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Abstract. Highly regular data can be represented succinctly by various
kinds of implicit data structures. Many problems in P are known to be
hard if their input is given as circuit or Ordered Binary Decision Diagram
(OBDD). Nevertheless, in practical areas like CAD and Model Checking,
symbolic algorithms using functional operations on OBDD-represented
data are well-established. Their theoretical analysis has mostly been
restricted to the number of functional operations yet. We show that
P-complete problems have no symbolic algorithms using a polylogarith-
mic number of functional operations, unless P=NC. Moreover, we com-
plement PSPACE-hardness results for problems on OBDD-represented
inputs by fixed-parameter intractability results, where the OBDD width
serves as the fixed parameter.

1 Introduction

Algorithms on (weighted) graphs G with node set V and edge set E ⊆ V 2 typi-
cally work on adjacency lists of size Θ(|V |+ |E|) or on adjacency matrices of size
Θ(|V |2). But in many of today’s application areas, graphs occur which cannot
be represented explicitly on current computers, or on which even efficient algo-
rithms are not applicable. Ordered Binary Decision Diagrams (OBDDs) [2], [20]
are a data structure for Boolean functions which is proven as succinct represen-
tation for structured and regular data.

Having an OBDD representation of a graph, we are interested in solving prob-
lems on it without extracting too much explicit information from it. Algorithms
whose access to the input graph is mainly restricted to functional operations
are called implicit or symbolic algorithms. In this way, OBDD-based methods
are well-established heuristics for special problems in CAD and Model Check-
ing (see, e. g., [10], [20]). These algorithms are observed to be very efficient in
practical applications handling large inputs. However, their theoretical analysis
has mostly been restricted to the number of functional operations up to the
present.

Recent research tries to develop theoretical foundations on OBDD-based al-
gorithms. On the one hand, this includes the development of symbolic methods
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for fundamental graph problems like topological sorting [21] and the computa-
tion of connected components [7], [8], maximum flows [11], [16], and shortest
paths [15], [18]. On the other hand, we need more sophisticated analysis tech-
niques to explain the practical success of symbolic algorithms.

In order to represent a directed graph G = (V, E) by an OBDD, we consider its
characteristic Boolean function χG, which maps binary encodings of node pairs
to 1 if and only if they correctly reflect G. This representation is known to be not
larger than classical ones. Nevertheless, we hope that advantageous properties of
G lead to small, that is sublinear OBDD size. Nunkesser and Woelfel [13] show
that OBDD representations of various kinds of P4-sparse and interval graphs
can be essentially smaller than explicit representations.

Problems typically get harder when their input is represented implicitly. For
circuit representations, this is shown in [1], [6], [14]. Because OBDDs may be
exponentially larger than circuits, these results do not directly carry over to
problems on OBDD-represented inputs. Feigenbaum et al. [5] prove that the
Graph Accessibility Problem is PSPACE-complete on OBDD-represented graphs.
First efficient upper bounds on time and space of symbolic graph algorithms on
special inputs have been presented by Sawitzki [16], [18] and Woelfel [21]. These
results rely on restrictions on the complete-OBDD width of occurring OBDDs.
The representational power of complete OBDDs with bounded width is discussed
in [17].

The design of symbolic graph algorithms often pursues the aim of obtaining
polylogarithmic runtime w. r. t. |V | on special input instances. This requires two
conditions: A small number of executed OBDD operations and small size of all
occurring OBDDs. We contribute hardness results related to both conditions.

