, 20]), see section 3.1.

The minimization of the energy term can again be estimated according to the gradient
descent equation:

∂Φn

∂t
= δ(Φn)

[
νdiv

( ∇Φn

|∇Φn|
)
− log pn

p0
− 2λ(Φn − Φ0n)

]
(6)

3.1 A Pose Invariant Formulation

During an image sequence the pose and the location of an object can change and the
shape model has to be aligned. Possible solutions for simple or planar objects are pre-
sented in [19, 20], where a set of pose parameters are associated with the given prior
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Φ0n. Rousson and Paragios [19] assume a global deformationAn between Φn and Φ0n

that involves the parameters [A = (s; θ; T)] with a scale factor s, a rotation angle θ and
a translation vector T. The corresponding shape energy

ESn(Φn, Φ0(An)) =
∫

Ω

δ(Φn)(sΦn − Φ0n(An))2dx (7)

is simultaneously optimized with respect to the segmentation level set function Φn and
the pose parameters s, θ and T. The function is expanded with δ(Φn), so that the shape
prior is only estimated within the vicinity of the zero-crossing of the level set repre-
sentation, which has a better performance than considering the whole image domain.
Minimizing equation 7 leads to the following gradient descent for the level set func-
tion Φn:

∂Φn

∂t
= δ(Φn)

[
νdiv

( ∇Φn

|∇Φn|
)
− log pn

p0
− 2λ(snΦn − Φ0n(An))

]
(8)

The transformation A\ is also dynamically updated to map Φn and Φ0n in the best
possible way. The calculus of variations for the parameter of An derives to the system:

∂s

∂t
= 2

∫
Ω

p(−Φn +∇Φ0n(An)
∂

∂s
An)dx

∂θ

∂t
= 2

∫
Ω

p(∇Φ0n(An)
∂

∂θ
An)dx

∂T
∂t

= 2
∫

Ω

p(∇Φ0n(An)
∂

∂T
An)dx, (9)

(a) (b) (c)

(d) (e) (f)

Fig. 1. Transformations of an object during a tracking sequence
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with
p = δ(Φn)(sΦn − Φ0n(An)). (10)

Figure 1 shows the possible transformations of the shape prior: translation, rotation
and scale. In figure 1(f) the limitation of our transformation model is shown at per-
spective distortions. Raviv et al. [22] presented an approach that allows a projective
transformation of the shape prior, but their approach needs too much calculation time
for tracking applications.

4 Tracking Algorithm

In the initialization stage, we use the regions from the result of our multi region level set
segmentation [24]. For every region of interest, we initialize a level set function Φ and
calculate the means and covariance matrices for each region and the background. For
important or already learned objects, we assign a shape prior Φ0 to the corresponding
level set function Φ.

For the re-distancing step of the level set function Φ, we use a mixed approach: the
PDE is used for reinitialization [29] in a small neighborhood of the zero level while the
Fast Marching [30, 31] permits to extend the distance function to a larger band.

To track the object boundary, we compute the speed at all pixels in the band of the
level set function Φ with equation 8 and calculate the new contour in the re-distancing
step. In our implementation, the curve evolution stops when any of the following stop-
ping conditions is satisfied:

1. Either, the transformation change of a pixel x is smaller than ε1:

||xi − xi−1|| < ε1, or (11)

2. a pre-specified maximum number of iterations is reached, or
3. the sum of the speed at each pixel is smaller than ε2:∑

Ωn

|∂Φ
∂t
| < ε2. (12)

4.1 Tracking of Multiple Objects

For the representation of multiple objects, we use one level set function Φn with or
without an assigned shape prior Φ0n and a decision function Ψn for each of N objects
of interest. The decision function Ψn is defined as follows:

Ψn(x) =

⎧⎨⎩
1 Φn(x) < 0, Φl(x) > 0 (n �= l)
0 Φn(x) < 0, Φl(x) < 0 | ∃Φ0n (n �= l)
−1 Φn(x) < 0, Φl(x) < 0 | �Φ0n (n �= l)

In the case of overlapping regions the different values for objects with and without
shape priors allow an arbitrary topology, where objects with shape prior survive even
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with occlusions and they are handled as more important than regions without a shape
prior. Our tracking algorithm consists of the steps shown in table 1.

Adding Ψn to equation 8 leads to following gradient descent:

∂Φ

∂t
=

⎧⎨⎩u(x)− v(x) , for Ψn = 1
v(x) , for Ψn = 0
|u(x)| , for Ψn = −1

Table 1. Tracking algorithm

– Step1:
• Initialize all level set functions Φn.
• Initialize all shape priors Φ0n and assign them to the corresponding level set func-

tion Φn.
• Calculate all means and covariance matrices for the regions and the background.

– Step2: (one cycle for region n)
• Compute the parameters of transformation An for all shape priors Φ0n .
• Compute the gradient descent (equation 8) for all pixels in the band of Φn.

– Step3:
• If the stopping condition is satisfied stop curve evolution for the actual region.
• Else calculate the re-distancing for the actual region.

– Step4:
• If the stopping condition for all regions is satisfied load new frame and start with

step 2 with first region.
• Else start with step 2 with next region.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Different tracking results of the Game sequence. First row without, second row with Ψ .
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u(x) and v(x) are defined as follows:

u(x) = δ(Φn)
[
νdiv

( ∇Φn

|∇Φn|
)
− log pn

p0

]
, (13)

and
v(x) = 2αnδ(Φn)(snΦn − ΦSn(An)). (14)

the weighting parameter λ = 0 when there is no shape prior Φ0n assigned to the level
set function Φn. The scale sn of the transformationAn does not change for Ψn �= 1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Results of the Game (640x480) sequence. (a) initialization, (b-l) 11 out of 400 frames.
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Figure 2 demonstrates the value of Ψ . The first row shows three tracking results
without the use of the decision function Ψ . In figure 2(b) the hand region grows into
the ball because the color information is similar and in figure 2(c) the ball has vanished
because it is totally occluded by the cup. In the second row, these problems do not occur
because of the use of the decision function Ψ .

5 Tracking Results

We present two results of our tracking implementation, which run on a 2.0GHz PC un-
der Linux. In all experiments, the segmentation result of frame 0 calculated with [24]
is used for the initialization. Region tracking from frame to frame is performed via the
algorithm described in table 1. We use the same parameters: ν = 1, λ = 1 when a
shape prior is assigned to the region and λ = 0 when not, for all experiments. The max-
imum number of iteration steps is set to 30, which assures a robust tracking even at fast
movements. The first tracking experiment (figure 3) is performed on the Game sequence
over 400 frames. We successfully track all objects in the image (hand, two cups, ball).
The first image (figure 3(a)) shows the segmentation result from [24], which is used
for the initialization. The hand region is tracked without prior information, because the
changes of the hand shape can not be modeled with our shape priors. Shape priors are
assigned to all other regions. The tracking speed strongly depends on the number of
regions to track and on the length of the contour. For example we need only 0.1s per
frame when we track only the ball with shape prior but 0.8s for the hand without shape
prior. In this experiment we need an average time of 1.4s per frame for all objects. The
second experiment (figure 4) is performed on the Book 1 sequence over 250 frames. In
this sequence, we track the book with shape prior and the orange object only with color

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results of the Book 1 (640x480) sequence. 6 frames of 250 are shown.
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information. Both objects are successfully tracked with 0.5s per frame. Our videos can
be downloaded from http://www.emt.tugraz.at/∼pinz/data.

6 Conclusion

We have introduced a novel level set based tracking framework that allows to track
multiple object regions. Furthermore, we can add an arbitrary number of planar shape
priors for already known or learned objects to get a more robust tracking result. Each
shape prior is given by a fixed template (a given training shape or the mean of a set of
training shapes) and respective pose parameters. A simple decision function Ψ ensures
the desired topology for multiple regions tracking. Our approach can combine data-
driven and recognition-driven information in the tracking process, and can for example
be used to improve a cognitive vision system. Our approach has been successfully tested
on a large number of real images, and it can even handle full occlusions which are
temporally hidden in containers.
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Abstract. Multiple cameras and collaboration between them make possible the
integration of information available from multiple views and reduce the uncer-
tainty due to occlusions. This paper presents a novel method for integrating
and tracking multi-view observations using bidirectional belief propagation. The
method is based on a fully connected graphical model where target states at dif-
ferent views are represented as different but correlated random variables, and
image observations at a given view are only associated with the target states at
the same view. The tracking processes at different views collaborate with each
other by exchanging information using a message passing scheme, which largely
avoids propagating wrong information. An efficient sequential belief propagation
algorithm is adopted to perform the collaboration and to infer the multi-view tar-
get states. We demonstrate the effectiveness of our method on video-surveillance
sequences.

1 Introduction

Visual tracking involves object detection and recursive inference of the target states in
time. A popular approach is to generate target hypotheses and then to verify them by
matching with a pre-learned reference model. However, a drawback of this approach is
that if the target is occluded, a partial or – even worse – complete target observation is
missing, making the comparison with the reference model impossible. The problem is
particularly severe in the context of single-camera tracking in crowded scenes such as
surveillance and team sports. However, the use of multiple cameras and collaboration
between them make possible the integration of multi-view information and reduce the
uncertainty due to occlusions.

A potential problem of conventional multi-view tracking is that wrong information
may be integrated and propagated from one view to other views. To solve this prob-
lem, this paper presents a novel method for integrating and tracking multi-view ob-
servations using bidirectional belief propagation. The method is based on a dynamic
graphical model where target states at different views are represented as different but
correlated random variables, and image observations at one view are only associated
with the target states at the same view. As all views are correlated with each other,
the graphical model is fully connected. The tracking processes at different views ex-
change information using a message passing scheme, which largely avoids propagating
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wrong information. Hua and Wu introduced an efficient Sequential Belief Propagation
(SBP) algorithm to perform the multi-scale visual tracking [1]. In the present paper, we
adapt the approach to our multi-view tracking task and our specific graphical model. In
particular, we apply SBP to integrate individual trackers at different views so that the
multi-view target states are inferred based on the multi-view observations.

Similar multi-camera tracking frameworks have been presented, e.g. in the context
of video surveillance [2] or soccer player tracking [3]. Targets are tracked by individual
trackers at different views, and the results are fused by a fusion module. To prevent
wrong information integration, uncertainties of individual trackers are computed and
used during fusion. However, with no interaction between individual trackers, the multi-
view information is not fully exploited and the robustness of these systems is limited.

Particle filters are popular in multi-view tracking [4, 5]. Both cited approaches are
based on the best-view-selection strategy: the target states are estimated using mainly
those views that contain the most likely information. The problem is that the targets
of interest may not be sufficiently distinctive from clutter and as a result, the wrong
selection of the best view will cause the complete loss of tracks.

Different from previous work, our approach involves both recursive inference of
target states using particle filters [6], making the system capable of coping with non-
Gaussian clutter and non-linear dynamics, and exchanging information across views us-
ing belief propagation [7, 8], making the system robust to occlusions. Belief propagation
provides a systematic solution for propagating uncertainties in a graphical model. The
specific flavor of belief-propagation that we use, sequential belief propagation, enables
us to reduce the risk of wrong information propagation. A fully connected graphical
model for multi-view tracking is proposed based on a multi-view target state representa-
tion. We demonstrate the effectiveness of our method on video-surveillance sequences.

Section 2 describes the multi-view representation and the graphical models. Se-
quential Belief Propagation is introduced in Section 3. Section 4 introduces the SBP-
based multi-view tracking algorithm. Results on sequences of video surveillance from
PETS2001 datasets [9] are illustrated in Section 5.

2 A Graphical Model for Multi-view Tracking

The target state at each view is denoted by xi, where i = 1, . . . , L is the view index.
Putting all states at different views together results in a multi-view representation for
the target, denoted byX = {x1, . . . , xL}. The benefit of this representation is that the
multi-view target model makes possible the integration of multi-view image observa-
tions, which helps overcome the occlusion problem if the target is not occluded in all
views. The image observation associated with xi in the same view is denoted by zi, and
Z = {z1, . . . , zL}.

Given the above definitions, our approach performs bidirectional belief propagation
in a graphical model shown in Figure 1, and recursively infers the multi-view target
states in a dynamic graphical model shown in Figure 2.

In both figures, the undirected link between xt,i and xt,j describes the mutual in-
fluence of multiple views and is associated with a potential function ψt

i,j(xt,i, xt,j),
and the directed link from xt,j to zt,j represents the image observation process and
is associated with an image likelihood function pj(zt,j |xt,j). In Figure 2, the directed
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Fig. 1. Graphical models for the multi-view states at a time instant. From left to right, 2, 3 and 4
views are used respectively.

Fig. 2. Dynamic graphical model for the multi-view states. Only a two-view model is illustrated
as an example.

link from xt−1,i to xt,i represents the prior dynamics and is associated with a dynamic
model p(xt,j |xt−1,j).

According to Bayes’ rule, the recursive inference of the posterior distribution of the
multi-view state p(Xt|Zt) is formulated as

predict: P (Xt|Zt−1) =
∫
P (Xt|Xt−1)P (Xt−1|Zt−1) dXt−1

update: P (Xt|Zt) ∝ P (Zt|Xt)P (Xt|Zt−1)

Xt is the multi-view state at time t, and Zt = {Z1, . . . , Zt} are the image observations
up to time t.

The inference of the joint multi-view state is difficult due to the lack of a closed-
form solution. In practice, we infer the posterior of the single-view states P (xt,j |Zt),
j = 1, . . . , L. We show in the following sections how the inference is done using
sequential belief propagation.

3 Sequential Belief Propagation

Sequential belief propagation, a non-parametric and sequential version of belief propa-
gation, was first introduced by Hua and Wu [1]. We borrow the idea and apply it to our
specific task.
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The basic idea of the multi-view tracking algorithm is to calculate the inference of
multi-view states through a message passing process. The local message passed from
view i to view j in the graphical model in Figure 1 is

mji(xt,j)←
∫ ⎛⎝ ∏

k∈N(xt,i)\j

mik(xt,i)

⎞⎠ pi(zt,i|xt,i)ψt
i,j(xt,i, xt,j) dxt,i, (1)

where N(xt,i) denotes the set of views connected to xt,i through an undirected link,
and N(xt,i)\j means the neighboring views of xt,i except xt,j . The first part of the
right side of Equation 1 is the message that view i receives from its neighbors except j,
the second part is the information of the image likelihood in view i, and the last part is
the potential function mapping these information from view i to view j.

To infer P (xt,j |Zt), j = 1, . . . , L based on the dynamic graphical model in Fig-
ure 2, we take into consideration the message from the previous time instants.

We assume independent dynamic models at each view,

P (Xt|Xt−1) =
∏
j

p(xt,j |xt−1,j). (2)

Given the posterior at the previous time instant P (xt−1,j |Zt−1), j = 1, . . . , L, Equa-
tion 1 is updated as

mji(xt,j)←
∫ [∫

p(xt,i|xt−1,i)P (xt−1,i|Zt−1) dxt−1,i⎛⎝ ∏
k∈N(xt,i)\j

mik(xt,i)

⎞⎠ pi(zt,i|xt,i)ψt
i,j(xt,i, xt,j)

]
dxt,i.

(3)

Actually, only the information from the previous time instant is integrated into the new
message passing process in the graphical model in Figure 2.

Thus, the marginal posterior P (xt,j |Zt) is given by

P (xt,j |Zt) ∝

pi(zt,j |xt,j)

⎛⎝ ∏
i∈N(xt,j)

mji(xt,j)

⎞⎠∫ p(xt,j |xt−1,j)P (xt−1,j |Zt−1) dxt−1,j .
(4)

In fact, the new marginal posterior of Equation 4 is the traditional version plus a mes-
sage passing process that integrates information from other views.

In practice, the SBP algorithm, implemented using sequential Monte Carlo methods,
iterates the message passing process until convergence. Consult Hua and Wu [1] for the
details of SBP and its Monte Carlo implementation.

4 Multi-view Tracking Using SBP

Our goal is to solve the occlusion problem in single-view tracking by exploiting multi-
view information. The SBP algorithm introduced above is well suited for the task.
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4.1 The Monte Carlo Implementation

The key of the approach is to propagate the marginal posterior P (xt,j |Zt) in time using
Equation 2, 3, 4. Both the posterior and the messages are represented by weighted
particles, mji(xt,j) ∼ {s(n)

t,j , ω
(i,n)
t,j }Nn=1, i ∈ N(xt,j),

P (xt,j |Zt) ∼ {s(n)
t,j , π

(n)
t,j }Nn=1, j = 1, . . . , L,

where s(n)
t,j is the particles sampled at view j, ω(i,n)

t,j is the weight of the message re-

ceived from view i, and π(n)
t,j is the belief of the particle based on the observations at

all the views. N is the number of particles. Note that the same particle set is used to
represent the message and the posterior distribution. The Monte Carlo implementation
of the algorithm is described in Algorithm 1.

It is easy to see that the occlusion problem can be effectively solved by the pro-
posed algorithm unless the target is occluded in all the views. Our approach is superior
to the best view selection strategy proposed in [4, 5] in that the full information at all
the views is taken into consideration during tracking. Even a view in which the target is
completely occluded “contributes” to the tracking results by propagating uniformly dis-
tributed belief to other views. Although the view isn’t informative, it will not affect the
inference of the target states at other views. As a result, wrong information propagation
is avoided.

Algorithm 1 is similar to the one proposed by Hua and Wu [1]. We extend the original
algorithm by adding a fusion module to infer the target states on the ground plane and
by modifying the potential function to fit the mulit-view tracking task.

4.2 The Potential Function

An issue in Algorithm 1 is the potential function that describes the spatial relation be-
tween the states at two different views. To simplify the problem, we model the target
in a view as a rectangle so that the view state xj is a 4D vector (uj , vj , hj , wj), where
(uj , vj) is the middle point of the bottom of the bounding box and (hj , wj) is the
2D size.

Fig. 3. Uncertainty propagation. The red circle in each view is the uncertainty of the target posi-
tion in the current view (we assume constant and diagonal gaussian noise), and the white ellipse
is the uncertainty propagated from the other view. It is clear that the transformation from the right
view to the left is more certain.
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Algorithm 1. SBP based Multi-view Tracking

Require: Given {s
(n)
t−1,j , π

(n)
t−1,j}N

n=1, j = 1, . . . , L

Ensure: Generate {s
(n)
t,j , π

(n)
t,j }N

n=1, j = 1, . . . , L
1. INITIALIZATION: k ←− 1, for j = 1, . . . , L
1.1 Resampling: resample {s

(n)
t−1,j , π

(n)
t−1,j}N

n=1 to get {s
(n)
t−1,j , 1/N}N

n=1

1.2 Prediction: generate {s
(n)
t,j,k}N

n=1 from p(xt,j|xt−1,j)
1.3 Belief Initialization: for n = 1, . . . , N

π
(n)
t,j,k = pj(z

(n)
t,j,k|s(n)

t,j,k)

1.4 Message Initialization: for n = 1, . . . , N , i ∈ N(j)

ω
(i,n)
t,j,k =

1
N

(uniformly distributed)

2. ITERATION: SBP
2.1 Importance Sampling: Sample {s

(n)
t,j,k+1}

N
n=1 from P (xt,j|xt−1,j)

2.2 Message Reweighting: for n = 1, . . ., N, i ∈ N(j)

ω
(i,n)
t,j,k+1 = G

(i)
t,j(s

(n)
t,j,k+1)

1
N

N

r=1

p(s(n)
t,j,k+1|s

(r)
t−1,j) ,

where

G
(i)
t,j(s

(n)
t,j,k+1) =

N

m=1

π
(m)
t,i,k pi(z

(m)
t,i,k|s(m)

t,i,k)
l∈N(i)\j

ω
(l,m)
t,i,k

1
N

N

r=1

p(s(m)
t,i,k|s(r)

t−1,i) ψi,j(s
(m)
t,i,k, s

(n)
t,j,k+1) .

Normalize so that n ω
(i,n)
t,j,k+1 = 1.

2.3 Belief Reweighting: for n = 1, . . . , N

π
(n)
t,j,k+1 = pj(z

(n)
t,j,k+1|s

(n)
t,j,k+1)

l∈N(j)

ω
(l,n)
t,j,k+1

1
N

N

r=1

p(s(n)
t,j,k+1|s

(r)
t−1,j)

Normalize so that n π
(n)
t,j,k+1 = 1.

2.4 Iteration: k ←− k + 1, iterate until convergence.
3. INFERENCE ESTIMATION:

p(xt,j|Zt) ∼ {s
(n)
t,j,k, π

(n)
t,j,k}N

n=1, j = 1, . . . , L

.
4. FUSION: The target states in 3D are estimated by fusing the individual view states.

We assume that the targets of interest always move on a calibrated ground plane,
which is usual in video surveillance and team sports senarios, so that the positions
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(uj , vj) at different views are related to each other by a homography between each pair
of views [3]. The propagation of the target sizes between views is a little more difficult
because we need the full camera calibration information, by which we can infer the
real target sizes in 3D and then project to other views. Fortunately, this information is
available in most video surveillance applications where still cameras are used.

Therefore, the potential function ψi,j is defined as

ψi,j(xi, xj) ∝ λN(xi;uxi, Λi) + (1− λ)N (xi;Πj(xj), Σj(xj)) , (5)

where the first term is the standard Gaussian outlier process,Πj is a function that trans-
forms the view state xj to view i, and Σj is a function that propagates the uncertainty
of xj to view i using techniques from perturbation theory [10], see Fig. 3.

5 Results

Since 2-view data are most readily available, a SBP-based 2-view tracker was devel-
oped. The same principles apply when three or more views are used, although loops
exist in the graphical model. For such situations, it was shown that loopy BP typically
still yields good approximate results [8].

As described in Section 4.2, the target state xt,j is defined as a 4D vector with two
coordinates for the position and the other two for the size to handle the scale changes.
The motion model p(xt,j |xt−1,j) at each view is the standard constant-velocity model.

Following Perez et al. [11], a classical color observation model based on HSV color
histograms is adopted which has the advantage of being insensitive to illumination ef-
fects. Thus, the observation process is to match the color histogram in a candidate re-
gion, a particle, with a pre-learned reference model, where the Bhattacharyya similarity
coefficient is computed to measure the distance. The effectiveness of this model has
been shown previously [11, 12, 4] and is confirmed by this work. In all the experiments,
we manually initialize the regions of targets of interest at the first frame of each camera
and learn the reference color models.

5.1 Video Surveillance

PETS2001 Dataset Two contains sequences taken from two calibrated cameras and is
used to evaluate the above algorithm. Figure 4 shows the result of tracking a pedestrian
in subsequences of Camera 1 and Camera 2 from Frame 600 to Frame 800. The pedes-
trian is completely occluded by a tree in Camera 1 but is visible all the time in Camera 2.
Thus, the algorithm successfully tracks the target during the occlusion in Camera1 by
receiving messages from Camera 2. Although the result is a little biased due to the
uncertainty propagation, it is corrected when the target reappears after the occlusion.

Figure 5 shows the result of tracking the same pedestrian from Frame 775 to Frame
850 and the comparison with Condensation [13]. Since we learn a simple color model of
the target from only one frame, sometimes it is not very distinctive from the background.
As a result, Condensation fails at the 805th frame of Camera 1 and at the 819th frame of
Camera 2. However, our multi-view tracking algorithm keeps tracking by exchanging
information across views. We agree that the problem may be solved by learning a better
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(a) 600. (c) 680. (e) 740. (g) 800.

(i) 600. (k) 680. (m) 740. (o) 800.

Fig. 4. Result of tracking a pedestrian. Blue rectangles are the particles sampled in the current
view, while the green ones are the particles mapped from the other view using the homography
between the two views. The white rectangles are the estimated target states of the view, whereas
the red rectangles are the target states of the other view which are mapped to the view using the
same homography.

(a) SBPMVT-805. (b) Condensation-
805.

(c) SBPMVT-819. (d) Condensation-
819.

Fig. 5. Comparison of the SBP-based multi-view tracker (SBPMVT) with Condensation

(a) Camera 1 (600-
850).

(b) Camera 2 (600-
850).

(c) Camera 1 (1300-
1800).

(d) Camera 2 (1300-
1800).

Fig. 6. Results of tracking several different targets

model or using another color space, but the problem still exists: if the target is not
distinctive from clutter, it is difficult to maintain the target distribution with a small
and fixed number of particles. By integrating multi-view observations, the algorithm is
capable of dealing with unstable appearance in one view if stable appearance can be
obtained in another view.
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Other tracking results can be seen in Figure 6. Note that the two targets that are
tracked from Frame 600 to Frame 850 in Figure 6 (a) and (b) are lost afterwards be-
cause they become too small to track using only color information. The tracking of a car
from Frame 1300 to Frame 1800 is shown in Figure 6 (c) and (d). Since the car turns
around in the subsequences of both cameras causing significant appearance changes,
it is impossible to learn the reference color model from only one frame. To solve this
problem, we sample particles in this experiment from both the motion prior and a pro-
posal distribution obtained from a change detection process based on a background
model [14].

Thus, the importance sampling function is

(1 − α)p(xt,j |xt−1,j) + αp(xt,j |Bt,j), (6)

where Bt,j is the observation of the foreground.

5.2 Discussion

We find that the potential functionψi,j(xi, xj) is critical to the success of the multi-view
tracking algorithm. As is described in Section 4.2, the target states at one view are trans-
formed to another view by a homography under the assumption that the targets move
on the ground plane. However, the transformation has large uncertainty if the camera
view direction is highly oblique, for instance, when the camera position is close to the
ground plane. In this case, more particles are needed to model the target distribution.
This motivates the use of more views (> 2) which will reduce the uncertainty.

The extra fusion module that combines results at each view can be removed by
adding a node representing the target states in 3D (2D ground) in the graphical model
in Figure 2. The addition of this global node does not only change the current, fully-
connected graphical model to a two-level, tree-structured graphical model, making the
system more scalable and flexible to varying numbers of cameras, but also enables us
to infer the 3D target states inside the SBP algorithm.

6 Conclusion and Future Work

This paper presents a novel multi-view tracking method that addresses the occlusion
problem using bidirectional belief propagation. The strength of the method relies on
the fact that information is integrated and exchanged across views so that a collabora-
tive tracking scheme is formed. Technically, the tracking processes at different views
perform the inference of the target states separately but based on the multi-view obser-
vations. A sequential and purely non-parametric belief propagation algorithm is adopted
to allow individual trackers to collaborate in each view, which largely avoids the prob-
lem of propagating wrong information. As demonstrated, the method is robust and ca-
pable of dealing with occlusions as long as the targets of interest are visible in at least
one view.

We are currently extending this work by adding one node in the graphical model
representing the 3D target states. Another extension which is also ongoing is to track
multiple targets simultaneously, which will broaden the applicability of the system.
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Abstract. This paper proposes an appearance generative mixture
model based on key frames for meanshift tracking. Meanshift tracking
algorithm tracks object by maximizing the similarity between the his-
togram in tracking window and a static histogram acquired at the be-
ginning of tracking. The tracking therefore may fail if the appearance of
the object varies substantially. Assume the key appearances of the object
can be acquired before tracking, the manifold of the object appearance
can be approximated by some piece-wise linear combination of these key
appearances in histogram space. The generative process can be described
by a bayesian graphical model. Online EM algorithm is then derived to
estimate the model parameters and to update the appearance histogram.
The updating histogram would improve meanshift tracking accuracy and
reliability, and the model parameters infer the state of the object with
respect to the key appearances. We applied this approach to track human
head motion and to infer the head pose simultaneously in videos. Exper-
iments verify that, our online histogram generative updating algorithm
constrained by key appearance histograms avoids the drifting problem
often encountered in tracking with online updating, that the enhanced
meanshift algorithm is capable of tracking object of varying appearances
more robustly and accurately, and that our tracking algorithm can infer
the state of the object(e.g. pose) simultaneously as a bonus.

1 Introduction

Visual tracking of object in complex environments is currently one of the most
challenging and intensively studied tasks in machine vision field. Various visual
cues have been employed in tracking, such as motion flow, edge, color, depth,
etc. As low level visual cues usually tend to be noisy, a prior knowledge of the
object being tracked is usually applied as global constraints during the track-
ing. In [1] the appearance statistics of the object is modeled by an appearance
eigenspace and a so-called Eigentracking technique is introduced. The success
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of tracking is therefore largely dependent on the consistency between the actual
object appearance and the a prior knowledge learnt off-line. This assumption
however might be violated due to occlusion, or changing of illumination, etc.

In order to take the novelties into consideration during tracking, people pro-
posed tracking algorithms with online model updating. [2] extended Eigen-
tracking by online updating the object appearance PCA eigenspace using
sequential Karhunen-Loeve algorithm. Noticing PCA eigenspace results from fit-
ting subspace to data using L2 norm, Ho[3] took a step further and suggested that
fitting appearance subspace to data using L∞ norm leads to subspace obtained
by Gramm-Schmitt orthogonalization. The resulting algorithm incorporates ob-
servation novelties into subspace representation in a timely manner, and is able
to track objects subject to pose changes, occlusions, and illumination variations,
etc. Along the other direction, Jepson [4] proposed to model the appearance of
an object as a mixture of stable image structure, outliers, and two frame in-
formation obtained from optical flow. An online EM algorithm is employed to
infer the model parameters. The inferred stable image structure is adapted to
model slow appearance variations of the object, such as variations caused by
pose change, and illumination changes. Short time disturbances, such as occlu-
sions, are modeled as outlier processes. While tracking with online learning has
the advantage of handling occlusions and appearance variations, they all suffer
from drifting problem more or less. The appearance model with online updating
tends to drift away from the actual appearance of the object as the tracking
error accumulates after tracking of very long period.

Comaniciu[5] proposed a meanshift tracking algorithm that tracks the object
by comparing the similarity between histogram of the tracking window and a
static histogram acquired before the tracking. Comparing to the other track-
ing techniques, this algorithm was well-known for real-time computation and
robustness against partial occlusion. Afterwards people have proposed many ex-
tensions of this algorithm to accommodate different tracking scenarios based
on different assumptions. Collins[6] first proposed to improve the ad-hoc kernel
scale selection technique in mean-shift tracking algorithm by using scale space
techniques. Zivkovic[7] reformulated the mean-shift process as a EM optimiza-
tion process and the scale selection problem is solved as a variance estimation
problem in a way similar to mean estimation. To avoid the distraction caused
by background pixels in tracking window during mean-shift tracking, Porikli[8]
proposed to weight the mean-shift kernel by foreground likelihood.

While all the extensions of mean-shift algorithms focuses on the adaption
of kernel parameters, they all assume the histogram of the tracked object does
not change much during the tracking. This assumption limited its application in
scenario where the appearance of the object changes substantially. For example,
the histogram of the frontal face of a person may be substantially different from
that of the rear view of the person’s head, therefore mean-shift tracker with
histogram of the frontal face could become unstable when the person turns his
face away from the camera. In [9], Birchfield attacked similar problem by using
histogram intersection to blend both skin color and hair color when computing
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histogram similarity. This idea however can not be applied directly in mean-shift
algorithm due to different tracking mechanism.

In this paper, we propose to adapt the static histogram in meanshift track-
ing algorithm by modeling it as random variable generated by piecewise linear
combination of some histogram pairs in a generative framework. The model
parameters can be estimated using on-line Expectation Maximizition(EM) tech-
niques. With the histogram updated online, the meanshift tracker is able to track
object of vast varying appearances. In the mean time, the constraints of the key
appearance histograms prevent the tracking from drifting. We applied our algo-
rithms to human head tracking. The experiments indicate that our algorithms
can achieve more robust and accurate tracking performance comparing to or-
dinary meanshift algorithm. In the mean time, the head poses are successfully
inferred based on the generative model parameters inferred during the tracking.

We first brief meanshift tracking algorithm in Section 2. In Section 3, the
framework of meanshift tracking with online histogram updating is introduced.
Section 4 introduces our histogram generative model and online EM algorithm.
Section 5 presents the experimental evaluation on human head motion tracking
and pose estimation using meanshift tracking with/without our histogram up-
dating technique. We summarize the benefits of histogram updating and discuss
some future works in Section 6.

2 Meanshift Tracking[5]

Suppose the appearance of the object is represented by normalized color his-
togram, denoted as h1 = {h1(n)}, and the histogram of the tracking window
centered at y be h2(y) = {h2(y, n)}. The similarity between the two histograms
can be represented by ρ[h1,h2(y)] =

∑
n

√
h1(n)h2(y, n).

Denote a kernel centered at pixel pi as k(pi), the Meanshift tracking algorithm
can be summarized as follows:

1. Compute the histogram h2(y0) in the current frame, calculate ρ0 = ρ[h1,h2
(y0)] =

∑
n

√
h1(n)h2(y0, n).

2. Compute likelihood ratio βi between the current frame and the previous
frame at each pixel in the tracking window : βi =

∑N
n δ[I(pi)− n]

√
h1(n)

h2(y,n) ,
i=1,..,R.

3. Compute the new location y1 by meanshift y1 =
R
i piβik(pi)

R
i βik(pi)

and compute
ρ1 = ρ[h1,h2(y1)].

4. Quit with failure if |ρ1| < ε0, quit with success if |ρ1− ρ0| < ε1, else y0 = y1,
goto 1.

3 Meanshift Tracking with Online Appearance Updating

As the template histogram h1 = {h1(n)} is kept static, the performance of
meanshift tracking algorithm would become unpredictable in scenario where the
appearance of the object has been undergoing huge variations.
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Fig. 1. The flowchart for meanshift tracking with histogram updating

A solution to this problem is to do online histogram updating. As we men-
tioned at the beginning of the paper, tracking with online model updating with-
out constraints results in drifting problem. We therefore would rather constrain
the online updating process by some key appearances acquired before the track-
ing. The key appearances can be acquired manually from some representative
frames in the video. Or they can be acquired automatically. As tracking with
online learning usually provides good performance for short clips without drift-
ing problem, the tracked appearances in the tracking window can be clustered
into key frames and be used by our algorithm for tracking video of very long pe-
riod. Therefore our algorithm is an effective complement to the current available
tracking tools.

The flowchart for meanshift tracking with histogram updating is illustrated
in Figure 1. At frame t, meanshift tracking is carried out with an approximated
histogram constrained on the manifold defined by key appearance histograms
given the histogram observed in the tracking window of frame t−1. The approx-
imated histogram is then updated based on the histogram observation in the
updated tracking window of frame t. This procedure may iterate several times
till the center of the tracking window converges. The question is now how to
generate a histogram that approximates the observed histogram subject to the
manifold constraints imposed by the key appearance histograms. We propose
two bayesian inference approaches to attack this problem.

4 Generating Histogram from Piece-Wise Linear
Combination of Key Appearance Histogram Pairs

Suppose K key appearances of the object can be acquired before the tracking.
Denote their histograms as {h1(n)}, {h2(n)},..., {hK(n)}. And suppose the his-
togram of the object being tracked at current frame {z∗(n)} can be piece-wise
linearly approximated by some pairs of the key appearance histograms. The
formulation is thus as follows:
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z∗(n) =
M∑

t=1

{wthL(t)(n) + (1− wt)hR(t)(n)}[m = t] (1)

where [.] is a boolean operator, e.g. [m = t] = 1 if m = t, otherwise [m = t] = 0,
m is a discrete hidden variable, wt ∈ [0 1], t = 1, ...,M is the model parameter.
L(t), R(t) ∈ [1, ...,K] specifies the pairs of key appearance samples and defines
the configuration of the appearance manifold that is piece-wise linearly approx-
imated. The {L(t), R(t) : t = 1, ...,M} pairs are specified by user according
to domain knowledge. In the simple case where every pair of key appearance
samples are considered, we have M = K(K − 1)/2.

The bayesian generative model is illustrated in Figure 2.

Fig. 2. The generative model for piece-wise linearly approximation of key appearances

Assuming gaussian distribution for simplicity, the joint distribution of the
observation z(n) at histogram bin n and the hidden variable m can be modeled
as P (z(n),m) = p(m)p(z(n)|m), where

p(m) =
1
M
, for m = 1, ...,M

p(z(n)|m) =
M∏

t=1

[G(z(n);wthL(t)(n) + (1− wt)hR(t)(n), Ψ)][t=m] (2)

where G(;μ, Ψ) denotes Gaussian distribution with mean μ and covariance Ψ .
We can conveniently obtain the a posterior probability of m given

observation z,

p(m|z) =
p(z,m)
p(z)

=
p(z,m)∑K
t=1 p(z, t)

=
p(z|m)∑K
t=1 p(z|t)

(3)

The expectation of log likelihood of the observation of histogram {z(n)} is

E[LL({z(n)}|m, w)] =
n

M

m=1

p(m|z(n)) log p(z(n), m)

∼
n

M

m=1

p(m|z(n)) log G(z(n); wmhL(m) + (1 − wm)hR(m), Ψ).
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Let ∂E[LL]
∂wm

= 0,m = 1, ...,M , the following updating rule is obtained:

ŵm =
∑

n[z(n)− hR(m)(n)][hL(m)(n)− hR(m)(n)]p(m|z(n))∑
n[hL(m)(n)− hR(m)(n)]2p(m|z(n))

Intuitively, we can tell this updating rule computes a probability weighted sim-
ilarity measure between {z(n)} and hR(m)(n), hL(m)(n).

If we further consider the past histogram observations under an exponential
envelope located at the current time u, Cu(k) = αe−(u−k)/τ , for k ≤ u. α =
1 − e−τ so that

∑u
k=−∞ Cu(k) = 1. The expectation of log likelihood of the

observation of histogram {zl(n) : l = −∞, ..., u} becomes

E[LL({zl(n)}|{ml,wl}, l = −∞...u)] =
−∞∑
l=u

Cu(l)E[LL({zl(n)}|ml,wl)]

With the assumption that the histogram of the object does not change very
quickly, we have the approximation p(mu = t|zl(n)) ∼ p(ml = t|zl(n)), t =
1, ...,M if time l and u are close enough. Taking the derivative of expectation of
log likelihood, we obtain the updating rules

D1
t,u = α

n

[zu(n) − hR(t)(n)][hL(t)(n) − hR(t)(n)]p(mu = t|zu(n)) + (1 − α)D1
u−1

D2
t,u = α

n

[hL(t)(n) − hR(t)(n)]2p(mu = t|zu(n)) + (1 − α)D2
u−1

ŵtu =
D1

t,u

D2
t,u

(4)

Therefore given histogram {zu(n)} as observation and {ŵtu−1} as initialization
of the model parameters {ŵt} at frame u, the model parameters can be inferred
as follows:

E-Step. Compute p(m|zu(n)) using Eq. 3 with p(z(n)|m) defined in Eq. 2.
M-Step. Compute ŵt, t = 1, ...,M using Eq. 4,

Finally, the approximated histogram given current histogram observation
{z(n)}is

h∗(n) = E[z∗(n)|z(n)] =
M∑

t=1

{ŵthL(t)(n) + (1− ŵt)hR(t)(n)}p(m = t|z(n))

Loosely speaking, {h∗(n)} can be understood as the point closest to the his-
togram observation on the manifold approximated by the key frame histograms
in a probabilistic sense. We then use {h∗(n)} as the color histogram template
for meanshift tracking.

Suppose the histogram bin size is ofD×D×D, and M pairs of key appearance
histograms are specified, the computation complexity is asymptotically O(MD3)
per iteration.
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5 Experiments

One frequently encountered application scenario in human machine interaction
is to track a person’s head and to detect the person’s head pose. The detection
of the person’s frontal face in particular can trigger some other face analyzing
tools to reveal the person’s identity, facial expression, eye gaze, lip movement,
etc.

We find our algorithm a perfect application to this scenario as the head pose
could be inferred directly according to the online updated histogram generative
model parameters. For evaluation purpose, a video sequence is shot in which the
subject moves his head around with different head poses starting with frontal
view pose. The background contains a lot of shading, the color of which resembles
the hair color, thus could be distraction of meanshift tracker. The frame size of
the video is of 180 by 120. Because human head motion is relatively slow, the
video is down-sampled to 4 frames/second.

For convenience of notation, the algorithms we are going to evaluate are in-
dexed as follows:

MS STATIC. Meanshift algorithm with static histogram
MS UPDATE. Meanshift algorithm with histogram updating

We first applied algorithm MS STATIC to the video. The histogram is
computed in RGB color space with bin size 10 × 10 × 10. The histogram bin
size remains the same for the rest of the experiment. Similar to CAMShift in
OpenCV[10], the window size is automatically adapted according to the 2-nd
order moment of the object likelihood image. Some frames of the tracking result
are shown in the first column of Figure 3. As template histogram is static and
can not exactly characterize the appearance of the object in motion, the tracking
window lags behind the head motion. The last 3 frames show that the shading
in the background resembles the hair color and distracts the tracking window
after the subject turns his head sideways.

To apply the meanshift algorithm with histogram updating, we acquired the
human head appearances of frontal view, side view, and rear view before the
tracking. Denote their histograms as {h1(n)}, {h2(n)}, and {h3(n)} respectively.

(a)

(b)

Fig. 3. Results for meanshift tracking with/without histogram updating. (a)
MS STATIC; (b)MS UPDATE.
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We assumed that the histogram of the human head appearance at arbitrary pose
can be approximated by either the linear combination of frontal view and side
view histograms, or that of side view and rear view. The piece-wise linearly
approximation model is thus formulated as

z(n) = {w1h1(n) + (1− w1)h2(n)}[m = 1]
+{w2h3(n) + (1− w2)h2(n)}[m = 2] (5)

We let α = 0.2 so that the past 5-10 frames can be taken into consideration
during on-line EM updating, and we empirically specified Ψ = 0.1. The key
frames of the tracking result are shown in the second row of Figure 3. Comparing
to the result of MS STATIC in the first row, the new histogram updating
mechanism enabled the meanshift tracker to track the head very closely when
the head is turning away from the camera.

After histogram normalization, the approximation error between the observed
histogram and the updated histogram is 0.164. Therefore the histogram up-
dated with piece-wise linear combination constraint approximated the observed
histogram in tracking windows pretty accurately.

As we collected appearance histogram for three key head poses(frontal, side,
and rear views), we wish to infer these head poses through the estimated his-
togram generative model parameters. using the rule as follows taking Eq. 5 into
consideration:

1. If majority vote of hidden variable m is frontal-side view combination, and
w1 > T , predict the head pose is frontal view.

2. If majority vote of hidden variable m is rear-side view combination, and
w2 > T , predict the head pose is rear view.

3. Otherwise, predict the head pose is side view.

The threshold T is set to 0.5 by default, but user may adjust it in practice.
Figure 4 compares the pose estimation accuracy against ground truth during
the video. The ground truth is labeled by visual inspection. We can tell our
algorithm was able to make correct estimation despite background clutters and
illumination variations, except the estimation result is in general lagging behind
the ground truth.

We also notice abnormality at frame 140 where the estimation predicted the
ground truth when the subject is turning from rear view to side view. This is

Fig. 4. Comparison of the pose estimation against ground truth for the whole video
sequence. Frontal view–1; Side view–2; Rear view–3
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actually caused by tracking inaccuracy. The tracking at this frame is somewhat
distracted by background clusters, and give inaccurate pose estimation which
happens to be the pose which the subject is about to turn to.

Finally, we applied our algorithm to some video sequences provided by
Birchfield[11], some key frames for tracking one of the video are shown in
Figure 5. The video contains a lot of head movements and pose changes. The
background contains a lot of clutters, and some clutters has color components
resembles skin color. As the head moves, the shading on the face also varies. In
the middle of the video, the subject waves yellow folders and hands in front of his
face. Therefore it is a very challenging video for tracking and pose estimation.
Our algorithm is able to track the whole sequence, and reaches pose recogni-
tion accuracy 77% after comparing to ground truth. Comparing to Birchfield’s
tracking result provided by [11], our algorithm is less likely to be distracted by
background clutters and motion dynamics, and can provide head pose estimation
as a bonus.

Fig. 5. More results for tracking and pose estimation with algorithmMS UPDATE

6 Summary

In this paper, we proposed a generative mixture model and online EM updating
algorithm for histogram updating. Experiment showed that, our model enabled
meanshift tracking to achieve more robust tracking performance than that with
static histogram. Based on the estimated model parameter, the object state(head
poses) could be easily inferred.

Comparing to meanshift tracking with static histogram, meanshift tracking
with histogram updating yields more robust and accurate tracking performance.
Comparing to the past online learning techniques for visual tracking, our online
EM algorithm with key appearance constraints avoids the notorious drifting
problem. With the inferred model parameters, the object states(e.g. head pose)
can be inferred as bonus.

Taking all these benefits into consideration, acquisition of more than one key
appearances for the object, the only overhead added to the tracking algorithm,
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become worthwhile. Therefore our proposed online histogram updating tech-
nique for meanshift tracking is indeed an effective complement to the current
tracking techniques. Besides, our proposed histogram generative model with its
corresponding online EM updating algorithm is not confined by meanshift al-
gorithm. It can be considered as an general object appearance model that can
provide likelihood measure in other bayesian tracking frameworks.
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Abstract. Although most works in computer vision use perspective or
other central cameras, the interest in non-central camera models has
increased lately, especially with respect to omnidirectional vision. Cal-
ibration and structure-from-motion algorithms exist for both, central
and non-central cameras. An intermediate class of cameras, although en-
countered rather frequently, has received less attention. So-called axial
cameras are non-central but their projection rays are constrained by the
existence of a line that cuts all of them. This is the case for stereo sys-
tems, many non-central catadioptric cameras and pushbroom cameras
for example. In this paper, we study the geometry of axial cameras and
propose a calibration approach for them. We also describe the various
axial catadioptric configurations which are more common and less re-
strictive than central catadioptric ones. Finally we used simulations and
real experiments to prove the validity of our theory.

1 Introduction

Many camera models have been considered in computer vision and related fields
and even more taylor-made calibration methods have been developed. Most of
those are designed for central cameras, but approaches and studies for non-central
or general ones also exist [1, 2, 3, 4, 5, 6, 7, 8, 9]. An intermediate class of cameras,
lying between central and fully non-central ones, is that of so-called axial cam-
eras: their projection rays are constrained by the existence of a line that cuts all
of them, the camera axis, but they may not go through a single optical center.

The axial model is a rather useful one (cf. figure 1(a) and (b)). Many mis-
aligned catadioptric configurations fall under this model. Such configurations,
which are slightly non-central, are usually classified as a non-central camera and
calibrated using an iterative nonlinear algorithm [10, 11, 12]. For example, when-
ever the mirror is a surface of revolution and the central camera looking at the
mirror lies anywhere on the revolution axis, the system is of axial type. Further-
more, two-camera stereo systems or systems consisting of three or more aligned
cameras, are axial. Pushbroom cameras [13] are another example, although they
are of a more restricted class (there exist two camera axes [14]).

In this paper, we propose a generic calibration approach for axial cameras,
the first to our knowledge. It uses images of planar calibration grids, put in

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 704–713, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b) (c)

Fig. 1. Examples of axial imaging models (a) stereo camera (b) a mirror formed by
rotating a planar curve about an axis containing the optical center of the perspective
camera.(c) Calibration of axial cameras using calibration grids: The projection rays,
camera axis and two grids are shown. The axis intersects at a and b on the first and
the second calibration grids respectively.

unknown positions. We show the existence of multi-view tensors that can be
estimated linearly and from which the pose of the calibration grids as well as
the position of the camera axis, can be recovered. The actual calibration is then
performed by computing projection rays for all individual pixels of a camera,
constrained to cut the camera axis.

The paper is organized as follows. The problem is formalized in section 2.
In section 3, we show what can be done with two images of calibration grids.
Complete calibration using three images, is described in section 4, followed by
a bundle adjustment algorithm in section 5. Various types of axial catadioptric
cameras are listed in section 6. Experimental results and conclusions are given
in sections 7 and 8.

2 Problem Formulation

In the following, we will call camera axis the line cutting all projection rays.
It will be represented by a 6-vector L and the associated 4× 4 skew-symmetric
Plücker matrix [L]×:

[L]× =

⎛⎜⎜⎝
0 −L4 L6 −L2
L4 0 −L5 −L3
−L6 L5 0 −L1
L2 L3 L1 0

⎞⎟⎟⎠
The product [L]×Q gives the plane spanned by the line L and the point Q.
Consider further the two 3-vectors:

A =

⎛⎝L5
L6
L4

⎞⎠ , B =

⎛⎝L2
L3
L1

⎞⎠
for which the Plücker constraint holds: BTA = 0. A represents the point at
infinity of the line. The Plücker matrix can be written as:
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[L]× =

⎛⎜⎜⎝
0 −L4 L6 −L2
L4 0 −L5 −L3
−L6 L5 0 −L1
L2 L3 L1 0

⎞⎟⎟⎠ =
(

[A]× −B
BT 0

)

The calibration problem considered in this paper is to compute projection rays
for all pixels of a camera, from images of planar calibration grids in unknown
positions. We assume that dense point correspondences are given, i.e. for (many)
pixels, we are able to determine the points on the calibration grids that are seen
in that pixel. Computed projection rays will be constrained to cut the camera
axis. The coordinate system in which calibration will be expressed, is that of the
first calibration grid. Calibration thus consists in computing the position of the
camera axis and of the projection rays, in that coordinate system. The proposed
approach proceeds by first estimating the camera axis and the pose of all grids
but the first one.

3 What Can Be Done with Two Views of Calibration
Grids?

Consider some pixel and let Q and Q′ be the corresponding points on the two
calibration grids, given as 3D points in the grids’ local coordinate systems. Since
we consider planar grids, we impose Q3 = Q′

3 = 0.
We have the following constraint on the pose of the second grid (R′, t′) as well

as the unknown camera axis L: the line spanned by Q and Q′ cuts L, hence is
coplanar with it. Hence, for the correct pose and camera axis, we must have:

QT[L]×

(
R′ t′

0T 1

)
Q′ = 0

Hence: ⎛⎝Q1
Q2
Q4

⎞⎠T⎛⎝ 0 −L4 L6 −L2
L4 0 −L5 −L3
L2 L3 L1 0

⎞⎠(R̄′ t′

0T 1

)⎛⎝Q′
1

Q′
2

Q′
4

⎞⎠ = 0

where R̄′ refers to the 3 × 2 submatrix of R′ containing only the first and the
second rows. We thus have the following 3 × 3 tensor that can be estimated
linearly from point correspondences:

F ∼

⎛⎝ 0 −L4 L6 −L2
L4 0 −L5 −L3
L2 L3 L1 0

⎞⎠(R̄′ t′

0T 1

)
(1)

It has only 7 degrees of freedom (9 - 1 for scale, -1 for rank-deficiency) so the
10 unknowns (4 for the camera axis, 3 for R′ and 3 for t′) can not be recovered
from it.

We now look at what can actually be recovered from F. Let us first notice that
its left null-vector is (L3,−L2, L4)

T (it truly is the null-vector, as can be easily
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verified when taking into account the Plücker constraint). We thus can recover
2 of the 4 parameters of the camera axis. That null-vector contains actually
the coordinates of the camera axis’ intersection with the first grid (in plane
coordinates). Its 3D coordinates are given by (L3,−L2, 0, L4)

T. Similarly, the
right null-vector of F gives the plane coordinates of the axis’ intersection with
the second grid. Besides this F also gives constraints on R′ and t′. For example
R′ can be extracted up to 2 to 4 solutions. We will later observe that once we
locally shift the intersection points, between the camera axis and calibration
grids, to the origins of the respective grids the vector t′ will lie on the camera
axis. Inspite of all these additional constraints, arising from axial geometry, two
views of calibration grids are not sufficient to uniquely extract R′ and t′. Thus
we use three calibration grids as described below.

4 Full Calibration Using Three Views of Calibration
Grids

Let Q, Q′, Q′′ refer to the grid points corresponding to a single pixel in the three
grids. The poses of the grids are (I,0), (R′, t′) and (R′′, t′′) respectively. Since
the three points Q, Q′ and Q′′ are collinear we use this constraint to extract the
poses of the calibration grids [7]. Every 3 × 3 submatrix of the following 4 × 3
matrix has zero subdeterminant.(

Q
(

R′ t′

0T 1

)
Q′

(
R′′ t′′

0T 1

)
Q′′
)

The submatrices constructed by removing the first and the second rows lead
to the constraints

∑
CiT 1i = 0 and

∑
CiT 2i = 0 respectively (as described

in Table 1). These are nothing but homogeneous linear systems of the form
AX = 0. The unknown vector X is formed from the 14 variables (Ci). Each of
these variables are coupled coefficients of the poses of the grids. The matrix A is
constructed by stacking the trilinear tensors T 1 and T 2, which can be computed
from the coordinates of Q, Q′ and Q′′. In future when we refer to the rank of
a linear system AX = 0, we refer to the rank of the matrix A. The rank has
to be one less than the number of variables to estimate them uniquely upto a
scale. For example, each of the above linear systems must have a rank of 13
to estimate the coefficients (Ci) uniquely. These systems were used to calibrate
completely non-central cameras [10]. However in the case of axial cameras, these
systems were found to have a rank of 12. This implies that the solution can
not be obtained uniquely. In order to resolve this ambiguity we will need more
constraints.

4.1 Intersection of Axis and Calibration Grids

Using the technique described earlier we compute the intersection of the cam-
era axis with the three grids at a,b and c respectively. We translate the local
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Table 1. Trifocal tensor in the generic calibration of completely non-central cameras

grid coordinates such that these intersection points become their respective ori-
gins. Without loss of generality we continue to use the same notations after the
transformations.

Q←− Q− a, Q′ ←− Q′ − b, Q′′ ←− Q′′ − c,

We can obtain a collinearity constraint by putting these origins in the same
coordinate system. Every 3 × 3 subdeterminant of the following 4 × 3 matrix
vanishes. ((

0
1

) (
R′ t′

0T 1

)(
0
1

) (
R′′ t′′

0T 0

)(
0
1

))
=

⎛⎜⎜⎝
0 t′1 t

′′
1

0 t′2 t′′2
0 t′3 t

′′
3

1 1 1

⎞⎟⎟⎠
The camera axis passes through O, t′ and t′′. This enables us to express t′′ as a
multiple of t′ using some scalar Δ: t′′ = Δt′. As a result, the variables C22 and
C23 from Table 1 disappear.

C22 = t′1t
′′
3 − t′3t′′1 = t′1Δt

′
3 − t′3Δt′1 = 0

C23 = t′2t
′′
3 − t′3t′′2 = t′2Δt

′
3 − t′3Δt′2 = 0

On disappearing, C22 and C23 reduce the size of the linear systems
∑
CiT 1i = 0

and
∑
CiT 2i = 0 each by one. Inspite of this reduction there still exists a rank

deficiency of 2 in both these systems. The rank of each of these systems is 11
with 13 nonzero coefficients to be estimated. In the next section we provide the
details of the usage of a coplanarity constraint, which exists in axial cameras, to
remove the degeneracy problems.

4.2 Coplanarity Constraints in Axial Cameras

The camera axis cuts all the projection rays. As observed earlier both O and t′

lie on the camera axis. Along with these two points, we consider two grid points
Q′ and Q′′ lying on a single projection ray. Since these four points are coplanar,
the determinant of the following 4× 4 matrix disappears.

i Motion (Ci) T1i T2i i Motion (Ci) T1i T2i

1 R′

31 Q2Q
′

1Q
′′

4 Q1Q
′

1Q
′′

4 13 R′

22R
′′

32 − R′

32R
′′

22 Q4Q
′

2Q
′′

2 0
2 R′

32 Q2Q
′

2Q
′′

4 Q1Q
′

2Q
′′

4 14 R′

11t
′′

3 − R′

31t
′′

1 0 Q4Q
′

1Q
′′

4

3 R′′

31 −Q2Q
′

4Q
′′

1 −Q1Q
′

4Q
′′

1 15 R′

12t
′′

3 − R′

32t
′′

1 0 Q4Q
′

2Q
′′

4

4 R′′

32 −Q2Q
′

4Q
′′

2 −Q1Q
′

4Q
′′

2 16 R′

21t
′′

3 − R′

31t
′′

2 Q4Q
′

1Q
′′

4 0
5 t′3 − t′′3 Q2Q

′

4Q
′′

4 Q1Q
′

4Q
′′

4 17 R′

22t
′′

3 − R′

32t
′′

2 Q4Q
′

2Q
′′

4 0
6 R′

11R
′′

31 − R′

31R
′′

11 0 Q4Q
′

1Q
′′

1 18 R′′

11t
′

3 − R′′

31t
′

1 0 −Q4Q
′

4Q
′′

1

7 R′

11R
′′

32 − R′

31R
′′

12 0 Q4Q
′

1Q
′′

2 19 R′′

12t
′

3 − R′′

32t
′

1 0 −Q4Q
′

4Q
′′

2

8 R′

12R
′′

31 − R′

32R
′′

11 0 Q4Q
′

2Q
′′

1 20 R′′

21t
′

3 − R′′

31t
′

2 −Q4Q
′

4Q
′′

1 0
9 R′

12R
′′

32 − R′

32R
′′

12 0 Q4Q
′

2Q
′′

2 21 R′′

22t
′

3 − R′′

32t
′

2 −Q4Q
′

4Q
′′

2 0
10 R′

21R
′′

31 − R′

31R
′′

21 Q4Q
′

1Q
′′

1 0 22 t′1t
′′

3 − t′3t
′′

1 0 Q4Q
′

4Q
′′

4

11 R′

21R
′′

32 − R′

31R
′′

22 Q4Q
′

1Q
′′

2 0 23 t′2t
′′

3 − t′3t
′′

2 Q4Q
′

4Q
′′

4 0
12 R′

22R
′′

31 − R′

32R
′′

21 Q4Q
′

2Q
′′

1 0
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Table 2. Bifocal tensor from the coplanarity constraint on O, t′, Q′ and Q′′

⎛⎜⎜⎝
⎛⎜⎜⎝

0
0
0
1

⎞⎟⎟⎠
⎛⎜⎜⎝
t′1
t′2
t′3
1

⎞⎟⎟⎠ (
R′ t′

0T 1

)
Q′

(
R′′ Δt′

0T 1

)
Q′′

⎞⎟⎟⎠
The corresponding constraint is a linear system

∑
αijQ

′
iQ

′′
j = 0 (see table 2).

Note that Q′
4 and Q′′

4 are not present because of the three zeros in the first
column. We can solve this linear system to computer the solutions for αij . We
expand the above linear system and do some algebraic manipulation.

α11Q
′
1Q

′′
1 + α12Q

′
1Q

′′
2 + α21Q

′
2Q

′′
1 + α22Q

′
2Q

′′
2 = 0

Q4(α11Q
′
1Q

′′
1 + α12Q

′
1Q

′′
2 + α21Q

′
2Q

′′
1 + α22Q

′
2Q

′′
2) = 0

Q4Q
′
2Q

′′
2 = −α11

α22
Q4Q

′
1Q

′′
1 −

α12

α22
Q4Q

′
1Q

′′
2 −

α21

α22
Q4Q

′
2Q

′′
1

This will enable us to represent both T 29 and T 113, from the earlier systems, in
terms of other variables in the tensors T 1 and T 2 respectively.

T 29 = −α11

α22
T 26 −

α12

α22
T 27 −

α21

α22
T 28

T 113 = −α11

α22
T 110 −

α12

α22
T 111 −

α21

α22
T 112

Using the above relation we obtain two new constraints given by
∑
AiA1i = 0

and
∑
AiA2i = 0. Note that each of these constraints are linear systems with 12

nonzero coefficients each. Both of them have a rank of 11 and thereby producing
unique solutions for their coefficients (Ai). The individual elements in the poses
of the grids are extracted from these coupled coefficients using orthonormality
constraints of the rotation matrix [7].

