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Abstract. We provide parameterized algorithms for NONBLOCKER, the
parametric dual of the well known DOMINATING SET problem. We ex-
emplify three methodologies for deriving parameterized algorithms that
can be used in other circumstances as well, including the (i) use of
extremal combinatorics (known results from graph theory) in order to
obtain very small kernels, (i7) use of known exact algorithms for the
(nonparameterized) MINIMUM DOMINATING SET problem, and (¢4¢) use of
exponential space. Parameterized by the size k4 of the non-blocking set,
we obtain an algorithm that runs in time O*(1.4123%¢) when allowing
exponential space.

1 Introduction

The minimum dominating set of a graph G = (V, E) is a subset V' C V of
minimum cardinality such that for all v € V — V' there exists a v € V' for
which (u,v) € E. The problem of finding a minimum dominating set in a graph
is arguably one of the most important combinatorial problems on graphs, hav-
ing, together with its variants, numerous applications and offering various lines
of research [II]. The problem of finding a set of at most k vertices dominat-
ing the whole n-vertex graph is not only A P-complete but also hard to ap-
proximate [2], [I0]. Moreover, this problem is also intractable when viewed as
a parameterized problem [5]. The status is different if the problem is to find
a set of at most k = n — kg vertices dominating a given n-vertex graph, where
kq (k—dual) is considered the parameter. Our focus in this paper is to present
a new O0*(2.0226%4¢)-algorithm for this dual problem which we will henceforth
call the NONBLOCKER problem. (We will make use of the O*-notation that has
now become standard in exact algorithmics: in contrast to the better known
O-notation, it not only suppresses constants but also polynomial-time parts.)
Interesting relationships are known for the optimum value nb(G) of k4 for
a graph G: Nieminen [16] has shown that, for a non-trivial connected graph,
nb(G) equals the maximum number of pendant edges among all spanning forests
for G (an edge {u,v} in a forest F is pendant iff either u or v have degree one
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in F), and therefore nb(G) is again equal to the size of a maximum minimal
edge cover of G due to a result of Hedetniemi [I2]. How to algorithmically relate
minimum dominating sets and maximum minimal edge covers is shown in [I4].

On graphs of degree at least one, Ore [I7] has shown (using different termi-
nology) that the NONBLOCKER problem admits a kernel of size 2k, . Ore’s result
was improved by McCuaig and Shepherd [I5] for graphs with minimum degree
two; in fact, their result was a corollary to the classification of graphs that satisfy
a certain inequality stated by Ore with equality. Independently, the result had
been discovered by the Russian mathematician Blank [3] more than fifteen years
ago, as noticed by Reed in [I9]. More precisely, they have shown:

Theorem 1. If a connected graph G = (V, E) has minimum degree two and is
not one of seven exceptional graphs (each of them having at most seven vertices),
then the size of its minimum dominating set is at most 2/5 - |V|.

The algorithms we present are easy to implement, addressing an important need
of professional programmers. They essentially consist only of exhaustively apply-
ing simple data reduction (preprocessing) rules and then doing some search in
the reduced problem space. (The mathematical analysis of our simple algorithm
is quite involved and non-trivial, however.)

Our data reduction rules make use of several novel technical features. We
introduce a special annotated catalytic verter, a vertex which is forced to be in
the dominating set we are going to construct. The catalytic vertex is introduced
by a catalyzation rule which is applied only once. The graph is reduced and
when no further reduction rules are applicable, a special de-catalyzation rule is
applied. The de-catalyzation rule also is applied only once. We believe that the
use of (de-)-catalyzation rules that might also increase the parameter size (since
they are only applied once) is a technique that might find more widespread use
when developing kernelization algorithms.

2 Definitions

We first describe the setting in which we will discuss MINIMUM DOMINATING SET
in the guise of NONBLOCKER.

A parameterized problem P is a subset of X* x N, where X' is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of the
parameterized problem P is a pair (I,k), where the second component k is
called the parameter. The language L(P) is the set of all YES-instances of P. We
say that the parameterized problem P is fized-parameter tractable [5] if there is
an algorithm that decides whether an input (7, k) is a member of L(P) in time
F(k)|I]¢, where ¢ is a fixed constant and f(k) is a recursive function independent
of the overall input length |I|. The class of all fixed-parameter tractable problems
is denoted by FP7T.