The paper is organized as follows: Section 2 formalizes symbolic algorithms
working on the characteristic Boolean function of an input string. This frame-
work enables us to describe a simulation of symbolic algorithms by parallel al-
gorithms in Section 3, which implies that P-complete problems have no sym-
bolic algorithms using a polylogarithmic number of functional operations, un-
less P=NC. For none of the existing OBDD-based symbolic algorithm analy-
ses so far, a restriction on the input OBDD width suffices to prove efficiency.
This would correspond to a fixed-parameter tractable algorithm with the in-
put’s OBDD width as parameter. For various fundamental graph problems,
such algorithms do not exist unless P=PSPACE, which is shown in the sec-
ond part of the paper. After foundations on OBDDs in Section 4, we discuss
the fixed-parameter tractability of critical operations on OBDDs in Section 5.
So we are able to prove implicit versions of several graph problems to be fixed-
parameter intractable in Section 6. Finally, Section 7 gives conclusions on the
work.

2 A Framework for Symbolic Algorithms

In order to formalize what typically makes a symbolic algorithm, we introduce
Symbolic Random Access Machines. A classical Random Access Machine (RAM)
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gets its input as a binary string I ∈ {0, 1}∗ on a read-only input tape and presents
its output O on a write-only output tape.

For B := {0, 1}, let us denote the ith character of a binary string x ∈ B
n by

xi and let |x| :=
∑n−1

i=0 xi2i identify its value. The class of Boolean functions
f : {0, 1}n → {0, 1} will be denoted by Bn. We define the characteristic Boolean
function χI ∈ Bn of some I ∈ B

N by χI(x) := I|x| for n := �log2 N�, x ∈ B
n,

and IN , . . . , I2n−1 := 0.

Definition 1. A Symbolic Random Access Machine (SRAM) M corresponds
to a classical RAM without input and output tapes. In addition to its working
registers R = R0, R1, . . . (containing integers), it has symbolic registers S =
S0, S1, . . . which contain Boolean functions initialized to the zero function. The
input I is presented to M as characteristic Boolean function χI in S0. Finally,
M presents its output O as χO in S0.

Besides the usual RAM instructions, an SRAM M offers the following oper-
ations on registers (resp. functions) Si and Sj:

– Request the number n of Boolean variables all functions Si are defined on
(initially �log2 N�).

– Increase the variable count n by some amount ∆n ∈ N.
– Set Si := Sj.
– Evaluate Si due to some variable assignment a ∈ B

n.
– Compute the negation Si.
– Compute Si ⊗ Sj for some binary infix operator ⊗ ∈ B2.
– Replace a variable xk for Si by a constant c ∈ B.
– Swap two variables xk, x� for Si, i. e., S′(x0, . . . , xk, . . . , x�, . . . , xn) :=

Si(x0, . . . , xk−1, x�, xk+1, . . . , x�−1, xk, x�+1, . . . , xn−1).
– Decide whether Si = Sj.
– Compute the number |S−1

i (1)| of satisfying variable assignments.
– Write all satisfying variable assignments S−1

i (1) into R.
– Compute the subset of {x0, . . . , xn−1} on which Si essentially depends on.
– Set S0 to some function f ∈ Bn represented in R due to some standard

encoding (e. g., as polynomial, circuit, or OBDD). The encoding must enable
to be evaluated in linear sequential time w. r. t. its length.

Each operation costs one unit of time.

(The last operation enables to create fundamental building block functions hav-
ing some short description. Quantifications and variable replacements by func-
tions can be implemented by a constant number of negations and binary opera-
tors.)

This model is independent of a concrete data structure for Boolean functions;
it is chosen with the aim of showing lower bounds on the number of functional
operations. It covers what is considered as a symbolic resp. implicit algorithm
in most of the literature. Depending on the type of input data (e. g., graphs) the
definition of χI may vary; due to its interchangeability in this context, this does
not affect our results.
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3 Parallel Simulation of Symbolic Algorithms

It is known from P-completeness theory that P-complete, FP-complete, resp.
quasi-P-complete problems cannot be solved by PRAMS in parallel time
O(logk N) using O(Nk) processors for problem size N and some constant k,
unless P=NC (see, e. g., [9]). Sieling and Wegener [19] present NC-algorithms
for all important OBDD operations. We use a simpler approach which suits
better for our purpose to prove the first main result of this paper.