5 Bundle Adjustment Formulation

We give the details of a bundle adjustment which refines the estimated camera
axis and poses of the calibration grids. This is similar to our earlier method [10],
except that we have an additional constraint coming from the camera axis. The

i j αij

1 1 t′1(R′

2,1R
′′

3,1 − R′′

2,1R
′

3,1) − t′2(R′

1,1R
′′

3,1 − R′′

1,1R
′

3,1) + t′3(R′

1,1R
′′

2,1 − R′′

1,1R
′

2,1)
1 2 t′1(R′

2,1R
′′

3,2 − R′′

2,2R
′

3,1) − t′2(R′

1,1R
′′

3,2 − R′′

1,2R
′

3,1) + t′3(R′

1,1R
′′

2,2 − R′′

1,2R
′

2,1)
2 1 t′1(R′

2,2R
′′

3,1 − R′′

2,1R
′

3,2) − t′2(R′

1,2R
′′

3,1 − R′′

1,1R
′

3,2) + t′3(R′

1,2R
′′

2,1 − R′′

1,1R
′

2,2)
2 2 t′1(R′

2,2R
′′

3,2 − R′′

2,2R
′

3,2) − t′2(R′

1,2R
′′

3,2 − R′′

1,2R
′

3,2) + t′3(R′

1,2R
′′

2,2 − R′′

1,2R
′

2,2)
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Table 3. Trifocal tensor for the generic calibration of axial cameras

i Motion (Ai) A1i A2i i Motion (Ai) A1i A2i

1 R′
31 Q2Q

′
1Q

′′
4 Q1Q

′
1Q

′′
4 11 C12 − α21

α22
C13 Q4Q

′
2Q

′′
1 0

2 R′
32 Q2Q

′
2Q

′′
4 Q1Q

′
2Q

′′
4 12 Δ(R′

11t
′
3 − R′

31t
′
1) 0 Q4Q

′
1Q

′′
4

3 R′′
31 −Q2Q

′
4Q

′′
1 −Q1Q

′
4Q

′′
1 13 Δ(R′

12t
′
3 − R′

32t
′
1) 0 Q4Q

′
2Q

′′
4

4 R′′
32 −Q2Q

′
4Q

′′
2 −Q1Q

′
4Q

′′
2 14 Δ(R′

21t
′
3 − R′

31t
′
2) Q4Q

′
1Q

′′
4 0

5 t′
3 − t′′

3 Q2Q
′
4Q

′′
4 Q1Q

′
4Q

′′
4 15 Δ(R′

22t
′
3 − R′

32t
′
2) Q4Q

′
2Q

′′
4 0

6 C6 − α11
α22

C9 0 Q4Q
′
1Q

′′
1 16 R′′

11t
′
3 − R′′

31t
′
1 0 −Q4Q

′
4Q

′′
1

7 C7 − α12
α22

C9 0 Q4Q
′
1Q

′′
2 17 R′′

12t
′
3 − R′′

32t
′
1 0 −Q4Q

′
4Q

′′
2

8 C8 − α21
α22

C9 0 Q4Q
′
2Q

′′
1 18 R′′

21t
′
3 − R′′

31t
′
2 −Q4Q

′
4Q

′′
1 0

9 C10 − α11
α22

C13 Q4Q
′
1Q

′′
1 0 19 R′′

22t
′
3 − R′′

32t
′
2 −Q4Q

′
4Q

′′
2 0

10 C11 − α12
α22

C13 Q4Q
′
1Q

′′
2 0

bundle adjustment is done by minimizing the distance between the grid points
and the corresponding projection rays. The cost function is given below.

Cost =
n∑

i=1

∑
j=1

(A + λiD + μjiDi − [RjTj ]Qji)

– (A,D) - represents the axis (point, direction)
– Di - unit direction vector of the ith projection ray
– λi - parameter selecting the intersection of the ith ray and the axis
– Qji - grid point on the jth grid lying the ith ray
– μji - parameter selecting the point on the ith ray closest to Qj

– (Rj ,Tj) - pose of the calibration grid

6 Axial Catadioptric Configurations

Our formulation can classify a given camera into either axial or not. For exam-
ple on applying our method on axial data we obtain unique solutions. On the
other hand, a completely non-central camera will lead to an inconsistent (no
solution), whereas a central camera will produce a rank deficient system (am-
biguous solutions). Thus our technique produces unique solutions only for axial
configurations. This can be used as a simple test in simulations to study the na-
ture of complex catadioptric arrangements (as shown in Figure 2(a)). Since axial
cameras are less restrictive than central cameras, they can be easily constructed
using various combinations of mirrors and lenses. For example there are very
few central configurations [15] (also see Table 4). Furthermore these configura-
tions are difficult to build and maintain. For example, in a central catadioptric
camera with hyperbolic mirror and perspective camera, the optical center has to
be placed precisely on one of the mirror’s focal points. On the other hand, the
optical center can be anywhere on the mirror axis to have an axial geometry.
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(a) (b) (c) (d)

Fig. 2. Test for axial configuration. (a) Catadioptric (spherical mirror
+pers.camera+ortho.camera): becomes non-central when the two optical centers
and the sphere center are not collinear (as shown).(b) Catadioptric (Hyperbolic
mirror+pers.camera): becomes non-central if the optical center is not on the axis of
the hyperbolic mirror (as shown). (c) Tristereo when one of the cameras is axially
misplaced (as shown). (d) shows the mean angular error between the original and
reconstructed projection rays w.r.t disparity. The graphs shown in left, middle and
right correspond to scenarios in (a), (b) and (c) respectively (see text for more details).

Table 4. Catadioptric configurations. Notations: ctrl (pers) - central configuration
with perspective camera, nctrl (ortho) - non-central configuration with orthographic
camera, mir-rot - mirror obtained by rotating a planar curve about the optical axis, o
- optical center of the perspective camera, f - focus of the mirror, MA - major axis of
mirror, OA - optical axis of the camera, = refers to same location, ∈-lies on, ‖-parallel,
∦-not parallel

7 Experiments

7.1 Simulation

We started with perfect axial configurations for three scenarios (as shown in Fig-
ures 2(a), (b) and (c)) and gradually change the configurations to make them
non-central. We quantify this change from the perfect axial configuration as dis-
parity. For example, in Figure 2(a), the disparity represents the distance between
the optical center of the perspective camera and the orthographic camera axis
passing through the center of the sphere. This optical center is initially at a
distance of 3 units from the center of the sphere (which is of radius 1 unit).
In Figure 2(b), the disparity represents the distance between the optical center
of the perspective camera and the major axis of the hyperboloid. Initially the
optical center is at a distance of 5 units from the tip of the hyperboloid, whose
two radii are 5 and 10 units. In Figure 2(c), the disparity represents the distance

.

mirror ctrl (pers) axial (pers) nctrl (pers) ctral (ortho) axial (ortho) nctrl (ortho)
hyperbolic o=f o ∈ MA o /∈ MA - OA ‖ MA OA ∦ MA
spherical - always - - always -
parabolic - o ∈ MA o /∈ MA OA ‖ MA - OA ∦ MA
elliptic o = f o ∈ MA o /∈ MA - OA ‖ MA OA ∦ MA
cone - o ∈ MA o /∈ MA - OA ‖ MA OA ∦ MA

planar always - planar - - -
mir-rot - always - - always -
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(a) (b) (c)

Fig. 3. Axial calibration: (a) Calibration of a stereo system (b) Image captured by a
catadioptric system with a spherical mirror and a perspective camera. (b) Estimated
poses of several grids along with the camera axis.

between the optical center of the third camera and the line joining the first
two cameras. The distance between two consecutive centers of the cameras is 40
units. We calibrate these systems in the presence of disparities. We compute the
mean angular error between the original and the reconstructed projection rays
in Figure 2(d). Note that the the mean angular error (given in radians) reaches
zero only at the precise axial configuration.

7.2 Stereo Camera

We captured three images of a calibration grid using two different cameras.
The goal is to reconstruct the projection rays of both the cameras in the same
generic framework using our axial calibration algorithm. Here the camera axis
is the line joining the two optical centers (see Figure 3(a)). The image of the
combined system is formed by concatenating the images from the two cameras.
Figure 2(d) shows that our algorithm is very sensitive to noise. However using
RANSAC, it is possible to obtain a good calibration. Once we compute the
pose of the grids we can compute the rays corresponding to individual cameras
in the stereo system. These rays can also be made to intersect separately and
parameterized using a pinhole model. The RMS bundle adjustment error, based
on the distance between the projection rays and grid points on the calibration
grids, is of the order of 0.29% w.r.t overall size of the scene. The estimated
camera parameters are close to the correct results. The reconstructed projection
rays and grids are shown in Figure 3(a).

7.3 Spherical Catadioptric Cameras

We calibrated a real spherical catadioptric camera and extracted the camera
axis. We start with an initial calibration using three grids using the above axial
algorithm. This enables us to obtain an initial estimate for the axis and the
projection rays. Using this partial calibration, we use pose estimation to incre-
mentally compute the pose of newer grids. We followed our earlier method to
obtain complete calibration [10]. The calibration grid captured by a spherical
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catadioptric camera is shown in Figure 3(b). We estimated the pose of several
grids on a turntable sequence using the calibration. The grid positions and the
axis are shown in Figure 3(c). For more details about results and other experi-
mental issues please refer to [16].

8 Conclusions

We studied the theory and proposed a linear calibration algorithm for an in-
termediate class of cameras called axial cameras. Further line of investigation
needs to be carried out to test the accuracy of this approach with respect to
parametric and completely non-central approaches.

Acknowledgments. We thank Tomás̆ Pajdla, Branislav Mic̆us̆́ık and Diana
Mateus for the data.
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Abstract. This paper presents a theoretical analysis of the behavior of
“Structure from Motion” (SFM) algorithms with respect to the errors
in intrinsic parameters of the camera. We demonstrate both analytically
and in simulation how uncertainty in the calibration parameters gets
propagated to motion estimates. We studied the behavior of the esti-
mation of the focus of expansion (FOE) in the case that the camera is
well calibrated except that the focal length is estimated with error. The
results suggest that the behavior of the bas-relief ambiguity is affected
by the erroneous focal length. The amount of influence depends on the
relative direction of the translation and rotation parameters of the cam-
era, the field of view and scene depth. Simulation with synthetic data
was conducted to support our findings.

1 Introduction

Structure from Motion has been the central problem of computer vision and
constantly received attention from numerous researchers since 1980s. Much work
about the SFM error analysis has been done in the last 15 years [1, 5, 10]. Various
ambiguities such as bas-relief ambiguity and opposite minimum were reported
in the literature and were mainly attributed to the presence of noise in the im-
age measurements [1, 5, 4]. In [9], Xiang and Cheong argued that all the major
ambiguities are actually inherent to the optimization criteria adopted and thus
are algorithm-independent and will persist even with noiseless input. Although
dealing with the statistical adequacy of the optimization criteria is important for
understanding the effect of noise, it is equally important to understand the de-
tailed nature of the inherent ambiguities caused by the geometry of the problem
itself and thus cannot be removed by any statistical schemes. In this paper, we
adopt such geometrical approach and further the analysis of SFM with erroneous
intrinsic calibration and uncalibrated scenario.

In a recent critique of SFM research, Oliensis [7] argues that more compre-
hensive theoretical as well as phenomenological analyses of algorithm behavior
should be carried out under all sorts of typical scenarios. Such analyses are
important not only for understanding algorithms’ properties, but also for con-
ducting good experiments and for developing the best algorithms. Based on the
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work of [9], we propose in this paper an approach that lends itself towards
understanding the behavior of SFM algorithms in uncalibrated scenario. In par-
ticular, we are concerned with the limitation of SFM algorithms in the face of
errors in the estimation of the focal length. This is important for camera systems
with zoom capability and online calibration cannot be always done with the req-
uisite accuracy. Instead of dealing with specific algorithms each using different
optimization techniques, we study one class of algorithms based on the weighted
differential epipolar constraint. It is based on the difference between the original
optical flow and the reprojected flow obtained via a back projection of the re-
constructed depth, analogous to the distance between the observed feature and
the reprojection of the recovered structure in the discrete case. This criterion
permits a unifying view of these different algorithms. It also allows us to develop
a simple and explicit expression for the residual error in terms of the errors in
the 3-D motion estimates and the intrinsic parameters and enables us to predict
the exact conditions likely to cause ambiguities. The error surfaces under a wide
range of motion-scene configurations are plotted, from which several results are
drawn.

1.1 SFM with Erroneous Estimation of Focal Length

Like the SFM algorithms, calibration algorithms are also sensitive to noise and
lack robustness and reliability. Given the difficult of calibrating the camera pre-
cisely, projective approaches aim to perform SFM without calibration, that is,
all the calibration information is neglected and the intrinsic camera parameters
are assumed to vary freely from frame to frame. Although in some applications
a full-fledged Euclidean reconstruction is not necessary, for instance in visual
servoing or in image-based rendering, the projective approach may be too gen-
eral to a fault. Although enormous amount of work on developing projective
algorithms have been carried out by researchers, we still do not know when the
projective approach is the right tool for its main task of dealing with calibration
uncertainty. The projective approach assumes zero knowledge of the calibration.
In practice, there is always something we may say about the intrinsic camera pa-
rameters. It is questionable whether such neglect of available information leads
to an increased or decreased robustness. To answer this, one thing we need to
know is whether the calibration uncertainty is large enough in practice to affect
the goal of motion estimation and depth reconstruction. Oliensis [7] reported
that even small errors in the estimation of focal length led to significant errors
in the 3-D motion estimation. In this paper, we use the error surface to illus-
trate the behavior of egomotion estimation with erroneous calibration of the
focal length.

If such an understanding can be achieved, we can better judge if there is a need
of constant recalibration using robust but computationally intensive algorithms,
or we can accept certain errors in the focal length estimate but at the same
time are fully aware of the limit of the applicability of such algorithm. Due to
space limitation, we assume in this paper no errors in other intrinsic parameters.
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However the extension to those cases is not difficult and the results remain largely
the same.

2 Background and Prerequisite

2.1 Models

A pinhole camera model with perspective projection is assumed as shown in
Figure 1. In the figure, the camera is moving with a translational velocity v =
(U, V,W )T and a rotation velocity r = (α, β, γ)T . The motion of the camera
about a static environment results in a scene point P moving with a 3-D velocity
(respective to the camera) as follows:

Ṗ = −t− r × p, (1)

from which the well known 2-D motion field equations [6] can be derived: If we
separate the motion in the horizontal and vertical directions, we can rewrite the
above equation as follow:

u =
W

Z
x− f U

Z
+
xy

f
α− f

(
1 +

x2

f2

)
β + γy (2)

v =
W

Z
y − f V

Z
− xy
f
β + f

(
1 +

y2

f2

)
α− γx. (3)

where (x, y) defines a feature point on the image plane. We define ṗtr = (utr, vtr)
T

and ṗrot = (urot, vrot)
T , where ṗtr

Z and ṗrot are the flows components due to
translation and rotation respectively. Since only the translational direction can
be recovered from the flow field, we can set W = 1 without loss of generality.

Fig. 1. The pinhole camera model
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2.2 Optimization Criteria for SFM

The goal in motion estimation is to determine the translational and rotational
parameters that are most consistent with the given set of point correspondences
(discrete case) or flow fields (differential case). This goal is normally accom-
plished through the minimization of a cost function. Most of the existing cost
functions for SFM are based on some weighted form of the epipolar constraint.
The epipolar constraint relates the 3-D motion parameters with the image dis-
placements, independent of depth. While the epipolar constraint was first for-
mulated in the discrete case, it can also be developed in the differential case
analogous to the discrete case:

pT t̂ṗ+ pT t̂r̂p = 0. (4)

In [9] a cost function based on a weighted version of the above constraint is
proposed:

JR =
n∑

i=1

(
([ṗi]2 − ṗroti) ·ˆ̇ptri

ˆ̇ptri · ni

)2

. (5)

where ni is a unit vector in the image plane representing a particular direction
associated with the ith image point and ṗi is the optical flow at the same point.
In this paper, we denote any estimated parameter with the hat symbol ( ˆ )
and error in the estimated parameter with the subscript e. Thus, error of any
estimate s is defined as se = s − ŝ. It was shown in [9] that the various cost
functions using in different algorithms correspond to different choices of ni in
the preceding expression.

3 Error Analysis of Motion Estimation Algorithms with
Erroneous Estimation of Focal Length

In this section, we will investigate the behavior of motion estimation under the
circumstance of inaccurate camera calibration with error in the estimate of the
focal length.

First, we need to express the cost function JR in terms of the various compo-
nent errors in the 3-D motion estimates. This allows us to obtain a more obliging
form for analyzing the ambiguity behavior over a wide range of conditions in
more specific details. Substituting ˆ̇ptri = (xi − x̂0, yi − ŷ0)T (where (x0, y0) is

the focus of expansion FOE), [ṗi]2 = (ui, vi)
T =

(
xi−x0

Zi
+ uroti,

yi−ŷ0
Zi

+ vroti

)T

and ṗroti = ( ˆuroti, ˆvroti)
T into Equation (5) we have:

JR =
n∑

i=1

(
(x− x̂0, y − ŷ0) ·

(
vrote −

y0e

Z ,
x0e

Z − urote

)
(x− x̂0, y − ŷ0) · n

)2

, (6)
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where the various error terms are as follows:

(x0e , y0e) = (x0 − x̂0, y − ŷ0)

urote = −
(
βf − β̂f̂

)
+
(
α

f
− α̂
f̂

)
xy

−
(
β

f
− β̂
f̂

)
x2 + γey

vrote =
(
αf − α̂f̂

)
+
(
α

f
+
α̂

f̂

)
y2

−
(
β

f
− β̂
f̂

)
xy − γex.

Besides the usual errors in the extrinsic motion parameters, we have intro-
duced the inaccurate focal length estimate f̂ in the above expression. For nota-
tional convenience, we omit the subscript i in the expression of JR, although the
summation runs over all feature points. Furthermore, we denote the terms in the
numerator of Equation (6) (x− x̂0, y − ŷ0)T and

(
vrote −

y0e

Z ,
x0e

Z − urote

)T as
t1 and t2 respectively, as in [9]. We also adopt the similar terminology that for
the vectors t1 and t2, t1,n and t2,n denote the nth order component with respect
to x and y; thus we have:

t1 = t1,0 + t1,1 (7)
t2 = t2,0 + t2,1 + t2,2 + t2,z,

where

t1,0 = (−x̂0,−ŷ0)T

t1,1 = (x, y)T

t2,0 =
((
αf − α̂f̂

)
,
(
βf − β̂f̂

))T

t2,1 = (−γex,−γey)
T

t2,2 =

⎛⎝(α
f −

α̂
f̂

)
y2 −

(
β
f −

β̂

f̂

)
xy

−
(

α
f −

α̂

f̂

)
xy +

(
β
f −

β̂

f̂

)
x2

⎞⎠
t2,z =

(
−y0e

Z
,
x0e

Z

)T

.

The depth Z may depend on x and y in a complex manner, thus the notation
t2,z is used and the order is unspecified.

Equation (5) shows that for any given data set (x, y, Z), the residual error is
a function of the true FOE (x0, y0), the estimated FOE (x̂0, ŷ0), the error in the
rotation estimates (αe, βe, γe) and the estimated focal length f̂ . We immediately
note the estimation of γ is not affected by the inaccurate focal length, thus can
be estimated with high accuracy.
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The following two conditions should be satisfied to make the numerator of
the cost function vanish: (1) making t1 and t2 perpendicular to each other and
(2) making ||t2|| small. Condition (2) helps because condition (1) can never be
completely satisfied at every image point under general situation. Making ||t1||
small does not help since it appears in both the numerator and the denominator
(2). When both these conditions are approached, ambiguities arise.

From the expression of t2 in Equation (7), we can see that t2,0 and t2,Z are
pointing towards constant directions for all the feature points. If we consider t1,1
as a perturbation to the vector t1,0 and t2,1 + t2,2 as perturbation of (t2,0 + t2,Z),
then making (t2,0 + t2,z) perpendicular to t1,0 is a reasonable choice for the
minimization of JR.

y0e − αefZ − α̂feZ

x0e + βefZ + β̂feZ
=
y0
x0
. (8)

Note that in the calibrated case (f̂ = f), the preceding condition can be bro-
ken down into two independent constraints, one relating to translational para-
meters x0

y0
= x̂0

ŷ0
= x0e

y0e
and the other relating to rotational parameters αe

βe
= − ŷ0

x̂0
.

The first constraint characterizes the bas-relief valley. However, in the uncali-
brated case, when the error in f is significant, αe and βe cannot be freely varied
such that αe

βe
= − ŷ0

x̂0
is satisfied. Thus constraint (8) cannot be broken down

into two independent constraints. Rather, due to the significant error in f , the
term t2,2 can no longer be treated as second order effect and be ignored. Making
t2,2 small is just as important towards minimizing the cost function. Thus the
rotational estimates are subject to the following constraint:

α

f
=
α̂

f̂
,
β

f
=
β̂

f̂
. (9)

In summary, satisfying both constraints (8) and (9) simultaneously is the best
that can be done when there is error in the focal length estimate. Combining (8)
and (9), we obtain

y0e − αfZ
(
1− f̂

f

)
x0e + βfZ

(
1− f̂

f

) =
y0
x0
. (10)

Equation (10) suggests that with error in the focal length, the bas-relief valley [9]
whose direction in the error surface is originally defined by x0e

y0e
= x0

y0
in the

calibrated case, will now undergo a rotation due to the additional terms that
appear in the LHS of Equation (10). The direction of the rotation depends on
the sign of α̂, β̂ and fe in a complex manner. We illustrate the dependence using
the particular situation α > 0, β > 0, x0 > 0, y0 > 0. The results will be
extended to general situations in the next section.

In the case when α̂ > 0, β̂ > 0, the direction depends on the sign of fe in
the following way. If fe > 0, i.e. the focal length is under-estimated, the signs of
the terms of αfZ

(
1− f̂

f

)
and βfZ

(
1− f̂

f

)
in Equation (10) are both positive.

It is then clear from Equation (10) that the bas-relief valley will rotate in the
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(a) (b)

Fig. 2. The phenomenon of the rotation of the bas-relief valley. v = (1, 1, 1), w =
(0.001, 0.001, 0.001), f = 512 pixels for all figures. True FOEs and global minima
are highlighted by “×” and “+” respectively. (a)focal length under-estimated f̂ =
256,with distinct rotation of the bas-relief valley, (b)focal length overestimated f̂ =
1024, rotation of the bas-relief valley not conspicuous.

clockwise direction. See Figure (2a) in the next section. Conversely, when fe < 0,
the rotation in the bas-relief valley is in the anti-clockwise direction. However
the amount of rotation is not so conspicuous compared to the case of fe > 0
(Figure 2b). The reason for this anisotropy with respect to the sign of fe can be
seen from Equation (8). There are two terms in the numerator involving αe and
α̂ and two terms in the denominator involving βe and β̂. When fe < 0, Equation
(9) dictates that the signs of αe and βe are both negative and the signs of α̂ and
β̂ are both positive. Plugging these signs into Equation (8), it is readily seen
that the two aforementioned terms in the numerator are counteracting against
each other, and similarly for the two terms in the denominator. This explains
the less distinct shift in the bas-relief valley for fe < 0.

4 Experiments and Discussion

In this section, we perform simulations on synthetic images to both visualize and
verify the predictions obtained in the preceding section. These simulations were
carried out based on the “epipolar reconstruction” scheme, that is, setting n
to be along the estimated epipolar direction, but we emphasize that the results
obtained in the preceding section are valid for all choices of n. All the combi-
nations of different signs of translation and rotation parameters with over- and
under-estimation of the f are simulated.

To visualize the residual error surface, it is easier to deal with a 3-D surface.
We use the translation error surface for this purpose. Each point on this surface
represents a FOE candidate, i.e., the FOE value is fixed. The rotation variables
are then solved in terms of the fixed FOE so as to minimize JR. The proce-
dure is carried out under three cases: no error in f̂ , over-estimation in f̂ and
under-estimation in f̂ . To describe the entire residual surface completely, JR is
computed for each FOE candidate using the following:
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JR =
n∑

i=1

⎛⎝c1i −
(
c1iα̂+ c3i β̂ + c4i γ̂

)
ηi

⎞⎠2

, (11)

where

c1i = u(y − ŷ0)− v(x− x̂0)

c2i =
xy

f
(y − ŷ0)− (

y2

f
+ f) (x− x̂0)

c3i =
xy

f
(x− x̂0)− (

x2

f
+ f)(y − ŷ0)

c4i = x (x− x̂0) + y (y − ŷ0)
ηi =

√
(x− x̂0)2 + (y − ŷ0)2.

We obtain the rotation variables by the SVD (singular value decomposition)
method, a typical linear least squares fitting algorithm. We perform this fitting
for each fixed FOE candidate over the whole 2-D search space and obtained
the corresponding reprojected flow difference JR. The residual values were then
plotted in such a way that the image intensity encoded the relative value of the
residual (bright pixel corresponded to high residual value and vice versa). The
imaging surface was a plane with a dimension of 512× 512 pixels; its boundary
was delineated by a small rectangle in the center of the plots. The residuals
were plotted over the whole FOE search space covering the entire hemisphere
in front of the camera. We used visual angle in degree rather than pixel as the
FOE search step thus the coordinates in the plots were not linear in the pixel
unit. The synthetic experiments have the following parameters: the focal length
was 512 pixels which meant a FOV of approximately 53o; there were 200 feature
points distributed randomly over the image plane. The camera was undergoing
a general translation with the translational parameters being (1, 1, 1).

We conducted experiments under the following conditions:

1. under- and over- estimation of focal length;
2. different sign combination of α, β, x0 and y0;

The case when α > 0 and β > 0 are explained and plotted in Figure 2. The
numerical data of simulations showed that there were large errors in the estimate
of α and β when the focal length was over- or under-estimated, compared to the
case of focal length well calibrated. To facilitate further discussion, we define the
direction of various vectors as follows. For instance, when α > 0 and β > 0, we
say that the direction of the rotation (more exactly the in-plane rotation) is in
the first quadrant. Figure 3 list all the influence of the erroneous focal length on
the bas-relief valley.

The property of bas-relief valley can be summarized as follow:

Under- versus over-estimation of focal length. Under-estimation of focal
length always has a stronger rotational effect on the bas-relief valley than over-
estimation. This may suggest that robust translation estimation under uncertain
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Rotation of bas relief valley for different translation and rotation configurations
with under-estimated focal length. In first row, where translation and rotation are at
the same direction, bas-relief valley experienced a clockwise rotation; whereas in the
second, translation and rotation are at the opposite direction, bas-relief valley rotate
in an anti-clockwise direction.

calibration can be better accomplished by setting a larger-than-true focal length.
Similar idea has been explored to design robust motion estimation algorithms
using the depth-is-positive constraint [2].

Direction of rotation of bas-relief valley. For the case of under-estimation,
if the “direction” of the rotation is the same as the direction of the translation,
the bas-relief valley rotates in a clockwise direction (Figure (3), first row). If the
two directions are opposite to each other, the bas-relief valley rotates in an anti-
clockwise direction (Figure (3), second row). In Figure (3) W = 1, γ = 0.001
f = 512 and f̂ = 256 for all diagrams. The other translational and rotational
parameters are (a) (U, V ) = (1, 1), (α, β) = (0.001, 0.001) (b) (U, V ) = (1,−1),
(α, β) = (0.001,−0.001) (c) (U, V ) = (−1, 1), (α, β) = (−0.001, 0.001) (d)
(U, V ) = (−1,−1), (α, β) = (−0.001,−0.001) (e) (U, V ) = (−1,−1), (α, β) =
(0.001, 0.001) (f) (U, V ) = (−1, 1), (α, β) = (0.001,−0.001) (g) (U, V ) = (1,−1),
(α, β) = (−0.001, 0.001) (g) (U, V ) = (1, 1), (α, β) = (−0.001,−0.001).

Extent of the erroneous focal length. If the “direction” of the rotation
is “perpendicular” to the direction of the translation (i.e. they are in adjacent
quadrants), the effect of erroneous focal length is smaller than the case where the
“directions” of rotation and translation are the same or in the opposite direction.
Due to space limitation, the plot results are not shown.

Large versus small scene depth. From Equation (8), we observe that big
value of Z tends to have a stronger rotation effect on the bas-relief valley).
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Thus the numerically less stable case of large depth points is more susceptible
to the influence of error in f̂ .

5 Conclusions

In this paper we have developed expressions describing the error behavior of
egomotion estimation when the focal length is calibrated with error. The key
results in this paper are independent of both the egomotion estimation as well
as the calibration algorithms. One important suggestion is that, provided that
one knows the rough range of the true focal length, setting a larger-than-true
focal length helps to estimate the direction of translation better. Similar idea has
been explored to design robust motion estimation algorithms using the depth-
is-positive constraint.

The results also show that the effect of erroneous focal length on the FOE
estimate is not the same over different translation and rotation directions. The
structure of the scene (depth) affects the shifting of the FOE estimate as well.

For the case of varying calibration parameters (f dynamically changing), ad-
ditional analyses are in order. The results established in [3]—that zoom field
crucially influence properties of depth reconstruction —raise the possibility that
the results might be quite different.
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Abstract. An occluding contour of a sphere is projected to a conic in
the perspective image, and such a conic is called a sphere image. Re-
cently, it has been discovered that each sphere image is tangent to the
image of the absolute conic at two double-contact image points. The
double-contact theorem describes the properties of three conics which
all have double contact with another conic. This theorem provides a lin-
ear algorithm to find the another conic if these three conics are given. In
this paper, the double-contact theorem is employed to interpret the prop-
erties among three sphere images and the image of the absolute conic.
The image of the absolute conic can be determined from three sphere
images using the double-contact theorem. Therefore, a linear calibration
method using three sphere images is obtained. Only three sphere im-
ages are required, and all five intrinsic parameters are recovered linearly
without making assumptions, such as, zero-skew or unitary aspect ra-
tio. Extensive experiments on simulated and real data were performed
and shown that our calibration method is an order of magnitude faster
than previous optimized methods and a little faster than former linear
methods while maintaining comparable accuracy.

1 Introduction

Camera calibration is often required when recovering 3D information from 2D
images. The parameters of a camera to be calibrated are divided into two classes:
intrinsic and extrinsic. The intrinsic parameters describe the camera’s imaging
geometric characteristics, and the extrinsic parameters represent the camera’s
orientation and position with respect to the world coordinate system. Many ap-
proaches to camera calibration have been proposed and they can be classified
into two categories: using calibration objects [6, 13, 16, 11, 1, 2, 8, 12, 14, 15], and
self-calibration [7, 5, 9]. As we know, the occluding contour of a sphere is pro-
jected to a conic in the perspective image [1, 2, 5, 12, 14]. The image conic of a
sphere is called a sphere image in this paper.

Here is a brief review of the existing methods for camera calibration using
sphere images. Daucher et al. [2] found that the major axis of a sphere im-
age passes through the principal point. Based on this observation, they further
proposed to first determine the aspect ratio using three sphere images, then de-
termine the principal point and finally determine the focal length. Note that this

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 724–733, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Interpreting Sphere Images Using the Double-Contact Theorem 725

method can only recover four intrinsic parameters while assuming the skew factor
equal to zero. Recently, a geometric invariant based method using sphere images
proposed in [14](This method is originally proposed for catadioptric camera cali-
bration) directly gave two constraint equations in the intrinsic parameters arising
from one sphere image. Therefore, three sphere images may be used to recover
all the five intrinsic parameters with nonlinear optimization techniques provided
good initial guesses. The image of the absolute conic (IAC) plays a central role in
camera calibration. Teramoto and Xu [12] first discovered the algebraic relation
between the sphere image and the IAC, and then provided an efficient algorithm
to solve for the camera parameters. However, in their approach the minimization
is accomplished by means of a general-purpose nonlinear minimization and re-
quired a good initial estimation to start the minimization. Agrawal and Davis [1]
utilized the dual representation instead, i.e., the algebraic relation between the
dual form of a sphere image and the dual image of the absolute conic (DIAC),
then employed semi-definite programming (SDP) to solve for the intrinsic para-
meters without requiring initial estimations. Base on the main principles derived
in [12, 1], we further discovered that each sphere image is tangent to the IAC at
two double-contact image points as described in [15].

In this paper, the double-contact theorem [3] is used to interpret the properties
among three sphere images and the IAC. The IAC can be determined from three
sphere images using the double-contact theorem. Therefore, a linear calibration
method using three sphere images is obtained.

2 Preliminaries

2.1 Pinhole Camera Model

Let M = (X,Y, Z, 1)T be a world point and m = (u, v, 1)T be its image point,
both in the homogeneous coordinates, they satisfy:

μm = PM, (1)

where P is a 3×4 projection matrix describing the perspective projection process.
μ is an unknown scale factor. The projection matrix can be decomposed as:

P = K[R|t], (2)

where

K =

⎡⎣fx s u0
0 fy v0
0 0 1

⎤⎦ . (3)

Here the upper triangular matrix K is the matrix of the intrinsic parameters,
and (R, t) denote a rigid transformation (i.e., R is a rotation matrix and t is
a translation vector) which indicate the orientation and position of the camera
with respect to the world coordinate system.
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2.2 The Equation of a Sphere Image

Let the origin of the world coordinate system located in the vertex of a right
circular cone Q, and the z-axis of the world coordinate system coinciding with
the revolution axis of the right cone, then the right cone Q represented in the
world coordinate system is:

Q =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −α2 0
0 0 0 0

⎤⎥⎥⎦ , (4)

where α = tan θ
2 , and θ is the apex angle of the cone. A world point M =

(X,Y, Z, 1)T on the cone Q satisfies:

MT QM = 0, (5)

or
M

T
QM = 0, (6)

where M = (X,Y, Z)T are the inhomogeneous coordinates of M, and

Q =

⎡⎣1 0 0
0 1 0
0 0 −α2

⎤⎦ . (7)

Fig. 1. A sphere image C obtained from a right cone Q
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From Fig. 1 we know, the vertex of the cone Q is located in the camera’s op-
tical center. Therefore, only rotation exists between the world coordinate system
and the camera coordinate system, i.e., t = (0, 0, 0)T . Then from (1) and (2),
the image of a world point M on the cone Q satisfies:

μm = PM = K[R|0]M = KRM. (8)

Since KR is invertible, we have:

M = μR−1K−1m. (9)

Substituting (9) into (6), we obtain:

mT K−T R−T QR−1K−1m = 0, (10)

or
λC = K−T R−T QR−1K−1, (11)

where λ is an unknown scale factor, and the image conic C is a sphere image
obtained from Q.

2.3 The IAC and the DIAC

The absolute conic Ω∞ is a conic with purely imaginary points on the plane at
infinity π∞ = (0, 0, 0, 1)T , and its matrix form is:

Ω∞ =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ . (12)

The mapping between π∞ and its perspective image is given by the planar
homography H = KR. Since the absolute conic Ω∞ is on π∞, one may compute
the image of the absolute conic (IAC) under H as:

ω = H−TΩ∞H−1 = (KR)−T I(KR)−1 = K−T K−1. (13)

We may define the dual image of the absolute conic (DIAC) as:

ω∗ = KK−T . (14)

2.4 The Algebraic Relation Between a Sphere Image and the IAC

Expand the right side of (11) using

Q =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦+

⎡⎣0 0 0
0 0 0
0 0 −(1 + α2)

⎤⎦ , (15)

and after some manipulations we obtain:

λC = ω − vvT , (16)

where ω is the IAC, and
v =

√
1 + α2K−T r3, (17)

and r3 is the third column of R.
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2.5 The Algebraic Relation Between a Sphere Image and the DIAC

Inverse both side of (11), and after some manipulations as (15), we obtain:

λ′C∗ = ω∗ − v′v′T , (18)

where λ′ is an unknown scale factor, and C∗ is the inversion of the conic C, i.e.,
the dual conic. ω∗ is the DIAC, and

v′ =

√
1 +

1
α2 Kr3. (19)

From (16) and (18), it is not difficult to find that the two equations have the same
mathematical form, no matter whether the dual representation is adopted or not.
In the rest of paper, we only discuss the interpretation for ω using the double-
contact theorem and how to determine ω from this interpretation, because ω∗

can be interpreted and determined in the same way.

2.6 Geometric Relations

Equation (16) can be rewritten as:

λC− ω = −vvT . (20)

Since the rank of the matrix −vvT is one, the rank of the matrix λC − ω is
one too. Consider the pencil of two conics S1 and S2, S1 + μS2 represents a
conic which passes through all the common points of S1 and S2 [10]. Since two
coincident lines (i.e., a repeated line) can be seen as a degenerate conic with
rank 1, from the properties of a pencil of two conics described in [10], we know
that C is tangent to ω at two image points, i.e., two double-contact points, and
the chord of contact, ld ∝ v(derived from (20), where ∝ indicates equality up to
a non-zero scale factor), passes through the two tangent points. Similar results
can be obtained for C∗ and ω∗.

3 Interpretation Using the Double-Contact Theorem

3.1 The Double-Contact Theorem

From the double-contact theorem [3] we know, if three conics C1, C2, C3 all
have double contact with another conic ω, then each two of C1, C2 and C3 have
a ”distinguished” pair of opposite common chords (shown as solid lines in Fig.
2), and the three such pairs of common chords being the pairs of opposite sides
of a complete quadrangle.

Let L1 and M1 be a pair of opposite common chords of C2 and C3, L2 and
M2 be a pair of opposite common chords of C1 and C3, L3 and M3 be a pair
of opposite common chords of C1 and C2. We assume that L1, L2 and L3 are
concurrent. Then from the double-contact theorem, we have,
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Fig. 2. Geometry for the double-contact theorem

ω ∝ 4kC1 + (M2 +M3 −M1)2 ≡ 4kC2 + (M3 +M1 −M2)2

≡ 4kC3 + (M1 +M2 −M3)2 (21)

where k is a scale factor which can be determined from L1, L2, L3, M1, M2 and
M3 (see [3] for details). From (21), we obtain that the chords of contact satisfy:

ld1 ∝M2 +M3 −M1, ld2 ∝M3 +M1 −M2, ld3 ∝M1 +M2 −M3, (22)

corresponding to C1, C2 and C3 respectively. We further find that each chord
of contact (shown as dashed lines in Fig. 2) passes through two vertices of the
triangle determined by the opposite sides of the complete quadrangle. This gives
a geometric method to determine the chords of contact, i.e., vi(i = 1, 2, 3),
from the pairs of opposite common chords of C1 and C2, C1 and C3, C2
and C3. Note that Agrawal and Davis [1] only gave an algebraic method to
solve for vi and the solution for vi is a very important part in the previous
calibration algorithm, but no geometric interpretation for this is given in [1]
and [15].

3.2 Interpretation for Sphere Images

From discussions in Sect. 2.6, we know that each sphere image is tangent to the
IAC at two double-contact image points. The IAC has only purely imaginary
points, but it shares the properties of any conic, such as the double-contact
theorem. Therefore, three sphere images and the IAC can be interpreted by the
double-contact theorem.
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3.3 Determining the IAC

Given three sphere image Ci(i = 1, 2, 3), from (21), we can determine the IAC
ω as follows:
ω = 1

3 (4kC1 + (M2 +M3 −M1)2 + 4kC2 + (M3 +M1 −M2)2

+ 4kC3 + (M1 +M2 −M3)2). (23)

As we know, the IAC ω should be positive definite. The linear methods may fail
in the case where the computed IAC ω is not positive definite. However, this did
not occur in our experiments, except in the case where the noises are very large.
After obtaining ω, it is not difficult to determine vi from From (20).

4 Experiments

We perform a number of experiments, both simulated and real, to test our algo-
rithms with respect to noise sensitivity, and make comparisons with the following
algorithms:

– DCT and DDCT: Using the double-contact theorem related to the IAC
and the DIAC, respectively.

– GEO and DGEO: Using the geometric interpretation related to the IAC
and the DIAC, respectively [15].

– SDP and DSDP: Employing semi-definite programming with the represen-
tation of the IAC and the DIAC, respectively [1].

4.1 Calibration with Simulated Data

The simulated camera has the following parameters: fx = 1200, fy = 1000, s =
20, u0 = 400, v0 = 300. The resolution of the simulated image is 800× 600. We
generate an image containing three sphere images uniformly distributed within
the image. On each sphere image we choose 100 points. Gaussian noise with zero-
mean and σ standard deviation is added to these image points. We vary the noise
level σ from 0 to 2 pixels. The conic fitting algorithm presented in [4] is used
here. For each noise level, we perform 1,000 independent trials, and the mean
values and standard deviations of these recovered parameters are computed over
each run. The estimated results of these experiments are shown in Fig. 3. Since
the performances of fx and fy, u0 and v0 are both very similar, the estimated
results for fy and v0 are not shown here. From Fig. 3, it is not difficult to find that
the estimated results from SDP and DSDP are almost identical to each other.
In fact, there are only very small differences among the estimated results from
these six different methods. We compare the runtimes of these methods using
MATLAB implementations of all algorithms on a 1.7 GHz Pentium IV processor.
Note that real-time performance is not expected for any of the algorithms under
MATLAB, and our only goal is to provide comparison. All results are averaged
over 1,000 trials and recorded in Table 1. Since SDP is a convex optimization
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. The estimated results of simulated experiments. See text for details.

Table 1. Runtimes (in seconds) for the four algorithms

DCT DDCT GEO DGEO SDP DSDP

runtime 0.098 0.069 0.121 0.107 1.519 2.796

problem and has polynomial worst-case complexity, the runtimes of SDP and
DSDP are about ten times slower than that using DCT and DDCT, whereas
the runtimes of GEO and DGEO are a little slower than that using DCT and
DDCT.
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4.2 Calibration with Real Data

The test sphere for the real experiments is a billiard ball. The ball was placed
in front of a white screen. We took images of the ball using a Sony DSC-F717
digital camera. Three sphere images are taken for the calibration purpose. The
resolution of these images is 800 × 600. Edges were extracted using Canny’s
edge detector and the ellipses were obtained using a least squares ellipse fitting
algorithm [4]. In order to obtain unbiased results, these sphere images should
be uniformly distributed within the image. The ground truths for the camera
parameters are unknown but the approach in [16] is applied before the exper-
iments using a calibration pattern which serves as a reference. The calibration
results with real data are listed in Table 2. From Table 2, one may find that the
calibration results using these six methods are similar to one another.

Table 2. Calibration results with real data, where ”Zhang” is the abbreviation for
”the calibration method proposed by Z. Zhang [16]”

fx fy s u0 v0

Zhang 942.1 936.5 0.9 401.5 274.1
DCT 959.8 950.6 0.6 385.7 267.7
DDCT 974.6 959.1 0.5 403.1 263.6
GEO 958.5 952.0 2.3 388.3 258.8
DGEO 957.7 950.5 3.2 388.6 254.3
SDP 957.3 950.7 2.3 386.6 259.8
DSDP 963.2 956.5 2.3 390.2 259.1

5 Conclusions

In this paper, the double-contact theorem is used to interpret the relation be-
tween three sphere images and the IAC, and also the relation between the dual
of sphere images and the DIAC. A novel geometric method is given to determine
the chord of contact between each sphere image and the IAC from the pairs of
opposite common chords of each two of these three sphere images, which is a
very important part in the previous calibration algorithms. A linear calibration
approach using sphere images is derived from this interpretation. As we know,
the IAC should be positive definite. The linear methods may fail in the case
where the computed IAC is not positive definite. However, this did not occur
in our experiments, except in the case where the noises are very large. This
novel algorithm has been tested in extensive experiments with respect to noise
sensitivity.
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Abstract. The 2D Fourier Descriptor is an elegant and powerful tech-
nique for 2D shape analysis. This paper intends to extend such technique
to 3D. Though conceptually natural, such an extension is not trivial in
that two critical problems, the spherical parametrization and invariants
construction, must be solved. By using a newly developed surface para-
metrization method–the discrete conformal mapping (DCM)—we pro-
pose a 3D Fourier Descriptor (3D-FD) for representing and recognizing
arbitrarily-complex genus-zero mesh objects. A new DCM algorithm is
suggested which solves the first problem efficiently. We also derive a
method to construct a truly complete set of Spherical Harmonic invari-
ants. The 3D-FD descriptors have been tested on different complex mesh
objects. Experiment results for shape representation are satisfactory.

1 Introduction

3D object recognition is one central task of computer vision research. A good
shape representation scheme is at the heart of a practical shape recognition sys-
tem. This paper aims at developing a new 3D shape representation and recog-
nition method for general mesh objects. Our method is based on Fourier Shape
Analysis. Specifically, We intend to extend the well-known and powerful 2D
Fourier descriptor technique to 3D Fourier Descriptors (3D-FD).

Although it is conceptually straightforward, in practice such an extension
is non-trivial. The main challenges arise from two tasks: (1) spherical parame-
trization; and (2) invariant computation. In 2D-FD processing, the 2D shape
(contour) is mapped onto a unit circle, by using an arc-length parametrization.
This is followed by the Fourier analysis on this circle. Analogously, in 3D the
object (surface) should be first mapped onto a unit sphere, then followed by a
Fourier analysis on the sphere. Fourier analysis on a sphere is not a difficult task;
Spherical Harmonic analysis (SH) is such a technique ([6]) and had been intro-
duced to computer vision for 3D representation decades ago. The real difficulty
comes from surface parametrization. Unlike in 2D where arc-length is a natural
parametrization, there is no natural way of doing surface parametrization for a
general 3D surface, even though it does have a spherical-topology. Some conven-
tional spherical parameterizations techniques exist, but seldom do they provide
satisfactory results (as will be explained later).
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To attack these difficulties, we propose a new method of discrete conformal
mapping (DCM) in conjunction with the invariant Spherical Harmonics (SH).
As will be shown in this paper, the method performs excellently in providing
shape descriptors that can be used to represent 3D meshes in a set of coeffi-
cients. In principle, these descriptors are complete, therefore they can be used
to reconstruct the original surface.

After the DCM mapping, we apply the spherical harmonics (SH) expansion
to derive a complete and invariant shape representation. We recognize that both
the invariance (w.r.t. irrelevant transformations) and the completeness are
equally important issues for a good shape representation. By completeness we
mean that the representation contains sufficient information for reconstructing
the original shape (up to some non-essential transformations). Most existing SH-
invariants methods, however, have overlooked the completeness issue. As a result,
conventional SH invariants often leads to significant information loss. We propose
a new method to construct truly complete SH invariants, basing on a recent paper
of SH computation[10]. By this method the SH coefficients are made invariant
to irrelevant transformations, as well as retaining the completeness strictly.

So far we have conducted experiments on a small set of meshes of complex
geometries and different classes. But results already show that the obtained
descriptors are invariant to rotation/translation/scale, and robust to different
tessellation, triangulation and resolution, and noise. In addition, they preserve
the geometric information of the original shape.

2 Previous Work

Spherical Parametrization. Because the Spherical Harmonics are defined
on spherical domain, it is thereby important to find an appropriate spherical
parametrization for a 3D surface.

Most conventional methods often choose a naive parametrization method (for
example use center-emitted rays to intersect the object surface), they therefore
can only handle convex objects or star-like objects [1]. Horn’s EGI (and its
many extensions) is a well-known and nice method for shape description[2][3]. It
is based on the theory of Gauss map, hence has a solid theoretical ground. But, in
general the Gauss map is not one-to-one for a concave object, therefore its many
useful properties are enjoyed by convex objects only. Recent attempts at spher-
ical parametrization of complex (e.g., concave, non-star-like, convolved, folded)
3D objects provide many other interesting approaches. A popular scheme is to
gradually deform a surface until it maps onto the sphere (or conversely deform a
sphere to the surface). Herbert et al’s SAI [2], and Sijbers et al’s 3D-Fourier [4]
are examples of the kind. A shortcoming with them is the hardness to analyze
the results, due to their heuristic nature. Brechbuhler et al proposed an inter-
esting method based on solving a heat conduction equation inside the 3D object
volume [9]. However, the computation burden is very heavy and the final result
depends on some user specified landmark positions.
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3 New Spherical Parametrization

Mathematical backgrounds. We base our method on Discrete Conformal
mapping. SupposeM1 andM2 are two regular surfaces. A bijective differentiable
mapping f : M1 → M2 between the two surfaces is said to be conformal if it
leaves the angle between curves on the surface invariant. A mapping between two
surfaces is a conformal mapping if and only if it re-scales the first fundamental
forms everywhere.

According to the celebrated Riemann Mapping Theorem, there always exists
a conformal mapping between any two genus-zero surfaces. In particular, there
exists a conformal mapping from any genus-0 surface to the unit sphere S2—a
spherical parametrization of the surface.

However, such a conformal mapping is not unique since two such maps may
differ by a further conformal mapping of S2 to itself. The set of such mappings
form S2 to S2 forms a 6-dimensional Lie group, the Möbius group, as will be
explained now.

We identify the 2-dimensional sphere S2 with the one-point-compactified com-
plex plane lC∪{∞} via the stereographic mapping ϕ(x, y, z) = (x/(1−z)+iy/(1−
z)) where (x, y, z) are the Euclidean coordinates of a point on the unit sphere.
The conformal mappings S2 to itself are then simply the group of Möbius trans-
forms of the complex plane given by m(z) = az+b

cz+d , with ad − bc �= 0, where z,
a, b, c and d ∈ lC. This transform has 3 complex (6 real) parameters, since mul-
tiplication of a, b, c and d by a complex number does not change the transform.
To be precise, the set of conformal mappings of S2 are those mappings of the
form ϕ−1 ◦m ◦ ϕ. Another way of thinking of this is to identify lC ∪ {∞} with
the one-dimensional complex projective plane P lC1. Points in P lC1 are repre-
sented by complex 2-vectors. The space P lC1 has the topology of a real 2-sphere
S2, and the stereographic mapping ϕ : (x, y, z) $→ (x + iy, 1 − z) provides the
homeomorphism between these spaces. The Möbius transforms acting on P lC1

are simply the group of projective transforms, represented by non-singular 2× 2
complex matrices.

Harmonic mapping. In practice, the conformal mapping is often approxi-
mated by a harmonic mapping, denoted by f . Namely, it satisfies the following
harmonic (Laplace) equation: !f = div grad f = 0. For three-dimensional
genus-0 surfaces, these two mappings are essentially the same. Therefore, the
problem of finding a spherical conformal parametrization is reduced to a Laplace-
on-Manifold problem, where the target manifold is the unit sphere S2. Usually
this is implemented by minimizing the following harmonic energy function ([23]
[21][14]):EH(f) = 1

2

∫
M1
‖grad f‖2. The overall procedure is thus: first find a

spherical homeomorphic initialization for the given shape, then iteratively mod-
ify this initial mapping by minimizing the above energy function, till it converges
to a conformal mapping. The later stage is known as diffusion.

Step-1: Initialization. We start from a triangulated closed mesh object home-
omorphic to a sphere. The minimization of the harmonic energy is based on an
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iterative updating procedure. It thus requires a good initialization which serves
as the starting point for the iteration. This initialization should be an approxi-
mation of the final conformal mapping.

Based on the fact that the connectivity (adjacency) graph of any genus-0 3D
object is always a 2D planar graph, we propose a simple method for spherical
initialization. Since our diffusion algorithm (described in the next subsection)
has a relatively large convergence neighborhood, we do not require the initial
mapping to be very close to the final result, as long as it is a homeomorphism.
Our initialization procedure is: first choose an arbitrary surface triangle as the
boundary, then apply a straight-line planar graph embedding to the graph, fol-
lowed by an inverse stereographic mapping to get the initial spherical mapping.

Step-2: Diffusion. Having a homeomorphic spherical embedding as the initial-
ization, the next step is to diffuse it to a conformal mapping. We accomplish this
by solving a diffusion equation on the unit sphere, namely the Laplace-Beltrami
equation: !S2 f = divS2gradS2 f = 0. Note that the Laplacian is defined here in
terms of the local geometry of the target manifold. We have found that creat-
ing a chart using the exponential map (or inversely, the logarithm map) gives
significantly better results in terms of convergence, and independence of the ini-
tial function. The exp-map on a manifold intuitively corresponds to expanding
geodesic curves to the tangent plane. Using the exponential map, all mesh ver-
tices are mapped one-to-one onto a single chart. The actual computation of such
exp-map on the sphere is also very simple, thanks to the Rodrigues’ formula of
matrix exponential [16].

Step-3: Möbius Normalization. After previous steps, a conformal mapping
f from the surface M1 to S2 is obtained. However, this mapping is not unique,
since it may be followed by another arbitrary conformal mapping of the sphere
to itself. As seen in section 3 such a conformal mapping may be represented by
a Möbius transform. Thus, there exists a 6-parameter family of such mappings.
In the current section, we focus on normalizing the mapping from M1 to S2

so that the remaining ambiguity consists only of 3D rotations of the sphere, a
3-parameter family.

A nested-iteration algorithm is suggested for simultaneous diffusion and nor-
malization [19]. However, this is computationally expensive, especially for large
scale meshes. A simplified version by centering the mesh barycenter is thus fur-
ther proposed, but it is still inefficient and sometimes produces degenerate solu-
tion as pointed out by Gotsman [21]. Gotsman suggests using anchor points to
solve it, but this would depend on particular choice of the anchors.

We propose a new method here, which accomplishes the Möbius normaliza-
tion task very efficiently, only at the expense of negligible computation. This is
done by a process that balances the surface area (or “weight”) distribution on
the sphere by a Möbius factorization. Unlike [19][12], we carry out this normal-
ization step after the diffusion process, rather than simultaneously. This leads
to a significant improvement in efficiency.
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Consider a surface element dA located at a point x on M1. For the purpose of
gaining an intuitive understanding of our method, we assume that this surface
element has a “weight” proportional to area, and so the surface element may be
thought of as having weight dA. Now, the mapping f maps this to an element of
weight dA at point f(x) on the sphere S2. The centre of gravity of the surface
mapped on to S2 is given by

∫
M1
f(x)dA. What we really want is to adjust the

mapping f so that this centre-of-gravity is at the origin (centre-of-the-sphere).
If f0 is an initial conformal mapping to S2, then the most general conformal

mapping f : M1 → S2 is of the form ϕ−1 ◦ m ◦ ϕ ◦ f0, where m is a Möbius
transform. We want to find a Möbius transform m such that∫

M1

ϕ−1 ◦m ◦ ϕ ◦ f0(x)dA = 0 . (1)

This could be done by searching over the 6-parameter family of all Möbius trans-
forms. Note, however that applying a rotation to S2 results in a rotation of the
centre of gravity

∫
M1
f(x)dA, and hence does not change the truth or falsehood

of the condition (1). Rotations form a subgroup of the Möbius transforms of
the sphere, and in seeking to enforce (1) we may factor out the rotations, thus
reducing the search to a 3-parameter search.

Formally, it is verified that rotations of S2 correspond precisely to those

Möbius transforms represented by matrices of the form Q =
[
q1 q2
−q2 q1

]
. An arbi-

trary Möbius transform can be factored as

M = Q · R =
[
q1 q2
−q2 q1

]
·
[
k zt
0 1

]
, (2)

where k ∈ IR and zt ∈ lC. Thus, in enforcing (1), we may ignore the left-hand
rotation matrix Q, and constrain our search to Möbius transforms of the form
given by the right-hand matrix above. Such a transformation is of the type
z $→ kz + zt, which represents a scaling, followed by a complex translation (by
zt) in the complex plane. Transformations of this type form a 3-parameter family.

The above discussion was derived in terms of continuous surfaces. In the case
of a triangulated surface M1, we may consider just the vertices vi of the mesh,
and to each one assign a weight equal to the area of the corresponding region in a
dual tessellation. We then seek the solution to

∑
iwi ϕ

−1◦m◦ϕ◦f0(vi) = 0 over
all Möbius transforms of the form m(z) = kz + zt. At first sight, this equation
is nonlinear. By some very simple algebras, however, one can reduce it to an
equivalent linear system, for which a least square technique suffices.

Once this is solved, applying the corresponding spherical affine transformation
R to the diffused result will give us a unique solution up to rotation. As a matter
of example, for the Stanford “bunny” mesh one of our experiments obtained the
following affine factor:

R =
0.21491 −0.00932 + 0.00583i
0.00000 1.00000 ,

whose effect (as can be directly ascertained) is approximately re-scaling in the
radial direction.
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4 The Complete SH Invariants

Any bounded L2 continuous function (real or complex) g(θ, ϕ) defined on a
sphere can always be decomposed into a finite set of SH coefficients Cm

� , where
|m| ≤ �, � = 0, 1, 2, 3, . . . �max, � is called the degree (or frequency) of the SH
expansion. The SH expansion has been employed in many different areas. Its
definition and fast computation can be found elsewhere. In this paper we mainly
address the issue of how to construct complete SH invariants in the context of
3D shape representation.

As its 2D counterpart, 3D SH also has the nice property that the coefficients
can be made invariant with respect to translation, rotation, and scale change.
We are most interested in the rotational invariance, because others can be easily
eliminated by a trivial pre-alignment operation, whereas eliminating the rota-
tion is not so easy. The PCA-pre-alignment technique [1], though was popularly
adopted, proves to be neither accurate nor stable for noisy shapes or shapes with
high-order symmetries.

Many authors suggest the use of the following Energy SH-Invariants (EIs)
[6][7]:EI(�) =

∑
|m|≤� ||Cm

� ||2, which is based on the fact that the squared mag-
nitude of the SH coefficients at every frequency � is independent of rotation.
This method has drawbacks:

1. These invariants are not complete. This results in difficulty in discriminating
shapes. For example, distinct shapes may have the same descriptors, and
similar shapes may not be distinguishable. Moreover, it may not be possible
to reconstruct the original shape from the invariants.

2. There is not only information loss but serious computation waste. For SH
coefficients up to degree �max, there should be ((�max + 1)2) independent
complex invariants. However, only (�max + 1) real energy invariants are ob-
tained by the conventional method.

Our complete SH invariants. We provide a method of constructing a com-
plete set of SH invariants. Completeness implies that the shape descriptors suffer
no ambiguity in shape classification and recognition. We make use of a recent
algorithm of estimating orientation from SHs [10]. The principle is the fact that
SH coefficients at every frequency �, � ≥ 1, form an irreducible representation of
the SO(3) group. In other words, when a rotation is applied to the original func-
tion, the resulting SH coefficients will transform among themselves in exactly
the same way. Specifically, if we apply a rotation denoted by the Euler angles
(α, β, γ), we get new Cm

� from the original Cm′
� defined by:

Cm
� = e−im(α+π/2) ·

|m′|<�

e−im′(γ+π/2)Cm′
�

·
|k|<�

Pm′k
� (0)Pmk

� (0)e−ik(β+π) , (3)
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where the two P�(·) are the associated Legendre polynomials. Specifying some
of the SH coefficients with some canonical values, we can estimate a canonical
rotation R(α�, β�, γ�) by which the SH coefficients are transformed into complete
rotation invariants. For instance, when � = 2, we can use the following canonical
values [11]:

C1
2 (α�, β�, γ�) = 0 ,

C2
2 (α�, β�, γ�) real, positive and maximal,

Re(C1
1(α�, β�, γ�)) ≥ 0 ,

Im(C1
1(α�, β�, γ�)) ≥ 0 .

We use � = 2, 3, 4, 5 in a least square fashion in our experiments for robust
rotation-estimation. The subspace � = 1 is discarded as it is equivalent to the
PCA-pre-alignment. An intuitive explanation for cases when � ≥ 2 is to use the
SH basis shapes to fit the original shape.

Theoretically, this method of invariants construction is not entirely satisfac-
tory, because it relies on the identification of a canonical rotation and we suspect
that this may lead to a 2-fold ambiguity. Nevertheless, it has given good results
in experiments. We continue to look for better ways of defining rotationally in-
variants SH coefficients.

Shape functions in use. Now that we know how to compute a set of rotation-
invariant SH coefficients of shape functions, we need to specify which function
to use. One choice is the density, or area ratio function on S2 induced by the
conformal mapping f : M1 → S2. Let T ′ be a facet in the dual mesh of M1,
corresponding to a vertex v of the triangulation, and let f(T ′) be the corre-
sponding facet on S2. We define a function g on S2 facet by facet on the mesh.
The value assigned to each point of a facet f(T ′) is equal to the area ratio
Area(T ′)/Area(f(T ′)). Note that this is essentially independent of the triangu-
lation of the surface M1. For computational purposes, a delta-function of weight
Area(T ′) placed at f(v) may be used instead.

In the future we will pursue a more ambitious target as follows. It seems that
specifying both the density-ratio and mean-curvature functions on the sphere
provides redundant information for a global genus-0 closed surface. We are not
aware, however, how to specify a minimal amount of information to determine
the surface. We think it is an interesting inverse problem, where we argue that
a regularization approach might help. Some preliminary reconstruction results
can be found in [18].

5 Experiments and Results

We have tested our algorithm on 26 genus-0 meshes of different classes, and some
have very complex geometries. The full program was implemented in C++, and
ran on an Intel-P4 2.4Ghz PC with win-XP OS. All the 26 meshes converge
quickly. The code was not meant to be runtime optimal. Both the planar graph
drawing and the SH expansion have fast algorithms [15] [10], our main concern is
thereby the time for the diffusion and normalization.For the wolf meshes of 308
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Fig. 1. This figure show some mesh objects, their corresponding energy-invariants
(row-2) and our 3D-FD shape descriptors (row-3, magnitude part only). For better
illustration, we only depict the first 36 coefficients. The actual number is about 200.

Fig. 2. Obtained 3D-FD shape descriptors of the same object but with different tri-
angulations and resolutions. Here the two horses have 1000 facets and 800 facets re-
spectively. The two rabbits have 2000 facets and 5000 facets and with different levels
of noise added.

facets, the diffusion and normalization cost 18.2 seconds. While the computations
of the horse-2k and rabbit-2k meshes, each has 2k facets, cost about 106s and
87s resp (average in 10 trials). We also implemented the nested-iteration method
for simultaneous diffusion and normalization ([19]), but got no convergence after
20 minutes running. We have verified that the results of our spherical conformal
mappings are indeed unique up to rotation, by applying the algorithm to other
randomly rotated versions of the same object.

The current shape support function used in experiments is a complex-valued
function with the real and imaginary parts given by the radius and area-ratios
resp. Figure 1 gives some resultant SH invariants. The first row gives the original
meshes. The second row shows the obtained EI invariants up to degree 15. The
bottom row shows our complete invariant shape descriptors (magnitude part
only). Pay attention to the similarity between alike shapes and the difference
between unalike ones. Both descriptors capture the shape geometry, while ours
retains more information due to its completeness nature.
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Table 1. Euclidean distance matrix

We tested the robustness of our algorithm to different triangulations, res-
olution and noise. We did this through first perform both subdivision-based
refinement and edge-collapse-based simplification to the original meshes, in or-
der to alter the resolution and tessellation, then introduce isotropic Gaussian
noise to the coordinates. Apply our algorithm to the obtained meshes, the newly
obtained 3D-FD descriptors are shown very stable, which indicates that both
the parametrization process and the invariant computation procedures are ro-
bust. Figure 2 gives results on the horse and “bunny” meshes. Note that even
the phase parts of the new descriptors are rather consistence. Table-1 gives the
Euclidean distance matrix for classifying several objects.