The problems DOMINATING SET and NONBLOCKER are defined as follows:
An instance of DOMINATING SET (DS) is given by a graph G = (V, E), and
the parameter, a positive integer k. The question is: Is there a dominating set
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D C V with |D| < k? An instance of NONBLOCKER (NB) is given by a graph
G = (V, E), and the parameter, a positive integer k4. The question is: Is there
a non-blocking set N CV with |N| > ky4?

A subset of vertices V/ such that every vertex in V' has a neighbor in V \ V'
is called a non-blocking set. Observe that the complement of a non-blocking set
is a dominating set and vice versa. Hence, G = (V, E) has a dominating set of
size at most k if and only if G has a non-blocking set of size at least kg = n — k.
Hence, DOMINATING SET and NONBLOCKER are called parametric duals.

Let P be a parameterized problem. A kernelization is a function K that is
computable in polynomial time and maps an instance (I, k) of P onto an instance
(I', k') of P such that (I, k) is a YES-instance of P if and only if (I, k') is a YES-
instance of P, |I'| < f(k), and k¥’ < g(k) for arbitrary functions f and g. The
instance (I', k') is called the kernel (of I). The importance of these notions for
parameterized complexity is due to the following characterization.

Theorem 2. A parameterized problem is in FPT iff it is kernelizable.

Hence, in order to develop FPT -algorithms, finding kernelizations can be seen
as the basic methodology. The search for a small kernel often begins with finding
local reduction rules. The reduction rules reduce the size of the instance to which
they are applied; they are exhaustively applied and finally yield the kernelization
function. In this paper we introduce a small variation of this method; namely, we
introduce a catalyzation and a de-catalyzation rule, both of which are applied
only once. Contrary to our usual reduction rules, these two special rules might
increase the instance size.

We use this approach to solve the following Catalytic Conversion form of the
problem. An instance of NONBLOCKER WITH CATALYTIC VERTEX (NBCAT) is
given by a graph G = (V, E), a catalytic vertex ¢, and the parameter, a positive
integer k4. The question is: Is there a non-blocking set N C V with |N| > ky
such that ¢ ¢ N? The special annotated catalytic vertex is assumed to be in the
dominating set (not the non-blocking set).

3 Catalytic Conversion: FP7Z Agorithm for NONBLOCKER

Our kernelization algorithm for solving NONBLOCKER uses two special rules [I]
and [2] to introduce and then finally to delete the catalytic vertex. The actually
preprocessing then uses five more rules that work on an instance of NBcat.

Reduction rule 1 (Catalyzation rule). If (G,k4) is ¢ NONBLOCKER-
instance with G = (V,E), then (G';c,kq) is an equivalent instance of
NONBLOCKER WITH CATALYTIC VERTEX, where ¢ ¢ V is a new vertezr, and
G' = (VU{c}, E).

Reduction rule 2 (De-catalyzation rule). Let (G,c, kq) be an instance of
NONBLOCKER WITH CATALYTIC VERTEX. Then, perform the following surgery to
obtain a new instance (G', kl;) of NONBLOCKER (i.e., without a catalytic vertex):
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Add three new vertices u, v, and w and introduce new edges cu, cv, cw, uv
and vw. All other vertices and edge relations in G stay the same. This describes
the new graph G'. Set kl, = kq + 3.

Reduction rule 3 (The Isolated Vertex Rule). Let (G, ¢, kq) be an instance
of NBcar. If C is a complete graph component (complete subgraph) of G that
does not contain ¢, then reduce to (G — C, ¢, kq — (|C| — 1)).