Theorem 1. An SRAM M using time tM(N) and at most k log N Boolean
variables on implicitly represented inputs I ∈ B

N can be simulated by a CREW-
PRAM M′ in parallel time O((tM(N))2 ·log2 N)) using O(Nk) processors work-
ing on the explicit representation of I.

Proof. Each assignment a ∈ B
n of the n ≤ k log N Boolean variables the func-

tions of M can be defined on at any point in time is handled by its own processor
Pa which locally saves the value Si(a) for all symbolic registers Si used so far.
Hence, 2n = O(Nk) processors are used. At the beginning, Pa reads cell |a| on the
input tape and sets S0(a) accordingly. Common RAM instructions are executed
only on P0. Symbolic operations are simulated in parallel time O(tM(N)·log2 N)
each (proved in the paper’s extended version). Finally, S0 contains χO and each
processor Pa writes S0(a) into position |a| on the output tape. �	

Corollary 1. Unless P=NC, (strongly) P-complete, FP-complete, and quasi-P-
complete problems cannot be solved by SRAMs in (pseudo-)polylogarithmic time
O(logk(N)) (O(logk(N) · logk(M))) using at most k log N Boolean variables,
where N is the input size, M is the maximum magnitude of all numbers in the
input, and k is constant.

We briefly add an inapproximability result. Let A be a strongly quasi-P-
complete integer-valued combinatorial maximization problem whose optimal so-
lution value is polynomially bounded both in the input size N and the input’s
largest number M . Analog to Theorem 10.3.4 in [9] it follows:

Proposition 1. If A has a fully polynomial symbolic approximation scheme, it
can be solved by an SRAM in pseudopolylogarithmic time O(logk(N) · logk(M))
using O(log N) Boolean variables, k constant.

Corollary 2. A has no fully polynomial symbolic approximation scheme using
O(log N) Boolean variables, unless P=NC.

We have proved that none of the many P-complete problems can be solved by
symbolic algorithms using a polylogarithmic number of functional operations
and O(log N) variables, unless P=NC. All existing symbolic methods known to
the author use less than 10 log2 N variables, which is a usual restriction to keep
concrete data structures small. In particular, there is neither an NC algorithm
nor a P-completeness proof for the unit capacity maximum flow problem yet [9],
which gives a hint why not even the best known symbolic methods [16] for this
problem can guarantee polylogarithmic behavior on all the instances.
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In the remainder of the paper, we will consider the complexity of problems on
OBDD-represented inputs, which makes it necessary to give some foundations
on this well-established data structure. Hence, the terms “implicit”, “symbolic”,
and “OBDD-based” will be used interchangeable.

4 Ordered Binary Decision Diagrams

A Boolean function f ∈ Bn defined on variables x0, . . . , xn−1 can be represented
by an Ordered Binary Decision Diagram (OBDD) [2]. An OBDD G is a directed
acyclic graph consisting of internal nodes and sink nodes. Each internal node is
labeled with a Boolean variable xi, while each sink node is labeled with a Boolean
constant. Each internal node is left by two edges one labeled 0 and the other 1.
A function pointer p marks a special node that represents f . Moreover, a per-
mutation π ∈ Σn called variable order must be respected by the internal nodes’
labels on every path from p to a sink. For a given variable assignment a ∈ B

n,
we compute the function value f(a) by traversing G from p to a sink labeled
with f(a) while leaving each node labeled with xi via its ai-edge.

An OBDD with variable order π is called π-OBDD. The minimal-size π-OBDD
for a function f ∈ Bn is known to be canonical and will be denoted by
π-OBDD[f ]. Its size size(π-OBDD[f ]) is measured by the number of its nodes.
We adopt the usual assumption that all OBDDs occurring in symbolic algorithms
have minimal size, since all essential OBDD operations produce minimized di-
agrams. On the other hand, finding an optimal variable order leading to the
minimum size OBDD for a given function is known to be NP-hard. Independent
of π it is size(π-OBDD[f ]) ≤

(
2 + o(1)

)
2n/n for any f ∈ Bn.