6 Conclusions and Future Work

The method of using Spherical Harmonics applied to a new conformal spherical
parametrization, proposed in this paper seems to work well in discriminating
mesh objects of different shape, while being invariant to rotation, robust to
triangulation and noise in the model description.

We have not yet fully demonstrated the procedure of reconstructing from the
SH invariants to the original shape. Nevertheless, the proposed new algorithm al-
ready provide practical improvements over existing methods, and already shows
good results. All these have added to the confidence of applying the DCM to
various vision problems. Of course, much more work is yet to be done for better
demonstrating our method, and for many real-world applications (e.g, medical
anatomic shape comparison, 3D model indexing/retrieval). Another fascinating
and challenging problem is to represent shape using minimal amount of infor-
mation. This can find many applications in geometric compression, and will be
a priority in our future work in this area.
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Abstract. This paper presents a global approach for constructing high
dynamic range mosaic from multiple images with large exposure differ-
ences. By relating image intensities to scene radiances with a convenient
distortion model, we robustly estimated registration parameters for the
high dynamic range global mosaic (HDRGM), simultaneously estimating
scene radiances and distortion parameters in a single framework. Also, a
simple detail-preserving contrast reduction method is introduced.

1 Introduction

Mosaicing is a popular method of effectively increasing the field of view of a ro-
tating and zooming camera by allowing several views of a scene to be combined
into a single image. Most work focuses on the accurate estimation of geometric
transformations between pairwise images. Although the pairwise registrations
are accurate, the concatenation of these transformations often causes error ac-
cumulations when registering multi-frame images. To minimize the error accu-
mulation problem, several global mosaic approaches [1–3] have been proposed.

Unintentional situations can occur in the construction of a mosaic using con-
ventional methods, since vision systems use low dynamic range image detectors
that typically provide 8 bits of brightness data at each pixel. When a camera
moves to a different part of the scene with zooming and rotating about its optical
center, the exposure can change automatically or manually, especially for scenes
containing both areas of low and high illumination. The observed intensities of
a scene point may not be the same in differently exposed images, which may
deteriorate the registration accuracy.

To register images with large exposure differences, it is necessary to recon-
struct original scene radiances of the observed image intensities. It has been
obtained by calibrating the nonlinear radiometric response curve from multi-
ply exposed images [4–7]. However, the obvious alignment issue has not been
considered assuming that the image registration process is successful. Thus, reg-
istration and radiometric calibration should not be dealt separately, especially
for differently exposed images taken from a hand-held camera. Combining the
two problems in a single framework, the accurate image registration for image
mosaic with high dynamic range is still an open issue and is the subject of this
paper.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 744–753, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To minimize registration errors caused by intensity mismatches in the image
space, we propose to use the scene radiance space. The observable intensity space
has many distortions including lens distortion, photometric distortion, and in-
tentional non-linear radiometric distortion. By relating image intensities to scene
radiances with a convenient distortion model, we robustly estimated registration
parameters in the scene radiance space, simultaneously estimating scene radi-
ances and distortion parameters in a single framework using a computationally
optimized LM (Levenberg Marquardt) approach. By registering all images onto a
high dynamic range scene radiance plane without distortion, error accumulations
can be avoided, which is a major goal of the global mosaic.

We adapted a skipped mean estimator to estimate parameters robust to out-
liers such as moving objects and saturated pixels, and incorporated it into the
optimization. Also, constraints of rotating and zooming cameras and radiomet-
ric curve are introduced, resulting in a MAP solution. We call our method high
dynamic range global mosaic (HDRGM) because the final results are in the geo-
metrically and photometrically undistorted high dynamic range scene radiance
space, producing accurate and clean mosaic images without error accumulations.
To reduce the contrast of the estimated scene radiance, we also introduced a new
detail-preserving tone mapping method.

2 Related Work

In the realm of wide angle views with high dynamic range, Aggarwal and Ahuja
[8] captured large fields of view at high resolutions by placing a graded trans-
parency mask in front of the sensor. Similarly, Schechner and Nayar [9] mounted
a fixed filter on the camera causing an intended vignetting. While they showed
successful results for panoramic images based on specialized hardware, registra-
tion parameters were separately estimated.

Closer to our proposal are the works in [10] and [11]. Hasler and Süsstrunk
[10] estimated parametric camera responses and camera motions separately us-
ing color mismatches in the overlapped region of a mosaic picture between two
images. Mann [11] simultaneously extended the field of view and dynamic range
by exploiting the automatic gain control feature of a camera with a gamma curve.
However, they used only pairwise local relations while our method is a global
approach in that it uses multiple images in a single framework. In the sense
of global mosaic, the work of Sawhney and Kumar [3] is related to our work.
However, it is quite different in that we related geometric and photometric dis-
tortion model to the scene radiance space, while they considered only geometric
distortion in the intensity space.

Given registered images taken with an automatic gain control, Kim and Hong
[12] estimated scene radiances with a photometric distortion model, and Litvinov
and Schechner [13] dealt with a similar problem with non parametric models. In
this paper, we extend our previous work in [12] by concentrating on the global
registration issue with large exposure differences, also by considering geometric
lens distortion.



746 D.-W. Kim and K.-S. Hong

if

d

ikx
)( d

ikiI x

iE
iI

Radiometric Curve

)( kXS

d
ikx

Discrete Sampling

ikθ

u
ikx

L

E

Vignetting

ifiL

p
c
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3 Distortion Model

Most cameras have some effects causing distortions from scene radiances to image
intensities. The distortions are closely related with intrinsic and extrinsic camera
parameters. The goal of this section is to provide a convenient distortion model
to calibrate camera parameters and scene radiances.

As depicted in Figure 1, the scene radiance S(Xk) of a scene point Xk is
linearly related to the image irradiance Ei(xik) at the corresponding point xik

in i-th image sensor array centered on c, which is given by

Ei(xik) = Gi(xik)S(Xk), (1)

where
Gi(xik) = ti (1− αrik)︸ ︷︷ ︸

V ignetting

[π
4

( d
fi

)2

cos4θik
]
, (2)

ti is the exposure time, α is the constant representing the loss of light due to
optical vignetting, rik is the distance from the principal point p(= [px, py]T ), d
is the lens diameter, and fi is the focal length.

Without translational motion of camera, the geometrical point relationship
between Xk and xik can be represented by xik = KiRiXk, where Ri is the
rotation matrix and Ki is the camera calibration matrix in the form of

Ki = KcFi =

⎡⎣1 s px

0 γ py

0 0 1

⎤⎦⎡⎣fi 0 0
0 fi 0
0 0 1

⎤⎦ , (3)

where γ is the aspect ratio and s is the skew. The parameters in Ki represent
the properties of the image formation system and they are closely related to
cosθik (=

√
f2

i /(f
2
i + r2ik)). The distance from the principal point, rik, can be

measured in the plane Li with ‖xu
ik‖, where xu

ik is the projected point of Xk on
Li satisfying

xu
ik = FiXk = FiFi

−1K−1
c xik = K−1

c xik. (4)



High Dynamic Range Global Mosaic 747

Ideally, the light rays coming from the scene should pass through the optical
center linearly, but in practice, lens systems are composed of several optical
elements introducing nonlinear distortion to the optical paths and the resulting
images. With a simplified cubic term of radial lens distortion, xik is transformed
nonlinearly with the lens distortion parameter κ, as given by

xd
ik = xik + κxu

ik

[
r2ik r

2
ik 0

]T
. (5)

Images containing negative distortion, κ < 0, exhibit barreling effect and such
images are corrected by applying positive distortion (and vice-versa for pin-
cushion effect).

After the discrete sampling process of the CCD unit, the irradiance reaching
the image sensor is nonlinearly mapped by the radiometric response curve g.

The final relation between scene radiance Li(xu
ik) and image intensity Ii(xd

ik)
can be expressed as

Ii(xd
ik) = g

(
Gi(xik)Li(xu

ik)
)
. (6)

We call Li the scene radiance plane of Ii. It is noted that no distortion exists
in Li because S(Xk) = Li(xu

ik) ignoring losses in the lens. We will utilize this
property in the registration.

4 High Dynamic Range Image Registration from a
Rotating and Zooming Camera

Scene radiances have been obtained by calibrating the radiometric curve and ex-
posure ratios [5–7]. But, they did not consider other photometric and geometric
distortions which are closely related to intrinsic camera parameters as shown in
Equation (2) and (5). These parameters can be estimated in a unified framework
using the geometry of a rotating and zooming camera.

For simplicity, consider two images Ii and Ir obtained from a rotating and
zooming camera as depicted in Fig 2. The point relationship can be represented
by a 3×3 homography, Hi, given by

xik = Hixrk = KiRiK
−1
r xrk, (7)

Because two matching points are on the same ray in 3D space passing through
the camera center, Ii(xik) and Ir(xrk) are originated from the same radiance
S(Xk) satisfying Li(xu

ik) = Lr(xu
rk). Therefore, the solution can be found in

least square sense using the relation in Equation (6).
Notice that, given constant c, replacing Gi(xik)Li(xu

ik) with Gi(xik)cc−1Li(xu
ik)

results in the same solution in Equation (6). Thus, c−1Li(xu
ik) can be another so-

lution for scene radiances. A constraint for the scene radiance is needed to solve
this ambiguity, and we assumed that Lr(p) = g−1(Ir(p)). For this, we rewrite
Equation (2) as

G̃i(xik) = Di(1− αirik)
( frfi

f2
i + r2ik

)2

, (8)
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where Di(= πtid
2/4f2

r ). Noting that G̃r(p) = Dr, we can make Lr(p) equal to
g−1(Ir(p)) with Dr = 1. Then, the parameter Di(= ti/tr) should be a constant
representing the ratio of exposure times between Ir and Ii. For some cases, it also
contains the ratio of white balances and illumination change. In this sense, scene
radiances can be reconstructed only up to scale and only the ratio of exposure
times can be reconstructed.

As for the reference, we simply choose the frame with the smallest exposure
time as Ir, and Lr is designated as the reference scene radiance plane. It is noted
that Lr does not coincide with Ir because Lr has no distortion. By using Lr as
the reference plane instead of Ir, we can avoid intensity mismatches causing
error accumulation in the registration, which is a key idea of this paper.

Hence, assuming that all observed images I(={Ii | i = 1 ∼ N}) are corrupted
by zero mean Gaussian noise and distorted by nonlinear mapping, all intrinsic
camera parameters Θ(={fi, Di, g, κ, α, px, py, γ, s | i = 1 ∼ N}), homographies
from the reference plane H(={Hi | i = 1 ∼ N}) and scene radiances L(={L(xk)
| xk ∈ Ω, Ω: overlapping region in the reference plane}) can be found with LM
optimization minimizing

Eρ = 〈ρ(eik, σ)〉, (9)

where ρ is a error norm, 〈·〉 is the average operator, σ is a constant, and eik is
the residual error given by

eik = Ii(xd
ik)− g

(
G̃i(xik)Lr(xu

rk)
)
. (10)

It should be noted that simultaneous estimation of Θ, H and L makes our algo-
rithm use multiple images in a single framework avoiding error accumulations.

Among the bulk of noisy data in the overlapping region, there may be outliers
such as moving objects and saturated intensities due to the small dynamic range
of the sensor. A way of overcoming the outlier problem in estimation is by using
robust statistics [14] which allows the estimator to be less affected by outliers
in a statistical sense. The choice of the ρ-functions results in different robust
estimators, and the robustness of a particular estimator refers to its insensitivity
to outliers. In this paper, we used a Huber-type skipped means estimator [14]
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for ρ. It rejects everything which is more than σ(=5.2 median) and takes the
mean of the remainder. The second derivative is always positive, which is a
very important property for incorporating the robust estimator into the LM
optimization.

5 MAP Solution Using Priors

It is possible that the energy function contains local minima and the optimization
procedure can get trapped by these. Therefore, we need some constraints on
the parameter space. This can be achieved by defining the prior probabilities
resulting in maximum a posterior (MAP) solution.

MAP estimate of Θ, H and L given multiple observed images I can be com-
puted as

Θ̂, Ĥ, L̂ = arg max
Θ,H,L

p(Θ,H,L|I). (11)

Noting that L is independent of Θ and H , Equation (11) can alternatively be
represented as an energy minimization problem given by

Θ̂, Ĥ, L̂ = arg min
Θ,H,L

[
Eρ + λcEc + λpEp

]
, (12)

where Eρ ∼ − log p(I|Θ,L,H), Ec ∼ − log p(H |Θ), Ep ∼ − log p(Θ)p(L), λc and
λp are Lagrange multiplier related with ratios of noise terms.

5.1 Infinite Homography Constraint (IHC) : Ec

Considering a rotating and zooming camera, we can use a constraint on Hi for
i = 1 ∼ N . Since Ri(= K−1

i HiKr) is a rotation matrix in Equation (7), it
satisfies the property that Ri = R−T

i . This can be equivalently represented by

ω∗
i = KiK

T
i = HiKrK

T
r H

T
i = Hiω

∗
rH

T
i , (13)

where ω∗ is called the dual image of the absolute conic. This equation is known
as the infinite homography constraint (IHC). It relates the camera calibration
matrices to the infinite homographies and has been used as a measure for the
self-calibration [15]. Using IHC, the conditional density function p(H |Θ) can be
modeled using an energy function given by

Ec = 〈‖ω∗
i −Hiω

∗
rH

T
i ‖

2
F 〉, (14)

where F is Frobenius norm.

5.2 Priors and Penalties : Ep

We assumed that L has a uniform distribution and some intrinsic camera pa-
rameters are fixed and almost known via Gaussian prior: γ ∼ N(1, 0.12), s ∼
N(0, 0.12), (px, py) ∼ N(0, 202).
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As for the non-linear mapping function g, we adapt the polynomial model in
[5] to give a broad flexibility to the shape. To guarantee the increasing shape of
g, we used a new penalty type energy function using sigmoid function Si(x)(=
(1 + e−ax)−1) given by

Sb2
b1

(x) = (1− Si(x− b1))2 + (1− Si(b2 − x))2. (15)

Because the sigmoid function is very close to the unit step function with
a large value of a(= 106), positive gradient of g, positive α, and negative (or
positive for some case) κ can be guaranteed by minimizing

Ep =
∫ 1

0
S∞

0 (g′(x))dx + S∞
0 (α) + S0

−∞(κ) +Eg, (16)

where Eg is the energy term relating Gaussian priors.
The minimum of the final cost function in Equation (12) can be found us-

ing the LM (Levenberg-Marquardt) optimization. To handle a large motion of
hand-held cameras and a wide dynamic range, we used a coarse-to-fine approach
through a Gaussian pyramid. Because our algorithm finds too many parameters
in L, direct implementation of LM optimization is not efficient. However, noting
that scene radiance depends only on each pixel location, our formulation can
be optimized by taking advantage of the diagonal block structure of the normal
equation in the LM optimization.

6 Contrast Reduction

The final scene radiance can be obtained from the estimated L̂ directly, or from a
weighted average of all Li(xu

ik). The scene radiance need to be contrast reduced
to be displayed on a common device with a limited dynamic range.

To reproduce Ic, we introduced a new tone mapping function given by

Ic(x) = F (L(x))L(x), (17)

where F (L) = (e + 1)/(e + L) with control parameter e(> 0). It is noted that
the behavior of F is very similar to the exposure time with the maximum value
of (e+ 1)/e for L = 0 and the minimum value of 1 for L = 1.

The global tone mapping curve and an example are shown in Figure 3. Al-
though the global tone mapping method is very simple, image details can be lost
in textured areas of images, as shown in (c). Instead of using F , we introduced
spatially varying exposure τ(x) in each location x given by

τ(x) = arg min
t(x)

∫
T

[
|∇t(x)|+ λt

(
t(x)− F (L(x))

)2]
dx, (18)

subject to t(x)L(x) ≤ 1,

where T is the scene radiance domain and λt is Lagrange multiplier.
Using the total variation norm |∇t(x)| as in [16], we obtain anisotropically

diffused F (L) as shown in (d). With τ(x), we can avoid halo effect in uniform
regions, also preserving image details in textured regions as shown in (e).
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Fig. 3. Tone mapping example: λt = 0.05, e = 0.1

7 Experimental Results

In this section, we present experimental results of applying our global method
to real digital still images with λc = 0.01, λp = 1.0, λt = 0.05, and e = 0.3.

In Figure 4, we show results from twelve digital images taken with a Sony DSC-
P72 digital camera without zoom. Each image has a different exposure setting de-
pending on the automatic gain control of the camera. Especially, one can observe
that the brightness of the first frame is greater than that of the reference frame (the
12th frame), and the exposure times of the 4th, 8th, and 12th frame are very close
to each other as depicted in the estimated parameters in (c). The lens distortion
parameter κ was found -0.025553 which is the scaled value with the maximum dis-
tance from the image center. It can be noticed that straight lines of the stairs are

(a) Input image

(c) Estimated camera parameters

(b) Final mosaic result
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Fig. 4. Result from Sony DSC-P72 with auto mode
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Fig. 5. Result from Sony DCR-TRV30 with manual mode

preserved, showing effective compensation for lensdistortion.From [17], it isknown
that barreling lens distortion (κ < 0) can cause gross overestimates of focal length.
This is depicted in (c) where the focal length is overestimated without lens distor-
tion parameter κ compared with the result including κ. Note that the estimated
focal lengths are almost constant because the images are taken without zoom. As
expected, the radiometric curve shows an increasing shape, and px, py, γ, s are very
close to the mean values of Gaussian prior. With the estimated scene radianceL(x)
and τ(x), the final global mosaic result is shown in (b).

In Figure 5, we show another calibration result with images (640x480) taken
from Sony DCR-TRV30 in manual mode. This example shows a general situation
using the manual mode of hand-held cameras, where we selectively adjust camera
settings until a subjective satisfactory representation is obtained. It should also
be noticed that some frames (1-5) contain many saturated intensities. With the
estimated camera parameters in (b), an accurate and seamless mosaic result is
obtained, also preserving image details as shown in (c).

8 Concluding Remarks

We presented a robust and global approach for constructing a high dynamic
range mosaic from multiple images considering hand-held cameras with auto-
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matic or manual exposure control. By incorporating intrinsic camera parame-
ters into the distortion model and using IHC as prior information, we could
self-calibrate intrinsic and extrinsic camera parameters. In the experiment, we
compared the effect of lens distortion on the estimated focal length. In future re-
search, the photometric distortion model will be further exploited in conjunction
with the self-calibration of rotating and zooming cameras considering the effect
of translation, degenerated motion of camera, etc. Also, we expect the distortion
models can be used as a constraint in many applications such as super-resolution,
structure from motion, and optical flow where multiple images are obtained from
an arbitrarily moving camera.
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Abstract. Image-based defocus calibration (IBDC) and automatic fo-
cus tracking techniques are presented. The proposed technique is based
on a Spatial-Domain Convolution/Deconvolution method (STM) devel-
oped by Subbarao and Surya [1]. STM uses two blur parameters, σ and β,
of a camera lens system to determine a lens step of the best focus. How-
ever calibration of these parameters requires internal camera parameters
such as focal length, image distance, etc. Without knowing accurate in-
ternal parameters, STM is subject to fail to obtain accurate defocus and
depth information. We propose image-based sigma and beta calibration
techniques for accurate depth measurement. We also show that beta cal-
ibration can be applied for automatic focus tracking of a moving object.

1 Introduction

Depth-from-Defocus (DFD) is useful in obtaining depth to an object or auto-
matic focusing (AF) of a digital camera [2, 3, 4, 1]. DFD is very fast in comparison
with Depth-from-Focus which searches for the best focus lens position [5, 6, 7].
Suppose a camera has a thin lens system as shown in Figure 1, where f, u and s
are focal length, object distance, and image distance of the camera, respectively.
Then, we can obtain

R = s
D

2

(
1
f
− 1
u
− 1
s

)
, (1)

where D is the diameter of the lens, R is the radius of the blur circle when the
object is not in focus. A blur circle is formed by the convolution of the point
object and the point spread function (PSF) of the lens in the spatial domain.
PSF is commonly modeled by a 2-D Gaussian function and a blur parameter σ
which is the standard deviation of the function. In practice, it is found that σ is
proportional to the blur circle R [8, 1]. DFD is to find the blur parameter σ or R
using defocused images. Most techniques use two defocused images to estimate

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 754–763, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the parameter, while there are other approaches which use one or more than two
defocused images [9, 3, 10].

Regardless of the number of defocused images, DFD needs precise calibration
of internal camera parameters[8, 1]. For example, object distance depends on some
internal camera parameters such as image distance, lens diameter, and focal length
according to the lens equation. Most DFD techniques use either camera calibra-
tion techniques [10] or specially designed vision systems to precisely control and
measure the settings of the lens [9, 5]. However, most camera calibration tech-
niques assume a camera is the pin-hole lens system, while DFD employs the thin
lens system. In addition, precise vision systems are expensive to implement.

Tsai and Lin [10] employ an artificial neural network for depth estimation
using a single image. They train the neural network using the blur level of mul-
tiple defocused images and corresponding depth of a known object. They use
144 data points in three different distances to calibrate internal camera para-
meters. Rajagopalan and Chaudhuri [8] consider the camera as a shift variant
system to enhance DFD performance. In their experiments with real objects,
it is mentioned that a special object is used for camera calibration. Subbarao
and Surya [1] introduce a spatial domain approach called Spatial-domain Con-
volution/Deconvolution Transform Method (STM). They determine camera pa-
rameters using the lens specification, however results of σ calibration does not
exactly match with the blur level of acquired defocused images.

We propose a new image-based defocus calibration technique. By using two
defocus images at a reference distance, we estimate an internal camera parame-
ter called beta (β). With this parameter, we calibrate sigma at different object
distances. The new sigma table yields not only accurate defocus information but
also accurate depth to real objects. We also introduce a new defocus calibration
table called beta table to facilitate focus tracking of a moving object. We calibrate
the beta table by changing the focus lens step of one of the two defocus images.
With respect to a reference defocus image, we show that the other defocus image
gives different values of beta. By dynamically obtaining two defocus images of a
moving object, we estimate beta of the images and track the object.
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2 Spatial-Domain Transform Method

In this section, we briefly describe the STM technique and the calibration of
blur parameters. Let gf be a focus image of an object, g1 and g2 be two different
defocused images of the object, σ1 and σ2 be the corresponding blur levels of
the two images. σ1 and σ2 determine the amount of image defocus of g1 and g2
with respect to the focus image gf . When gf is modeled as a cubic polynomial,
the relationship between the two defocused images and the focused image is
expressed as

gf = gi −
1
4
σ2

i∇2gi, i = 1, 2, (2)

where ∇2 is the Laplacian operator [1]. When a PSF of a lens is modeled by the
2-D Gaussian, σi, i = 1, 2 is the standard deviation of the PSF. For a rotationally
symmetric function, σi is proportional to blur radius R (in practice σ = R/

√
2),

then from Equation (1) we get

σi = miu−1 + ci (3)

where,

mi = −Disr

2
√

2
, ci = −mi

(
1
f
− 1
si

)
, (4)

Di is aperture diameter, and si is image distance in which two defocused images
are obtained. sr in the above equation is a reference image distance such that
sr = s2 in this paper. We set the second defocused image as the reference image,
because the scale of the first image is normalized to that of the second one. From
Equation (3), we obtain

u−1 =
σi − ci
mi

. (5)

If we express σ1 in terms of σ2 using the above equation, we obtain

σ1 = ασ2 + β, (6)

where α and β are determined by camera parameters as follows:

α =
m1

m2
, and β = c1 − c2

m1

m2
. (7)

Suppose we adjust image distance to obtain defocused images, then D1 = D2
and s1 �= s2. Therefore, Equation (7) becomes

β = c1 − c2 = σ1 − σ2. (8)

From Equation (2) we obtain

g1 − g2 =
1
4
(σ2

1 − σ2
2)∇2g, (9)

where ∇2g =
∇2g1 +∇2g2

2
.
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By letting
(σ2

1 − σ2
2) = G, (10)

we obtain
G = 4

g1 − g2
∇2g

. (11)

which is a measure of blur difference between the two defocused images. By
combining Equation (8) and Equation (10), we compute σ2 from G as

σ2 =
G− β2

2β
. (12)

Suppose we know the focal length and the aperture diameter of the camera,
then c1 and c2 depend on s1 and s2, respectively. In addition, inverse distance
u−1 also depends on two unknown parameters σ2 and c2. From Equation (12)
and Equation (5), we know there are still two unknown parameters s1 and s2 to
compute u−1. In [1], Subbarao and Surya set s1 = δss2 to get a unique solution,
where δs is an arbitrary scaling factor between the two image distances. However
this method cannot solve the equations up to a known scale factor. In result,
STM fails to compute accurate depth information.

In STM, a sigma (σ) table is calibrated at several different object distances.
At each distance, they obtain two defocus images and record σ2 of the reference
image. Then they use the table as a look-up table for automatic focusing of
a digital camera. To focus on an object of interest, they obtain two defocused
images of the object, compute σ2, and look for the lens step which is the inverse
mapping of σ2 in the table. See [1] for more information.

3 Image-Based Sigma (σ) Calibration

3.1 Sigma Calibration

Instead of obtaining β from inaccurate internal camera parameters, we investi-
gate an image-based technique to estimate β and accurate internal parameters.
From Equation (12), we can introduce a simple constraint to measure β as fol-
lows. When an object is at a certain distance in which the reference lens position
s2 focuses, σ2 = 0 in an ideal case because there is no image blur for the object
at the reference distance. Therefore, G = β2 at the same reference distance.

Let ur be the reference distance, p1 and p2 be lens step numbers to obtain
two defocus images, and pr = p2 be the reference step number which focuses on
the reference distance. Suppose there is an object at ur. Then by obtaining two
defocus images of the object and using Equation (11), we can obtain β = ±

√
Gr

(We define β is positive if p1 < p2, negative if p1 > p2), where Gr is the value
of G at the reference distance. Then, we can compute internal parameters by
deriving equations as follows:

β = c1 − c2
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=
Ds2

2
√

2

(
1
f
− 1
s1

)
− Ds2

2
√

2

(
1
f
− 1
s2

)
=
Ds2

2
√

2

(
1
s2
− 1
s1

)
=

D

2
√

2

(
1− s2

s1

)
= k

(
1− s2

s1

)
, where k =

D

2
√

2
(13)

Then,
s2
s1

= 1− β
k

= k′ (14)

Therefore,
s2 = k′s1 (15)

If we know the reference object distance ur, we can use the lens equation to
compute s2 as

1
ur

=
1
f

+
1
s2
. (16)

Using Equation (15) and (16), we can compute the image distances s1 and s2.
In addition, by substituting s2 into Equation (4), we can compute c2 and inverse
distance u−1.

3.2 Comparison of Defocus Calibration Techniques

Let us show an example of defocus calibration of the original STM and the
proposed image-based defocus calibration (IBDC). We use an Olympus C3030
zoom camera which lens step number ranges from 0 (closest) to 150 (infinity).
Two defocus images are obtained at step number p1 = 30 and p2 = 65 to measure
image defocus G. Step number 65 is set to the reference step pr = p2. To compute
δs in STM, we use following techniques. Using the lens equation, we first compute
image distances at step number 1 and 150, for example sp1 and sp150. Then δs is
computed as (sp1 − sp150)/150 and s2 = δs(150− 65) + sp150. However, in a real

(a) (b)

Fig. 2. Two defocus images of an object at the reference distance (a) Step 32 (b) Step
65 (reference)
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Table 1. Camera and blur parameters obtained by two defocus calibration techniques

Method β s1 s2

STM 2.3175 20.071 19.860
IBDC 2.2797 20.289 20.080
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Fig. 3. Comparison of sigma tables from two different defocus calibration techniques.
Compared to the curve from STM, the IBDC curve exactly passes zero at step 65.

situation, it is necessary to adjust δs in a trial-and-error manner so that STM
yields zero sigma value at pr. This job is very time-consuming because any small
change of δs makes a large difference in sigma computation. Therefore there is
no way to get an acceptable value of δs except a lot of trial-and-error.

In contrast, β estimation using the IBDC technique is very simple. We first
place an object at the reference distance ur and obtain two defocus images of
the object. Then we use Equation (11) to obtain G and β. Figure 2 shows two
defocus images at step 30 and 65. The image at step 65 is best focused since the
object is at the reference distance. Table 1 shows β and two image distances s1
and s2 computed by two different defocus calibration techniques. Figure 3 shows
graphs of two sigma tables calibrated from different techniques. We record σ2
at about 18 different object distances. The dotted curve is obtained by STM
and the solid curve is obtained by IBDC. Two graphs look very similar, however
we actually need a lot of trial-and-error to get the graph of STM. Compared to
the STM graph, the IBDC graph exactly passes zero at step 65, which is the
reference step.

Using Equation (5), we compute inverse distance of several object distances
as shown in Figure 4. To compare to a ground truth model, we also measure
the object distances using the Depth-from-Focus (DFF) technique. We assume
that the results from DFF are more accurate than those from DFD. Compared
to the DFF curve, the STM curve shows significant errors. However, distance
computation using tBDC is very accurate as shown in the figure.
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4 Image-Based Beta (β) Calibration

Using IBDC, we introduce a new calibration table to facilitate automatic focus
tracking (AFT) of a digital camera. We call this Beta (β) calibration, because we
obtain β of two defocus images by changing the position of lens step p1. Figure 5
shows a conventional plot of a sigma calibration table. p1 and p2 are two lens
steps where two differently defocused images are obtained. To generate a sigma
calibration table, we fix the lens positions of p1 and p2, obtain defocus images
an object at different distances, and measure σ2 to generate the sigma table.

Suppose there is an object at ur, where the image obtained with the reference
step pr focuses on the object. Then we know σ2 of the reference image g2 is zero
and σ1 = β, where σ1 is the defocus measure of the image obtained at step p1.

 σ2_p1

Lens Stepp1 p2

 0
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β

(a)
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Fig. 5. (a) A conventional sigma plot with respect to lens step number (b) Beta table
obtained by the proposed image-based calibration technique
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Because σ1 − σ2 is a constant, we can expect that σ2 at step p1 (let us call this
σ2p1) is −β as shown in Figure 5. This property of the sigma calibration yields a
very useful technique for AFT. When we measure σ2 using two defocus images,
σ1 = β if an object is at ur. Similarly, σ2 = −β if the object is at such distance
that step p1 focuses the object.

In the previous section, we fix the step number p1 and p2 at 30 and 65,
respectively. Now consider to change p1 from step number 0 to 150, but with
fixed step number for p2 = 65. If an object is fixed at ur, we can compute β using
two defocus images for different step number p1. Figure 5(b) shows the plot of a
beta table computed by Equation (11). This graph actually shows values of G,
however β is computed by the square root of G. Depends on the position of p1
with respect to p2, the sign of G or β changes. We arrange of the sign of G so
that it is positive if p1 < p2 and negative if p1 > p2.

5 Automatic Focus Tracking (AFT)

Let us consider tracking of a moving object along the camera’s optical axis.
When the object moves along the optical axis, focus to the object also changes.
To obtain focused images continuously, we need to track the object by estimating
the depth to the object. A simple way is to obtain defocus images very fast and
move the lens to the estimated focus position. If the camera obtains the images
fast enough so that there is little difference between two defocus images, we
can implement an automatic focusing mechanism to a moving object. A block
diagram of this mechanism is shown in Figure 6. To obtain a focus image, we
need at least three images at each tracking step, two defocus images and one
focus image. Strictly speaking this is a continuous automatic focusing because
it estimates the focus position of the object at each step.

Using the beta table shown in Figure 5(b), we introduce an object tracking
technique called Image-Based Focus Tracking (IBFT). Figure 5(b) shows that
σ2 changes with respect to different p1. Suppose there is an object at a certain
distance in which the camera lens focuses with a step number n. If we obtain
two defocus images g1(t) and g2(t) at time t, p1 = n(t), and p2 = nr, where nr

is the reference step number (65 in our experiments), we can expect that σ2(t)

time

Automatic
Focusing

Automatic
Focusing

g2(1) g2(2) g2(t)

....

....
gf (0) gf (1) gf (t-1)

g2(0)

g1(0)

Automatic
Focusing
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Focusing

Fig. 6. Focus tracking using β calibration
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Fig. 7. Results of focus tracking

is the square root of G(n(t)) in the beta table. Suppose again that the object
moves and two image g1(t + 1) and g2(t + 1) are obtained at the same steps,
p1 = n(t) and p2 = nr, respectively. Then we know that σ2(t + 1) will change.
By assuming that σ2 is locally linear, we can estimate the next focus position as
n(t+ 1) = G−1(t+ 1).

A block diagram of IBFT is shown in Figure 6. We estimate an initial focus po-
sition using STM and obtain a focus image gf(t) at time t. Because we know that
the step number of the focus image, we use the image as g1(t+1) image at the next
step. With another image g2(t + 1) obtained at the reference step number nr, we
can estimate the next focus step number n(t+1) as described above. In this proce-
dure, we need only two images at each tracking step. Compared to the continuous
focus tracking technique, we can implement an efficient focus tracking system.

Experimental results of our IBFT technique is shown in Figure 7. We print
black and white letters and pictures on a regular paper and put on a planar
surface. The object is initially placed at the front of the camera facing the printed
side to the camera. We use a 128×128 tracking window in defocus images and
assume there is no focus difference in the window. In Figure 7 (a), we move
the object away from the camera after the fourth iteration. Focus step number
of the camera also tracks the object so that the camera obtains focus images
continuously. In Figure 7 (b), another object moves in the opposite direction
and the graph shows that IBFT tracks the object efficiently.

6 Conclusions

Image-based defocus calibration technique is presented for depth estimation and
focus tracking of a digital camera. Using defocus information of images obtained
from the camera, we calibrate a sigma table to do automatic focusing of the cam-
era and accurate depth measurement. Compared to the conventional STM-based
DFD approach, our technique yield a very accurate sigma table and depth com-
putation results. By changing lens positions of obtaining defocus images, we cali-
brate another defocus table called a beta table. Using the beta table, we implement
a focus tracking algorithm to continuously obtain focus images of a moving object.
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Abstract. Shading analysis of an object under near lighting is not an
easy task, because the direction and distance of the light source vary over
the surface of the object. Observing a small area on the surface, however,
techniques assuming far lighting are applicable, because variations of the
direction and distance are small in the area. In this paper, we present
two contributions to image segmentation for approximating object’s ap-
pearance under near light sources. First, we experimentally evaluate the
accuracy of approximations using rectangular segmentation for images
of objects under near light sources, and confirm the effects of image seg-
mentation itself. Second, we propose a novel segmentation method for
approximating images under near light sources. Our proposed method
plans appropriate segmentations in terms of approximation accuracy,
considering properties of objects and variable illumination conditions.

1 Introduction

The effect of illumination on the appearance of objects is one of the most impor-
tant research topics in computer vision. For the last decade, analysis of object’s
appearance under far lighting has made great progress.

For instance, Shashua [22] represented images of a Lambertian object under
directional light sources by using three basis images of the object. Belhumeur
and Kriegman [4] proved that a set of images of a convex Lambertian object un-
der arbitrary directional light sources forms the illumination cone which is con-
structed from as few as three images of the object. Ramamoorthi-Hanrahan [17]
and Basri-Jacobs [2] theoretically showed that the illumination cone can be ap-
proximately represented by linear combinations of 4 to 9 basis images. Based on
these analyses assuming far lighting, a number of methods have been proposed
for problems such as face recognition [10, 2, 5, 15], shape from motion [24, 7],
forward rendering [19, 25, 21], and inverse rendering [18, 14].

To take one step further, we think that now is a good time for reconsidering
the effects of near lighting on object’s appearance. Let us consider an object
with a size s illuminated by a point light source from a distance d. When the
distance between the light source and the object is much larger than the size

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 764–775, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of the object (s % d), we can consider the light source as far lighting, that is,
a directional light source. On the other hand, when the distance is less than or
comparable to the size (s > d or s ∼ d), the light source should be treated as
near lighting. It is well known that the analysis of object’s appearance under
near lighting is difficult because the direction and distance of the light source
vary over the surface of the object.

The basic idea of our study is that, by segmenting an image of an object under
near lighting, we can treat the image as if it were taken under far lighting. In
other words, observing a small domain on the object surface, the domain size!s
can become much smaller than the light source distance (!s% d), even though
the object size is larger than the distance. Therefore, techniques assuming far
lighting are applicable to each domain on the object’s surface.

Obviously, the assumption of directional lighting becomes more accurate as
the number of domains increases. However, in practice, it is not appropriate to
merely increase the number of domains for applying techniques assuming direc-
tional lighting. In the context of forward rendering [25], for example, more com-
puting time is required as the number of domains increases. The performance of
face recognition based on linear subspaces [10, 2] would get worse as the number
of domains increases, because reconstruction errors due to false identity are also
decreased. In addition, inverse rendering such as estimation of illumination [13]
becomes ill-conditioned, as each domain gets close to an infinitesimal flat surface.

Accordingly, we discuss how to segment images of an object for applying
techniques assuming directional lighting. More specifically, we propose a new
segmentation method for approximating images under near light sources, in
analogy with principal component analysis (PCA) that is optimal in the sense of
approximation. Our proposed method finds the optimal segmentation in terms
of approximation accuracy based on the difference between appearance under
near lighting and that under far lighting, provided that the number of domains
is given. In particular, our method enables us to plan appropriate segmentations
considering properties of objects and variable illumination conditions.

The main contributions of our study are summarized as follows. First, we
experimentally evaluate the accuracy of approximations using rectangular seg-
mentation, and confirm the effects of image segmentation itself. As far as we
know, no study has been done even on the effects of simple rectangular seg-
mentation for dealing with the appearance of objects under near light sources.
Second, we propose a new segmentation method for approximating images un-
der near lighting. To demonstrate the effectiveness of our proposed method, we
conducted a number of experiments by using synthetic and real images.

2 Related Work

The effect of near lighting has been studied in the both fields of image analy-
sis and image synthesis. In the field of computer graphics, the effect of near
lighting on the appearance of objects is often represented by interpolation [25]
or extrapolation [1]. For example, Sloan et al. [25] compute angular distribu-
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tions of illumination at some points on an object’s surface in terms of spherical
harmonics coefficients, and interpolate them over the surface.

In the field of computer vision, two different approaches are possible for the
analysis of object appearance under near lighting: a direct approach and an
indirect approach.

Direct Approach
The brightness of a point on an object’s surface under a near point light source
is represented by a nonlinear function with respect to the depth of the point and
the position of the light source. We call the approach that explicitly solves the
nonlinear equation relating the brightness with the depth and the light source
position the direct approach. This approach has been studied for a long time,
focusing mainly on how to stably solve nonlinear equations.

Iwahori et al. [11] proposed a method for acquiring the surface normal and
depth of a Lambertian object from images of the object taken under a controlled
point light source. Then, Kim and Burger [12] investigated the relationship be-
tween arrangement of the light sources and uniqueness of the solution of the
nonlinear equations. Furthermore, Clark [6] extended photometric stereo under
near point light sources to that under a moving point light source.

Thus, the direct approach has achieved important progress in modeling ob-
jects. However, it is not trivial to extend these methods to deal with complex
light sources, because they assume simple illumination conditions such as a single
point light source.

Indirect Approach
In contrast to the direct approach, the indirect approach does not deal with the
nonlinear function explicitly, but approximately represents object’s appearance
under near lighting. As described in Section 1, image segmentation is one of the
feasible ways for approximating images under near lighting.

The idea of image segmentation is not necessarily new for object recognition.
Zhao and Yang [26, 27] proposed the mosaic image method in the context of PCA
with outliers such as occlusions, specular highlights, and shadows. The method
segments an image into rectangular blocks and applies PCA to each block. They
described that the assumption of directional lighting becomes more accurate by
segmenting images. However, effects of image segmentation on object’s appear-
ance under near lighting were not examined.

Image segmentation is applied also to face recognition under varying illu-
mination conditions. Batur and Hayes [3] divided an image into a set of small
images with similar surface normals, and applied the linear subspace method [22]
to each small image. Sakaue and Shakunaga [20] also combined rectangular seg-
mentation with PCA-based face recognition. However, the main purpose of these
studies was to achieve robust face recognition against shadows under directional
light sources. Therefore, effects of near light sources were not examined.

Another way for approximating images under near light sources was recently
proposed by Frolova et al. [9]. It is well known that images of a Lambertian
object under directional light sources are approximately represented by using
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low-frequency terms of spherical harmonics [17, 2]. The point of the study is
to represent effects of near lighting by using high-frequency terms of spherical
harmonics. It is reported that the method using high-frequency terms works well
for images of a sphere. However, the method is not applicable to objects such as
a plane, because the basis images depend only on surface normals.

3 Proposed Method

3.1 Overview

We consider a set of images of a static object taken from a fixed viewpoint un-
der variable illumination conditions. We assume that the shape and reflectance
properties of the object and the statistical properties of the variable illumina-
tion are known. For simplicity, we assume that an illumination distribution is
represented by a set of point light sources1.

Let us segment the surface of an object into c domains and consider points
on the object surface that belong to one of the domains. When a point p on
the object surface belongs to the i-th domain Di whose center is a point Pi,
we denote the approximation error at the point p by err(p, Pi). Our proposed
method minimizes the objective function J described by

J =
∑c

i=1
∑

p∈Di
err(p, Pi), (1)

in order to find the optimal segmentation in terms of approximation accuracy2.
In Section 3.2, we define the error function err(p, Pi) of a scene where an

object is illuminated by a single point light source. In Section 3.3, we extend the
error function to the scene under complex and variable illumination distributions.
Finally, in Section 3.4, we describe the detailed algorithm of our method based
on k-means clustering [8].

3.2 Criterion I: Single Point Light Source

Let us consider an object illuminated by a single point light source with unit
radiance, and denote the positions of the point p, the center Pi, and the light
source by x, X, and R respectively (Fig. 1). Assuming the Lambertian model3,
the brightness I at the point p is represented by

I = ρn · (R− x)Sn,R−x/|R− x|3, (2)

where ρ and n are the albedo and surface normal at the point. The coefficient
Sn,R−x represents both attached and cast shadows. Namely, Sn,R−x = 0 if
1 Here, we assume isotropic lighting. Thus, we do not take account of anisotropic light

sources such as a projector.
2 Because our objective is to approximate images, we sum up the approximation errors

not over the surface of an object but over the image plane.
3 We can extend the following discussion to other reflectance models except for mirror-

like reflectance.
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Fig. 1. Coordinate system

n · (R − x) < 0 or the direction of the light source (R − x) is occluded by the
object, and Sn,R−x = 1 otherwise.

If the assumption of far lighting is accurate over the domain, the brightness
of the point p is nearly constant when the position of the light source seen from
the point p, that is, (R − x) is replaced by that seen from the center of the
domain Pi, that is, (R −X). In other words, we can consider the point p as if
it were illuminated by a point light source located at R′ = x + (R−X). Thus,
we consider I ′ defined by

I ′ = ρn · (R −X)Sn,R−X/|R−X|3 (3)

as the brightness at the point p under the assumption of directional lighting,
and define the error function as

err(p, Pi) = (I − I ′)2. (4)

3.3 Criterion II: General Illumination Condition

Our objective is to minimize the approximation error of a set of images taken
under variable illumination conditions. Let L(r) denote the average illumina-
tion radiance at each 3D point r in a scene, which is the average with respect
to the variable illumination conditions. Then, we can simply extend the er-
ror function in equation (4) to that under the variable illumination conditions,
by summing up (I − I ′)2 for each point light source with the weight corre-
sponding to the average distribution L(r) of the variable illumination. Replacing
the summation by an integral, the error functions of an object illuminated by
light sources at the distance |R| = R, for example, are represented by integrals
such as

∫ 2π

0

∫ π

0 (I − I ′)2L(R, θ, φ) sinθdθdφ. Here, L(R, θ, φ) is the average dis-
tribution of illumination represented by the spherical coordinates. In the same
way, we can take into account variations of distances from the object to light
sources.

However, the above extension is not practical in terms of computational cost.
In the segmentation algorithm described later, we have to calculate the above
integrals for each iteration step, or compute them in advance. In the latter
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case, because the integrands depend both on the point p and on the domain
center Pi, we have to precompute them for all combinations of pixels. Then, the
number of integrations required becomes O(N2) for an image with N pixels.
Therefore, this simple extension requires a large amount of computing time or
storage.

Accordingly, taking the Taylor series expansion of (I−I ′) under the conditions
that |R| > |x| and |R| > |X|, we focus on the first order effect represented by

I − I ′ � (ρ/R3)[(3R · n/R2)R− n] · (x−X)Sn,R, (5)

when the assumption of far lighting begins to break down. As a result, the error
function is represented as

err(p, Pi) =
∑3

j=1
∑3

k=1gjk(xj −Xj)(xk −Xk). (6)

This means that we should calculate the error, that is, “distance” between the
point p and the center Pi with the “metrics” gjk defined by

gjk≡
ρ2

R6

∫ 2π

0

∫ π

0

(
3R · n
R2 Rj−nj

)(
3R · n
R2 Rk−nk

)
Sn,RL(R, θ, φ) sinθdθdφ,

(7)
based on properties of the object and illumination, instead of the Euclidean
metrics (gjk = δjk). The approximation in equation (5) makes our method more
tractable. We can numerically precompute O(N) metrics4, because the integrand
in equation (7) is independent of the domain center Pi and depends only on the
point p.

3.4 Segmentation Method

Our proposed method finds the image segmentation that minimizes the objective
function J in equation (1). Basically, we give initial positions of domain centers.
Then, we assign a point p to the domain that minimizes err(p, Pi) with respect
to Pi, and update the center of domain P ′

i (∈ Di) so that
∑

p∈Di
err(p, P ′

i ) is
minimized. The last two steps are repeated until the segmentation converges.

In order to alleviate the problem of local minima, we take a coarse-to-fine
approach. Actually, we repeat the above steps and update the temporary optimal
positions of domain centers if the i-th value of the objective function Ji is minimal
at the time. For the coarse search of the minimum, initial positions of centers are
randomly sampled in the first Nsample iterations. On the other hand, in the last
Nresample iterations, we resample these positions around the temporary optimal
positions for the fine search5.

4 We computed the integrals by using Gaussian quadratures [16] assuming that the
bandwidth of the integrands equals 50. Thus, we sampled the integrands at about
5000 directions.

5 We set Nsample = 1000 and Nresample=9000, based on preliminary experiments.
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4 Experiments

4.1 Qualitative Properties

To begin with, we describe qualitative properties of the image segmentation
obtained by using our proposed method.

We considered a part of a Lambertian sphere with uniform albedo as a target
object (Fig. 2 (a)), and planned appropriate segmentations for three different
average distributions of illumination. Let (r, θ, φ) be the spherical coordinates
whose center (r = 0) and north pole (θ = 0) are the center of the sphere and
the direction of the z axis (the line of sight) respectively. The first condition
corresponds to a point light source located at (r, θ, φ) = (2rs, π/4, 3π/4). Here,
rs is the radius of the sphere. The second one corresponds to a point light source
that distributes at Ω = {(θ, φ)|π/6 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2} with uniform
probability density. The third one is L(R, θ, φ) = const. in equation (7), that is,
a point light source that uniformly distributes around the sphere.

We show segmentation results as gray images in Fig. 2. The first, second, and
third conditions correspond to (b), (c), and (d). The number of domains is 9 (16) in
the upper (lower) row.The gray valueof apixel is proportional to thenumber ofpix-
els belonging to the same domain as the pixel does. Therefore, the darker a pixel is,
the smaller domain the pixel belongs to. Portions of images are saturated, because
we set the gray value of the domain with average pixel number (= N/c) to 128.

This study shows three important properties as follows. (i) Points in a domain
are not necessarily close to each other in the sense of the Euclidean distance.
As mentioned in Section 3.3, the size of a domain changes according to the
geometric and photometric properties of the scene. (ii) The size of a domain
becomes smaller as the domain comes close to light sources. This property is
consistent with our intuition. Variations of domain size are dominant when the
average distribution of illumination is concentrated in a small solid angle as in
results (b) and (c). (iii) The size of a domain becomes smaller as variations
of depth becomes larger in the domain. As shown in results (d), this property is
dominant when an average illumination distribution is isotropic. This shows that
we should segment images of a scene based on the depth, even though we cannot
obtain any prior knowledge about illumination as in the case of inverse lighting.

(b) (d)(c)
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Fig. 2. (a) 3D shape of a target object and segmentation results of the object under
(b) a point light source, (c) a set of point light sources with an area distribution, and
(d) uniform illumination
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4.2 Approximation Accuracy of Synthetic Images

Second, we conducted a number of experiments by using synthetic images so that
we could rigorously evaluate the approximation accuracy. As described below,
we reconstructed diffuse reflection components of the target object under point
light sources by projecting input images to the basis images.

Let Ij be the brightness of a point pj corresponding to the j-th pixel (j =
1, 2, ..., N), and bj be the basis vector defined by

bj = ρjnj , (8)

where ρj and nj are the albedo and surface normal at the point. We calcu-
lated the coefficients si of the basis vectors in the i-th domain by minimizing∑

pj∈Di
wj(Ij − si · bj)2. Here, we set wj = 0 if Ij = 0 and wj = 1 otherwise so

that shadows are removed. Then, we defined the reconstruction error as

ε =
∑c

i=1
∑

pj∈Di
wj(Ij − si · bj)2/

∑N
j=1I

2
j . (9)

We tested three average distributions of illumination. The first and second
conditions correspond to point light sources located at (2rs, π/4, 3π/4) and
(3rs, π/4, 3π/4) respectively. The third one is a point light source uniformly
distributed at Ω = {(θ, φ)|π/6 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2}.

Under the first illumination condition, we synthesized an input image of the
object and reconstructed it. In Fig. 3, we show (a) the input image and re-
constructed images (b) without image segmentation, (c) by using rectangular
segmentation with 16 domains, and (d) by using our proposed method with
the same number of domains. The reconstruction error against the number of
domains is shown in Fig. 4 (a). The solid and dotted lines represent the er-
rors of rectangular segmentation and our method respectively. One can find
that image segmentation drastically improves the approximation accuracy. In
the case of rectangular segmentation with 36 domains, for example, the error
decreases about 2 orders of magnitude. Furthermore, the error of our method is
several factors smaller than that of rectangular segmentation. In other words,
our method achieves higher approximation accuracy by using smaller number
of domains. For the second illumination condition, we obtained a similar result
(Fig. 4 (b)).

(a) (h)(g)(f)(e)(d)(c)(b)

Fig. 3. Image reconstruction based on segmentation (sphere): (a) an input image under
a point light source, reconstructed images (b) without segmentation, (c) with rectangu-
lar segmentation, and (d) with the segmentation obtained by using our method. Images
(e) through (h) are those under another average distribution of illumination
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Fig. 4. Reconstruction errors of sphere images against the number of domains under a
point light source located at (a) 2rs or (b) 3rs, and under a set of point light sources
located at (c) 2rs or (d) 3rs. The solid and dotted lines represent the errors of rectan-
gular segmentation and our method respectively. Reconstruction errors of images of a
plaster sphere and those of a Napoleon figure are shown in (e) and (f).

For the third condition, we synthesized 100 images under point light sources
located at a distance 2rs or 3rs and uniformly distributed within Ω, and recon-
structed them (Fig. 3 (e), (f), (g), and (h)). The average reconstruction errors
shown in Fig. 4 (c) and (d) behave in a similar manner to those under the first
and second conditions.

4.3 Approximation Accuracy of Real Images

Third, we report the result of experiments using real images. In the experiments,
various images of a plaster sphere were taken under far or near light sources
by using SONY DXC-9000 camera and Matrox Meteor-II frame grabber. The
distances between the center of the sphere and the far (near) light sources are
more than 10 (about 2∼3) times the radius of the sphere.

We estimated three basis images of the sphere from 12 images taken under
unknown far light sources by using singular value decomposition with missing
data (SVDMD) [23]. We used 10 images taken under near light sources to confirm
the effects of image segmentation for approximating the appearance. All images
were cropped and down-sampled so that the geometry of the scene is the same
as that in the experiments using synthetic images. The distribution of the near
light sources roughly obeyed the third condition in the previous section.

In Fig. 4 (e), we show the average reconstruction error against the number of
domains. One can find that the average reconstruction errors behave like those
in Fig. 4 (a) through (d). Moreover, our method improves the approximation
accuracy about 40% compared with rectangular segmentation. Hence, we can
conclude that image segmentation, especially our proposed method, works well
for approximating object’s appearance under near light sources.
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4.4 Discussion

Finally, we discuss the applicability of our proposed method to face recognition6

under near light sources. More specifically, we conducted two experiments to con-
firm (i) whether segmentation results of different people resemble each other, and
(ii) whether the image segmentation of the average face works well for other faces.

In the first experiment, we used the face database provided by the Max-Planck
Institute for Biological Cybernetics [5]. This database contains laser-scanned face
models of four persons and an average face model.

(a) (e)(d)(c)(b)

Fig. 5. Images and segmentation results of faces: (a) an average, and (b)∼(e) four
persons

In Fig. 5, we show images under a typical point light source and segmentation
results of (a) the average face and those of (b)∼(e) four persons. We assumed
that the average distribution of illumination is uniform within Ω = {(θ, φ)|π/6 ≤
θ ≤ π/2, 0 ≤ φ ≤ π/2}. One can see that these segmentation results resemble
each other: pixels in the upper right and right regions belong to smaller domains
than those in the lower left and left regions.

In the second experiment, we used images of a plaster Napoleon figure taken
in a similar manner to that in Section 4.3. The average reconstruction error
against the number of domains is shown in Fig. 4 (f). One can find that the
average reconstruction errors behave in a similar manner to other results in Fig.
4. In spite of different geometry and deviations from our assumptions such as
interreflections, our method improves the approximation accuracy about 20%
compared with rectangular segmentation.

These experimental results imply that, for approximating face images under
near lighting, we can substitute the segmentation result of the average face for
those of individuals. Therefore, a combination of image segmentation for the
average face and PCA-based face recognition etc. would be one of the feasible
methods for face recognition under near light sources, even when 3D models of
individuals are unavailable.

5 Conclusions and Future Work

In this paper, we discussed image segmentation in terms of approximation accu-
racy, which is a necessary condition for applying techniques assuming directional
6 Strictly speaking, we investigate not recognition but approximation. However, the

notion of Eigenfaces shows image approximation or compression is important also for
face recognition.
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light sources. In summary, the main contributions of the present study consist of
(i) the experimental evaluation of image segmentation for dealing with object’s
appearance under near lighting, (ii) a method for planning appropriate segmen-
tations considering properties of objects and variable illumination conditions.

In the future, we will extend our framework for image segmentation by con-
sidering sufficient conditions for specific applications such as face recognition
and inverse rendering. Along with the compatibility with techniques assuming
directional light sources, we believe that image segmentation is one of the most
promising approaches to a number of applications dealing with images under
near light sources.
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Abstract. Accurate and stable identification of feature points is a re-
quirement for such varied applications as wide-baseline stereo, object
recognition and simultaneous localisation and mapping. Although a wide
variety of feature extraction methods exist, certain aspects remain active
areas of research.

In this paper, a feature model is proposed which makes use of the
summed area images in achieving scale invariance at the loss of theoret-
ical rotational invariance. By making use of approximations to first and
second derivatives, as well as the Laplacian, a wide variety of features
may be obtained. Additionally, the stability of this method is increased
by an improved approach to ordering of features.

Evaluation is performed versus other common approaches using tests
on precision, recall and information content of the extracted points.

1 Introduction

Identification of stable feature points is a core requirement of many applications;
e.g. wide-baseline stereo matching or reconstruction as well as being useful in
classification or recognition. Feature points are useful if a small subset of points
contain the information required for a task as they then provide a means to
reduce the computational burden.

In calculation of feature points, two dimensional points, in particular corners,
are of interest [1]. More recently, region detectors have also become popular [2–
4], partly as testing suggested they were more stable for image deformations [5].
Increasingly, there has been a desire for invariance to image deformations, in
general scale [6, 3] and more recently affine invariance [2, 4, 7]. Whilst desirable
for wide-baseline stereo, for applications such as ’simultaneous localisation and
mapping’ (SLAM) or object recognition affine invariance is not necessarily of
great importance as the underlying assumptions are unlikely to hold for objects
close to the camera. Additionally, affine invariant algorithms tend not to be fully
affine invariant: they perform local searches from identified scale invariant points
[2, 5, 7]. Instead, whilst scale invariance remains desirable, faster detection which
is invariant to changes in contrast as the camera moves is probably more useful
than affine invariance for SLAM or recognition. Consequently, in this paper we
focus on fast, contrast independent, scale invariant detection of feature points.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 776–786, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In particular, we wish to solve two problems: one relating to scale invariance,
one to reducing dependence on illumination.

Scale invariant points are often found through convolving the image with a
set of bandpass filters with gradually increasing spatial extent, then looking for
maxima across scale and space [6, 7, 3]. As convolution is order N, for separa-
ble filters, to improve computation speed the image is normally down-sampled
at each octave, e.g. [3]. Truncation of filters can, introduce small steps into the
output, proportional to the local contrast which, lead to spurious maxima. Addi-
tionally, localisation of points can be poor at higher scales owing to the required
interpolation step for down-sampled images [3]. The second problem which we
solve results from the dependence of the derivatives and hence energy function
on local intensity and contrast, a problem region methods suffer to less extent
[2, 4]. As the set of scale space maxima is often reduced by tests on energy and
curvature [3], features with poor contrast can be easily lost.

To solve these problems we propose the following. First, using the summed-
area table, or integral image, transform [8, 9]. Bandpass filters at any scale can
be calculated using 8 additions/subtractions on the integral image and are easily
normalized for scale invariance. This avoids down-sampling the image and the as-
sociated problems with interpolation and truncation. Additionally, ‘convolution’
becomes significantly faster leading to a speed increase. Secondly, we propose
selecting features as a subset of the identified maxima, except that instead of
ordering these points by derivative energy (which is illumination dependent),
they will be ordered by an illumination independent property. For this purpose,
entropy, curvature and a measure based on normalised odd and even derivatives
are considered. We therefore make two contributions. Firstly, a feature model
to detect both points of high curvature and blobs using first and second order
gradients. Secondly, a fast stable implementation of this model.

2 Feature Models

In this section, we consider the types of points we wish to detect and require-
ments to make functions scale invariant. We propose three types of points for
detection and show how they relate to first and second order derivatives, and/or
the Laplacian. We then briefly note how to make these points scale invariant and
describe our procedure for obtaining maxima from the resulting scale-space.

Figure 1(a,b) shows a diagram of a corner like structure: a point with signif-
icant intensity change in one direction and with high curvature. Figure 1(c,d)
shows a blob type structure: a point having significant change in its second or-
der derivatives in all directions. Labels x and y denote the image co-ordinate
system, with u and v denoting a second set of axes aligned at π

4 to this. θ is an

axis estimated from image gradients, tan θ =
(

∂I
∂y /

∂I
∂x

)
, where I is the intensity

function. To detect corners, as described in figure 1 there are two conditions.
Firstly, denoting noise η, it is required that∣∣∣∣∂I∂θ

∣∣∣∣ > αη ,where α = {0, 1, 2 · · ·} (1)
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(a) Corner: Plan schematic (b) Corner: Isometric view
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Fig. 1. Schematic for general corner and blob-like points. A corner is defined as a point
with high curvature and significant (relative to noise) change in intensity in direction
θ. A blob has significant change in its second derivatives in all directions. Examples of
corner-like points might be the corners of eyes or junctions between two lines. Examples
of blob-like points might be centres of cheeks, or regions with little texture.

Secondly, to remove edge points, the point’s curvature must be significant;

κ =
∂I
∂θ

∂2I
∂(θ+π

2 )2 −
∂I

∂(θ+π
2 )

∂2I
∂θ2[(

∂I
∂θ

)2
+
(

∂I
∂(θ+ π

2 )

)2
] 3

2
> κt , (2)

where κt is a threshold set to remove curves which are insufficiently corner-like.
Note that, if equation 1 is true then it is likely that ∂2I

∂θ2 ∼ 0. Consequently,
instead of evaluating the whole of equation 2, the requirement simplifies to re-
quiring ‖ ∂2I

∂(θ+π
2 )2 ‖ to be large. We can therefore search for feature points of this

type by identifying locations where both 1 and ‖ ∂2I
∂(θ+ π

2 )2 ‖ are maxima. According

to the sign of ∂I
∂θ we can identify two types of feature.