Observe that Rule Bl applies to isolated vertices. It also applies to instances that
do not contain a catalytic vertex. A formal proof of the soundness of the rule
is contained in [I8]. Notice that this rule alone gives a 2k, kernel for general
graphs with the mentioned result of Ore (details are shown below). By get-
ting rid of vertices of degree one, we can improve on the kernel size due to
Theorem [I1

Reduction rule 4 (The Catalytic Rule). Let (G,c,kq) be an instance of
NONBLOCKER WITH CATALYTIC VERTEX. Let v # ¢ be a vertex of degree one
in G with N(v) = u (where N(v) refers to the set of neighbor vertices of v).
Transform (G, ¢, kq) into (G, kg — 1), where:

— Ifu # c then G' = Gleey) N v, i.e., G’ is the graph obtained by deleting v
and merging u and c into a new catalytic vertexr ¢’ = (c < u).
— Ifu=cthen G’ =G~ v andd =c.

Lemma 1. Rule[] is sound.

Proof.  “Only if:” Let (G, ¢, kq) be an instance of NBcaT. Let V' C V(G) be
a non-blocking set in G with |V’| = k4. The vertex v is a vertex of degree one
in G. Let u be the neighbor of v in G. Two cases arise:

1. If v € V' then it must have a neighbor in V(G)\ V' and thus u € V(G)\V".
Deleting v will decrease the size of V'’ by one. If u = ¢, then (G',, kg — 1)
is a YES-instance of NBCAT. If u # ¢, merging u and ¢ will not affect the
size of V' as both vertices are now in V(G') \ V'. Thus, (G',c, kg — 1) is
a YES-instance of NBCAT.

2. If v € V(G) \ V', then two cases arise:

2.1. If uw is also in V(G) \ V' then deleting v does not affect the size of V.
Note that this argument is valid whether u = ¢ or u # c.

2.2. If u € V' then u # c. If we make v € V' and u € V(G) \ V', the size
of V' remains unchanged. Since u did not dominate any vertices in the
graph, this change does not affect N(u) \ v, and Case [l now applies.

“If:” Conversely, assume that (G, ¢, kq — 1) is a YES-instance of NBCAT.

1. If u = ¢, then we can always place v in V' and thus (G, ¢, kq) is a YES-
instance for NONBLOCKER WITH CATALYTIC VERTEX.

2. If u # ¢, getting from G’ to G can be seen as (1) splitting the catalytic
vertex ¢ into two vertices ¢ and wu, (2) taking ¢ as the new catalytic ver-
tex, and (3) attaching a pendant vertex v to u. As the vertex u is in
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V(G) \ V', v can always be placed in V', increasing the size of this set by
one. Thus (G, ¢, kq) is a YES-instance for NBCAT, concluding the proof of
Lemma [41

Reduction Rule [3] can be generalized as follows:

Reduction rule 5 (The Small Degree Rule). Let (G, ¢, kq) be an instance
of NONBLOCKER WITH CATALYTIC VERTEX. Whenever you have a verter x €
V(G) whose neighborhood contains a non-empty subset U C N(x) such that
NU) CUU{z} and c ¢ U (where N(U) is the set of vertices that are neighbors
to at least one vertex in U), then you can merge x with the catalytic vertex ¢
and delete U (and reduce the parameter by |U|).

Without further discussion, we now state those reduction rules that can be used
to get rid of all consecutive degree-2-vertices in a graph:

Reduction rule 6 (The Degree Two Rule). Let (G,c, kq) be an instance
of NBCAT. Let u,v be two vertices of degree two in G such that v € N(v) and
|N(u) UN(v)| =4, ie, Nu)={v,v} and N(v) = {v',u} for some v’ #v'. If
¢ & {u,v}, then merge v’ and v' and delete u and v to get (G', ', kq —2). If v’
or v' happens to be c, then ¢’ is the merger of u' and v'; otherwise, ¢’ = c.

Reduction rule 7 (The Degree Two, Catalytic Vertex Rule). Let
(G, ¢, kq) be an instance of NBCAT, where G = (V, E). Assume that ¢ has degree
two and a neighboring vertex v of degree two, i.e., N(v) = {v',c}. Then, delete
the edge vv'. Hence, we get the new instance (V, E \ {vv'}), ¢, kq).

Notice that all cases of two subsequent vertices u, v of degree two are covered in
this way: If u or v is the catalytic vertex, then Rule[f applies. Otherwise, if u and
v have a common neighbor z, then Rule [3] is applicable; x will be merged with
the catalytic vertex. Otherwise, Rule [ will apply. This allows us to eliminate all
of the exceptional graphs of Theorem [I] (since all of them have two consecutive
vertices of degree two).