Efficient Algorithms on OBDDs. OBDDs offer algorithms (called OBDD
operations in the following) for nearly all the symbolic operations of Definition 1,
which are efficient w. r. t. the size of involved OBDDs. The satisfiability of f
can be decided in time O(1). The negation f , the replacement of a variable
xi by some constant c (i. e., f|xi=c), and computing |f−1(1)| are possible in
time O

(
size(π-OBDD[f ])

)
. The set f−1(1) of f ’s minterms can be obtained

in time O
(
n · |f−1(1)|

)
. Whether two functions f and g are equivalent (i. e.,

f = g) can be decided in time O
(
size(π-OBDD[f ]) + size(π-OBDD[g])

)
.

The most important OBDD operation is the binary synthesis f ⊗ g for
f, g ∈ Bn, ⊗ ∈ B2 (e. g., ∧, ∨), which corresponds to the binary operator of
SRAMs; in general, it produces the result π-OBDD[f ⊗ g] in time and space
O

(
size(π-OBDD[f ]) · size(π-OBDD[g])

)
. The synthesis is also used to implement

quantifications (Qxi)f for Q ∈ {∃, ∀}. Hence, computing π-OBDD
[
(Qxi)f

]

takes time O
(
size2(π-OBDD[f ])

)
in general.

Nevertheless, a sequence of only n synthesis operations may cause an expo-
nential blow-up on OBDD sizes, in general. The book of Wegener [20] gives
a comprehensive survey on different types of Binary Decision Diagrams.

Representing Graphs by OBDDs. In Section 2, we defined characteristic
functions χI for inputs I of general problems. The next sections’ results will
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mostly be connected to decision problems on graphs G = (V, E) with N nodes
v0, . . . , vN−1. Hence, we adapt the definition of χI to χG(x, y) = 1 :⇔ (|x|, |y| <
N) ∧ (v|x|, v|y|) ∈ E, where x, y ∈ B

n and n := �log2 N�, which is common in
the literature. Undirected edges are represented by symmetric directed ones. It
can be easily seen that this is equivalent to the definition of χI in Section 2 if
I is the row-wise adjacency matrix.

Symbolic graph algorithms typically use intermediate functions defined on
a constant number k > 2 of variable vectors x(1), . . . , x(k) ∈ B

n mostly inter-
preted as node numbers or components of them. Therefore, reordering a func-
tion’s arguments becomes an important operation:

Definition 2. Let ρ ∈ Σk and f ∈ Bkn be defined on variable vectors
x(1), . . . , x(k) ∈ B

n. The argument reordering Rρ(f) ∈ Bkn w. r. t. ρ is defined
by Rρ(f)

(
x(1), . . . , x(k)

)
= f

(
x(ρ(1)), . . . , x(ρ(k))

)
.

In order to enable efficient argument reorderings (see Lemma 3), it is common
to use k-interleaved variable orders, denoted by πτ

k,n, which read bits of same
significance en bloc:

πτ
k,n :=

(
x

(1)
τ(0), . . . , x

(k)
τ(0), x

(1)
τ(1), . . . , x

(k)
τ(1), . . . . . . , x

(k)
τ(n−1)

)
,

where τ is the local order of every x(1), . . . , x(k). The order πid
k,n is called natural

in the following.

5 Fixed-Parameter Tractable OBDD Operations

Feigenbaum et al. have proved some fundamental graph problems to be hard if
the input is represented as OBDD. That is, there is no hope of beating classical
algorithms on explicit inputs in general. However, symbolic methods for maxi-
mum flows [16], shortest paths [18], and topological sortings [21] could be proved
to have polylogarithmic runtime when the input graphs are of special structure.
The analysis technique relies on the complete-OBDD width of Boolean functions:

Definition 3. An OBDD for f ∈ Bn is called complete if every path from its
function pointer to a sink has length n.