Our third feature type results from identifying blob-like points such as shown
in figure 1(c,d). As the structure is symmetrical, we must examine second rather
than first derivatives. There is therefore a choice. Either we can use a single filter
based on the Laplacian, or compute ∂2I in two orthogonal directions. Computing
the two orthogonal directions brings the possibility of affine invariance, though
as discussed earlier this is not necessarily an advantage. Using the Laplacian, or
the difference of Gaussian approximation, yields the method of [3].
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To make derivatives scale invariant, we must normalise them with respect to
scale. Given the Gaussian G(x) = 1√

2πσ
exp

(
−x2

2σ2

)
, it is easy to show that

∞∫
−∞

∣∣∣∣dGdx
∣∣∣∣ dx =

√
2
π

1
σ

and

∞∫
−∞

∣∣∣∣d2Gdx2

∣∣∣∣ dx =

√
2
π

e−0.5

σ2 . (3)

This agrees with the standard definition that the scale normalised Gaussian
derivative ∂nG is σn∂G [6]. Equations 3 highlight that for comparing odd and
even (first and second) derivatives an additional factor of exp(−0.5) is required.

2.1 Maxima Detection and Feature Ordering

To summarise, the features illustrated in figure 1(a,b,c,d). will be obtained using
first and second order scale normalised derivatives. From these derivatives, we
obtain maxima and determine which are stable; proceeding in two stages. Firstly,
following Lowe [3], we look for maxima in a 3x3x3 block consisting of a point’s
nearest neighbours in space and scale. Second, we order the points.

As discussed, intensity derivatives are dependent upon the illumination and
hence unreliable for deciding between stable and unstable points. Retaining fea-
tures based on the intensity derivatives tends to lead to points being clustered in
bright regions with few points found in darker regions. To remove noise points,
we estimate global noise using the median of the distribution of first order deriva-
tives at the highest frequency level [10]. We suggest that having identified points
with repeatable 2D shape from maxima that are not noise, the actual feature
energy is not directly related to the extent to which they are interesting. Conse-
quently, we wish to identify measures which are unrelated to intensity but not
susceptible to noise. For this purpose we consider three alternatives. Firstly, the
ratio of derivatives

∣∣∣∂I∂θ /
∂2I

∂(θ+π
2 )2

∣∣∣. Second, the local entropy assessed from sam-
pling the image at the feature scale into an 8 bin histogram where bins are set
according to local minimum and maximum intensity. Thirdly, we use a method
based on normalising the first and second order derivatives. Figure 2 shows odd
and even scale normalised filter coefficients across scale for a 1D intensity profile.
Note that where the odd response is large, the even response is near zero and
vice-versa. For Gabor filters, the odd and even filters are exactly π

2 out of phase,
making them orthogonal [10]. Although odd and even derivatives do not follow
this property exactly, we make the approximation and use their absolute values
to normalise their response. Then, for this normalised response we calculate the
mean and variance over all scales, for both odd and even derivatives. We take
the average of these variances as our interest measure. Points which have larger
variance indicate more change and hence presumably are more interesting. Un-
changing points indicate that the structure does not vary and is uninteresting.
Defining normalised derivatives ∂Io = ∂I√

(∂I)2+(∂2I)2
, σ2

o is estimated as:

σ2
o =

1
N

∑
s

(∂Io)2 − μ2
o, where μo =

1
N

∑
s

∂Io (4)
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Fig. 2. Diagrams showing a 1D intensity profile (top) and the scale space response of
the central point (bottom) for odd and even filters, their normalisations and means

Finally, points are added to our feature list via a method which attempts to
spatially distribute them based on the extent to which they are a local maxima
[11]. This reduces the tendency for points to bunch in one (textured) area.

3 Implementation

We have defined the types of points we wish to detect as maxima to bandpass
filters of first and second order. However, as stated earlier, we do not implement
these using the steerable Gaussian approach. Instead, to avoid down-sampling
and potential errors in interpolation we will approximate these filters using the
integral image representation [8, 9]. As these filters are not rotationally invariant,
we implement them in four directions, along axes x,y,u and v as defined earlier
in figure 1. As these filters require only 8 additions/subtractions, in addition to
calculation of the integral image, they are highly efficient. We now describe this
transform and define the scale invariant filters.

Denoting an image I, summed-area image IA at point (x, y) is defined as

IA(x, y) =
y∑

i=0

x∑
j=0

I(j, i) . (5)

The image is calculated recursively: IA(x, y) = I(x, y)+IA(x−1, y)+IA(x, y−
1)−IA(x−1, y−1), with boundary conditions IA(−1, x) = IA(y,−1) = 0. This
allows the sum around a point (x,y), at scale s, IS(x, y, s) to be calculated from
addition/subtraction of four points:

IS(x, y, s) = IA(x + s, y + s)− IA(x − s, y + s)−
IA(x + s, y − s) + IA(x − s, y − s) . (6)

Now, consider figure 3. It shows a plan view of the three types of filter: second
order (even), first order (odd) and an approximation to the Laplacian. White
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Fig. 3. Box filters: approximations to derivatives with summed-area tables. White in-
dicates a positive value, black negative. The filters are normalized such that the sum
of coefficients of area 1234 is always equal to that of 5678.

indicates a positive response and black negative. Note that each filter can be
formed from the subtraction of one block (1234) from the other (5678). How-
ever, such filters are not necessarily scale invariant, and unless scaled so that
the coefficients of area (1234) equal those of area (5678) have a DC response. To
obtain scale invariance, we must normalise the filters at all scales. Consider that
the Laplacian, ∂2G, of a Gaussian Gσ, is scale invariant after multiplication by
a factor of σ2: σ2∂2G, where σ is its standard deviation [6]. In [3], Lowe approx-
imates this by the difference of two Gaussians, where their standard deviations
are σ and kσ, k being a constant. The key difference between the sums of equa-
tion 6 and the Gaussian integral is that the point sums are not normalized. This
is easily remedied by dividing equation 6 by factor 4s2. The difference of two
such sums then yields a box filter approximation to the difference of Gaussians
[3] and to the Laplacian L2(x, y, s):

L2(x, y, s) ≈ 1
4s2
IS(x, y, s)− 1

4k2s2
IS(x, y, ks) . (7)

This method of normalisation also works for the first and second order directional
filters. At scale s, the first derivatives ∂I

∂x are defined by

∂I(x, y, s)
∂x

=
1
s2

[
IS(x+

s

2
, y,

s

2
)− IS(x− s

2
, y,

s

2
)
]

(8)

Derivative ∂I
∂y is defined similarly, with a shift in y replacing that in x. Deriva-

tives ∂I
∂u ,∂I

∂v are defined using IS(x ± s
2 , y ∓

s
2 ,

s
2 ) etc.. The second order deriv-

atives use the same idea. The only difference is that an extra parameter is re-
quired to express the ratio between the sum extent in the different directions,
i.e. IS(x, y, sx, sy) although the ratio between sx and sy is set to be constant
and equal to 1

2 . In the x direction, ∂2I
∂x2 is defined as

∂2I(x, y, s)
∂x2 =

2
s2
IS(x, y,

s

2
,
s

4
)− 1

s2
IS(x, y, s,

s

4
) . (9)

Again, similar filters are defined for the other three directions. These filters
use the same scales as the Laplacian approximation, although there is not any
particular reason that this must be so. Practically, all first derivatives, and second
derivatives L2, ∂2I

∂x2 ,
∂2I
∂y2 , require 8 operations. However, ∂2I

∂u2 and ∂2I
∂v2 require 12.
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There are two advantages and one disadvantage to this approach. Firstly, in
[3], filters with standard deviations from σ = 1.2 to 3.2 are used. Assuming
Gaussians are truncated at two standard deviations, filters span between 5 and
13 pixels. A separable filter implemented convolution requires between 10 and 26
operations, vs. 4 for the summed-area images. This significantly increases speed.
The second advantage to the box filters is that, using the summed-areas, there
is no need to downsample the image to improve convolution speed. This is useful
as it should reduce delocalisation associated with this process. [3] uses interpola-
tion to improve position estimates for maxima on downsampled images. Using a
Taylor expansion, about a point, the estimate is altered using the approximation
x = −∂2L

∂x2

−1
∂L
∂x . Still, it might reasonably be assumed that estimates will deviate

by σ ∼ 0.1 pixels. This leads to an error of σ ∼ 0.8 pixels for the third pyramid
level which will decrease the number of matching features between consecutive
images. The one weakness to implementation using integral images, is that the
filter is a lower fidelity approximation to the first and second order derivatives
than is achievable using Gaussian derivatives. In particular, it is not rotationally
symmetric: implying lower performance for rotation about the axis through the
camera lens and focal plane. Less importantly, the image grid limits the choice
of k if we wish to the bandpass filters to have constant bandwidth. We specify
our filter at scales �2kn�, n = 0, 1, 2.., where �•� means taking the floor value of
the expression and k=1.5. This leads to scales 2,3,5,7,10,15,23,34,51,77,115 etc..
For 240x320 sized images we use the first 10 scales.

4 Experiments and Results

To measure performance, we adopt a similar test strategy to [5], aiming to com-
pare accuracy and information content of points. Consequently, the number of
points found on average is also given. Additionally, as a key aim of the paper
was an efficient implementation for scale invariance, timings for frames/second
processed are provided. Tests compare some or all of the following methods of
detecting feature points (not describing them): (1) Corner detection using eigen-
values [1], (2) SIFT [3], (3) Laplacian of Harris corners (LHC) [5], (4) Gray-
level Extremal Regions (GER) [4], (5) (proposed method) scale-invariant Lapla-
cian box filters (SILBF) and (6) (proposed method) scale-invariant derivative
box filters (SIDBF). All the images used in testing were obtained courtesy of
http://www.inrialpes.fr/lear/people/Mikolajczyk/.

Table 1. Average mean entropy of points over 100 images. Entropy is calculated for
all methods using the Local Jet [12]. The mean entropy of a random point was 2.10.

Method KLT SIFT LHC SILBF SIDBF
Entropy 3.58 3.70 4.23 3.71 3.8

Pts. Detected 800 250 400 350 900
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(a) Energy Maxima (b) Entropy Maxima

(c) Eigenvalues Ratio Maxima (d) Derivative Variance Maxima

Fig. 4. Comparison of obtaining maxima using various descriptors versus the standard
maxima of energy of derivatives, for box filter method SILBF. Points are marked by
white circles with a central cross.
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Fig. 5. A comparison of points detected through data sequences with significant
changes in a scale or illumination

Table 1 shows the entropy of the feature points found for various methods.
Note that the entropy of SIFT and SILBP is similar, as expected, given they
approximate the same function. All are significantly higher than the random
entropy. Note that LHC points have higher entropy than SIFT or SILBF. This
is as they find boundaries between regions rather than centres of them: change
is inevitably greater. Table 2 shows comparison of the different methods for
speed of processing. The speed was obtained by taking the shortest processing
time from 200 trials. Note in particular that the proposed method SILBF is
quickest, a factor of 2 faster than the second fastest and nearly a factor of 3
quicker than SIFT, its ideological equivalent. SIDBF is slower, as it calculates
four times as many derivatives as SILBF, also requiring more comparisons to
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(a) SIFT, Graph 1/12 (b) SILBF, Graph 1/12

(c) SIFT, Graph 12/12 (d) SILBF, Graph 12/12

(e) SIFT, Asterix 10/16 (f) SILBF, Asterix 10/16

Fig. 6. Visual comparison of SIFT and SILBF for type of points produced. Note that
although both the SIFT and SILBF obtain points which look like the centre of regions,
they are in fact not identical. Noticeably, the Block filter approach seems to produce
smaller regions and has difficulty with obtaining large scale feature points (compare
(e) to (f)). This can affect performance for large scale changes.
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Table 2. Comparison of algorithm speed for processing a single frame and for
frames/sec. Comparisons were made on a P4, 2.5GHz with 512KB cache, 512MB RAM.
The first number is total processing time, the second the time spent on detecting max-
ima. Time for computing the scalespace trees (or regions) is their difference.

Milliseconds/Frame Frames/sec
Method 240x320 480x640 240x320 480x640
KLT 170(35) 280(35) 5.88 3.57
SIFT 155(14) 654(45) 6.45 1.53
LHC 531(14) 2437(42) 1.88 0.41
GER 100(7) 301(12) 10 3.32

SILBF 53(17) 185(38) 18.7 5.4
SIDBF 240(24) 1070(81) 4.17 0.93

identify maxima. Whilst [3] suggests upsampling the image as a preprocessing
step, for timing comparisons this is not done.

Figure 4 shows a comparison of the different maxima ordering approaches on
the “graffiti1” image. The strongest 250 points are shown. Although differences
are small, the derivative variance maxima are slightly better distributed across
the image. Figure 5 shows the results of testing for scale and illumination invari-
ance on the Asterix and Graph sequences. Although the performance of SIBF is
inferior to SIFT, it is not so much so. Where speed is of importance, it may be
an acceptable tradeoff.

5 Conclusions

We have demonstrated a method for fast feature detection using box filters
obtained from summed-area images. The approximated Laplacian improves in
speed on SIFT by a factor of three and the approximated derivative filters on
affine Harris by a similar factor. Performance for scale and illumination change
remains similar. Future work will examine SILBF on non-intensity functions, e.g.
colour or object models, and look to improve the stability of extracted maxima.
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Abstract. Face detection is a hot research topic in Computer Vision;
the field has greatly progressed over the past decade. However, to our
knowledge, face detection in low-resolution images has not been studied.
In this paper, we use a conventional AdaBoost-based face detector to
show that the face detection rate falls to 39% from 88% as face resolution
decreases from 24 × 24 pixels to 6 × 6 pixels.

We propose a new face detection method comprising four techniques.
As a result, our method improved the face detection rate from 39% to
71% for 6 × 6 pixel faces of MIT+CMU frontal face test set. We also show
our method can detect 6×6 faces in real scene other than MIT+CMU
frontal face test set.

1 Introduction

In recent years, numerous methods for detecting faces in general scenes have
been proposed [1]. Those methods work efficiently for frontal face detection [2].
However, faces in real images are not necessarily frontal; moreover, they are
usually taken in various illumination conditions. Therefore, many studies have
been undertaken for face detection, which is robust for variation of poses and
illumination conditions [3][4].

On the other hand, considering the security use of discovering suspicious per-
sons from surveillance images, it is better to detect a face immediately when a
small face is captured in the distance. Nevertheless, conventional face detection
technique usually detects face images larger than 20 × 20 pixel or 24 × 24 pixel.
Face detection from low-resolution images has not been explicitly studied.

There are two studies related to this field. One is Torralba’s psychological
experiment[5]. That result indicates that a human can recognize a face in a low-
resolution image better when using an upper-body image than using merely a
face image. We use this knowledge to improve the face detection rate in section
3. The other is Kruppa and Schile’s study[6]. They also used the knowledge of
Torralba’s experiment and applied ”local context detector” for half resolution
MIT+CMU ftontal face test set. However, the advantage of using ”local context
detector” is not clearly shown. In the graph of their paper, ”object-centered
detector (conventional method)” outperforms ”local context detector” at the
point of the same false positives.

In this paper, we investigate the relation between resolution and the face de-
tection rate systematically in section 2. We made four kinds of evaluation images
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Fig. 1. Various face resolutions; face size is from left 24 × 24, 12 × 12, 8 × 8, 6 × 6,
4 × 4 pixel

from the MIT+CMU frontal face test set and trained four kinds of AdaBoost-
based detectors. These four kinds indicate four levels of resolution. We evaluated
face detection rates for these four kinds of detectors by plotting ROC curves as
relations between false positives and the face detection rates. This evaluation
shows that a detection rate decreases from 88% to 39% as the resolution of faces
decreases from 24 × 24 pixel to 6 × 6 pixel. Section 3 presents our new method
for detecting faces from low-resolution images. This method comprises four tech-
niques, ”Using the upper-body”, ”Expansion of input images”, ”Frequency-band
limitation of features”, and ”Combination of two detectors”. Our results showed
that a 39% face detection rate for 6 × 6 pixel faces increases to 71% by our
proposed method. In section 4, we applied our proposed method to real data. In
section 5, we summarize our research.

In this paper, ’resolution’ means the face size. We defined the face size as 2.4
times the interval between an individual’s eyes.

2 Conventional Method

Recently, many methods for face detection have been proposed. Especially, the
AdaBoost-based face detector by Viola [7] is used widely in face detection re-
search because of its speed and accuracy [8][9]. The AdaBoost-based face detector
is recognized as a standard method for face detection. For that reason, we use
an AdaBoost-based face detector for our research and show the result of their
application to low-resolution images.

2.1 Application to Low-Resolution Images

First, we determine the resolutions to investigate. Cropping faces in various sizes
and observing, we judged that 6 × 6 pixel was near the boundary of resolution
for an image to be recognizable as a face. Figure 1 shows cropped faces as 24 ×
24, 12 × 12, 8 × 8, 6 × 6, and 4 × 4 pixels. The 4 × 4 pixel face has become
unrecognizable as a face, but 6 × 6 pixel face is barely recognizable as a face.
Therefore, we designate 6 × 6 pixel as the minimum resolution to investigate in
this study. We selected 24 × 24 pixel as the maximum resolution. 12 × 12, 8 ×
8 pixel were added. These are the four kinds of resolution investigated here.

Next, we describe application of an AdaBoost-based face detector to low-
resolution images. Resolution of training data is the minimum size of face detec-
tion because, in the face detection process, an input image pyramid is produced
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Fig. 2. Face size histogram of the
MIT+CMU set

Fig. 3. Relation between resolutions and
face detection rates

by scaling down. Consequently, it is necessary to lower the resolution of training
data for detecting low-resolution faces. In this regard, not only the AdaBoost-
based face detector but neural network-based face detectors and other devices
are similar.

We use the MIT+CMU frontal face test set [10] for test data1. From the
ground truth file, we calculated a histogram of face sizes of 507 faces in
MIT+CMU frontal face test set. This is shown in Figure. 2. Because the mini-
mum detectable face size is the size of the training data, most faces contained in
the MIT+CMU set can be detected using a 24 × 24 pixel face detector. However,
our research is intended to detect faces smaller than 24 × 24 pixels. Therefore,
the MIT+CMU set, in which the small face is not contained, cannot be used
as it is. Evaluation images for face detection from low-resolution images were
created as follows.

– Eliminate 13 images that contain no faces and eliminate 5 images that con-
tain line-drawn faces. Thereby, 130 images become 112 images.

– The ”average face size” is calculated in the image, and the whole image is
reduced using bicubic so that the ”average face size” might reach a desired
size. (24 × 24, 12 × 12, 8 × 8, or 6 × 6 pixels). Bicubic was chosen to
perform the smoothest possible reduction.

– The above is repeated for 112 images and four kinds of sizes.

That process yielded four kinds of evaluation images. Respective averages of
the face sizes contained in the four kinds of evaluation images are 24 × 24, 12
× 12, 8 × 8, or 6 × 6 pixels.

Four kinds of detectors were made using 5131 face images of 24 × 24, 12
× 12, 8 × 8, and 6 × 6 pixels and 5316 non-face images as training data.
Evaluation results for the four detectors are shown in Figure. 3. This is the
result obtained using conventional AdaBoost-based face detectors applied to
low-resolution images. The horizontal axis of Figure. 3 expresses the number of
false positives; the vertical axis expresses the face detection rate.

1 This set comprises 130 images containing 507 ftonral faces.
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Fig. 4. Examples of detection results: average face size is 24×24(upper left),
12×12(upper right), 8×8(lower left), and 6×6(lower left) pixels. Thresholds were set
to obtain almost the same number of false positives for 112 images.

In Figure. 3, at the point of 100 false positives, the face detection rate declines
from 88% to 39% as the face resolution is reduced from 24 × 24 pixel to 6 × 6
pixel. Therefore, it can be said that we can not obtain a sufficient face detection
rate for 6 × 6 pixel faces merely using 6 × 6 pixel faces as training data. An
example of detection results is shown in Figure. 4.

3 Proposed Method

When face size became 6 × 6 pixels, the detection rate fell extremely using con-
ventional AdaBoost-based face detector. We chose 6 × 6 pixels as the minimum
face size to detect; in this study, only 6 × 6 pixel evaluation images are used
hereafter.

In this section, we show our proposed method ”Using upper-body”, ”Expan-
sion of input images”, and ”Combination of two detectors”.

The final algorithm is shown below.

– An input image is expanded by a factor of six.
– Apply the face detector and the upper-body detector to the expanded image.
– The two detectors’ results are inputted into a SVM. Final judgement is

performed by the SVM.

3.1 Using Upper-Body Images

Torralba performed a psychological experiment for the face recognition from
low-resolution images. This indicates that a man can recognize a face in a low-
resolution image better when using an upper-body image than a simple face
image.

Using this knowledge, we attempted to use upper-body images as training
data. We choose 12 × 12 pixels as the size of upper-body images. This is double
the resolution of face images. 4191 upper-body images of 12 × 12 pixels were
prepared as training data; a detector was made using these images and 5316
non-face images. Figure 5 is a 12 × 12 upper-body image and a 6 × 6 face
image. Each face size is the same.

Figure 6 portrays the result of 12 × 12 upper-body detector applied to 6 ×
6 pixel evaluation images. For comparison, the result for a 6 × 6 face detector



Detecting Faces from Low-Resolution Images 791

Fig. 5. Left:12 × 12 pixel upper-
body image. Right:6 × 6 pixel face
image.

Fig. 6. Effect of using upper-body im-
ages

Fig. 7. Left:6 × 6 pixel face detector’s result. Right:12 × 12 pixel upper-body detector’s
result (a detection window is drawn at the face region).

applied to 6 × 6 evaluation images is plotted. At the point of 100 false positives,
the 6 × 6 face detector detects about 39% of faces, while the 12 × 12 upper-body
detector detects 52% of faces.

We intended to use the upper-body detector only. However after seeing the
detection results, we noticed that there are faces that only the upper-body detec-
tor can detect and that only the face detector can detect. An example is shown
in Figure. 7. This indicates that these two detectors complement each other.
Therefore, we use not only the upper-body detector, but also the face detector.
Finally, we will try to combine these two detectors into one system.

3.2 Expansion of Input Images

In face detection, two or more ”face coordinates candidates” usually occur
around one face. This is because a detector judges the image as a face even
if the position and size vary somewhat. Two or more detection coordinates gen-
erated around one face are merged; they finally are aggregated into one face
detection coordinate for each face.

Figure 8 depicts detected results of 24 × 24 and 6 × 6 pixel faces. Face coor-
dinate candidates in Figure. 8 are not merged. There are more face coordinate
candidates in a 24 × 24 pixel face than in a 6 × 6 pixel face. We counted number
of face coordinate candidates by respectively applying a face detector to 100 24
× 24 pixel face images and 6 × 6 face images. For the 24 × 24 pixel face images,
the average number of face-coordinate candidates is 20. For 6 × 6 pixel face im-
ages, the average number of face coordinates candidates is two. This difference
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Fig. 8. Difference of the number of face-coordinate candidates. The two left images
contain 6 × 6 pixel faces. The right two images contain 24 × 24 pixel faces.

Fig. 9. Effect of expansion: face de-
tector

Fig. 10. Effect of expansion: upper-
body detector

is the difference of robustness for position and size changes. We inferred that
this is one reason why the face detection rate for 6 × 6 pixel evaluation images
is so low.

Therefore, to detect 6 × 6 pixel faces, we propose to expand the whole input
image by bicubic, and to detect faces using a 24 × 24 pixel face detector. The
minimum scaling factor is four, meaning that 6 × 6 pixel faces are expanded
to 24 × 24 pixel faces. However, considering the size variation in 6 × 6 pixel
faces, it is better to select a larger scaling factor than four. On the other hand,
a large scaling factor implies more numerous scanning patches, which leads to
more false positives. Based on the above, we choose six as a scaling factor.

We expanded 6 × 6 pixel evaluation images by a factor of six, and applied the
24 × 24 face detector to these images. This result is depicted in Figure. 9. For
comparison, the result of a 6 × 6 face detector applied to 6 × 6 pixel evaluation
images is plotted. At the point of 100 false positives, the 39% face detection rate
is improved to 48% using this expansion.

To evaluate the effect of expansion for an upper-body detector, we made a 48
× 48 pixel upper-body detector using 4191 upper-body images of 48 × 48 pixels
and 5316 non-face images. We applied it to 6 × 6 pixel expanded evaluation
images. The result is shown in Figure. 10. For comparison, the result of the 12 ×
12 pixel upper-body detector applied to 6 × 6 pixel evaluation images is plotted.
At the point of 100 false positives, the 52% face detection rate is improved to
58% using expansion.

The face detection rate is improved through the use of expansion of input
images for both the face detector and the upper-body detector.
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3.3 Frequency-Band Limitation of Features

A classifier that constitutes a detector uses four simple features. We use the
same features as Viola used. These features can take all positions and lengths
possible in a 24 × 24 pixel image. When 6 × 6 pixel face images are expanded
by a factor of four, fewer than 4 pixel cycle data in 24 × 24 pixel face images
are meaningless. However, when we made detectors before, AdaBoost selected
features from all possible features. Features selected by AdaBoost included fea-
tures whose frequency is less than four. We inferred that this is one reason for
the low detection rate for expanded 6 × 6 pixel evaluation images. Therefore,
we produced a new face detector and upper-body detector using conditions in
eq. (1). H and W are shown in Figure. 11.

H ≥ 4,W ≥ 4 (1)

Fig. 11. W,H of features

These two detectors were applied to 6 × 6 pixel evaluation images. The results
are shown as ”frequency-band limitation” in Figure. 12 and Figure. 13. In each
evaluation, 6 × 6 pixel evaluation images are expanded by a factor of six; then a
24 × 24 face detector or 48 × 48 upper-body detector is used. For comparison,
results before using frequency-band limitation are plotted as ”no frequency band
limitation” in Figure. 12 and Figure. 13.

At the point of 100 false positives, the face detection rate of the face detector
is improved from 48% to 58%. The face detection rate of an upper-body detector
is improved from 58% to 67%.

3.4 Combination of Two Detectors

In this section, the face detection rate is improved through the combined use of
the face detector and the upper-body detector.

Because two detectors are used, two face-likenesses for the image are detected.
Making a final judgment based on this information requires determination of the
domain of face and non-face in the 2D plane that takes face-likenesses as both
axes. In our research, this is achieved using a SVM. The face-likeness is defined
as eq. (2). hi(x) is a weak learner and αi is the weight of the weak learner.
k is the number of ”face coordinates candidates” and i is the number of weak
learners.

zk =
∑

weak learners

αihi(x) (2)
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Fig. 12. Effect of frequency band
limitation: face detector

Fig. 13. Effect of frequency band
limitation: upper-body detector

Two or more ”face coordinate candidates” generated around one face are
merged. Then one set of coordinates is finally made to correspond to one face in
the detection process. When merging candidate locations,

Z =
∑

k

zk (3)

is calculated, which corresponds to ”face coordinates” that were made by merg-
ing ”face coordinate candidates”. This value is inferred as a ”face-likeness”.

Now, two detectors are applied independently to an input image and the 2D
vector Z is obtained for an image that is finally detected by further merging the
result. Final judgement is made by a SVM whose input is this 2D vector Z.

We applied the proposed method to 6 × 6 pixel evaluation images. The result
is presented in Figure. 14. The results before combined use are shown as ”48
× 48 upper-body detector” and ”24 × 24 face detector” in Figure. 14. At the
point of 100 false positives, the face detection rates are improved to 71% from
58% (24 × 24 face detector) and 67% (48 × 48 upper-body detector). The result
of the 6 × 6 face detector is plotted for comparison. The face detection rate is
improved to 71% from 39% by our proposed method. Figure 15 is the result of
our proposed method applied to the lower left image in Figure. 4.

Fig. 14. Combination of two detec-
tors in a SVM

Fig. 15. Results of the proposed
method as applied to 6 × 6 pixel
evaluation images
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Fig. 16. Left: detected using a 24 × 24 face detector. Right: detected by the proposed
method.

In addition, although 6 × 6 pixel faces have been studied so far, the proposed
method can also detect a higher-resolution face image. Figure 16 shows this. An
image in Figure. 16 consists of 10 layers. The top layer’s resolution is 6 × 6
pixels; the bottom layer’s resolution is 24 × 24 pixels. The left is the detected
result of 24 × 24 face detector. Low-resolution faces are not detected at all. The
right is the detection results of the proposed method. Faces of various sizes from
6 × 6 to 24 × 24 pixel are detected well.

4 Application to Real Data

We also applied our proposed method to real images other than MIT+CMU
frontal face test set. Fig.17 is the detected result of our proposed method applied
to a 720×480 pixel image (Face size is 6×6 pixel or 7×7 pixel). This image is a
frame extracted from a movie. Fig.18 is an expanded image around pedestrians
in Fig.17. Faces are correctly detected and some false positives are shown. We
see false positives mostly appear in different places in each frames of the movie,

Fig. 17. Result of the proposed method
applied to real data

Fig. 18. An expanded image
around pedestrians in Fig. 17
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so we think we can decrease the number of false positives by using information
of two or more frames. Future studies will explore those areas.

5 Conclusions

We proposed a new method to detect faces from low-resolution images. A con-
ventional AdaBoost-based face detector can detect only 39% of faces in 6 × 6
pixel evaluation images, but our proposed method can detect 71% of faces in
those same evaluation images.

Although the AdaBoost-based detector was used for face detection in this
paper, our proposed method is applicable also to other face detection methods.
For example, as for Schneiderman’s method, what is necessary for ”Frequency
band limitation” is to directly restrict the use of the high-frequency wavelet
coefficient.

This study applied detectors to expanded low-resolution images, but the num-
ber of scanning patches was increased by expanding images. To resolve the in-
crease in the number of false positives and processing time, it is better to scan
without expanding an input image at first, then to detect by expanding only the
region that offers the high possibility of being a face. This is a future work.
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Abstract. This paper describes a method for estimating human dis-
tributions (quantities and locations) based on multiple-viewpoint image
sequences. In the field of human image analysis, inter-human occlusion is
a significant problem: when a scene includes a large number of occlusions,
tracking of individual persons becomes difficult. Therefore, updating a
tracking-based model is not enough to estimate the distribution in com-
plex scenes. In our method, the number of persons and their locations
are directly estimated from a set of input images based on the fitting of
a projected shape model. The model’s complexity (number of persons)
is determined based on the MDL (minimum description length) crite-
rion. In addition, the image areas occluded by static objects are also
detected and automatically excluded from the human distribution com-
putations. We confirmed the feasibility of the proposed method through
experiments using both synthesized and real images. Results show the
effectiveness of our method.

1 Introduction

Vision-based human detection can be applied almost anywhere due to its lack
of physical contact and its ability to detect unknown persons. Detecting and
understanding human behavior is a challenging research domain in computer
vision, and many vision researchers have already proposed methods for human
motion detection/tracking [1, 2, 3, 4, 5, 6]. Most of these systems deal with the 3-
D tracking of human movements. Dominant applications include human-machine
interfaces using body movements, remote surveillance systems, and so on.

In vision-based human tracking, the most significant problem is occlusion.
Since a human body is a three-dimensional articulated object, the appearance
of human bodies can drastically change according to their distributions: when
two or more persons are in a scene, one person can easily occlude others. In
addition, a change of clothes and illumination conditions can also reduce the
system’s robustness.
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In an effort to solve this problem, we have investigated a multiple camera
based human detection method [7]. Because of its strong ability to reduce the
impact of occlusions, multiple-camera-based tracking has attracted the attention
of many researchers [8, 9, 10, 11, 12].

Generally speaking, however, the number of required viewpoints in multiple-
camera systems changes drastically depending on the size of the observation
area and the human distributions (distances among persons). In addition, it
becomes difficult to avoid occlusions by adding more cameras when people get
too close to each other. In most conventional systems, each person in the scene
is independently tracked in accordance with their motions. Therefore, failure
of the tracking process can break down the system permanently. One way to
tackle these problems is to improve the human-detection performance [7, 13].
By detecting observed humans accordingly, the system can restart the tracking
process of them when the occlusion state finishes; however, it is difficult to
process occluded humans by this approach. In this paper, instead, we model
the mechanism of occlusions by also using a 3-D projection model, in which
human distributions are directly estimated from observed images. By applying
this method, our system can obtain estimations without breakdown even if the
scene includes many occlusions.

In the next section, we briefly summarize related works and introduce our
algorithm, which uses a model selection criterion. In Section 3, we outline our
observation projection model, and in Section 4 we briefly introduce the minimum
description length principle. Section 5 gives the detailed algorithm of distribution
estimation and Section 6 describes the experiments conducted to clarify the
effectiveness of our method. Finally, Section 7 concludes this paper.

2 Estimating Human Distribution Using Model Selection
Criteria

In the analysis of human images, the number of persons existing in scene is gen-
erally unknown. However, if one could observe each person independently with-
out occlusions, determination of the number becomes relatively easy; in fact,
most human-tracking systems assume individual tracking to initialize their mod-
els [8, 9, 10, 12]. Such systems can work properly when the number of occlusions
is small, though individual tracking becomes difficult in more complex scenes. In
the proposed method, the number of persons in a scene and their locations that
have the highest likelihood are directly estimated by model adaptation. Accord-
ing to the method, we can deal with input images that feature strong occlusions.

Generally, if a model is fitted to the observed data without limiting the number
of model parameters, the model with a larger number of parameters has a smaller
fitting error. Therefore, if a model is selected based only on the fitting errors,
the model having more parameters is always selected. This problem is known as
model selection, and several statistical criteria such as AIC and MDL have been
proposed to obtain models of balanced size. This paper also applies the model
selection method to determine the number of humans in a scene.
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Regarding a statistical model for object tracking in vision research, a sophisti-
cated model has already been proposed that approximates an object’s motion as
the motion of multiple particles [14]. In such a method, however, the model selec-
tion method is still required to determine the model’s complexity. Furthermore,
in the case of human tracking where the shape of the target object is approx-
imately known, a method to directly model the relation between the target (a
unit of a moving object) and its projection in images is more helpful.

In the next section, we describe our shape-projection model.

3 Shape Projection Model

In this section, we describe the shape-projection model used in the proposed
method. By assuming the well known pin-hole camera model, the relation be-
tween a 3-D point (X,Y, Z) and its 2-D projection point in the image (x, y)
follows the equation below.

k

⎡⎣xy
1

⎤⎦ = S
[
R t

] ⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ (1)

Here, S is an intrinsic parameter for determining perspective projection, while
R and t denote 3-D camera pose and position, respectively. An input image can
be considered as the result of projecting a single or multiple human shapes
according to the relation above.

Here, we divide the detection area (floor) into M blocks; xj denotes the exis-
tence of people at block j (1 ≤ j ≤M).

xj =
{

0 (a person exists at block j)
1 (no person exists at block j) (2)

A human distribution can then be described as an M -dimensional vector X
as follows:

X =
[
x1 x2 · · · xM

]′
. (3)

On the other hand, we denote an input image of the distribution X observed by
camera k as Ak.

Ak =
[
ak
1 a

k
2 · · · ak

N

]′
(4)

Here, ak
i is a pixel value of i-th pixel at camera k (N is the size of an image).

ak
i =

{
0 (ak

i belongs to human region)
1 (ak

i does not belong to human region) (5)

Now, we consider the relation between them, focusing on the case where a person
exists on a specific block l only and is represented as X l:

X l =
[
x1 x2 · · · xM

]′
xj =

{
1 (j = l)
0 (j �= l) . (6)
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P 0 (0 degree) P 45 (45 degree) P 90 (90 degree)

Fig. 1. Average images

θ = 0 θ = 15 θ = 30 θ = 45 θ = 60 θ = 75 θ = 90

Fig. 2. Examples of projected images

We denote the input image in this situation by camera k as Ak
l .

In the case where multiple persons are present, the input images of projections
of one or more persons overlap. For instance, in the case where L persons are
located at xl1 , · · · , xlL , the observed image Ak can be expressed as follows:

Ak = Ak
l1 ∪Ak

l2 ∪ · · · ∪Ak
lL . (7)

When we have K cameras, a set of the model image is described as follows:

A =
[
A1′ A2′ · · · AK ′

]′
. (8)

In real situations, the projected image can vary according not only to the
position, but also to the build and posture of each person. Consequently, we can
create a 3-D shape model based on multiple subjects with multiple appearances.
Here, we model the human shapes based on about 100 sample images for three
observation directions (Fig. 1). Figure 2 shows an example of the generated
model.

4 MDL Principle

The MDL (Minimum Description Length) principle is a method for determining
a proper model to describe observed data [15]. Under the MDL principle, a model
is selected based on both the complexity and fitting errors between the model
and input data. In general, MDL can be defined as follows:

MDL = −(Maximum Log Likelihood) +
F

2
logn, (9)

where F represents the degrees of freedom for the model considered. The MDL
principle has already seen used in many computer-vision and image-processing
studies such as image segmentation [16], curve fitting [17], and so on.
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In this paper, we apply that principle to human image analysis. In human
images, the number of persons in a scene is generally unknown and has to be
estimated somehow. As mentioned before, occlusions in images make accurate
tracking difficult, thus raising the need for a method to directly estimate the
number of humans and their locations. Our method divides the target area into
several discrete blocks and estimates the existence of persons for each block
based on the 3-D/2-D shape-projection model using the MDL principle.

We describe the estimation process in the following section.

5 Estimation of Human Distributions

In this section, we explain our method of estimating human distributions.

5.1 Observation Vector

Here, assuming color image inputs, an image CK for camera K consisting of N
pixels can be described as follows:

Ck
t =

[
ck
1 ck

2 · · · ck
N

]′
, (10)

ck
i,t =

[
rki,t g

k
i,t b

k
i,t

]′
. (11)

To simplify the calculation, here we select the pixels largely changed in a certain
time period as human regions. We can then produce input vector Zk for camera
k, as follows:

Zk
t =

[
zk
1,t z

k
2,t · · · zk

N,t

]
, (12)

zk
i =

{
0 ((ck

i,t − c̄k
i,t)

′(ck
i,t − c̄k

i,t) < threshold)
1 (otherwise),

(13)

c̄k
i,t =

1
s

t−1∑
j=t−s

ci,t−j , (14)

For k cameras, a set of observation vectors Zt can be defined as follows:

Zt =
[
Z1

t

′
Z2

t

′ · · · ZK
t

′
]′
. (15)

5.2 Mask-Based Obstacle Representations

In a vision based tracking, the existence of occluding objects also cause serious
problems to model reconstruction as well as inter-human occlusions. Fortunately,
in our method, distribution estimation process can work correctly by just ex-
cluding the occlusion area from the evaluation process. Here, we represent the
occluding area in camera k as the mask image Mk.

Mk =
[
mk

1 m
k
2 · · · mk

N

]′
, (16)
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mk
i =

{
0 (pixel i ∈ occluding area)
1 (otherwise). (17)

5.3 Model Description

In real situations, ideal observations are not allowed due to observation errors.
Here, we model the observation errors as phenomena in which the observation
values are inversed. At this point, we describe the probability of zj = 0 for a
human region as p and the probability of zj = 1 for the background region
as q.

Then, the observation probability of a set of images Z under the model dis-
tribution A becomes

P (Z|A) = pna(1− p)nbqnc(1 − q)nd . (18)

Here, na, nb, nc and nd are the total pixel numbers of (a = 1, z = 1), (a = 1, z =
0), (a = 0, z = 1) and (a = 0, z = 0), respectively, as follows:

na = (A ∩M ∩Z)′ · (A ∩M ∩Z),
nb = (A ∩M ∩ Z̄)′ · (A ∩M ∩ Z̄),
nc = (Ā ∩M ∩Z)′ · (Ā ∩M ∩Z),
nd = (Ā ∩M ∩ Z̄)′ · (Ā ∩M ∩ Z̄). (19)

As a result a log likelihood of input vector Zt to a model A can be drawn:

− logP (Z|A) = −na log p− nb log(1− p)− nc log q
−nd log(1− q). (20)

Then, the description length for this model can be calculated:

Ds(A,Z) = −na log p− nb log(1− p)− nc log q

−nd log(1− q)− h
2

logM + const. (21)

In the next section, we attempt to determine whether the human distributions
match the input images based on this criterion.

5.4 Search Process for Human Distribution Estimation

According to the criteria above, we search for human locations in the scene that
match a set of input images. In the search process, we start with the 0-person
case and gradually increase the number of model humans incrementally. For a
every person added to the model, reallocations of all other persons are consid-
ered. Finally, when the addition of a new person does not decrease the score
(description length L), then the search process is terminated.
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This process is summarized as follows:

Algorithm: Search Process

L := 0
Dmin := D(O,Z)
do

flag = 0
for i = L : 1

for li = 1 : M
A = Al1 ∪Al2 ∪ · · · ∪AlL

if D(A,Z) + L
2 logM < Lmin then

Dmin := D(A,Z) + L
2 logM

ans :=
[
l1 l2 · · · lL

]
’

flag := 1
end if

end for
end for

while flag=1

6 Experiments

To confirm the efficiency of the proposed method, we conducted several experi-
ments.

First, by using images synthesized with a shape projection model, we per-
formed human position estimations. In the experiment, the detection area was
approximately 330 × 330 cm. We installed three cameras around that area, di-
vided the area into 30× 30 cm blocks (11× 11 blocks in total), and constructed
our shape projection models for the three cameras. Figure 3 shows the camera
configurations.
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Fig. 4. Example of human distribution estimation (synthesized data)

As an example, we placed three ‘virtual’ human subjects at (x, y) = (150, 240),
(x, y) = (60, 0) and (x, y) = (240, 90) and synthesized images for the three cam-
eras, which are shown in Fig. 4 left. Figure 4 right illustrates the result of position
estimation. Here, ' denotes the actual positions of subjects and + denotes the
estimation results. As the figure shows, our system could correctly estimate num-
ber of humans and their positions except for one person (his position is one block
off.)

Camera 1 Camera 2 Camera 3

Fig. 5. Input images

Input Images Estimated Results

Fig. 6. Results for an outdoor scene

Next, we applied our method to a set of real images. Using real cameras
in the identical configuration with above, we captured sets of human images
with one, two, three, four and five persons by locating the subjects at randomly
selected locations. Figure 5 shows the part of input images. Figure 7 shows
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averages and standard deviations of human number estimations, and Fig. 8 shows
averages and standard deviations of distances between each estimated position
and nearest correct location. As we can see, the proposed method can estimate
human distributions with less than ±80-cm errors in position and ±1 error in
number of humans. On the other hand, the error for the estimation of the number
of persons becomes large when the number of humans increases. We consider this
to be due to occlusions.

Finally, we applied our method to an outdoor scene. Figure 6 shows an exam-
ple of the captured outdoor scene, The image sequence of which was captured
from a camera set 10 m above the sidewalk. The right-hand side of Fig. 6 shows
the result of the distribution estimation, indicating that our method also works
well for sequences of real images.

7 Conclusion

In this paper, we presented a method to estimate the distribution of humans in
a scene using MDL-based adaptation of a projection model founded on multiple
camera observations. In our method, human distributions that have maximum
likelihood for input images are estimated with a shape projection model, which
models the relation between human position and input image. We confirmed the
stability and efficiency of the proposed method through experiments using both
synthesized and real data streams.

Future works include improving the calculation algorithm to obtain superior
performance and to enhance the estimation accuracy.

This research was supported in part by the National Institute of Information
and Communications Technology.
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Abstract. In recent years, many gait recognition algorithms have been devel-
oped, but most of them depend on a specific view angle. However, view an-
gle variation is a significant factor among those that affect gait recognition per-
formance. It is important to find the relationship between the performance and
the view angle. In this paper, we discuss the effect of view angle variation on
appearance-based gait recognition performance. A multi-view gait database (124
subjects and 11 view directions) is created for our research. We propose two mod-
els, a geometrical one and a mathematical one, to model the effect of view angle
variation on appearance-based gait recognition. These models will be valuable
for designing robust gait recognition systems.

1 Introduction

Gait, as an attractive biometric for human identification at a distance, has received an
increasing interest from researchers in the computer vision community. The study by
Murray et al. [1] is supportive of the uniqueness of gait for a person. More importantly,
gait has the advantages of being non-contact, non-invasive and easily acquired at dis-
tance in contrast with other biometrics.

Among the factors which affect gait recognition performance, such as view angle,
clothing, shoe type, carrying condition and surface type [2], view angle variation is
a significant one since for a given gait recognition system, it is impossible to expect
all the subjects to walk in a particular direction. Furthermore, most appearance-based
gait recognition algorithms depend upon a specific view angle. Some researchers in
computer vision have been devoting their efforts to designing view-invariant and multi-
view algorithms. Johnson et al. [3] propose a multi-view algorithm, which recovers
static body parameters of subjects and uses these view-invariant parameters to recognize
people. Kale et al. [4] use a sophisticated method to eliminate the effect from view
angle change. They synthesize the side view from another arbitrary view using a single
camera through the perspective projection model or the optical flow-based structure
from motion equations.

Although many gait recognition algorithms for human identification have been pro-
posed and developed over the past years, most of them are view-dependent, which will
limit their practical applications. In addition, there are two remaining open problems.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 807–816, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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One is which view is the most suitable for gait recognition and why it is. Kale et al [4]
declare that the side view is the best choice in practice, but no theoretical results, for
the time being, have been given to prove that. Another open problem is how view angle
variation affects the performance of gait recognition. Intuitively, the greater the angle
between the gallery (training) set and the probe (test) set is, the worse the recognition
performance. However, there are not been experimental or theoretical results on the
relationship between gait recognition performance and view angles. It is obvious that
the answers to the above questions are significant for designing robust gait recognition
systems.

This paper proposes two models, a geometrical one and a mathematical one, in an
attempt to address these two questions. The purpose of this paper is to investigate and
analyze the effect of view angle on the performance of appearance-based gait recogni-
tion.

The remainder of this paper is organized as follows. Section 2 presents our definition
of performance function. In Section 3, we discuss a multi-view gait database. Then,
Section 4 introduces our experiments and gives experimental results. Two models are
given in Section 5. Finally, this paper is concluded in Section 6.

2 Performance Evaluation Function

In our experiments, the correct classification rate (CCR) is used to evaluate the per-
formance of gait recognition. Suppose, without the loss of generality, that the angle
between the view direction of gallery set and the walking direction is θg , and the angle
constituted by the view direction of probe set and the walking direction is θp. Obviously
the CCR is a function of variables θg and θp.

CCR = f(θg, θp) θg ∈ [0◦, 360◦), θp ∈ [0◦, 360◦) (1)

If we can get the analytic expression of the function f(θg, θp), then how θg and θp
affect the recognition performance can be solved with ease. Discovering the expression
of f(θg, θp), however, can not be easily achieved. It is impossible to precisely obtain the
value of f(θg, θp) at any point in space P = [0◦, 360◦)× [0◦, 360◦) by way of experi-
mental methods as P is a continuous space. A sophisticated way to solve this problem is
to compute the value of f(θg, θp) through experiments at a discrete and limited subset
of P. The subset can be P = {Δθ, 2Δθ, · · · , 360◦} × {Δθ, 2Δθ, · · · , 360◦}, and Δθ
is a small angle.

As mentioned above, the video data ought to be collected from view angles ranging
fromΔθ to 360◦ at an incrementΔθ. When the camera is far from the subject, the sil-
houette taken from the left hand side of the subject is, from the perspective of geometry,
basically similar to that from the right hand side. Therefore, the video data just need to
be collected from only one side (the left side in this paper). The video data in our ex-
periments is collected at view angles {0◦, Δθ, 2Δθ, · · · , 180◦}, and Δθ = 18◦. The
CCR in the discrete subset {0, 1, 2, · · · , � 180Δθ �} × {0, 1, 2, · · · , �

180
Δθ �} can be obtained

by experiments and be formulated as Equation(2).
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CCR = F (n, k) = f(n ·Δθ, k ·Δθ)

n = 0, 1, 2, · · · ,
⌊180
Δθ

⌋
(2)

k = 0, 1, 2, · · · ,
⌊180
Δθ

⌋
An algebraic formula f̃(θg, θp), which is an approximation to f(θg, θp) and satisfies

f̃(θg, θp) ≈ f(θg, θp), can be acquired by data fitting and interpolation to F (n, k). A
simple yet useful and reasonable model f̃(θg, θp) is presented in Section 6 on the basis
of numerically analyzing the experimental results. The CCR at arbitrary θg and θp can
be predicted or estimated with this model. It is easy to imagine that this work has a great
practical meaning.

3 A Multi-view Gait Database

To analyze the impact of view angle changes on gait recognition performance, a multi-
view gait database is needed. In addition to consisting of a great number of subjects,
the database should be composed of the gait data collected from many view angles. The
minimum angle interval ought to be relatively small.

For the purpose of developing gait recognition algorithms, a variety of gait databases
have been created by many research units, such as USF [2], Soton [5], CASIA [6],

Computer 1

Computer 3

Computer 2/controller

Path

Cameras

Walking direction
Calibration mask

Network

Fig. 1. The schematic diagram of gait data collection system

Fig. 2. Sample frames from 11 view angles
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UMD, etc. The existing gait databases are either not large enough, or only captured
from few view angles. These gait databases do not fulfill the requirements of view
angle variation research. We develop a gait data collection system for creating a multi-
view gait database which meets the requirements of view angle variation research. 11
cameras were used to capture gait videos as illustrated in Fig. 1.

All the subjects are asked to walk naturally on the concrete ground along a straight
line in an indoor environment. The videos can be simultaneously captured by 11 cam-
eras from different view directions. At last we successfully collect 124 subjects’ gait
data (94 males and 30 females). The view angle θ between the view direction and the
walking direction takes on the values of 0◦, 18◦, 36◦, · · · , and 180◦, as delineated in
Fig. 1. Each subject walks along the straight line 10 times (6 for normal walking,
2 for walking in a coat and 2 for walking with a bag), and 11 video sequences are
captured each time. Thus, there are 110 sequences for each subject, and a total of
110 × 124 = 13640 video sequences in our database. All the video sequences have
the same resolution of 320 × 240 pixels. Some sample frames from 11 cameras are
shown in Fig. 2.

Our database comprises those factors affecting gait recognition: view angles (11
views), clothing (with or without in a coat), and carrying condition (with or without a
bag). Only view angles is studied here, though other factors are interesting to study too.

4 Gait Feature Extraction

There are many appearance-based gait features in the literature. Most of them are ex-
tracted from human silhouettes or outer contours. Here we choose one typical feature
from each category. One is gait energy image (GEI), and it is extracted from human
silhouettes. GEI is introduced in [7], which is the average of all silhouettes in a video
sequence. The other is key Fourier descriptors (KFDs), and it is extracted from human
outer contours. KFD method is proposed by Yu et al. [8], which is the key compo-
nent of Fourier descriptors computed from human contours. Finally, we use the nearest
neighbor classifier to perform classification.

4.1 Silhouette Segmentation

Given a fixed camera, the human silhouette can be extracted by background subtraction
and thresholding. We take advantage of the method given in [9] to segment human sil-
houette from image sequences. The sizes of the silhouettes we extracted are not unique,
and the silhouettes need to be normalized to the same size.

4.2 GEI Feature Extraction

The gait energy image is reported as a good feature which is robust to silhouette errors
and image noise, and is defined by [7]

G(x, y) =
1
N

N∑
t=1

I(x, y, t) (3)

where N is the number of frames in the sequence I(x, y, t), t is the frame number, x
and y are the image coordinate [7].
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4.3 KFD Feature Extraction

To extract KFD feature, the outer contour first needs to be obtained. The outer contour
can be easily derived using a border-following algorithm based on connectivity. Then
all the contours and the gait cycle are normalized to have the same number (N ) of
sample and the same number (T ) of frame, respectively. All Fourier descriptors g(i)
can be obtained by discrete Fourier transform. The KFDs are defined as in [8]:

G =
[
|g(2T )|
|g(T )| ,

|g(3T )|
|g(T )| , · · · ,

|g((N − 1)T )|
|g(T )|

]
(4)

whereN is the number of sample points of each contour, and T is the number of frames
in a gait cycle.

5 Experimental Results and Analysis

Each subject has 6 normal walking sequences at each view angle. Wet put the first 4
sequences into the gallery set, and the last 2 sequences into the probe set. A number
of experiments are carried out to discover the relationship between gait recognition
performance and view angles. Fig. 3 and Table 1 show the CCRs of the experiments
which take GEI as a feature. It can be noticed from Fig. 3 that there exist two peaks on
the CCR curves in each subfigure. and that CCR reaches the first peak at θp = θg and
the second peak at θp = 180◦− θg. A geometrical model is proposed for explaining the
existence of these two peaks. Fig. 4 and Table 2 display the CCRs of the experiments
which take KFDs as a feature. As in Fig. 3 and Table 1, a similar phenomenon can be
found in Fig. 4 and Table 2.

We can get that CCRs basically remains a constant CM along the major diagonal
line (θg = θp) of Tables 1 and 2, and a constantCm along the major skew diagonal line
(θg = 180◦ − θp) except (θg, θp) ∈ {(108◦, 72◦), (90◦, 90◦), (72◦, 108◦)}.

From Figures 3(f) and 4(f), it can be seen that the CCR basically remains high when
θp varies around 90◦. Thus, the CCR at the side view is robust to view angle change
with respect to other views.

Table 1. CCR table (%) for GEI (rank=1)

Gallery Probe angle θp

angle θg 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

0◦ 99.2 31.9 9.3 4.0 3.2 3.2 2.0 2.0 4.8 12.9 37.9
18◦ 23.8 99.6 39.9 8.9 4.4 3.6 3.6 5.2 13.7 33.5 10.9
36◦ 4.4 37.9 97.6 29.8 11.7 6.9 8.1 13.3 23.4 13.3 2.0
54◦ 2.4 3.6 29.0 97.2 23.0 16.5 21.4 29.0 21.4 4.8 1.2
72◦ 0.8 4.4 7.3 21.8 97.2 81.5 68.1 21.0 5.6 3.6 1.6
90◦ 0.4 2.4 4.8 17.7 82.3 97.6 82.3 15.3 5.2 3.6 1.2

108◦ 1.6 1.6 2.0 16.9 71.4 87.9 95.6 37.1 6.0 2.0 2.0
126◦ 1.2 2.8 6.0 37.5 33.5 22.2 48.0 96.8 26.6 4.4 2.0
144◦ 3.6 5.2 28.2 18.5 4.4 1.6 3.2 43.1 96.4 5.6 2.8
162◦ 12.1 39.1 15.7 2.4 1.6 0.8 0.8 2.4 5.2 98.4 28.6
180◦ 41.1 19.8 8.1 3.2 2.0 0.8 1.6 3.6 12.5 51.2 99.6
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Table 2. CCR table (%) for KFD (rank=1)

Gallery Probe angle θp

angle θg 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

0◦ 71.8 5.2 5.2 2.4 0.8 1.2 1.2 0.8 1.6 3.2 33.1
18◦ 3.6 49.2 14.5 4.4 2.8 3.2 4.0 3.6 4.0 8.9 4.0
36◦ 2.8 12.1 72.6 11.7 3.6 2.8 2.0 3.2 14.1 10.9 2.4
54◦ 2.0 3.2 10.5 69.4 7.7 2.4 4.4 14.9 10.9 3.2 0.8
72◦ 0.4 0.8 2.8 12.9 77.8 16.9 25.0 8.9 2.4 1.2 0.0
90◦ 0.4 0.8 3.6 4.4 23.0 75.0 20.6 4.0 2.0 0.8 1.2

108◦ 0.4 2.4 3.2 5.2 20.6 21.4 69.8 10.5 2.8 1.2 0.8
126◦ 0.8 3.6 4.8 14.9 11.7 5.6 14.1 71.4 10.5 3.6 1.6
144◦ 2.0 6.9 16.1 12.1 4.0 2.4 2.8 12.5 71.0 11.7 3.2
162◦ 2.8 10.9 10.9 1.6 2.0 2.4 2.8 6.0 11.3 72.2 3.6
180◦ 30.6 3.2 4.8 1.6 2.0 2.4 1.2 2.8 3.6 7.3 67.7
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Fig. 3. CCRs(%) for GEI(the abscissa is θp, and the ordinate is CCR)

5.1 A Geometrical Model

Why are there two symmetrical (though not strictly) peaks on the curves in Fig. 3 and
4? In our opinion, it is the human body symmetry that results in this phenomenon.
Suppose that 3 images are, respectively, taken from 3 different view angles θ, 180◦− θ,
and 180◦+θ, as illustrated in Fig. 5, and that the cameras are far away from the subject.
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Fig. 4. CCRs(%) for KFD(the abscissa is θp, and the ordinate is CCR)

180-

180+

Fig. 5. Images at 3 view angles

S(θ), S(180◦ − θ) and S(180◦ + θ) represent the 3 human silhouettes extracted from
the 3 corresponding images. For the distance between the cameras and the subject is
large, we can reasonably consider:

S(θ) ≈ −→S (180◦ + θ) (5)

where the symbol→ means flip horizontally. On the other hand, human body has the
symmetry, so we have −→

S (180◦ + θ) ≈ S(180◦ − θ) (6)

Walking can partly break this symmetry with respect to a fixed view angle, which is the
reason for using the symbol≈ in Equation (6).
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From Equations (5) and (6), it is straightforward to get Equation (7):

S(θ) ≈ S(180◦ − θ) (7)

This implies that the silhouette from view angle θ is similar to that from view angle
180◦ − θ. Thus, when the gallery angle is θ, using the data from 180◦ − θ as probe can
produce relative higher CCR, from which a local peak positioned at 180◦ − θ naturally
occurs, compared with the values of CCR at other view angles distant from θ.

5.2 A Mathematical Model

Based on the analysis in Section 6.1, there are two peaks on CCR curves in Figures
3 and 4. By observing the shapes of curves, we can reasonably use a mixed Gaussian
function to model CCR curves.

The analytical expression of the mathematical model is defined as:

f̃(θg, θp) = CMe
− (θg−θp)2

2σ2 + Cme
− (180◦−θg−θp)2

2σ2

[
1− e−

(θg−θp)2

2σ2

]
(8)

whereCM andCm are the same as previous definitions. and σ is treated as a constant in
our experiments, which indicates the level of performance deterioration when the probe
view departs from the gallery view. The value of σ is optimized by the Curve Fitting

Toolbox in Matlab, and it takes 15◦ here. CM e
− (θg−θp)2

2σ2 and Cme
− (180◦−θg−θp)2

2σ2 are

two Gaussian functions which simulate the two ridges in Figures 6 and 8. 1−e−
(θg−θp)2

2σ2

is a weighting term which makes sure that f̃(θg, θp) does not exceed unity.
The CCRs in Table 1 are shown in Fig. 6. Fig. 8 displays the CCRs in Table 2.

Fig. 7 and Fig. 9 are the continuous versions of Fig. 6 and Fig. 8 obtained from our
mathematical model (equation (8)), respectively. The theoretical results computed from
Equation (8) generally conform to the experimental ones in Table 1 and Table 2.
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Fig. 6. CCRs for GEI Fig. 7. The modelled CCRs for GEI

From Equation (8), Fig. 7 and Fig. 9, there are two perpendicular ridges which super-
pose each other. It is this superposition that makes the CCR around the site (90◦, 90◦)
much higher than in other regions. Thus, the CCR at the side view is robust to view
angle variation.
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Fig. 8. CCRs for KFD Fig. 9. The modelled CCRs for KFD

6 Conclusions and Future Work

In this paper, we have presented an analysis of the effect of view angle variation on
the performance of appearance-based gait recognition methods the proposed and mod-
els. The novelty of our work is three-fold: first, it is a systematic study on multi-view
gait recognition; secondly, it investigates how the performance is affected by view an-
gle changes with a useful mathematical model depicting the relationship between view
angle and performance(despite the current simplicity); last but obviously not least, it an-
swers two open questions: why the side view is more suitable to recognize human gaits,
and how view angle variation impacts the gait recognition performance. Our future
work will be focused on view-invariant gait feature extraction, a better mathematical
model taking into account the effect of θg, θp and features on σ, and the establishment
of a multi-view gait database in an outdoor environment.
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Gesture Recognition Using Quadratic Curves
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Abstract. This paper presents a novel method for human gesture recog-
nition based on quadratic curves. Firstly, face and hands in the images
are extracted by skin color and their central points are kept tracked by a
modified Greedy Exchange algorithm. Then in each trajectory, the cen-
tral points are fitted into a quadratic curve and 6 invariants from this
quadratic curve are computed. Following these computations, a gesture
feature vector composed of 6n such invariants is constructed, where n is
the number of the trajectories in this gesture. Lastly, the gesture models
are learnt from the feature vectors of gesture samples and an input ges-
ture is recognized by comparing its feature vector with those of gesture
models. In this gesture recognition method, the computational cost is low
because the gesture duration does not need to be considered and only
simple curvilinear integral and matrix computation are involved. Experi-
ments on hip-hop dance show that our method can achieve a recognition
rate as high as 97.65% on a database of 16 different gestures, each per-
formed by 8 different people for 8 different times.

1 Introduction

Gesture recognition has many prospective applications in human-computer in-
terfaces, visual surveillance and etc. It can be considered as a classification prob-
lem through matching the test data with the labeled spatial-temporal models
representing typical gestures [1].