Algorithm 1. A kernelization algorithm for NONBLOCKER

Input(s): an instance (G, kq) of NONBLOCKER
Output(s): an equivalent instance (G’ k};) of NONBLOCKER with V(G') C V(G),
V(G| <5/3 -k, and kl; < kq OR YES

Apply the catalyzation rule.
Exhaustively apply Rules [3 to [l In the case of Reduction Rule [l do so only for
neighborhoods U up to size two.
Apply the de-catalyzation rule.
{This leaves us with a reduced instance (G', k};).}
if [V(G')| > 5/3 - K, then
return YES
else
return (G', k})
end if
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Corollary 1. Alg. [0 provides a kernel of size upperbounded by 5/3 - kq + 3 for
any NONBLOCKER-instance (G, kq), where the problem size is measured in terms
of the number of vertices.

4 Searching the Space

4.1 Brute Force

With a very small kernel, the remaining reduced NONBLOCKER-instance can be
solved by brute-force search. Hence, we have to test all subsets of size kg within
the set of vertices of size at most 5/3 - k4. Stirling’s formula gives:

(a—1)k
Lemma 2. For any a > 1, <akk> ~ a” (afl) .

Corollary 2. By testing all subsets of size kq of a reduced instance (G, kq) of
NONBLOCKER, the NONBLOCKER problem can be solved in time O*(3.0701%¢).

4.2 Using Nonparameterized Exact Algorithmics

The above corollary can be considerably improved by making use of the fol-
lowing recent result of F. Fomin, F. Grandoni, and D. Kratsch [7] on general
graphs:

Theorem 3. MINIMUM DOMINATING SET can be solved in time O*(1.5260™)
with polynomial space on arbitrary n-vertex graphs.

The corresponding algorithm is quite a simple one for HITTING SET, considering
the open neighborhoods of vertices as hyperedges in a hypergraph; the quite
astonishing running time is produced by an intricate analysis of that algorithm.
Due to the 5/3 - k4-kernel for NONBLOCKER, we conclude:

Corollary 3. By applying the algorithm of Fomin, Grandoni, and Kratsch [7] to
solve MINIMUM DOMINATING SET on a reduced instance (G, kq) of NONBLOCKER,
the NONBLOCKER problem can be solved in time O*(2.0226%) with polynomial
space.

4.3 Trading Time and Space

Due to the fact that the kernel we obtained for NONBLOCKER is very small, it may
be worthwhile looking for an algorithm that uses exponential space. According
trade-off computations are contained in [7], so that we may conclude:

Corollary 4. By using exponential space, NONBLOCKER, can be solved in time
(and space) O*(1.4123%4).
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5 Discussion: Further Results and Open Questions

Questions on general graphs. We have presented two efficient parameterized
algorithms for the NONBLOCKER problem, the parametric dual of DOMINATING
SET. With the help of known (non-trivial) graph-theoretic results and new exact
algorithms for MINIMUM DOMINATING SET, we were able to further reduce the
involved constants.

It would be possible to use the result of Reed [I9] to obtain a smaller kernel for
NONBLOCKER if rules could be found to reduce vertices of degree two. Perhaps
such rules may be possible only for restricted graph classes, e.g., NONBLOCKER
restricted to bipartite graphs.

Finally, notice that our reduction rules get rid of all degree-two vertices
that have another degree-two vertex as a neighbor. Is there an “intermediate”
kernel size theorem (that somehow interpolates between the result of Blank,
McCuaig and Shepherd and that of Reed)? Our use of the additional struc-
tural properties of the reduced graphs was to cope with the exceptional graphs
from [15].

Planar graphs. Since the rules that merge the catalyst with other vertices may
destroy planarity, we may only claim the 2k4 kernel in the case of planar graphs.
We now use the following result on planar graphs by Fomin and Thilikos [9]:

Theorem 4. Every planar n-vertex graph has treewidth at most 9/v/8 - \/n.