That is, complete OBDDs are not allowed to skip variable tests. The minimal-
size complete π-OBDD for f ∈ Bn is also known to be canonical [20] and will
be denoted by π-OBDDc[f ] in the following.

Definition 4. The complete-OBDD width of a function f ∈ Bn w. r. t. a vari-
able order π ∈ Σn is the maximum number of OBDD nodes labeled with the same
variable in π-OBDDc[f ].

Clearly, it is size(π-OBDD[f ]) ≤ size(π-OBDDc[f ]) = O(nw) for any f ∈ Bn

with complete-OBDD width w and variable order π. On the other hand, it is
size(π-OBDDc[f ]) ≤ n · size(π-OBDD[f ]) (see, e. g., [20]).
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We now briefly introduce the concept of fixed-parameter tractability. For
a comprehensive introduction, the reader is referred to the book of Downey
and Fellows [4].

Definition 5.

(1) Let Γ be a finite alphabet. A parameterized problem Π is a map Π : Γ ∗×N →
Γ ∗. The second component k of a problem instance (I, k) ∈ Γ ∗ × N is called
the problem parameter.

(2) An algorithm for a parameterized problem Π is called fixed-parameter
tractable (FPT), if it solves Π in time O(Nα · β(k)) on any instance
(I, k) ∈ Γ N × N for a constant α and an arbitrary function β : N → N.

That is, Π can be solved in polynomial time for fixed k. Recent symbolic al-
gorithm analyses [16], [18], [21] use that critical OBDD operations which may
cause OBDDs to grow are fixed-parameter tractable, where the complete-OBDD
width serves as the fixed parameter.

Let f (1), f (2) ∈ Bn be defined on variables x0, . . . , xn−1; assume f (1) resp. f (2)

has complete-OBDD width w1 resp. w2 w. r. t. some variable order π ∈ Σn.

Lemma 1 (Binary synthesis). The binary synthesis result π-OBDD[f (1) ⊗
f (2)], ⊗ ∈ B2, is computed in time O

(
nw1w2 log(nw1w2)

)
and space O

(
nw1w2

)

and has a complete-OBDD width of at most w1w2.

Often, symbolic algorithms contain quantification sequences over Ω(n) variables
of some variable vector (e. g., a graph node encoding). While each single one is
efficient, a sequence of length Ω(n) may cause an exponential blow-up in general.
Hence, we consider the properties of quantifications over a subset of variables.

Lemma 2 (Quantification). Let X ⊆
{
x0, . . . , xn−1

}
. The quantifi-

cation result π-OBDD
[
(QX)f (1)

]
, Q ∈ {∃, ∀}, is computed in time

O
(
|X |n22w1 log(n22w1)

)
and space O

(
|X |n22w1

)
and has a complete-OBDD

width of at most 2w1 .

Let f (3) ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈ B
n; assume f (3)

has complete-OBDD width w3 w. r. t. a variable order πτ
k,n, τ ∈ Σn. Let ρ ∈ Σk.

Lemma 3 (Argument reordering). The argument reordering result Rρ(f (3))
of f (3) w. r. t. ρ is computed in time O

(
nw3k3k

)
and space O

(
nw33k

)
and has

a complete-OBDD width of at most w33k.

(Proofs of Lemmas 1–3 can be found in the paper’s extended version.)
As a final building block we introduce multivariate threshold functions, which

are used to implement weighted comparisons.

Definition 6 ([21]). Let f ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈
B

n. Function f is called k-variate threshold function iff there are W ∈ N, T ∈ Z,
and α1, . . . , αk ∈ {−W, . . . , W} such that
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f
(
x(1), . . . , x(k)

)
=

(
k∑

i=1

αi ·
∣
∣
∣x(i)

∣
∣
∣ ≥ T

)

.