In recent years, gesture recognition has attracted much attention in com-
puter vision field. One kind of major extant methods for gesture recognition
is using Hidden Markov Models (HMMs). Gestures characterized by spatial-
temporal structures are modeled using HMMs, and an unknown input gesture is
recognized by maximizing the probability of its observed sequence. For example,
Yamato et al. [2] used HMMs to recognize tennis actions from a set of time-
sequential images. Starner and Pentland [3] presented an HMM-based system
for recognizing American Sign Language. Brand and Kettnaker [4] showed that
an HMM’s internal state machine can be made to organize observed activity
into meaningful states by minimizing the entropy of the joint distribution. By
using HMMs, only a probabilistic value is produced for each possible model and
a great number of gesture sequences are usually required in the training stage.
Therefore, many other methods have been introduced. Dynamic Time Warp-
ing (DTW), a template-based dynamic programming matching technique, was

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 817–825, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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used to match an unknown test sequence with a deterministic sequence of states
[5], where a lot of templates had to be constructed to model a range of varia-
tions. Shin et al. [6] proposed a geometric method using Bezier curves for the
trajectory analysis and classification of gestures from registered 3-D data. An
approach based on assumption generation and verification was used by Wada
and Matsuyama [7] to recognize multiple object behaviors from unsegmented
image sequences. Campbell and Bobick [8] developed a system for recognizing
ballet steps using a ”phase space” representation of human movement. Bobick
and Davis [9] presented a view-based method to represent and recognize human
movements. In their method, temporal templates containing Motion-Energy Im-
age (MEI) and Motion-History Image (MHI) were used as the representations
of human movements. And then a matching algorithm using invariant moments
for the temporal templates was proposed. The method is relatively fast because
it does not involve explicit temporal analysis but may suffer from generating
multiple random motion regions due to image differencing during creating MHI
and MEI.

In this work, we propose a practical method for gesture recognition. It is
fast, independent of the performing rhythm, and insensitive to noise as well as
tracking errors.

We think the centers of the performer’s hands and face from several orderly
selected frames of a gesture sequence are sufficient for gesture recognition in
despite of shape changes of these motion regions. So in this work, we use the
centers of the performer’s hands and face regions for gesture recognition. The
main steps of our method are:

1. The centers of the performer’s hands and face regions are located from the
selected frames.

2. A modified version of Greedy Exchange algorithm [10] is used to establish
the correspondences of the central points across the frames as different sets.

3. The coordinates of the central points in these sets are normalized using a
practical and simple normalization approach.

4. Different quadratic curves are fitted to these different sets of corresponding
central points by the least-squares method. The quadratic curves are shown
capable of representing effectively the real trajectories. One quadratic curve
represents one trajectory. And one gesture is represented by several quadratic
curves since one gesture is generally composed of several trajectories. We set
up 6 invariants for each quadratic curve and then each gesture is represented
by a feature vector composed of 6n invariants, where n is the number of
quadratic curves in this gesture.

5. Gesture models are learnt from the feature vectors of the gesture samples
and then an unknown input is assigned to the gesture model whose feature
vector has the shortest Mahalanobis distance to the feature vector of the
input.

Our method is tested through the recognition of 16 predefined gestures of hip-hop
dance. The results show that our method can yield a high recognition rate and
does not need complex training. Fig. 1 shows two of the 16 predefined gestures.
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Fig. 1. Two predefined gestures in our experiments. Each row corresponds to one
predefined gesture.

The remainder of this paper is organized as follows: Section 2 reports the
modified Greedy Exchange algorithm and the establishment of the central point
correspondences. Section 3 describes the quadratic curve fitting, the gesture fea-
ture vector extraction, and the gesture recognition. Experiments are performed
in Section 4, and followed by some concluding remarks in Section 5.

2 Image Preprocessing and Central Point Tracking

2.1 Foreground Detection

At first, the background model is constructed as in [11]. Then, several frames
(7-11 frames) are selected orderly from the image sequence of each gesture auto-
matically. In each selected frame, the foreground region is located by the method
of [11]. The median point M of the foreground region is computed, followed by
reconstructing the minimum bounding rectangle R , which is defined as the
smallest rectangle containing the foreground region in the first frame of each
gesture sequence. As shown in Fig. 2, LA is the axis going through M and per-
pendicular to the bottom of R, and D is the distance of the median point M to
the bottom of R .

(a) (b)

Fig. 2. (a) The foreground region. (b) The median point M , the minimum bounding
rectangle R , the axis LA and the distance D.



820 Q. Dong, Y. Wu, and Z. Hu

2.2 Hand and Face Location

Hand and face location is the important basis for gesture recognition and directly
influences the later processes. Color is proved to be one of the most prominent
and distinctive features for hand and face detection, so we use the skin detection
method [12] to locate the hands and face in each selected frame of the image
sequence. Then, using clustering, all the pixels with skin color are classified into
three regions corresponding to hands and face in each frame in general (in case
of occlusion, there may be less regions).

2.3 Central Point Tracking

After hand and face location, we are to match the central points of different
regions obtained in Subsection 2.2 across frames by a modified Greedy Exchange
algorithm.

Now, the Greedy Exchange algorithm [10] is recalled. It is based on the as-
sumption of path coherence, i.e., the motion direction and speed change gradu-
ally. Let Xi,m represent the location of the ith trajectory in the mth frame, the
path coherence function is formulated as follows:

dm
i = Ψ(Xi,m−1Xi,m, Xi,mXi,m+1)

= 0.1(1− Xi,m−1Xi,m •Xi,mXi,m+1

‖Xi,m−1Xi,m‖‖Xi,mXi,m+1‖
)

+ 0.9(1− 2

√
‖Xi,m−1Xi,m‖‖Xi,mXi,m+1‖

‖Xi,m−1Xi,m‖+ ‖Xi,mXi,m+1‖
) (1)

where “•” is the inner product of two vectors. And the cost function is:

D =
n∑

i=1

s−1∑
m=2

dm
i (2)

where n is the number of the trajectories, and s is the number of the frames.
Let d∗m

i , d∗m
j denote the new path coherence measures for the ith and jth

trajectories after exchanging the points in the (m + 1)th frame on the ith and
jth trajectories. The exchange gain can be expressed as:

gm
i,j = dm

i + dm
j − (d∗m

i + d∗m
j ) (3)

For all possible gains gm
i,j(i = 1, 2, . . . , n−1, j = i+1, i+2, . . . , n), if max

i,j
(gm

i,j) =

gm
p,q > 0 , the points in the (m+ 1)th frame on the pth and qth trajectories will

be exchanged and the corresponding path coherence measurement d∗m
p + d∗m

q

will replace dm
p + dm

q . Based on this criterion, the original algorithm iteratively
exchanges the locations of points between trajectories to minimize the cost func-
tion (2), where the initialization is determined by the nearest neighbor criterion.

Since the original Greedy Exchange algorithm cannot deal with occlusion, in
addition, since the number of the trajectories we need to deal with in our work
is no more than three, we modify the original algorithm as :
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1. If the candidate tracking location Xi,m+1 becomes invisible, the values of
dm

i , dm+1
i and dm+2

i are set to a fixed large constant.
2. Furthermore, in our case, the exchange gain function is modified as:

gm = dm
1 + dm

2 + dm
3 − (d∗m

1 + d∗m
2 + d∗m

3 ) (4)

By using this modified Greedy Exchange algorithm, three sets of correspond-
ing points for the three trajectories are obtained. Then if the distance between
any two points within a set is less than ζ, a small predefined threshold, this set is
considered to represent a static hand or face. Otherwise, it represents a moving
hand or face. In the next section, we only consider those sets from moving hands
or face.

3 Feature Extraction and Gesture Recognition

3.1 Quadratic Curve Fitting and Feature Extraction

Because the lengths of different persons’ arms are different in general, the co-
ordinates of the located central points in Subsection 2.3 have to be normalized
first. The normalization is carried out in our work by dividing the coordinates
of the central points by the distance D(see Fig. 2 for D).

A lot of experiments have shown that the trajectories of basic human gestures
can be represented approximately by quadratic curves. The special traits of
quadratic curves make gesture recognition easy and fast. Therefore, we are to fit
the normalized points in each set by different quadratic curves.

The equation of a quadratic curve is:

ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0 (5)

Substitute each normalized point (x, y) in the established set of Subsection 2.3
into (5), we obtain linear equations on a, b, c, d, e, f , then solve out them by the
least-squares method under the constraint a2 + b2 + c2 + d2 + e2 + f2 = 1. The
estimated (a, b, c, d, e, f) is used as the representation of this quadratic curve.

From each of the representations of quadratic curves, three entities are com-
puted as:

A = a+ c (6)

J =
∣∣∣∣ a b
b c

∣∣∣∣ (7)

Δ =

∣∣∣∣∣∣
a b d
b c e
d e f

∣∣∣∣∣∣ (8)

These three entities are invariants under translation and rotation on the points
of this quadratic curve [13].
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In order to distinguish two different quadratic curves having the same three
invariants, we introduce other three invariants: the central moment with order
(1+1) [14] and two angles as follows:

The central moment of order (p+ q) of a line l is defined as:

μp,q =
∫

l

(x− x)p(y − y)qf(x, y)dl (9)

where

f(x, y) =
{

1 (x, y) ∈ l
0 (x, y) �∈ l , x =

1
L

∫
l

xf(x, y)dl, y =
1
L

∫
l

yf(x, y)dl, L =
∫

l

dl.

For each quadratic curve, we only use its central moment of order (1+1), i.e.
μ1,1 in our work.

The two angles α, β are defined as: for each quadratic curve, let LS be the
line going through M (see Fig. 2 for M) and the starting point of this quadratic
curve, and LE the line going through M and the end point of this quadratic
curve. Then, α(β)is the included angle between LS(LE) and the axis LA (see
Fig. 2 for LA).

The three invariants (6), (7), (8) and the central moment (9) are global fea-
tures, and the two angels α, β are local features. Combining all these 6 features,
we get different feature vectors for different quadratic curves. Thus the feature
vector of a gesture consisting of n trajectories or n quadratic curves is expressed
as:

H = (μ1
1,1, α1, β1, A1, J1, Δ1, · · · , μi

1,1, αi, βi, Ai,

Ji, Δi, · · · , μn
1,1, αn, βn, An, Jn, Δn)T (10)

The order of different feature vectors of different quadratic curves in H is de-
cided based on the location. (μ1

1,1, α1, β1, A1, J1, Δ1)T is for the most down left
trajectory and (μn

1,1, αn, βn, An, Jn, Δn)T is for the most upper right trajectory.

Remark. The primary reason that we here use the invariants for gesture recogni-
tion rather than by direct curve matching is from our experimental observation
that usually direct curve matching is prone to local curve distortion and is of
high computational load. However, our invariants based method seems much
robust to local distortion and random noise, and is computationally efficient.

3.2 Gesture Recognition

The steps of recognizing an unknown input gesture are:
First, the unknown input gesture is classified by its feature vector’s dimen-

sionality.
Second, for those gesture models whose feature vectors have the same di-

mensionality as that of the input gesture, a Mahalanobis distance is calculated
between the input feature vector and those of the models. The model that has
the shortest Mahalanobis distance is selected as the final recognition.
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4 Experiments

We test our method on hip-hop dance, a popular youth dance. 16 basic hip-hop
gestures, each of which is performed by eight people for eight different times, are
obtained. Fig. 1 shows two of the gestures. The gesture sequences are captured
by a digital camcorder and each of them contains 20-50 frames. Then all the
sequences are converted to 300×240 BMP files and we have 1024(=16× 8 × 8)
gesture sequences.

We arbitrarily select 640 gesture sequences, 40 from each gesture, for training.
The rest gestures are used for testing.

In the training stage, several frames (7-11 frames) are selected orderly from
the image sequence of each gesture for foreground detection. Then the central
points are extracted from the selected frames and their correspondences between
frames are established using the modified version of Greedy Exchange algorithm
in Subsection 2.3. Fig. 3 shows a tracking example with temporal occlusion of a

Fig. 3. A tracking example with temporal occlusion of a hand

(a) (b)

(c) (d)

Fig. 4. Examples: (a) several fitted curves in Gesture 1, (b) several fitted curves in
Gesture 4, (c) several fitted curves in Gesture 10, (d) several fitted curves in Gesture 16
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Table 1. Experimental results

Gesture No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Total
#Training 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 640
#Testing 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 384
#Correct 24 24 24 23 24 22 24 24 22 24 24 24 22 22 24 24 375

hand, where the points being “∗” represent the central points of one moving hand
and the points being “◦” represent the centroids of another moving hand from
eleven selected frames. It can be seen that although there is temporal occlusion
for one hand, the exact correspondences are obtained. We fit the corresponding
points across frames by a quadratic curve, and construct the feature vector for
each gesture using the method of Section 3. Four examples of fitted quadratic
curves are shown in Fig. 4. The final recognition results are shown in Table 1.
The recognition rate on the testing data is 97.65%.

We also compare the proposed method with direct curve matching. It is no-
ticed that direct curve matching is sensitive to noise and prone to local curve
distortion extremely.

Besides, we apply LIBSVM [15] to classify these gestures. Guassian function
is selected as the RBF kernel. The recognition rate is also high.

5 Conclusions

A novel quadratic curve based method for gesture recognition is proposed and
validated by hip-hop gesture recognition on a database of 16 different gestures,
each performed by 8 different people for 8 different times. The recognition rate
is as high as 97.65%.

The main characteristics of our method are: (i) The computational cost is low
because only simple curvilinear integral and matrix computation are involved.
(ii) Since the used features do not depend on the gesture duration, the recognition
is greatly simplified. (iii) The feature vector includes not only global features but
also local features to make this method more flexible.

In future, gesture recognition from multiple views will be studied to further
increase the recognition rate.
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Abstract. The analysis of events in dynamic scenes has become an important 
and challenging problem increasingly in recent years. Events can be considered 
as obvious changes of important features with semantic meanings. From this 
viewpoint, the fundamental task of events analysis is to extract semantically 
meaningful changes and associate all of these basic motion patterns and 
changes with relevant visual concepts of moving objects in dynamic scenes.  
In this paper, we propose a method to extract lower level motion patterns and 
associate them with visual concepts respectively in a well-defined structure. 
Furthermore we also analyze latent spatial-temporal relationships among these 
basic visual concepts for event modeling and analysis. Finally, we present ex-
perimental results which prove the effectiveness of our approach on some real-
world videos of dynamic scenes. 

1   Introduction 

As a challenging problem, semantic analysis of dynamic scenes has been paid more 
attention by researchers in recent years. Furthermore many methods have been pre-
sented for dealing with it. Some of these methods define and analyze semantic mean-
ings based on the global statistical properties of the movement. From the global view-
point, this kind of methods usually ignores semantics of features exhibited in a lesser 
temporal scale. On the other hand, considering basic semantic meaningful features in 
small temporal interval is useful for the semantic understanding of the entire event. 
The basic flowchart of a video surveillance system will include elementary proce-
dures such as environment modeling, object detection, tracking and recognition. 
However, each of these is not the termination of semantic analysis in a dynamic 
scene; there should be some further missions for achieving semantic understanding 
and interpretation of what behaviors or events performed by those moving objects in 
this dynamic scene. Compared with the lower level processing, the higher level phase 
involves spatio-temporal relationship mining, reasoning under uncertainty, semantic 
representation, and so on [1]. 

The basic requirement of the event analysis is to extract semantically meaningful 
motion patterns in the scene [2]. In different research areas, semantics has quite dif-
ferent meanings. There is a restrictive definition in semiotics that semantics implies 
the relationship between signs and objects. But for language science, semantics means 
the meaning and relationship of words. In our research work, we adopt the definition 
that semantics is the mapping and integration between related concepts [3].  
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But there is a gap between measurable features and semantic meanings. According 
to the ability and the procedure of human in perception and understanding for the 
world, event can be considered as the semantically meaningful changes in the scenes. 
The basic elements for event analysis and understanding are various concepts. Each 
concept denotes a special semantic meaning. And all these concepts are grouped into 
different clusters according to their semantic functions. For the purpose of semantic 
analysis and understanding of events in dynamic scenes, all related concepts should be 
obtained firstly, and all these concepts should be organized in a well-defined structure.  

As declared by some genres in philosophy, the world can be considered as the inte-
gration of different kinds of entities. From this viewpoint, all existing things in a spe-
cial dynamic scene, such as different regions, moving or static objects can be treated 
as different entities with their own relative properties. Further more, given concepts 
can be used to denote these entities and their properties. The semantic analysis in the 
special domain can be achieved from these concepts and their relationships.

The three fundamental components of a concept are an entity, a term or a word and 
corresponding attributes [4]. Each concept is described as a sign by a term or a word 
to distinguish each other. And the difference or the similarity of different concepts 
can be defined on all these measurable attributes. 

The difficulty for a certain definition of event is due to various demands from dif-
ferent domains. Thibadeau [5] defines first-order change descriptions as motion and 
the second-order ones as action, and Newtson [6] treats activity as the maintenance of 
first-order primitive properties. In this paper we consider events as obvious changes 
of important features as mentioned in [7]. 

High-level analysis and understanding of dynamic scenes is the final goal of com-
puter vision. Compared with the traditional vision tasks such as tracking and recog-
nizing moving objects, high-level vision is to achieve deeper analysis of spatial-
temporal relationships exhibited by all visible and measurable data in dynamic scenes 
[8]. Contextual spatial-temporal information acts as an important clue for semantic 
understanding.  

This paper proposes a method to associate semantic meaningful motion patterns 
with corresponding visual concepts for semantic analysis of events in dynamic scenes. 
Sections in this paper are organized as follows. Section 2 outlines previous work of 
event modeling and analysis. Methods for motion pattern extraction and concept mod-
eling are described in Section 3 and Section 4 respectively. Then experimental results 
are showed and analyzed in Section 5. Finally, we draw conclusions and discuss fu-
ture work in Section 6. 

2   Previous Work 

Existing work on event analysis is usually based on trajectory analysis of moving 
objects. Methods for trajectory extraction and simple object classification are based 
on some traditional methods proposed in [10, 11, 12, and 13]. Since more expressive 
semantically meaningful features can be extracted from trajectories, they are not or-
ganized in a proper structure for farther semantic analysis. That means each semanti-
cally meaningful feature should be associated with a concept, and the relationship of 
these concepts should also be considered seriously.  

In [14], events are modeled and recognized by exhibited periodically variational 
patterns. Similar work proposed in [15] treats human activities as descriptions of their 
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basic spatial-temporal characteristics. Ivanov and Bobick [16] extract primitive fea-
tures by using HMM and recognize activities with a context-free parsing mechanism. 
Event or activity can also be divided into elementary components, and can be de-
tected, represented and identified at different levels in a uniform framework [17, 18, 
19, 20, and 21]. Kojima et al. [21] employ a case frame with syntactic components to 
model events in office scene. All syntactic components are associated with related 
semantic features, and the model can provide natural language descriptions of those 
official events. Chaudron et al. [22] represent the interpretation of event in dynamic 
scene as a symbolic layered prototype by Petri nets. 

In recent years, more and more researchers tend to use probabilistic frameworks to 
express and analyze events, such as Bayesian networks, hidden Markov models, etc. 
All these models have a common peculiarity that stochastic parameters can be ac-
quired automatically without any assumptions of prior knowledge under uncertainty. 
Considering idiographic demands under different circumstances, some variations have 
emerged. Galata et al. [23] mention a method to present human behavior by variable 
length Markov models (VLMM). The algorithm of coupled hidden Markov models 
(CHMM) to model two-handed interactions is presented in [24]. At the same time, the 
superiority of these methods mentioned above brings obvious shortages. The compu-
tation of parameters for the given structure of a model is time-costly. To fit another 
problem, the structure of the model must be changed, and the learning for variable 
structures is more difficult. 

From Birnbaum et al., who use ontology to define causal changes in their attention 
controller in [25] , ontology related methods [26, 27, and 28] are increasingly applied 
in various areas, such as semantic web, data mining, knowledge management, infor-
mation fusion, linguistics and etc. 

3   Motion Patterns Extraction 

In a visual surveillance system, scenes of the environment captured by fixed cameras 
can be looked as combinations of all kinds of visual entities exhibited in the video 
data. These entities are regions with different spatial positions and appearances, mov-
ing objects and their different motion and interaction patterns, and so on. The seman-
tic analysis of the scene can be looked as mining and analysis for all kinds of relation-
ship of related visual concepts. So at the beginning of this kind of work, all visual 
concepts must be defined and constructed in a unified form. 

3.1   Location States Extraction  

To determine locations of moving objects in a dynamic scene, we can look the scene 
as different adjacent regions which are labeled with their attributes, such as grassplot, 
road, sideway, intersection, crosswalk, etc. There is a pre-hypothesis that the semantic 
attribute of each region blob in the scene is homogeneous. So each region has its 
unique semantic label. Examples of semantic attributes of different labeled regions 
are showed in Table 1. At the same time, different spatial regions have invariable 
topological adjacent relationship under a fixed camera. Figure 1 shows an example of 
topological adjacent relationship for different regions in a special scene. 
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Table 1. Semantic Attributes of Labeled Regions 

Labeled Regions Semantic Attributes 
Road Vehicles and other moving objects can move in it. 
Sideway Only allow foot passengers moving in it. 
Grassplot Any motion of moving objects occurs in it is not allowed. 
Crossway Any stop of moving objects in it is not allowed. 
Parking Lot Only allow vehicle parking in it. 

As illustrated in Figure 1, nine nodes denote nine different regions, and edges refer 
the adjacent spatial relationship of these regions. Different color of these nodes means 
different semantic attributes of these regions and highlighted edges indicate that mov-
ing objects can transit between two connected nodes. All related constraints can be 
defined in this topological graph. 

Legend: 

1, 3, 5, 7:  Grassplot 

2, 9:   Road 

4, 6:   Sideway 

8:   Crossway 

(a)              (b)                              (c)                              (d) 

Fig. 1. Topological Relationship of Regions in the Scene 

We use central points of moving regions as the approximate locations of moving 
objects. Mapping coordinates of central points to the semantically labeled image, we 
can obtain regions objects occupied. When objects move through different regions, 
label sequences of region transitions can also be obtained.  

3.2   Motion States Extraction 

All moving objects are leading actors in dynamic scenes. Event modeling and seman-
tic analysis are focused on them. We can extract and express motion states of moving 
objects separately. Under a fixed camera, a trajectory of a moving object is repre-
sented as temporally sequential pairs of coordinates in frames. These pairs of coordi-
nates can be presented like this format: 

}),,(,),,(),,{( 2211 LL tt yxyxyxL = (1)

where ),( tt yx is the coordinates of a moving object at time t or is at the t th sequence 
number of the current frame.  

The basic motion states of a single moving object are “Move” and “Stay”, and the 
basic direction states are “Go Straight”, “Turn Left” and “Turn Right”. The small 
trajectory segments of moving objects with the temporal scale about two seconds 
(50~60 frames) can be divided into these basic elements. 

Figure 2 shows an example of two moving objects separately, labeled by m  and 
n . When each moving object has appeared in the scene, a sub-coordinate is set up for  
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  Fig. 2.  Motions in Different Coordinates                   Fig. 3. Motion States Mapping 

this object, and all related motion status can be extracted and calculated in this sub-
coordinate. The origin of each sub-coordinate is the initial position of each moving 
object. For easy calculation, we present a trajectory in Polar Coordinate, 

}),,(,),,(),,{( 2211 LL ttL θρθρθρθρ =−
 (2) 

and define the interval change 'ρ and 'θ  as 

)}{(' ili ρρρ −= +
, ),(~' 2

'' ρρ σμρ N  

)}{(' ili θθθ −= +
, ),(~' 2

'' θθ σμθ N  
(3) 

where l  is an interval. 
Based on statistical analysis of training data, we make an assumption that 'ρ and 

'θ  obey the Gaussian distribution under the existing noise. The motion patterns about 
movement 

StatusM and direction
StatusDir can be mapped into different status as shows in 

Figure 3. All these parameters are all learned from videos of special scenes under 
special viewpoints. As a result, when zoom ratio or viewpoint changed, all these pa-
rameters should also be recalculated. 

3.3   Interaction States Extraction 

When we analyze the interaction between moving objects, we should consider oppo-
site distances of these objects in a unique coordinate of the whole image (see object i, 
j and their opposite distance in Figure 4. (a)). The basic varieties of opposite distances 
can be increase, reduce and without obvious changes. By using learned thresholds, we 
can distinguish opposite distance d(i,j) between object i and j as one of those three 
basic varieties. And all these thresholds are also view or scale based. When several 
moving objects are very close to each other, it is hard for our tracking algorithm, even 
for human, to determine whether they should belong to a whole moving object or 
regard as separate objects. In the same way, when objects are so far from each other, 
it is unnecessary for considering their interactions. To deal with this problem, we can 
define different region scales (Figure 4. (b)) for each moving object. The size of each 
region scale is related to the size of each moving object. By using these region scales, 
we can determine interaction states of moving objects easily. 
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Fig. 4.  (a) Opposite Distances between Objects. (b) Region Scale for Interactions. 

4   States Transition-Based Concept Modeling 

The definition of concept in Webster’s dictionary is “an abstract or generic idea gen-
eralized from particular instances”, it is the basic element of human thought. As a 
symbolic abstraction of the essence of reality, a concept contains some related meas-
urable attributes. It is exhilarative that location states, motion states and different 
interaction categories of moving objects mentioned above are all based on measurable 
attributes. For further semantic analysis of events performed by moving objects in 
dynamic scenes, we should associate all these states, patterns and categories with 
corresponding concepts in certain temporal sequences. Some of concepts and verbs 
used in our model are chosen from the classification of motion verbs in traffic scene 
given by Badler [9] formerly.  

All related visual concepts can be defined on transitions among those states.  
Figure 5. illustrates transitions on the basic states, such as “Move”, “Stay”, “Go 
Straight”, “Turn Left” and “Turn Right”. These transitions can present all semanti-
cally meaningful features of moving objects. In each temporal scale, motion patterns 
can be classified into basic semantic states, and we can obtain temporal sequences of 
those states showed below, and some related visual concepts can be associated with 
different segments of states transition sequences. 

 MM MM  Move 
SS SS   Stay 
MMSS   Stop 
SSMM   Startup 

MMS SMM   Halt 
 

GSGS GSGS  Go Straight
(GSGS)TLTL   Turn Left 
(GSGS)TRTR   Turn Right 

M SHalt StayMove

Startup

Stop

GS

TL TR

Go 
Straight

Turn 
Right

Turn 
Left

 

Fig. 5. Transitions Model of Basic States 
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Fig. 6. Conceptual Vectors and Semantic Representations 

By using this method, we can obtain all kinds of related visual concepts. For the 
aspect of motion, we can describe it as “Go Straight”, “Turn Right”, “Turn Left”, 
“Retrace”, etc. And there are different interactions in the scene. Interactions between 
moving objects and special regions can be represented as spatial relationships, such as 
“Occupy”, “Enter”, “Transfer”, “Appear”, etc. Interactions of two moving objects can 
be “Close To”, “Away From”, “Encounter”, “Follow”, “Retrace”, etc. And we should 
choose different concept for vehicles and passengers. 

In a certain time slot, we can integrate all these obtained visual concepts into a con-
ceptual vector (see Figure 6.). In this figure, each block denotes a corresponding vis-
ual concept with different color, and each arrow expresses different motion direction 
of this moving object in a certain time slot. By using each conceptual vector, simple 
semantic representation of event performed by moving objects can be obtained. 

All concepts in visual surveillance are obtained at different scales. That means 
some basic concepts are components of other concepts, such as “Move” and “Halt”,
“Go Straight” and “Retrace”. So concepts with similar meanings can be presented in 
dendriform structure as different clusters.  

5   Experimental Results 

From our multi-camera visual surveillance system, we choose two fixed cameras which 
can capture wide visual fields from taller points of views. Under this condition, the 
influence of 3D to 2D perspective can be reduced, and then we can use the coordinates 
of moving objects in the image plane as the probable positions of them in the real scene. 

According to the method mentioned above, we calculate all parameters from train-
ing video, and then analyze all related motion patterns of moving objects in the cer-
tain temporal scale. After associating these motion patterns with corresponding visual 
concepts in conceptual vectors, simple semantic representations will be obtained by 
using these related concepts in a time slot.  

Figure 7 explains complex events performed by moving objects in two selected 
scenes and shows simple semantic representations of these events. As showed in  
Figure 6., we will select “Along” to express the motion of an object if it moves unre-
mittingly in the same region without obvious direction change in several adjacent 
time slots. In the same way, “Follow” will be adopted if two objects are moving in the 
similar direction and their opposite distance keeps reducing. 
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(a) {Person 1 Walk Along Sideway} 

{Person 2 Walk Along Sideway} 

(b) {Person 1 Walk Along Sideway} 

 {Person 2 Walk Along Road} 

 {Person 3 Walk Sideway} 

 {Person 2 Person 3 Meet Sideway} 

(c) {Car 1 Enter Crossway} 

 {Person 1 Walk Along Sideway} 

{Person 2 Walk Fast Along Road} 

(d) {Person 1 Walk Sideway} 

 {Person 2 TurnRight Enter Crossway} 

Fig. 7. Complex Events and Simple Semantic Representations 

6   Conclusion and Future Work 

In this paper, we have presented a method to associate motion patterns with corre-
sponding visual concepts for event analysis seen in dynamic scenes. The key points of 
our method are extraction of motion patterns, concept generation and modeling. Sim-
ple semantic representations of events in the dynamic scenes are obtained in some real 
world videos, and the result also validates the effectiveness of this method. 

Manually labeling of different regions in the dynamic scene and negligence the un-
certainty of observed data are main limitations of our methods. In the future, we will 
adopt some learning methods to achieve semantic labels by using texture and motion 
information. To handle the uncertainty problem of our method, probabilistic mecha-
nism should be a good choice. Extended experiments and embedded polishing are 
also needed for our method. 
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Abstract. We view the task of change detection as a problem of object
recognition from learning. The object is defined in a 3D space where
the time is the 3rd dimension. We propose two competitive probabilistic
models. The first one has a traditional regard on change, characterized as
a ’presence-absence’ within two scenes. The model is based on a logistic
function, embedded in a framework called ’cut-and-merge’. The second
approach is inspired from the Discriminative Random Fields (DRF) ap-
proach proposed by Ma and Hebert [KUMA2003]. The energy function
is defined as the sum of an association potential and an interaction po-
tential. We formulate the latter as a 3D anisotropic term. A simplified
implementation enables to achieve fast computation in the 2D image
space. In conclusion, the main contributions of this paper rely on : 1)
the extension of the DRF to a 3D manifold ; 2) the cut-and-merge algo-
rithm. The application proposed in the paper is on remote sensing ima-
ges, for building change detection. Results on synthetic and real scenes
and comparative analysis demonstrate the effectiveness of the proposed
approach.

1 Introduction

This paper focuses on probabilistic modeling for object structural change
inference.

Probabilistic modeling emerged as an increasingly efficient framework for seg-
mentation and object recognition tasks. From Markov Random Fields [13] to
recently introduced part-based modeling for recognition [4], the goal is to find a
’best’ global configuration of a random variable associated to a label. Set as an
energy minimisation problem, the basic challenges are : i) to define appropriately
the functional to be optimised ; it is in general characterised by a data features
term and a constraint or regularisation term; the latter is mainly derived from
prior knowledge and enable to introduce smoothness or to sharpen edges. ii)
to set efficient computational solution to reduce the combinatorial calculation
burden [22].

The Remote Sensing (RS) image processing field has so far be little influenced
by Pattern Recognition (PR) and Computer Vision (CV) works. However, the
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two communities deal with very similar key problems –restoration, segmentation
and classification, flow vector field, reconstruction,... Far to be easy cases to han-
dle, the complexity of the scenes and the high level of noise existing in RS images
challenge the models developed from PR and CV, which often are not robust
nor generic enough. RS images are characterised in particular by illumination
changes, shadowing, projective distortion, occlusion, stochastic noise –thermal
effect during the acquisition– and geometric noise. Geometric noise refers to
all small size objects that appear in the scene and disturb the segmentation or
detection process, such as cars, trees, etc. A contrary to man-made object de-
tection in natural scenes, an RS image scene covering an urban area is mainly
composed of objects which have similar structured and polygonal shapes: roads
and buildings. To takle this problem, previous works on buildings detection in
dense urban areas are mainly based on models which include high and restrictive
constraints, therefore lacking of genericity and uncapable to work on a large set
of images [6,11].

The present work was inspired from a recent publication from Kumar [8], in
which he introduced a Discriminative Random Field (DRF) model, for man-
made objects detection in natural scenes. This model formulates the constraint
term of the Gibbs energy as a function of the global image.

We show in this paper how to generalise the concept of DRF modeling to a
multi-dimensional space without increasing computational cost. Application is
on building change retrieval from high resolution optical remote sensing ima-
ges covering dense urban areas. The rest of this article is organized as follows:
the next section introduces structural object change inference from a Kernel
approach based on a so-called cut-and-merge algorithm and maximum likelihood.
Section 3 presents the 3D anisotropic model derived from DRF and its practical
implementation. Results are illustrated in section 4; the 5th section concludes
the paper.

2 Structural Change Recognition

2.1 Overview

The main idea of structural change recognition is to first perform object segmen-
tation in each of the two images, then to analyse the probability of change, for
each individual object. We do not perform a ’hard’ segmentation, in the sense
that an object can be detected even if its likelihood of being a building is low.
It enables us to estimate the change as a cross product of probability functions,
which appears to be much more powerful than computing a simple difference.
The rest of this section gives the main cues of the approach.

2.2 Cut-and-Merge Algorithm

The cut-and-merge algorithm performs binary segmentation without explicit
thresholding. The cut task will blindly binarize the input image and create a set



838 W. Liu and V. Prinet

of black-and-white images, without knowledge of the object’s type we are seeking
for. The merge task will make use of prior knowledge and fuse this segmented
set of data such as to retrieve the regions which maximise a given ’criteria’.

Cut : A band-pass filter is convolved several times with the original image [18].
The filter is characterised by the min and max values of the band. All pixels
x with intensity level I(x) satisfying min < I(x) < max are retained. From
one convolution to an other, min and max values are progressively incremented,
thus generating a set of binary images. In each of these images, aggregated pixels
define regions which closed contours are extracted.

Merge : The likelihood of a each region and its closed contour Ri to be a
object-building is given by pi = p(Ri) (see section 2.3). For two overlapping
regions Ri and Rj resulting from two different pass-band filters, we calculate
pij = p(Ri

⋂
Rj). We then merge the overlapping regions by retaining the one

Rk that verifies :
k = arg max

k∈{ı,j,ij}
(pi, pj , pij)

In an iterative procedure, we can therefore eliminate all regions unlikely to cor-
respond to our searched object.

2.3 Functional and Features

The problem is to determine whether a segmented area Ri –called “element”– is
likely to be a object-building or not. The label assigned to Ri is represented by
a random value xi. Assuming that events are independent, finding the configu-
ration X that maximizes the probability P over the image is equivalent to ma-
ximizing the probability density function at each site Ri : P (X |y) = Πip(xi|yi)
where yi is the features vector computed at element Ri. We define p(x|y) by a
logistic function :

p(xi|yi) = σ(xiw
T f(yi))

w is the unknown parameters vector and f is an application that transforms the
data features to a higher dimensional space: f : yi → [1, yi, yiy

T
i , ỹ] , where ỹ

is defined as the product of each feature with an other. A total of eight indi-
vidual feature are computed —it includes : region entropy, edges points, inten-
sity mean, standard deviation, gradient direction moment and their difference,
shadow parameter–, leading to a parameter vector size of 45 degrees of free-
dom. Parameters are retrieved by maximizing the log-likelihood of P via a ICM
module.

2.4 Object Change Detection

We consider two images I1 and I2 acquired at t1 and t2 respectively. We estimate
the probability density function p.d.f. at each of the elements i of R1 and j of
R2: p1i = p(y1

i ) and p2j = p(y2
j ) respectively.

The probability function that an object appears in the two images simulta-
neously is given by pnc = p1i p

2
j , while the probability function for an object to
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appear in one of the image only is : pc = p2i (1 − p1i ) + p1i (1 − p2j). Selecting
candidate contours that verify pc > 0.5 provides us with the changed structured
objects.

3 Change Inference from 3D DRF

3.1 The Model

We first recall some basic notations and define the main concept of 3D DRF
modeling. A image is represented as a graph G = (V,E), where E are the nodes
of the graph and V are the vertices. In order to create G, the image is divided
into regular patches. Each patch is a node and two mutually connected nodes
within a n-neighborhood determine a clique. Each node e ∈ E is characterised
by the data it encompasses – it can also be features computed from the data–
: ye. The label associated to each node is a random variable Xe∈E = {−1, 1},
where value 1 stands for ’true’ (i.e. “there is a building-like object in this patch”)
and −1 for ’false’ (“no building-like object here”).

Considering the set of multi-temporal images as a 3D data, G is defined in the
3D space (2 spatial dimensions + 1 temporal dimension). G is the sum of k 2D
spatio-subgraphs Gs,i∈{1,..,k}, linked by temporal vertices V t, where s and t
denote the spatial and temporal indices respectively, and V = {

⋃
i V

s,i,
⋃

j V
t,j},

G = {
⋃

iG
i,
⋃

i V
t,j}, i ∈ {1, .., k}, j ∈ {1, .., k− 1}. Then, in the specific case of

two images: Gs,i={1,2} = (Es,i, V s,i) with i = {1, 2}. Pair-wise cliques associated
to each node e cover a 5-neighborhood characterised by its four vertices in x− y
space, V s, augmented with a unique vertex in t space, V t.

In the Gibbs formalism, the probability distribution to retrieve the configu-
ration X given the features y = {ye∈G} is expressed by :

P (X |y) =
1
Z
e−U

where U = U(X, y) is the potential energy and Z is known as the partition
constant. In [8], Kumar defines U as the sum of an association potential A and
an interaction potential I, such that :

−U(X, y) =
∑
e∈G

γeA(xe, ye) +
∑
e∈G

∑
e′∈Ne

βe,e′I(xe, ye, xe′)

Ne is the five-neighboring. A(xe, ye) is the association potential; the inter-
action term I(xe, ye, xe′∈Ne) is a smoothness factor. It determines how much a
site is similar or not to its associated neighboring sites. A and I are defined as
parametric logistic functions which exact formulation can be found in [8].

Knowing that object changes are characterised by continuity in spatial neigh-
borhood and discontinuity in temporal neighborhood, we consider an anisotropic
formulation of U given by:
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βe,e′ = βe,e′′ iif (e, e′, e′′) ∈ Gs,i

βe,e′ �= βe,e′′ otherwise

The anisotropic constraint will enable to detect any 3D object having a struc-
tured –building-like– shape in the space dimension s, but which is lost over the
time. We call C = {Ce}e∈G1 the hidden variable defined such as : Ce = X1

eX
2
e′ ,

for which e is connected to e′ by V (e, e′) ⊂ V t. Then, in a straightforward
manner:

P (C|y) ≡ P (X |y)
P (C|y) is the probability of structural changes, defined at each node of each of
the 2D images taken individually. Note that C is defined over the projection of
G1 and G2 in the spatial dimension and has ’lost’ the 3rd temporal dimension.

3.2 Computational Issues

In order to fasten the computation, it is possible to implement the model in
its 2D formulation, while modifying the choice of the features, such that new
features by them selves are charactistics of a structural change. The simplest
way is to define new features’ vector as the difference of features computed from
bi-dimensional images.

Parameters are estimated by maximizing the pseudo-likelihood of P (y|C) us-
ing a large training image set and manually detected objects. On the testing
images set, the optimal configuration C is obtained via ICM computation.

4 Results Analysis

The two proposed methods have been implemented and validated on compo-
site and real remote sensing images. Com-posite images were artificially cre-
ated by mapping locally some small textured patches onto real images: it will
validate the method without illumination change. Remote sensing images are
from Quickbird satellite (resol. 0.6m/pixel, panchromatic, acquired in 2002 and
2003 ; covering the area of Beijing city). Ground truth is given by manual
segmentation. Note that Beijing area is particularly interesting to study be-
cause of the rapid undergoing changes in preparation of the 2008 Olympic
games.

We used, for the two models, a training set of nearly 2000 object sites ma-
nually detected from 10 sub-images. The Kernel computation (section 2) takes
about 4mn on Pentium4. Cost comes from contour feature calculation while the
optimization per see only takes less than 10 seconds.

Figure 1 illustrates the principle of the cut-and-merge algorithm and building
candidates selection. Results from the object change detection Kernel approach
are shown in figures 2 and 4. Tables 1 and 2 give statistical analysis of the results.
We recall that the ultimous purpose is not to delineate precisely the new/old
buildings, but to locate the changed objects, as indicated by the crosses. The
kernel approach gives a precise counting of the changed objects.
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Fig. 1. Illustration of the cut-and-merge algorithm. Top: original image. Middle: super-
imposition of the contours extracted during the cut step; Bottom: building candidates
resulting from the merge step. The grey level of the contours is inversely proportional
to the probability to delineate a building-like object.

Good performance obtained from 3D DRF (section 3) on a toy picture without
noise validate the model definition and features choice (fig.5). Note that only
the changes of structured objects are detected. Figures 3 and 4 illustrate the
approach and compare it to the kernel method. The DRF model acts as a region-
of-interest detector, by giving rough location of areas where structural changes
have appeared.
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Fig. 2. Top: Original images. Center: candidate buildings’ contours retrieved from cut-
and-merge; Bottom: building-object changes represented by polygonal approximation
of the contours (right) or marked with a cross (left) –black for new building, white for
disappeared.

5 Conclusion

We proposed in this paper two probabilistic framework for structural change
inference in complex scenes. The first one, closely related to classical differential
methods, computes the changes based on a likelihood function, which makes
the approach very robust and enable to decrease erroneous detections rate. The
second model is derived from 3D DRF modeling, where the third dimension is
the temporal component. Its fast implementation in 2D space makes it extremely
efficient. One may notice however that the proposed model formulation is not
invariant by symetry with respect to temporal axis. From a practical point of
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Fig. 3. Illustration of the 3D DRF on real Quickbird images acquired in 2002 (right)
and 2003 (left). Patches indicate areas detected as changes (patch size=64x64pixels).
New buildings are properly recovered but false detections also appear.

Fig. 4. Results comparison from 3D DRF (bottom) and kernel based approaches (top),
on a composite image. Top: white lines indicate the changed objects retrieved as de-
stroyed and new buildings ; Bottom: White squares indicate the location of structural
changes, as detected by the DRF model.

view, the two approaches differ by the output they provide: 3D DRF gives a
rough location of structural changes ; the minimal area is set by the size of the
patches used for the computation ; a contrario, in the cut-and-merge algorithm,
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Fig. 5. Structural changes from 3D DRF - Application to a toy picture. Top: original
images. Middle and bottom: patches –computing size = 8x8 (middle) and 32x32pixels
(bottom) indicating the detected changes are superimpose to one of the input image.
Note that only the structured object changes are retrieved.

Table 1. Statistical figures on change detection (section 2). GT=Nber of
changed-objects given by the ground truth; TP=True positive; FP=False positive;
DR=Detection rate=TP/GT ; CR= Correctness rate=FP/(FP+TP).

GT TP FP DR CR
62 45 22 0.72 0.67

the segmentation step delineates the buildings’ shape and makes possible the
counting of changed objects. Extension of this work could be on object tracking
from video sequence.
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Table 2. Statistical figures on building detection from cut-and-merge. FN=False neg-
ative; AreaTrueRate: rate of the surface size of the object that have been correctly
recovered; AreaErrorRate: rate of the surface area which is out side true building;
AreaLostRate: rate of the surface area which has not been detected.

TP FP FN AreaTrueR
0.834 0.058 0.166 0.861

AreaErrorR AreaLosetR Peri Rate AreaRate
0.060 0.139 0.244 0.189
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Abstract. The primary reason for shape characterization and matching
is to use it for characterization and recognition of the associated objects.
However, the shapes obtained from segmentation and/or edge detection
of real world images are, at best, approximations of the actual shapes of
objects. Unsupervised segmentations often deviate from object bound-
aries to include parts of other objects or background. Similarly, objects
of interest may be partially occluded by other objects in natural scenes.
We address the problem of adapting known shape characterization and
retrieval methods to make them robust to errors in the basic input - the
binarised shape image corresponding to an object. An effort is made to
retain the ability to deal with scale, rotation and translation.

The presented method is based on the centroid distance shape signa-
ture, but which does not sample the perimeter points evenly along the
perimeter length. Instead, the sampling is done evenly using an angu-
lar measure. This property of our signature localizes the changes due
to occlusion. For similar reasons, we do not derive a shape descriptor
where each feature potentially depends on the entire shape signature.
The onus of achieving various invariances is shifted to the definition of
our similarity metric. Again, to take care of the changes in the perimeter,
the similarity measure has been designed to produce small changes for
small segmentation errors. The approach presented here can be applied
to many applications such as Content Based Image Retrieval (CBIR),
Target Detection, Medical Imaging etc. The limitations of the method
are its inability to deal with complex shapes that have perforations, ten-
drils etc.

Index terms: Shape, Shape signature, Similarity measure, Occlusion.

1 Introduction

Shape, color (intensity) and texture are important features used to describe
and identify objects in images. Of these, shape cannot be directly sensed or
measured. It is necessary to first delineate an object, either by segmenting it
� This work was funded by DRDO through Proj CAR-008. Authors wish to thank

Director CAIR, ISYS-DO and colleagues in CVG for their support.
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on the basis of color and/or texture or by detecting its edge. The basic input
for shape charcterization is noisy as niether of the above said processes are
guaranteed to work perfectly and sometimes also due to projection of a 3D
object on a 2D plane. So for applications such as CBIR [1] and target detection
ability to deal with the imperfect segmentation results is critical as manual
segmentation makes a little sense. Last, but not least, distance and view angle
can lead to translation, scaling and rotation of objects across scenes making the
task of object recognition using shapes a very difficult task.

The challenges addressed for reliable classification and retrieval of well seg-
mented shapes have been oriented towards achieving invariance to translation,
scale, rotation and affine transforms and in forming compact descriptors and
computationally efficient match algorithms. Traditionally, shape representation
is divided into two types - contour based and region based depending on what
they describe. Each is further subdivided into two categories - structural and
global based on how they describe shape [2].

Contour-based structural methods use different criteria to break up the shape
boundary into segments (or representations) and so the similarity measure is
generally based on graph or string matching. Such similarity measure allows
for partial match based on substring matching methods. One of the important
methods in Contour-based structural methods is Curvature Scale Space, which
is based on tracking the inflection points, obtained by successive filtering of the
shape boundary from variable width low-pass filters [3]. The problem of this
method lies in defining events, which essentially are features from the shape,
which can give a stable and a compact representation of the interval tree (Result
of the smoothing process).

Contour-based global methods have two steps: the extraction of a shape sig-
nature and the computation of a shape descriptor based on the signature. The
shape signature is a 1D function defined along the perimeter which can en-
code various quantities like centroid distance, curvature, area swept etc [4]. The
switch from shape signature to a global descriptor is necessary in order to obtain
the scale, rotation and translation invariances. Shape signatures pick up minor
perturbations at the fringes of the segmented objects.

Region-based global techniques such as moments, medial axis etc. take into
account all the pixels within a shape region to obtain the representation. In
this way they are robust to minor shape distortions at the periphery. They are
computationally very expensive as lower order moments are not able to represent
the shape successfully.

The global methods are better able to deal with invariances, besides being
more computationally efficient. However, when two shapes do not match, the
global descriptors do not have the ability to localize the cause of difference.
Without the ability to localize the mismatch or identify a partial match, it is
hard to deal with occlusion. The problem with the structural methods is that
they do not allow for good similarity metrics and are not invariant to scale and
rotation and require very large length descriptors.
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In this paper, a new approach to shape recognition is described. The shape
descriptor chosen here is based on the centroid distance signature. However, the
exact method of computing is altered to give more robustness to occlusion. The
similarity measure defined here provides scale and rotation invariance for the
described shape signature. This enables us to eliminate the requirement for a
shape descriptor based on a global transform. The final strategy for robustness
lies in searching for the best choice of origin within the shape rather than relying
strictly on the centroid.

The approach described here also tries to satisfy the requirements set by
MPEG-7 [5][6]. However, the emphasis is on dealing with the type of object
segmentation errors expected for real images. Our method will perform poorly
for very complicated shapes, but we do not expect to accurately segment such
complicated shapes from natural scenes anyway.

The rest of the paper is organized as follows. In section 2, we describe the ap-
proach for shape recognition, which includes Shape Descriptor, Similarity Mea-
sure and Center Point Search Algorithm. The Results, Summary and Future
Work are described in section 3, which is followed by the references.

2 Approach

In order to deal with occlusions and segmentation errors, we modify the cen-
troid distance based Fourier descriptor for shapes, which has been reported in
[4] as being the most suitable for shape representation and retrieval. This section
describes the formulation of a modified centroid based shape descriptor and its
associated similarity metric. By themselves they only ensure shape representa-
tion and scale - rotation - translation invariant recognition. The utilisation of
this modified descriptor for occlusion is dealt with in the next section. How-
ever, the requirements for robustness to occlusion are mentioned here in order
to motivate the formulation of the descriptor.

2.1 Shape Descriptor

In this section, a contour based shape descriptor is presented which is a modifi-
cation of the centroid distance signature. The computation of the usual centroid
distance signature and its associated Fourier descriptor (FD) involves [4]

1. Computation of the centroid (xc, yc).
2. Computation of the distance of each perimeter point to the centroid

r(t) = ([x(t) − xc]2 + [y(t)− yc]2)
1
2 (1)

where the perimeter is represented parametrically as the set of (x(t), y(t))
with t = 0, · · · , T − 1.

3. Computation of the DFT R(n), n = 0, · · · , T − 1
4. Normalization of the magnitudes of the DFT coefficients by the dc (R(0))

and selection of the first N components to define the N dimensional FD.
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By using a parametric representation for perimeter (x(t), y(t)), it is possible
to generate shape signatures for contours of any simply connected shape. The
FD is typically truncated to a fixed length and a Euclidean metric used to
determine the similarity. The FD is invariant to translation, scale and rotation
transformations.

When the perimeter length is changed due to occlusion or segmentation errors,
the shape changes by a process of addition or subtraction. The FD as computed
above turns out to be sensitive to such changes due to three factors.

1. Change in the position of the centroid, (xc, yc).
2. Change in the perimeter length, T , which in effect changes the associated

harmonic bases (in case of occlusion) used in the DFT computation.
3. The global computation of the DFT coefficients means that a local change

in the perimeter affects all the DFT coefficients to varying degrees.

Large changes in the descriptor for local perimeter changes indicate the limi-
tation of such descriptors in handling occluded shapes. Figure 1 shows the true
shape (a) and an erroneously segmented version (b) of that shape. While distinc-
tive features are preserved, an extra rectanguler region has been added. Figure 2

(a) original shape (b) occluded shape

Fig. 1. Selected Shape

indicates the change in the descriptor. Here the obtained descriptor for shape (b)
at a new and old center point (centroid for shape (a)) differ drastically from the
original one. The peak obtained for shape (a) is shifted from 6 to 7 for shape (b).
This makes the comparision virtually impossible. The extra peak obtained in the
new descriptor is due to a low frequency change in the original shape. Ideally, the
signature and descriptor must be designed such that there are small changes for
small changes in the perimeter. Additionally, so as to handle occluded shapes,
the perturbations must be localised. The properties of scale, rotation and trans-
lation invariance while applying similarity measure continues to be important. In
order to satisfy all these contraints, the present work modifies the centroid sig-
nature/descriptor, the similarity metric introduces an additional search process.
Any descriptor that depends on a computed geometrical entity like the centroid
will necessarily be changed due to addition or subrtaction of regions from the
shape. The solution proposed here is to initiate a directed search that finds the
best centre point (c) for defining the descriptor such as to match some given ref-
erence descriptor. The Fourier descriptors make such a search computationally
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expensive. We formulate a simpler descriptor that allows for an efficient search
for c and a localization of occlusion induced error.

In order to isolate the changes due to occlusions, the shape descriptor is
generated from the shape signature by a process of sampling rather than a
global process like series summation. Outward rays from the chosen centre point
(default being centroid) are extended till the perimeter at fixed angular intervals
and the distance to the perimeter is measured. When a perimeter is changed
due to addition or subtraction, the descriptor elements corresponding to the
unchanged portion remain unchanged. The drawback of this formulation is that
the descriptor loses its ability to appropriately characterize highly nonconvex
shapes. The descriptor itself is no longer invariant to size and orientation, but
that is dealt with by modifying the similarity metric.

The computation of this modified centroid distance based descriptor involves

1. Selection of the descriptor length, N .
2. Computation of the center point c = (xc, yc). By default this is the centroid

but other choices will be introduced later.
3. Computation of the distance from c to perimeter along N directions θn =

2nπ/N , for n = 0, · · · , N − 1. If (xn, yn) denotes the point on the perimeter
that is closest to (xc, yc) along θn, then the N signature points are

δn = [(xn − xc)2 + (yn − yc)2]
1
2 (2)

4. The δns define the elements of the feature descriptor λ, which may be de-
noted as

λ(c) = [δ0δ1δ2 · · · δ(N−1)] (3)

where the arguement c makes explicit the dependency of λ on the chosen
center point c.

Figure 3 [7] illustrates the signature. This signature is translation invariant
and computationally inexpensive. This descriptor helps in obtaining only the
local changes in the description when small changes in the perimeter occurs. In
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(a) Shape Descriptor Process (b) Shape Descriptor

Fig. 3. Shape Descriptor Process Using Regular Angular Sampling of Centroid Dis-
tance

this way, it removes the problem related to the global change in the descrip-
tion for occluded shapes. Figure 4 indicates the fact. It can be seen that at the
center point the descriptor for occluded shape matches to the descriptor of the
original one closely (except for the occluded portion). Here the descriptors rep-
resent the shapes shown in figure 1. A change in the perimeter will affect only
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selected descriptor elements, provided the center point remains unchanged. That
can happen only if, after starting with the new centroid as the center point, we
can devise a method for determining the earlier centroid when comparing the
occluded shape to a shape similar to its original shape. Such a method requires
an iterative maximization of similarity between a fixed λref and our new λ(c).
Before describing such a scheme, the similarity metric is defined for λ.

2.2 Similarity Measure

This feature descriptor obtained is translation invariant as c is computed based
on the shape itself (centroid being default). For a scaled shape the feature vector
obtained will be related to the original by

λs = αλ (4)

i.e., the magnitude of the vector will scale but the orientation will remain un-
changed. For a rotated shape, the new feature descriptor is approximated by
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a shifted version of the original. For a rotation by a multiple of 2π/N , say by
θn = 2nπ/N , the new descriptor can be represented as

λr = [δnδn+1δn+2 · · · δ((N−1+n))N
] (5)

where the components of the original descriptor have been indicated as per
the earlier notation. Clearly, the descriptor is itself not invariant to scale and
rotation. A constraint while defining the similarity measure is to ensure that the
above properties are utilized to ensure that the similarity metric is invariant to
translation, scale and rotation. In addition, it is desirable that the metric is not
dominated by a few large mismatches among the N descriptor components.

The function used here for defining the similarity between two shapes is the
maximum of the normalized circular convolution of the shape descriptors. The
normalization ensures scale invariance and the maximum of the circular con-
volution ensures rotation invariance. The product form used in the convolution
ensures that the metric measures overall similarity while ignoring a few large
mismatches in the descriptor components, as opposed to the squared difference
based Eucledian norm. Formally, let

λ1 = [δ10δ11δ12 · · · δ1(N−1)] (6)

and
λ2 = [δ20δ21δ22 · · · δ2(N−1)] (7)

be two shape descriptors, where the dependence on center points has been sup-
pressed for notational simplicity. The normalized circular convolution between
these may be denoted as:

ψ(λ1,λ2, n) =
∑

k

λ1(k)λ2(k − n)
Λ1Λ2

(8)

where Λi = ‖λi‖. The similarity measure between two shape descriptors can
now be defined as

S̃(λ1,λ2) Δ= max
n
ψ(λ1,λ2, n) (9)

This similarity measure, S̃, indicates the best fit of the shapes for the chosen
center points used for λ1, λ2. Without loss of generality, assume that λ1 is
computed with the centroid as the center point. The similarity measure S can
now be written explicitly as a function of the second center point as:

S̃(λ1,λ2(x)) = S̃12(x) Δ= max
n
ψ(λ1,λ2(x), n) (10)

In order to remove the dependency on centroid variation and capitalize on the
ability of the shape signature to localise changes due to occlusion, the occlusion-
resistant version of the similarity measure is defined as

S12 = max
x
S̃12(x) (11)



854 R. Shah, A. Mishra, and S. Rakshit

Compared to the usual centroid distance based Fourier descriptor, S12 is far
more computationally costly as it involves two searches for maxima: a 1D search
for orientation (n) and a 2D search for center point (x). While a search based
invariance is costlier, it has the benefit of not being blind. The knowledge of the
n and x that maximise the measures allows us to recover the relative orientation
and probable occlusion regions. The rotation invariance of the FD, on the other
hand, means that no measure based on it can be used to recover orientation.
The search for n is the price one pays for localizing shape descriptor changes for
occlusions. Of the two searches, the search for optimum x is by far more compu-
tationally expensive. While the search for best n can be exhaustive (1D, with ∼
30-100 elements), an exhaustive search for the best center point is impractical. A
directed search algorithm is required which can incrementally give the direction
of a better center point, with good convergence and stability properties. This
search technique is explained next.

2.3 Center Point Search Algorithm

The search for the solution of Equation(11) is handicapped by the fact that
there is no analytic definition of the perimeter. As a result one cannot formulate
a general expression for S12(x) in terms of x and directly solve for x. The
direct solution being ruled out, the second best alternative would be a gradient
based search: start at some x, say the centroid, and determine the direction one
should go in order to maximise the similarity measure S̃. The lack of an analytic
definition of the perimeter precludes an analytic estimate of the gradient of
S̃(x) as well. This forces us to numerically estimate the local gradients of S̃(x)
by evaluating it for neighboring values of x. In effect, we would have to find by
actual evaluation

argmax
ε

[S(x + ε)] (12)

and then update x = x + ε∗. The ε are displacements in various directions
with a fixed small magnitude ε. If the number of directions is set equal to N ,
the number of directions sampled in defining the feature descriptor, it becomes
computationally expensive to find N shape signatures and evaluate N similarity
measures S̃. Two approximations can be used to accelerate the computation
without compromising the final result.

1. λ(x+ε) can be estimated based on λ(x) for small ε. If ε << δi, the descriptor
components, then the new descriptor components can be approximated by
δε
i = δi − cos(γ) · ε where γ is the angle between ε and the direction θn of

the descriptor component.
2. The computation of S̃ involves a search over orientations and is an O(N2)

computation. However, for finding argmax(ε), the two shapes are not being
rotated with respect to each other. For small ε, the shape of λ(x) will be
very close to λ(x + ε). Hence the value of n that maximises S̃(λ1,λ2(x))
can be assumed to maximise S̃(λ1,λ2(x + ε))

The magnitude of ε is critical for the dynamics of the search. If it is too small,
the search will take a long time to settle to a solution. If it is too big, then the
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errors made in approximating the shape descriptors will misdirect the search.
This error varies for different shapes and for different step sizes for the same
shape. This may be calculated as following

Error =
‖λ(x + ε)− λanal(x+ ε)‖

Λ
(13)

where Λ = ‖λ(x + ε)‖ and λanal is the descriptor obtained from the method
used for accelerating the computation. The approximation error as a function of
ε is shown in Figure 5. As expected error is a monotonically increasing function
of ε. Here the step size may be selected by setting the upper threshold for error
(which was 0.1 for our case). In order to prevent accumulation of error, the shape
descriptor and similarity measure were explicitly recomputed for each new center
point before continuing the search.

The center point search algorithm for matching two shapes can be summarized
as follows:

1. Compute the centroid and the shape descriptor for Shape1, λ1.
2. Set the center point for Shape2, x, to be its centroid. Compute the shape

descriptor for Shape2 at the chosen center point, λ2(x).
3. Compute the similarity S̃12(x), noting the value of n, n∗, that maximizes

the circular convolution.
4. Approximate λ2(x + ε) from λ2(x) for N directions of ε.
5. For each λ2 above, evaluate S̃12 by computing the circular convolution for

only n = n∗

6. If none of the new descriptors score higher, EXIT
7. Select the ε that maximises S̃12 and set the new center point to x = x + ε.

Goto Step 2.

3 Results

The proposed method is tested using the shapes shown in Figure 6. The top row
shows four reference shapes while the bottom row shows four query shapes. The
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S P M A

So Po Mo Ao

Fig. 6. Selected Original and Occluded Shapes

Table 1. Similarity Metric at a new centroid

SHAPES S P M A

So 1.0000 0.9017 0.9862 0.9954
Po 0.9242 0.9885 0.9653 0.9296
Mo 0.9851 0.9507 0.9939 0.9842
Ao 0.9810 0.9263 0.9836 0.9807

Table 2. Similarity Metric at a center point

SHAPES S P M A

So 1.0000 0.9072 0.9863 0.9956
Po 0.9249 0.9919 0.9688 0.9334
Mo 0.9857 0.9515 0.9944 0.9861
Ao 0.9832 0.9370 0.9854 0.9857

shape S has been subjected to scaling and rotation, P has an added portion, M
has been scaled and then truncated and A has a portion removed. The similarity
metric computed between each query shape and the four reference shapes are
given below. Table1 shows the results of using the proposed descriptor and metric
using the true centroids in each case. Table 2 shows the metric based on finding
the best centre point. In each case, So scores a perfect match with S showing
the scale-orientation invariance of the proposed method. The shapes Po and Mo

also find their correct best matches. However, Ao is misclassified as M in Table
1. With the centre point search, Ao is correctly classified as shown in Table 2.