Together with the treewidth-based algorithm for MINIMUM DOMINATING SET as
developed in [I], we can conclude:

Corollary 5. The NONBLOCKER problem, restricted to planar graphs, can be
solved in time O*(29Vka).

Is it possible to find a better kernelization in the planar case? This would be
interesting in view of lower bound results of J. Chen, H. Fernau, I. A. Kanj,
and G. Xia [4] who have shown there is no kernel smaller than (67/66 — €)kq.
Such a result would immediately entail better running times for algorithms
dealing with the planar case. Observe that the kernelization of Ore also ap-
plies to planar cubic graphs. Since NONBLOCKER is also A/ P-complete for that
graph class (see [I3]) and since DOMINATING SET has a 4k-kernel in that case,
we know that there is no (4/3 — €)kg-kernel for NONBLOCKER on planar cubic
graphs.

Graphs of bounded degree. Interestingly, there are better algorithm for solving
MINIMUM DOMINATING SET on cubic graphs (graphs whose degree is bounded
by three). More precisely, in [§] it is shown that this restricted problem can
be solved in time O*(3™/6) = ©*(1.2010") based on pathwidth decomposition
techniques. As in the planar case, we cannot make use of the catalyst rule, since
its application may increase the degree of a vertex.

Due to the 2k4-kernel for NONBLOCKER based on Ore’s result [17], we conclude:
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Corollary 6. By applying the algorithm of Fomin, Grandoni, and Kratsch [§]
to solve MINIMUM DOMINATING SET on a reduced instance (G,kq) of NON-
BLOCKER, the NONBLOCKER problem, restricted to instances of maximum de-
gree three, can be solved in time O*(3F¢/3) = O*(1.4423%) with polynomial
space.

Notice however that we can even do better in this case. Namely, by applying all
of our reduction rules but the decatalyzation rule, at most one vertex (namely
the catalyst) will have a degree higher than three, when starting with a graph
of maximum degree of three. Now, we can incorporate the information that all
neighbors of the catalyst are already dominated in the pathdecomposition based
algorithm for MINIMUM DOMINATING SET run on the graph G obtained from the
reduced graph by deleting the catalyst. Since G has maximum degree three, the
pathwidth bound of Fomin, Grandoni, and Kratsch [§] applies, so that we can
conclude:

Corollary 7. By applying the algorithm of Fomin, Grandoni, and Kratsch [§] to
solve MINIMUM DOMINATING SET on a reduced instance (G, kq) of NONBLOCKER
(that is modified as described), the NONBLOCKER problem, restricted to instances
of mazimum degree three, can be solved in time O*(3%%¢/18) = ©*(1.3569%¢) with
polynomial space.

Moreover, the kernelization primal/dual game can be played, since there is a triv-
ial 4k kernel for MINIMUM DOMINATING SET on cubic graphs (each vertex in a
dominating set can dominate at most three vertices). The lower bound results of
J. Chen, H. Fernau, I. A. Kanj, and G. Xia [4] on kernel sizes yield a 2k kernel
size lower bound for MINIMUM DOMINATING SET on cubic graphs. So, in that
case, upper and lower bound are not far off each other, at least when compared
to the planar case.

Related problems. Our approach seem to be transferrable to similar problems, al-
though then several additional technical hurdles appear. For example, for a suit-
able definition of “parametric dual”, we were able to derive similar kernel results
as given in this paper for MINIMUM ROMAN DOMINATION, see [6].

In view of the fact that the MINIMUM DOMINATING SET algorithm only makes
use of MINIMUM HITTING SET in its analysis, the same time bounds are also
valid for the variant of MINIMUM TOTAL DOMINATING SET, where each vertex
is required to be dominated by a neighbor (also the ones in the dominating
set). However, our catalyzator technique only works for vertices that are in the
dominating set and that are already dominated; vertices that are in the domi-
nating set (e.g., since they are neighbors of a vertex of degree one) but not yet
dominated themselves cannot be merged (only if their open neighborhoods are
comparable with respect to inclusion). There exist results similar to Blank, Mc-
Cuaig and Shepard’s that might provide kernelizations for TOTAL NONBLOCKER,
see [20].
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