The corresponding class of functions is denoted by T
W
k,n.

Clearly, each of the relations >, ≤, <, and = can be composed of O(1) multi-
variate threshold functions.

Lemma 4 ([21]). Functions f ∈ T
W
k,n have complete OBDDs of width O(k2W )

using the natural variable order πid
k,n.

Having considered all critical OBDD operations which may enlarge their
operands, Lemmas 1–4 imply a general result on the fixed-parameter tractability
of bounded sequences of operations.

Theorem 2. Let f ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈ B
n for

a constant k. Assume f has complete-OBDD width w w. r. t. the variable order
πid

k,n. Let S be a sequence of O(1)

– operations as introduced in Section 4 and
– quantifications over variable subsets X ∈ B

n

applied on f , functions from T
O(1)
k,n , and intermediate results generated by the

current prefix of S.
Each function generated by S has a complete-OBDD width of at most β(w)

w. r. t. πid
k,n for some appropriate function β : N → N. So S can be imple-

mented as an FPT algorithm on πid
k,n-OBDD[f ] with parameter w, runtime

O(nγ(w) log(n)), and space O(nγ(w)) for some appropriate function γ : N → N.

Using this result it is possible to prove that some OBDD-based graph algo-
rithms have polylogarithmic runtime w. r. t. N on special instances [16], [18], [21].
Nevertheless, for none of these analyses it is sufficient to restrict only the in-
put’s complete-OBDD width; for example, the symbolic shortest paths algorithm
in [18] requires also the output to have constant complete-OBDD width. This
motivates the question if there are any FPT algorithms for fundamental graph
problems whose parameter is associated solely to the input OBDD.

Starting from a PSPACE-hardness result in [5–Theorem 16], we show in the
next section that such algorithms do not exist for some basic graph problems,
unless P=PSPACE. This will incorporate FPT reductions build upon Theorem 2
which assure that the fixed parameter grows independently of N .

6 Fixed-Parameter Intractability Results

The Graph Accessibility Problem (GAP) is defined as follows: Given a directed
graph G = (V, E), decide whether there is a directed path from some source
s ∈ V to some terminal t ∈ V . Due to Theorem 16 in [5], the GAP is
PSPACE-complete if G is represented by an OBDD for χG.
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The reduction generates an OBDD representing the configuration graph GM
of a polynomially space bounded Turing machine M with some input I ∈ B

∗.
The OBDD for χGM checks for each local pair (X, Y, Z), (X ′, Y ′, Z ′) of three
consecutive tape positions of the configuration encodings if they are consistent
with a computation step. From the construction in [5] it directly follows that
the complete-OBDD width of χGM w. r. t. the natural 2-interleaved variable
order πid

2,p(|I|) is constant (i. e., independent of |I|), where p(|I|) is a polynomial
number of Boolean variables used to encode one configuration. Hence, an FPT
algorithm for GAP on OBDDs would be able to decide in polynomial time w. r. t.
|I| if there is a path between the start and accepting configuration – we have
our first fixed-parameter intractability result:

Corollary 3 (from Theorem 16 in [5]). The GAP on OBDD-represented
graphs has no FPT algorithm with the fixed parameter being the input’s complete-
OBDD width, unless P=PSPACE.

(In the following, we always assume that the fixed-parameter is the input’s
complete-OBDD width.)

In [18], the All-Pairs Shortest-Paths Problem (APSPP) on OBDD-represented
graphs is investigated assuming a canonical generalization to graphs with edge
weights c : E → N by χG(x, y, a) = 1 :⇔ c(v|x|, v|y|) = |a|. An FPT algorithm is
presented whose fixed parameter depends also on the output’s complete-OBDD
width. This additional condition is necessary (unless P=PSPACE) because the
GAP can be trivially reduced to a shortest path problem. Similarly easy, the
GAP can be reduced to the Maximum Flow Problem.