3.1 Summary and Future Work

Ability to handle occluded shapes plays an important role in selection of the
shape descriptor and in turn in shape recognition. The Fourier based descriptors
are not optimised to handle occlusions, as the change in the descriptor is global
for a local changes in the perimeter. The approach described here for shape
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recognition can handle occlusions. The aim here is to ensure that there are only
local changes in the descriptor for local perimeter changes. The descriptor and
metric formulated here is shown to retain the scale-orientation invariance while
ensuring this localisation.

There are two extensions of this work which are being explored. After finding
the best centre point, scale and orientation for a fit, one can suitably recompute
the descriptor taking the scale, centre point and orientation into account. The
difference between the descriptors of the reference shape and query shape can
then be analysed to decide if, and where, an occlusion has taken place. Secondly,
the definition of the descriptor may be extended to include an additional N
elements based on a (possible) second intersection of the oriented rays with the
perimeter. This will improve the ability to deal with more complex shapes.
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Abstract. In the paper, we attempt to develop a novel method to of-
fer the possibility even for a non-expert to extract easily the contour
of an object. A NURBS-HMM framework aiming at the interactive im-
age contour extraction is proposed. We fit the initial points input by
users with Non-Uniform Rational B-Spline(NURBS). Due to the local
controllability of NURBS, the control points are considered as the states
of Hidden Markov Model(HMM) framework, and the boundary features
and uniformity along the boundary are integrated as the observations.
The experimental results show the robustness of our method. As an in-
teractive method, the method interacts with users in an efficient and
comfortable way.

1 Introduction

Image segmentation and contour extraction techniques are of practical use for
various applications including image analysis, image composition, key extrac-
tion, etc. Approaches in this area are numerous, ranging from fully automatic
methods to fully manual methods. The first ones are an unsolved problem due to
a wide variety of image sources, contents, and complexity, even if they are well
adapted to specific cases. Their success cannot be guaranteed in more general
cases. The second ones are time-consuming, hardly reproducible and inaccurate.
To overcome these problems, a lot of work has been done in interactive methods.
The typical methods include Active Contour[1, 2, 3], Intelligent Paint[4], Intel-
ligent Scissors[5, 6, 7], Bayesian Matting[8], Graph Cut[9], Lazy snapping[10],
GrabCut[11] and so on.

Interactive segmentation exploits user’s knowledge on the target object for
tracing its boundary. The key points are high performance and simple interac-
tive process. High performance in this task emphasizes accurate segmentation
of object from background. The simple interaction means that a non-expert can
finish the interaction, and obtain the accurate contour by an efficient and com-
fortable way. The less interaction may lead to wrong segmentation, while high
performance usually needs too much interaction. Our objective in the paper is
to achieve high performance at the cost of the modest interactive effort on the
part of the user.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 858–867, 2006.
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In this paper, A new NURBS-HMM framework targeted at interactive image
contour extraction is proposed. The user firstly inputs a few initial points around
the object boundary. The input points are then fitted with Non-Uniform Rational
B-Spline(NURBS)[12]. Due to local controllability of NURBS, control points of
NURBS are considered as states of HMM, while observations of HMM are the
boundary features of the image and the uniformity of an object area. Then, a
state transition model based on the contour smoothness constraint is calculated.
Finally, we find the optimal contour efficiently with Viterbi algorithm.

The rest of the paper is organized as follows. Hidden states of HMM are
discussed in Section 2. Section 3 gives the detailed description on the observations
of HMM. Section 4 introduces how to extract the contour with Viterbi algorithm.
Section 5 gives the experimental results on different types of images and videos.
Comparisons with three typical methods: Active Contour, Intelligent Scissors,
and GrabCut are also included in this section. Concluding remarks are given in
Section 6.

2 Contour Extraction Using HMM

Hidden Markov Model (HMM)[13] is a stochastic model which offers a high
level of flexibility for modeling the structure of observations. It also provides
a powerful and efficient way to incorporate multiple features by expanding the
observations. This subsection below will describe the structure and basic theory
of hidden Markov model used in our work.

2.1 Hidden States of HMM

A HMM[14] is specified by a number of states, say sφ, the observation model
P(Oφ|sφ), and the transition probability P(sφ|sφ−1). The graphic model of HMM
is shown in Fig.1. Here, our aim is to accurately extract contour by some initial
points given by users. First, these input points are fitted with the NURBS. The

Fig. 1. Graphic model of contour extraction

control points are defined as HMM hidden states. If si is the control point
of NURBS[15], the states can be denoted as s ={s1, . . . , sφ, . . . , sM}. Because
NURBS allows us to interpolate curve and compute tangents at any locations
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along the curves. A set of normal lines of the contour can be obtained due to the
parametrical representation of the contour. Let φ = 1, . . . ,M, be the index of the
normal lines and λ = −N, . . . ,N, be the index of pixels along a normal line. Each
normal line has 2N+1 pixels, which are indexed from -N to N. The center point
of each normal line, index as 0 is placed on the NURBS curve. If the fitted curve
is accurate enough, the detected contour points on all normal lines should be
exactly at the center, i.e., c(φ) = 0,∀φ ∈ [1,M]. The observations of the HMM,
denoted as O={O1, . . . ,Oφ, . . . ,OM}, are collected along each normal line φ. For
detecting the contour accurately, different features such as: region smoothness,
edge features, and the prior constraints such as: contour smoothness constraint
are integrated into the HMM framework.

Given the current state sφ, the observation Oφ is assumed to be independent
of previous state sφ−1 and previous observation Oφ−1. The assumption can be
guaranteed due to the local controllability property of NURBS , e.g. the location
change of control point si can only affect the curve segment Cg(u), where u ∈
[ui, ui+d+1), instead of the whole curve. Therefore, it is reasonable to define the
control points of NURBS as the states of HMM. In HMM, transition probabilities
are defined as p(sφ|s1, s2, . . . , sφ−1). Here the first order HMM is used in our work.
It means that the next state is dependent only upon the current state. Therefore,
we have p(sφ|s1, s2, . . . , sφ−1) = p(sφ|sφ−1).

3 Observations of HMM

Given a hidden state si, the segment controlled by this hidden state can be
uniquely determined due to the local controllability property of NURBS. Let
φ = 1, 2, . . . ,M be the index of the normal lines. If there are 2N +1 pixels along
each normal line, for each normal line, we will have 2N + 1 possible edges (zφ=
z1, z2, . . . , z2N+1)(see Fig.2). The boundary features and region feature along the
possible edges are defined as the observations of our HMM.

Fig. 2. Boundary detection
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3.1 Boundary Features

If p, q are two pixels at two neighboring normal lines, then P (p, q) represent
the properties of the contour connecting pixels p, q and of its environment (gray
levels of the contour, of the background, etc.). These features are then mapped
through the use of a so-called cost assignment function (CAF) into cost functions
which are similar to the “potential” instances of active contour models. Once
these individual cost functions are defined, they are combined into a total cost
function as follows.

P (p, q) = ωgCg(q) + ωlCl(q) + ωdCd(p, q) + ωiCi(q) + ωoCo(q) + ωeCe(q)

where each ωx is the weight of the corresponding cost function, and the cost
functions Cx associated to some features are respectively defined as: Cg, gradient
magnitude; Cd, direction of the gradient magnitude; Cl, Laplacian feature; Ci,
intensity on the positive (inside) side of the boundary; Co, intensity on the
negative (outside) side of the boundary; Ce, intensity on the contour (boundary).

The cost assignment depends on how one wants to emphasize one or another
value of the features. For the gradient magnitude the inverse can for example
be taken as a CAF in order to favor high contrasts, but a Gaussian function,
centered on the gradient value that one wants to highlight, could also be applied.
For the Laplacian feature, the CAF is usually a zero-crossing detector. Some
other types of CAF can be used too.

The energy of a path to minimize with Dijkstra[16] is defined by

Epath =
∑

(p,q)∈path

P (p, q) (1)

Epathφ = (e1, e2, . . . , e2N+1) is the value of zφ(see Fig.2). Let Epathφ be
the cost function related to any segment controlled by any control points , and
Epathmin be the minimum cost function of all possible edges between the be-
ginning and ending normal lines of this segment, e.g. Epathmin = min{e1, . . . ,
e2N+1}. The observation likelihood model of boundary can be defined as:

p(Oφ|sφ) =
1√
2πσ

e−(eφ−Epathmin)2/2σ2
(2)

where σ is a predefined constant.

3.2 Uniformity Along the Boundary

In addition to the features of boundary likelihood model, the feature about the
region uniformity of the foreground and background is considered here. The
boundary separates the region along the boundary into two parts, foreground
(Rf ) and background (Rb). If the detected contour is exactly the boundary
region, then foreground region should follow a similar gray distribution.

E(FG) =
Nf∑
k=1

xk E(BG) =
Nb∑
k=1

xk (3)



862 D. Lei et al.

V ar(FG) =
Nf∑
k=1

[xk − E(FG)]2pk V ar(BG) =
Nb∑
k=1

[xk − E(BG)]2pk (4)

Where Nf and Nb are the number of the pixels of region Rf and Rb . The xk

is the value of kth pixel. The Var(FG), Var(BG) are the variance of the area
Rf , Rb.

I(FG) = −
Nf∑
k=1

pk log pk I(BG) = −
Nb∑
k=1

pk log pk (5)

Where the probabilities of xk is pk, and the I(FG), I(BG) are the entropy of the
area Rf , Rb. When the shortest path Epathφ is the true contour, the foreground
(Rf ) and background (Rb) should have the similar distributions. It means that
the Var(FG)φ, Var(BG)φ should be minimal. On the other hand, for a homo-
geneous region, for example, if the occurrence probability of the intensity levels
is uniformly distributed, then pk = const, for k ∈ Ω, and I is high. Therefore,
the I(FG)φ + I(BG)φ should be maximal. This is shown in Fig.3.

Fig. 3. The region uniformity of the foreground and background

Combining the features of boundary likelihood model and the uniformity of
the region probabilities, we have the following multi-features observations likeli-
hood function:

P (Oφ|sφ) = c · p(zφ|sφ) · V arN (FG)φ · V arN (BG)φ · IdN φ (6)

where VarN (FG)φ, VarN (BG)φ, IdN φ are the normalization of Var(FG)φ,
Var(BG)φ, Idφ, and c is a predefined constant.
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4 Contour Extraction by Viterbi Algorithm

An important component in HMM is the transition probability. It determines
how a state transits to another state. In this section, we will use the standard
contour smoothness constraint to derive the transition probability. Here we follow
the philosophy in traditional snake model and use an internal energy term to
penalize the roughness of the contour. But we encode this constraint in transition
probabilities instead of using an internal energy in an optimization framework.
The smoothness constraint has to be represented in a causal form to achieve this.
One can see that when the normal lines are dense, the true contour points on
adjacent normal lines tend to have the similar displacement from the predicted
contour position (indexed as 0 on each normal line). This correlation is causal
and can be captured by transition probabilities p(sφ|sφ−1):

p(sφ|sφ−1) = c ∗ e−(sφ−sφ−1)2/σ2
s (7)

where c is a normalization constant and σs is a predefined constant that regulates
the smoothness of the contour. This transition probability will penalize sudden
changes of the contour points between adjacent segments, hence resulting in a
smooth contour. The best contour can be obtained by the Viterbi algorithm [14]
described in the following.

Given the observation sequence O = {Oφ, φ ∈ [1,M]} and the transition
probabilities ai,j = p(sφ+1|sφ = i) , the best contour can be found by finding the
most likely state sequence s∗. This can be efficiently accomplished by the Viterbi
algorithms:

s∗ = argmax
s
P (s|O) = argmax

s
P (s,O) (8)

Let’s define
V (φ, λ) = maxsφ−1P (Oφ, sφ−1, sφ = λ) (9)

Using the Markov conditional independence assumptions, it can be recursively
computed as follows:

V (φ, λ) = P (Oφ|sφ = λ) ·max
j
P (sφ = λ|sφ−1 = j)V (j, φ− 1) (10)

j∗(φ, λ) = P (Oφ|sφ = λ) · argmax
j
P (sφ = λ|sφ−1 = j)V (j, φ − 1) (11)

with the initialization V (1, λ) = maxs1P (O1|s1)P (s1), where the initial state
probabilities P (s1) = 1

2N+1 , s1 ∈ [−N,N ]. The term j∗(φ, λ) records the ”best
previous state” from state λ at line φ. We therefore obtain at the end of the se-
quence maxsP (O, s) = maxλV (M,λ). The s∗ can be obtained by back tracking
j∗, starting from s∗M = argmaxλV (M,λ), with S∗

φ−1 = j∗(s∗φ, φ). The computa-
tion cost of the Viterbi algorithm is O(M · (2N + 1)). Unlike traditional active
contour model, this method can give us the optimal contour without recursively
searching the 2D image plane. Given the best state sequence s∗ = {s∗1, . . . , s∗M},
we denote the corresponding image coordinate of the best contour point s∗φ on
line φ by [xφ, yφ].
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5 Experiments

To validate the efficiency and robustness of the proposed method, we use the
different types of images and videos to test our algorithm. Our method offers
an easy and comfortable interactive way for the user. First, the user inputs a
series of initial points around the contour that one hope to extract, then the
algorithm is able to find the contour automatically. Fig.4 is the SAR (Synthetic
Aperture Radar)[17] image, and the red points is the initial points input by user.
It is well known that SAR is obtained with coherent illumination and presents
a noisy appearance due to the speckle noise phenomenon. Therefore, it is very
challenging to extract robustly the contour in SAR image. The yellow line in
Fig.4 (a) (right) is the resultant contour by using the proposed method. If the
resultant contour is not satisfied, then the user can repeat the above procedure
until the real contour is achieved. (b) (left) is the result of the first iteration,
and it is unsatisfied. Then we repeat the above procedure by using the result of
the first iteration as the initial contour of the next iteration. (b) (right) shows
the contour after the third iteration. Some results on the ordinary images are
shown in Fig.5. From the experimental results, one can see that our method can
extract robustly the contour from the different types of images with a modest
interaction.

Fig. 4. The red points are set by the user. The green line is fitted using NURBS
through the red points. The yellow line is found by our algorithm. The yellow line in
(b)(left) is the result of the first iteration, and the contour in the right image is the
result of the third iteration. The green points of (b)(right) is the control points of the
yellow contour.

Furthermore, we apply our method to video segmentation. First, we input
the initial points along the boundary at the first frame of the video, and obtain
the contour at this frame, then the extracted contour is propagated to the next
frame, and regarded as the initial contour of this frame, repeat the procedure
until the final frame is processed. Fig.6 (upper) gives some sampled frames of the
video that one man is moving, and the segmentation results of head are shown in
Fig.6(lower). Another example is shown in Fig.7. The upper array of the figures
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Fig. 5. Some experimental results on ordinary images. The user inputs a series of points
around an object, and the object is then extracted automatically.

Fig. 6. Segmentation of a video sequence

are the sampled images of a medical image video, and the lower array are the
segmentation results.

In order to demonstrate the performance of the proposed method, we com-
pare our method with another three typical methods, Active Contour, Intelligent
Scissors, and GraphCut. It is well known that active contour method is greatly
dependent on the selection of initial points. It is initialized manually with a
rough approximation to a boundary of interest, then allowed to iterate over the
contour to determine the boundary that minimizes energy functional. If the re-
sulting contour is not satisfactory due to converging to the local minimum, this
may in turn be followed by one or more iterations of user input and reapplication
of the algorithm. Fig.8(left) shows that segmentation result from Active Con-
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Fig. 7. Segmentation of a medical images sequence

tour method. The Intelligent Scissors is able to achieve a satisfied segmentation
result when given the enough interaction, but it needs more interaction than our
method. Fig.8 (middle left) shows the segmentation result by using Intelligent
Scissors. One can see that although the method can obtain a similar result as
our one, it needs to input more initial points accurately along the boundary
that one hope to extract. Finally, Fig.8 (middle right) shows the segmentation
result of the GrabCut. Fig.8 (right) is the result of our method. Obviously, our
method can result in the more satisfied segmentation than the GrabCut when
their interactions are similar.

Fig. 8. Comparison with other methods

6 Summary and Conclusions

In this paper, a new algorithm aiming at the interactive contour extraction is
proposed. It allows user to have a full of control of the drawing process, and
even a non-specialist user is able to extract the contour with an efficient and
comfortable way. We fit the initial points input by user with NURBS, and itera-
tively search the best contour using Viterbi algorithm. Our proposed framework
can also integrate all kinds of observations such as boundary features and region
features in a similar way. The experimental results demonstrate that our method
is efficient and robust.
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Abstract. This paper presents a learning-based method for parameter
tuning of object recognition systems and its application to automatic
road extraction from high resolution remotely sensed (HRRS) images.
Our approach is based on region growing using fast marching level set
method (FMLSM), and machine learning for automatically tuning its
parameters. FMLSM is used to extract the shape of objects in images.
Parameters are introduced into the speed function of the FMLSM to
improve flexibility and reflect the variety of images. The parameters are
tuned using machine learning and utilizing background knowledge. The
primary contribution of our approach is the ability to learn the parame-
ters for a FMLSM model for object extraction. Experimental results on
11 HRRS image datasets, 1024*1024 pixels each with ground resolution
of 1.3 meters, demonstrate the validity of the proposed algorithm. We
are able to extract the roads without the use of heuristic parameters and
other manual intervention.

1 Introduction

Automatic shape extraction of objects and its application to road extraction
from remotely sensed images is an active area of research. The general approaches
adopted include image processing techniques [1, 2], edge detection and linking[3],
tracking and region growing [4, 5, 6, 7, 8], grouping and clustering [9, 10] and ma-
chine learning techniques [11]. Recently, advances have led to the inclusion of
prior knowledge as well as multi-scale and multi-resolution methods [12], and
multi-temporal, multi-spectral and hyper-spectral analysis [13].

Region growing methods attempt to group pixels into homogeneous regions
starting from seeds, and agglomerate points around the seeds that satisfy certain
homogeneity criteria. A recently developed algorithm in this approach is the level
set method, which has the ability of smart handling of propagating contours [14].
To apply this method to automatic object extraction, two well known problems
must be solved: automatically deciding the stopping criterion and initialization
of seeds. Although attempts at automatic seed selection exist [15], the stopping
criterion determination remains heuristic in the literature [14][16].
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Fig. 1. Overview of the proposed algorithm

In this paper, we propose an automatic parameter tuning method for the
speed function of FMLSMs for object shape and centerline extraction and its
application to roads extraction from HRRS images. By parameter tuning of the
speed function, we automatically determine the stopping criterion for FMLSMs.
Our approach makes use of searching strategies and machine learning techniques
and consists of two stages, namely learning and extraction. In the first stage, rules
for selecting parameters are learned from training images. The second stage con-
sists of object extraction from new images using the speed function with learned
parameters. Given the training images with their ground truth, we utilized ge-
netic search to discover the optimal parameters of the FMLSM speed function
for every training image. These parameters, with their image characteristics,
were then input to a support vector machine (SVM) regression machine learning
procedure to generalize rules of relationship between image characteristics and
parameters, which were then used to derive parameter values for new images.
Finally, a FMLSM model using these values was deployed to discover the shape
of objects. An overview of the proposed algorithm is shown in Fig. 1.

Cooperating with a seed selection procedure and a centerline extraction pro-
cedure, we applied this approach to automatically extract roads to evaluate our
algorithm and show its strengths. Our major contribution is automatic param-
eter tuning of region growing methods for object extraction.

The paper is organized as follows. In section 2, we discuss related work.
FMLSM is introduced in section 3. Automatic parameter tuning for speed func-
tion is described in section 4. Experiments on road extraction from HRRS images
are presented in section 5. Conclusions are presented in section 6.

2 Related Work

Deformable contour models or snakes were first presented [7] for detection and
localisation of boundaries for the image segmentation problem. Cohen [4] uses
the balloon model to reduce the requirement of initialisation of snake model.
This has been improved [8] using a geodesic formulation in a Riemannian space
for active contours derived from the image content. Level set method has been
utilised for shape modelling [14]. In [16], level set method is used to extract
road network from multi-spectral images, where multi-spectral features are ex-
tracted using pixel classification masks and then level set method employed to
extract road contours. Geman and Jedynak [17] present an active testing model
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to reduce uncertainty in tracking roads in satellite images using entropy and sta-
tistical inference. Cohen and Kimmel [18] describe a shape modeling method by
interpretation of the snake as a path of minimal cost which is solved using numer-
ical methods. Bhanu et al. [19] develop a general adaptive framework for image
segmentation and illustrate it using genetic algorithm and nearest neighbour
learning. Chen et al. [9] proposed an adaptive and trainable multi-level road ex-
traction system using inductive meta-learning and clustering to tune parameters
and choose the algorithm. Recently, we proposed a method for road recognition
based on learning and fusion of road segment and junction information [11].

In this paper, we present a machine learning based dynamic FMLSM model
for automatic shape extraction of objects by automated tuning of parameters of
the speed function. We also determine the stopping criterion of the level set and
select its starting seeds automatically. The proposed approach differs from our
earlier work [11] in that we introduce and tune two parameters rather than one
for the speed function of FMLSM, and perform sophisticated genetic algorithm
based random search instead of sequential search to discover their optimal values.
We also experimentally compare the proposed approach with standard level set
method. Compared to Bhanu et al. [19], we tackle both the parameter tuning
and seed selection problem that are specific to level set methods and use SVM
regression for learning parameter selection rules rather than simply use nearest
neighbor technique.

3 Fast Marching Level Set Method

For the purpose of completeness, level set method and fast marching method are
briefly described here. In [14], the classical level set boundary is defined as the
zero level set of an implicit function z = φ(x, y, t) defined on the entire image
domain. The contour at time t must satisfy the function φ(x, y, t) = 0. If each
pixel in the image is visited once and the time step is fixed to 1, this will lead to a
simple boundary value formulation F |(μ(x, y)| = 1, where μ is the arrival time
of the contour and F is the speed function. Combined with an optimal sorting
technique, this leads to a very fast solution, namely the fast marching algorithm.

4 Automatic Parameter Tuning

In this section, we define the speed function of the FMLSM and describe the
parameter tuning approach. Seed selection is highly specific to the application
and will be discussed in the next section.

4.1 Speed Function Design

A key aspect of successfully designing the FMLSM based shape detector is to de-
sign its speed function since it will finally determine the precision of the method.
The speed function must model the desired requirement of maintaining posi-
tive evolution speed whenever the evolving contour remains inside the object
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area, and zero speed as the boundary approaches the border. In related research
[4, 7, 8, 14], the speed function consists of constant speed, curvature constrained
speed and underlying velocity. We use a combination of intensity distribution,
texture statistics and gradient information together, defined as following:

F (x, y) = [e−
1
2 (ĉ(x,y)−μ̄0)Σ−1(ĉ(x,y)−μ̄0)T

+e−|T (x,y)−T0|)]× 1

1 + |(I(x, y)|P
. (1)

where ĉ(x, y) is the intensity value at image location (x,y), μ̄0 denotes the mean
of intensity of seeds. T(x,y) is the texture feature of the image at point (x,y),
T0 is the mean of those from seeds, and (I(x, y) is the gradient of the image at
location (x,y). P and Σ are parameters that will be automatically tuned.

A similar speed function has been used by Keaton and Brokish [16] in a semi-
automatic road detection system. Our speed function differs from Keaton and
Brokish’s in that we utilise the pixel intensity and texture from multiple seeds
instead of a single seed. Thus, μ̄0 and T0 are defined as following:

μ̄0 =
1
n

n∑
i=1

Ii, T0 =
1
n

n∑
i=1

Ti . (2)

where Ii and Ti are the intensity and texture feature vector of the ith seed. Our
approach reduces the uncertainty of a single seed by averaging the features of
all seeds.

4.2 Parameter Tuning for Stopping Criterion

A common problem with region growing algorithms including the fast marching
method is the determination of the stopping criterion. For object extraction, the
contrast, noise and other spatial and spectral properties present in different im-
ages can change. Since the speed function is essential to the success and precision
of the FMLSM, it must be properly adjusted to reflect these changes. There are
two parameters embedded in the speed function of our approach, namely the
gradient power P and Σ intensity covariance matrix S, which together work as a
global constraint and enable adjustment of the stopping criterion. Given a set of
training images and objects appearing in them, the parameter tuning problem
is defined as finding optimal parameters θ for a FMLSM to properly extract the
objects in the training images with respect to an evaluation metric, and creating
a set of rules to derive parameters for new images. We utilize search strategies
and machine learning to automatically tune the parameters.

Given merely the training image and ground truth, there is no direct relation-
ship between training images and parameters that can be used to discover good
parameters. Thus, training data must be first processed to search for parame-
ters with good performance of shape extraction for every training image. There
exist two approaches to parameter value search [20]. One is the filter approach,
which has the disadvantage of being heuristic and does not directly take into
account the effect of the underlying shape extractor. Another is the wrapper
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initialize , Pco, Pmut, L n-bit chromosomes 
do determine fitness of each chromosome 
  rank the chromosomes 
  do random select two chromosomes 
    if Rand[0, 1) < Pco then 
      crossover the pair at a randomly chosen bit 
    else 
      change each bit with probability Pmut 
      remove the parent chromosomes 
  until L offspring have been created 
until reach the maximum iteration limitation  
return highest fitness chromosome 
 

Fig. 2. Genetic Algorithm (GA)

Training: 
  initialize training images and references 
  for each training image 
    find optimal parameters by GA 
    create features 
  build parameter selection rules by learning 
  return parameter selection rules 
Testing: 
  initialize parameter selection rules, new images 
  for each new image 
    calculate features 
    find parameters using selection rules  
  return parameters 
 

Fig. 3. Parameter Tuning Algorithm

approach, where parameters are selected through a search using the extractor
itself as part of the evaluation function. We use the wrapper approach. For each
search iteration, we make an attempt at guessing parameter values, and call the
FMLSM extractor, whose results are compared to the ground truth to discover
good parameter values. Furthermore, in order to apply the wrapper approach
to shape extraction, we must overcome the efficiency problem, since each search
in this approach must call the shape extraction procedure once, which is time
intensive and requires an efficient search algorithm. We utilise the genetic algo-
rithm based random search method rather than analytical methods or exhaustive
search, to avoid constructing a complicated model using a priori and to reduce
the computation burden, [19] as shown in Fig. 2.

The fitness for genetic algorithm is an evaluation metric of the performance
of FMLSM, which is defined in Sect. 5 . To get the fitness, the algorithm uses
FMLSM to extract objects using the gene values in the current generation. The
evaluation metrics used as the fitness are then calculated over the extraction
results. We use chromosomes of 2 genes and 5 bits per gene, to represent two
parameters of the speed function. This constructs a search space of size of 32*32.

After the optimal parameters for every single training image has been esti-
mated, machine learning is deployed to generalize the relationship between image
characteristics and parameters. This is because different images usually have dif-
ferent characteristics such as contrast and noise, which can significantly affect
the performance of the shape extractor. For a reusable and robust shape extrac-
tion algorithm, tuning a variety of parameter values to be applied on images
with different characteristics is a nontrivial problem. We use SVM regression
to discover the mapping from image characteristics to optimal speed function
parameters of the FMLSM. Various texture features of seed candidates includ-
ing energy, correlation, contrast, dissimilarity, homogeneity, entropy, maximum
and sum based on co-occurrence matrix and mean, variance, skewness, kurtosis,
energy and entropy based on histogram are extracted [21, 22]. The image inten-
sities are re-sampled into 64 bins with a bin size of 4 and the texture features
are derived. We construct a set of training instances from the training images,
each containing the texture features and the parameters found by the genetic
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algorithm. SVM regression [23] is trained over these instances to derive the pa-
rameter selection rules as a regression function over the texture feature values,
which are then used to find optimal parameters for new images.

Once the selection rules are created, the parameter selection for a new image
is done simply by calculating the texture features of the new image and applying
the rules on these texture features to find the parameters.

The algorithm for tuning the parameters is described in Fig. 3. Although the
training of this algorithm may take time, testing very fast after the parameter
selection rules are created.

5 Application to Road Extraction

5.1 Problem Formulation

We apply our approach to road extraction from HRRS images. The problem
of road extraction is to infer a road object centerline from an input HRRS
image. Let x be the representation of the HRRS image and y the road centerline.
Our goal is to learn the relation between x and y from a training set of 99
image patches created from 11 HRRS images, and their centerline ground truths.
Since we use FMLSM, this is basically a problem of identifying seeds and speed
function parameters for this method. We first learn the seeds and then use the
seeds to learn parameters.

5.2 Experimental Setup

A dataset consisting of 11 grey-scale HRRS images from a rural area were used.
The size of each image is 1024*1024 pixels and they are cropped from a larger
image of ground resolution 1.3 meters per pixel. Each image is further split
into 9 patches to construct a 99 image patch training set. Leave-one-out cross
validation is used in order to learn from the largest available dataset and obtain
effective test sets. Our approach makes use of the centerline vector reference
model based on Wiedemann et al. [24]. References are provided as line vectors
and the evaluation is performed by comparing the recognized road centerline
vectors with the reference vector, which are delineated manually. The evaluation
measures are given by:

completeness =
lengthTP

lengthreference
, correctness =

lengthTP

lengthclassified
. (3)

where lengthTP = length(reference∩ classified). The two measures above are
combined into a general measure of quality, called CXC which is defined as:

CXC = completeness× correctness2 . (4)

The CXC is also used as the fitness for the genetic algorithm.
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5.3 Experimental Results

Our approach makes use of partial candidates of road segments and junctions
provided by other independent methods. Briefly, a road segment is represented
as a set of twin-linked edge pairs each containing four single line vectors. A junc-
tion contains three edge pairs. For each image, we first import the road junctions
and segments and then find seed candidates by extracting centre points from the
convex polygon of junction edge pairs [9]. We construct a texture feature set of
seeds as described in the previous section. We then train a SVM [25] based on
the texture feature set and the images to learn good seeds from seed candidates.
This produces rules that are used in the classification phase to determine the
good seeds. After training is completed, seed selection is performed by calcu-
lating the texture features of a new image and its junction centre points and
applying the acquired rules on them. The Weka implementation of SVMs and
their default parameters [26] are used. Our seed detector routinely achieved 89%
correctness by leave-one-out cross validation. Although there were about 11% of
seeds misclassified, only 4% of them were false positive and introduced false pos-
itive road contours and centerlines. The effect of false negative seeds on FMLSM
is slight and may be ignored.

Firstly, we find optimal parameters for every training image by genetic algo-
rithm based search of parameter space. We use crossover and mutation as genetic
operators and the probabilities for crossover and mutation are both set to 0.6.
We perform 10 generations of evolution, where each generation has a population
of 10, with respect to the fitness measured by evaluating the performance of the
FMLSM using the gene values. We then take the best fitness gene values within
the populations of 10 generations as the optimal parameters for that image.

Then a set of texture features as described in Sect. 4 are calculated from
the training images with the optimal parameters, to construct the training set
for further machine learning. SVM regression is run over this new training data
set with a polynomial kernel function whose exponent is 3. We use the Weka
implementation of SVM Regression algorithm [26]. This creates a regression
function over all texture features, which will be used to calculate the parameters
for new images.

We then apply the seeds and the parameters found to our extended FMLSM
to extract the road contours [16]. After the contour is extracted, we apply the
FMLSM again to extract the road centerline, based on [27]. Finally, the centerline
points are thinned into a one pixel-width line, which is subsequently converted
into vectors and linked to create the centerlines.

We compared the output of our algorithm with those obtained using the
standard level set method described in [28], where the speed function is:

F (x, y) =
1

1 + |(Gσ ∗ I(x, y)|
. (5)

We also ran the road extractor with the speed function described in section 4.2,
but fixed the intensity covariance matrix Σ to be identity and the gradient power
P to be 1, and compared it with our algorithm.
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Fig. 4. Comparative Results

Fig. 5. Image A (1024*1024 pixels) - Learning ap-
proach (CXC 0.64 in average)

Fig. 6. Patches results: a1, b1
and c1 by learning approach; a2,
b2 and c2 by standard approach.
The patches are extracted from
large images (not shown here ex-
cept for A, from which a1 and a2
is extracted)

We ran our algorithm in 3 passes over the 99 image patches to produce 3 sets
of parameters and then calculated the CXC evaluation measures for every pa-
rameter set. Due to some patches containing no seeds, and thus not contributing
to the performance of the algorithm, we only show comparative results for 44
patches. We average the 3 CXCs for every image and then compare the averaged
CXCs of our learning approach with those obtained by the other two. We found
that the standard approach works as well as the fixed parameter approach since
they produce similar CXC values, therefore only one of them is shown here.

.
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Table 1. Comparative results for shown images (CXC values) - High CXC is better

All (average) Image A (average) Patch a Patch b Patch c

Learning Approach 0.34 0.64 0.90 0.98 0.87
Standard Approach 0.20 0.55 0.67 0.31 0.53
Improvement 0.14 0.09 0.23 0.67 0.34

However, our learning approach outperforms the other two approaches by an
average of 0.14 in CXC, as shown in Fig. 4. Results mapped back to images are
illustrated in Fig. 5 and Fig. 6, whose CXC values are compared in Table 1.
Space constraints preclude inclusion of all patches.

6 Conclusion

This paper proposes a method for automated tuning and learning for object
shape extraction and its application to road extraction. A region growing ap-
proach based on FMLSM is used to extract the shape of objects. We extend
the FMLSM and apply machine learning techniques to the problem of auto-
mated seed selection and parameter tuning, which results in a fully automatic
approach for object shape extraction. Experimental results have demonstrated
the feasibility of the proposed method.
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Abstract. This paper presents a new approach to automatic segmenta-
tion of foreground objects with shadow removal from an image sequence
by integrating techniques of background subtraction and motion-based
foreground segmentation. First, a region-based motion segmentation al-
gorithm is proposed to obtain a set of motion-coherence regions and
the correspondence among regions at different time instants. Next, we
formulate the foreground detection problem as a graph labeling over a
region adjacency graph (RAG) based on Markov random fields (MRFs)
statistical framework. A background model representing the background
scene is built and then is used to model a likelihood energy. Besides the
background model, the temporal and spatial coherence are also main-
tained by modeling it as a prior energy. Finally, a labeling is obtained
by maximizing a posterior energy of the MRFs. Experimental results for
several video sequences are provided to demonstrate the effectiveness of
the proposed approach.

1 Introduction

In many applications, success of detecting foreground regions from a static back-
ground scene is an important step before high-level processing, such as object
identification and event understanding. However, in real-world situations, there
exist several kinds of environment variations that will make the foreground de-
tection more difficult. In order to cope with that, the approach here should be
able to immune to these variaitions, i.e., being invariant to them or adapting to
them.

1.1 Related Works

Techniques for foreground detection can be grouped into two categories, back-
ground subtraction and motion-based foreground segmentation. We will give a
brief review of these two kinds of techniques. In order to adapt to changes, the
background is usually represented by the background model and updated over
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time. This kind of technique is based on an assumption that the background
scene is available and the camera is only subject to minimal vibration without
loss of generality. A simply method is to represent the gray level or color intensity
of each pixel in the image as an independent and uni-modal distribution [1, 2].
However, in the real world, the appearance of a pixel in most video sequences
is in multi-modal distribution. The usage of a mixture of Gaussian distributions
is common in modeling multi-model distribution. To overcome this problem, [3]
modeled the pixel intensity as a weighted mixture of three Gaussian distribu-
tions respectively corresponding to road, vehicle, and shadow. The works in [4]
model each pixel as a K mixture of Gaussian distributions where K depends on
memory.

However, not all distributions are in Gaussian form[5]. In [5], a non-parametric
background model based on non-parametric density estimation was proposed to
handle the situations where the background scene is non-static but contains
minimal motion. The currently proposed approaches are used to represent the
background scene by a set of independent models without taking any semantic
information into consideration. This makes false detection likely when changes or
noise occur. It is here where some sophisticated modeling or updating strategies
are applied.

The technique of motion-based foreground segmentation is based on the idea
that appearance of foreground objects are always accompanied by motion. In
general, such technique consists of two steps, i.e., motion segmentation and re-
gion classification. The aim of motion segmentation is to divide an image into a
set of regions with motion coherence, whereas that of region classification is to as-
sign a label, foreground or background, to each segmented region. For providing
a meaningfully semantic description of video, Wang and Adelson [6] employed a
k-means clustering algorithm in the affine parameter space to find a small num-
ber of motion classes. Finally, each flow vector is assigned to one of the resulting
motion classes. Borshukov [7] later improved Wang and Adelson’s algorithm
through a merging and multi-stage approach to perform motion segmentation
in a more robust way. The aforementioned approaches incur inaccurate segmen-
tation due to inexact motion estimation near the object boundary. In order to
overcome this problem, color information is introduced to obtain more accurate
segmentation. In [8, 9], an initial segmentation proceeds with color segmentation.
Then, regions are merged on the basis of temporal or spatial similarity.

1.2 System Overview

In this paper, we integrate these two kinds of approaches to perform the fore-
ground detection in a more effective manner. Figure 1 shows the block diagram
of the proposed algorithm. The main idea is to regard the background model as
a portion of knowledge for classification. And, motion-based segmentation is to
generate a set of regions for classification in the semantic level. After segmenta-
tion, the statistical framework, MRFs, is introduced to formulate the foreground
detection problem as a labeling problem. The optimization over the MRFs model
is then performed, or specifically a posterior probability is maximized to obtain



880 S.-S. Huang, L.-C. Fu, and P.-Y. Hsiao

a classification result. Finally, regions which have the same classification label
and similar colors are merged to derive a more meaningful segmentation. Finally,
the background model and the resulting region map are updated accordingly.

Region Map

Region-Based Motion
Segmentation

Region
Updating

MRFs
Classification

Region
Merging

Bakcground 
Model

Background
Updating

I(t-1) I(t)

Foreground Mask
FM(t)

Segmentation Map
SM(t)

Fig. 1. The block diagram of the proposed algorithm

The remainder of this paper is organized as follows. In section 2, we intro-
duce the region-based motion segmentation algorithm to obtain a set of motion-
coherence regions. Section 3 addresses problems of background modeling and
updating. The classification process based on the MRFs statistical framework
is described in section 4. In section 5, we demonstrate the effectiveness of the
developed approach by providing some appealing experimental results. Finally,
we conclude the paper in section 6 with some relevant discussion.

2 Region-Based Motion Segmentation

First of all, Horn and Schunck’s method [10] is used to estimate dense optical
flow for describing motion vector, (u(x, y), v(x, y)), of every pixel (x, y) between
two consecutive image frames I(t−1) and I(t). Segmented regions of the previous
image frame, I(t − 1), will then be projected to the current image frame, I(t).
Regions with coherent motion are extracted as initial motion markers. Pixels not
ascribed to any region are labeled uncertain ones. Finally, a watershed algorithm
[11] based on motion and color is utilized to join uncertain pixels to the nearest
similar marker.

2.1 Region Projection

Because of inaccuracy in estimating motion of region’s boundary using Horn and
Schunck’s method, a parametric affine motion model is adopted to represent the
motion of a region. Let the affine motion model Ai represent the motion of a
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region Ri, then it is a six-parameter model denoted as the parametric motion
vector, i.e. Ai(x, y;Ri), of any relevant pixel (x, y) ∈ Ri. Specially, Ai can be
expressed as Ai(x, y;Ri) = [Ui(x, y), Vi(x, y)]

Given the affine motion model,any pixel (x, y) ∈ Ri in the previous frame,
I(t − 1), should be projected to the location (x′, y′), where (x′, y′) = (x +
Ui(x, y), y + Vi(x, y)). Due to quantization error, we define the projection er-
ror ep(x, y) of the pixel (x, y) as

ep(x, y) = min
(i,j)∈N4(x′,y′)∪(x,y)

|I(x, y; t− 1)− I(i, j; t)|, (1)

whereN4(x′, y′) is the set of four connected pixels surrounding (x′, y′). |I(x, y; t−
1)− I(i, j; t)| is the Euclidean distance of RGB color vectors between two pixels
(x, y) and (i, j) at different time instant. If ep(x, y) is less than a given threshold
Thp, then the region label of (x′, y′) is assigned to the same one of (x, y). Oth-
erwise, the pixel which has large projection error is labeled as uncertain ones to
indicate that the projecting from the previous frame to the current one is failed.

2.2 Motion Marker Extraction

The output of this step is a set of motion-coherent regions, that is, all pixels
within a region comply with a motion model. Here, each such region is referred
to as a motion maker. By starting to grow from these markers, we can eventually
obtain a segmentation. Motion markers here are derived in two ways. First, the
regions projected from the previous time frame are one kind of motion markers
because each of them arises from an affine motion model. In addition to those,
the regions resulting from the newly introduced object(s) may be another kind
of motion markers, To handle this situation, a method similar to [12] is used to
extract this kind of motion marker.

Next, an affine motion model Ai is evaluated to describe the motion of each
region, Ri, according to the least square method in [13]. We then exclude the
pixel (x, y) from Ri if the motion error, em(x, y), of the pixel (x, y) associated
with Ai is larger than a predefined threshold Thm, where the motion error is
defined as

em(x, y) = |(u(x, y), v(x, y)) −Ai(x, y;Ri)|. (2)

After exclusion, the region is the motion marker if the area of it is above a thresh-
old. The set of these motion markers is denoted as M = {Mi|i = 1, 2, ...m},
where m is the number of motion markers. Each motion marker,Mi stands for
a segmented region.

2.3 Boundary Determination

After motion marker extraction, the number of the regions to be segmented is
known. However, a large number of pixels are not yet assigned to any region.
These uncertain pixels are mainly around the contours of the regions. Through
the use of the watershed algorithm [11], uncertain pixels will be merged to one of
the markers. Finally, we obtain a set of segmented regions with coherent motion.
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3 Background Modeling

In this paper, we use the method proposed by [4] to model and update the
background scene. A brief description of Stauffer and Grimson’s work is first
given and then we introduce the Bhattacharyya distance as the difference mea-
sure between the region from the region-based motion segmentation and the one
represented by the background model to successfully remove the shadow effect.

3.1 Adaptive Gaussian Mixture Models

The probability of a specific pixel which has an observation o(t) at time instant
t can be expressed as

P (o(t)) =
K∑

i=1

wi(t)η(o(t);μi(t), Σi(t)), (3)

where wi(t) is the weight of the ith Gaussian distribution at time t, μi(t) and
Σi(t) are the mean vector and covariance matrix of the ith Gaussian distribution
at time t, and η(o;μ,Σ) is the Normal Gaussian distribution.

3.2 Bhattacharyya Distance

Now, we want to introduce how to measure the similarity between the segmented
region and the one represented by the background model. Let the region Rs is
the one obtained from the region-based motion segmentation process, and let the
color observation of the pixel p(x, y) belongs to Rs be denoted as o(x, y). Then,
the color of p(x, y) representing by the background model is then defined as the
mean vector of the Gaussian distribution that has the minimum Mahalanobis
distance [14] from o(x, y). Now, suppose the notation Rb is used to denote the
region represented by the background model, then the colors of the regions, Rs

and Rb, are both assumed to be of Gaussian distributions.
Suppose that μs and Σs are the mean vector and covariance matrix of Rs,

respectively, and similarly for μb andΣb are ofRb. The distance measure between
Rs and Rb can be related to the probability of classification error in statistical
hypothesis testing, which naturally leads to the Bhattacharyya distance [14, 15].
The Bhattacharyy distance, dbhat(., .), is formally defined as follows:

dbhat(Rs, Rb) = 1
8 (μs − μb)T |Σs+Σb

2 |−1(μs − μb)

+ 1
2 ln |Σs+Σb

2 |√
|Σs||Σb|

(4)

However, the region similarity defined in this way will lead to mis-classification
of the background region where direct light is blocked by the foreground object.
The region of this kind is referred to as shadow. According to [16], the intensity
of the pixel in shadow will be scaled down by a factor λ with λf ≤ λ ≤ 1, where
λf is a constant.
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If the actual color vector of a pixel is v = (r, g, b), it will become v′ = (r′, g′, b′)
after being covered by shadow. In an ideal case, v′ = λv. Due to light fluctuation
and noise effect, the ideal situation hardly takes place. Thus, the scaling factor
is defined to be λ∗, which minimizes f(λ) = (r′ − λr)2 + (g′ − λg)2 + (b′ − λb)2.
By differentiating f(λ) with respect to λ, we can obtain λ∗ according to the
following equations.

df(λ∗)
dλ = 0

⇒ λ∗(r2 + g2 + b2) = rr′ + gg′ + bb′

⇒ λ∗ = rr′+gg′+bb′

r2+g2+b2

(5)

In order to obtain the measure for region similarity invariant to shadow effect,
the pixel in the current image should be scaled down at the first place. But, this
is impractical due to expensive computation. Instead of doing this, we just use
the mean vectors of Rs and Rb to evaluate λ∗ and scale down the distribution
(μs, Σs) of Rs to (λ∗μs, (λ∗)2Σs).

4 MRFs-Based Classification

Next, we describe how to incorporate the background model to classify every
region into either a foreground object or a background one by Markov Randome
Fields (MRFs). The formally statistical framework of MRFs can be found in [17].
Before that, a graph called region adjacency graph (RAG) is used to represent the
set of segmented regions. Let G = (S,E) be an RAG, where S = {s1, s2, ..., sn}
is the set of nodes in graph and each node Si corresponds to a region Ri, and E
is the set of edges with (si, sj) ∈ E if Ri and Rj being neighboring regions.

Here, we describe how to define U(O|ω) and U(ω) so as to incorporate the
background model as well as temporal and spatial coherence under MRFs frame-
work. The terms, U(O|ω) and U(ω) are the likelihood and prior energy over all
sites, respectively. L = {ω1, ω2, ..., ωm} is a set of labels. In the foreground de-
tection problem denoted as L = {F,B}, F and B stand for foreground and
background, respectively. O = {o1, o2, ..., on}: a set of observations associated
with each site.

The term U(oi|si = ωi) represents the likelihood energy of the site si to
be classified as the label ωi. Two functions, fF

likelihood(.) and fB
likelihood(.) are

defined as depicted in Figure 2(a) to evaluate U(oi|ωi = F ) and U(oi|ωi = B),
whereas Ulikelihood and Thlikelihood in Figure 2(a) are two constants. Based on
the background model, the distance we use to measure the likelihood energy is
dbhat(Ri, Rb(i)), where Rb(i) is the region represented by the background model
as mentioned in section 3.

The prior energy is composed of singleton, U1(.), and pairwise, U2(., .) ener-
gies. The term U1(.) is related to the temporal coherence and is defined as:

U1(ωi) =

{
−rBdbhat(Ri(t), Ri(t− 1)) if ωi = B

−rFdbhat(Ri(t), Ri(t− 1)) if ωi = F
, (6)
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where Ri(t− 1) is the corresponding region of Ri(t) at frame I(t− 1) which can
be obtained by using affine motion model, rB is the ratio of pixels in Ri(t − 1)
that have been classified as background at time instant t− 1, and, rF = 1− rB .
The purpose of introducing this term is to impose the temporal coherence, that
is, the region obtained at current time instant tends to be classified as the same
label as the corresponding region at the previous time instant.

As for the term U2(., .), we relate it to spatial coherence which means that
two neighboring regions with similar color should be assigned to the same label.
Therefore, U2(wi, wj) for two neighboring sites si and sj can be evaluated by
using two functions, fneq

spatial(.) and feq
spatial(.), as depicted in Fig. 2(b), which are

used under the cases ωi �= ωj and ωi = ωj , respectively.
The optimization is carried out by using iterative conditional mode (ICM)

algorithm to find the most proper label assignment of every region. After clas-
sification, the regions neighboring to one another will be merged and used to
update the background model and region map.

5 Experiment

In this section, one standard MPEG-4 test sequence as well as two image se-
quences captured from intelligent home (e-home) demon room belonging to the
Intelligent Robotics Laboratory at National Taiwan University are considered
to validate our proposed method. Additionally, we compare our algorithm with
the one proposed in [18] which is used to extract foreground objects for further
human identification.

Figure 3(a) illustrates the original frames 15, 25, 50, and 75 of the Hall Mon-
itoring image sequence. Images in Fig. 3(b) and Fig. 3(c) show the detection
results of Wang’s approach and ours, respectively. Frame 15 here is to exhibit
that our algorithm can automatically detect newly introduced objects.

The second case is the image sequence exhibiting the gradual illumination
variation and local motion. When a person enters, the background will gradually
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(a) Original Images (b) Wang  Approach (c) Our Approach

Fig. 3. Hall Monitoring Sequence. (a) are the frames, 15, 25, and 50 of the hall mon-
itoring sequence. (b) and (c) are the detection result of Wang’s approach and our
proposed approach, respectively.

brighten. This is due to radiance from the fluorescent lamp that is reflected back
into the background scene. After leaving the scene, he will wave the curtains
to make it flutter. Some possible false positives due to Wang’s algorithm under
the condition with gradual illumination variation and local motion are shown in
Fig. 4(b). As shown in Fig. 4(c), the detection results of our approach are more
robust in such situations.

( a ) Original Images (b ) Wang Approach (c) Our Approach

Fig. 4. Gradual illumination variation in e-home demo room. (a) Original images. (b)
Detection result of Wang’s approach. (c) Detection results of our approach.



886 S.-S. Huang, L.-C. Fu, and P.-Y. Hsiao

( a ) Original Images

(a) Foreground Detection of Our Appraoch

Fig. 5. Shadow Effect Elimination. (a) Original images. (b) Detection results of our
approach.

The final case features two persons entering the scene in order and crossing
each other at the top of the image. Our proposed method will eliminate most
of the shadow effect by applying the aforementioned scaling factor λ∗ before
evaluating Bhattacharyya distance. Empirically, λf is set to 0.7 in this paper.

6 Conclusion

In this paper, we performed the foreground detection at the region level which
means that contextual information is taken into consideration. A statistical
framework, MRFs, fuses the cues from background model and prior knowledge
including temporal and spatial coherence to detect the foreground objects in
a more accurate and elegant way. Experimental results demonstrate that our
proposed method can successfully extract the foreground objects even under
situations with illumination variation, shadow, and local motion.
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2 Centre de Morphologie Mathématique, Ecole des Mines de Paris,
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Abstract. We present an image segmentation technique using the mor-
phological Waterfall algorithm. Improvements in the segmentation are
brought about by using improved gradients. These are based on the
detection of object boundaries learnt from human segmentations intro-
duced by Martin et al. (2004). We avoid the usual pitfall found when
applying Watershed algorithms to these boundaries, namely that the
boundary lines usually contain gaps, by making use of distance func-
tions on the boundary image. Two types of distance function are used:
the classic distance function and a distance function for numerical images
recently introduced by Beucher (2005). Resulting segmentations are com-
pared to human segmentations using the Berkeley segmentation bench-
mark. The benchmark results show that the proposed segmentation al-
gorithm produces segmentations comparable to those produced by the
Normalised Cuts algorithm.

1 Introduction

Image segmentation is often used as a first step in general object recognition in
complex, natural scenes, for example in [1,2]. The object recognition is simplified
if the regions produced by the segmentation algorithm already correspond to
“meaningful” objects. Nevertheless, even humans often cannot agree on the best
segmentation of such a scene [3].

Many algorithms for image segmentation are available, two of the most popu-
lar being the Normalised Cuts (NCuts) [4] and the Watershed [5]. Both of these
algorithms require a way of measuring the similarity (or difference) between pix-
els in an image. The Watershed, for example, is usually applied to some sort
of gradient of an image. A particularly promising algorithm for detecting the

� This work was supported by the European Union Network of Excellence MUSCLE
(FP6-507752), and the Austrian Science Foundation (FWF) under grant SESAME
(P17189-N04).
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boundaries in an image based on brightness, colour and texture cues learnt from
human segmentations of an image was presented in [6], and is briefly described
in Section 2. Unfortunately, these boundaries are not suitable to be used as a
gradient for a Watershed algorithm due to gaps in the boundary lines. In this
paper, we present a solution to this problem, which is to fill the small gaps by
applying a distance transform to the boundary image, as described in Section 3.
An enhanced version of the Watershed algorithm, the Waterfall algorithm (Sec-
tion 4), is used to segment the images. The complete algorithm is summarised in
Section 5. The comparison of the Waterfall algorithm with the NCuts algorithm
using the Berkeley Segmentation Benchmark is presented in Section 6.

2 Boundaries Based on Learning

We briefly review the boundaries based on learning introduced by Martin et al.
[6]. They make use of brightness, colour and texture gradients to compute the
boundaries. To calculate the gradients, a circular area is moved over the image.
At each pixel, for a number of orientations of a line dividing the circle into two
halves, the χ2 histogram difference is evaluated for histograms of the features
in the two halves. For brightness and colour, the features are the values of L∗,
a∗ and b∗ in the CIELAB space (taken separately) and for texture, the features
are 64 textons used in [6]. For each feature, the gradient is taken to be the
maximum value obtained over all the orientations of the line dividing the circle.
The result of this algorithm is therefore a vector of four gradient values at every
pixel (3 colour and 1 texture).

These gradients are combined to form a boundary probability by using a lo-
gistic model, where the weights for each gradient are obtained by supervised
training of the model on the human segmentations. We made use of the weights
provided by the authors of [6] in their software1. The resultant boundary prob-
abilities are in the range [0, 1]. As an example, the boundaries detected in
Figure 1(a) are shown in Figure 1(b).

3 Distance Functions

A common problem when attempting to segment a boundary image produced
by the algorithm outlined in the previous section is the gaps in the boundary
lines. These can be clearly seen in Figure 1(c), which is an enlargement of part of
Figure 1(b). This results in very few local minima in the image (often only one),
which makes applying Watershed based segmentation algorithms difficult. Our
solution to the problem is to attempt to close the gaps by calculating a distance
function of the boundary image.

The classic distance function takes as input a binary image. It associates with
each foreground pixel the distance to the closest background pixel. See Figure 2
1 Downloadable on the Berkeley Segmentation Benchmark page: http://www.
cs.berkeley.edu/projects/vision/grouping/segbench/
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(a) (b) (c) (d)

Fig. 1. (a) An image and its (b) boundary probabilities (darker pixels indicate higher
probability). (c) Detail of (b) showing the gaps in the contour. (d) Threshold of (b).

for an example. The maxima of the distance function (pixels represented with
a hatched pattern in Figure 2(b)) mark the different particles contained in the
connected component. The Watershed applied to the inverse of the distance
function is a well known approach for segmenting overlapping binary objects [7,
8]. In Figure 2(b), the Watershed line is represented by the grey pixels. We can see
that this line correctly separates the two particles of the connected component.

If we take the boundaries detected by the

(a)

(b)

Fig. 2. (a) Binary image. (b) As-
sociated distance function.

Martin et al. algorithm as the background,
the distance function encodes the shortest
distance to each of the detected boundary
lines. The value of the distance function
within small gaps in the detected boundaries
will therefore be lower. In the inverse of this
distance function, the detected boundaries
will have the maximum possible value. The
lower values of the distance function in small
gaps lead to higher values in the inverse, ef-
fectively closing the gaps in the topographical
representation of the image used by the Wa-
tershed. Two distance functions were used:
the classic distance function and the quasi-
distance function.

As the classic distance function requires a
binary image as input, a threshold at level t
is applied to the boundary image. We used a
relatively low value of t = 0.07 for all exper-
iments. This was found by experiment on a
number of images to be the value below which
the boundaries are mostly due to noise. The threshold of Figure 1(b) is shown
in Figure 1(d). The classic distance function applied to this thresholded image
is shown in Figure 3(a), with a zoomed in area shown in Figure 3(b).
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(a) (b) (c) (d)

Fig. 3. (a) Distance on the thresholded boundary image. (b) Detail of (a). (c) Quasi-
distance on the boundary image (without threshold). (d) Detail of (c).

To avoid the necessity of choosing this threshold we also made use of the
quasi-distances introduced by Beucher [9]. The quasi-distance qd of an image I
is defined as:

qd(x, y) = arg max
i

(εi−1(x, y)− εi(x, y)) (1)

where εi is the morphological erosion of size i, and (x, y) a given pixel of the
image I. In other words, the quasi-distance associates with each pixel (x, y) the
size i of the erosion that produces the biggest change in greylevel, among all
possible sizes of erosions. Thus the quasi-distance is able to characterize the size
of objects in a greylevel image without applying a threshold first. The quasi-
distance function applied to the boundary image in Figure 1(b) is shown in
Figure 3(c), with a zoomed in area shown in Figure 3(d).

4 Waterfall Algorithm

The Watershed algorithm usually leads to a strong over-segmentation of an im-
age. The Waterfall [10] is a hierarchical approach that selects among all the
contours of the Watershed those that are completely surrounded by more con-
trasted contours. By removing these contours, a simplified partition is obtained.
The process may be iterated. At the end, a single region covering the whole image
is obtained. An efficient graph-based Waterfall algorithm is presented in [11].

Examples of the Waterfall algorithm applied to the classic distance function
and quasi-distance function of the detected boundary image are shown in Fig-
ures 4 and 5 respectively. In these figures, image (a) shows the result of applying
the Watershed algorithm to the distance function, image (b) is the result of ap-
plying the Waterfall algorithm once (referred to as level 1 of the hierarchy) and
image (c) is the result of two iterations of the Waterfall (level 2). Segmentation
results on the 100 images of the Berkeley segmentation test dataset are available
on the author’s home page2.
2 http://www.prip.tuwien.ac.at/∼hanbury/ACCV06
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(a) (b) (c)

Fig. 4. (a) Watershed of distance function on the thresholded boundary probability
image (level 0). (b) Waterfall level 1. (c) Waterfall level 2.

(a) (b) (c)

Fig. 5. (a) Watershed of quasi-distance on the boundary probability image (level 0).
(b) Waterfall level 1. (c) Waterfall level 2.

5 Complete Segmentation Algorithm

We summarise here the algorithm used to perform the segmentation:

1. Calculate the learning-based boundaries (we used the combined colour and
texture gradients [6]).

2. Calculate one of the two distance functions described in Section 3: the classic
distance function on the threshold of the boundary image (abbreviated TD)
or the quasi-distance function directly on the boundary image (QD).

3. Calculate the Waterfall hierarchy on the inverse of the distance function.
The results of this Waterfall are referred to as “WF xD level y”, where x is
‘T’ or ‘Q’, referring to the type of distance function used, and y gives the
level of the Waterfall hierarchy, where level 0 is the result of the Watershed
algorithm, level 1 is the first Waterfall level, etc.
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6 Results and Evaluation

The results of the proposed segmentation approach are compared to those pro-
duced by the NCuts algorithm using the error measures proposed in [3].

6.1 Error Measure Definitions

To benchmark the results of the algorithms, we made use of the Berkeley segmen-
tation benchmark [3]. Two measures of the difference between two segmentations
S1 and S2 are introduced in [3]: the Global and Local Consistency Errors (GCE
and LCE). As the GCE is a tougher measure, we make use of only this measure.

Let S1 and S2 be two segmentations of an image. The region R (S, pi) is
the set of pixels corresponding to the region in segmentation S that contains
pixel pi. A segmentation S1 is a simple refinement of S2 if at every pixel pi,
R (S1, pi) ⊆ R (S2, pi). The GCE is defined in terms of the local refinement
error:

E (S1, S2, pi) =
|R (S1, pi) \R (S2, pi)|

|R (S1, pi)|
(2)

where \ denotes the set difference and |x| is the cardinality of set x. As can be
seen, this error measure is not symmetric. If, at pixel pi, R (S1, pi) ⊆ R (S2, pi),
then E (S1, S2, pi) = 0, but E (S2, S1, pi) > 0. The GCE of segmentations S1
and S2 is defined as

GCE (S1, S2) =
1
n

min

{∑
i

E (S1, S2, pi) ,
∑

i

E (S2, S1, pi)

}
(3)

where n is the number of pixels and the sums are over all pixels. If S1 (resp.
S2) is a simple refinement of S2 (resp. S1), then GCE (S1, S2) = 0. As the local
refinement error is not symmetrical, the minimum of the local refinement error
sums calculated in both directions is taken.

We used the 100 colour test images from the Berkeley Segmentation Dataset
and Benchmark as well as the corresponding human segmentations. For each of
the images, at least 5 segmentations produced by different people are available.
To evaluate a segmentation algorithm, it was first applied to each of the 100
images. Then, for each image, the GCE of the segmentation produced by the
algorithm with respect to each of the available human segmentations for that
image was calculated. The mean of these values gives the mean GCE per image,
which was plotted in a histogram. The global GCE was calculated as the mean
of these 100 mean GCE values.

As the human segmentations often differ considerably, we first calculated a
“best possible” GCE by comparing each human segmentation of an image to the
remaining segmentations for that image. The “best possible” global GCE is 0.08
and the histogram of its distribution is shown in Figure 6(c).

For each algorithm, the mean of the number of regions produced by the seg-
mentation algorithm for each of the 100 images was also calculated (for the
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Table 1. The Global GCE, average number of regions and region number agreement
with the human segmentations for various segmentation algorithms. These are: the
Waterfall algorithm (WF) operating on different types of distance function (TD and
QD) for two different levels of the hierarchy, and the NCuts algorithm. The results of
the human-human segmentation comparison are also shown.

Method GCE Ave. #Reg.
#Reg. Agree.

WF TD level 1 0.16 51.4 24
level 2 0.23 7.8 39

WF QD level 1 0.21 28.6 46
level 2 0.22 5.6 35

N. Cuts (5 reg) 0.34 5.0 31
N. Cuts (16 reg) 0.24 16.0 63
N. Cuts (28 reg) 0.18 28.0 45
Human 0.08 16.8 -

human segmented images, this is 16.8). Finally, for each image, the mean m̄ and
standard deviation σm of the number of regions in the human segmentations is
calculated. This allows the number of images for which the segmentation algo-
rithm produces a region count lying within this range (m̄±σm) to be determined
(this is referred to as the region number agreement, shown in the rightmost col-
umn of Table 1).

6.2 Comparison of Segmentation Algorithms

We calculated the global GCE values for levels 1 and 2 of the WF TD and the
WF QD, as well as for a segmentation by the NCuts algorithm3. These GCE
values are shown in Table 1. Histograms showing the distributions of the mean
GCE values of each of the 100 images are shown in Figure 6. Note that some
of the segmentations at level 2 of the Waterfall hierarchy consist of only one
region. As the GCE for such a segmentation is zero, we chose to use level 1 of
the hierarchy if the number of regions in level 2 was smaller than 3.

The NCuts algorithm was applied directly to the boundary images. The im-
plementation of the NCuts used requires that the number of regions required
be passed as a parameter. We used values of 5, 16 and 28, corresponding to the
average number of regions obtained by respectively the WF QD level 2, humans
and WF QD level 1. The average number of regions produced by each algorithm
as well as the region number agreement are also shown in Table 1.

6.3 Discussion

The lowest GCE value in Table 1 (excepting humans) was obtained by the
WF TD level 1. However, as the average number of regions for this method
3 We used an implementation by J. Shi available here: http://www.cis.upenn.edu/

∼jshi/software/
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Fig. 6. Histograms of the distribution of the mean GCE for each of the 100 test images
for: (a, b, d, e) the four different applications of the Waterfall algorithm, (f) the NCuts
algorithm with 16 regions, and (c) the human-human comparison (note that this has
more than 100 values as the human segmentations for each image are compared using
a leave-one-out approach)

is 51.4, it appears that the images are over-segmented. It is mentioned in [3]
that as the GCE measure is tolerant of refinement (splitting of regions), an
over-segmentation can result in a smaller GCE value. This method also has the
smallest region number agreement.

The other three Waterfall-based methods produce GCE values between 0.21
and 0.23, even though the average number of segments is much higher for the
WF QD level 1 than for the two level 2 results. The WF QD level 1 has the
smallest GCE of three along with the highest region number agreement. The
GCE distributions for these three methods shown in Figure 6(b), (d) and (e)
are similar. Figure 7(a) shows the mean and standard deviations of the GCE
obtained for each of the 100 images when comparing the segmentation obtained
by the WF QD level 1 to the corresponding human segmentations. The large
differences in the mean GCE as a function of the image, as well as the large
standard deviations due to significant differences in the human segmentations
are clearly visible.

Concerning the number of segments produced, level 1 of the Waterfall-based
methods tends to be an over-segmentation of the image, whereas level 2 tends
to be an under-segmentation. This can be seen when comparing the average
number of regions obtained (given in Table 1) with the average number of 16.8
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Fig. 7. (a) Mean and standard deviation of the GCE calculated for the WF QD level 1
with respect to the corresponding human segmentations for each test image. (b, c)
Mean and standard deviation of the number of regions in the human segmentations
for each of the test images (bars) and the number of regions in the (b) WF QD level 1
and (c) WF QD level 2 (crosses).

obtained for the human segmentations. Figure 7(b) and (c) give a more detailed
view of the number of regions obtained per image. The bars show the mean and
standard deviations of the number of regions in the human segmentations for
each image, while the crosses show the number of regions obtained respectively
by the WF QD level 1 and level 2. The large variation in the number of regions
in the human segmentations of some of the images are visible. Furthermore, one
can see that the majority of crosses are above the error bars for level 1 and below
for level 2. This suggests the introduction of an alternative (less strict) merging
rule in the Waterfall algorithm.

The Waterfall-based approaches produce smaller global GCE values than the
NCuts with 5 and 16 regions. The GCE for level 2 of the Waterfall methods,
even with the small number of regions, is significantly lower than the GCE of
the NCuts for 5 regions. This suggests that the regions found by the Waterfall
method are a better match to the human segmentations. The NCuts with 16
regions has a GCE value similar to those of the majority of Waterfall methods.
The distribution of these GCE values are shown in Figure 6(f). This method
also has the highest region number agreement. The second smallest GCE value
in Table 1 corresponds to the NCuts with 28 regions, nevertheless it is possible
that this is again due to over-segmentation. The Waterfall-based approaches
have the advantage that the number of regions do not need to be specified in
advance. There is a version of the NCuts which determines the number of regions
automatically [12], but we currently have no implementation of it.

7 Conclusion

We have compared a morphological Waterfall-based segmentation algorithm to
the Normalised Cuts algorithm using the Berkeley Segmentation Benchmark.
Both segmentation algorithms are applied to boundary images obtained from a
learning-based algorithm. These boundary images are not suitable for use with
Watershed-based algorithms due to gaps in the boundary lines, a problem we
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have solved by calculating a distance function of the boundary images. Two types
of distance function were tested, with one of them requiring no parameters as it
operates directly on the greyscale images.

Based on the results of the benchmark, it is difficult to make a final pronunci-
ation on which of the tested algorithms are better. For a small number of regions,
the Waterfall algorithm has a lower GCE than the NCuts, but the GCE values
are similar for segmentations with a higher number of regions. The Waterfall al-
gorithm tends to produce too many regions at the first level of its hierarchy and
too few at the second level. It should be possible to change the region merging
criteria to improve this. It would also be interesting to test the version of the
NCuts which does not require the number of regions to be specified in advance.
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1 Pázmány Péter Catholic University, Department of Information Technology,
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Abstract. In this paper we give a new model for foreground-back-
ground-shadow separation. Our method extracts the faithful silhouettes
of foreground objects even if they have partly background like colors
and shadows are observable on the image. It does not need any a priori
information about the shapes of the objects, it assumes only they are
not point-wise. The method exploits temporal statistics to characterize
the background and shadow, and spatial statistics for the foreground.
A Markov Random Field model is used to enhance the accuracy of the
separation. We validated our method on outdoor and indoor video se-
quences captured by the surveillance system of the university campus,
and we also tested it on well-known benchmark videos.

1 Introduction

Detection of foreground objects is a crucial task in visual surveillance systems.
If we can retrieve the accurate shapes of the objects, their high-level description
becomes much easier, so it is favorable e.g. in detection of people or activity
analysis.

In the present paper, we exploit information from pixel-level estimation and
neighborhood connection, while motion and structure are not considered. Based
on the present results, more sophisticated segmentation methods can be devel-
oped by using tracking [12], object model matching [13], or edge information
[4] [14]. However, all these developments can be preceded by an exact model on
generating still background and reasonable shadow/foreground classes.

For foreground separation based on pixel intensity, Stauffer and Grimson [10]
proposed an adaptive, real time algorithm, but it cannot handle some important
problems. Shadows become part of moving objects, and since some parts of the
objects may have similar color to the background, holes appear often in the
silhouettes. The above mentioned problems can be observed on the silhouette
images of Figure 1.

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 898–907, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Results of foreground detection with Stauffer-Grimson algorithm. Left: School
Entrance in the afternoon (’SE pm’) video, right: ’Highway’ test sequence.

Usually shadows have to be handled separately, because they do not belong
to moving objects but their color properties are different from the background.
[8] gives an overview on the state-of-the-art methods.

Classification of background, shadow and foreground areas is basically a
Bayesian approach [1]. For this reason we must have statistical information about
the a priori and conditional probabilities of the different clusters and the observ-
able pixel values. The spatial interaction constraint of the neighbouring pixels
can be modelled by Markov Random Fields (MRF) [5].

Previously published Bayesian models are lack of some information. They
skipped shadow modelling [7][15], or the conditional probabilities of the shadow
and foreground processes were oversimplified functions [9][14]. Therefore these
methods are less effective on complex lighting conditions. Our goal was to develop
a model with correct estimation of shadow in different lightning and coloring
effects, and to detect foreground pixels of different colored and textured objects.
Namely, the present paper is based on the former results, introducing more
adequate models for conditional probabilities.

For validation we used real surveillance videos and also the benchmark se-
quences from [8]. Our model was successful in experiments with non-ideal con-
ditions, like motley background and low contrast.

2 Markov Model

Since the work of Geman and Geman [5] there are several examples where MRFs
are used for solving image-labeling problems. We used a similar model to that in [2]
to classify the pixels of the video images into the following three classes: foreground
(fg), background (bg) and shadow (sh). The definitions are the following:
S - set of pixels (or sites)
X = {xs | s ∈ S}, - set of image data (xs is the value of pixel s)
L={bg,sh,fg} - labels or classes.
Ω = {ωs | s ∈ S} - global labeling (ωs ∈ L is the label of pixel s).
pk(s) = P (xs|ωs = k), k ∈ L - conditional probability density function. E.g.

pbg(s) is the probability of that the background process generates the color value
xs at pixel s.

According to the model the optimal labeling is the following:

Ω̂ = argminΩ

∑
s∈S

− log pk(s) +
∑

r,s∈S

V (ωr, ωs) (1)
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where V (ωr, ωs) = 0 if s and r are not neighboring pixels, otherwise:

V (ωr, ωs) =
{
−β if ωr = ωs

+β if ωr �= ωs

Our task is to define the pk(s) density functions, set the constant β > 0, and
choose the energy optimization technique which finds the best or at least a good
suboptimal labeling according to 1. We describe exactly how to get the pk(s)
probability terms in Sections 3.1, 3.2 and 3.3. In Section 6, we show the applied
MRF-optimization methods. In the following color images are considered, so the
pixel value is a three dimensional vector: xs = [xr(s), xg(s), xb(s)].

3 Probability Model Elements

3.1 Background Probabilities

The distribution of the color values for a given background pixel is modeled by
Gaussian density function with mean value μbg(s) and covariance matrix Σbg(s).
[10] proposed an effective algorithm to determine the model parameters from the
color video-flow. In [14] a similar method has already been successfully used in
the MRF model. The covariance matrix is in the form of Σbg = σ2

bg · I, where I
is the 3 × 3 identity matrix. With this simplification we avoid matrix inversion
and determinant recovering during the calculation of the probabilities:

pbg(s) =
1√

(2π)3 · σ3
bg(s)

exp

(
−‖xs − μbg(s)‖2

2σ2
bg(s)

)
(2)

3.2 Shadow Probabilities

[6] appointed since a shadowed pixel represents the background surface under
different illumination, the effect of illumination on pixel appearance is typical
for a situation. The effect was approximated by a diagonal A matrix as a multi-
plicative term in the RGB color space, and the shadow probabilities were directly
derived from the background model:

psh(s) = η
(
xs, A · μbg(s), A2 ·Σbg(s)

)
where η(., ., .) marks Gaussian density function.

In case of motley background each surface may have different reflection prop-
erties, therefore the approximation of the darkening factor with a global constant
causes considerable model error. In [14] a heuristic additional shadow noise pa-
rameter was used to correct the deviation term, but in practical surveillance
videos, a more sophisticated method is needed.

Instead of modelling the probability density functions of the shadowed values
independently at each pixel location s, we modelled the density of the darkening
ratios globally in the image. We considered one global transformation, however
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Fig. 2. Histograms for rr, rg, rb, R1, R2 and R3 values of shadowed and foreground
points from ’SE pm’ sequence

in case of images with multiple lighting and separated scene areas, the trans-
formation parameters should be estimated in each subregion separately. With
notation μbg(s) = [br(s), bg(s), bb(s)] we introduce vector containing ratios of
the color values in the background and in the shadow for each pixel and for each
color channel: r(s) = [rr(s), rg(s), rb(s)], where

rr =
xr

br
, rg =

xg

bg
, rb =

xb

bb
.

In Figure 2 the first and second columns show the histogram of the occurring
rr,rg, and rb values for manually marked shadowed and foreground points of
the School entrance in the afternoon (SE pm) sequence. We also executed this
experiment on other videos with similar results. We can observe, if we neglect the
small second peaks, the 1 dimensional ratio values in shadow have approximately
Gaussian distribution. However, Table 1 shows that the correlation between the
elements of vector r is high, so if we model the shadowed r ratios with Gaussian
distribution, the covariance matrix cannot be considered diagonal. Therefore
we have searched for further quantities, and found the following ones: R =
[R1, R2, R3]

R1 =
rr + rg + rb

3
, R2 =

rr
rb
, R3 =

rg
rb
,

In Figure 2 and Table 1 we can observe R1, R2, and R3 values are generated
also approximately by Gaussian distribution, but their correlation is definitely
smaller. Therefore we characterize shadow via R values. The resulting shadow

Table 1. Average of the absolute values of nondiagonal elements in the autocorrelation
matrix for r and R values of shadowed points

Corr(r) Corr(R)
SE pm: 0.967 0.374
Highw: 0.987 0.360
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probability term for pixel s, and parameters of our shadow model are the fol-
lowing:

psh(s) = η (R(s), μsh, Σsh) (3)

μsh = [μsh,1, μsh,2, μsh,3], Σsh = diag{σ2
sh,1, σ

2
sh,2, σ

2
sh,3}. (4)

3.3 Foreground Probabilities

The description of background and shadow characterizes the scene and lighting
properties so it is possible to collect statistical information about them in time.
Unfortunately, the color distribution of foreground areas is unpredictable in the
same way. However it is often inappropriate to model the foreground by uniform
distribution, like in [9][14]. Figure 3 shows some resulting segmented images after
applying MRF optimization for our background and shadow model but using
uniform foreground distribution. Since the objects may have large background
or shadow-like connected parts, big holes appear in the silhouettes, and the
suggested Markovian model cannot remove these errors.

Instead of temporal statistics we used spatial color information to overcome
this problem. First we assume that a pre-processing step is able to locate most
of the foreground pixels. That process, which we introduce in Section 4, gives
a preliminary foreground mask to the algorithm. Denote F the set of pixels
marked as foreground elements in that mask. We have two assumptions for a
given foreground pixel:

– In the neighborhood there are some foreground pixels
– The color of the pixel matches to the color distribution of set of the neigh-

bouring foreground pixels.

In the following Vs denotes the set of the neighbouring pixels around s, consider-
ing rectangular neighborhood with window size v. Fs is the set of neighbouring
pixels determined as ’foreground’ by the preprocessing step: Fs = F ∩Vs. To deal
with textured or multi level foreground components, the estimated probability
density function of the color channels for Fs is in the following form:

fFs,xs(x) = ws · η(x, μfg(s), Σfg(s))) + (1− ws) · f(x)

Namely, we divide the neighborhood pixels in two clusters: the ones, whose color-
distance from xs is smaller than a threshold, are characterized by one Gaussian
term, while f(x) is the residual density function with constraint: f(x) = 0, if

Fig. 3. Results of using MRF model with uniform foreground distribution
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‖xs − x‖ < τ , 0 < ws < 1. Accordingly, the color values of the site s are
statistically characterized by the distribution of its neighborhood in the color
domain:

pfg(s) = fFs,xs(xs) = ws · η(xs, μfg(s), Σfg(s)). (5)
To approximate the foreground model parameters we compose a subset of Fs by

FD
s = {r | r ∈ Fs, ‖xs − xr‖ < τ}.

Empirical mean value and deviation of the pixel values in FD
s estimate the

parameters [μfg(s), Σfg(s)]. Weight ws is calculated as a ratio of the cardinality
of sets FD

s and Fs. We also used an extra term to keep the probability low, if
there are any or only a few pre-classified foreground pixels in the neighborhood.

4 Preliminary Foreground-Shadow-Background Classifier

The foreground model introduced in Section 3.3 needs a pre-processing step,
which is able to find most of the foreground pixels. To achieve this task we used
a deterministic classifier which uses the existing background and shadow model
parameters from Section 3. The background matching step is the same as it was
used in [10]. Pixel s is classified as background, if:

‖xs − μbg(s)‖2 < 2c · σ2
bg(s)

Non-background the pixels are matched to the shadow constraints and labeled
as shadow, if

(Ri(s)− μsh,i)2 < 2c/3 · σ2
sh,i, i ∈ {1, 2, 3}

Other way the pixel gets foreground label.

5 Parameter Settings

Our method has scene dependent and condition dependent parameters. Scene
dependent parameters can be considered constant in a specific field, and are
influenced by e.g. camera settings, expected size and shape of the objects or
reflection properties. We give strategies how to set these parameters given a
territory of a surveillance camera. Condition dependent parameters vary in time
in a scene, we used adaptive algorithms to follow them.

The background parameter estimation and update procedure is automated,
based on the work of [10]. It has a parameter (α in [10]), which controls the
speed of model update. In our experiences it was set uniformly to 0.02.

5.1 Foreground Model Parameters

The foreground parameters are scene dependent constants. Window size s de-
pends on the expected size of the objects in the scene. If TB is the approximate
average territory of the objects bounding boxes, we used v = 1/3

√
TB.

The threshold parameter τ defines the maximum distance in the RGB color
space between pixels generated by one Gaussian process. We used outdoors τ =
50, indoors τ = 20.
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5.2 Shadow Parameters

The parameters are defined by Eq. 4. Except of window-less rooms with constant
lightning, μsh,1, the average background luminance darkening factor in shadow is
strongly condition dependent. Outdoors, it can vary from 0.4 in sunburst to 0.9 in
overcastweather. We observed the other shadowparameters (5 scalar values more)
being approximately constant in time, letting us to estimate them once in a scene.

We built an adaptive algorithm to follow the changes of μsh,1. For a given
image we collected histogram from the R1 values of those pixels, which are
marked as non background point by the Stauffer-Grimson algorithm. If the image
contains considerable shadowed parts, a peak appears in the histogram near the
desired μsh,1 value. Figure 4 shows 3 typical situations from the video ’SE pm’,
where the optimal μsh,1 was definitely 0.68. On the first image, a large shadow
is observable, and the peak in the histogram is very significant. On the second
one, the peak is still in the right place, however it is smaller. On the third image
there is small shadow and the histogram is flat. Denote h[k] the location of the
peak in the histogram of the k-th image, v[k] is the maximum value, v[k] is the
average value. h[k] can be a good estimation for μsh,1, if peak-value v[k] is high
and significant: v[k]

v[k] is high. We define the update process by the following:

μsh,1[k + 1] = ρ · h[k] + (1− ρ) · μsh,1[k], ρ = α · v[k] · v[k]
v[k]

where α = 0.001 is a constant factor, and we perform the parameter update
only, if there are enough non-background points in the image.

We tested this method on videos recorded by the ’School entrance’ camera
in case of ten different lightning conditions, and appointed it can follow the
lightning changes caused by clouds well, or in case of randomly chosen μsh,1
it finds the correct value quite fast. However the performance of the adaption
was lower round noon, when the shadows are smaller, and the corresponding
darkening ratio is not so dominant in the statistics.

Fig. 4. Three images from sequence ’SE pm’ and the corresponding histograms for the
R1 values of the non-background pixels
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6 MRF Optimization and Speed of the Algorithm

The presented algorithm segments the video images via MRF optimization. First,
the probability terms pbg(s), psh(s), pfg(s) are calculated for each pixel s, ac-
cording to (2)(3)(5). The second level is to find a good labeling considering the
energy term of (1). The results showed on Figure 5 were made using the Modi-
fied Metropolis method [2], which is not real time on a sequential architecture,
however [11] have already suggested a fast parallel implementation for a special
array processor.

Fig. 5. Segmentation results. 1st column: video image, 2nd: result of the preliminary
classifier, 3rd: pre. classifier result enhanced by morphology, 4th: MRF result. Images
are from the following videos: a) Sequence ’SE pm’, b) ’Highway’, c) ’Laboratory’.

A well-known quick deterministic optimization method for MRF is the ICM
algorithm, which gives a good sub-optimal solution in a few (2-5) iteration of
steps with linear complexity. Although the quality of the segmentation produced
by ICM is significantly worse than the we got by MMD, it is still enough for
connected component based object detection.

We have tested out method on color videos with the resolution 320×240. The
running speed was 2 fps using Intel Pentium 4 2400 MHz Processor.

7 Results

Model verification was made through manually generated ground truth sequences.
Since the goal is foreground detection, the crossover between shadow and back-
ground does not count for errors.

Denote with TP (true positive) the number of correctly identified foreground
pixels of the evaluation sequence. Similarly we introduce TN for well classified
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Table 2. Evaluation result. SG: Stauffer-Grimson algorithm (without shadow filtering),
Pre: preliminary classifier, Mor: the output of pre. enhanced by morphology, MMD:
the result got by our MRF model, with MMD optimization. ’SE am’ sequence was
recorded in the morning by the campus’ camera and contains large shadows.

Fg. detection rate (D) % Fg. accuracy rate (A) %
Sequence SG Pre. Mor. MMD SG Pre. Mor. MMD
SE am 83.7 78.6 72.7 93.1 38.3 76.8 88.0 86.9
SE pm 82.9 67.6 66.7 80.7 62.5 79.3 88.4 90.1
Highw 87.4 56.5 43.9 83.1 55.9 78.2 88.8 88.5
Lab. 95.3 88.7 94.7 93.2 54.3 89.8 92.4 93.8

non-foreground points, FP for misclassified non-foreground points, and FN for
misclassified foreground points.

Evaluation metrics: D is the foreground detection rate, A is the accuracy of
the detection.

D =
TP

TP + FN
A =

TP

TP + FP
The results in Table 2 are valid without postprocessing. The applied MRF model
increased significantly the foreground detection and accuracy rate, compared to
the deterministic step. We tried to reach homogenous regions by applying mor-
phology on the output of the deterministic classifier but at the same time the D
and A ratios became much worse. The improvement is remarkable in the difficult
scenes, while on the ’Laboratory’ benchmark sequence the simpler methods gave
also very good results. Some examples for segmented images are in Figure 5.

8 Conclusion and Future Work

We introduced a realistic model of shadow effects and a new foreground proba-
bility calculus for segmenting videos by MRF model optimization. We measured
significant improvements versus previous methods in real world videos, where
the background and foreground is textured, and the color ranges of the different
clusters are strongly overlapping. Our future work is to improve the automated
parameter estimation process, and to speed up energy calculation of the fore-
ground model. We want to complete our method with texture analysis, and
exploit the advantages using more adequate color spaces (CIE-L*a*b* or CIE-
L*u*v*). We will try to deal with difficult situations like shadow in the shadow
and reflection from glass doors.
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Abstract. The effect of reflection and transparency is superimposed in
many real world scenes, which is caused by glass-like shiny and transpar-
ent materials. The presence of such incidental effect in a captured image
has made it difficult to apply computer vision algorithms and has lead
to erroneous results. Moreover, it disturbs the texture acquisition of the
real-world scene. This paper presents an optimal method for the separa-
tion of reflection and transparency components. The method is based on
the Epipolar Plane Image (EPI) analysis. The method is not like the or-
dinary edge-based EPI analysis, but instead it is an edge and color-based
EPI analysis. To demonstrate the effectiveness of our method, we present
the results of experiments using synthesized and real images which in-
clude indoor and outdoor scenes, from which we successfully extracted
the reflection and transparency components from the input image se-
quences. . . .

1 Introduction

Texture acquisition of a real-world scene is one of the critical research areas
in computer vision and can be used in other application areas such as com-
puter graphics (CG) including 3D city modeling projects. Moreover, to acquire
texture without noise (e.g., a shadow, a specularity, a reflected image) is vital
for such work. Generally, many of the buildings are covered with glass win-
dows and glass usually produces reflection and transparency effects. Therefore,
the observed color of such a scene is a combination of the light transmitted
from an actual object behind the glass and a reflected object (virtual object)
in front of the glass. This situation strongly disturbs the texture acquisition
of the real-world scenes. One possible solution to this problem is to separate
the component images. Many researchers have tried to separate the reflection
and transparency components and many valuable methods have already been
proposed. Some proposed methods are based on layer motion [1] [2]. Szeliski
[2] proposed layer extraction technique even in the presence of reflection and
transparency based on constrained least square method. Likewise, some other

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 908–917, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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techniques [1] [3] based on motion for image enhancement and transparency sep-
aration are proposed. Schechner worked out to separate transparent layers using
focus [4][5]. Moreover, there have been some proposed methods to separate real
and virtual objects using an optical property called polarization [6] [7] [8]. On
the other hand, a number of research works using independent component analy-
sis [9] [10] [11] and layer information exchange[12] have been proposed. Some of
above mentioned methods need a polarization filter to be operated with camera
and need to capture more than one image by rotating the polarization filter or
focusing either layer separately for every scene.

According to our knowledge, all of the previously proposed methods are con-
sidered only for static camera and/or single depth. Moreover, for the purpose
of the texture acquisition of real-world scene, a huge amount of outdoor scene
images are originally required and the captured images usually contain 3D ob-
jects. As a result, these methods can not be applied for the texture acquisition
of outdoor scene. In this paper, we propose a new method to separate the reflec-
tion component form image sequence which has been taken by a motion camera.
This method is based on the epipolar plane image (EPI) analysis. Unlike pre-
vious EPI analysis, which usually analyze the edges, we propose a color-based
EPI analysis, which can robustly separate two component layer images.

The remainder of this paper is organized as follows. A detailed explanation of
EPI analysis is described in Section 2. In Section 3, we discuss on the separation
method of reflection and transparency components. Experimental results can be
seen in Section 4 and we provide conclusion in Section 5.

2 EPI Analysis

2.1 EPI Construction and Conventional EPI Analysis

EPI canbe producedby accumulating epipolar line in each frame of image sequence
along the time axis. The first step is to make spatio-temporal image volume and
slice it horizontally to acquire EPI. The camera motion is assumed to constant
speed and straight path. Certainly, the restriction is not strictly required in actual
experiment, because we can use GPS, gyro sensor and other vehicle speed sensors.
The camera is set to arbitrary direction, therefore the rectification of captured im-
age sequence is required before accumulation to make spatio-temporal image vol-
ume. Ideally, the frontal surface of any object appears as an area bounded by two
distinct parallel boundaries on the EPI ( we call this area the EPI-strip, or strip).
Since we restrict the camera movement along a straight line and the depth of all
the objects are not the same in the real world, all the strips do not lie in a parallel
direction. This depth difference gives a special character to the EPI, as shown in
Fig.1(bottom). We can clearly see that the inclination angles of the EPI strips are
directly proportional to the depth d of the object. Furthermore, strip 2 is totally
covered by the other opaque strips at the overlap areas. Therefore, the boundary
edges of strip 2 cannot be detected at the overlap areas and strip 2 is divided into
separate areas. Since the areas are separated, we can still understand that these
areas produce an EPI strip by analyzing the edges parallelism and color similarity.
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Fig. 1. Appearance and nature of actual
objects in the EPI

Fig. 2. Appearance and nature of trans-
parent and reflected objects in an EPI

With such an edge-based analysis, we can retrieve the 3D information from the
EPI and the scene. Such kind of EPI analysis assumes the object appearance does
not depend on the view direction.

2.2 Color-Based EPI Analysis

In a real-world scene, the color sometimes drastically changes depending on the
view direction because of the superimposed reflection and transparency, specu-
larity and other effects. To conduct a further analysis with an EPI in a real-world
scene, we have to understand how color is produced on an EPI and we must in-
clude view dependent effect. We have considered only for superimposed reflection
and transparency effect in this work. A color change on an EPI can be basically
explained by two reasons: one is the changes of material or color of the target ob-
jects and the other is reflection and transparency effect caused by the glass-like
shiny objects in the target scene. It should be noted that we do not consider com-
plicated bi-directional reflectance distribution function (BRDF) in this paper.

2.3 Reflection and Transparency on an EPI

As shown in Fig.2, a reflected object is observed as if it exists on the opposite side
of glass; therefore, the object simply describes an EPI-strip on an EPI. However,
since glass is transparent, the observed color is a mixture of transparent and re-
flected objects. Therefore, since the reflected object makes a single band, its color
changes abruptly when it intersects the EPI-strips of the transparent objects and
vice versa. Note that, under such conditions, we can still distinguish each EPI-
strip robustly; such distinction is usually difficult to achieve by simple image
processing techniques such as tracking applied on the original image sequence.

3 Separation of Reflection and Transparency

We now describe a technique to separate the two component layers of the EPI
and estimate the underlying original colors of the overlap regions. The technique
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first detects the inclination lines of the EPI-strips. EPI is then rectified by incli-
nation angle of EPI-strip, so that trails within strip are vertical. Original color
estimation can be done by applying the proposed method along the vertical scan
line as describe in Sec 3.2. Once separation is achieved, the corresponding region
is labeled and excluded from further computations.

3.1 Defining Strips on an EPI

Since the camera is assumed to move linearly, each object in the scene is bounded
by two parallel lines on the EPI. As a result, parallel line detection by using
Hough transform is sufficient to detect the boundary lines of the EPI-strips. We
used only high energy peaks of the Hough space to detect the distinct edges
such as boundaries of the building. Fig3(a) represents the selection result of
16 maximum energy peaks of the Hough transformation result of Fig.3(b) and
Fig.3(c) shows the detection result. Generally the reflected object (virtual object)
is assumed farther than the target objects (wall of the building and other actual
objects close to the wall). Therefore, the inclination angles of reflected EPI-
strips usually greater than that of the EPI-strips of the actual objects. Then,
we detect the boundaries of all EPI-strips and the separation method is applied
to each EPI-strip within the detected boundary lines in the increasing order of
inclination angles until the whole image area is applied. For Fig.3(b), we could
recover all overlap areas by applying the proposed separation method to EPI-
strips those inclination angles are lass than 50.

(a) (b) (c)

Fig. 3. (a) Hough transform result of (b), (b) Input EPI, (c) The detected boundary
lines

3.2 Separation of the EPI

Considering the presence of both the reflection and transparency components at
the same image point, if we suppose the color of the overlap area is the linear
combination of two color components, the observed color of that image point
can be described as

Mc(x, y) = ftσ
act
c (x, y) + frσ

virt
c (x, y) (1)

where c represents the type of sensor ( r, g and b), (x, y) is the two-dimensional
image coordinate, σact

c (x, y) and σvirt
c (x, y) represent for the color of the actual
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and virtual objects, respectively. ft and fr are the factors of transparency and
reflection, respectively. For simplicity, equation (1) can be rewritten as

Mc(x, y) = Ac(x, y) + Vc(x, y) (2)

The system first rectified the EPI-strip by it’s inclination angle, so that trails
within the strip are vertical. The separation is performed to each vertical line of
the rectified strip. Since each point in a vertical line of EPI-strip represents for
the same image point of the object of each image frame, equation (3) should be
true for every pixels within one scan line.

Ac(x, yi) = Ac(x, yj) ... (i �= j) (3)

from equation (2) and (3) we can obtain

Mc(x, yi)−Mc(x, yj) = Vc(x, yi)− Vc(x, yj) (4)

From this equation, Vc values for all pixels can be calculated if we assume one Vc

value as an initiator. Therefore we can obtain infinite sets of Vc values for that
line due to initiators. Since all pixels in the scan line are collected from same
image point of each image frame, the minimum color value along the entire line
should be an original color of that line due to the linear color combination prop-
erty of reflection and transparency. Therefore, Vc(x, yi) is assumed to 0 where
Mc(x, yi) is the minimum of entire scan line. In our actual implementation we
estimate the minimum color along entire scan line and substitute it for all pixels
along entire line. However, it is not suitable to apply real-world EPI because
of noise and artifact. Therefore, the histogram thresholding method is used for
real-EPI separation. The basic task of this method takes the pixel value of the
first peak nearest to zero intensity, which is larger than threshold, and substi-
tute for all pixels which are brighter than that along the entire scan line. After
applying the separation algorithm the EPI-strip is rectified back to the original
one. Another component image can be obtained by subtracting the result im-
age from the original EPI. Since there remains base color ambiguity with this
method, this technique cannot produce the correct color value. However, the
result can be effectively used for texture acquisition of the real-world scene and
human interaction can produce a reasonable result.

3.3 Separation of the Original Image

By using the decomposition results of the EPIs as described above, we can
separate the original image into two component images by two ways. The first is
a straightforward method which creates EPIs for all horizontal lines and applies
the separation algorithm to each EPI (we call the iterative method), and the
second is based on color clustering.

The detailed procedure of second approach is as follows.

– create sparse EPIs from the captured image sequence and decompose the
EPIs by the separation algorithm.

– get the (x, y) coordinate and the color information (r, g, b) from the EPI for
the desired input frame as an initial point.
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– perform color clustering of the original image by the region-growing method,
which starts from an initial point and merges neighboring pixels by using
their color information in 3D space.

– after clustering, the component image can be extracted by substituting the
expected original color for the clustered pixels, which can be obtained from
the resulting EPI.

4 Experiments

We performed several experiments to test the effectiveness of our method. In
the following two experiments, we used a synthesized image sequences and a
real images captured in our laboratory and outdoor scenes.

4.1 Synthesized Images

The image sequences used to test our method have been created by using CG
software. As a target object, we constructed a model room which has a front
wall covered by glass to create a reflected image of the objects placed in front

(a) (b) (c) (d) (e) (f)

Fig. 4. Result of the EPI analysis. (a),(d) Input synthesized EPIs. (b),(c),(e),(f) Sep-
aration results.

(a) (b) (c)

(d) (e) (f)

Fig. 5. The separation results of synthesized images. First row: the input synthesized
image with specularity and its separation results. Second row: the input synthesized
image including different depth objects and separation results.
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of the glass wall, as well as transparent images of the objects placed inside the
room. We assumed that the factors of reflection and transparency for all captured
frames are constant, and the camera motion along a straight path that produces
regularly sampled images for creating the EPI volume. The EPI was successfully
separated into component images can be seen in Fig.4. However, in Fig.4(c), we
can observe small artifacts on EPI strips which are caused by color saturation
on the synthesized images. To avoid such artifacts, using a high dynamic range
image is a practical solution.

The left column of Fig.5 shows an arbitrary frame of two input image se-
quences, and the recovered transparent and reflected component images are
shown in the middle and right columns.

4.2 Real Images

We have conducted several tests on real images captured using Sony three-
CCD(640×480) digital camera. The motorized stage has been used to control the
linear movement of the camera in the indoor image capturing process as shown
in Fig.6(a). Fig.6 (first and second rows) show the input EPIs and separation re-
sults of indoor image sequences. The original images and their separation results
are presented in the Fig.7. In Fig.6(d) and Fig.7(c), we can observe some artifacts
because of the non-linearity of camera sensor since we can successfully separate
synthesized images. Therefore, the linearization of camera sensor is required be-

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 6. The scene of the indoor image capturing process (a) and EPI Separation results
of real images. (b),(e) input indoor EPIs. (c),(d),(f),(g) separation results of indoor
EPIs. (h) input outdoor EPI. (i),(j) separation results.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Separation of indoor images.(a),(d) input images. (b),(c),(e),(f) separation re-
sults.

(a) (b) (c)

Fig. 8. Rectified EPIs of outdoor image sequence (a) using all EPI range (b) using
reduced EPI range (c) fitted with tracking result

fore the proposed method is applied. For the separation of original indoor image
as described in Fig.7(a), we used second approach (color clustering), because the
image texture is simple. The another image sequence is decomposed by iterative
method as shown in Fig.7 second row.

Car mounted video camera has been used to capture outdoor image sequences
by controlling constant car speed and driving along straight path. Since we
restrict the constant car speed, a tiny un-constancy of car speed has occurred
between each successive image frames. Therefore, the trials within the rectified
EPI-strips are not strictly vertical as shown in Fig.8 (a) and the separation
results of original image is almost noisy as describe in Fig.9(second row). To
solve this problem, we first apply simple and straightforward method, which is
to reduce the number of image frames in EPI until the rectified strip appears
as vertical as shown in Fig.8 (b). Since this method could produce a reasonable
result as described in Fig.9 third row, the method will fail when the number
of image frames in reduced EPI are too few. The estimation of car speed and
adjusting it to every successive image frame is required to produce more modest
results. For this purpose, we implement the algorithm, which sampled features
from non-transparent image area and tracking for all image frames to detect the
motion speed in pixel. The detected pixel difference values have been used to
fit the rectified EPI-strip to vertical as described in Fig.8 (c). The separation
results of original outdoor image can be seen in Fig.9 bottom row. As a result,
the proposed method can extract two component layers even the image texture
is complicated as we can observe specular effect on the reflected buildings.
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Fig. 9. Input outdoor image and separation results: first row shows the input outdoor
image, second row shows the separation results using all EPI range, the results describe
in third row are created by using reduce EPI range. Bottom row shows the results by
using motion tracking data in EPI rectification process. The right column of the result
images are enhanced to make them easier to see.

5 Conclusion

In this paper, we proposed a new EPI analysis based on a color analysis, since
the conventional EPI analysis does not consider the view-dependent effects of re-
flection and transparency, which usually exist in real-world scenes. Our proposed
method completely assumes these complicated effects and successfully analyzes
them. By using our EPI analysis, a scene consisting of glass-like objects which
produce both a transparent and reflective effect could be robustly separated
into component images. Furthermore, most of our separation method could be
performed automatically. Since, many computer vision algorithms usually fail to
handle the complicated scene images, our technique can provide a practical solu-
tion by separating the image into component images. For city modeling purposes,
since many buildings are typically covered with glass windows and it is difficult to
retrieve textures of good quality, our technique can provide a practical solution.
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Abstract. We propose a considerably faster approximation of the well
known SIFT method. The main idea is to use efficient data structures
for both, the detector and the descriptor. The detection of interest re-
gions is considerably speed-up by using an integral image for scale space
computation. The descriptor which is based on orientation histograms, is
accelerated by the use of an integral orientation histogram. We present an
analysis of the computational costs comparing both parts of our approach
to the conventional method. Extensive experiments show a speed-up by
a factor of eight while the matching and repeatability performance is
decreased only slightly.

1 Introduction

In the last few years we have witnessed an explosion of object recognition meth-
ods based on the detection of local key-points and construction of local pho-
tometric descriptors around these key-points (e.g. [1, 2, 3, 4]). The basic idea
of these approaches is to first detect salient structures in images (e.g., corners,
high entropy regions, scale space maxima, etc.) and to construct from the re-
gion or its surrounding a discriminative description which is used for matching.
The requirement is that the structures can be re-detected with high reliability
and that the descriptor is robust (e.g. to illumination changes) and possesses
certain invariance properties (e.g. affinely invariant). The big advantage of these
approaches is that they do not require a segmentation of the image and due to
the local nature they are robust to occlusions.

Local approaches have demonstrated considerable success in a variety of ap-
plications, like recognition of objects [1], wide-base line stereo [4], robot nav-
igation [5], image retrieval [6, 7], building of panoramas [8], etc. Probably the
most popular and widely used local approach is the DoG detector with the
SIFT descriptor as proposed by Lowe [1]. SIFT has been used with success
in all of the above mentioned application areas. Evaluations and comparison
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(e.g. [9]) demonstrate the excellent performance of the method compared to
other approaches. The DoG detector detects blobs in the Laplacian scale space.
The SIFT descriptor is basically a histogram (in fact 16 concatenated ones) of
gradient orientations of the normalized (with respect to scale and orientation)
DoG region. One key issue for its success is that DoG points and SIFT are
normalized with each other and can be computed fast.

Due to the high popularity of SIFT, it is no surprise that several variants and
extensions of SIFT have been proposed. For example Ke and Sukthankar pro-
posed the so called PCA-SIFT [10] that applies Principal Components Analysis
(PCA) to the normalized gradient patch. The Gradient location and orientation
histogram (GLOH) [9] changes SIFTs location grid and uses PCA to reduce
the size of SIFT. The primary focus of these extensions is to gain improved
performance.

In this paper we propose a modified SIFT method for recognition purpose.
Our primary motivation is to significantly speed up the SIFT computation while
at the same time keep the excellent matching performance. We demonstrate
that by using approximations (mainly employing integral images) both the DoG
detector (see section 2) and the SIFT-descriptor (see section 3) we can speed-up
the SIFT computation by at least a factor of eight compared to the binaries
provided by Lowe. Extensive experimental evaluations (see section 4) show that
the loss in matching performance is negligible.

2 DoG Detector

In order to detect scale invariant key-points Lowe suggests to repeatedly smooth
the input image and identify key locations in scale space. In order to detect even
very small scales Lowe extends this approach and proposes to double the input
image before building the scale space. The different scale levels are produced by
recursive filtering with a variable-scale Gaussian kernel. A local maxima search
is finally applied to the Difference-of-Gaussian images which can be computed
of adjacent scale images, in order to detect key-points in scale space.

To accelerate this approach we propose several approximations and changes,
see Table 1. The key idea of our method is to considerably reduce the costs for
computing the scale space by using Difference-of-Mean (DoM ) images instead
of Difference-of-Gaussians (DoG). This DoM images can be computed very effi-
ciently by using a box filter in combination with an integral image as introduced

Table 1. Major differences between Lowe’s detector [1] and our proposed approach

SIFT Fast approximated SIFT
image doubling -
- calculate integral image
DoG scale space DoM scale space
post-processing -
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by Viola and Jones [11] (capturing the main idea of [12]). Once the integral im-
age is computed, it allows to compute the mean within a rectangular region in
constant time independent of the size of the region. This property allows fast box
filtering and can be used for linear sampling of the scale axis which is realized by
successively increasing the size of the filter kernel. Adjacent scale space images
are subtracted and a local maxima search is applied to the Difference-of-Mean
images in order to detect key-points. For a reliable detection of key-points at all
scales it is important to normalize the DoM response with

sensitivity ·
(
1− s

2
1

s22

)
(1)

where s1, s2 corresponds to the size of the small and larger box filter, respectively.
The parameter sensitivity captures the minimal contrast of the mean gray values
of the inner region (s1) and the outer region (s2− s1) and can be used to adjust
the sensitivity of the detector. Since experiments with DoG indicate that small
scales cannot be reliably matched we skip the doubling of the image size, which
again provides a significant speed-up. Once the key-points have been detected we
do not make any further post-processing like an accurate key-point localization
because due to the use of integral images we have already pixel accuracy at each
scale. But note that the accuracy of the obtained points is not as precise as with
the DoG, nevertheless the detected points are good for recognition tasks but less
suitable for geometric tasks like estimation of the fundamental matrix.

Fig. 1. Comparison of the DoM key-points (left) detected by our approach to DoG
key-points (right) detected by the approach of Lowe

2.1 Computational Costs

The box filtering approach using integral images is depicted in Algorithm 1.
Once the integral image is pre-computed which takes 2 additions for each image
pixel, a single box filter response can be computed, independent of its size, with
4 memory accesses, 3 additions and a single multiplication which is needed for
normalizing the box region. In Table 2 which has been adapted from [13], we
compare the box filtering approach to other commonly used Gaussian filtering
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Algorithm 1. Integral image computation
// pre-computation
for each image point do

Propagate integral image {1 addition}
Increase value {1 addition}

end for
// apply box filter with a given kernel size
for each image point do

Compute intersection {3 addition}
Normalize {1 multiplication}

end for

Table 2. Comparison of various filtering techniques (calculations per pixel)

Filter technique Additions Multiplications
2D-Gauss N2 N2 − 1
Separated Gauss 2 · N − 2 N + 2
Recursive Gauss 6 14
FFT 2 · log(W · H) 2 · log(W · H) + 1
Box filter 2 + 3 1

techniques. Simple 2-D convolution is the slowest one since the complexity for
each pixel is O(N2), where N corresponds to the filter size. Much more efficient
is to make use of the separability of the Gaussian function which allows convo-
lution by applying two passes of the 1-D function in the horizontal and vertical
directions. This leads to linear costs in the kernel size N . Other methods like
FFT are independent with respect to the filter kernel size but depend on the
size of the input image W ×H . However, as can be seen in Figure 2(a), the com-
putational costs are higher than for the separable Gaussian for a kernel size of
7×7 (as proposed by Lowe in [14]). A similar result holds for recursive Gaussian
filters which allow convolution in constant time but are still computationally
more demanding for small filter kernels.

3 SIFT Descriptor

Reliable matching of key-points is performed by feature vectors generated from
their local neighborhoods. Lowe suggests to use the gradient information around
a key-point. Initially a consistent orientation is assigned to the key-point such
that the descriptor can be represented relative to this orientation, thereby achiev-
ing rotation invariance. Gradients within a circular region are used to compute
an orientation histogram, and local maxima in the histogram are used as char-
acteristic orientations.

To obtain a descriptor Lowe proposes to divide the surrounding region into
4 × 4 sub-patches. From each sub-patch an orientation histogram with 8 bins
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is computed and concatenated to form a single feature vector. Since orientation
histograms form the basic computation for the descriptor this leads to the idea
to use integral histograms [15]. Integral histograms are an extension of integral
images using for each histogram bin (e.g. orientation) a separate integral image.
Once the integral orientation histogram is computed, histograms can be accessed
in constant time independent of the size of the region. Similar to integral images
integral histograms can only provide histograms of rectangular regions.

For orientation histogram computation we use un-weighted squared regions.
Furthermore, for the descriptor we rotate the midpoints of each sub-patch rela-
tive to the orientation and compute the histograms of overlapping sub-patches
without aligning the squared region but shifting the sub-patch histogram rela-
tive to the main orientation. The main advantage of our method is that we make
use of the full resolution of the input image without additional computational
costs.

3.1 Computational Costs

The major question is how many descriptors have to be calculated in order to
obtain a speed up for the integral version compared to the conventional approach.
We define the costs for single histogram computation for both approaches which
has been done by adapting the analysis from [15]. We assume that the gradient
image has already been computed. In addition we assume computing histograms
only over squared regions.

Algorithm 2. Conventional histogram computation
//histogram computation
for each histogram do

for each gradient within window do
Find bin { 1 multiplication}
Increase bin value { 1 addition}

end for
end for

The conventional method for histogram computation is given in Algorithm 2.
Once the gradient image is available, for each gradient in the observed region
an assignment to the correct bin value must be done. Consequently the con-
ventional method strongly depends on the number of gradients contributing to
the histogram which leads to the complexity O(N2) for a squared region where
N corresponds to the window size. In addition the computational costs for a
squared region is

k ·N2 · (cadd + cmult) (2)

where k corresponds to the number of histograms, cadd represent costs for an
addition and cmult are the costs for a multiplication.

Considering the integral histogram computation illustrated in Algorithm 3,
we see that equivalent to integral images some pre-computations have to be
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Algorithm 3. Integral histogram computation
//pre-computation
for each gradient do

for each bin do
Propagate integral histogram { 1 addition}

end for
Find bin { 1 multiplication}
Increase bin value { 1 addition}

end for
//histogram computation
for each histogram do

for each bin do
Compute intersection { 3 additions}

end for
end for

done. Once the integral orientation histogram has been computed, orientation
histograms can accessed in k · b · 3 · cadd, where b corresponds to the number of
bins (in our case 16 bins are used). Similar to integral images rectangular regions
can be accessed. The costs for histogram computation does not depend on the
number of gradients within a region.

Consequently the total costs including the computation of the integral orien-
tation histogram can be written as

W ·H · (b · cadd + cadd + cmult) + k · b · 3 · cadd (3)

where W ×H represents the input image size.
Figure 2(b) compares standard histogram and integral histogram computa-

tion, where we have used relative costs for additions and multiplications from [15]

(a) Different filtering techniques for a
7 × 7 filter kernel

(b) Conventional and integral tech-
nique for orientation histogram com-
putation

Fig. 2. Comparison of computational costs for detector (left) and the descriptor (right)
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(addition:1 - multiplication:4). Other parameters of the cost functions, such as
the histogram patch size, have been experimentally determined. As we can see
in Figure 2(b), initially the costs for the integral histogram are much higher
however once the integral image is computed the costs increase very slowly. In
contrast the costs of the conventional method increase linearly with the number
of computed descriptors.

Integral orientation histograms are profitable especially when calculated over
large regions. This is especially suited for our approach because we always com-
pute the descriptors on the original resolution. Consequently, we take advantage
of using the whole information of the input image.

4 Experimental Results

We compare our novel approach to Lowe’s method with respect to performance
and speed. For matching performance we run two types of experiments to explore
the effects of the approximations made in our approach. First, both methods are
examined with respect to rotation, scale and perspective invariance on a data-set
of 15 commonly used images. Second, an evaluation comparing both, detectors
and descriptors, on 2 images of the popular Graffiti data-set has been done
using the framework of Mikolajczyk [9]. Finally we compare the runtime of our
approach to Lowe’s publicly available binaries 1.

4.1 Artificial Transformations

For all artificial transformations we used the same criterions for determining
repeatability of the detector and the matching score of the descriptor. The re-
peatability is obtained through a simple location criterion while for the matching
score a key-point match and the corresponding nearest descriptor match is re-
quired.

Due to the box filter approximation the rotation is the worst case scenario
for the detector. Even for the descriptor the worst case because no rotational
sampling is done. Therefore we artificially rotate each image from 0°to 90°of our
data-set with steps of 15°. In Figure 3 we see that both, the detector and the
descriptor of the approximated SIFT implementation behave worst at a rotation
of 45°. However, at the same time the performance is not much worse to SIFT.
The strong performance decrease of SIFT can be explained by the fact that the
small scale key-points are lost because of the smoothing effect after the bilinear
transformation.

Second, scale invariance is tested. As a reference image we used a down scaled
image (0.8) in order to have scale changes in both directions. Figure 4(a) shows
that our approach which passes on detecting key-points with small scales per-
forms slightly better than SIFT.

Finally, we examined the repeatability of the detector and the matching of
the descriptor by generating different projective transformations of the image.
1 Available at http://www.cs.ubc.ca/ lowe/keypoints/
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Fig. 3. Even in the worst case of a rotation of 45 °, approximated SIFT shows only a
slight decrease in performance of the detector (above) and the descriptor (lower)

(a) Scale transformations (b) Projective transformations

Fig. 4. The proposed approximations of our method do not have any effects on scale
or projective invariance

Again the results in Figure 4(b) show good performance for the approximated
SIFT implementation.

4.2 Mikolajzyk Framework

We compared our method to Lowe’s approach using the recently proposed frame-
work from Mikolajzyk [9]. Two images of the Graffiti data-set have been used.
The repeatability of both detectors are shown in Figure 5. When the overlap er-
ror tolerance is large enough the approximated SIFT implementation performs
even better than the original version. However, allowing only a small overlap
error, the approximation effects can be seen which lead to a slightly decreased
performance. In Figure 5(b) we see a similar result for the descriptor.

4.3 Speed

We have a non optimized C++ implementation of the approximated SIFT which
has been compared to the SIFT binaries provided by Lowe. In Table 3 the
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(a) Repeatability of the detector (b) Descriptor evaluation using
the ratio-nearest-neighbor match-
ing criterion

Fig. 5. Evaluation results with the framework from Mikolajzyk

Table 3. Comparison of speed with respect to the image size

image size SIFT (Binaries) Approx. SIFT
800x640 4.24 s 0.625 s
400x320 1.34 s 0.180 s
200x160 0.44 s 0.075 s

processing times for feature detection of different image sizes are listed. This
experiment was done on a Pentium 4 with 3.2 GHz. Results show that approxi-
mated SIFT provides a speed-up of a factor 8 with this non optimized implemen-
tation where the major benefit is obtained in the detection process. Optimizing
the implementation we expect to achieve at least a factor 12 to 16.

5 Conclusion

In this paper we have presented a novel approximation of the SIFT method that
achieves a considerable speed-up of the original method (at least a factor of eight
using our non optimized C++ implementation) while at the same time achieving
comparable matching performance. We have carefully analyzed the speed-up gain
theoretically and have performed extensive experimental evaluations.

This new fast SIFT variant opens several venues of further research which
we are currently investigating. Once we have calculated the integral images the
costs for the descriptor calculation is negligible. Therefore, we can perform a
local neighbor search around a key-point for more discriminative/reliable de-
scriptors. This should further increase the matching performance. Having such a
fast method, tracking using SIFT becomes feasible. This should result in highly
robust trackers. Another idea that is currently investigated is to use SIFT in an
Adaboost framework. This has already been proposed by Zhang et al. [16], but
having a fast SIFT will considerably speed-up the training process.
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Abstract. In this paper we present a simple but effective method for
matching two uncalibrated images. Feature points are firstly extracted in
each image using a fast multiscale corner detector. Each feature point is
assigned with one dominant orientation. The correspondence of feature
points is then established by utilizing a multilevel matching strategy. We
employ the normalized cross-correlation defined as the similarity measure
between two feature points in the matching procedure. The orientation
of the correlation window is determined by the dominant orientation of
the feature point to achieve rotation invariance. Experimental results on
real images demonstrate that our method is effective for matching two
images with large rotation and significant scale changes.

1 Introduction

Matching two images of the same scene is one of the fundamental problems in
computer vision. Image matching plays an important role in many applications
such as stereo vision, motion analysis, image registration and mosaicing. It has
been an extensively studied topic in the last several decades and a large number
of matching algorithms have been proposed [1] [2] [3].

The methods for image matching can be broadly divided into two classes:
area-based matching and feature-based matching. Area-based matching directly
compares the gray value distribution in image patches and the similarity is mea-
sured by cross-correlation or least-squares techniques. Feature-based matching
extracts salient features such as corners in the two images and then establishes
reliable feature correspondences. There also have been some matching methods
that can be regarded as the combination of the two classes [4] [5].

Normalized cross-correlation is widely used as an effective similarity measure
for matching tasks. Normalized cross-correlation is invariant to linear brightness
and contrast variations and its easy hardware implementation makes it useful
for real-time applications.However, traditional correlation-based image match-
ing methods will fail when there are large rotation or significant scale changes
between the two images. This is because the normalized cross-correlation is sen-
sitive to rotation and scale changes. There are also generalized versions of cross
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correlation that calculate the cross correlation for each assumed geometric trans-
formation of the correlation windows [6] [7]. Although they are able to handle
more complicated cases, the computational load grows very fast in the mean
time.

In this paper, we propose a new method for matching two uncalibrated im-
ages based on normalized cross-correlation. Our work addresses the problem of
matching image pairs with large rotation and significant scale changes, which
cannot be efficiently solved by traditional correlation-based methods. We first
build a multiscale pyramid for each image and extract corner points as feature
points in each level of the pyramid. Compared with other multiscale feature point
detectors, our implementation is simple and fast. Only one Gaussian smoothing
operation is required for building a multiscale pyramid and there is no scale-
space extrema detection included. Each feature point is assigned with one dom-
inant orientation. Then a multilevel matching strategy is used to establish the
correspondence of feature points. The multilevel matching strategy makes our
method more efficient by removing the redundant computation in the matching
procedure.

For similarity measure between two feature points, we adopt the rotation in-
variant normalized cross-correlation. The orientation of the correlation window
is determined by the dominant orientation of the feature point to achieve rota-
tion invariance. Moreover, both the shape and the size of the correlation window
is fixed, which contributes to the simplicity of our method. The epipolar geom-
etry constraint is imposed to reject the false matches. We also provide a simple
method to further improve the quality of matching results. Experimental results
on real images of various content demonstrate that our method is effective for
matching two images with large rotation and significant scale changes.

The rest of this paper is organized as follows. Section 2 describes the multi-
scale feature point detection and the assignment of dominant orientation. Section
3 presents in detail the multilevel matching strategy and the calculation of sim-
ilarity measure between feature points based on rotation invariant normalized
cross-correlation. Section 4 describes rejecting the false matches by imposing
epipolar geometry constraint and also provides a further method to improve the
quality of matching results. Section 5 shows some experimental results on real
image pairs and conclusions are presented in Section 6.

2 Multiscale Feature Point Detection

Corners are highly informative image locations and they are considered as good
candidates for feature points in many computer vision applications. Many al-
gorithms for detecting corners have been reported up to now. Among the most
popular corner detectors, the Harris corner detector [8] is known to be robust
against camera noise, image rotation and illumination changes [9]. Using Harris
corners as feature points has been proved to be effective for image matching
applications [5] [10] [11].
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However, the Harris corner detector is sensitive to changes in image scale.
Its repeatability rate significantly decreases when the scale change between two
images is large [12]. In the recent literature some scale adapted feature point
detectors have been proposed to deal with the problem of scale change [13] [14]
[15].

2.1 Fast Multiscale Corner Detection

A fast multiscale corner detector is used to extract feature points in our method.
We first build a multiscale pyramid representation for the image. The pyramid
consists of four levels. The first level of the pyramid is the image itself. Other
levels of the pyramid are created by sampling the image with a set of scale factors
kn(n = 1, 2, 3). The original image is smoothed by a Gaussian function with
σinit = 1 before downsampling. The scale factor kn should be chosen carefully
since it greatly affects the matching result. The standard Harris detector cannot
provide a satisfying repeatability rate when the scale change between two images
is beyond 1.5 [12]. Considering this and after experimentation with different sets
of scale factors, we choose the set of scale factors {2/3, 1/3, 0.23} in our method
as it gives the most stable results. Compared with the traditional Gaussian
pyramid representation, only one Gaussian smoothing operation is required for
building the multiscale pyramid and the scale factor between consecutive levels
is not a constant.

Feature points are then extracted using a standard Harris corner detector in
each level of the multiscale pyramid. The Harris corner detector is based on the
auto-correlation matrix, which is built as follows:

M = g(σh) ∗
[
I2x IxIy
IxIy I2y

]
, (1)

where Ix and Iy indicate the x and y directional derivatives respectively. The
auto-correlation matrix performs a smoothing operation on the products of the
first derivatives by convolving with a Gaussian window function. The Harris
corner strength measure is then calculated from the determinant and the trace
of this matrix as follows:

CH = det(M)− αtrace2(M) , (2)

where α is a constant. A threshold th is used to select corner points. A point
is identified as a corner if CH > th and CH is the local maximum in its 8-
neighborhood. In our implementation, Ix and Iy are computed by convolution
with the mask [−1 0 1]. The parameter σh and α are set to 1.0 and 0.04 re-
spectively. In order to select corners with high significance, threshold th is set to
15000.

We also employ a strategy that will help to restrict the total number of the
feature points. If the number of corners detected in one scale level is larger
than Nl, we reorder all the corners decreasingly according to CH and choose the
first Nl corners. We use Nl = 2000 in our implementation. Experimental results
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show that using this strategy can effectively speed up the matching procedure
while almost not affecting the quality of matching result. For typical images
with medium resolution such as 850× 680 pixels, the average number of feature
points extracted using our multiscale corner detector is about 4000, with the
above parameter setting.

2.2 Dominant Orientation Assignment

Each feature point is assigned one dominant direction to achieve invariance to
rotation. We adopt the histogram-based approach for dominant orientation as-
signment [15]. Some modifications are made for better results. An orientation
histogram with 36 bins covering the range of 360 degrees is used to accumulate
the local gradient orientations within a square region centered on a feature point.
The size of the region equals to the size of the correlation window used in the
matching procedure, which is set to be 11 × 11 pixels in our implementation.
The pixel differences for computing the gradient magnitude and orientation are
calculated on the pyramid level at which the feature point is detected. The pixel
value is obtained by smoothing with a Gaussian window function with σp = 1.
The gradient orientation of each sample in the region is weighted by its gradient
magnitude and by a Gaussian window function with σr = 1.7.

After building the orientation histogram, we perform a smoothing operation
on the histogram by iterative local averaging of every 3 consecutive bins in a
cyclical fashion. The orientation corresponding to the largest bin in the smoothed
histogram is selected to be the dominant orientation of the feature point.

3 Multilevel Matching Based on Correlation

3.1 Multilevel Matching Strategy

A multilevel matching strategy is used to establish the correspondence of fea-
ture points. Feature points are divided into 4 groups according to the pyramid
level at which they are detected. The traditional matching strategy performs
full group-to-group matching, which requires 16 group-to-group matching oper-
ations. We can speed up the matching procedure by removing the redundant
computation. Only 7 group-to-group matching operations are required in our
matching strategy, as shown in Fig. 1.

Fig. 1. Matching between feature point groups
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The black dots labeled with number represent the feature point groups of
different pyramid level in the two images. Each line segment connecting two fea-
ture point groups denotes one group-to-group matching operation. The multi-
level matching strategy reduces the computation cost in the matching procedure
and makes our method more efficient.