Proposition 2. Neither the APSPP nor the Maximum Flow Problem on
OBDD-represented graphs has an FPT algorithm, unless P=PSPACE.

Analog to Theorem 3.2(1) in [3], the result GM generated in the
PSPACE-hardness proof for GAP can be modified to three fundamental prob-
lems on undirected graphs: Acyclicity, Connectivity, and the GAP in undirected
planar graphs, UPGAP. In doing so, the OBDD width is not essentially enlarged
(proved in the paper’s extended version).

Theorem 3. Acyclicity, Connectivity, and the UPGAP have no FPT algo-
rithms on OBDD-represented graphs with 2-interleaved natural variable order,
unless P=PSPACE.

Last but not least, we transfer a selection of reductions from [1], [3], [12] to
symbolic OBDD-based reductions which satisfy the preconditions of Theorem 2
and, hence, are transitive FPT reductions (see, e. g., [4–Definition 9.3]). We write
A ≤S-FPT B if such a reduction exists for decision problems A and B.

Theorem 4.
(1) Connectivity ≤S-FPT Eulerian-Cycle,
(2) UPGAP ≤S-FPT Bipartiteness,
(3) UPGAP ≤S-FPT Planarity.
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Proof. We describe reductions from χG ∈ B2n to χG′ for G = (V, E), V =
{v0, . . . , vN−1}, N = 2n, and G′ = (V ′, E′).

Part (1): We set V ′ := V ∪ {uij | 0 ≤ i < j < N} ∪ {ai, bi | 0 ≤ i < N}.
E′ contains E, {vi, ai}, {ai, bi}, and {bi, vi} for all i, and {vi, uij}, {uij , vj} iff
{vi, vj} ∈ E. Note that all nodes in V ′ have even degree and G′ is connected iff
G is connected. Hence, G′ has an Eulerian cycle iff G is connected.

We define χG′ on 4(n + 1) variables with order πid
4,n+1. A node number x ∈

B
2(n+1) consists of two concatenated variable vectors of length n + 1 each. Bits

xn−1 . . . x0 encode the index i, bits x2n . . . xn+1 encode the index j for nodes
ui,j , and the remaining bits xn and x2n+1 encode the node type (i. e., v, u, a,
or b). We denote these three components of a node number x by i(x), j(x), resp.
T (x) and define

χG′(x, y) :=
[
(T (x) = T (y) = v) ∧ χG(i(x), i(y))

]

∨
[
(T (x) = v) ∧ (T (y) = a) ∧ (i(x) = i(y))

]

∨
[
(T (x) = a) ∧ (T (y) = b) ∧ (i(x) = i(y))

]

∨
[
(T (x) = b) ∧ (T (y) = v) ∧ (i(x) = i(y))

]

∨
[
(T (x) = v) ∧ (T (y) = u) ∧ (i(x) = i(y)) ∧ χG(i(y), j(y))

]

∨
[
(T (x) = u) ∧ (T (y) = v) ∧ (j(x) = j(y)) ∧ χG(i(x), j(x))

]
,

where tests T (x) = v, u, a, b check xn and x2n+1 and ensure |j(x)| = 0 for
T (x) �= u.

Part (2): We set V ′ := (V ∪E)×{1, 2}∪{w}. E′ contains edges
{
(v, r), (e, �)

}

for e ∈ E, v ∈ V ∩e, and r = �. Moreover, E′ contains
{
(s, 1), (s, 2)

}
,
{
(t, 1), w

}
,

and
{
(t, 2), w

}
for source and terminal s, t ∈ V . G′ contains an odd cycle (i. e.,

is not bipartite) iff G contains a path between s and t.
We define χG′ on 4(n + 2) variables with order πid

4,n+2. A node number x ∈
B

2(n+2) consists of two concatenated variable vectors of length n + 2 each. The
additional bits xn, xn+1, x2n+2, and x2n+3 are used to encode the node type
(i. e., v, e, or w) and the copy index (i. e., 1 or 2). We denote xn−1 . . . x0 by
i(x), x2n+1 . . . xn+2 by j(x), the type by T (x) ∈ {v, e, w}, and the copy index
by c(x) ∈ {1, 2}.