3.2 Similarity Measure Based on Rotation Invariant Correlation

Traditional similarity measure based on correlation is not invariant to image
rotation. In our method, rotation invariant normalized cross-correlation is used
to estimate the difference between feature points. The orientation of the corre-
lation window is determined by the dominant orientation of the feature point.
Therefore the similarity measure between feature points is invariant to rotation.
The calculation of similarity measure is presented in detail as follows:

Let p = Lm(x, y) be a feature point at the m-th pyramid level in the first
image with dominant orientation θ1 and q = L′

n(x′, y′) be a feature point at the
n-th pyramid level in the second image with dominant orientation θ2.W1 andW2
are two correlation windows of size (2w+ 1)× (2w+ 1) centered on each feature
point. W ′

1 is the correlation window generated by rotating W1 clockwise by θ1
around p and W ′

2 is the correlation window generated by rotating W2 clockwise
by θ2 around q. Then W ′

1 and W ′
2 can be represented as two (2w+1)× (2w+1)

arrays of pixel intensities A and B:

Auv = Lm(x + u cos θ1 − v sin θ1, y + v cos θ1 + u sin θ1) ,
Buv = L′

n(x′ + u cos θ2 − v sin θ2, y′ + v cos θ2 + u sin θ2) ,
(3)

where u, v ∈ [−w, w]. Auv and Buv are calculated using bilinear interpolation.
The similarity measure between p and q is defined as:

Cpq =

w∑
u=−w

w∑
v=−w

[Auv −A ] · [Buv −B ]

(2w + 1)(2w + 1)σ(A)σ(B)
, (4)

where A (B ) is the average and σ(A) (σ(B)) is the standard deviation of all the
elements in A (B). As mentioned in Section 2, w is set to be 5 in our experiments.
Since the similarity measure is computed with respect to a canonical orientation,
the matching procedure is invariant to image rotation. The similarity measure
decreases monotonically from 1 to −1 with the increase of difference between
two feature points.

Suppose there are m feature points in the first group and n feature points in
the second group. Consider a matrix G ∈Mm,n whose element Gij stands for the
similarity measure between the i-th feature point in the first group and the j-th
feature point in the second group. If Gij is the greatest element both in its row
and in its column, the i-th feature point in the first group and the j-th feature
point in the second group will be identified as a candidate match. A threshold
tc is used to reject the unstable candidate matches with a low correlation score,
which is set to be 0.7 in our experiments. The initial set of feature point matches
between two groups can be established by selecting all such elements in G.
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4 Rejection of False Matches

For each group-to-group matching operation, we obtain an initial set of feature
point matches. The initial set of feature point matches usually contains some
false matches due to the inaccurate characterization of feature point or the im-
proper matches established in the matching procedure. In the case of matching
two uncalibrated images, the epipolar constraint can be used to reject the false
matches [16]. In our experiments, the epipolar constraint is imposed based on
the widely used robust estimator RANSAC [17]. The feature point matches that
are not consistent with the estimated epipolar geometry are identified as false
matches and rejected.

Suppose F is the fundamental matrix. Point p (x, y) can be represented
as: p̃ = [x y 1]T . For a feature point match (p, q), the epipolar line of point p is
defined as: lp = F p̃. If the match is perfect, point q should lie on the epipolar
line lp exactly. The distance dq of point q to the epipolar line lp is calculated by

dq =
| q̃ TF p̃ |√

(F p̃)21 + (F p̃)22
, (5)

where (F p̃)i is the i-th component of vector F p̃. The distance dp of point p to
the epipolar line lq is calculated similarly. Then a threshold te can be used to
find the bad matches. A feature point match will be identified as a false match if
max(dp, dq) > te. False matches are removed from the initial set of feature point
matches.

After rejecting the false matches by using epipolar constraint, we obtain the
refined matching result for each group-to-group matching. The matching result
that has the largest number of feature point matches will be selected as the
matching result between the two images.

We find that there still exist a few false matches in the selected matching
result. The feature points of these false matches happen to locate around the
epipolar lines. Therefore, they cannot be identified only using epipolar constraint.
A simple constraint is employed to further improve the quality of the selected
matching result. For all good matches, the difference between the dominant
orientations of the two feature points should be almost equal. Considering the
fact that the number of the false matches is usually very small, we use the
following process to identify these false matches.

The average of the differences between the dominant orientations in all feature
point matches is calculated. Suppose the average is θ and the difference between
the dominant orientations of the i-th feature point match is θi. tθ is a threshold.
If |θi − θ| > tθ, the i-th feature point match will be identified as a false match.
The threshold te and tθ are set to be 0.8 and 40 (in degrees) respectively.

5 Experimental Results

In this section, we will demonstrate some experimental results on real images
of various content. The images used in our experiments are from the public
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Table 1. Final matching results for Fig. 2-Fig. 5

Correct Average
Matches Distance

Residence 76 0.577

Boat 53 0.458

East south 45 0.552

Bark 44 0.571

Fig. 2. Matching result for image pair Residence (frame 0 and 9 of “Resid” se-
quence). The scale factor is 4.7 and the rotation angle is 5 degrees.

Fig. 3. Matching result for image pair Boat (frame 0 and 9 of “Boat” sequence). The
scale factor is 4.3 and the rotation angle is 45 degrees.

image database in INRIA 1. Fig. 2-Fig. 5 show the final matching results for
four different image pairs with significant camera motions (translation, rotation

1 http://lear.inrialpes.fr/people/Mikolajczyk/Database/index.html
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Fig. 4. Matching result for image pair East south (frame 0 and 9 of “East south”
sequence). The scale factor is 5.2 and the rotation angle is 59 degrees.

and scaling). The numbers of correct matches and the average distances from
epipolar lines are illustrated in Table 1.

Fig. 2 shows the matching result for image pair Residence with significant
scale changes and translation. There also exist self-similarity structures in the
two images. Fig. 3 and Fig. 4 show the matching results for image pair Boat
and East south with large rotation and scale changes. We also test our method
on the images of the textured scene. Fig. 5 shows the matching result for the
image pair Bark of a textured scene with large rotation and scale changes.

Fig. 5. Matching result for image pair Bark (frame 1 and 6 of “Bark” sequence). The
scale factor is 4.0 and the rotation angle is 154 degrees.

6 Conclusions

This paper presents a simple but effective method for matching two uncalibrated
images. The method is based on matching multiscale feature points using rota-
tion invariant normalized cross-correlation. Feature points with dominant orien-
tation are firstly extracted in each image using a fast multiscale corner detector.
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Then a multilevel matching strategy is used to establish the correspondence of
feature points. We employ the rotation invariant normalized cross-correlation
defined as the similarity measure between two feature points in the matching
procedure. The final matching result is obtained after the false matches rejec-
tion process. Experimental results on real images of various content demonstrate
that our method is effective for matching two uncalibrated images with large ro-
tation and significant scale changes.
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Abstract. In this paper, we are presenting a new surface signature-
based representation that is orientation-independent and can be used to
match and align surfaces under rigid transformation including uniform
scaling. The proposed scheme represents the surface signatures as ex-
tended polar maps. Correlation of the maps is used to establish point
correspondences between two views; from these correspondences a rigid
transformation, including uniform scaling, that aligns the views is calcu-
lated. The effectiveness of the proposed scheme is demonstrated through
several registration experiments.

1 Introduction

Many applications require the construction of precise 3D object models of phys-
ical objects, preserving as much information as possible [1, 2]. It is usually nec-
essary to scan the scene from different viewpoints in order to build a complete
3-D model of a complex scene. The registration of the acquired data sets into a
common coordinate system has been a subject of much research during the last
15 years.

Several of the proposed methods [3, 4, 5, 6, 7, 8, 9] can be seen as extensions
or improvements of the Iterative Closest Point (ICP) algorithm [10]. ICP is
an iterative procedure minimizing the mean squared error (or the sum of the
squared distances) between points in one view and the respective closest points
in the other view. At each ICP iteration, the geometric transformation that best
aligns the two images with respect to this criterion is calculated.

Another approach [11, 12, 13] to registering two images is to find the geometric
transformation through a pose-space search, rather than the correspondence-
based search of ICP. The search space of geometric transformations contains
solutions that can be used to align two views. In this case, the objective is to
find, in a huge search space, a solution acceptably close to the global optimum,
in a reasonable time.

Recently, researchers have developed and discussed different surface represen-
tations that are effective in finding point corresponding between the two sets to
be registered. In this case, the registration problem is addressed in two steps,
where the first step is to establish the point corresponding between the sur-
face sets then to use these points to compute the transformation that aligns the
two surfaces. These surface representations are known as surface signature-based
representation. They include the splash representation [14], the point signatures

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 938–947, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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[15], the spin image representation [16], the spherical spin image representation
[17], the surface point signatures [18], the harmonic shape images [19], the lo-
cal surface descriptors [20] and the point fingerprints [21]. In this paper, we
are proposing an extension for these representations to solve the registration
problem.

Our approach to surface registration is based on establishing point correspon-
dences using a new surface signature-based representation for matching points
on the surfaces of objects. Next, sets of geometrically consistent point corre-
spondences are used to compute the transformation that aligns the views [22].
While many registration algorithms do not address scaled surfaces, our approach
solves for the general registration problem including rigid rotation, translation
and uniform scaling. Furthermore, we speeded up the registration time by ap-
plying a selection process to select feature points on the surface to be used in
the matching process.

The proposed representation technique, Surface Extended Polar Map -will
be known as SEPMap-, transforms the surface from the Cartesian coordinate
system where surface descriptions vary with transformation and scaling to an
extended polar coordinate system where surface descriptions are invariant to
rigid transformation and the scale factor can be estimated. In this artificial
domain, every surface patch, its center of gravity, is represented by one SEPMap.
As a surface signature-based representation, SEPMap places few restrictions on
object shape and topology and can be used to match surfaces in the presence of
clutter and occlusion.

This paper is organized as follows: The SEPMap scheme is described in Sec-
tion 2. The alignment process using SEPMap scheme is described in Section 3.
Experimental results are presented and discussed in Section 4. Finally, conclusion
and future work are presented in Section 5.

2 SEPMap Scheme

In this paper, surfaces are defined by a dense collection of 3D points and surface
normals [23]. In SEPMap, we are extending the surface signature representation
to handle uniform scaling. Our approach is to use three parameters (θ, φ, r) to
represent the positions and the curvature of each point with respect to the basis
of other points on the surface. In this representation, (θ, φ) capture the relative
curvature and they are independent of the object scaling while ’r’ captures the
relative displacement between the surface points and can be used to compute
the scaling factor between the object and the model.

SEPMaps generated for two corresponding points on different surfaces would
be similar, so oriented points can be matched based on a comparison of their
SEPMaps. SEPMaps are descriptive enough that correspondences between points
can be established based on a comparison of SEPMaps alone. Since SEPMaps can
be generated for any point on the surface of an object, the proposed algorithm will
generate a representation that is robust to clutter and occlusion, so segmentation
of scene data is not necessary for surface matching in cluttered scenes.
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In order to speed up the registration process, a selection process is applied
to select only those points that can serve as landmarks of the surface. The
SEPMaps are generated only for the selected points and hence the registration
process is applied to these points only; saving long processing time. The process
of generating the SEPMaps are presented in this section along with the object
model representation and the feature selection process.

2.1 Object Model Representation

The object model is defined by a set of triangles. Each triangle composed of three-
vertices defined by their Cartesian coordinates in the object coordinate systems.
In the SEPMap generation process, each surface patch (triangle) in the model is
represented by a map that is independent of the object coordinate system. The
map is generated at each surface patch by recording the relative curvature and
displacement of that surface patch and all other surface patches in the model.
In order to simplify the generation process, the triangle’s center-of-gravity and
its normal are used instead of the actual triangle. So the object model can be
seen as a set of oriented points (represent the triangle’s center-of-gravity) and
the surface normal at these points.

In mathematical form, the object model is defined by Eq. 1.

G = {gi = (p, np)i, i = 1..N} (1)

Where p = (x, y, z) is the Cartesian coordinates of the triangle’s center of
gravity and np = (nx, ny, nz) is the triangle’s surface normal. g is known as an
oriented point. The SEPMap of an oriented point g = (p, np) is defined by Eq. 2,

M = {mj = (θ, φ, r)j , j = 1..N − 1} (2)

2.2 Feature Points Selection

In many objects, the majority of points forming the surface are of low curvature
value and do not serve as landmarks of the object. These points can be eliminated
to speed up the process. In a mathematical form, an oriented point g = (p, n) is
considered a feature point if its relative curvature, Sg, is higher than a certain
positive value, ε. For a triangle patch, represented by its oriented point g = (p, n),
and having three neighbors’ triangle patches, represented by their oriented points
g1 = (p1, n1), g2 = (p2, n2), and g3 = (p3, n3), the relative curvature of g, Sg, is
defined as follows:

Sg = 1− S1 + S2 + S3

3
(3)

Where Si = n • ni, i = 1, 2, 3 and ’•’ denotes dot-product. Based on the
feature points’ selection, the object model, defined before in Eq. 1, is re-defined
by Eq. 4.

G = {gi = (p, np)i, i = 1..N, Sgi > ε > 0} (4)
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Where N is the number of triangle patches (oriented points) in the original
object model G. The selection process will keep only N ′ oriented points where
N ′ << N .

Since the selection of ε can vary from an object to another, in our experiments
we auto-select ε based on the number of oriented points in the object. Basically,
we define N ′ in terms of N , e.g., N ′ ≥ 0.1N , we obtained the histogram of N ′()
and select ε such that N ′() ≥ 0.1N .

2.3 SEPMap Generation

For an object model G defined by Eq. 4, the SEPMap M of an oriented point
g ∈ G, g = (p, np) is defined by Eq. 2 (where N is the number of featured
points), and is generated as follows:

For each oriented point gj ∈ G, gj = (q, nq)j where gj �= g,

1. Define v = the vector −→pq,
2. Calculate (θ, φ, r) as follows, see Fig. 1.

(a) θ = the angle between np and v
(b) φ = the angle between nq and v
(c) r = the length of v (the distance between p and q)

3. Record mj = (θ, φ, r) in M

The SEPMap generation process is repeated for all gi ∈ G, each will produce
a SEPMap, Mi, i = 1..N . The set of SEPMaps are used to represent the object
model G. So the new representation of G (SEPMap) is defined as

G = {Mi, i = 1..N},
Mi = {mj = (θ, φ, r)j , j = 1..N − 1} (5)

Fig. 1. The calculation of a SEPMap tuple m = (θ, φ, r) of two oriented points (p, np)
and (q, nq)
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3 Registration Process Using SEPMaps

The problem of registering two different surfaces defined by their SEPMaps is
solved in a two-step process, SEPMap matching and the transformation ma-
trix estimation. In the first step, the SEPMaps of the two surfaces’s points are
matched establishing points corresponding between the two surfaces as well as
estimating the scaling factor. The matched points are then fed into the second
step where a modified ICP algorithm [22] is used to estimate the rotation and
translation matrices to align the two surfaces. The SEPMap matching and the
transformation estimation are presented in this section.

3.1 SEPMap Matching and Scale Estimation

The idea of the SEPMap matching is to establish point corresponding between
the two surfaces that maximize the similarity between them. In our case, the
two objects are represented by their SEPMaps. Mathematically, the SEPMap
matching problem is defined as follows:

Given the SEPMap representation of two objects

G = {M ′
i , i = 1...N ′},

H = {M ′′
i , i = 1...N ′′} (6)

where N ′ and N ′′ are the number of oriented points in G and H , respectively.
Find the point correspondence between the two objects that maximizes the sim-
ilarity between them.

In order to measure the similarity between two objects G and H , we first
measure the similarity, P , between their pair-wise SEPMaps defined in Eq. 6.
The similarity, P , between two SEPMaps, M ′ and M ′′, defined in Eq. 7, is
measured by the percentage of matching records between the two SEPMaps
recorded for specific scaling factor.

Given two SEPMaps

M ′ = {m′
i = (θ, φ, r)′i, i = 1..N ′},

M ′′ = {m′′
j = (θ, φ, r)′′j , j = 1..N ′′} (7)

we measure the scaling factor, s = r′/r′′, for all pair-wise records, m′ and m′′.
The matching process can be summarized in the following steps:

1. ∀M ′
i ∈ G and M ′′

j ∈ H , calculate the similarity measure, Pij , and the corre-
sponding scaling factor, Sij , as follows:
(a) ∀m′

k ∈ M ′
i and m′′

l ∈ M ′′
j and

∣∣∣(θ, φ)′k , (θ, φ)′′

l

∣∣∣ ≤ δ, calculate skl =
r′k/r

′′
l . δ is used to account for sampling errors. In our experiments, we

used δ = 5 degrees. That is the variations of the surface normal due to
sampling noise.

(b) The similarity measure between M ′
i and M ′′

j , Pij , is the maximum num-
ber of similar skl. The scaling factor, Sij , is the skl that yields the max-
imum Pij .
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(c) If Pij > Δ then M ′
i and M ′′

j are said to be a matched pair and the
corresponding scaling factor Sij is accepted as a possible scaling factor
between the two objects G and H . Δ is used to account for occlusions
and missing points. In our experiments, we used Δ = 20%. That is the
percentage of occlusions between the two objects.

2. The overall similarity measure, P , and the scaling factor, S, between G
and H , is determined by a simple counting approach for the possible scaling
factors reported in step 1-c above. Basically, we calculate P as the maximum
number of similar scaling factor Sij . The overall scaling factor, S, is the Sij

that yield the maximum P .

The overall scaling factor and the overall similarity measure are compared
against the pair-wise scaling factor and similarity measure, recorded in step
1b above. Only the points that yield similar overall scaling factor with high
similarity measure are considered as trusted match and added to the pair-wise
correspondences list that will be used in estimating the transformation matrix.

3.2 Transformation Matrix Estimation

The aim of the registration process is to compute the transformations, which,
when applied to the points in that view, it brings the two surfaces into align-
ment. The desired transformations are expressed by the 3x3 rotation matrix R
and 3x1 translation vectors t. The registration procedure can be posed as the
minimization of a cost function which measures the sum of squared distances
between the transformed corresponding points.

E =
N1∑
i=1

N2∑
j=1

uij

∥∥p′i − (Rp′′j + t)
∥∥2
, (8)

uij =
{

1 if (p′i, p
′′
j ) forms pairwise correspondence

0 otherwise

where N1 and N2 are the numbers of points in the two surfaces. The Iterative
Closest Point (ICP) algorithm proposed by Besl and McKay [10] is a commonly
used framework for solving this surface registration problem. In our work, we
used an enhanced ICP algorithm, developed by Williams and Bennamoun [22]
to solve the registration problem.

4 Experimental Results

The registration process using SEPMap scheme has been applied to several ob-
ject models. In this paper, we present the results of registering full and partial
objects of three chess pieces (from 3D CAFE website); a chess king, a rook, and
a queen models. In the first experiment, we applied rigid transformation (rota-
tion, translation and scaling) to the three objects. The feature selection process
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is applied to the transformed objects, their SEPMaps are generated and the
matching process is applied against the models library. In another experiment,
we simulate a form of occlusion where the object does not have a complete 3D-
model. In this experiment, we cut a piece of the objects and applied to them rigid
transformation. Tables 1 and 2 show the transformation parameters of the ex-
perimental objects, full and partial respectively. The transformation parameters
shown are the scaling factor, rotation axis, rotation angle and the translation
vector. Figures 2 and 3 illustrate the two experiments before and after registra-
tion. Models are shown in light grey-level (gold color) while objects are shown
in dark grey-level (purple color).

To verify the accuracy of the registration process, we define two forms of
registration errors using the Euclidean distances between the model and the
registered objects points. The first registration error (sum) is the squared sum of
the Euclidean distance between the model and the registered object. The second
registration error (average) is the average of the sum error. Table 3 shows the sum
and the average registration errors of the chess pieces registration experiments.
The results demonstrate the effectiveness of the proposed technique visually and
analytically. and the ability of the technique in handling the general registration
problem of full and partial objects.

Table 1. Transformation parameters for the chess pieces full size objects

King Rook Queen
Scaling factor 0.5 0.3 2.0
Rotation Axis z-axis x-axis x-axis
Rotation Angle 30 15 45
Translation vector [0, -5, 0] [-20, 0, -20] [30, 30, 33]

Table 2. Transformation parameters for the chess pieces partial size objects

King Rook Queen
Scaling factor 2.0 3.0 0.5
Rotation Axis x-axis y-axis x-axis
Rotation Angle -30 45 -45
Translation vector [4, 0, 0] [30, 30, 20] [30, -20, 30]

Table 3. The registration errors (sum and average of distances between the registered
surfaces) for the chess pieces experiments

Model
Full Object Partial Object

Sum Average Sum Average
King 0.117 0.0003 0.067 0.00017
Rook 0.305 0.0008 2.917 0.0077
Queen 1.296 0.0033 1.209 0.0031
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Fig. 2. Chess pieces model experiment for full size objects. (top) before registration,
(bottom) after registration.

Fig. 3. Chess pieces model experiment for partial size objects. (top) before registration,
(bottom) after registration.

All experiments was conducted in a laptop computer with Pentium-M proces-
sor 1.8 GHz and 512 MB RAM and assuming the rule of keeping 10% of the
original patches as landmarks of the object during the feature selection process.
The average feature selection and SEPMap generation total time (user + I/O +
CPU) is less than 2 seconds in a model of 1000 original triangles. The matching
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total time (registration time is negligible) between a model and object with 100
landmarks triangle patches is less than 10 seconds. The computational and mem-
ory requirements are proportional to the number of original triangle patches in
the feature selection process however it is proportional to the number of land-
marks patches in the SEPMap generation and matching. Usually the number of
the landmarks is much less than the original number of patches.

5 Conclusion and Future Work

SEPMap is a surface signature-based representation scheme that is orientation-
independent and can be used to align surfaces under rigid transformation in-
cluding uniform scaling. In order to speed up the registration process, a feature
point selection process is applied to the surfaces’ points. The experimental re-
sults demonstrate the effectiveness of the proposed technique and the ability
to handle general registration problem of full and partial objects. Several items
will be considered in the future work. Among those items are , studying the im-
pact of noise on the discrimination effectiveness of the SEPMap, experimenting
with clutter scenes and different triangulation sampling, applying the SEPMap
scheme to the 3D segmentation problem.
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Abstract. We propose a method for coarse registration of multiple
range images. A local log-polar range image is computed at every sur-
face point of all input range images, and an invariant feature vector is
generated from it. The correspondence of point pairs is determined by
finding the closest feature vector pairs derived from different range im-
ages. The correspondence is validated, and the RANSAC is applied for
extracting inlier point pairs to determine pairwise transformations be-
tween input range images. Finally, the global registration is determined
by construcing the view tree of the input range images. The result of
coarse registration is used as the initial state for the fine registration
which is followed by the object shape modelling.

1 Introduction

A range image is an image that contains a 3-D coordinate information of depth
or range at each image pixel. Many optical range sensors have been developed
based on various principles like stereoscopy, (de-)focus, structured light, and
time-of-flight of the light. They have been important sources of shape infor-
mation for object tracking, object recognition, computer simulation and shape
modeling in many engineering research fields including CV, CG, CAD, VR,
mechanics and robotics. Range sensors can measure only a part of the object
surface due to occlusion. For measuring the complete object surface, measure-
ments from multiple viewpoints are necessary. Registration is the process for
estimating the geometric alignment of the viewpoints from the measured range
images.

Registration of range images can be segmented in two stages: coarse and fine
stages. In the coarse stage, the input range images measured from very dif-
ferent viewpoints are registered. Many object recognition methods share their
techniques with the coarse registration methods. Once the coarse registration is
established, the result can be used as the initial value for the fine registration
stage. In this stage, we can assume that the input range images are roughly
registered within some accuracy. Correspondence can be established mostly by
finding geometrically closest point pairs. The ICP algorithm [1, 2], direct meth-
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ods [3, 4], and simultaneous registration for modelling [5] are classified in the fine
stage. The method to be presented belongs to the coarse registration.

In practical cases, coarse registration can be determined by special hardwares
like attached markers, robot arms, rotation table, or positioning devices like
GPS. These hardwares are not always available due to the object’s size, mate-
rials and surrounding environment. Coarse registration can also be achieved by
manual operation with GUI, but the operator’s load is not feasible when the
number of input range images increases.

The invariant features for shape recognition and coarse registration should
satisfy the following conditions: 1) translation invariant, 2) rotation invariant,
3) general, 4) local, and 5) robust [6]. If a feature contains much information,
correspondence can be established easily. A feature with larger support contains
much information, but can be fragile to occlusion. Also, a feature with small
support has a problem of stability. An invariant local feature should balance a
trade-off between locality and robustness.

Surface curvatures are mathematically defined differential geometric features
invariant to the Euclidean transformation. Feldmar and Ayache [7] used cur-
vatures and principal directions for coarse registration between range images.
Because curvatures are differential properties determined on the infinitely small
support, computing them from a real data is not stable. Also, they have only
two components (maximum/minimum, Gaussian/mean etc. ), and are not de-
scriptive enough for establishing point correspondence.

Many features extracting much more information from a local support have
been proposed. The support is extended in curves such as zero-mean-curvature
curves [8] and bitangent curves [9]. Features can also be determined from a ring
region surrounding the center point such as the point signatures proposed by
Chua and Davis [10] and ‘splash’ features proposed by Stein and Medioni [6].
Johnson and Hebert [11] proposed the spin image which is a local 2-D histogram
generated by accumulating surface points by rotating the image plane around
the surface normal. Huber and Hebert [12] used the spin images for pairwise
range image registration, and they applied various validations for automatic
registration of multiple range images. Frome et al.[13] proposed the harmonic
shape contexts which is computed from a local 3-D histogram of the surface
point around the center point.

In this paper, we propose a coarse registration algorithm of multiple range
images based on an invariant feature generated from the local log-polar range
images. All feature vectors are mapped in a common feature space, and the pairs
are established by searching the nearest feature pairs. Various validations are ap-
plied to filter out false correspondence, and the RANSAC algorithm is employed
for estimating pairwise registrations along with extracting inliers. The view tree
of all range images are constructed for determining the global registration, and
the result is used as the initial value of the fine registration and integration of
range images. In the following part, we explain the feature vector generation
in Sec. 2, correspondence establishment and validation in Sec. 3, experimental
results in Sec. 4, and the conclusion in Sec. 5.
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2 Feature Vector Generation

2.1 Local Log-Polar Range Image

We assume that we have multiple input range images of an object: Sα(1 ≤ α ≤
NS). The proposed method is organized without assuming any specific sensor or
projection type. We specify the allowance of registration: δ.

A local log-polar range image (LR) is a local range image orthogonally pro-
jected on the tangent plane on which the 2-D location is represented by the
log-polar coordinate system[14, 15]. The location on the image plane (u, v) in
the Cartesian coordinate system is represented by (ξ, θ) = (log r, arctan(v/u)) in
the log-polar coordinate system, where r =

√
u2 + v2 and we use δ as the unit

length of the local coordinate system.
We generate local log-polar range images on every surface point of all input

range images. For fast generation, we reduce the resolution of the input range
images by the signed distance field (SDF) as proposed by Masuda [5]. The 3-D
space is sampled at each lattice point whose interval is δ, and a SDF sample
at the sampling point p is composed by the properties of the signed distance to
the surface s, surface normal n and closest point on the surface c (Fig. 1). The
surface normal n is determined by normalizing the vector p − c, which is more
robust than using the differentials. We use the closest points c as the center of a
LR and the surface normal n as its image plane. In the current implementation,
we store SDF samples only near the object surface satisfying |s| < 2δ.

For each surface point ci, other surface points within the neighborhood cj

are projected on the image plane. The depth is determined by ni · (cj − ci), and
it is stored in the orthogonally projected pixel whose log-polar coordinates are
(ξ, θ) (Fig. 2). We set the neighborhood a cylindrical shape whose radius is R
and depth limit is ±R, and we use the samples whose surface normal is in the
same direction as the center (ni · nj > 0). When multiple depths are mapped
on a pixel, their maximum value is used as the pixel value. The pixels with no
value due to occlusion are filled by 0. We generate LRs when the SDF sample
of the center point is close to the surface, |s| < δ, and approximately at least
one center point exists within an area of δ2 on the surface. The LR generated

Fig. 1. Shape representa-
tion by the signed distance
field (2-D analogy)

Fig. 2. Local log-polar
range image generation
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Fig. 3. The input range image is first downsampled by the SDF. The local log-polar
range image (LR) is generated at each SDF sample. The Fourier transform is applied for
computing the power spectrum in the θ-axis to generate FLR. They are compressed
by the eigen decomposition, and the FLRs are approximated by the coefficients of
eigenvectors (CFLR). The reconstructed FLRs from the CFLRs are similar to the
original FLRs.

from the α-th input range image Sα at the surface point cα
i is represented by

LR[cα
i ](ξ, θ).

The 2-D coordinates (ξ, θ) are uniformly quantized for determining integer
pixel coordinates. When θ is quantized in 2Nθ directions, the i-th ξ coordinate
satisfies ξi = log ri = (π/Nθ)i. The index range in ξ direction is [0, Nξ−1], where
Nξ = *(Nθ/π) logR+. For example, when Nθ = 16 and R = 8, the required LR
dimension is [0, 10]× [−16, 15]. Examples of generated LRs are shown in Fig. 3.

2.2 Invariant Feature Vector Generation

The generated LRs are not invariant to rotation about the surface normal. In
generation of LRs, the local Cartesian frame are determined by the surface nor-
mal and principal directions [16]. It has an ambiguity of rotation of π, and its
choice is instable at navel points. To normalize these ambiguities, we extract
invariant features from the LRs.

The LR is cyclic in the θ-axis: LR(ξ, θ) = LR(ξ, θ+2π), and it can be expanded
by the Fourier series. We use the Fourier power spectrum of an LR in the θ-axis
as a phase invariant feature named FLR, which is determined by

FLR(ξ, k) =
∣∣∣∣ 1π
∫ π

−π

LR(ξ, θ)e−ikθdθ

∣∣∣∣ ,
where k signifies the frequency. This can be fast computed by the FFT. Because
an LR is real valued, the transformed FLR is symmetric: FLR(ξ, k) = FLR(ξ,−k),
and a FLR requires a storage half of an LR. For example, the size of the FLR
corresponding to the example beforehand is [0, 10] × [0, 15]. We represent the
number of pixels in FLR by DFLR = Nθ ×Nξ. We use this FLR as the invariant
feature vector for establishing point correspondence.
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2.3 Feature Vector Compression

As shown in Fig. 3, the components of FLRs are localized, and they can be
compressed by applying the eigen decomposition on the set of FLRs. Assume
that there are NFLR FLRs generated at all surface points of all input range
images. The FLRs are piled up to form a matrix of NFLR ×DFLR. This matrix
is decomposed by the SVD, and we select the DCFLR eigenvectors EFLR[cα

i , l]
(1 ≤ l ≤ DCFLR) corresponding to the largest DCFLR singular values. The l-th
coefficient of CFLR is determined by taking the inner products of the FLR with
the l-th eigenvector, CFLR[cα

i ](l) = EFLR[cα
i , l] · FLR[cα

i ], and the compressed
feature vector CFLR[cα

i ] is DCFLR-dimensional. Due to the property of the eigen
decomposition, the FLRs are well approximated by the CFLRs (Fig. 3).

3 Establishment of Correspondence

3.1 Point Pair Search

A CFLR can be considered as a point in the DCFLR-dimensional feature space,
and the correspondence can be established by searching the nearest CFLR pairs.
We can employ any general nearest neighbor search algorithm, and we used the
k-d tree algorithm [17]. For a CFLR of input Sα at cα

i , if the nearest CFLR of
other input range images Sβ(β �= α) is cβ

j , we store the point pair [cα
i , c

β
j ] in the

list of the point pairs. After the closest point is found for each feature vector,
we select the mutual pairs, which are point pairs bidirectionally closest to each
other.

3.2 Crosscorrelation Validation

Shift invariance in the θ-axis is desirable, which signifies that the pair of corre-
sponding LRs satisfy LR[cα

i ](ξ, θ) = LR[cβ
j ](ξ, θ+ θ0). However, a FLR bear also

the sign and orientation invariances which are not desirable. In these cases, a pair
of corresponding LRs may satisfy some other equations such as LR[cα

i ](ξ, θ) =
−LR[cβ

j ](ξ, θ) and LR[cα
i ](ξ, θ) = LR[cβ

j ](ξ, θ0 − θ). Asynchronous combination of
these deformation also causes undesirable ambiguities.

These mismatches are eliminated by checking crosscorrelation between the
paired LRs. For each sign ± and shift Δθ, we generate the flipped and shifted
LR by LR[cβ

j ](ξ,±θ +Δθ). This operation can be simply implemented by shift
and swap operations of vector elements due to the log-polar coordinate system.
Then, we compute the crosscorrelation by the inner product with the flipped and
shifted LR. If the maximum of these crosscorrelations is less than a threshold
(= cos(π/4) in the implementation) or the maximum is given with the flipped
LR (the sign argument is ’−’), the pair is considered to be falsely matched.

3.3 Euclidean Transformation Validation

The class of the transformation for registering rigid input range images is the
Euclidean transformation of the group SE(3). For each pair of the input range
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Fig. 4. The inlier point pairs and corresponded LRs between two input range images
extracted by the Euclidean transformation validation

images, there should exists a Euclidean transformation which we need to esti-
mate for registering them. For determining the transformation and extracting
inliers, we apply the RANSAC algorithm between each pair of input range im-
ages. First, corresponded point pairs are classified according to the pair of input
range images, for example, a point pair [cα

i , c
β
j ] is classified as a member of the

input pair [Sα, Sβ ]. For each input pair, we apply the RANSAC algorithm. For
hypothesis generation, we use only mutual point pairs that is accepted by the
crosscorrelation validation in Sec. 3.2. We make a hypothesis of Euclidean trans-
formation from the following point pairs: a point pair along with the information
of the correlation peak determined in Sec. 3.2, and a set of three point pairs. We
use all combination of three point pairs when the number of point pairs is less
than 22, otherwise point pairs are randomly selected for 10000 times.

We test the hypothesis of transformation by applying it to all point pairs in-
cluding non-mutual point pairs between the input range images [Sα, Sβ], and
count the number of inlier point pairs that satisfy the following conditions:
||Tcα

i − cβ
j || < δ, Rnα

i ·n
β
j > τn(= cos(π/8) in the implementation). The transfor-

mation of the maximum number of inliers Tβ
α is the result of registration between

the input pair [Sα, Sβ ].
Examples of the extracted inlier point pairs are shown in Fig. 4. The paired

inlier LRs are similar to each other regardless of rotation ambiguity in the θ-axis.

3.4 View Tree Construction

For determining registration of all input range images, we construct the view
tree, which is a spanning tree of the input range images that maximize the
sum of the number of inlier point pairs. For example, if the input pairs [S1, S2],
[S2, S3] and [S1, S3] have 588, 103 and 27 inlier point pairs respectively (Fig.
5), we use input pairs [S1, S2] and [S2, S3] minimally enough to connect these 3
views. The view tree is constructed by repeatedly adding a branch of the input
pair with the maximum number of inliers among the unconnected input pairs.
This iteration terminates when the maximum number of inliers of unconnected
pairs becomes less than τconnection (=5 in the implementation).
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S2 S3 S4 S5 S6 S7 S8 S9 S10

S1 588 27 14 3 322 10 12 12 40
S2 103 4 7 65 5 22 16 68
S3 6 4 2 4 49 24 61
S4 3 2 6 153 120 8
S5 98 15 14 8 11
S6 54 3 5 3
S7 5 3 2
S8 47 9
S9 39

Fig. 5. For each input pair, the RANSAC algorithm is applied to estimate the trans-
formations and the inlier point pairs. Numbers of inliers are stored in a table, and the
spanning view tree maximizing the total number of inliers is generated.

With the view tree, we determine the registration of the all input range image.
Starting from the base range image Sbase (= S1 in Fig. 5), we can determine the
transformation Tα of the α-th range image Sα relative to the base range image
Sbase by sequentially accumulating the Tβ

α on the branches of the view tree.

3.5 Refinement and Modeling

Once the transformations Tα of input range images Sα are determined, the
input range images are overlapped by the estimated transformations within the
specified accuracy of δ, but the registration error is still accumulated.

We apply a synchronous fine registration algorithm proposed by Masuda [5]
for refining the registration result (Fig. 6) by setting the initial state with the
result of the proposed coarse registration method. By synchronously registering
and integrating multiple range images, we obtain a continuous seamless surface
model of the object. The model can be successively refined by applying the fine

Fig. 6. The coarse registration result is shown by overlapping the transformed SDF
representation of the input range images (left), and the result is refined by the syn-
chronously fine registration and integration (middle). By refining the resolution to
δ = 0.5mm, a detailed shape model can be generated (right).
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registration algorithm with reduced sampling interval δ. This modelling method
generate the integrated surface model from the volumetric representation by the
SDF, which we can use also as an input for the proposed method. It makes
possible to decompose the problem of registration of large dataset into multiple
processes of reduced size.

4 Experiments

4.1 Bunny

The figures shown in the preceding sections are the experimental results on the
range image dataset named ’Bunny’ obtained from the Stanford 3D Scanning
Repository [18] (Fig. 5). The object is approximately 25cm in size, and the 10
range images were represented by the SDF with δ = 4mm. The local log-polar
range images were generated by Nθ = 16, R = 8, DFLR = 11 × 16 = 176, and
their number was NFLR = 19156 in total. These images were compressed by the
DCFLR = 8 eigenvectors with the cumulative proportion of 92.9%. By the nearest
neighbor search, 19156 point pairs were extracted, and 3788 were the mutual
point pairs. By applying crosscorrelation validation, 1125 point pairs were used
by the RANSAC sampling. Finally, 1565 inlier point pairs in the spanning tree
were used for the registration result as shown in Fig.5. It took about 1 min
for loading 10 input range images and generating their SDF representation, 45
secs for generating local log-polar range images, about 2 mins for feature vector
generation, 3 secs for nearest neighbor search, 30 secs for validation, and about
4 mins in total by a 2.8GHz processor.

The registration results of the same dataset with various settings are shown
in Tab. 1. When R, DFLR and Nθ are too small, registration failed due to poor
information, and when R is too large, it failed because the radius of the support
R exceeds the width of overlaps. The optimal setting is around the lower bound
like R = 4, DFLR = 8 and Nθ = 4, because more computational cost is required
when these parameters are larger.

Table 1. Registration results with various parameters, where CP%: cummulative
proportion at DCFLR in %, #inliers: total number of inlier point pairs in the final view
tree

Nθ R Nξ DFLR DCFLR CP% #inliers registered Sα

16 2 4 64 8 90.6 0 none
16 4 8 128 8 93.8 1028 all
16 8 11 176 8 92.9 1565 all
16 16 15 240 8 89.3 1310 /1,2,6/4,8,9/
16 8 11 176 2 73.5 132 /1,2,3/
16 8 11 176 4 86.9 540 /1,2,3,6,10/
16 8 11 176 16 96.1 2299 all
3 8 2 6 6 99.8 903 all
4 8 3 12 8 99.0 1800 all
8 8 6 48 8 94.4 1772 all
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4.2 Dragon

The proposed method was applied on the ’Dragon’ dataset obtained also from
the Stanford 3D Scanning Repository [18] (Fig. 7). The object size is about 25cm
in size, and the dataset is composed of 71 range images. We applied the proposed
method with the settings of δ = 4mm, Nθ = 4, R = 8 and DFLR = 8. 100198
local log-polar range images were generated, and 8547 inlier point pairs forms a
view tree of input range images. It took about 6.5 mins for loading input range
images and generating their SDF representation, 3 mins for generating local
log-polar range images, 3 mins for feature vector generation, 36 secs for nearest
neighbor search, 2 mins for validation, and 12.5 mins in total. The coarse and
fine registration and integration results are shown in Fig. 7.

Fig. 7. The coarse registration result of 71 input range images (left) were used as the
initial value for fine synchronous registration and integration (middle), and by refining
the resolution up to δ = 1mm, a fine shape model was generated (right)

5 Conclusion

We proposed a method for coarsely registering multiple range images by match-
ing local log-polar range images. The invariant feature vector is generated by the
power spectrum of the local log-polar range images, and it is compressed by the
eigen decomposition for fast retrieval of correspondence, and various validations
were applied to remove false matches. By constructing the view tree, the global
registration is determined, which can be used as the initial value for the fine
registration.

The approach has similarity with the spin images [11, 12]. Compared to the
spin images, the proposed method does not depend on the homogeneity of the
point density. The local log-polar range image is made invariant by the power
spectrum, which is richer in information compared to the spin images that uses
only accumulated number of point in a ring region. The advantage of using the
log-polar coordinate system is the sparse sampling in the outskirts, which is
usually corrupted by occlusion.

We currently determine the sampling interval δ about 1/64 of the object size
for processing in a reasonable computational time. With R = 8, the input range
images should be overlapped around 1/4 of the object size. The proposed method
works well if the object is complex and the overlap of the input range images is
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large. We are examining the performance and limitations of the proposed method
for its improvement. We think that the proposed method can be applied also to
the shape recognition and shape retrieval.
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Abstract. Existing integration algorithms often assume that the regis-
tration error of neighbouring views is an order of magnitude less than the
measurement error [3]. This assumption is very restrictive that automatic
registration algorithms can hardly meet. In this paper, we develop a novel
integration algorithm, robust to both large registration errors and heavy
scanning noise. Firstly, a pre-processing procedure is developed to auto-
matically triangulate a single range image and remove noisy triangles.
Secondly, we shift points along their orientations by the projection of
their resulting correspondence vectors so that new correspondences can
approach together, leading large registration errors to be compensated.
Thirdly, overlapping areas between neighbouring views are detected and
integrated, considering the confidence of triangles, which is a function
of the including angle between the centroid point vector of a triangle
and its normal vector. The outcome of integration is a set of discon-
nected triangles where gaps are caused by the removal of overlapping
triangles with low confidence. Fourthly, the disconnected triangles are
connected based on the principle of maximizing interior angles. Since
the created triangular mesh is not necessarily smooth, finally, we mini-
mize the weighted orientation variation. The experimental results based
on real images show that the proposed algorithm significantly outper-
forms an existing algorithm and is robust to both registration error and
scanning noise.

1 Introduction

Automatic 3D object model reconstruction from multiple registered range images
is popular today in applications ranging from object modelling to computer
graphics [1, 2, 9]. 3D object modelling usually involves the following four stages:
(1) Scan object surface from various viewpoints; (2) Register the views; (3)
Integrate the views; and finally (4) Render the integrated data.

Data acquisition involves scanning the surface of 3D objects from multiple
viewpoints using laser range scanners like Minolta Vivid 700. The data used in
this paper were downloaded from the range image database currently hosted by

P.J. Narayanan et al. (Eds.): ACCV 2006, LNCS 3851, pp. 958–968, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the Signal Analysis and Machine Perception Laboratory at Ohio State Univer-
sity. Each range image has a resolution of 200 by 200 and is depicted in local
laser range scanner centred coordinate system. So these range images have to be
first aligned into a global coordinate system. For this purpose, the registration
algorithm [5] was employed. Through alignment, transformations between all
pairs of views have been obtained. Integration then merges registered data from
multiple views so that a single surface representation is created in the global
coordinate system. Finally rendering stage will build a watertight and smooth
surface based on the integrated data.

Existing integration algorithms can be classified into the following three main
categories:

1. Mesh integration [8, 9]: Original data from each view is firstly built into
mesh (normally triangulation). Doing so is justified by the fact that they
can make full use of topological and geometrical information associated with
each mesh (e.g., point neighbourhood, curvature, and surface orientation).
The overlapped meshes are detected and discarded. The remaining meshes
are connected to build the whole surface. Mesh based integration is power-
ful in discarding noisy mesh and is stable in detecting overlapping area by
considering topological and geometrical information in mesh and can retain
details of surface. However, the existing methods in this class often cannot
handle the data with large registration error very well;

2. Volume based integration [2, 3]: It combines the integration of overlapping
area detection and surface reconstruction together by using implicit volumet-
ric reconstruction methods. It is applicable to objects with arbitrary topol-
ogy. But it introduces a lot of noisy mesh when sampling noise is heavy. On
the other hand, it cannot provide an exact surface topology due to interpo-
lation that approximates the intersection between implicit surface and voxel
edges; and finally,

3. Points based integration [7]: the Cartesian 3D space is first decomposed
into multiple equally sized voxels and all points which fall into the same
voxel are then integrated as a consensus point without considering much
about topology between points. The main difference between volume and
points based integration lies in that while the former applies the traditional
marching cubes algorithm to extract triangular mesh, the latter considers the
intersection between voxel edges and a plane perpendicular to the orientation
at the consensus point. This method may fail due to a large registration error
and when the density of points in 3D space changes significantly. In addition,
the voxel size is difficult to decide.

All these methods succeed to varying degrees in different situations. Due to
sampling noise and unpredicted registration error, the final reconstructed sur-
face is often deformed and includes some artefacts such as holes and wrongly
connected edges. Hence, the algorithm that is tolerable to both large registration
and scanning errors is still desired to be developed.

So far, there is no universally stable registration algorithm that can always
register any range data accurately. Moreover, the registration error is likely to
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accumulate continuously with new images added [1]. In this case, integration
algorithms are desired to possess a mechanism to compensate these registration
errors. For this purpose, we shift the points along their orientations. The magni-
tude of shifting is determined by the projection of their correspondence vectors
along their orientations. The consequence of shift operation is to let point cor-
respondences approach together and thus, leads large registration errors to be
compensated. To deal with noise, three subroutines are developed: discontinuity
preservation based triangulation, removing triangles with single neighbours, and
smoothing the generated triangular mesh using a newly developed Gaussian fil-
ter. Within these three subroutines, the first two are used for pre-processing and
the last is used for post-processing. A comparative study based on real images
has shown that the proposed algorithm is promising for automatic 3D model
reconstruction.

The rest of this paper is structured as follows: Section 2 describes how to
triangulate a single image, Section 3 describes how to integrate the registered
range images, while Section 4 describes how to smooth the generated mesh.
Finally, the experimental results are presented and some conclusions are drawn
in Section 5.

2 Single Range Image Triangulation

Most laser range scanners employ a polar coordinate system and the viewing
volume is restricted by the horizontal and vertical maximal angles. The range
measurements are stored as a 2D grid, from which the 3D coordinates of sam-
pled object surface points can be recovered when the calibration parameters are
known. For more accurate estimation of orientation of points, the scanned points
data are first triangulated. For four neighbouring points, there are six possible
configurations for triangulation (Figure 1).

Fig. 1. Six possible configurations for the creation of triangles from four neighbouring
points

When two neighbouring range data measurements differ by more than a
threshold, there is a step discontinuity. In this case, it is meaningless to join
these two points directly with regard to the representation of surface geometry.
The threshold is determined by the surface geometry and sampling resolution.
However, the threshold is often difficult to determine. Here we develop a method
to automatically determine the threshold based on a given raster range image:

1. Find all the non-boundary points p(x, y, z). (Definition of non-boundary: If
eight neighbours of a point p are all non-background, the point p is con-
sidered to be a non-boundary point). For each non-boundary point and its
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three neighbouring non-boundary points, two triangles are then created with
shorter diagonal length. As a consequence of this operation, a set of triangles
have been generated without considering step discontinuity;

2. Calculate the dot product of the normal of the triangles and the normalized
line of sight toward the centroids of these triangles. Find the triangles where
the including angles between their normal and the line of sight toward their
centroids are in the range of [160◦, 180◦]. Calculate the mean M of lengths
of the longest edges of those triangles. This idea of determining threshold
follows the range scanner’s working mechanism: the measurement accuracy
depends on the incident angle;

3. Multiply the mean M by a constant C: D = C ∗M (C=1.4 in this paper).
The constant increases the distance threshold and thus guarantees that some
accurate points on boundary can be included in the resulting mesh.

After the distance threshold D has been calculated, we re-triangulate the points
from the raster image file. For each non-boundary point and its three neighbour-
ing points, if two of the three neighbouring points are invalid, then no triangle
will be created. If one of the three neighbouring points is invalid, then we com-
pute the interpoint distance. If all three interpoint distances are smaller than
D, then a triangle will be created. If none of the three neighbouring points is
invalid, then we compute just the distance between diagonal points, since the
distance dn between two neighbouring points is in general smaller than that dd
between two diagonal points. If dd is smaller than a threshold, then dn must be
smaller than that threshold. Thus, doing so does not lose any triangles for the
representation of surface details but gains computational efficiency. If only one
of these two diagonal distances is smaller than D, then a single triangle will be
created in one of the last four configurations in Figure 1. If both of these two dis-
tances are smaller than D, then two triangles will be created with the common
edge being the one with a shorter length, as shown in the first two configurations
in Figure 1. Otherwise, no triangle will be created. Consequently, more accurate
triangular mesh that reflects surface geometry has been constructed.

In the triangular mesh built from a single range image, there are some points in
isolated or boundary triangles that usually have only one neighbouring triangle.
These points bring two troubles for the integration process: one is that they tend
to be noisy and thus distort the shape of object. The other is that the orientation
of points is difficult to estimate. As a result, we assume that a triangle with
more than one neighbour is more accurate and stable than the triangles with
one neighbour only. So an iterative procedure is proposed to remove the triangles
with one neighbour only. Then the orientation N at all points on mesh can be
calculated based on their area and neighbouring relation [7].

3 Integration of Multiple Registered Range Images

Integration of multiple registered range images consists of three main steps: over-
lapping area detection, shift along normal, and overlapping triangle detection
and removal and surface reconstruction that are detailed as follows.
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3.1 Front Face Checking and Overlapping Area Detection

When one range image R is transformed into the coordinate system in which
the other range image Rold was described and becomes Rnew , they can then be
merged to obtain a single surface. Firstly, we check whether or not the trian-
gular meshes in Rnew are facing the viewpoint at which the range image Rold

was captured. If the dot product of the normals of triangles and the rays from
the viewpoint to the centroids of the triangles is negative, we say the triangles
in Rnew are “front facing”. The triangles in Rnew that overlap with those in
Rold must be those front facing ones. Secondly, because every new range im-
age can supply somewhat new information of surface geometry for the exiting
range images, non-overlapping and overlapping areas with regard to “front fac-
ing” triangles found need to be further detected. If the distance between the
centroid of a triangle in one range image and its closest centroid of a triangle in
the other is smaller than a threshold, it is added into overlapping triangle sets
Sold−overlapping and Snew−overlapping . Otherwise, it is put into non-overlapping
triangle set Sold−non−overlapping or Snew−non−overlapping . Those triangles in non-
overlapping sets Sold−non−overlapping and Snew−non−overlapping are left and di-
rectly added to form a new surface as new geometrical information supplied by
the two range images. In this paper, the threshold was set as D/2 where D was
estimated in Section 2. An example for the detection of overlapping area between
two registered range images is illustrated in Figure 2.

Fig. 2. Left: The registration result of teletubbydeg0 (no color) and teletubbydeg20

(green). Right: Their overlapping area.

3.2 Shift Along Normal

Because the fusion algorithm described here only utilizes the original points
from all the range images, the points from two range images may be connected
and triangulated together. In this case, the accuracy of registration imposes a
remarkable effect on the final fusion result. Inaccurate registration leads the real
overlapping area between two registered range images to stay apart. On the
contrary, some non-overlapping areas are close to each other. As a result, false
connections and gaps are often created, as demonstrated by Figure 8(left).

To deal with large registration errors, we propose a novel algorithm that is
detailed as follows. Since the triangles in Sold−overlapping are of higher quality
and the number of triangles in Snew−overlapping is smaller, thus the triangles in
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Fig. 3. Point integration along normal vector

Sold−overlapping are used as reference. For each point pinew in Snew−overlapping ,
the closest point piold in Sold−overlapping is identified. Then the dot product d
between vector $pi = piold − pinew and normal vector Ninew at point pinew is
computed. Finally, we shift pinew along Ninew toward piold using the following
formula (Figure 3):

pi′new = pinew + dNinew (1)

so that shifted point pi′new is closer to piold. If vector $pi is in the same direction
as normal Ninew at point pinew, then d is positive. Otherwise, it is negative.

Note what we change is the point position, but the triangulation relation-
ship among points in Snew−overlapping are kept intact. Due to point posi-
tion shift, self-intersection triangular meshes may emerge. In this case, we let
the point position shift a minimum distance so that the original topology in
Snew−overlapping has not been changed. The finally obtained triangular mesh is
called Sshifted−new−overlapping . An example of integrating registered range im-
ages with large registration error is shown in Figure 8.

3.3 Overlapping Triangles’ Detection and Removal and Surface
Reconstruction

To detect the overlapping triangles between Sold−overlapping and
Sshifted−new−overlapping , we only consider the x and y coordinates of
points. Due to “front facing” detection in Section 3.1, no two triangles
from Sold−overlapping will occupy the same space on the xy plane. For each
triangle Told in Sold−overlapping, we first project it onto the xy plane and then
compute its circum-circle CCold. For any triangle in Sshifted−new−overlapping ,
if one of its three vertices or its centroid lies in CCold, then that triangle is
considered as overlapping with Told and is called as Tsetnew. This approach
can find most intersection triangles. In some cases, the intersection triangles
are left, but they do not affect the final result since either the number of
such triangles or their intersection area is small. The purpose of overlapping
triangle detection is to find the relative relationship between different triangles
in Sshifted−new−overlapping and Sold−overlapping respectively, but the actual
intersection information between these triangles is not needed by our integration



964 H. Zhou, Y. Liu, and L. Li

Fig. 4. Non-overlapping mesh between teletubbydeg0 and transformed teletubbydeg20

(left) and final mesh (right)

method and thus, is not computed. Consequently, computational load can be
cut down.

When all overlapping triangles Tsetnew and Told are found, for the sake of
removing redundancy, we have to delete either the triangle Told or all the tri-
angles in Tsetnew. To keep the best measurement, we define a confidence for
the accuracy of each triangle as follows. The including angle θ between the nor-
mal of the triangle and the line of sight toward the centroid of the triangle is
first computed. The length l of the vector from the original to the centroid of
the triangle is then computed. Finally, the confidence of a triangle is computed
as: w = 1/(θl). The larger the angle θ and the smaller the length l, the more
confidence in the triangle.

The following rule is developed to decide whether the triangles in Tsetnew

or Told are kept. To this end, the average confidence of all the overlapping
triangles in Tsetnew is first computed. If the average is larger than that of
the triangle Told, then the partial surface described by triangles in Tsetnew is
more accurate and stable than that described by the triangle Told. In this case,
the triangle Told is deleted from Sold−overlapping and the triangles in Tsetnew

are retained in Sshifted−new−overlapping and vice versa. As a consequence of
this operation, a set of non-overlapping triangles is left in Sold−overlapping and
Sshifted−new−overlapping , as illustrated in Figure 4(left).

The connection method in [8] is employed here to fill the gaps among
triangles in Sold−overlapping, Sshifted−new−overlapping , Sold−non−overlapping and
Snew−non−overlapping . After filling all the gaps, the finally reconstructed trian-
gular mesh has been created for the representation of surface. One example of
2D triangular mesh from teletubby is presented in Figure 4(right).

4 Surface Smoothing Algorithm

The finally reconstructed surface in the last section is usually non-smoothing in
the smooth area of real surface mainly due to a rapid change of orientation of
reconstructed surface and the estimation of surface orientation is often sensitive
to noise introduced by scanning, registration and integration. Therefore how to
effectively combat noise on the surface mesh, while preserving desired features,
is thus an active area of research. To this end, two main approaches have been
proposed: One is to adjust vertex positions so that the overall surface becomes
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smoother [10], the other is to smooth the surface normals [11, 12]. Surface nor-
mals play a critical role in most of the proposed surface smoothing algorithms
since normals impose a greater impact on the model’s perceived quality. There-
fore, features of a surface can be determined more easily using surface normals
than using vertex positions.

For this purpose, we develop here a simple method to accurately estimate the
surface orientation as follows. The normal of each vertex in the mesh is firstly
calculated by averaging the normals of all the triangles weighted by their areas
[7] that share the vertex. This step of normal computation is different from that
in Section 2. While the former may apply points from two images, the latter
apply points only from a single image. The neighbouring vertices of a vertex are
all other vertices of the triangles sharing the vertex.

If a surface is smooth, then the orientation of each vertex should be con-
sistent with those of its neighbours. So the weighted orientation variation∑M

i=1
∑N

j=1WijΔθij should be minimum where M is the number of vertices in the
mesh and N is the number of neighbouring vertices of a vertex. For each vertex
Vi and its neighbouring vertices Vi1, Vi2, · · ·, ViN , the including angles between
normal vectors Nimean at Vi and Nij at Vij are Δθij : Nimean = 1

N

∑N
j=1Nij ,

Wij are the weights of Δθij .
To optimizeWij , we apply the entropy maximization (EntMax) principle from

statistical mechanics [4]. Thus, the following objective function is built to smooth
noisy mesh: J =

∑M
i=1

∑N
j=1 WijΔθij − (− 1

β

∑M
i=1

∑N
j=1 Wij ln Wij). Differentiating

this objective function about Wij leads to: ∂J
∂Wij

= Δθij + 1
β

ln Wij + 1
β
Wij

1
Wij

=

0. Thus, Wij = exp(−βΔθij − 1). Since in Wij , exp(-1) is a constant, after
normalization, Wij can be expressed as: Wij = exp(−βΔθij). Finally, the new
orientation Ni at vertex Vi is updated as a weighted sum of Nij : Ninew = Ni +∑N

j=1WijNij where the parameter β controls how smooth the final surface is.
The smaller the parameter β, the smoother the final surface (β= 0.005 and
iteration number = 5).

Fig. 5. Integration results of 3 views of lobster and 7 views of doughboy before (odd
column) and after (even column) using our smoothing algorithm

Due to more accurate estimation of surface orientation, the finally recon-
structed surface becomes smoother, as demonstrated in Figure 5 where after
smoothing, fewer artefacts appear in the abdomen of the lobster and in the
chest, mouth and hat of the doughboy. Meanwhile the geometric features such
as corners and cease edges are desirably kept.
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5 Experiment Results and Conclusions

To measure the accuracy of the original and improved integration algorithms,
we defined the integration error as the average distance between vertices of
remaining triangles in Snew−overlapping and their closest vertices of those in
Sold−overlapping. If the registration of two range images is quite accurate,
then the remaining triangles in Snew−overlapping should be close to those in
Sold−overlapping, leading the integration error to be small. The experimental re-
sults about 6 objects with total 44 images are presented in Figures 6, 7, and 8
and Table 1.

Fig. 6. Integration results using our method. Left: bird(13 views). Second: bunny(6
views). Third: doughboy(7 views). Right: frog(7 views).

Fig. 7. Integration results with small(left two) and large (right two) registration errors
for different algorithms. Odd column: the integration method [8]. Even column: our
method.

From Figures 6, 7, and 8 and Table 1, it can be seen that our algorithm con-
sistently outperforms the algorithm proposed in [8] in the sense that in all cases,
the integration error has been reduced and more accurate, smooth and water-
tight surfaces have been reconstructed. When the registration error is small, our
method produces similar results to the method [8], as demonstrated by Figure 7.

Fig. 8. Integration results with large registration error for different algorithms. Left:
the integration algorithm [8]. Right: our method.
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Table 1. Integration results using different algorithms and images. RE: Registration
Error (RE)[5]. IE: Integration Error(IE1) [8]. IE: Integration Error(IE2) (our method).

Image Views Points Face Vertex RE(mm) IE1(mm) IE2(mm)
Bird 13 102163 53531 27132 0.40 1.08 0.74
Bunny 6 30816 24890 12530 0.30 0.87 0.64
Doughboy 7 53460 25704 12956 0.45 1.10 0.75
Frog 7 46075 30767 15532 0.45 1.16 0.68
Tubby 6 30608 31464 15982 0.32 0.88 0.65
Duck 5 57194 39740 20031 0.65 1.58 0.97

But when the registration error is relatively large, our method considerably out-
performs the method [8], as demonstrated by Figures 7 and 8. In this case, the
registration algorithm [5] calibrated the rotation angle of the camera motion
from the tubby and duck images to be 15.96◦ and 18.76◦ with an expectation
of 20◦ respectively, yielding a relative calibration error in rotation angle of as
large as 20.2%. For the duck images, the average registration error is 0.65mm.
While the method [8] produced an integration error of 1.58mm, our integration
algorithm produced the corresponding error of 0.97mm, leading the integration
error to be reduced remarkably by 38%. While the method [8] created a lot of
false connections and gaps, our method almost perfectly recovered all details of
the duck about wing, eye, and neck as shown in Figure 8 and all details of the
doughboy about hand, mouth and hat as shown in Figure 7. For the integration
of various views of any object, it took less than 30 minutes on a Pentium 4 com-
puter. The larger the number and sizes of images, the more time the integration
requires.

The main reason for our algorithm to outperform the method [8] is that we
explicitly took into account both registration errors and scanning noise. Our
integration method has the following characteristics: (1) it is able to deal with
noisy mesh and compensate the registration error; (2) it smoothes the surface
efficiently due to the use of a Gaussian filter; and finally, (3) it is an automatic
process with range images registered under typical conditions without any re-
strictive assumption [3]. The output is a watertight surface. In the future, we
are planning to register and integrate all the views simultaneously using a star
network [6] to avoid the registration error accumulation.
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