χG′(x, y) :=
[
(T (x) = v) ∧ (T (y) = e) ∧ (i(x) = i(y)) ∧ (c(x) = c(y)) ∧ χG(i(y), j(y))

]

∨
[
(T (x) = e) ∧ (T (y) = v) ∧ (j(x) = j(y)) ∧ (c(x) = c(y)) ∧ χG(i(x), j(x))

]

∨
[
(T (x) = T (y) = v) ∧ (v|i(x)| = v|i(y)| = s) ∧ (c(x) �= c(y))

]

∨
[
(T (x) = v) ∧ (T (y) = w) ∧ (v|i(x)| = t)

]
,

where tests against T (x) and c(x) check the additional bits xn, xn+1, x2n+2,
and x2n+3 and ensure |j(x)| = 0 for T (x) = v as well as |i(x)|, |j(x)| = 0 for
T (x) = w.
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Part (3): We set V ′ := V ∪{w1, w2, w3} and define w4 := s and w5 := t. E′ is
obtained by adding the edges of the complete graph on w1, . . . , w5 to E except of
the edge {w4, w5}. Because G is planar, G′ is planar iff there is no path between
s = w4 and t = w5. Now the definition of χG′ in terms of binary operators and
comparisons is straightforward and left to the reader.

Final thoughts: In order to obtain an undirected graph G′, we set χG′(x, y) :=
χG′(x, y) ∨ χG′(y, x). Additional singletons appearing due to the node encoding
do not affect any of the three considered graph properties. We have seen that χG′

can be expressed in terms of a constant number of disjunctions, conjunctions,
negations, and argument reorderings applied to the original χG, multivariate
threshold functions from T

O(1)
O(1),O(n), and intermediate results. Due to Theorem 2,

all three reductions can be implemented as an OBDD-based FPT algorithm on
the πid

2,n-OBDD for χG. �	

Because Theorem 3 satisfies the preconditions on the variable order of Theo-
rem 2, we conclude:

Corollary 4. None of the problems Bipartiteness, Eulerian-Cycle, and Pla-
narity on OBDD-represented graphs has an FPT algorithm, unless P=PSPACE.

In contrast to this paper’s exemplary applications of the symbolic FTP reduction
technique, more sophisticated reductions (e. g., to the Bipartite Perfect Matching
Problem [3]) require quantifications and more complex multivariate threshold
functions.

7 Conclusions

The complexity of problems on implicitly represented inputs has been consid-
ered from two different points of view: First, the number of Boolean operations
as a lower bound on the over-all runtime of typical symbolic algorithms. Un-
less P=NC, no P-complete problem can be solved by O(logk N) operations on
functions defined on O(log N) variables.

Then, we turned to lower bounds on the concrete over-all runtime of OBDD-
based graph algorithms. While the hardness of some basic problems in this
scenario was already known, we showed that even the restriction to inputs
with constant complete-OBDD width does not yield polylogarithmic algorithms
w. r. t. |V |, unless P=PSPACE. While applied to a selection of fundamental
problems yet, the technique of symbolic FPT reductions can be used for various
further problems on OBDD-represented inputs by substituting existing constant
depth reductions and projections used for circuit representations (which are more
powerful in general, see [20–Section 4.12]).

We conclude that symbolic resp. OBDD-based algorithms, though very suc-
cessful in practical applications, have quite limited capabilities on many polyno-
mially solvable problems, even for strongly restricted instances.

Acknowledgments. Thanks to Detlef Sieling and Ingo Wegener for proofread-
ing and discussions.
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